Science.gov

Sample records for absolute pressure scale

  1. Elasticity of MgO to 11 GPa with an independent absolute pressure scale: Implications for pressure calibration

    SciTech Connect

    Li, B.; Woody, K; Kung, J

    2006-01-01

    P and S wave velocities and unit cell parameters (density) of MgO are measured simultaneously up to 11 GPa using combined ultrasonic interferometry and in situ X-ray diffraction techniques. The elastic bulk and shear moduli as well as their pressure derivatives are obtained by fitting the measured velocity and density data to the third-order finite strain equations, yielding K0S = 163.5(11) GPa, K'0S = 4.20(10), G0 = 129.8(6) GPa, and G'0 = 2.42(6), independent of pressure. These properties are subsequently used in a Birch-Murnaghan equation of state to determine the sample pressures at the observed strains. Comparison of the 300K isothermal compression of MgO indicates that current pressure scales from recent studies are in better than 1.5% agreement. We find that pressures derived from secondary pressure standards (NaCl, ruby fluorescence) at 300K are lower than those from current MgO scales by 5-8% ({approx}6% on average) in the entire pressure range of the current experiment. If this is taken into account, discrepancy in previous static compression studies on MgO at 300K can be reconciled, and a better agreement with the present study can be achieved.

  2. Absolute flux scale for radioastronomy

    SciTech Connect

    Ivanov, V.P.; Stankevich, K.S.

    1986-07-01

    The authors propose and provide support for a new absolute flux scale for radio astronomy, which is not encumbered with the inadequacies of the previous scales. In constructing it the method of relative spectra was used (a powerful tool for choosing reference spectra). A review is given of previous flux scales. The authors compare the AIS scale with the scale they propose. Both scales are based on absolute measurements by the ''artificial moon'' method, and they are practically coincident in the range from 0.96 to 6 GHz. At frequencies above 6 GHz, 0.96 GHz, the AIS scale is overestimated because of incorrect extrapolation of the spectra of the primary and secondary standards. The major results which have emerged from this review of absolute scales in radio astronomy are summarized.

  3. Apparatus for absolute pressure measurement

    NASA Technical Reports Server (NTRS)

    Hecht, R. (Inventor)

    1969-01-01

    An absolute pressure sensor (e.g., the diaphragm of a capacitance manometer) was subjected to a superimposed potential to effectively reduce the mechanical stiffness of the sensor. This substantially increases the sensitivity of the sensor and is particularly useful in vacuum gauges. An oscillating component of the superimposed potential induced vibrations of the sensor. The phase of these vibrations with respect to that of the oscillating component was monitored, and served to initiate an automatic adjustment of the static component of the superimposed potential, so as to bring the sensor into resonance at the frequency of the oscillating component. This establishes a selected sensitivity for the sensor, since a definite relationship exists between resonant frequency and sensitivity.

  4. CMOS MEMS capacitive absolute pressure sensor

    NASA Astrophysics Data System (ADS)

    Narducci, M.; Yu-Chia, L.; Fang, W.; Tsai, J.

    2013-05-01

    This paper presents the design, fabrication and characterization of a capacitive pressure sensor using a commercial 0.18 µm CMOS (complementary metal-oxide-semiconductor) process and postprocess. The pressure sensor is capacitive and the structure is formed by an Al top electrode enclosed in a suspended SiO2 membrane, which acts as a movable electrode against a bottom or stationary Al electrode fixed on the SiO2 substrate. Both the movable and fixed electrodes form a variable parallel plate capacitor, whose capacitance varies with the applied pressure on the surface. In order to release the membranes the CMOS layers need to be applied postprocess and this mainly consists of four steps: (1) deposition and patterning of PECVD (plasma-enhanced chemical vapor deposition) oxide to protect CMOS pads and to open the pressure sensor top surface, (2) etching of the sacrificial layer to release the suspended membrane, (3) deposition of PECVD oxide to seal the etching holes and creating vacuum inside the gap, and finally (4) etching of the passivation oxide to open the pads and allow electrical connections. This sensor design and fabrication is suitable to obey the design rules of a CMOS foundry and since it only uses low-temperature processes, it allows monolithic integration with other types of CMOS compatible sensors and IC (integrated circuit) interface on a single chip. Experimental results showed that the pressure sensor has a highly linear sensitivity of 0.14 fF kPa-1 in the pressure range of 0-300 kPa.

  5. Absolute OH and O radical densities in effluent of a He/H2O micro-scaled atmospheric pressure plasma jet

    NASA Astrophysics Data System (ADS)

    Benedikt, J.; Schröder, D.; Schneider, S.; Willems, G.; Pajdarová, A.; Vlček, J.; Schulz-von der Gathen, V.

    2016-08-01

    The effluent of a micro-scaled atmospheric pressure plasma jet (μ-APPJ) operated in helium with admixtures of water vapor (≲ {{10}4} ppm) has been analyzed by means of cavity ring-down laser absorption spectroscopy and molecular beam mass spectrometry to measure hydroxyl (OH) radical densities, and by two-photon absorption laser-induced fluorescence spectroscopy to measure atomic oxygen (O) densities. Additionally, the performance of the bubbler as a source of water vapor in the helium feed gas has been carefully characterized and calibrated. The largest OH and O densities in the effluent of 2× {{10}14}~\\text{c}{{\\text{m}}-3} and 3.2× {{10}13}~\\text{c}{{\\text{m}}-3} , respectively, have been measured at around 6000 ppm. The highest selectivity is reached around 1500 ppm, where the OH density is at  ∼63% of its maximum value and is 14 times larger than the O density. The measured density profiles and distance variations are compared to the results of a 2D axially symmetric fluid model of species transport and reaction kinetics in the plasma effluent. It is shown that the main loss of OH radicals in the effluent is their mutual reaction. In the case of O, reactions with other species than OH also have to be considered to explain the density decay in the effluent. The results presented here provide additional information for understanding the plasma-chemical processes in non-equilibrium atmospheric pressure plasmas. They also open the way to applying μ-APPJ with He/H2O as a selective source of OH radicals.

  6. Non-Invasive Method of Determining Absolute Intracranial Pressure

    NASA Technical Reports Server (NTRS)

    Yost, William T. (Inventor); Cantrell, John H., Jr. (Inventor); Hargens, Alan E. (Inventor)

    2004-01-01

    A method is presented for determining absolute intracranial pressure (ICP) in a patient. Skull expansion is monitored while changes in ICP are induced. The patient's blood pressure is measured when skull expansion is approximately zero. The measured blood pressure is indicative of a reference ICP value. Subsequently, the method causes a known change in ICP and measured the change in skull expansion associated therewith. The absolute ICP is a function of the reference ICP value, the known change in ICP and its associated change in skull expansion; and a measured change in skull expansion.

  7. Method for estimating absolute lung volumes at constant inflation pressure.

    PubMed

    Hills, B A; Barrow, R E

    1979-10-01

    A method has been devised for measuring functional residual capacity in the intact killed animal or absolute lung volumes in any excised lung preparation without changing the inflation pressure. This is achieved by titrating the absolute pressure of a chamber in which the preparation is compressed until a known volume of air has entered the lungs. This technique was used to estimate the volumes of five intact rabbit lungs and five rigid containers of known dimensions by means of Boyle's law. Results were found to agree to within +/- 1% with values determined by alternative methods. In the discussion the advantage of determining absolute lung volumes at almost any stage in a study of lung mechanics without the determination itself changing inflation pressure and, hence, lung volume is emphasized. PMID:511699

  8. Bio-Inspired Stretchable Absolute Pressure Sensor Network.

    PubMed

    Guo, Yue; Li, Yu-Hung; Guo, Zhiqiang; Kim, Kyunglok; Chang, Fu-Kuo; Wang, Shan X

    2016-01-02

    A bio-inspired absolute pressure sensor network has been developed. Absolute pressure sensors, distributed on multiple silicon islands, are connected as a network by stretchable polyimide wires. This sensor network, made on a 4'' wafer, has 77 nodes and can be mounted on various curved surfaces to cover an area up to 0.64 m × 0.64 m, which is 100 times larger than its original size. Due to Micro Electro-Mechanical system (MEMS) surface micromachining technology, ultrathin sensing nodes can be realized with thicknesses of less than 100 µm. Additionally, good linearity and high sensitivity (~14 mV/V/bar) have been achieved. Since the MEMS sensor process has also been well integrated with a flexible polymer substrate process, the entire sensor network can be fabricated in a time-efficient and cost-effective manner. Moreover, an accurate pressure contour can be obtained from the sensor network. Therefore, this absolute pressure sensor network holds significant promise for smart vehicle applications, especially for unmanned aerial vehicles.

  9. Bio-Inspired Stretchable Absolute Pressure Sensor Network

    PubMed Central

    Guo, Yue; Li, Yu-Hung; Guo, Zhiqiang; Kim, Kyunglok; Chang, Fu-Kuo; Wang, Shan X.

    2016-01-01

    A bio-inspired absolute pressure sensor network has been developed. Absolute pressure sensors, distributed on multiple silicon islands, are connected as a network by stretchable polyimide wires. This sensor network, made on a 4’’ wafer, has 77 nodes and can be mounted on various curved surfaces to cover an area up to 0.64 m × 0.64 m, which is 100 times larger than its original size. Due to Micro Electro-Mechanical system (MEMS) surface micromachining technology, ultrathin sensing nodes can be realized with thicknesses of less than 100 µm. Additionally, good linearity and high sensitivity (~14 mV/V/bar) have been achieved. Since the MEMS sensor process has also been well integrated with a flexible polymer substrate process, the entire sensor network can be fabricated in a time-efficient and cost-effective manner. Moreover, an accurate pressure contour can be obtained from the sensor network. Therefore, this absolute pressure sensor network holds significant promise for smart vehicle applications, especially for unmanned aerial vehicles. PMID:26729134

  10. Bio-Inspired Stretchable Absolute Pressure Sensor Network.

    PubMed

    Guo, Yue; Li, Yu-Hung; Guo, Zhiqiang; Kim, Kyunglok; Chang, Fu-Kuo; Wang, Shan X

    2016-01-01

    A bio-inspired absolute pressure sensor network has been developed. Absolute pressure sensors, distributed on multiple silicon islands, are connected as a network by stretchable polyimide wires. This sensor network, made on a 4'' wafer, has 77 nodes and can be mounted on various curved surfaces to cover an area up to 0.64 m × 0.64 m, which is 100 times larger than its original size. Due to Micro Electro-Mechanical system (MEMS) surface micromachining technology, ultrathin sensing nodes can be realized with thicknesses of less than 100 µm. Additionally, good linearity and high sensitivity (~14 mV/V/bar) have been achieved. Since the MEMS sensor process has also been well integrated with a flexible polymer substrate process, the entire sensor network can be fabricated in a time-efficient and cost-effective manner. Moreover, an accurate pressure contour can be obtained from the sensor network. Therefore, this absolute pressure sensor network holds significant promise for smart vehicle applications, especially for unmanned aerial vehicles. PMID:26729134

  11. Effects of confining pressure, pore pressure and temperature on absolute permeability. SUPRI TR-27

    SciTech Connect

    Gobran, B.D.; Ramey, H.J. Jr.; Brigham, W.E.

    1981-10-01

    This study investigates absolute permeability of consolidated sandstone and unconsolidated sand cores to distilled water as a function of the confining pressure on the core, the pore pressure of the flowing fluid and the temperature of the system. Since permeability measurements are usually made in the laboratory under conditions very different from those in the reservoir, it is important to know the effect of various parameters on the measured value of permeability. All studies on the effect of confining pressure on absolute permeability have found that when the confining pressure is increased, the permeability is reduced. The studies on the effect of temperature have shown much less consistency. This work contradicts the past Stanford studies by finding no effect of temperature on the absolute permeability of unconsolidated sand or sandstones to distilled water. The probable causes of the past errors are discussed. It has been found that inaccurate measurement of temperature at ambient conditions and non-equilibrium of temperature in the core can lead to a fictitious permeability reduction with temperature increase. The results of this study on the effect of confining pressure and pore pressure support the theory that as confining pressure is increased or pore pressure decreased, the permeability is reduced. The effects of confining pressure and pore pressure changes on absolute permeability are given explicitly so that measurements made under one set of confining pressure/pore pressure conditions in the laboratory can be extrapolated to conditions more representative of the reservoir.

  12. Mid-infrared absolute spectral responsivity scale based on an absolute cryogenic radiometer and an optical parametric oscillator laser

    NASA Astrophysics Data System (ADS)

    Zhao, Kun; Shi, Xueshun; Chen, Haidong; Liu, Yulong; Liu, Changming; Chen, Kunfeng; Li, Ligong; Gan, Haiyong; Ma, Chong

    2016-06-01

    We are reporting on a laser-based absolute spectral responsivity scale in the mid-infrared spectral range. By using a mid-infrared tunable optical parametric oscillator as the laser source, the absolute responsivity scale has been established by calibrating thin-film thermopile detectors against an absolute cryogenic radiometer. The thin-film thermopile detectors can be then used as transfer standard detectors. The extended uncertainty of the absolute spectral responsivity measurement has been analyzed to be 0.58%–0.68% (k  =  2).

  13. Mid-infrared absolute spectral responsivity scale based on an absolute cryogenic radiometer and an optical parametric oscillator laser

    NASA Astrophysics Data System (ADS)

    Zhao, Kun; Shi, Xueshun; Chen, Haidong; Liu, Yulong; Liu, Changming; Chen, Kunfeng; Li, Ligong; Gan, Haiyong; Ma, Chong

    2016-06-01

    We are reporting on a laser-based absolute spectral responsivity scale in the mid-infrared spectral range. By using a mid-infrared tunable optical parametric oscillator as the laser source, the absolute responsivity scale has been established by calibrating thin-film thermopile detectors against an absolute cryogenic radiometer. The thin-film thermopile detectors can be then used as transfer standard detectors. The extended uncertainty of the absolute spectral responsivity measurement has been analyzed to be 0.58%-0.68% (k  =  2).

  14. Absolute shielding scale for 31P from gas-phase NMR studies

    NASA Astrophysics Data System (ADS)

    Jameson, Cynthia J.; De Dios, Angel; Keith Jameson, A.

    1990-04-01

    Differences in the 31P nuclear shielding in the zero-pressure limit have been measured in seven compounds. An absolute 31P shielding scale based on the PH 3 molecular beam data is established and the absolute shielding of the standard liquid reference (85% aqueous H 3PO 4) is found to be 328.35 ppm, based on PH 3 being 594.45 ± 0.63 ppm. Comparisons with ab initio calculations show that calculations using local origins (the IGLO method) are in good agreement with experiment.

  15. Communication: The absolute shielding scales of oxygen and sulfur revisited

    SciTech Connect

    Komorovsky, Stanislav; Repisky, Michal; Malkin, Elena; Ruud, Kenneth; Gauss, Jürgen

    2015-03-07

    We present an updated semi-experimental absolute shielding scale for the {sup 17}O and {sup 33}S nuclei. These new shielding scales are based on accurate rotational microwave data for the spin–rotation constants of H{sub 2}{sup 17}O [Puzzarini et al., J. Chem. Phys. 131, 234304 (2009)], C{sup 17}O [Cazzoli et al., Phys. Chem. Chem. Phys. 4, 3575 (2002)], and H{sub 2}{sup 33}S [Helgaker et al., J. Chem. Phys. 139, 244308 (2013)] corrected both for vibrational and temperature effects estimated at the CCSD(T) level of theory as well as for the relativistic corrections to the relation between the spin–rotation constant and the absolute shielding constant. Our best estimate for the oxygen shielding constants of H{sub 2}{sup 17}O is 328.4(3) ppm and for C{sup 17}O −59.05(59) ppm. The relativistic correction for the sulfur shielding of H{sub 2}{sup 33}S amounts to 3.3%, and the new sulfur shielding constant for this molecule is 742.9(4.6) ppm.

  16. An absolute scale for measuring the utility of money

    NASA Astrophysics Data System (ADS)

    Thomas, P. J.

    2010-07-01

    Measurement of the utility of money is essential in the insurance industry, for prioritising public spending schemes and for the evaluation of decisions on protection systems in high-hazard industries. Up to this time, however, there has been no universally agreed measure for the utility of money, with many utility functions being in common use. In this paper, we shall derive a single family of utility functions, which have risk-aversion as the only free parameter. The fact that they return a utility of zero at their low, reference datum, either the utility of no money or of one unit of money, irrespective of the value of risk-aversion used, qualifies them to be regarded as absolute scales for the utility of money. Evidence of validation for the concept will be offered based on inferential measurements of risk-aversion, using diverse measurement data.

  17. An absolute interval scale of order for point patterns

    PubMed Central

    Protonotarios, Emmanouil D.; Baum, Buzz; Johnston, Alan; Hunter, Ginger L.; Griffin, Lewis D.

    2014-01-01

    Human observers readily make judgements about the degree of order in planar arrangements of points (point patterns). Here, based on pairwise ranking of 20 point patterns by degree of order, we have been able to show that judgements of order are highly consistent across individuals and the dimension of order has an interval scale structure spanning roughly 10 just-notable-differences (jnd) between disorder and order. We describe a geometric algorithm that estimates order to an accuracy of half a jnd by quantifying the variability of the size and shape of spaces between points. The algorithm is 70% more accurate than the best available measures. By anchoring the output of the algorithm so that Poisson point processes score on average 0, perfect lattices score 10 and unit steps correspond closely to jnds, we construct an absolute interval scale of order. We demonstrate its utility in biology by using this scale to quantify order during the development of the pattern of bristles on the dorsal thorax of the fruit fly. PMID:25079866

  18. Strong thermal leptogenesis and the absolute neutrino mass scale

    SciTech Connect

    Bari, Pasquale Di; King, Sophie E.; Fiorentin, Michele Re E-mail: sk1806@soton.ac.uk

    2014-03-01

    We show that successful strong thermal leptogenesis, where the final asymmetry is independent of the initial conditions and in particular a large pre-existing asymmetry is efficiently washed-out, favours values of the lightest neutrino mass m{sub 1}∼>10 meV for normal ordering (NO) and m{sub 1}∼>3 meV for inverted ordering (IO) for models with orthogonal matrix entries respecting |Ω{sub ij}{sup 2}|∼<2. We show analytically why lower values of m{sub 1} require a higher level of fine tuning in the seesaw formula and/or in the flavoured decay parameters (in the electronic for NO, in the muonic for IO). We also show how this constraint exists thanks to the measured values of the neutrino mixing angles and could be tightened by a future determination of the Dirac phase. Our analysis also allows us to place a more stringent constraint for a specific model or class of models, such as SO(10)-inspired models, and shows that some models cannot realise strong thermal leptogenesis for any value of m{sub 1}. A scatter plot analysis fully supports the analytical results. We also briefly discuss the interplay with absolute neutrino mass scale experiments concluding that they will be able in the coming years to either corner strong thermal leptogenesis or find positive signals pointing to a non-vanishing m{sub 1}. Since the constraint is much stronger for NO than for IO, it is very important that new data from planned neutrino oscillation experiments will be able to solve the ambiguity.

  19. Extension of the absolute flux density scale to 22.285 GHz. [radio astronomy

    NASA Technical Reports Server (NTRS)

    Janssen, M. A.; Golden, L. M.; Welch, W. J.

    1974-01-01

    Extending the absolute flux density scale at microwave wavelengths, the absolute flux densities at 22.285 GHz of several standard sources were determined using the absolute calibrations of the 6.1 meter antenna of the Hat Creek Observatory. Interpolation formulas for each nonthermal standard source have been derived by combining these data with those determined at lower frequencies. The suitability of employing the standard sources for calibrating other antennas is discussed.

  20. Fabrication of capacitive absolute pressure sensors by thin film vacuum encapsulation on SOI substrates

    NASA Astrophysics Data System (ADS)

    Belsito, Luca; Mancarella, Fulvio; Roncaglia, Alberto

    2016-09-01

    The paper reports on the fabrication and characterization of absolute capacitive pressure sensors fabricated by polysilicon low-pressure chemical vapour deposition vacuum packaging on silicon-on-insulator substrates. The fabrication process proposed is carried out at wafer level and allows obtaining a large number of miniaturized sensors per substrate on 1  ×  2 mm2 chips with high yield. The sensors present average pressure sensitivity of 8.3 pF/bar and average pressure resolution limit of 0.24 mbar within the measurement range 200–1200 mbar. The temperature drift of the sensor prototypes was also measured in the temperature range 25–45 °C, yielding an average temperature sensitivity of 67 fF K‑1 at ambient pressure.

  1. Fabrication of capacitive absolute pressure sensors by thin film vacuum encapsulation on SOI substrates

    NASA Astrophysics Data System (ADS)

    Belsito, Luca; Mancarella, Fulvio; Roncaglia, Alberto

    2016-09-01

    The paper reports on the fabrication and characterization of absolute capacitive pressure sensors fabricated by polysilicon low-pressure chemical vapour deposition vacuum packaging on silicon-on-insulator substrates. The fabrication process proposed is carried out at wafer level and allows obtaining a large number of miniaturized sensors per substrate on 1  ×  2 mm2 chips with high yield. The sensors present average pressure sensitivity of 8.3 pF/bar and average pressure resolution limit of 0.24 mbar within the measurement range 200-1200 mbar. The temperature drift of the sensor prototypes was also measured in the temperature range 25-45 °C, yielding an average temperature sensitivity of 67 fF K-1 at ambient pressure.

  2. A new primary standard oil manometer for absolute pressure up to 10 kPa

    NASA Astrophysics Data System (ADS)

    Li, Yanhua; Yang, Yuanchao; Wang, Jinku; Sun, Junfeng

    2015-02-01

    The National Institute of Metrology has developed a new oil manometer that covers the absolute pressure range from 100 Pa up to 10 kPa. The manometer is based on the ultrasonic measurement of transit time in oil columns, and a novel dual U-tube system has been designed to measure the speed of sound in real time as the pressure changes. The working fluid, di-2-ethylhexyl sebacate, was chosen for its sufficiently low vapor pressure and low sound attenuation. Each tube has a coating of Teflon to resist wetting by the oil. To obtain a uniform and stable temperature environment, the dual U-tube system is located inside a guard vacuum chamber that is wrapped with foam and aluminium foil. A vertical temperature difference of less than 20 mK, a horizontal temperature difference of less than 5 mK and a temperature stability better than 10 mK were achieved. The overall standard (k = 1) uncertainty of the oil manometer is estimated to be approximately (0.015 + 1.63  ×  10-5 p Pa-1) Pa for absolute pressure measurements.

  3. Kelvin Absolute Temperature Scale Identified as Length Scale and Related to de Broglie Thermal Wavelength

    NASA Astrophysics Data System (ADS)

    Sohrab, Siavash

    Thermodynamic equilibrium between matter and radiation leads to de Broglie wavelength λdβ = h /mβvrβ and frequency νdβ = k /mβvrβ of matter waves and stochastic definitions of Planck h =hk =mk <λrk > c and Boltzmann k =kk =mk <νrk > c constants, λrkνrk = c , that respectively relate to spatial (λ) and temporal (ν) aspects of vacuum fluctuations. Photon massmk =√{ hk /c3 } , amu =√{ hkc } = 1 /No , and universal gas constant Ro =No k =√{ k / hc } result in internal Uk = Nhνrk = Nmkc2 = 3 Nmkvmpk2 = 3 NkT and potential pV = uN\\vcirc / 3 = N\\ucirc / 3 = NkT energy of photon gas in Casimir vacuum such that H = TS = 4 NkT . Therefore, Kelvin absolute thermodynamic temperature scale [degree K] is identified as length scale [meter] and related to most probable wavelength and de Broglie thermal wavelength as Tβ =λmpβ =λdβ / 3 . Parallel to Wien displacement law obtained from Planck distribution, the displacement law λwS T =c2 /√{ 3} is obtained from Maxwell -Boltzmann distribution of speed of ``photon clusters''. The propagation speeds of sound waves in ideal gas versus light waves in photon gas are described in terms of vrβ in harmony with perceptions of Huygens. Newton formula for speed of long waves in canals √{ p / ρ } is modified to √{ gh } =√{ γp / ρ } in accordance with adiabatic theory of Laplace.

  4. Absolute and Relative Reliability of Percentage of Syllables Stuttered and Severity Rating Scales

    ERIC Educational Resources Information Center

    Karimi, Hamid; O'Brian, Sue; Onslow, Mark; Jones, Mark

    2014-01-01

    Purpose: Percentage of syllables stuttered (%SS) and severity rating (SR) scales are measures in common use to quantify stuttering severity and its changes during basic and clinical research conditions. However, their reliability has not been assessed with indices measuring both relative and absolute reliability. This study was designed to provide…

  5. Global-Scale Location and Distance Estimates: Common Representations and Strategies in Absolute and Relative Judgments

    ERIC Educational Resources Information Center

    Friedman, Alinda; Montello, Daniel R.

    2006-01-01

    The authors examined whether absolute and relative judgments about global-scale locations and distances were generated from common representations. At the end of a 10-week class on the regional geography of the United States, participants estimated the latitudes of 16 North American cities and all possible pairwise distances between them. Although…

  6. Energy dispersive X-ray analysis on an absolute scale in scanning transmission electron microscopy.

    PubMed

    Chen, Z; D'Alfonso, A J; Weyland, M; Taplin, D J; Allen, L J; Findlay, S D

    2015-10-01

    We demonstrate absolute scale agreement between the number of X-ray counts in energy dispersive X-ray spectroscopy using an atomic-scale coherent electron probe and first-principles simulations. Scan-averaged spectra were collected across a range of thicknesses with precisely determined and controlled microscope parameters. Ionization cross-sections were calculated using the quantum excitation of phonons model, incorporating dynamical (multiple) electron scattering, which is seen to be important even for very thin specimens.

  7. The possibility of constructing the hydrogen scale of the absolute atomic masses of the elements

    NASA Astrophysics Data System (ADS)

    Kuz'min, I. I.

    2009-12-01

    The paper presents a scheme for the experimental-empirical construction of the existing chemical, physical, and carbon scales of the relative nonintegral atomic masses of the elements. The quantitative interrelation between the nonintegral relative atomic masses, their minimized fractional positive and negative natural deviations from integral numbers, and their integral parts are reproduced mathematically. Nonisotopic fractional deviations are shown to be a consequence of methodological side effects of the scheme for theoretical processing of the data of thorough physical and chemical measurements performed by Stas and Aston in constructing scales of relative atomic masses. In conformity with the Prout hypothesis, the absolute atomic mass unit and the corresponding Avogadro’s number value are suggested for the construction of the hydrogen scale of absolute atomic masses of nonisotopic elements, individual isotopes, and isotope-containing elements.

  8. Fabrication of capacitive absolute pressure sensor using Si-Au eutectic bonding in SOI wafer

    NASA Astrophysics Data System (ADS)

    Ryeol Lee, Kang; Kim, Kunnyun; Park, Hyo-Derk; Kim, Yong Kook; Choi, Seung-Woo; Choi, Woo-Beom

    2006-04-01

    A capacitive absolute pressure sensor was fabricated using a large deflected diaphragm with a sealed vacuum cavity formed by removing handling silicon wafer and oxide layers from a SOI wafer after eutectic bonding of a silicon wafer to the SOI wafer. The deflected displacements of the diaphragm formed by the vacuum cavity in the fabricated sensor were similar to simulation results. Initial capacitance values were about 2.18pF and 3.65pF under normal atmosphere, where the thicknesses of the diaphragm used to fabricate the vacuum cavity were 20 µm and 30 µm, respectively. Also, it was confirmed that the differences of capacitance value from 1000hPa to 5hPa were about 2.57pF and 5.35pF, respectively.

  9. The 2ν{sub 3} Raman overtone of sulfur hexafluoride: Absolute spectra, pressure effects, and polarizability properties

    SciTech Connect

    Chrysos, M. Rachet, F.; Kremer, D.

    2014-03-28

    Of the six normal vibrations of SF{sub 6}, ν{sub 3} has a key role in the mechanisms of radiative forcing. This vibration, though inactive in Raman, shows up through the transition 2ν{sub 3} allowing for a complementary view on the asymmetric stretch of the molecule. Here, we look back into this topic, which has already caught some interest in the past but with some points been left out. We make a systematic incoherent-light-scattering analysis of the overtone with the use of different gas pressures and polarization orientations for the incident beam. Absolute-scale isotropic and anisotropic spectra are reported along with natural and pressure-induced widths and shifts, and other spectral features such as the peaks corresponding to the (experimentally indistinguishable) interfering channels E{sub g} and F{sub 2g} hitherto seen solely as two-photon IR-absorption features. We make the first-ever prediction of the SF{sub 6} polarizability second derivative with respect to the ν{sub 3}-mode coordinate and we develop a heuristic argument to explain why the superposition of the three degenerate stretching motions that are related to the ν{sub 3} mode cannot but generate a polarized Raman band.

  10. Absolute Calibration of the Radio Astronomy Flux Density Scale at 22 to 43 GHz Using Planck

    NASA Astrophysics Data System (ADS)

    Partridge, B.; López-Caniego, M.; Perley, R. A.; Stevens, J.; Butler, B. J.; Rocha, G.; Walter, B.; Zacchei, A.

    2016-04-01

    The Planck mission detected thousands of extragalactic radio sources at frequencies from 28 to 857 GHz. Planck's calibration is absolute (in the sense that it is based on the satellite’s annual motion around the Sun and the temperature of the cosmic microwave background), and its beams are well characterized at sub-percent levels. Thus, Planck's flux density measurements of compact sources are absolute in the same sense. We have made coordinated Very Large Array (VLA) and Australia Telescope Compact Array (ATCA) observations of 65 strong, unresolved Planck sources in order to transfer Planck's calibration to ground-based instruments at 22, 28, and 43 GHz. The results are compared to microwave flux density scales currently based on planetary observations. Despite the scatter introduced by the variability of many of the sources, the flux density scales are determined to 1%-2% accuracy. At 28 GHz, the flux density scale used by the VLA runs 2%-3% ± 1.0% below Planck values with an uncertainty of +/- 1.0%; at 43 GHz, the discrepancy increases to 5%-6% ± 1.4% for both ATCA and the VLA.

  11. COMPARISON OF VENTED AND ABSOLUTE PRESSURE TRANSDUCERS FOR WATER-LEVEL MONITORING IN HANFORD SITE CENTRAL PLATEAU WELLS

    SciTech Connect

    MCDONALD JP

    2011-09-08

    Automated water-level data collected using vented pressure transducers deployed in Hanford Site Central Plateau wells commonly display more variability than manual tape measurements in response to barometric pressure fluctuations. To explain this difference, it was hypothesized that vented pressure transducers installed in some wells are subject to barometric pressure effects that reduce water-level measurement accuracy. Vented pressure transducers use a vent tube, which is open to the atmosphere at land surface, to supply air pressure to the transducer housing for barometric compensation so the transducer measurements will represent only the water pressure. When using vented transducers, the assumption is made that the air pressure between land surface and the well bore is in equilibrium. By comparison, absolute pressure transducers directly measure the air pressure within the wellbore. Barometric compensation is achieved by subtracting the well bore air pressure measurement from the total pressure measured by a second transducer submerged in the water. Thus, no assumption of air pressure equilibrium is needed. In this study, water-level measurements were collected from the same Central Plateau wells using both vented and absolute pressure transducers to evaluate the different methods of barometric compensation. Manual tape measurements were also collected to evaluate the transducers. Measurements collected during this study demonstrated that the vented pressure transducers over-responded to barometric pressure fluctuations due to a pressure disequilibrium between the air within the wellbores and the atmosphere at land surface. The disequilibrium is thought to be caused by the relatively long time required for barometric pressure changes to equilibrate between land surface and the deep vadose zone and may be exacerbated by the restriction of air flow between the well bore and the atmosphere due to the presence of sample pump landing plates and well caps. The

  12. A self-consistent, absolute isochronal age scale for young moving groups in the solar neighbourhood

    NASA Astrophysics Data System (ADS)

    Bell, Cameron P. M.; Mamajek, Eric E.; Naylor, Tim

    2015-11-01

    We present a self-consistent, absolute isochronal age scale for young ( ≲ 200 Myr), nearby ( ≲ 100 pc) moving groups in the solar neighbourhood based on homogeneous fitting of semi-empirical pre-main-sequence model isochrones using the τ2 maximum-likelihood fitting statistic of Naylor & Jeffries in the MV, V - J colour-magnitude diagram. The final adopted ages for the groups are as follows: 149^{+51}_{-19} {Myr} for the AB Dor moving group, 24 ± 3 Myr for the β Pic moving group (BPMG), 45^{+11}_{-7} {Myr} for the Carina association, 42^{+6}_{-4} {Myr} for the Columba association, 11 ± 3 Myr for the η Cha cluster, 45 ± 4 Myr for the Tucana-Horologium moving group (Tuc-Hor), 10 ± 3 Myr for the TW Hya association and 22^{+4}_{-3} {Myr} for the 32 Ori group. At this stage we are uncomfortable assigning a final, unambiguous age to the Argus association as our membership list for the association appears to suffer from a high level of contamination, and therefore it remains unclear whether these stars represent a single population of coeval stars. Our isochronal ages for both the BPMG and Tuc-Hor are consistent with recent lithium depletion boundary (LDB) ages, which unlike isochronal ages, are relatively insensitive to the choice of low-mass evolutionary models. This consistency between the isochronal and LDB ages instils confidence that our self-consistent, absolute age scale for young, nearby moving groups is robust, and hence we suggest that these ages be adopted for future studies of these groups. Software implementing the methods described in this study is available from http://www.astro.ex.ac.uk/people/timn/tau-squared/.

  13. Toward an internally consistent pressure scale

    PubMed Central

    Fei, Yingwei; Ricolleau, Angele; Frank, Mark; Mibe, Kenji; Shen, Guoyin; Prakapenka, Vitali

    2007-01-01

    Our ability to interpret seismic observations including the seismic discontinuities and the density and velocity profiles in the earth's interior is critically dependent on the accuracy of pressure measurements up to 364 GPa at high temperature. Pressure scales based on the reduced shock-wave equations of state alone may predict pressure variations up to 7% in the megabar pressure range at room temperature and even higher percentage at high temperature, leading to large uncertainties in understanding the nature of the seismic discontinuities and chemical composition of the earth's interior. Here, we report compression data of gold (Au), platinum (Pt), the NaCl-B2 phase, and solid neon (Ne) at 300 K and high temperatures up to megabar pressures. Combined with existing experimental data, the compression data were used to establish internally consistent thermal equations of state of Au, Pt, NaCl-B2, and solid Ne. The internally consistent pressure scales provide a tractable, accurate baseline for comparing high pressure–temperature experimental data with theoretical calculations and the seismic observations, thereby advancing our understanding fundamental high-pressure phenomena and the chemistry and physics of the earth's interior. PMID:17483460

  14. Global-scale location and distance estimates: common representations and strategies in absolute and relative judgments.

    PubMed

    Friedman, Alinda; Montello, Daniel R

    2006-03-01

    The authors examined whether absolute and relative judgments about global-scale locations and distances were generated from common representations. At the end of a 10-week class on the regional geography of the United States, participants estimated the latitudes of 16 North American cities and all possible pairwise distances between them. Although participants were relative experts, their latitude estimates revealed the presence of psychologically based regions with large gaps between them and a tendency to stretch North America southward toward the equator. The distance estimates revealed the same properties in the representation recovered via multidimensional scaling. Though the aggregated within- and between-regions distance estimates were fitted by Stevens's law (S. S. Stevens, 1957), this was an averaging artifact: The appropriateness of a power function to describe distance estimates depended on the regional membership of the cities. The authors conclude that plausible reasoning strategies, combined with regionalized representations and beliefs about the location of these relative to global landmarks, underlie global-scale latitude and distance judgments.

  15. A Concurrent Mixed Methods Approach to Examining the Quantitative and Qualitative Meaningfulness of Absolute Magnitude Estimation Scales in Survey Research

    ERIC Educational Resources Information Center

    Koskey, Kristin L. K.; Stewart, Victoria C.

    2014-01-01

    This small "n" observational study used a concurrent mixed methods approach to address a void in the literature with regard to the qualitative meaningfulness of the data yielded by absolute magnitude estimation scaling (MES) used to rate subjective stimuli. We investigated whether respondents' scales progressed from less to more and…

  16. Pressure dependence of the absolute rate constant for the reaction OH + C2H2 from 228 to 413 K

    NASA Technical Reports Server (NTRS)

    Michael, J. V.; Nava, D. F.; Payne, W. A.; Stief, L. J.; Borkowski, R. P.

    1980-01-01

    The pressure dependence of the absolute rate constant for the reaction of the hydroxyl radical with acetylene, important in both atmospheric and combustion chemistry, is determined for temperatures between 228 and 413 K. The flash photolysis-resonance fluorescence technique was employed at five temperatures over wide ranges of pressure and acetylene concentrations, with the OH produced by water photolysis and hydroxyl resonance fluorescent photons measured by multiscaling techniques. Results indicate that, except at the lowest temperature, the bimolecular rate constant for the reaction depends strongly on total pressure, with the pressure effect becoming more pronounced with increasing temperature. At limiting high pressures, the rate constant is found to be equal to 6.83 + or - 1.19 x 10 to the -12th exp (-646 + or - 47/T) cu cm/molecule per sec, where T is the temperature. Results thus demonstrate the importance of environmental conditions in theoretical studies of atmospheric and combustion product compositions

  17. In-Flight Measurement of the Absolute Energy Scale of the Fermi Large Area Telescope

    SciTech Connect

    Ackermann, M.; Ajello, M.; Allafort, A.; Atwood, W.B.; Axelsson, M.; Baldini, L.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Berenji, B.; Bloom, E.D.; Bonamente, E.; Borgland, A.W.; Bouvier, A.; Bregeon, J.; Brez, A.; Brigida, M.; Bruel, P.; Buehler, R.; Buson, S.; /more authors..

    2012-09-20

    The Large Area Telescope (LAT) on-board the Fermi Gamma-ray Space Telescope is a pair-conversion telescope designed to survey the gamma-ray sky from 20 MeV to several hundreds of GeV. In this energy band there are no astronomical sources with sufficiently well known and sharp spectral features to allow an absolute calibration of the LAT energy scale. However, the geomagnetic cutoff in the cosmic ray electron-plus-positron (CRE) spectrum in low Earth orbit does provide such a spectral feature. The energy and spectral shape of this cutoff can be calculated with the aid of a numerical code tracing charged particles in the Earth's magnetic field. By comparing the cutoff value with that measured by the LAT in different geomagnetic positions, we have obtained several calibration points between {approx}6 and {approx}13 GeV with an estimated uncertainty of {approx}2%. An energy calibration with such high accuracy reduces the systematic uncertainty in LAT measurements of, for example, the spectral cutoff in the emission from gamma ray pulsars.

  18. NMR absolute shielding scale and nuclear magnetic dipole moment of (207)Pb.

    PubMed

    Adrjan, Bożena; Makulski, Włodzimierz; Jackowski, Karol; Demissie, Taye B; Ruud, Kenneth; Antušek, Andrej; Jaszuński, Michał

    2016-06-28

    An absolute shielding scale is proposed for (207)Pb nuclear magnetic resonance (NMR) spectroscopy. It is based on ab initio calculations performed on an isolated tetramethyllead Pb(CH3)4 molecule and the assignment of the experimental resonance frequency from the gas-phase NMR spectra of Pb(CH3)4, extrapolated to zero density of the buffer gas to obtain the result for an isolated molecule. The computed (207)Pb shielding constant is 10 790 ppm for the isolated molecule, leading to a shielding of 10799.7 ppm for liquid Pb(CH3)4 which is the accepted reference standard for (207)Pb NMR spectra. The new experimental and theoretical data are used to determine μ((207)Pb), the nuclear magnetic dipole moment of (207)Pb, by applying the standard relationship between NMR frequencies, shielding constants and nuclear moments of two nuclei in the same external magnetic field. Using the gas-phase (207)Pb and (reference) proton results and the theoretical value of the Pb shielding in Pb(CH3)4, we find μ((207)Pb) = 0.59064 μN. The analysis of new experimental and theoretical data obtained for the Pb(2+) ion in water solutions provides similar values of μ((207)Pb), in the range of 0.59000-0.59131 μN. PMID:27265668

  19. In-Flight Measurement of the Absolute Energy Scale of the Fermi Large Area Telescope

    NASA Technical Reports Server (NTRS)

    Ackermann, M.; Ajello, M.; Allafort, A.; Atwood, W. B.; Axelsson, M.; Baldini, L.; Barbielini, G; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Berenji, B,; Bloom, E. D.; Bonamente, E.; Borgland, A. W.; Bouvier, A.; Bregeon, J.; Brez, A.; Brigida, M.; Bruel, P.; Buehler, R.; Gehrels, N.; Hays, E.; McEnery, J. E.; Thompson, D. J.; Troja, E. J.

    2012-01-01

    The Large Area Telescope (LAT) on-board the Fermi Gamma-ray Space Telescope is a pair-conversion telescope designed to survey the gamma-ray sky from 20 MeV to several hundreds of GeV. In this energy band there are no astronomical sources with sufficiently well known and sharp spectral features to allow an absolute calibration of the LAT energy scale. However, the geomagnetic cutoff in the cosmic ray electron- plus-positron (CRE) spectrum in low Earth orbit does provide such a spectral feature. The energy and spectral shape of this cutoff can be calculated with the aid of a numerical code tracing charged particles in the Earth's magnetic field. By comparing the cutoff value with that measured by the LAT in different geomagnetic positions, we have obtained several calibration points between approx. 6 and approx. 13 GeV with an estimated uncertainty of approx. 2%. An energy calibration with such high accuracy reduces the systematic uncertainty in LAT measurements of, for example, the spectral cutoff in the emission from gamma ray pulsars.

  20. Effect of Static Pressure on Absolute Paleointesity Determinations with Implications for Meteorites

    NASA Astrophysics Data System (ADS)

    Volk, M.; Gilder, S. A.

    2015-12-01

    Meteorites store information about the magnetic fields present in the solar system. However, most meteorites have experienced pressure/shock, which will influence the magnetic properties of the remanence carrying minerals. Here, we quantify the effect that relatively low pressure has on paleointensity recording with relevance to meteorites that have no petrographic evidence for shock. Thellier-type experiments were carried out on 40 samples containing thermally stable titanomagnetite similar to that found in some achondrites. Pressure cycling was performed under hydrostatic and non-hydrostatic conditions. We also tested the effect of pressure cycling when the maximum compression axis was imposed parallel and perpendicular to the magnetization direction. The initial zero pressure experiment correctly reproduced the laboratory field imparted on the samples. Paleointensity values decrease 10%/GPa under hydrostatic conditions with no observable directional dependence between the direction of the magnetization with the maximum compression axis. Non-hydrostatic pressures have a significantly greater effect - paleointensity decreases 20%/GPa on average, with only a slight difference when pressure is imposed parallel to the magnetization direction, whereas the pressure demagnetization effect is more substantial. Interestingly, the data become more linear (higher quality factors) as pressure increases. We explain this phenomenon through a numerical model that shows the mean blocking temperatures become lower with increasing pressure. This reduces the difference between mean blocking and unblocking, which eliminates the sagging (curvature) seen in Arai plots.Considering that samples from meteorites classified as unshocked may have experienced pressures up to 5 GPa, paleointensity estimates derived from meteorites should be considered as minimum values.

  1. Investigation of diaphragm deflection of an absolute MEMS capacitive polysilicon pressure sensor

    NASA Astrophysics Data System (ADS)

    Walk, C.; Goehlich, A.; Giese, A.; Goertz, M.; Vogt, H.; Kraft, M.

    2015-05-01

    This paper deals with the characteristics of circular shaped polysilicon pressure sensor diaphragms operating in the non-tactile mode. Using a phase shifting interferometer the main characteristics of diaphragms were investigated under applied pressure with respect to sensitivity, initial deflection and cavity height. Diaphragms with a thickness of 1 μm and a diameter of 96 μm were investigated in an intended pressure range of applied pressure of about 700 - 2000 hPa. Process parameters with major impact on performance and yield limitations were identified. These include the variance in diaphragm sensitivity and the impact of the variance of the sacrificial oxide layer defining the diaphragm cavity height on the contact pressure point. The sensitivity of these diaphragms including the variance was found to be - 19.8 ± 1.3 nm per 100 hPa. The impact of variance in the cavity height on the contact pressure point was found to be about 3.7 ± 0.5 hPa per nm. Summarizing both impacts a maximum variation of the contact pressure point of more than 450 hPa is possible to occur considering a nominal deflection of 300 nm. By optimizing the process of diaphragm deposition the variance in the sensitivity of the diaphragm was decreased by a factor of 2. A semi - empirical formula was evaluated that describes the deflection including initial deflection due to intrinsic stress and the process variations. A validation to the experimental obtained deflection lines showed a good agreement with deviations of less than 2 % for radial ranges of maximum deflection.

  2. Effect of static pressure on absolute paleointensity recording with implications for meteorites

    NASA Astrophysics Data System (ADS)

    Volk, Michael W. R.; Gilder, Stuart A.

    2016-08-01

    We investigated the influence of hydrostatic and nonhydrostatic stress on the recording process of magnetic field intensity with particular relevance for meteorites that experienced pressures lower than 5 GPa corresponding to the lowest shock stage classification (S1) in meteorites. Thermal remanent magnetizations were imparted on natural obsidian samples containing pseudo-single domain titanomagnetite, analogous to some achondritic meteorites. Thellier-type paleointensity experiments were carried out at ambient conditions after pressure cycling to 0.6, 1.2, and 1.8 GPa. Each experiment used 10 samples to assess reproducibility, which is better than ±5%. The recorded paleointensity decreased 10%/GPa under hydrostatic stress and 20%/GPa under nonhydrostatic stress, leading to the fundamental conclusion that paleointensity results from meteorites may be appreciably underestimated. Pressure cycling shifts the blocking and unblocking spectra, thereby producing more linear slopes on an Arai diagram with increasing strain. We explain why, for samples with a single magnetization component that does not alter, a two-step paleointensity protocol sufficiently resolves the true paleointensity. Moreover, we propose that pressure cycling of pseudo-single domain bearing samples will remove the inherent curvature of the Arai slope, thereby allowing one to obtain a more accurate estimate of the true paleointensity. This likely also holds true for samples possessing multidomain grains. Conversely, linear trends on Arai plots in meteorites might have their origin in a pressure effect that does not necessarily reflect the ubiquitous presence of single domain particles.

  3. Pressure dependence of the absolute rate constant for the reaction OH + C2H2 from 228 to 413K

    NASA Technical Reports Server (NTRS)

    Michael, J. V.; Nava, D. F.; Borokowski, R. P.; Payne, W. A.; Stief, L. J.

    1980-01-01

    The pressure dependence of absolute rate constants for the reaction of OH + C2H2 yields products has been examined at five temperatures ranging from 228 to 413 K. The experimental techniques which was used is flash photolysis-resonance fluoresence. OH was produced by water photolysis and hydroxyl resonance fluorescent photons were measured by multiscaling techniques. The results indicate that the low pressure bimolecular rate constant is 4 x 10 the the minus 13th power cu cm molecule (-1) s(-1) over the temperature range studied. A substantial increase in the bimolecular rate constant with an increase in pressure was observed at all temperatures except 228 K. This indicates the importance of initial adduct formation and subsequent stablization. The high pressure results are well represented by the Arrhenius expression (k sub bi) sub infinity = (6.83 + or - 1.19) x 10 to the minus 12th power exp(-646 + or - 47/T)cu cm molecule (-1) s(-1). The results are compared to previous investigated and are theoretically discussed. The implications of these results on modeling of terrestrial and planetary atmospheres and also in combustion chemistry are discussed.

  4. Temperature and pressure dependence of the absolute rate constant for the reactions of NH2 radicals with acetylene and ethylene

    NASA Technical Reports Server (NTRS)

    Bosco, S. R.; Nava, D. F.; Brobst, W. D.; Stief, L. J.

    1984-01-01

    The absolute rate constants for the reaction between the NH2 free radical and acetylene and ethylene is measured experimentally using a flash photolysis technique. The constant is considered to be a function of temperature and pressure. At each temperature level of the experiment, the observed pseudo-first-order rate constants were assumed to be independent of flash intensity. The results of the experiment indicate that the bimolecular rate constant for the NH2 + C2H2 reaction increases with pressure at 373 K and 459 K but not at lower temperatures. Results near the pressure limit conform to an Arrhenius expression of 1.11 (+ or -) 0.36 x 10 to the -13th over the temperature range from 241 to 459 K. For the reaction NH2 + C2H4, a smaller rate of increase in the bimolecular rate constant was observed over the temperature range 250-465 K. The implications of these results for current theoretical models of NH2 + C2H2 (or H4) reactions in the atmospheres of Jupiter and Saturn are discussed.

  5. Investigation of Absolute and Relative Scaling Conceptions of Students in Introductory College Chemistry Courses

    ERIC Educational Resources Information Center

    Gerlach, Karrie; Trate, Jaclyn; Blecking, Anja; Geissinger, Peter; Murphy, Kristen

    2014-01-01

    Scale as a theme in science instruction is not a new idea. As early as the mid-1980s, scale was identified as an important component of a student's overall science literacy. However, the study of scale and the scale literacy of students in varying levels of education have received less attention than other science-literacy components.…

  6. Easy Absolute Values? Absolutely

    ERIC Educational Resources Information Center

    Taylor, Sharon E.; Mittag, Kathleen Cage

    2015-01-01

    The authors teach a problem-solving course for preservice middle-grades education majors that includes concepts dealing with absolute-value computations, equations, and inequalities. Many of these students like mathematics and plan to teach it, so they are adept at symbolic manipulations. Getting them to think differently about a concept that they…

  7. Symbolic Formulation of Large-scale Open-loop Multibody Systems for Vibration Analysis Using Absolute Joint Coordinates

    NASA Astrophysics Data System (ADS)

    Jiang, Wei; Chen, Xuedong; Luo, Xin; Huang, Qingjiu

    A novel symbolic formulation is presented to model dynamics of large-scale open-loop holonomic multibody systems, by using absolute joint coordinates and via matrix transformation, instead of solving constraint equations. The resulting minimal set of second-order linear ordinary differential equations (ODEs) can be used for linear vibration analysis and control directly. The ODEs are generated in three steps. Firstly, a set of linearized ODEs are formulated in terms of absolute coordinates without considering any constraint. Secondly, an overall transform matrix representing constraint topology for the entire constrained system is generated. Finally, matrices for a minimal set of ODEs for the open-loop holonomic multibody system are obtained via matrix transformation. The correctness and efficiency of the presented algorithm are verified by numerical experiments on various cases of holonomic multibody systems with different open-loop topologies, including chain topology and tree topology. It is indicated that the proposed method can significantly improve efficiency without losing computational accuracy.

  8. White-light scanning interferometer for absolute nano-scale gap thickness measurement.

    PubMed

    Xu, Zhiguang; Shilpiekandula, Vijay; Youcef-toumi, Kamal; Yoon, Soon Fatt

    2009-08-17

    A special configuration of white-light scanning interferometer is described for measuring the absolute air gap thickness between two planar plates brought into close proximity. The measured gap is not located in any interference arm of the interferometer, but acts as an amplitude-and-phase modulator of the light source. Compared with the common white-light interferometer our approach avoids the influence of the chromatic dispersion of the planar plates on the gap thickness quantification. It covers a large measurement range of from approximate contact to tens of microns with a high resolution of 0.1 nm. Detailed analytical models are presented and signal-processing algorithms based on convolution and correlation techniques are developed. Practical measurements are carried out and the experimental results match well with the analysis and simulation. Short-time and long-time repeatabilities are both tested to prove the high performance of our method.

  9. Gas-phase NMR measurements, absolute shielding scales, and magnetic dipole moments of 29Si and 73Ge nuclei.

    PubMed

    Makulski, W; Jackowski, K; Antusek, A; Jaszuński, M

    2006-10-12

    New gas-phase NMR measurements of the shielding constants of 29Si, 73Ge, and 1H nuclei in SiH4 and GeH4 are reported. The results, extrapolated to zero density, provide accurate isolated molecule values, best suited for comparison with theoretical calculations. Using the recent ab initio results for these molecules and the measured chemical shifts, we determine the absolute shielding scales for 29Si and 73Ge. This allows us to provide new values of the nuclear magnetic dipole moments for these two nuclei; in addition, we examine the dipole moments of 13C and 119Sn.

  10. Music Proficiency and Quantification of Absolute Pitch: A Large-Scale Study among Brazilian Musicians

    PubMed Central

    Leite, Raphael B. C.; Mota-Rolim, Sergio A.; Queiroz, Claudio M. T.

    2016-01-01

    Absolute pitch (AP) is the ability to identify and name the pitch of a sound without external reference. Often, accuracy and speed at naming isolated musical pitches are correlated with demographic, biological, and acoustical parameters to gain insight into the genesis and evolution of this ability in specific cohorts. However, the majority of those studies were conducted in North America, Europe, or Asia. To fill this gap, here we investigated the pitch-naming performance in a large population of Brazilian conservatory musicians (N = 200). As previously shown, we found that the population performance was rather a continuum than an “all-or-none” ability. By comparing the observed distribution of correct responses to a theoretical binomial distribution, we estimated the prevalence of AP as being 18% amongst regular music students. High accuracy thresholds (e.g., 85% of correct responses) yielded a prevalence of 4%, suggesting that AP might have been underestimated in previous reports. Irrespective of the threshold used, AP prevalence was higher in musicians who started their musical practice and formal musical education early in life. Finally, we compared the performance of those music students (average proficiency group) with another group of students selected to take part in the conservatory orchestra (high proficiency group, N = 30). Interestingly, the prevalence of AP was higher in the latter in comparison to the former group. In addition, even when the response was incorrect, the mean absolute deviation from the correct response was smaller in the high proficiency group compared to the average proficiency group (Glass's Δ: 0.5). Taken together, our results show that the prevalence of AP in Brazilian students is similar to other non-tonal language populations, although this measure is highly dependent on the scoring threshold used. Despite corroborating that early involvement with musical practice and formal education can foster AP ability, the present data

  11. Toward an absolute NMR shielding scale using the spin-rotation tensor within a relativistic framework.

    PubMed

    Aucar, I Agustín; Gomez, Sergio S; Giribet, Claudia G; Aucar, Gustavo A

    2016-08-24

    One of the most influential articles showing the best way to get the absolute values of NMR magnetic shieldings, σ (non-measurables) from both accurate measurements and theoretical calculations, was published a long time ago by Flygare. His model was shown to break down when heavy atoms are involved. This fact motivated the development of new theories of nuclear spin-rotation (SR) tensors, which consider electronic relativistic effects. One was published recently by some of us. In this article we take another step further and propose three different models that generalize Flygare's model. All of them are written using four-component relativistic expressions, though the two-component relativistic SO-S term also appears in one. The first clues for these developments were built from the relationship among σ and the SR tensors within the two-component relativistic LRESC model. Besides, we had to introduce a few other well defined assumptions: (i) relativistic corrections must be included in a way to best reproduce the relationship among the (e-e) term (called "paramagnetic" within the non-relativistic domain) of σ and its equivalent part of the SR tensor, (ii) as happens in Flygare's rule, the shielding of free atoms shall be included to improve accuracy. In the highest accurate model, a new term known as Spin-orbit due to spin, SO-S (in this mechanism the spin-Zeeman Hamiltonian replaces the orbital-Zeeman Hamiltonian), is included. We show the results of the application of those models to halogen containing linear molecules. PMID:27506822

  12. Toward an absolute NMR shielding scale using the spin-rotation tensor within a relativistic framework.

    PubMed

    Aucar, I Agustín; Gomez, Sergio S; Giribet, Claudia G; Aucar, Gustavo A

    2016-08-24

    One of the most influential articles showing the best way to get the absolute values of NMR magnetic shieldings, σ (non-measurables) from both accurate measurements and theoretical calculations, was published a long time ago by Flygare. His model was shown to break down when heavy atoms are involved. This fact motivated the development of new theories of nuclear spin-rotation (SR) tensors, which consider electronic relativistic effects. One was published recently by some of us. In this article we take another step further and propose three different models that generalize Flygare's model. All of them are written using four-component relativistic expressions, though the two-component relativistic SO-S term also appears in one. The first clues for these developments were built from the relationship among σ and the SR tensors within the two-component relativistic LRESC model. Besides, we had to introduce a few other well defined assumptions: (i) relativistic corrections must be included in a way to best reproduce the relationship among the (e-e) term (called "paramagnetic" within the non-relativistic domain) of σ and its equivalent part of the SR tensor, (ii) as happens in Flygare's rule, the shielding of free atoms shall be included to improve accuracy. In the highest accurate model, a new term known as Spin-orbit due to spin, SO-S (in this mechanism the spin-Zeeman Hamiltonian replaces the orbital-Zeeman Hamiltonian), is included. We show the results of the application of those models to halogen containing linear molecules.

  13. The Dynamics of Scaling: A Memory-Based Anchor Model of Category Rating and Absolute Identification

    ERIC Educational Resources Information Center

    Petrov, Alexander A.; Anderson, John R.

    2005-01-01

    A memory-based scaling model--ANCHOR--is proposed and tested. The perceived magnitude of the target stimulus is compared with a set of anchors in memory. Anchor selection is probabilistic and sensitive to similarity, base-level strength, and recency. The winning anchor provides a reference point near the target and thereby converts the global…

  14. Absolute and relative emission spectroscopy study of 3 cm wide planar radio frequency atmospheric pressure bio-plasma source

    SciTech Connect

    Deng, Xiaolong; Nikiforov, Anton Yu Leys, Christophe; Ionita, Eusebiu-Rosini; Dinescu, Gheorghe

    2015-08-03

    The dynamics of low power atmospheric pressure radio frequency discharge generated in Ar gas in long gap of 3 cm is investigated. This plasma source is characterized and analyzed for possible large scale biomedical applications where low gas temperature and potential-less effluent are required. The discharge forms a homogenous glow-like afterglow in ambient air at input power of 30 W with low gas temperature of 330 K, which is desirable in biomedical applications. With absolute calibrated spectroscopy of the discharge, electron density of 0.4 × 10{sup 18} m{sup −3} and electron temperature of 1.5 eV are obtained from continuum Bremsstrahlung radiation of the source. Time and spatial resolved emission spectroscopy is used to analyze discharge generation mechanism and active species formation. It is found that discharge dynamics strongly correlates with the discharge current waveform. Strong Ar(2p) excited states emission is observed nearby the electrodes surface on a distance up to 200 μm in the plasma sheath region at 10 ns after the current peak, whereas OH(A) emission is uniform along of the interelectrode gap.

  15. Energy Decomposition Analysis Based on Absolutely Localized Molecular Orbitals for Large-Scale Density Functional Theory Calculations in Drug Design.

    PubMed

    Phipps, M J S; Fox, T; Tautermann, C S; Skylaris, C-K

    2016-07-12

    We report the development and implementation of an energy decomposition analysis (EDA) scheme in the ONETEP linear-scaling electronic structure package. Our approach is hybrid as it combines the localized molecular orbital EDA (Su, P.; Li, H. J. Chem. Phys., 2009, 131, 014102) and the absolutely localized molecular orbital EDA (Khaliullin, R. Z.; et al. J. Phys. Chem. A, 2007, 111, 8753-8765) to partition the intermolecular interaction energy into chemically distinct components (electrostatic, exchange, correlation, Pauli repulsion, polarization, and charge transfer). Limitations shared in EDA approaches such as the issue of basis set dependence in polarization and charge transfer are discussed, and a remedy to this problem is proposed that exploits the strictly localized property of the ONETEP orbitals. Our method is validated on a range of complexes with interactions relevant to drug design. We demonstrate the capabilities for large-scale calculations with our approach on complexes of thrombin with an inhibitor comprised of up to 4975 atoms. Given the capability of ONETEP for large-scale calculations, such as on entire proteins, we expect that our EDA scheme can be applied in a large range of biomolecular problems, especially in the context of drug design.

  16. Length scales in alloy dissolution and measurement of absolute interfacial free energy.

    PubMed

    Rugolo, J; Erlebacher, J; Sieradzki, K

    2006-12-01

    De-alloying is the selective dissolution of one or more of the elemental components of an alloy. In binary alloys that exhibit complete solid solubility, de-alloying of the less noble component results in the formation of nanoporous metals, a materials class that has attracted attention for applications such as catalysis, sensing and actuation. In addition, the occurrence of de-alloying in metallic alloy systems under stress is known to result in stress-corrosion cracking, a key failure mechanism in fossil fuel and nuclear plants, ageing aircraft, and also an important concern in the design of nuclear-waste storage containers. Central to the design of corrosion-resistant alloys is the identification of a composition-dependent electrochemical critical potential, Vcrit, above which the current rises dramatically with potential, signalling the onset of bulk de-alloying. Below Vcrit, the surface is passivated by the accumulation of up to several monolayers of the more noble component. The current understanding of the processes that control Vcrit is incomplete. Here, we report on de-alloying results of Ag/Au superlattices that clarify the role of pre-existing length scales in alloy dissolution. Our data motivated us to re-analyse existing data on critical potentials of Ag-Au alloys and develop a simple unifying picture that accounts for the compositional dependence of solid-solution alloy critical potentials.

  17. Absolute dominance of hydrogenotrophic methanogens in full-scale anaerobic sewage sludge digesters.

    PubMed

    Kim, Jaai; Kim, Woong; Lee, Changsoo

    2013-11-01

    Anaerobic digestion (AD) is gaining increasing attention due to the ability to covert organic pollutants into energy-rich biogas and, accordingly, growing interest is paid to the microbial ecology of AD systems. Despite extensive efforts, AD microbial ecology is still limitedly understood, especially due to the lack of quantitative information on the structures and dynamics of AD microbial communities. Such knowledge gap is particularly pronounced in sewage sludge AD processes although treating sewage sludge is among the major practical applications of AD. Therefore, we examined the microbial communities in three full-scale sewage sludge digesters using qualitative and quantitative molecular techniques in combination: denaturing gradient gel electrophoresis (DGGE) and real-time polymerase chain reaction (PCR). Eight out of eleven bacterial sequences retrieved from the DGGE analysis were not affiliated to any known species while all eleven archaeal sequences were assigned to known methanogen species. Quantitative real-time PCR analysis revealed that, based on the 16S rRNA gene abundance, the hydrogenotrophic order Methanomicrobiales is the most dominant methanogen group (> 94% of the total methanogen population) in all digesters. This corresponds well to the prevailing occurrence of the DGGE bands related to Methanolinea and Methanospirillum, both belonging to the order Methanomicrobiales, in all sludge samples. It is therefore suggested that hydrogenotrophic methanogens, especially Methanomicrobiales strains, are likely the major players responsible for biogas production in the digesters studied. Our observation is contrary to the conventional understanding that aceticlastic methanogens generally dominate methanogen communities in stable AD environments, suggesting the need for further studies on the dominance relationship in various AD systems.

  18. First experimental determination of the absolute gas-phase rate coefficient for the reaction of OH with 4-hydroxy-2-butanone (4H2B) at 294 K by vapor pressure measurements of 4H2B.

    PubMed

    El Dib, Gisèle; Sleiman, Chantal; Canosa, André; Travers, Daniel; Courbe, Jonathan; Sawaya, Terufat; Mokbel, Ilham; Chakir, Abdelkhaleq

    2013-01-10

    The reaction of the OH radicals with 4-hydroxy-2-butanone was investigated in the gas phase using an absolute rate method at room temperature and over the pressure range 10-330 Torr in He and air as diluent gases. The rate coefficients were measured using pulsed laser photolysis (PLP) of H(2)O(2) to produce OH and laser induced fluorescence (LIF) to measure the OH temporal profile. An average value of (4.8 ± 1.2) × 10(-12) cm(3) molecule(-1) s(-1) was obtained. The OH quantum yield following the 266 nm pulsed laser photolysis of 4-hydroxy-2-butanone was measured for the first time and found to be about 0.3%. The investigated kinetic study required accurate measurements of the vapor pressure of 4-hydroxy-2-butanone, which was measured using a static apparatus. The vapor pressure was found to range from 0.056 to 7.11 Torr between 254 and 323 K. This work provides the first absolute rate coefficients for the reaction of 4-hydroxy-2-butanone with OH and the first experimental saturated vapor pressures of the studied compound below 311 K. The obtained results are compared to those of the literature and the effects of the experimental conditions on the reactivity are examined. The calculated tropospheric lifetime obtained in this work suggests that once emitted into the atmosphere, 4H2B may contribute to the photochemical pollution in a local or regional scale.

  19. Gypsum scaling in pressure retarded osmosis: experiments, mechanisms and implications.

    PubMed

    Zhang, Minmin; Hou, Dianxun; She, Qianhong; Tang, Chuyang Y

    2014-01-01

    Pressure retarded osmosis (PRO) is an osmotically-driven membrane process that can be used to harvest salinity-gradient power. The PRO performance (both water flux and power density) can be severely limited by membrane fouling. The current study, for the first time, investigates PRO scaling in a bench-scale pressurized system using calcium sulfate dihydrate (gypsum) as a model scalant. In addition to the bulk feed solution (FS) saturation index (SI bulk), gypsum scaling was found to be strongly affected by the draw solution (DS) type and concentration, the applied hydraulic pressure, and the membrane orientation. The commonly recommended active layer facing draw solution (AL-DS) orientation was highly prone to internal scaling. In this orientation, severe internal concentration polarization (ICP) of scaling precursors induced gypsum clogging in membrane support layer even when the FS was undersaturated (e.g., SI bulk = 0.8). At higher SI bulk values, external gypsum crystal deposition occurred in addition to internal scaling. More severe scaling was observed when the DS contained scaling precursors such as Ca(2+) or SO4(2-), suggesting that the reverse diffusion of these precursors into the FS can significantly enhanced gypsum scaling. Increasing applied hydraulic pressure could enhance reverse solute diffusion and thus result in more severe gypsum scaling when the DS contained scaling precursors. A conceptual model, capturing the two important PRO scaling mechanisms (ICP of scaling precursors from FS and reverse diffusion of scaling precursors from the DS), is presented to rationalize the experimental results. Our results provide significant implications for PRO scaling control.

  20. Gypsum scaling in pressure retarded osmosis: experiments, mechanisms and implications.

    PubMed

    Zhang, Minmin; Hou, Dianxun; She, Qianhong; Tang, Chuyang Y

    2014-01-01

    Pressure retarded osmosis (PRO) is an osmotically-driven membrane process that can be used to harvest salinity-gradient power. The PRO performance (both water flux and power density) can be severely limited by membrane fouling. The current study, for the first time, investigates PRO scaling in a bench-scale pressurized system using calcium sulfate dihydrate (gypsum) as a model scalant. In addition to the bulk feed solution (FS) saturation index (SI bulk), gypsum scaling was found to be strongly affected by the draw solution (DS) type and concentration, the applied hydraulic pressure, and the membrane orientation. The commonly recommended active layer facing draw solution (AL-DS) orientation was highly prone to internal scaling. In this orientation, severe internal concentration polarization (ICP) of scaling precursors induced gypsum clogging in membrane support layer even when the FS was undersaturated (e.g., SI bulk = 0.8). At higher SI bulk values, external gypsum crystal deposition occurred in addition to internal scaling. More severe scaling was observed when the DS contained scaling precursors such as Ca(2+) or SO4(2-), suggesting that the reverse diffusion of these precursors into the FS can significantly enhanced gypsum scaling. Increasing applied hydraulic pressure could enhance reverse solute diffusion and thus result in more severe gypsum scaling when the DS contained scaling precursors. A conceptual model, capturing the two important PRO scaling mechanisms (ICP of scaling precursors from FS and reverse diffusion of scaling precursors from the DS), is presented to rationalize the experimental results. Our results provide significant implications for PRO scaling control. PMID:24156948

  1. Bottom pressure scaling of vibro-fluidized granular matter

    PubMed Central

    Katsuragi, Hiroaki

    2015-01-01

    Vibrated granular beds show various interesting phenomena such as convection, segregation, and so on. However, its fundamental physical properties (e.g., internal pressure structure) have not yet been understood well. Thus, in this study, the bottom wall pressure in a vertically vibrated granular column is experimentally measured and used to reveal the nature of granular fluidization. The scaling method allows us to elucidate the fluidization (softening) degree of a vibrated granular column. The peak value of the bottom pressure pm is scaled as Γ, where pJ, d, g, ω, H, and Γ are the Janssen pressure, grain diameter, gravitational acceleration, angular frequency, height of the column, and dimensionless vibrational acceleration, respectively. This scaling implies that the pressure of vibrated granular matter is quite different from the classical pressure forms: static and dynamic pressures. This scaling represents the importance of geometric factors for discussing the behavior of vibro-fluidized granular matter. The scaling is also useful to evaluate the dissipation degree in vibro-fluidized granular matter. PMID:26602973

  2. Burnett Method with Absolute Pressure Transducer and Measurements for PVT Properties of Nitrogen and Hydrogen up to 473 K and 100 MPa

    NASA Astrophysics Data System (ADS)

    Sakoda, N.; Shindo, K.; Motomura, K.; Shinzato, K.; Kohno, M.; Takata, Y.; Fujii, M.

    2012-01-01

    A measurement method for PVT properties of high-temperature and high-pressure gases was developed by simplifying the Burnett method and revising the data acquisition procedure. Instead of a differential pressure transducer, which is traditionally used, an absolute pressure transducer is used in the present method, and the measurement of pressure becomes easier. However, the absolute pressure transducer is placed outside the constant temperature bath because of the difficulty of its use in high-temperature surroundings, and some parts with different temperatures from the sample vessels exist as dead space. The present method takes into account the effect of the dead space in the data acquisition procedure. Nitrogen was measured in the temperature range from 353 K to 473 K and at pressures up to 100 MPa to determine the apparatus constants, and then, hydrogen was measured at 473 K and up to 100 MPa. The determined densities are in agreement within uncertainties of 0.07% to 0.24% ( k = 2), both with the latest equation of state and existing measured data.

  3. Does temperature affect the accuracy of vented pressure transducer in fine-scale water level measurement?

    NASA Astrophysics Data System (ADS)

    Liu, Z.; Higgins, C. W.

    2015-03-01

    Submersible pressure transducers have been utilized for collecting water level data since the early 1960s. Together with a digital data logger, it is a convenient way to record water level fluctuations for long-term monitoring. Despite the wide use of pressure transducers for water level monitoring, little has been reported regarding their accuracy and performance under field conditions. The effects of temperature fluctuations on the output of vented pressure transducers were considered in this study. The pressure transducers were tested under both laboratory and field conditions. The results of this study indicate that temperature fluctuation has a strong effect on the transducer output. Rapid changes in temperature introduce noise and fluctuations in the water level readings under a constant hydraulic head while the absolute temperature is also related to sensor errors. The former is attributed to venting and the latter is attributed to temperature compensation effects in the strain gauges. Individual pressure transducers responded differently to the thermal fluctuations in the same testing environment. In the field of surface hydrology, especially when monitoring fine-scale water level fluctuations, ignoring or failing to compensate for the temperature effect can introduce considerable error into pressure transducer readings. It is recommended that a performance test for the pressure transducer is conducted before field deployment.

  4. MicroScale - Atmospheric Pressure Plasmas

    SciTech Connect

    Sankaran, Mohan

    2012-01-25

    Low-temperature plasmas play an essential role in the manufacturing of integrated circuits which are ubiquitous in modern society. In recent years, these top-down approaches to materials processing have reached a physical limit. As a result, alternative approaches to materials processing are being developed that will allow the fabrication of nanoscale materials from the bottom up. The aim of our research is to develop a new class of plasmas, termed “microplasmas” for nanomaterials synthesis. Microplasmas are a special class of plasmas formed in geometries where at least one dimension is less than 1 mm. Plasma confinement leads to several unique properties including high-pressure stability and non-equilibrium that make microplasams suitable for nanomaterials synthesis. Vapor-phase precursors can be dissociated to homogeneously nucleate nanometer-sized metal and alloyed nanoparticles. Alternatively, metal salts dispersed in liquids or polymer films can be electrochemically reduced to form metal nanoparticles. In this talk, I will discuss these topics in detail, highlighting the advantages of microplasma-based systems for the synthesis of well-defined nanomaterials.

  5. Scaling of pressure spectrum in turbulent boundary layers

    NASA Astrophysics Data System (ADS)

    Patwardhan, Saurabh S.; Ramesh, O. N.

    2014-04-01

    Scaling of pressure spectrum in zero-pressure-gradient turbulent boundary layers is discussed. Spatial DNS data of boundary layer at one time instant (Reθ = 4500) are used for the analysis. It is observed that in the outer regions the pressure spectra tends towards the -7/3 law predicted by Kolmogorov's theory of small-scale turbulence. The slope in the pressure spectra varies from -1 close to the wall to a value close to -7/3 in the outer region. The streamwise velocity spectra also show a -5/3 trend in the outer region of the flow. The exercise carried out to study the amplitude modulation effect of the large scales on the smaller ones in the near-wall region reveals a strong modulation effect for the streamwise velocity, but not for the pressure fluctuations. The skewness of the pressure follows the same trend as the amplitude modulation coefficient, as is the case for the velocity. In the inner region, pressure spectra were seen to collapse better when normalized with the local Reynolds stress than when scaled with the local turbulent kinetic energy

  6. Investigation of 10-Stage Axial-Flow X24C-2 Compressor. 1; Performance at Inlet Pressure of 21 Inches Mercury Absolute and Inlet Temperature of 538 R

    NASA Technical Reports Server (NTRS)

    Schum, Harold J.; Buckner, Howard A., Jr.

    1947-01-01

    The performance at inlet pressure of 21 inches mercury absolute and inlet temperature of 538 R for the 10-stage axial-flow X24C-2 compressor from the X24C-2 turbojet engine was investigated. the peak adiabatic temperature-rise efficiency for a given speed generally occurred at values of pressure coefficient fairly close to 0.35.For this compressor, the efficiency data at various speeds could be correlated on two converging curves by the use of a polytropic loss factor derived.

  7. Characterizing the Pressure Smoothing Scale of the Intergalactic Medium

    NASA Astrophysics Data System (ADS)

    Kulkarni, Girish; Hennawi, Joseph F.; Oñorbe, Jose; Rorai, Alberto; Springel, Volker

    2015-10-01

    The thermal state of the intergalactic medium (IGM) at z < 6 constrains the nature and timing of cosmic reionization events, but its inference from the Lyα forest is degenerate with the 3D structure of the IGM on ∼100 kpc scales, where, analogous to the classical Jeans argument, the pressure of the T ≃ 104 K gas supports it against gravity. We simulate the IGM using smoothed particle hydrodynamics, and find that, at z < 6, the gas density power spectrum does not exhibit the expected filtering scale cutoff, because dense gas in collapsed halos dominates the small-scale power masking pressure smoothing effects. We introduce a new statistic, the real-space Lyα flux, Freal, which naturally suppresses dense gas, and is thus robust against the poorly understood physics of galaxy formation, revealing pressure smoothing in the diffuse IGM. The Freal power spectrum is accurately described by a simple fitting function with cutoff at λF, allowing us to rigorously quantify the pressure smoothing scale for the first time: we find λF = 79 kpc (comoving) at z = 3 for our fiducial thermal model. This statistic has the added advantage that it directly relates to observations of correlated Lyα forest absorption in close quasar pairs, recently proposed as a method to measure the pressure smoothing scale. Our results enable one to quantify the pressure smoothing scale in simulations, and ask meaningful questions about its dependence on reionization and thermal history. Accordingly, the standard description of the IGM in terms of the amplitude T0 and slope γ of the temperature–density relation T={T}0{(ρ /\\bar{ρ })}γ -1 should be augmented with a third pressure smoothing scale parameter λF.

  8. DAQ Software Contributions, Absolute Scale Energy Calibration and Background Evaluation for the NOvA Experiment at Fermilab

    SciTech Connect

    Flumerfelt, Eric Lewis

    2015-08-01

    The NOvA (NuMI Off-axis ve [nu_e] Appearance) Experiment is a long-baseline accelerator neutrino experiment currently in its second year of operations. NOvA uses the Neutrinos from the Main Injector (NuMI) beam at Fermilab, and there are two main off-axis detectors: a Near Detector at Fermilab and a Far Detector 810 km away at Ash River, MN. The work reported herein is in support of the NOvA Experiment, through contributions to the development of data acquisition software, providing an accurate, absolute-scale energy calibration for electromagnetic showers in NOvA detector elements, crucial to the primary electron neutrino search, and through an initial evaluation of the cosmic background rate in the NOvA Far Detector, which is situated on the surface without significant overburden. Additional support work for the NOvA Experiment is also detailed, including DAQ Server Administration duties and a study of NOvA’s sensitivity to neutrino oscillations into a “sterile” state.

  9. Absolute pitch among students at the Shanghai Conservatory of Music: a large-scale direct-test study.

    PubMed

    Deutsch, Diana; Li, Xiaonuo; Shen, Jing

    2013-11-01

    This paper reports a large-scale direct-test study of absolute pitch (AP) in students at the Shanghai Conservatory of Music. Overall note-naming scores were very high, with high scores correlating positively with early onset of musical training. Students who had begun training at age ≤5 yr scored 83% correct not allowing for semitone errors and 90% correct allowing for semitone errors. Performance levels were higher for white key pitches than for black key pitches. This effect was greater for orchestral performers than for pianists, indicating that it cannot be attributed to early training on the piano. Rather, accuracy in identifying notes of different names (C, C#, D, etc.) correlated with their frequency of occurrence in a large sample of music taken from the Western tonal repertoire. There was also an effect of pitch range, so that performance on tones in the two-octave range beginning on Middle C was higher than on tones in the octave below Middle C. In addition, semitone errors tended to be on the sharp side. The evidence also ran counter to the hypothesis, previously advanced by others, that the note A plays a special role in pitch identification judgments.

  10. Linear ruby scale and one megabar. [high pressure fluorescence

    NASA Technical Reports Server (NTRS)

    Ruoff, A. L.

    1979-01-01

    The accuracy and validity of certain techniques used in studying high-pressure transitions have been investigated. Experiments which place upper limits of about 20 GPa and about 50 GPa on pressures practically attainable using uniaxial supported opposed anvil devices with tungsten carbide pistons and uniaxial opposed flat anvil diamond devices, respectively, are reported. Direct static determinations of the transition pressures of GaP by two different methods are described. The values obtained indicate that the linear ruby scale increasingly overestimates the transition pressure as the pressure rises above 10 GPa. It is further shown that the use of shock-based marker materials, such as silver, as the basis of pressure measurement in X-ray diffraction studies leads to bulk moduli of cubic carbides which are in extreme disagreement with expected values.

  11. Validity of pressure ulcer risk assessment scales; Cubbin and Jackson, Braden, and Douglas scale.

    PubMed

    Jun Seongsook, R N; Jeong Ihnsook, R N; Lee Younghee, R N

    2004-02-01

    This study was to compare the validity of three pressure ulcer risk tools: Cubbin and Jackson, Braden, and Douglas scales. Data were collected three times per week from 48 to 72 h after admission based on the three pressure ulcer risk assessment scales and skin assessment tool developed by the Panel for the Prediction and Prevention of Pressure Ulcers (1994) from 112 intensive care unit (ICU) patients in a educational hospital Ulsan, Korea during December 11, 2000 to February 10, 2001. When a patient developed a pressure ulcer at the time of assessment, the patient was classified into 'pressure ulcer group', and when patients did not have a pressure ulcer until they died, moved to other wards or were discharged from the hospital, they were classified into 'not pressure ulcer group'. Four indices of validity and area under the curves (AUC) of receiver operating characteristic (ROC) were calculated. Based on the cut-off point presented by the developer, sensitivity, specificity, positive predictive value, negative predictive value were as follows: Cubbin and Jackson scale: 89%, 61%, 51%, 92%, respectively, Braden scale: 97%, 26%, 37%, 95%, respectively, and Douglas scale: 100%, 18%, 34%, 100%, respectively. AUCs of ROC curve were 0.826 for Cubbin and Jackson, 0.707 for Braden, and 0.791 for Douglas. Overall, the Cubbin and Jackson scale showed the best validity among scales tested and we recommended it for this ICU.

  12. Simulating the Mineral Scale by High Pressure Thermal Vessel

    NASA Astrophysics Data System (ADS)

    Huang, Y. H.; Liu, H. L.; Chen, H. F.; Song, S. R.

    2014-12-01

    The generating capacity of Chingshui geothermal power plant decreased rapidly after it had operated three years. Chinese Petroleum Corporation (CPC) attributed the main reason was the depletion of reservoir. One reason was that the reservoir did not be recharged. And the other was the mineral scale in reservoir and pipes which caused flow rate decreased. There are abundant geothermal energy in Taiwan. But in Chingshui, the spring has amount content of carbonate. Most scaling are calcium carbonate and silica. These two materials have different solubility in various pH and physical conditions. Because the pressure reduced in the process of upwelling, the hot spring from the reservoir deposited calcium carbonate immediately by large carbon dioxide escape. This result caused the diameter of pipeline reduced. Besides, as the temperature decreased, the silica would scaling in the part of heat exchanger. To avoid the failure experience in Chingshui , how to prevent the mineral scaling is the key point that we need to solve. Our study will use hydrothermal experiments by High Pressure Thermal Vessel to simulate the process of spring water upwelling from reservoir to surface, to understand whether calcium carbonate and silica scaling or not in different temperature and pressure. This study choose the Hongchailin well as objects to simulate, and the target layers of drilling well were set as Szeleng sandstone and Lushan slate. We used pure water and saturated water pressure in our experiments. There were four vessels in High thermal vessel. The first vessel was used to simulate the condition of reservoir. The second and third vessel were simulated the conditions in the well when spring water upwelling to the surface. And the last vessel was simulated the conditions on surface surroundings. We hope to get the temperature and pressure when the scaling occurred, and verified with the computing result, thus we can inhibit the scaling.

  13. Student Award Finalist: Reactive species generated in atmospheric-pressure plasmas with water admixtures for biomedical applications: Absolute measurements and numerical simulations

    NASA Astrophysics Data System (ADS)

    Schröter, Sandra; Bredin, J.; West, A.; Niemi, K.; Dedrick, J.; de Oliveira, N.; Joyeux, D.; Nahon, L.; Foucher, M.; Booth, J.-P.; Wagenaars, E.; Gans, T.; O'Connell, D.

    2015-09-01

    We investigate the production of atomic oxygen (O), hydroxyl (OH) and atomic hydrogen (H) in an rf atmospheric-pressure plasma operated in helium with water admixtures. These species, and their longer-lived products, are known to influence biological systems. Absolute measurements of species densities are required to develop these plasmas for therapeutics. Accurate determination of radical densities is challenging at elevated pressures in complex gas mixtures due to collisional quenching. We measure radical densities using VUV high-resolution Fourier-transform absorption spectroscopy with synchrotron radiation, UV broadband absorption spectroscopy, and picosecond two-photon absorption laser induced fluorescence (ps-TALIF). These diagnostics are the most suitable techniques allowing direct, absolute and 2-dimensional spatial resolution measurements at atmospheric pressure. Ps-TALIF also enables measurements of the lifetimes of laser-excited states of O and H, providing insight into the chemical kinetics and ambient air diffusion into the plasma jet region. Good agreement has been found between the measurements and a numerical chemical-kinetic simulation. Funding from the UK EPSRC (EP/K018388/1 & EP/H003797/1), the York-Paris Low Temperature Plasma Collaborative Research Centre and financial state aid managed by the laboratory of excellence Plas@Par (ANR-11-IDEX-0004-02).

  14. Final report on EURAMET.M.P-K4.2010: Key and supplementary comparison of national pressure standards in the range 1 Pa to 15 kPa of absolute and gauge pressure

    NASA Astrophysics Data System (ADS)

    Krajíček, Zdeněk; Bergoglio, Mercede; Jousten, Karl; Otal, Pierre; Sabuga, Wladimir; Saxholm, Sari; Pražák, Dominik; Vičar, Martin

    2014-01-01

    This report describes a EURAMET comparison of five European National Metrology Institutes in low gauge and absolute pressure in gas (nitrogen), denoted as EURAMET.M.P-K4.2010. Its main intention is to state equivalence of the pressure standards, in particular those based on the technology of force-balanced piston gauges such as e.g. FRS by Furness Controls, UK and FPG8601 by DHI-Fluke, USA. It covers the range from 1 Pa to 15 kPa, both gauge and absolute. The comparison in absolute mode serves as a EURAMET Key Comparison which can be linked to CCM.P-K4 and CCM.P-K2 via PTB. The comparison in gauge mode is a supplementary comparison. The comparison was carried out from September 2008 till October 2012. The participating laboratories were the following: CMI, INRIM, LNE, MIKES, PTB-Berlin (absolute pressure 1 kPa and below) and PTB-Braunschweig (absolute pressure 1 kPa and above and gauge pressure). CMI was the pilot laboratory and provided a transfer standard for the comparison. This transfer standard was also the laboratory standard of CMI at the same time, which resulted in a unique and logistically difficult star comparison. Both in gauge and absolute pressures all the participating institutes successfully proved their equivalence with respect to the reference value and all also proved mutual bilateral equivalences in all the points. All the participating laboratories are also equivalent with the reference values of CCM.P-K4 and CCM.P-K2 in the relevant points. The comparison also proved the ability of FPG8601 to serve as a transfer standard. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  15. Absolute OH concentration profiles measurements in high pressure counterflow flames by coupling LIF, PLIF, and absorption techniques

    NASA Astrophysics Data System (ADS)

    Matynia, A.; Idir, M.; Molet, J.; Roche, C.; de Persis, S.; Pillier, L.

    2012-08-01

    A high-pressure combustion chamber enclosing counterflow burners was set-up at ICARE-CNRS laboratory. It allows the stabilization of flat twin premixed flames at atmospheric and high pressure. In this study, lean and stoichiometric methane/air counterflow premixed flames were studied at various pressures (0.1 MPa to 0.7 MPa). Relative OH concentration profiles were measured by Laser Induced Fluorescence. Great care was attached to the determination of the fluorescence signal by taking into account the line broadening and deexcitation by quenching which both arise at high pressure. Subsequently, OH profiles were calibrated in concentration by laser absorption technique associated with planar laser induced fluorescence. Results are successfully compared with literature. The good quality of the results attests of the experimental set-up ability to allow the study of flame structure at high pressure.

  16. Diffusion Time-Scale of Porous Pressure-Sensitive Paint

    NASA Technical Reports Server (NTRS)

    Liu, Tianshu; Teduka, Norikazu; Kameda, Masaharu; Asai, Keisuke

    2001-01-01

    Pressure-sensitive paint (PSP) is an optical pressure sensor that utilizes the oxygen quenching of luminescence. PSP measurements in unsteady aerodynamic flows require fast time response of the paint. There are two characteristic time-scales that are related to the time response of PSP. One is the luminescent lifetime representing an intrinsic physical limit for the achievable temporal resolution of PSP. Another is the time-scale of oxygen diffusion across the PSP layer. When the time-scale of oxygen diffusion is much larger than the luminescent lifetime, the time response of PSP is controlled by oxygen diffusion. In a thin homogenous polymer layer where diffusion is Fickian, the oxygen concentration 1021 can be described by the diffusion equation in one-dimension.

  17. Absolute rate of the reaction of atomic hydrogen with ethylene from 198 to 320 K at high pressure

    NASA Technical Reports Server (NTRS)

    Lee, J. H.; Michael, J. V.; Payne, W. A.; Stief, L. J.

    1978-01-01

    The rate constant for the H+C2H4 reaction has been measured as a function of temperature. Experiments were performed with high pressures of Ar heat bath gas at seven temperatures from 198 to 320 K with the flash photolysis-resonance fluorescence (FP-RF) technique. Pressures were chosen so as to isolate the addition rate constant k1. The results are well represented by an Arrhenius expression. The results are compared with other studies and are theoretically discussed.

  18. Concordance of Shape Risk Scale, a new pressure ulcer risk tool, with Braden Scale.

    PubMed

    Soppi, Esa T; Iivanainen, Ansa K; Korhonen, Pasi A

    2014-12-01

    The occurrence of pressure ulcers was examined in a cross-sectional study in 23 health care facilities and in home care involving 548 patients. The screening of pressure ulcer risk was assessed simultaneously using the Braden Scale and the new Shape Risk Scale (SRS), and the results were compared. The overall prevalence of pressure ulcers in the study population was 15·5% (85/548). The Braden Scale was performed as described in the literature. The direct concordance of the Braden and SRS scales was 46%. In more than 90% of cases, the SRS classified patients as well as or better than the Braden Scale. The SRS allocates patients significantly different from the Braden Scale into the risk categories, especially the difference is significant between the low and medium-risk categories. The greatest advantage of SRS to Braden Scale is that it correctly identifies patients with low risk of pressure ulcers. It is interesting that the two risk scores, taking into consideration the basically different pathophysiological factors, can still give rather similar results. The users considered that both scales are easy to use.

  19. Absolute atomic oxygen and nitrogen densities in radio-frequency driven atmospheric pressure cold plasmas: Synchrotron vacuum ultra-violet high-resolution Fourier-transform absorption measurements

    SciTech Connect

    Niemi, K.; O'Connell, D.; Gans, T.; Oliveira, N. de; Joyeux, D.; Nahon, L.; Booth, J. P.

    2013-07-15

    Reactive atomic species play a key role in emerging cold atmospheric pressure plasma applications, in particular, in plasma medicine. Absolute densities of atomic oxygen and atomic nitrogen were measured in a radio-frequency driven non-equilibrium plasma operated at atmospheric pressure using vacuum ultra-violet (VUV) absorption spectroscopy. The experiment was conducted on the DESIRS synchrotron beamline using a unique VUV Fourier-transform spectrometer. Measurements were carried out in plasmas operated in helium with air-like N{sub 2}/O{sub 2} (4:1) admixtures. A maximum in the O-atom concentration of (9.1 {+-} 0.7) Multiplication-Sign 10{sup 20} m{sup -3} was found at admixtures of 0.35 vol. %, while the N-atom concentration exhibits a maximum of (5.7 {+-} 0.4) Multiplication-Sign 10{sup 19} m{sup -3} at 0.1 vol. %.

  20. Inner scaling for boundary layers in strong pressure-gradients

    NASA Astrophysics Data System (ADS)

    Nickels, Tim

    2003-11-01

    Strong pressure-gradients can have a marked effect on scaling in the inner region of turbulent boundary layers. In particular the usual universal logarithmic law for the mean velocity profile "breaks down" in these circumstances. It is shown that the modification to the mean velocity can be explained by a universal critical Reynolds number for the sublayer. Further it is shown that this theoretical model also provides the correct scaling for the streamwise turbulence intensity and Reynolds shear-stress. The concept can be further extended to explain modifications due to other imposed effects such as wall suction.

  1. Oxygen at 2 atmospheres absolute pressure does not increase the radiation sensitivity of normal brain in rats

    SciTech Connect

    Routh, A.; Kapp, J.P.; Smith, E.E.; Bebin, J.; Barnes, T.; Hickman, B.T.

    1984-07-01

    Cranial radiation was administered to CD Fisher rats at 1.0, 1.5 and 2.0 atmospheres oxygen pressure. Life span following radiation was recorded. Surviving animals were killed at 28 weeks and the brains were examined independently by two neuropathologists. Survival time was significantly less in animals receiving higher doses of radiation but showed no relationship to the oxygen pressure in the environment of the animal at the time radiation was administered. Microscopic examination of the brain did not reveal any differences in animals radiated in a normobaric or hyperbaric oxygen environment. It is concluded that hyperbaric oxygen does not sensitize the normal brain to the effects of ionizing radiation.

  2. Submarine rescue decompression procedure from hyperbaric exposures up to 6 bar of absolute pressure in man: effects on bubble formation and pulmonary function.

    PubMed

    Blatteau, Jean-Eric; Hugon, Julien; Castagna, Olivier; Meckler, Cédric; Vallée, Nicolas; Jammes, Yves; Hugon, Michel; Risberg, Jan; Pény, Christophe

    2013-01-01

    Recent advances in submarine rescue systems have allowed a transfer under pressure of crew members being rescued from a disabled submarine. The choice of a safe decompression procedure for pressurised rescuees has been previously discussed, but no schedule has been validated when the internal submarine pressure is significantly increased i.e. exceeding 2.8 bar absolute pressure. This study tested a saturation decompression procedure from hyperbaric exposures up to 6 bar, the maximum operating pressure of the NATO submarine rescue system. The objective was to investigate the incidence of decompression sickness (DCS) and clinical and spirometric indices of pulmonary oxygen toxicity. Two groups were exposed to a Nitrogen-Oxygen atmosphere (pO2 = 0.5 bar) at either 5 bar (N = 14) or 6 bar (N = 12) for 12 h followed by 56 h 40 min resp. 60 h of decompression. When chamber pressure reached 2.5 bar, the subjects breathed oxygen intermittently, otherwise compressed air. Repeated clinical examinations, ultrasound monitoring of venous gas embolism and spirometry were performed during decompression. During exposures to 5 bar, 3 subjects had minor subjective symptoms i.e. sensation of joint discomfort, regressing spontaneously, and after surfacing 2 subjects also experienced joint discomfort disappearing without treatment. Only 3 subjects had detectable intravascular bubbles during decompression (low grades). No bubbles were detected after surfacing. About 40% of subjects felt chest tightness when inspiring deeply during the initial phase of decompression. Precordial burning sensations were reported during oxygen periods. During decompression, vital capacity decreased by about 8% and forced expiratory flow rates decreased significantly. After surfacing, changes in the peripheral airways were still noticed; Lung Diffusion for carbon monoxide was slightly reduced by 1% while vital capacity was normalized. The procedure did not result in serious symptoms of DCS or

  3. Submarine Rescue Decompression Procedure from Hyperbaric Exposures up to 6 Bar of Absolute Pressure in Man: Effects on Bubble Formation and Pulmonary Function

    PubMed Central

    Blatteau, Jean-Eric; Hugon, Julien; Castagna, Olivier; Meckler, Cédric; Vallée, Nicolas; Jammes, Yves; Hugon, Michel; Risberg, Jan; Pény, Christophe

    2013-01-01

    Recent advances in submarine rescue systems have allowed a transfer under pressure of crew members being rescued from a disabled submarine. The choice of a safe decompression procedure for pressurised rescuees has been previously discussed, but no schedule has been validated when the internal submarine pressure is significantly increased i.e. exceeding 2.8 bar absolute pressure. This study tested a saturation decompression procedure from hyperbaric exposures up to 6 bar, the maximum operating pressure of the NATO submarine rescue system. The objective was to investigate the incidence of decompression sickness (DCS) and clinical and spirometric indices of pulmonary oxygen toxicity. Two groups were exposed to a Nitrogen-Oxygen atmosphere (pO2 = 0.5 bar) at either 5 bar (N = 14) or 6 bar (N = 12) for 12 h followed by 56 h 40 min resp. 60 h of decompression. When chamber pressure reached 2.5 bar, the subjects breathed oxygen intermittently, otherwise compressed air. Repeated clinical examinations, ultrasound monitoring of venous gas embolism and spirometry were performed during decompression. During exposures to 5 bar, 3 subjects had minor subjective symptoms i.e. sensation of joint discomfort, regressing spontaneously, and after surfacing 2 subjects also experienced joint discomfort disappearing without treatment. Only 3 subjects had detectable intravascular bubbles during decompression (low grades). No bubbles were detected after surfacing. About 40% of subjects felt chest tightness when inspiring deeply during the initial phase of decompression. Precordial burning sensations were reported during oxygen periods. During decompression, vital capacity decreased by about 8% and forced expiratory flow rates decreased significantly. After surfacing, changes in the peripheral airways were still noticed; Lung Diffusion for carbon monoxide was slightly reduced by 1% while vital capacity was normalized. The procedure did not result in serious symptoms of DCS or

  4. Submarine rescue decompression procedure from hyperbaric exposures up to 6 bar of absolute pressure in man: effects on bubble formation and pulmonary function.

    PubMed

    Blatteau, Jean-Eric; Hugon, Julien; Castagna, Olivier; Meckler, Cédric; Vallée, Nicolas; Jammes, Yves; Hugon, Michel; Risberg, Jan; Pény, Christophe

    2013-01-01

    Recent advances in submarine rescue systems have allowed a transfer under pressure of crew members being rescued from a disabled submarine. The choice of a safe decompression procedure for pressurised rescuees has been previously discussed, but no schedule has been validated when the internal submarine pressure is significantly increased i.e. exceeding 2.8 bar absolute pressure. This study tested a saturation decompression procedure from hyperbaric exposures up to 6 bar, the maximum operating pressure of the NATO submarine rescue system. The objective was to investigate the incidence of decompression sickness (DCS) and clinical and spirometric indices of pulmonary oxygen toxicity. Two groups were exposed to a Nitrogen-Oxygen atmosphere (pO2 = 0.5 bar) at either 5 bar (N = 14) or 6 bar (N = 12) for 12 h followed by 56 h 40 min resp. 60 h of decompression. When chamber pressure reached 2.5 bar, the subjects breathed oxygen intermittently, otherwise compressed air. Repeated clinical examinations, ultrasound monitoring of venous gas embolism and spirometry were performed during decompression. During exposures to 5 bar, 3 subjects had minor subjective symptoms i.e. sensation of joint discomfort, regressing spontaneously, and after surfacing 2 subjects also experienced joint discomfort disappearing without treatment. Only 3 subjects had detectable intravascular bubbles during decompression (low grades). No bubbles were detected after surfacing. About 40% of subjects felt chest tightness when inspiring deeply during the initial phase of decompression. Precordial burning sensations were reported during oxygen periods. During decompression, vital capacity decreased by about 8% and forced expiratory flow rates decreased significantly. After surfacing, changes in the peripheral airways were still noticed; Lung Diffusion for carbon monoxide was slightly reduced by 1% while vital capacity was normalized. The procedure did not result in serious symptoms of DCS or

  5. The Braden Scale for Predicting Pressure Sore Risk.

    PubMed

    Bergstrom, N; Braden, B J; Laguzza, A; Holman, V

    1987-01-01

    The Braden Scale for Predicting Pressure Sore Risk was developed to foster early identification of patients at risk for forming pressure sores. The scale is composed of six subscales that reflect sensory perception, skin moisture, activity, mobility, friction and shear, and nutritional status. Content and construct validity were established by expert opinion and empirical testing. Three studies of reliability are reported here, using raters who varied in level of educational preparation and geographic region. Two prospective studies of predictive validity were completed to determine the scale's sensitivity and specificity. Reliability ranged from r = .83 to r = .94 for nurses' aides and licensed practical nurses; when used by registered nurses, the reliability increased to r = .99. Predictive validity was calculated for each cut-off point of the scale. Using a cut-off point of 16, sensitivity was 100% in both studies. Specificity ranged from 64% to 90%. This instrument has highly satisfactory reliability when used by RNs, and greater sensitivity and specificity than instruments previously reported.

  6. High pressure generation using scaled-up Kawai-cell

    NASA Astrophysics Data System (ADS)

    Shatskiy, A.; Katsura, T.; Litasov, K. D.; Shcherbakova, A. V.; Borzdov, Y. M.; Yamazaki, D.; Yoneda, A.; Ohtani, E.; Ito, E.

    2011-11-01

    A scaled-up version of a 6-8 Kawai-type multianvil apparatus equipped with 47-mm WC anvils has been developed at the Institute for the Study of the Earth's Interior for operation over pressure ranging up to 19 and 24 GPa using the conventional system with larger compressional volumes between 1.2 and 0.4 cm 3, respectively. This system is used under uniaxial compression along cube diagonal of the Kawai-cell up to the press load of 19 MN. Experiments are performed using octahedral pressure media (PM) made of MgO- and ZrO 2-based semi-sintered ceramics and unfired pyrophyllite gaskets. In this study we used "Toshiba-F" grade WC anvils allowing pressure generation up to 24 GPa. We perform pressure calibrations at room and high temperatures, with octahedron/anvil truncation edge-length ratios ( a0/ b, mm) of 12.2/6, 14/6, 14/7, 16/7, 18/7, 18/9, and 18/10. Different configurations show that an increase in edge-length ratio of a0/b permits the achievement of higher pressure, which agrees with the results of Frost at al. (Frost, D.J., Poe, B.T., Tronnes, R.G., Liebske, C., Duba, A., Rubie, D.C., 2004. A new large-volume multianvil system. Phys. Earth Planet. Inter. 143, 507). However, it also shifts the pressure maximum to higher press loads, in some cases exceeding the capacity of a press. Our and Frost et al. (2004) data reveal that the 14/6, 18/8, and 18/10 assemblies are the most suitable in generating pressures of up to 19-24 GPa at 19 MN press load limits. The assemblies with a low a0/ b ratio have a lower upper pressure limit; however, they exhibit a systematically higher efficiency in pressure generation at low press loads. Consequently, assemblages with high and low a0/ b ratios should be used in high and low pressure experiments, respectively. For example, the 18/12 assembly is suitable for 5-11 GPa pressure range (Stoyanov, E., Haussermann, U., Leinenweber, K., 2010. Large-volume multianvil cells designed for chemical synthesis at high pressures. High Pressure

  7. Fault diagnosis for manifold absolute pressure sensor(MAP) of diesel engine based on Elman neural network observer

    NASA Astrophysics Data System (ADS)

    Wang, Yingmin; Zhang, Fujun; Cui, Tao; Zhou, Jinlong

    2016-03-01

    Intake system of diesel engine is a strong nonlinear system, and it is difficult to establish accurate model of intake system; and bias fault and precision degradation fault of MAP of diesel engine can't be diagnosed easily using model-based methods. Thus, a fault diagnosis method based on Elman neural network observer is proposed. By comparing simulation results of intake pressure based on BP network and Elman neural network, lower sampling error magnitude is gained using Elman neural network, and the error is less volatile. Forecast accuracy is between 0.015-0.017 5 and sample error is controlled within 0-0.07. Considering the output stability and complexity of solving comprehensively, Elman neural network with a single hidden layer and with 44 nodes is presented as intake system observer. By comparing the relations of confidence intervals of the residual value between the measured and predicted values, error variance and failures in various fault types. Then four typical MAP faults of diesel engine can be diagnosed: complete failure fault, bias fault, precision degradation fault and drift fault. The simulation results show: intake pressure is observable and selection of diagnostic strategy parameter reasonably can increase the accuracy of diagnosis; the proposed fault diagnosis method only depends on data and structural parameters of observer, not depends on the nonlinear model of air intake system. A fault diagnosis method is proposed not depending system model to observe intake pressure, and bias fault and precision degradation fault of MAP of diesel engine can be diagnosed based on residuals.

  8. Picosecond-TALIF and VUV absorption measurements of absolute atomic nitrogen densities from an RF atmospheric pressure plasma jet with He/O2/N2 gas mixtures

    NASA Astrophysics Data System (ADS)

    West, Andrew; Niemi, Kari; Schröter, Sandra; Bredin, Jerome; Gans, Timo; Wagenaars, Erik

    2015-09-01

    Reactive Oxygen and Nitrogen species (RONS) from RF atmospheric pressure plasma jets (APPJs) are important in biomedical applications as well as industrial plasma processing such as surface modification. Atomic oxygen has been well studied, whereas, despite its importance in the plasma chemistry, atomic nitrogen has been somewhat neglected due to its difficulty of measurement. We present absolute densities of atomic nitrogen in APPJs operating with He/O2/N2 gas mixtures in open air, using picosecond Two-photon Absorption Laser Induced Fluorescence (ps-TALIF) and vacuum ultra-violet (VUV) absorption spectroscopy. In order to apply the TALIF technique in complex, He/O2/N2 mixtures, we needed to directly measure the collisional quenching effects using picosecond pulse widths (32ps). Traditional calculated quenching corrections, used in nanosecond TALIF, are inadequate due to a lack of quenching data for complex mixtures. Absolute values for the densities were found by calibrating against a known density of Krypton. The VUV absorption experiments were conducted on the DESIRS synchrotron beamline using a unique VUV Fourier-transform spectrometer. Atomic nitrogen densities were on the order of 1020 m-3 with good agreement between TALIF and VUV absorption. UK EPSRC grant EP/K018388/1.

  9. Absolute integrated intensities of vapor-phase hydrogen peroxide (H202) in the mid-infrared at atmospheric pressure

    SciTech Connect

    Johnson, Timothy J.; Sams, Robert L.; Burton, Sarah D.; Blake, Thomas A.

    2009-09-01

    We report quantitative broadband infrared spectra of vapor-phase hydrogen peroxide (H2O2) with all spectra pressure broadened to atmospheric pressure. The spectra were generated by flowing a concentrated solution (83 weight%) of H2O2 into a gently heated disseminator and diluting with a flow of pure nitrogen carrier gas. The water vapor lines were subtracted from the resulting spectra to yield the spectrum of pure H2O2. Comparison with previous results for the ν6 band strength (including hot bands) compares favorably with the results of Klee et al. [(1999) J. Mol. Spectr. 195, 154] as well as HITRAN. The present results are 433 and 467 cm-2 atm-1 (±8% and ±3% at 298 and 323 K, respectively) for the band strength, matching well the Klee value (S = 467 cm-2 atm-1 at 296 K) for the integrated band. Other bands in the 520-7500 cm-1 interval and their potential for atmospheric monitoring are discussed.

  10. Pressure dependence of the absolute rate constant for the reaction Cl + C2H2 from 210-361 K

    NASA Technical Reports Server (NTRS)

    Brunning, J.; Stief, L. J.

    1985-01-01

    In recent years, considerable attention has been given to the role of chlorine compounds in the catalytic destruction of stratospheric ozone. However, while some reactions have been studied extensively, the kinetic data for the reaction of Cl with C2H2 is sparse with only three known determinations of the rate constant k3. The reactions involved are Cl + C2H2 yields reversibly ClC2H2(asterisk) (3a) and ClC2H2(asterisk) + M yields ClC2H2 + M (3b). In the present study, flash photolysis coupled with chlorine atomic resonance fluorescence have been employed to determine the pressure and temperature dependence of k3 with the third body M = Ar. Room temperature values are also reported for M = N2. The pressure dependence observed in the experiments confirms the expectation that the reaction involves addition of Cl to the unsaturated C2H2 molecule followed by collisional stabilization of the resulting adduct radical.

  11. Absolute measurement of subnanometer scale vibration of cochlear partition of an excised guinea pig cochlea using spectral-domain phase-sensitive optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Subhash, Hrebesh M.; Choudhury, Niloy; Jacques, Steven L.; Wang, Ruikang K.; Chen, Fangyi; Zha, Dingjun; Nuttall, Alfred L.

    2012-01-01

    Direct measurement of absolute vibration parameters from different locations within the mammalian organ of Corti is crucial for understanding the hearing mechanics such as how sound propagates through the cochlea and how sound stimulates the vibration of various structures of the cochlea, namely, basilar membrane (BM), recticular lamina, outer hair cells and tectorial membrane (TM). In this study we demonstrate the feasibility a modified phase-sensitive spectral domain optical coherence tomography system to provide subnanometer scale vibration information from multiple angles within the imaging beam. The system has the potential to provide depth resolved absolute vibration measurement of tissue microstructures from each of the delay-encoded vibration images with a noise floor of ~0.3nm at 200Hz.

  12. Absolute OH density measurements in an atmospheric pressure dc glow discharge in air with water electrode by broadband UV absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Xiong, Qing; Yang, Zhiqiang; Bruggeman, Peter J.

    2015-10-01

    Spatially resolved absolute OH radical density measurements are performed in an atmospheric pressure glow discharge generated in ambient air with water electrode by broadband UV absorption spectroscopy. The radial distributions of OH density and gas temperature are obtained for the positive column, anode and cathode regions both for water-cathode and water-anode discharges. It is found that for both polarities of the water electrode the radial profiles of the ground state OH density and gas temperature are significantly broader than the total discharge emission intensity and the emission intensity originating from OH(\\text{A}{}2{{\\text{ }Σ\\text{ }}+} ) only. Exceptional large OH densities exceeding 1023 m-3 are found. The OH kinetics are discussed in detail.

  13. Absolute calibration of OH density in a nanosecond pulsed plasma filament in atmospheric pressure He-H2O: comparison of independent calibration methods

    NASA Astrophysics Data System (ADS)

    Verreycken, T.; van der Horst, R. M.; Sadeghi, N.; Bruggeman, P. J.

    2013-11-01

    The absolute density of OH radicals generated in a nanosecond pulsed filamentary discharge in atmospheric pressure He +0.84% H2O is measured independently by UV absorption and laser induced fluorescence (LIF) calibrated with Rayleigh scattering. For the calibration of LIF with Rayleigh scattering, two LIF models, with six levels and four levels, are studied to investigate the influence of the rotational and vibrational energy transfers. In addition, a chemical model is used to deduce the OH density in the afterglow from the relative LIF intensity as function of time. The different models show good correspondence and by comparing these different methods, the accuracy and the effect of assumptions on the obtained OH density are discussed in detail. This analysis includes an analysis of the sensitivity to parameters used in the LIF models.

  14. Asymmetric fluid criticality. I. Scaling with pressure mixing.

    PubMed

    Kim, Young C; Fisher, Michael E; Orkoulas, G

    2003-06-01

    The thermodynamic behavior of a fluid near a vapor-liquid and, hence, asymmetric critical point is discussed within a general "complete" scaling theory incorporating pressure mixing in the nonlinear scaling fields as well as corrections to scaling. This theory allows for a Yang-Yang anomaly in which mu(")(sigma)(T), the second temperature derivative of the chemical potential along the phase boundary, diverges like the specific heat when T-->T(c); it also generates a leading singular term, /t/(2beta), in the coexistence curve diameter, where t[triple bond](T-T(c))/T(c). The behavior of various special loci, such as the critical isochore, the critical isotherm, the k-inflection loci, on which chi((k))[triple bond]chi(rho,T)/rho(k) (with chi=rho(2)k(B)TK(T)) and C((k))(V)[triple bond]C(V)(rho,T)/rho(k) are maximal at fixed T, is carefully elucidated. These results are useful for analyzing simulations and experiments, since particular, nonuniversal values of k specify loci that approach the critical density most rapidly and reflect the pressure-mixing coefficient. Concrete illustrations are presented for the hard-core square-well fluid and for the restricted primitive model electrolyte. For comparison, a discussion of the classical (or Landau) theory is presented briefly and various interesting loci are determined explicitly and illustrated quantitatively for a van der Waals fluid.

  15. Articulated Multimedia Physics, Lesson 14, Gases, The Gas Laws, and Absolute Temperature.

    ERIC Educational Resources Information Center

    New York Inst. of Tech., Old Westbury.

    As the fourteenth lesson of the Articulated Multimedia Physics Course, instructional materials are presented in this study guide with relation to gases, gas laws, and absolute temperature. The topics are concerned with the kinetic theory of gases, thermometric scales, Charles' law, ideal gases, Boyle's law, absolute zero, and gas pressures. The…

  16. Pilot Study of the Effects of Simulated Turbine Passage Pressure on Juvenile Chinook Salmon Acclimated with Access to Air at Absolute Pressures Greater than Atmospheric

    SciTech Connect

    Carlson, Thomas J.; Abernethy, Cary S.

    2005-04-28

    The impacts of pressure on juvenile salmon who pass through the turbines of hydroelectric dams while migrating downstream on the Columbia and Snake rivers has not been well understood, especially as these impacts relate to injury to the fish's swim bladder. The laboratory studies described here were conducted by Pacific Northwest National Laboratory for the US Army Corps of Engineers Portland District at PNNL's fisheries research laboratories in 2004 to investigate the impacts of simulated turbine passage pressure on fish permitted to achieve neutral buoyancy at pressures corresponding to depths at which they are typically observed during downstream migration. Two sizes of juvenile Chinook salmon were tested, 80-100mm and 125-145mm total length. Test fish were acclimated for 22 to 24 hours in hyperbaric chambers at pressures simulating depths of 15, 30, or 60 ft, with access to a large air bubble. High rates of deflated swim bladders and mortality were observed. Our results while in conclusive show that juvenile salmon are capable of drawing additional air into their swimbladder to compensate for the excess mass of implanted telemetry devices. However they may pay a price in terms of increased susceptibility to injury, predation, and death for this additional air.

  17. Absolute Summ

    NASA Astrophysics Data System (ADS)

    Phillips, Alfred, Jr.

    Summ means the entirety of the multiverse. It seems clear, from the inflation theories of A. Guth and others, that the creation of many universes is plausible. We argue that Absolute cosmological ideas, not unlike those of I. Newton, may be consistent with dynamic multiverse creations. As suggested in W. Heisenberg's uncertainty principle, and with the Anthropic Principle defended by S. Hawking, et al., human consciousness, buttressed by findings of neuroscience, may have to be considered in our models. Predictability, as A. Einstein realized with Invariants and General Relativity, may be required for new ideas to be part of physics. We present here a two postulate model geared to an Absolute Summ. The seedbed of this work is part of Akhnaton's philosophy (see S. Freud, Moses and Monotheism). Most important, however, is that the structure of human consciousness, manifest in Kenya's Rift Valley 200,000 years ago as Homo sapiens, who were the culmination of the six million year co-creation process of Hominins and Nature in Africa, allows us to do the physics that we do. .

  18. Absolute OH density measurements by broadband UV absorption in diffuse atmospheric-pressure He-H2O RF glow discharges

    NASA Astrophysics Data System (ADS)

    Bruggeman, Peter; Cunge, Gilles; Sadeghi, Nader

    2012-06-01

    The measurement of radical densities in atmospheric-pressure plasmas has gained increasing importance in recent years in view of their crucial role in many applications. In this paper we present absolute OH density measurements by broadband UV absorption in diffuse atmospheric-pressure RF glow discharges in mixtures of He and H2O. The use of a 310 nm light-emitting diode as a light source and a very high resolution spectrometer (2.6 pm resolution) made the estimation of the total OH density possible by simultaneously measuring the absorption rates of different spectrally resolved rotational lines of the OH(A-X) transition. For different RF powers and water concentrations, OH densities and gas temperatures ranging between 6 × 1019and 4 × 1020 m-3 and 345 and 410 K, respectively, were obtained. The gas temperature Tg was also measured by three different methods. Tg deduced from the rotational temperature of N2(C-B) emission, nitrogen being present as a trace impurity, provided the most reliable value. The rotational temperature Tr of the ground state OH(X) presented values with a maximum deviation of 25 K compared with Tg. To obtain the gas temperature from the emission intensities of OH(A-X) rotational lines, the recorded intensities of different lines must be corrected for the effect of self-absorption inside the plasma.

  19. Intraspecific scaling of arterial blood pressure in the Burmese python.

    PubMed

    Enok, Sanne; Slay, Christopher; Abe, Augusto S; Hicks, James W; Wang, Tobias

    2014-07-01

    Interspecific allometric analyses indicate that mean arterial blood pressure (MAP) increases with body mass of snakes and mammals. In snakes, MAP increases in proportion to the increased distance between the heart and the head, when the heart-head vertical distance is expressed as ρgh (where ρ is the density of blood, G: is acceleration due to gravity and h is the vertical distance above the heart), and the rise in MAP is associated with a larger heart to normalize wall stress in the ventricular wall. Based on measurements of MAP in Burmese pythons ranging from 0.9 to 3.7 m in length (0.20-27 kg), we demonstrate that although MAP increases with body mass, the rise in MAP is merely half of that predicted by heart-head distance. Scaling relationships within individual species, therefore, may not be accurately predicted by existing interspecific analyses.

  20. Scaling Law of Impact Induced Shock Pressure in Planetary Mantle

    NASA Astrophysics Data System (ADS)

    Monteux, Julien; Arkani-Hamed, Jafar

    2015-04-01

    While hydrocode simulation of impact induced shock pressure inside planetary mantle is more accurate, it is not suitable for studying several hundreds of impacts occurring during the accretion of a planet. Not only simulation of each impact takes over two orders of magnitude longer computer time than that of a scaling law simulation [1], but also it is cumbersome to apply for growing proto-planets where size of a proto-planet and impact velocities of the accreting bodies increase significantly. This is compounded by the formation of the iron core during the accretion with increasing size. Major impacting bodies during accretion of a Mars type planet have very low velocities. We use iSale hydrocode simulations and adopt physical properties of dunite for the mantle to calculate shock pressure and particle velocity in a Mars type body for 11 impact velocities ranging from 4 to 60 km/s. Large impactors of 100 to 1000 km in diameter, comparable to those impacted on Mars and created giant impact basins, are examined. The results are in good agreement with those of Pierazzo et al. [2] which were calculated for impact velocities higher than 10 km/s and impactor of 0.2 to 10 km in diameter. The internal consistency of our models indicates that our scaling laws are also accurate for lower impact velocities. We found no distinct isobaric region, rather the peak shock pressure changes relatively slowly versus distance from the impact site in the near field zone, within ~ 3 times the impactor radius, compare to that in the far field zone as also suggested by Ahrens and O'Keefe [3]. Hence we propose two distinct scaling laws, the power law distribution of shock pressure P as a function of distance R from the impact site at the surface, one for the near field zone and the other for the far field zone: Log P = a + n Log (R/Rimp) With n = 1.72 - 2.44 Log(Vimp) for R < ~3 Rimp, and n = -0.84 -0.51 Log(Vimp) for R > ~3 Rimp where a is a constant, Rimp is the impactor radius, and Vimp

  1. A full-dimensional model of ozone forming reaction: the absolute value of the recombination rate coefficient, its pressure and temperature dependencies.

    PubMed

    Teplukhin, Alexander; Babikov, Dmitri

    2016-07-28

    Rigorous calculations of scattering resonances in ozone are carried out for a broad range of rotational excitations. The accurate potential energy surface of Dawes is adopted, and a new efficient method for calculations of ro-vibrational energies, wave functions and resonance lifetimes is employed (which uses hyper-spherical coordinates, the sequential diagonalization/truncation approach, grid optimization and complex absorbing potential). A detailed analysis is carried out to characterize distributions of resonance energies and lifetimes, their rotational/vibrational content and their positions with respect to the centrifugal barrier. Emphasis is on the contribution of these resonances to the recombination process that forms ozone. It is found that major contributions come from localized resonances at energies near the top of the barrier. Delocalized resonances at higher energies should also be taken into account, while very narrow resonances at low energies (trapped far behind the centrifugal barrier) should be treated as bound states. The absolute value of the recombination rate coefficient, its pressure and temperature dependencies are obtained using the energy-transfer model developed in the earlier work. Good agreement with experimental data is obtained if one follows the suggestion of Troe, who argued that the energy transfer mechanism of recombination is responsible only for 55% of the recombination rate (with the remaining 45% coming from the competing chaperon mechanism). PMID:27364351

  2. Absolute atomic oxygen density measurements for nanosecond-pulsed atmospheric-pressure plasma jets using two-photon absorption laser-induced fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Jiang, C.; Carter, C.

    2014-12-01

    Nanosecond-pulsed plasma jets that are generated under ambient air conditions and free from confinement of electrodes have become of great interest in recent years due to their promising applications in medicine and dentistry. Reactive oxygen species that are generated by nanosecond-pulsed, room-temperature non-equilibrium He-O2 plasma jets among others are believed to play an important role during the bactericidal or sterilization processes. We report here absolute measurements of atomic oxygen density in a 1 mm-diameter He/(1%)O2 plasma jet at atmospheric pressure using two-photon absorption laser-induced fluorescence spectroscopy. Oxygen number density on the order of 1013 cm-3 was obtained in a 150 ns, 6 kV single-pulsed plasma jet for an axial distance up to 5 mm above the device nozzle. Temporally resolved O density measurements showed that there are two maxima, separated in time by 60-70 µs, and a total pulse duration of 260-300 µs. Electrostatic modeling indicated that there are high-electric-field regions near the nozzle exit that may be responsible for the observed temporal behavior of the O production. Both the field-distribution-based estimation of the time interval for the O number density profile and a pulse-energy-dependence study confirmed that electric-field-dependent, direct and indirect electron-induced processes play important roles for O production.

  3. A full-dimensional model of ozone forming reaction: the absolute value of the recombination rate coefficient, its pressure and temperature dependencies.

    PubMed

    Teplukhin, Alexander; Babikov, Dmitri

    2016-07-28

    Rigorous calculations of scattering resonances in ozone are carried out for a broad range of rotational excitations. The accurate potential energy surface of Dawes is adopted, and a new efficient method for calculations of ro-vibrational energies, wave functions and resonance lifetimes is employed (which uses hyper-spherical coordinates, the sequential diagonalization/truncation approach, grid optimization and complex absorbing potential). A detailed analysis is carried out to characterize distributions of resonance energies and lifetimes, their rotational/vibrational content and their positions with respect to the centrifugal barrier. Emphasis is on the contribution of these resonances to the recombination process that forms ozone. It is found that major contributions come from localized resonances at energies near the top of the barrier. Delocalized resonances at higher energies should also be taken into account, while very narrow resonances at low energies (trapped far behind the centrifugal barrier) should be treated as bound states. The absolute value of the recombination rate coefficient, its pressure and temperature dependencies are obtained using the energy-transfer model developed in the earlier work. Good agreement with experimental data is obtained if one follows the suggestion of Troe, who argued that the energy transfer mechanism of recombination is responsible only for 55% of the recombination rate (with the remaining 45% coming from the competing chaperon mechanism).

  4. Absolute OH density measurements in the effluent of a cold atmospheric-pressure Ar-H2O RF plasma jet in air

    NASA Astrophysics Data System (ADS)

    Verreycken, Tiny; Mensink, Rob; van der Horst, Ruud; Sadeghi, Nader; Bruggeman, Peter J.

    2013-10-01

    Absolute OH densities are obtained in a radio-frequency-driven Ar-H2O atmospheric-pressure plasma jet by laser-induced fluorescence (LIF), calibrated by Rayleigh scattering and by UV broadband absorption. The measurements are carried out in ambient air and the effect of air entrainment into the Ar jet is measured by analyzing the time-resolved fluorescence signals. The OH densities are obtained for different water vapor concentrations admixed to the Ar and as a function of the axial distance from the nozzle. A sensitivity analysis to deduce the accuracy of the model-calculated OH density from the LIF measurement is reported. It is found that the UV absorption and the LIF results correspond within experimental accuracy close to the nozzle and deviate in the far effluent. The possible reasons are discussed. The OH densities found in the plasma jet are in the range (0.1-2.5) × 1021 m-3 depending on the water concentration and plasma conditions.

  5. Two-probe optical encoder for absolute positioning of precision stages by using an improved scale grating.

    PubMed

    Li, Xinghui; Wang, Huanhuan; Ni, Kai; Zhou, Qian; Mao, Xinyu; Zeng, Lijiang; Wang, Xiaohao; Xiao, Xiang

    2016-09-19

    In this paper, a novel optical encoder enabling the simultaneous measurement of displacement and the position of precision stages is presented. The encoder is composed of an improved single-track scale grating and a compact two-probe reading head. In the scale grating, multiple reference codes are physically superimposed onto the incremental grooves, in contrast to conventional designs, where an additional track is necessary. The distribution of the reference codes follows a specific mathematical algorithm. For the reading head, a two-probe structure is designed to identify the discrete reference codes by means of the superimposition of the codes with a stationary mask and to read the continuous incremental grooves by means of a grating interferometry, respectively. A prototype encoder was designed, constructed and evaluated, and experimental results show that the distance code precision achieved is 0.5 μm, while the linearity error of the linear displacement measurement is less than 0.06%. PMID:27661879

  6. Absolute fragmentation cross sections in atom-molecule collisions: Scaling laws for non-statistical fragmentation of polycyclic aromatic hydrocarbon molecules

    SciTech Connect

    Chen, T.; Gatchell, M.; Stockett, M. H.; Alexander, J. D.; Schmidt, H. T.; Cederquist, H.; Zettergren, H.; Zhang, Y.; Rousseau, P.; Maclot, S.; Delaunay, R.; Adoui, L.; Domaracka, A.; Huber, B. A.

    2014-06-14

    We present scaling laws for absolute cross sections for non-statistical fragmentation in collisions between Polycyclic Aromatic Hydrocarbons (PAH/PAH{sup +}) and hydrogen or helium atoms with kinetic energies ranging from 50 eV to 10 keV. Further, we calculate the total fragmentation cross sections (including statistical fragmentation) for 110 eV PAH/PAH{sup +} + He collisions, and show that they compare well with experimental results. We demonstrate that non-statistical fragmentation becomes dominant for large PAHs and that it yields highly reactive fragments forming strong covalent bonds with atoms (H and N) and molecules (C{sub 6}H{sub 5}). Thus nonstatistical fragmentation may be an effective initial step in the formation of, e.g., Polycyclic Aromatic Nitrogen Heterocycles (PANHs). This relates to recent discussions on the evolution of PAHNs in space and the reactivities of defect graphene structures.

  7. Identification of atranorin and related potential allergens in oakmoss absolute by high-performance liquid chromatography-tandem mass spectrometry using negative ion atmospheric pressure chemical ionization.

    PubMed

    Hiserodt, R D; Swijter, D F; Mussinan, C J

    2000-08-01

    This paper describes the first high-performance liquid chromatographic-tandem mass spectrometric method for the identification of atranorin and related potential allergens in oakmoss absolute. Oakmoss absolute is ubiquitous in the fragrance industry and is a key component in many fine perfumes. However, oakmoss absolute causes an allergic response in some individuals. Research is focused toward establishing the identity of the compounds causing the allergic response so a quality controlled oakmoss with reduced allergenic potential can be prepared. Consequently a highly selective and specific analytical method is necessary to support this effort. This is not available with the existing HPLC methods using UV detection. PMID:10949477

  8. Cluster-continuum quasichemical theory calculation of the lithium ion solvation in water, acetonitrile and dimethyl sulfoxide: an absolute single-ion solvation free energy scale.

    PubMed

    Carvalho, Nathalia F; Pliego, Josefredo R

    2015-10-28

    Absolute single-ion solvation free energy is a very useful property for understanding solution phase chemistry. The real solvation free energy of an ion depends on its interaction with the solvent molecules and on the net potential inside the solute cavity. The tetraphenyl arsonium-tetraphenyl borate (TATB) assumption as well as the cluster-continuum quasichemical theory (CC-QCT) approach for Li(+) solvation allows access to a solvation scale excluding the net potential. We have determined this free energy scale investigating the solvation of the lithium ion in water (H2O), acetonitrile (CH3CN) and dimethyl sulfoxide (DMSO) solvents via the CC-QCT approach. Our calculations at the MP2 and MP4 levels with basis sets up to the QZVPP+diff quality, and including solvation of the clusters and solvent molecules by the dielectric continuum SMD method, predict the solvation free energy of Li(+) as -116.1, -120.6 and -123.6 kcal mol(-1) in H2O, CH3CN and DMSO solvents, respectively (1 mol L(-1) standard state). These values are compatible with the solvation free energy of the proton of -253.4, -253.2 and -261.1 kcal mol(-1) in H2O, CH3CN and DMSO solvents, respectively. Deviations from the experimental TATB scale are only 1.3 kcal mol(-1) in H2O and 1.8 kcal mol(-1) in DMSO solvents. However, in the case of CH3CN, the deviation reaches a value of 9.2 kcal mol(-1). The present study suggests that the experimental TATB scale is inconsistent for CH3CN. A total of 125 values of the solvation free energy of ions in these three solvents were obtained. These new data should be useful for the development of theoretical solvation models.

  9. Managing multiple diffuse pressures on water quality and ecological habitat: Spatially targeting effective mitigation actions at the landscape scale.

    NASA Astrophysics Data System (ADS)

    Joyce, Hannah; Reaney, Sim

    2015-04-01

    than absolute sense at the landscape scale. Riparian woodland planting is proposed as one mitigation action to address these pressures. This planting disconnects the transfer of material from the landscape to the river channel by promoting increased infiltration and also provides river shading and hence decreases the rate of water heating. To identify the optimal locations for riparian woodland planting, a Monte Carlo based approach was used to identify multiple mitigation options and their influence on the pressures identified. These results were integrated into a decision support tool, which allows the user to explore the implications of individual and a set of pressures. This is achieved by allowing the user to change the importance of different pressures to identify the optimal locations for a custom combination of pressures. For example, reductions in flood risk can be prioritized over reductions in fine sediment. This approach provides an innovative way of identifying and targeting multiple diffuse pressures at the catchment scale simultaneously, which has presented a challenge in previous management efforts. The approach has been tested in the River Ribble Catchment, North West England.

  10. Pressure versus current scaling in a blocked bore rail gun

    NASA Astrophysics Data System (ADS)

    Barrett, B. D.; Eubank, Eric; Nunnally, W. C.

    1993-07-01

    The paper presents experimental results from a blocked bore plasma armature rail gun. A piezoelectric transducer mounted in the bore blocking structure recorded time-resolved pressures over a range of input currents from 50 to 150 kA. The bore block is located at four positions where peak current occurs for the four respective charging voltages to power the system. Problems associated with obtaining these measurements and the solutions employed are discussed. Average distances from the block face to the armature current centroid are estimated assuming a pressure balance between the magnetic and neutral pressures. The averages of the measured pressures were found to be proportional to the input current raised to the power of 1.655.

  11. Absolute number density calibration of the absorption by ground-state lead atoms of the 283. 3-nm resonance line from a high-intensity lead hollow cathode lamp and the calculated effect of argon pressures

    SciTech Connect

    Simons, J.W.; McClean, R.E. ); Oldenborg, R.C. )

    1991-03-21

    The absolute number density calibration for the absorption by ground-state lead atoms of the 283.3-nm resonance line from a high-intensity lead hollow cathode lamp (Photron superlamp) is determined and found to be the same as that of a standard hollow cathode lamp. Comparisons of the calibrations to theoretical calculations are found to be quite satisfactory. The effects of argon pressures in the absorption cell on the calibration are examined theoretically by using a simple Lorentzian broadening and shifting model. These calculations show the expected reduction in sensitivity and increasing linearity of Beer-Lambert plots with increasing argon pressure.

  12. Small angle neutron scattering on an absolute intensity scale and the internal surface of diatom frustules from three species of differing morphologies.

    PubMed

    Garvey, C J; Strobl, M; Percot, A; Saroun, J; Haug, J; Vyverman, W; Chepurnov, V A; Ferris, J M

    2013-05-01

    The internal nanostructure of the diatoms Cyclotella meneghiniana, Seminavis robusta and Achnanthes subsessilis was investigated using small angle neutron scattering (SANS) to examine thin biosilica samples, consisting of isotropic (powder) from their isolated cell walls. The interpretation of SANS data was assisted by several other measurements. The N2 adsorption, interpreted within the Branuer-Emmet-Teller isotherm, yielded the specific surface area of the material. Fourier transform infrared (FTIR) and Raman spectroscopy indicates that the isolated material is amorphous silica with small amounts of organic cell wall materials acting as a filling material between the silica particles. A two-phase (air and amorphous silica) model was used to interpret small angle neutron scattering data. After correction for instrumental resolution, the measurements on two SANS instruments covered an extended range of scattering vectors 0.0011 nm(-1) < q < 5.6 nm(-1), giving an almost continuous SANS curve over a range of scattering vectors, q, on an absolute scale of intensity for each sample. Each of the samples gave a characteristic scattering curve where log (intensity) versus log (q) has a -4 dependence, with other features superimposed. In the high-q regime, departure from this behaviour was observed at a length-scales equivalent to the proposed unitary silica particle. The limiting Porod scattering law was used to determine the specific area per unit of volume of each sample illuminated by the neutron beam. The Porod behaviour, and divergence from this behaviour, is discussed in terms of various structural features and the proposed mechanisms for the bio-assembly of unitary silica particles in frustules.

  13. Teaching Absolute Value Meaningfully

    ERIC Educational Resources Information Center

    Wade, Angela

    2012-01-01

    What is the meaning of absolute value? And why do teachers teach students how to solve absolute value equations? Absolute value is a concept introduced in first-year algebra and then reinforced in later courses. Various authors have suggested instructional methods for teaching absolute value to high school students (Wei 2005; Stallings-Roberts…

  14. On scale and magnitude of pressure build-up induced by large-scale geologic storage of CO2

    SciTech Connect

    Zhou, Q.; Birkholzer, J. T.

    2011-05-01

    The scale and magnitude of pressure perturbation and brine migration induced by geologic carbon sequestration is discussed assuming a full-scale deployment scenario in which enough CO{sub 2} is captured and stored to make relevant contributions to global climate change mitigation. In this scenario, the volumetric rates and cumulative volumes of CO{sub 2} injection would be comparable to or higher than those related to existing deep-subsurface injection and extraction activities, such as oil production. Large-scale pressure build-up in response to the injection may limit the dynamic storage capacity of suitable formations, because over-pressurization may fracture the caprock, may drive CO{sub 2}/brine leakage through localized pathways, and may cause induced seismicity. On the other hand, laterally extensive sedimentary basins may be less affected by such limitations because (i) local pressure effects are moderated by pressure propagation and brine displacement into regions far away from the CO{sub 2} storage domain; and (ii) diffuse and/or localized brine migration into overlying and underlying formations allows for pressure bleed-off in the vertical direction. A quick analytical estimate of the extent of pressure build-up induced by industrial-scale CO{sub 2} storage projects is presented. Also discussed are pressure perturbation and attenuation effects simulated for two representative sedimentary basins in the USA: the laterally extensive Illinois Basin and the partially compartmentalized southern San Joaquin Basin in California. These studies show that the limiting effect of pressure build-up on dynamic storage capacity is not as significant as suggested by Ehlig-Economides and Economides, who considered closed systems without any attenuation effects.

  15. A Review of Large-Scale Fracture Experiments Relevant to Pressure Vessel Integrity Under Pressurized Thermal Shock Conditions

    SciTech Connect

    Pugh, C.E.

    2001-01-29

    Numerous large-scale fracture experiments have been performed over the past thirty years to advance fracture mechanics methodologies applicable to thick-wall pressure vessels. This report first identifies major factors important to nuclear reactor pressure vessel (RPV) integrity under pressurized thermal shock (PTS) conditions. It then covers 20 key experiments that have contributed to identifying fracture behavior of RPVs and to validating applicable assessment methodologies. The experiments are categorized according to four types of specimens: (1) cylindrical specimens, (2) pressurized vessels, (3) large plate specimens, and (4) thick beam specimens. These experiments were performed in laboratories in six different countries. This report serves as a summary of those experiments, and provides a guide to references for detailed information.

  16. Cubic boron nitride as a primary calibrant for a high temperature pressure scale

    SciTech Connect

    Goncharov, A.F.; Singeikin, S.; Crowhurst, J.C.; Ahart, M.; Lakshtanov, D.; Prakapenka, V.; Bass, J.; Beck, P.; Tkachev, S.N.; Zaug, J.M.; Fei, Y.

    2008-06-16

    We present results establishing a new high pressure scale at high temperature based on the thermal equation of state and elastic properties of cubic boron nitride (cBN). This scale is derived from simultaneous measurements of density and sound velocities at high pressure and temperature independent of any previous pressure scale. The present results obtained at room temperature to 27 GPa suggest the validity of the current ruby scale (within {+-}4% at 100 GPa). At high temperature, data obtained at 16 GPa to 723 K are in fair agreement with the thermal equation of state of cBN reported in our previous work. We have also shown that cBN can serve as a convenient pressure gauge in X-ray and optical studies using the laser heated diamond anvil cell.

  17. Scaling regimes of thermocapillarity-driven dynamics of confined long bubbles: Effects of disjoining pressure

    NASA Astrophysics Data System (ADS)

    Chaudhury, Kaustav; Chakraborty, Suman

    2015-03-01

    During thermocapillary transport of a confined long bubble, we unveil the existence of a contrary-to-the-conventional disjoining-pressure-dominant scaling regime characterizing the dynamics of the thin liquid film engulfed between the bubble interface and the channel surface. Such a regime is realized for the limitingly small magnitude of the Marangoni stress (surface tension gradient) when the separating liquid region reaches an ultrathin dimension. Over this regime, we witness a severe breakdown of the seemingly intuitive scaling arguments based on the balance of viscous and capillary forces. Starting from competent balance criteria, we uncover the characteristic length scales involved, leading towards obtaining the new consistent scaling laws of the disjoining-pressure-dominant regime, in a simple closed form analytical fashion. Our scaling estimations are substantiated by full-scale numerical simulations of the pertinent thin-film equations. These new scaling laws appear to be convenient for implementing as a fundamental design basis for multiphase microfluidic systems.

  18. Eosinophil count - absolute

    MedlinePlus

    Eosinophils; Absolute eosinophil count ... the white blood cell count to give the absolute eosinophil count. ... than 500 cells per microliter (cells/mcL). Normal value ranges may vary slightly among different laboratories. Talk ...

  19. Assessing Predictive Validity of Pressure Ulcer Risk Scales- A Systematic Review and Meta-Analysis

    PubMed Central

    PARK, Seong-Hi; LEE, Hea Shoon

    2016-01-01

    Background: The purpose of this study was to present a scientific reason for pressure ulcer risk scales: Cubbin& Jackson modified Braden, Norton, and Waterlow, as a nursing diagnosis tool by utilizing predictive validity of pressure sores. Methods: Articles published between 1966 and 2013 from periodicals indexed in the Ovid Medline, Embase, CINAHL, KoreaMed, NDSL, and other databases were selected using the key word “pressure ulcer”. QUADAS-II was applied for assessment for internal validity of the diagnostic studies. Selected studies were analyzed using meta-analysis with MetaDisc 1.4. Results: Seventeen diagnostic studies with high methodological quality, involving 5,185 patients, were included. In the results of the meta-analysis, sROC AUC of Braden, Norton, and Waterflow scale was over 0.7, showing moderate predictive validity, but they have limited interpretation due to significant differences between studies. In addition, Waterlow scale is insufficient as a screening tool owing to low sensitivity compared with other scales. Conclusion: The contemporary pressure ulcer risk scale is not suitable for uninform practice on patients under standardized criteria. Therefore, in order to provide more effective nursing care for bedsores, a new or modified pressure ulcer risk scale should be developed upon strength and weaknesses of existing tools. PMID:27114977

  20. An Experimental Study of the Statistical Scaling of Turbulent Surface Pressure in the Atmospheric Boundary Layer

    NASA Astrophysics Data System (ADS)

    Lyons, G. W.; Murray, N. E.

    2015-12-01

    Turbulence in the atmospheric boundary layer (ABL) produces fluctuations in the static pressure. The instantaneous pressure at a point depends on an integral over the entire flow; therefore, the effects from turbulence far aloft may be felt at the earth's surface. The statistics of fluctuating pressure at the surface have been studied extensively in the context of wall-bounded engineering-type flows. At best, these neutral flows are a special case of the thermally-stratified ABL, but relatively few experimental studies have considered pressure at the ground under various stability conditions. Here the scaling of pressure statistics at the surface, particularly the spectral density, is reported over a range of convective and stable conditions for both inner and outer turbulence parameters. Measurements of turbulent surface pressure were made using low-frequency microphones buried flush to the ground in a field near Laramie, Wyoming. Simultaneous measurements from three near-surface sonic anemometers and a 50-meter wind tower give estimates of the mean surface-layer parameters. The normalization of the pressure spectrum with the inner scales collapses the spectra along the high-frequency viscous power-law band. The wall shear stress, Obukhov length, L, and horizontal integral scale, λ, are identified as outer scaling parameters for the surface pressure spectrum from an integral solution employing a Monin-Obukhov-similar profile and a simple model of inhomogeneous surface-layer turbulence. Normalization with the outer scales collapses the spectra at low frequencies. Spectral scaling also reveals trends with λ/L in the low-frequency region for both convective and stable boundary layers.

  1. Combustion Characteristics of Lignite Char in a Laboratory-scale Pressurized Fluidized Bed Combustor

    NASA Astrophysics Data System (ADS)

    Murakami, Takahiro; Suzuki, Yoshizo

    In a dual fluidized bed gasifier, the residual char after steam gasification is burnt in riser. The objectives of this work are to clarify the effect of parameters (temperature, pressure, and particle size of lignite char) of char combustion using a laboratory-scale pressurized fluidized bed combustor (PFBC). As a result, the burnout time of lignite char can be improved with increasing operating pressure, and temperature. In addition, the decrease in the particle size of char enhanced the effect on burnout time. The initial combustion rate of the char can be increased with increasing operating pressure. The effect was decreased with increasing operating temperature. However, the effect of operating pressure was slightly changed in small particle size, such as 0.5-1.0 mm. It takes about 20 sec to burn 50% of char in the operating pressure of 0.5 MPa and the particle size of 0.5-1.0 mm.

  2. Evaluation of the pressure ulcers risk scales with critically ill patients: a prospective cohort study 1

    PubMed Central

    Borghardt, Andressa Tomazini; do Prado, Thiago Nascimento; de Araújo, Thiago Moura; Rogenski, Noemi Marisa Brunet; Bringuente, Maria Edla de Oliveira

    2015-01-01

    AIMS: to evaluate the accuracy of the Braden and Waterlow risk assessment scales in critically ill inpatients. METHOD: this prospective cohort study, with 55 patients in intensive care units, was performed through evaluation of sociodemographic and clinical variables, through the application of the scales (Braden and Waterlow) upon admission and every 48 hours; and through the evaluation and classification of the ulcers into categories. RESULTS: the pressure ulcer incidence was 30.9%, with the Braden and Waterlow scales presenting high sensitivity (41% and 71%) and low specificity (21% and 47%) respectively in the three evaluations. The cut off scores found in the first, second and third evaluations were 12, 12 and 11 in the Braden scale, and 16, 15 and 14 in the Waterlow scale. CONCLUSION: the Braden scale was shown to be a good screening instrument, and the Waterlow scale proved to have better predictive power. PMID:25806628

  3. Absolute nuclear material assay

    DOEpatents

    Prasad, Manoj K.; Snyderman, Neal J.; Rowland, Mark S.

    2012-05-15

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  4. Absolute nuclear material assay

    DOEpatents

    Prasad, Manoj K.; Snyderman, Neal J.; Rowland, Mark S.

    2010-07-13

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  5. Alexandrite as a high-temperature pressure calibrant, and implications for the ruby-fluorescence scale

    NASA Technical Reports Server (NTRS)

    Jahren, A. H.; Kruger, M. B.; Jeanloz, Raymond

    1992-01-01

    The wavelength shifts of the R1 and R2 fluorescence lines of alexandrite (BeAl2O4:Cr(+3)) have been experimentally calibrated against the ruby-fluorescence scale as a function of both hydrostatic and nonhydrostatic pressures between 0 and 50 GPa, and simultaneously as a function of temperatures between 290 and 550 K. It is found that the pressure-temperature cross derivative of the fluorescence wavelength shifts are negligible for both ruby and alexandrite.

  6. Entropy-scaling laws for diffusion coefficients in liquid metals under high pressures

    SciTech Connect

    Cao, Qi-Long Shao, Ju-Xiang; Wang, Fan-Hou; Wang, Pan-Pan

    2015-04-07

    Molecular dynamic simulations on the liquid copper and tungsten are used to investigate the empirical entropy-scaling laws D{sup *}=A exp(BS{sub ex}), proposed independently by Rosenfeld and Dzugutov for diffusion coefficient, under high pressure conditions. We show that the scaling laws hold rather well for them under high pressure conditions. Furthermore, both the original diffusion coefficients and the reduced diffusion coefficients exhibit an Arrhenius relationship D{sub M}=D{sub M}{sup 0} exp(−E{sub M}/K{sub B}T), (M=un,R,D) and the activation energy E{sub M} increases with increasing pressure, the diffusion pre-exponential factors (D{sub R}{sup 0} and D{sub D}{sup 0}) are nearly independent of the pressure and element. The pair correlation entropy, S{sub 2}, depends linearly on the reciprocal temperature S{sub 2}=−E{sub S}/T, and the activation energy, E{sub S}, increases with increasing pressure. In particular, the ratios of the activation energies (E{sub un}, E{sub R}, and E{sub D}) obtained from diffusion coefficients to the activation energy, E{sub S}, obtained from the entropy keep constants in the whole pressure range. Therefore, the entropy-scaling laws for the diffusion coefficients and the Arrhenius law are linked via the temperature dependence of entropy.

  7. Thermal equation of state of cubic boron nitride: Implications for a high-temperature pressure scale

    SciTech Connect

    Goncharov, Alexander F.; Crowhurst, Jonathan C.; Dewhurst, John K.; Sharma, Sangeeta; Sanloup, Chrystele; Gregoryanz, Eugene; Guignot, Nicolas; Mezouar, Mohamed

    2007-06-01

    The equation of state of cubic boron nitride (cBN) has been determined to a maximum temperature of 3300 K at a simultaneous static pressure of up to more than 70 GPa. Ab initio calculations to 80 GPa and 2000 K have also been performed. Our experimental data can be reconciled with theoretical results and with the known thermal expansion at 1 bar if we assume a small increase in pressure during heating relative to that measured at ambient temperature. The present data combined with the Raman measurements we presented earlier form the basis of a high-temperature pressure scale that is good to at least 3300 K.

  8. Multi-hole pressure probes to air data system for subsonic small-scale air vehicles

    NASA Astrophysics Data System (ADS)

    Shevchenko, A. M.; Berezin, D. R.; Puzirev, L. N.; Tarasov, A. Z.; Kharitonov, A. M.; Shmakov, A. S.

    2016-10-01

    A brief review of research performed to develop multi-hole probes to measure of aerodynamic angles, dynamic head, and static pressure of a flying vehicle. The basis of these works is the application a well-known classical multi-hole pressure probe technique of measuring of a 3D flow to use in the air data system. Two multi-hole pressure probes with spherical and hemispherical head to air-data system for subsonic small-scale vehicles have been developed. A simple analytical probe model with separation of variables is proposed. The probes were calibrated in the wind tunnel, one of them is in-flight tested.

  9. THE SCALE-UP OF LARGE PRESSURIZED FLUIDIZED BEDS FOR ADVANCED COAL FIRED PROCESSES

    SciTech Connect

    Leon Glicksman; Hesham Younis; Richard Hing-Fung Tan; Michel Louge; Elizabeth Griffith; Vincent Bricout

    1998-04-30

    Pressurized fluidization is a promising new technology for the clean and efficient combustion of coal. Its principle is to operate a coal combustor at high inlet gas velocity to increase the flow of reactants, at an elevated pressure to raise the overall efficiency of the process. Unfortunately, commercialization of large pressurized fluidized beds is inhibited by uncertainties in scaling up units from the current pilot plant levels. In this context, our objective is to conduct a study of the fluid dynamics and solid capture of a large pressurized coal-fired unit. The idea is to employ dimensional similitude to simulate in a cold laboratory model the flow in a Pressurized Circulating Fluid Bed ''Pyrolyzer,'' which is part of a High Performance Power System (HIPPS) developed by Foster Wheeler Development Corporation (FWDC) under the DOE's Combustion 2000 program.

  10. Ruby pressure scale in a low-temperature diamond anvil cell

    NASA Astrophysics Data System (ADS)

    Yamaoka, Hitoshi; Zekko, Yumiko; Jarrige, Ignace; Lin, Jung-Fu; Hiraoka, Nozomu; Ishii, Hirofumi; Tsuei, Ku-Ding; Mizuki, Jun'ichiro

    2012-12-01

    Laser-excited N and R fluorescence lines of heavily doped ruby have been studied up to 26 GPa at low temperatures. While the intensity of the R lines at ambient pressure significantly decreases with decreasing temperature, the intensity of N lines originating from exchange-coupled Cr ion pairs is enhanced at low temperatures. The pressure induced wavelength shift of the N lines at 19 K is well fitted with an empirical formula similar to the equation for the R1 line, showing that the intense N line could be used as an alternative pressure scale at low temperatures. We also observe continuous increase in non-hydrostaticity with increasing pressure at low temperatures when silicone oil and 4:1 mixture of methanol and ethanol are used as pressure media.

  11. Absolute shielding scales for Al, Ga, and In and revised nuclear magnetic dipole moments of {sup 27}Al, {sup 69}Ga, {sup 71}Ga, {sup 113}In, and {sup 115}In nuclei

    SciTech Connect

    Antušek, A. Holka, F.

    2015-08-21

    We present coupled cluster calculations of NMR shielding constants of aluminum, gallium, and indium in water-ion clusters. In addition, relativistic and dynamical corrections and the influence of the second solvation shell are evaluated. The final NMR shielding constants define new absolute shielding scales, 600.0 ± 4.1 ppm, 2044.4 ± 31.4 ppm, and 4507.7 ± 63.7 ppm for aluminum, gallium, and indium, respectively. The nuclear magnetic dipole moments for {sup 27}Al, {sup 69}Ga, {sup 71}Ga, {sup 113}In, and {sup 115}In isotopes are corrected by combining the computed shielding constants with experimental NMR frequencies. The absolute magnitude of the correction increases along the series and for indium isotopes it reaches approximately −8.0 × 10{sup −3} of the nuclear magneton.

  12. Managing multiple non-point pressures on water quality and ecological habitat: Spatially targeting effective mitigation actions at the landscape scale.

    NASA Astrophysics Data System (ADS)

    Reaney, S. M.

    2014-12-01

    Catchment systems deliver many benefits to society and ecology but also produce a range of undesirable externalities including flooding, diffuse pollution from agriculture, forestry and urban areas and the export of FIOs. These diffuse pressures are coupled with increasing stream temperature pressures on river from projected climate change. These pressures can be reduced through actions at the landscape scale but are often tackled individually. Any intervention may have benefits for other pressures and hence the challenge is to consider all of the different pressures simultaneously to find solutions with high levels of cross-pressure benefits. The general approach taken within this research has been to use simple but spatially distributed models to predict the pattern of each of the pressures at the landscape scale. These models follow a minimum information requirement approach along the lines of the SCIMAP modelling approach (www.scimap.org.uk). This approach aims to capture the key features of the processes in relative rather than an absolute sense and hence is good at determining key locations to act within a landscape for maximum benefit. The core of the approach is to define the critical sources areas for each pressure based on the analysis of the pattern of the pressure in the landscape and the connectivity from the sources areas to the rivers and lakes. To identify the optimal locations with the landscape for mitigation actions, the benefit of a mitigation action at each location in the landscape needs to be considered. However, as one action has been made, it may change the suitability of other locations in the landscape. For example, as tree cover reduces the temperature in one river reach, the impacts of this cooling are transported downstream with the flow. Therefore, actions need to be considered in sets across multiple sites and objectives to identify the optimal actions set. These modelling results are integrated into a decision support tool which

  13. Evaluation of a 40 to 1 scale model of a low pressure engine

    NASA Technical Reports Server (NTRS)

    Cooper, C. E., Jr.; Thoenes, J.

    1972-01-01

    An evaluation of a scale model of a low pressure rocket engine which is used for secondary injection studies was conducted. Specific objectives of the evaluation were to: (1) assess the test conditions required for full scale simulations; (2) recommend fluids to be used for both primary and secondary flows; and (3) recommend possible modifications to be made to the scale model and its test facility to achieve the highest possible degree of simulation. A discussion of the theoretical and empirical scaling laws which must be observed to apply scale model test data to full scale systems is included. A technique by which the side forces due to secondary injection can be analytically estimated is presented.

  14. Parametric scaling from species relative abundances to absolute abundances in the computation of biological diversity: a first proposal using Shannon's entropy.

    PubMed

    Ricotta, Carlo

    2003-01-01

    Traditional diversity measures such as the Shannon entropy are generally computed from the species' relative abundance vector of a given community to the exclusion of species' absolute abundances. In this paper, I first mention some examples where the total information content associated with a given community may be more adequate than Shannon's average information content for a better understanding of ecosystem functioning. Next, I propose a parametric measure of statistical information that contains both Shannon's entropy and total information content as special cases of this more general function.

  15. Absolute CH radical concentrations in rich low-pressure methane-oxygen-argon flames via cavity ringdown spectroscopy of the A transition

    SciTech Connect

    John W. Thomas, Jr; Andrew McIlroy

    1999-11-22

    We measure cavity ringdown spectra of the A{sup 2}{Delta}-X{sup 2}II transition of the methylidyne (CH) radical in a series of rich low-pressure methane-oxygen-argon flames and demonstrate that the technique is sensitive, quantitative, and straightforward in its implementation and interpretation. As a line-of-sight technique, it complements imaging techniques, such as planar laser-induced fluorescence. Our results generally agree with chemical kinetic models for methane oxidation that have appeared in the literature, but suggest some refinements are necessary. Additional examination of the CH + O{sub 2} reaction rate as a function of temperature is advised. Our results are consistent with those of Derzy et al. using the C{sup 2}{Sigma}{sup +}-X{sup 2}II transition for stoichiometric, low-pressure flames which include nitrogen. Our results for rich flames, as with earlier experiments for singlet methylene, suggest that flame chemical kinetic models need to be adjusted to account for flame chemistry for stoichiometries richer than {phi} = 1.5.

  16. Blast pressure measurements for the full-scale Gravel Gertie test

    NASA Astrophysics Data System (ADS)

    Esparza, E. D.; Baker, W. E.

    1984-08-01

    The blast and gas pressure data obtained in the full-scale Gravel Gertie test conducted in 1982 have been used by architecture-engineer firms, in conjunction with other data from model experiments, to define the design loads for the new generation of Gravel Gertie and other blast containment facilities.

  17. Pressure-flow relationships for packed beds of compressible chromatography media at laboratory and production scale.

    PubMed

    Stickel, J J; Fotopoulos, A

    2001-01-01

    Pressure drop across chromatography beds employing soft or semirigid media can be a significant problem in the operation of large-scale preparative chromatography columns. The shape or aspect ratio (length/diameter) of a packed bed has a significant effect on column pressure drop due to wall effects, which can result in unexpectedly high pressures in manufacturing. Two types of agarose-based media were packed in chromatography columns at various column aspect ratios, during which pressure drop, bed height, and flow rate were carefully monitored. Compression of the packed beds with increasing flow velocities was observed. An empirical model was developed to correlate pressure drop with the aspect ratio of the packed beds and the superficial velocity. Modeling employed the Blake-Kozeny equation in which empirical relationships were used to predict bed porosity as a function of aspect ratio and flow velocity. Model predictions were in good agreement with observed pressure drops of industrial scale chromatography columns. A protocol was developed to predict compression in industrial chromatography applications by a few laboratory experiments. The protocol is shown to be useful in the development of chromatographic methods and sizing of preparative columns.

  18. A Large-Scale, Energetic Model of Cardiovascular Homeostasis Predicts Dynamics of Arterial Pressure in Humans

    PubMed Central

    Roytvarf, Alexander; Shusterman, Vladimir

    2008-01-01

    The energetic balance of forces in the cardiovascular system is vital to the stability of blood flow to all physiological systems in mammals. Yet, a large-scale, theoretical model, summarizing the energetic balance of major forces in a single, mathematically closed system has not been described. Although a number of computer simulations have been successfully performed with the use of analog models, the analysis of energetic balance of forces in such models is obscured by a big number of interacting elements. Hence, the goal of our study was to develop a theoretical model that represents large-scale, energetic balance in the cardiovascular system, including the energies of arterial pressure wave, blood flow, and the smooth muscle tone of arterial walls. Because the emphasis of our study was on tracking beat-to-beat changes in the balance of forces, we used a simplified representation of the blood pressure wave as a trapezoidal pressure-pulse with a strong-discontinuity leading front. This allowed significant reduction in the number of required parameters. Our approach has been validated using theoretical analysis, and its accuracy has been confirmed experimentally. The model predicted the dynamics of arterial pressure in human subjects undergoing physiological tests and provided insights into the relationships between arterial pressure and pressure wave velocity. PMID:18269976

  19. Estimating large-scale fracture permeability of unsaturatedrockusing barometric pressure data

    SciTech Connect

    Wu, Yu-Shu; Zhang, Keni; Liu, Hui-Hai

    2005-05-17

    We present a three-dimensional modeling study of gas flow inthe unsaturated fractured rock of Yucca Mountain. Our objective is toestimate large-scale fracture permeability, using the changes insubsurface pneumatic pressure in response to barometric pressure changesat the land surface. We incorporate the field-measured pneumatic datainto a multiphase flow model for describing the coupled processes ofliquid and gas flow under ambient geothermal conditions. Comparison offield-measured pneumatic data with model-predicted gas pressures is foundto be a powerful technique for estimating the fracture permeability ofthe unsaturated fractured rock, which is otherwise extremely difficult todetermine on the large scales of interest. In addition, this studydemonstrates that the multi-dimensional-flow effect on estimatedpermeability values is significant and should be included whendetermining fracture permeability in heterogeneous fracturedmedia.

  20. Scaling behavior of temperature-dependent thermopower in CeAu2Si2 under pressure

    NASA Astrophysics Data System (ADS)

    Ren, Z.; Scheerer, G. W.; Lapertot, G.; Jaccard, D.

    2016-07-01

    We report a combined study of in-plane resistivity and thermopower of the pressure-induced heavy-fermion superconductor CeAu2Si2 up to 27.8 GPa. It is found that thermopower follows a scaling behavior in T /T* almost up to the magnetic critical pressure pc˜22 GPa. By comparing with resistivity results, we show that the magnitude and characteristic temperature dependence of thermopower in this pressure range are governed by the Kondo coupling and crystal-field splitting, respectively. Below pc, the superconducting transition is preceded by a large negative thermopower minimum, suggesting a close relationship between the two phenomena. Furthermore, thermopower of a variety of Ce-based Kondo lattices with different crystal structures follows the same scaling relation up to T /T*˜2 .

  1. Grain-scale pressure variations in metamorphic rocks: implications for the interpretation of petrographic observations

    NASA Astrophysics Data System (ADS)

    Tajčmanová, Lucie; Vrijmoed, Johannes; Moulas, Evangelos

    2015-02-01

    Recent work on mineral reactions and microstructures in metamorphic rocks has focused on forward modelling of phase equilibria and on their description through chemical potential relationships which control mass transfer in rocks. The available thermodynamic databases and computer programs for phase equilibria modelling have significantly improved the quantification and understanding of geodynamic processes. Therefore, our current methodological framework seems to be satisfactory. However, the quantification approaches in petrology focus on chemical processes with oversimplified mechanics. A review of the recent literature shows that mechanical effects in rocks may result in the development of pressure variations even on a hand specimen or grain scale. Such variations are critical for interpreting microstructural and mineral composition observations in rocks. Mechanical effects may influence element transport and mineral assemblage in rocks. Considering the interplay of mechanical properties and metamorphic reactions is therefore crucial for a correct interpretation of microstructural observations in metamorphic rocks as well as for quantification of processes. In this contribution, arguments against pressure variations are inspected and disproved. The published quantification procedure for systems with grain-scale pressure variations is reviewed. We demonstrate the equivalence of using Gibbs and Helmholtz energy in an isobaric system and go on to suggest that Gibbs free energy is more convenient for systems with pressure variations. Furthermore, we outline the implications of the new quantification approach for phase equilibria modelling as well as diffusion modelling. The appropriate modification of a macroscopic flux for a system with a pressure variation is derived and a consequence of using mass or molar units in diffusional fluxes is discussed. The impact of ignoring grain-scale pressure variations on geodynamic modelling and our understanding of the

  2. Vehicle-scale investigation of a fluorine jet-pump liquid hydrogen tank pressurization system

    NASA Technical Reports Server (NTRS)

    Cady, E. C.; Kendle, D. W.

    1972-01-01

    A comprehensive analytical and experimental program was performed to evaluate the performance of a fluorine-hydrogen jet-pump injector for main tank injection (MTI) pressurization of a liquid hydrogen (LH2) tank. The injector performance during pressurization and LH2 expulsion was determined by a series of seven tests of a full-scale injector and MTI pressure control system in a 28.3 cu m (1000 cu ft) flight-weight LH2 tank. Although the injector did not effectively jet-pump LH2 continuously, it showed improved pressurization performance compared to straight-pipe injectors tested under the same conditions in a previous program. The MTI computer code was modified to allow performance prediction for the jet-pump injector.

  3. HRV analysis and blood pressure monitoring on weighing scale using BCG.

    PubMed

    Shin, Jae Hyuk; Park, Kwang Suk

    2012-01-01

    Using the Ballistocardiogram(BCG) measured on weighing scale, heart rate variability(HRV) and blood pressure were estimated. BCG was measured while subjects were on weighing scale in resting state and under the Valsalva maneuver and static exercise condition to induce the change in cardiac autonomic rhythm. Time domain, frequency domain and nonlinear HRV parameters were estimated from the measured BCG and compared with the ones calculated from ECG measured simultaneously. For blood pressure(BP) estimation, ECG was measured additionally on the feet using dry electrodes simultaneously installed on weighing scale and R-J intervals were extracted as a BP correlated parameter at every beat cycle. HRV estimation results shows the correlation higher than 0.97, and the estimated BP was similar to the measured BP with a reliable correlations.

  4. Module-scale analysis of pressure retarded osmosis: performance limitations and implications for full-scale operation.

    PubMed

    Straub, Anthony P; Lin, Shihong; Elimelech, Menachem

    2014-10-21

    We investigate the performance of pressure retarded osmosis (PRO) at the module scale, accounting for the detrimental effects of reverse salt flux, internal concentration polarization, and external concentration polarization. Our analysis offers insights on optimization of three critical operation and design parameters--applied hydraulic pressure, initial feed flow rate fraction, and membrane area--to maximize the specific energy and power density extractable in the system. For co- and counter-current flow modules, we determine that appropriate selection of the membrane area is critical to obtain a high specific energy. Furthermore, we find that the optimal operating conditions in a realistic module can be reasonably approximated using established optima for an ideal system (i.e., an applied hydraulic pressure equal to approximately half the osmotic pressure difference and an initial feed flow rate fraction that provides equal amounts of feed and draw solutions). For a system in counter-current operation with a river water (0.015 M NaCl) and seawater (0.6 M NaCl) solution pairing, the maximum specific energy obtainable using performance properties of commercially available membranes was determined to be 0.147 kWh per m(3) of total mixed solution, which is 57% of the Gibbs free energy of mixing. Operating to obtain a high specific energy, however, results in very low power densities (less than 2 W/m(2)), indicating that the trade-off between power density and specific energy is an inherent challenge to full-scale PRO systems. Finally, we quantify additional losses and energetic costs in the PRO system, which further reduce the net specific energy and indicate serious challenges in extracting net energy in PRO with river water and seawater solution pairings.

  5. Module-scale analysis of pressure retarded osmosis: performance limitations and implications for full-scale operation.

    PubMed

    Straub, Anthony P; Lin, Shihong; Elimelech, Menachem

    2014-10-21

    We investigate the performance of pressure retarded osmosis (PRO) at the module scale, accounting for the detrimental effects of reverse salt flux, internal concentration polarization, and external concentration polarization. Our analysis offers insights on optimization of three critical operation and design parameters--applied hydraulic pressure, initial feed flow rate fraction, and membrane area--to maximize the specific energy and power density extractable in the system. For co- and counter-current flow modules, we determine that appropriate selection of the membrane area is critical to obtain a high specific energy. Furthermore, we find that the optimal operating conditions in a realistic module can be reasonably approximated using established optima for an ideal system (i.e., an applied hydraulic pressure equal to approximately half the osmotic pressure difference and an initial feed flow rate fraction that provides equal amounts of feed and draw solutions). For a system in counter-current operation with a river water (0.015 M NaCl) and seawater (0.6 M NaCl) solution pairing, the maximum specific energy obtainable using performance properties of commercially available membranes was determined to be 0.147 kWh per m(3) of total mixed solution, which is 57% of the Gibbs free energy of mixing. Operating to obtain a high specific energy, however, results in very low power densities (less than 2 W/m(2)), indicating that the trade-off between power density and specific energy is an inherent challenge to full-scale PRO systems. Finally, we quantify additional losses and energetic costs in the PRO system, which further reduce the net specific energy and indicate serious challenges in extracting net energy in PRO with river water and seawater solution pairings. PMID:25222561

  6. Scaling laws of impact induced shock pressure and particle velocity in planetary mantle

    NASA Astrophysics Data System (ADS)

    Monteux, J.; Arkani-Hamed, J.

    2016-01-01

    While major impacting bodies during accretion of a Mars type planet have very low velocities (<10 km/s), the characteristics of the shockwave propagation and, hence, the derived scaling laws are poorly known for these low velocity impacts. Here, we use iSALE-2D hydrocode simulations to calculate shock pressure and particle velocity in a Mars type body for impact velocities ranging from 4 to 10 km/s. Large impactors of 100-400 km in diameter, comparable to those impacted on Mars and created giant impact basins, are examined. To better represent the power law distribution of shock pressure and particle velocity as functions of distance from the impact site at the surface, we propose three distinct regions in the mantle: a near field regime, which extends to 1-3 times the projectile radius into the target, where the peak shock pressure and particle velocity decay very slowly with increasing distance, a mid field region, which extends to ∼4.5 times the impactor radius, where the pressure and particle velocity decay exponentially but moderately, and a more distant far field region where the pressure and particle velocity decay strongly with distance. These scaling laws are useful to determine impact heating of a growing proto-planet by numerous accreting bodies.

  7. Development of Dynamic Flow Field Pressure Probes Suitable for Use in Large Scale Supersonic Wind Tunnels

    NASA Technical Reports Server (NTRS)

    Porro, A. Robert

    2000-01-01

    A series of dynamic flow field pressure probes were developed for use in large-scale supersonic wind tunnels at NASA Glenn Research Center. These flow field probes include pitot, static, and five-hole conical pressure probes that are capable of capturing fast acting flow field pressure transients that occur on a millisecond time scale. The pitot and static probes can be used to determine local Mach number time histories during a transient event. The five-hole conical pressure probes are used primarily to determine local flow angularity, but can also determine local Mach number. These probes were designed, developed, and tested at the NASA Glenn Research Center. They were also used in a NASA Glenn 10-by 10-Foot Supersonic Wind Tunnel (SWT) test program where they successfully acquired flow field pressure data in the vicinity of a propulsion system during an engine compressor staff and inlet unstart transient event. Details of the design, development, and subsequent use of these probes are discussed in this report.

  8. On determining characteristic length scales in pressure-gradient turbulent boundary layers

    NASA Astrophysics Data System (ADS)

    Vinuesa, R.; Bobke, A.; Örlü, R.; Schlatter, P.

    2016-05-01

    In the present work, we analyze three commonly used methods to determine the edge of pressure gradient turbulent boundary layers: two based on composite profiles, the one by Chauhan et al. ["Criteria for assessing experiments in zero pressure gradient boundary layers," Fluid Dyn. Res. 41, 021404 (2009)] and the one by Nickels ["Inner scaling for wall-bounded flows subject to large pressure gradients," J. Fluid Mech. 521, 217-239 (2004)], and the other one based on the condition of vanishing mean velocity gradient. Additionally, a new method is introduced based on the diagnostic plot concept by Alfredsson et al. ["A new scaling for the streamwise turbulence intensity in wall-bounded turbulent flows and what it tells us about the `outer' peak," Phys. Fluids 23, 041702 (2011)]. The boundary layers developing over the suction and pressure sides of a NACA4412 wing section, extracted from a direct numerical simulation at chord Reynolds number Rec = 400 000, are used as the test case, besides other numerical and experimental data from favorable, zero, and adverse pressure-gradient flat-plate turbulent boundary layers. We find that all the methods produce robust results with mild or moderate pressure gradients, although the composite-profile techniques require data preparation, including initial estimations of fitting parameters and data truncation. Stronger pressure gradients (with a Rotta-Clauser pressure-gradient parameter β larger than around 7) lead to inconsistent results in all the techniques except the diagnostic plot. This method also has the advantage of providing an objective way of defining the point where the mean streamwise velocity is 99% of the edge velocity and shows consistent results in a wide range of pressure gradient conditions, as well as flow histories. Collapse of intermittency factors obtained from a wide range of pressure-gradient and Re conditions on the wing further highlights the robustness of the diagnostic plot method to determine the

  9. Pressure Sensitive Paint Measurements on 15% Scale Rotor Blades in Hover

    NASA Technical Reports Server (NTRS)

    Wong, Oliver D.; Watkins, Anthony Neal; Ingram, JoAnne L.

    2005-01-01

    This paper describes a proof of concept test to examine the feasibility of using pressure sensitive paint (PSP) to measure the pressure distributions on a rotor in hover. The test apparatus consisted of the US Army 2-meter Rotor Test Stand (2MRTS) and 15% scale swept tip rotor blades. Two camera/rotor separations were examined: 0.76 and 1.35 radii. The outer 15% of each blade was painted with PSP. Intensity and lifetime based PSP measurement techniques were attempted. Data were collected from all blades at thrust coefficients ranging from 0.004 to 0.009.

  10. Performance of a pilot-scale, steam-blown, pressurized fluidized bed biomass gasifier

    NASA Astrophysics Data System (ADS)

    Sweeney, Daniel Joseph

    With the discovery of vast fossil resources, and the subsequent development of the fossil fuel and petrochemical industry, the role of biomass-based products has declined. However, concerns about the finite and decreasing amount of fossil and mineral resources, in addition to health and climate impacts of fossil resource use, have elevated interest in innovative methods for converting renewable biomass resources into products that fit our modern lifestyle. Thermal conversion through gasification is an appealing method for utilizing biomass due to its operability using a wide variety of feedstocks at a wide range of scales, the product has a variety of uses (e.g., transportation fuel production, electricity production, chemicals synthesis), and in many cases, results in significantly lower greenhouse gas emissions. In spite of the advantages of gasification, several technical hurdles have hindered its commercial development. A number of studies have focused on laboratory-scale and atmospheric biomass gasification. However, few studies have reported on pilot-scale, woody biomass gasification under pressurized conditions. The purpose of this research is an assessment of the performance of a pilot-scale, steam-blown, pressurized fluidized bed biomass gasifier. The 200 kWth fluidized bed gasifier is capable of operation using solid feedstocks at feedrates up to 65 lb/hr, bed temperatures up to 1600°F, and pressures up to 8 atm. Gasifier performance was assessed under various temperatures, pressure, and feedstock (untreated woody biomass, dark and medium torrefied biomass) conditions by measuring product gas yield and composition, residue (e.g., tar and char) production, and mass and energy conversion efficiencies. Elevated temperature and pressure, and feedstock pretreatment were shown to have a significant influence on gasifier operability, tar production, carbon conversion, and process efficiency. High-pressure and temperature gasification of dark torrefied biomass

  11. Absolute biological needs.

    PubMed

    McLeod, Stephen

    2014-07-01

    Absolute needs (as against instrumental needs) are independent of the ends, goals and purposes of personal agents. Against the view that the only needs are instrumental needs, David Wiggins and Garrett Thomson have defended absolute needs on the grounds that the verb 'need' has instrumental and absolute senses. While remaining neutral about it, this article does not adopt that approach. Instead, it suggests that there are absolute biological needs. The absolute nature of these needs is defended by appeal to: their objectivity (as against mind-dependence); the universality of the phenomenon of needing across the plant and animal kingdoms; the impossibility that biological needs depend wholly upon the exercise of the abilities characteristic of personal agency; the contention that the possession of biological needs is prior to the possession of the abilities characteristic of personal agency. Finally, three philosophical usages of 'normative' are distinguished. On two of these, to describe a phenomenon or claim as 'normative' is to describe it as value-dependent. A description of a phenomenon or claim as 'normative' in the third sense does not entail such value-dependency, though it leaves open the possibility that value depends upon the phenomenon or upon the truth of the claim. It is argued that while survival needs (or claims about them) may well be normative in this third sense, they are normative in neither of the first two. Thus, the idea of absolute need is not inherently normative in either of the first two senses. PMID:23586876

  12. Absolute biological needs.

    PubMed

    McLeod, Stephen

    2014-07-01

    Absolute needs (as against instrumental needs) are independent of the ends, goals and purposes of personal agents. Against the view that the only needs are instrumental needs, David Wiggins and Garrett Thomson have defended absolute needs on the grounds that the verb 'need' has instrumental and absolute senses. While remaining neutral about it, this article does not adopt that approach. Instead, it suggests that there are absolute biological needs. The absolute nature of these needs is defended by appeal to: their objectivity (as against mind-dependence); the universality of the phenomenon of needing across the plant and animal kingdoms; the impossibility that biological needs depend wholly upon the exercise of the abilities characteristic of personal agency; the contention that the possession of biological needs is prior to the possession of the abilities characteristic of personal agency. Finally, three philosophical usages of 'normative' are distinguished. On two of these, to describe a phenomenon or claim as 'normative' is to describe it as value-dependent. A description of a phenomenon or claim as 'normative' in the third sense does not entail such value-dependency, though it leaves open the possibility that value depends upon the phenomenon or upon the truth of the claim. It is argued that while survival needs (or claims about them) may well be normative in this third sense, they are normative in neither of the first two. Thus, the idea of absolute need is not inherently normative in either of the first two senses.

  13. A Retrospective Analysis of Pressure Ulcer Incidence and Modified Braden Scale Score Risk Classifications.

    PubMed

    Chen, Hong-Lin; Cao, Ying-Juan; Wang, Jing; Huai, Bao-Sha

    2015-09-01

    The Braden Scale is the most widely used pressure ulcer risk assessment in the world, but the currently used 5 risk classification groups do not accurately discriminate among their risk categories. To optimize risk classification based on Braden Scale scores, a retrospective analysis of all consecutively admitted patients in an acute care facility who were at risk for pressure ulcer development was performed between January 2013 and December 2013. Predicted pressure ulcer incidence first was calculated by logistic regression model based on original Braden score. Risk classification then was modified based on the predicted pressure ulcer incidence and compared between different risk categories in the modified (3-group) classification and the traditional (5-group) classification using chi-square test. Two thousand, six hundred, twenty-five (2,625) patients (mean age 59.8 ± 16.5, range 1 month to 98 years, 1,601 of whom were men) were included in the study; 81 patients (3.1%) developed a pressure ulcer. The predicted pressure ulcer incidence ranged from 0.1% to 49.7%. When the predicted pressure ulcer incidence was greater than 10.0% (high risk), the corresponding Braden scores were less than 11; when the predicted incidence ranged from 1.0% to 10.0% (moderate risk), the corresponding Braden scores ranged from 12 to 16; and when the predicted incidence was less than 1.0% (mild risk), the corresponding Braden scores were greater than 17. In the modified classification, observed pressure ulcer incidence was significantly different between each of the 3 risk categories (P less than 0.05). However, in the traditional classification, the observed incidence was not significantly different between the high-risk category and moderate-risk category (P less than 0.05) and between the mild-risk category and no-risk category (P less than 0.05). If future studies confirm the validity of these findings, pressure ulcer prevention protocols of care based on Braden Scale scores can

  14. The scale-up and design of pressure hydrometallurgical process plants

    NASA Astrophysics Data System (ADS)

    Campbell, F.; Vardill, W. D.; Trytten, L.

    1999-09-01

    This article reviews more than 45 years of experience in the scale-up of pressure hydrometallurgical processes, from the pioneering collaboration between Sherritt and Chemical Construction Company to current process development by their successor, Dynatec Corporation. The evolution of test work is discussed, from traditional pilot-plant operations using semicommercial equipment to small scale or minipiloting with equipment several thousand times smaller than commercial units. Nickel, uranium, zinc, and gold processes have been developed and successfully implemented in worldwide operations treating a variety of feed materials, including concentrates, ores, and mattes. Data on test work duration and the ramp-up of commercial plants are presented.

  15. Low Pressure Seeder Development for PIV in Large Scale Open Loop Wind Tunnels

    NASA Astrophysics Data System (ADS)

    Schmit, Ryan

    2010-11-01

    A low pressure seeding techniques have been developed for Particle Image Velocimetry (PIV) in large scale wind tunnel facilities was performed at the Subsonic Aerodynamic Research Laboratory (SARL) facility at Wright-Patterson Air Force Base. The SARL facility is an open loop tunnel with a 7 by 10 foot octagonal test section that has 56% optical access and the Mach number varies from 0.2 to 0.5. A low pressure seeder sprayer was designed and tested in the inlet of the wind tunnel. The seeder sprayer was designed to produce an even and uniform distribution of seed while reducing the seeders influence in the test section. ViCount Compact 5000 using Smoke Oil 180 was using as the seeding material. The results show that this low pressure seeder does produce streaky seeding but excellent PIV images are produced.

  16. The absolute path command

    2012-05-11

    The ap command traveres all symlinks in a given file, directory, or executable name to identify the final absolute path. It can print just the final path, each intermediate link along with the symlink chan, and the permissions and ownership of each directory component in the final path. It has functionality similar to "which", except that it shows the final path instead of the first path. It is also similar to "pwd", but it canmore » provide the absolute path to a relative directory from the current working directory.« less

  17. The absolute path command

    SciTech Connect

    Moody, A.

    2012-05-11

    The ap command traveres all symlinks in a given file, directory, or executable name to identify the final absolute path. It can print just the final path, each intermediate link along with the symlink chan, and the permissions and ownership of each directory component in the final path. It has functionality similar to "which", except that it shows the final path instead of the first path. It is also similar to "pwd", but it can provide the absolute path to a relative directory from the current working directory.

  18. Climate and Human Pressure Constraints Co-Explain Regional Plant Invasion at Different Spatial Scales

    PubMed Central

    García-Baquero, Gonzalo; Caño, Lidia; Biurrun, Idoia; García-Mijangos, Itziar; Loidi, Javier; Herrera, Mercedes

    2016-01-01

    Alien species invasion represents a global threat to biodiversity and ecosystems. Explaining invasion patterns in terms of environmental constraints will help us to assess invasion risks and plan control strategies. We aim to identify plant invasion patterns in the Basque Country (Spain), and to determine the effects of climate and human pressure on that pattern. We modeled the regional distribution of 89 invasive plant species using two approaches. First, distance-based Moran’s eigenvector maps were used to partition variation in the invasive species richness, S, into spatial components at broad and fine scales; redundancy analysis was then used to explain those components on the basis of climate and human pressure descriptors. Second, we used generalized additive mixed modeling to fit species-specific responses to the same descriptors. Climate and human pressure descriptors have different effects on S at different spatial scales. Broad-scale spatially structured temperature and precipitation, and fine-scale spatially structured human population density and percentage of natural and semi-natural areas, explained altogether 38.7% of the total variance. The distribution of 84% of the individually tested species was related to either temperature, precipitation or both, and 68% was related to either population density or natural and semi-natural areas, displaying similar responses. The spatial pattern of the invasive species richness is strongly environmentally forced, mainly by climate factors. Since individual species responses were proved to be both similarly constrained in shape and explained variance by the same environmental factors, we conclude that the pattern of invasive species richness results from individual species’ environmental preferences. PMID:27741276

  19. Fluid displacement fronts in porous media: pore scale interfacial jumps, pressure bursts and acoustic emissions

    NASA Astrophysics Data System (ADS)

    Moebius, Franziska; Or, Dani

    2014-05-01

    The macroscopically smooth and regular motion of fluid fronts in porous media is composed of numerous rapid pore-scale interfacial jumps and pressure bursts that involve intense interfacial energy release in the form of acoustic emissions. The characteristics of these pore scale events affect residual phase entrapment and transport properties behind the front. We present experimental studies using acoustic emission technique (AE), rapid imaging, and liquid pressure measurements to characterize these processes during drainage and imbibition in simple porous media. Imbibition and drainage produce different AE signatures (AE amplitudes obey a power law). For rapid drainage, AE signals persist long after cessation of front motion reflecting fluid redistribution and interfacial relaxation. Imaging revealed that the velocity of interfacial jumps often exceeds front velocity by more than 50 fold and is highly inertial component (Re>1000). Pore invasion volumes reduced deduced from pressure fluctuations waiting times (for constant withdrawal rates) show remarkable agreement with geometrically-deduced pore volumes. Discrepancies between invaded volumes and geometrical pores increase with increasing capillary numbers due to constraints on evacuation opportunity times and simultaneous invasion events. A mechanistic model for interfacial motions in a pore-throat network was developed to investigate interfacial dynamics focusing on the role of inertia. Results suggest that while pore scale dynamics were sensitive to variations in pore geometry and boundary conditions, inertia exerted only a minor effect on phase entrapment. The study on pore scale invasion events paints a complex picture of rapid and inertial motions and provides new insights on mechanisms at displacement fronts that are essential for improved macroscopic description of multiphase flows in porous media.

  20. Predicting pressure ulcer risk with the modified Braden, Braden, and Norton scales in acute care hospitals in Mainland China.

    PubMed

    Kwong, Enid; Pang, Samantha; Wong, Thomas; Ho, Jacqueline; Shao-ling, Xue; Li-jun, Tao

    2005-05-01

    The aim of this study was to develop a modified Braden scale, to evaluate its predictive validity, and to identify a more valid pressure ulcer risk calculator for application in acute care hospitals in Mainland China among the modified Braden, Braden, and Norton scales. The initial modified Braden scale, with the addition of skin type and body build for height, was proposed in this study. Four hundred twenty-nine subjects who were admitted to two acute care hospitals in Mainland China within 24 hr and free of pressure ulcers upon admission were assessed with the initial modified Braden, Braden, and Norton scales by three nurse assessors. This was followed by a daily skin assessment to note any pressure ulcer by a nurse assessor. Nine subjects had pressure ulcers detected at Stages I (89%) and II (11%) after an average stay of 11 days. The descriptive analysis of each subscale scoring item in the initial modified Braden scale indicated that skin type and body build for height were the most distinct predictive factors whereas nutrition was the least distinct factor for predicting pressure ulcer development. Based on these findings, the modified Braden scale was further developed with the addition of skin type and body build for height and by exclusion of nutrition. The predictive validity test reported that the modified Braden scale demonstrated a better balance of sensitivity (89%) and specificity (75%) at a cutoff score of 16, with a higher positive predictive value (7%), than the Braden and Norton scales. This finding revealed that for this sample, the modified Braden scale is more effective in pressure ulcer risk prediction than the other two scales. Because the modified Braden scale is not 100% sensitive and specific, to increase clinical efficacy in the prevention of pressure ulcer, it is recommended that it be adopted combined with nursing judgment to predict pressure ulcer development in acute care settings in Mainland China.

  1. Large-scale multiplex absolute protein quantification of drug-metabolizing enzymes and transporters in human intestine, liver, and kidney microsomes by SWATH-MS: Comparison with MRM/SRM and HR-MRM/PRM.

    PubMed

    Nakamura, Kenji; Hirayama-Kurogi, Mio; Ito, Shingo; Kuno, Takuya; Yoneyama, Toshihiro; Obuchi, Wataru; Terasaki, Tetsuya; Ohtsuki, Sumio

    2016-08-01

    The purpose of the present study was to examine simultaneously the absolute protein amounts of 152 membrane and membrane-associated proteins, including 30 metabolizing enzymes and 107 transporters, in pooled microsomal fractions of human liver, kidney, and intestine by means of SWATH-MS with stable isotope-labeled internal standard peptides, and to compare the results with those obtained by MRM/SRM and high resolution (HR)-MRM/PRM. The protein expression levels of 27 metabolizing enzymes, 54 transporters, and six other membrane proteins were quantitated by SWATH-MS; other targets were below the lower limits of quantitation. Most of the values determined by SWATH-MS differed by less than 50% from those obtained by MRM/SRM or HR-MRM/PRM. Various metabolizing enzymes were expressed in liver microsomes more abundantly than in other microsomes. Ten, 13, and eight transporters listed as important for drugs by International Transporter Consortium were quantified in liver, kidney, and intestinal microsomes, respectively. Our results indicate that SWATH-MS enables large-scale multiplex absolute protein quantification while retaining similar quantitative capability to MRM/SRM or HR-MRM/PRM. SWATH-MS is expected to be useful methodology in the context of drug development for elucidating the molecular mechanisms of drug absorption, metabolism, and excretion in the human body based on protein profile information.

  2. Well integrity assessment under temperature and pressure stresses by a 1:1 scale wellbore experiment

    NASA Astrophysics Data System (ADS)

    Manceau, J. C.; Tremosa, J.; Audigane, P.; Lerouge, C.; Claret, F.; Lettry, Y.; Fierz, T.; Nussbaum, C.

    2015-08-01

    A new in situ experiment is proposed for observing and understanding well integrity evolution, potentially due to changes that could occur during a well lifetime. The focus is put on temperature and pressure stresses. A small section of a well is reproduced at scale 1:1 in the Opalinus Clay formation, representative of a low permeable caprock formation (in Mont Terri Underground Rock Laboratory, Switzerland). The well-system behavior is characterized over time both by performing hydro-tests to quantify the hydraulic properties of the well and their evolution, and sampling the fluids to monitor the chemical composition and its changes. This paper presents the well integrity assessment under different imposed temperature (17-52°C) and pressure (10-28 bar) conditions. The results obtained in this study confirm the ability of the chosen design and observation scale to estimate the evolution of the well integrity over time, the characteristics of the flow along the well-system and the reasons of the observed evolution. In particular, the estimated effective well permeability is higher than cement or caprock intrinsic permeability, which suggest preferential flow pathways at interfaces especially at the very beginning of the experiment; the significant variations of the effective well permeability observed after setting pressure and temperature stresses indicate that operations could influence well integrity in similar proportions than the cementing process.

  3. Scaling Law for Cross-stream Diffusion in Microchannels under Combined Electroosmotic and Pressure Driven Flow.

    PubMed

    Song, Hongjun; Wang, Yi; Pant, Kapil

    2013-01-01

    This paper presents an analytical study of the cross-stream diffusion of an analyte in a rectangular microchannel under combined electroosmotic flow (EOF) and pressure driven flow to investigate the heterogeneous transport behavior and spatially-dependent diffusion scaling law. An analytical model capable of accurately describing 3D steady-state convection-diffusion in microchannels with arbitrary aspect ratios is developed based on the assumption of the thin Electric Double Layer (EDL). The model is verified against high-fidelity numerical simulation in terms of flow velocity and analyte concentration profiles with excellent agreement (<0.5% relative error). An extensive parametric analysis is then undertaken to interrogate the effect of the combined flow velocity field on the transport behavior in both the positive pressure gradient (PPG) and negative pressure gradient (NPG) cases. For the first time, the evolution from the spindle-shaped concentration profile in the PPG case, via the stripe-shaped profile (pure EOF), and finally to the butterfly-shaped profile in the PPG case is obtained using the analytical model along with a quantitative depiction of the spatially-dependent diffusion layer thickness and scaling law across a wide range of the parameter space.

  4. Scaling Law for Cross-stream Diffusion in Microchannels under Combined Electroosmotic and Pressure Driven Flow.

    PubMed

    Song, Hongjun; Wang, Yi; Pant, Kapil

    2013-01-01

    This paper presents an analytical study of the cross-stream diffusion of an analyte in a rectangular microchannel under combined electroosmotic flow (EOF) and pressure driven flow to investigate the heterogeneous transport behavior and spatially-dependent diffusion scaling law. An analytical model capable of accurately describing 3D steady-state convection-diffusion in microchannels with arbitrary aspect ratios is developed based on the assumption of the thin Electric Double Layer (EDL). The model is verified against high-fidelity numerical simulation in terms of flow velocity and analyte concentration profiles with excellent agreement (<0.5% relative error). An extensive parametric analysis is then undertaken to interrogate the effect of the combined flow velocity field on the transport behavior in both the positive pressure gradient (PPG) and negative pressure gradient (NPG) cases. For the first time, the evolution from the spindle-shaped concentration profile in the PPG case, via the stripe-shaped profile (pure EOF), and finally to the butterfly-shaped profile in the PPG case is obtained using the analytical model along with a quantitative depiction of the spatially-dependent diffusion layer thickness and scaling law across a wide range of the parameter space. PMID:23554584

  5. THE SCALE-UP OF LARGE PRESSURIZED FLUIDIZED BEDS FOR ADVANCED COAL-FIRED POWER PROCESSES

    SciTech Connect

    Leon R. Glicksman; Michael Louge; Hesham F. Younis; Richard Tan; Mathew Hyre; Mark Torpey

    2003-11-24

    This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor an agency thereof, nor any of the their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, A combined-cycle High Performance Power System (HIPPS) capable of overall cycle efficiencies approaching 50% has been proposed and designed by Foster Wheeler Development Corporation (FWDC). A pyrolyzer in the first stage of the HIPPS process converts a coal feedstock into fuel gas and char at an elevated pressure of 1.4 Map. (206 psia) and elevated temperature of 930 C (1700 F). The generated char serves as the feedstock for a Pulverized Coal (PC) boiler operating at atmospheric pressure, and the fuel gas is directly fired in a gas turbine. The hydrodynamic behavior of the pyrolyzer strongly influences the quality of both the fuel gas and the generated char, the energy split between the gas turbine and the steam turbine, and hence the overall efficiency of the system. By utilizing a simplified set of scaling parameters (Glicksman et al.,1993), a 4/7th labscale cold model of the pyrolyzer operating at ambient temperature and pressure was constructed and tested. The scaling parameters matched include solid to gas density ratio, Froude number, length to diameter ratio; dimensionless superficial gas velocity and solid recycle rate, particle sphericity and particle size distribution (PSD).

  6. Predictive capacity of risk assessment scales and clinical judgment for pressure ulcers: a meta-analysis.

    PubMed

    García-Fernández, Francisco Pedro; Pancorbo-Hidalgo, Pedro L; Agreda, J Javier Soldevilla

    2014-01-01

    A systematic review with meta-analysis was completed to determine the capacity of risk assessment scales and nurses' clinical judgment to predict pressure ulcer (PU) development. Electronic databases were searched for prospective studies on the validity and predictive capacity of PUs risk assessment scales published between 1962 and 2010 in English, Spanish, Portuguese, Korean, German, and Greek. We excluded gray literature sources, integrative review articles, and retrospective or cross-sectional studies. The methodological quality of the studies was assessed according to the guidelines of the Critical Appraisal Skills Program. Predictive capacity was measured as relative risk (RR) with 95% confidence intervals. When 2 or more valid original studies were found, a meta-analysis was conducted using a random-effect model and sensitivity analysis. We identified 57 studies, including 31 that included a validation study. We also retrieved 4 studies that tested clinical judgment as a risk prediction factor. Meta-analysis produced the following pooled predictive capacity indicators: Braden (RR = 4.26); Norton (RR = 3.69); Waterlow (RR = 2.66); Cubbin-Jackson (RR = 8.63); EMINA (RR = 6.17); Pressure Sore Predictor Scale (RR = 21.4); and clinical judgment (RR = 1.89). Pooled analysis of 11 studies found adequate risk prediction capacity in various clinical settings; the Braden, Norton, EMINA (mEntal state, Mobility, Incontinence, Nutrition, Activity), Waterlow, and Cubbin-Jackson scales showed the highest predictive capacity. The clinical judgment of nurses was found to achieve inadequate predictive capacity when used alone, and should be used in combination with a validated scale.

  7. Solute dispersion under electric and pressure driven flows; pore scale processes

    NASA Astrophysics Data System (ADS)

    Li, Shuai; Raoof, Amir; Schotting, Ruud

    2014-09-01

    Solute dispersion is one of the major mixing mechanisms in transport through porous media, originating from velocity variations at different scales, starting from the pore scale. Different driving forces, such as pressure driven flow (PDF) and electro-osmotic flow (EOF), establish different velocity profiles within individual pores, resulting in different spreading of solutes at this scale. While the velocity profile in PDF is parabolic due to the wall friction effects, the velocity in EOF is typically plug flow, due to the wall charge effects. In this study, we applied a pore network modeling formulation to simulate the velocity field driven by pressure and electric potential to calculate and compare the corresponding average solute dispersivity values. The influence of different driving forces on the hydrodynamic dispersion of a tracer solute is investigated. Applying the pore network modeling, we could capture the velocity variations among different pores, which is the main contribution for the dispersion coefficient. The correlation between pore velocities against pore sizes is found to be different for EOF and PDF, causing different solute dispersion coefficients. The results can provide insight into modeling of electrokinetic remediation for contaminant cleanup in low permeable soils.

  8. Simulations of nanocrystals under pressure: Combining electronic enthalpy and linear-scaling density-functional theory

    SciTech Connect

    Corsini, Niccolò R. C. Greco, Andrea; Haynes, Peter D.; Hine, Nicholas D. M.; Molteni, Carla

    2013-08-28

    We present an implementation in a linear-scaling density-functional theory code of an electronic enthalpy method, which has been found to be natural and efficient for the ab initio calculation of finite systems under hydrostatic pressure. Based on a definition of the system volume as that enclosed within an electronic density isosurface [M. Cococcioni, F. Mauri, G. Ceder, and N. Marzari, Phys. Rev. Lett.94, 145501 (2005)], it supports both geometry optimizations and molecular dynamics simulations. We introduce an approach for calibrating the parameters defining the volume in the context of geometry optimizations and discuss their significance. Results in good agreement with simulations using explicit solvents are obtained, validating our approach. Size-dependent pressure-induced structural transformations and variations in the energy gap of hydrogenated silicon nanocrystals are investigated, including one comparable in size to recent experiments. A detailed analysis of the polyamorphic transformations reveals three types of amorphous structures and their persistence on depressurization is assessed.

  9. Mesos-scale modeling of irradiation in pressurized water reactor concrete biological shields

    SciTech Connect

    Le Pape, Yann; Huang, Hai

    2016-01-01

    Neutron irradiation exposure causes aggregate expansion, namely radiation-induced volumetric expansion (RIVE). The structural significance of RIVE on a portion of a prototypical pressurized water reactor (PWR) concrete biological shield (CBS) is investigated by using a meso- scale nonlinear concrete model with inputs from an irradiation transport code and a coupled moisture transport-heat transfer code. RIVE-induced severe cracking onset appears to be triggered by the ini- tial shrinkage-induced cracking and propagates to a depth of > 10 cm at extended operation of 80 years. Relaxation of the cement paste stresses results in delaying the crack propagation by about 10 years.

  10. An all-glass chip-scale MEMS package with variable cavity pressure

    NASA Astrophysics Data System (ADS)

    Sparks, Douglas; Trevino, Jacob; Massoud-Ansari, Sonbol; Najafi, Nader

    2006-11-01

    A dielectric, chip-scale MEMS packaging method is discussed. The packaging method uses wafer-to-wafer bonding of micromachined glass wafers with a reflowed, glass, sealing ring. The glass wafers are micromachined and have metal and silicon structures patterned on them with metal and fluidic feedthroughs. A variety of getters and sealing designs are disclosed to vary the pressure of the microcavity by many orders of magnitude from under 1 mTorr up to 1 atm (760 000 mTorr), enabling either vacuum or damped packaging of the device elements on the same chip. The final singulated, all-glass, chip-scale package can have electrical, optical/IR and fluidic interfaces. Applications for resonators, switches, optical sensors and displays are discussed.

  11. The hyperfine structure in the rotational spectra of D2(17)O and HD(17)O: Confirmation of the absolute nuclear magnetic shielding scale for oxygen.

    PubMed

    Puzzarini, Cristina; Cazzoli, Gabriele; Harding, Michael E; Vázquez, Juana; Gauss, Jürgen

    2015-03-28

    Guided by theoretical predictions, the hyperfine structures of the rotational spectra of mono- and bideuterated-water containing (17)O have been experimentally investigated. To reach sub-Doppler resolution, required to resolve the hyperfine structure due to deuterium quadrupole coupling as well as to spin-rotation (SR) and dipolar spin-spin couplings, the Lamb-dip technique has been employed. The experimental investigation and in particular, the spectral analysis have been supported by high-level quantum-chemical computations employing coupled-cluster techniques and, for the first time, a complete experimental determination of the hyperfine parameters involved was possible. The experimentally determined (17)O spin-rotation constants of D2 (17)O and HD(17)O were used to derive the paramagnetic part of the corresponding nuclear magnetic shielding constants. Together with the computed diamagnetic contributions as well as the vibrational and temperature corrections, the latter constants have been employed to confirm the oxygen nuclear magnetic shielding scale, recently established on the basis of spin-rotation data for H2 (17)O [Puzzarini et al., J. Chem. Phys. 131, 234304 (2009)].

  12. Mirrored continuum and molecular scale simulations of the ignition of high-pressure phases of RDX

    NASA Astrophysics Data System (ADS)

    Lee, Kibaek; Joshi, Kaushik; Chaudhuri, Santanu; Stewart, D. Scott

    2016-05-01

    We present a mirrored atomistic and continuum framework that is used to describe the ignition of energetic materials, and a high-pressure phase of RDX in particular. The continuum formulation uses meaningful averages of thermodynamic properties obtained from the atomistic simulation and a simplification of enormously complex reaction kinetics. In particular, components are identified based on molecular weight bin averages and our methodology assumes that both the averaged atomistic and continuum simulations are represented on the same time and length scales. The atomistic simulations of thermally initiated ignition of RDX are performed using reactive molecular dynamics (RMD). The continuum model is based on multi-component thermodynamics and uses a kinetics scheme that describes observed chemical changes of the averaged atomistic simulations. Thus the mirrored continuum simulations mimic the rapid change in pressure, temperature, and average molecular weight of species in the reactive mixture. This mirroring enables a new technique to simplify the chemistry obtained from reactive MD simulations while retaining the observed features and spatial and temporal scales from both the RMD and continuum model. The primary benefit of this approach is a potentially powerful, but familiar way to interpret the atomistic simulations and understand the chemical events and reaction rates. The approach is quite general and thus can provide a way to model chemistry based on atomistic simulations and extend the reach of those simulations.

  13. Dispersion in deep polar firn driven by synoptic-scale surface pressure variability

    NASA Astrophysics Data System (ADS)

    Buizert, Christo; Severinghaus, Jeffrey P.

    2016-09-01

    Commonly, three mechanisms of firn air transport are distinguished: molecular diffusion, advection, and near-surface convective mixing. Here we identify and describe a fourth mechanism, namely dispersion driven by synoptic-scale surface pressure variability (or barometric pumping). We use published gas chromatography experiments on firn samples to derive the along-flow dispersivity of firn, and combine this dispersivity with a dynamical air pressure propagation model forced by surface air pressure time series to estimate the magnitude of dispersive mixing in the firn. We show that dispersion dominates mixing within the firn lock-in zone. Trace gas concentrations measured in firn air samples from various polar sites confirm that dispersive mixing occurs. Including dispersive mixing in a firn air transport model suggests that our theoretical estimates have the correct order of magnitude, yet may overestimate the true dispersion. We further show that strong barometric pumping, such as at the Law Dome site, may reduce the gravitational enrichment of δ15N-N2 and other tracers below gravitational equilibrium, questioning the traditional definition of the lock-in depth as the depth where δ15N enrichment ceases. Last, we propose that 86Kr excess may act as a proxy for past synoptic activity (or paleo-storminess) at the site.

  14. Scale dependent dynamic capillary pressure effect for two-phase flow in porous media

    NASA Astrophysics Data System (ADS)

    Abidoye, Luqman K.; Das, Diganta B.

    2014-12-01

    Causes and effects of non-uniqueness in capillary pressure and saturation (Pc-S) relationship in porous media are of considerable concern to researchers of two-phase flow. In particular, a significant amounts of discussion have been generated regarding a parameter termed as dynamic coefficient (τ) which has been proposed for inclusion in the functional dependence of Pc-S relationship to quantify dynamic Pc and its relation with time derivative of saturation. While the dependence of the coefficient on fluid and porous media properties is less controversial, its relation to domain scale appears to be dependent on artefacts of experiments, mathematical models and the intra-domain averaging techniques. In an attempt to establish the reality of the scale dependency of the τ-S relationships, we carry out a series of well-defined laboratory experiments to determine τ-S relationships using three different sizes of cylindrical porous domains of silica sand. In this paper, we present our findings on the scale dependence of τ and its relation to high viscosity ratio (μr) silicone oil-water system, where μr is defined as the viscosity of non-wetting phase over that of the wetting phase. An order of magnitude increase in the value of τ was observed across various μr and domain scales. Also, an order of magnitude increase in τ is observed when τ at the top and the bottom sections in a domain are compared. Viscosity ratio and domain scales are found to have similar effects on the trend in τ-S relationship. We carry out a dimensional analysis of τ which shows how different variables, e.g., dimensionless τ and dimensionless domain volume (scale), may be correlated and provides a means to determine the influences of relevant variables on τ. A scaling relationship for τ was derived from the dimensionless analysis which was then validated against independent literature data. This showed that the τ-S relationships obtained from the literature and the scaling

  15. Scale-4 Analysis of Pressurized Water Reactor Critical Configurations: Volume 3-Surry Unit 1 Cycle 2

    SciTech Connect

    Bowman, S.M.

    1995-01-01

    The requirements of ANSI/ANS 8.1 specify that calculational methods for away-from-reactor criticality safety analyses be validated against experimental measurements. If credit for the negative reactivity of the depleted (or spent) fuel isotopics is desired, it is necessary to benchmark computational methods against spent fuel critical configurations. This report summarizes a portion of the ongoing effort to benchmark away-from-reactor criticality analysis methods using selected critical configurations from commercial pressurized-water reactors. The analysis methodology selected for all the calculations in this report is based on the codes and data provided in the SCALE-4 code system. The isotopic densities for the spent fuel assemblies in the critical configurations were calculated using the SAS2H analytical sequence of the SCALE-4 system. The sources of data and the procedures for deriving SAS2H input parameters are described in detail. The SNIKR code module was used to extract the necessary isotopic densities from the SAS2H results and to provide the data in the format required by the SCALE criticality analysis modules. The CSASN analytical sequence in SCALE-4 was used to perform resonance processing of the cross sections. The KENO V.a module of SCALE-4 was used to calculate the effective multiplication factor (k{sub eff}) of each case. The SCALE-4 27-group burnup library containing ENDF/B-IV (actinides) and ENDF/B-V (fission products) data was used for all the calculations. This volume of the report documents the SCALE system analysis of two reactor critical configurations for Surry Unit 1 Cycle 2. This unit and cycle were chosen for a previous analysis using a different methodology because detailed isotopics from multidimensional reactor calculations were available from the Virginia Power Company. These data permitted a direct comparison of criticality calculations using the utility-calculated isotopics with those using the isotopics generated by the SCALE-4

  16. Determination of Absolute Zero Using a Computer-Based Laboratory

    ERIC Educational Resources Information Center

    Amrani, D.

    2007-01-01

    We present a simple computer-based laboratory experiment for evaluating absolute zero in degrees Celsius, which can be performed in college and undergraduate physical sciences laboratory courses. With a computer, absolute zero apparatus can help demonstrators or students to observe the relationship between temperature and pressure and use…

  17. NASA/GE Energy Efficient Engine low pressure turbine scaled test vehicle performance report

    NASA Technical Reports Server (NTRS)

    Bridgeman, M. J.; Cherry, D. G.; Pedersen, J.

    1983-01-01

    The low pressure turbine for the NASA/General Electric Energy Efficient Engine is a highly loaded five-stage design featuring high outer wall slope, controlled vortex aerodynamics, low stage flow coefficient, and reduced clearances. An assessment of the performance of the LPT has been made based on a series of scaled air-turbine tests divided into two phases: Block 1 and Block 2. The transition duct and the first two stages of the turbine were evaluated during the Block 1 phase from March through August 1979. The full five-stage scale model, representing the final integrated core/low spool (ICLS) design and incorporating redesigns of stages 1 and 2 based on Block 1 data analysis, was tested as Block 2 in June through September 1981. Results from the scaled air-turbine tests, reviewed herein, indicate that the five-stage turbine designed for the ICLS application will attain an efficiency level of 91.5 percent at the Mach 0.8/10.67-km (35,000-ft), max-climb design point. This is relative to program goals of 91.1 percent for the ICLS and 91.7 percent for the flight propulsion system (FPS).

  18. Statistical parametric mapping of the regional distribution and ontogenetic scaling of foot pressures during walking in Asian elephants (Elephas maximus).

    PubMed

    Panagiotopoulou, Olga; Pataky, Todd C; Hill, Zoe; Hutchinson, John R

    2012-05-01

    Foot pressure distributions during locomotion have causal links with the anatomical and structural configurations of the foot tissues and the mechanics of locomotion. Elephant feet have five toes bound in a flexible pad of fibrous tissue (digital cushion). Does this specialized foot design control peak foot pressures in such giant animals? And how does body size, such as during ontogenetic growth, influence foot pressures? We addressed these questions by studying foot pressure distributions in elephant feet and their correlation with body mass and centre of pressure trajectories, using statistical parametric mapping (SPM), a neuro-imaging technology. Our results show a positive correlation between body mass and peak pressures, with the highest pressures dominated by the distal ends of the lateral toes (digits 3, 4 and 5). We also demonstrate that pressure reduction in the elephant digital cushion is a complex interaction of its viscoelastic tissue structure and its centre of pressure trajectories, because there is a tendency to avoid rear 'heel' contact as an elephant grows. Using SPM, we present a complete map of pressure distributions in elephant feet during ontogeny by performing statistical analysis at the pixel level across the entire plantar/palmar surface. We hope that our study will build confidence in the potential clinical and scaling applications of mammalian foot pressures, given our findings in support of a link between regional peak pressures and pathogenesis in elephant feet.

  19. Statistical parametric mapping of the regional distribution and ontogenetic scaling of foot pressures during walking in Asian elephants (Elephas maximus).

    PubMed

    Panagiotopoulou, Olga; Pataky, Todd C; Hill, Zoe; Hutchinson, John R

    2012-05-01

    Foot pressure distributions during locomotion have causal links with the anatomical and structural configurations of the foot tissues and the mechanics of locomotion. Elephant feet have five toes bound in a flexible pad of fibrous tissue (digital cushion). Does this specialized foot design control peak foot pressures in such giant animals? And how does body size, such as during ontogenetic growth, influence foot pressures? We addressed these questions by studying foot pressure distributions in elephant feet and their correlation with body mass and centre of pressure trajectories, using statistical parametric mapping (SPM), a neuro-imaging technology. Our results show a positive correlation between body mass and peak pressures, with the highest pressures dominated by the distal ends of the lateral toes (digits 3, 4 and 5). We also demonstrate that pressure reduction in the elephant digital cushion is a complex interaction of its viscoelastic tissue structure and its centre of pressure trajectories, because there is a tendency to avoid rear 'heel' contact as an elephant grows. Using SPM, we present a complete map of pressure distributions in elephant feet during ontogeny by performing statistical analysis at the pixel level across the entire plantar/palmar surface. We hope that our study will build confidence in the potential clinical and scaling applications of mammalian foot pressures, given our findings in support of a link between regional peak pressures and pathogenesis in elephant feet. PMID:22496296

  20. Meter-Scale Atmospheric-Pressure Microwave Plasma Using Sub-Millimeter-Gap Slot

    NASA Astrophysics Data System (ADS)

    Toyoda, Hirotaka

    2013-09-01

    Atmospheric-pressure pulsed plasmas have been given much attention because of its various possibilities for industrial applications such as surface wettability control, sterilization and so on. Among various atmospheric-pressure plasma sources, microwave plasma that is produced inside waveguide-slots is attractive because high-density plasma up to 1015 cm-3 can be easily produced along very long waveguide with light-weight and rather simple antenna configuration. So far, we have investigated plasma production inside slot of the waveguide and in this talk, elongation of the plasma up to meter-scale with newly-designed plasma source will be presented. In this study, two types of antennas are proposed to elongate the atmospheric-pressure microwave plasma. Firstly, array-structured slot design with a closed-end waveguide is adopted using X-band microwave (10 GHz). In this structure, slot antennas with a total number of more than 40 are positioned with λg/2-pitch along ~1m waveguide so as to utilize standing wave inside the waveguide and to increase the electric field inside the slot. By optimizing the antenna design, arrayed microwave plasmas are successfully produced along ~1m-length waveguide. The arrayed-slot structure, however, the plasma is not completely uniform along the waveguide and plasma density drastically decreases between two adjacent slots. To solve this, an alternative type of antenna that is free from the standing wave effect is designed. In this new-type antenna, travelling wave inside the waveguide with no reflection wave is realized by a combination of a microwave circulator and a ring-structured waveguide. By this transmission line, microwave power flows only to one direction and the average microwave power becomes spatially uniform along the waveguide. By using a single but very long slot up to several tens cm, very uniform plasma is produced along the slot. The result strongly suggests easy scale-up of the plasma source more than one meter that

  1. Scale-4 Analysis of Pressurized Water Reactor Critical Configurations: Volume 2-Sequoyah Unit 2 Cycle 3

    SciTech Connect

    Bowman, S.M.

    1995-01-01

    The requirements of ANSI/ANS 8.1 specify that calculational methods for away-from-reactor criticality safety analyses be validated against experimental measurements. If credit for the negative reactivity of the depleted (or spent) fuel isotopics is desired, it is necessary to benchmark computational methods against spent fuel critical configurations. This report summarizes a portion of the ongoing effort to benchmark away-from-reactor criticality analysis methods using critical configurations from commercial pressurized-water reactors. The analysis methodology selected for all the calculations reported herein is based on the codes and data provided in the SCALE-4 code system. The isotopic densities for the spent fuel assemblies in the critical configurations were calculated using the SAS2H analytical sequence of the SCALE-4 system. The sources of data and the procedures for deriving SAS2H input parameters are described in detail. The SNIKR code module was used to extract the necessary isotopic densities from the SAS2H results and provide the data in the format required by the SCALE criticality analysis modules. The CSASN analytical sequence in SCALE-4 was used to perform resonance processing of the cross sections. The KENO V.a module of SCALE-4 was used to calculate the effective multiplication factor (k{sub eff}) of each case. The SCALE-4 27-group burnup library containing ENDF/B-IV (actinides) and ENDF/B-V (fission products) data was used for all the calculations. This volume of the report documents the SCALE system analysis of three reactor critical configurations for the Sequoyah Unit 2 Cycle 3. This unit and cycle were chosen because of the relevance in spent fuel benchmark applications: (1) the unit had a significantly long downtime of 2.7 years during the middle of cycle (MOC) 3, and (2) the core consisted entirely of burned fuel at the MOC restart. The first benchmark critical calculation was the MOC restart at hot, full-power (HFP) critical conditions. The

  2. ABSOLUTE POLARIMETRY AT RHIC.

    SciTech Connect

    OKADA; BRAVAR, A.; BUNCE, G.; GILL, R.; HUANG, H.; MAKDISI, Y.; NASS, A.; WOOD, J.; ZELENSKI, Z.; ET AL.

    2007-09-10

    Precise and absolute beam polarization measurements are critical for the RHIC spin physics program. Because all experimental spin-dependent results are normalized by beam polarization, the normalization uncertainty contributes directly to final physics uncertainties. We aimed to perform the beam polarization measurement to an accuracy Of {Delta}P{sub beam}/P{sub beam} < 5%. The absolute polarimeter consists of Polarized Atomic Hydrogen Gas Jet Target and left-right pairs of silicon strip detectors and was installed in the RHIC-ring in 2004. This system features proton-proton elastic scattering in the Coulomb nuclear interference (CNI) region. Precise measurements of the analyzing power A{sub N} of this process has allowed us to achieve {Delta}P{sub beam}/P{sub beam} = 4.2% in 2005 for the first long spin-physics run. In this report, we describe the entire set up and performance of the system. The procedure of beam polarization measurement and analysis results from 2004-2005 are described. Physics topics of AN in the CNI region (four-momentum transfer squared 0.001 < -t < 0.032 (GeV/c){sup 2}) are also discussed. We point out the current issues and expected optimum accuracy in 2006 and the future.

  3. Scaling the 3-D Mohr circle and quantification of paleostress during fluid pressure fluctuation - Application to understand gold mineralization in quartz veins of Gadag (southern India)

    NASA Astrophysics Data System (ADS)

    Lahiri, Sivaji; Mamtani, Manish A.

    2016-07-01

    In this study, orientations of 157 quartz veins occurring in metabasalts of the Gadag region (Dharwar craton, southern India) are used to plot the 3-D Mohr stress circle, which provides information about relative stress/fluid pressure (Pf) conditions, as well as stress state during Pf fluctuation. To scale the 3-D Mohr circle, vein orientation data are integrated with (a) available estimates from fluid inclusions of highest recorded Pf (390 MPa) and lowest recorded Pf (50 MPa) and (b) intrinsic rupture criterion that empirically quantify rock properties. Based on the scaled 3-D Mohr circle, the absolute magnitudes of the three principal stresses are quantified for high and low Pf. Of 157 veins investigated here, 14 veins are identified as having favourable orientation for dilation at high as well as low Pf. These 14 veins have a mean strike of 150°, which is similar to the orientation of the gold-bearing quartz lodes reported in the region. The effective normal stress (σ‧n = σn-Pf) prevalent during dilation of fracture/fabric anisotropy with 150° strike is calculated to be -11.5 MPa at high Pf, and -1.0 MPa at low Pf. Thus, it is interpreted that in the Gadag region, a change in σ‧n of 10.5 MPa prevailed during Pf fluctuation and associated separation of gold from the fluid.

  4. Testing of Full Scale Flight Qualified Kevlar Composite Overwrapped Pressure Vessels

    NASA Technical Reports Server (NTRS)

    Greene, Nathanael; Saulsberry, Regor; Yoder, Tommy; Forsyth, Brad; Thesken, John; Phoenix, Leigh

    2007-01-01

    Many decades ago NASA identified a need for low-mass pressure vessels for carrying various fluids aboard rockets, spacecraft, and satellites. A pressure vessel design known as the composite overwrapped pressure vessel (COPV) was identified to provide a weight savings over traditional single-material pressure vessels typically made of metal and this technology has been in use for space flight applications since the 1970's. A typical vessel design consisted of a thin liner material, typically a metal, overwrapped with a continuous fiber yarn impregnated with epoxy. Most designs were such that the overwrapped fiber would carry a majority of load at normal operating pressures. The weight advantage for a COPV versus a traditional singlematerial pressure vessel contributed to widespread use of COPVs by NASA, the military, and industry. This technology is currently used for personal breathing supply storage, fuel storage for auto and mass transport vehicles and for various space flight and aircraft applications. The NASA Engineering and Safety Center (NESC) was recently asked to review the operation of Kevlar 2 and carbon COPVs to ensure they are safely operated on NASA space flight vehicles. A request was made to evaluate the life remaining on the Kevlar COPVs used on the Space Shuttle for helium and nitrogen storage. This paper provides a review of Kevlar COPV testing relevant to the NESC assessment. Also discussed are some key findings, observations, and recommendations that may be applicable to the COPV user community. Questions raised during the investigations have revealed the need for testing to better understand the stress rupture life and age life of COPVs. The focus of this paper is to describe burst testing of Kevlar COPVs that has been completed as a part of an the effort to evaluate the effects of ageing and shelf life on full scale COPVs. The test articles evaluated in this discussion had a diameter of 22 inches for S/N 014 and 40 inches for S/N 011. The

  5. Small-Scale Metal Tanks for High Pressure Storage of Fluids

    NASA Technical Reports Server (NTRS)

    London, Adam (Inventor)

    2016-01-01

    Small scale metal tanks for high-pressure storage of fluids having tank factors of more than 5000 meters and volumes of ten cubic inches or less featuring arrays of interconnected internal chambers having at least inner walls thinner than gage limitations allow. The chambers may be arranged as multiple internal independent vessels. Walls of chambers that are also portions of external tank walls may be arcuate on the internal and/or external surfaces, including domed. The tanks may be shaped adaptively and/or conformally to an application, including, for example, having one or more flat outer walls and/or having an annular shape. The tanks may have dual-purpose inlet/outlet conduits of may have separate inlet and outlet conduits. The tanks are made by fusion bonding etched metal foil layers patterned from slices of a CAD model of the tank. The fusion bonded foil stack may be further machined.

  6. {sup 3}He melting pressure temperature scale below 25 mK

    SciTech Connect

    Adams, E.D.; Ni, W.; Xia, J.S.

    1995-04-01

    Using {sup 60}Co {gamma} ray anisotropy radiation as a primary thermometer, with a Pt NMR susceptibility secondary thermometer, the authors have made high precision measurements of the {sup 3}He melting pressure versus temperature from 500 {mu}K to 25 mK. Temperatures obtained for the fixed points on the melting curve are: the superfluid A transition T{sub A} = 2.505 mK, the A-B transition T{sub AB} = 1.948 mK, and the solid ordering temperature T{sub N} = 0.934 mK. The authors provide a functional form for P(T), which, with the fixed points, constitutes a convenient temperature scale, based on a primary thermometer, usable to well below 1 mK.

  7. Probing the Absolute Mass Scale of Neutrinos

    SciTech Connect

    Prof. Joseph A. Formaggio

    2011-10-12

    The experimental efforts of the Neutrino Physics Group at MIT center primarily around the exploration of neutrino mass and its significance within the context of nuclear physics, particle physics, and cosmology. The group has played a prominent role in the Sudbury Neutrino Observatory, a neutrino experiment dedicated to measure neutrino oscillations from 8B neutrinos created in the sun. The group is now focusing its efforts in the measurement of the neutrino mass directly via the use of tritium beta decay. The MIT group has primary responsibilities in the Karlsruhe Tritium Neutrino mass experiment, expected to begin data taking by 2013. Specifically, the MIT group is responsible for the design and development of the global Monte Carlo framework to be used by the KATRIN collaboration, as well as responsibilities directly associated with the construction of the focal plane detector. In addition, the MIT group is sponsoring a new research endeavor for neutrino mass measurements, known as Project 8, to push beyond the limitations of current neutrino mass experiments.

  8. Allometry and Scaling of the Intraocular Pressure and Aqueous Humour Flow Rate in Vertebrate Eyes

    PubMed Central

    Zouache, Moussa A.; Eames, Ian; Samsudin, Amir

    2016-01-01

    In vertebrates, intraocular pressure (IOP) is required to maintain the eye into a shape allowing it to function as an optical instrument. It is sustained by the balance between the production of aqueous humour by the ciliary body and the resistance to its outflow from the eye. Dysregulation of the IOP is often pathological to vision. High IOP may lead to glaucoma, which is in man the second most prevalent cause of blindness. Here, we examine the importance of the IOP and rate of formation of aqueous humour in the development of vertebrate eyes by performing allometric and scaling analyses of the forces acting on the eye during head movement and the energy demands of the cornea, and testing the predictions of the models against a list of measurements in vertebrates collated through a systematic review. We show that the IOP has a weak dependence on body mass, and that in order to maintain the focal length of the eye, it needs to be an order of magnitude greater than the pressure drop across the eye resulting from gravity or head movement. This constitutes an evolutionary constraint that is common to all vertebrates. In animals with cornea-based optics, this constraint also represents a condition to maintain visual acuity. Estimated IOPs were found to increase with the evolution of terrestrial animals. The rate of formation of aqueous humour was found to be adjusted to the metabolic requirements of the cornea, scaling as Vac0.67, where Vac is the volume of the anterior chamber. The present work highlights an interdependence between IOP and aqueous flow rate crucial to ocular function that must be considered to understand the evolution of the dioptric apparatus. It should also be taken into consideration in the prevention and treatment of glaucoma. PMID:26990431

  9. A Theoretical Investigation of Composite Overwrapped Pressure Vessel (COPV) Mechanics Applied to NASA Full Scale Tests

    NASA Technical Reports Server (NTRS)

    Greene, N.; Thesken, J. C.; Murthy, P. L. N.; Phoenix, S. L.; Palko, J.; Eldridge, J.; Sutter, J.; Saulsberry, R.; Beeson, H.

    2006-01-01

    A theoretical investigation of the factors controlling the stress rupture life of the National Aeronautics and Space Agency's (NASA) composite overwrapped pressure vessels (COPVs) continues. Kevlar(TradeMark) fiber overwrapped tanks are of particular concern due to their long usage and the poorly understood stress rupture process in Kevlar(TradeMark) filaments. Existing long term data show that the rupture process is a function of stress, temperature and time. However, due to the presence of a load sharing liner, the manufacturing induced residual stresses and the complex mechanical response, the state of actual fiber stress in flight hardware and test articles is not clearly known. This paper is a companion to the experimental investigation reported in [1] and develops a theoretical framework necessary to design full-scale pathfinder experiments and accurately interpret the experimentally observed deformation and failure mechanisms leading up to static burst in COPVs. The fundamental mechanical response of COPVs is described using linear elasticity and thin shell theory and discussed in comparison to existing experimental observations. These comparisons reveal discrepancies between physical data and the current analytical results and suggest that the vessel's residual stress state and the spatial stress distribution as a function of pressure may be completely different from predictions based upon existing linear elastic analyses. The 3D elasticity of transversely isotropic spherical shells demonstrates that an overly compliant transverse stiffness relative to membrane stiffness can account for some of this by shifting a thin shell problem well into the realm of thick shell response. The use of calibration procedures are demonstrated as calibrated thin shell model results and finite element results are shown to be in good agreement with the experimental results. The successes reported here have lead to continuing work with full scale testing of larger NASA COPV

  10. A Theoretical Investigation of Composite Overwrapped Pressure Vessel (COPV) Mechanics Applied to NASA Full Scale Tests

    NASA Technical Reports Server (NTRS)

    Thesken, John C.; Murthy, Pappu L. N.; Phoenix, S. L.; Greene, N.; Palko, Joseph L.; Eldridge, Jeffrey; Sutter, James; Saulsberry, R.; Beeson, H.

    2009-01-01

    A theoretical investigation of the factors controlling the stress rupture life of the National Aeronautics and Space Administration's (NASA) composite overwrapped pressure vessels (COPVs) continues. Kevlar (DuPont) fiber overwrapped tanks are of particular concern due to their long usage and the poorly understood stress rupture process in Kevlar filaments. Existing long term data show that the rupture process is a function of stress, temperature and time. However due to the presence of a load sharing liner, the manufacturing induced residual stresses and the complex mechanical response, the state of actual fiber stress in flight hardware and test articles is not clearly known. This paper is a companion to a previously reported experimental investigation and develops a theoretical framework necessary to design full-scale pathfinder experiments and accurately interpret the experimentally observed deformation and failure mechanisms leading up to static burst in COPVs. The fundamental mechanical response of COPVs is described using linear elasticity and thin shell theory and discussed in comparison to existing experimental observations. These comparisons reveal discrepancies between physical data and the current analytical results and suggest that the vessel s residual stress state and the spatial stress distribution as a function of pressure may be completely different from predictions based upon existing linear elastic analyses. The 3D elasticity of transversely isotropic spherical shells demonstrates that an overly compliant transverse stiffness relative to membrane stiffness can account for some of this by shifting a thin shell problem well into the realm of thick shell response. The use of calibration procedures are demonstrated as calibrated thin shell model results and finite element results are shown to be in good agreement with the experimental results. The successes reported here have lead to continuing work with full scale testing of larger NASA COPV

  11. O absorption measurements in an engineering-scale high-pressure coal gasifier

    NASA Astrophysics Data System (ADS)

    Sun, Kai; Sur, Ritobrata; Jeffries, Jay B.; Hanson, Ronald K.; Clark, Tommy; Anthony, Justin; Machovec, Scott; Northington, John

    2014-10-01

    A real-time, in situ water vapor (H2O) sensor using a tunable diode laser near 1,352 nm was developed to continuously monitor water vapor in the synthesis gas of an engineering-scale high-pressure coal gasifier. Wavelength-scanned wavelength-modulation spectroscopy with second harmonic detection (WMS-2 f) was used to determine the absorption magnitude. The 1 f-normalized, WMS-2 f signal (WMS-2 f/1 f) was insensitive to non-absorption transmission losses including beam steering and light scattering by the particulate in the synthesis gas. A fitting strategy was used to simultaneously determine the water vapor mole fraction and the collisional-broadening width of the transition from the scanned 1 f-normalized WMS-2 f waveform at pressures up to 15 atm, which can be used for large absorbance values. This strategy is analogous to the fitting strategy for wavelength-scanned direct absorption measurements. In a test campaign at the US National Carbon Capture Center, the sensor demonstrated a water vapor detection limit of ~800 ppm (25 Hz bandwidth) at conditions with more than 99.99 % non-absorption transmission losses. Successful unattended monitoring was demonstrated over a 435 h period. Strong correlations between the sensor measurements and transient gasifier operation conditions were observed, demonstrating the capability of laser absorption to monitor the gasification process.

  12. Testing of a Stitched Composite Large-Scale Multi-Bay Pressure Box

    NASA Technical Reports Server (NTRS)

    Jegley, Dawn; Rouse, Marshall; Przekop, Adam; Lovejoy, Andrew

    2016-01-01

    NASA has created the Environmentally Responsible Aviation (ERA) Project to develop technologies to reduce aviation's impact on the environment. A critical aspect of this pursuit is the development of a lighter, more robust airframe to enable the introduction of unconventional aircraft configurations. NASA and The Boeing Company have worked together to develop a structural concept that is lightweight and an advancement beyond state-of-the-art composite structures. The Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) is an integrally stiffened panel design where elements are stitched together. The PRSEUS concept is designed to maintain residual load carrying capabilities under a variety of damage scenarios. A series of building block tests were evaluated to explore the fundamental assumptions related to the capability and advantages of PRSEUS panels. The final step in the building block series is an 80%-scale pressure box representing a portion of the center section of a Hybrid Wing Body (HWB) transport aircraft. The testing of this article under maneuver load and internal pressure load conditions is the subject of this paper. The experimental evaluation of this article, along with the other building block tests and the accompanying analyses, has demonstrated the viability of a PRSEUS center body for the HWB vehicle. Additionally, much of the development effort is also applicable to traditional tube-and-wing aircraft, advanced aircraft configurations, and other structures where weight and through-the-thickness strength are design considerations.

  13. Imparting Barely Visible Impact Damage to a Stitched Composite Large-Scale Pressure Box

    NASA Technical Reports Server (NTRS)

    Lovejoy, Andrew E.; Przekop, Adam

    2016-01-01

    The Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) is a concept that was developed by The Boeing Company to address the complex structural design aspects associated with a pressurized hybrid wing body (HWB) aircraft configuration, which has been a focus of the NASA Environmentally Responsible Aviation Project. The NASA-Boeing structural development for the HWB aircraft culminated in testing of the multi-bay box, which is an 80%-scale representation of the pressurized center-body section. This structure was tested in the NASA Langley Research Center Combined Loads Test System facility. As part of this testing, barely visible impact damage was imparted to the interior and exterior of the test article to demonstrate compliance with a condition representative of the requirements for Category 1 damaged composite structure as defined by the Federal Aviation Regulations. Interior impacts were imparted using an existing spring-loaded impactor, while the exterior impacts were imparted using a newly designed, gravity-driven impactor. This paper describes the impacts to the test article, and the design of the gravitydriven guided-weight impactor. The guided-weight impactor proved to be a very reliable method to impart barely visible impact damage in locations which are not easily accessible for a traditional drop-weight impactor, while at the same time having the capability to be highly configurable for use on other aircraft structures.

  14. Scaling Laws for Magnetic Reconnection when Electron Pressure Anisotropy is near the Firehose Threshold

    NASA Astrophysics Data System (ADS)

    Ohia, Obioma; Egedal, Jan; Lukin, Vyacheslav S.; Daughton, William; Le, Ari

    2015-11-01

    Magnetic reconnection in weakly-collisional, a process linked to solar flares, coronal mass ejections, and magnetic substorms, has been widely studied through fluid and kinetic simulations. While two-fluid models often reproduce the fast reconnection rate of kinetic simulations, significant differences are observed in the structure of the reconnection regions. Recently, new equations of state that accurately account for the development of anisotropic electron pressure due to the electric and magnetic trapping of electrons have been developed. Guide-field, fluid simulations using these equations of state have been shown to reproduce the detailed reconnection region observed in kinetic simulations. Implementing this two-fluid simulation using the HiFi framework, we describe a mechanism for regulation of electron pressure anisotropy as well as study force balance of the electron layers in guide-field reconnection. Scaling laws for the heating observed in these layers based on upstream conditions are derived. Formerly of U.S. Naval Research Laboratory. Any opinions, findings, conclusions and/or recommendations are those of author and do not necessarily reflect the views of the National Science Foundation.

  15. A pilot-scale homogenization-assisted negative pressure cavitation extraction of Astragalus polysaccharides.

    PubMed

    Jiao, Jiao; Wei, Fu-Yao; Gai, Qing-Yan; Wang, Wei; Luo, Meng; Fu, Yu-Jie; Ma, Wei

    2014-06-01

    This paper reported a new, green and effective extraction technique for polysaccharides, namely homogenization-assisted negative pressure cavitation extraction (HNPCE), which succeeded in the extraction of Astragalus polysaccharides (APs). Central composite design and kinetic model were applied to optimize the extraction conditions, and the optimal parameters were obtained as follows: homogenization time 70s, negative pressure -0.068MPa, extraction temperature 64.8°C, ratio of water to material 13.4 and extraction time 53min. The proposed method exhibited considerable predominance in terms of higher APs yield (16.74%) with much lower temperature and shorter duration, as against the reported hot water extraction method (14.33% of APs yield with 100°C and 3h). Moreover, FT-IR results showed that HNPCE method did not alter the primary structure of polysaccharides. Furthermore, the pilot-scale application of HNPCE was successfully performed with 16.62% of APs yield. Thus, HNPCE is an excellent alternative method for the extraction of polysaccharides from Astragalus or other plant materials in industry.

  16. A priori analysis of subgrid scale pressure and heat flux in high pressure mixing and reacting shear layers

    NASA Astrophysics Data System (ADS)

    Ma, Zhiyuan; Korucu, Ayse; Miller, Richard Steven

    2015-11-01

    Direct Numerical Simulation (DNS) data on high pressure H2/O2 and H2/air flames using the compressible flow formulation, detailed kinetics, a real fluid equation of state, and generalised diffusion are analysed. The DNS is filtered over a range of filter widths to provide exact terms in the Large Eddy Simulation (LES) governing equations, including unclosed terms. The filtered pressure and the filtered heat flux vector are extensively compared with the pressure and the heat flux vector calculated as a function of the filtered primitive variables (i.e. the exact LES term is compared with its form available within an actual LES). The difference between these forms defines the subgrid pressure and the subgrid heat flux vector. The analyses are done both globally across the entire flame, as well as by conditionally averaging over specific regions of the flame; including regions of large subgrid kinetic energy, subgrid scalar dissipation, subgrid temperature variance, flame temperature, etc. In this work, although negligible for purely mixing cases, the gradient of the subgrid pressure is shown to be of the same order as, and larger than, the corresponding divergence of the turbulent subgrid stresses for reacting cases. This is despite the fact that all species behave essentially as ideal gases for this flame and holds true even when the ideal gas law is used to calculate the pressure. The ratio of the subgrid pressure gradient to the subgrid stress tensor divergence is shown to increase with increasing Reynolds number. Both the subgrid heat flux vector and its divergence are found to be substantially larger in reacting flows in comparison with mixing due to the associated larger temperature gradients. However, the divergence of the subgrid heat flux vector tends to be significantly smaller than other unclosed terms in the energy equation with decreasing significance with increasing Reynolds number.

  17. Absolute Equilibrium Entropy

    NASA Technical Reports Server (NTRS)

    Shebalin, John V.

    1997-01-01

    The entropy associated with absolute equilibrium ensemble theories of ideal, homogeneous, fluid and magneto-fluid turbulence is discussed and the three-dimensional fluid case is examined in detail. A sigma-function is defined, whose minimum value with respect to global parameters is the entropy. A comparison is made between the use of global functions sigma and phase functions H (associated with the development of various H-theorems of ideal turbulence). It is shown that the two approaches are complimentary though conceptually different: H-theorems show that an isolated system tends to equilibrium while sigma-functions allow the demonstration that entropy never decreases when two previously isolated systems are combined. This provides a more complete picture of entropy in the statistical mechanics of ideal fluids.

  18. Predictive power of the Braden scale for pressure sore risk in adult critical care patients: a comprehensive review.

    PubMed

    Cox, Jill

    2012-01-01

    Critical care is designed for managing the sickest patients within our healthcare system. Multiple factors associated with an increased likelihood of pressure ulcer development have been investigated in the critical care population. Nevertheless, there is a lack of consensus regarding which of these factors poses the greatest risk for pressure ulceration. While the Braden scale for pressure sore risk is the most commonly used tool for measuring pressure ulcer risk in the United States, research focusing on the cumulative Braden Scale score and subscale scores is lacking in the critical care population. This author conducted a literature review on pressure ulcer risk assessment in the critical care population, to include the predictive value of both the total score and the subscale scores. In this review, the subscales sensory perception, mobility, moisture, and friction/shear were found to be associated with an increased likelihood of pressure ulcer development; in contrast, the Activity and Nutrition subscales were not found to predict pressure ulcer development in this population. In order to more precisely quantify risk in the critically ill population, modification of the Braden scale or development of a critical care specific risk assessment tool may be indicated.

  19. Developing a pressure ulcer risk assessment scale for patients in long-term care.

    PubMed

    Lepisto, Mervi; Eriksson, Elina; Hietanen, Helvi; Lepisto, Jyri; Lauri, Sirkka

    2006-02-01

    Previous pressure ulcer risk assessment scales appear to have relied on opinions about risk factors and are based on care setting rather than research evidence. Utilizing 21 existing risk assessment scales and relevant risk factor literature, an instrument was developed by Finnish researchers that takes into account individual patient risk factors, devices and methods applied in nursing care, and organizational characteristics. The instrument underwent two pilot tests to assess the relevance and clarity of the instrument: the first involved 43 nurses and six patients; the second involved 50 nurses with expertise in wound care. Changes to questionnaire items deemed necessary as a result of descriptive analysis and agreement percentages were completed. After pilot testing, the final instrument addressed the following issues: 1) patient risks: activity, mobility in bed, mental status, nutrition, urinary incontinence, fecal incontinence, sensory perception, and skin condition; 2) devices and methods used in patient care: technical devices, bed type, mattress, overlay, seat cushions, and care methods; and 3) staff number and structure, maximum number of beds, and beds in use (the last group of questions were included to ensure participants understood the items; results were not analyzed). The phases of the study provided an expeditious means of data collection and a suitable opportunity to assess how the instrument would function in practice. Instrument reliability and validity were improved as a result of the pilot testing and can be enhanced further with continued use and assessment.

  20. Pressure Decay Testing Methodology for Quantifying Leak Rates of Full-Scale Docking System Seals

    NASA Technical Reports Server (NTRS)

    Dunlap, Patrick H., Jr.; Daniels, Christopher C.; Wasowski, Janice L.; Garafolo, Nicholas G.; Penney, Nicholas; Steinetz, Bruce M.

    2010-01-01

    NASA is developing a new docking system to support future space exploration missions to low-Earth orbit and the Moon. This system, called the Low Impact Docking System, is a mechanism designed to connect the Orion Crew Exploration Vehicle to the International Space Station, the lunar lander (Altair), and other future Constellation Project vehicles. NASA Glenn Research Center is playing a key role in developing the main interface seal for this docking system. This seal will be relatively large with an outside diameter in the range of 54 to 58 in. (137 to 147 cm). As part of this effort, a new test apparatus has been designed, fabricated, and installed to measure leak rates of candidate full-scale seals under simulated thermal, vacuum, and engagement conditions. Using this test apparatus, a pressure decay testing and data processing methodology has been developed to quantify full-scale seal leak rates. Tests performed on untreated 54 in. diameter seals at room temperature in a fully compressed state resulted in leak rates lower than the requirement of less than 0.0025 lbm, air per day (0.0011 kg/day).

  1. Risks assessment of water pollution by pesticides at local scale (PESTEAUX project): study of polluting pressure.

    PubMed

    Noel, Stéphanie; Billo Bah, Boubacar

    2009-01-01

    Pollution of water resources (surface waters and ground waters) by pesticide uses is one of the key point of the European policy with the implementation of the Water Frame Work Directive (2000/60/EC) and the thematic Strategy on the Sustainable use of pesticides. According to this legislation, the Member States must initiate measures to limit environmental and toxicological effects caused by pesticide uses. The Agricultural Research Centre of Wallonia (CRA-W) emphasized the need of a tool for spatial risk analysis and develOPs it within the framework of PESTEAUX project. The originality of the approach proposed by the CRA-W is to generate maps to identify the risk of pollution at locale scale (agricultural parcel). The risk will be assessed according to the study of different factors, grouped under 3 data's layers: polluting pressure, vulnerability of the physical environment (soil) and meteorological data. This approach is directly based on the risk's definition which takes into account the polluting pressure, linked to the human activities, and the vulnerability of the soil, defined by factors of physical environment which characterize the water flow in the parcel. Moreover, meteorological data influence the intensity and likelihood flow of water, and indirectly pesticide by leaching or runoff. The PESTEAUX's approach to study the pollution is based on the model "source-vector-target". The source is the polluting pressure, in other words, the pesticides which could reach the targets. The main vector is the water which vehicles the pesticide on and trough the soil until the target which are the surface waters or ground waters. In this paper we introduce the factors contributing to the polluting pressure. These factors are linking to the human activities and more precisely, to the pesticide uses. The factors considered have an influence on pesticide's transport by water (in its solid state or in dissolved state by leaching, run-off, or erosion) but also on a set of

  2. Stability and excitation dynamics of an argon micro-scaled atmospheric pressure plasma jet

    NASA Astrophysics Data System (ADS)

    Dünnbier, M.; Becker, M. M.; Iseni, S.; Bansemer, R.; Loffhagen, D.; Reuter, S.; Weltmann, K.-D.

    2015-12-01

    A megahertz-driven plasma jet at atmospheric pressure—the so-called micro-scaled atmospheric pressure plasma jet (μAPPJ)—operating in pure argon has been investigated experimentally and by numerical modelling. To ignite the discharge in argon within the jet geometry, a self-made plasma tuning unit was designed, which additionally enables measurements of the dissipated power in the plasma itself. Discharges in the α-mode up to their transition to the γ-mode were studied experimentally for varying frequencies. It was found that the voltage at the α-γ transition behaves inversely proportional to the applied frequency f and that the corresponding power scales with an f   3/2law. Both these findings agree well with the results of time-dependent, spatially one-dimensional fluid modelling of the discharge behaviour, where the f  3/2 scaling of the α-γ transition power is additionally verified by the established concept of a critical plasma density for sheath breakdown. Furthermore, phase resolved spectroscopy of the optical emission at 750.39 nm as well as at 810.37 nm and 811.53 nm was applied to analyse the excitation dynamics of the discharge at 27 MHz for different applied powers. The increase of the power leads to an additional maximum in the excitation structure of the 750.39 nm line emission at the α-γ transition point, whereas the emission structure around 811 nm does not change qualitatively. According to the fluid modelling results, this differing behaviour originates from the different population mechanisms of the corresponding energy levels of argon.

  3. Cross-Cultural Validation of the High Blood Pressure Health Literacy Scale in a Chinese Community

    PubMed Central

    Zhang, Qinghua; Huang, Feifei; Liu, Zaoling; Zhang, Na; Mahapatra, Tanmay; Tang, Weiming; Lei, Yang; Dai, Yali; Tang, Songyuan; Zhang, Jingping

    2016-01-01

    Background Considering the importance of health literacy (HL) for the maximum yield from the hypertension control programs, development of a reliable and valid instrument of hypertension-related HL is critical. This study aimed to translate and validate the High Blood Pressure-Health Literacy Scale (HBP-HLS) into Chinese (C-HBP-HLS) and evaluate its psychometric properties in Chinese context. Method Between June 2013 and January 2014, a cross-sectional study was conducted among recruited hypertensive patients belonging to the Han and Kazakh-Chinese communities in Urumqi, Xinjiang, China. Results A pilot sample (n = 242) was selected for the exploratory factor analysis of the translated and modified instrument. Another sample (n = 308) was recruited for the confirmatory factor analysis. C-HBP-HLS consisted of five dimensions (Print Health Literacy, Medication Label, Understanding Ability, Newest Vital Sign Test, and Avoiding Food Allergy) containing 15 items, accounting for 77.7% of the total variance. The 5-factor model demonstrated a good overall fit. The scale-level content validity index was 0.85. Cronbach’s alpha of the overall scale was 0.78 and test-retest reliability was 0.96. Education level had a strong positive correlation with the scores for items Q1, Q2, and Q3(r = 0.481, 0.492, 0.475, respectively). Health Literacy scores among Kazakh patients were significantly lower than Han (7.13±7.90 vs. 30.10±13.42, Z = -14.573, P<0.001). Conclusion C-HBP-HLS demonstrated suitable factor structure and robust psychometric properties for measuring health literacy level among hypertensive patients in China. PMID:27116336

  4. Grain-scale pressure variations recorded in orthopyroxene from the diamond grade ultra-high pressure Svartberget peridotite body, Western Gneiss Region, Norway

    NASA Astrophysics Data System (ADS)

    Vrijmoed, Johannes C.

    2014-05-01

    The ultra-high pressure (UHP) area in the Western Gneiss Region (WGR) in Norway is recognized as a giant UHP domain that resulted from the collision of Baltica and Laurentia during the Caledonian Orogeny. Recent geochronological data suggest the WGR resided at UHP for several tens of millions of years and slowly exhumed near- isothermally to amphibolite facies conditions. The Svartberget peridotite body is located in the north-westernmost part of the UHP area of the WGR. The rocks record diamond grade peak metamorphism at ~800 ° C in crosscutting pyroxenite veins as evidenced by micro-diamond inclusions in Caledonian metamorphic garnet. The peridotite body preserves primary spinel-garnet-peridotite assemblages stable at much lower pressure (~2.0 GPa at ~800 ° C). Orthopyroxene typically shows bowl-shaped aluminium (Al) zoning and conventional geothermobarometry using core compositions of garnet-opx mineral pairs yields P-T estimates of 5.5 GPa at ~800 ° C. Besides Al increasing toward the rims of orthopyroxene grains, concentrations also increase in cracks and veins crosscutting the mineral. Here, recently developed unconventional geobarometry and Gibbs minimization methods are used to derive the grain-scale pressure variations corresponding to the observed Al-zoning. The methods independently result in pressure variations from core to rim on the order of 2.0 GPa. Interestingly, low-Al cores correspond to low pressures whereas high-Al rims correspond to high pressures, opposite to conventional geothermobarometry results. However, the new estimates are in agreement with the consideration that at high pressure the high density phases become more stable. In a binary orthopyroxene in the MAS-system, the Mg-Tschermak endmember thought to be the dominant Al-species in the mineral has a higher density then the Al-free enstatite endmember. Therefore at higher pressure the Mg-Tschermak endmember in orthopyroxene is favoured over the enstatite endmember. This is similar

  5. Scale-4 Analysis of Pressurized Water Reactor Critical Configurations: Volume 1-Summary

    SciTech Connect

    DeHart, M.D.

    1995-01-01

    The requirements of ANSI/ANS 8.1 specify that calculational methods for away-from-reactor criticality safety analyses be validated against experimental measurements. If credit is to be taken for the reduced reactivity of burned or spent fuel relative to its original ''fresh'' composition, it is necessary to benchmark computational methods used in determining such reactivity worth against spent fuel reactivity measurements. This report summarizes a portion of the ongoing effort to benchmark away-from-reactor criticality analysis methods using critical configurations from commercial pressurized- water reactors (PWR). The analysis methodology utilized for all calculations in this report is based on the modules and data associated with the SCALE-4 code system. Isotopic densities for spent fuel assemblies in the core were calculated using the SAS2H analytical sequence in SCALE-4. The sources of data and the procedures for deriving SAS2H input parameters are described in detail. The SNIKR code sequence was used to extract the necessary isotopic densities from SAS2H results and to provide the data in the format required for SCALE-4 criticality analysis modules. The CSASN analytical sequence in SCALE-4 was used to perform resonance processing of cross sections. The KENO V.a module of SCALE-4 was used to calculate the effective multiplication factor (k{sub eff}) for the critical configuration. The SCALE-4 27-group burnup library containing ENDF/B-IV (actinides) and ENDF/B-V (fission products) data was used for analysis of each critical configuration. Each of the five volumes comprising this report provides an overview of the methodology applied. Subsequent volumes also describe in detail the approach taken in performing criticality calculations for these PWR configurations: Volume 2 describes criticality calculations for the Tennessee Valley Authority's Sequoyah Unit 2 reactor for Cycle 3; Volume 3 documents the analysis of Virginia Power's Surry Unit 1 reactor for the

  6. The Behavior of a Stitched Composite Large-Scale Multi-Bay Pressure Box

    NASA Technical Reports Server (NTRS)

    Jegley, Dawn C.; Rouse, Marshall; Przekop, Adam; Lovejoy, Andrew E.

    2016-01-01

    NASA has created the Environmentally Responsible Aviation (ERA) Project to develop technologies to reduce impact of aviation on the environment. A critical aspect of this pursuit is the development of a lighter, more robust airframe to enable the introduction of unconventional aircraft configurations. NASA and The Boeing Company have worked together to develop a structural concept that is lightweight and an advancement beyond state-of-the-art composite structures. The Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) is an integrally stiffened panel design where elements are stitched together and designed to maintain residual load-carrying capabilities under a variety of damage scenarios. With the PRSEUS concept, through-the-thickness stitches are applied through dry fabric prior to resin infusion, and replace fasteners throughout each integral panel. Through-the-thickness reinforcement at discontinuities, such as along flange edges, has been shown to suppress delamination and turn cracks, which expands the design space and leads to lighter designs. The pultruded rod provides stiffening away from the more vulnerable skin surface and improves bending stiffness. A series of building block tests were evaluated to explore the fundamental assumptions related to the capability and advantages of PRSEUS panels. The final step in the building block series of tests is an 80%-scale pressure box representing a portion of the center section of a Hybrid Wing Body (HWB) transport aircraft. The testing of this test article under maneuver and internal pressure loading conditions is the subject of this paper. The experimental evaluation of this article, along with the other building block tests and the accompanying analyses, has demonstrated the viability of a PRSEUS center body for the HWB vehicle. Additionally, much of the development effort is also applicable to traditional tube-and-wing aircraft, advanced aircraft configurations, and other structures where weight and

  7. Absolute neutrino mass measurements

    SciTech Connect

    Wolf, Joachim

    2011-10-06

    The neutrino mass plays an important role in particle physics, astrophysics and cosmology. In recent years the detection of neutrino flavour oscillations proved that neutrinos carry mass. However, oscillation experiments are only sensitive to the mass-squared difference of the mass eigenvalues. In contrast to cosmological observations and neutrino-less double beta decay (0v2{beta}) searches, single {beta}-decay experiments provide a direct, model-independent way to determine the absolute neutrino mass by measuring the energy spectrum of decay electrons at the endpoint region with high accuracy.Currently the best kinematic upper limits on the neutrino mass of 2.2eV have been set by two experiments in Mainz and Troitsk, using tritium as beta emitter. The next generation tritium {beta}-experiment KATRIN is currently under construction in Karlsruhe/Germany by an international collaboration. KATRIN intends to improve the sensitivity by one order of magnitude to 0.2eV. The investigation of a second isotope ({sup 137}Rh) is being pursued by the international MARE collaboration using micro-calorimeters to measure the beta spectrum. The technology needed to reach 0.2eV sensitivity is still in the R and D phase. This paper reviews the present status of neutrino-mass measurements with cosmological data, 0v2{beta} decay and single {beta}-decay.

  8. The big squeeze: scaling of constriction pressure in two of the world's largest snakes, Python reticulatus and Python molurus bivittatus.

    PubMed

    Penning, David A; Dartez, Schuyler F; Moon, Brad R

    2015-11-01

    Snakes are important predators that have radiated throughout many ecosystems, and constriction was important in their radiation. Constrictors immobilize and kill prey by using body loops to exert pressure on their prey. Despite its importance, little is known about constriction performance or its full effects on prey. We studied the scaling of constriction performance in two species of giant pythons (Python reticulatus and Python molurus bivittatus) and propose a new mechanism of prey death by constriction. In both species, peak constriction pressure increased significantly with snake diameter. These and other constrictors can exert pressures dramatically higher than their prey's blood pressure, suggesting that constriction can stop circulatory function and perhaps kill prey rapidly by over-pressurizing the brain and disrupting neural function. We propose the latter 'red-out effect' as another possible mechanism of prey death from constriction. These effects may be important to recognize and treat properly in rare cases when constrictors injure humans.

  9. Revised calibration of the Sm:SrB{sub 4}O{sub 7} pressure sensor using the Sm-doped yttrium-aluminum garnet primary pressure scale

    SciTech Connect

    Rashchenko, Sergey V. Litasov, Konstantin D.; Kurnosov, Alexander; Dubrovinsky, Leonid

    2015-04-14

    The pressure-induced shift of Sm:SrB{sub 4}O{sub 7} fluorescence was calibrated in a quasi-hydrostatic helium medium up to 60 GPa using the recent Sm-doped yttrium-aluminum garnet primary pressure scale as a reference. The resulting calibration can be written as P = −2836/14.3 [(1 + Δλ/685.51){sup −14.3 }− 1]. Previous calibrations based on the internally inconsistent primary scales are revised, and, after appropriate correction, found to agree with the proposed one. The calibration extended to 120 GPa was also performed using corrected previous data and can be written as P = 4.20 Δλ (1 + 0.020 Δλ)/(1 + 0.036 Δλ)

  10. Simulating the gas hydrate production test at Mallik using the pilot scale pressure reservoir LARS

    NASA Astrophysics Data System (ADS)

    Heeschen, Katja; Spangenberg, Erik; Schicks, Judith M.; Priegnitz, Mike; Giese, Ronny; Luzi-Helbing, Manja

    2014-05-01

    LARS, the LArge Reservoir Simulator, allows for one of the few pilot scale simulations of gas hydrate formation and dissociation under controlled conditions with a high resolution sensor network to enable the detection of spatial variations. It was designed and built within the German project SUGAR (submarine gas hydrate reservoirs) for sediment samples with a diameter of 0.45 m and a length of 1.3 m. During the project, LARS already served for a number of experiments simulating the production of gas from hydrate-bearing sediments using thermal stimulation and/or depressurization. The latest test simulated the methane production test from gas hydrate-bearing sediments at the Mallik test site, Canada, in 2008 (Uddin et al., 2011). Thus, the starting conditions of 11.5 MPa and 11°C and environmental parameters were set to fit the Mallik test site. The experimental gas hydrate saturation of 90% of the total pore volume (70 l) was slightly higher than volumes found in gas hydrate-bearing formations in the field (70 - 80%). However, the resulting permeability of a few millidarcy was comparable. The depressurization driven gas production at Mallik was conducted in three steps at 7.0 MPa - 5.0 MPa - 4.2 MPa all of which were used in the laboratory experiments. In the lab the pressure was controlled using a back pressure regulator while the confining pressure was stable. All but one of the 12 temperature sensors showed a rapid decrease in temperature throughout the sediment sample, which accompanied the pressure changes as a result of gas hydrate dissociation. During step 1 and 2 they continued up to the point where gas hydrate stability was regained. The pressure decreases and gas hydrate dissociation led to highly variable two phase fluid flow throughout the duration of the simulated production test. The flow rates were measured continuously (gas) and discontinuously (liquid), respectively. Next to being discussed here, both rates were used to verify a model of gas

  11. Combined Use of Absolute and Differential Seismic Arrival Time Data to Improve Absolute Event Location

    NASA Astrophysics Data System (ADS)

    Myers, S.; Johannesson, G.

    2012-12-01

    Arrival time measurements based on waveform cross correlation are becoming more common as advanced signal processing methods are applied to seismic data archives and real-time data streams. Waveform correlation can precisely measure the time difference between the arrival of two phases, and differential time data can be used to constrain relative location of events. Absolute locations are needed for many applications, which generally requires the use of absolute time data. Current methods for measuring absolute time data are approximately two orders of magnitude less precise than differential time measurements. To exploit the strengths of both absolute and differential time data, we extend our multiple-event location method Bayesloc, which previously used absolute time data only, to include the use of differential time measurements that are based on waveform cross correlation. Fundamentally, Bayesloc is a formulation of the joint probability over all parameters comprising the multiple event location system. The Markov-Chain Monte Carlo method is used to sample from the joint probability distribution given arrival data sets. The differential time component of Bayesloc includes scaling a stochastic estimate of differential time measurement precision based the waveform correlation coefficient for each datum. For a regional-distance synthetic data set with absolute and differential time measurement error of 0.25 seconds and 0.01 second, respectively, epicenter location accuracy is improved from and average of 1.05 km when solely absolute time data are used to 0.28 km when absolute and differential time data are used jointly (73% improvement). The improvement in absolute location accuracy is the result of conditionally limiting absolute location probability regions based on the precise relative position with respect to neighboring events. Bayesloc estimates of data precision are found to be accurate for the synthetic test, with absolute and differential time measurement

  12. Pressure scaled water impact test of a 12.5 inch diameter model of the Space Shuttle solid rocket booster

    NASA Technical Reports Server (NTRS)

    1982-01-01

    A total of 59 tail first drops were made. Model entry conditions simulated full scale vertical velocities of approximately 75 to 110 ft/sec with horizontal velocities up to 45 ft/sec and impact angles to + or - 10 deg. These tests were conducted at scaled atmospheric pressures (1.26 psia or 65 mm.Hg). The model, test program, test facility, test equipment, instrumentation system, data reduction procedures, and test results are described.

  13. Scaling-up Fermentation of Pichia pastoris to demonstration-scale using new methanol-feeding strategy and increased air pressure instead of pure oxygen supplement

    PubMed Central

    Liu, Wan-Cang; Gong, Ting; Wang, Qing-Hua; Liang, Xiao; Chen, Jing-Jing; Zhu, Ping

    2016-01-01

    Scaling-up of high-cell-density fermentation (HCDF) of Pichia pastoris from the lab or pilot scale to the demonstration scale possesses great significance because the latter is the final technological hurdle in the decision to go commercial. However, related investigations have rarely been reported. In this paper, we study the scaling-up processes of a recombinant P. pastoris from the pilot (10 to 100-L) to the demonstration (1,000-L) scales, which can be used to convert 7-β-xylosyl-10-deacetyltaxol into 10-deacetyltaxol by the β-xylosidase for semi-synthesis of Taxol. We demonstrated that a pure oxygen supplement can be omitted from the HCDF if the super atmospheric pressure was increased from 0.05 to 0.10 ± 0.05 MPa, and we developed a new methanol feeding biomass-stat strategy (0.035 mL/g/h) with 1% dissolved oxygen and 100 g/L initial induction biomass (dry cell weight). The scaling-up was reproducible, and the best results were obtained from the 1,000-L scale, featuring a shorter induction time and the highest enzyme activities and productions, respectively. The specific growth and specific production rates were also determined. This study lays a solid foundation for the commercial preparation of 10-deacetyltaxol through the recombinant yeast. It also provides a successful paradigm for scaling-up HCDF of P. pastoris to the demonstration scale. PMID:26790977

  14. Small Scale Trace Contaminant Testing of SA9T at Ambient and Reduced Pressure Conditions

    NASA Technical Reports Server (NTRS)

    Broerman, Craig; Sweterlitsch, Jeffrey

    2011-01-01

    A principle concern for air revitalization technology in a closed loop system is the capability to control carbon dioxide (CO2) and humidity (H2O). An amine based sorbent technology, SA9T, has long been evaluated for use in this application and several programs are evaluating it for use in both a cabin as well as space suit applications. While the CO2 and H2O performance of the sorbent has been tested extensively, the question of how trace contaminants impact performance requires further evaluation. This paper presents experimental results of small scale SA9T testing that was performed over a variety of test conditions and with a variety of trace contaminants. Testing evaluated the ability of SA9T media to sufficiently remove CO2 and H2O after exposure to a fully saturated trace contaminant at ambient conditions. Testing also evaluated the impact of CO2 and H2O removal performance at suit loop pressures during cyclic operation with a constant inlet contaminant load. In addition, testing evaluated the performance of SA9T at ambient conditions in a continuous 30-day test with a mixed trace contaminant stream.

  15. Bench-Scale Trace Contaminant Testing of SA9T at Ambient and Reduced Pressure Conditions

    NASA Technical Reports Server (NTRS)

    Broerman, Craig; Sweterlitsch, Jeff

    2011-01-01

    A principal concern for air revitalization technology in a closed loop system is the capability to control carbon dioxide (CO2) and humidity (H2O). An amine based sorbent technology, SA9T, has been evaluated for use in this application and several programs are evaluating it for use in both cabin and space suit applications. While the CO2 and H2O performance of the sorbent has been tested extensively, the question of how trace contaminants impact performance requires further evaluation. This paper presents experimental results of bench-scale SA9T testing that was performed under a variety of test conditions and with several different trace contaminants. Tests were conducted to determine if the capacity of the SA9T media to sufficiently remove CO2 and H2O is compromised after exposure to a fully saturated trace contaminant at ambient conditions. Tests also were conducted to evaluate the performance of SA9T at ambient conditions in a continuous 30-day test with a mixed trace contaminant stream. In addition, testing also evaluated the impact of CO2 and H2O removal performance at suit loop pressures (29.6 KPa/4.3 psia) during cyclic operation with a constant inlet contaminant load.

  16. The effect of vapor pressure deficit on water use efficiency at the subdaily time scale

    NASA Astrophysics Data System (ADS)

    Zhou, Sha; Yu, Bofu; Huang, Yuefei; Wang, Guangqian

    2014-07-01

    Water use efficiency is a critical index for describing carbon-water coupling in terrestrial ecosystems. However, the nonlinear effect of vapor pressure deficit (VPD) on carbon-water coupling has not been fully considered. To improve the relationship between gross primary production (GPP) and evapotranspiration (ET) at the subdaily time scale, we propose a new underlying water use efficiency (uWUE = GPP · VPD0.5/ET) and a hysteresis model to minimize time lags among GPP, ET, and VPD. Half-hourly data were used to validate uWUE for seven vegetation types from 42 AmeriFlux sites. Correlation analysis shows that the GPP · VPD0.5 and ET relationship (r = 0.844) is better than that between GPP · VPD and ET (r = 0.802). The hysteresis model supports the GPP · VPD0.5 and ET relationship. As uWUE is related to CO2 concentration, its use can improve estimates of GPP and ET and help understand the effect of CO2 fertilization on carbon storage and water loss.

  17. A Comparison of Pressure Measurements Between a Full-Scale and a 1/6-Scale F/A-18 Twin Tail During Buffet

    NASA Technical Reports Server (NTRS)

    Moses, Robert W.; Pendleton, Ed

    1996-01-01

    In 1993, tail buffet tests were performed on a full-scale, production model F/A-18 in the 80 x 120-foot Wind Tunnel at NASA Ames Research Center. Steady and unsteady pressures were recorded on both sides of the starboard vertical tail for an angle-of-attack range of 20 to 40 degrees and at a sideslip range of -1 6 to 16 degrees at freestream velocities up to 100 knots (Mach 0.15, Reynolds number 1.23 x 10(exp 7). The aircraft was equipped with removable leading edge extension (LEX) fences that are used in flight to reduce tail buffet loads. In 1995, tail buffet tests were performed on a 1/6-scale F-18 A/B model in the Transonic Dynamics Tunnel (TDT) at NASA Langley Research Center. Steady and unsteady pressures were recorded on both sides of both vertical tails for an angle-of-attack range of 7 to 37 degrees at freestream velocities up to 65 knots (Mach 0.10). Comparisons of steady and unsteady pressures and root bending moments are presented for these wind-tunnel models for selected test cases. Representative pressure and root bending moment power spectra are also discussed, as are selected pressure cross-spectral densities.

  18. A Comparison of Pressure Measurements Between a Full-Scale and a 1/16-Scale F/A-18 Twin Tail During Buffet

    NASA Technical Reports Server (NTRS)

    Moses, Robert W.; Pendleton, Ed

    1997-01-01

    In 1993, tail buffet tests were performed on a full-scale, production model F/A-18 in the 80-by-120 Foot Wind Tunnel at NASA Ames Research Center. Steady and unsteady pressures were recorded on both sides of the starboard vertical tail for an angle of attack range of 20 to 40 degrees and at a sideslip range of -16 to 16 degrees at freestream velocities up to 100 knots (Mach 0.15, Reynolds number 1.23 x 10(exp 7)). The aircraft was equipped with removable leading edge extension (LEX) fences that are used in flight to reduce tail buffet loads. In 1995, tail buffet tests were performed on a 1/6-scale F-18 A/B model in the Transonic Dynamics Tunnel (TDT) at NASA Langley Research Center. Steady and unsteady pressures were recorded on both sides of both vertical tails for an angle-of-attack range of 7 to 37 degrees at freestream velocities up to 65 knots (Mach 0.10). Comparisons of steady and unsteady pressures and root bending moments are presented for these wind-tunnel models for selected test cases. Representative pressure and root bending moment power spectra are also discussed, as are selected pressure cross-spectral densities.

  19. Does the accuracy of fine-scale water level measurements by vented pressure transducers permit for diurnal evapotranspiration estimation?

    NASA Astrophysics Data System (ADS)

    Gribovszki, Zoltán; Kalicz, Péter; Szilágyi, József

    2013-04-01

    Evapotranspiration (ET) estimation methods based on diurnal water level (surface or groundwater) fluctuations are sensitive to measurement accuracy (McLaughlin and Cohen, 2011; Cuevas et al., 2010). Water level fluctuations are often measured by pressure transducers of varying design and precision. Available total pressure transducers require a compensation for barometric pressure change supplied by barometric pressure transducers. Recently McLaughlin and Cohen (2011) as well as Cuevas et al. (2010) analyzed the 'thermal artifacts' of such transducer-pair data questioning the applicability of sub-daily water level measurements in non-buffered thermal mode for diurnal ET estimation. Similar problems should not, in principle, occur for so-called vented pressure transducers. With the help of ancillary manual measurements, this study verifies the accuracy of vented pressure transducer obtained ultra-fine scale (temporal resolution of 1-10 min) stream- and groundwater level data. Thermal effects were examined by a statistical analysis of concurrent water level and temperature data. The results support the thermal artifact-free nature of vented pressure transducers and therefore their suitability for diurnal ET estimation purposes when proper maintenance and periodic calibrations are provided. In the lack of such measures, diurnal temperature changes can induce errors in vented pressure transducer readings as well.

  20. Further wind tunnel measurements of pressure signatures for a 0.0041-scale model of the space shuttle orbiter

    NASA Technical Reports Server (NTRS)

    Mendoza, J. P.

    1976-01-01

    Pressure signatures for a 0.0041 scale model of the space shuttle orbiter were measured in the wind tunnel at Mach numbers from 1.3 to 4.0. The angles of attack were 0 deg, 10 deg, 20 deg and 30 deg. At each angle of attack the model was rolled from 0 deg to 120 deg in 30 deg increments.

  1. Investigation of surface fluctuating pressures on a 1/4 scale YC-14 upper surface blown flap model

    NASA Technical Reports Server (NTRS)

    Pappa, R. S.

    1979-01-01

    Fluctuating pressures were measured at 30 positions on the surface of a 1/4-scale YC-14 wing and fuselage model during an outdoor static testing program. These data were obtained as part of a NASA program to study the fluctuating loads imposed on STOL aircraft configurations and to further the understanding of the scaling laws of unsteady surface pressure fields. Fluctuating pressure data were recorded at several discrete engine thrust settings for each of 16 configurations of the model. These data were reduced using the technique of random data analysis to obtain auto-and cross-spectral density functions and coherence functions for frequencies from 0 to 10 kHz, and cross-correlation functions for time delays from 0 to 10.24 ms. Results of this program provide the following items of particular interest: (1) Good collapse of normalized PSD functions on the USB flap was found using a technique applied by Lilley and Hodgson to data from a laboratory wall-jet apparatus. (2) Results indicate that the fluctuating pressure loading on surfaces washed by the jet exhaust flow was dominated by hydrodynamic pressure variations, loading on surface well outside the flow region dominated by acoustic pressure variations, and loading near the flow boundaries from a mixture of the two.

  2. Absolute Identification by Relative Judgment

    ERIC Educational Resources Information Center

    Stewart, Neil; Brown, Gordon D. A.; Chater, Nick

    2005-01-01

    In unidimensional absolute identification tasks, participants identify stimuli that vary along a single dimension. Performance is surprisingly poor compared with discrimination of the same stimuli. Existing models assume that identification is achieved using long-term representations of absolute magnitudes. The authors propose an alternative…

  3. Be Resolute about Absolute Value

    ERIC Educational Resources Information Center

    Kidd, Margaret L.

    2007-01-01

    This article explores how conceptualization of absolute value can start long before it is introduced. The manner in which absolute value is introduced to students in middle school has far-reaching consequences for their future mathematical understanding. It begins to lay the foundation for students' understanding of algebra, which can change…

  4. Heat transfer and pressure distributions at M equals 8 on 0.029 scale models of the Viking entry vehicle

    NASA Technical Reports Server (NTRS)

    Faye-Petersen, R.; Sarver, D.; Carroll, H.

    1972-01-01

    An investigation in the Langley Research Center Mach-8 Variable Density Hypersonic Tunnel was made of the pressure distributions and heat transfer rate distributions on two 0.029 scale Viking Entry Vehicle models. Comparable ranges of test Reynolds number were exercised for the two tests between run conditions around 4 million and conditions of about 1.6 million. At angles of attack less than 20 degrees the pressure ratio distribution referenced to stagnation pressure appeared invariant with Reynolds number. Increasing angle of attack results in a flatter distribution of both the windward and leeward pressure distributions; in addition, the stagnation point shifted into the windward plane. A subsequent rise in the heating rate profile on the leeward side with further increase in angle of attack is attributed to boundary layer natural transition to turbulent flow. Schlieren photographs were taken for flow field visualization and to correct model angle of attack.

  5. Surface force at the nano-scale: observation of non-monotonic surface tension and disjoining pressure.

    PubMed

    Peng, Tiefeng; Firouzi, Mahshid; Li, Qibin; Peng, Kang

    2015-08-28

    Nano bubbles and films are important in theory and various applications, such as the specific ion effect of bubble coalescence, flotation and porous medium seepage; these rely greatly on the fundamental aspects of extended-DLVO surface forces. However, the origin and validation of the non-DLVO forces are still obscure, especially at the nano scale (1-5 nm). Herein, we report the first determination of the disjoining pressures of aqueous electrolyte nano-films using molecular dynamics (MD) simulations. Our results showed that adding salt does not lead to a decrease in the disjoining pressure. On the contrary, higher concentrations results in greater disjoining pressures. In addition, the temperature was found to significantly change the pattern of the disjoining pressure isotherm. These results aid the understanding of a number of underlying mechanisms, involving nano solid-liquid-gas surfaces.

  6. Global autocorrelation scales of the partial pressure of oceanic CO2

    NASA Astrophysics Data System (ADS)

    Li, Zhen; Adamec, David; Takahashi, Taro; Sutherland, Stewart C.

    2005-08-01

    A global database of approximately 1.7 million observations of the partial pressure of carbon dioxide in surface ocean waters (pCO2) collected between 1970 and 2003 is used to estimate its spatial autocorrelation structure. The patterns of the lag distance where the autocorrelation exceeds 0.8 is similar to patterns in the spatial distribution of the first baroclinic Rossby radius of deformation indicating that ocean circulation processes play a significant role in determining the spatial variability of pCO2. Separate calculations for times when the Sun is north and south of the equator revealed no obvious seasonal dependence of the spatial autocorrelation scales. The pCO2 measurements at Ocean Weather Station (OWS) "P" in the eastern subarctic Pacific (50°N, 145°W) is the only fixed location where an uninterrupted time series of sufficient length exists to calculate a meaningful temporal autocorrelation function for lags greater than a few days. The estimated temporal autocorrelation function at OWS "P" is highly variable. A spectral analysis of the longest four pCO2 time series indicates a high level of variability occurring over periods from the atmospheric synoptic to the maximum length of the time series, in this case 42 days. It is likely that a relative peak in variability with a period of 3-6 days is related to atmospheric synoptic period variability and ocean mixing events due to wind stirring. However, the short length of available time series makes identifying temporal relationships between pCO2 and atmospheric or ocean processes problematic.

  7. Global Autocorrelation Scales of the Partial Pressure of Oceanic CO2

    NASA Technical Reports Server (NTRS)

    Li, Zhen; Adamec, David; Takahashi, Taro; Sutherland, Stewart C.

    2004-01-01

    A global database of approximately 1.7 million observations of the partial pressure of carbon dioxide in surface ocean waters (pCO2) collected between 1970 and 2003 is used to estimate its spatial autocorrelation structure. The patterns of the lag distance where the autocorrelation exceeds 0.8 is similar to patterns in the spatial distribution of the first baroclinic Rossby radius of deformation indicating that ocean circulation processes play a significant role in determining the spatial variability of pCO2. For example, the global maximum of the distance at which autocorrelations exceed 0.8 averages about 140 km in the equatorial Pacific. Also, the lag distance at which the autocorrelation exceed 0.8 is greater in the vicinity of the Gulf Stream than it is near the Kuroshio, approximately 50 km near the Gulf Stream as opposed to 20 km near the Kuroshio. Separate calculations for times when the sun is north and south of the equator revealed no obvious seasonal dependence of the spatial autocorrelation scales. The pCO2 measurements at Ocean Weather Station (OWS) 'P', in the eastern subarctic Pacific (50 N, 145 W) is the only fixed location where an uninterrupted time series of sufficient length exists to calculate a meaningful temporal autocorrelation function for lags greater than a few days. The estimated temporal autocorrelation function at OWS 'P', is highly variable. A spectral analysis of the longest four pCO2 time series indicates a high level of variability occurring over periods from the atmospheric synoptic to the maximum length of the time series, in this case 42 days. It is likely that a relative peak in variability with a period of 3-6 days is related to atmospheric synoptic period variability and ocean mixing events due to wind stirring. However, the short length of available time series makes identifying temporal relationships between pCO2 and atmospheric or ocean processes problematic.

  8. Scaling Capillary Pressure Head - Saturation Relationships for Saprolite: Correction for Uncertainty Introduced by Pressure Cell Measurements on Tall Columns

    NASA Astrophysics Data System (ADS)

    Perfect, E.; McKay, L.; Driese, S.; Dane, J.; Kammerer, G.

    2002-12-01

    Dense non-aqueous phase liquids (DNAPL's) are important contaminants at many hazardous waste disposal sites. Relatively little information is available on DNAPL behavior in heterogeneous porous media such as fractured saprolite. We measured air-water and FluorinertTM (a non-toxic DNAPL surrogate)-water capillary pressure head (hc)-saturation (S) relationships close to saturation on an 18-cm long by 10-cm diameter undisturbed column of fractured shale saprolite. As hc increased, the pore volume invaded increased gradually rather than stepwise, indicating a range of fracture sizes with no clear division between pores in the fine-grained matrix and the fracture network. Microscopic examination of the pore structure in thin-sections of the saprolite supported this interpretation of the data. A fractal model, equivalent to the empirical Brooks and Corey model with zero residual saturation, was used to parameterize the S(hc) curves. The best-fit parameters were 19.54 and 30.10 cm for the displacement pressure head (hd) and 2.971 and 2.956 for the mass fractal dimension (D), for the air-water and FluorinertTM-water curves respectively. Parameters corrected for the hydrostatic fluid distribution within the column were obtained using the approach of Liu and Dane (1995). The corresponding corrected parameters were 26.45 and 16.23 cm for hc, and 2.966 and 2.966 for D. The correction procedure had a large impact on the form of the FluorinertTM-water curve, and relatively little impact on the form of the air-water curve. The uncorrected and corrected parameters for the air-water curve were then used to predict the corrected FluorinertTM-water curve using Leverett's function. Both sets of parameters produced predicted curves that explained over 99% of the variation in the FluorinertTM-water curve, with the corrected parameters producing a slightly better 1:1 relationship than the uncorrected parameters. Our results indicate that measured S(hc) curves for DNAPL-water systems are

  9. A barometric pressure sensor based on the air-gap scale effect in a cantilever

    NASA Astrophysics Data System (ADS)

    Minh-Dung, Nguyen; Takahashi, Hidetoshi; Uchiyama, Takeshi; Matsumoto, Kiyoshi; Shimoyama, Isao

    2013-09-01

    The most common structure for a conventional barometric pressure sensor consists of a vacuum-sealed cavity and a diaphragm. However, we hypothesize that a simple structure with an unsealed cavity and an ultra-thin cantilever can provide more sensitive measurements. We produced a 300-nm-thick cantilever with a small spring constant, which made the cantilever sensitive to low pressures. We demonstrated that miniaturizing the air-gap of the cantilever enables the sensor to measure barometric pressure changes at a low pressure change rate with a high resolution, which was 1 Pa at 0.05 Hz, and for a gap size of 1.7 μm.

  10. Large Scale Triboelectric Nanogenerator and Self-Powered Pressure Sensor Array Using Low Cost Roll-to-Roll UV Embossing

    NASA Astrophysics Data System (ADS)

    Dhakar, Lokesh; Gudla, Sudeep; Shan, Xuechuan; Wang, Zhiping; Tay, Francis Eng Hock; Heng, Chun-Huat; Lee, Chengkuo

    2016-02-01

    Triboelectric nanogenerators (TENGs) have emerged as a potential solution for mechanical energy harvesting over conventional mechanisms such as piezoelectric and electromagnetic, due to easy fabrication, high efficiency and wider choice of materials. Traditional fabrication techniques used to realize TENGs involve plasma etching, soft lithography and nanoparticle deposition for higher performance. But lack of truly scalable fabrication processes still remains a critical challenge and bottleneck in the path of bringing TENGs to commercial production. In this paper, we demonstrate fabrication of large scale triboelectric nanogenerator (LS-TENG) using roll-to-roll ultraviolet embossing to pattern polyethylene terephthalate sheets. These LS-TENGs can be used to harvest energy from human motion and vehicle motion from embedded devices in floors and roads, respectively. LS-TENG generated a power density of 62.5 mW m-2. Using roll-to-roll processing technique, we also demonstrate a large scale triboelectric pressure sensor array with pressure detection sensitivity of 1.33 V kPa-1. The large scale pressure sensor array has applications in self-powered motion tracking, posture monitoring and electronic skin applications. This work demonstrates scalable fabrication of TENGs and self-powered pressure sensor arrays, which will lead to extremely low cost and bring them closer to commercial production.

  11. Large Scale Triboelectric Nanogenerator and Self-Powered Pressure Sensor Array Using Low Cost Roll-to-Roll UV Embossing

    PubMed Central

    Dhakar, Lokesh; Gudla, Sudeep; Shan, Xuechuan; Wang, Zhiping; Tay, Francis Eng Hock; Heng, Chun-Huat; Lee, Chengkuo

    2016-01-01

    Triboelectric nanogenerators (TENGs) have emerged as a potential solution for mechanical energy harvesting over conventional mechanisms such as piezoelectric and electromagnetic, due to easy fabrication, high efficiency and wider choice of materials. Traditional fabrication techniques used to realize TENGs involve plasma etching, soft lithography and nanoparticle deposition for higher performance. But lack of truly scalable fabrication processes still remains a critical challenge and bottleneck in the path of bringing TENGs to commercial production. In this paper, we demonstrate fabrication of large scale triboelectric nanogenerator (LS-TENG) using roll-to-roll ultraviolet embossing to pattern polyethylene terephthalate sheets. These LS-TENGs can be used to harvest energy from human motion and vehicle motion from embedded devices in floors and roads, respectively. LS-TENG generated a power density of 62.5 mW m−2. Using roll-to-roll processing technique, we also demonstrate a large scale triboelectric pressure sensor array with pressure detection sensitivity of 1.33 V kPa−1. The large scale pressure sensor array has applications in self-powered motion tracking, posture monitoring and electronic skin applications. This work demonstrates scalable fabrication of TENGs and self-powered pressure sensor arrays, which will lead to extremely low cost and bring them closer to commercial production. PMID:26905285

  12. A multi-scale analysis of the impact of pressure on melting of crystalline phase change material germanium telluride

    SciTech Connect

    Liu, Jie

    2014-10-27

    The impact of the moderate pressure (about 10{sup 0 }GPa) on the melting of crystalline (c-) phase change material (PCM) germanium telluride (GeTe) is analyzed, by combining the heat transfer equation in the PCM device scale (10{sup 1}–10{sup 2 }nm and beyond), and the ab initio molecular dynamics and the nudged elastic band simulations in the atomistic scale (10{sup −1}–10{sup 0 }nm). The multi-scale analysis unravels that a pressure P = 1.0 GPa can increase the melting temperature of c-GeTe and the PCM device “reset” operation energy consumption by 6%–7%. It is shown that the melting temperature increase originates from the pressure-induced raise of the energy barrier of the umbrella-flip transition of the Ge atom from the octahedral symmetry site to the tetrahedral symmetry site. It is revealed that when P > 1.0 GPa, which is normal in PCM devices, the “reset” energy will be increased even by more. Based on the analysis, suggestions to alleviate pressure-induced raise of melting temperature and “reset” energy are provided.

  13. Large Scale Triboelectric Nanogenerator and Self-Powered Pressure Sensor Array Using Low Cost Roll-to-Roll UV Embossing.

    PubMed

    Dhakar, Lokesh; Gudla, Sudeep; Shan, Xuechuan; Wang, Zhiping; Tay, Francis Eng Hock; Heng, Chun-Huat; Lee, Chengkuo

    2016-02-24

    Triboelectric nanogenerators (TENGs) have emerged as a potential solution for mechanical energy harvesting over conventional mechanisms such as piezoelectric and electromagnetic, due to easy fabrication, high efficiency and wider choice of materials. Traditional fabrication techniques used to realize TENGs involve plasma etching, soft lithography and nanoparticle deposition for higher performance. But lack of truly scalable fabrication processes still remains a critical challenge and bottleneck in the path of bringing TENGs to commercial production. In this paper, we demonstrate fabrication of large scale triboelectric nanogenerator (LS-TENG) using roll-to-roll ultraviolet embossing to pattern polyethylene terephthalate sheets. These LS-TENGs can be used to harvest energy from human motion and vehicle motion from embedded devices in floors and roads, respectively. LS-TENG generated a power density of 62.5 mW m(-2). Using roll-to-roll processing technique, we also demonstrate a large scale triboelectric pressure sensor array with pressure detection sensitivity of 1.33 V kPa(-1). The large scale pressure sensor array has applications in self-powered motion tracking, posture monitoring and electronic skin applications. This work demonstrates scalable fabrication of TENGs and self-powered pressure sensor arrays, which will lead to extremely low cost and bring them closer to commercial production.

  14. Analysis of frequency response and scale-factor of tuning fork micro-gyroscope operating at atmospheric pressure.

    PubMed

    Ding, Xukai; Li, Hongsheng; Ni, Yunfang; Sang, Pengcheng

    2015-01-22

    This paper presents a study of the frequency response and the scale-factor of a tuning fork micro-gyroscope operating at atmospheric pressure in the presence of an interference sense mode by utilizing the approximate transfer function. The optimal demodulation phase (ODP), which is always ignored in vacuum packaged micro-gyroscopes but quite important in gyroscopes operating at atmospheric pressure, is obtained through the transfer function of the sense mode, including the primary mode and the interference mode. The approximate transfer function of the micro-gyroscope is deduced in consideration of the interference mode and the ODP. Then, the equation describing the scale-factor of the gyroscope is also obtained. The impacts of the interference mode and Q-factor on the frequency response and the scale-factor of the gyroscope are analyzed through numerical simulations. The relationship between the scale-factor and the demodulation phase is also illustrated and gives an effective way to find out the ODP in practice. The simulation results predicted by the transfer functions are in close agreement with the results of the experiments. The analyses and simulations can provide constructive guidance on bandwidth and sensitivity designs of the micro-gyroscopes operating at atmospheric pressure.

  15. Human activity under high pressure: A case study on fluctuation scaling of air traffic controller's communication behaviors

    NASA Astrophysics Data System (ADS)

    Wang, Yanjun; Zhang, Qiqian; Zhu, Chenping; Hu, Minghua; Duong, Vu

    2016-01-01

    Recent human dynamics research has unmasked astonishing statistical characteristics such as scaling behaviors in human daily activities. However, less is known about the general mechanism that governs the task-specific activities. In particular, whether scaling law exists in human activities under high pressure remains an open question. In air traffic management system, safety is the most important factor to be concerned by air traffic controllers who always work under high pressure, which provides a unique platform to study human activity. Here we extend fluctuation scaling method to study air traffic controller's communication activity by investigating two empirical communication datasets. Taken the number of controlled flights as the size-like parameter, we show that the relationships between the average communication activity and its standard deviation in both datasets can be well described by Taylor's power law, with scaling exponent α ≈ 0.77 ± 0.01 for the real operational data and α ≈ 0.54 ± 0.01 for the real-time training data. The difference between the exponents suggests that human dynamics under pressure is more likely dominated by the exogenous force. Our findings may lead to further understanding of human behavior.

  16. Analysis of Frequency Response and Scale-Factor of Tuning Fork Micro-Gyroscope Operating at Atmospheric Pressure

    PubMed Central

    Ding, Xukai; Li, Hongsheng; Ni, Yunfang; Sang, Pengcheng

    2015-01-01

    This paper presents a study of the frequency response and the scale-factor of a tuning fork micro-gyroscope operating at atmospheric pressure in the presence of an interference sense mode by utilizing the approximate transfer function. The optimal demodulation phase (ODP), which is always ignored in vacuum packaged micro-gyroscopes but quite important in gyroscopes operating at atmospheric pressure, is obtained through the transfer function of the sense mode, including the primary mode and the interference mode. The approximate transfer function of the micro-gyroscope is deduced in consideration of the interference mode and the ODP. Then, the equation describing the scale-factor of the gyroscope is also obtained. The impacts of the interference mode and Q-factor on the frequency response and the scale-factor of the gyroscope are analyzed through numerical simulations. The relationship between the scale-factor and the demodulation phase is also illustrated and gives an effective way to find out the ODP in practice. The simulation results predicted by the transfer functions are in close agreement with the results of the experiments. The analyses and simulations can provide constructive guidance on bandwidth and sensitivity designs of the micro-gyroscopes operating at atmospheric pressure. PMID:25621614

  17. Correlation of Fin Buffet Pressures on an F/A-18 with Scaled Wind-Tunnel Measurements

    NASA Technical Reports Server (NTRS)

    Moses, Robert W.; Shah, Gautam H.

    1999-01-01

    Buffeting is an aeroelastic phenomenon occurring at high angles of attack that plagues high performance aircraft, especially those with twin vertical tails. Previous wind-tunnel and flight tests were conducted to characterize the buffet loads on the vertical tails by measuring surface pressures, bending moments, and accelerations. Following these tests, buffeting responses were computed using the measured buffet pressures and compared to the measured buffeting responses. The calculated results did not match the measured data because the assumed spatial correlation of the buffet pressures was not correct. A better understanding of the partial (spatial) correlation of the differential buffet pressures on the tail was necessary to improve the buffeting predictions. Several wind-tunnel investigations were conducted for this purpose. When compared, the results of these tests show that the partial correlation scales with flight conditions. One of the remaining questions is whether the wind-tunnel data is consistent with flight data. Presented herein, cross-spectra and coherence functions calculated from pressures that were measured on the High Alpha Research Vehicle indicate that the partial correlation of the buffet pressures in flight agrees with the partial correlation observed in the wind tunnel.

  18. Probing absolute spin polarization at the nanoscale.

    PubMed

    Eltschka, Matthias; Jäck, Berthold; Assig, Maximilian; Kondrashov, Oleg V; Skvortsov, Mikhail A; Etzkorn, Markus; Ast, Christian R; Kern, Klaus

    2014-12-10

    Probing absolute values of spin polarization at the nanoscale offers insight into the fundamental mechanisms of spin-dependent transport. Employing the Zeeman splitting in superconducting tips (Meservey-Tedrow-Fulde effect), we introduce a novel spin-polarized scanning tunneling microscopy that combines the probing capability of the absolute values of spin polarization with precise control at the atomic scale. We utilize our novel approach to measure the locally resolved spin polarization of magnetic Co nanoislands on Cu(111). We find that the spin polarization is enhanced by 65% when increasing the width of the tunnel barrier by only 2.3 Å due to the different decay of the electron orbitals into vacuum. PMID:25423049

  19. Singular perturbation of absolute stability.

    NASA Technical Reports Server (NTRS)

    Siljak, D. D.

    1972-01-01

    It was previously shown (author, 1969) that the regions of absolute stability in the parameter space can be determined when the parameters appear on the right-hand side of the system equations, i.e., the regular case. Here, the effect on absolute stability of a small parameter attached to higher derivatives in the equations (the singular case) is studied. The Lur'e-Postnikov class of nonlinear systems is considered.

  20. Sediment budget variation at watershed scale due to anthropogenic pressures, and its relationship to coastal erosion

    NASA Astrophysics Data System (ADS)

    Aiello, Antonello; Adamo, Maria; Canora, Filomena

    2014-05-01

    The transfer of sediments from hydrographic basins towards the coast is a significant pathway of material transfer on Earth. In sedimentary environment, the main portion of sediment that enters the coastal areas is derived originally from erosion in the coastal watersheds. Extensive anthropogenic pressures carried out within coastal basins have long shown negative impacts on littoral environments. In fluvial systems, sediments trapped behind dams and in-stream gravel mining cause the reduction in sediment supply to the coast. Along the Jonian littoral of the Basilicata Region (southern Italy), natural coastal processes have been severely disrupted since the second half of the 20th century as a result of riverbed sand and gravel mining and dam construction, when economic advantages were measured in terms of the development of infrastructure, water storage, and hydropower production for the agricultural, industrial and socio-economic development of the area. Particularly, the large numbers of dams and impoundments that have been built in the hydrographic basins have led a signi?cant reduction on river sediment loads. As a result, the Jonian littoral is experiencing a catalysed erosion phenomenon. In order to increase understanding of the morpho-dynamics of the Jonian littoral environment and more fully appreciate the amount of coastal erosion, an evaluation of the sediment budget change due to dam construction within the hydrographic basins of the Basilicata Region needs to be explored. Since quantitative data on decadal trends in river sediment supply before and after dam construction are lacking, as well as updated dam silting values, river basin assessment of the spatial patterns and estimated amount of sediment erosion and deposition are important in evaluating changes in the sediment budget. As coastal areas are being affected by an increasing number of population and socio-economic activities, the amount of sediment deficit at the littoral can permit to

  1. Effect of Pressure on Polyolefin Blends Miscibility: Scaling of the Interaction Parameter with Density

    NASA Astrophysics Data System (ADS)

    Rabeony, M.; Lohse, D. J.; Garner, R. T.; Han, S. J.; Migler, K.; Graessley, W. W.

    1998-03-01

    We have performed a combination of SANS, cloud point, and PVT measurements to investigate the effect of pressure on the miscibility of polyolefin blends. Both blends with ambient upper critical solution temperature (UCST) and lower critical solution temperature (LCST) have been investigated and the pressure coefficient for the critical temperature determined. In both cases, increasing pressure raises the critical temperature, i.e., increasing pressure destabilizes the mixed state for UCST blends, while it increases the degree of miscibility for LCST blends. For UCST blends, the pressure and temperature dependence of the interaction energies collapse on a single master curve when plotted against the mean density of the blend. The simplicity of this behavior suggests a simple equation of state and can be related to the nature of the van de Waals interactions between these saturated hydrocarbons. These results also allow a straightforward prediction of the pressure effect on miscibility from the PVT data of the pure components and the temperature dependence of the interaction energy at ambient pressure. No such simple behavior was found in blends exhibiting LCST where the interaction energies depend on P and T in a complex manner.

  2. Full-scale Force and Pressure-distribution Tests on a Tapered U.S.A. 45 Airfoil

    NASA Technical Reports Server (NTRS)

    Parsons, John F

    1935-01-01

    This report presents the results of force and pressure-distribution tests on a 2:1 tapered USA 45 airfoil as determined in the full-scale wind tunnel. The airfoil has a constant-chord center section and rounded tips and is tapered in thickness from 18 percent at the root to 9 percent at the tip. Force tests were made throughout a Reynolds Number range of approximately 2,000,000 to 8,000,000 providing data on the scale effect in addition to the conventional characteristics. Pressure-distribution data were obtained from tests at a Reynolds Number of approximately 4,000,000. The aerodynamic characteristics given by the usual dimensionless coefficients are presented graphically.

  3. A retrospective study using the pressure ulcer scale for healing (PUSH) tool to examine factors affecting stage II pressure ulcer healing in a Korean acute care hospital.

    PubMed

    Park, Kyung Hee

    2014-09-01

    Stage II pressure ulcers (PUs) should be managed promptly and appropriately in order to prevent complications. To identify the factors affecting Stage II PU healing and optimize care, the electronic medical records of patients with a Stage II PU in an acute care hospital were examined. Patient and ulcer characteristics as well as nutritional assessment variables were retrieved, and ulcer variables were used to calculate Pressure Ulcer Scale for Healing (PUSH) scores. The effect of all variables on healing status (healed versus nonhealed) and change in PUSH score for healing rate were compared. Records of 309 Stage II PUs from 155 patients (mean age 61.2 ± 15.2 [range 5-89] years, 182 [58.9%] male) were retrieved and analyzed. Of those, 221 healed and 88 were documented as not healed at the end of the study. The variables that were significantly different between patients with PUs that did and did not heal were: major diagnosis (P = 0.001), peripheral arterial disease (P = 0.007), smoking (P = 0.048), serum albumin ( <2.5 g/dL) (P = 0.002), antidepressant use (P = 0.035), vitamin use (P = 0.006), history of surgery (P <0.001), PU size (P = 0.003), Malnutrition Universal Screening Tool (MUST) score (P = 0.020), Braden scale score (P = 0.003), and mean arterial pressure (MAP, mm Hg) (P = 0.026). The Cox proportional hazard model showed a significant positive difference in PUSH score change -indicative of healing - when pressure-redistribution surfaces were used (P <0.001, HR = 2.317), PU size was small (≤3.0 cm2, P = 0.006, HR = 1.670), MAP (within a range of 52-112 mm Hg) was higher P = 0.010, HR = 1.016), and patients were provided multivitamins (P = 0.037, HR=1.431). The results of this study suggest strategies for healing Stage II PUs in the acute care setting should include early recognition of lower-stage PUs, the provision of static pressure-redistribution surfaces and multivitamins, and maintaining higher MAP may facilitate healing and prevent deterioration

  4. Large scale modelling of salmon lice (Lepeophtheirus salmonis) infection pressure based on lice monitoring data from Norwegian salmonid farms.

    PubMed

    Kristoffersen, Anja B; Jimenez, Daniel; Viljugrein, Hildegunn; Grøntvedt, Randi; Stien, Audun; Jansen, Peder A

    2014-12-01

    Infection by parasitic sea lice is a substantial problem in industrial scale salmon farming. To control the problem, Norwegian salmonid farms are not permitted to exceed a threshold level of infection on their fish, and farms are required to monitor and report lice levels on a weekly basis to ensure compliance with the regulation. In the present study, we combine the monitoring data with a deterministic model for salmon lice population dynamics to estimate farm production of infectious lice stages. Furthermore, we use an empirical estimate of the relative risk of salmon lice transmission between farms, that depend on inter-farm distances, to estimate the external infection pressure at a farm site, i.e. the infection pressure from infective salmon lice of neighbouring farm origin. Finally, we test whether our estimates of infection pressure from neighbouring farms as well as internal within farm infection pressure, predicts subsequent development of infection in cohorts of farmed salmonids in their initial phase of marine production. We find that estimated external infection pressure is a main predictor of salmon lice population dynamics in newly stocked cohorts of salmonids. Our results emphasize the importance of keeping the production of infectious lice stages at low levels within local networks of salmon farms. Our model can easily be implemented for real time estimation of infection pressure at the national scale, utilizing the masses of data generated through the compulsory lice monitoring in salmon farms. The implementation of such a system should give the salmon industry greater predictability with respect to salmon lice infection levels, and aid the decision making process when the development of new farm sites are planned.

  5. Inter-rater reliability of three most commonly used pressure ulcer risk assessment scales in clinical practice.

    PubMed

    Wang, Li-Hua; Chen, Hong-Lin; Yan, Hong-Yan; Gao, Jian-Hua; Wang, Fang; Ming, Yue; Lu, Li; Ding, Jing-Jing

    2015-10-01

    The objective of this study was to evaluate inter-rater reliability of Braden Scale, Norton Scale and Waterlow Scale for pressure ulcer risk assessment in clinical practice. The design of the study was cross-sectional. A total of 23 patients at pressure ulcer risk were included in the study, and 6 best registered nurses conducted three subsequent risk assessments for all included patients. They assessed alone and independently from each other. An intra-class correlation coefficient (ICC) was used to determine the inter-rater reliability. For the Braden Scale, the ICC values ranged between 0·603 (95% CI: 0·435-0·770) for the item 'moisture' and a maximum of 0·964 (95% CI: 0·936-0·982) for the item 'activity'; for the Norton Scale, the ICC values ranged between 0·595 (95% CI: 0·426-0·764) for the item 'physical condition' and a maximum of 0·975 (95% CI: 0·955-0·988) for the item 'activity'; and for the Waterlow Scale, the ICC values ranged between 0·592 (95% CI: 0·422-0·762) for the item 'skin type' and a maximum of 0·990 (95% CI: 0·982-0·995) for the item 'activity'. The ICC values of total score for three scales of were 0·955 (95% CI: 0·922-0·978), 0·967 (95% CI: 0·943-0·984), and 0·915 (95% CI: 0·855-0·958) for Braden, Norton, and Waterlow scales, respectively. Although the inter-rater reliability of Braden Scale, Norton Scale and Waterlow Scale total scores were all substantial, the reliability of some items was not so good. The items of 'moisture', 'physical condition' and 'skin type' should be paid more attention. However, some studies are needed to find out high reliable quantitative items to replace these ambiguous items in new designed scales.

  6. The scaling of collisionless magnetic reconnection in an electron-positron plasma with non-scalar pressure

    NASA Astrophysics Data System (ADS)

    Hosseinpour, M.; Mohammadi, M. A.; Biabani, S.; Biabani

    2013-10-01

    Collisionless magnetic reconnection via tearing instability in non-relativistic electron-positron (pair) plasma with an anisotropic pressure is investigated. The equilibrium magnetic field is considered to be sheared force-free, and a set of linearized collisionless Magnetohydrodynamics equations describes the evolution of reconnection dynamics. A linear analytical analysis, based on scaling, demonstrates that in such a pair plasma, breaking the frozen in flow constraint for field lines can be mainly provided by the non-gyrotropic pressure of electrons and positrons (rather than the particle bulk inertia) when the current sheet width is smaller than the particle Larmor radius (Δx < r L ). This condition is satisfied when β > d 2 (d = c/ω p is the particle skin-depth with the electron/positron frequency ω p and β = 8πP (0)/B 0 2 << 1). Meanwhile, on top of the Lorentz force and in the absence of the reconnection facilitating mechanism of the Hall effect, non-scalar pressure force can accelerate bulk plasma into the diffusion region at the scale lengths of the order of dx. Therefore, the respective regime of tearing instability proceeds much faster compared with the case of an isotropic pressure with a new dimensionless growth rate of (γτ A ) ~ d.

  7. Absolute photon-flux measurements in the vacuum ultraviolet

    NASA Technical Reports Server (NTRS)

    Samson, J. A. R.; Haddad, G. N.

    1974-01-01

    Absolute photon-flux measurements in the vacuum ultraviolet have extended to short wavelengths by use of rare-gas ionization chambers. The technique involves the measurement of the ion current as a function of the gas pressure in the ion chamber. The true value of the ion current, and hence the absolute photon flux, is obtained by extrapolating the ion current to zero gas pressure. Examples are given at 162 and 266 A. The short-wavelength limit is determined only by the sensitivity of the current-measuring apparatus and by present knowledge of the photoionization processes that occur in the rate gases.

  8. Evaluation of wind-induced internal pressure in low-rise buildings: A multi scale experimental and numerical approach

    NASA Astrophysics Data System (ADS)

    Tecle, Amanuel Sebhatu

    Hurricane is one of the most destructive and costly natural hazard to the built environment and its impact on low-rise buildings, particularity, is beyond acceptable. The major objective of this research was to perform a parametric evaluation of internal pressure (IP) for wind-resistant design of low-rise buildings and wind-driven natural ventilation applications. For this purpose, a multi-scale experimental, i.e. full-scale at Wall of Wind (WoW) and small-scale at Boundary Layer Wind Tunnel (BLWT), and a Computational Fluid Dynamics (CFD) approach was adopted. This provided new capability to assess wind pressures realistically on internal volumes ranging from small spaces formed between roof tiles and its deck to attic to room partitions. Effects of sudden breaching, existing dominant openings on building envelopes as well as compartmentalization of building interior on the IP were systematically investigated. Results of this research indicated: (i) for sudden breaching of dominant openings, the transient overshooting response was lower than the subsequent steady state peak IP and internal volume correction for low-wind-speed testing facilities was necessary. For example a building without volume correction experienced a response four times faster and exhibited 30--40% lower mean and peak IP; (ii) for existing openings, vent openings uniformly distributed along the roof alleviated, whereas one sided openings aggravated the IP; (iii) larger dominant openings exhibited a higher IP on the building envelope, and an off-center opening on the wall exhibited (30--40%) higher IP than center located openings; (iv) compartmentalization amplified the intensity of IP and; (v) significant underneath pressure was measured for field tiles, warranting its consideration during net pressure evaluations. The study aimed at wind driven natural ventilation indicated: (i) the IP due to cross ventilation was 1.5 to 2.5 times higher for Ainlet/Aoutlet>1 compared to cases where Ainlet

  9. On determining characteristic length scales in pressure gradient turbulent boundary layers

    NASA Astrophysics Data System (ADS)

    Vinuesa, Ricardo; Örlü, Ramis; Schlatter, Philipp

    2016-04-01

    In the present work we analyze three methods used to determine the edge of pressure gradient turbulent boundary layers: two based on composite profiles, the one by Chauhan et al. (Fluid Dyn. Res. 41:021401, 2009) and the one by Nickels (J. Fluid Mech. 521:217–239, 2004), and the other one based on the condition of vanishing mean velocity gradient. Additionally, a new method is introduced based on the diagnostic plot concept by Alfredsson et al. (Phys. Fluids 23:041702, 2011). The boundary layer developing over the suction side of a NACA4412 wing profile, extracted from a direct numerical simulation at Rec = 400,000, is used as the test case. We find that all the methods produce robust results with mild or moderate pressure gradients, but stronger pressure gradients (with β larger than around 7) lead to inconsistent results in all the techniques except the diagnostic plot. This method also has the advantage of providing an objective way of defining the point where the mean streamwise velocity is 99% of the edge velocity, and shows consistent results in a wide range of pressure gradient conditions, as well as flow histories. Therefore, the technique based on the diagnostic plot is a robust method to determine the boundary layer thickness (equivalent to δ99) and edge velocity in pressure gradient turbulent boundary layers.

  10. On determining characteristic length scales in pressure gradient turbulent boundary layers

    NASA Astrophysics Data System (ADS)

    Vinuesa, Ricardo; Örlü, Ramis; Schlatter, Philipp

    2016-04-01

    In the present work we analyze three methods used to determine the edge of pressure gradient turbulent boundary layers: two based on composite profiles, the one by Chauhan et al. (Fluid Dyn. Res. 41:021401, 2009) and the one by Nickels (J. Fluid Mech. 521:217-239, 2004), and the other one based on the condition of vanishing mean velocity gradient. Additionally, a new method is introduced based on the diagnostic plot concept by Alfredsson et al. (Phys. Fluids 23:041702, 2011). The boundary layer developing over the suction side of a NACA4412 wing profile, extracted from a direct numerical simulation at Rec = 400,000, is used as the test case. We find that all the methods produce robust results with mild or moderate pressure gradients, but stronger pressure gradients (with β larger than around 7) lead to inconsistent results in all the techniques except the diagnostic plot. This method also has the advantage of providing an objective way of defining the point where the mean streamwise velocity is 99% of the edge velocity, and shows consistent results in a wide range of pressure gradient conditions, as well as flow histories. Therefore, the technique based on the diagnostic plot is a robust method to determine the boundary layer thickness (equivalent to δ99) and edge velocity in pressure gradient turbulent boundary layers.

  11. Atomic nitrogen: a parameter study of a micro-scale atmospheric pressure plasma jet by means of molecular beam mass spectrometry

    NASA Astrophysics Data System (ADS)

    Schneider, Simon; Dünnbier, Mario; Hübner, Simon; Reuter, Stephan; Benedikt, Jan

    2014-12-01

    Absolute atomic nitrogen densities (N) in the effluent of a micro-scale atmospheric pressure plasma jet (µ-APPJ) operated in He with small admixtures of molecular nitrogen (N2) are measured by means of molecular beam mass spectrometry. Focusing on changes of the external plasma parameters, the dependency of the atomic nitrogen density on the admixture of molecular nitrogen to the plasma, the variation of applied electrode voltage and the variation of distance between the jet nozzle and the sampling orifice of the mass spectrometer are analysed. When varying the N2 admixture, a maximum density of atomic nitrogen of approximately 1.5  ×  1014 cm-3 (~6 ppm) is reached at about 0.25% N2 admixture. Moreover, the N density increases approximately linearly with the applied voltage. Both results are comparable to atomic oxygen (O) behaviour of the µ-APPJ operated at equal plasma conditions except for admixing molecular O2 instead of nitrogen (Ellerweg et al 2010 New J. Phys. 12 013021). The N density decreases continuously with increasing distance, but the decrease is slower than in the case of O atoms in He/O2 plasma. N atoms with a density of 2.0  ×  1013 cm-3 (~0.8 ppm) are still detected at 40 mm distance from the jet nozzle in controlled He/N2 atmosphere. The simple fluid simulation of N diffusion does not reproduce the measured densities of N. Nevertheless, a simulation taking into account atomic nitrogen reactions with gas impurities are able to reproduce the measured data, indicating that these reactions are an important loss mechanism of N atoms. The presented results are relevant for the future investigation of interactions of reactive nitrogen species with biological substrates.

  12. Method and apparatus for two-dimensional absolute optical encoding

    NASA Technical Reports Server (NTRS)

    Leviton, Douglas B. (Inventor)

    2004-01-01

    This invention presents a two-dimensional absolute optical encoder and a method for determining position of an object in accordance with information from the encoder. The encoder of the present invention comprises a scale having a pattern being predetermined to indicate an absolute location on the scale, means for illuminating the scale, means for forming an image of the pattern; and detector means for outputting signals derived from the portion of the image of the pattern which lies within a field of view of the detector means, the field of view defining an image reference coordinate system, and analyzing means, receiving the signals from the detector means, for determining the absolute location of the object. There are two types of scale patterns presented in this invention: grid type and starfield type.

  13. Environmental data from laboratory- and bench-scale Pressurized Fluidized-Bed Hydroretorting of Eastern oil shale

    SciTech Connect

    Mensinger, M.C.; Rue, D.M.; Roberts, M.J.

    1991-01-01

    As part of a 3-year program to develop the Pressurized Fluidized-Bed Hydroretorting (PFH) Process for Eastern oil shales, IGT conducted tests in laboratory-scale batch and continuous units as well as a 45-kg/h bench-scale unit to generate a data base for 6 Eastern shales. Data were collected during PFH processing of raw Alabama and Indiana shales and a beneficiated Indiana shale for environmental mitigation analyses. The data generated include trace element analyses of the raw feeds and spent shales, product oils, and sour waters. The sulfur compounds present in the product gas and trace components in the sour water were also determined. In addition, the leaching characteristics of the feed and residue solids were determined. The data obtained were used to evaluate the environmental impact of a shale processing plant based on the PFH process. This paper presents the environmental data obtained from bench-scale tests conducted during the program.

  14. Environmental data from laboratory- and bench-scale Pressurized Fluidized-Bed Hydroretorting of Eastern oil shale

    SciTech Connect

    Mensinger, M.C.; Rue, D.M.; Roberts, M.J.

    1991-12-31

    As part of a 3-year program to develop the Pressurized Fluidized-Bed Hydroretorting (PFH) Process for Eastern oil shales, IGT conducted tests in laboratory-scale batch and continuous units as well as a 45-kg/h bench-scale unit to generate a data base for 6 Eastern shales. Data were collected during PFH processing of raw Alabama and Indiana shales and a beneficiated Indiana shale for environmental mitigation analyses. The data generated include trace element analyses of the raw feeds and spent shales, product oils, and sour waters. The sulfur compounds present in the product gas and trace components in the sour water were also determined. In addition, the leaching characteristics of the feed and residue solids were determined. The data obtained were used to evaluate the environmental impact of a shale processing plant based on the PFH process. This paper presents the environmental data obtained from bench-scale tests conducted during the program.

  15. Unsteady blade surface pressures on a large-scale advanced propeller - Prediction and data

    NASA Technical Reports Server (NTRS)

    Nallasamy, M.; Groeneweg, J. F.

    1990-01-01

    An unsteady three dimensional Euler analysis technique is employed to compute the flowfield of an advanced propeller operating at an angle of attack. The predicted blade pressure waveforms are compared with wind tunnel data at two Mach numbers, 0.5 and 0.2. The inflow angle is three degrees. For an inflow Mach number of 0.5, the predicted pressure response is in fair agreement with data: the predicted phases of the waveforms are in close agreement with data while the magnitudes are underpredicted. At the low Mach number of 0.2 (take-off) the numerical solution shows the formation of a leading edge vortex which is in qualitative agreement with measurements. However, the highly nonlinear pressure response measured on the blade suction surface is not captured in the present inviscid analysis.

  16. Unsteady blade-surface pressures on a large-scale advanced propeller: Prediction and data

    NASA Technical Reports Server (NTRS)

    Nallasamy, M.; Groeneweg, J. F.

    1990-01-01

    An unsteady 3-D Euler analysis technique is employed to compute the flow field of an advanced propeller operating at an angle of attack. The predicted blade pressure waveforms are compared with wind tunnel data at two Mach numbers, 0.5 and 0.2. The inflow angle is three degrees. For an inflow Mach number of 0.5, the predicted pressure response is in fair agreement with data: the predicted phases of the waveforms are in close agreement with data while the magnitudes are underpredicted. At the low Mach number of 0.2 (takeoff), the numerical solution shows the formation of a leading edge vortex which is in qualitative agreement with measurements. However, the highly nonlinear pressure response measured on the blade suction surface is not captured in the present inviscid analysis.

  17. Scaling laws for gas breakdown for nanoscale to microscale gaps at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Loveless, Amanda M.; Garner, Allen L.

    2016-06-01

    Electronics miniaturization motivates gas breakdown predictions for microscale and smaller gaps, since traditional breakdown theory fails when gap size, d, is smaller than ˜15 μm at atmospheric pressure, patm. We perform a matched asymptotic analysis to derive analytic expressions for breakdown voltage, Vb, at patm for 1 nm ≤ d ≤ 35 μm. We obtain excellent agreement between numerical, analytic, and particle-in-cell simulations for argon, and show Vb decreasing as d → 0, instead of increasing as predicted by Paschen's law. This work provides an analytic framework for determining Vb at atmospheric pressure for various gap distances that may be extended to other gases.

  18. On Porosity Formation in Metal Matrix Composites Made with Dual-Scale Fiber Reinforcements Using Pressure Infiltration Process

    NASA Astrophysics Data System (ADS)

    Etemadi, Reihaneh; Pillai, Krishna M.; Rohatgi, Pradeep K.; Hamidi, Sajad Ahmad

    2015-05-01

    This is the first such study on porosity formation phenomena observed in dual-scale fiber preforms during the synthesis of metal matrix composites (MMCs) using the gas pressure infiltration process. In this paper, different mechanisms of porosity formation during pressure infiltration of Al-Si alloys into Nextel™ 3D-woven ceramic fabric reinforcements (a dual-porosity or dual-scale porous medium) are studied. The effect of processing conditions on porosity content of the ceramic fabric infiltrated by the alloys through the gas PIP (PIP stands for "Pressure Infiltration Process" in which liquid metal is injected under pressure into a mold packed with reinforcing fibers.) is investigated. Relative density (RD), defined as the ratio of the actual MMC density and the density obtained at ideal 100 pct saturation of the preform, was used to quantify the overall porosity. Increasing the infiltration temperature led to an increase in RD due to reduced viscosity of liquid metal and enhanced wettability leading to improved feedability of the liquid metal. Similarly, increasing the infiltration pressure led to enhanced penetration of fiber tows and resulted in higher RD and reduced porosity. For the first time, the modified Capillary number ( Ca*), which is found to predict formation of porosity in polymer matrix composites quite well, is employed to study porosity in MMCs made using PIP. It is observed that in the high Ca* regime which is common in PIP, the overall porosity shows a strong downward trend with increasing Ca*. In addition, the effect of matrix shrinkage on porosity content of the samples is studied through using a zero-shrinkage Al-Si alloy as the matrix; usage of this alloy as the matrix led to a reduction in porosity content.

  19. Absolute NMR shielding scales and nuclear spin–rotation constants in {sup 175}LuX and {sup 197}AuX (X = {sup 19}F, {sup 35}Cl, {sup 79}Br and {sup 127}I)

    SciTech Connect

    Demissie, Taye B. Komorovsky, Stanislav; Repisky, Michal; Ruud, Kenneth; Jaszuński, Michał

    2015-10-28

    We present nuclear spin–rotation constants, absolute nuclear magnetic resonance (NMR) shielding constants, and shielding spans of all the nuclei in {sup 175}LuX and {sup 197}AuX (X = {sup 19}F, {sup 35}Cl, {sup 79}Br, {sup 127}I), calculated using coupled-cluster singles-and-doubles with a perturbative triples (CCSD(T)) correction theory, four-component relativistic density functional theory (relativistic DFT), and non-relativistic DFT. The total nuclear spin–rotation constants determined by adding the relativistic corrections obtained from DFT calculations to the CCSD(T) values are in general in agreement with available experimental data, indicating that the computational approach followed in this study allows us to predict reliable results for the unknown spin–rotation constants in these molecules. The total NMR absolute shielding constants are determined for all the nuclei following the same approach as that applied for the nuclear spin–rotation constants. In most of the molecules, relativistic effects significantly change the computed shielding constants, demonstrating that straightforward application of the non-relativistic formula relating the electronic contribution to the nuclear spin–rotation constants and the paramagnetic contribution to the shielding constants does not yield correct results. We also analyze the origin of the unusually large absolute shielding constant and its relativistic correction of gold in AuF compared to the other gold monohalides.

  20. Absolute NMR shielding scales and nuclear spin-rotation constants in 175LuX and 197AuX (X = 19F, 35Cl, 79Br and 127I)

    NASA Astrophysics Data System (ADS)

    Demissie, Taye B.; Jaszuński, Michał; Komorovsky, Stanislav; Repisky, Michal; Ruud, Kenneth

    2015-10-01

    We present nuclear spin-rotation constants, absolute nuclear magnetic resonance (NMR) shielding constants, and shielding spans of all the nuclei in 175LuX and 197AuX (X = 19F, 35Cl, 79Br, 127I), calculated using coupled-cluster singles-and-doubles with a perturbative triples (CCSD(T)) correction theory, four-component relativistic density functional theory (relativistic DFT), and non-relativistic DFT. The total nuclear spin-rotation constants determined by adding the relativistic corrections obtained from DFT calculations to the CCSD(T) values are in general in agreement with available experimental data, indicating that the computational approach followed in this study allows us to predict reliable results for the unknown spin-rotation constants in these molecules. The total NMR absolute shielding constants are determined for all the nuclei following the same approach as that applied for the nuclear spin-rotation constants. In most of the molecules, relativistic effects significantly change the computed shielding constants, demonstrating that straightforward application of the non-relativistic formula relating the electronic contribution to the nuclear spin-rotation constants and the paramagnetic contribution to the shielding constants does not yield correct results. We also analyze the origin of the unusually large absolute shielding constant and its relativistic correction of gold in AuF compared to the other gold monohalides.

  1. Absolute magnitudes and kinematics of barium stars.

    NASA Astrophysics Data System (ADS)

    Gomez, A. E.; Luri, X.; Grenier, S.; Prevot, L.; Mennessier, M. O.; Figueras, F.; Torra, J.

    1997-03-01

    The absolute magnitude of barium stars has been obtained from kinematical data using a new algorithm based on the maximum-likelihood principle. The method allows to separate a sample into groups characterized by different mean absolute magnitudes, kinematics and z-scale heights. It also takes into account, simultaneously, the censorship in the sample and the errors on the observables. The method has been applied to a sample of 318 barium stars. Four groups have been detected. Three of them show a kinematical behaviour corresponding to disk population stars. The fourth group contains stars with halo kinematics. The luminosities of the disk population groups spread a large range. The intrinsically brightest one (M_v_=-1.5mag, σ_M_=0.5mag) seems to be an inhomogeneous group containing barium binaries as well as AGB single stars. The most numerous group (about 150 stars) has a mean absolute magnitude corresponding to stars in the red giant branch (M_v_=0.9mag, σ_M_=0.8mag). The third group contains barium dwarfs, the obtained mean absolute magnitude is characteristic of stars on the main sequence or on the subgiant branch (M_v_=3.3mag, σ_M_=0.5mag). The obtained mean luminosities as well as the kinematical results are compatible with an evolutionary link between barium dwarfs and classical barium giants. The highly luminous group is not linked with these last two groups. More high-resolution spectroscopic data will be necessary in order to better discriminate between barium and non-barium stars.

  2. Interpolating a consumption variable for scaling and generalizing potential population pressure on urbanizing natural areas

    USGS Publications Warehouse

    Varanka, Dalia; Jiang, Bin; Yao, Xiaobai

    2010-01-01

    Measures of population pressure, referring in general to the stress upon the environment by human consumption of resources, are imperative for environmental sustainability studies and management. Development based on resource consumption is the predominant factor of population pressure. This paper presents a spatial model of population pressure by linking consumption associated with regional urbanism and ecosystem services. Maps representing relative geographic degree and extent of natural resource consumption and degree and extent of impacts on surrounding areas are new, and this research represents the theoretical research toward this goal. With development, such maps offer a visualization tool for planners of various services, amenities for people, and conservation planning for ecologist. Urbanization is commonly generalized by census numbers or impervious surface area. The potential geographical extent of urbanism encompasses the environmental resources of the surrounding region that sustain cities. This extent is interpolated using kriging of a variable based on population wealth data from the U.S. Census Bureau. When overlayed with land-use/land-cover data, the results indicate that the greatest estimates of population pressure fall within mixed forest areas. Mixed forest areas result from the spread of cedar woods in previously disturbed areas where further disturbance is then suppressed. Low density areas, such as suburbanization and abandoned farmland are characteristic of mixed forest areas.

  3. Scaling of viscosity with rate, pressure, and temperature: Linking simulations to experiments

    NASA Astrophysics Data System (ADS)

    Jadhao, Vikram; Robbins, Mark

    Elastohydrodynamic lubrication (EHL) is important in many practical devices and produces extreme pressures (> 1 GPa) and shear rates (105 -107 s-1). This makes EHL fluids ideal candidates for bridging the gap between experimental and simulation studies of viscosity. There is an ongoing debate about whether the high-rate response of simple molecules like squalane follows a power-law Carreau model or a thermal activation based Eyring model. We use molecular dynamics simulations to investigate the rheological response of squalane for a wide range of rates (105 -1010 s-1), pressures (0.1 MPa to 3 GPa), and temperatures (100 - 313 K). We find that experimental and theoretical results can be collapsed onto a master curve consistent with Eyring theory over more than 20 orders of magnitude in rate. Extrapolating Eyring fits to simulations at 107 s-1 and above yields Newtonian viscosities η0 that are consistent with available low-rate experiments, and allows predictions to much higher pressures and lower temperatures. There is no indication of a diverging viscosity at finite stress, since log η0 rises sublinearly with pressure up to 6 GPa and η0 >1012 Pa-s. Correlations between chain conformations and Eyring parameters are also presented. This research was performed within the Center for Materials in Extreme Dynamic Environments (CMEDE) under the Hopkins Extreme Materials Institute at Johns Hopkins University. Financial support was provided by Grant W911NF-12-2-0022.

  4. A stochastic two-scale model for pressure-driven flow between rough surfaces

    PubMed Central

    Larsson, Roland; Lundström, Staffan; Wall, Peter; Almqvist, Andreas

    2016-01-01

    Seal surface topography typically consists of global-scale geometric features as well as local-scale roughness details and homogenization-based approaches are, therefore, readily applied. These provide for resolving the global scale (large domain) with a relatively coarse mesh, while resolving the local scale (small domain) in high detail. As the total flow decreases, however, the flow pattern becomes tortuous and this requires a larger local-scale domain to obtain a converged solution. Therefore, a classical homogenization-based approach might not be feasible for simulation of very small flows. In order to study small flows, a model allowing feasibly-sized local domains, for really small flow rates, is developed. Realization was made possible by coupling the two scales with a stochastic element. Results from numerical experiments, show that the present model is in better agreement with the direct deterministic one than the conventional homogenization type of model, both quantitatively in terms of flow rate and qualitatively in reflecting the flow pattern. PMID:27436975

  5. Voltage and pressure scaling of streamer dynamics in a helium plasma jet with N{sub 2} co-flow

    SciTech Connect

    Leiweke, Robert J.; Ganguly, Biswa N.; Scofield, James D.

    2014-08-15

    Positive polarity applied voltage and gas pressure dependent scaling of cathode directed streamer propagation properties in helium gas flow guided capillary dielectric barrier discharge have been quantified from streamer velocity, streamer current, and streamer optical diameter measurements. All measurements of the non-stochastic streamer properties have been performed in a variable gas pressure glass cell with N{sub 2} co-flow and under self-consistent Poisson electric field dominated conditions to permit data comparison with 2-D streamer dynamics models in air/nitrogen. The streamer optical diameter was found to be nearly independent of both gas pressures, from 170 Torr up to 760 Torr, and also for applied voltages from 6 to 11 kV at 520 Torr. The streamer velocity was found to increase quadratically with increased applied voltage. These observed differences in the 2-D scaling properties of ionization wave sustained cathode directed streamer propagation in helium flow channel with N{sub 2} annular co-flow compared to the streamer propagation in air or nitrogen have been shown to be caused by the remnant ionization distribution due to large differences in the dissociative recombination rates of He{sub 2}{sup +} versus N{sub 4}{sup +} ions, for this 5 kHz repetition rate applied voltage pulse generated streamers.

  6. Voltage and pressure scaling of streamer dynamics in a helium plasma jet with N2 co-flow

    NASA Astrophysics Data System (ADS)

    Leiweke, Robert J.; Ganguly, Biswa N.; Scofield, James D.

    2014-08-01

    Positive polarity applied voltage and gas pressure dependent scaling of cathode directed streamer propagation properties in helium gas flow guided capillary dielectric barrier discharge have been quantified from streamer velocity, streamer current, and streamer optical diameter measurements. All measurements of the non-stochastic streamer properties have been performed in a variable gas pressure glass cell with N2 co-flow and under self-consistent Poisson electric field dominated conditions to permit data comparison with 2-D streamer dynamics models in air/nitrogen. The streamer optical diameter was found to be nearly independent of both gas pressures, from 170 Torr up to 760 Torr, and also for applied voltages from 6 to 11 kV at 520 Torr. The streamer velocity was found to increase quadratically with increased applied voltage. These observed differences in the 2-D scaling properties of ionization wave sustained cathode directed streamer propagation in helium flow channel with N2 annular co-flow compared to the streamer propagation in air or nitrogen have been shown to be caused by the remnant ionization distribution due to large differences in the dissociative recombination rates of He2+ versus N4+ ions, for this 5 kHz repetition rate applied voltage pulse generated streamers.

  7. Staged, High-Pressure Oxy-Combustion Technology: Development and Scale-Up

    SciTech Connect

    Axelbaum, Richard; Xia, Fei; Gopan, Akshay; Kumfer, Benjamin

    2014-09-30

    Washington University in St. Louis and its project partners are developing a unique pressurized oxy-combustion process that aims to improve efficiency and costs by reducing the recycling of flue gas to near zero. Normally, in the absence of recycled flue gas or another inert gas, combustion of fuel and oxygen results in a dramatic increase in temperature of the combustion products and radiant energy, as compared to combustion in air. High heat flux to the boiler tubes may result in a tube surface temperatures that exceed safe operating limits. In the Staged Pressurized Oxy-Combustion (SPOC) process, this problem is addressed by staging the delivery of fuel and by novel combustion design that allows control of heat flux. In addition, the main mode of heat transfer to the steam cycle is by radiation, as opposed to convection. Therefore, the requirement for recycling large amounts of flue gas, for temperature control or to improve convective heat transfer, is eliminated, resulting in a reduction in auxiliary loads. The following report contains a detailed summary of scientific findings and accomplishments for the period of Oct. 1, 2013 to Sept 30, 2014. Results of ASPEN process and CFD modelling activities aimed at improving the SPOC process and boiler design are presented. The effects of combustion pressure and fuel moisture on the plant efficiency are discussed. Combustor pressure is found to have only a minor impact beyond 16 bar. For fuels with moisture content greater than approx 30%, e.g. coal/water slurries, the amount of latent heat of condensation exceeds that which can be utilized in the steam cycle and plant efficiency is reduced significantly. An improved boiler design is presented that achieves a more uniform heat flux profile. In addition, a fundamental study of radiation in high-temperature, high-pressure, particle-laden flows is summarized which provides a more complete understanding of heat transfer in these unusual conditions and to allow for

  8. A Full-Scale Tunnel Sealing Demonstration using Concrete and Clay Bulkheads Exposed to Elevated Temperatures and Pressures

    SciTech Connect

    Martino, J.B.; Dixon, D.A.; Vignal, B.; Fujita, T.

    2006-07-01

    The Tunnel Sealing Experiment (TSX), a major international research and development project, demonstrating technologies for tunnel sealing at full-scale, was conducted at Atomic Energy of Canada Limited's Underground Research Laboratory (URL). The objective of the experiment was to demonstrate technologies for construction of bentonite and concrete bulkheads, to quantify the performance of each bulkhead and to document the factors that affect the performance. It was not the purpose of the experiment to demonstrate an optimized sealing bulkhead. Two bulkheads, one composed of low heat high performance concrete and the other of highly compacted sand-bentonite material, were constructed in a tunnel in unfractured granitic rock at the URL. The chamber between the two bulkheads was pressurized with water to 4 MPa in a series of steps over a two-year period. The ultimate pressure is representative of the ambient pore pressures in the rock at a depth of 420 m. The first phase of the TSX was conducted at ambient temperature (15 deg. C) while a second phase involved heating the pressurized water between the bulkheads to temperatures that ultimately reached 65 deg. C at thermistors near the upstream face of both bulkheads. Instrumentation in the experiment was used to monitor parameters that are important indicators for bulkhead performance. Seepage was measured at both bulkheads and at any leakage points from the tunnel to maintain a water balance. The paper provides an overview of the project and its results. (authors)

  9. System overview and characterization of a high-temperature, high-pressure, entrained-flow, laboratory-scale gasifier.

    PubMed

    Kelley, Madison A; Jakulewicz, Micah S; Dreyer, Christopher B; Parker, Terence E; Porter, Jason M

    2015-05-01

    The high-temperature, high-pressure, entrained-flow, laboratory-scale gasifier at the Colorado School of Mines, including the primary systems and the supporting subsystems, is presented. The gasifier is capable of operating at temperatures and pressures up to 1650 °C and 40 bar. The heated section of the reactor column has an inner diameter of 50 mm and is 1 m long. Solid organic feedstock (e.g., coal, biomass, and solid waste) is ground into batches with particle sizes ranging from 25 to 90 μm and is delivered to the reactor at feed rates of 2-20 g/min. The maximum useful power output of the syngas is 10 kW, with a nominal power output of 1.2 kW. The initial characterization and demonstration results of the gasifier system with a coal feedstock are also reported.

  10. System overview and characterization of a high-temperature, high-pressure, entrained-flow, laboratory-scale gasifier

    SciTech Connect

    Kelley, Madison A.; Dreyer, Christopher B.; Parker, Terence E.; Porter, Jason M.; Jakulewicz, Micah S.

    2015-05-15

    The high-temperature, high-pressure, entrained-flow, laboratory-scale gasifier at the Colorado School of Mines, including the primary systems and the supporting subsystems, is presented. The gasifier is capable of operating at temperatures and pressures up to 1650 °C and 40 bar. The heated section of the reactor column has an inner diameter of 50 mm and is 1 m long. Solid organic feedstock (e.g., coal, biomass, and solid waste) is ground into batches with particle sizes ranging from 25 to 90 μm and is delivered to the reactor at feed rates of 2–20 g/min. The maximum useful power output of the syngas is 10 kW, with a nominal power output of 1.2 kW. The initial characterization and demonstration results of the gasifier system with a coal feedstock are also reported.

  11. Ram-pressure scaling and non-uniformity characterization of a spherically imploding liner formed by hypervelocity plasma jets

    NASA Astrophysics Data System (ADS)

    Cassibry, Jason; Dougherty, Jesse; Thompson, Seth; Hsu, Scott; Witherspoon, F. D.; University of AL in Huntsville Team; Los Alamos National Laboratory Team; HyperV Technologies Corp. Team

    2014-10-01

    Three-dimensional modeling of plasma liner formation and implosion is performed using the Smoothed Particle Hydrodynamics Code (SPHC) with radiation, thermal transport, and tabular equations of state (EOS), accounting for ionization, in support of a proposed 60-gun plasma liner formation experiment for plasma-jet driven magneto-inertial fusion (PJMIF). Previous SPHC modeling showed that ideal gas law scaling of peak stagnation pressure increased linearly with density and number of jets, quadratically with jet radius and velocity, and inversely with the initial jet length, while results with tabular EOS, thermal transport, and radiation have greater sensitivity to the initial jet distribution. A series of simulations are conducted to study the effects of initial jet conditions on peak ram pressure and liner non-uniformity during plasma liner implosion. The growth rate of large-amplitude density perturbations introduced by the discrete jets are computed and compared with predictions by the Bell-Plesset equation.

  12. Scaling laws for magnetic reconnection, set by regulation of the electron pressure anisotropy to the firehose threshold

    NASA Astrophysics Data System (ADS)

    Ohia, O.; Egedal, J.; Lukin, V. S.; Daughton, W.; Le, A.

    2015-12-01

    Magnetic reconnection in a weakly collisional plasma, such as in the Earth's magnetosphere, is known to be accompanied by electron pressure anisotropy. For reconnection scenarios including moderate guide magnetic field, electrons are magnetized throughout the reconnection region, and the anisotropy drives extended electron current layers. Along these layers, the anisotropy nears the firehose threshold. We describe how the anisotropy stagnates at this threshold by a mechanism that does not involve pitch-angle mixing. Using previously established anisotropic equations of state and by imposing the marginal firehose condition, scaling laws are obtained for quantities along the current layers as functions of plasma parameters upstream of the reconnection region. The predicted reconnection region quantities include the magnetic field strength, plasma density, and the parallel and perpendicular electron pressures, allowing for a characterization of electron energization solely as a function of the upstream plasma conditions. This characterization is in agreement with simulations and spacecraft observations.

  13. Nearfield Unsteady Pressures at Cruise Mach Numbers for a Model Scale Counter-Rotation Open Rotor

    NASA Technical Reports Server (NTRS)

    Stephens, David B.

    2012-01-01

    An open rotor experiment was conducted at cruise Mach numbers and the unsteady pressure in the nearfield was measured. The system included extensive performance measurements, which can help provide insight into the noise generating mechanisms in the absence of flow measurements. A set of data acquired at a constant blade pitch angle but various rotor speeds was examined. The tone levels generated by the front and rear rotor were found to be nearly equal when the thrust was evenly balanced between rotors.

  14. Relativistic Absolutism in Moral Education.

    ERIC Educational Resources Information Center

    Vogt, W. Paul

    1982-01-01

    Discusses Emile Durkheim's "Moral Education: A Study in the Theory and Application of the Sociology of Education," which holds that morally healthy societies may vary in culture and organization but must possess absolute rules of moral behavior. Compares this moral theory with current theory and practice of American educators. (MJL)

  15. Absolute transition probabilities of phosphorus.

    NASA Technical Reports Server (NTRS)

    Miller, M. H.; Roig, R. A.; Bengtson, R. D.

    1971-01-01

    Use of a gas-driven shock tube to measure the absolute strengths of 21 P I lines and 126 P II lines (from 3300 to 6900 A). Accuracy for prominent, isolated neutral and ionic lines is estimated to be 28 to 40% and 18 to 30%, respectively. The data and the corresponding theoretical predictions are examined for conformity with the sum rules.-

  16. Equivalent particle diameter and length scale for pressure drop in porous metals

    SciTech Connect

    Dukhan, Nihad; Patel, Pragnesh

    2008-04-15

    The internal architecture of metal foam is significantly different from that of traditional porous media. This provides a set of challenges for understanding the fluid flow in this relatively new class of materials. This paper proposes that despite the geometrical differences between metal foam and traditional porous media, the Ergun correlation is a good fit for the linear pressure drop as a function of the Darcian velocity, provided that an appropriate equivalent particle diameter is used. The paper investigates an appropriate particle diameter considering the physics of energy dissipation, i.e. the viscous shear and the form drag. The above approach is supported by wind tunnel steady-state unidirectional pressure drop measurements for airflow through several isotropic open-cell aluminum foam samples having different porosities and pore densities. For each foam sample, the equivalent particle diameter correlated well with the surface area per unit volume of the foam. This was also very well valid for previous porous metal pressure drop data in the open literature. (author)

  17. Measurement of electron density in atmospheric pressure small-scale plasmas using CO2-laser heterodyne interferometry

    NASA Astrophysics Data System (ADS)

    Choi, Joon-Young; Takano, Nobuhiko; Urabe, Keiichiro; Tachibana, Kunihide

    2009-08-01

    CO2-laser heterodyne interferometry was applied to measure electron density ne in three different types of high pressure (including atmospheric pressure) small-scale plasma sources: a short hollow cathode (HC) discharge tube, a pulsed dc plasma jet and a micro-HC plasma jet. The interfering contribution of the gas density reduction due to Joule heating of the measured phase shift was separated from the electron component based on these different temporal dependences. The typical values of ne measured in the short HC discharge tube with helium gas were on the order of 1013 cm-3 at a discharge current that varied from 25 to 225 mA and the pressure from a few tens to hundreds of Torr; the values measured in argon gas were further increased by a factor of five to six. For the dc He plasma jet ejected into open air, the radial profile of ne on the order of 1014 cm-3 presented a hollowed distribution based on the tubular cathode structure. The micro-HC structure allowed us to evaluate ne in both the parallel and the perpendicular directions with respect to the plasma jet axis, and the derived values of ne from both directions were consistent. Thus, we verified that this diagnostic technique can be applied to measure ne in various sub-millimeter scale plasmas operated at atmospheric pressure in pulsed operation modes with a sensitivity of about 1013 cm-3 (at an optical length of 1 mm) and a spatial resolution better than 100 µm.

  18. A Preliminary Model Study of the Large-Scale Seasonal Cycle in Bottom Pressure Over the Global Ocean

    NASA Technical Reports Server (NTRS)

    Ponte, Rui M.

    1998-01-01

    Output from the primitive equation model of Semtner and Chervin is used to examine the seasonal cycle in bottom pressure (Pb) over the global ocean. Effects of the volume-conserving formulation of the model on the calculation Of Pb are considered. The estimated seasonal, large-scale Pb signals have amplitudes ranging from less than 1 cm over most of the deep ocean to several centimeters over shallow, boundary regions. Variability generally increases toward the western sides of the basins, and is also larger in some Southern Ocean regions. An oscillation between subtropical and higher latitudes in the North Pacific is clear. Comparison with barotropic simulations indicates that, on basin scales, seasonal Pb variability is related to barotropic dynamics and the seasonal cycle in Ekman pumping, and results from a small, net residual in mass divergence from the balance between Ekman and Sverdrup flows.

  19. Scaling up of High-Pressure Sliding (HPS) for Grain Refinement and Superplasticity

    NASA Astrophysics Data System (ADS)

    Takizawa, Yoichi; Masuda, Takahiro; Fujimitsu, Kazushige; Kajita, Takahiro; Watanabe, Kyohei; Yumoto, Manabu; Otagiri, Yoshiharu; Horita, Zenji

    2016-09-01

    The process of high-pressure sliding (HPS) is a method of severe plastic deformation developed recently for grain refinement of metallic materials under high pressure. The sample for HPS is used with a form of sheet or rod. In this study, an HPS facility with capacities of 500 tonnes for vertical pressing and of 500 and 300 tonnes for horizontal forward and backward pressings, respectively, was newly built and applied for grain refinement of a Mg alloy as AZ61, Al alloys such as Al-Mg-Sc, A2024 and A7075 alloys, a Ti alloy as ASTM-F1295, and a Ni-based superalloy as Inconel 718. Sheet samples with dimensions of 10 to 30 mm width, 100 mm length, and 1 mm thickness were processed at room temperature and ultrafine grains with sizes of ~200 to 300 nm were successfully produced in the alloys. Tensile testing at elevated temperatures confirmed the advent of superplasticity with total elongations of more than 400 pct in all the alloys. It is demonstrated that the HPS can make all the alloys superplastic through processing at room temperature with a form of rectangular sheets.

  20. Flight Tests on U.S.S. Los Angeles. Part I : Full Scale Pressure Distribution Investigation

    NASA Technical Reports Server (NTRS)

    De France, S J

    1930-01-01

    The primary purpose of this investigation was to obtain simultaneous data on the loads and stress experience in flight by the U. S. S. Los Angeles which could be used in rigid airship structure design. A secondary object of the investigation was to determine the turning and drag characteristics of the airship. The aerodynamic loading was obtained by measuring the pressure at 95 locations on the tail surfaces, 54 on the hull, and 5 on the passenger car. These measurements were made during a series of maneuvers consisting of turns and reversals in smooth air and during a cruise in rough air which was just short of squall proportions. The results of the pressure measurements on the hull indicate that the forces on the forebody of an airship are relatively small. The tail surface measurements show conclusively that the forces caused by gusts are much greater than those caused by horizontal maneuvers. In this investigation the tail surface loadings caused by gusts closely approached the designed loads of the tail structure. The turning and drag characteristics will be reported in separate reports.

  1. Improving the quantification of land cover pressure on stream ecological status at the riparian scale using High Spatial Resolution Imagery

    NASA Astrophysics Data System (ADS)

    Tormos, T.; Kosuth, P.; Durrieu, S.; Villeneuve, B.; Wasson, J. G.

    The aim of this paper is to demonstrate the interest of High Spatial Resolution Imagery (HSRI) and the limits of coarse land cover data such as CORINE Land Cover (CLC), for the accurate characterization of land cover structure along river corridors and of its functional links with freshwater ecological status on a large scale. For this purpose, we compared several spatial indicators built from two land cover maps of the Herault River corridor (southern France): one derived from the CLC database, the other derived from HSRI. The HSRI-derived map was obtained using a supervised object-based classification of multi-source remotely-sensed images (SPOT 5 XS-10 m and aerial photography-0.5 m) and presents an overall accuracy of 70%. The comparison between the two sets of spatial indicators highlights that the HSRI-derived map allows more accuracy in the quantification of land cover pressures near the stream: the spatial structure of the river landscape is finely resolved and the main attributes of riparian vegetation can be quantified in a reliable way. The next challenge will consist in developing an operational methodology using HSRI for large-scale mapping of river corridor land cover, for spatial indicator computation and for the development of related pressure/impact models, in order to improve the prediction of stream ecological status.

  2. Optomechanics for absolute rotation detection

    NASA Astrophysics Data System (ADS)

    Davuluri, Sankar

    2016-07-01

    In this article, we present an application of optomechanical cavity for the absolute rotation detection. The optomechanical cavity is arranged in a Michelson interferometer in such a way that the classical centrifugal force due to rotation changes the length of the optomechanical cavity. The change in the cavity length induces a shift in the frequency of the cavity mode. The phase shift corresponding to the frequency shift in the cavity mode is measured at the interferometer output to estimate the angular velocity of absolute rotation. We derived an analytic expression to estimate the minimum detectable rotation rate in our scheme for a given optomechanical cavity. Temperature dependence of the rotation detection sensitivity is studied.

  3. Moral absolutism and ectopic pregnancy.

    PubMed

    Kaczor, C

    2001-02-01

    If one accepts a version of absolutism that excludes the intentional killing of any innocent human person from conception to natural death, ectopic pregnancy poses vexing difficulties. Given that the embryonic life almost certainly will die anyway, how can one retain one's moral principle and yet adequately respond to a situation that gravely threatens the life of the mother and her future fertility? The four options of treatment most often discussed in the literature are non-intervention, salpingectomy (removal of tube with embryo), salpingostomy (removal of embryo alone), and use of methotrexate (MXT). In this essay, I review these four options and introduce a fifth (the milking technique). In order to assess these options in terms of the absolutism mentioned, it will also be necessary to discuss various accounts of the intention/foresight distinction. I conclude that salpingectomy, salpingostomy, and the milking technique are compatible with absolutist presuppositions, but not the use of methotrexate.

  4. Moral absolutism and ectopic pregnancy.

    PubMed

    Kaczor, C

    2001-02-01

    If one accepts a version of absolutism that excludes the intentional killing of any innocent human person from conception to natural death, ectopic pregnancy poses vexing difficulties. Given that the embryonic life almost certainly will die anyway, how can one retain one's moral principle and yet adequately respond to a situation that gravely threatens the life of the mother and her future fertility? The four options of treatment most often discussed in the literature are non-intervention, salpingectomy (removal of tube with embryo), salpingostomy (removal of embryo alone), and use of methotrexate (MXT). In this essay, I review these four options and introduce a fifth (the milking technique). In order to assess these options in terms of the absolutism mentioned, it will also be necessary to discuss various accounts of the intention/foresight distinction. I conclude that salpingectomy, salpingostomy, and the milking technique are compatible with absolutist presuppositions, but not the use of methotrexate. PMID:11262641

  5. The Absolute Spectrum Polarimeter (ASP)

    NASA Technical Reports Server (NTRS)

    Kogut, A. J.

    2010-01-01

    The Absolute Spectrum Polarimeter (ASP) is an Explorer-class mission to map the absolute intensity and linear polarization of the cosmic microwave background and diffuse astrophysical foregrounds over the full sky from 30 GHz to 5 THz. The principal science goal is the detection and characterization of linear polarization from an inflationary epoch in the early universe, with tensor-to-scalar ratio r much greater than 1O(raised to the power of { -3}) and Compton distortion y < 10 (raised to the power of{-6}). We describe the ASP instrument and mission architecture needed to detect the signature of an inflationary epoch in the early universe using only 4 semiconductor bolometers.

  6. Classification images predict absolute efficiency.

    PubMed

    Murray, Richard F; Bennett, Patrick J; Sekuler, Allison B

    2005-02-24

    How well do classification images characterize human observers' strategies in perceptual tasks? We show mathematically that from the classification image of a noisy linear observer, it is possible to recover the observer's absolute efficiency. If we could similarly predict human observers' performance from their classification images, this would suggest that the linear model that underlies use of the classification image method is adequate over the small range of stimuli typically encountered in a classification image experiment, and that a classification image captures most important aspects of human observers' performance over this range. In a contrast discrimination task and in a shape discrimination task, we found that observers' absolute efficiencies were generally well predicted by their classification images, although consistently slightly (approximately 13%) higher than predicted. We consider whether a number of plausible nonlinearities can account for the slight under prediction, and of these we find that only a form of phase uncertainty can account for the discrepancy.

  7. Absolute calibration of optical flats

    DOEpatents

    Sommargren, Gary E.

    2005-04-05

    The invention uses the phase shifting diffraction interferometer (PSDI) to provide a true point-by-point measurement of absolute flatness over the surface of optical flats. Beams exiting the fiber optics in a PSDI have perfect spherical wavefronts. The measurement beam is reflected from the optical flat and passed through an auxiliary optic to then be combined with the reference beam on a CCD. The combined beams include phase errors due to both the optic under test and the auxiliary optic. Standard phase extraction algorithms are used to calculate this combined phase error. The optical flat is then removed from the system and the measurement fiber is moved to recombine the two beams. The newly combined beams include only the phase errors due to the auxiliary optic. When the second phase measurement is subtracted from the first phase measurement, the absolute phase error of the optical flat is obtained.

  8. Round-robin pretest analyses of a 1:6-scale reinforced concrete containment model subject to static internal pressurization

    SciTech Connect

    Clauss, D.B.

    1987-05-01

    Analyses of a 1:6-scale reinforced concrete containment model that will be tested to failure at Sandia National Laboratories in the spring of 1987 were conducted by the following organizations in the United States and Europe: Sandia National Laboratories (USA), Argonne National Laboratory (USA), Electric Power Research Institute (USA), Commissariat a L'Energie Atomique (France), HM Nuclear Installations Inspectorate (UK), Comitato Nazionale per la ricerca e per lo sviluppo dell'Energia Nucleare e delle Energie Alternative (Italy), UK Atomic Energy Authority, Safety and Reliability Directorate (UK), Gesellschaft fuer Reaktorsicherheit (FRG), Brookhaven National Laboratory (USA), and Central Electricity Generating Board (UK). Each organization was supplied with a standard information package, which included construction drawings and actual material properties for most of the materials used in the model. Each organization worked independently using their own analytical methods. This report includes descriptions of the various analytical approaches and pretest predictions submitted by each organization. Significant milestones that occur with increasing pressure, such as damage to the concrete (cracking and crushing) and yielding of the steel components, and the failure pressure (capacity) and failure mechanism are described. Analytical predictions for pressure histories of strain in the liner and rebar and displacements are compared at locations where experimental results will be available after the test. Thus, these predictions can be compared to one another and to experimental results after the test.

  9. SMALL-SCALE PRESSURE-BALANCED STRUCTURES DRIVEN BY MIRROR-MODE WAVES IN THE SOLAR WIND

    SciTech Connect

    Yao, Shuo; He, J.-S.; Tu, C.-Y.; Wang, L.-H.; Marsch, E.

    2013-10-20

    Recently, small-scale pressure-balanced structures (PBSs) have been studied with regard to their dependence on the direction of the local mean magnetic field B{sub 0} . The present work continues these studies by investigating the compressive wave mode forming small PBSs, here for B{sub 0} quasi-perpendicular to the x-axis of Geocentric Solar Ecliptic coordinates (GSE-x). All the data used were measured by WIND in the quiet solar wind. From the distribution of PBSs on the plane determined by the temporal scale and angle θ{sub xB} between the GSE-x and B{sub 0} , we notice that at θ{sub xB} = 115° the PBSs appear at temporal scales ranging from 700 s to 60 s. In the corresponding temporal segment, the correlations between the plasma thermal pressure P{sub th} and the magnetic pressure P{sub B}, as well as that between the proton density N{sub p} and the magnetic field strength B, are investigated. In addition, we use the proton velocity distribution functions to calculate the proton temperatures T and T{sub ∥}. Minimum Variance Analysis is applied to find the magnetic field minimum variance vector B{sub N} . We also study the time variation of the cross-helicity σ{sub c} and the compressibility C{sub p} and compare these with values from numerical predictions for the mirror mode. In this way, we finally identify a short segment that has T > T{sub ∥}, proton β ≅ 1, both pairs of P{sub th}-P{sub B} and N{sub p}-B showing anti-correlation, and σ{sub c} ≈ 0 with C{sub p} > 0. Although the examination of σ{sub c} and C{sub p} is not conclusive, it provides helpful additional information for the wave mode identification. Additionally, B{sub N} is found to be highly oblique to B{sub 0} . Thus, this work suggests that a candidate mechanism for forming small-scale PBSs in the quiet solar wind is due to mirror-mode waves.

  10. Experimental results from pressure testing a 1:6-scale nuclear power plant containment

    SciTech Connect

    Horschel, D.S.

    1992-01-01

    This report discusses the testing of a 1:6-scale, reinforced-concrete containment building at Sandia National Laboratories, in Albuquerque, New Mexico. The scale-model, Light Water Reactor (LWR) containment building was designed and built to the American Society of Mechanical Engineers (ASME) code by United Engineers and Constructors, Inc., and was instrumented with over 1200 transducers to prepare for the test. The containment model was tested to failure to determine its response to static internal overpressurization. As part of the US Nuclear Regulatory Commission`s program on containment integrity, the test results will be used to assess the capability of analytical methods to predict the performance of containments under severe-accident loads. The scaled dimensions of the cylindrical wall and hemispherical dome were typical of a full-size containment. Other typical features included in the heavily reinforced model were equipment hatches, personnel air locks, several small piping penetrations, and a ihin steel liner that was attached to the concrete by headed studs. In addition to the transducers attached to the model, an acoustic detection system and several video and still cameras were used during testing to gather data and to aid in the conduct of the test. The model and its instrumentation are briefly discussed, and is followed by the testing procedures and measured response of the containment model. A summary discussion is included to aid in understanding the significance of the test as it applies to real world reinforced concrete containment structures. The data gathered during SIT and overpressure testing are included as an appendix.

  11. Scrape-off Layer Flows With Pressure Gradient Scale Length ~ {rho}{sub p}

    SciTech Connect

    Robert J. Goldston

    2013-03-08

    A heuristic model for the plasma scrape-off width balances magnetic drifts against parallel loss at c{sub s} /2, resulting in a SOL width ~ {rho}{sub p}. T{sub sep} is calculated from Spitzer–Härm parallel thermal conduction. This results in a prediction for the power scrape-off width in quantitative agreement both in magnitude and scaling with recent experimental data. To achieve the ~ c{sub s} /2 flow assumed in this model and measured experimentally sets requirements on the ratio of upstream to total SOL particle sources, relative to the square-root of the ratio of target to upstream temperature. The Pfisch-Schlüter model for equilibrium flows has been modified to allow near-sonic flows, appropriate for gradient scale lengths of order {rho}{sub p}, resulting in a new quadrupole radial flow pattern. The strong parallel flows and plasma charging implied by this model suggest a mechanism for H-mode transition, consistent with many observations

  12. A study of energy-size relationship and wear rate in a lab-scale high pressure grinding rolls unit

    NASA Astrophysics Data System (ADS)

    Rashidi Dashtbayaz, Samira

    This study is focused on two independent topics of energy-size relationship and wear-rate measurements on a lab-scale high pressure grinding rolls (HPGR). The first part of this study has been aimed to investigate the influence of the operating parameters and the feed characteristics on the particle-bed breakage using four different ore samples in a 200 mm x 100 mm lab-scale HPGR. Additionally, multistage grinding, scale-up from a lab-scale HPGR, and prediction of the particle size distributions have been studied in detail. The results obtained from energy-size relationship studies help with better understanding of the factors contributing to more energy-efficient grinding. It will be shown that the energy efficiency of the two configurations of locked-cycle and open multipass is completely dependent on the ore properties. A test procedure to produce the scale-up data is presented. The comparison of the scale-up factors between the data obtained on the University of Utah lab-scale HPGR and the industrial machine at the Newmont Boddington plant confirmed the applicability of lab-scale machines for trade-off studies. The population balance model for the simulation of product size distributions has shown to work well with the breakage function estimated through tests performed on the HPGR at high rotational speed. Selection function has been estimated by back calculation of population balance model with the help of the experimental data. This is considered to be a major step towards advancing current research on the simulation of particle size distribution by using the HPGR machine for determining the breakage function. Developing a technique/setup to measure the wear rate of the HPGR rolls' surface is the objective of the second topic of this dissertation. A mockup was initially designed to assess the application of the linear displacement sensors for measuring the rolls' weight loss. Upon the analysis of that technique and considering the corresponding sources of

  13. Scale-4 Analysis of Pressurized Water Reactor Critical Configurations: Volume 5 - North Anna Unit 1 Cycle 5

    SciTech Connect

    Bowman, S.M.

    1993-01-01

    The requirements of ANSI/ANS 8.1 specify that calculational methods for away-from-reactor (AFR) criticality safety analyses be validated against experimental measurements. If credit for the negative reactivity of the depleted (or spent) fuel isotopics is desired, it is necessary to benchmark computational methods against spent fuel critical configurations. This report summarizes a portion of the ongoing effort to benchmark AFR criticality analysis methods using selected critical configurations from commercial pressurized-water reactors (PWR). The analysis methodology selected for all calculations reported herein was the codes and data provided in the SCALE-4 code system. The isotopic densities for the spent fuel assemblies in the critical configurations were calculated using the SAS2H analytical sequence of the SCALE-4 system. The sources of data and the procedures for deriving SAS2H input parameters are described in detail. The SNIKR code module was used to extract the necessary isotopic densities from the SAS2H results and to provide the data in the format required by the SCALE criticality analysis modules. The CSASN analytical sequence in SCALE-4 was used to perform resonance processing of the cross sections. The KENO V.a module of SCALE-4 was used to calculate the effective multiplication factor (k{sub eff}) of each case. The SCALE-4 27-group burnup library containing ENDF/B-IV (actinides) and ENDF/B-V (fission products) data was used for all the calculations. This volume of the report documents the SCALE system analysis of one reactor critical configuration for North Anna Unit 1 Cycle 5. This unit and cycle were chosen for a previous analysis using a different methodology because detailed isotopics from multidimensional reactor calculations were available from the Virginia Power Company. These data permitted comparison of criticality calculations directly using the utility-calculated isotopics to those using the isotopics generated by the SCALE-4 SAS2H

  14. Gas and heat dynamics of a micro-scaled atmospheric pressure plasma reference jet

    NASA Astrophysics Data System (ADS)

    Kelly, Seán; Golda, Judith; Turner, Miles M.; Schulz-von der Gathen, Volker

    2015-11-01

    Gas and heat dynamics of the ‘Cooperation on Science and Technology (COST) Reference Microplasma Jet’ (COST-jet), a European lead reference device for low temperature atmospheric pressure plasma application, are investigated. Of particular interest to many biomedical application scenarios, the temperature characteristics of a surface impacted by the jet are revealed. Schlieren imaging, thermocouple measurements, infrared thermal imaging and numerical modelling are employed. Temperature spatial profiles in the gas domain reveal heating primarily of the helium fraction of the gas mixture. Thermocouple and model temporal data show a bounded exponential temperature growth described by a single characteristic time parameter to reach  ∼63% or (1-1/e) fraction of the temperature increase. Peak temperatures occurred in the gas domain where the carrier jet exits the COST-jet, with values ranging from ambient temperatures to in excess of 100 °C in ‘α-mode’ operation. In a horizontal orientation of the COST-jet a curved trajectory of the helium effluent at low gas flows results from buoyant forces. Gas mixture profiles reveal significant containment of the helium concentrations for a surface placed in close proximity to the COST-jet. Surface heating of a quartz plate follows a similar bounded exponential temporal temperature growth as device heating. Spatial profiles of surface heating are found to correlate strongly to the impacting effluent where peak temperatures occur in regions of maximum surface helium concentration.

  15. Large Scale Experiments on Lightweight Thrust Restraint for Buried Bend under Internal Pressure

    NASA Astrophysics Data System (ADS)

    Kawabata, Toshinori; Sawada, Yutaka; Mohri, Yoshiyuki

    In bends, unbalanced force, which is called thrust force, is generated. Generally a concrete block is installed at the bend to provide the lateral resistance. However, the heavy concrete block is weak point in earthquake. In our previous study, a lightweight thrust restraint using geogrid was suggested and the effect was proved by laboratory small tests. In the present study, the large-scale tests for the new method were carried out in a large pit (8.4m×5.4m×4m), using a pipe bend having a diameter 300mm. As the results the lateral displacement of the bend was reduced by the proposed method. In addition, it was revealed that the effect was depended on the stiffness, length and installation of geogrid.

  16. Use of large-scale acoustic monitoring to assess anthropogenic pressures on Orthoptera communities.

    PubMed

    Penone, Caterina; Le Viol, Isabelle; Pellissier, Vincent; Julien, Jean-François; Bas, Yves; Kerbiriou, Christian

    2013-10-01

    Biodiversity monitoring at large spatial and temporal scales is greatly needed in the context of global changes. Although insects are a species-rich group and are important for ecosystem functioning, they have been largely neglected in conservation studies and policies, mainly due to technical and methodological constraints. Sound detection, a nondestructive method, is easily applied within a citizen-science framework and could be an interesting solution for insect monitoring. However, it has not yet been tested at a large scale. We assessed the value of a citizen-science program in which Orthoptera species (Tettigoniidae) were monitored acoustically along roads. We used Bayesian model-averaging analyses to test whether we could detect widely known patterns of anthropogenic effects on insects, such as the negative effects of urbanization or intensive agriculture on Orthoptera populations and communities. We also examined site-abundance correlations between years and estimated the biases in species detection to evaluate and improve the protocol. Urbanization and intensive agricultural landscapes negatively affected Orthoptera species richness, diversity, and abundance. This finding is consistent with results of previous studies of Orthoptera, vertebrates, carabids, and butterflies. The average mass of communities decreased as urbanization increased. The dispersal ability of communities increased as the percentage of agricultural land and, to a lesser extent, urban area increased. Despite changes in abundances over time, we found significant correlations between yearly abundances. We identified biases linked to the protocol (e.g., car speed or temperature) that can be accounted for ease in analyses. We argue that acoustic monitoring of Orthoptera along roads offers several advantages for assessing Orthoptera biodiversity at large spatial and temporal extents, particularly in a citizen science framework.

  17. Use of large-scale acoustic monitoring to assess anthropogenic pressures on Orthoptera communities.

    PubMed

    Penone, Caterina; Le Viol, Isabelle; Pellissier, Vincent; Julien, Jean-François; Bas, Yves; Kerbiriou, Christian

    2013-10-01

    Biodiversity monitoring at large spatial and temporal scales is greatly needed in the context of global changes. Although insects are a species-rich group and are important for ecosystem functioning, they have been largely neglected in conservation studies and policies, mainly due to technical and methodological constraints. Sound detection, a nondestructive method, is easily applied within a citizen-science framework and could be an interesting solution for insect monitoring. However, it has not yet been tested at a large scale. We assessed the value of a citizen-science program in which Orthoptera species (Tettigoniidae) were monitored acoustically along roads. We used Bayesian model-averaging analyses to test whether we could detect widely known patterns of anthropogenic effects on insects, such as the negative effects of urbanization or intensive agriculture on Orthoptera populations and communities. We also examined site-abundance correlations between years and estimated the biases in species detection to evaluate and improve the protocol. Urbanization and intensive agricultural landscapes negatively affected Orthoptera species richness, diversity, and abundance. This finding is consistent with results of previous studies of Orthoptera, vertebrates, carabids, and butterflies. The average mass of communities decreased as urbanization increased. The dispersal ability of communities increased as the percentage of agricultural land and, to a lesser extent, urban area increased. Despite changes in abundances over time, we found significant correlations between yearly abundances. We identified biases linked to the protocol (e.g., car speed or temperature) that can be accounted for ease in analyses. We argue that acoustic monitoring of Orthoptera along roads offers several advantages for assessing Orthoptera biodiversity at large spatial and temporal extents, particularly in a citizen science framework. PMID:23692213

  18. Characteristics of meter-scale surface electrical discharge propagating along water surface at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Hoffer, Petr; Sugiyama, Yuki; Hosseini, S. Hamid R.; Akiyama, Hidenori; Lukes, Petr; Akiyama, Masahiro

    2016-10-01

    This paper reports physical characteristics of water surface discharges. Discharges were produced by metal needle-to-water surface geometry, with the needle electrode driven by 47 kV (FWHM) positive voltage pulses of 2 µs duration. Propagation of discharges along the water surface was confined between glass plates with 2 mm separation. This allowed generation of highly reproducible 634 mm-long plasma filaments. Experiments were performed using different atmospheres: air, N2, and O2, each at atmospheric pressure. Time- and spatially-resolved spectroscopic measurements revealed that early spectra of discharges in air and nitrogen atmospheres were dominated by N2 2nd positive system. N2 radiation disappeared after approx. 150 ns, replaced by emissions from atomic hydrogen. Spectra of discharges in O2 atmosphere were dominated by emissions from atomic oxygen. Time- and spatially-resolved emission spectra were used to determine temperatures in plasma. Atomic hydrogen emissions showed excitation temperature of discharges in air to be about 2  ×  104 K. Electron number densities determined by Stark broadening of the hydrogen H β line reached a maximum value of ~1018 cm-3 just after plasma initiation. Electron number densities and temperatures depended only slightly on distance from needle electrode, indicating formation of high conductivity leader channels. Direct observation of discharges by high speed camera showed that the average leader head propagation speed was 412 km · s-1, which is substantially higher value than that observed in experiments with shorter streamers driven by lower voltages.

  19. Scales

    MedlinePlus

    Scales are a visible peeling or flaking of outer skin layers. These layers are called the stratum ... Scales may be caused by dry skin, certain inflammatory skin conditions, or infections. Eczema , ringworm , and psoriasis ...

  20. Unifying expression scale for peptide hydrophobicity in proteomic reversed phase high-pressure liquid chromatography experiments.

    PubMed

    Grigoryan, Marine; Shamshurin, Dmitry; Spicer, Victor; Krokhin, Oleg V

    2013-11-19

    As an initial step in our efforts to unify the expression of peptide retention times in proteomic liquid chromatography-mass spectrometry (LC-MS) experiments, we aligned the chromatographic properties of a number of peptide retention standards against a collection of peptides commonly observed in proteomic experiments. The standard peptide mixtures and tryptic digests of samples of different origins were separated under the identical chromatographic condition most commonly employed in proteomics: 100 Å C18 sorbent with 0.1% formic acid as an ion-pairing modifier. Following our original approach (Krokhin, O. V.; Spicer, V. Anal. Chem. 2009, 81, 9522-9530) the retention characteristics of these standards and collection of tryptic peptides were mapped into hydrophobicity index (HI) or acetonitrile percentage units. This scale allows for direct visualization of the chromatographic outcome of LC-MS acquisitions, monitors the performance of the gradient LC system, and simplifies method development and interlaboratory data alignment. Wide adoption of this approach would significantly aid understanding the basic principles of gradient peptide RP-HPLC and solidify our collective efforts in acquiring confident peptide retention libraries, a key component in the development of targeted proteomic approaches.

  1. The AFGL absolute gravity program

    NASA Technical Reports Server (NTRS)

    Hammond, J. A.; Iliff, R. L.

    1978-01-01

    A brief discussion of the AFGL's (Air Force Geophysics Laboratory) program in absolute gravity is presented. Support of outside work and in-house studies relating to gravity instrumentation are discussed. A description of the current transportable system is included and the latest results are presented. These results show good agreement with measurements at the AFGL site by an Italian system. The accuracy obtained by the transportable apparatus is better than 0.1 microns sq sec 10 microgal and agreement with previous measurements is within the combined uncertainties of the measurements.

  2. Familial Aggregation of Absolute Pitch

    PubMed Central

    Baharloo, Siamak; Service, Susan K.; Risch, Neil; Gitschier, Jane; Freimer, Nelson B.

    2000-01-01

    Absolute pitch (AP) is a behavioral trait that is defined as the ability to identify the pitch of tones in the absence of a reference pitch. AP is an ideal phenotype for investigation of gene and environment interactions in the development of complex human behaviors. Individuals who score exceptionally well on formalized auditory tests of pitch perception are designated as “AP-1.” As described in this report, auditory testing of siblings of AP-1 probands and of a control sample indicates that AP-1 aggregates in families. The implications of this finding for the mapping of loci for AP-1 predisposition are discussed. PMID:10924408

  3. Mathematical Model for Absolute Magnetic Measuring Systems in Industrial Applications

    NASA Astrophysics Data System (ADS)

    Fügenschuh, Armin; Fügenschuh, Marzena; Ludszuweit, Marina; Mojsic, Aleksandar; Sokół, Joanna

    2015-09-01

    Scales for measuring systems are either based on incremental or absolute measuring methods. Incremental scales need to initialize a measurement cycle at a reference point. From there, the position is computed by counting increments of a periodic graduation. Absolute methods do not need reference points, since the position can be read directly from the scale. The positions on the complete scales are encoded using two incremental tracks with different graduation. We present a new method for absolute measuring using only one track for position encoding up to micrometre range. Instead of the common perpendicular magnetic areas, we use a pattern of trapezoidal magnetic areas, to store more complex information. For positioning, we use the magnetic field where every position is characterized by a set of values measured by a hall sensor array. We implement a method for reconstruction of absolute positions from the set of unique measured values. We compare two patterns with respect to uniqueness, accuracy, stability and robustness of positioning. We discuss how stability and robustness are influenced by different errors during the measurement in real applications and how those errors can be compensated.

  4. Absolute irradiance of the Moon for on-orbit calibration

    USGS Publications Warehouse

    Stone, T.C.; Kieffer, H.H.; ,

    2002-01-01

    The recognized need for on-orbit calibration of remote sensing imaging instruments drives the ROLO project effort to characterize the Moon for use as an absolute radiance source. For over 5 years the ground-based ROLO telescopes have acquired spatially-resolved lunar images in 23 VNIR (Moon diameter ???500 pixels) and 9 SWIR (???250 pixels) passbands at phase angles within ??90 degrees. A numerical model for lunar irradiance has been developed which fits hundreds of ROLO images in each band, corrected for atmospheric extinction and calibrated to absolute radiance, then integrated to irradiance. The band-coupled extinction algorithm uses absorption spectra of several gases and aerosols derived from MODTRAN to fit time-dependent component abundances to nightly observations of standard stars. The absolute radiance scale is based upon independent telescopic measurements of the star Vega. The fitting process yields uncertainties in lunar relative irradiance over small ranges of phase angle and the full range of lunar libration well under 0.5%. A larger source of uncertainty enters in the absolute solar spectral irradiance, especially in the SWIR, where solar models disagree by up to 6%. Results of ROLO model direct comparisons to spacecraft observations demonstrate the ability of the technique to track sensor responsivity drifts to sub-percent precision. Intercomparisons among instruments provide key insights into both calibration issues and the absolute scale for lunar irradiance.

  5. A unified interpretation of one-fifth to full scale thermal mixing experiments related to Pressurized Thermal Shock

    SciTech Connect

    Theofanous, T.G.; Yan, H. . Dept. of Chemical and Nuclear Engineering)

    1991-04-01

    Thermal mixing in relation to Pressurized Thermal Shock has been examined experimentally throughout the world in a variety of scales. These include the CREARE-1/5, the IVO/IVO(NRC)-2/5, the PURDUE(UCSB)-1/2, the CREARE-1/2, the HDR-1/1 and the UPTF-1/1 test facilities. The Regional Mixing Model and the associated computer programs REMIX and NEWMIX are used to interpret these data, in this report, in a comprehensive fashion. These interpretations indicate that cooldown transients and degree of stratification can be predicted with confidence. Universal stratification solutions are also provided, in graphical form, and a simple procedure for hand-calculation is also described. 40 refs., 20 figs., 17 tabs.

  6. Large-Scale Absence of Sharks on Reefs in the Greater-Caribbean: A Footprint of Human Pressures

    PubMed Central

    Ward-Paige, Christine A.; Mora, Camilo; Lotze, Heike K.; Pattengill-Semmens, Christy; McClenachan, Loren; Arias-Castro, Ery

    2010-01-01

    Background In recent decades, large pelagic and coastal shark populations have declined dramatically with increased fishing; however, the status of sharks in other systems such as coral reefs remains largely unassessed despite a long history of exploitation. Here we explore the contemporary distribution and sighting frequency of sharks on reefs in the greater-Caribbean and assess the possible role of human pressures on observed patterns. Methodology/Principal Findings We analyzed 76,340 underwater surveys carried out by trained volunteer divers between 1993 and 2008. Surveys were grouped within one km2 cells, which allowed us to determine the contemporary geographical distribution and sighting frequency of sharks. Sighting frequency was calculated as the ratio of surveys with sharks to the total number of surveys in each cell. We compared sighting frequency to the number of people in the cell vicinity and used population viability analyses to assess the effects of exploitation on population trends. Sharks, with the exception of nurse sharks occurred mainly in areas with very low human population or strong fishing regulations and marine conservation. Population viability analysis suggests that exploitation alone could explain the large-scale absence; however, this pattern is likely to be exacerbated by additional anthropogenic stressors, such as pollution and habitat degradation, that also correlate with human population. Conclusions/Significance Human pressures in coastal zones have lead to the broad-scale absence of sharks on reefs in the greater-Caribbean. Preventing further loss of sharks requires urgent management measures to curb fishing mortality and to mitigate other anthropogenic stressors to protect sites where sharks still exist. The fact that sharks still occur in some densely populated areas where strong fishing regulations are in place indicates the possibility of success and encourages the implementation of conservation measures. PMID:20700530

  7. Global direct pressures on biodiversity by large-scale metal mining: Spatial distribution and implications for conservation.

    PubMed

    Murguía, Diego I; Bringezu, Stefan; Schaldach, Rüdiger

    2016-09-15

    Biodiversity loss is widely recognized as a serious global environmental change process. While large-scale metal mining activities do not belong to the top drivers of such change, these operations exert or may intensify pressures on biodiversity by adversely changing habitats, directly and indirectly, at local and regional scales. So far, analyses of global spatial dynamics of mining and its burden on biodiversity focused on the overlap between mines and protected areas or areas of high value for conservation. However, it is less clear how operating metal mines are globally exerting pressure on zones of different biodiversity richness; a similar gap exists for unmined but known mineral deposits. By using vascular plants' diversity as a proxy to quantify overall biodiversity, this study provides a first examination of the global spatial distribution of mines and deposits for five key metals across different biodiversity zones. The results indicate that mines and deposits are not randomly distributed, but concentrated within intermediate and high diversity zones, especially bauxite and silver. In contrast, iron, gold, and copper mines and deposits are closer to a more proportional distribution while showing a high concentration in the intermediate biodiversity zone. Considering the five metals together, 63% and 61% of available mines and deposits, respectively, are located in intermediate diversity zones, comprising 52% of the global land terrestrial surface. 23% of mines and 20% of ore deposits are located in areas of high plant diversity, covering 17% of the land. 13% of mines and 19% of deposits are in areas of low plant diversity, comprising 31% of the land surface. Thus, there seems to be potential for opening new mines in areas of low biodiversity in the future. PMID:27262340

  8. Scale-4 Analysis of Pressurized Water Reactor Critical Configurations: Volume 4-Three Mile Island Unit 1 Cycle 5

    SciTech Connect

    DeHart, M.D.

    1995-01-01

    The requirements of ANSI/ANS-8.1 specify that calculational methods for away-from-reactor criticality safety analyses be validated against experimental measurements. If credit is to be taken for the reduced reactivity of burned or spent fuel relative to its original ''fresh'' composition, it is necessary to benchmark computational methods used in determining such reactivity worth against spent fuel reactivity measurements. This report summarizes a portion of the ongoing effort to benchmark away-from-reactor criticality analysis methods using relevant and well-documented critical configurations from commercial pressurized water reactors. The analysis methodology utilized for all calculations in this report is based on the modules and data associated with the SCALE-4 code system. Isotopic densities for spent fuel assemblies in the core were calculated using the SCALE-4 SAS2H analytical sequence. The sources of data and the procedures for deriving SAS2H input parameters are described in detail. The SNIKR code family was used to extract the necessary isotopic densities from SAS2H results and to provide the data in the format required for SCALE criticality analysis modules. The CSASN analytical sequence in SCALE-4 was used to perform resonance processing of cross sections. The KENO V.a module of SCALE-4 was used to calculate the effective multiplication factor (k{sub eff}) for the critical configuration. The SCALE-4 27-group burnup library containing ENDF/B-IV (actinides) and ENDF/B-V (fission products) data was used for all calculations. This volume of the report documents a reactor critical calculation for GPU Nuclear Corporation's Three Mile Island Unit 1 (TMI-1) during hot, zero-power startup testing for the beginning of cycle 5. This unit and cycle were selected because of their relevance in spent fuel benchmark applications: (1) cycle 5 startup occurred after an especially long downtime of 6.6 years; and (2) the core consisted primarily (75%) of burned fuel, with

  9. Development of a sub-scale dynamics model for pressure relaxation of multi-material cells in Lagrangian hydrodynamics

    SciTech Connect

    Harrison, Alan K; Shashkov, Mikhail J; Fung, Jimmy; Canfield, Thomas R; Kamm, James R

    2010-10-14

    We have extended the Sub-Scale Dynamics (SSD) closure model for multi-fluid computational cells. Volume exchange between two materials is based on the interface area and a notional interface translation velocity, which is derived from a linearized Riemann solution. We have extended the model to cells with any number of materials, computing pressure-difference-driven volume and energy exchange as the algebraic sum of pairwise interactions. In multiple dimensions, we rely on interface reconstruction to provide interface areas and orientations, and centroids of material polygons. In order to prevent unphysically large or unmanageably small material volumes, we have used a flux-corrected transport (FCT) approach to limit the pressure-driven part of the volume exchange. We describe the implementation of this model in two dimensions in the FLAG hydrodynamics code. We also report on Lagrangian test calculations, comparing them with others made using a mixed-zone closure model due to Tipton, and with corresponding calculations made with only single-material cells. We find that in some cases, the SSD model more accurately predicts the state of material in mixed cells. By comparing the algebraic forms of both models, we identify similar dependencies on state and dynamical variables, and propose explanations for the apparent higher fidelity of the SSD model.

  10. Analysis and fabrication of micro scale self-terminated electrochemical growth by a pressure-driven method

    NASA Astrophysics Data System (ADS)

    Soltani, Fatemeh; Wlasenko, Alex; Steeves, Geoff

    2010-03-01

    A self-terminated electrochemical method was used to fabricate microscopic-scale contacts between two Au electrodes in a microfluidic channel. The conductance of contacts varies in a stepwise fashion with a tendency to quantize near the integer multiples of the conductance quantum (G0). The mechanism works by a pressure-driven flow parallel with a pair of Au electrodes with a gap in order of micron in an electrolyte of HCl. When applying a bias voltage between electrodes, metal atoms are etched off the anode and deposited onto the cathode. Consequently, the gap decreases to the atomic scale and then completely closed as the two electrodes form a contact. The electrochemical fabrication approach introduces large variance in the formation and location of individual junctions. Controlling this process will enable the precise positioning of reproducible geometries into nano-electronic devices. To investigate the high speed behavior of a QPC, it can be integrated with a transmission line structure patterned on a photoconductive GaAs substrate. The nonlinear conductance of the QPC (due to the finite density of states of the conductors) can be examined and compared with recent theoretical studies. Samples are fabricated in situ using an electrochemical procedure to produce QPCs along the transmission line structure. This method may provide insight into Terahertz Optoelectronic devices and ultrafast communication systems.

  11. Large-scale tectonic features induced by mantle avalanches with phase, temperature, and pressure lateral variations of viscosity

    NASA Astrophysics Data System (ADS)

    Brunei, David; Machetel, Philippe

    1998-03-01

    million years).The temporal evolution of the convection pattern during an avalanche allows us to propose self-consistent mechanisms for slab migration above the 670 km discontinuity for the birth and disappearance of ridges, the rising of powerful plumes from the CMB, and the creation of low-viscosity zones which may act as a lubricant under continents for fast migration. These results show that the main mantle phase changes, combined with temperature and pressure dependent viscosity, induce convective behavior which provides an explanation for most of the past and present large-scale dynamic behavior of the Earth's global tectonics.

  12. Cosmology with negative absolute temperatures

    NASA Astrophysics Data System (ADS)

    Vieira, J. P. P.; Byrnes, Christian T.; Lewis, Antony

    2016-08-01

    Negative absolute temperatures (NAT) are an exotic thermodynamical consequence of quantum physics which has been known since the 1950's (having been achieved in the lab on a number of occasions). Recently, the work of Braun et al. [1] has rekindled interest in negative temperatures and hinted at a possibility of using NAT systems in the lab as dark energy analogues. This paper goes one step further, looking into the cosmological consequences of the existence of a NAT component in the Universe. NAT-dominated expanding Universes experience a borderline phantom expansion (w < ‑1) with no Big Rip, and their contracting counterparts are forced to bounce after the energy density becomes sufficiently large. Both scenarios might be used to solve horizon and flatness problems analogously to standard inflation and bouncing cosmologies. We discuss the difficulties in obtaining and ending a NAT-dominated epoch, and possible ways of obtaining density perturbations with an acceptable spectrum.

  13. Cosmology with negative absolute temperatures

    NASA Astrophysics Data System (ADS)

    Vieira, J. P. P.; Byrnes, Christian T.; Lewis, Antony

    2016-08-01

    Negative absolute temperatures (NAT) are an exotic thermodynamical consequence of quantum physics which has been known since the 1950's (having been achieved in the lab on a number of occasions). Recently, the work of Braun et al. [1] has rekindled interest in negative temperatures and hinted at a possibility of using NAT systems in the lab as dark energy analogues. This paper goes one step further, looking into the cosmological consequences of the existence of a NAT component in the Universe. NAT-dominated expanding Universes experience a borderline phantom expansion (w < -1) with no Big Rip, and their contracting counterparts are forced to bounce after the energy density becomes sufficiently large. Both scenarios might be used to solve horizon and flatness problems analogously to standard inflation and bouncing cosmologies. We discuss the difficulties in obtaining and ending a NAT-dominated epoch, and possible ways of obtaining density perturbations with an acceptable spectrum.

  14. Methods to calibrate the absolute receive sensitivity of single-element, focused transducers.

    PubMed

    Rich, Kyle T; Mast, T Douglas

    2015-09-01

    Absolute pressure measurements of acoustic emissions by single-element, focused passive cavitation detectors would be facilitated by improved wideband receive calibration techniques. Here, calibration methods were developed to characterize the absolute, frequency-dependent receive sensitivity of a spherically focused, single-element transducer using pulse-echo and pitch-catch techniques. Validation of these calibration methods on a focused receiver were made by generating a pulse from a small diameter source at the focus of the transducer and comparing the absolute pressure measured by a calibrated hydrophone to that of the focused transducer using the receive sensitivities determined here. PMID:26428812

  15. Methods to calibrate the absolute receive sensitivity of single-element, focused transducers

    PubMed Central

    Rich, Kyle T.; Mast, T. Douglas

    2015-01-01

    Absolute pressure measurements of acoustic emissions by single-element, focused passive cavitation detectors would be facilitated by improved wideband receive calibration techniques. Here, calibration methods were developed to characterize the absolute, frequency-dependent receive sensitivity of a spherically focused, single-element transducer using pulse-echo and pitch-catch techniques. Validation of these calibration methods on a focused receiver were made by generating a pulse from a small diameter source at the focus of the transducer and comparing the absolute pressure measured by a calibrated hydrophone to that of the focused transducer using the receive sensitivities determined here. PMID:26428812

  16. Engine performance and the determination of absolute ceiling

    NASA Technical Reports Server (NTRS)

    Diehl, Walter S

    1924-01-01

    This report contains a brief study of the variation of engine power with temperature and pressure. The variation of propeller efficiency in standard atmosphere is obtained from the general efficiency curve which is developed in NACA report no. 168. The variation of both power available and power required are then determined and curves plotted, so that the absolute ceiling may be read directly from any known sea-level value of the ratio of power available to power required.

  17. Comparison of pressure distributions on model and full-scale NACA 64-621 airfoils with ailerons for wind turbine application

    NASA Technical Reports Server (NTRS)

    Gregorek, G. M.; Kuniega, R. J.; Nyland, T. W.

    1988-01-01

    The aerodynamic similarity between a small (4-inch chord) wind tunnel model and a full-scale wind turbine blade (24-foot tip section with a 36-inch chord) was evaluated by comparing selected pressure distributions around the geometrically similar cross sections. The airfoils were NACA 64-621 sections, including trailing-edge ailerons with a width equal to 38 percent of the airfoil chord. The model airfoil was tested in the OSU 6- by 12-inch High Reynolds Number Wind Tunnel; the full-scale blade section was tested in the NASA Langley Research Center 30- by 60-foot Subsonic Wind Tunnel. The model airfoil contained 61 pressure taps connected by embedded tubes to pressure transducers. A belt containing 29 pressure taps was fixed to the full-scale section at midspan to obtain surface pressure data. Lift coefficients were obtained by integrating pressures, and corrections were made for the 3-D effects of blade twist and downwash in the blade tip section. The results of the two different experimental methods correlated well for angles of attack from minus 4 to 36 degrees and aileron reflections from 0 to 90 degrees.

  18. Assessing the Impact of Agricultural Pressures on N and P Loads and Potential Eutrophication Risk at Regional Scales

    NASA Astrophysics Data System (ADS)

    Dupas, R.; Gascuel-odoux, C.; Delmas, M.; Moatar, F.

    2014-12-01

    Excessive nutrient loading of freshwater bodies results in increased eutrophication risk worldwide. The processes controlling N/P transfer in agricultural landscapes are well documented through scientific studies conducted in intensively monitored catchments. However, managers need tools to assess water quality and evaluate the contribution of agriculture to eutrophication at regional scales, including unmonitored or poorly monitored areas. To this end, we present an assessment framework which includes: i) a mass-balance model to estimate diffuse N/P transfer and retention and ii) indicators based on N:P:Si molar ratios to assess potential eutrophication risk from external loads. The model, called Nutting (Dupas et al., 2013), integrates variables for both detailed description of agricultural pressures (N surplus, soil P content) and characterisation of physical attributes of catchments (including spatial attributes). It was calibrated on 160 catchments, and applied to 2210 unmonitored headwater bodies in France (Dupas et al., under review). N and P retention represented 53% and 95% of soil N and P surplus, respectively, and was mainly controlled by runoff and an index characterising infiltration/runoff properties. According to our estimates, diffuse agricultural sources represented a mean of 97% of N loads and N exceeded Si in 93% of the catchments, whilst they represented 46% of P loads and P exceeded Si in 26-65% of the catchments. Estimated eutrophication risk was highly sensitive to assumptions about P bioavailability, hence the range of headwaters potentially at risk spanned 26-63% of the catchments, depending on assumptions. To reduce this uncertainty, we recommend introducing P bioavailability tests in water monitoring programs, especially in sensitive areas. Dupas R et al. Assessing N emissions in surface water at the national level: comparison of country-wide vs. regionalized models. Sci Total Environ 2013; 443: 152-62. Dupas R et al. Assessing the impact

  19. Gas Kinematics on Giant Molecular Cloud Scales in M51 with PAWS: Cloud Stabilization through Dynamical Pressure

    NASA Astrophysics Data System (ADS)

    Meidt, Sharon E.; Schinnerer, Eva; García-Burillo, Santiago; Hughes, Annie; Colombo, Dario; Pety, Jérôme; Dobbs, Clare L.; Schuster, Karl F.; Kramer, Carsten; Leroy, Adam K.; Dumas, Galle; Thompson, Todd A.

    2013-12-01

    We use the high spatial and spectral resolution of the PAWS CO(1-0) survey of the inner 9 kpc of the iconic spiral galaxy M51 to examine the effects of gas streaming motions on the star-forming properties of individual giant molecular clouds (GMCs). We compare our view of gas flows in M51—which arise due to departures from axisymmetry in the gravitational potential (i.e., the nuclear bar and spiral arms)—with the global pattern of star formation as traced by Hα and 24 μm emission. We find that the dynamical environment of GMCs strongly affects their ability to form stars, in the sense that GMCs situated in regions with large streaming motions can be stabilized, while similarly massive GMCs in regions without streaming go on to efficiently form stars. We argue that this is the result of reduced surface pressure felt by clouds embedded in an ambient medium undergoing large streaming motions, which prevent collapse. Indeed, the variation in gas depletion time expected based on the observed streaming motions throughout the disk of M51 quantitatively agrees with the variation in the observed gas depletion time scale. The example of M51 shows that streaming motions, triggered by gravitational instabilities in the form of bars and spiral arms, can alter the star formation law; this can explain the variation in gas depletion time among galaxies with different masses and morphologies. In particular, we can explain the long gas depletion times in spiral galaxies compared with dwarf galaxies and starbursts. We suggest that adding a dynamical pressure term to the canonical free-fall time produces a single star formation law that can be applied to all star-forming regions and galaxies across cosmic time.

  20. Gas kinematics on giant molecular cloud scales in M51 with PAWS: Cloud stabilization through dynamical pressure

    SciTech Connect

    Meidt, Sharon E.; Schinnerer, Eva; Hughes, Annie; Colombo, Dario; Pety, Jérôme; Schuster, Karl F.; Dumas, Galle; Dobbs, Clare L.; Kramer, Carsten; Leroy, Adam K.; Thompson, Todd A.

    2013-12-10

    We use the high spatial and spectral resolution of the PAWS CO(1-0) survey of the inner 9 kpc of the iconic spiral galaxy M51 to examine the effects of gas streaming motions on the star-forming properties of individual giant molecular clouds (GMCs). We compare our view of gas flows in M51—which arise due to departures from axisymmetry in the gravitational potential (i.e., the nuclear bar and spiral arms)—with the global pattern of star formation as traced by Hα and 24 μm emission. We find that the dynamical environment of GMCs strongly affects their ability to form stars, in the sense that GMCs situated in regions with large streaming motions can be stabilized, while similarly massive GMCs in regions without streaming go on to efficiently form stars. We argue that this is the result of reduced surface pressure felt by clouds embedded in an ambient medium undergoing large streaming motions, which prevent collapse. Indeed, the variation in gas depletion time expected based on the observed streaming motions throughout the disk of M51 quantitatively agrees with the variation in the observed gas depletion time scale. The example of M51 shows that streaming motions, triggered by gravitational instabilities in the form of bars and spiral arms, can alter the star formation law; this can explain the variation in gas depletion time among galaxies with different masses and morphologies. In particular, we can explain the long gas depletion times in spiral galaxies compared with dwarf galaxies and starbursts. We suggest that adding a dynamical pressure term to the canonical free-fall time produces a single star formation law that can be applied to all star-forming regions and galaxies across cosmic time.

  1. The Application of Optimisation Methods to Constrain Absolute Plate Motions

    NASA Astrophysics Data System (ADS)

    Tetley, M. G.; Williams, S.; Hardy, S.; Müller, D.

    2015-12-01

    Plate tectonic reconstructions are an excellent tool for understanding the configuration and behaviour of continents through time on both global and regional scales, and are relatively well understood back to ~200 Ma. However, many of these models represent only relative motions between continents, providing little information of absolute tectonic motions and their relationship with the deep Earth. Significant issues exist in solving this problem, including how to combine constraints from multiple, diverse data into a unified model of absolute plate motions; and how to address uncertainties both in the available data, and in the assumptions involved in this process (e.g. hotspot motion, true polar wander). In deep time (pre-Pangea breakup), plate reconstructions rely more heavily on paleomagnetism, but these data often imply plate velocities much larger than those observed since the breakup of the supercontinent Pangea where plate velocities are constrained by the seafloor spreading record. Here we present two complementary techniques to address these issues, applying parallelized numerical methods to quantitatively investigate absolute plate motions through time. Firstly, we develop a data-fit optimized global absolute reference frame constrained by kinematic reconstruction data, hotspot-trail observations, and trench migration statistics. Secondly we calculate optimized paleomagnetic data-derived apparent polar wander paths (APWPs) for both the Phanerozoic and Precambrian. Paths are generated from raw pole data with optimal spatial and temporal pole configurations calculated using all known uncertainties and quality criteria to produce velocity-optimized absolute motion paths through deep time.

  2. Electromagnetic hydrophone with tomographic system for absolute velocity field mapping

    NASA Astrophysics Data System (ADS)

    Grasland-Mongrain, Pol; Mari, Jean-Martial; Gilles, Bruno; Chapelon, Jean-Yves; Lafon, Cyril

    2012-06-01

    The velocity and pressure of an ultrasonic wave can be measured by an electromagnetic hydrophone made of a thin wire and a magnet. The ultrasonic wave vibrates the wire inside a magnetic field, inducing an electrical current. Previous articles reported poor spatial resolution of comparable hydrophones along the axis of the wire. In this study, submillimetric spatial resolution has been achieved by using a tomographic method. Moreover, a physical model is presented for obtaining absolute measurements. A pressure differential of 8% has been found between piezoelectric and electromagnetic hydrophone measurements. These characteristics show this technique as an alternative to standard hydrophones.

  3. Laser anemometry measurements of natural circulation flow in a scale model PWR reactor system. [Pressurized Water Reactor

    NASA Technical Reports Server (NTRS)

    Kadambi, J. R.; Schneider, S. J.; Stewart, W. A.

    1986-01-01

    The natural circulation of a single phase fluid in a scale model of a pressurized water reactor system during a postulated grade core accident is analyzed. The fluids utilized were water and SF6. The design of the reactor model and the similitude requirements are described. Four LDA tests were conducted: water with 28 kW of heat in the simulated core, with and without the participation of simulated steam generators; water with 28 kW of heat in the simulated core, with the participation of simulated steam generators and with cold upflow of 12 lbm/min from the lower plenum; and SF6 with 0.9 kW of heat in the simulated core and without the participation of the simulated steam generators. For the water tests, the velocity of the water in the center of the core increases with vertical height and continues to increase in the upper plenum. For SF6, it is observed that the velocities are an order of magnitude higher than those of water; however, the velocity patterns are similar.

  4. Effect of medium-pressure UV irradiation on bromate concentrations in drinking water, a pilot-scale study.

    PubMed

    Peldszus, Sigrid; Andrews, Susan A; Souza, Rosana; Smith, Franklyn; Douglas, Ian; Bolton, Jim; Huck, Peter M

    2004-01-01

    This study investigated the potential for bromate removal from drinking water on irradiation with medium-pressure UV lamps-a technique gaining considerable interest for drinking water disinfection. Waters from two different sources were spiked with 20microg/L of bromate and irradiated with UV fluences up to 718mJ/cm(2) utilizing a pilot-scale reactor (Calgon Carbon Corp.) at a flow of 76L/min (20 gallon/min). Essentially no removal was observed in one of the source waters. Limited bromate removal, up to 19%, was observed in the second source water at high UV fluences (696mJ/cm(2)) and a fluence-response relationship was clearly evident. All removals would be negligible at UV fluences anticipated for drinking water disinfection (< or =40mJ/cm(2)). Different water characteristics, in particular competitive absorption by nitrate and possibly DOC, were most likely responsible for the differences in bromate removal in the waters tested. The source water that did not show any removal had a higher nitrate concentration (4 vs. 0.1mg N/L) and also a higher DOC concentration (4.1 vs. 3.1mg C/L) than the other source water which showed 19% bromate removal.

  5. Absolute configuration of isovouacapenol C

    PubMed Central

    Fun, Hoong-Kun; Yodsaoue, Orapun; Karalai, Chatchanok; Chantrapromma, Suchada

    2010-01-01

    The title compound, C27H34O5 {systematic name: (4aR,5R,6R,6aS,7R,11aS,11bR)-4a,6-dihy­droxy-4,4,7,11b-tetra­methyl-1,2,3,4,4a,5,6,6a,7,11,11a,11b-dodeca­hydro­phenanthro[3,2-b]furan-5-yl benzoate}, is a cassane furan­oditerpene, which was isolated from the roots of Caesalpinia pulcherrima. The three cyclo­hexane rings are trans fused: two of these are in chair conformations with the third in a twisted half-chair conformation, whereas the furan ring is almost planar (r.m.s. deviation = 0.003 Å). An intra­molecular C—H⋯O inter­action generates an S(6) ring. The absolute configurations of the stereogenic centres at positions 4a, 5, 6, 6a, 7, 11a and 11b are R, R, R, S, R, S and R, respectively. In the crystal, mol­ecules are linked into infinite chains along [010] by O—H⋯O hydrogen bonds. C⋯O [3.306 (2)–3.347 (2) Å] short contacts and C—H⋯π inter­actions also occur. PMID:21588364

  6. Frequency-domain analysis of absolute gravimeters

    NASA Astrophysics Data System (ADS)

    Svitlov, S.

    2012-12-01

    An absolute gravimeter is analysed as a linear time-invariant system in the frequency domain. Frequency responses of absolute gravimeters are derived analytically based on the propagation of the complex exponential signal through their linear measurement functions. Depending on the model of motion and the number of time-distance coordinates, an absolute gravimeter is considered as a second-order (three-level scheme) or third-order (multiple-level scheme) low-pass filter. It is shown that the behaviour of an atom absolute gravimeter in the frequency domain corresponds to that of the three-level corner-cube absolute gravimeter. Theoretical results are applied for evaluation of random and systematic measurement errors and optimization of an experiment. The developed theory agrees with known results of an absolute gravimeter analysis in the time and frequency domains and can be used for measurement uncertainty analyses, building of vibration-isolation systems and synthesis of digital filtering algorithms.

  7. Method of differential-phase/absolute-amplitude QAM

    DOEpatents

    Dimsdle, Jeffrey William

    2007-07-03

    A method of quadrature amplitude modulation involving encoding phase differentially and amplitude absolutely, allowing for a high data rate and spectral efficiency in data transmission and other communication applications, and allowing for amplitude scaling to facilitate data recovery; amplitude scale tracking to track-out rapid and severe scale variations and facilitate successful demodulation and data retrieval; 2.sup.N power carrier recovery; incoherent demodulation where coherent carrier recovery is not possible or practical due to signal degradation; coherent demodulation; multipath equalization to equalize frequency dependent multipath; and demodulation filtering.

  8. Method of differential-phase/absolute-amplitude QAM

    DOEpatents

    Dimsdle, Jeffrey William

    2008-10-21

    A method of quadrature amplitude modulation involving encoding phase differentially and amplitude absolutely, allowing for a high data rate and spectral efficiency in data transmission and other communication applications, and allowing for amplitude scaling to facilitate data recovery; amplitude scale tracking to track-out rapid and severe scale variations and facilitate successful demodulation and data retrieval; 2.sup.N power carrier recovery; incoherent demodulation where coherent carrier recovery is not possible or practical due to signal degradation; coherent demodulation; multipath equalization to equalize frequency dependent multipath; and demodulation filtering.

  9. Method of differential-phase/absolute-amplitude QAM

    DOEpatents

    Dimsdle, Jeffrey William

    2007-07-17

    A method of quadrature amplitude modulation involving encoding phase differentially and amplitude absolutely, allowing for a high data rate and spectral efficiency in data transmission and other communication applications, and allowing for amplitude scaling to facilitate data recovery; amplitude scale tracking to track-out rapid and severe scale variations and facilitate successful demodulation and data retrieval; 2.sup.N power carrier recovery; incoherent demodulation where coherent carrier recovery is not possible or practical due to signal degradation; coherent demodulation; multipath equalization to equalize frequency dependent multipath; and demodulation filtering.

  10. Method of differential-phase/absolute-amplitude QAM

    DOEpatents

    Dimsdle, Jeffrey William

    2007-10-02

    A method of quadrature amplitude modulation involving encoding phase differentially and amplitude absolutely, allowing for a high data rate and spectral efficiency in data transmission and other communication applications, and allowing for amplitude scaling to facilitate data recovery; amplitude scale tracking to track-out rapid and severe scale variations and facilitate successful demodulation and data retrieval; 2.sup.N power carrier recovery; incoherent demodulation where coherent carrier recovery is not possible or practical due to signal degradation; coherent demodulation; multipath equalization to equalize frequency dependent multipath; and demodulation filtering.

  11. Method of differential-phase/absolute-amplitude QAM

    DOEpatents

    Dimsdle, Jeffrey William

    2009-09-01

    A method of quadrature amplitude modulation involving encoding phase differentially and amplitude absolutely, allowing for a high data rate and spectral efficiency in data transmission and other communication applications, and allowing for amplitude scaling to facilitate data recovery; amplitude scale tracking to track-out rapid and severe scale variations and facilitate successful demodulation and data retrieval; 2.sup.N power carrier recovery; incoherent demodulation where coherent carrier recovery is not possible or practical due to signal degradation; coherent demodulation; multipath equalization to equalize frequency dependent multipath; and demodulation filtering.

  12. Millimeter Scale.

    ERIC Educational Resources Information Center

    Harvill, Leo M.

    This absolute scale contains nine times, each of which consists of a 100 millimeter vertical line with small division marks every 25 millimeters with the words "high" at the top and "low" at the bottom of the line. Above each of the vertical lines is a word or phrase. For the second grade scale these words are: arithmetic, counting, adding,…

  13. A corrosion control concept by scale engineering: a novel green inhibitor applied for high temperature and pressure aqueous supercritical CO2 systems

    SciTech Connect

    Jiabin, Han; Carey, James W; Zhang, Jinsuo

    2011-01-27

    Traditional corrosion inhibitors are bio-toxic chemicals with organic components that bond to the fresh metal surface and thus isolate them from corrosive environments. The shortcoming of these inhibitors is that they are less effective in high-temperature and high-pressure environments, and where corrosion scale is formed or particulates are deposited. In this paper, we describe a novel green inorganic inhibitor made of environmentally friendly and cost-effective geo-material that was developed for high-temperature and high-pressure environments, particularly under scale-forming conditions. It inhibits corrosion by enhancing the protectiveness of corrosion scale. In contrast to traditional corrosion inhibitors which are efficient for bare surface corrosion but not effective with scale, the novel inhibitor has no effect on bare surface corrosion but greatly improves corrosion inhibition under scale-formation conditions. This is because a homogeneous scale doped with inhibitor component forms. This enhanced corrosion scale demonstrated excellent protection against corrosion. In high-pressure CO{sub 2} systems (pCO{sub 2}=10 Mpa, T=50 C and [NaCl]=1 wt%) without inhibitor, the bare-surface corrosion rate decreases from ca. 10 mm/y to 0.3 mm/year due to formation of scale. Application of a six hundred ppm solution ofthe new inorganic inhibitor reduced the corrosion rate to 0.01 mm/year, an additional factor of 30. The current inhibitor product was designed for application to CO{sub 2} systems that form corrosion scale, including but not limited to oil and gas wells, offshore production of oil and gas, CO{sub 2} sequestration and enhanced geothermal production involving CO{sub 2}.

  14. Evaluation of the Absolute Regional Temperature Potential

    NASA Technical Reports Server (NTRS)

    Shindell, D. T.

    2012-01-01

    The Absolute Regional Temperature Potential (ARTP) is one of the few climate metrics that provides estimates of impacts at a sub-global scale. The ARTP presented here gives the time-dependent temperature response in four latitude bands (90-28degS, 28degS-28degN, 28-60degN and 60-90degN) as a function of emissions based on the forcing in those bands caused by the emissions. It is based on a large set of simulations performed with a single atmosphere-ocean climate model to derive regional forcing/response relationships. Here I evaluate the robustness of those relationships using the forcing/response portion of the ARTP to estimate regional temperature responses to the historic aerosol forcing in three independent climate models. These ARTP results are in good accord with the actual responses in those models. Nearly all ARTP estimates fall within +/-20%of the actual responses, though there are some exceptions for 90-28degS and the Arctic, and in the latter the ARTP may vary with forcing agent. However, for the tropics and the Northern Hemisphere mid-latitudes in particular, the +/-20% range appears to be roughly consistent with the 95% confidence interval. Land areas within these two bands respond 39-45% and 9-39% more than the latitude band as a whole. The ARTP, presented here in a slightly revised form, thus appears to provide a relatively robust estimate for the responses of large-scale latitude bands and land areas within those bands to inhomogeneous radiative forcing and thus potentially to emissions as well. Hence this metric could allow rapid evaluation of the effects of emissions policies at a finer scale than global metrics without requiring use of a full climate model.

  15. Scale

    ERIC Educational Resources Information Center

    Schaffhauser, Dian

    2009-01-01

    The common approach to scaling, according to Christopher Dede, a professor of learning technologies at the Harvard Graduate School of Education, is to jump in and say, "Let's go out and find more money, recruit more participants, hire more people. Let's just keep doing the same thing, bigger and bigger." That, he observes, "tends to fail, and fail…

  16. The hyperfine structure in the rotational spectra of D{sub 2}{sup 17}O and HD{sup 17}O: Confirmation of the absolute nuclear magnetic shielding scale for oxygen

    SciTech Connect

    Puzzarini, Cristina Cazzoli, Gabriele; Harding, Michael E.; Vázquez, Juana; Gauss, Jürgen

    2015-03-28

    Guided by theoretical predictions, the hyperfine structures of the rotational spectra of mono- and bideuterated-water containing {sup 17}O have been experimentally investigated. To reach sub-Doppler resolution, required to resolve the hyperfine structure due to deuterium quadrupole coupling as well as to spin-rotation (SR) and dipolar spin-spin couplings, the Lamb-dip technique has been employed. The experimental investigation and in particular, the spectral analysis have been supported by high-level quantum-chemical computations employing coupled-cluster techniques and, for the first time, a complete experimental determination of the hyperfine parameters involved was possible. The experimentally determined {sup 17}O spin-rotation constants of D{sub 2}{sup 17}O and HD{sup 17}O were used to derive the paramagnetic part of the corresponding nuclear magnetic shielding constants. Together with the computed diamagnetic contributions as well as the vibrational and temperature corrections, the latter constants have been employed to confirm the oxygen nuclear magnetic shielding scale, recently established on the basis of spin-rotation data for H{sub 2}{sup 17}O [Puzzarini et al., J. Chem. Phys. 131, 234304 (2009)].

  17. Pressure-Distribution Measurements on the Hull and Fins of a 1/40-Scale Model of the U. S. Airship "Akron."

    NASA Technical Reports Server (NTRS)

    Freeman, Hugh B

    1934-01-01

    This report presents the results of measurements of pressure distribution conducted in the propeller-research wind tunnel of the National Advisory Committee for Aeronautics on a 1/40-scale model of the U. S. Airship "Akron" (ZRS-4). The pressures, which were measured simultaneously at nearly 400 orifices located at 26 stations along one side of the hull, were recorded by two photographic multiple manometers placed inside the model. The hull pressures were measured both with and without the tail surfaces and the control car for eight angles of pitch varying from 0 degree to 20 degrees and at air speeds of approximately 70 and 100 miles per hour. The pressures were also measured at approximately 160 orifices on one horizontal fin for the above speeds and pitch angles and for nine elevator angles.

  18. In flight measurement of steady and unsteady blade surface pressure of a single rotation large scale advanced prop-fan installed on the PTA aircraft

    NASA Technical Reports Server (NTRS)

    Parzych, D.; Boyd, L.; Meissner, W.; Wyrostek, A.

    1991-01-01

    An experiment was performed by Hamilton Standard, Division of United Technologies Corporation, under contract by LeRC, to measure the blade surface pressure of a large scale, 8 blade model prop-fan in flight. The test bed was the Gulfstream 2 Prop-Fan Test Assessment (PTA) aircraft. The objective of the test was to measure the steady and periodic blade surface pressure resulting from three different Prop-Fan air inflow angles at various takeoff and cruise conditions. The inflow angles were obtained by varying the nacelle tilt angles, which ranged from -3 to +2 degrees. A range of power loadings, tip speeds, and altitudes were tested at each nacelle tilt angle over the flight Mach number range of 0.30 to 0.80. Unsteady blade pressure data tabulated as Fourier coefficients for the first 35 harmonics of shaft rotational frequency and the steady (non-varying) pressure component are presented.

  19. Analysis of synoptic-scale low pressure systems within the Antarctic Peninsula sector of the circumpolar trough

    NASA Astrophysics Data System (ADS)

    Turner, John; Marshall, Gareth J.; Lachlan-Cope, Thomas A.

    1998-03-01

    Satellite imagery of the Antarctic Peninsula, Bellingshausen Sea, and Weddell Sea region, together with operational meteorological analyses, are used to investigate the development, tracks, and structure of synoptic-scale weather systems within the Antarctic Peninsula sector of the circumpolar trough, which rings the Southern Hemisphere between the latitudes of 60° and 70°S. A number of previous studies have shown that more cyclogenesis events take place within this zone than in any other region of the Southern Hemisphere, although the mechanisms behind these developments have not been investigated previously. This study confirms the large number of cyclogenesis events taking place within the circumpolar trough and, in the year examined, the mean latitude of cyclogenesis within the sector was 64°S. During the year, 504 lows were observed, with 281 developing in the area and 223 moving in. The diameters of the systems observed ranged from 300 to 3500 km, with the smallest vortices being mesocyclones that later grew into synoptic-scale lows. The mean distance travelled by the depressions was only 1377 km (standard deviation 1205 km), reflecting the fact that the systems observed ranged from small quasi-stationary lows to large, very mobile depressions. The mean meridional movement of the lows during their existence was very small. The greatest number of cyclogenesis events were observed over the Bellingshausen Sea, where more than 0.48 events 10 000 km-2 year-1 were found, with a secondary maximum in the lee of the Antarctic Peninsula. The mean lifetime of the systems observed was 22 h, with over half the vortices existing for less than 24 h. A maximum of cyclolysis was found just to the west of the Antarctic Peninsula, with a secondary maximum in the South Atlantic. Of the systems that formed within the area, 36% were developments within pre-existing large areas of low pressure, which were similar to the merry-go-round formations of mesocyclones. A further 39% of

  20. Absolute Income, Relative Income, and Happiness

    ERIC Educational Resources Information Center

    Ball, Richard; Chernova, Kateryna

    2008-01-01

    This paper uses data from the World Values Survey to investigate how an individual's self-reported happiness is related to (i) the level of her income in absolute terms, and (ii) the level of her income relative to other people in her country. The main findings are that (i) both absolute and relative income are positively and significantly…

  1. Investigating Absolute Value: A Real World Application

    ERIC Educational Resources Information Center

    Kidd, Margaret; Pagni, David

    2009-01-01

    Making connections between various representations is important in mathematics. In this article, the authors discuss the numeric, algebraic, and graphical representations of sums of absolute values of linear functions. The initial explanations are accessible to all students who have experience graphing and who understand that absolute value simply…

  2. Preschoolers' Success at Coding Absolute Size Values.

    ERIC Educational Resources Information Center

    Russell, James

    1980-01-01

    Forty-five 2-year-old and forty-five 3-year-old children coded relative and absolute sizes using 1.5-inch, 6-inch, and 18-inch cardboard squares. Results indicate that absolute coding is possible for children of this age. (Author/RH)

  3. Introducing the Mean Absolute Deviation "Effect" Size

    ERIC Educational Resources Information Center

    Gorard, Stephen

    2015-01-01

    This paper revisits the use of effect sizes in the analysis of experimental and similar results, and reminds readers of the relative advantages of the mean absolute deviation as a measure of variation, as opposed to the more complex standard deviation. The mean absolute deviation is easier to use and understand, and more tolerant of extreme…

  4. Monolithically integrated absolute frequency comb laser system

    DOEpatents

    Wanke, Michael C.

    2016-07-12

    Rather than down-convert optical frequencies, a QCL laser system directly generates a THz frequency comb in a compact monolithically integrated chip that can be locked to an absolute frequency without the need of a frequency-comb synthesizer. The monolithic, absolute frequency comb can provide a THz frequency reference and tool for high-resolution broad band spectroscopy.

  5. Estimating the absolute wealth of households

    PubMed Central

    Gerkey, Drew; Hadley, Craig

    2015-01-01

    Abstract Objective To estimate the absolute wealth of households using data from demographic and health surveys. Methods We developed a new metric, the absolute wealth estimate, based on the rank of each surveyed household according to its material assets and the assumed shape of the distribution of wealth among surveyed households. Using data from 156 demographic and health surveys in 66 countries, we calculated absolute wealth estimates for households. We validated the method by comparing the proportion of households defined as poor using our estimates with published World Bank poverty headcounts. We also compared the accuracy of absolute versus relative wealth estimates for the prediction of anthropometric measures. Findings The median absolute wealth estimates of 1 403 186 households were 2056 international dollars per capita (interquartile range: 723–6103). The proportion of poor households based on absolute wealth estimates were strongly correlated with World Bank estimates of populations living on less than 2.00 United States dollars per capita per day (R2 = 0.84). Absolute wealth estimates were better predictors of anthropometric measures than relative wealth indexes. Conclusion Absolute wealth estimates provide new opportunities for comparative research to assess the effects of economic resources on health and human capital, as well as the long-term health consequences of economic change and inequality. PMID:26170506

  6. Absolute optical metrology : nanometers to kilometers

    NASA Technical Reports Server (NTRS)

    Dubovitsky, Serge; Lay, O. P.; Peters, R. D.; Liebe, C. C.

    2005-01-01

    We provide and overview of the developments in the field of high-accuracy absolute optical metrology with emphasis on space-based applications. Specific work on the Modulation Sideband Technology for Absolute Ranging (MSTAR) sensor is described along with novel applications of the sensor.

  7. Absolute instability of the Gaussian wake profile

    NASA Technical Reports Server (NTRS)

    Hultgren, Lennart S.; Aggarwal, Arun K.

    1987-01-01

    Linear parallel-flow stability theory has been used to investigate the effect of viscosity on the local absolute instability of a family of wake profiles with a Gaussian velocity distribution. The type of local instability, i.e., convective or absolute, is determined by the location of a branch-point singularity with zero group velocity of the complex dispersion relation for the instability waves. The effects of viscosity were found to be weak for values of the wake Reynolds number, based on the center-line velocity defect and the wake half-width, larger than about 400. Absolute instability occurs only for sufficiently large values of the center-line wake defect. The critical value of this parameter increases with decreasing wake Reynolds number, thereby indicating a shrinking region of absolute instability with decreasing wake Reynolds number. If backflow is not allowed, absolute instability does not occur for wake Reynolds numbers smaller than about 38.

  8. Fast, Computer Supported Experimental Determination of Absolute Zero Temperature at School

    ERIC Educational Resources Information Center

    Bogacz, Bogdan F.; Pedziwiatr, Antoni T.

    2014-01-01

    A simple and fast experimental method of determining absolute zero temperature is presented. Air gas thermometer coupled with pressure sensor and data acquisition system COACH is applied in a wide range of temperature. By constructing a pressure vs temperature plot for air under constant volume it is possible to obtain--by extrapolation to zero…

  9. Scales

    SciTech Connect

    Murray Gibson

    2007-04-27

    Musical scales involve notes that, sounded simultaneously (chords), sound good together. The result is the left brain meeting the right brain — a Pythagorean interval of overlapping notes. This synergy would suggest less difference between the working of the right brain and the left brain than common wisdom would dictate. The pleasing sound of harmony comes when two notes share a common harmonic, meaning that their frequencies are in simple integer ratios, such as 3/2 (G/C) or 5/4 (E/C).

  10. Scales

    ScienceCinema

    Murray Gibson

    2016-07-12

    Musical scales involve notes that, sounded simultaneously (chords), sound good together. The result is the left brain meeting the right brain — a Pythagorean interval of overlapping notes. This synergy would suggest less difference between the working of the right brain and the left brain than common wisdom would dictate. The pleasing sound of harmony comes when two notes share a common harmonic, meaning that their frequencies are in simple integer ratios, such as 3/2 (G/C) or 5/4 (E/C).

  11. Absolute calibration in the 1750 - 3350 A region

    NASA Technical Reports Server (NTRS)

    Strongylis, G. J.; Bohlin, R. C.

    1977-01-01

    The absolute flux measurements in the rocket ultraviolet made by Bohlin, Frimout, and Lillie (BFL) are revised using a more correct treatment of the air extinction that enters the air calibration of their instrument. The absorption by molecular oxygen and ozone, Rayleigh scattering, and extinction by aerosols is tabulated for general use in ultraviolet calibrations performed in air. The revised absolute flux of eta UMa and final fluxes for alpha Lyr and zeta Oph are presented in the 1750-3350 A region. The absolute flux of the star eta UMa is compared to four other independent determinations in the 1200-3400 A region and a maximum difference of 35% is found near 1500 A between the OAO-2 and Apollo 17 fluxes. The rocket measurements of BFL, the ANS and TD-1 satellite data, and the Apollo 17 data are compared to the ultraviolet fluxes from the OAO-2, demonstrating a photometric reproducibility of about + or - 3 percent. Therefore, all four sets of spectrophotometry can be reduced to a common absolute scale.

  12. Investigation of steady and fluctuating pressures associated with the transonic buffeting and wing rock of a one-seventh scale model of the F-5A aircraft

    NASA Technical Reports Server (NTRS)

    Hwang, C.; Pi, W. S.

    1978-01-01

    A wind tunnel test of a 1/7 scale F-5A model is described. The pressure, force, and dynamic response measurements during buffet and wing rock are evaluated. Effects of Mach number, angle of attack, sideslip angle, and control surface settings were investigated. The mean and fluctuating static pressure data are presented and correlated with some corresponding flight test data of a F-5A aircraft. Details of the instrumentation and the specially designed support system which allowed the model to oscillate in roll to simulate wing rock are also described. A limit cycle mechanism causing wing rock was identified from this study, and this mechanism is presented.

  13. A method for predicting full scale buffet response with rigid wind tunnel model fluctuating pressure data. Volume 1: Prediction method development and assessment

    NASA Technical Reports Server (NTRS)

    Cunningham, A. M., Jr.; Benepe, D. B.; Watts, D.; Waner, P. G.

    1978-01-01

    The method requires unsteady aerodynamic forces, natural airplane modes, and the measured pressure data as input. A gust response computer program is used to calculate buffet response due to the forcing function posed by the measured pressure data. By calculating both symmetric and antisymmetric solutions, upper and lower bounds on full-scale buffet response are formed. Comparisons of predictions with flight test results are made and the effects of horizontal tail loads and static aeroelasticity are shown. Discussions are also presented on the effects of primary wing torsion modes, chordwise and spanwise phase angles, and altitude.

  14. Investigation of the influence of the subgrid-scale stress on non-intrusive spatial pressure measurement using an isotropic turbulence database

    NASA Astrophysics Data System (ADS)

    Siddle-Mitchell, Seth; Liu, Xiaofeng; Katz, Joseph

    2015-11-01

    The instantaneous pressure distribution in a turbulent flow field can be measured non-intrusively by integrating the measured material acceleration using particle image velocimetry (PIV). However, due to the finite spatial resolution of the measurement, the pressure reconstructed from PIV is actually subjected to the effect of spatial filtering. Consequently, the reconstructed pressure is effectively imbedded with the contribution of the sub-grid scale (SGS) stress, which is a term appearing in the filtered Navier-Stokes equation. To quantify the effect of the SGS stress on non-intrusive spatial pressure measurement, we use box filtering to filter three dimensional velocity components in a time-varying isotropic turbulence flow field available to public from the John Hopkins University Turbulence Database (JHTDB). Preliminary results show that the error in the reconstructed instantaneous pressure caused by the SGS stress is about 4.4% of the r.m.s. fluctuation of the filtered isotropic pressure. Correction using similarity SGS modeling reduces the error to 2.1%. This project is funded by the San Diego State University Research Foundation.

  15. Tabulated Pressure Coefficient Data from a Tail Loads Investigation on a 1/15-Scale Model of the Goodyear XZP5K Airship

    NASA Technical Reports Server (NTRS)

    Cannon, Michael D.

    1956-01-01

    This paper contains tail and hull loads data obtained in an investigation of a l/15-scale model of the Goodyear XZP5K airship. Data are presented in the form of tabulated pressure coefficients over a pitch and yaw range of +/-20 deg and 0 deg to 30 deg respectively, with various rudder and elevator deflections. Two tail configurations of different plan forms were tested on the model. The investigation was conducted in the Langley full-scale tunnel at a Reynolds number of approximately 16.5 x 10(exp 6) based on hull length, which corresponds to a Mach number of about 0.12.

  16. Combined single crystal polarized XAFS and XRD at high pressure: probing the interplay between lattice distortions and electronic order at multiple length scales in high T c cuprates

    DOE PAGES

    Fabbris, G.; Hücker, M.; Gu, G. D.; Tranquada, J. M.; Haskel, D.

    2016-07-14

    Some of the most exotic material properties derive from electronic states with short correlation length (~10-500 Å), suggesting that the local structural symmetry may play a relevant role in their behavior. In this study, we discuss the combined use of polarized x-ray absorption fine structure and x-ray diffraction at high pressure as a powerful method to tune and probe structural and electronic orders at multiple length scales. Besides addressing some of the technical challenges associated with such experiments, we illustrate this approach with results obtained in the cuprate La1.875Ba0.125CuO4, in which the response of electronic order to pressure can onlymore » be understood by probing the structure at the relevant length scales.« less

  17. Pressure distributions obtained on a 0.10-scale model of the space shuttle Orbiter's forebody in the AEDC 16T propulsion wind tunnel

    NASA Technical Reports Server (NTRS)

    Siemers, P. M., III; Henry, M. W.

    1986-01-01

    Pressure distribution test data obtained on a 0.10-scale model of the forward fuselage of the Space Shuttle Orbiter are presented without analysis. The tests were completed in the AEDC 16T Propulsion Wind Tunnel. The 0.10-scale model was tested at angles of attack from -2 deg to 18 deg and angles of side slip from -6 to 6 deg at Mach numbers from 0.25 to 1/5 deg. The tests were conducted in support of the development of the Shuttle Entry Air Data System (SEADS). In addition to modeling the 20 SEADS orifices, the wind-tunnel model was also instrumented with orifices to match Development Flight Instrumentation (DFI) port locations that existed on the Space Shuttle Orbiter Columbia (OV-102) during the Orbiter Flight Test program. This DFI simulation has provided a means of comparisons between reentry flight pressure data and wind-tunnel and computational data.

  18. Low-cost and gram-scale synthesis of water-soluble Cu-In-S/ZnS core/shell quantum dots in an electric pressure cooker

    NASA Astrophysics Data System (ADS)

    Chen, Yanyan; Li, Shenjie; Huang, Lijian; Pan, Daocheng

    2014-01-01

    We report an electric pressure cooker for large-scale synthesis of water-soluble Cu-In-S/ZnS core/shell quantum dots. Low-cost thioglycolic acid and sodium citrate were used as the dual stabilizers. ~3 grams of quantum dots with a tunable emission from 545 to 610 nm and quantum yield up to 40% were obtained in a batch.We report an electric pressure cooker for large-scale synthesis of water-soluble Cu-In-S/ZnS core/shell quantum dots. Low-cost thioglycolic acid and sodium citrate were used as the dual stabilizers. ~3 grams of quantum dots with a tunable emission from 545 to 610 nm and quantum yield up to 40% were obtained in a batch. Electronic supplementary information (ESI) available: Experimental details, PL decay curves, PL lifetimes, EDS spectra, chemical composition, cost analysis. See DOI: 10.1039/c3nr05014a

  19. A Meta-analysis to Evaluate the Predictive Validity of the Braden Scale for Pressure Ulcer Risk Assessment in Long-term Care.

    PubMed

    Chen, Hong-Lin; Shen, Wang-Qin; Liu, Peng

    2016-09-01

    Although it is among the most commonly used pressure ulcer risk assessment tools, the Braden Scale may lack strong predictive validity when used in the long-term care setting. A meta-analysis was conducted of English-language articles published in the PubMed database and Web of Science from the indices' inception through July 2015 to assess the predictive validity of the Braden Scale for pressure ulcers in long-term care residents. Search terms included pressure ulcer, pressure sore, bedsore, decubitus, long-term care, nursing home, skilled nursing facility, hospice, and Braden. Data extracted from the publications included sample and setting characteristics and predictive value indices. The pooled sensitivities, specificities, diagnostic odds ratios (DOR), and constructed summary receiver operating characteristic (SROC) curves were calculated. Eight studies (2 prospective cohorts and 6 cross-sectional studies) with 41 489 residents met selection criteria for inclusion in the analysis. The pooled sensitivity and specificity were 0.80 (95% CI: 0.79-0.81) and 0.42 (95% CI: 0.42-0.43), respectively, yielding a combined DOR of 5.66 (95% CI: 3.77-8.48). The area under the ROC curve (AUC) was 0.7686 ± 0.0478 (95% CI: 0.6749-0.8623), and the overall diagnostic accuracy (Q*) was 0.7090 ± 0.0402 (95% CI: 0.6302-0.7878). Significant heterogeneity was noted among the included studies; Q value was 302.54 (P = 0.000), and I2 for pooled sensitivity, pooled specificity, and pooled DOR was 97.4%, 98.7% and 96.4%, respectively. Meta-regression analysis showed no heterogeneity was noted among Braden scale cut-offs (P = 0.123) and pressure ulcer prevalence P = 0.547). The evidence showed the Braden Scale has moderate predictive validity and low predictive specificity for pressure ulcers in long-term care residents. The development and testing of new risk assessment scales for this population is warranted. PMID:27668477

  20. Assessing anthropogenic pressures on coastal marine ecosystems using stable CNS isotopes: State of the art, knowledge gaps, and community-scale perspectives

    NASA Astrophysics Data System (ADS)

    Mancinelli, Giorgio; Vizzini, Salvatrice

    2015-04-01

    In recent decades, the analysis of carbon, nitrogen and sulfur stable isotopes (SIA) has emerged as a powerful, viable methodology for examining food web structure and dynamics, as well as addressing a number of applied issues. Here, we provide a state-of-the-art review of the use of SIA for assessing anthropogenic pressures on natural ecosystems, in order to establish current knowledge gaps and identify promising applications for evaluating the ecological status of marine coastal waters. Specifically, the potential of SIA to provide food web-scale indicators for estimating cumulative anthropogenic pressures is addressed. The review indicates that the methodology has been used for virtually the whole spectrum of human pressures known to influence marine ecosystems. However, only the effects of chemical pollution, release of dissolved and particulate nutrients, and invasive species have been extensively investigated. For the first two pressures, substantial efforts have been made to implement isotopic quantitative approaches and metrics for inter-system comparisons; however, with the exception of nutrient release, the majority of aquatic studies have been carried out in freshwater systems, and only limited information is available on marine environments. In particular, the effects of invasive species on coastal habitats have received scant attention. Trophic position of indicator species emerges as the isotopic metric most ubiquitously adopted for measuring the impact of anthropogenic pressures. Conversely, the application of other recently implemented metrics, proven to be highly effective in integrating information on the spatial-temporal dynamics of aquatic food webs, is to date still limited. The potential of stable isotope analysis to provide a unifying methodological-theoretical framework for effective, inter-ecosystem comparisons of both single and multiple anthropogenic pressures is emphasised. Additionally, a plea for the implementation and intercalibration

  1. Absolute magnitudes of trans-neptunian objects

    NASA Astrophysics Data System (ADS)

    Duffard, R.; Alvarez-candal, A.; Pinilla-Alonso, N.; Ortiz, J. L.; Morales, N.; Santos-Sanz, P.; Thirouin, A.

    2015-10-01

    Accurate measurements of diameters of trans- Neptunian objects are extremely complicated to obtain. Radiomatric techniques applied to thermal measurements can provide good results, but precise absolute magnitudes are needed to constrain diameters and albedos. Our objective is to measure accurate absolute magnitudes for a sample of trans- Neptunian objects, many of which have been observed, and modelled, by the "TNOs are cool" team, one of Herschel Space Observatory key projects grantes with ~ 400 hours of observing time. We observed 56 objects in filters V and R, if possible. These data, along with data available in the literature, was used to obtain phase curves and to measure absolute magnitudes by assuming a linear trend of the phase curves and considering magnitude variability due to rotational light-curve. In total we obtained 234 new magnitudes for the 56 objects, 6 of them with no reported previous measurements. Including the data from the literature we report a total of 109 absolute magnitudes.

  2. A New Gimmick for Assigning Absolute Configuration.

    ERIC Educational Resources Information Center

    Ayorinde, F. O.

    1983-01-01

    A five-step procedure is provided to help students in making the assignment absolute configuration less bothersome. Examples for both single (2-butanol) and multi-chiral carbon (3-chloro-2-butanol) molecules are included. (JN)

  3. The Simplicity Argument and Absolute Morality

    ERIC Educational Resources Information Center

    Mijuskovic, Ben

    1975-01-01

    In this paper the author has maintained that there is a similarity of thought to be found in the writings of Cudworth, Emerson, and Husserl in his investigation of an absolute system of morality. (Author/RK)

  4. Deconstructing European Poverty Measures: What Relative and Absolute Scales Measure

    ERIC Educational Resources Information Center

    Burkhauser, Richard V.

    2009-01-01

    Forster and d'Ercole (2009) outline the dominant method of conceptualization and operationalization of European poverty measures that informed the EU in its development of the questionnaire for the European Union--Survey of Income and Living Conditions (EU-SILC). They do so in the context of their explanation of how the Organization for Economic…

  5. CO2 Exsolution from CO2 Saturated Water: Core-Scale Experiments and Focus on Impacts of Pressure Variations.

    PubMed

    Xu, Ruina; Li, Rong; Ma, Jin; Jiang, Peixue

    2015-12-15

    For CO2 sequestration and utilization in the shallow reservoirs, reservoir pressure changes are due to the injection rate changing, a leakage event, and brine withdrawal for reservoir pressure balance. The amounts of exsolved CO2 which are influenced by the pressure reduction and the subsequent secondary imbibition process have a significant effect on the stability and capacity of CO2 sequestration and utilization. In this study, exsolution behavior of the CO2 has been studied experimentally using a core flooding system in combination with NMR/MRI equipment. Three series of pressure variation profiles, including depletion followed by imbibitions without or with repressurization and repetitive depletion and repressurization/imbibition cycles, were designed to investigate the exsolution responses for these complex pressure variation profiles. We found that the exsolved CO2 phase preferentially occupies the larger pores and exhibits a uniform spatial distribution. The mobility of CO2 is low during the imbibition process, and the residual trapping ratio is extraordinarily high. During the cyclic pressure variation process, the first cycle has the largest contribution to the amount of exsolved CO2. The low CO2 mobility implies a certain degree of self-sealing during a possible reservoir depletion. PMID:26509211

  6. CO2 Exsolution from CO2 Saturated Water: Core-Scale Experiments and Focus on Impacts of Pressure Variations.

    PubMed

    Xu, Ruina; Li, Rong; Ma, Jin; Jiang, Peixue

    2015-12-15

    For CO2 sequestration and utilization in the shallow reservoirs, reservoir pressure changes are due to the injection rate changing, a leakage event, and brine withdrawal for reservoir pressure balance. The amounts of exsolved CO2 which are influenced by the pressure reduction and the subsequent secondary imbibition process have a significant effect on the stability and capacity of CO2 sequestration and utilization. In this study, exsolution behavior of the CO2 has been studied experimentally using a core flooding system in combination with NMR/MRI equipment. Three series of pressure variation profiles, including depletion followed by imbibitions without or with repressurization and repetitive depletion and repressurization/imbibition cycles, were designed to investigate the exsolution responses for these complex pressure variation profiles. We found that the exsolved CO2 phase preferentially occupies the larger pores and exhibits a uniform spatial distribution. The mobility of CO2 is low during the imbibition process, and the residual trapping ratio is extraordinarily high. During the cyclic pressure variation process, the first cycle has the largest contribution to the amount of exsolved CO2. The low CO2 mobility implies a certain degree of self-sealing during a possible reservoir depletion.

  7. Orion Absolute Navigation System Progress and Challenge

    NASA Technical Reports Server (NTRS)

    Holt, Greg N.; D'Souza, Christopher

    2012-01-01

    The absolute navigation design of NASA's Orion vehicle is described. It has undergone several iterations and modifications since its inception, and continues as a work-in-progress. This paper seeks to benchmark the current state of the design and some of the rationale and analysis behind it. There are specific challenges to address when preparing a timely and effective design for the Exploration Flight Test (EFT-1), while still looking ahead and providing software extensibility for future exploration missions. The primary onboard measurements in a Near-Earth or Mid-Earth environment consist of GPS pseudo-range and delta-range, but for future explorations missions the use of star-tracker and optical navigation sources need to be considered. Discussions are presented for state size and composition, processing techniques, and consider states. A presentation is given for the processing technique using the computationally stable and robust UDU formulation with an Agee-Turner Rank-One update. This allows for computational savings when dealing with many parameters which are modeled as slowly varying Gauss-Markov processes. Preliminary analysis shows up to a 50% reduction in computation versus a more traditional formulation. Several state elements are discussed and evaluated, including position, velocity, attitude, clock bias/drift, and GPS measurement biases in addition to bias, scale factor, misalignment, and non-orthogonalities of the accelerometers and gyroscopes. Another consideration is the initialization of the EKF in various scenarios. Scenarios such as single-event upset, ground command, and cold start are discussed as are strategies for whole and partial state updates as well as covariance considerations. Strategies are given for dealing with latent measurements and high-rate propagation using multi-rate architecture. The details of the rate groups and the data ow between the elements is discussed and evaluated.

  8. Untethered photonic sensor for wall pressure measurement.

    PubMed

    Manzo, Maurizio; Ioppolo, Tindaro

    2015-05-15

    In this Letter, we study a novel untethered photonic wall pressure sensor that uses as sensing element a dome-shaped micro-scale laser. Since the sensor does not require any optical or electrical cabling, it allows measurements where cabling tends to be problematic. The micro-laser is made by a mixture of Trimethylolpropane Tri(3-mercaptopropionate), commercial name THIOCURE and Polyethylene (glycol) Diacrylate (PEGDA) mixed with a solution of rhodamine 6G. Two different volume ratios between the THIOCURE and the PEGDA are studied, since different ratios lead to different mechanical properties. In addition, two different sensor configurations are presented: (i) sensor coupled to a membrane, that allows differential wall pressure measurement and (ii) sensor without membrane that allows absolute wall pressure measurement. The sensitivity plots are presented in the paper for both sensor configurations and polymer ratios.

  9. On the scaling of rf and dc self-bias voltages with pressure in electronegative capacitively coupled plasmas

    SciTech Connect

    Agarwal, Ankur; Dorf, Leonid; Rauf, Shahid; Collins, Ken

    2012-03-15

    Higher gas densities and lower diffusion losses at higher operating pressures typically lead to increased charged species densities (and hence flux) for a constant power deposition in capacitively coupled plasmas (CCP). As a result, one would expect that the bias radio-frequency (rf) voltage required to deposit a given power in a CCP reactor decreases with increasing operating pressure. These observations may not hold true in multiple frequency CCPs, commonly used for dielectric etching in microelectronics fabrication, due to nonlinear interactions between the rf sources. Wafer-based measurements of the rf and self-generated direct current (dc) bias voltages in a dual-frequency capacitively coupled electronegative plasma were made, which indicate that the rf and dc voltages vary nonmonotonically with pressure. These experimental results are presented in this paper and a computational plasma model is used to explain the experimental observations for varying 60 MHz and 13 MHz powers in the Ar/CF{sub 4}/CHF{sub 3} plasma over a pressure range of 25 to 400 mTorr. The authors found that while the ion density increases with pressure, the increase is most dominant near the electrode with the high frequency source (60 MHz). The rf and dc bias voltages are ultimately influenced by both charged species density magnitudes and spatial profiles.

  10. The electrochemical behavior of three air cathodes for microbial electrochemical system (MES) under meter scale water pressure

    NASA Astrophysics Data System (ADS)

    He, Weihua; Liu, Jia; Li, Da; Wang, Haiman; Qu, Youpeng; Wang, Xin; Feng, Yujie

    2014-12-01

    To produce cathodes with high water pressure tolerance for the practical application of microbial electrochemical system (MES), a 3-m test configuration is set up. Three kinds of cathodes, including Pt-CC (carbon cloth with platinum carbon), Pt-CM (carbon mesh with platinum carbon), and AC-MM (metal mesh with activated carbon), are investigated. The electrochemical performances of these cathodes are tested with linear sweep voltammetry under varied water pressures. Current densities of Pt-CC and Pt-CM increase with the rising water pressures till the maximum endurable water head, which are 100 cm for Pt-CC and 130 cm for Pt-CM. Yet electrochemical performances of AC-MM remained stable under the tested water pressure range from 0 to 30 KPa. The deformation of cathodes under varied water pressures causes the changes of cathode performances. The curvature degrees of cathodes relate to their mechanical properties. Elastic modulus of AC-MM is 4 ± 0.4 × 103 MPa, which is over 10 times larger than that of Pt-CM and over 60 times larger than that of Pt-CC. The best mechanical properties prevent AC-MM from the substantial deformation and the consequent lacerations and water flooding of diffusion layers.

  11. Shuttle model tailcone pressure distribution at low subsonic speeds of a 0.03614-scale model in the NASA/LaRC low-turbulence pressure tunnel (LA81), volume 1

    NASA Technical Reports Server (NTRS)

    Ball, J. W.; Lindahl, R. H.

    1976-01-01

    An investigation was conducted in the NASA/LaRC Low-Turbulence Pressure Tunnel on a 0.03614-scale orbiter model of a 089B configuration with a 139B configuration nose forward of F.S. 500. The tailcone was the TC sub 4 design and was instrumented with eighty-nine pressure orifices. Control surfaces were deflected and three wind tunnel mounting techniques were investigated over an angle-of-attack range from -2 deg to a maximum of 18 deg. In order to determine the sensitivity of the tailcone to changes in Reynolds number, most of the test was made at a Mach number of 0.20 over a Reynolds number range of 2.0 to 10 million per foot. A few runs were made at a Mach number of 0.30 at Reynolds numbers of 4.0, 6.0, and 8 million per foot.

  12. Jasminum flexile flower absolute from India--a detailed comparison with three other jasmine absolutes.

    PubMed

    Braun, Norbert A; Kohlenberg, Birgit; Sim, Sherina; Meier, Manfred; Hammerschmidt, Franz-Josef

    2009-09-01

    Jasminum flexile flower absolute from the south of India and the corresponding vacuum headspace (VHS) sample of the absolute were analyzed using GC and GC-MS. Three other commercially available Indian jasmine absolutes from the species: J. sambac, J. officinale subsp. grandiflorum, and J. auriculatum and the respective VHS samples were used for comparison purposes. One hundred and twenty-one compounds were characterized in J. flexile flower absolute, with methyl linolate, benzyl salicylate, benzyl benzoate, (2E,6E)-farnesol, and benzyl acetate as the main constituents. A detailed olfactory evaluation was also performed.

  13. Absolute Plate Velocities from Seismic Anisotropy

    NASA Astrophysics Data System (ADS)

    Kreemer, Corné; Zheng, Lin; Gordon, Richard

    2015-04-01

    lithosphere (σ=14.7° ). Two of the slowest-moving plates, Antarctica (vRMS=4 mm a-1, σ=29° ) and Eurasia (vRMS=3 mm a-1, σ=33° ), have two of the largest within-plate dispersions, which may indicate that a plate must move faster than ˜5 mm a-1 to result in seismic anisotropy useful for estimating plate motion. We will investigate if these relationships still hold with the new expanded data set and with the alternative set of relative plate angular velocities. We have found systematic differences between the SKS orientations and our predicted plate motion azimuths underneath the Arabia plate, which suggests to us either plate-scale mantle flow process not directly associated with that plate's absolute motion or intrinsic lithospheric anisotropy. We will discuss more of such discrepancies underneath other plates using the enlarged data set.

  14. The role of small-scale ion injections in the buildup of Earth's ring current pressure: Van Allen Probes observations of the 17 March 2013 storm

    NASA Astrophysics Data System (ADS)

    Gkioulidou, Matina; Ukhorskiy, A. Y.; Mitchell, D. G.; Sotirelis, T.; Mauk, B. H.; Lanzerotti, L. J.

    2014-09-01

    Energetic particle transport into the inner magnetosphere during geomagnetic storms is responsible for significant plasma pressure enhancement, which is the driver of large-scale currents that control the global electrodynamics within the magnetosphere-ionosphere system. Therefore, understanding the transport of plasma from the tail deep into the near-Earth magnetosphere, as well as the energization processes associated with this transport, is essential for a comprehensive knowledge of the near-Earth space environment. During the main phase of a geomagnetic storm on 17 March 2013 (minimum Dst ~ -137 nT), the Radiation Belt Storm Probes Ion Composition Experiment (RBSPICE) instrument on the Van Allen Probes observed frequent, small-scale proton injections deep into the inner nightside magnetosphere in the region L ~ 4 - 6. Although isolated injections have been previously reported inside geosynchronous orbit, the large number of small-scale injections observed in this event suggests that, during geomagnetic storms injections provide a robust mechanism for transporting energetic ions deep into the inner magnetosphere. In order to understand the role that these injections play in the ring current dynamics, we determine the following properties for each injection: (i) associated pressure enhancement, (ii) the time duration of this enhancement, and (iii) the lowest and highest energy channels exhibiting a sharp increase in their intensities. Based on these properties, we estimate the effect of these small-scale injections on the pressure buildup during the storm. We find that this mode of transport could make a substantial contribution to the total energy gain in the storm time inner magnetosphere.

  15. Multi-Length Scale Modeling of High-Pressure-Induced Phase Transformations in Soda-Lime Glass

    NASA Astrophysics Data System (ADS)

    Grujicic, M.; Bell, W. C.; Glomski, P. S.; Pandurangan, B.; Cheeseman, B. A.; Fountzoulas, C.; Patel, P.

    2011-10-01

    Molecular-level modeling and simulations are employed to study room-temperature micro-structural and mechanical response of soda-lime glass when subjected to high (i.e., several giga-Pascal) uniaxial-strain stresses/pressure. The results obtained revealed the occurrence of an irreversible phase-transformation at ca. 4 GPa which was associated with a (permanent) 3-7% volume reduction. Close examination of molecular-level topology revealed that the pressure-induced phase transformation in question is associated with an increase in the average coordination number of the silicon atoms, and the creation of two- to fourfold (smaller, high packing-density) Si-O rings. The associated loading and unloading axial-stress versus specific-volume isotherms were next converted into the corresponding loading Hugoniot and unloading isentrope axial-stress versus specific-volume relations. These were subsequently used to analyze the role of the pressure-induced phase-transformation/irreversible-densification in mitigating the effects of blast and ballistic impact loading onto a prototypical glass plate used in monolithic and laminated transparent armor applications. The results of this part of the study revealed that pressure-induced phase-transformation can provide several beneficial effects such as lowering of the loading/unloading stress-rates and stresses, shock/release-wave dispersion, and energy absorption associated with the study of phase-transformation.

  16. Universal Cosmic Absolute and Modern Science

    NASA Astrophysics Data System (ADS)

    Kostro, Ludwik

    The official Sciences, especially all natural sciences, respect in their researches the principle of methodic naturalism i.e. they consider all phenomena as entirely natural and therefore in their scientific explanations they do never adduce or cite supernatural entities and forces. The purpose of this paper is to show that Modern Science has its own self-existent, self-acting, and self-sufficient Natural All-in Being or Omni-Being i.e. the entire Nature as a Whole that justifies the scientific methodic naturalism. Since this Natural All-in Being is one and only It should be considered as the own scientifically justified Natural Absolute of Science and should be called, in my opinion, the Universal Cosmic Absolute of Modern Science. It will be also shown that the Universal Cosmic Absolute is ontologically enormously stratified and is in its ultimate i.e. in its most fundamental stratum trans-reistic and trans-personal. It means that in its basic stratum. It is neither a Thing or a Person although It contains in Itself all things and persons with all other sentient and conscious individuals as well, On the turn of the 20th century the Science has begun to look for a theory of everything, for a final theory, for a master theory. In my opinion the natural Universal Cosmic Absolute will constitute in such a theory the radical all penetrating Ultimate Basic Reality and will substitute step by step the traditional supernatural personal Absolute.

  17. An Absolute Measurement of Resonance-Resolved Electron Impact Excitation

    NASA Astrophysics Data System (ADS)

    Reisenfeld, Daniel Brett

    1998-11-01

    An experiment to measure electron-impact excitation (EIE) of multiply-charged ions is described. An absolute measurement has been carried out of the cross section for EIE of Si2+(3s2/ 1S/to3s3p/ 1P) from energies below threshold to 11 eV above. A beams modulation technique with inclined electron and ion beams was used. Radiation at 120.7 nm from the excited ions was detected using an absolutely calibrated optical system. The analysis of the experimental data requires a determination of the population fraction of the Si2+ (3s3p/ 3Po) metastable state in the incident ion beam, which was measured to be 0.210 ± 0.018. The data have been corrected for contributions to the signal from radiative decay following excitation from the metastable state to 3s3p1P and 3p2/ 3P, and excitation of the ground state to levels above 3s3p/ 1P. The experimental 0.56 ± 0.08 eV energy spread has allowed us to resolve complex resonance structure throughout the studied energy range. At the reported ±14% uncertainty level (90% confidence limit), the measured structure and absolute scale of the cross section are in good agreement with 12-state close-coupling R-matrix calculations.

  18. Absolute photoionization cross-section of the propargyl radical

    SciTech Connect

    Savee, John D.; Welz, Oliver; Taatjes, Craig A.; Osborn, David L.; Soorkia, Satchin; Selby, Talitha M.

    2012-04-07

    Using synchrotron-generated vacuum-ultraviolet radiation and multiplexed time-resolved photoionization mass spectrometry we have measured the absolute photoionization cross-section for the propargyl (C{sub 3}H{sub 3}) radical, {sigma}{sub propargyl}{sup ion}(E), relative to the known absolute cross-section of the methyl (CH{sub 3}) radical. We generated a stoichiometric 1:1 ratio of C{sub 3}H{sub 3} : CH{sub 3} from 193 nm photolysis of two different C{sub 4}H{sub 6} isomers (1-butyne and 1,3-butadiene). Photolysis of 1-butyne yielded values of {sigma}{sub propargyl}{sup ion}(10.213 eV)=(26.1{+-}4.2) Mb and {sigma}{sub propargyl}{sup ion}(10.413 eV)=(23.4{+-}3.2) Mb, whereas photolysis of 1,3-butadiene yielded values of {sigma}{sub propargyl}{sup ion}(10.213 eV)=(23.6{+-}3.6) Mb and {sigma}{sub propargyl}{sup ion}(10.413 eV)=(25.1{+-}3.5) Mb. These measurements place our relative photoionization cross-section spectrum for propargyl on an absolute scale between 8.6 and 10.5 eV. The cross-section derived from our results is approximately a factor of three larger than previous determinations.

  19. Optical trapping at gigapascal pressures.

    PubMed

    Bowman, Richard W; Gibson, Graham M; Padgett, Miles J; Saglimbeni, Filippo; Di Leonardo, Roberto

    2013-03-01

    Diamond anvil cells allow the behavior of materials to be studied at pressures up to hundreds of gigapascals in a small and convenient instrument. However, physical access to the sample is impossible once it is pressurized. We show that optical tweezers can be used to hold and manipulate particles in such a cell, confining micron-sized transparent beads in the focus of a laser beam. Here, we use a modified optical tweezers geometry, allowing us to trap through an objective lens with a higher working distance, overcoming the constraints imposed by the limited angular acceptance of the anvil cell. We demonstrate the effectiveness of the technique by measuring water's viscosity at pressures of up to 1.3 GPa. In contrast to previous viscosity measurements in anvil cells, our technique measures absolute viscosity and does not require scaling to the accepted value at atmospheric pressure. This method could also measure the frequency dependence of viscosity as well as being sensitive to anisotropy in the medium's viscosity.

  20. Quantum theory allows for absolute maximal contextuality

    NASA Astrophysics Data System (ADS)

    Amaral, Barbara; Cunha, Marcelo Terra; Cabello, Adán

    2015-12-01

    Contextuality is a fundamental feature of quantum theory and a necessary resource for quantum computation and communication. It is therefore important to investigate how large contextuality can be in quantum theory. Linear contextuality witnesses can be expressed as a sum S of n probabilities, and the independence number α and the Tsirelson-like number ϑ of the corresponding exclusivity graph are, respectively, the maximum of S for noncontextual theories and for the theory under consideration. A theory allows for absolute maximal contextuality if it has scenarios in which ϑ /α approaches n . Here we show that quantum theory allows for absolute maximal contextuality despite what is suggested by the examination of the quantum violations of Bell and noncontextuality inequalities considered in the past. Our proof is not constructive and does not single out explicit scenarios. Nevertheless, we identify scenarios in which quantum theory allows for almost-absolute-maximal contextuality.

  1. Absolute calibration in vivo measurement systems

    SciTech Connect

    Kruchten, D.A.; Hickman, D.P.

    1991-02-01

    Lawrence Livermore National Laboratory (LLNL) is currently investigating a new method for obtaining absolute calibration factors for radiation measurement systems used to measure internally deposited radionuclides in vivo. Absolute calibration of in vivo measurement systems will eliminate the need to generate a series of human surrogate structures (i.e., phantoms) for calibrating in vivo measurement systems. The absolute calibration of in vivo measurement systems utilizes magnetic resonance imaging (MRI) to define physiological structure, size, and composition. The MRI image provides a digitized representation of the physiological structure, which allows for any mathematical distribution of radionuclides within the body. Using Monte Carlo transport codes, the emission spectrum from the body is predicted. The in vivo measurement equipment is calibrated using the Monte Carlo code and adjusting for the intrinsic properties of the detection system. The calibration factors are verified using measurements of existing phantoms and previously obtained measurements of human volunteers. 8 refs.

  2. Stimulus probability effects in absolute identification.

    PubMed

    Kent, Christopher; Lamberts, Koen

    2016-05-01

    This study investigated the effect of stimulus presentation probability on accuracy and response times in an absolute identification task. Three schedules of presentation were used to investigate the interaction between presentation probability and stimulus position within the set. Data from individual participants indicated strong effects of presentation probability on both proportion correct and response times. The effects were moderated by the ubiquitous stimulus position effect. The accuracy and response time data were predicted by an exemplar-based model of perceptual cognition (Kent & Lamberts, 2005). The bow in discriminability was also attenuated when presentation probability for middle items was relatively high, an effect that will constrain future model development. The study provides evidence for item-specific learning in absolute identification. Implications for other theories of absolute identification are discussed. (PsycINFO Database Record

  3. Quantitative standards for absolute linguistic universals.

    PubMed

    Piantadosi, Steven T; Gibson, Edward

    2014-01-01

    Absolute linguistic universals are often justified by cross-linguistic analysis: If all observed languages exhibit a property, the property is taken to be a likely universal, perhaps specified in the cognitive or linguistic systems of language learners and users. In many cases, these patterns are then taken to motivate linguistic theory. Here, we show that cross-linguistic analysis will very rarely be able to statistically justify absolute, inviolable patterns in language. We formalize two statistical methods--frequentist and Bayesian--and show that in both it is possible to find strict linguistic universals, but that the numbers of independent languages necessary to do so is generally unachievable. This suggests that methods other than typological statistics are necessary to establish absolute properties of human language, and thus that many of the purported universals in linguistics have not received sufficient empirical justification.

  4. Absolute photoacoustic thermometry in deep tissue.

    PubMed

    Yao, Junjie; Ke, Haixin; Tai, Stephen; Zhou, Yong; Wang, Lihong V

    2013-12-15

    Photoacoustic thermography is a promising tool for temperature measurement in deep tissue. Here we propose an absolute temperature measurement method based on the dual temperature dependences of the Grüneisen parameter and the speed of sound in tissue. By taking ratiometric measurements at two adjacent temperatures, we can eliminate the factors that are temperature irrelevant but difficult to correct for in deep tissue. To validate our method, absolute temperatures of blood-filled tubes embedded ~9 mm deep in chicken tissue were measured in a biologically relevant range from 28°C to 46°C. The temperature measurement accuracy was ~0.6°C. The results suggest that our method can be potentially used for absolute temperature monitoring in deep tissue during thermotherapy.

  5. Molecular iodine absolute frequencies. Final report

    SciTech Connect

    Sansonetti, C.J.

    1990-06-25

    Fifty specified lines of {sup 127}I{sub 2} were studied by Doppler-free frequency modulation spectroscopy. For each line the classification of the molecular transition was determined, hyperfine components were identified, and one well-resolved component was selected for precise determination of its absolute frequency. In 3 cases, a nearby alternate line was selected for measurement because no well-resolved component was found for the specified line. Absolute frequency determinations were made with an estimated uncertainty of 1.1 MHz by locking a dye laser to the selected hyperfine component and measuring its wave number with a high-precision Fabry-Perot wavemeter. For each line results of the absolute measurement, the line classification, and a Doppler-free spectrum are given.

  6. Predictive validity and reliability of the Turkish version of the risk assessment pressure sore scale in intensive care patients: results of a prospective study.

    PubMed

    Günes, Ülkü Yapucu; Efteli, Elçin

    2015-04-01

    Multiple pressure ulcer (PU) risk assessment instruments have been developed and tested, but there is no general consensus on which instrument to use for specific patient populations and care settings. The purpose of this study was to determine the reliability and predictive validity of the Turkish version of the Risk Assessment Pressure Sore (RAPS) instrument, which includes 12 variables--5 from the modified Norton Scale, 3 from the Braden Scale, and 3 from other research results--for use in intensive care unit (ICU) patients. The English version of the RAPS instrument was translated into Turkish and tested for internal consistency and predictive validity (sensitivity, specificity, positive predictive value, and negative predictive value) using a convenience sample of 122 patients consecutively admitted to an ICU unit in Turkey. The patients were assessed within 24 hours of admission, and after that, once a week until the development of a PU or discharge from the unit. The incidence of PUs in this population was 23%. The majority of ulcers that developed were Stage I. Internal consistency of the RAPS tool was adequate (Cronbach's α = 0.81). The best balance between sensitivity and specificity for ICU patients was reached at a cut-off point of ≤ 27 (ie, sensitivity = 74.2%, specificity = 31.8%, positive predictive value = 38.7%, and negative predictive value 91.3%). This is lower than the cut-off point reported in other studies of the RAPS scale. In this population of ICU patients, the RAPS scale was found to have acceptable reliability and poor validity. Additional studies to evaluate the predictive validity and reliability of the RAPS scale in other patient populations and care settings are needed.

  7. The Challenge of Planning Conservation Strategies in Threatened Seascapes: Understanding the Role of Fine Scale Assessments of Community Response to Cumulative Human Pressures.

    PubMed

    Guarnieri, Giuseppe; Bevilacqua, Stanislao; De Leo, Francesco; Farella, Giulio; Maffia, Anna; Terlizzi, Antonio; Fraschetti, Simonetta

    2016-01-01

    Assessing the distribution and intensity of human threats to biodiversity is a prerequisite for effective spatial planning, harmonizing conservation purposes with sustainable development. In the Mediterranean Sea, the management of Marine Protected Areas (MPAs) is rarely based on explicit consideration of the distribution of multiple stressors, with direct assessment of their effects on ecosystems. This gap limits the effectiveness of protection and is conducive to conflicts among stakeholders. Here, a fine scale assessment of the potential effects of different combinations of stressors (both land- and marine-based) on vulnerable rocky habitats (i.e. lower midlittoral and shallow infralittoral) along 40 km of coast in the western Mediterranean (Ionian Sea) has been carried out. The study area is a paradigmatic example of socio-ecological interactions, where several human uses and conservation measures collide. Significant differences in the structure of assemblages according to different combinations of threats were observed, indicating distinct responses of marine habitats to different sets of human pressures. A more complex three-dimensional structure, higher taxon richness and β-diversity characterized assemblages subject to low versus high levels of human pressure, consistently across habitats. In addition, the main drivers of change were: closeness to the harbour, water quality, and the relative extension of beaches. Our findings suggest that, although efforts to assess cumulative impacts at large scale may help in individuating priority areas for conservation purposes, the fact that such evaluations are often based on expert opinions and not on actual studies limits their ability to represent real environmental conditions at local scale. Systematic evaluations of local scale effects of anthropogenic drivers of change on biological communities should complement broad scale management strategies to achieve effective sustainability of human exploitation of

  8. The Challenge of Planning Conservation Strategies in Threatened Seascapes: Understanding the Role of Fine Scale Assessments of Community Response to Cumulative Human Pressures.

    PubMed

    Guarnieri, Giuseppe; Bevilacqua, Stanislao; De Leo, Francesco; Farella, Giulio; Maffia, Anna; Terlizzi, Antonio; Fraschetti, Simonetta

    2016-01-01

    Assessing the distribution and intensity of human threats to biodiversity is a prerequisite for effective spatial planning, harmonizing conservation purposes with sustainable development. In the Mediterranean Sea, the management of Marine Protected Areas (MPAs) is rarely based on explicit consideration of the distribution of multiple stressors, with direct assessment of their effects on ecosystems. This gap limits the effectiveness of protection and is conducive to conflicts among stakeholders. Here, a fine scale assessment of the potential effects of different combinations of stressors (both land- and marine-based) on vulnerable rocky habitats (i.e. lower midlittoral and shallow infralittoral) along 40 km of coast in the western Mediterranean (Ionian Sea) has been carried out. The study area is a paradigmatic example of socio-ecological interactions, where several human uses and conservation measures collide. Significant differences in the structure of assemblages according to different combinations of threats were observed, indicating distinct responses of marine habitats to different sets of human pressures. A more complex three-dimensional structure, higher taxon richness and β-diversity characterized assemblages subject to low versus high levels of human pressure, consistently across habitats. In addition, the main drivers of change were: closeness to the harbour, water quality, and the relative extension of beaches. Our findings suggest that, although efforts to assess cumulative impacts at large scale may help in individuating priority areas for conservation purposes, the fact that such evaluations are often based on expert opinions and not on actual studies limits their ability to represent real environmental conditions at local scale. Systematic evaluations of local scale effects of anthropogenic drivers of change on biological communities should complement broad scale management strategies to achieve effective sustainability of human exploitation of

  9. The Challenge of Planning Conservation Strategies in Threatened Seascapes: Understanding the Role of Fine Scale Assessments of Community Response to Cumulative Human Pressures

    PubMed Central

    Guarnieri, Giuseppe; Bevilacqua, Stanislao; De Leo, Francesco; Farella, Giulio; Maffia, Anna; Terlizzi, Antonio; Fraschetti, Simonetta

    2016-01-01

    Assessing the distribution and intensity of human threats to biodiversity is a prerequisite for effective spatial planning, harmonizing conservation purposes with sustainable development. In the Mediterranean Sea, the management of Marine Protected Areas (MPAs) is rarely based on explicit consideration of the distribution of multiple stressors, with direct assessment of their effects on ecosystems. This gap limits the effectiveness of protection and is conducive to conflicts among stakeholders. Here, a fine scale assessment of the potential effects of different combinations of stressors (both land- and marine-based) on vulnerable rocky habitats (i.e. lower midlittoral and shallow infralittoral) along 40 km of coast in the western Mediterranean (Ionian Sea) has been carried out. The study area is a paradigmatic example of socio-ecological interactions, where several human uses and conservation measures collide. Significant differences in the structure of assemblages according to different combinations of threats were observed, indicating distinct responses of marine habitats to different sets of human pressures. A more complex three-dimensional structure, higher taxon richness and β-diversity characterized assemblages subject to low versus high levels of human pressure, consistently across habitats. In addition, the main drivers of change were: closeness to the harbour, water quality, and the relative extension of beaches. Our findings suggest that, although efforts to assess cumulative impacts at large scale may help in individuating priority areas for conservation purposes, the fact that such evaluations are often based on expert opinions and not on actual studies limits their ability to represent real environmental conditions at local scale. Systematic evaluations of local scale effects of anthropogenic drivers of change on biological communities should complement broad scale management strategies to achieve effective sustainability of human exploitation of

  10. Absolute Stability And Hyperstability In Hilbert Space

    NASA Technical Reports Server (NTRS)

    Wen, John Ting-Yung

    1989-01-01

    Theorems on stabilities of feedback control systems proved. Paper presents recent developments regarding theorems of absolute stability and hyperstability of feedforward-and-feedback control system. Theorems applied in analysis of nonlinear, adaptive, and robust control. Extended to provide sufficient conditions for stability in system including nonlinear feedback subsystem and linear time-invariant (LTI) feedforward subsystem, state space of which is Hilbert space, and input and output spaces having finite numbers of dimensions. (In case of absolute stability, feedback subsystem memoryless and possibly time varying. For hyperstability, feedback system dynamical system.)

  11. Single and two-phase natural circulation in Westinghouse pressurized water reactor simulators: Phenomena, analysis and scaling

    SciTech Connect

    Schultz, R.R.; Chapman, J.C.; Kukita, Y.; Motley, F.E.; Stumpf, H.; Chen, Y.S.; Tasaka, K.

    1987-01-01

    Natural circulation data obtained in the 1/48 scale W four loop PWR simulator - the Large Scale Test Facility (LSTF) are discussed and summarized. Core cooling modes, the primary fluid state, the primary loop mass flow and localized natural circulation phenomena occurring in the steam generator are presented. TRAC-PF1 LSTF model (using both a 1 U-tube and a 3 U-tube steam generator model) analyses of the LSTF natural circulation data including the SG recirculation patterns are presented and compared to the data. The LSTF data are then compared to similar natural circulation data obtained in the Primarkreislaufe (PKL) and the Semiscale facilities. Based on the 1/48 to 1/1705 scaling range which exists between the facilities, the implications of these data towrard natural circulation behavior in commercial plants are briefly discussed.

  12. Scale-4 analysis of pressurized water reactor critical configurations: Volume 5, North Anna Unit 1 Cycle 5

    SciTech Connect

    Bowman, S.M.; Suto, T. |

    1996-10-01

    ANSI/ANS 8.1 requires that calculational methods for away-from- reactor (AFR) criticality safety analyses be validated against experiment. This report summarizes part of the ongoing effort to benchmark AFR criticality analysis methods using selected critical configurations from commercial PWRs. Codes and data in the SCALE-4 code system were used. This volume documents the SCALE system analysis of one reactor critical configuration for North Anna Unit 1 Cycle 5. The KENO V.a criticality calculations for the North Anna 1 Cycle 5 beginning-of-cycle model yielded a value for k{sub eff} of 1. 0040{+-}0.0005.

  13. Large-scale mass transfers related to pressure solution creep-faulting interactions in mudstones: Driving processes and impact of lithification degree

    NASA Astrophysics Data System (ADS)

    Richard, J.

    2014-02-01

    Where normal faulting is associated with PSC (Pressure Solution Creep), it generates evolutions in petrophysical properties of mudstones like chalk: decrease in reservoir qualities and transport properties in the deformed zones adjacent to the fault plane and increase (or no change) in reservoir qualities and transport properties in the outermost deformed zones. These modifications result from large-scale mass transfers linked to a transport of solutes through the pore space over distances of several grains within decimeter or larger zones (open systems at the grain scale). In the lithified mudstones, these large-scale mass transfers consist in a mass redistribution from the outermost deformed zones (mass and volume loss) to the deformed zones adjacent to the fault planes (mass gain). In the weakly lithified mudstones, the mass redistribution occurs in an opposite direction. A deeper understanding of these large-scale mass redistributions is essential because the PSC-faulting interactions and the associated petrophysical modifications can be a key topic in several geological applications (oil and gas migration and entrapment in mudstone reservoirs, anthropogenic waste storage, carbon dioxyde geosequestration). The results of two studies about mass transfers and volume changes induced by natural fault systems in “white chalk” allowed to point out that two driving processes control the large-scale mass transfers during PSC-faulting interactions: the advective mass transport related to pore fluid flows and the large-scale diffusive mass transport linked to chemical potential gradients. The present contribution also highlights that the lithification degree of the host material plays a key role in the large-scale mass transfers related to PSC-faulting interactions by controlling (1) the spatial distribution of voids induced by the deformation, (2) the particle displacement on the fault plane and in the adjacent zones and (3) the petrophysical properties of the host

  14. Large-scale synthesis of well-dispersed copper nanowires in an electric pressure cooker and their application in transparent and conductive networks.

    PubMed

    Li, Shenjie; Chen, Yanyan; Huang, Lijian; Pan, Daocheng

    2014-05-01

    We present a novel large-scale synthetic method for well-separated copper nanowires (CuNWs) in a commercial electric pressure cooker under mild reaction conditions. CuNWs (∼2.1 g) can be prepared in a batch with the cost of $4.20/g. Well-dispersed polyvinylpyrrolidone-capped CuNWs were obtained via a ligand-exchange method. The transparent and conductive CuNW networks with excellent electrical conductivity and high optical transmittance (30 Ω/□ at 86% transmittance, respectively) were fabricated by a spin-coating process.

  15. Absolute Points for Multiple Assignment Problems

    ERIC Educational Resources Information Center

    Adlakha, V.; Kowalski, K.

    2006-01-01

    An algorithm is presented to solve multiple assignment problems in which a cost is incurred only when an assignment is made at a given cell. The proposed method recursively searches for single/group absolute points to identify cells that must be loaded in any optimal solution. Unlike other methods, the first solution is the optimal solution. The…

  16. Absolute partial photoionization cross sections of ozone.

    SciTech Connect

    Berkowitz, J.; Chemistry

    2008-04-01

    Despite the current concerns about ozone, absolute partial photoionization cross sections for this molecule in the vacuum ultraviolet (valence) region have been unavailable. By eclectic re-evaluation of old/new data and plausible assumptions, such cross sections have been assembled to fill this void.

  17. Stimulus Probability Effects in Absolute Identification

    ERIC Educational Resources Information Center

    Kent, Christopher; Lamberts, Koen

    2016-01-01

    This study investigated the effect of stimulus presentation probability on accuracy and response times in an absolute identification task. Three schedules of presentation were used to investigate the interaction between presentation probability and stimulus position within the set. Data from individual participants indicated strong effects of…

  18. Teaching Absolute Value Inequalities to Mature Students

    ERIC Educational Resources Information Center

    Sierpinska, Anna; Bobos, Georgeana; Pruncut, Andreea

    2011-01-01

    This paper gives an account of a teaching experiment on absolute value inequalities, whose aim was to identify characteristics of an approach that would realize the potential of the topic to develop theoretical thinking in students enrolled in prerequisite mathematics courses at a large, urban North American university. The potential is…

  19. Solving Absolute Value Equations Algebraically and Geometrically

    ERIC Educational Resources Information Center

    Shiyuan, Wei

    2005-01-01

    The way in which students can improve their comprehension by understanding the geometrical meaning of algebraic equations or solving algebraic equation geometrically is described. Students can experiment with the conditions of the absolute value equation presented, for an interesting way to form an overall understanding of the concept.

  20. Increasing Capacity: Practice Effects in Absolute Identification

    ERIC Educational Resources Information Center

    Dodds, Pennie; Donkin, Christopher; Brown, Scott D.; Heathcote, Andrew

    2011-01-01

    In most of the long history of the study of absolute identification--since Miller's (1956) seminal article--a severe limit on performance has been observed, and this limit has resisted improvement even by extensive practice. In a startling result, Rouder, Morey, Cowan, and Pfaltz (2004) found substantially improved performance with practice in the…

  1. Absolute Radiometric Calibration Of The Thematic Mapper

    NASA Astrophysics Data System (ADS)

    Slater, P. N.; Biggar, S. F.; Holm, R. G.; Jackson, R. D.; Mao, Y.; Moran, M. S.; Palmer, J. M.; Yuan, B.

    1986-11-01

    The results are presented of five in-flight absolute radiometric calibrations, made in the period July 1984 to November 1985, at White Sands, New Mexico, of the solar reflective bands of the Landsat-5 Thematic Mapper (TM) . The 23 bandcalibrations made on the five dates show a ± 2.8% RMS variation from the mean as a percentage of the mean.

  2. On Relative and Absolute Conviction in Mathematics

    ERIC Educational Resources Information Center

    Weber, Keith; Mejia-Ramos, Juan Pablo

    2015-01-01

    Conviction is a central construct in mathematics education research on justification and proof. In this paper, we claim that it is important to distinguish between absolute conviction and relative conviction. We argue that researchers in mathematics education frequently have not done so and this has lead to researchers making unwarranted claims…

  3. Deuterium-Tritium Beta-Layering Within a National Ignition Facility Scale Polymer Target in the LANL Cryogenic Pressure Loader

    SciTech Connect

    Ebey, Peter S.; Dole, James M.; Geller, Drew A.; Hoffer, James K.; Nobile, Arthur; Sheliak, John D.

    2005-11-15

    Beta-layering, the process of beta-decay heat-driven mass redistribution, has been demonstrated in a deuterium-tritium (D-T)-filled polymer sphere of the type required for fusion ignition experiments at the National Ignition Facility. This is the first report, to the best of the authors' knowledge, of a D-T layer formed in a permeation-filled sphere. The 2-mm-diam sphere was filled with D-T by permeation; cooled to cryogenic temperatures while in the high-pressure permeation vessel; and, while cold, removed to an optical axis where the D-T was frozen, melted, and beta-layered in a series of experiments over several weeks' time. This work was performed in the Los Alamos National Laboratory cryogenic pressure loader system. The beta-layering time constant was 24.0 {+-} 2.5 min, less than the theoretical value of 26.8 min, and not showing the significant increase due to build-up of {sup 3}He often observed in beta-layered samples. Supercooling of the liquid D-T was observed. Neither the polymer target nor its tenting material showed visual signs of degradation after 5 weeks of exposure to D-T. Small external thermal gradients were used to shift the D-T material back and forth within the sphere.

  4. Test Report for MSFC Test No. 83-2: Pressure scaled water impact test of a 12.5 inch diameter model of the Space Shuttle solid rocket booster filament wound case and external TVC PCD

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Water impact tests using a 12.5 inch diameter model representing a 8.56 percent scale of the Space Shuttle Solid Rocket Booster configuration were conducted. The two primary objectives of this SRB scale model water impact test program were: 1. Obtain cavity collapse applied pressure distributions for the 8.56 percent rigid body scale model FWC pressure magnitudes as a function of full-scale initial impact conditions at vertical velocities from 65 to 85 ft/sec, horizontal velocities from 0 to 45 ft/sec, and angles from -10 to +10 degrees. 2. Obtain rigid body applied pressures on the TVC pod and aft skirt internal stiffener rings at initial impact and cavity collapse loading events. In addition, nozzle loads were measured. Full scale vertical velocities of 65 to 85 ft/sec, horizontal velocities of 0 to 45 ft/sec, and impact angles from -10 to +10 degrees simulated.

  5. Utility of Braden Scale Nutrition Subscale Ratings as an Indicator of Dietary Intake and Weight Outcomes among Nursing Home Residents at Risk for Pressure Ulcers.

    PubMed

    Kennerly, Susan; Boss, Lisa; Yap, Tracey L; Batchelor-Murphy, Melissa; Horn, Susan D; Barrett, Ryan; Bergstrom, Nancy

    2015-09-24

    The Braden Scale for Pressure Sore Risk(©) is a screening tool to determine overall risk of pressure ulcer development and estimate severity of specific risk factors for individual residents. Nurses often use the Braden nutrition subscale to screen nursing home (NH) residents for nutritional risk, and then recommend a more comprehensive nutritional assessment as indicated. Secondary data analysis from the Turn for Ulcer ReductioN (TURN) study's investigation of U.S. and Canadian NH residents (n = 690) considered at moderate or high pressure ulcer (PrU) risk was used to evaluate the subscale's utility for identifying nutritional intake risk factors. Associations were examined between Braden Nutritional Risk subscale screening, dietary intake (mean % meal intake and by meal timing, mean number of protein servings, protein sources, % intake of supplements and snacks), weight outcomes, and new PrU incidence. Of moderate and high PrU risk residents, 61.9% and 59.2% ate a mean meal % of <75. Fewer than 18% overall ate <50% of meals or refused meals. No significant differences were observed in weight differences by nutrition subscale risk or in mean number protein servings per meal (1.4 (SD = 0.58) versus 1.3 (SD = 0.53)) for moderate versus high PrU risk residents. The nutrition subscale approximates subsequent estimated dietary intake and can provide insight into meal intake patterns for those at either moderate or high PrU risk. Findings support the Braden Scale's use as a preliminary screening method to identify focused areas for potential intervention.

  6. An Investigation of Organic and Inorganic Mercury Exposure and Blood Pressure in a Small-Scale Gold Mining Community in Ghana

    PubMed Central

    Rajaee, Mozhgon; Sánchez, Brisa N.; Renne, Elisha P.; Basu, Niladri

    2015-01-01

    There is increasing concern about the cardiovascular effects of mercury (Hg) exposure, and that organic methylmercury and inorganic Hg2+ may affect the cardiovascular system and blood pressure differentially. In small-scale gold mining communities where inorganic, elemental Hg exposures are high, little is known about the effects of Hg on blood pressure. In 2011, we assessed the relationship between Hg exposure and blood pressure (BP) in a cross-sectional study of adults from a small-scale gold mining community, Kejetia, and subsistence farming community, Gorogo, in Ghana’s Upper East Region. Participants’ resting heart rate and BP were measured, and hair and urine samples were provided to serve as biomarkers of organic and inorganic Hg exposure, respectively. Participants included 70 miners and 26 non-miners from Kejetia and 75 non-miners from Gorogo. Total specific gravity-adjusted urinary and hair Hg was higher among Kejetia miners than Kejetia non-miners and Gorogo participants (median urinary Hg: 5.17, 1.18, and 0.154 µg/L, respectively; hair Hg: 0.945, 0.419, and 0.181 µg/g, respectively). Hypertension was prevalent in 17.7% of Kejetia and 21.3% of Gorogo participants. Urinary and hair Hg were not significantly associated with systolic or diastolic BP for Kejetia or Gorogo participants while adjusting for sex, age, and smoking status. Although our results follow trends seen in other studies, the associations were not of statistical significance. Given the unique study population and high exposures to inorganic Hg, the work contained here will help increase our understanding of the cardiovascular effects of Hg. PMID:26308023

  7. An Investigation of Organic and Inorganic Mercury Exposure and Blood Pressure in a Small-Scale Gold Mining Community in Ghana.

    PubMed

    Rajaee, Mozhgon; Sánchez, Brisa N; Renne, Elisha P; Basu, Niladri

    2015-08-01

    There is increasing concern about the cardiovascular effects of mercury (Hg) exposure, and that organic methylmercury and inorganic Hg(2+) may affect the cardiovascular system and blood pressure differentially. In small-scale gold mining communities where inorganic, elemental Hg exposures are high, little is known about the effects of Hg on blood pressure. In 2011, we assessed the relationship between Hg exposure and blood pressure (BP) in a cross-sectional study of adults from a small-scale gold mining community, Kejetia, and subsistence farming community, Gorogo, in Ghana's Upper East Region. Participants' resting heart rate and BP were measured, and hair and urine samples were provided to serve as biomarkers of organic and inorganic Hg exposure, respectively. Participants included 70 miners and 26 non-miners from Kejetia and 75 non-miners from Gorogo. Total specific gravity-adjusted urinary and hair Hg was higher among Kejetia miners than Kejetia non-miners and Gorogo participants (median urinary Hg: 5.17, 1.18, and 0.154 µg/L, respectively; hair Hg: 0.945, 0.419, and 0.181 µg/g, respectively). Hypertension was prevalent in 17.7% of Kejetia and 21.3% of Gorogo participants. Urinary and hair Hg were not significantly associated with systolic or diastolic BP for Kejetia or Gorogo participants while adjusting for sex, age, and smoking status. Although our results follow trends seen in other studies, the associations were not of statistical significance. Given the unique study population and high exposures to inorganic Hg, the work contained here will help increase our understanding of the cardiovascular effects of Hg.

  8. Luminescent Paints Used for Rotating Temperature and Pressure Measurements on Scale-Model High-Bypass-Ratio Fans

    NASA Technical Reports Server (NTRS)

    Bencic, Timothy J.

    1998-01-01

    NASA Lewis Research Center is a leader in the application of temperature- and pressuresensitive paints (TSP and PSP) in rotating environments. Tests were recently completed on several scale model, high-bypass-ratio turbofans in Lewis' 9- by 15-Foot Low-Speed Wind Tunnel. Two of the test objectives were to determine the aerodynamic and acoustic performance of the fan designs. Using TSP and PSP, researchers successfully achieved fullfield aerodynamic loading profiles. The visualized loading profiles may help researchers identify factors contributing to the fans' performance and to the acoustic characteristics associated with the flow physics on the surface of the blades.

  9. Trophic Scaling and Occupancy Analysis Reveals a Lion Population Limited by Top-Down Anthropogenic Pressure in the Limpopo National Park, Mozambique

    PubMed Central

    Everatt, Kristoffer T.; Andresen, Leah; Somers, Michael J.

    2014-01-01

    The African lion (Panthera Leo) has suffered drastic population and range declines over the last few decades and is listed by the IUCN as vulnerable to extinction. Conservation management requires reliable population estimates, however these data are lacking for many of the continent's remaining populations. It is possible to estimate lion abundance using a trophic scaling approach. However, such inferences assume that a predator population is subject only to bottom-up regulation, and are thus likely to produce biased estimates in systems experiencing top-down anthropogenic pressures. Here we provide baseline data on the status of lions in a developing National Park in Mozambique that is impacted by humans and livestock. We compare a direct density estimate with an estimate derived from trophic scaling. We then use replicated detection/non-detection surveys to estimate the proportion of area occupied by lions, and hierarchical ranking of covariates to provide inferences on the relative contribution of prey resources and anthropogenic factors influencing lion occurrence. The direct density estimate was less than 1/3 of the estimate derived from prey resources (0.99 lions/100 km2 vs. 3.05 lions/100 km2). The proportion of area occupied by lions was Ψ = 0.439 (SE = 0.121), or approximately 44% of a 2 400 km2 sample of potential habitat. Although lions were strongly predicted by a greater probability of encountering prey resources, the greatest contributing factor to lion occurrence was a strong negative association with settlements. Finally, our empirical abundance estimate is approximately 1/3 of a published abundance estimate derived from opinion surveys. Altogether, our results describe a lion population held below resource-based carrying capacity by anthropogenic factors and highlight the limitations of trophic scaling and opinion surveys for estimating predator populations exposed to anthropogenic pressures. Our study provides the first empirical

  10. Trophic scaling and occupancy analysis reveals a lion population limited by top-down anthropogenic pressure in the Limpopo National Park, Mozambique.

    PubMed

    Everatt, Kristoffer T; Andresen, Leah; Somers, Michael J

    2014-01-01

    The African lion (Panthera Leo) has suffered drastic population and range declines over the last few decades and is listed by the IUCN as vulnerable to extinction. Conservation management requires reliable population estimates, however these data are lacking for many of the continent's remaining populations. It is possible to estimate lion abundance using a trophic scaling approach. However, such inferences assume that a predator population is subject only to bottom-up regulation, and are thus likely to produce biased estimates in systems experiencing top-down anthropogenic pressures. Here we provide baseline data on the status of lions in a developing National Park in Mozambique that is impacted by humans and livestock. We compare a direct density estimate with an estimate derived from trophic scaling. We then use replicated detection/non-detection surveys to estimate the proportion of area occupied by lions, and hierarchical ranking of covariates to provide inferences on the relative contribution of prey resources and anthropogenic factors influencing lion occurrence. The direct density estimate was less than 1/3 of the estimate derived from prey resources (0.99 lions/100 km² vs. 3.05 lions/100 km²). The proportion of area occupied by lions was Ψ = 0.439 (SE = 0.121), or approximately 44% of a 2,400 km2 sample of potential habitat. Although lions were strongly predicted by a greater probability of encountering prey resources, the greatest contributing factor to lion occurrence was a strong negative association with settlements. Finally, our empirical abundance estimate is approximately 1/3 of a published abundance estimate derived from opinion surveys. Altogether, our results describe a lion population held below resource-based carrying capacity by anthropogenic factors and highlight the limitations of trophic scaling and opinion surveys for estimating predator populations exposed to anthropogenic pressures. Our study provides the first empirical

  11. Absolute Measurements of Radiation Damage in Nanometer Thick Films

    PubMed Central

    Alizadeh, Elahe; Sanche, Léon

    2013-01-01

    We address the problem of absolute measurements of radiation damage in films of nanometer thicknesses. Thin films of DNA (~ 2–160nm) are deposited onto glass substrates and irradiated with varying doses of 1.5 keV X-rays under dry N2 at atmospheric pressure and room temperature. For each different thickness, the damage is assessed by measuring the loss of the supercoiled configuration as a function of incident photon fluence. From the exposure curves, the G-values are deduced, assuming that X-ray photons interacting with DNA, deposit all of their energy in the film. The results show that the G-value (i.e., damage per unit of deposited energy) increases with film thickness and reaches a plateau at 30±5 nm. This thickness dependence provides a correction factor to estimate the actual G-value for films with thicknesses below 30nm thickness. Thus, the absolute values of damage can be compared with that of films of any thickness under different experimental conditions. PMID:22562941

  12. An absolute measure for a key currency

    NASA Astrophysics Data System (ADS)

    Oya, Shunsuke; Aihara, Kazuyuki; Hirata, Yoshito

    It is generally considered that the US dollar and the euro are the key currencies in the world and in Europe, respectively. However, there is no absolute general measure for a key currency. Here, we investigate the 24-hour periodicity of foreign exchange markets using a recurrence plot, and define an absolute measure for a key currency based on the strength of the periodicity. Moreover, we analyze the time evolution of this measure. The results show that the credibility of the US dollar has not decreased significantly since the Lehman shock, when the Lehman Brothers bankrupted and influenced the economic markets, and has increased even relatively better than that of the euro and that of the Japanese yen.

  13. Absolute radiometry and the solar constant

    NASA Technical Reports Server (NTRS)

    Willson, R. C.

    1974-01-01

    A series of active cavity radiometers (ACRs) are described which have been developed as standard detectors for the accurate measurement of irradiance in absolute units. It is noted that the ACR is an electrical substitution calorimeter, is designed for automatic remote operation in any environment, and can make irradiance measurements in the range from low-level IR fluxes up to 30 solar constants with small absolute uncertainty. The instrument operates in a differential mode by chopping the radiant flux to be measured at a slow rate, and irradiance is determined from two electrical power measurements together with the instrumental constant. Results are reported for measurements of the solar constant with two types of ACRs. The more accurate measurement yielded a value of 136.6 plus or minus 0.7 mW/sq cm (1.958 plus or minus 0.010 cal/sq cm per min).

  14. From Hubble's NGSL to Absolute Fluxes

    NASA Technical Reports Server (NTRS)

    Heap, Sara R.; Lindler, Don

    2012-01-01

    Hubble's Next Generation Spectral Library (NGSL) consists of R-l000 spectra of 374 stars of assorted temperature, gravity, and metallicity. Each spectrum covers the wavelength range, 0.18-1.00 microns. The library can be viewed and/or downloaded from the website, http://archive.stsci.edu/prepds/stisngsll. Stars in the NGSL are now being used as absolute flux standards at ground-based observatories. However, the uncertainty in the absolute flux is about 2%, which does not meet the requirements of dark-energy surveys. We are therefore developing an observing procedure that should yield fluxes with uncertainties less than 1 % and will take part in an HST proposal to observe up to 15 stars using this new procedure.

  15. Impact of Winko on absolute discharges.

    PubMed

    Balachandra, Krishna; Swaminath, Sam; Litman, Larry C

    2004-01-01

    In Canada, case laws have had a significant impact on the way mentally ill offenders are managed, both in the criminal justice system and in the forensic mental health system. The Supreme Court of Canada's decision with respect to Winko has set a major precedent in the application of the test of significant risk to the safety of the public in making dispositions by the Ontario Review Board and granting absolute discharges to the mentally ill offenders in the forensic health system. Our study examines the impact of the Supreme Court of Canada's decision before and after Winko. The results show that the numbers of absolute discharges have increased post-Winko, which was statistically significant, but there could be other factors influencing this increase.

  16. Asteroid absolute magnitudes and slope parameters

    NASA Technical Reports Server (NTRS)

    Tedesco, Edward F.

    1991-01-01

    A new listing of absolute magnitudes (H) and slope parameters (G) has been created and published in the Minor Planet Circulars; this same listing will appear in the 1992 Ephemerides of Minor Planets. Unlike previous listings, the values of the current list were derived from fits of data at the V band. All observations were reduced in the same fashion using, where appropriate, a single basis default value of 0.15 for the slope parameter. Distances and phase angles were computed for each observation. The data for 113 asteroids was of sufficiently high quality to permit derivation of their H and G. These improved absolute magnitudes and slope parameters will be used to deduce the most reliable bias-corrected asteroid size-frequency distribution yet made.

  17. Absolute-magnitude distributions of supernovae

    SciTech Connect

    Richardson, Dean; Wright, John; Jenkins III, Robert L.; Maddox, Larry

    2014-05-01

    The absolute-magnitude distributions of seven supernova (SN) types are presented. The data used here were primarily taken from the Asiago Supernova Catalogue, but were supplemented with additional data. We accounted for both foreground and host-galaxy extinction. A bootstrap method is used to correct the samples for Malmquist bias. Separately, we generate volume-limited samples, restricted to events within 100 Mpc. We find that the superluminous events (M{sub B} < –21) make up only about 0.1% of all SNe in the bias-corrected sample. The subluminous events (M{sub B} > –15) make up about 3%. The normal Ia distribution was the brightest with a mean absolute blue magnitude of –19.25. The IIP distribution was the dimmest at –16.75.

  18. Absolute and relative dosimetry for ELIMED

    SciTech Connect

    Cirrone, G. A. P.; Schillaci, F.; Scuderi, V.; Cuttone, G.; Candiano, G.; Musumarra, A.; Pisciotta, P.; Romano, F.; Carpinelli, M.; Presti, D. Lo; Raffaele, L.; Tramontana, A.; Cirio, R.; Sacchi, R.; Monaco, V.; Marchetto, F.; Giordanengo, S.

    2013-07-26

    The definition of detectors, methods and procedures for the absolute and relative dosimetry of laser-driven proton beams is a crucial step toward the clinical use of this new kind of beams. Hence, one of the ELIMED task, will be the definition of procedures aiming to obtain an absolute dose measure at the end of the transport beamline with an accuracy as close as possible to the one required for clinical applications (i.e. of the order of 5% or less). Relative dosimetry procedures must be established, as well: they are necessary in order to determine and verify the beam dose distributions and to monitor the beam fluence and the energetic spectra during irradiations. Radiochromic films, CR39, Faraday Cup, Secondary Emission Monitor (SEM) and transmission ionization chamber will be considered, designed and studied in order to perform a fully dosimetric characterization of the ELIMED proton beam.

  19. Absolute photoionization cross sections of atomic oxygen

    NASA Technical Reports Server (NTRS)

    Samson, J. A. R.; Pareek, P. N.

    1985-01-01

    The absolute values of photoionization cross sections of atomic oxygen were measured from the ionization threshold to 120 A. An auto-ionizing resonance belonging to the 2S2P4(4P)3P(3Do, 3So) transition was observed at 479.43 A and another line at 389.97 A. The experimental data is in excellent agreement with rigorous close-coupling calculations that include electron correlations in both the initial and final states.

  20. Absolute photoionization cross sections of atomic oxygen

    NASA Technical Reports Server (NTRS)

    Samson, J. A. R.; Pareek, P. N.

    1982-01-01

    The absolute values of photoionization cross sections of atomic oxygen were measured from the ionization threshold to 120 A. An auto-ionizing resonance belonging to the 2S2P4(4P)3P(3Do, 3So) transition was observed at 479.43 A and another line at 389.97 A. The experimental data is in excellent agreement with rigorous close-coupling calculations that include electron correlations in both the initial and final states.

  1. Relative errors can cue absolute visuomotor mappings.

    PubMed

    van Dam, Loes C J; Ernst, Marc O

    2015-12-01

    When repeatedly switching between two visuomotor mappings, e.g. in a reaching or pointing task, adaptation tends to speed up over time. That is, when the error in the feedback corresponds to a mapping switch, fast adaptation occurs. Yet, what is learned, the relative error or the absolute mappings? When switching between mappings, errors with a size corresponding to the relative difference between the mappings will occur more often than other large errors. Thus, we could learn to correct more for errors with this familiar size (Error Learning). On the other hand, it has been shown that the human visuomotor system can store several absolute visuomotor mappings (Mapping Learning) and can use associated contextual cues to retrieve them. Thus, when contextual information is present, no error feedback is needed to switch between mappings. Using a rapid pointing task, we investigated how these two types of learning may each contribute when repeatedly switching between mappings in the absence of task-irrelevant contextual cues. After training, we examined how participants changed their behaviour when a single error probe indicated either the often-experienced error (Error Learning) or one of the previously experienced absolute mappings (Mapping Learning). Results were consistent with Mapping Learning despite the relative nature of the error information in the feedback. This shows that errors in the feedback can have a double role in visuomotor behaviour: they drive the general adaptation process by making corrections possible on subsequent movements, as well as serve as contextual cues that can signal a learned absolute mapping. PMID:26280315

  2. The absolute spectrophotometric catalog by Anita Cochran

    NASA Astrophysics Data System (ADS)

    Burnashev, V. I.; Burnasheva, B. A.; Ruban, E. V.; Hagen-Torn, E. I.

    2014-06-01

    The absolute spectrophotometric catalog by Anita Cochran is presented in a machine-readable form. The catalog systematizes observations acquired at the McDonald Observatory in 1977-1978. The data are compared with other sources, in particular, the calculated broadband stellar magnitudes are compared with photometric observations by other authors, to show that the observational data given in the catalog are reliable and suitable for a variety of applications. Observations of variable stars of different types make Cochran's catalog especially valuable.

  3. Understanding CO2 Plume Behavior and Basin-Scale Pressure Changes during Sequestration Projects through the use of Reservoir Fluid Modeling

    USGS Publications Warehouse

    Leetaru, H.E.; Frailey, S.M.; Damico, J.; Mehnert, E.; Birkholzer, J.; Zhou, Q.; Jordan, P.D.

    2009-01-01

    Large scale geologic sequestration tests are in the planning stages around the world. The liability and safety issues of the migration of CO2 away from the primary injection site and/or reservoir are of significant concerns for these sequestration tests. Reservoir models for simulating single or multi-phase fluid flow are used to understand the migration of CO2 in the subsurface. These models can also help evaluate concerns related to brine migration and basin-scale pressure increases that occur due to the injection of additional fluid volumes into the subsurface. The current paper presents different modeling examples addressing these issues, ranging from simple geometric models to more complex reservoir fluid models with single-site and basin-scale applications. Simple geometric models assuming a homogeneous geologic reservoir and piston-like displacement have been used for understanding pressure changes and fluid migration around each CO2 storage site. These geometric models are useful only as broad approximations because they do not account for the variation in porosity, permeability, asymmetry of the reservoir, and dip of the beds. In addition, these simple models are not capable of predicting the interference between different injection sites within the same reservoir. A more realistic model of CO2 plume behavior can be produced using reservoir fluid models. Reservoir simulation of natural gas storage reservoirs in the Illinois Basin Cambrian-age Mt. Simon Sandstone suggest that reservoir heterogeneity will be an important factor for evaluating storage capacity. The Mt. Simon Sandstone is a thick sandstone that underlies many significant coal fired power plants (emitting at least 1 million tonnes per year) in the midwestern United States including the states of Illinois, Indiana, Kentucky, Michigan, and Ohio. The initial commercial sequestration sites are expected to inject 1 to 2 million tonnes of CO2 per year. Depending on the geologic structure and

  4. Space shuttle: Static surface pressures of the 0.004 scale 049 orbiter in the launch configuration

    NASA Technical Reports Server (NTRS)

    Buchholz, R. E.; Gamble, M.

    1972-01-01

    Wing and lower body surface static pressure data for the space shuttle 049 orbiter while in the launch configuration were obtained. The purpose of the test was to determine the optimum incidence position of the orbiter relative to the hydrogen-oxygen (HO) tank and the optimum radial position of the solid rocket motors (SRM) on the HO tank. The orbiter was mounted on the HO tank at incidence angles of 0 and -1.5 degrees to determine the optimum incidence position. The SRM boosters were tested at radial positions of 75, 90, and 135 degrees on the HO tank to determine their optimum position with respect to the loads imposed on the orbiter. The test was conducted in the tunnel over a Mach number range of 0.6 to 4.96. Angle of attack was varied from -8 to +8 degrees at zero degree angle of sideslip, and at sideslip angles varying from -6 to +6 degrees at zero degree angle of attack.

  5. Chemical composition of French mimosa absolute oil.

    PubMed

    Perriot, Rodolphe; Breme, Katharina; Meierhenrich, Uwe J; Carenini, Elise; Ferrando, Georges; Baldovini, Nicolas

    2010-02-10

    Since decades mimosa (Acacia dealbata) absolute oil has been used in the flavor and perfume industry. Today, it finds an application in over 80 perfumes, and its worldwide industrial production is estimated five tons per year. Here we report on the chemical composition of French mimosa absolute oil. Straight-chain analogues from C6 to C26 with different functional groups (hydrocarbons, esters, aldehydes, diethyl acetals, alcohols, and ketones) were identified in the volatile fraction. Most of them are long-chain molecules: (Z)-heptadec-8-ene, heptadecane, nonadecane, and palmitic acid are the most abundant, and constituents such as 2-phenethyl alcohol, methyl anisate, and ethyl palmitate are present in smaller amounts. The heavier constituents were mainly triterpenoids such as lupenone and lupeol, which were identified as two of the main components. (Z)-Heptadec-8-ene, lupenone, and lupeol were quantified by GC-MS in SIM mode using external standards and represents 6%, 20%, and 7.8% (w/w) of the absolute oil. Moreover, odorant compounds were extracted by SPME and analyzed by GC-sniffing leading to the perception of 57 odorant zones, of which 37 compounds were identified by their odorant description, mass spectrum, retention index, and injection of the reference compound. PMID:20070087

  6. Measurement of absolute gravity acceleration in Firenze

    NASA Astrophysics Data System (ADS)

    de Angelis, M.; Greco, F.; Pistorio, A.; Poli, N.; Prevedelli, M.; Saccorotti, G.; Sorrentino, F.; Tino, G. M.

    2011-01-01

    This paper reports the results from the accurate measurement of the acceleration of gravity g taken at two separate premises in the Polo Scientifico of the University of Firenze (Italy). In these laboratories, two separate experiments aiming at measuring the Newtonian constant and testing the Newtonian law at short distances are in progress. Both experiments require an independent knowledge on the local value of g. The only available datum, pertaining to the italian zero-order gravity network, was taken more than 20 years ago at a distance of more than 60 km from the study site. Gravity measurements were conducted using an FG5 absolute gravimeter, and accompanied by seismic recordings for evaluating the noise condition at the site. The absolute accelerations of gravity at the two laboratories are (980 492 160.6 ± 4.0) μGal and (980 492 048.3 ± 3.0) μGal for the European Laboratory for Non-Linear Spectroscopy (LENS) and Dipartimento di Fisica e Astronomia, respectively. Other than for the two referenced experiments, the data here presented will serve as a benchmark for any future study requiring an accurate knowledge of the absolute value of the acceleration of gravity in the study region.

  7. A Methodology for Absolute Isotope Composition Measurement

    NASA Astrophysics Data System (ADS)

    Shen, J. J.; Lee, D.; Liang, W.

    2007-12-01

    Double spike technique was a well defined method for isotope composition measurement by TIMS of samples which have natural mass fractionation effect, but it is still a problem to define the isotope composition for double spike itself. In this study, we modified the old double spike technique and found that we could use the modified technique to solve the ¡§true¡¨ isotope composition of double spike itself. According the true isotope composition of double spike, we can measure the absolute isotope composition if the sample has natural fractionation effect. A new vector analytical method has been developed in order to obtain the true isotopic composition of a 42Ca-48Ca double spike, and this is achieved by using two different sample-spike mixtures combined with the double spike and the natural Ca data. Because the natural sample, the two mixtures, and the spike should all lie on a single mixing line, we are able to constrain the true isotopic composition of our double spike using this new approach. This method not only can be used in Ca system but also in Ti, Cr, Fe, Ni, Zn, Mo, Ba and Pb systems. The absolute double spike isotopic ratio is important, which can save a lot of time to check different reference standards. Especially for Pb, radiogenic isotope system, the decay systems embodied in three of four naturally occurring isotopes induce difficult to obtain true isotopic ratios for absolute dating.

  8. Chemical composition of French mimosa absolute oil.

    PubMed

    Perriot, Rodolphe; Breme, Katharina; Meierhenrich, Uwe J; Carenini, Elise; Ferrando, Georges; Baldovini, Nicolas

    2010-02-10

    Since decades mimosa (Acacia dealbata) absolute oil has been used in the flavor and perfume industry. Today, it finds an application in over 80 perfumes, and its worldwide industrial production is estimated five tons per year. Here we report on the chemical composition of French mimosa absolute oil. Straight-chain analogues from C6 to C26 with different functional groups (hydrocarbons, esters, aldehydes, diethyl acetals, alcohols, and ketones) were identified in the volatile fraction. Most of them are long-chain molecules: (Z)-heptadec-8-ene, heptadecane, nonadecane, and palmitic acid are the most abundant, and constituents such as 2-phenethyl alcohol, methyl anisate, and ethyl palmitate are present in smaller amounts. The heavier constituents were mainly triterpenoids such as lupenone and lupeol, which were identified as two of the main components. (Z)-Heptadec-8-ene, lupenone, and lupeol were quantified by GC-MS in SIM mode using external standards and represents 6%, 20%, and 7.8% (w/w) of the absolute oil. Moreover, odorant compounds were extracted by SPME and analyzed by GC-sniffing leading to the perception of 57 odorant zones, of which 37 compounds were identified by their odorant description, mass spectrum, retention index, and injection of the reference compound.

  9. The Carina Project: Absolute and Relative Calibrations

    NASA Astrophysics Data System (ADS)

    Corsi, C. E.; Bono, G.; Walker, A. R.; Brocato, E.; Buonanno, R.; Caputo, F.; Castellani, M.; Castellani, V.; Dall'Ora, M.; Marconi, M.; Monelli, M.; Nonino, M.; Pulone, L.; Ripepi, V.; Smith, H. A.

    We discuss the reduction strategy adopted to perform the relative and the absolute calibration of the Wide Field Imager (WFI) available at the 2.2m ESO/MPI telescope and of the Mosaic Camera (MC) available at the 4m CTIO Blanco telescope. To properly constrain the occurrence of deceptive systematic errors in the relative calibration we observed with each chip the same set of stars. Current photometry seems to suggest that the WFI shows a positional effect when moving from the top to the bottom of individual chips. Preliminary results based on an independent data set collected with the MC suggest that this camera is only marginally affected by the same problem. To perform the absolute calibration we observed with each chip the same set of standard stars. The sample covers a wide color range and the accuracy both in the B and in the V-band appears to be of the order of a few hundredths of magnitude. Finally, we briefly outline the observing strategy to improve both relative and absolute calibrations of mosaic CCD cameras.

  10. Asp-49 is not an absolute prerequisite for the enzymic activity of low-M(r) phospholipases A2: purification, characterization and computer modelling of an enzymically active Ser-49 phospholipase A2, ecarpholin S, from the venom of Echis carinatus sochureki (saw-scaled viper).

    PubMed

    Polgár, J; Magnenat, E M; Peitsch, M C; Wells, T N; Clemetson, K J

    1996-11-01

    Several studies have shown that Asp-49 is the residue that controls calcium binding in, and so plays a critical role in the calcium-mediated activation of, low-M(r) group I-III phospholipases A2 (PLA2s). The present paper provides experimental evidence that Asp-49 is not an absolute prerequisite for the enzymic activity of PLA2s, and that proteins with amino acid(s) other than Asp at position 49 can exhibit significant phospholipase activity. The purification, complete amino acid sequence and characterization of ecarpholin S, a PLA2 from Echis carinatus sochureki (saw-scaled viper) venom, is described. This single-chain, 122-amino-acid, basic (pI 7.9) protein is a group II PLA2. Although Asp-49 is replaced by Ser and Tyr-28 by Phe (both of these positions being involved in the Ca(2+)-binding site of PLA2s), the lipolysis of soybean phosphatidylcholine and egg yolk in the presence of 10 mM CaCl2 was 1.5 times and 2.9 times greater respectively with ecarpholin S than with recombinant human group II PLA2. The Ca(2+)-dependencies of the enzymic activities of ecarpholin S and rPLA2 were found to be similar. Ecarpholin S added to washed platelets induced aggregation; the presence of Ca2+ was a prerequisite for this platelet-aggregating effect. Computer modelling of the Ca(2+)-binding site of Ser-49 PLA2 compared with the Asp-49 and Lys-49 forms, for which crystallographic data exist, shows that the Ca(2+)-binding site is sterically blocked by Lys-49 but not by Ser-49; in the latter, the Ser hydroxy group may replace the Asp carboxylate in stabilization of Ca2+ binding. Sequence comparisons of ecarpholin S and other low-M(r) PLA2s predicts the presence of a Ser-49 group in the protein family of low-M(r) PLA2s that is distinct from the Asp-49 and Lys-49 groups. PMID:8921006

  11. Results of a wind tunnel/flight test program to compare afterbody/nozzle pressures on a 1/12 scale model and an F-15 aircraft

    NASA Technical Reports Server (NTRS)

    Pendergraft, O. C., Jr.; Nugent, J.

    1984-01-01

    In 1975 NASA Dryden Flight Research Facility received the No. 2 prototype F-15 aircraft from the USAF to conduct the F-15 Propulsion/Airframe Interactions Program. About the same time, NASA Langley Research Center acquired a 1/12 scale F-15 propulsion model, whose size made it suitable for detailed afterbody/nozzle static pressure distribution studies. Close coordination between Langley and Dryden assured identical orifice locations and nozzle geometries on the model and aircraft. This paper discusses the sequence of the test programs and how retesting the model after completion of the flight tests greatly increased the ability to match hardware and test conditions. The experience gained over the past decade from involvement in the program should prove valuable to any future programs attempting to match wind tunnel and flight test conditions and hardware.

  12. A Semi-Analytical Solution for Large-Scale Injection-Induced PressurePerturbation and Leakage in a Laterally Bounded Aquifer-AquitardSystem

    SciTech Connect

    Zhou, Quanlin; Birkholzer, Jens T.; Tsang, Chin-Fu

    2008-07-15

    A number of (semi-)analytical solutions are available to drawdown analysis and leakage estimation of shallow aquifer-aquitard systems. These solutions assume that the systems are laterally infinite. When a large-scale pumping from (or injection into) an aquifer-aquitard system of lower specific storativity occurs, induced pressure perturbation (or hydraulic head drawdown/rise) may reach the lateral boundary of the aquifer. We developed semi-analytical solutions to address the induced pressure perturbation and vertical leakage in a 'laterally bounded' system consisting of an aquifer and an overlying/underlying aquitard. A one-dimensional radial flow equation for the aquifer was coupled with a one-dimensional vertical flow equation for the aquitard, with a no-flow condition imposed on the outer radial boundary. Analytical solutions were obtained for (1) the Laplace-transform hydraulic head drawdown/rise in the aquifer and in the aquitard, (2) the Laplace-transform rate and volume of leakage through the aquifer-aquitard interface integrated up to an arbitrary radial distance, (3) the transformed total leakage rate and volume for the entire interface, and (4) the transformed horizontal flux at any radius. The total leakage rate and volume depend only on the hydrogeologic properties and thicknesses of the aquifer and aquitard, as well as the duration of pumping or injection. It was proven that the total leakage rate and volume are independent of the aquifer's radial extent and wellbore radius. The derived analytical solutions for bounded systems are the generalized solutions of infinite systems. Laplace-transform solutions were numerically inverted to obtain the hydraulic head drawdown/rise, leakage rate, leakage volume, and horizontal flux for given hydrogeologic and geometric conditions of the aquifer-aquitard system, as well as injection/pumping scenarios. Application to a large-scale injection-and-storage problem in a bounded system was demonstrated.

  13. Absolute photoabsorption cross sections of Sr I from the 5s ionization threshold to the 5p threshold

    NASA Astrophysics Data System (ADS)

    Chu, C. C.; Fung, H. S.; Wu, H. H.; Yih, T. S.

    1998-09-01

    We have measured the absolute photoabsorption cross sections of Sr I from its 5s ionization threshold up to the 0953-4075/31/17/010/img1 thresholds. The spectrum includes the Sr I 0953-4075/31/17/010/img2, 0953-4075/31/17/010/img3, 0953-4075/31/17/010/img4 and 0953-4075/31/17/010/img5 doubly excited series which converge to the 0953-4075/31/17/010/img6 or 0953-4075/31/17/010/img1 series limits. Synchrotron radiation, from the 1 m Seya-Namioka beam line of the Synchrotron Radiation Research Center at Hsin-Chu, Taiwan, was used as the background continuum. The absolute column density was determined by measuring simultaneously the temperature distribution profiles and the total pressure in a heatpipe. Absolute cross sections were obtained using the Beer-Lambert law. The measured absolute cross section for the 5s ionization threshold was 0953-4075/31/17/010/img8. At the most significant autoionizing resonance, 0953-4075/31/17/010/img9 around 0953-4075/31/17/010/img10, the absolute cross section was measured as 0953-4075/31/17/010/img11. The absolute cross sections presented here are larger than those based on saturated vapour-pressure data, and less than those based on the f-value measurements. All the absolute cross sections in this work are compared with both recent experiments and

  14. Utility of Braden Scale Nutrition Subscale Ratings as an Indicator of Dietary Intake and Weight Outcomes among Nursing Home Residents at Risk for Pressure Ulcers

    PubMed Central

    Kennerly, Susan; Boss, Lisa; Yap, Tracey L.; Batchelor-Murphy, Melissa; Horn, Susan D.; Barrett, Ryan; Bergstrom, Nancy

    2015-01-01

    The Braden Scale for Pressure Sore Risk© is a screening tool to determine overall risk of pressure ulcer development and estimate severity of specific risk factors for individual residents. Nurses often use the Braden nutrition subscale to screen nursing home (NH) residents for nutritional risk, and then recommend a more comprehensive nutritional assessment as indicated. Secondary data analysis from the Turn for Ulcer ReductioN (TURN) study’s investigation of U.S. and Canadian NH residents (n = 690) considered at moderate or high pressure ulcer (PrU) risk was used to evaluate the subscale’s utility for identifying nutritional intake risk factors. Associations were examined between Braden Nutritional Risk subscale screening, dietary intake (mean % meal intake and by meal timing, mean number of protein servings, protein sources, % intake of supplements and snacks), weight outcomes, and new PrU incidence. Of moderate and high PrU risk residents, 61.9% and 59.2% ate a mean meal % of <75. Fewer than 18% overall ate <50% of meals or refused meals. No significant differences were observed in weight differences by nutrition subscale risk or in mean number protein servings per meal (1.4 (SD = 0.58) versus 1.3 (SD = 0.53)) for moderate versus high PrU risk residents. The nutrition subscale approximates subsequent estimated dietary intake and can provide insight into meal intake patterns for those at either moderate or high PrU risk. Findings support the Braden Scale’s use as a preliminary screening method to identify focused areas for potential intervention. PMID:27417802

  15. Pressure distributions obtained on a 0.10-scale model of the Space Shuttle Orbiter's forebody in the Ames Unitary Plan Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Siemers, P. M., III; Henry, M. W.

    1986-01-01

    Pressure distribution test data obtained on a 0.10-scale model of the forward fuselage of the Space Shuttle Orbiter are presented without analysis. The tests were completed in the Ames Unitary Wind Tunnel (UPWT). The UPWT tests were conducted in two different test sections operating in the continuous mode, the 8 x 7 feet and 9 x 7 feet test sections. Each test section has its own Mach number range, 1.6 to 2.5 and 2.5 to 3.5 for the 9 x 7 feet and 8 x 7 feet test section, respectively. The test Reynolds number ranged from 1.6 to 2.5 x 10 to the 6th power ft and 0.6 to 2.0 x 10 to the 6th power ft, respectively. The tests were conducted in support of the development of the Shuttle Entry Air Data System (SEADS). In addition to modeling the 20 SEADS orifices, the wind-tunnel model was also instrumented with orifices to match Development Flight Instrumentation (DFI) port locations that existed on the Space Shuttle Columbia (OV-102) during the Orbiter Flight test program. This DFI simulation has provided a means for comparisons between reentry flight pressure data and wind-tunnel and computational data.

  16. A Mechanical Model to Interpret Cell-Scale Indentation Experiments on Plant Tissues in Terms of Cell Wall Elasticity and Turgor Pressure

    PubMed Central

    Malgat, Richard; Faure, François; Boudaoud, Arezki

    2016-01-01

    Morphogenesis in plants is directly linked to the mechanical elements of growing tissues, namely cell wall and inner cell pressure. Studies of these structural elements are now often performed using indentation methods such as atomic force microscopy. In these methods, a probe applies a force to the tissue surface at a subcellular scale and its displacement is monitored, yielding force-displacement curves that reflect tissue mechanics. However, the interpretation of these curves is challenging as they may depend not only on the cell probed, but also on neighboring cells, or even on the whole tissue. Here, we build a realistic three-dimensional model of the indentation of a flower bud using SOFA (Simulation Open Framework Architecture), in order to provide a framework for the analysis of force-displacement curves obtained experimentally. We find that the shape of indentation curves mostly depends on the ratio between cell pressure and wall modulus. Hysteresis in force-displacement curves can be accounted for by a viscoelastic behavior of the cell wall. We consider differences in elastic modulus between cell layers and we show that, according to the location of indentation and to the size of the probe, force-displacement curves are sensitive with different weights to the mechanical components of the two most external cell layers. Our results confirm most of the interpretations of previous experiments and provide a guide to future experimental work. PMID:27656191

  17. A Mechanical Model to Interpret Cell-Scale Indentation Experiments on Plant Tissues in Terms of Cell Wall Elasticity and Turgor Pressure.

    PubMed

    Malgat, Richard; Faure, François; Boudaoud, Arezki

    2016-01-01

    Morphogenesis in plants is directly linked to the mechanical elements of growing tissues, namely cell wall and inner cell pressure. Studies of these structural elements are now often performed using indentation methods such as atomic force microscopy. In these methods, a probe applies a force to the tissue surface at a subcellular scale and its displacement is monitored, yielding force-displacement curves that reflect tissue mechanics. However, the interpretation of these curves is challenging as they may depend not only on the cell probed, but also on neighboring cells, or even on the whole tissue. Here, we build a realistic three-dimensional model of the indentation of a flower bud using SOFA (Simulation Open Framework Architecture), in order to provide a framework for the analysis of force-displacement curves obtained experimentally. We find that the shape of indentation curves mostly depends on the ratio between cell pressure and wall modulus. Hysteresis in force-displacement curves can be accounted for by a viscoelastic behavior of the cell wall. We consider differences in elastic modulus between cell layers and we show that, according to the location of indentation and to the size of the probe, force-displacement curves are sensitive with different weights to the mechanical components of the two most external cell layers. Our results confirm most of the interpretations of previous experiments and provide a guide to future experimental work. PMID:27656191

  18. A Mechanical Model to Interpret Cell-Scale Indentation Experiments on Plant Tissues in Terms of Cell Wall Elasticity and Turgor Pressure

    PubMed Central

    Malgat, Richard; Faure, François; Boudaoud, Arezki

    2016-01-01

    Morphogenesis in plants is directly linked to the mechanical elements of growing tissues, namely cell wall and inner cell pressure. Studies of these structural elements are now often performed using indentation methods such as atomic force microscopy. In these methods, a probe applies a force to the tissue surface at a subcellular scale and its displacement is monitored, yielding force-displacement curves that reflect tissue mechanics. However, the interpretation of these curves is challenging as they may depend not only on the cell probed, but also on neighboring cells, or even on the whole tissue. Here, we build a realistic three-dimensional model of the indentation of a flower bud using SOFA (Simulation Open Framework Architecture), in order to provide a framework for the analysis of force-displacement curves obtained experimentally. We find that the shape of indentation curves mostly depends on the ratio between cell pressure and wall modulus. Hysteresis in force-displacement curves can be accounted for by a viscoelastic behavior of the cell wall. We consider differences in elastic modulus between cell layers and we show that, according to the location of indentation and to the size of the probe, force-displacement curves are sensitive with different weights to the mechanical components of the two most external cell layers. Our results confirm most of the interpretations of previous experiments and provide a guide to future experimental work.

  19. A Mechanical Model to Interpret Cell-Scale Indentation Experiments on Plant Tissues in Terms of Cell Wall Elasticity and Turgor Pressure.

    PubMed

    Malgat, Richard; Faure, François; Boudaoud, Arezki

    2016-01-01

    Morphogenesis in plants is directly linked to the mechanical elements of growing tissues, namely cell wall and inner cell pressure. Studies of these structural elements are now often performed using indentation methods such as atomic force microscopy. In these methods, a probe applies a force to the tissue surface at a subcellular scale and its displacement is monitored, yielding force-displacement curves that reflect tissue mechanics. However, the interpretation of these curves is challenging as they may depend not only on the cell probed, but also on neighboring cells, or even on the whole tissue. Here, we build a realistic three-dimensional model of the indentation of a flower bud using SOFA (Simulation Open Framework Architecture), in order to provide a framework for the analysis of force-displacement curves obtained experimentally. We find that the shape of indentation curves mostly depends on the ratio between cell pressure and wall modulus. Hysteresis in force-displacement curves can be accounted for by a viscoelastic behavior of the cell wall. We consider differences in elastic modulus between cell layers and we show that, according to the location of indentation and to the size of the probe, force-displacement curves are sensitive with different weights to the mechanical components of the two most external cell layers. Our results confirm most of the interpretations of previous experiments and provide a guide to future experimental work.

  20. Scaling of the beam plasma discharge for low magnetic fields

    NASA Technical Reports Server (NTRS)

    Papadopoulos, K.

    1986-01-01

    A theoretical analysis of the scaling law and the value of the threshold current for beam plasma discharge (BPD) is presented, based on the requirement for an absolute instability near the plasma frequency. It is shown that both the scaling law as well as the numerical values of Ic are consistent with the experimental data, in the low pressure regimes and for weak magnetic field experiments if the dominant particle loss mechanism is due to Bohm diffusion. The implications of the findings to electron injection in space are discussed.

  1. Bench-Scale Development of a Hot Carbonate Absorption Process with Crystallization-Enabled High-Pressure Stripping for Post-Combustion CO{sub 2} Capture

    SciTech Connect

    Lu, Yongqi; DeVries, Nicholas; Ruhter, David; Manoranjan, Sahu; Ye, Qing; Ye, Xinhuai; Zhang, Shihan; Chen, Scott; Li, Zhiwei; O'Brien, Kevin

    2014-03-31

    A novel Hot Carbonate Absorption Process with Crystallization-Enabled High-Pressure Stripping (Hot-CAP) has been developed by the University of Illinois at Urbana-Champaign and Carbon Capture Scientific, LLC in this three-year, bench-scale project. The Hot-CAP features a concentrated carbonate solution (e.g., K{sub 2}CO{sub 3}) for CO{sub 2} absorption and a bicarbonate slurry (e.g., KHCO{sub 3}) for high-pressure CO{sub 2} stripping to overcome the energy use and other disadvantages associated with the benchmark monoethanolamine (MEA) process. The project was aimed at performing laboratory- and bench-scale experiments to prove its technical feasibility and generate process engineering and scale-up data, and conducting a techno-economic analysis (TEA) to demonstrate its energy use and cost competitiveness over MEA. To meet project goals and objectives, a combination of experimental, modeling, process simulation, and economic analysis studies were applied. Carefully designed and intensive experiments were conducted to measure thermodynamic and reaction engineering data relevant to four major unit operations in the Hot-CAP (i.e., CO{sub 2} absorption, CO{sub 2} stripping, bicarbonate crystallization, and sulfate reclamation). The rate promoters that could accelerate the CO{sub 2} absorption rate into the potassium carbonate/bicarbonate (PCB) solution to a level greater than that into the 5 M MEA solution were identified, and the superior performance of CO{sub 2} absorption into PCB was demonstrated in a bench-scale packed-bed column. Kinetic data on bicarbonate crystallization were developed and applied for crystallizer design and sizing. Parametric testing of high-pressure CO{sub 2} stripping with concentrated bicarbonate-dominant slurries at high temperatures ({>=}140{degrees}C) in a bench-scale stripping column demonstrated lower heat use than with MEA. The feasibility of a modified process for combining SO{sub 2} removal with CO{sub 2} capture was preliminarily

  2. Absolute photoionization cross-section of the methyl radical.

    SciTech Connect

    Taatjes, C. A.; Osborn, D. L.; Selby, T.; Meloni, G.; Fan, H.; Pratt, S. T.; Chemical Sciences and Engineering Division; SNL

    2008-01-01

    The absolute photoionization cross-section of the methyl radical has been measured using two completely independent methods. The CH{sub 3} photoionization cross-section was determined relative to that of acetone and methyl vinyl ketone at photon energies of 10.2 and 11.0 eV by using a pulsed laser-photolysis/time-resolved synchrotron photoionization mass spectrometry method. The time-resolved depletion of the acetone or methyl vinyl ketone precursor and the production of methyl radicals following 193 nm photolysis are monitored simultaneously by using time-resolved synchrotron photoionization mass spectrometry. Comparison of the initial methyl signal with the decrease in precursor signal, in combination with previously measured absolute photoionization cross-sections of the precursors, yields the absolute photoionization cross-section of the methyl radical; {sigma}{sub CH}(10.2 eV) = (5.7 {+-} 0.9) x 10{sup -18} cm{sup 2} and {sigma}{sub CH{sub 3}}(11.0 eV) = (6.0 {+-} 2.0) x 10{sup -18} cm{sup 2}. The photoionization cross-section for vinyl radical determined by photolysis of methyl vinyl ketone is in good agreement with previous measurements. The methyl radical photoionization cross-section was also independently measured relative to that of the iodine atom by comparison of ionization signals from CH{sub 3} and I fragments following 266 nm photolysis of methyl iodide in a molecular-beam ion-imaging apparatus. These measurements gave a cross-section of (5.4 {+-} 2.0) x 10{sup -18} cm{sup 2} at 10.460 eV, (5.5 {+-} 2.0) x 10{sup -18} cm{sup 2} at 10.466 eV, and (4.9 {+-} 2.0) x 10{sup -18} cm{sup 2} at 10.471 eV. The measurements allow relative photoionization efficiency spectra of methyl radical to be placed on an absolute scale and will facilitate quantitative measurements of methyl concentrations by photoionization mass spectrometry.

  3. Absolute Radiometric Calibration of EUNIS-06

    NASA Technical Reports Server (NTRS)

    Thomas, R. J.; Rabin, D. M.; Kent, B. J.; Paustian, W.

    2007-01-01

    The Extreme-Ultraviolet Normal-Incidence Spectrometer (EUNIS) is a soundingrocket payload that obtains imaged high-resolution spectra of individual solar features, providing information about the Sun's corona and upper transition region. Shortly after its successful initial flight last year, a complete end-to-end calibration was carried out to determine the instrument's absolute radiometric response over its Longwave bandpass of 300 - 370A. The measurements were done at the Rutherford-Appleton Laboratory (RAL) in England, using the same vacuum facility and EUV radiation source used in the pre-flight calibrations of both SOHO/CDS and Hinode/EIS, as well as in three post-flight calibrations of our SERTS sounding rocket payload, the precursor to EUNIS. The unique radiation source provided by the Physikalisch-Technische Bundesanstalt (PTB) had been calibrated to an absolute accuracy of 7% (l-sigma) at 12 wavelengths covering our bandpass directly against the Berlin electron storage ring BESSY, which is itself a primary radiometric source standard. Scans of the EUNIS aperture were made to determine the instrument's absolute spectral sensitivity to +- 25%, considering all sources of error, and demonstrate that EUNIS-06 was the most sensitive solar E W spectrometer yet flown. The results will be matched against prior calibrations which relied on combining measurements of individual optical components, and on comparisons with theoretically predicted 'insensitive' line ratios. Coordinated observations were made during the EUNIS-06 flight by SOHO/CDS and EIT that will allow re-calibrations of those instruments as well. In addition, future EUNIS flights will provide similar calibration updates for TRACE, Hinode/EIS, and STEREO/SECCHI/EUVI.

  4. Clock time is absolute and universal

    NASA Astrophysics Data System (ADS)

    Shen, Xinhang

    2015-09-01

    A critical error is found in the Special Theory of Relativity (STR): mixing up the concepts of the STR abstract time of a reference frame and the displayed time of a physical clock, which leads to use the properties of the abstract time to predict time dilation on physical clocks and all other physical processes. Actually, a clock can never directly measure the abstract time, but can only record the result of a physical process during a period of the abstract time such as the number of cycles of oscillation which is the multiplication of the abstract time and the frequency of oscillation. After Lorentz Transformation, the abstract time of a reference frame expands by a factor gamma, but the frequency of a clock decreases by the same factor gamma, and the resulting multiplication i.e. the displayed time of a moving clock remains unchanged. That is, the displayed time of any physical clock is an invariant of Lorentz Transformation. The Lorentz invariance of the displayed times of clocks can further prove within the framework of STR our earth based standard physical time is absolute, universal and independent of inertial reference frames as confirmed by both the physical fact of the universal synchronization of clocks on the GPS satellites and clocks on the earth, and the theoretical existence of the absolute and universal Galilean time in STR which has proved that time dilation and space contraction are pure illusions of STR. The existence of the absolute and universal time in STR has directly denied that the reference frame dependent abstract time of STR is the physical time, and therefore, STR is wrong and all its predictions can never happen in the physical world.

  5. Achieving Climate Change Absolute Accuracy in Orbit

    NASA Technical Reports Server (NTRS)

    Wielicki, Bruce A.; Young, D. F.; Mlynczak, M. G.; Thome, K. J; Leroy, S.; Corliss, J.; Anderson, J. G.; Ao, C. O.; Bantges, R.; Best, F.; Bowman, K.; Brindley, H.; Butler, J. J.; Collins, W.; Dykema, J. A.; Doelling, D. R.; Feldman, D. R.; Fox, N.; Huang, X.; Holz, R.; Huang, Y.; Jennings, D.; Jin, Z.; Johnson, D. G.; Jucks, K.; Kato, S.; Kratz, D. P.; Liu, X.; Lukashin, C.; Mannucci, A. J.; Phojanamongkolkij, N.; Roithmayr, C. M.; Sandford, S.; Taylor, P. C.; Xiong, X.

    2013-01-01

    The Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission will provide a calibration laboratory in orbit for the purpose of accurately measuring and attributing climate change. CLARREO measurements establish new climate change benchmarks with high absolute radiometric accuracy and high statistical confidence across a wide range of essential climate variables. CLARREO's inherently high absolute accuracy will be verified and traceable on orbit to Système Internationale (SI) units. The benchmarks established by CLARREO will be critical for assessing changes in the Earth system and climate model predictive capabilities for decades into the future as society works to meet the challenge of optimizing strategies for mitigating and adapting to climate change. The CLARREO benchmarks are derived from measurements of the Earth's thermal infrared spectrum (5-50 micron), the spectrum of solar radiation reflected by the Earth and its atmosphere (320-2300 nm), and radio occultation refractivity from which accurate temperature profiles are derived. The mission has the ability to provide new spectral fingerprints of climate change, as well as to provide the first orbiting radiometer with accuracy sufficient to serve as the reference transfer standard for other space sensors, in essence serving as a "NIST [National Institute of Standards and Technology] in orbit." CLARREO will greatly improve the accuracy and relevance of a wide range of space-borne instruments for decadal climate change. Finally, CLARREO has developed new metrics and methods for determining the accuracy requirements of climate observations for a wide range of climate variables and uncertainty sources. These methods should be useful for improving our understanding of observing requirements for most climate change observations.

  6. Absolute calibration of the Auger fluorescence detectors

    SciTech Connect

    Bauleo, P.; Brack, J.; Garrard, L.; Harton, J.; Knapik, R.; Meyhandan, R.; Rovero, A.C.; Tamashiro, A.; Warner, D.

    2005-07-01

    Absolute calibration of the Pierre Auger Observatory fluorescence detectors uses a light source at the telescope aperture. The technique accounts for the combined effects of all detector components in a single measurement. The calibrated 2.5 m diameter light source fills the aperture, providing uniform illumination to each pixel. The known flux from the light source and the response of the acquisition system give the required calibration for each pixel. In the lab, light source uniformity is studied using CCD images and the intensity is measured relative to NIST-calibrated photodiodes. Overall uncertainties are presently 12%, and are dominated by systematics.

  7. Absolute rate theories of epigenetic stability

    NASA Astrophysics Data System (ADS)

    Walczak, Aleksandra M.; Onuchic, José N.; Wolynes, Peter G.

    2005-12-01

    Spontaneous switching events in most characterized genetic switches are rare, resulting in extremely stable epigenetic properties. We show how simple arguments lead to theories of the rate of such events much like the absolute rate theory of chemical reactions corrected by a transmission factor. Both the probability of the rare cellular states that allow epigenetic escape and the transmission factor depend on the rates of DNA binding and unbinding events and on the rates of protein synthesis and degradation. Different mechanisms of escape from the stable attractors occur in the nonadiabatic, weakly adiabatic, and strictly adiabatic regimes, characterized by the relative values of those input rates. rate theory | stochastic gene expression | gene switches

  8. Characterization of the DARA solar absolute radiometer

    NASA Astrophysics Data System (ADS)

    Finsterle, W.; Suter, M.; Fehlmann, A.; Kopp, G.

    2011-12-01

    The Davos Absolute Radiometer (DARA) prototype is an Electrical Substitution Radiometer (ESR) which has been developed as a successor of the PMO6 type on future space missions and ground based TSI measurements. The DARA implements an improved thermal design of the cavity detector and heat sink assembly to minimize air-vacuum differences and to maximize thermal symmetry of measuring and compensating cavity. The DARA also employs an inverted viewing geometry to reduce internal stray light. We will report on the characterization and calibration experiments which were carried out at PMOD/WRC and LASP (TRF).

  9. Absolute Priority for a Vehicle in VANET

    NASA Astrophysics Data System (ADS)

    Shirani, Rostam; Hendessi, Faramarz; Montazeri, Mohammad Ali; Sheikh Zefreh, Mohammad

    In today's world, traffic jams waste hundreds of hours of our life. This causes many researchers try to resolve the problem with the idea of Intelligent Transportation System. For some applications like a travelling ambulance, it is important to reduce delay even for a second. In this paper, we propose a completely infrastructure-less approach for finding shortest path and controlling traffic light to provide absolute priority for an emergency vehicle. We use the idea of vehicular ad-hoc networking to reduce the imposed travelling time. Then, we simulate our proposed protocol and compare it with a centrally controlled traffic light system.

  10. Absolute method of measuring magnetic susceptibility

    USGS Publications Warehouse

    Thorpe, A.; Senftle, F.E.

    1959-01-01

    An absolute method of standardization and measurement of the magnetic susceptibility of small samples is presented which can be applied to most techniques based on the Faraday method. The fact that the susceptibility is a function of the area under the curve of sample displacement versus distance of the magnet from the sample, offers a simple method of measuring the susceptibility without recourse to a standard sample. Typical results on a few substances are compared with reported values, and an error of less than 2% can be achieved. ?? 1959 The American Institute of Physics.

  11. Viscous linear stability of axisymmetric low-density jets: Parameters influencing absolute instability

    NASA Astrophysics Data System (ADS)

    Srinivasan, V.; Hallberg, M. P.; Strykowski, P. J.

    2010-02-01

    Viscous linear stability calculations are presented for model low-density axisymmetric jet flows. Absolute growth transitions for the jet column mode are mapped out in a parametric space including velocity ratio, density ratio, Reynolds number, momentum thickness, and subtle differences between velocity and density profiles. Strictly speaking, the profiles used in most jet stability studies to date are only applicable to unity Prandtl numbers and zero pressure gradient flows—the present work relaxes this requirement. Results reveal how subtle differences between the velocity and density profiles generally used in jet stability theory can dramatically alter the absolute growth rate of the jet column mode in these low-density flows. The results suggest heating/cooling or mass diffusion at the outer nozzle surface can suppress absolute instability and potentially global instability in low-density jets.

  12. High-temperature, high-pressure testing of zinc titanate in a bench-scale fluidized-bed reactor for 100 cycles

    SciTech Connect

    Gupta, R.P.; Gangwal, S.K.

    1993-06-01

    Integrated gasification combined cycle (IGCC) power plants are being advanced worldwide to produce electricity from coal owing to their potential for superior environmental performance, economics, and efficiency in comparison to conventional coal-based power plants. A key component of these plants is a hot-gas desulfurization system employing efficient regenerable mixed-metal oxide sorbents. Leading sorbent candidates include zinc ferrite and zinc titanate. These sorbents can remove hydrogen sulfide (H{sub 2}S) in the fuel gas down to very low levels (typically <20 ppmv) at 500 to 750{degree}C and can be readily regenerated for multicycle operation with air. To this end, the Research Triangle Institute (RTI) has formulated and tested a series of zinc titanate sorbents in a high-temperature, high- pressure HTHP fluidized-bed bench-scale reactor. Multicycle HTHP bench-scale testing of these sorbents under a variety of conditions culminated in the development of a ZT-4 sorbent that exhibited the best overall performance in terms of chemical reactivity, sulfur capacity, regenerability, structural properties, and attrition resistance. Following this parametric study, a life-cycle test consisting of 100 sulfidation-regeneration cycles was carried out with ZT-4 in the bench unit.

  13. Smoluchowski Equations for Agglomeration in Conditions of Variable Temperature and Pressure and a New Scaling of Rate Constants: Application to Nozzle-Beam Expansion.

    PubMed

    Chaiken, J; Goodisman, J; Kornilov, O

    2015-07-01

    The Smoluchowski equations provide a rigorous and efficient means for including multiple kinetic pathways when modeling coalescence growth systems. Originally written for a constant temperature and volume system, the equations must be modified if temperature and pressure vary during the coalescence time. In this paper, the equations are generalized, and adaptations appropriate to the situation presented by supersonic nozzle beam expansions are described. Given rate constants for all the cluster-cluster reactions, solution of the Smoluchowski equations would yield the abundances of clusters of all sizes at all times. This is unlikely, but we show that if these rate constants scale with the sizes of the reacting partners, the asymptotic (large size and large time) form of the cluster size distribution can be predicted. Experimentally determined distributions for He fit the predicted asymptotic distribution very well. Deviations between predicted and observed distributions allow identification of special cluster sizes that is, magic numbers. Furthermore, fitting an observed distribution to the theoretical form yields the base agglomeration cross section, from which all cluster-cluster rate constants may be obtained by scaling. Comparing the base cross section to measures of size and reactivity gives information about the coalescence process.

  14. Acoustic testing of a 1.5 pressure ratio low tip speed fan with a serrated rotor (QEP fan B scale model). [reduction of engine noise

    NASA Technical Reports Server (NTRS)

    Kazin, S. B.; Paas, J. E.; Minzner, W. R.

    1973-01-01

    A scale model of the bypass flow region of a 1.5 pressure ratio, single stage, low tip speed fan was tested with a serrated rotor leading edge to determine its effects on noise generation. The serrated rotor was produced by cutting teeth into the leading edge of the nominal rotor blades. The effects of speed and exhaust nozzle area on the scale models noise characteristics were investigated with both the nominal rotor and serrated rotor. Acoustic results indicate the serrations reduced front quadrant PNL's at takeoff power. In particular, the 200 foot (61.0 m) sideline noise was reduced from 3 to 4 PNdb at 40 deg for nominal and large nozzle operation. However, the rear quadrant maximum sideline PNL's were increased 1.5 to 3 PNdb at approach thust and up to 2 PNdb at takeoff thust with these serrated rotor blades. The configuration with the serrated rotor produced the lowest maximum 200 foot (61.0 m) sideline PNL for any given thust when the large nozzle (116% of design area) was employed.

  15. Enabling the measurement of in-situ, atomic scale mineral transformation rates in supercritical CO2 through development of a high pressure AFM

    NASA Astrophysics Data System (ADS)

    Lea, S.; Higgins, S. R.; Knauss, K. G.; Rosso, K. M.

    2010-12-01

    Capture and storage of carbon dioxide in deep geologic formations represents one promising scenario for minimizing the impacts of greenhouse gases on global warming. The ability to demonstrate that CO2 will remain stored in the geological formation over the long-term is needed in support of widespread implementation decisions, and knowledge of mineral-fluid chemical transformation rates is an essential aspect. The majority of previous research on mineral-fluid interactions has focused primarily on the reactivity of minerals in aqueous solutions containing various amounts of dissolved CO2. Long-term caprock integrity, however, could also be dictated by mineral transformations occurring in low-water environments dominated by the supercritical CO2 (scCO2) fluid phase, which is expected to slowly displace or dessicate residual aqueous solution at the caprock-fluid interface. Many of the mechanisms of mineral interfacial reactions with hydrated or water-saturated scCO2 are unknown and there are unique challenges to obtain kinetic and thermodynamic data for mineral transformation reactions in these fluids. We are developing a high-pressure atomic force microscope (AFM) that will enable in-situ, atomic scale measurements of metal carbonate nucleation and growth rates on mineral surfaces in contact with hydrated scCO2 fluids. This apparatus is based on the hydrothermal AFM that was developed by Higgins et al.1, but includes some enhancements and is designed to handle pressures up to 100 bar. The noise in our optically-based cantilever deflection detection scheme is subject to perturbations in the density (due to index of refraction dependence) of the compressible supercritical fluid. Consequently, variations in temperature and pressure within the fluid cell are a primary technical challenge with possible significant impact in imaging resolution. We demonstrate with our test fluid cell that the equivalent rms noise in the deflection signal is similar to (and in some cases

  16. Sentinel-2/MSI absolute calibration: first results

    NASA Astrophysics Data System (ADS)

    Lonjou, V.; Lachérade, S.; Fougnie, B.; Gamet, P.; Marcq, S.; Raynaud, J.-L.; Tremas, T.

    2015-10-01

    Sentinel-2 is an optical imaging mission devoted to the operational monitoring of land and coastal areas. It is developed in partnership between the European Commission and the European Space Agency. The Sentinel-2 mission is based on a satellites constellation deployed in polar sun-synchronous orbit. It will offer a unique combination of global coverage with a wide field of view (290km), a high revisit (5 days with two satellites), a high resolution (10m, 20m and 60m) and multi-spectral imagery (13 spectral bands in visible and shortwave infra-red domains). CNES is involved in the instrument commissioning in collaboration with ESA. This paper reviews all the techniques that will be used to insure an absolute calibration of the 13 spectral bands better than 5% (target 3%), and will present the first results if available. First, the nominal calibration technique, based on an on-board sun diffuser, is detailed. Then, we show how vicarious calibration methods based on acquisitions over natural targets (oceans, deserts, and Antarctica during winter) will be used to check and improve the accuracy of the absolute calibration coefficients. Finally, the verification scheme, exploiting photometer in-situ measurements over Lacrau plain, is described. A synthesis, including spectral coherence, inter-methods agreement and temporal evolution, will conclude the paper.

  17. Experimental results for absolute cylindrical wavefront testing

    NASA Astrophysics Data System (ADS)

    Reardon, Patrick J.; Alatawi, Ayshah

    2014-09-01

    Applications for Cylindrical and near-cylindrical surfaces are ever-increasing. However, fabrication of high quality cylindrical surfaces is limited by the difficulty of accurate and affordable metrology. Absolute testing of such surfaces represents a challenge to the optical testing community as cylindrical reference wavefronts are difficult to produce. In this paper, preliminary results for a new method of absolute testing of cylindrical wavefronts are presented. The method is based on the merging of the random ball test method with the fiber optic reference test. The random ball test assumes a large number of interferograms of a good quality sphere with errors that are statistically distributed such that the average of the errors goes to zero. The fiber optic reference test utilizes a specially processed optical fiber to provide a clean high quality reference wave from an incident line focus from the cylindrical wave under test. By taking measurements at different rotation and translations of the fiber, an analogous procedure can be employed to determine the quality of the converging cylindrical wavefront with high accuracy. This paper presents and discusses the results of recent tests of this method using a null optic formed by a COTS cylindrical lens and a free-form polished corrector element.

  18. Absolute Electron Extraction Efficiency of Liquid Xenon

    NASA Astrophysics Data System (ADS)

    Kamdin, Katayun; Mizrachi, Eli; Morad, James; Sorensen, Peter

    2016-03-01

    Dual phase liquid/gas xenon time projection chambers (TPCs) currently set the world's most sensitive limits on weakly interacting massive particles (WIMPs), a favored dark matter candidate. These detectors rely on extracting electrons from liquid xenon into gaseous xenon, where they produce proportional scintillation. The proportional scintillation from the extracted electrons serves to internally amplify the WIMP signal; even a single extracted electron is detectable. Credible dark matter searches can proceed with electron extraction efficiency (EEE) lower than 100%. However, electrons systematically left at the liquid/gas boundary are a concern. Possible effects include spontaneous single or multi-electron proportional scintillation signals in the gas, or charging of the liquid/gas interface or detector materials. Understanding EEE is consequently a serious concern for this class of rare event search detectors. Previous EEE measurements have mostly been relative, not absolute, assuming efficiency plateaus at 100%. I will present an absolute EEE measurement with a small liquid/gas xenon TPC test bed located at Lawrence Berkeley National Laboratory.

  19. Why to compare absolute numbers of mitochondria.

    PubMed

    Schmitt, Sabine; Schulz, Sabine; Schropp, Eva-Maria; Eberhagen, Carola; Simmons, Alisha; Beisker, Wolfgang; Aichler, Michaela; Zischka, Hans

    2014-11-01

    Prompted by pronounced structural differences between rat liver and rat hepatocellular carcinoma mitochondria, we suspected these mitochondrial populations to differ massively in their molecular composition. Aiming to reveal these mitochondrial differences, we came across the issue on how to normalize such comparisons and decided to focus on the absolute number of mitochondria. To this end, fluorescently stained mitochondria were quantified by flow cytometry. For rat liver mitochondria, this approach resulted in mitochondrial protein contents comparable to earlier reports using alternative methods. We determined similar protein contents for rat liver, heart and kidney mitochondria. In contrast, however, lower protein contents were determined for rat brain mitochondria and for mitochondria from the rat hepatocellular carcinoma cell line McA 7777. This result challenges mitochondrial comparisons that rely on equal protein amounts as a typical normalization method. Exemplarily, we therefore compared the activity and susceptibility toward inhibition of complex II of rat liver and hepatocellular carcinoma mitochondria and obtained significant discrepancies by either normalizing to protein amount or to absolute mitochondrial number. Importantly, the latter normalization, in contrast to the former, demonstrated a lower complex II activity and higher susceptibility toward inhibition in hepatocellular carcinoma mitochondria compared to liver mitochondria. These findings demonstrate that solely normalizing to protein amount may obscure essential molecular differences between mitochondrial populations.

  20. Absolute Proper Motions of Southern Globular Clusters

    NASA Astrophysics Data System (ADS)

    Dinescu, D. I.; Girard, T. M.; van Altena, W. F.

    1996-05-01

    Our program involves the determination of absolute proper motions with respect to galaxies for a sample of globular clusters situated in the southern sky. The plates cover a 6(deg) x 6(deg) area and are taken with the 51-cm double astrograph at Cesco Observatory in El Leoncito, Argentina. We have developed special methods to deal with the modelling error of the plate transformation and we correct for magnitude equation using the cluster stars. This careful astrometric treatment leads to accuracies of from 0.5 to 1.0 mas/yr for the absolute proper motion of each cluster, depending primarily on the number of measurable cluster stars which in turn is related to the cluster's distance. Space velocities are then derived which, in association with metallicities, provide key information for the formation scenario of the Galaxy, i.e. accretion and/or dissipational collapse. Here we present results for NGC 1851, NGC 6752, NGC 6584, NGC 6362 and NGC 288.

  1. Relational versus absolute representation in categorization.

    PubMed

    Edwards, Darren J; Pothos, Emmanuel M; Perlman, Amotz

    2012-01-01

    This study explores relational-like and absolute-like representations in categorization. Although there is much evidence that categorization processes can involve information about both the particular physical properties of studied instances and abstract (relational) properties, there has been little work on the factors that lead to one kind of representation as opposed to the other. We tested 370 participants in 6 experiments, in which participants had to classify new items into predefined artificial categories. In 4 experiments, we observed a predominantly relational-like mode of classification, and in 2 experiments we observed a shift toward an absolute-like mode of classification. These results suggest 3 factors that promote a relational-like mode of classification: fewer items per group, more training groups, and the presence of a time delay. Overall, we propose that less information about the distributional properties of a category or weaker memory traces for the category exemplars (induced, e.g., by having smaller categories or a time delay) can encourage relational-like categorization.

  2. Transient absolute robustness in stochastic biochemical networks.

    PubMed

    Enciso, German A

    2016-08-01

    Absolute robustness allows biochemical networks to sustain a consistent steady-state output in the face of protein concentration variability from cell to cell. This property is structural and can be determined from the topology of the network alone regardless of rate parameters. An important question regarding these systems is the effect of discrete biochemical noise in the dynamical behaviour. In this paper, a variable freezing technique is developed to show that under mild hypotheses the corresponding stochastic system has a transiently robust behaviour. Specifically, after finite time the distribution of the output approximates a Poisson distribution, centred around the deterministic mean. The approximation becomes increasingly accurate, and it holds for increasingly long finite times, as the total protein concentrations grow to infinity. In particular, the stochastic system retains a transient, absolutely robust behaviour corresponding to the deterministic case. This result contrasts with the long-term dynamics of the stochastic system, which eventually must undergo an extinction event that eliminates robustness and is completely different from the deterministic dynamics. The transiently robust behaviour may be sufficient to carry out many forms of robust signal transduction and cellular decision-making in cellular organisms. PMID:27581485

  3. A Conceptual Approach to Absolute Value Equations and Inequalities

    ERIC Educational Resources Information Center

    Ellis, Mark W.; Bryson, Janet L.

    2011-01-01

    The absolute value learning objective in high school mathematics requires students to solve far more complex absolute value equations and inequalities. When absolute value problems become more complex, students often do not have sufficient conceptual understanding to make any sense of what is happening mathematically. The authors suggest that the…

  4. Using, Seeing, Feeling, and Doing Absolute Value for Deeper Understanding

    ERIC Educational Resources Information Center

    Ponce, Gregorio A.

    2008-01-01

    Using sticky notes and number lines, a hands-on activity is shared that anchors initial student thinking about absolute value. The initial point of reference should help students successfully evaluate numeric problems involving absolute value. They should also be able to solve absolute value equations and inequalities that are typically found in…

  5. Absolute UV absorption cross sections of dimethyl substituted Criegee intermediate (CH3)2COO

    NASA Astrophysics Data System (ADS)

    Chang, Yuan-Pin; Chang, Chun-Hung; Takahashi, Kaito; Lin, Jim-Min, Jr.

    2016-06-01

    The absolute absorption cross sections of (CH3)2COO under a jet-cooled condition were measured via laser depletion to be (1.32 ± 0.10) × 10-17 cm2 molecule-1 at 308 nm and (9.6 ± 0.8) × 10-18 cm2 molecule-1 at 352 nm. The peak UV cross section is estimated to be (1.75 ± 0.14) × 10-17 cm2 molecule-1 at 330 nm, according to the UV spectrum of (CH3)2COO (Huang et al., 2015) scaled to the absolute cross section at 308 nm.

  6. Absolute measurement by satellite altimetry of dynamic topography of the Pacific Ocean

    NASA Technical Reports Server (NTRS)

    Tai, C.-K.; Wunsch, C.

    1983-01-01

    The three-month Seasat mission has shown that altimetry is capable of providing global observations of oceanic variability. It is shown that data from this short, suboptimum mission are also adequate for a determination of the absolute sea-surface topography of the ocean on large scales. An absolute determination of the subtropical gyre of the North Pacific Ocean is obtained. This is believed to be the first direct measurement showing the existence of such a feature that does not depend on conventional hydrography and a series of assumptions.

  7. The major influence of the atmosphere on intracranial pressure: an observational study

    NASA Astrophysics Data System (ADS)

    Herbowski, Leszek

    2016-06-01

    The impact of the atmosphere on human physiology has been studied widely within the last years. In practice, intracranial pressure is a pressure difference between intracranial compartments and the surrounding atmosphere. This means that gauge intracranial pressure uses atmospheric pressure as its zero point, and therefore, this method of pressure measurement excludes the effects of barometric pressure's fluctuation. The comparison of these two physical quantities can only take place through their absolute value relationship. The aim of this study is to investigate the direct effect of barometric pressure on the absolute intracranial pressure homeostasis. A prospective observational cross-sectional open study was conducted in Szczecin, Poland. In 28 neurosurgical patients with suspected normal-pressure hydrocephalus, intracranial intraventricular pressure was monitored in a sitting position. A total of 168 intracranial pressure and atmospheric pressure measurements were performed. Absolute atmospheric pressure was recorded directly. All values of intracranial gauge pressure were converted to absolute pressure (the sum of gauge intracranial pressure and local absolute atmospheric pressure). The average absolute mean intracranial pressure in the patients is 1006.6 hPa (95 % CI 1004.5 to 1008.8 hPa, SEM 1.1), and the mean absolute atmospheric pressure is 1007.9 hPa (95 % CI 1006.3 to 1009.6 hPa, SEM 0.8). The observed association between atmospheric and intracranial pressure is strongly significant (Spearman correlation r = 0.87, p < 0.05) and all the measurements are perfectly reliable (Bland-Altman coefficient is 4.8 %). It appears from this study that changes in absolute intracranial pressure are related to seasonal variation. Absolute intracranial pressure is shown to be impacted positively by atmospheric pressure.

  8. The Absolute Radiometric Calibration of Space - Sensors.

    NASA Astrophysics Data System (ADS)

    Holm, Ronald Gene

    1987-09-01

    The need for absolute radiometric calibration of space-based sensors will continue to increase as new generations of space sensors are developed. A reflectance -based in-flight calibration procedure is used to determine the radiance reaching the entrance pupil of the sensor. This procedure uses ground-based measurements coupled with a radiative transfer code to characterize the effects the atmosphere has on the signal reaching the sensor. The computed radiance is compared to the digital count output of the sensor associated with the image of a test site. This provides an update to the preflight calibration of the system and a check on the on-board internal calibrator. This calibration procedure was used to perform a series of five calibrations of the Landsat-5 Thematic Mapper (TM). For the 12 measurements made in TM bands 1-3, the RMS variation from the mean as a percentage of the mean is (+OR-) 1.9%, and for measurements in the IR, TM bands 4,5, and 7, the value is (+OR-) 3.4%. The RMS variation for all 23 measurements is (+OR-) 2.8%. The absolute calibration techniques were put to another test with a series of three calibration of the SPOT-1 High Resolution Visible, (HRV), sensors. The ratio, HRV-2/HRV-1, of absolute calibration coefficients compared very well with ratios of histogrammed data obtained when the cameras simultaneously imaged the same ground site. Bands PA, B1 and B3 agreed to within 3%, while band B2 showed a 7% difference. The procedure for performing a satellite calibration was then used to demonstrate how a calibrated satellite sensor can be used to quantitatively evaluate surface reflectance over a wide range of surface features. Predicted reflectance factors were compared to values obtained from aircraft -based radiometer data. This procedure was applied on four dates with two different surface conditions per date. A strong correlation, R('2) = .996, was shown between reflectance values determined from satellite imagery and low-flying aircraft

  9. Use of Absolute and Comparative Performance Feedback in Absolute and Comparative Judgments and Decisions

    ERIC Educational Resources Information Center

    Moore, Don A.; Klein, William M. P.

    2008-01-01

    Which matters more--beliefs about absolute ability or ability relative to others? This study set out to compare the effects of such beliefs on satisfaction with performance, self-evaluations, and bets on future performance. In Experiment 1, undergraduate participants were told they had answered 20% correct, 80% correct, or were not given their…

  10. Gene-Age Interactions in Blood Pressure Regulation: A Large-Scale Investigation with the CHARGE, Global BPgen, and ICBP Consortia

    PubMed Central

    Simino, Jeannette; Shi, Gang; Bis, Joshua C.; Chasman, Daniel I.; Ehret, Georg B.; Gu, Xiangjun; Guo, Xiuqing; Hwang, Shih-Jen; Sijbrands, Eric; Smith, Albert V.; Verwoert, Germaine C.; Bragg-Gresham, Jennifer L.; Cadby, Gemma; Chen, Peng; Cheng, Ching-Yu; Corre, Tanguy; de Boer, Rudolf A.; Goel, Anuj; Johnson, Toby; Khor, Chiea-Chuen; Alizadeh, Behrooz Z.; de Boer, Rudolf A.; Boezen, H. Marike; Bruinenberg, Marcel; Franke, Lude; van der Harst, Pim; Hillege, Hans L.; van der Klauw, Melanie M.; Navis, Gerjan; Ormel, Johan; Postma, Dirkje S.; Rosmalen, Judith G.M.; Slaets, Joris P.; Snieder, Harold; Stolk, Ronald P.; Wolffenbuttel, Bruce H.R.; Wijmenga, Cisca; Lluís-Ganella, Carla; Luan, Jian’an; Lyytikäinen, Leo-Pekka; Nolte, Ilja M.; Sim, Xueling; Sõber, Siim; van der Most, Peter J.; Verweij, Niek; Zhao, Jing Hua; Amin, Najaf; Boerwinkle, Eric; Bouchard, Claude; Dehghan, Abbas; Eiriksdottir, Gudny; Elosua, Roberto; Franco, Oscar H.; Gieger, Christian; Harris, Tamara B.; Hercberg, Serge; Hofman, Albert; James, Alan L.; Johnson, Andrew D.; Kähönen, Mika; Khaw, Kay-Tee; Kutalik, Zoltan; Larson, Martin G.; Launer, Lenore J.; Li, Guo; Liu, Jianjun; Liu, Kiang; Morrison, Alanna C.; Navis, Gerjan; Ong, Rick Twee-Hee; Papanicolau, George J.; Penninx, Brenda W.; Psaty, Bruce M.; Raffel, Leslie J.; Raitakari, Olli T.; Rice, Kenneth; Rivadeneira, Fernando; Rose, Lynda M.; Sanna, Serena; Scott, Robert A.; Siscovick, David S.; Stolk, Ronald P.; Uitterlinden, Andre G.; Vaidya, Dhananjay; van der Klauw, Melanie M.; Vasan, Ramachandran S.; Vithana, Eranga Nishanthie; Völker, Uwe; Völzke, Henry; Watkins, Hugh; Young, Terri L.; Aung, Tin; Bochud, Murielle; Farrall, Martin; Hartman, Catharina A.; Laan, Maris; Lakatta, Edward G.; Lehtimäki, Terho; Loos, Ruth J.F.; Lucas, Gavin; Meneton, Pierre; Palmer, Lyle J.; Rettig, Rainer; Snieder, Harold; Tai, E. Shyong; Teo, Yik-Ying; van der Harst, Pim; Wareham, Nicholas J.; Wijmenga, Cisca; Wong, Tien Yin; Fornage, Myriam; Gudnason, Vilmundur; Levy, Daniel; Palmas, Walter; Ridker, Paul M.; Rotter, Jerome I.; van Duijn, Cornelia M.; Witteman, Jacqueline C.M.; Chakravarti, Aravinda; Rao, Dabeeru C.

    2014-01-01

    Although age-dependent effects on blood pressure (BP) have been reported, they have not been systematically investigated in large-scale genome-wide association studies (GWASs). We leveraged the infrastructure of three well-established consortia (CHARGE, GBPgen, and ICBP) and a nonstandard approach (age stratification and metaregression) to conduct a genome-wide search of common variants with age-dependent effects on systolic (SBP), diastolic (DBP), mean arterial (MAP), and pulse (PP) pressure. In a two-staged design using 99,241 individuals of European ancestry, we identified 20 genome-wide significant (p ≤ 5 × 10−8) loci by using joint tests of the SNP main effect and SNP-age interaction. Nine of the significant loci demonstrated nominal evidence of age-dependent effects on BP by tests of the interactions alone. Index SNPs in the EHBP1L1 (DBP and MAP), CASZ1 (SBP and MAP), and GOSR2 (PP) loci exhibited the largest age interactions, with opposite directions of effect in the young versus the old. The changes in the genetic effects over time were small but nonnegligible (up to 1.58 mm Hg over 60 years). The EHBP1L1 locus was discovered through gene-age interactions only in whites but had DBP main effects replicated (p = 8.3 × 10−4) in 8,682 Asians from Singapore, indicating potential interethnic heterogeneity. A secondary analysis revealed 22 loci with evidence of age-specific effects (e.g., only in 20 to 29-year-olds). Age can be used to select samples with larger genetic effect sizes and more homogenous phenotypes, which may increase statistical power. Age-dependent effects identified through novel statistical approaches can provide insight into the biology and temporal regulation underlying BP associations. PMID:24954895

  11. Gene-age interactions in blood pressure regulation: a large-scale investigation with the CHARGE, Global BPgen, and ICBP Consortia.

    PubMed

    Simino, Jeannette; Shi, Gang; Bis, Joshua C; Chasman, Daniel I; Ehret, Georg B; Gu, Xiangjun; Guo, Xiuqing; Hwang, Shih-Jen; Sijbrands, Eric; Smith, Albert V; Verwoert, Germaine C; Bragg-Gresham, Jennifer L; Cadby, Gemma; Chen, Peng; Cheng, Ching-Yu; Corre, Tanguy; de Boer, Rudolf A; Goel, Anuj; Johnson, Toby; Khor, Chiea-Chuen; Lluís-Ganella, Carla; Luan, Jian'an; Lyytikäinen, Leo-Pekka; Nolte, Ilja M; Sim, Xueling; Sõber, Siim; van der Most, Peter J; Verweij, Niek; Zhao, Jing Hua; Amin, Najaf; Boerwinkle, Eric; Bouchard, Claude; Dehghan, Abbas; Eiriksdottir, Gudny; Elosua, Roberto; Franco, Oscar H; Gieger, Christian; Harris, Tamara B; Hercberg, Serge; Hofman, Albert; James, Alan L; Johnson, Andrew D; Kähönen, Mika; Khaw, Kay-Tee; Kutalik, Zoltan; Larson, Martin G; Launer, Lenore J; Li, Guo; Liu, Jianjun; Liu, Kiang; Morrison, Alanna C; Navis, Gerjan; Ong, Rick Twee-Hee; Papanicolau, George J; Penninx, Brenda W; Psaty, Bruce M; Raffel, Leslie J; Raitakari, Olli T; Rice, Kenneth; Rivadeneira, Fernando; Rose, Lynda M; Sanna, Serena; Scott, Robert A; Siscovick, David S; Stolk, Ronald P; Uitterlinden, Andre G; Vaidya, Dhananjay; van der Klauw, Melanie M; Vasan, Ramachandran S; Vithana, Eranga Nishanthie; Völker, Uwe; Völzke, Henry; Watkins, Hugh; Young, Terri L; Aung, Tin; Bochud, Murielle; Farrall, Martin; Hartman, Catharina A; Laan, Maris; Lakatta, Edward G; Lehtimäki, Terho; Loos, Ruth J F; Lucas, Gavin; Meneton, Pierre; Palmer, Lyle J; Rettig, Rainer; Snieder, Harold; Tai, E Shyong; Teo, Yik-Ying; van der Harst, Pim; Wareham, Nicholas J; Wijmenga, Cisca; Wong, Tien Yin; Fornage, Myriam; Gudnason, Vilmundur; Levy, Daniel; Palmas, Walter; Ridker, Paul M; Rotter, Jerome I; van Duijn, Cornelia M; Witteman, Jacqueline C M; Chakravarti, Aravinda; Rao, Dabeeru C

    2014-07-01

    Although age-dependent effects on blood pressure (BP) have been reported, they have not been systematically investigated in large-scale genome-wide association studies (GWASs). We leveraged the infrastructure of three well-established consortia (CHARGE, GBPgen, and ICBP) and a nonstandard approach (age stratification and metaregression) to conduct a genome-wide search of common variants with age-dependent effects on systolic (SBP), diastolic (DBP), mean arterial (MAP), and pulse (PP) pressure. In a two-staged design using 99,241 individuals of European ancestry, we identified 20 genome-wide significant (p ≤ 5 × 10(-8)) loci by using joint tests of the SNP main effect and SNP-age interaction. Nine of the significant loci demonstrated nominal evidence of age-dependent effects on BP by tests of the interactions alone. Index SNPs in the EHBP1L1 (DBP and MAP), CASZ1 (SBP and MAP), and GOSR2 (PP) loci exhibited the largest age interactions, with opposite directions of effect in the young versus the old. The changes in the genetic effects over time were small but nonnegligible (up to 1.58 mm Hg over 60 years). The EHBP1L1 locus was discovered through gene-age interactions only in whites but had DBP main effects replicated (p = 8.3 × 10(-4)) in 8,682 Asians from Singapore, indicating potential interethnic heterogeneity. A secondary analysis revealed 22 loci with evidence of age-specific effects (e.g., only in 20 to 29-year-olds). Age can be used to select samples with larger genetic effect sizes and more homogenous phenotypes, which may increase statistical power. Age-dependent effects identified through novel statistical approaches can provide insight into the biology and temporal regulation underlying BP associations.

  12. Increased blood pressure levels relative to subjective feelings of intensity of exercise determined with the Borg scale in male patients with hypertension.

    PubMed

    Mayumi, Eriko; Nishitani, Aya; Yuki, Yoko; Nakatsu, Takaaki; Toyonaga, Shinji; Mashima, Keiichi; Ogawa, Hiroko; Hirohata, Satoshi; Usui, Shinichi; Shinohata, Ryoko; Sakaguchi, Kousaku; Kusachi, Shozo

    2008-04-01

    We examined the hemodynamic responses to exercise and symptoms in 37 male patients with untreated essential hypertension, and compared the findings with those in 32 age-matched healthy male volunteers by performing a graded symptom-limited exercise test using a bicycle ergometer. The subjective feeling of intensity of exercise was determined using the Borg scale. In the relationship between Borg scores and blood pressure (BP), patients with hypertension showed higher systolic BP and diastolic BP relative to the Borg scores than the controls. Consequently, patients with hypertension showed significantly higher systolic BP with Borg scores < or = 3 (subjective symptoms < or = moderately hard) than the controls (177.8 +/- 27.0 vs. 143.7 +/- 17.9 mmHg, p < 0.0001). Similarly, significantly higher diastolic BP with Borg scores < or = 3 was observed in patients with hypertension than in the controls (101.6 +/- 12.0 vs. 82.6 +/- 11.6 mmHg, p < 0.0001). The pulse pressure with Borg scores < or = 3 was also significantly higher in patients with hypertension than in the controls (76.2 +/- 20.6 vs. 61.0 +/- 13.6 mmHg, p < 0.0001). Hypertensive patients showed a decrease in the high-frequency power of heart rate variability at initial low-load exercise. In conclusion, the present study revealed that there was a greater BP response relative to the Borg score in patients with hypertension than in the controls. Autonomic nerve activity may contribute to some extent to these different relations. A determination of the relationship between the subjective feeling of intensity of the exercise and BP levels caused by a given intensity of load is essential before exercise training in patients, at least in males, with hypertension to avoid increasing the risk of cardiovascular events in association with excessive exercise training.

  13. Gene-age interactions in blood pressure regulation: a large-scale investigation with the CHARGE, Global BPgen, and ICBP Consortia.

    PubMed

    Simino, Jeannette; Shi, Gang; Bis, Joshua C; Chasman, Daniel I; Ehret, Georg B; Gu, Xiangjun; Guo, Xiuqing; Hwang, Shih-Jen; Sijbrands, Eric; Smith, Albert V; Verwoert, Germaine C; Bragg-Gresham, Jennifer L; Cadby, Gemma; Chen, Peng; Cheng, Ching-Yu; Corre, Tanguy; de Boer, Rudolf A; Goel, Anuj; Johnson, Toby; Khor, Chiea-Chuen; Lluís-Ganella, Carla; Luan, Jian'an; Lyytikäinen, Leo-Pekka; Nolte, Ilja M; Sim, Xueling; Sõber, Siim; van der Most, Peter J; Verweij, Niek; Zhao, Jing Hua; Amin, Najaf; Boerwinkle, Eric; Bouchard, Claude; Dehghan, Abbas; Eiriksdottir, Gudny; Elosua, Roberto; Franco, Oscar H; Gieger, Christian; Harris, Tamara B; Hercberg, Serge; Hofman, Albert; James, Alan L; Johnson, Andrew D; Kähönen, Mika; Khaw, Kay-Tee; Kutalik, Zoltan; Larson, Martin G; Launer, Lenore J; Li, Guo; Liu, Jianjun; Liu, Kiang; Morrison, Alanna C; Navis, Gerjan; Ong, Rick Twee-Hee; Papanicolau, George J; Penninx, Brenda W; Psaty, Bruce M; Raffel, Leslie J; Raitakari, Olli T; Rice, Kenneth; Rivadeneira, Fernando; Rose, Lynda M; Sanna, Serena; Scott, Robert A; Siscovick, David S; Stolk, Ronald P; Uitterlinden, Andre G; Vaidya, Dhananjay; van der Klauw, Melanie M; Vasan, Ramachandran S; Vithana, Eranga Nishanthie; Völker, Uwe; Völzke, Henry; Watkins, Hugh; Young, Terri L; Aung, Tin; Bochud, Murielle; Farrall, Martin; Hartman, Catharina A; Laan, Maris; Lakatta, Edward G; Lehtimäki, Terho; Loos, Ruth J F; Lucas, Gavin; Meneton, Pierre; Palmer, Lyle J; Rettig, Rainer; Snieder, Harold; Tai, E Shyong; Teo, Yik-Ying; van der Harst, Pim; Wareham, Nicholas J; Wijmenga, Cisca; Wong, Tien Yin; Fornage, Myriam; Gudnason, Vilmundur; Levy, Daniel; Palmas, Walter; Ridker, Paul M; Rotter, Jerome I; van Duijn, Cornelia M; Witteman, Jacqueline C M; Chakravarti, Aravinda; Rao, Dabeeru C

    2014-07-01

    Although age-dependent effects on blood pressure (BP) have been reported, they have not been systematically investigated in large-scale genome-wide association studies (GWASs). We leveraged the infrastructure of three well-established consortia (CHARGE, GBPgen, and ICBP) and a nonstandard approach (age stratification and metaregression) to conduct a genome-wide search of common variants with age-dependent effects on systolic (SBP), diastolic (DBP), mean arterial (MAP), and pulse (PP) pressure. In a two-staged design using 99,241 individuals of European ancestry, we identified 20 genome-wide significant (p ≤ 5 × 10(-8)) loci by using joint tests of the SNP main effect and SNP-age interaction. Nine of the significant loci demonstrated nominal evidence of age-dependent effects on BP by tests of the interactions alone. Index SNPs in the EHBP1L1 (DBP and MAP), CASZ1 (SBP and MAP), and GOSR2 (PP) loci exhibited the largest age interactions, with opposite directions of effect in the young versus the old. The changes in the genetic effects over time were small but nonnegligible (up to 1.58 mm Hg over 60 years). The EHBP1L1 locus was discovered through gene-age interactions only in whites but had DBP main effects replicated (p = 8.3 × 10(-4)) in 8,682 Asians from Singapore, indicating potential interethnic heterogeneity. A secondary analysis revealed 22 loci with evidence of age-specific effects (e.g., only in 20 to 29-year-olds). Age can be used to select samples with larger genetic effect sizes and more homogenous phenotypes, which may increase statistical power. Age-dependent effects identified through novel statistical approaches can provide insight into the biology and temporal regulation underlying BP associations. PMID:24954895

  14. Absolute radiometric calibration of the CCRS SAR

    NASA Astrophysics Data System (ADS)

    Ulander, Lars M. H.; Hawkins, Robert K.; Livingstone, Charles E.; Lukowski, Tom I.

    1991-11-01

    Determining the radar scattering coefficients from SAR (synthetic aperture radar) image data requires absolute radiometric calibration of the SAR system. The authors describe an internal calibration methodology for the airborne Canada Centre for Remote Sensing (CCRS) SAR system, based on radar theory, a detailed model of the radar system, and measurements of system parameters. The methodology is verified by analyzing external calibration data acquired over a 6-month period in 1988 by the C-band radar using HH polarization. The results indicate that the overall error is +/- 0.8 dB (1-sigma) for incidence angles +/- 20 deg from antenna boresight. The dominant error contributions are due to the antenna radome and uncertainties in the elevation angle relative to the antenna boresight.

  15. Absolute calibration of ultraviolet filter photometry

    NASA Technical Reports Server (NTRS)

    Bless, R. C.; Fairchild, T.; Code, A. D.

    1972-01-01

    The essential features of the calibration procedure can be divided into three parts. First, the shape of the bandpass of each photometer was determined by measuring the transmissions of the individual optical components and also by measuring the response of the photometer as a whole. Secondly, each photometer was placed in the essentially-collimated synchrotron radiation bundle maintained at a constant intensity level, and the output signal was determined from about 100 points on the objective. Finally, two or three points on the objective were illuminated by synchrotron radiation at several different intensity levels covering the dynamic range of the photometers. The output signals were placed on an absolute basis by the electron counting technique described earlier.

  16. Absolute measurements of fast neutrons using yttrium

    SciTech Connect

    Roshan, M. V.; Springham, S. V.; Rawat, R. S.; Lee, P.; Krishnan, M.

    2010-08-15

    Yttrium is presented as an absolute neutron detector for pulsed neutron sources. It has high sensitivity for detecting fast neutrons. Yttrium has the property of generating a monoenergetic secondary radiation in the form of a 909 keV gamma-ray caused by inelastic neutron interaction. It was calibrated numerically using MCNPX and does not need periodic recalibration. The total yttrium efficiency for detecting 2.45 MeV neutrons was determined to be f{sub n}{approx}4.1x10{sup -4} with an uncertainty of about 0.27%. The yttrium detector was employed in the NX2 plasma focus experiments and showed the neutron yield of the order of 10{sup 8} neutrons per discharge.

  17. Absolute geostrophic currents in global tropical oceans

    NASA Astrophysics Data System (ADS)

    Yang, Lina; Yuan, Dongliang

    2016-11-01

    A set of absolute geostrophic current (AGC) data for the period January 2004 to December 2012 are calculated using the P-vector method based on monthly gridded Argo profiles in the world tropical oceans. The AGCs agree well with altimeter geostrophic currents, Ocean Surface Current Analysis-Real time currents, and moored current-meter measurements at 10-m depth, based on which the classical Sverdrup circulation theory is evaluated. Calculations have shown that errors of wind stress calculation, AGC transport, and depth ranges of vertical integration cannot explain non-Sverdrup transport, which is mainly in the subtropical western ocean basins and equatorial currents near the Equator in each ocean basin (except the North Indian Ocean, where the circulation is dominated by monsoons). The identified non-Sverdrup transport is thereby robust and attributed to the joint effect of baroclinicity and relief of the bottom (JEBAR) and mesoscale eddy nonlinearity.

  18. Absolute Measurement of Electron Cloud Density

    SciTech Connect

    Covo, M K; Molvik, A W; Cohen, R H; Friedman, A; Seidl, P A; Logan, G; Bieniosek, F; Baca, D; Vay, J; Orlando, E; Vujic, J L

    2007-06-21

    Beam interaction with background gas and walls produces ubiquitous clouds of stray electrons that frequently limit the performance of particle accelerator and storage rings. Counterintuitively we obtained the electron cloud accumulation by measuring the expelled ions that are originated from the beam-background gas interaction, rather than by measuring electrons that reach the walls. The kinetic ion energy measured with a retarding field analyzer (RFA) maps the depressed beam space-charge potential and provides the dynamic electron cloud density. Clearing electrode current measurements give the static electron cloud background that complements and corroborates with the RFA measurements, providing an absolute measurement of electron cloud density during a 5 {micro}s duration beam pulse in a drift region of the magnetic transport section of the High-Current Experiment (HCX) at LBNL.

  19. Micron Accurate Absolute Ranging System: Range Extension

    NASA Technical Reports Server (NTRS)

    Smalley, Larry L.; Smith, Kely L.

    1999-01-01

    The purpose of this research is to investigate Fresnel diffraction as a means of obtaining absolute distance measurements with micron or greater accuracy. It is believed that such a system would prove useful to the Next Generation Space Telescope (NGST) as a non-intrusive, non-contact measuring system for use with secondary concentrator station-keeping systems. The present research attempts to validate past experiments and develop ways to apply the phenomena of Fresnel diffraction to micron accurate measurement. This report discusses past research on the phenomena, and the basis of the use Fresnel diffraction distance metrology. The apparatus used in the recent investigations, experimental procedures used, preliminary results are discussed in detail. Continued research and equipment requirements on the extension of the effective range of the Fresnel diffraction systems is also described.

  20. Absolute calibration of remote sensing instruments

    NASA Astrophysics Data System (ADS)

    Biggar, S. F.; Bruegge, C. J.; Capron, B. A.; Castle, K. R.; Dinguirard, M. C.; Holm, R. G.; Lingg, L. J.; Mao, Y.; Palmer, J. M.; Phillips, A. L.

    1985-12-01

    Source-based and detector-based methods for the absolute radiometric calibration of a broadband field radiometer are described. Using such a radiometer, calibrated by both methods, the calibration of the integrating sphere used in the preflight calibration of the Thematic Mapper was redetermined. The results are presented. The in-flight calibration of space remote sensing instruments is discussed. A method which uses the results of ground-based reflectance and atmospheric measurements as input to a radiative transfer code to predict the radiance at the instrument is described. A calibrated, helicopter-mounted radiometer is used to determine the radiance levels at intermediate altitudes to check the code predictions. Results of such measurements for the calibration of the Thematic Mapper on Landsat 5 and an analysis that shows the value of such measurements are described.

  1. Absolute radiometric calibration of the Thematic Mapper

    NASA Technical Reports Server (NTRS)

    Slater, P. N.; Biggar, S. F.; Holm, R. G.; Jackson, R. D.; Mao, Y.

    1986-01-01

    Calibration data for the solar reflective bands of the Landsat-5 TM obtained from five in-flight absolute radiometric calibrations from July 1984-November 1985 at White Sands, New Mexico are presented and analyzed. Ground reflectance and atmospheric data were utilized to predict the spectral radiance at the entrance pupil of the TM and the average number of digital counts in each TM band. The calibration of each of the TM solar reflective bands was calculated in terms of average digital counts/unit spectral radiance for each band. It is observed that for the 12 reflectance-based measurements the rms variation from the means as a percentage of the mean is + or - 1.9 percent; for the 11 measurements in the IR bands, it is + or - 3.4 percent; and the rms variation for all 23 measurements is + or - 2.8 percent.

  2. Swarm's Absolute Scalar Magnetometer metrological performances

    NASA Astrophysics Data System (ADS)

    Leger, J.; Fratter, I.; Bertrand, F.; Jager, T.; Morales, S.

    2012-12-01

    The Absolute Scalar Magnetometer (ASM) has been developed for the ESA Earth Observation Swarm mission, planned for launch in November 2012. As its Overhauser magnetometers forerunners flown on Oersted and Champ satellites, it will deliver high resolution scalar measurements for the in-flight calibration of the Vector Field Magnetometer manufactured by the Danish Technical University. Latest results of the ground tests carried out to fully characterize all parameters that may affect its accuracy, both at instrument and satellite level, will be presented. In addition to its baseline function, the ASM can be operated either at a much higher sampling rate (burst mode at 250 Hz) or in a dual mode where it also delivers vector field measurements as a by-product. The calibration procedure and the relevant vector performances will be discussed.

  3. MAGSAT: Vector magnetometer absolute sensor alignment determination

    NASA Technical Reports Server (NTRS)

    Acuna, M. H.

    1981-01-01

    A procedure is described for accurately determining the absolute alignment of the magnetic axes of a triaxial magnetometer sensor with respect to an external, fixed, reference coordinate system. The method does not require that the magnetic field vector orientation, as generated by a triaxial calibration coil system, be known to better than a few degrees from its true position, and minimizes the number of positions through which a sensor assembly must be rotated to obtain a solution. Computer simulations show that accuracies of better than 0.4 seconds of arc can be achieved under typical test conditions associated with existing magnetic test facilities. The basic approach is similar in nature to that presented by McPherron and Snare (1978) except that only three sensor positions are required and the system of equations to be solved is considerably simplified. Applications of the method to the case of the MAGSAT Vector Magnetometer are presented and the problems encountered discussed.

  4. An evaluation of methods for scaling aircraft noise perception

    NASA Technical Reports Server (NTRS)

    Ollerhead, J. B.

    1971-01-01

    One hundred and twenty recorded sounds, including jets, turboprops, piston engined aircraft and helicopters were rated by a panel of subjects in a paired comparison test. The results were analyzed to evaluate a number of noise rating procedures in terms of their ability to accurately estimate both relative and absolute perceived noise levels. It was found that the complex procedures developed by Stevens, Zwicker and Kryter are superior to other scales. The main advantage of these methods over the more convenient weighted sound pressure level scales lies in their ability to cope with signals over a wide range of bandwidth. However, Stevens' loudness level scale and the perceived noise level scale both overestimate the growth of perceived level with intensity because of an apparent deficiency in the band level summation rule. A simple correction is proposed which will enable these scales to properly account for the experimental observations.

  5. Simple iodine reference at 1064 nm for absolute laser frequency determination in space applications.

    PubMed

    Kokuyama, Wataru; Numata, Kenji; Camp, Jordan

    2010-11-10

    Using an iodine cell with fixed gas pressure, we built a simple frequency reference at 1064 nm with 10 MHz absolute accuracy and used it to demonstrate deterministic phase locking between two single-frequency lasers. The reference was designed to be as simple as possible, and it does not use a cooler or frequency modulator. This system should be useful, especially for space interferometric missions such as the Laser Interferometer Space Antenna.

  6. Absolute equation of state measurements of iron using laser driven shocks

    NASA Astrophysics Data System (ADS)

    Benuzzi-Mounaix, A.; Koenig, M.; Huser, G.; Faral, B.; Batani, D.; Henry, E.; Tomasini, M.; Marchet, B.; Hall, T. A.; Boustie, M.; de Rességuier, Th.; Hallouin, M.; Guyot, F.; Andrault, D.; Charpin, Th.

    2002-06-01

    First absolute equation of state measurements obtained for iron with laser driven shock waves are presented. The shock velocity and the free surface velocity of compressed iron have been simultaneously measured by using a VISAR diagnostic, and step targets. The pressure range 1-8 Mbar has been investigated, which is directly relevant to planetary physics. The experiments have been performed at the Laboratoire pour l'Utilisation des Lasers Intenses of the Ecole Polytechnique.

  7. Utilizing a reference material for assessing absolute tumor mechanical properties in modality independent elastography

    NASA Astrophysics Data System (ADS)

    Kim, Dong Kyu; Weis, Jared A.; Yankeelov, Thomas E.; Miga, Michael I.

    2014-03-01

    There is currently no reliable method for early characterization of breast cancer response to neoadjuvant chemotherapy (NAC) [1,2]. Given that disruption of normal structural architecture occurs in cancer-bearing tissue, we hypothesize that further structural changes occur in response to NAC. Consequently, we are investigating the use of modalityindependent elastography (MIE) [3-8] as a method for monitoring mechanical integrity to predict long term outcomes in NAC. Recently, we have utilized a Demons non-rigid image registration method that allows 3D elasticity reconstruction in abnormal tissue geometries, making it particularly amenable to the evaluation of breast cancer mechanical properties. While past work has reflected relative elasticity contrast ratios [3], this study improves upon that work by utilizing a known stiffness reference material within the reconstruction framework such that a stiffness map becomes an absolute measure. To test, a polyvinyl alcohol (PVA) cryogel phantom and a silicone rubber mock mouse tumor phantom were constructed with varying mechanical stiffness. Results showed that an absolute measure of stiffness could be obtained based on a reference value. This reference technique demonstrates the ability to generate accurate measurements of absolute stiffness to characterize response to NAC. These results support that `referenced MIE' has the potential to reliably differentiate absolute tumor stiffness with significant contrast from that of surrounding tissue. The use of referenced MIE to obtain absolute quantification of biomarkers is also translatable across length scales such that the characterization method is mechanics-consistent at the small animal and human application.

  8. Acoustic testing of a 1.5 pressure ratio low tip speed fan with casing tip bleed (QEP Fan B scale model)

    NASA Technical Reports Server (NTRS)

    Kazin, S. B.; Minzner, W. R.; Paas, J. E.

    1971-01-01

    A scale model of the bypass flow region of a 1.5 pressure ratio, single stage, low tip speed fan was tested with a rotor tip casing bleed slot to determine its effects on noise generation. The bleed slot was located 1/2 inch (1.3 cm) upstream of the rotor leading edge and was configured to be a continuous opening around the circumference. The bleed manifold system was operated over a range of bleed rates corresponding to as much as 6% of the fan flow at approach thrust and 4.25% of the fan flow at takeoff thrust. Acoustic results indicate that a bleed rate of 4% of the fan flow reduces the fan maximum approach 200 foot (61.0 m) sideline PNL 0.5 PNdB and the corresponding takeoff thrust noise 1.1 PNdB below the level with zero bleed. However, comparison of the standard casing (no bleed slot) and the slotted bleed casing with zero bleed shows that the bleed slot itself caused a noise increase.

  9. Effects of Ionization, Thermal Transport, and Radiation on Scaling Performance for Peak Pressure in Imploding Plasma Liners Formed by Converging Jets

    NASA Astrophysics Data System (ADS)

    Stanic, Milos; Cassibry, Jason; Hsu, Scott

    2012-10-01

    This paper is an extension of work done by (Cassibry et.al., in preparation) who performed similar research using Smoothed Particle Hydrodynamics Code (SPHC) with an ideal gas equation of state model, neglecting electron-thermal conduction, radiation conduction and radiation losses (in cases of optically thin plasma). SPHC has been modified to use a tabular equation of state, accounting for ionization effects and to include the mentioned thermal transport models. Series of simulations have been carried out and the results were analyzed in terms of recognizing the scaling laws for peak pressure and dwell time. Comparison with the previous work of (Cassibry et.al., in preparation) has also been carried out in an attempt to isolate and recognize the effects of ionization and thermal transport models. The work has been done in support of the Plasma Liner Experiment (PLX), which is a multi-institutional project working on validation of the imploding plasma liner concept for reaching High Energy Density (HEDP) regimes and a possible stand-off solution for Plasma Jet driven Magneto-Inertial Fusion (PJMIF).

  10. Pressure-induced metallization of condensed phase β-HMX under shock loadings via molecular dynamics simulations in conjunction with multi-scale shock technique.

    PubMed

    Ge, Ni-Na; Wei, Yong-Kai; Zhao, Feng; Chen, Xiang-Rong; Ji, Guang-Fu

    2014-07-01

    The electronic structure and initial decomposition in high explosive HMX under conditions of shock loading are examined. The simulation is performed using quantum molecular dynamics in conjunction with multi-scale shock technique (MSST). A self-consistent charge density-functional tight-binding (SCC-DFTB) method is adapted. The results show that the N-N-C angle has a drastic change under shock wave compression along lattice vector b at shock velocity 11 km/s, which is the main reason that leads to an insulator-to-metal transition for the HMX system. The metallization pressure (about 130 GPa) of condensed-phase HMX is predicted firstly. We also detect the formation of several key products of condensed-phase HMX decomposition, such as NO2, NO, N2, N2O, H2O, CO, and CO2, and all of them have been observed in previous experimental studies. Moreover, the initial decomposition products include H2 due to the C-H bond breaking as a primary reaction pathway at extreme condition, which presents a new insight into the initial decomposition mechanism of HMX under shock loading at the atomistic level.

  11. Determining Absolute Zero in the Kitchen Sink.

    ERIC Educational Resources Information Center

    Otani, Robert; Siegel, Peter

    1991-01-01

    Presents an experiment to demonstrate Charles's Law of Ideal Gases by creating a constant-pressure thermometer from materials that can be found in the kitchen. Discusses the underlying mathematical relationships and a step-by-step description of the experiment. (MDH)

  12. Prelaunch absolute radiometric calibration of the reflective bands on the LANDSAT-4 protoflight Thematic Mapper

    NASA Technical Reports Server (NTRS)

    Barker, J. L.; Ball, D. L.; Leung, K. C.; Walker, J. A.

    1984-01-01

    The results of the absolute radiometric calibration of the LANDSAT 4 thematic mapper, as determined during pre-launch tests with a 122 cm integrating sphere, are presented. Detailed results for the best calibration of the protoflight TM are given, as well as summaries of other tests performed on the sensor. The dynamic range of the TM is within a few per cent of that required in all bands, except bands 1 and 3. Three detectors failed to pass the minimum SNR specified for their respective bands: band 5, channel 3 (dead), band 2, and channels 2 and 4 (noisy or slow response). Estimates of the absolute calibration accuracy for the TM show that the detectors are typically calibrated to 5% absolute error for the reflective bands; 10% full-scale accuracy was specified. Ten tests performed to transfer the detector absolute calibration to the internal calibrator show a 5% range at full scale in the transfer calibration; however, in two cases band 5 showed a 10% and a 7% difference.

  13. On the absolute alignment of GONG images

    NASA Astrophysics Data System (ADS)

    Toner, C. G.

    2001-01-01

    In order to combine data from the six instruments in the GONG network the alignment of all of the images must be known to a fairly high precision (~0°.1 for GONG Classic and ~0°.01 for GONG+). The relative orientation is obtained using the angular cross-correlation method described by (Toner & Harvey, 1998). To obtain the absolute orientation the Project periodically records a day of drift scans, where the image of the Sun is allowed to drift across the CCD repeatedly throughout the day. These data are then analyzed to deduce the direction of Terrestrial East-West as a function of hour angle (i.e., time) for that instrument. The transit of Mercury on Nov. 15, 1999, which was recorded by three of the GONG instruments, provided an independent check on the current alignment procedures. Here we present a comparison of the alignment of GONG images as deduced from both drift scans and the Mercury transit for two GONG sites: Tucson (GONG+ camera) and Mauna Loa (GONG Classic camera). The agreement is within ~0°.01 for both cameras, however, the scatter is substantially larger for GONG Classic: ~0°.03 compared to ~0°.01 for GONG+.

  14. Climate Absolute Radiance and Refractivity Observatory (CLARREO)

    NASA Technical Reports Server (NTRS)

    Leckey, John P.

    2015-01-01

    The Climate Absolute Radiance and Refractivity Observatory (CLARREO) is a mission, led and developed by NASA, that will measure a variety of climate variables with an unprecedented accuracy to quantify and attribute climate change. CLARREO consists of three separate instruments: an infrared (IR) spectrometer, a reflected solar (RS) spectrometer, and a radio occultation (RO) instrument. The mission will contain orbiting radiometers with sufficient accuracy, including on orbit verification, to calibrate other space-based instrumentation, increasing their respective accuracy by as much as an order of magnitude. The IR spectrometer is a Fourier Transform spectrometer (FTS) working in the 5 to 50 microns wavelength region with a goal of 0.1 K (k = 3) accuracy. The FTS will achieve this accuracy using phase change cells to verify thermistor accuracy and heated halos to verify blackbody emissivity, both on orbit. The RS spectrometer will measure the reflectance of the atmosphere in the 0.32 to 2.3 microns wavelength region with an accuracy of 0.3% (k = 2). The status of the instrumentation packages and potential mission options will be presented.

  15. Absolute flux measurements for swift atoms

    NASA Technical Reports Server (NTRS)

    Fink, M.; Kohl, D. A.; Keto, J. W.; Antoniewicz, P.

    1987-01-01

    While a torsion balance in vacuum can easily measure the momentum transfer from a gas beam impinging on a surface attached to the balance, this measurement depends on the accommodation coefficients of the atoms with the surface and the distribution of the recoil. A torsion balance is described for making absolute flux measurements independent of recoil effects. The torsion balance is a conventional taut suspension wire design and the Young modulus of the wire determines the relationship between the displacement and the applied torque. A compensating magnetic field is applied to maintain zero displacement and provide critical damping. The unique feature is to couple the impinging gas beam to the torsion balance via a Wood's horn, i.e., a thin wall tube with a gradual 90 deg bend. Just as light is trapped in a Wood's horn by specular reflection from the curved surfaces, the gas beam diffuses through the tube. Instead of trapping the beam, the end of the tube is open so that the atoms exit the tube at 90 deg to their original direction. Therefore, all of the forward momentum of the gas beam is transferred to the torsion balance independent of the angle of reflection from the surfaces inside the tube.

  16. Gyrokinetic Statistical Absolute Equilibrium and Turbulence

    SciTech Connect

    Jian-Zhou Zhu and Gregory W. Hammett

    2011-01-10

    A paradigm based on the absolute equilibrium of Galerkin-truncated inviscid systems to aid in understanding turbulence [T.-D. Lee, "On some statistical properties of hydrodynamical and magnetohydrodynamical fields," Q. Appl. Math. 10, 69 (1952)] is taken to study gyrokinetic plasma turbulence: A finite set of Fourier modes of the collisionless gyrokinetic equations are kept and the statistical equilibria are calculated; possible implications for plasma turbulence in various situations are discussed. For the case of two spatial and one velocity dimension, in the calculation with discretization also of velocity v with N grid points (where N + 1 quantities are conserved, corresponding to an energy invariant and N entropy-related invariants), the negative temperature states, corresponding to the condensation of the generalized energy into the lowest modes, are found. This indicates a generic feature of inverse energy cascade. Comparisons are made with some classical results, such as those of Charney-Hasegawa-Mima in the cold-ion limit. There is a universal shape for statistical equilibrium of gyrokinetics in three spatial and two velocity dimensions with just one conserved quantity. Possible physical relevance to turbulence, such as ITG zonal flows, and to a critical balance hypothesis are also discussed.

  17. Large-scale survey of rates of achieving targets for blood glucose, blood pressure, and lipids and prevalence of complications in type 2 diabetes (JDDM 40)

    PubMed Central

    Yokoyama, Hiroki; Oishi, Mariko; Takamura, Hiroshi; Yamasaki, Katsuya; Shirabe, Shin-ichiro; Uchida, Daigaku; Sugimoto, Hidekatsu; Kurihara, Yoshio; Araki, Shin-ichi; Maegawa, Hiroshi

    2016-01-01

    Objective The fact that population with type 2 diabetes mellitus and bodyweight of patients are increasing but diabetes care is improving makes it important to explore the up-to-date rates of achieving treatment targets and prevalence of complications. We investigated the prevalence of microvascular/macrovascular complications and rates of achieving treatment targets through a large-scale multicenter-based cohort. Research design and methods A cross-sectional nationwide survey was performed on 9956 subjects with type 2 diabetes mellitus who consecutively attended primary care clinics. The prevalence of nephropathy, retinopathy, neuropathy, and macrovascular complications and rates of achieving targets of glycated hemoglobin (HbA1c) <7.0%, blood pressure <130/80 mm Hg, and lipids of low-density/high-density lipoprotein cholesterol <3.1/≥1.0 mmol/L and non-high-density lipoprotein cholesterol <3.8 mmol/L were investigated. Results The rates of achieving targets for HbA1c, blood pressure, and lipids were 52.9%, 46.8% and 65.5%, respectively. The prevalence of microvascular complications was ∼28% each, 6.4% of which had all microvascular complications, while that of macrovascular complications was 12.6%. With an increasing duration of diabetes, the rate of achieving target HbA1c decreased and the prevalence of each complication increased despite increased use of diabetes medication. The prevalence of each complication decreased according to the number achieving the 3 treatment targets and was lower in subjects without macrovascular complications than those with. Adjustments for considerable covariates exhibited that each complication was closely inter-related, and the achievement of each target was significantly associated with being free of each complication. Conclusions Almost half of the subjects examined did not meet the recommended targets. The risk of each complication was significantly affected by 1 on-target treatment (inversely) and the

  18. Issues in Absolute Spectral Radiometric Calibration: Intercomparison of Eight Sources

    NASA Technical Reports Server (NTRS)

    Goetz, Alexander F. H.; Kindel, Bruce; Pilewskie, Peter

    1998-01-01

    The application of atmospheric models to AVIRIS and other spectral imaging data to derive surface reflectance requires that the sensor output be calibrated to absolute radiance. Uncertainties in absolute calibration are to be expected, and claims of 92% accuracy have been published. Measurements of accurate surface albedos and cloud absorption to be used in radiative balance calculations depend critically on knowing the absolute spectral-radiometric response of the sensor. The Earth Observing System project is implementing a rigorous program of absolute radiometric calibration for all optical sensors. Since a number of imaging instruments that provide output in terms of absolute radiance are calibrated at different sites, it is important to determine the errors that can be expected among calibration sites. Another question exists about the errors in the absolute knowledge of the exoatmospheric spectral solar irradiance.

  19. Absolute nuclear material assay using count distribution (LAMBDA) space

    SciTech Connect

    Prasad, Mano K.; Snyderman, Neal J.; Rowland, Mark S.

    2015-12-01

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  20. Absolute nuclear material assay using count distribution (LAMBDA) space

    DOEpatents

    Prasad, Manoj K.; Snyderman, Neal J.; Rowland, Mark S.

    2012-06-05

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.