Science.gov

Sample records for absolute quantification itraq

  1. Balancing robust quantification and identification for iTRAQ: application of UHR-ToF MS.

    PubMed

    Ow, Saw Yen; Noirel, Josselin; Salim, Malinda; Evans, Caroline; Watson, Rod; Wright, Phillip C

    2010-06-01

    iTRAQ reagents allow the simultaneous multiplex identification and quantification of a large number of proteins. Success depends on effective peptide fragmentation in order to generate both peptide sequence ions (higher mass region, 150-2200 m/z) and reporter ions (low mass region, 113-121 m/z) for protein identification and relative quantification, respectively. After collision-induced dissociation, the key requirements to achieve a good balance between the high and low m/z ions are effective ion transmission and detection across the MS/MS mass range, since the ion transmission of the higher m/z range competes with that of the low m/z range. This study describes an analytical strategy for the implementation of iTRAQ on maXis UHR-Qq-ToF instruments, and discusses the impact of adjusting the MS/MS ion transmission parameters on the quality of the overall data sets. A technical discussion highlights a number of maXis-specific parameters, their impact of quantification and identification, and their cross-interactions. PMID:20352625

  2. Evaluation of iTRAQ and SWATH-MS for the Quantification of Proteins Associated with Insulin Resistance in Human Duodenal Biopsy Samples

    PubMed Central

    Bourassa, Sylvie; Fournier, Frédéric; Nehmé, Benjamin; Kelly, Isabelle; Tremblay, André; Lemelin, Valéry; Lamarche, Benoit; Couture, Patrick; Droit, Arnaud

    2015-01-01

    Insulin resistance (IR) is associated with increased production of triglyceride-rich lipoproteins of intestinal origin. In order to assess whether insulin resistance affects the proteins involved in lipid metabolism, we used two mass spectrometry based quantitative proteomics techniques to compare the intestinal proteome of 14 IR patients to that of 15 insulin sensitive (IS) control patients matched for age and waist circumference. A total of 3886 proteins were identified by the iTRAQ (Isobaric Tags for Relative and Absolute Quantitation) mass spectrometry approach and 2290 by the SWATH-MS strategy (Serial Window Acquisition of Theoretical Spectra). Using these two methods, 208 common proteins were identified with a confidence corresponding to FDR < 1%, and quantified with p-value < 0.05. The quantification of those 208 proteins has a Pearson correlation coefficient (r2) of 0.728 across the two techniques. Gene Ontology analyses of the differentially expressed proteins revealed that annotations related to lipid metabolic process and oxidation reduction process are overly represented in the set of under-expressed proteins in IR subjects. Furthermore, both methods quantified proteins of relevance to IR. These data also showed that SWATH-MS is a promising and compelling alternative to iTRAQ for protein quantitation of complex mixtures. PMID:25950531

  3. Estimating influence of cofragmentation on peptide quantification and identification in iTRAQ experiments by simulating multiplexed spectra.

    PubMed

    Li, Honglan; Hwang, Kyu-Baek; Mun, Dong-Gi; Kim, Hokeun; Lee, Hangyeore; Lee, Sang-Won; Paek, Eunok

    2014-07-01

    Isobaric tag-based quantification such as iTRAQ and TMT is a promising approach to mass spectrometry-based quantification in proteomics as it provides wide proteome coverage with greatly increased experimental throughput. However, it is known to suffer from inaccurate quantification and identification of a target peptide due to cofragmentation of multiple peptides, which likely leads to under-estimation of differentially expressed peptides (DEPs). A simple method of filtering out cofragmented spectra with less than 100% precursor isolation purity (PIP) would decrease the coverage of iTRAQ/TMT experiments. In order to estimate the impact of cofragmentation on quantification and identification of iTRAQ-labeled peptide samples, we generated multiplexed spectra with varying degrees of PIP by mixing the two MS/MS spectra of 100% PIP obtained in global proteome profiling experiments on gastric tumor-normal tissue pair proteomes labeled by 4-plex iTRAQ. Despite cofragmentation, the simulation experiments showed that more than 99% of multiplexed spectra with PIP greater than 80% were correctly identified by three different database search engines-MODa, MS-GF+, and Proteome Discoverer. Using the multiplexed spectra that have been correctly identified, we estimated the effect of cofragmentation on peptide quantification. In 74% of the multiplexed spectra, however, the cancer-to-normal expression ratio was compressed, and a fair number of spectra showed the "ratio inflation" phenomenon. On the basis of the estimated distribution of distortions on quantification, we were able to calculate cutoff values for DEP detection from cofragmented spectra, which were corrected according to a specific PIP and probability of type I (or type II) error. When we applied these corrected cutoff values to real cofragmented spectra with PIP larger than or equal to 70%, we were able to identify reliable DEPs by removing about 25% of DEPs, which are highly likely to be false positives. Our

  4. Absolute and relative quantification of RNA modifications via biosynthetic isotopomers

    PubMed Central

    Kellner, Stefanie; Ochel, Antonia; Thüring, Kathrin; Spenkuch, Felix; Neumann, Jennifer; Sharma, Sunny; Entian, Karl-Dieter; Schneider, Dirk; Helm, Mark

    2014-01-01

    In the resurging field of RNA modifications, quantification is a bottleneck blocking many exciting avenues. With currently over 150 known nucleoside alterations, detection and quantification methods must encompass multiple modifications for a comprehensive profile. LC–MS/MS approaches offer a perspective for comprehensive parallel quantification of all the various modifications found in total RNA of a given organism. By feeding 13C-glucose as sole carbon source, we have generated a stable isotope-labeled internal standard (SIL-IS) for bacterial RNA, which facilitates relative comparison of all modifications. While conventional SIL-IS approaches require the chemical synthesis of single modifications in weighable quantities, this SIL-IS consists of a nucleoside mixture covering all detectable RNA modifications of Escherichia coli, yet in small and initially unknown quantities. For absolute in addition to relative quantification, those quantities were determined by a combination of external calibration and sample spiking of the biosynthetic SIL-IS. For each nucleoside, we thus obtained a very robust relative response factor, which permits direct conversion of the MS signal to absolute amounts of substance. The application of the validated SIL-IS allowed highly precise quantification with standard deviations <2% during a 12-week period, and a linear dynamic range that was extended by two orders of magnitude. PMID:25129236

  5. Improved Strategies and Optimization of Calibration Models for Real-time PCR Absolute Quantification

    EPA Science Inventory

    Real-time PCR absolute quantification applications rely on the use of standard curves to make estimates of DNA target concentrations in unknown samples. Traditional absolute quantification approaches dictate that a standard curve must accompany each experimental run. However, t...

  6. Sample Preparation Approaches for iTRAQ Labeling and Quantitative Proteomic Analyses in Systems Biology.

    PubMed

    Spanos, Christos; Moore, J Bernadette

    2016-01-01

    Among a variety of global quantification strategies utilized in mass spectrometry (MS)-based proteomics, isobaric tags for relative and absolute quantitation (iTRAQ) are an attractive option for examining the relative amounts of proteins in different samples. The inherent complexity of mammalian proteomes and the diversity of protein physicochemical properties mean that complete proteome coverage is still unlikely from a single analytical method. Numerous options exist for reducing protein sample complexity and resolving digested peptides prior to MS analysis. Indeed, the reliability and efficiency of protein identification and quantitation from an iTRAQ workflow strongly depend on sample preparation upstream of MS. Here we describe our methods for: (1) total protein extraction from immortalized cells; (2) subcellular fractionation of murine tissue; (3) protein sample desalting, digestion, and iTRAQ labeling; (4) peptide separation by strong cation-exchange high-performance liquid chromatography; and (5) peptide separation by isoelectric focusing. PMID:26700038

  7. Selected Reaction Monitoring Mass Spectrometry for Absolute Protein Quantification.

    PubMed

    Manes, Nathan P; Mann, Jessica M; Nita-Lazar, Aleksandra

    2015-01-01

    Absolute quantification of target proteins within complex biological samples is critical to a wide range of research and clinical applications. This protocol provides step-by-step instructions for the development and application of quantitative assays using selected reaction monitoring (SRM) mass spectrometry (MS). First, likely quantotypic target peptides are identified based on numerous criteria. This includes identifying proteotypic peptides, avoiding sites of posttranslational modification, and analyzing the uniqueness of the target peptide to the target protein. Next, crude external peptide standards are synthesized and used to develop SRM assays, and the resulting assays are used to perform qualitative analyses of the biological samples. Finally, purified, quantified, heavy isotope labeled internal peptide standards are prepared and used to perform isotope dilution series SRM assays. Analysis of all of the resulting MS data is presented. This protocol was used to accurately assay the absolute abundance of proteins of the chemotaxis signaling pathway within RAW 264.7 cells (a mouse monocyte/macrophage cell line). The quantification of Gi2 (a heterotrimeric G-protein α-subunit) is described in detail. PMID:26325288

  8. Absolute Quantification of Selected Proteins in the Human Osteoarthritic Secretome

    PubMed Central

    Peffers, Mandy J.; Beynon, Robert J.; Clegg, Peter D.

    2013-01-01

    Osteoarthritis (OA) is characterized by a loss of extracellular matrix which is driven by catabolic cytokines. Proteomic analysis of the OA cartilage secretome enables the global study of secreted proteins. These are an important class of molecules with roles in numerous pathological mechanisms. Although cartilage studies have identified profiles of secreted proteins, quantitative proteomics techniques have been implemented that would enable further biological questions to be addressed. To overcome this limitation, we used the secretome from human OA cartilage explants stimulated with IL-1β and compared proteins released into the media using a label-free LC-MS/MS-based strategy. We employed QconCAT technology to quantify specific proteins using selected reaction monitoring. A total of 252 proteins were identified, nine were differentially expressed by IL-1 β stimulation. Selected protein candidates were quantified in absolute amounts using QconCAT. These findings confirmed a significant reduction in TIMP-1 in the secretome following IL-1β stimulation. Label-free and QconCAT analysis produced equivocal results indicating no effect of cytokine stimulation on aggrecan, cartilage oligomeric matrix protein, fibromodulin, matrix metalloproteinases 1 and 3 or plasminogen release. This study enabled comparative protein profiling and absolute quantification of proteins involved in molecular pathways pertinent to understanding the pathogenesis of OA. PMID:24132152

  9. Absolute Quantification of Individual Biomass Concentrations in a Methanogenic Coculture

    PubMed Central

    2014-01-01

    Identification of individual biomass concentrations is a crucial step towards an improved understanding of anaerobic digestion processes and mixed microbial conversions in general. The knowledge of individual biomass concentrations allows for the calculation of biomass specific conversion rates which form the basis of anaerobic digestion models. Only few attempts addressed the absolute quantification of individual biomass concentrations in methanogenic microbial ecosystems which has so far impaired the calculation of biomass specific conversion rates and thus model validation. This study proposes a quantitative PCR (qPCR) approach for the direct determination of individual biomass concentrations in methanogenic microbial associations by correlating the native qPCR signal (cycle threshold, Ct) to individual biomass concentrations (mg dry matter/L). Unlike existing methods, the proposed approach circumvents error-prone conversion factors that are typically used to convert gene copy numbers or cell concentrations into actual biomass concentrations. The newly developed method was assessed and deemed suitable for the determination of individual biomass concentrations in a defined coculture of Desulfovibrio sp. G11 and Methanospirillum hungatei JF1. The obtained calibration curves showed high accuracy, indicating that the new approach is well suited for any engineering applications where the knowledge of individual biomass concentrations is required. PMID:24949269

  10. Integrated Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC) and Isobaric Tags for Relative and Absolute Quantitation (iTRAQ) Quantitative Proteomic Analysis Identifies Galectin-1 as a Potential Biomarker for Predicting Sorafenib Resistance in Liver Cancer*

    PubMed Central

    Yeh, Chao-Chi; Hsu, Chih-Hung; Shao, Yu-Yun; Ho, Wen-Ching; Tsai, Mong-Hsun; Feng, Wen-Chi; Chow, Lu-Ping

    2015-01-01

    Sorafenib has become the standard therapy for patients with advanced hepatocellular carcinoma (HCC). Unfortunately, most patients eventually develop acquired resistance. Therefore, it is important to identify potential biomarkers that could predict the efficacy of sorafenib. To identify target proteins associated with the development of sorafenib resistance, we applied stable isotope labelling with amino acids in cell culture (SILAC)-based quantitative proteomic approach to analyze differences in protein expression levels between parental HuH-7 and sorafenib-acquired resistance HuH-7 (HuH-7R) cells in vitro, combined with an isobaric tags for relative and absolute quantitation (iTRAQ) quantitative analysis of HuH-7 and HuH-7R tumors in vivo. In total, 2,450 quantified proteins were identified in common in SILAC and iTRAQ experiments, with 81 showing increased expression (>2.0-fold) with sorafenib resistance and 75 showing decreased expression (<0.5-fold). In silico analyses of these differentially expressed proteins predicted that 10 proteins were related to cancer with involvements in cell adhesion, migration, and invasion. Knockdown of one of these candidate proteins, galectin-1, decreased cell proliferation and metastasis in HuH-7R cells and restored sensitivity to sorafenib. We verified galectin-1 as a predictive marker of sorafenib resistance and a downstream target of the AKT/mTOR/HIF-1α signaling pathway. In addition, increased galectin-1 expression in HCC patients' serum was associated with poor tumor control and low response rate. We also found that a high serum galectin-1 level was an independent factor associated with poor progression-free survival and overall survival. In conclusion, these results suggest that galectin-1 is a possible biomarker for predicting the response of HCC patients to treatment with sorafenib. As such, it may assist in the stratification of HCC and help direct personalized therapy. PMID:25850433

  11. Absolute protein quantification of the yeast chaperome under conditions of heat shock

    PubMed Central

    Mackenzie, Rebecca J.; Lawless, Craig; Holman, Stephen W.; Lanthaler, Karin; Beynon, Robert J.; Grant, Chris M.; Hubbard, Simon J.

    2016-01-01

    Chaperones are fundamental to regulating the heat shock response, mediating protein recovery from thermal‐induced misfolding and aggregation. Using the QconCAT strategy and selected reaction monitoring (SRM) for absolute protein quantification, we have determined copy per cell values for 49 key chaperones in Saccharomyces cerevisiae under conditions of normal growth and heat shock. This work extends a previous chemostat quantification study by including up to five Q‐peptides per protein to improve confidence in protein quantification. In contrast to the global proteome profile of S. cerevisiae in response to heat shock, which remains largely unchanged as determined by label‐free quantification, many of the chaperones are upregulated with an average two‐fold increase in protein abundance. Interestingly, eight of the significantly upregulated chaperones are direct gene targets of heat shock transcription factor‐1. By performing absolute quantification of chaperones under heat stress for the first time, we were able to evaluate the individual protein‐level response. Furthermore, this SRM data was used to calibrate label‐free quantification values for the proteome in absolute terms, thus improving relative quantification between the two conditions. This study significantly enhances the largely transcriptomic data available in the field and illustrates a more nuanced response at the protein level. PMID:27252046

  12. Absolute protein quantification of the yeast chaperome under conditions of heat shock.

    PubMed

    Mackenzie, Rebecca J; Lawless, Craig; Holman, Stephen W; Lanthaler, Karin; Beynon, Robert J; Grant, Chris M; Hubbard, Simon J; Eyers, Claire E

    2016-08-01

    Chaperones are fundamental to regulating the heat shock response, mediating protein recovery from thermal-induced misfolding and aggregation. Using the QconCAT strategy and selected reaction monitoring (SRM) for absolute protein quantification, we have determined copy per cell values for 49 key chaperones in Saccharomyces cerevisiae under conditions of normal growth and heat shock. This work extends a previous chemostat quantification study by including up to five Q-peptides per protein to improve confidence in protein quantification. In contrast to the global proteome profile of S. cerevisiae in response to heat shock, which remains largely unchanged as determined by label-free quantification, many of the chaperones are upregulated with an average two-fold increase in protein abundance. Interestingly, eight of the significantly upregulated chaperones are direct gene targets of heat shock transcription factor-1. By performing absolute quantification of chaperones under heat stress for the first time, we were able to evaluate the individual protein-level response. Furthermore, this SRM data was used to calibrate label-free quantification values for the proteome in absolute terms, thus improving relative quantification between the two conditions. This study significantly enhances the largely transcriptomic data available in the field and illustrates a more nuanced response at the protein level. PMID:27252046

  13. Differential proteomic analysis of respiratory failure in peripheral blood mononuclear cells using iTRAQ technology

    PubMed Central

    SUN, GUOPING; CAO, CUIHUI; CHEN, WENBIAO; ZHANG, YANG; DAI, YONG

    2016-01-01

    Respiratory failure (RF) is a state in which the respiratory system fails by its gas exchange functions. Failure of the lung, which is caused by all types of lung diseases, leads to hypoxaemia with type I respiratory failure. Failure of the pump leads to hypercapnia or type II respiratory failure. Using isobaric tags for relative and absolute quantification (iTRAQ) technology to identify and quantify the total proteins in peripheral blood mononuclear cells (PBMCs) of RF patients and identify the differentially expressed proteome. The present study analyzed the total proteins in the PBMCs of RF patients and healthy controls using the eight-plex iTRAQ added with strong cation-exchange chromatography and liquid chromatography coupled with tandem mass spectrometry. The differentially expressed proteins were identified by MASCOT. A total of 4,795 differentially expressed proteins were identified, and 403 proteins were upregulated and 421 were downregulated. Among them, 4 proteins were significantly differentially expressed, which were upregulated KIAA1520 protein and γ fibrinogen type B (AA at 202) and downregulated chain A, crystal structure of recombinant human platelet factor 4 and myosin regulatory light polypeptide 9. iTRAQ technology is suitable for identifying and quantifying the proteome in the PBMCs of RF patients. The differentially expressed proteins of RF patients have been identified in the present study, and further research of the molecular mechanism of the differentially expressed proteins is required to clarify the pathogenesis and identify novel biomarkers of RF. PMID:27123249

  14. A Novel Function for Arabidopsis CYCLASE1 in Programmed Cell Death Revealed by Isobaric Tags for Relative and Absolute Quantitation (iTRAQ) Analysis of Extracellular Matrix Proteins*

    PubMed Central

    Smith, Sarah J.; Kroon, Johan T. M.; Simon, William J.; Slabas, Antoni R.; Chivasa, Stephen

    2015-01-01

    Programmed cell death is essential for plant development and stress adaptation. A detailed understanding of the signal transduction pathways that regulate plant programmed cell death requires identification of the underpinning protein networks. Here, we have used a protagonist and antagonist of programmed cell death triggered by fumonisin B1 as probes to identify key cell death regulatory proteins in Arabidopsis. Our hypothesis was that changes in the abundance of cell death-regulatory proteins induced by the protagonist should be blocked or attenuated by concurrent treatment with the antagonist. We focused on proteins present in the mobile phase of the extracellular matrix on the basis that they are important for cell–cell communications during growth and stress-adaptive responses. Salicylic acid, a plant hormone that promotes programmed cell death, and exogenous ATP, which can block fumonisin B1-induced cell death, were used to treat Arabidopsis cell suspension cultures prior to isobaric-tagged relative and absolute quantitation analysis of secreted proteins. A total of 33 proteins, whose response to salicylic acid was suppressed by ATP, were identified as putative cell death-regulatory proteins. Among these was CYCLASE1, which was selected for further analysis using reverse genetics. Plants in which CYCLASE1 gene expression was knocked out by insertion of a transfer-DNA sequence manifested dramatically increased cell death when exposed to fumonisin B1 or a bacterial pathogen that triggers the defensive hypersensitive cell death. Although pathogen inoculation altered CYCLASE1 gene expression, multiplication of bacterial pathogens was indistinguishable between wild type and CYCLASE1 knockout plants. However, remarkably severe chlorosis symptoms developed on gene knockout plants in response to inoculation with either a virulent bacterial pathogen or a disabled mutant that is incapable of causing disease in wild type plants. These results show that CYCLASE1, which

  15. Non-invasive quantification of brain glycogen absolute concentration

    PubMed Central

    van Heeswijk, Ruud B.; Xin, Lijing; Laus, Sabrina; Frenkel, Hanne; Lei, Hongxia; Gruetter, Rolf

    2009-01-01

    The only currently available method to measure brain glycogen in vivo is 13C NMR spectroscopy. Incorporation of 13C-labeled glucose (Glc) is necessary to allow glycogen measurement, but might be affected by turnover changes. Our aim was to measure glycogen absolute concentration in the rat brain by eliminating label turnover as variable. The approach is based on establishing an increased, constant 13C isotopic enrichment (IE). 13C-Glc infusion is then performed at the IE of brain glycogen. As glycogen IE cannot be assessed in vivo, we validated that it can be inferred from that of N-acetyl-aspartate IE in vivo: After [1-13C]-Glc ingestion, glycogen IE was 2.2 ± 0.1 fold that of N-acetyl-aspartate (n = 11, R2 = 0.77). After subsequent Glc infusion, glycogen IE equaled brain Glc IE (n = 6, paired t-test, p = 0.37), implying isotopic steady-state achievement and complete turnover of the glycogen molecule. Glycogen concentration measured in vivo by 13C NMR (mean ± SD: 5.8 ± 0.7 μmol/g) was in excellent agreement with that in vitro (6.4 ± 0.6 μmol/g, n = 5). When insulin was administered, the stability of glycogen concentration was analogous to previous biochemical measurements implying that glycogen turnover is activated by insulin. We conclude that the entire glycogen molecule is turned over and that insulin activates glycogen turnover. PMID:19013831

  16. Sulfur-based absolute quantification of proteins using isotope dilution inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Lee, Hyun-Seok; Heun Kim, Sook; Jeong, Ji-Seon; Lee, Yong-Moon; Yim, Yong-Hyeon

    2015-10-01

    An element-based reductive approach provides an effective means of realizing International System of Units (SI) traceability for high-purity biological standards. Here, we develop an absolute protein quantification method using double isotope dilution (ID) inductively coupled plasma mass spectrometry (ICP-MS) combined with microwave-assisted acid digestion for the first time. We validated the method and applied it to certify the candidate protein certified reference material (CRM) of human growth hormone (hGH). The concentration of hGH was determined by analysing the total amount of sulfur in hGH. Next, the size-exclusion chromatography method was used with ICP-MS to characterize and quantify sulfur-containing impurities. By subtracting the contribution of sulfur-containing impurities from the total sulfur content in the hGH CRM, we obtained a SI-traceable certification value. The quantification result obtained with the present method based on sulfur analysis was in excellent agreement with the result determined via a well-established protein quantification method based on amino acid analysis using conventional acid hydrolysis combined with an ID liquid chromatography-tandem mass spectrometry. The element-based protein quantification method developed here can be generally used for SI-traceable absolute quantification of proteins, especially pure-protein standards.

  17. Relative and absolute quantification of postsynaptic density proteome isolated from rat forebrain and cerebellum.

    PubMed

    Cheng, Dongmei; Hoogenraad, Casper C; Rush, John; Ramm, Elizabeth; Schlager, Max A; Duong, Duc M; Xu, Ping; Wijayawardana, Sameera R; Hanfelt, John; Nakagawa, Terunaga; Sheng, Morgan; Peng, Junmin

    2006-06-01

    The postsynaptic density (PSD) of central excitatory synapses is essential for postsynaptic signaling, and its components are heterogeneous among different neuronal subtypes and brain structures. Here we report large scale relative and absolute quantification of proteins in PSDs purified from adult rat forebrain and cerebellum. PSD protein profiles were determined using the cleavable ICAT strategy and LC-MS/MS. A total of 296 proteins were identified and quantified with 43 proteins exhibiting statistically significant abundance change between forebrain and cerebellum, indicating marked molecular heterogeneity of PSDs between different brain regions. Moreover we utilized absolute quantification strategy, in which synthetic isotope-labeled peptides were used as internal standards, to measure the molar abundance of 32 key PSD proteins in forebrain and cerebellum. These data confirm the abundance of calcium/calmodulin-dependent protein kinase II and PSD-95 and reveal unexpected stoichiometric ratios between glutamate receptors, scaffold proteins, and signaling molecules in the PSD. Our data also demonstrate that the absolute quantification method is well suited for targeted quantitative proteomic analysis. Overall this study delineates a crucial molecular difference between forebrain and cerebellar PSDs and provides a quantitative framework for measuring the molecular stoichiometry of the PSD. PMID:16507876

  18. Metal Stable Isotope Tagging: Renaissance of Radioimmunoassay for Multiplex and Absolute Quantification of Biomolecules.

    PubMed

    Liu, Rui; Zhang, Shixi; Wei, Chao; Xing, Zhi; Zhang, Sichun; Zhang, Xinrong

    2016-05-17

    The unambiguous quantification of biomolecules is of great significance in fundamental biological research as well as practical clinical diagnosis. Due to the lack of a detectable moiety, the direct and highly sensitive quantification of biomolecules is often a "mission impossible". Consequently, tagging strategies to introduce detectable moieties for labeling target biomolecules were invented, which had a long and significant impact on studies of biomolecules in the past decades. For instance, immunoassays have been developed with radioisotope tagging by Yalow and Berson in the late 1950s. The later languishment of this technology can be almost exclusively ascribed to the use of radioactive isotopes, which led to the development of nonradioactive tagging strategy-based assays such as enzyme-linked immunosorbent assay, fluorescent immunoassay, and chemiluminescent and electrochemiluminescent immunoassay. Despite great success, these strategies suffered from drawbacks such as limited spectral window capacity for multiplex detection and inability to provide absolute quantification of biomolecules. After recalling the sequences of tagging strategies, an apparent question is why not use stable isotopes from the start? A reasonable explanation is the lack of reliable means for accurate and precise quantification of stable isotopes at that time. The situation has changed greatly at present, since several atomic mass spectrometric measures for metal stable isotopes have been developed. Among the newly developed techniques, inductively coupled plasma mass spectrometry is an ideal technique to determine metal stable isotope-tagged biomolecules, for its high sensitivity, wide dynamic linear range, and more importantly multiplex and absolute quantification ability. Since the first published report by our group, metal stable isotope tagging has become a revolutionary technique and gained great success in biomolecule quantification. An exciting research highlight in this area

  19. Mass spectrometry based proteomics for absolute quantification of proteins from tumor cells

    PubMed Central

    Wang, Hong; Hanash, Sam

    2015-01-01

    In-depth quantitative profiling of the proteome and sub-proteomes of tumor cells has relevance to tumor classification, the development of novel therapeutics, and of prognostic and predictive markers and to disease monitoring. In particular the tumor cell surface represents a highly relevant compartment for the development of targeted therapeutics and immunotherapy. We have developed a proteomic platform to profile tumor cells that encompasses enrichment of surface membrane proteins, intact protein fractionation and label-free mass spectrometry based absolute quantification. Here we describe the methodology for capture, identification and quantification of cell surface proteins using biotinylation for labeling of the cell surface, avidin for capture of biotinylated proteins and ion mobility mass spectrometry for protein identification and quantification. PMID:25794949

  20. Identification and absolute quantification of enzymes in laundry detergents by liquid chromatography tandem mass spectrometry.

    PubMed

    Gaubert, Alexandra; Jeudy, Jérémy; Rougemont, Blandine; Bordes, Claire; Lemoine, Jérôme; Casabianca, Hervé; Salvador, Arnaud

    2016-07-01

    In a stricter legislative context, greener detergent formulations are developed. In this way, synthetic surfactants are frequently replaced by bio-sourced surfactants and/or used at lower concentrations in combination with enzymes. In this paper, a LC-MS/MS method was developed for the identification and quantification of enzymes in laundry detergents. Prior to the LC-MS/MS analyses, a specific sample preparation protocol was developed due to matrix complexity (high surfactant percentages). Then for each enzyme family mainly used in detergent formulations (protease, amylase, cellulase, and lipase), specific peptides were identified on a high resolution platform. A LC-MS/MS method was then developed in selected reaction monitoring (SRM) MS mode for the light and corresponding heavy peptides. The method was linear on the peptide concentration ranges 25-1000 ng/mL for protease, lipase, and cellulase; 50-1000 ng/mL for amylase; and 5-1000 ng/mL for cellulase in both water and laundry detergent matrices. The application of the developed analytical strategy to real commercial laundry detergents enabled enzyme identification and absolute quantification. For the first time, identification and absolute quantification of enzymes in laundry detergent was realized by LC-MS/MS in a single run. Graphical Abstract Identification and quantification of enzymes by LC-MS/MS. PMID:27098933

  1. Mass spectrometry-based absolute quantification reveals rhythmic variation of mouse circadian clock proteins.

    PubMed

    Narumi, Ryohei; Shimizu, Yoshihiro; Ukai-Tadenuma, Maki; Ode, Koji L; Kanda, Genki N; Shinohara, Yuta; Sato, Aya; Matsumoto, Katsuhiko; Ueda, Hiroki R

    2016-06-14

    Absolute values of protein expression levels in cells are crucial information for understanding cellular biological systems. Precise quantification of proteins can be achieved by liquid chromatography (LC)-mass spectrometry (MS) analysis of enzymatic digests of proteins in the presence of isotope-labeled internal standards. Thus, development of a simple and easy way for the preparation of internal standards is advantageous for the analyses of multiple target proteins, which will allow systems-level studies. Here we describe a method, termed MS-based Quantification By isotope-labeled Cell-free products (MS-QBiC), which provides the simple and high-throughput preparation of internal standards by using a reconstituted cell-free protein synthesis system, and thereby facilitates both multiplexed and sensitive quantification of absolute amounts of target proteins. This method was applied to a systems-level dynamic analysis of mammalian circadian clock proteins, which consist of transcription factors and protein kinases that govern central and peripheral circadian clocks in mammals. Sixteen proteins from 20 selected circadian clock proteins were successfully quantified from mouse liver over a 24-h time series, and 14 proteins had circadian variations. Quantified values were applied to detect internal body time using a previously developed molecular timetable method. The analyses showed that single time-point data from wild-type mice can predict the endogenous state of the circadian clock, whereas data from clock mutant mice are not applicable because of the disappearance of circadian variation. PMID:27247408

  2. Absolute quantification of Bovine Viral Diarrhea Virus (BVDV) RNA by the digital PCR technique

    NASA Astrophysics Data System (ADS)

    Flatschart, R. B.; Almeida, D. O.; Heinemann, M. B.; Medeiros, M. N.; Granjeiro, J. M.; Folgueras-Flatschart, A. V.

    2015-01-01

    The quality control of cell lines used in research and industry is critical to ensure confidence in experimental results and to guarantee the safety of biopharmaceuticals to consumers. The BVDV is a common adventitious agent in many cell lines. We preliminarly evaluate the use of Digital Droplet PCR (ddPCR) for the detection and enumeration of genome copies of BVDV in cell culture and on FBS. The application of a commercial Real-Time PCR kit with the ddPCR technique was successful on different matrices. The technique allowed the absolute quantification of the genome without the use of calibration standards, suggesting its promising application on the development of reference materials for quantification of nucleic acids.

  3. Evaluation of serum phosphopeptides as potential cancer biomarkers by mass spectrometric absolute quantification.

    PubMed

    Zhai, Guijin; Wu, Xiaoyan; Luo, Qun; Wu, Kui; Zhao, Yao; Liu, Jianan; Xiong, Shaoxiang; Feng, Yu-Qi; Yang, Liping; Wang, Fuyi

    2014-07-01

    Mass spectrometric quantification of phosphopeptides is a challenge due to the ion suppression effect of highly abundant non-phosphorylated peptides in complex samples such as serum. Several strategies for relative quantification of serum phosphopeptides based on MS have been developed, but the power of relative quantities was limited when making direct comparisons between two groups of samples or acting as a clinical examination index. Herein, we describe an MS absolute quantification strategy combined with Titania Coated Magnetic Hollow Mesoporous Silica Microspheres (TiO2/MHMSM) enrichment and stable isotopic acetyl labeling for phosphopeptides in human serum. Four endogenous serum phosphopeptides generated by degradation of fibrinogen were identified by LC-ESI-MS/MS following TiO2/MHMSM enrichment. The ESI-MS signal intensity ratios of the four phosphopeptide standards labeled with N-acetoxy-H3-succinimide (H3-NAS) and N-acetoxy-D3-succinimide (D3-NAS), following TiO2/MHMSM capture are linearly correlated with the molar ratios of the "light" to "heavy" phosphopeptides over the range of 0.1-4 with an r(2) of up to 0.998 and a slope of close to 1. The recovery of the four phosphopeptides spiked at low, medium and high levels in human sera were 98.4-111.9% with RSDs ranging 2.0-10.1%. The absolute quantification of the phosphopeptides in serum samples of 20 healthy persons and 20 gastric cancer patients by the developed method demonstrated that 3 out of the 4 phosphopeptides showed remarkable variation in serum level between healthy and cancer groups, and the phosphopeptide DpSGEGDFLAEGGGVR is significantly down-regulated in the serum of patients, being a potential biomarker for gastric cancer diagnosis. PMID:24840465

  4. Droplet Digital Enzyme-Linked Oligonucleotide Hybridization Assay for Absolute RNA Quantification.

    PubMed

    Guan, Weihua; Chen, Liben; Rane, Tushar D; Wang, Tza-Huei

    2015-01-01

    We present a continuous-flow droplet-based digital Enzyme-Linked Oligonucleotide Hybridization Assay (droplet digital ELOHA) for sensitive detection and absolute quantification of RNA molecules. Droplet digital ELOHA incorporates direct hybridization and single enzyme reaction via the formation of single probe-RNA-probe (enzyme) complex on magnetic beads. It enables RNA detection without reverse transcription and PCR amplification processes. The magnetic beads are subsequently encapsulated into a large number of picoliter-sized droplets with enzyme substrates in a continuous-flow device. This device is capable of generating droplets at high-throughput. It also integrates in-line enzymatic incubation and detection of fluorescent products. Our droplet digital ELOHA is able to accurately quantify (differentiate 40% difference) as few as ~600 RNA molecules in a 1 mL sample (equivalent to 1 aM or lower) without molecular replication. The absolute quantification ability of droplet digital ELOHA is demonstrated with the analysis of clinical Neisseria gonorrhoeae 16S rRNA to show its potential value in real complex samples. PMID:26333806

  5. Droplet Digital Enzyme-Linked Oligonucleotide Hybridization Assay for Absolute RNA Quantification

    NASA Astrophysics Data System (ADS)

    Guan, Weihua; Chen, Liben; Rane, Tushar D.; Wang, Tza-Huei

    2015-09-01

    We present a continuous-flow droplet-based digital Enzyme-Linked Oligonucleotide Hybridization Assay (droplet digital ELOHA) for sensitive detection and absolute quantification of RNA molecules. Droplet digital ELOHA incorporates direct hybridization and single enzyme reaction via the formation of single probe-RNA-probe (enzyme) complex on magnetic beads. It enables RNA detection without reverse transcription and PCR amplification processes. The magnetic beads are subsequently encapsulated into a large number of picoliter-sized droplets with enzyme substrates in a continuous-flow device. This device is capable of generating droplets at high-throughput. It also integrates in-line enzymatic incubation and detection of fluorescent products. Our droplet digital ELOHA is able to accurately quantify (differentiate 40% difference) as few as ~600 RNA molecules in a 1 mL sample (equivalent to 1 aM or lower) without molecular replication. The absolute quantification ability of droplet digital ELOHA is demonstrated with the analysis of clinical Neisseria gonorrhoeae 16S rRNA to show its potential value in real complex samples.

  6. Droplet Digital Enzyme-Linked Oligonucleotide Hybridization Assay for Absolute RNA Quantification

    PubMed Central

    Guan, Weihua; Chen, Liben; Rane, Tushar D.; Wang, Tza-Huei

    2015-01-01

    We present a continuous-flow droplet-based digital Enzyme-Linked Oligonucleotide Hybridization Assay (droplet digital ELOHA) for sensitive detection and absolute quantification of RNA molecules. Droplet digital ELOHA incorporates direct hybridization and single enzyme reaction via the formation of single probe-RNA-probe (enzyme) complex on magnetic beads. It enables RNA detection without reverse transcription and PCR amplification processes. The magnetic beads are subsequently encapsulated into a large number of picoliter-sized droplets with enzyme substrates in a continuous-flow device. This device is capable of generating droplets at high-throughput. It also integrates in-line enzymatic incubation and detection of fluorescent products. Our droplet digital ELOHA is able to accurately quantify (differentiate 40% difference) as few as ~600 RNA molecules in a 1 mL sample (equivalent to 1 aM or lower) without molecular replication. The absolute quantification ability of droplet digital ELOHA is demonstrated with the analysis of clinical Neisseria gonorrhoeae 16S rRNA to show its potential value in real complex samples. PMID:26333806

  7. Recombinant isotope labeled and selenium quantified proteins for absolute protein quantification.

    PubMed

    Zinn, Nico; Winter, Dominic; Lehmann, Wolf D

    2010-03-15

    A novel, widely applicable method for the production of absolutely quantified proteins is described, which can be used as internal standards for quantitative proteomic studies based on mass spectrometry. These standards are recombinant proteins containing an isotope label and selenomethionine. For recombinant protein expression, assembly of expression vectors fitted to cell-free protein synthesis was conducted using the gateway technology which offers fast access to a variety of genes via open reading frame libraries and an easy shuttling of genes between vectors. The proteins are generated by cell-free expression in a medium in which methionine is exchanged against selenomethionine and at least one amino acid is exchanged by a highly stable isotope labeled analogue. After protein synthesis and purification, selenium is used for absolute quantification by element mass spectrometry, while the heavy amino acids in the protein serve as reference in subsequent analyses by LC-ESI-MS or MALDI-MS. Accordingly, these standards are denominated RISQ (for recombinant isotope labeled and selenium quantified) proteins. In this study, a protein was generated containing Lys+6 ([(13)C(6)]-lysine) and Arg+10 ([(13)C(6),(15)N(4)]-arginine) so that each standard tryptic peptide contains a labeled amino acid. Apolipoprotein A1 was synthesized as RISQ protein, and its use as internal standard led to quantification of a reference material within the specified value. Owing to their cell-free expression, RISQ proteins do not contain posttranslational modifications. Thus, correct quantitative data by ESI- or MALDI-MS are restricted to quantifications based on peptides derived from unmodified regions of the analyte protein. Therefore, besides serving as internal standards, RISQ proteins stand out as new tools for quantitative analysis of covalent protein modifications. PMID:20163147

  8. Picoliter Well Array Chip-Based Digital Recombinase Polymerase Amplification for Absolute Quantification of Nucleic Acids

    PubMed Central

    Li, Zhao; Liu, Yong; Wei, Qingquan; Liu, Yuanjie; Liu, Wenwen; Zhang, Xuelian; Yu, Yude

    2016-01-01

    Absolute, precise quantification methods expand the scope of nucleic acids research and have many practical applications. Digital polymerase chain reaction (dPCR) is a powerful method for nucleic acid detection and absolute quantification. However, it requires thermal cycling and accurate temperature control, which are difficult in resource-limited conditions. Accordingly, isothermal methods, such as recombinase polymerase amplification (RPA), are more attractive. We developed a picoliter well array (PWA) chip with 27,000 consistently sized picoliter reactions (314 pL) for isothermal DNA quantification using digital RPA (dRPA) at 39°C. Sample loading using a scraping liquid blade was simple, fast, and required small reagent volumes (i.e., <20 μL). Passivating the chip surface using a methoxy-PEG-silane agent effectively eliminated cross-contamination during dRPA. Our creative optical design enabled wide-field fluorescence imaging in situ and both end-point and real-time analyses of picoliter wells in a 6-cm2 area. It was not necessary to use scan shooting and stitch serial small images together. Using this method, we quantified serial dilutions of a Listeria monocytogenes gDNA stock solution from 9 × 10-1 to 4 × 10-3 copies per well with an average error of less than 11% (N = 15). Overall dRPA-on-chip processing required less than 30 min, which was a 4-fold decrease compared to dPCR, requiring approximately 2 h. dRPA on the PWA chip provides a simple and highly sensitive method to quantify nucleic acids without thermal cycling or precise micropump/microvalve control. It has applications in fast field analysis and critical clinical diagnostics under resource-limited settings. PMID:27074005

  9. Within-day repeatability for absolute quantification of Lawsonia intracellularis bacteria in feces from growing pigs.

    PubMed

    Pedersen, Ken Steen; Pedersen, Klaus H; Hjulsager, Charlotte; Larsen, Lars Erik; Ståhl, Marie; Stege, Helle; Angen, Øystein; Nielsen, Jens Peter

    2012-09-01

    Absolute quantification of Lawsonia intracellularis by real-time polymerase chain reaction (PCR) is now possible on a routine basis. Poor repeatability of quantification can result in disease status misclassification of individual pigs when a single fecal sample is obtained. The objective of the current study was to investigate overall variation within a day for fecal numbers of L. intracellularis bacteria determined by real-time PCR in growing pigs. From each of 30 pigs with an infection of L. intracellularis, 5 fecal samples were collected within 1 day. A total of 150 fecal samples were obtained and subjected to quantitative PCR (qPCR) testing. Mean fecal dry matter content was 14.3% (standard deviation = 4.5%). Two pigs (6.7%) alternated between being L. intracellularis qPCR positive and negative. For 28 pigs, the excreting levels of L. intracellularis were within the dynamic range of the qPCR assay at all sampling points. For these 28 pigs, the mean excretion level of L. intracellularis was 6.1 log(10) bacteria/g feces (standard deviation = 1.2 log(10) bacteria/g feces). The maximum observed difference between 2 fecal samples from the same pig was 1.1 log(10) bacteria/g feces. The average standard deviation for individual pigs was 0.27 log(10) bacteria/g feces. The average coefficient of variation within pigs was 0.04, ranging from 0.006 to 0.08. The results imply that absolute quantification of L. intracellularis by qPCR has acceptable repeatability within 1 day. However, a population-specific proportion of pigs alternating between positive and negative test results must be expected. PMID:22786973

  10. Picoliter Well Array Chip-Based Digital Recombinase Polymerase Amplification for Absolute Quantification of Nucleic Acids.

    PubMed

    Li, Zhao; Liu, Yong; Wei, Qingquan; Liu, Yuanjie; Liu, Wenwen; Zhang, Xuelian; Yu, Yude

    2016-01-01

    Absolute, precise quantification methods expand the scope of nucleic acids research and have many practical applications. Digital polymerase chain reaction (dPCR) is a powerful method for nucleic acid detection and absolute quantification. However, it requires thermal cycling and accurate temperature control, which are difficult in resource-limited conditions. Accordingly, isothermal methods, such as recombinase polymerase amplification (RPA), are more attractive. We developed a picoliter well array (PWA) chip with 27,000 consistently sized picoliter reactions (314 pL) for isothermal DNA quantification using digital RPA (dRPA) at 39°C. Sample loading using a scraping liquid blade was simple, fast, and required small reagent volumes (i.e., <20 μL). Passivating the chip surface using a methoxy-PEG-silane agent effectively eliminated cross-contamination during dRPA. Our creative optical design enabled wide-field fluorescence imaging in situ and both end-point and real-time analyses of picoliter wells in a 6-cm(2) area. It was not necessary to use scan shooting and stitch serial small images together. Using this method, we quantified serial dilutions of a Listeria monocytogenes gDNA stock solution from 9 × 10(-1) to 4 × 10(-3) copies per well with an average error of less than 11% (N = 15). Overall dRPA-on-chip processing required less than 30 min, which was a 4-fold decrease compared to dPCR, requiring approximately 2 h. dRPA on the PWA chip provides a simple and highly sensitive method to quantify nucleic acids without thermal cycling or precise micropump/microvalve control. It has applications in fast field analysis and critical clinical diagnostics under resource-limited settings. PMID:27074005

  11. Direct and Absolute Quantification of over 1800 Yeast Proteins via Selected Reaction Monitoring.

    PubMed

    Lawless, Craig; Holman, Stephen W; Brownridge, Philip; Lanthaler, Karin; Harman, Victoria M; Watkins, Rachel; Hammond, Dean E; Miller, Rebecca L; Sims, Paul F G; Grant, Christopher M; Eyers, Claire E; Beynon, Robert J; Hubbard, Simon J

    2016-04-01

    Defining intracellular protein concentration is critical in molecular systems biology. Although strategies for determining relative protein changes are available, defining robust absolute values in copies per cell has proven significantly more challenging. Here we present a reference data set quantifying over 1800Saccharomyces cerevisiaeproteins by direct means using protein-specific stable-isotope labeled internal standards and selected reaction monitoring (SRM) mass spectrometry, far exceeding any previous study. This was achieved by careful design of over 100 QconCAT recombinant proteins as standards, defining 1167 proteins in terms of copies per cell and upper limits on a further 668, with robust CVs routinely less than 20%. The selected reaction monitoring-derived proteome is compared with existing quantitative data sets, highlighting the disparities between methodologies. Coupled with a quantification of the transcriptome by RNA-seq taken from the same cells, these data support revised estimates of several fundamental molecular parameters: a total protein count of ∼100 million molecules-per-cell, a median of ∼1000 proteins-per-transcript, and a linear model of protein translation explaining 70% of the variance in translation rate. This work contributes a "gold-standard" reference yeast proteome (including 532 values based on high quality, dual peptide quantification) that can be widely used in systems models and for other comparative studies. PMID:26750110

  12. Absolute quantification for benzoic acid in processed foods using quantitative proton nuclear magnetic resonance spectroscopy.

    PubMed

    Ohtsuki, Takashi; Sato, Kyoko; Sugimoto, Naoki; Akiyama, Hiroshi; Kawamura, Yoko

    2012-09-15

    The absolute quantification method of benzoic acid (BA) in processed foods using solvent extraction and quantitative proton nuclear magnetic resonance spectroscopy was developed and validated. BA levels were determined using proton signals (δ(H) 7.53 and 7.98) referenced to 2-dimethyl-2-silapentane-5-sulfonate-d(6) sodium salt (DSS-d(6)) after simple solvent extraction from processed foods. All recoveries from several kinds of processed foods, spiked at their specified maximum Japanese usage levels (0.6-2.5 g kg(-1)) and at 0.13 g kg(-1) and 0.063 g kg(-1), were greater than 80%. The limit of quantification was confirmed as 0.063 g kg(-1) in processed foods, which was sufficiently low for the purposes of monitoring BA. The accuracy of the proposed method is equivalent to the conventional method using steam-distillation extraction and high-performance liquid chromatography. The proposed method was both rapid and simple. Moreover, it provided International System of Units traceability without the need for authentic analyte standards. Therefore, the proposed method is a useful and practical tool for determining BA levels in processed foods. PMID:22967562

  13. Direct and Absolute Quantification of over 1800 Yeast Proteins via Selected Reaction Monitoring*

    PubMed Central

    Lawless, Craig; Holman, Stephen W.; Brownridge, Philip; Lanthaler, Karin; Harman, Victoria M.; Watkins, Rachel; Hammond, Dean E.; Miller, Rebecca L.; Sims, Paul F. G.; Grant, Christopher M.; Eyers, Claire E.; Beynon, Robert J.

    2016-01-01

    Defining intracellular protein concentration is critical in molecular systems biology. Although strategies for determining relative protein changes are available, defining robust absolute values in copies per cell has proven significantly more challenging. Here we present a reference data set quantifying over 1800 Saccharomyces cerevisiae proteins by direct means using protein-specific stable-isotope labeled internal standards and selected reaction monitoring (SRM) mass spectrometry, far exceeding any previous study. This was achieved by careful design of over 100 QconCAT recombinant proteins as standards, defining 1167 proteins in terms of copies per cell and upper limits on a further 668, with robust CVs routinely less than 20%. The selected reaction monitoring-derived proteome is compared with existing quantitative data sets, highlighting the disparities between methodologies. Coupled with a quantification of the transcriptome by RNA-seq taken from the same cells, these data support revised estimates of several fundamental molecular parameters: a total protein count of ∼100 million molecules-per-cell, a median of ∼1000 proteins-per-transcript, and a linear model of protein translation explaining 70% of the variance in translation rate. This work contributes a “gold-standard” reference yeast proteome (including 532 values based on high quality, dual peptide quantification) that can be widely used in systems models and for other comparative studies. PMID:26750110

  14. Refinements to the structure of graphite oxide: absolute quantification of functional groups via selective labelling

    NASA Astrophysics Data System (ADS)

    Eng, Alex Yong Sheng; Chua, Chun Kiang; Pumera, Martin

    2015-11-01

    Chemical modification and functionalization of inherent functional groups within graphite oxide (GO) are essential aspects of graphene-based nano-materials used in wide-ranging applications. Despite extensive research, there remains some discrepancy in its structure, with current knowledge limited primarily to spectroscopic data from XPS, NMR and vibrational spectroscopies. We report herein an innovative electrochemistry-based approach. Four electroactive labels are chosen to selectively functionalize groups in GO, and quantification of each group is achieved by voltammetric analysis. This allows for the first time quantification of absolute amounts of each group, with a further advantage of distinguishing various carbonyl species: namely ortho- and para-quinones from aliphatic ketones. Intrinsic variations in the compositions of permanganate versus chlorate-oxidized GOs were thus observed. Principal differences include permanganate-GO exhibiting substantial quinonyl content, in comparison to chlorate-GO with the vast majority of its carbonyls as isolated ketones. The results confirm that carboxylic groups are rare in actuality, and are in fact entirely absent from chlorate-GO. These observations refine and advance our understanding of GO structure by addressing certain disparities in past models resulting from employment of different oxidation routes, with the vital implication that GO production methods cannot be used interchangeably in the manufacture of graphene-based devices.Chemical modification and functionalization of inherent functional groups within graphite oxide (GO) are essential aspects of graphene-based nano-materials used in wide-ranging applications. Despite extensive research, there remains some discrepancy in its structure, with current knowledge limited primarily to spectroscopic data from XPS, NMR and vibrational spectroscopies. We report herein an innovative electrochemistry-based approach. Four electroactive labels are chosen to selectively

  15. Absolute quantification of carnosine in human calf muscle by proton magnetic resonance spectroscopy

    NASA Astrophysics Data System (ADS)

    Özdemir, Mahir S.; Reyngoudt, Harmen; DeDeene, Yves; Sazak, Hakan S.; Fieremans, Els; Delputte, Steven; D'Asseler, Yves; Derave, Wim; Lemahieu, Ignace; Achten, Eric

    2007-12-01

    Carnosine has been shown to be present in the skeletal muscle and in the brain of a variety of animals and humans. Despite the various physiological functions assigned to this metabolite, its exact role remains unclear. It has been suggested that carnosine plays a role in buffering in the intracellular physiological pHi range in skeletal muscle as a result of accepting hydrogen ions released in the development of fatigue during intensive exercise. It is thus postulated that the concentration of carnosine is an indicator for the extent of the buffering capacity. However, the determination of the concentration of this metabolite has only been performed by means of muscle biopsy, which is an invasive procedure. In this paper, we utilized proton magnetic resonance spectroscopy (1H MRS) in order to perform absolute quantification of carnosine in vivo non-invasively. The method was verified by phantom experiments and in vivo measurements in the calf muscles of athletes and untrained volunteers. The measured mean concentrations in the soleus and the gastrocnemius muscles were found to be 2.81 ± 0.57/4.8 ± 1.59 mM (mean ± SD) for athletes and 2.58 ± 0.65/3.3 ± 0.32 mM for untrained volunteers, respectively. These values are in agreement with previously reported biopsy-based results. Our results suggest that 1H MRS can provide an alternative method for non-invasively determining carnosine concentration in human calf muscle in vivo.

  16. Counting numbers of synaptic proteins: absolute quantification and single molecule imaging techniques.

    PubMed

    Patrizio, Angela; Specht, Christian G

    2016-10-01

    The ability to count molecules is essential to elucidating cellular mechanisms, as these often depend on the absolute numbers and concentrations of molecules within specific compartments. Such is the case at chemical synapses, where the transmission of information from presynaptic to postsynaptic terminals requires complex interactions between small sets of molecules. Be it the subunit stoichiometry specifying neurotransmitter receptor properties, the copy numbers of scaffold proteins setting the limit of receptor accumulation at synapses, or protein packing densities shaping the molecular organization and plasticity of the postsynaptic density, all of these depend on exact quantities of components. A variety of proteomic, electrophysiological, and quantitative imaging techniques have yielded insights into the molecular composition of synaptic complexes. In this review, we compare the different quantitative approaches and consider the potential of single molecule imaging techniques for the quantification of synaptic components. We also discuss specific neurobiological data to contextualize the obtained numbers and to explain how they aid our understanding of synaptic structure and function. PMID:27335891

  17. Selective and absolute quantification of endogenous hypochlorous acid with quantum-dot conjugated microbeads.

    PubMed

    Yang, Yi-Cyun; Lu, Hsueh-Han; Wang, Wei-Ti; Liau, Ian

    2011-11-01

    Endogenous hypochlorous acid (HOCl) secreted by leukocytes plays a critical role in both the immune defense of mammalians and the pathogenesis of various diseases intimately related to inflammation. We report the first selective and absolute quantification of endogenous HOCl produced by leukocytes in vitro and in vivo with a novel quantum dot-based sensor. An activated human neutrophil secreted 6.5 ± 0.9 × 10(8) HOCl molecules into its phagosome, and kinetic measurement for the secretions showed that the extracellular generation of HOCl was temporally retarded, but the quantity eventually attained a level comparable with its intraphagosomal counterpart with a delay of about 1.5 h. The quantity of HOCl secreted from the hepatic leukocytes of rats with or without stimulation of lipopolysaccharide was also determined. These results indicate a possibility to extend our approach to not only clinical settings for quantitative assessment of the bactericidal capability of isolated leukocytes of patients but also fundamental biomedical research that requires critical evaluation of the inflammatory response of animals. PMID:21950322

  18. Centrifugal step emulsification applied for absolute quantification of nucleic acids by digital droplet RPA.

    PubMed

    Schuler, Friedrich; Schwemmer, Frank; Trotter, Martin; Wadle, Simon; Zengerle, Roland; von Stetten, Felix; Paust, Nils

    2015-07-01

    Aqueous microdroplets provide miniaturized reaction compartments for numerous chemical, biochemical or pharmaceutical applications. We introduce centrifugal step emulsification for the fast and easy production of monodisperse droplets. Homogenous droplets with pre-selectable diameters in a range from 120 μm to 170 μm were generated with coefficients of variation of 2-4% and zero run-in time or dead volume. The droplet diameter depends on the nozzle geometry (depth, width, and step size) and interfacial tensions only. Droplet size is demonstrated to be independent of the dispersed phase flow rate between 0.01 and 1 μl s(-1), proving the robustness of the centrifugal approach. Centrifugal step emulsification can easily be combined with existing centrifugal microfluidic unit operations, is compatible to scalable manufacturing technologies such as thermoforming or injection moulding and enables fast emulsification (>500 droplets per second and nozzle) with minimal handling effort (2-3 pipetting steps). The centrifugal microfluidic droplet generation was used to perform the first digital droplet recombinase polymerase amplification (ddRPA). It was used for absolute quantification of Listeria monocytogenes DNA concentration standards with a total analysis time below 30 min. Compared to digital droplet polymerase chain reaction (ddPCR), with processing times of about 2 hours, the overall processing time of digital analysis was reduced by more than a factor of 4. PMID:25947077

  19. A strategy for absolute proteome quantification with mass spectrometry by hierarchical use of peptide-concatenated standards.

    PubMed

    Kito, Keiji; Okada, Mitsuhiro; Ishibashi, Yuko; Okada, Satoshi; Ito, Takashi

    2016-05-01

    The accurate and precise absolute abundance of proteins can be determined using mass spectrometry by spiking the sample with stable isotope-labeled standards. In this study, we developed a strategy of hierarchical use of peptide-concatenated standards (PCSs) to quantify more proteins over a wider dynamic range. Multiple primary PCSs were used for quantification of many target proteins. Unique "ID-tag peptides" were introduced into individual primary PCSs, allowing us to monitor the exact amounts of individual PCSs using a "secondary PCS" in which all "ID-tag peptides" were concatenated. Furthermore, we varied the copy number of the "ID-tag peptide" in each PCS according to a range of expression levels of target proteins. This strategy accomplished absolute quantification over a wider range than that of the measured ratios. The quantified abundance of budding yeast proteins showed a high reproducibility for replicate analyses and similar copy numbers per cell for ribosomal proteins, demonstrating the accuracy and precision of this strategy. A comparison with the absolute abundance of transcripts clearly indicated different post-transcriptional regulation of expression for specific functional groups. Thus, the approach presented here is a faithful method for the absolute quantification of proteomes and provides insights into biological mechanisms, including the regulation of expressed protein abundance. PMID:27030420

  20. Validation of RPS13 as a reference gene for absolute quantification of SIV RNA in tissue of rhesus macaques.

    PubMed

    Robichaux, Spencer; Lacour, Nedra; Bagby, Gregory J; Amedee, Angela M

    2016-10-01

    Persistent HIV reservoirs and the absolute quantification of viral RNA copies in tissues have become a prominent focus of multiple areas ofHIV/SIV research. Absolute quantification of viral RNA via reverse transcription, quantitative PCR (RT-qPCR) necessitates the use of an appropriate RNA reference gene whose expression is unaffected by both experimental and confounding conditions. In this study, we demonstrate the utility of ribosomal protein S13 mRNA (RPS13) as a stable, medium abundance reference gene for RT-qPCR normalization of HIV/SIV RNA copy number. We developed a RPS13 RNA standard assay utilizing an in vitro RNA transcript for normalization of absolute SIV RNA quantities in tissues reservoirs. The RT-qPCR assay showed a high degree of repeatability and reproducibility across RNA levels appropriate for absolute SIV quantification. In assessing the utility of RPS13 as a reference gene, limited variation in the absolute, inter-tissue quantities of RPS13 mRNA was observed within multiple tissue samples obtained from rhesus macaques (average CV=2.86%). We demonstrate rhesus macaque RPS13 mRNA expression is not affected by alcohol administration, SIV infection, or antiviral therapy (PMPA/FTC). Additionally, assay functionality was validated for normalization of SIV copy number using cellular RNA prepared from samples of variable RNA integrity. RPS13 is a suitable reference gene for normalization of absolute SIV RNA quantities in tissues and is most appropriate for intra-tissue or similar tissue type comparisons of SIV copy number. PMID:27510462

  1. Harnessing immunomagnetic separation and quantum dot-based quantification capacities for the enumeration of absolute levels of biomarker

    NASA Astrophysics Data System (ADS)

    Park, Hoyoung; Hwang, Mintai P.; Lee, Jong-Wook; Choi, Jonghoon; Hyi Lee, Kwan

    2013-07-01

    The field of biomarker quantification has experienced a growth parallel to the discovery of new materials. In this paper, we propose an innovative system for the separation and quantification of biomarkers using a simple magnetic bead (MB)-quantum dot (QD) sandwich assay. The basis of the system lies in the interaction between histidine residues on protein G and Ni ions on QDs, and the use of imidazole to selectively detach QDs bound to target biomarkers, in effect enumerating the absolute number of biomarker units. We used C-reactive protein (CRP) as a proof-of-concept and demonstrated a detection sensitivity of 82.5 fmoles in 50 μl of sample volume, a commonly used analytical volume (e.g. ELISA). Although CRP was used as a model to conduct this study, the sensitivity and simplicity of this detachable system make it a viable approach in the quantification of other target analytes.

  2. Toxicoproteomics in Aquatic Toxicology: iTRAQ Reveals Insight into Proteins Affected by 17alpha-ethinylestradiol, Dieldrin, and 17â-trenbolone

    EPA Science Inventory

    Toxicoproteomics is an emerging discipline in toxicology for characterizing chemical modes of action at the molecular level. We have successfully utilized a quantitative proteomics method termed isobaric tagging for relative and absolute quantitation (iTRAQ) to measure protein re...

  3. Peptide Biosynthesis with Stable Isotope Labeling from a Cell-free Expression System for Targeted Proteomics with Absolute Quantification.

    PubMed

    Xian, Feng; Zi, Jin; Wang, Quanhui; Lou, Xiaomin; Sun, Haidan; Lin, Liang; Hou, Guixue; Rao, Weiqiao; Yin, Changcheng; Wu, Lin; Li, Shuwei; Liu, Siqi

    2016-08-01

    Because of its specificity and sensitivity, targeted proteomics using mass spectrometry for multiple reaction monitoring is a powerful tool to detect and quantify pre-selected peptides from a complex background and facilitates the absolute quantification of peptides using isotope-labeled forms as internal standards. How to generate isotope-labeled peptides remains an urgent challenge for accurately quantitative targeted proteomics on a large scale. Herein, we propose that isotope-labeled peptides fused with a quantitative tag could be synthesized through an expression system in vitro, and the homemade peptides could be enriched by magnetic beads with tag-affinity and globally quantified based on the corresponding multiple reaction monitoring signals provided by the fused tag. An Escherichia coli cell-free protein expression system, protein synthesis using recombinant elements, was adopted for the synthesis of isotope-labeled peptides fused with Strep-tag. Through a series of optimizations, we enabled efficient expression of the labeled peptides such that, after Strep-Tactin affinity enrichment, the peptide yield was acceptable in scale for quantification, and the peptides could be completely digested by trypsin to release the Strep-tag for quantification. Moreover, these recombinant peptides could be employed in the same way as synthetic peptides for multiple reaction monitoring applications and are likely more economical and useful in a laboratory for the scale of targeted proteomics. As an application, we synthesized four isotope-labeled glutathione S-transferase (GST) peptides and added them to mouse sera pre-treated with GST affinity resin as internal standards. A quantitative assay of the synthesized GST peptides confirmed the absolute GST quantification in mouse sera to be measurable and reproducible. PMID:27234506

  4. Comparative iTRAQ proteome and transcriptome analyses of sweet orange infected by "Candidatus Liberibacter asiaticus".

    PubMed

    Fan, Jing; Chen, Chunxian; Yu, Qibin; Brlansky, Ronald H; Li, Zheng-Guo; Gmitter, Frederick G

    2011-11-01

    Citrus Huanglongbing (HLB) has been threatening citrus production worldwide. In this study, a comparative proteomic approach was applied to understand the pathogenic process of HLB in affected sweet orange leaves. Using the isobaric tags for relative and absolute quantification (iTRAQ) technique, we identified 686 unique proteins in the mature leaves of both mock-inoculated and diseased 'Madam Vinous' sweet orange plants. Of the identified proteins, 20 and 10 were differentially expressed in leaves with and without symptoms of HLB (fold change > 2.5), respectively, compared with mock-inoculated controls. Most significantly, upregulated proteins were involved in stress/defense response, such as four miraculin-like proteins, chitinase, Cu/Zn superoxide dismutase and lipoxygenase. Microarray analysis also showed that stress-related genes were significantly upregulated at the transcriptional level. For example, remarkable upregulations of miraculin-like proteins and Cu/Zn superoxide dismutase transcripts were observed. Moreover, the transcriptional patterns of miraculin-like protein 1 and Cu/Zn superoxide dismutase were examined at different stages of HLB disease development. Combined with the transcriptomic data, the proteomic data can provide an enhanced understanding of citrus stress/defense responses to HLB. PMID:21838733

  5. Absolute Quantification of the Host-To-Parasite DNA Ratio in Theileria parva-Infected Lymphocyte Cell Lines

    PubMed Central

    Gotia, Hanzel T.; Munro, James B.; Knowles, Donald P.; Daubenberger, Claudia A.; Bishop, Richard P.; Silva, Joana C.

    2016-01-01

    Theileria parva is a tick-transmitted intracellular apicomplexan pathogen of cattle in sub-Saharan Africa that causes East Coast fever (ECF). ECF is an acute fatal disease that kills over one million cattle annually, imposing a tremendous burden on African small-holder cattle farmers. The pathology and level of T. parva infections in its wildlife host, African buffalo (Syncerus caffer), and in cattle are distinct. We have developed an absolute quantification method based on quantitative PCR (qPCR) in which recombinant plasmids containing single copy genes specific to the parasite (apical membrane antigen 1 gene, ama1) or the host (hypoxanthine phosphoribosyltransferase 1, hprt1) are used as the quantification reference standards. Our study shows that T. parva and bovine cells are present in similar numbers in T. parva-infected lymphocyte cell lines and that consequently, due to its much smaller genome size, T. parva DNA comprises between 0.9% and 3% of the total DNA samples extracted from these lines. This absolute quantification assay of parasite and host genome copy number in a sample provides a simple and reliable method of assessing T. parva load in infected bovine lymphocytes, and is accurate over a wide range of host-to-parasite DNA ratios. Knowledge of the proportion of target DNA in a sample, as enabled by this method, is essential for efficient high-throughput genome sequencing applications for a variety of intracellular pathogens. This assay will also be very useful in future studies of interactions of distinct host-T. parva stocks and to fully characterize the dynamics of ECF infection in the field. PMID:26930209

  6. Absolute Quantification of the Host-To-Parasite DNA Ratio in Theileria parva-Infected Lymphocyte Cell Lines.

    PubMed

    Gotia, Hanzel T; Munro, James B; Knowles, Donald P; Daubenberger, Claudia A; Bishop, Richard P; Silva, Joana C

    2016-01-01

    Theileria parva is a tick-transmitted intracellular apicomplexan pathogen of cattle in sub-Saharan Africa that causes East Coast fever (ECF). ECF is an acute fatal disease that kills over one million cattle annually, imposing a tremendous burden on African small-holder cattle farmers. The pathology and level of T. parva infections in its wildlife host, African buffalo (Syncerus caffer), and in cattle are distinct. We have developed an absolute quantification method based on quantitative PCR (qPCR) in which recombinant plasmids containing single copy genes specific to the parasite (apical membrane antigen 1 gene, ama1) or the host (hypoxanthine phosphoribosyltransferase 1, hprt1) are used as the quantification reference standards. Our study shows that T. parva and bovine cells are present in similar numbers in T. parva-infected lymphocyte cell lines and that consequently, due to its much smaller genome size, T. parva DNA comprises between 0.9% and 3% of the total DNA samples extracted from these lines. This absolute quantification assay of parasite and host genome copy number in a sample provides a simple and reliable method of assessing T. parva load in infected bovine lymphocytes, and is accurate over a wide range of host-to-parasite DNA ratios. Knowledge of the proportion of target DNA in a sample, as enabled by this method, is essential for efficient high-throughput genome sequencing applications for a variety of intracellular pathogens. This assay will also be very useful in future studies of interactions of distinct host-T. parva stocks and to fully characterize the dynamics of ECF infection in the field. PMID:26930209

  7. Toward greener analytical techniques for the absolute quantification of peptides in pharmaceutical and biological samples.

    PubMed

    Van Eeckhaut, Ann; Mangelings, Debby

    2015-09-10

    Peptide-based biopharmaceuticals represent one of the fastest growing classes of new drug molecules. New reaction types included in the synthesis strategies to reduce the rapid metabolism of peptides, along with the availability of new formulation and delivery technologies, resulted in an increased marketing of peptide drug products. In this regard, the development of analytical methods for quantification of peptides in pharmaceutical and biological samples is of utmost importance. From the sample preparation step to their analysis by means of chromatographic or electrophoretic methods, many difficulties should be tackled to analyze them. Recent developments in analytical techniques emphasize more and more on the use of green analytical techniques. This review will discuss the progresses in and challenges observed during green analytical method development for the quantification of peptides in pharmaceutical and biological samples. PMID:25864956

  8. Quantitative proteomics analysis to identify diffuse axonal injury biomarkers in rats using iTRAQ coupled LC-MS/MS.

    PubMed

    Zhang, Peng; Zhu, Shisheng; Li, Yongguo; Zhao, Minzhu; Liu, Meng; Gao, Jun; Ding, Shijia; Li, Jianbo

    2016-02-01

    Diffuse axonal injury (DAI) is fairly common during a traumatic brain injury (TBI) and is associated with high mortality. Making an early diagnosis, appropriate therapeutic decisions, and an accurate prognostic evaluation of patients with DAI still pose difficulties for clinicians. The detailed mechanisms of axonal injury after head trauma have yet to be clearly defined and no reliable biomarkers are available for early DAI diagnosis. Therefore, this study employed an established DAI animal model in conjunction with an isobaric tag for relative and absolute quantification (iTRAQ)-based protein identification/quantification approach. Alterations in rat cerebral protein expression were quantified using iTRAQ coupled LC-MS/MS, with differentially expressed proteins between the control groups, sham and sham-injured, and the injury groups, animals that died immediately post-injury and those sacrificed at 1h, 6h, 1d, 3d and 7d post-injury, identified. A total of 1858 proteins were identified and quantified and comparative analysis identified ten candidate proteins that warranted further examination. Of the ten candidate DAI biomarkers, four proteins, citrate synthase (CS), synaptosomal-associated protein 25 (Snap25), microtubule-associated protein 1B (MAP1B) and Rho-associated protein kinase 2 (Rock2), were validated by subsequent Western blot and immunohistochemistry analyses. Our studies not only identified several novel biomarkers that may provide insight into the pathophysiological mechanisms of DAI, but also demonstrated the feasibility of iTRAQ-based quantitative proteomic analysis in cerebral tissue research. PMID:26710722

  9. Absolute Quantification of Enterococcal 23S rRNA Gene Using Digital PCR.

    PubMed

    Wang, Dan; Yamahara, Kevan M; Cao, Yiping; Boehm, Alexandria B

    2016-04-01

    We evaluated the ability of chip-based digital PCR (dPCR) to quantify enterococci, the fecal indicator recommended by the United States Environmental Protection Agency (USEPA) for water-quality monitoring. dPCR uses Poisson statistics to estimate the number of DNA fragments in a sample with a specific sequence. Underestimation may occur when a gene is redundantly encoded in the genome and multiple copies of that gene are on one DNA fragment. When genomic DNA (gDNA) was extracted using two commercial DNA extraction kits, we confirmed that dPCR could discern individual copies of the redundant 23s rRNA gene in the enterococcal genome. dPCR quantification was accurate when compared to the nominal concentration inferred from fluorometer measurements (linear regression slope = 0.98, intercept = 0.03, R(2) = 0.99, and p value <0.0001). dPCR quantification was also consistent with quantitative PCR (qPCR) measurements as well as cell counts for BioBall reference standard and 24 environmental water samples. qPCR and dPCR quantification of enterococci in the 24 environmental samples were significantly correlated (linear regression slope =1.08, R(2) of 0.96, and p value <0.0001); the group mean of the qPCR measurements was 0.19 log units higher than that of the dPCR measurements. At environmentally relevant concentrations, dPCR quantification was more precise (i.e., had narrower 95% confidence intervals than qPCR quantification). We observed that humic acid caused a similar level of inhibition in both dPCR and qPCR, but calcium inhibited dPCR to a lesser degree than qPCR. Inhibition of dPCR was partially relieved when the number of thermal cycles was increased. Based on these results, we conclude that dPCR is a viable option for enumerating enterococci in ambient water. PMID:26903207

  10. Absolute quantification of olive oil DNA by droplet digital-PCR (ddPCR): Comparison of isolation and amplification methodologies.

    PubMed

    Scollo, Francesco; Egea, Leticia A; Gentile, Alessandra; La Malfa, Stefano; Dorado, Gabriel; Hernandez, Pilar

    2016-12-15

    Olive oil is considered a premium product for its nutritional value and health benefits, and the ability to define its origin and varietal composition is a key step towards ensuring the traceability of the product. However, isolating the DNA from such a matrix is a difficult task. In this study, the quality and quantity of olive oil DNA, isolated using four different DNA isolation protocols, was evaluated using the qRT-PCR and ddPCR techniques. The results indicate that CTAB-based extraction methods were the best for unfiltered oil, while Nucleo Spin-based extraction protocols showed greater overall reproducibility. The use of both qRT-PCR and ddPCR led to the absolute quantification of the DNA copy number. The results clearly demonstrate the importance of the choice of DNA-isolation protocol, which should take into consideration the qualitative aspects of DNA and the evaluation of the amplified DNA copy number. PMID:27451195

  11. A simple and accurate protocol for absolute polar metabolite quantification in cell cultures using quantitative nuclear magnetic resonance.

    PubMed

    Goldoni, Luca; Beringhelli, Tiziana; Rocchia, Walter; Realini, Natalia; Piomelli, Daniele

    2016-05-15

    Absolute analyte quantification by nuclear magnetic resonance (NMR) spectroscopy is rarely pursued in metabolomics, even though this would allow researchers to compare results obtained using different techniques. Here we report on a new protocol that permits, after pH-controlled serum protein removal, the sensitive quantification (limit of detection [LOD] = 5-25 μM) of hydrophilic nutrients and metabolites in the extracellular medium of cells in cultures. The method does not require the use of databases and uses PULCON (pulse length-based concentration determination) quantitative NMR to obtain results that are significantly more accurate and reproducible than those obtained by CPMG (Carr-Purcell-Meiboom-Gill) sequence or post-processing filtering approaches. Three practical applications of the method highlight its flexibility under different cell culture conditions. We identified and quantified (i) metabolic differences between genetically engineered human cell lines, (ii) alterations in cellular metabolism induced by differentiation of mouse myoblasts into myotubes, and (iii) metabolic changes caused by activation of neurotransmitter receptors in mouse myoblasts. Thus, the new protocol offers an easily implementable, efficient, and versatile tool for the investigation of cellular metabolism and signal transduction. PMID:26898303

  12. Toward absolute quantification of iron oxide nanoparticles as well as cell internalized fraction using multiparametric MRI

    PubMed Central

    Girard, O. M.; Ramirez, R.; McCarty, S.; Mattrey, R. F.

    2012-01-01

    Iron oxide nanoparticles (IONPs) are widely used as MR contrast agents because of their strong magnetic properties and broad range of applications. The contrast induced by IONPs typically depends on concentration, water accessibility, particle size, and heterogeneity of IONP distribution within the microenvironment. Although the latter could be a tool to assess local physiological effects at the molecular level, it renders IONP quantification from relaxation measurements challenging. This study aims to quantify IONP concentration using susceptibility measurements. In addition, further analysis of relaxation data is proposed to extract quantitative information about the IONP spatial distribution. Mesenchymal stem cells were labeled with IONPs and the IONP concentration measured by mass spectroscopy. MR relaxation parameters (T1, T2, T2*) as well as magnetic susceptibility of cylindrical samples containing serial dilutions of mixtures of free and cell-internalized IONPs were measured and correlated with IONP concentration. Unlike relaxation data, magnetic susceptibility was independent of whether IONPs were free or internalized, making it an excellent candidate for IONP quantification. Using IONP concentration derived from mass spectroscopy and measured relaxation times, free and internalized IONP fractions were accurately calculated. Magnetic susceptibility was shown to be a robust technique to measure IONP concentration in this preliminary study. Novel imaging based susceptibility mapping techniques could prove to be valuable tools to quantify IONP concentration directly by MRI, for samples of arbitrarily shape. Combined with relaxation time mapping techniques, especially T2 and T2*, this could be an efficient way to measure both IONP concentration and the internalized IONP fraction in vivo using MRI, to gain insight into tissue function and molecular imaging paradigms. PMID:22649047

  13. Quantification of Absolute Fat Mass by Magnetic Resonance Imaging: a Validation Study against Chemical Analysis

    PubMed Central

    Hu, Houchun H.; Li, Yan; Nagy, Tim R.; Goran, Michael I.; Nayak, Krishna S.

    2011-01-01

    Objective To develop a magnetic resonance imaging (MRI)-based approach for quantifying absolute fat mass in organs, muscles, and adipose tissues, and to validate its accuracy against reference chemical analysis (CA). Methods Chemical-shift imaging can accurately decompose water and fat signals from the acquired MRI data. A proton density fat fraction (PDFF) can be computed from the separated images, and reflects the relative fat content on a voxel-by-voxel basis. The PDFF is mathematically closely related to the fat mass fraction and can be converted to absolute fat mass in grams by multiplying by the voxel volume and the mass density of fat. In this validation study, 97 freshly excised and unique samples from four pigs, comprising of organs, muscles, and adipose and lean tissues were imaged by MRI and then analyzed independently by CA. Linear regression was used to assess correlation, agreement, and measurement differences between MRI and CA. Results Considering all 97 samples, a strong correlation and agreement was obtained between MRI and CA-derived fat mass (slope = 1.01, intercept = 1.99g, r2 = 0.98, p < 0.01). The mean difference d between MRI and CA was 2.17±3.40g. MRI did not exhibit any tendency to under or overestimate CA (p > 0.05). When considering samples from each pig separately, the results were (slope = 1.05, intercept = 1.11g, r2 = 0.98, d = 2.66±4.36g), (slope = 0.99, intercept = 2.33g, r2 = 0.99, d = 1.88±2.68g), (slope = 1.07, intercept = 1.52g, r2 = 0.96, d = 2.73±2.50g), and (slope=0.92, intercept=2.84g, r2 = 0.97, d = 1.18±3.90g), respectively. Conclusion Chemical-shift MRI and PDFF provides an accurate means of determining absolute fat mass in organs, muscles, and adipose and lean tissues. PMID:23204926

  14. Data from proteomic characterization and comparison of mammalian milk fat globule proteomes by iTRAQ analysis.

    PubMed

    Yang, Yongxin; Zheng, Nan; Zhao, Xiaowei; Zhang, Yangdong; Han, Rongwei; Ma, Lu; Zhao, Shengguo; Li, Songli; Guo, Tongjun; Wang, Jiaqi

    2015-06-01

    Milk fat globules memebrane (MFGM)-enriched proteomes from Holstein, Jersey, yak, buffalo, goat, camel, horse, and human were extracted and identified by an iTRAQ quantification proteomic approach. Proteomes data were analyzed by bioinformatic and multivariate statistical analysis and used to present the characteristic traits of the MFGM proteins among the studied mammals. The data of this study are also related to the research article "Proteomic characterization and comparison of mammalian milk fat globule proteomes by iTRAQ analysis" in the Journal of Proteomics [1]. PMID:26217709

  15. Novel isotopic N, N-dimethyl leucine (iDiLeu) reagents enable absolute quantification of peptides and proteins using a standard curve approach

    PubMed Central

    Greer, Tyler; Lietz, Christopher B.; Xiang, Feng; Li, Lingjun

    2014-01-01

    Absolute quantification of protein targets using liquid chromatography-mass spectrometry (LC-MS) is a key component of candidate biomarker validation. One popular method combines multiple reaction monitoring (MRM) using a triple quadrupole instrument with stable isotope-labeled standards (SIS) for absolute quantification (AQUA). LC-MRM AQUA assays are sensitive and specific, but they are also expensive due to the cost of synthesizing stable isotope peptide standards. While the chemical modification approach using Mass Differential Tags for Relative and Absolute Quantification (mTRAQ) represents a more economical approach when quantifying large numbers of peptides, these reagents are costly and still suffer from lower throughput because only two concentration values per peptide can be obtained in a single LC-MS run. Here, we have developed and applied a set of five novel mass difference reagents, isotopic N,N-dimethyl leucine (iDiLeu). These labels contain an amine reactive group, triazine ester, are cost effective due to their synthetic simplicity, and have increased throughput compared to previous LC-MS quantification methods by allowing construction of a four-point standard curve in one run. iDiLeu-labeled peptides show remarkably similar retention time shifts, slightly lower energy thresholds for higher-energy collisional dissociation (HCD) fragmentation, and high quantification accuracy for trypsin-digested protein samples (median errors <15%). By spiking in an iDiLeu-labeled neuropeptide, allatostatin, into mouse urine matrix, two quantification methods are validated. The first uses one labeled peptide as an internal standard to normalize labeled peptide peak areas across runs (<19% error) while the second enables standard curve creation and analyte quantification in one run (<8% error). PMID:25377360

  16. Novel isotopic N, N-Dimethyl Leucine (iDiLeu) Reagents Enable Absolute Quantification of Peptides and Proteins Using a Standard Curve Approach

    NASA Astrophysics Data System (ADS)

    Greer, Tyler; Lietz, Christopher B.; Xiang, Feng; Li, Lingjun

    2015-01-01

    Absolute quantification of protein targets using liquid chromatography-mass spectrometry (LC-MS) is a key component of candidate biomarker validation. One popular method combines multiple reaction monitoring (MRM) using a triple quadrupole instrument with stable isotope-labeled standards (SIS) for absolute quantification (AQUA). LC-MRM AQUA assays are sensitive and specific, but they are also expensive because of the cost of synthesizing stable isotope peptide standards. While the chemical modification approach using mass differential tags for relative and absolute quantification (mTRAQ) represents a more economical approach when quantifying large numbers of peptides, these reagents are costly and still suffer from lower throughput because only two concentration values per peptide can be obtained in a single LC-MS run. Here, we have developed and applied a set of five novel mass difference reagents, isotopic N, N-dimethyl leucine (iDiLeu). These labels contain an amine reactive group, triazine ester, are cost effective because of their synthetic simplicity, and have increased throughput compared with previous LC-MS quantification methods by allowing construction of a four-point standard curve in one run. iDiLeu-labeled peptides show remarkably similar retention time shifts, slightly lower energy thresholds for higher-energy collisional dissociation (HCD) fragmentation, and high quantification accuracy for trypsin-digested protein samples (median errors <15%). By spiking in an iDiLeu-labeled neuropeptide, allatostatin, into mouse urine matrix, two quantification methods are validated. The first uses one labeled peptide as an internal standard to normalize labeled peptide peak areas across runs (<19% error), whereas the second enables standard curve creation and analyte quantification in one run (<8% error).

  17. BACOM2.0 facilitates absolute normalization and quantification of somatic copy number alterations in heterogeneous tumor

    NASA Astrophysics Data System (ADS)

    Fu, Yi; Yu, Guoqiang; Levine, Douglas A.; Wang, Niya; Shih, Ie-Ming; Zhang, Zhen; Clarke, Robert; Wang, Yue

    2015-09-01

    Most published copy number datasets on solid tumors were obtained from specimens comprised of mixed cell populations, for which the varying tumor-stroma proportions are unknown or unreported. The inability to correct for signal mixing represents a major limitation on the use of these datasets for subsequent analyses, such as discerning deletion types or detecting driver aberrations. We describe the BACOM2.0 method with enhanced accuracy and functionality to normalize copy number signals, detect deletion types, estimate tumor purity, quantify true copy numbers, and calculate average-ploidy value. While BACOM has been validated and used with promising results, subsequent BACOM analysis of the TCGA ovarian cancer dataset found that the estimated average tumor purity was lower than expected. In this report, we first show that this lowered estimate of tumor purity is the combined result of imprecise signal normalization and parameter estimation. Then, we describe effective allele-specific absolute normalization and quantification methods that can enhance BACOM applications in many biological contexts while in the presence of various confounders. Finally, we discuss the advantages of BACOM in relation to alternative approaches. Here we detail this revised computational approach, BACOM2.0, and validate its performance in real and simulated datasets.

  18. Elucidation of Xylem-Specific Transcription Factors and Absolute Quantification of Enzymes Regulating Cellulose Biosynthesis in Populus trichocarpa.

    PubMed

    Loziuk, Philip L; Parker, Jennifer; Li, Wei; Lin, Chien-Yuan; Wang, Jack P; Li, Quanzi; Sederoff, Ronald R; Chiang, Vincent L; Muddiman, David C

    2015-10-01

    Cellulose, the main chemical polymer of wood, is the most abundant polysaccharide in nature.1 The ability to perturb the abundance and structure of cellulose microfibrils is of critical importance to the pulp and paper industry as well as for the textile, wood products, and liquid biofuels industries. Although much has been learned at the transcript level about the biosynthesis of cellulose, a quantitative understanding at the proteome level has yet to be established. The study described herein sought to identify the proteins directly involved in cellulose biosynthesis during wood formation in Populus trichocarpa along with known xylem-specific transcription factors involved in regulating these key proteins. Development of an effective discovery proteomic strategy through a combination of subcellular fractionation of stem differentiating xylem tissue (SDX) with recently optimized FASP digestion protocols, StageTip fractionation, as well as optimized instrument parameters for global proteomic analysis using the quadrupole-orbitrap mass spectrometer resulted in the deepest proteomic coverage of SDX protein from P. trichocarpa with 9,146 protein groups being identified (1% FDR). Of these, 20 cellulosic/hemicellulosic enzymes and 43 xylem-specific transcription factor groups were identified. Finally, selection of surrogate peptides led to an assay for absolute quantification of 14 cellulosic proteins in SDX of P. trichocarpa. PMID:26325666

  19. RNA-Seq and iTRAQ Reveal the Dwarfing Mechanism of Dwarf Polish Wheat (Triticum polonicum L.)

    PubMed Central

    Wang, Yi; Xiao, Xue; Wang, Xiaolu; Zeng, Jian; Kang, Houyang; Fan, Xing; Sha, Lina; Zhang, Haiqin; Zhou, Yonghong

    2016-01-01

    The dwarfing mechanism of Rht-dp in dwarf Polish wheat (DPW) is unknown. Each internode of DPW was significantly shorter than it in high Polish wheat (HPW), and the dwarfism was insensitive to photoperiod, abscisic acid (ABA), gibberellin (GA), cytokinin (CK), auxin and brassinolide (BR). To understand the mechanism, three sets of transcripts, DPW, HPW, and a chimeric set (a combination of DPW and HPW), were constructed using RNA sequencing (RNA-Seq). Based on the chimeric transcripts, 2,446 proteins were identified using isobaric tags for relative and absolute quantification (iTRAQ). A total of 108 unigenes and 12 proteins were considered as dwarfism-related differentially expressed genes (DEGs) and differentially expressed proteins (DEPs), respectively. Among of these DEGs and DEPs, 6 DEGs and 6 DEPs were found to be involved in flavonoid and S-adenosyl-methionine (SAM) metabolisms; 5 DEGs and 3 DEPs were involved in cellulose metabolism, cell wall plasticity and cell expansion; 2 DEGs were auxin transporters; 2 DEPs were histones; 1 DEP was a peroxidase. These DEGs and DEPs reduced lignin and cellulose contents, increased flavonoid content, possibly decreased S-adenosyl-methionine (SAM) and polyamine contents and increased S-adenosyl-L-homocysteine hydrolase (SAHH) content in DPW stems, which could limit auxin transport and reduce extensibility of the cell wall, finally limited cell expansion (the cell size of DPW was significantly smaller than HPW cells) and caused dwarfism in DPW. PMID:27194943

  20. RNA-Seq and iTRAQ Reveal the Dwarfing Mechanism of Dwarf Polish Wheat (Triticum polonicum L.).

    PubMed

    Wang, Yi; Xiao, Xue; Wang, Xiaolu; Zeng, Jian; Kang, Houyang; Fan, Xing; Sha, Lina; Zhang, Haiqin; Zhou, Yonghong

    2016-01-01

    The dwarfing mechanism of Rht-dp in dwarf Polish wheat (DPW) is unknown. Each internode of DPW was significantly shorter than it in high Polish wheat (HPW), and the dwarfism was insensitive to photoperiod, abscisic acid (ABA), gibberellin (GA), cytokinin (CK), auxin and brassinolide (BR). To understand the mechanism, three sets of transcripts, DPW, HPW, and a chimeric set (a combination of DPW and HPW), were constructed using RNA sequencing (RNA-Seq). Based on the chimeric transcripts, 2,446 proteins were identified using isobaric tags for relative and absolute quantification (iTRAQ). A total of 108 unigenes and 12 proteins were considered as dwarfism-related differentially expressed genes (DEGs) and differentially expressed proteins (DEPs), respectively. Among of these DEGs and DEPs, 6 DEGs and 6 DEPs were found to be involved in flavonoid and S-adenosyl-methionine (SAM) metabolisms; 5 DEGs and 3 DEPs were involved in cellulose metabolism, cell wall plasticity and cell expansion; 2 DEGs were auxin transporters; 2 DEPs were histones; 1 DEP was a peroxidase. These DEGs and DEPs reduced lignin and cellulose contents, increased flavonoid content, possibly decreased S-adenosyl-methionine (SAM) and polyamine contents and increased S-adenosyl-L-homocysteine hydrolase (SAHH) content in DPW stems, which could limit auxin transport and reduce extensibility of the cell wall, finally limited cell expansion (the cell size of DPW was significantly smaller than HPW cells) and caused dwarfism in DPW. PMID:27194943

  1. Absolute quantification of the pretreatment PML-RARA transcript defines the relapse risk in acute promyelocytic leukemia.

    PubMed

    Albano, Francesco; Zagaria, Antonella; Anelli, Luisa; Coccaro, Nicoletta; Tota, Giuseppina; Brunetti, Claudia; Minervini, Crescenzio Francesco; Impera, Luciana; Minervini, Angela; Cellamare, Angelo; Orsini, Paola; Cumbo, Cosimo; Casieri, Paola; Specchia, Giorgina

    2015-05-30

    In this study we performed absolute quantification of the PML-RARA transcript by droplet digital polymerase chain reaction (ddPCR) in 76 newly diagnosed acute promyelocytic leukemia (APL) cases to verify the prognostic impact of the PML-RARA initial molecular burden. ddPCR analysis revealed that the amount of PML-RARA transcript at diagnosis in the group of patients who relapsed was higher than in that with continuous complete remission (CCR) (272 vs 89.2 PML-RARA copies/ng, p = 0.0004, respectively). Receiver operating characteristic analysis detected the optimal PML-RARA concentration threshold as 209.6 PML-RARA/ng (AUC 0.78; p < 0.0001) for discriminating between outcomes (CCR versus relapse). Among the 67 APL cases who achieved complete remission after the induction treatment, those with >209.6 PML-RARA/ng had a worse relapse-free survival (p = 0.0006). At 5-year follow-up, patients with >209.6 PML-RARA/ng had a cumulative incidence of relapse of 50.3% whereas 7.5% of the patients with suffered a relapse (p < 0.0001). Multivariate analysis identified the amount of PML-RARA before induction treatment as the sole independent prognostic factor for APL relapse.Our results show that the pretreatment PML-RARA molecular burden could therefore be used to improve risk stratification in order to develop more individualized treatment regimens for high-risk APL cases. PMID:25944686

  2. Protein profiling of human lung telocytes and microvascular endothelial cells using iTRAQ quantitative proteomics

    PubMed Central

    Zheng, Yonghua; Cretoiu, Dragos; Yan, Guoquan; Cretoiu, Sanda Maria; Popescu, Laurentiu M; Fang, Hao; Wang, Xiangdong

    2014-01-01

    Telocytes (TCs) are described as a particular type of cells of the interstitial space (www.telocytes.com). Their main characteristics are the very long telopodes with alternating podoms and podomers. Recently, we performed a comparative proteomic analysis of human lung TCs with fibroblasts, demonstrating that TCs are clearly a distinct cell type. Therefore, the present study aims to reinforce this idea by comparing lung TCs with endothelial cells (ECs), since TCs and ECs share immunopositivity for CD34. We applied isobaric tag for relative and absolute quantification (iTRAQ) combined with automated 2-D nano-ESI LC-MS/MS to analyse proteins extracted from TCs and ECs in primary cell cultures. In total, 1609 proteins were identified in cell cultures. 98 proteins (the 5th day), and 82 proteins (10th day) were confidently quantified (screened by two-sample t-test, P < 0.05) as up- or down-regulated (fold change >2). We found that in TCs there are 38 up-regulated proteins at the 5th day and 26 up-regulated proteins at the 10th day. Bioinformatics analysis using Panther revealed that the 38 proteins associated with TCs represented cellular functions such as intercellular communication (via vesicle mediated transport) and structure morphogenesis, being mainly cytoskeletal proteins and oxidoreductases. In addition, we found 60 up-regulated proteins in ECs e.g.: cell surface glycoprotein MUC18 (15.54-fold) and von Willebrand factor (5.74-fold). The 26 up-regulated proteins in TCs at 10th day, were also analysed and confirmed the same major cellular functions, while the 56 down-regulated proteins confirmed again their specificity for ECs. In conclusion, we report here the first extensive comparison of proteins from TCs and ECs using a quantitative proteomics approach. Our data show that TCs are completely different from ECs. Protein expression profile showed that TCs play specific roles in intercellular communication and intercellular signalling. Moreover, they might

  3. Simultaneous absolute quantification of 11 cytochrome P450 isoforms in human liver microsomes by liquid chromatography tandem mass spectrometry with in silico target peptide selection.

    PubMed

    Kawakami, Hirotaka; Ohtsuki, Sumio; Kamiie, Junichi; Suzuki, Takashi; Abe, Takaaki; Terasaki, Tetsuya

    2011-01-01

    Cytochrome P450 (CYP) proteins are involved in the biological oxidation and reduction of xenobiotics, affecting the pharmacological efficiency of drugs. This study aimed to establish a method to simultaneously quantify 11 CYP isoforms by multiplexed-multiple reaction monitoring analysis with liquid chromatography tandem mass spectrometry and in silico peptide selection to clarify CYP isoform expression profiles in human liver tissue. CYP1A2, 2A6, and 2D6 target peptides were identified by shot-gun proteomic analysis, and those of other isoforms were selected by in silico peptide selection criteria. The established quantification method detected target peptides at 10  fmol, and the dynamic range of calibration curves was at least 500-fold. The quantification value of CYP1A2 in Supersomes was not significantly different between the established method and quantitative immunoblot analysis. The absolute protein expression levels of 11 CYP isoforms were determined from one pooled and 10 individual human liver microsomes. In the individual microsomes, CYP2C9 showed the highest protein expression level, and CYP1A2, 2A6, 2C19, and 3A4 protein expression exhibited more than a 20-fold difference among individuals. This highly sensitive and selective quantification method is a useful tool for the analysis of highly homologous CYP isoforms and the contribution made by each CYP isoform to drug metabolism. PMID:20564338

  4. Quantitative iTRAQ LC-MS/MS Proteomics Reveals the Proteome Profiles of DF-1 Cells after Infection with Subgroup J Avian Leukosis Virus

    PubMed Central

    Li, Xiaofei; Wang, Qi; Gao, Yanni; Wang, Yongqiang; Gao, Honglei; Gao, Yulong; Wang, Xiaomei

    2015-01-01

    Avian leukosis virus subgroup J (ALV-J) is an avian oncogenic retrovirus that can induce various clinical tumors and has caused severe economic losses in China. To improve our understanding of the host cellular responses to virus infection and the pathogenesis of ALV-J infection, we applied isobaric tags for relative and absolute quantification (iTRAQ) labeling coupled with multidimensional liquid chromatography-tandem mass spectrometry to detect the protein changes in DF-1 cells infected and mock-infected with ALV-J. A total of 75 cellular proteins were significantly changed, including 33 upregulated proteins and 42 downregulated proteins. The reliability of iTRAQ-LC MS/MS was confirmed via real-time PCR. Most of these proteins were related to the physiological functions of metabolic processes, biosynthetic processes, responses to stimuli, protein binding, signal transduction, cell cytoskeleton, and so forth. We also found some proteins that play important roles in apoptosis and oncogenicity. The differentially expressed proteins identified may provide valuable information to elucidate the pathogenesis of virus infection and virus-host interactions. PMID:25632391

  5. Digital Droplet PCR for the Absolute Quantification of Exon Skipping Induced by Antisense Oligonucleotides in (Pre-)Clinical Development for Duchenne Muscular Dystrophy.

    PubMed

    Verheul, Ruurd C; van Deutekom, Judith C T; Datson, Nicole A

    2016-01-01

    Antisense oligonucleotides (AONs) in clinical development for Duchenne muscular dystrophy (DMD) aim to induce skipping of a specific exon of the dystrophin transcript during pre-mRNA splicing. This results in restoration of the open reading frame and consequently synthesis of a dystrophin protein with a shorter yet functional central rod domain. To monitor the molecular therapeutic effect of exon skip-inducing AONs in clinical studies, accurate quantification of pre- and post-treatment exon skip levels is required. With the recent introduction of 3rd generation digital droplet PCR (ddPCR), a state-of-the-art technology became available which allows absolute quantification of transcript copy numbers with and without specific exon skip with high precision, sensitivity and reproducibility. Using Taqman assays with probes targeting specific exon-exon junctions, we here demonstrate that ddPCR reproducibly quantified cDNA fragments with and without exon 51 of the DMD gene over a 4-log dynamic range. In a comparison of conventional nested PCR, qPCR and ddPCR using cDNA constructs with and without exon 51 mixed in different molar ratios using, ddPCR quantification came closest to the expected outcome over the full range of ratios (0-100%), while qPCR and in particular nested PCR overestimated the relative percentage of the construct lacking exon 51. Highest accuracy was similarly obtained with ddPCR in DMD patient-derived muscle cells treated with an AON inducing exon 51 skipping. We therefore recommend implementation of ddPCR for quantification of exon skip efficiencies of AONs in (pre)clinical development for DMD. PMID:27612288

  6. Absolute Quantification of Human Liver Phosphorus-Containing Metabolites In Vivo Using an Inhomogeneous Spoiling Magnetic Field Gradient

    PubMed Central

    Bashir, Adil; Gropler, Robert; Ackerman, Joseph

    2015-01-01

    Purpose Absolute concentrations of high-energy phosphorus (31P) metabolites in liver provide more important insight into physiologic status of liver disease compared to resonance integral ratios. A simple method for measuring absolute concentrations of 31P metabolites in human liver is described. The approach uses surface spoiling inhomogeneous magnetic field gradient to select signal from liver tissue. The technique avoids issues caused by respiratory motion, chemical shift dispersion associated with linear magnetic field gradients, and increased tissue heat deposition due to radiofrequency absorption, especially at high field strength. Methods A method to localize signal from liver was demonstrated using superficial and highly non-uniform magnetic field gradients, which eliminate signal(s) from surface tissue(s) located between the liver and RF coil. A double standard method was implemented to determine absolute 31P metabolite concentrations in vivo. 8 healthy individuals were examined in a 3 T MR scanner. Results Concentrations of metabolites measured in eight healthy individuals are: γ-adenosine triphosphate (ATP) = 2.44 ± 0.21 (mean ± sd) mmol/l of wet tissue volume, α-ATP = 3.2 ± 0.63 mmol/l, β-ATP = 2.98 ± 0.45 mmol/l, inorganic phosphates (Pi) = 1.87 ± 0.25 mmol/l, phosphodiesters (PDE) = 10.62 ± 2.20 mmol/l and phosphomonoesters (PME) = 2.12 ± 0.51 mmol/l. All are in good agreement with literature values. Conclusions The technique offers robust and fast means to localize signal from liver tissue, allows absolute metabolite concentration determination, and avoids problems associated with constant field gradient (linear field variation) localization methods. PMID:26633549

  7. Absolute quantification of cerebral blood flow in neurologically normal volunteers: dynamic-susceptibility contrast MRI-perfusion compared with computed tomography (CT)-perfusion.

    PubMed

    Ziegelitz, Doerthe; Starck, Göran; Mikkelsen, Irene K; Tullberg, Mats; Edsbagge, Mikael; Wikkelsö, Carsten; Forssell-Aronson, Eva; Holtås, Stig; Knutsson, Linda

    2009-07-01

    To improve the reproducibility of arterial input function (AIF) registration and absolute cerebral blood flow (CBF) quantification in dynamic-susceptibility MRI-perfusion (MRP) at 1.5T, we rescaled the AIF by use of a venous output function (VOF). We compared CBF estimates of 20 healthy, elderly volunteers, obtained by computed tomography (CT)-perfusion (CTP) and MRP on two consecutive days. MRP, calculated without the AIF correction, did not result in any significant correlation with CTP. The rescaled MRP showed fair to moderate correlation with CTP for the central gray matter (GM) and the whole brain. Our results indicate that the method used for correction of partial volume effects (PVEs) improves MRP experiments by reducing AIF-introduced variance at 1.5T. PMID:19253361

  8. Comparative Analysis of Label-Free and 8-Plex iTRAQ Approach for Quantitative Tissue Proteomic Analysis

    PubMed Central

    Latosinska, Agnieszka; Vougas, Konstantinos; Makridakis, Manousos; Klein, Julie; Mullen, William; Abbas, Mahmoud; Stravodimos, Konstantinos; Katafigiotis, Ioannis; Merseburger, Axel S.; Zoidakis, Jerome; Mischak, Harald; Vlahou, Antonia; Jankowski, Vera

    2015-01-01

    High resolution proteomics approaches have been successfully utilized for the comprehensive characterization of the cell proteome. However, in the case of quantitative proteomics an open question still remains, which quantification strategy is best suited for identification of biologically relevant changes, especially in clinical specimens. In this study, a thorough comparison of a label-free approach (intensity-based) and 8-plex iTRAQ was conducted as applied to the analysis of tumor tissue samples from non-muscle invasive and muscle-invasive bladder cancer. For the latter, two acquisition strategies were tested including analysis of unfractionated and fractioned iTRAQ-labeled peptides. To reduce variability, aliquots of the same protein extract were used as starting material, whereas to obtain representative results per method further sample processing and MS analysis were conducted according to routinely applied protocols. Considering only multiple-peptide identifications, LC-MS/MS analysis resulted in the identification of 910, 1092 and 332 proteins by label-free, fractionated and unfractionated iTRAQ, respectively. The label-free strategy provided higher protein sequence coverage compared to both iTRAQ experiments. Even though pre-fraction of the iTRAQ labeled peptides allowed for a higher number of identifications, this was not accompanied by a respective increase in the number of differentially expressed changes detected. Validity of the proteomics output related to protein identification and differential expression was determined by comparison to existing data in the field (Protein Atlas and published data on the disease). All methods predicted changes which to a large extent agreed with published data, with label-free providing a higher number of significant changes than iTRAQ. Conclusively, both label-free and iTRAQ (when combined to peptide fractionation) provide high proteome coverage and apparently valid predictions in terms of differential expression

  9. Absolute quantification of Medicago truncatula sucrose synthase isoforms and N-metabolism enzymes in symbiotic root nodules and the detection of novel nodule phosphoproteins by mass spectrometry

    PubMed Central

    Wienkoop, Stefanie; Larrainzar, Estíbaliz; Glinski, Mirko; González, Esther M.; Arrese-Igor, Cesar; Weckwerth, Wolfram

    2008-01-01

    Mass spectrometry (MS) has become increasingly important for tissue specific protein quantification at the isoform level, as well as for the analysis of protein post-translational regulation mechanisms and turnover rates. Thanks to the development of high accuracy mass spectrometers, peptide sequencing without prior knowledge of the amino acid sequence—de novo sequencing—can be performed. In this work, absolute quantification of a set of key enzymes involved in carbon and nitrogen metabolism in Medicago truncatula ‘Jemalong A17’ root nodules is presented. Among them, sucrose synthase (SuSy; EC 2.4.1.13), one of the central enzymes in sucrose cleavage in root nodules, has been further characterized and the relative phosphorylation state of the three most abundant isoforms has been quantified. De novo sequencing provided sequence information of a so far unidentified peptide, most probably belonging to SuSy2, the second most abundant isoform in M. truncatula root nodules. TiO2-phosphopeptide enrichment led to the identification of not only a phosphorylation site at Ser11 in SuSy1, but also of several novel phosphorylation sites present in other root nodule proteins such as alkaline invertase (AI; EC 3.2.1.26) and an RNA-binding protein. PMID:18772307

  10. Absolute mRNA quantification using the polymerase chain reaction (PCR). A novel approach by a PCR aided transcript titration assay (PATTY).

    PubMed Central

    Becker-André, M; Hahlbrock, K

    1989-01-01

    The polymerase chain reaction (PCR) is used as part of a new approach to the absolute quantification of mRNA. We describe a PCR aided transcript titration assay (PATTY) which is based on the co-amplification of an in vitro generated transcript differing by a single base exchange from the target mRNA. Identical portions of a total RNA sample are "spiked" with different amounts of this mutated standard RNA, converted to cDNA and amplified by PCR. Because the base exchange creates a novel restriction endonuclease site, the ratio of co-amplified DNA derived from target mRNA to amplified DNA derived from standard RNA can be determined after restriction endonuclease digestion and separation by gel electrophoresis. This method gives accurate results within 24 hours and is useful especially for the quantification of either low-abundance mRNA or more abundant mRNA present in very small amounts of total RNA. The low-abundance mRNA encoding 4-coumarate:CoA ligase (4CL) in cultured potato cells (Solanum tuberosum L.) was measured in a case study. About 100 molecules per assay could be accurately detected by the new method. Images PMID:2479917

  11. Noninvasive optical quantification of absolute blood flow, blood oxygenation, and oxygen consumption rate in exercising skeletal muscle.

    PubMed

    Gurley, Katelyn; Shang, Yu; Yu, Guoqiang

    2012-07-01

    This study investigates a method using novel hybrid diffuse optical spectroscopies [near-infrared spectroscopy (NIRS) and diffuse correlation spectroscopy (DCS)] to obtain continuous, noninvasive measurement of absolute blood flow (BF), blood oxygenation, and oxygen consumption rate (V̇O(2)) in exercising skeletal muscle. Healthy subjects (n=9) performed a handgrip exercise to increase BF and V̇O(2) in forearm flexor muscles, while a hybrid optical probe on the skin surface directly monitored oxy-, deoxy-, and total hemoglobin concentrations ([HbO(2)], [Hb], and THC), tissue oxygen saturation (S(t)O(2)), relative BF (rBF), and relative oxygen consumption rate (rV̇O(2)). The rBF and rV̇O(2) signals were calibrated with absolute baseline BF and V̇O(2) obtained through venous and arterial occlusions, respectively. Known problems with muscle-fiber motion artifacts in optical measurements during exercise were mitigated using a novel gating algorithm that determined muscle contraction status based on control signals from a dynamometer. Results were consistent with previous findings in the literature. This study supports the application of NIRS/DCS technology to quantitatively evaluate hemodynamic and metabolic parameters in exercising skeletal muscle and holds promise for improving diagnosis and treatment evaluation for patients suffering from diseases affecting skeletal muscle and advancing fundamental understanding of muscle and exercise physiology. PMID:22894482

  12. Noninvasive optical quantification of absolute blood flow, blood oxygenation, and oxygen consumption rate in exercising skeletal muscle

    PubMed Central

    Gurley, Katelyn; Shang, Yu

    2012-01-01

    Abstract. This study investigates a method using novel hybrid diffuse optical spectroscopies [near-infrared spectroscopy (NIRS) and diffuse correlation spectroscopy (DCS)] to obtain continuous, noninvasive measurement of absolute blood flow (BF), blood oxygenation, and oxygen consumption rate (V˙O2) in exercising skeletal muscle. Healthy subjects (n=9) performed a handgrip exercise to increase BF and V˙O2 in forearm flexor muscles, while a hybrid optical probe on the skin surface directly monitored oxy-, deoxy-, and total hemoglobin concentrations ([HbO2], [Hb], and THC), tissue oxygen saturation (StO2), relative BF (rBF), and relative oxygen consumption rate (rV˙O2). The rBF and rV˙O2 signals were calibrated with absolute baseline BF and V˙O2 obtained through venous and arterial occlusions, respectively. Known problems with muscle-fiber motion artifacts in optical measurements during exercise were mitigated using a novel gating algorithm that determined muscle contraction status based on control signals from a dynamometer. Results were consistent with previous findings in the literature. This study supports the application of NIRS/DCS technology to quantitatively evaluate hemodynamic and metabolic parameters in exercising skeletal muscle and holds promise for improving diagnosis and treatment evaluation for patients suffering from diseases affecting skeletal muscle and advancing fundamental understanding of muscle and exercise physiology. PMID:22894482

  13. Noninvasive optical quantification of absolute blood flow, blood oxygenation, and oxygen consumption rate in exercising skeletal muscle

    NASA Astrophysics Data System (ADS)

    Gurley, Katelyn; Shang, Yu; Yu, Guoqiang

    2012-07-01

    This study investigates a method using novel hybrid diffuse optical spectroscopies [near-infrared spectroscopy (NIRS) and diffuse correlation spectroscopy (DCS)] to obtain continuous, noninvasive measurement of absolute blood flow (BF), blood oxygenation, and oxygen consumption rate (\\Vdot O2) in exercising skeletal muscle. Healthy subjects (n=9) performed a handgrip exercise to increase BF and \\Vdot O2 in forearm flexor muscles, while a hybrid optical probe on the skin surface directly monitored oxy-, deoxy-, and total hemoglobin concentrations ([HbO2], [Hb], and THC), tissue oxygen saturation (StO2), relative BF (rBF), and relative oxygen consumption rate (r\\Vdot O2). The rBF and r\\Vdot O2 signals were calibrated with absolute baseline BF and \\Vdot O2 obtained through venous and arterial occlusions, respectively. Known problems with muscle-fiber motion artifacts in optical measurements during exercise were mitigated using a novel gating algorithm that determined muscle contraction status based on control signals from a dynamometer. Results were consistent with previous findings in the literature. This study supports the application of NIRS/DCS technology to quantitatively evaluate hemodynamic and metabolic parameters in exercising skeletal muscle and holds promise for improving diagnosis and treatment evaluation for patients suffering from diseases affecting skeletal muscle and advancing fundamental understanding of muscle and exercise physiology.

  14. Absolute Quantification of Norovirus Capsid Protein in Food, Water, and Soil Using Synthetic Peptides with Electrospray and MALDI Mass Spectrometry

    PubMed Central

    Hartmann, Erica M.; Colquhoun, David R.; Schwab, Kellogg J.; Halden, Rolf U.

    2015-01-01

    Norovirus infections are one of the most prominent public health problems of microbial origin in the U.S. and other industrialized countries. Surveillance is necessary to prevent secondary infection, confirm successful cleanup after outbreaks, and track the causative agent. Quantitative mass spectrometry, based on absolute quantitation with stable-isotope labeled peptides, is a promising tool for norovirus monitoring because of its speed, sensitivity, and robustness in the face of environmental inhibitors. In the current study, we present two new methods for the detection of the norovirus genogroup I capsid protein using electrospray and matrixassisted laser desorption/ionization (MALDI) mass spectrometry. The peptide TLDPIEVPLEDVR was used to quantify norovirus-like particles down to 500 attomoles with electrospray and 100 attomoles with MALDI. With MALDI, we also demonstrate a detection limit of 1 femtomole and a quantitative dynamic range of 5 orders of magnitude in the presence of an environmental matrix effect. Due to the rapid processing time and applicability to a wide range of environmental sample types (bacterial lysate, produce, milk, soil, and groundwater), mass spectrometry-based absolute quantitation has a strong potential for use in public health and environmental sciences. PMID:25603302

  15. Absolute quantification of norovirus capsid protein in food, water, and soil using synthetic peptides with electrospray and MALDI mass spectrometry.

    PubMed

    Hartmann, Erica M; Colquhoun, David R; Schwab, Kellogg J; Halden, Rolf U

    2015-04-01

    Norovirus infections are one of the most prominent public health problems of microbial origin in the U.S. and other industrialized countries. Surveillance is necessary to prevent secondary infection, confirm successful cleanup after outbreaks, and track the causative agent. Quantitative mass spectrometry, based on absolute quantitation with stable-isotope labeled peptides, is a promising tool for norovirus monitoring because of its speed, sensitivity, and robustness in the face of environmental inhibitors. In the current study, we present two new methods for the detection of the norovirus genogroup I capsid protein using electrospray and matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. The peptide TLDPIEVPLEDVR was used to quantify norovirus-like particles down to 500 attomoles with electrospray and 100 attomoles with MALDI. With MALDI, we also demonstrate a detection limit of 1 femtomole and a quantitative dynamic range of 5 orders of magnitude in the presence of an environmental matrix effect. Due to the rapid processing time and applicability to a wide range of environmental sample types (bacterial lysate, produce, milk, soil, and groundwater), mass spectrometry-based absolute quantitation has a strong potential for use in public health and environmental sciences. PMID:25603302

  16. Absolute Quantification of Lipophilic Shellfish Toxins by Quantitative Nuclear Magnetic Resonance Using Removable Internal Reference Substance with SI Traceability.

    PubMed

    Kato, Tsuyoshi; Saito, Maki; Nagae, Mika; Fujita, Kazuhiro; Watai, Masatoshi; Igarashi, Tomoji; Yasumoto, Takeshi; Inagaki, Minoru

    2016-01-01

    Okadaic acid (OA), a lipophilic shellfish toxin, was accurately quantified using quantitative nuclear magnetic resonance with internal standards for the development of an authentic reference standard. Pyridine and the residual proton in methanol-d4 were used as removable internal standards to limit any contamination. They were calibrated based on a maleic acid certified reference material. Thus, the concentration of OA was traceable to the SI units through accurate quantitative NMR with an internal reference substance. Signals from the protons on the oxygenated and unsaturated carbons of OA were used for quantification. A reasonable accuracy was obtained by integrating between the lower and upper (13)C satellite signal range when more than 4 mg of OA was used. The best-determined purity was 97.4% (0.16% RSD) when 20 mg of OA was used. Dinophysistoxin-1, a methylated analog of OA having an almost identical spectrum, was also quantified by using the same methodology. PMID:27396652

  17. Rapid, absolute, and simultaneous quantification of specific pathogenic strain and total bacterial cells using an ultrasensitive dual-color flow cytometer.

    PubMed

    Yang, Lingling; Wu, Lina; Zhu, Shaobin; Long, Yao; Hang, Wei; Yan, Xiaomei

    2010-02-01

    This paper describes a rapid and sensitive strategy for the absolute and simultaneous quantification of specific pathogenic strain and total bacterial cells in a mixture. A laboratory-built compact, high-sensitivity, dual channel flow cytometer (HSDCFCM) was modified to enable dual fluorescence detection. A bacterial cell mixture comprising heat-killed pathogenic Escherichia coli E. coli O157:H7 and harmless E. coli DH5alpha was used as a model system. Pathogenic E. coli O157:H7 cells were selectively labeled by red fluorescent probe via antibody-antigen interaction, and all bacterial cells were stained with membrane-permeable nucleic acid dye that fluoresces green. When each individual bacterium passes through the interrogating laser beam, E. coli O157:H7 emits both red and green fluorescence, while E. coli DH5alpha exhibits only green fluorescence. Because the fluorescence burst generated from each individual bacterial cell was easily distinguished from the background, accurate enumeration and consequently absolute quantification were achieved for both pathogenic and total bacterial cells. By using this strategy, accurate counting of bacteria at a density above 1.0 x 10(5) cells/mL can be accomplished with 1 min of data acquisition time after fluorescent staining. Excellent correlation between the concentrations measured by the HSDCFCM and the conventional plate-counting method were obtained for pure-cultured E. coli O157:H7 (R(2) = 0.9993) and E. coli DH5alpha (R(2) = 0.9998). Bacterial cell mixtures with varying proportions of E. coli O157:H7 and E. coli DH5alpha were measured with good ratio correspondence. We applied the established approach to detecting artificially contaminated drinking water samples; E. coli O157:H7 of 1.0 x 10(2) cells/mL were accurately quantified upon sample enrichment. It is believed that the proposed method will find wide applications in many fields demanding bacterial identification and quantification. PMID:20039721

  18. Optimization of Plasma Sample Pretreatment for Quantitative Analysis Using iTRAQ Labeling and LC-MALDI-TOF/TOF

    PubMed Central

    Luczak, Magdalena; Marczak, Lukasz; Stobiecki, Maciej

    2014-01-01

    Shotgun proteomic methods involving iTRAQ (isobaric tags for relative and absolute quantitation) peptide labeling facilitate quantitative analyses of proteomes and searches for useful biomarkers. However, the plasma proteome's complexity and the highly dynamic plasma protein concentration range limit the ability of conventional approaches to analyze and identify a large number of proteins, including useful biomarkers. The goal of this paper is to elucidate the best approach for plasma sample pretreatment for MS- and iTRAQ-based analyses. Here, we systematically compared four approaches, which include centrifugal ultrafiltration, SCX chromatography with fractionation, affinity depletion, and plasma without fractionation, to reduce plasma sample complexity. We generated an optimized protocol for quantitative protein analysis using iTRAQ reagents and an UltrafleXtreme (Bruker Daltonics) MALDI TOF/TOF mass spectrometer. Moreover, we used a simple, rapid, efficient, but inexpensive sample pretreatment technique that generated an optimal opportunity for biomarker discovery. We discuss the results from the four sample pretreatment approaches and conclude that SCX chromatography without affinity depletion is the best plasma sample preparation pretreatment method for proteome analysis. Using this technique, we identified 1,780 unique proteins, including 1,427 that were quantified by iTRAQ with high reproducibility and accuracy. PMID:24988083

  19. Optically based quantification of absolute cerebral metabolic rate of oxygen (CMRO2) with high spatial resolution in rodents

    NASA Astrophysics Data System (ADS)

    Yaseen, Mohammad A.; Srinivasan, Vivek J.; Sakadžić, Sava; Vinogradov, Sergei A.; Boas, David A.

    2010-02-01

    Measuring oxygen delivery in brain tissue is important for identifying the pathophysiological changes associated with brain injury and various diseases such as cancer, stroke, and Alzheimer's disease. We have developed a multi-modal imaging system for minimally invasive measurement of cerebral oxygenation and blood flow in small animals with high spatial resolution. The system allows for simultaneous measurement of blood flow using Fourier-domain optical coherence tomography, and oxygen partial pressure (pO2) using either confocal or multiphoton phosphorescence lifetime imaging with exogenous porphyrin-based dyes sensitive to dissolved oxygen. Here we present the changes in pO2 and blood flow in superficial cortical vessels of Sprague Dawley rats in response to conditions such as hypoxia, hyperoxia, and functional stimulation. pO2 measurements display considerable heterogeneity over distances that cannot be resolved with more widely used oxygen-monitoring techniques such as BOLD-fMRI. Large increases in blood flow are observed in response to functional stimulation and hypoxia. Our system allows for quantification of cerebral metabolic rate of oxygen (CMRO2) with high spatial resolution, providing a better understanding of metabolic dynamics during functional stimulation and under various neuropathologies. Ultimately, better insight into the underlying mechanisms of neuropathologies will facilitate the development of improved therapeutic strategies to minimize damage to brain tissue.

  20. Development of an HPLC Method for Absolute Quantification and QAMS of Flavonoids Components in Psoralea corylifolia L.

    PubMed Central

    Yan, Cuiping; Wu, Yu; Weng, Zebin; Gao, Qianqian; Yang, Guangming; Chen, Zhipeng; Cai, Baochang; Li, Weidong

    2015-01-01

    The seeds of Psoralea corylifolia L. (Fabaceae) are a commonly used medicinal herb in eastern Asia with many beneficial effects in clinical therapies. In this study, a simple, sensitive, precise, and specific reverse phase high-performance liquid chromatography (HPLC) method was established for quantification of 9 flavonoids in P. corylifolia, including isobavachin, neobavaisoflavone, bavachin, corylin, bavachalcone, bavachinin, isobavachalcone, corylifol A, and 4′-O-methylbavachalcone. Based on this method, a quantitative analysis of multicomponents by single marker (QAMS) was carried out, and the relative correction factors (RCFs) were calculated for determining the contents of other flavonoids. The accuracy of QAMS method was verified by comparing with the results of external standard method, as well as the feasibility and adaptability of the method applied on quality control of P. corylifolia. The 9 compounds were baseline separated in 60 min with a good linearity of regression coefficient (R2) over 0.9991. The accuracies of QAMS were between 92.89% and 109.5%. The RSD values of f in different injection volume were between 2.3% and 3.6%. The results obtained from QAMS suggested that it was a convenient and accurate method to determine multicomponents especially when some authentic standard substances were unavailable. It can be used to control the quality of P. corylifolia. PMID:26587307

  1. Absolute quantification of dengue virus serotype 4 chimera vaccine candidate in Vero cell culture by targeted mass spectrometry.

    PubMed

    Rougemont, Blandine; Simon, Romain; Carrière, Romain; Biarc, Jordane; Fonbonne, Catherine; Salvador, Arnaud; Huillet, Céline; Berard, Yves; Adam, Olivier; Manin, Catherine; Lemoine, Jérôme

    2015-10-01

    Infection by dengue flavivirus is transmitted by mosquitoes and affects tens to hundreds of millions people around the world each year. Four serotypes have been described, all of which cause similar disease. Currently, there no approved vaccines or specific therapeutics for dengue, although several vaccine prototypes are in different stages of clinical development. Among them, a chimeric vaccine, built from the replication machinery of the yellow fever 17D virus, has shown promising results in phase III trials. Accurate quantitation of expressed viral particles in alive attenuated viral antigen vaccine is essential and determination of infectious titer is usually the method of choice. The current paper describes an alternative or orthogonal strategy, namely, a multiplexed and absolute assay of four proteins of the chimera yellow fever/dengue serotype 4 virus using targeted MS in SRM mode. Over 1 month, variability of the assay using a partially purified Vero cell extract was between 8 and 17%, and accuracy was between 80 and 120%. In addition, the assay was linear between 6.25 and 200 nmol/L and could therefore be used in the near future to quantify dengue virus type 4 during production and purification from Vero cells. PMID:26205729

  2. Absolute quantification of DcR3 and GDF15 from human serum by LC-ESI MS

    PubMed Central

    Lancrajan, Ioana; Schneider-Stock, Regine; Naschberger, Elisabeth; Schellerer, Vera S; Stürzl, Michael; Enz, Ralf

    2015-01-01

    Biomarkers are widely used in clinical diagnosis, prognosis and therapy monitoring. Here, we developed a protocol for the efficient and selective enrichment of small and low concentrated biomarkers from human serum, involving a 95% effective depletion of high-abundant serum proteins by partial denaturation and enrichment of low-abundant biomarkers by size exclusion chromatography. The recovery of low-abundance biomarkers was above 97%. Using this protocol, we quantified the tumour markers DcR3 and growth/differentiation factor (GDF)15 from 100 μl human serum by isotope dilution mass spectrometry, using 15N metabolically labelled and concatamerized fingerprint peptides for the both proteins. Analysis of three different fingerprint peptides for each protein by liquid chromatography electrospray ionization mass spectrometry resulted in comparable concentrations in three healthy human serum samples (DcR3: 27.23 ± 2.49 fmol/ml; GDF15: 98.11 ± 0.49 fmol/ml). In contrast, serum levels were significantly elevated in tumour patients for DcR3 (116.94 ± 57.37 fmol/ml) and GDF15 (164.44 ± 79.31 fmol/ml). Obtained data were in good agreement with ELISA and qPCR measurements, as well as with literature data. In summary, our protocol allows the reliable quantification of biomarkers, shows a higher resolution at low biomarker concentrations than antibody-based strategies, and offers the possibility of multiplexing. Our proof-of-principle studies in patient sera encourage the future analysis of the prognostic value of DcR3 and GDF15 for colon cancer patients in larger patient cohorts. PMID:25823874

  3. Absolute quantification of Pru av 2 in sweet cherry fruit by liquid chromatography/tandem mass spectrometry with the use of a stable isotope-labelled peptide.

    PubMed

    Ippoushi, Katsunari; Sasanuma, Motoe; Oike, Hideaki; Kobori, Masuko; Maeda-Yamamoto, Mari

    2016-08-01

    Pru av 2, a pathogenesis-related (PR) protein present in the sweet cherry (Prunus avium L.) fruit, is the principal allergen of cherry and one of the chief causes of pollen food syndrome (oral allergy syndrome). In this study, a quantitative assay for this protein was developed with the use of the protein absolute quantification (AQUA) method, which consists of liquid chromatography/tandem mass spectrometry (LC/MS/MS) employing TGC[CAM]STDASGK[(13)C6,(15)N2], a stable isotope-labelled internal standard (SIIS) peptide. This assay gave a linear relationship (r(2)>0.99) in a concentration range (2.3-600fmol/μL), and the overall coefficient of variation (CV) for multiple tests was 14.6%. Thus, the contents of this allergenic protein in sweet cherry products could be determined using this assay. This assay should be valuable for allergological investigations of Pru av 2 in sweet cherry and detection of protein contamination in foods. PMID:26988485

  4. Comparative Transcriptome and iTRAQ Proteome Analyses of Citrus Root Responses to Candidatus Liberibacter asiaticus Infection.

    PubMed

    Zhong, Yun; Cheng, Chun-Zhen; Jiang, Nong-Hui; Jiang, Bo; Zhang, Yong-Yan; Wu, Bo; Hu, Min-Lun; Zeng, Ji-Wu; Yan, Hua-Xue; Yi, Gan-Jun; Zhong, Guang-Yan

    2015-01-01

    Root samples of 'Sanhu' red tangerine trees infected with and without Candidatus Liberibacter asiaticus (CLas) were collected at 50 days post inoculation and subjected to RNA-sequencing and isobaric tags for relative and absolute quantification (iTRAQ) to profile the differentially expressed genes (DEGs) and proteins (DEPs), respectively. Quantitative real-time PCR was subsequently used to confirm the expression of 16 selected DEGs. Results showed that a total of 3956 genes and 78 proteins were differentially regulated by HLB-infection. Among the most highly up-regulated DEPs were sperm specific protein 411, copper ion binding protein, germin-like proteins, subtilisin-like proteins and serine carboxypeptidase-like 40 proteins whose transcript levels were concomitantly up-regulated as shown by RNA-seq data. Comparison between our results and those of the previously reported showed that known HLB-modulated biological pathways including cell-wall modification, protease-involved protein degradation, carbohydrate metabolism, hormone synthesis and signaling, transcription activities, and stress responses were similarly regulated by HLB infection but different or root-specific changes did exist. The root unique changes included the down-regulation in genes of ubiquitin-dependent protein degradation pathway, secondary metabolism, cytochrome P450s, UDP-glucosyl transferases and pentatricopeptide repeat containing proteins. Notably, nutrient absorption was impaired by HLB-infection as the expression of the genes involved in Fe, Zn, N and P adsorption and transportation were significantly changed. HLB-infection induced some cellular defense responses but simultaneously reduced the biosynthesis of the three major classes of secondary metabolites, many of which are known to have anti-pathogen activities. Genes involved in callose deposition were up-regulated whereas those involved in callose degradation were also up-regulated, indicating that the sieve tube elements in roots

  5. Comparative Transcriptome and iTRAQ Proteome Analyses of Citrus Root Responses to Candidatus Liberibacter asiaticus Infection

    PubMed Central

    Jiang, Nong-hui; Jiang, Bo; Zhang, Yong-yan; Wu, Bo; Hu, Min-lun; Zeng, Ji-wu; Yan, Hua-xue; Yi, Gan-jun; Zhong, Guang-yan

    2015-01-01

    Root samples of ‘Sanhu’ red tangerine trees infected with and without Candidatus Liberibacter asiaticus (CLas) were collected at 50 days post inoculation and subjected to RNA-sequencing and isobaric tags for relative and absolute quantification (iTRAQ) to profile the differentially expressed genes (DEGs) and proteins (DEPs), respectively. Quantitative real-time PCR was subsequently used to confirm the expression of 16 selected DEGs. Results showed that a total of 3956 genes and 78 proteins were differentially regulated by HLB-infection. Among the most highly up-regulated DEPs were sperm specific protein 411, copper ion binding protein, germin-like proteins, subtilisin-like proteins and serine carboxypeptidase-like 40 proteins whose transcript levels were concomitantly up-regulated as shown by RNA-seq data. Comparison between our results and those of the previously reported showed that known HLB-modulated biological pathways including cell-wall modification, protease-involved protein degradation, carbohydrate metabolism, hormone synthesis and signaling, transcription activities, and stress responses were similarly regulated by HLB infection but different or root-specific changes did exist. The root unique changes included the down-regulation in genes of ubiquitin-dependent protein degradation pathway, secondary metabolism, cytochrome P450s, UDP-glucosyl transferases and pentatricopeptide repeat containing proteins. Notably, nutrient absorption was impaired by HLB-infection as the expression of the genes involved in Fe, Zn, N and P adsorption and transportation were significantly changed. HLB-infection induced some cellular defense responses but simultaneously reduced the biosynthesis of the three major classes of secondary metabolites, many of which are known to have anti-pathogen activities. Genes involved in callose deposition were up-regulated whereas those involved in callose degradation were also up-regulated, indicating that the sieve tube elements in

  6. The advantage of absolute quantification in comparative hormone research as indicated by a newly established real-time RT-PCR: GH, IGF-I, and IGF-II gene expression in the tilapia, Oreochromis niloticus.

    PubMed

    Eppler, Elisabeth; Caelers, Antje; Berishvili, Giorgi; Reinecke, Manfred

    2005-04-01

    We have developed a real-time RT-PCR that absolutely quantifies the gene expression of hormones using the standard curve method. The method avoids cloning procedures by using primer extension to create templates containing a T7 promoter gene sequence. It is rapid since neither separate reverse transcriptions nor postamplification steps are necessary, and its low detection level (2 pg/mug total RNA) allows precise absolute quantification. Using the method, we have quantified the gene expression of GH, IGF-I, and IGF-II in the tilapia. PMID:15891047

  7. Absolute quantification of superoxide dismutase in cytosol and mitochondria of mice hepatic cells exposed to mercury by a novel metallomic approach.

    PubMed

    García-Sevillano, M A; García-Barrera, T; Navarro, F; Gómez-Ariza, J L

    2014-09-01

    In the last years, the development of new methods for analyzing accurate and precise individual metalloproteins is of increasing importance, since numerous metalloproteins are excellent biomarkers of oxidative stress and diseases. In that way, methods based on the use of post column isotopic dilution analysis (IDA) or enriched protein standards are required to obtain a sufficient degree of accuracy, precision and high limits of detection. This paper reports the identification and absolute quantification of Cu,Zn-superoxide dismutase (Cu,Zn-SOD) in cytosol and mitochondria from mice hepatic cells using a innovative column switching analytical approach. The method consisted of orthogonal chromatographic systems coupled to inductively coupling plasma-mass spectrometry equipped with a octopole reaction systems (ICP-ORS-MS) and UV detectors: size exclusion fractionation (SEC) of the cytosolic and mitochondrial extracts followed by online anion exchange chromatographic (AEC) separation of Cu/Zn containing species. After purification, Cu,Zn-SOD was identified after tryptic digestion by molecular mass spectrometry (MS). The MS/MS spectrum of a doubly charged peptide was used to obtain the sequence of the protein using the MASCOT searching engine. This optimized methodology reduces the time of analysis and avoids the use of sample preconcentration and clean-up procedures, such as cut-off centrifuged filters, solid phase extraction (SPE), precipitation procedures, off-line fractions insolates, etc. In this sense, the method is robust, reliable and fast with typical chromatographic run time less than 20 min. Precision in terms of relative standard deviation (n = 5) is of 3-5% and detection limits is 0.21 ngCug(-1). The application of the methodology to hepatic cells from mice exposed to inorganic mercury reveals decreased levels of Cu,Zn-SOD in cytosolic and mitochondrial extracts, as a consequence of the oxidative stress caused by this toxic metal. Additionally, the

  8. Absolute Quantification of Prion Protein (90-231) Using Stable Isotope-Labeled Chymotryptic Peptide Standards in a LC-MRM AQUA Workflow

    NASA Astrophysics Data System (ADS)

    Sturm, Robert; Sheynkman, Gloria; Booth, Clarissa; Smith, Lloyd M.; Pedersen, Joel A.; Li, Lingjun

    2012-09-01

    Substantial evidence indicates that the disease-associated conformer of the prion protein (PrPTSE) constitutes the etiologic agent in prion diseases. These diseases affect multiple mammalian species. PrPTSE has the ability to convert the conformation of the normal prion protein (PrPC) into a β-sheet rich form resistant to proteinase K digestion. Common immunological techniques lack the sensitivity to detect PrPTSE at subfemtomole levels, whereas animal bioassays, cell culture, and in vitro conversion assays offer higher sensitivity but lack the high-throughput the immunological assays offer. Mass spectrometry is an attractive alternative to the above assays as it offers high-throughput, direct measurement of a protein's signature peptide, often with subfemtomole sensitivities. Although a liquid chromatography-multiple reaction monitoring (LC-MRM) method has been reported for PrPTSE, the chemical composition and lack of amino acid sequence conservation of the signature peptide may compromise its accuracy and make it difficult to apply to multiple species. Here, we demonstrate that an alternative protease (chymotrypsin) can produce signature peptides suitable for a LC-MRM absolute quantification (AQUA) experiment. The new method offers several advantages, including: (1) a chymotryptic signature peptide lacking chemically active residues (Cys, Met) that can confound assay accuracy; (2) low attomole limits of detection and quantitation (LOD and LOQ); and (3) a signature peptide retaining the same amino acid sequence across most mammals naturally susceptible to prion infection as well as important laboratory models. To the authors' knowledge, this is the first report on the use of a non-tryptic peptide in a LC-MRM AQUA workflow.

  9. Pyridoxamine-5-phosphate enzyme-linked immune mass spectrometric assay substrate for linear absolute quantification of alkaline phosphatase to the yoctomole range applied to prostate specific antigen.

    PubMed

    Florentinus-Mefailoski, Angelique; Marshall, John G

    2014-11-01

    There is a need to measure proteins that are present in concentrations below the detection limits of existing colorimetric approaches with enzyme-linked immunoabsorbent assays (ELISA). The powerful enzyme alkaline phosphatase conjugated to the highly specific bacterial protein streptavidin binds to biotinylated macromolecules like proteins, antibodies, or other ligands and receptors with a high affinity. The binding of the biotinylated detection antibody, with resulting amplification of the signal by the catalytic production of reporter molecules, is key to the sensitivity of ELISA. The specificity and amplification of the signal by the enzyme alkaline phosphatase in ELISA together with the sensitivity of liquid chromatography electrospray ionization and mass spectrometry (LC-ESI-MS) to detect femtomole to picomole amounts of reporter molecules results in an ultrasensitive enzyme-linked immune mass spectrometric assay (ELIMSA). The novel ELIMSA substrate pyridoxamine-5-phosphate (PA5P) is cleaved by the enzyme alkaline phosphatase to yield the basic and hydrophilic product pyridoxamine (PA) that elutes rapidly with symmetrical peaks and a flat baseline. Pyridoxamine (PA) and (13)C PA were both observed to show a linear relationship between log ion intensity and quantity from picomole to femtomole amounts by liquid chromatography-electrospray ionization and mass spectrometry. Four independent methods, (i) internal (13)C isotope PA dilution curves, (ii) internal (13)C isotope one-point calibration, (iii) external PA standard curve, and (iv) external (13)C PA standard curve, all agreed within 1 digit in the same order of magnitude on the linear quantification of PA. Hence, a mass spectrometer can be used to robustly detect 526 ymol of the alkaline phosphatase streptavidin probe and accurately quantify zeptomole amounts of PSA against log linear absolute standard by micro electrospray on a simple ion trap. PMID:25259405

  10. Easy Absolute Values? Absolutely

    ERIC Educational Resources Information Center

    Taylor, Sharon E.; Mittag, Kathleen Cage

    2015-01-01

    The authors teach a problem-solving course for preservice middle-grades education majors that includes concepts dealing with absolute-value computations, equations, and inequalities. Many of these students like mathematics and plan to teach it, so they are adept at symbolic manipulations. Getting them to think differently about a concept that they…

  11. Quantification of Protein Expression Changes in the Aging Left Ventricle of Rattus norvegicus

    PubMed Central

    Grant, Jennifer E.; Bradshaw, Amy D.; Schwacke, John H.; Baicu, Catalin F.; Zile, Michael R.; Schey, Kevin L.

    2009-01-01

    As the heart ages, electrophysiological and biochemical changes can occur, and the ventricle in many cases loses distensibility, impairing diastolic function. How the proteomic signature of the aged ventricle is unique in comparison to young hearts is still under active investigation. We have undertaken a quantitative proteomics study of aging left ventricles (LVs) utilizing the isobaric Tagging for Relative and Absolute Quantification (iTRAQ) methodology. Differential protein expression was observed for 117 proteins including proteins involved in cell signaling, the immune response, structural proteins, and proteins mediating responses to oxidative stress. For many of these proteins, this is the first report of an association with the aged myocardium. Additionally, two proteins of unknown function were identified. This work serves as the basis for making future comparisons of the aged left ventricle proteome to that of left ventricles obtained from other models of disease and heart failure. PMID:19603826

  12. Quantitative proteomics analysis with iTRAQ in human lenses with nuclear cataracts of different axial lengths

    PubMed Central

    Zhou, Haiyan; Yan, Weijia; Wang, Xinchuan; Ma, Yong; Wang, Jianping

    2016-01-01

    Purpose The goal of this study was to identify and quantify the differentially expressed proteins in human nuclear cataract with different axial lengths. Methods Thirty-six samples of human lens nuclei with hardness grade III or IV were obtained during cataract surgery with extracapsular cataract extraction (ECCE). Six healthy transparent human lens nuclei were obtained from fresh healthy cadaver eyes during corneal transplantation surgery. The lens nuclei were divided into seven groups (six lenses in each group) according to the optic axis: Group A (mean axial length 28.7±1.5 mm; average age 59.8±1.9 years), Group B (mean axial length 23.0±0.4 mm; average age 60.3±2.5 years), Group C (mean axial length 19.9±0.5 mm; average age 55.1±2.5 years), Group D (mean axial length 28.7±1.4 mm; average age 58.0±4.0 years), Group E (mean axial length 23.0±0.3 mm; average age 56.9±4.2 years), and Group F (mean axial length 20.7±0.6 mm; average age 57.6±5.3 years). The six healthy transparent human lenses were included in a younger group with standard optic axes, Group G (mean axial length 23.0±0.5 mm; average age 34.7±4.2 years).Water-soluble, water-insoluble, and water-insoluble–urea-soluble protein fractions were extracted from the samples. The three-part protein fractions from the individual lenses were combined to form the total proteins of each sample. The proteomic profiles of each group were analyzed using 8-plex isobaric tagging for relative and absolute protein quantification (iTRAQ) labeling combined with two-dimensional liquid chromatography tandem mass spectrometry (2D-LC-MS/MS). The data were analyzed with ProteinPilot software for peptide matching, protein identification, and quantification. Differentially expressed proteins were validated with western blotting. Results We employed biological and technical replicates and selected the intersection of the two sets of results, which included 40 proteins. From the 40 proteins identified, six were

  13. iTRAQ technology-based identification of human peripheral serum proteins associated with depression.

    PubMed

    Wang, Q; Su, X; Jiang, X; Dong, X; Fan, Y; Zhang, J; Yu, C; Gao, W; Shi, S; Jiang, J; Jiang, W; Wei, T

    2016-08-25

    Clinical depression is one of the most common and debilitating psychiatric disorders and contributes to increased risks of disability and suicide. Differentially expressed serum proteins may serve as biomarkers for diagnosing depression. In this study, samples from depressed patients are aggregated into a pool (22×100μL serum was used) and samples from healthy volunteers are aggregated into the other pool (20×100μL serum was used). Isobaric tag for relative and absolute quantitation (iTRAQ) technology and tandem mass spectrometry were employed to screen for differentially expressed serum protein in two separate pools. We identified 472 proteins in the serum samples, and 154 of these presented differences in abundance between the depression and control groups. Ingenuity pathway analysis (IPA) was employed to identify the highest scoring proteins in signaling pathway networks. Finally, four differentially expressed proteins were validated by enzyme-linked immuno sorbent assay (ELISA). Proteomic studies revealed that levels of c-reaction protein (CRP), inter-alpha-trypsin inhibitor heavy chain H4 (ITIH4), serum amyloid A1 (SAA1) and angiopoietin-like 3 (ANGPTL3) were substantially increased in depressed patients compared with the healthy control group. Therefore, these differentially expressed proteins may represent potential markers for the clinical diagnosis of depression. PMID:27268281

  14. AKAP signaling in reinstated cocaine seeking revealed by iTRAQ proteomic analysis.

    PubMed

    Reissner, Kathryn J; Uys, Joachim D; Schwacke, John H; Comte-Walters, Susanna; Rutherford-Bethard, Jennifer L; Dunn, Thomas E; Blumer, Joe B; Schey, Kevin L; Kalivas, Peter W

    2011-04-13

    To identify candidate proteins in the nucleus accumbens (NAc) as potential pharmacotherapeutic targets for treating cocaine addition, an 8-plex iTRAQ (isobaric tag for relative and absolute quantitation) proteomic screen was performed using NAc tissue obtained from rats trained to self-administer cocaine followed by extinction training. Compared with yoked-saline controls, 42 proteins in a postsynaptic density (PSD)-enriched subfraction of the NAc from cocaine-trained animals were identified as significantly changed. Among proteins of interest whose levels were identified as increased was AKAP79/150, the rat ortholog of human AKAP5, a PSD scaffolding protein that localizes signaling molecules to the synapse. Functional downregulation of AKAP79/150 by microinjecting a cell-permeable synthetic AKAP (A-kinase anchor protein) peptide into the NAc to disrupt AKAP-dependent signaling revealed that inhibition of AKAP signaling impaired the reinstatement of cocaine seeking. Reinstatement of cocaine seeking is thought to require upregulated surface expression of AMPA glutamate receptors, and the inhibitory AKAP peptide reduced the PSD content of protein kinase A (PKA) as well as surface expression of GluR1 in NAc. However, reduced surface expression was not associated with changes in PKA phosphorylation of GluR1. This series of experiments demonstrates that proteomic analysis provides a useful tool for identifying proteins that can regulate cocaine relapse and that AKAP proteins may contribute to relapse vulnerability by promoting increased surface expression of AMPA receptors in the NAc. PMID:21490206

  15. Creating standards for absolute quantification of Coxiella burnetii in real-time PCR--a comparative study based on transmission electron microscopy.

    PubMed

    Sting, Reinhard; Molz, Kerstin; Hoferer, Marc

    2015-01-01

    Quantitative standards are a prerequisite for quality control and quantification of pathogens. In this study the creation of quantitative standards for use in qPCR is described using the pathogen Coxiella burnetii. Quantification of Coxiella burnetii particles by transmission electron microscopy (TEM) was used as primary standard and compared with data obtained by light microscopy as well as genome equivalents (GE) and plasmid units (recombinant plasmid). Based on pathogen quantification using TEM and light microscopy, pathogen detection limits of 6 and 2 C. burnetii particles could be determined per com1 qPCR reaction, respectively. In comparison, the detection limits were 17 and 13 pathogen units using GE and plasmid units, respectively. The standard generated by TEM can be used as gold standard for universal application due to high accuracy, quantitative control of the producing process and supplying intact pathogen particles. PMID:25465354

  16. Real-time RT-PCR for detection, identification and absolute quantification of viral haemorrhagic septicaemia virus using different types of standards.

    PubMed

    Lopez-Vazquez, C; Bandín, I; Dopazo, C P

    2015-05-21

    In the present study, 2 systems of real-time RT-PCR-one based on SYBR Green and the other on TaqMan-were designed to detect strains from any genotype of viral haemorrhagic septicaemia virus (VHSV), with high sensitivity and repeatability/reproducibility. In addition, the method was optimized for quantitative purposes (qRT-PCR), and standard curves with different types of reference templates were constructed and compared. Specificity was tested against 26 isolates from 4 genotypes. The sensitivity of the procedures was first tested against cell culture isolation, obtaining a limit of detection (LD) of 100 TCID50 ml-1 (100-fold below the LD using cell culture), at a threshold cycle value (Ct) of 36. Sensitivity was also evaluated using RNA from crude (LD = 1 fg; 160 genome copies) and purified virus (100 ag; 16 copies), plasmid DNA (2 copies) and RNA transcript (15 copies). No differences between both chemistries were observed in sensitivity and dynamic range. To evaluate repeatability and reproducibility, all experiments were performed in triplicate and on 3 different days, by workers with different levels of experience, obtaining Ct values with coefficients of variation always <5. This fact, together with the high efficiency and R2 values of the standard curves, encouraged us to analyse the reliability of the method for viral quantification. The results not only demonstrated that the procedure can be used for detection, identification and quantification of this virus, but also demonstrated a clear correlation between the regression lines obtained with different standards, which will help scientists to compare sensitivity results between different studies. PMID:25993885

  17. Interconversion of Peptide Mass Spectral Libraries Derivatized with iTRAQ or TMT Labels.

    PubMed

    Zhang, Zheng; Yang, Xiaoyu; Mirokhin, Yuri A; Tchekhovskoi, Dmitrii V; Ji, Weihua; Markey, Sanford P; Roth, Jeri; Neta, Pedatsur; Hizal, Deniz Baycin; Bowen, Michael A; Stein, Stephen E

    2016-09-01

    Derivitization of peptides with isobaric tags such as iTRAQ and TMT is widely employed in proteomics due to their compatibility with multiplex quantitative measurements. We recently made publicly available a large peptide library derived from iTRAQ 4-plex labeled spectra. This resource has not been used for identifying peptides labeled with related tags with different masses, because values for virtually all masses of precursor and most product ions would differ for ions containing the different tags as well as containing different tag-specific peaks. We describe a method for interconverting spectra from iTRAQ 4-plex to TMT (6- and 10-plex) and to iTRAQ 8-plex. We interconvert spectra by appropriately mass shifting sequence ions and discarding derivative-specific peaks. After this "cleaning" of search spectra, we demonstrate that the converted libraries perform well in terms of peptide spectral matches. This is demonstrated by comparing results using sequence database searches as well as by comparing search effectiveness using original and converted libraries. At 1% FDR TMT labeled query spectra match 97% as many spectra against a converted iTRAQ library as compared to an original TMT library. Overall this interconversion strategy provides a practical way to extend results from one derivatization method to others that share related chemistry and do not significantly alter fragmentation profiles. PMID:27386737

  18. Pitfalls and advantages of different strategies for the absolute quantification of N-acetyl aspartate, creatine and choline in white and grey matter by 1H-MRS.

    PubMed

    Malucelli, E; Manners, D N; Testa, C; Tonon, C; Lodi, R; Barbiroli, B; Iotti, S

    2009-12-01

    This study extensively investigates different strategies for the absolute quantitation of N-acetyl aspartate, creatine and choline in white and grey matter by (1)H-MRS at 1.5 T. The main focus of this study was to reliably estimate metabolite concentrations while reducing the scan time, which remains as one of the main problems in clinical MRS. Absolute quantitation was based on the water-unsuppressed concentration as the internal standard. We compared strategies based on various experimental protocols and post-processing strategies. Data were obtained from 30 control subjects using a PRESS sequence at several TE to estimate the transverse relaxation time, T(2), of the metabolites. Quantitation was performed with the algorithm QUEST using two different metabolite signal basis sets: a whole-metabolite basis set (WhoM) and a basis set in which the singlet signals were split from the coupled signals (MSM). The basis sets were simulated in vivo for each TE used. Metabolites' T(2)s were then determined by fitting the estimated signal amplitudes of the metabolites obtained at different TEs. Then the absolute concentrations (mM) of the metabolites were assessed for each subject using the estimated signal amplitudes and either the mean estimated relaxation times of all subjects (mean protocol, MP) or the T(2) estimated from the spectra derived from the same subject (individual protocol, IP). Results showed that MP represents a less time-consuming alternative to IP in the quantitation of brain metabolites by (1)H-MRS in both grey and white matter, with a comparable accuracy when performed by MSM. It was also shown that the acquisition time might be further reduced by using a variant of MP, although with reduced accuracy. In this variant, only one water-suppressed and one water-unsuppressed spectra were acquired, drastically reducing the duration of the entire MRS examination. However, statistical analysis highlights the reduced accuracy of MP when performed using Who

  19. ITRAQ-based quantitative proteomics reveals apolipoprotein A-I and transferrin as potential serum markers in CA19-9 negative pancreatic ductal adenocarcinoma.

    PubMed

    Lin, Chao; Wu, Wen-Chuan; Zhao, Guo-Chao; Wang, Dan-Song; Lou, Wen-Hui; Jin, Da-Yong

    2016-08-01

    Currently the diagnosis of pancreatic ductal adenocarcinoma (PDAC) relies on CA19-9 and radiological means, whereas some patients do not have elevated levels of CA19-9 secondary to pancreatic cancer. The purpose of this study was to identify potential serum biomarkers for CA19-9 negative PDAC.A total of 114 serum samples were collected from 3 groups: CA19-9 negative PDAC patients (n = 34), CA19-9 positive PDAC patients (n = 44), and healthy volunteers (n = 36), whereas the first 12 samples from each group were used for isobaric tags for relative and absolute quantitation (iTRAQ) analysis. Thereafter, candidate biomarkers were selected for validation by enzyme-linked immunosorbent assay (ELISA) with the rest specimens.Using the iTRAQ approach, a total of 5 proteins were identified as significantly different between CA19-9 negative PDAC patients and healthy subjects according to our defined criteria. Apolipoprotein A-I (APOA-I) and transferrin (TF) were selected to validate the proteomic results by ELISA in a further 78 serum specimens. It revealed that TF significantly correlated with the degree of histological differentiation (P = 0.042), and univariate and multivariate analyses indicated that TF is an independent prognostic factor for survival (hazard ratio, 0.302; 95% confidence interval, 0.118-0.774; P = 0.013) of patients with PDAC after curative surgery.ITRAQ-based quantitative proteomics revealed that APOA-I and TF may be potential CA19-9 negative PDAC serum markers. PMID:27495108

  20. Generation of a predicted protein database from EST data and application to iTRAQ analyses in grape (Vitis vinifera cv. Cabernet Sauvignon) berries at ripening initiation

    PubMed Central

    Lücker, Joost; Laszczak, Mario; Smith, Derek; Lund, Steven T

    2009-01-01

    Background iTRAQ is a proteomics technique that uses isobaric tags for relative and absolute quantitation of tryptic peptides. In proteomics experiments, the detection and high confidence annotation of proteins and the significance of corresponding expression differences can depend on the quality and the species specificity of the tryptic peptide map database used for analysis of the data. For species for which finished genome sequence data are not available, identification of proteins relies on similarity to proteins from other species using comprehensive peptide map databases such as the MSDB. Results We were interested in characterizing ripening initiation ('veraison') in grape berries at the protein level in order to better define the molecular control of this important process for grape growers and wine makers. We developed a bioinformatic pipeline for processing EST data in order to produce a predicted tryptic peptide database specifically targeted to the wine grape cultivar, Vitis vinifera cv. Cabernet Sauvignon, and lacking truncated N- and C-terminal fragments. By searching iTRAQ MS/MS data generated from berry exocarp and mesocarp samples at ripening initiation, we determined that implementation of the custom database afforded a large improvement in high confidence peptide annotation in comparison to the MSDB. We used iTRAQ MS/MS in conjunction with custom peptide db searches to quantitatively characterize several important pathway components for berry ripening previously described at the transcriptional level and confirmed expression patterns for these at the protein level. Conclusion We determined that a predicted peptide database for MS/MS applications can be derived from EST data using advanced clustering and trimming approaches and successfully implemented for quantitative proteome profiling. Quantitative shotgun proteome profiling holds great promise for characterizing biological processes such as fruit ripening initiation and may be further

  1. ITRAQ-based quantitative proteomics reveals apolipoprotein A-I and transferrin as potential serum markers in CA19-9 negative pancreatic ductal adenocarcinoma

    PubMed Central

    Lin, Chao; Wu, Wen-Chuan; Zhao, Guo-Chao; Wang, Dan-Song; Lou, Wen-Hui; Jin, Da-Yong

    2016-01-01

    Abstract Currently the diagnosis of pancreatic ductal adenocarcinoma (PDAC) relies on CA19-9 and radiological means, whereas some patients do not have elevated levels of CA19-9 secondary to pancreatic cancer. The purpose of this study was to identify potential serum biomarkers for CA19-9 negative PDAC. A total of 114 serum samples were collected from 3 groups: CA19-9 negative PDAC patients (n = 34), CA19-9 positive PDAC patients (n = 44), and healthy volunteers (n = 36), whereas the first 12 samples from each group were used for isobaric tags for relative and absolute quantitation (iTRAQ) analysis. Thereafter, candidate biomarkers were selected for validation by enzyme-linked immunosorbent assay (ELISA) with the rest specimens. Using the iTRAQ approach, a total of 5 proteins were identified as significantly different between CA19-9 negative PDAC patients and healthy subjects according to our defined criteria. Apolipoprotein A-I (APOA-I) and transferrin (TF) were selected to validate the proteomic results by ELISA in a further 78 serum specimens. It revealed that TF significantly correlated with the degree of histological differentiation (P = 0.042), and univariate and multivariate analyses indicated that TF is an independent prognostic factor for survival (hazard ratio, 0.302; 95% confidence interval, 0.118–0.774; P = 0.013) of patients with PDAC after curative surgery. ITRAQ-based quantitative proteomics revealed that APOA-I and TF may be potential CA19-9 negative PDAC serum markers. PMID:27495108

  2. An integrated approach based on multiplexed protein array and iTRAQ labeling for in-depth identification of pathways associated to IVF outcome.

    PubMed

    Severino, Valeria; Malorni, Livia; Cicatiello, Anna Emilia; D'Esposito, Vittoria; Longobardi, Salvatore; Colacurci, Nicola; Miraglia, Nadia; Sannolo, Nicola; Farina, Annarita; Chambery, Angela

    2013-01-01

    The emergence of high-throughput protein quantification methodologies has enabled the comprehensive characterization by longitudinal and cross-sectional studies of biological fluids under physiological and pathological conditions. In particular, the simultaneous investigation of cytokines and growth factors signaling pathways and their associated downstream effectors by integrated multiplexed approaches offers a powerful strategy to gain insights into biological networks and processes in living systems. A growing body of research indicates that bioactive molecules of human reproductive fluids, including human follicular fluid (hFF), may affect oocyte quality, fertilization and embryo development, thus potentially influencing the physiopathology of pregnancy-related conditions. In this work, an iTRAQ labeling strategy has been complemented with a multiplexed protein array approach to analyze hFFs with the aim to investigate biological processes and pathways related to in vitro fertilization (IVF) outcome. The iTRAQ labeling strategy lead to the quantification of 89 proteins, 30 of which were differentially expressed in hFFs with successful compared to unsuccessful IVF outcome. The targeted study, based on multiplexed antibody protein arrays, allowed the simultaneous quantification of 27 low abundance proteins, including growth factors, chemokines and cytokines endowed with pro- and anti-inflammatory activity. A significant number of differentially regulated proteins were involved in biological functions related to blood coagulation, acute phase response signaling and complement system. Overall, the present results provide an integrated overview of protein changes in hFFs associated to IVF outcome, thus improving current knowledge in reproductive medicine and fertility research. PMID:24146976

  3. Absolute protein quantification of clinically relevant cytochrome P450 enzymes and UDP-glucuronosyltransferases by mass spectrometry-based targeted proteomics.

    PubMed

    Gröer, C; Busch, D; Patrzyk, M; Beyer, K; Busemann, A; Heidecke, C D; Drozdzik, M; Siegmund, W; Oswald, S

    2014-11-01

    Cytochrome P450 (CYP) enzymes and UDP-glucuronosyltransferases (UGT) are major determinants in the pharmacokinetics of most drugs on the market. To investigate their impact on intestinal and hepatic drug metabolism, we developed and validated quantification methods for nine CYP (CYP1A2, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1, CYP3A4 and CYP3A5) and four UGT enzymes (UGT1A1, UGT1A3, UGT2B7 and UGT2B15) that have been shown to be of clinical relevance in human drug metabolism. Protein quantification was performed by targeted proteomics using liquid chromatography with tandem mass spectrometry (LC-MS/MS)-based determination of enzyme specific peptides after tryptic digestion using in each case stable isotope labelled peptides as internal standard. The chromatography of the respective peptides was performed with gradient elution using a reversed phase (C18) column (Ascentis(®) Express Peptide ES-C18, 100mm×2.1mm, 2.7μm) and 0.1% formic acid (FA) as well as acetonitrile with 0.1% FA as mobile phases at a flow rate of 300μl/min. The MS/MS detection of all peptides was done simultaneously with a scheduled multiple reaction monitoring (MRM) method in the positive mode by monitoring in each case three mass transitions per proteospecific peptide and the internal standard. The assays were validated according to current bioanalytical guidelines with respect to specificity, linearity (0.25-50nM), within-day and between-day accuracy and precision, digestion efficiency as well as stability. Finally, the developed method was successfully applied to determine the CYP and UGT protein amount in human liver and intestinal microsomes. The method was shown to possess sufficient specificity, sensitivity, accuracy, precision and stability to quantify clinically relevant human CYP and UGT enzymes. PMID:25218440

  4. Absolute and relative quantification and calibration for sectioning fluorescence microscopy using standardized uniform fluorescent layers and SIPchart-based correction procedures

    NASA Astrophysics Data System (ADS)

    Zwier, J. M.; Oomen, L.; Brocks, L.; Jalink, K.; Brakenhoff, G. J.

    2007-02-01

    The total or integrated fluorescence intensity of a through-focus series of a thin standardized uniform fluorescent or calibration layer is shown to be suitable for image intensity correction and calibration in sectioning microscopy. This integrated intensity can be derived from the earlier introduced SectionedImagingProperty or SIPcharts, derived from the 3D layer datasets. By correcting the 3D image of an object with the 3D image of the standardized uniform fluorescent layer obtained under identical conditions one is able to express the object fluorescence in units fluorescence of the calibration layer. With object fluorescence intensities in fluorescence layer unit's or FLU's the object image intensities becomes independent of microscope system and imaging conditions. A direct result is that the often-appreciable lateral intensity variations present in confocal microscopy are eliminated (shading correction). Of more general value is that images obtained with different objectives, magnifications or from different microscope systems can be quantitatively related to each other. The effectiveness of shading correction and relating images obtained under various microscope conditions is demonstrated on images of standard fluorocent beads. Expressing the object fluorescence in FLU units seems to be a promising approach for general quantification of sectioning imaging enabling cross-correlation of imaging results over time and between imaging systems.

  5. Qualification of a surrogate matrix-based absolute quantification method for amyloid-β₄₂ in human cerebrospinal fluid using 2D UPLC-tandem mass spectrometry.

    PubMed

    Korecka, Magdalena; Waligorska, Teresa; Figurski, Michal; Toledo, Jon B; Arnold, Steven E; Grossman, Murray; Trojanowski, John Q; Shaw, Leslie M

    2014-01-01

    The primary aims of this work were to: 1) establish a calibrator surrogate matrix for quantification of amyloid-β (Aβ)42 in human cerebrospinal fluid (CSF) and preparation of quality control samples for LC-MS-MS methodology, 2) validate analytical performance of the assay, and 3) evaluate its diagnostic utility and compare it with the AlzBio3 immunoassay. The analytical methodology was based on a 2D-UPLC-MS-MS platform. Sample pretreatment used 5 M guanidine hydrochloride and extraction on μElution SPE columns as previously described. A column cleaning procedure involved gradual removal of aqueous solvents by acetonitrile assured consistent long-term chromatography performance. Receiver-operator characteristic (ROC) curve and correlation analyses evaluated the diagnostic utility of UPLC-MS-MS compared to AlzBio3 immunoassay for detection of Alzheimer's disease (AD). The surrogate matrix, artificial CSF containing 4 mg/mL of BSA, provides linear and reproducible calibration comparable to human pooled CSF as calibration matrix. Appropriate cleaning of the trapping and analytical columns provided every-day, trouble-free runs. Analyses of CSF Aβ42 showed that UPLC-MS-MS distinguished neuropathologically-diagnosed AD subjects from healthy controls with at least equivalent diagnostic utility to AlzBio3. Comparison of ROC curves for these two assays showed no statistically significant difference (p = 0.2229). Linear regression analysis of Aβ42 concentrations measured by this mass spectrometry-based method compared to the AlzBio3 immunoassay showed significantly higher but highly correlated results. In conclusion, the newly established surrogate matrix for 2D-UPLC-MS-MS measurement of Aβ42 provides selective, reproducible, and accurate results. The documented analytical performance and diagnostic performance for AD versus controls supports consideration as a candidate reference method. PMID:24625802

  6. Ferromagnetic particles as a rapid and robust sample preparation for the absolute quantification of seven eicosanoids in human plasma by UHPLC-MS/MS.

    PubMed

    Suhr, Anna Catharina; Bruegel, Mathias; Maier, Barbara; Holdt, Lesca Miriam; Kleinhempel, Alisa; Teupser, Daniel; Grimm, Stefanie H; Vogeser, Michael

    2016-06-01

    We used ferromagnetic particles as a novel technique to deproteinize plasma samples prior to quantitative UHPLC-MS/MS analysis of seven eicosanoids [thromboxane B2 (TXB2), prostaglandin E2 (PGE2), PGD2, 5-hydroxyeicosatetraenoic acid (5-HETE), 11-HETE, 12-HETE, arachidonic acid (AA)]. A combination of ferromagnetic particle enhanced deproteination and subsequent on-line solid phase extraction (on-line SPE) realized quick and convenient semi-automated sample preparation-in contrast to widely used manual SPE techniques which are rather laborious and therefore impede the investigation of AA metabolism in larger patient cohorts. Method evaluation was performed according to a protocol based on the EMA guideline for bioanalytical method validation, modified for endogenous compounds. Calibrators were prepared in ethanol. The calibration curves were found to be linear in a range of 0.1-80ngmL(-1) (TXB2, PGE2, PGD2), 0.05-40ngmL(-1) (5-HETE, 11-HETE), 0.5-400ngmL(-1) (12-HETE) and 25-9800ngmL(-1) (AA). Regarding all analytes and all quality controls, the resulting precision data (inter-assay 2.6 %-15.5 %; intra-assay 2.5 %-15.1 %, expressed as variation coefficient) as well as the accuracy results (inter-assay 93.3 %-125 %; intra-assay 91.7 %-114 %) were adequate. Further experiments addressing matrix effect, recovery and robustness, yielded also very satisfying results. As a proof of principle, the newly developed LC-MS/MS assay was employed to determine the capacity of AA metabolite release after whole blood stimulation in healthy blood donors. For this purpose, whole blood specimens of 5 healthy blood donors were analyzed at baseline and after a lipopolysaccharide (LPS) induced blood cell activation. In several baseline samples some eicosanoids levels were below the Lower Limit of Quantification. However, in the stimulated samples all chosen eicosanoids (except PGD2) could be quantified. These results, in context with those obtained in validation, demonstrate the

  7. Absolute Zero

    NASA Astrophysics Data System (ADS)

    Donnelly, Russell J.; Sheibley, D.; Belloni, M.; Stamper-Kurn, D.; Vinen, W. F.

    2006-12-01

    Absolute Zero is a two hour PBS special attempting to bring to the general public some of the advances made in 400 years of thermodynamics. It is based on the book “Absolute Zero and the Conquest of Cold” by Tom Shachtman. Absolute Zero will call long-overdue attention to the remarkable strides that have been made in low-temperature physics, a field that has produced 27 Nobel Prizes. It will explore the ongoing interplay between science and technology through historical examples including refrigerators, ice machines, frozen foods, liquid oxygen and nitrogen as well as much colder fluids such as liquid hydrogen and liquid helium. A website has been established to promote the series: www.absolutezerocampaign.org. It contains information on the series, aimed primarily at students at the middle school level. There is a wealth of material here and we hope interested teachers will draw their student’s attention to this website and its substantial contents, which have been carefully vetted for accuracy.

  8. Absolute Summ

    NASA Astrophysics Data System (ADS)

    Phillips, Alfred, Jr.

    Summ means the entirety of the multiverse. It seems clear, from the inflation theories of A. Guth and others, that the creation of many universes is plausible. We argue that Absolute cosmological ideas, not unlike those of I. Newton, may be consistent with dynamic multiverse creations. As suggested in W. Heisenberg's uncertainty principle, and with the Anthropic Principle defended by S. Hawking, et al., human consciousness, buttressed by findings of neuroscience, may have to be considered in our models. Predictability, as A. Einstein realized with Invariants and General Relativity, may be required for new ideas to be part of physics. We present here a two postulate model geared to an Absolute Summ. The seedbed of this work is part of Akhnaton's philosophy (see S. Freud, Moses and Monotheism). Most important, however, is that the structure of human consciousness, manifest in Kenya's Rift Valley 200,000 years ago as Homo sapiens, who were the culmination of the six million year co-creation process of Hominins and Nature in Africa, allows us to do the physics that we do. .

  9. Absolute quantification of UGT1A1 in various tissues and cell lines using isotope label-free UPLC-MS/MS method determines its turnover number and correlates with its glucuronidation activities.

    PubMed

    Xu, Beibei; Gao, Song; Wu, Baojian; Yin, Taijun; Hu, Ming

    2014-01-01

    Uridine 5'-diphosphate-glucuronosyltransferase (UGT)1A1 is a major phase II metabolism enzyme responsible for glucuronidation of drugs and endogenous compounds. The purpose of this study was to determine the expression level of UGT1A1 in human liver microsomes and human cell lines by using an isotope label-free LC-MS/MS method. A Waters Ultra performance liquid chromatography (UPLC) system coupled with an API 5500Qtrap mass spectrometer was used for the analysis. Two signature peptides (Pep-1, and Pep-2) were employed to quantify UGT1A1 by multiple reaction monitoring (MRM) approach. Standard addition method was used to validate the assay to account for the matrix effect. 17β-Estradiol was used as the marker substrate to determine UGT1A1 activities. The validated method has a linear range of 200-0.0195nM for both signature peptides. The precision, accuracy, and matrix effect were in acceptable ranges. UGT1A1 expression levels were then determined using 8 individual human liver microsomes, a pooled human liver microsomes, three UGT1A1 genotyped human liver microsomes, and four cell lines (Caco-2, MCF-7, Hela, and HepG2). The correlations study showed that the UGT1A1 protein levels were strongly correlated with its glucuronidation activities in human liver microsomes (R(2)=0.85) and in microsomes prepared from cell lines (R(2)=0.95). Isotope-labeled peptides were not necessary for LC-MS/MS quantitation of proteins. The isotope label-free absolute quantification method used here had good accuracy, sensitivity, linear range, and reproducibility, and were used successfully for the accurate determination of UGT1A1 from tissues and cell lines. PMID:24055854

  10. Serum Proteomic Analysis Based on iTRAQ in Miners Exposed to Soil Containing Rare Earth Elements.

    PubMed

    Liu, Heming; Wang, Jianzhong; Yang, Zenghua; Wang, Kunzheng

    2015-10-01

    To explore the toxic effects of rare earth elements (REEs) accumulated in human body, adopting the inductively coupled plasma mass spectrometry (ICP-MS) method, the present study measured REEs and the contents of eight other elements (Ca, Fe, Cu, Na, K, Zn, Mg, and P) in the hair of eight persons exposed to soil containing REEs for a long time as well as in the control group. In addition, proteomic analysis of serum of the two groups was conducted by isobaric tags for relative and absolute quantitation (iTRAQ) technique. Experimental results show that in the hair of the two groups, 15 REEs and eight other elements were detected, in which the content of La, Ce, Pr, Nd, Tb, Ho, Tm, Yb, and Fe in the exposure group is significantly higher than that of the control group, but the content of Ca in the exposure group is significantly lower than that of the control group; analysis yields out 29 differentially expressed proteins, in which 16 proteins are upregulated and 13 proteins are downregulated. Bioinformatics analysis of differentially expressed proteins demonstrates that they participate in various biological processes and five Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, forming an interaction network. Besides, some differentially expressed proteins may be related to neurovirulence, hepatotoxicity, pathological fibrosis, osteoporosis, and anticoagulation caused by REEs. The present experiment investigated the toxic effects of REEs accumulated in human body at the molecular level, which may lay a foundation for the future research of biological effect, threshold limit values, protection from exposure, and reasonable application of REEs. PMID:25800652

  11. Proteomic Identification and Quantification of S-glutathionylation in Mouse Macrophages Using Resin-Assisted Enrichment and Isobaric Labeling

    SciTech Connect

    Su, Dian; Gaffrey, Matthew J.; Guo, Jia; Hatchell, Kayla E.; Chu, Rosalie K.; Clauss, Therese RW; Aldrich, Joshua T.; Wu, Si; Purvine, Samuel O.; Camp, David G.; Smith, Richard D.; Thrall, Brian D.; Qian, Weijun

    2014-02-11

    Protein S-glutathionylation (SSG) is an important regulatory posttranslational modification of protein cysteine (Cys) thiol redox switches, yet the role of specific cysteine residues as targets of modification is poorly understood. We report a novel quantitative mass spectrometry (MS)-based proteomic method for site-specific identification and quantification of S-glutathionylation across different conditions. Briefly, this approach consists of initial blocking of free thiols by alkylation, selective reduction of glutathionylated thiols and enrichment using thiol affinity resins, followed by on-resin tryptic digestion and isobaric labeling with iTRAQ (isobaric tags for relative and absolute quantitation) for MS-based identification and quantification. The overall approach was validated by application to RAW 264.7 mouse macrophages treated with different doses of diamide to induce glutathionylation. A total of 1071 Cys-sites from 690 proteins were identified in response to diamide treatment, with ~90% of the sites displaying >2-fold increases in SSG-modification compared to controls.. This approach was extended to identify potential SSG modified Cys-sites in response to H2O2, an endogenous oxidant produced by activated macrophages and many pathophysiological stimuli. The results revealed 364 Cys-sites from 265 proteins that were sensitive to S-glutathionylation in response to H2O2 treatment. These proteins covered a range of molecular types and molecular functions with free radical scavenging, and cell death and survival included as the most significantly enriched functional categories. Overall the results demonstrate that our approach is effective for site-specific identification and quantification of S-glutathionylated proteins. The analytical strategy also provides a unique approach to determining the major pathways and cell processes most susceptible to glutathionylation at a proteome-wide scale.

  12. Proteomic identification and quantification of S-glutathionylation in mouse macrophages using resin-assisted enrichment and isobaric labeling.

    PubMed

    Su, Dian; Gaffrey, Matthew J; Guo, Jia; Hatchell, Kayla E; Chu, Rosalie K; Clauss, Therese R W; Aldrich, Joshua T; Wu, Si; Purvine, Sam; Camp, David G; Smith, Richard D; Thrall, Brian D; Qian, Wei-Jun

    2014-02-01

    S-Glutathionylation (SSG) is an important regulatory posttranslational modification on protein cysteine (Cys) thiols, yet the role of specific cysteine residues as targets of modification is poorly understood. We report a novel quantitative mass spectrometry (MS)-based proteomic method for site-specific identification and quantification of S-glutathionylation across different conditions. Briefly, this approach consists of initial blocking of free thiols by alkylation, selective reduction of glutathionylated thiols, and covalent capture of reduced thiols using thiol affinity resins, followed by on-resin tryptic digestion and isobaric labeling with iTRAQ (isobaric tags for relative and absolute quantitation) for MS-based identification and quantification. The overall approach was initially validated by application to RAW 264.7 mouse macrophages treated with different doses of diamide to induce glutathionylation. A total of 1071 Cys sites from 690 proteins were identified in response to diamide treatment, with ~90% of the sites displaying >2-fold increases in SSG modification compared to controls. This approach was extended to identify potential SSG-modified Cys sites in response to H2O2, an endogenous oxidant produced by activated macrophages and many pathophysiological stimuli. The results revealed 364 Cys sites from 265 proteins that were sensitive to S-glutathionylation in response to H2O2 treatment, thus providing a database of proteins and Cys sites susceptible to this modification under oxidative stress. Functional analysis revealed that the most significantly enriched molecular function categories for proteins sensitive to SSG modifications were free radical scavenging and cell death/survival. Overall the results demonstrate that our approach is effective for site-specific identification and quantification of SSG-modified proteins. The analytical strategy also provides a unique approach to determining the major pathways and cellular processes most susceptible

  13. Identification of cypermethrin induced protein changes in green algae by iTRAQ quantitative proteomics.

    PubMed

    Gao, Yan; Lim, Teck Kwang; Lin, Qingsong; Li, Sam Fong Yau

    2016-04-29

    Cypermethrin (CYP) is one of the most widely used pesticides in large scale for agricultural and domestic purpose and the residue often seriously affects aquatic system. Environmental pollutant-induced protein changes in organisms could be detected by proteomics, leading to discovery of potential biomarkers and understanding of mode of action. While proteomics investigations of CYP stress in some animal models have been well studied, few reports about the effects of exposure to CYP on algae proteome were published. To determine CYP effect in algae, the impact of various dosages (0.001μg/L, 0.01μg/L and 1μg/L) of CYP on green algae Chlorella vulgaris for 24h and 96h was investigated by using iTRAQ quantitative proteomics technique. A total of 162 and 198 proteins were significantly altered after CYP exposure for 24h and 96h, respectively. Overview of iTRAQ results indicated that the influence of CYP on algae protein might be dosage-dependent. Functional analysis of differentially expressed proteins showed that CYP could induce protein alterations related to photosynthesis, stress responses and carbohydrate metabolism. This study provides a comprehensive view of complex mode of action of algae under CYP stress and highlights several potential biomarkers for further investigation of pesticide-exposed plant and algae. PMID:26961939

  14. Acute Aortic Dissection Biomarkers Identified Using Isobaric Tags for Relative and Absolute Quantitation

    PubMed Central

    Xiao, Ziya; Xue, Yuan; Gu, Guorong; Zhang, Yaping; Zhang, Jin; Fan, Fan; Luan, Xiao; Deng, Zhi; Tao, Zhengang; Song, Zhen-ju; Tong, Chaoyang; Wang, Haojun

    2016-01-01

    The purpose of this study was to evaluate the utility of potential serum biomarkers for acute aortic dissection (AAD) that were identified by isobaric Tags for Relative and Absolute Quantitation (iTRAQ) approaches. Serum samples from 20 AAD patients and 20 healthy volunteers were analyzed using iTRAQ technology. Protein validation was performed using samples from 120 patients with chest pain. A total of 355 proteins were identified with the iTRAQ approach; 164 proteins reached the strict quantitative standard, and 125 proteins were increased or decreased more than 1.2-fold (64 and 61 proteins were up- and downregulated, resp.). Lumican, C-reactive protein (CRP), thrombospondin-1 (TSP-1), and D-dimer were selected as candidate biomarkers for the validation tests. Receiver operating characteristic (ROC) curves show that Lumican and D-dimer have diagnostic value (area under the curves [AUCs] 0.895 and 0.891, P < 0.05). For Lumican, the diagnostic sensitivity and specificity were 73.33% and 98.33%, while the corresponding values for D-dimer were 93.33% and 68.33%. For Lumican and D-dimer AAD combined diagnosis, the sensitivity and specificity were 88.33% and 95%, respectively. In conclusion, Lumican has good specificity and D-dimer has good sensitivity for the diagnosis of AAD, while the combined detection of D-dimer and Lumican has better diagnostic value. PMID:27403433

  15. Acute Aortic Dissection Biomarkers Identified Using Isobaric Tags for Relative and Absolute Quantitation.

    PubMed

    Xiao, Ziya; Xue, Yuan; Yao, Chenling; Gu, Guorong; Zhang, Yaping; Zhang, Jin; Fan, Fan; Luan, Xiao; Deng, Zhi; Tao, Zhengang; Song, Zhen-Ju; Tong, Chaoyang; Wang, Haojun

    2016-01-01

    The purpose of this study was to evaluate the utility of potential serum biomarkers for acute aortic dissection (AAD) that were identified by isobaric Tags for Relative and Absolute Quantitation (iTRAQ) approaches. Serum samples from 20 AAD patients and 20 healthy volunteers were analyzed using iTRAQ technology. Protein validation was performed using samples from 120 patients with chest pain. A total of 355 proteins were identified with the iTRAQ approach; 164 proteins reached the strict quantitative standard, and 125 proteins were increased or decreased more than 1.2-fold (64 and 61 proteins were up- and downregulated, resp.). Lumican, C-reactive protein (CRP), thrombospondin-1 (TSP-1), and D-dimer were selected as candidate biomarkers for the validation tests. Receiver operating characteristic (ROC) curves show that Lumican and D-dimer have diagnostic value (area under the curves [AUCs] 0.895 and 0.891, P < 0.05). For Lumican, the diagnostic sensitivity and specificity were 73.33% and 98.33%, while the corresponding values for D-dimer were 93.33% and 68.33%. For Lumican and D-dimer AAD combined diagnosis, the sensitivity and specificity were 88.33% and 95%, respectively. In conclusion, Lumican has good specificity and D-dimer has good sensitivity for the diagnosis of AAD, while the combined detection of D-dimer and Lumican has better diagnostic value. PMID:27403433

  16. Teaching Absolute Value Meaningfully

    ERIC Educational Resources Information Center

    Wade, Angela

    2012-01-01

    What is the meaning of absolute value? And why do teachers teach students how to solve absolute value equations? Absolute value is a concept introduced in first-year algebra and then reinforced in later courses. Various authors have suggested instructional methods for teaching absolute value to high school students (Wei 2005; Stallings-Roberts…

  17. Differential Proteomic Analysis Using iTRAQ Reveals Alterations in Hull Development in Rice (Oryza sativa L.)

    PubMed Central

    Xiao, Wenfei; Yang, Changdeng; Xin, Ya; Qiu, Jieren; Hu, Weimin; Ying, Wu; Fu, Yaping; Tong, Jianxin; Hu, Guocheng; Chen, Zhongzhong; Fang, Xianping; Yu, Hong; Lai, Wenguo; Ruan, Songlin; Ma, Huasheng

    2015-01-01

    Rice hull, the outer cover of the rice grain, determines grain shape and size. Changes in the rice hull proteome in different growth stages may reflect the underlying mechanisms involved in grain development. To better understand these changes, isobaric tags for relative and absolute quantitative (iTRAQ) MS/MS was used to detect statistically significant changes in the rice hull proteome in the booting, flowering, and milk-ripe growth stages. Differentially expressed proteins were analyzed to predict their potential functions during development. Gene ontology (GO) terms and pathways were used to evaluate the biological mechanisms involved in rice hull at the three growth stages. In total, 5,268 proteins were detected and characterized, of which 563 were differentially expressed across the development stages. The results showed that the flowering and milk-ripe stage proteomes were more similar to each other (r=0.61) than either was to the booting stage proteome. A GO enrichment analysis of the differentially expressed proteins was used to predict their roles during rice hull development. The potential functions of 25 significantly differentially expressed proteins were used to evaluate their possible roles at various growth stages. Among these proteins, an unannotated protein (Q7X8A1) was found to be overexpressed especially in the flowering stage, while a putative uncharacterized protein (B8BF94) and an aldehyde dehydrogenase (Q9FPK6) were overexpressed only in the milk-ripe stage. Pathways regulated by differentially expressed proteins were also analyzed. Magnesium-protoporphyrin IX monomethyl ester [oxidative] cyclase (Q9SDJ2), and two magnesium-chelatase subunits, ChlD (Q6ATS0), and ChlI (Q53RM0), were associated with chlorophyll biosynthesis at different developmental stages. The expression of Q9SDJ2 in the flowering and milk-ripe stages was validated by qRT-PCR. The 25 candidate proteins may be pivotal markers for controlling rice hull development at various

  18. iTRAQ protein profile analysis of neuroblastoma (NA) cells infected with the rabies viruses rHep-Flury and Hep-dG

    PubMed Central

    Yang, Youtian; Liu, Wenjun; Yan, Guangrong; Luo, Yongwen; Zhao, Jing; Yang, Xianfeng; Mei, Mingzhu; Wu, Xiaowei; Guo, Xiaofeng

    2015-01-01

    The rabies virus (RABV) glycoprotein (G) is the principal contributor to the pathogenicity and protective immunity of RABV. In a previous work, we reported that recombinant rabies virus Hep-dG, which was generated by reverse genetics to carry two copies of the G-gene, showed lower virulence than the parental virus rHep-Flury in suckling mice with a better immune protection effect. To better understand the mechanisms underlying rabies virus attenuation and the role of glycoprotein G, isobaric tags for relative and absolute quantitation (iTRAQ) was performed to identify and quantify distinct proteins. 10 and 111 differentially expressed proteins were obtained in rHep-Flury and Hep-dG infection groups, respectively. Selected data were validated by western blot and qRT-PCR. Bioinformatics analysis of the distinct protein suggested that glycoprotein over-expression in the attenuated RABV strain can induce activation of the interferon signaling. Furthermore, it may promote the antiviral response, MHC-I mediated antigen-specific T cell immune response, apoptosis and autophagy in an IFN-dependent manner. These findings might not only improve the understanding of the dynamics of RABV and host interaction, but also help understand the mechanisms underlying innate and adaptive immunity during RABV infection. PMID:26217322

  19. Proteomic analysis by iTRAQ in red claw crayfish, Cherax quadricarinatus, hematopoietic tissue cells post white spot syndrome virus infection.

    PubMed

    Jeswin, Joseph; Xie, Xiao-lu; Ji, Qiao-lin; Wang, Ke-jian; Liu, Hai-peng

    2016-03-01

    To elucidate proteomic changes of Hpt cells from red claw crayfish, Cherax quadricarinatus, we have carried out isobaric tags for relative and absolute quantitation (iTRAQ) of cellular proteins at both early (1 hpi) and late stage (12 hpi) post white spot syndrome virus (WSSV) infection. Protein database search revealed 594 protein hits by Mascot, in which 17 and 30 proteins were present as differentially expressed proteins at early and late viral infection, respectively. Generally, these differentially expressed proteins include: 1) the metabolic process related proteins in glycolysis and glucogenesis, DNA replication, nucleotide/amino acid/fatty acid metabolism and protein biosynthesis; 2) the signal transduction related proteins like small GTPases, G-protein-alpha stimulatory subunit, proteins bearing PDZ- or 14-3-3-domains that help holding together and organize signaling complexes, casein kinase I and proteins of the MAP-kinase signal transduction pathway; 3) the immune defense related proteins such as α-2 macroglobulin, transglutaminase and trans-activation response RNA-binding protein 1. Taken together, these protein information shed new light on the host cellular response against WSSV infection in a crustacean cell culture. PMID:26845698

  20. iTRAQ protein profile analysis of neuroblastoma (NA) cells infected with the rabies viruses rHep-Flury and Hep-dG.

    PubMed

    Yang, Youtian; Liu, Wenjun; Yan, Guangrong; Luo, Yongwen; Zhao, Jing; Yang, Xianfeng; Mei, Mingzhu; Wu, Xiaowei; Guo, Xiaofeng

    2015-01-01

    The rabies virus (RABV) glycoprotein (G) is the principal contributor to the pathogenicity and protective immunity of RABV. In a previous work, we reported that recombinant rabies virus Hep-dG, which was generated by reverse genetics to carry two copies of the G-gene, showed lower virulence than the parental virus rHep-Flury in suckling mice with a better immune protection effect. To better understand the mechanisms underlying rabies virus attenuation and the role of glycoprotein G, isobaric tags for relative and absolute quantitation (iTRAQ) was performed to identify and quantify distinct proteins. 10 and 111 differentially expressed proteins were obtained in rHep-Flury and Hep-dG infection groups, respectively. Selected data were validated by western blot and qRT-PCR. Bioinformatics analysis of the distinct protein suggested that glycoprotein over-expression in the attenuated RABV strain can induce activation of the interferon signaling. Furthermore, it may promote the antiviral response, MHC-I mediated antigen-specific T cell immune response, apoptosis and autophagy in an IFN-dependent manner. These findings might not only improve the understanding of the dynamics of RABV and host interaction, but also help understand the mechanisms underlying innate and adaptive immunity during RABV infection. PMID:26217322

  1. iTRAQ Quantitative Proteomic Comparison of Metastatic and Non-Metastatic Uveal Melanoma Tumors

    PubMed Central

    Crabb, John W.; Hu, Bo; Crabb, John S.; Triozzi, Pierre; Saunthararajah, Yogen; Singh, Arun D.

    2015-01-01

    Background Uveal melanoma is the most common malignancy of the adult eye. The overall mortality rate is high because this aggressive cancer often metastasizes before ophthalmic diagnosis. Quantitative proteomic analysis of primary metastasizing and non-metastasizing tumors was pursued for insights into mechanisms and biomarkers of uveal melanoma metastasis. Methods Eight metastatic and 7 non-metastatic human primary uveal melanoma tumors were analyzed by LC MS/MS iTRAQ technology with Bruch’s membrane/choroid complex from normal postmortem eyes as control tissue. Tryptic peptides from tumor and control proteins were labeled with iTRAQ tags, fractionated by cation exchange chromatography, and analyzed by LC MS/MS. Protein identification utilized the Mascot search engine and the human Uni-Prot/Swiss-Protein database with false discovery ≤ 1%; protein quantitation utilized the Mascot weighted average method. Proteins designated differentially expressed exhibited quantitative differences (p ≤ 0.05, t-test) in a training set of five metastatic and five non-metastatic tumors. Logistic regression models developed from the training set were used to classify the metastatic status of five independent tumors. Results Of 1644 proteins identified and quantified in 5 metastatic and 5 non-metastatic tumors, 12 proteins were found uniquely in ≥ 3 metastatic tumors, 28 were found significantly elevated and 30 significantly decreased only in metastatic tumors, and 31 were designated differentially expressed between metastatic and non-metastatic tumors. Logistic regression modeling of differentially expressed collagen alpha-3(VI) and heat shock protein beta-1 allowed correct prediction of metastasis status for each of five independent tumor specimens. Conclusions The present data provide new clues to molecular differences in metastatic and non-metastatic uveal melanoma tumors. While sample size is limited and validation required, the results support collagen alpha-3(VI) and

  2. Eosinophil count - absolute

    MedlinePlus

    Eosinophils; Absolute eosinophil count ... the white blood cell count to give the absolute eosinophil count. ... than 500 cells per microliter (cells/mcL). Normal value ranges may vary slightly among different laboratories. Talk ...

  3. Absolute nuclear material assay

    DOEpatents

    Prasad, Manoj K.; Snyderman, Neal J.; Rowland, Mark S.

    2012-05-15

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  4. Absolute nuclear material assay

    DOEpatents

    Prasad, Manoj K.; Snyderman, Neal J.; Rowland, Mark S.

    2010-07-13

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  5. iTRAQ proteomic analysis of extracellular matrix remodeling in aortic valve disease

    PubMed Central

    Martin-Rojas, Tatiana; Mourino-Alvarez, Laura; Alonso-Orgaz, Sergio; Rosello-Lleti, Esther; Calvo, Enrique; Lopez-Almodovar, Luis Fernando; Rivera, Miguel; Padial, Luis R.; Lopez, Juan Antonio; Cuesta, Fernando de la; Barderas, Maria G.

    2015-01-01

    Degenerative aortic stenosis (AS) is the most common worldwide cause of valve replacement. The aortic valve is a thin, complex, layered connective tissue with compartmentalized extracellular matrix (ECM) produced by specialized cell types, which directs blood flow in one direction through the heart. There is evidence suggesting remodeling of such ECM during aortic stenosis development. Thus, a better characterization of the role of ECM proteins in this disease would increase our understanding of the underlying molecular mechanisms. Aortic valve samples were collected from 18 patients which underwent aortic valve replacement (50% males, mean age of 74 years) and 18 normal control valves were obtained from necropsies (40% males, mean age of 69 years). The proteome of the samples was analyzed by 2D-LC MS/MS iTRAQ methodology. The results showed an altered expression of 13 ECM proteins of which 3 (biglycan, periostin, prolargin) were validated by Western blotting and/or SRM analyses. These findings are substantiated by our previous results demonstrating differential ECM protein expression. The present study has demonstrated a differential ECM protein pattern in individuals with AS, therefore supporting previous evidence of a dynamic ECM remodeling in human aortic valves during AS development. PMID:26620461

  6. Study of Nitrate Stress in Desulfovibrio vulgaris Hildenborough Using iTRAQ Proteomics

    SciTech Connect

    Redding, A.M.; Mukhopadhyay, A.; Joyner, D.; Hazen, T.C.; Keasling, J.D.

    2006-10-12

    The response of Desulfovibrio vulgaris Hildenborough (DvH),a sulphate-reducing bacterium, to nitrate stress was examined usingquantitative proteomic analysis. DvH was stressed with 105 m M sodiumnitrate(NaNO3), a level that caused a 50 percent inhibition in growth.The protein profile of stressed cells was compared with that of cellsgrown in the absence of nitrate using the iTRAQ peptide labellingstrategy and tandem liquid chromatography separation coupled with massspectrometry (quadrupoletime-of-flight) detection. A total of 737 uniqueproteins were identified by two or more peptides, representing 22 percentof the total DvH proteome and spanning every functional category. Theresults indicate that this was a mild stress, as proteins involved incentral metabolism and the sulphate reduction pathway were unperturbed.Proteins involved in the nitrate reduction pathway increased. Increasesseen in transport systems for proline, glycine^ betaineandglutamateindicate that the NaNO3 exposure led to both salt stress and nitratestress.Up-regulation observed in oxidative stress response proteins (Rbr,RbO, etc.) and a large number of ABC transport systems as well as in iron^ sulphur -cluster-containing proteins, however, appear to be specific tonitrate exposure. Finally, a number of hypothetical proteins were amongthe most significant changers, indicating that there may be unknownmechanisms initiated upon nitrate stress in DvH.

  7. AKAP Signaling in Reinstated Cocaine Seeking Revealed by iTRAQ Proteomic Analysis

    PubMed Central

    Reissner, Kathryn J.; Uys, Joachim D.; Schwacke, John H.; Comte-Walters, Susanna; Rutherford-Bethard, Jennifer L.; Dunn, Thomas E.; Blumer, Joe B.; Schey, Kevin L.; Kalivas, Peter W.

    2013-01-01

    In order to identify candidate proteins in the nucleus accumbens (NAc) as potential pharmacotherapeutic targets for treating cocaine addition, an 8-plex iTRAQ proteomic screen was performed using NAc tissue obtained from rats trained to self-administer cocaine followed by extinction training. Compared to yoked-saline controls, 42 proteins in a postsynaptic density (PSD)-enriched subfraction of the NAc from cocaine-trained animals were identified as significantly changed. Among proteins of interest whose levels were identified as increased was AKAP79/150, the rat ortholog of human AKAP5, a PSD scaffolding protein that localizes signaling molecules to the synapse. Functional down-regulation of AKAP79/150 by microinjecting a cell-permeable synthetic AKAP peptide into the NAc in order to disrupt AKAP-dependent signaling revealed that inhibition of AKAP signaling impaired the reinstatement of cocaine-seeking. Reinstatement of cocaine-seeking is thought to require upregulated surface expression of AMPA glutamate receptors, and the inhibitory AKAP peptide reduced the PSD content of PKA as well as surface expression of GluR1 in NAc. However, reduced surface expression was not associated with changes in PKA phosphorylation of GluR1. This series of experiments demonstrates that proteomic analysis provides a useful tool for identifying proteins that can regulate cocaine relapse, and that AKAP proteins may contribute to relapse vulnerability by promoting increased surface expression of AMPA receptors in the NAc. PMID:21490206

  8. iTRAQ Protein Profile Differential Analysis of Dormant and Germinated Grassbur Twin Seeds Reveals that Ribosomal Synthesis and Carbohydrate Metabolism Promote Germination Possibly Through the PI3K Pathway.

    PubMed

    Zhang, Guo-Liang; Zhu, Yue; Fu, Wei-Dong; Wang, Peng; Zhang, Rui-Hai; Zhang, Yan-Lei; Song, Zhen; Xia, Gui-Xian; Wu, Jia-He

    2016-06-01

    Grassbur is a destructive and invasive weed in pastures, and its burs can cause gastric damage to animals. The strong adaptability and reproductive potential of grassbur are partly due to a unique germination mechanism whereby twin seeds develop in a single bur: one seed germinates, but the other remains dormant. To investigate the molecular mechanism of seed germination in twin seeds, we used isobaric tags for relative and absolute quantitation (iTRAQ) to perform a dynamic proteomic analysis of germination and dormancy. A total of 1,984 proteins were identified, 161 of which were considered to be differentially accumulated. The differentially accumulated proteins comprised 102 up-regulated and 59 down-regulated proteins. These proteins were grouped into seven functional categories, ribosomal proteins being the predominant group. The authenticity and accuracy of the results were confirmed by enzyme-linked immunosorbent assay (ELISA) and quantitative real-time reverse transcription-PCR (qPCR). A dynamic proteomic analysis revealed that ribosome synthesis and carbohydrate metabolism affect seed germination possibly through the phosphoinositide 3-kinase (PI3K) pathway. As the PI3K pathway is generally activated by insulin, analyses of seeds treated with exogenous insulin by qPCR, ELISA and iTRAQ confirmed that the PI3K pathway can be activated, which suppresses dormancy and promotes germination in twin grassbur seeds. Together, these results show that the PI3K pathway may play roles in stimulating seed germination in grassbur by modulating ribosomal synthesis and carbohydrate metabolism. PMID:27296714

  9. iTRAQ identification of candidate serum biomarkers associated with metastatic progression of human prostate cancer.

    PubMed

    Rehman, Ishtiaq; Evans, Caroline A; Glen, Adam; Cross, Simon S; Eaton, Colby L; Down, Jenny; Pesce, Giancarlo; Phillips, Joshua T; Yen, Ow Saw; Thalmann, George N; Wright, Phillip C; Hamdy, Freddie C

    2012-01-01

    A major challenge in the management of patients with prostate cancer is identifying those individuals at risk of developing metastatic disease, as in most cases the disease will remain indolent. We analyzed pooled serum samples from 4 groups of patients (n = 5 samples/group), collected prospectively and actively monitored for a minimum of 5 yrs. Patients groups were (i) histological diagnosis of benign prostatic hyperplasia with no evidence of cancer 'BPH', (ii) localised cancer with no evidence of progression, 'non-progressing' (iii) localised cancer with evidence of biochemical progression, 'progressing', and (iv) bone metastasis at presentation 'metastatic'. Pooled samples were immuno-depleted of the 14 most highly abundant proteins and analysed using a 4-plex iTRAQ approach. Overall 122 proteins were identified and relatively quantified. Comparisons of progressing versus non-progressing groups identified the significant differential expression of 25 proteins (p<0.001). Comparisons of metastatic versus progressing groups identified the significant differential expression of 23 proteins. Mapping the differentially expressed proteins onto the prostate cancer progression pathway revealed the dysregulated expression of individual proteins, pairs of proteins and 'panels' of proteins to be associated with particular stages of disease development and progression. The median immunostaining intensity of eukaryotic translation elongation factor 1 alpha 1 (eEF1A1), one of the candidates identified, was significantly higher in osteoblasts in close proximity to metastatic tumour cells compared with osteoblasts in control bone (p = 0.0353, Mann Whitney U). Our proteomic approach has identified leads for potentially useful serum biomarkers associated with the metastatic progression of prostate cancer. The panels identified, including eEF1A1 warrant further investigation and validation. PMID:22355332

  10. Quantitative definition and monitoring of the host cell protein proteome using iTRAQ - a study of an industrial mAb producing CHO-S cell line.

    PubMed

    Chiverton, Lesley M; Evans, Caroline; Pandhal, Jagroop; Landels, Andrew R; Rees, Byron J; Levison, Peter R; Wright, Phillip C; Smales, C Mark

    2016-08-01

    There are few studies defining CHO host cell proteins (HCPs) and the flux of these throughout a downstream purification process. Here we have applied quantitative iTRAQ proteomics to follow the HCP profile of an antibody (mAb) producing CHO-S cell line throughout a standard downstream purification procedure consisting of a Protein A, cation and anion exchange process. We used both 6 sample iTRAQ experiment to analyze technical replicates of three samples, which were culture harvest (HCCF), Protein A flow through and Protein A eluate and an 8 sample format to analyze technical replicates of four sample types; HCCF compared to Protein A eluate and subsequent cation and anion exchange purification. In the 6 sample iTRAQ experiment, 8781 spectra were confidently matched to peptides from 819 proteins (including the mAb chains). Across both the 6 and 8 sample experiments 936 proteins were identified. In the 8 sample comparison, 4187 spectra were confidently matched to peptides from 219 proteins. We then used the iTRAQ data to enable estimation of the relative change of individual proteins across the purification steps. These data provide the basis for application of iTRAQ for process development based upon knowledge of critical HCPs. PMID:27214759

  11. Absolute biological needs.

    PubMed

    McLeod, Stephen

    2014-07-01

    Absolute needs (as against instrumental needs) are independent of the ends, goals and purposes of personal agents. Against the view that the only needs are instrumental needs, David Wiggins and Garrett Thomson have defended absolute needs on the grounds that the verb 'need' has instrumental and absolute senses. While remaining neutral about it, this article does not adopt that approach. Instead, it suggests that there are absolute biological needs. The absolute nature of these needs is defended by appeal to: their objectivity (as against mind-dependence); the universality of the phenomenon of needing across the plant and animal kingdoms; the impossibility that biological needs depend wholly upon the exercise of the abilities characteristic of personal agency; the contention that the possession of biological needs is prior to the possession of the abilities characteristic of personal agency. Finally, three philosophical usages of 'normative' are distinguished. On two of these, to describe a phenomenon or claim as 'normative' is to describe it as value-dependent. A description of a phenomenon or claim as 'normative' in the third sense does not entail such value-dependency, though it leaves open the possibility that value depends upon the phenomenon or upon the truth of the claim. It is argued that while survival needs (or claims about them) may well be normative in this third sense, they are normative in neither of the first two. Thus, the idea of absolute need is not inherently normative in either of the first two senses. PMID:23586876

  12. Proteomic changes in maize as a response to heavy metal (lead) stress revealed by iTRAQ quantitative proteomics.

    PubMed

    Li, G K; Gao, J; Peng, H; Shen, Y O; Ding, H P; Zhang, Z M; Pan, G T; Lin, H J

    2016-01-01

    Lead (Pb), a heavy metal, has become a crucial pollutant in soil and water, causing not only permanent and irreversible health problems, but also substantial reduction in crop yields. In this study, we conducted proteome analysis of the roots of the non-hyperaccumulator inbred maize line 9782 at four developmental stages (0, 12, 24, and 48 h) under Pb pollution using isobaric tags for relative and absolute quantification technology. A total of 252, 72 and 116 proteins were differentially expressed between M12 (after 12-h Pb treatment) and CK (water-mocked treatment), M24 (after 24-h Pb treatment) and CK, and M48 (after 48-h Pb treatment) and CK, respectively. In addition, 14 differentially expressed proteins were common within each comparison group. Moreover, Cluster of Orthologous Groups enrichment analysis revealed predominance of the proteins involved in posttranslational modification, protein turnover, and chaperones. Additionally, the changes in protein profiles showed a lower concordance with corresponding alterations in transcript levels, indicating important roles for transcriptional and posttranscriptional regulation in the response of maize roots to Pb pollution. Furthermore, enriched functional categories between the successive comparisons showed that the proteins in functional categories of stress, redox, signaling, and transport were highly up-regulated, while those in the functional categories of nucleotide metabolism, amino acid metabolism, RNA, and protein metabolism were down-regulated. This information will help in furthering our understanding of the detailed mechanisms of plant responses to heavy metal stress by combining protein and mRNA profiles. PMID:26909923

  13. Characterization and comparison of proteomes of albino sea cucumber Apostichopus japonicus (Selenka) by iTRAQ analysis.

    PubMed

    Xia, Chang-ge; Zhang, Dijun; Ma, Chengnv; Zhou, Jun; He, Shan; Su, Xiu-rong

    2016-04-01

    Sea cucumber is a commercially important marine organism in China. Of the different colored varieties sold in China, albino sea cucumber has the greatest appeal among consumers. Identification of factors contributing to albinism in sea cucumber is therefore likely to provide a scientific basis for improving the cultivability of these strains. In this study, two-dimensional liquid chromatography-tandem mass spectrometry coupled with isobaric tags for relative and absolute quantification labeling was used for the first time to quantitatively define the proteome of sea cucumbers and reveal proteomic characteristics unique to albino sea cucumbers. A total of 549 proteins were identified and quantified in albino sea cucumber and the functional annotations of 485 proteins have been exhibited based on COG database. Compared with green sea cucumber, 12 proteins were identified as differentially expressed in the intestine and 16 proteins in the body wall of albino sea cucumber. Among them, 5 proteins were up-regulated in the intestine and 8 proteins were down-regulated in body wall. Gene ontology annotations of these differentially expressed proteins consisted mostly of 'biological process'. The large number of differentially expressed proteins identified here should be highly useful in further elucidating the mechanisms underlying albinism in sea cucumber. PMID:26707782

  14. The absolute path command

    2012-05-11

    The ap command traveres all symlinks in a given file, directory, or executable name to identify the final absolute path. It can print just the final path, each intermediate link along with the symlink chan, and the permissions and ownership of each directory component in the final path. It has functionality similar to "which", except that it shows the final path instead of the first path. It is also similar to "pwd", but it canmore » provide the absolute path to a relative directory from the current working directory.« less

  15. The absolute path command

    SciTech Connect

    Moody, A.

    2012-05-11

    The ap command traveres all symlinks in a given file, directory, or executable name to identify the final absolute path. It can print just the final path, each intermediate link along with the symlink chan, and the permissions and ownership of each directory component in the final path. It has functionality similar to "which", except that it shows the final path instead of the first path. It is also similar to "pwd", but it can provide the absolute path to a relative directory from the current working directory.

  16. Aberrant Mucin5B expression in lung adenocarcinomas detected by iTRAQ labeling quantitative proteomics and immunohistochemistry

    PubMed Central

    2013-01-01

    Background Lung cancer is the number one cause of cancer-related deaths in the United States and worldwide. The complex protein changes and/or signature of protein expression in lung cancer, particularly in non-small cell lung cancer (NSCLC) has not been well defined. Although several studies have investigated the protein profile in lung cancers, the knowledge is far from complete. Among early studies, mucin5B (MUC5B) has been suggested to play an important role in the tumor progression. MUC5B is the major gel-forming mucin in the airway. In this study, we investigated the overall protein profile and MUC5B expression in lung adenocarcinomas, the most common type of NSCLCs. Methods Lung adenocarcinoma tissue in formalin-fixed paraffin-embedded (FFPE) blocks was collected and microdissected. Peptides from 8 tumors and 8 tumor-matched normal lung tissue were extracted and labeled with 8-channel iTRAQ reagents. The labeled peptides were identified and quantified by LC-MS/MS using an LTQ Orbitrap Velos mass spectrometer. MUC5B expression identified by iTRAQ labeling was further validated using immunohistochemistry (IHC) on tumor tissue microarray (TMA). Results A total of 1288 peptides from 210 proteins were identified and quantified in tumor tissues. Twenty-two proteins showed a greater than 1.5-fold differences between tumor and tumor-matched normal lung tissues. Fifteen proteins, including MUC5B, showed significant changes in tumor tissues. The aberrant expression of MUC5B was further identified in 71.1% of lung adenocarcinomas in the TMA. Discussions A subset of tumor-associated proteins was differentially expressed in lung adenocarcinomas. The differential expression of MUC5B in lung adenocarcinomas suggests its role as a potential biomarker in the detection of adenocarcinomas. PMID:24176033

  17. Quantitative analysis of the supernatant from host and transfected CHO cells using iTRAQ 8-plex technique.

    PubMed

    Zhu, Guijie; Sun, Liangliang; Albanetti, Thomas; Linkous, Travis; Larkin, Christopher; Schoner, Ronald; McGivney, James B; Dovichi, Norman J

    2016-10-01

    We employed UPLC-MS/MS with iTRAQ 8-plex labeling to quantitatively analyze the supernatant produced by two Chinese hamster ovary (CHO) cell lines (CHO K1SV and CHO CAT-S). In each case, the supernatant from the host and three transfected clones were analyzed at days 5, 7, and 10 of culture. A total of eight iTRAQ 8-plex experiments were performed. For each cell line, the overlap of supernatant protein identifications between transfected clones is over 60%. Over 70% of the supernatant proteins in the CHO K1SV host cell line are present in the CHO CAT-S cell line. For the CHO K1SV cell line, the overlap in supernatant protein identifications between the host cell line and the transfected clones is >59%. For the CHO CAT-S cell line, the overlap between supernatant protein identifications for the transfected clone and host cell is >45%. These differences in the supernatant protein identifications between transfected clones in each cell line and between the two host cell lines are not significant. We used cluster analysis to characterize the change in supernatant protein expression as a function of cell culture time. Roughly <60% of the supernatant proteins show significant change across the three time points (ratio >1.3 or <0.7). We also used cluster analysis to compare changes in supernatant protein expression between the host and three transfected clones at each time point. Greater than 65% of the common proteins in the CHO K1SV cell line supernatant and over 54% in the CHO CAT-S cell line supernatant show no significant expression difference between host and the three transfected clones. Data are available via ProteomeXchange with identifier PXD003462. Biotechnol. Bioeng. 2016;113: 2140-2148. © 2016 Wiley Periodicals, Inc. PMID:27070921

  18. Electronic Absolute Cartesian Autocollimator

    NASA Technical Reports Server (NTRS)

    Leviton, Douglas B.

    2006-01-01

    An electronic absolute Cartesian autocollimator performs the same basic optical function as does a conventional all-optical or a conventional electronic autocollimator but differs in the nature of its optical target and the manner in which the position of the image of the target is measured. The term absolute in the name of this apparatus reflects the nature of the position measurement, which, unlike in a conventional electronic autocollimator, is based absolutely on the position of the image rather than on an assumed proportionality between the position and the levels of processed analog electronic signals. The term Cartesian in the name of this apparatus reflects the nature of its optical target. Figure 1 depicts the electronic functional blocks of an electronic absolute Cartesian autocollimator along with its basic optical layout, which is the same as that of a conventional autocollimator. Referring first to the optical layout and functions only, this or any autocollimator is used to measure the compound angular deviation of a flat datum mirror with respect to the optical axis of the autocollimator itself. The optical components include an illuminated target, a beam splitter, an objective or collimating lens, and a viewer or detector (described in more detail below) at a viewing plane. The target and the viewing planes are focal planes of the lens. Target light reflected by the datum mirror is imaged on the viewing plane at unit magnification by the collimating lens. If the normal to the datum mirror is parallel to the optical axis of the autocollimator, then the target image is centered on the viewing plane. Any angular deviation of the normal from the optical axis manifests itself as a lateral displacement of the target image from the center. The magnitude of the displacement is proportional to the focal length and to the magnitude (assumed to be small) of the angular deviation. The direction of the displacement is perpendicular to the axis about which the

  19. ABSOLUTE POLARIMETRY AT RHIC.

    SciTech Connect

    OKADA; BRAVAR, A.; BUNCE, G.; GILL, R.; HUANG, H.; MAKDISI, Y.; NASS, A.; WOOD, J.; ZELENSKI, Z.; ET AL.

    2007-09-10

    Precise and absolute beam polarization measurements are critical for the RHIC spin physics program. Because all experimental spin-dependent results are normalized by beam polarization, the normalization uncertainty contributes directly to final physics uncertainties. We aimed to perform the beam polarization measurement to an accuracy Of {Delta}P{sub beam}/P{sub beam} < 5%. The absolute polarimeter consists of Polarized Atomic Hydrogen Gas Jet Target and left-right pairs of silicon strip detectors and was installed in the RHIC-ring in 2004. This system features proton-proton elastic scattering in the Coulomb nuclear interference (CNI) region. Precise measurements of the analyzing power A{sub N} of this process has allowed us to achieve {Delta}P{sub beam}/P{sub beam} = 4.2% in 2005 for the first long spin-physics run. In this report, we describe the entire set up and performance of the system. The procedure of beam polarization measurement and analysis results from 2004-2005 are described. Physics topics of AN in the CNI region (four-momentum transfer squared 0.001 < -t < 0.032 (GeV/c){sup 2}) are also discussed. We point out the current issues and expected optimum accuracy in 2006 and the future.

  20. Implants as absolute anchorage.

    PubMed

    Rungcharassaeng, Kitichai; Kan, Joseph Y K; Caruso, Joseph M

    2005-11-01

    Anchorage control is essential for successful orthodontic treatment. Each tooth has its own anchorage potential as well as propensity to move when force is applied. When teeth are used as anchorage, the untoward movements of the anchoring units may result in the prolonged treatment time, and unpredictable or less-than-ideal outcome. To maximize tooth-related anchorage, techniques such as differential torque, placing roots into the cortex of the bone, the use of various intraoral devices and/or extraoral appliances have been implemented. Implants, as they are in direct contact with bone, do not possess a periodontal ligament. As a result, they do not move when orthodontic/orthopedic force is applied, and therefore can be used as "absolute anchorage." This article describes different types of implants that have been used as orthodontic anchorage. Their clinical applications and limitations are also discussed. PMID:16463910

  1. Absolute Equilibrium Entropy

    NASA Technical Reports Server (NTRS)

    Shebalin, John V.

    1997-01-01

    The entropy associated with absolute equilibrium ensemble theories of ideal, homogeneous, fluid and magneto-fluid turbulence is discussed and the three-dimensional fluid case is examined in detail. A sigma-function is defined, whose minimum value with respect to global parameters is the entropy. A comparison is made between the use of global functions sigma and phase functions H (associated with the development of various H-theorems of ideal turbulence). It is shown that the two approaches are complimentary though conceptually different: H-theorems show that an isolated system tends to equilibrium while sigma-functions allow the demonstration that entropy never decreases when two previously isolated systems are combined. This provides a more complete picture of entropy in the statistical mechanics of ideal fluids.

  2. Validation of a P-Glycoprotein (P-gp) Humanized Mouse Model by Integrating Selective Absolute Quantification of Human MDR1, Mouse Mdr1a and Mdr1b Protein Expressions with In Vivo Functional Analysis for Blood-Brain Barrier Transport

    PubMed Central

    Sadiq, Muhammad Waqas; Uchida, Yasuo; Hoshi, Yutaro; Tachikawa, Masanori; Terasaki, Tetsuya; Hammarlund-Udenaes, Margareta

    2015-01-01

    It is essential to establish a useful validation method for newly generated humanized mouse models. The novel approach of combining our established species-specific protein quantification method combined with in vivo functional studies is evaluated to validate a humanized mouse model of P-gp/MDR1 efflux transporter. The P-gp substrates digoxin, verapamil and docetaxel were administered to male FVB Mdr1a/1b(+/+) (FVB WT), FVB Mdr1a/1b(-/-) (Mdr1a/1b(-/-)), C57BL/6 Mdr1a/1b(+/+) (C57BL/6 WT) and humanized C57BL (hMDR1) mice. Brain-to-plasma total concentration ratios (Kp) were measured. Quantitative targeted absolute proteomic (QTAP) analysis was used to selectively quantify the protein expression levels of hMDR1, Mdr1a and Mdr1b in the isolated brain capillaries. The protein expressions of other transporters, receptors and claudin-5 were also quantified. The Kp for digoxin, verapamil, and docetaxel were 20, 30 and 4 times higher in the Mdr1a/1b(-/-) mice than in the FVB WT controls, as expected. The Kp for digoxin, verapamil and docetaxel were 2, 16 and 2-times higher in the hMDR1 compared to the C57BL/6 WT mice. The hMDR1 mice had 63- and 9.1-fold lower expressions of the hMDR1 and Mdr1a proteins than the corresponding expression of Mdr1a in C57BL/6 WT mice, respectively. The protein expression levels of other molecules were almost consistent between C57BL/6 WT and hMDR1 mice. The P-gp function at the BBB in the hMDR1 mice was smaller than that in WT mice due to lower protein expression levels of hMDR1 and Mdr1a. The combination of QTAP and in vivo functional analyses was successfully applied to validate the humanized animal model and evaluates its suitability for further studies. PMID:25932627

  3. Absolute neutrino mass measurements

    NASA Astrophysics Data System (ADS)

    Wolf, Joachim

    2011-10-01

    The neutrino mass plays an important role in particle physics, astrophysics and cosmology. In recent years the detection of neutrino flavour oscillations proved that neutrinos carry mass. However, oscillation experiments are only sensitive to the mass-squared difference of the mass eigenvalues. In contrast to cosmological observations and neutrino-less double beta decay (0v2β) searches, single β-decay experiments provide a direct, model-independent way to determine the absolute neutrino mass by measuring the energy spectrum of decay electrons at the endpoint region with high accuracy. Currently the best kinematic upper limits on the neutrino mass of 2.2eV have been set by two experiments in Mainz and Troitsk, using tritium as beta emitter. The next generation tritium β-experiment KATRIN is currently under construction in Karlsruhe/Germany by an international collaboration. KATRIN intends to improve the sensitivity by one order of magnitude to 0.2eV. The investigation of a second isotope (137Rh) is being pursued by the international MARE collaboration using micro-calorimeters to measure the beta spectrum. The technology needed to reach 0.2eV sensitivity is still in the R&D phase. This paper reviews the present status of neutrino-mass measurements with cosmological data, 0v2β decay and single β-decay.

  4. Absolute neutrino mass measurements

    SciTech Connect

    Wolf, Joachim

    2011-10-06

    The neutrino mass plays an important role in particle physics, astrophysics and cosmology. In recent years the detection of neutrino flavour oscillations proved that neutrinos carry mass. However, oscillation experiments are only sensitive to the mass-squared difference of the mass eigenvalues. In contrast to cosmological observations and neutrino-less double beta decay (0v2{beta}) searches, single {beta}-decay experiments provide a direct, model-independent way to determine the absolute neutrino mass by measuring the energy spectrum of decay electrons at the endpoint region with high accuracy.Currently the best kinematic upper limits on the neutrino mass of 2.2eV have been set by two experiments in Mainz and Troitsk, using tritium as beta emitter. The next generation tritium {beta}-experiment KATRIN is currently under construction in Karlsruhe/Germany by an international collaboration. KATRIN intends to improve the sensitivity by one order of magnitude to 0.2eV. The investigation of a second isotope ({sup 137}Rh) is being pursued by the international MARE collaboration using micro-calorimeters to measure the beta spectrum. The technology needed to reach 0.2eV sensitivity is still in the R and D phase. This paper reviews the present status of neutrino-mass measurements with cosmological data, 0v2{beta} decay and single {beta}-decay.

  5. Identification of chemoresistant factors by protein expression analysis with iTRAQ for head and neck carcinoma

    PubMed Central

    Nishimura, K; Tsuchiya, Y; Okamoto, H; Ijichi, K; Gosho, M; Fukayama, M; Yoshikawa, K; Ueda, H; Bradford, C R; Carey, T E; Ogawa, T

    2014-01-01

    Background: Cisplatin and other anticancer drugs are important in the treatment of head and neck squamous cell carcinoma; however, some tumours develop drug resistance. If chemoresistance could be determined before treatment, unnecessary drug administration would be avoided. Here, we investigated chemoresistance factors by comprehensive analyses at the protein level. Methods: Four human carcinoma cell lines were used: cisplatin-sensitive UM-SCC-23, UM-SCC-23-CDDPR with acquired cisplatin resistance, naturally cisplatin-resistant UM-SCC-81B, and UM-SCC-23/WR with acquired 5-fluorouracil resistance. Extracted proteins were labelled with iTRAQ and analysed by tandem mass spectrometry to identify resistance. Protein expression was confirmed by western blotting and functional analysis was carried out using siRNA. Results: Thirteen multiple-drug resistance proteins were identified, as well as seven proteins with specific resistance to cisplatin, including α-enolase. Differential expression of these proteins in cisplatin-resistant and -sensitive cell lines was confirmed by western blotting. Functional analysis for α-enolase by siRNA showed that cisplatin sensitivity significantly was increased in UM-SCC-81B and slightly in UM-SCC-23-CDDPR but not in UM-SCC-23/WR cells. Conclusions: We identified proteins thought to mediate anticancer drug resistance using recent proteome technology and identified α-enolase as a true cisplatin chemoresistance factor. Such proteins could be used as biomarkers for anticancer agent resistance and as targets of cancer therapy. PMID:25032734

  6. Differentially proteomic analysis of the Chinese shrimp at WSSV latent and acute infection stages by iTRAQ approach.

    PubMed

    Li, Shihao; Li, Fuhua; Sun, Zheng; Zhang, Xiaojun; Xiang, Jianhai

    2016-07-01

    As the direct executors of biological function, the expression level of proteins will reveal the molecular mechanisms regulating WSSV acute infection more directly. In the present study, the iTRAQ approach was applied to identifying differentially expressed proteins in Chinese shrimp during WSSV latent infection and acute infection. A total of 4051 unique peptides corresponding to 1286 proteins were identified. 118 unique proteins showed differential up-regulation and 122 proteins were down-regulated in shrimp during WSSV acute infection compared with those in WSSV latent infection stage. A number of proteins related to actin-myosin cytoskeleton process, including myosin, actin, tubulin, clathrin, and tropomyosin were found up-regulated in shrimp at WSSV AI stage, indicating that the phagocytosis process was involved in WSSV AI stage. The apoptosis process in shrimp during WSSV AI seemed to be inhibited because some proteins suppressive on apoptosis were up-regulated, such as ALG-2 interacting protein x, Hsp90, 14-3-3-like protein, peroxiredoxin 5, peroxiredoxin 6 and adenine nucleotide translocase 2. Association analysis between the proteomic data and the previous transcriptome data was performed. Quantitative real-time PCR and western blot were carried out to verify the reliability of the proteomics data. The present study provided a comprehensive view of molecular mechanisms regulating WSSV acute infection at the protein level. PMID:27192146

  7. Effect of iTRAQ labeling on the relative abundance of peptide fragment ions produced by MALDI-MS/MS.

    PubMed

    Gandhi, Tejas; Puri, Pranav; Fusetti, Fabrizia; Breitling, Rainer; Poolman, Bert; Permentier, Hjalmar P

    2012-08-01

    The identification of proteins in proteomics experiments is usually based on mass information derived from tandem mass spectrometry data. To improve the performance of the identification algorithms, additional information available in the fragment peak intensity patterns has been shown to be useful. In this study, we consider the effect of iTRAQ labeling on the fragment peak intensity patterns of singly charged peptides from MALDI tandem MS data. The presence of an iTRAQ-modified basic group on the N-terminus leads to a more pronounced set of b-ion peaks and distinct changes in the abundance of specific peptide types. We performed a simple intensity prediction by using a decision-tree machine learning approach and were able to show that the relative ion abundance in a spectrum can be correctly predicted and distinguished from closely related sequences. This information will be useful for the development of improved method-specific intensity-based protein identification algorithms. PMID:22770492

  8. Dystrophin quantification

    PubMed Central

    Anthony, Karen; Arechavala-Gomeza, Virginia; Taylor, Laura E.; Vulin, Adeline; Kaminoh, Yuuki; Torelli, Silvia; Feng, Lucy; Janghra, Narinder; Bonne, Gisèle; Beuvin, Maud; Barresi, Rita; Henderson, Matt; Laval, Steven; Lourbakos, Afrodite; Campion, Giles; Straub, Volker; Voit, Thomas; Sewry, Caroline A.; Morgan, Jennifer E.; Flanigan, Kevin M.

    2014-01-01

    Objective: We formed a multi-institution collaboration in order to compare dystrophin quantification methods, reach a consensus on the most reliable method, and report its biological significance in the context of clinical trials. Methods: Five laboratories with expertise in dystrophin quantification performed a data-driven comparative analysis of a single reference set of normal and dystrophinopathy muscle biopsies using quantitative immunohistochemistry and Western blotting. We developed standardized protocols and assessed inter- and intralaboratory variability over a wide range of dystrophin expression levels. Results: Results from the different laboratories were highly concordant with minimal inter- and intralaboratory variability, particularly with quantitative immunohistochemistry. There was a good level of agreement between data generated by immunohistochemistry and Western blotting, although immunohistochemistry was more sensitive. Furthermore, mean dystrophin levels determined by alternative quantitative immunohistochemistry methods were highly comparable. Conclusions: Considering the biological function of dystrophin at the sarcolemma, our data indicate that the combined use of quantitative immunohistochemistry and Western blotting are reliable biochemical outcome measures for Duchenne muscular dystrophy clinical trials, and that standardized protocols can be comparable between competent laboratories. The methodology validated in our study will facilitate the development of experimental therapies focused on dystrophin production and their regulatory approval. PMID:25355828

  9. Absolute Identification by Relative Judgment

    ERIC Educational Resources Information Center

    Stewart, Neil; Brown, Gordon D. A.; Chater, Nick

    2005-01-01

    In unidimensional absolute identification tasks, participants identify stimuli that vary along a single dimension. Performance is surprisingly poor compared with discrimination of the same stimuli. Existing models assume that identification is achieved using long-term representations of absolute magnitudes. The authors propose an alternative…

  10. Be Resolute about Absolute Value

    ERIC Educational Resources Information Center

    Kidd, Margaret L.

    2007-01-01

    This article explores how conceptualization of absolute value can start long before it is introduced. The manner in which absolute value is introduced to students in middle school has far-reaching consequences for their future mathematical understanding. It begins to lay the foundation for students' understanding of algebra, which can change…

  11. iTRAQ proteomic analysis of salinity acclimation proteins in the gill of tropical marbled eel (Anguilla marmorata).

    PubMed

    Jia, Yihe; Yin, Shaowu; Li, Li; Li, Peng; Liang, Fenfei; Wang, Xiaolu; Wang, Xiaojun; Wang, Li; Su, Xinhua

    2016-06-01

    Osmoregulation plays an important role in the migration process of catadromous fish. The osmoregulatory mechanisms of tropical marbled eel (Anguilla marmorata), a typical catadromous fish, did not gain sufficient attention, especially at the molecular level. In order to enrich the protein database of A. marmorata, a proteomic analysis has been carried out by iTRAQ technique. Among 1937 identified proteins in gill of marbled eel, the expression of 1560 proteins (80 %) was quantified. Compared with the protein expression level in the gill of marbled eel in freshwater (salinity of 0 ‰), 336 proteins were up-regulated and 67 proteins were down-regulated in seawater (salinity of 25 ‰); 33 proteins were up-regulated and 32 proteins were down-regulated in brackish water (salinity of 10 ‰). These up-regulated proteins including Na(+)/K(+)-ATPase, V-type proton ATPase, sodium-potassium-chloride co-transporter and heat shock protein 90 were enriched in many KEGG-annotated pathways, which are related to different functions of the gill. The up-regulated oxidative phosphorylation and seleno-compound metabolism pathways involve the synthesis and consumption of ATP, which represents extra energy consumption. Another identified pathway is the ribosome pathway in which a large number of up-regulated proteins are involved. It is also more notable that tight junction and cardiac muscle contraction pathways may have correlation with ion transport in gill cells. This is the first report describing the proteome of A. marmorata for acclimating to the change of salinity. These results provide a functional database for migratory fish and point out some possible new interactions on osmoregulation in A. marmorata. PMID:26721661

  12. Protein inference: A protein quantification perspective.

    PubMed

    He, Zengyou; Huang, Ting; Liu, Xiaoqing; Zhu, Peijun; Teng, Ben; Deng, Shengchun

    2016-08-01

    In mass spectrometry-based shotgun proteomics, protein quantification and protein identification are two major computational problems. To quantify the protein abundance, a list of proteins must be firstly inferred from the raw data. Then the relative or absolute protein abundance is estimated with quantification methods, such as spectral counting. Until now, most researchers have been dealing with these two processes separately. In fact, the protein inference problem can be regarded as a special protein quantification problem in the sense that truly present proteins are those proteins whose abundance values are not zero. Some recent published papers have conceptually discussed this possibility. However, there is still a lack of rigorous experimental studies to test this hypothesis. In this paper, we investigate the feasibility of using protein quantification methods to solve the protein inference problem. Protein inference methods aim to determine whether each candidate protein is present in the sample or not. Protein quantification methods estimate the abundance value of each inferred protein. Naturally, the abundance value of an absent protein should be zero. Thus, we argue that the protein inference problem can be viewed as a special protein quantification problem in which one protein is considered to be present if its abundance is not zero. Based on this idea, our paper tries to use three simple protein quantification methods to solve the protein inference problem effectively. The experimental results on six data sets show that these three methods are competitive with previous protein inference algorithms. This demonstrates that it is plausible to model the protein inference problem as a special protein quantification task, which opens the door of devising more effective protein inference algorithms from a quantification perspective. The source codes of our methods are available at: http://code.google.com/p/protein-inference/. PMID:26935399

  13. Development of Quantitative Proteomics Using iTRAQ Based on the Immunological Response of Galleria mellonella Larvae Challenged with Fusarium oxysporum Microconidia

    PubMed Central

    Muñoz-Gómez, Amalia; Corredor, Mauricio; Benítez-Páez, Alfonso; Peláez, Carlos

    2014-01-01

    Galleria mellonella has emerged as a potential invertebrate model for scrutinizing innate immunity. Larvae are easy to handle in host-pathogen assays. We undertook proteomics research in order to understand immune response in a heterologous host when challenged with microconidia of Fusarium oxysporum. The aim of this study was to investigate hemolymph proteins that were differentially expressed between control and immunized larvae sets, tested with F. oxysporum at two temperatures. The iTRAQ approach allowed us to observe the effects of immune challenges in a lucid and robust manner, identifying more than 50 proteins, 17 of them probably involved in the immune response. Changes in protein expression were statistically significant, especially when temperature was increased because this was notoriously affected by F. oxysporum 104 or 106 microconidia/mL. Some proteins were up-regulated upon immune fungal microconidia challenge when temperature changed from 25 to 37°C. After analysis of identified proteins by bioinformatics and meta-analysis, results revealed that they were involved in transport, immune response, storage, oxide-reduction and catabolism: 20 from G. mellonella, 20 from the Lepidoptera species and 19 spread across bacteria, protista, fungi and animal species. Among these, 13 proteins and 2 peptides were examined for their immune expression, and the hypothetical 3D structures of 2 well-known proteins, unannotated for G. mellonella, i.e., actin and CREBP, were resolved using peptides matched with Bombyx mori and Danaus plexippus, respectively. The main conclusion in this study was that iTRAQ tool constitutes a consistent method to detect proteins associated with the innate immune system of G. mellonella in response to infection caused by F. oxysporum. In addition, iTRAQ was a reliable quantitative proteomic approach to detect and quantify the expression levels of immune system proteins and peptides, in particular, it was found that 104 microconidia/mL at

  14. Software-assisted serum metabolite quantification using NMR.

    PubMed

    Jung, Young-Sang; Hyeon, Jin-Seong; Hwang, Geum-Sook

    2016-08-31

    The goal of metabolomics is to analyze a whole metabolome under a given set of conditions, and accurate and reliable quantitation of metabolites is crucial. Absolute concentration is more valuable than relative concentration; however, the most commonly used method in NMR-based serum metabolic profiling, bin-based and full data point peak quantification, provides relative concentration levels of metabolites and are not reliable when metabolite peaks overlap in a spectrum. In this study, we present the software-assisted serum metabolite quantification (SASMeQ) method, which allows us to identify and quantify metabolites in NMR spectra using Chenomx software. This software uses the ERETIC2 utility from TopSpin to add a digitally synthesized peak to a spectrum. The SASMeQ method will advance NMR-based serum metabolic profiling by providing an accurate and reliable method for absolute quantification that is superior to bin-based quantification. PMID:27506360

  15. Absolute transition probabilities of phosphorus.

    NASA Technical Reports Server (NTRS)

    Miller, M. H.; Roig, R. A.; Bengtson, R. D.

    1971-01-01

    Use of a gas-driven shock tube to measure the absolute strengths of 21 P I lines and 126 P II lines (from 3300 to 6900 A). Accuracy for prominent, isolated neutral and ionic lines is estimated to be 28 to 40% and 18 to 30%, respectively. The data and the corresponding theoretical predictions are examined for conformity with the sum rules.-

  16. Optomechanics for absolute rotation detection

    NASA Astrophysics Data System (ADS)

    Davuluri, Sankar

    2016-07-01

    In this article, we present an application of optomechanical cavity for the absolute rotation detection. The optomechanical cavity is arranged in a Michelson interferometer in such a way that the classical centrifugal force due to rotation changes the length of the optomechanical cavity. The change in the cavity length induces a shift in the frequency of the cavity mode. The phase shift corresponding to the frequency shift in the cavity mode is measured at the interferometer output to estimate the angular velocity of absolute rotation. We derived an analytic expression to estimate the minimum detectable rotation rate in our scheme for a given optomechanical cavity. Temperature dependence of the rotation detection sensitivity is studied.

  17. The Absolute Spectrum Polarimeter (ASP)

    NASA Technical Reports Server (NTRS)

    Kogut, A. J.

    2010-01-01

    The Absolute Spectrum Polarimeter (ASP) is an Explorer-class mission to map the absolute intensity and linear polarization of the cosmic microwave background and diffuse astrophysical foregrounds over the full sky from 30 GHz to 5 THz. The principal science goal is the detection and characterization of linear polarization from an inflationary epoch in the early universe, with tensor-to-scalar ratio r much greater than 1O(raised to the power of { -3}) and Compton distortion y < 10 (raised to the power of{-6}). We describe the ASP instrument and mission architecture needed to detect the signature of an inflationary epoch in the early universe using only 4 semiconductor bolometers.

  18. Absolute calibration of optical flats

    DOEpatents

    Sommargren, Gary E.

    2005-04-05

    The invention uses the phase shifting diffraction interferometer (PSDI) to provide a true point-by-point measurement of absolute flatness over the surface of optical flats. Beams exiting the fiber optics in a PSDI have perfect spherical wavefronts. The measurement beam is reflected from the optical flat and passed through an auxiliary optic to then be combined with the reference beam on a CCD. The combined beams include phase errors due to both the optic under test and the auxiliary optic. Standard phase extraction algorithms are used to calculate this combined phase error. The optical flat is then removed from the system and the measurement fiber is moved to recombine the two beams. The newly combined beams include only the phase errors due to the auxiliary optic. When the second phase measurement is subtracted from the first phase measurement, the absolute phase error of the optical flat is obtained.

  19. Relative Quantification of Several Plasma Proteins during Liver Transplantation Surgery

    PubMed Central

    Parviainen, Ville; Joenväärä, Sakari; Tukiainen, Eija; Ilmakunnas, Minna; Isoniemi, Helena; Renkonen, Risto

    2011-01-01

    Plasma proteome is widely used in studying changes occurring in human body during disease or other disturbances. Immunological methods are commonly used in such studies. In recent years, mass spectrometry has gained popularity in high-throughput analysis of plasma proteins. In this study, we tested whether mass spectrometry and iTRAQ-based protein quantification might be used in proteomic analysis of human plasma during liver transplantation surgery to characterize changes in protein abundances occurring during early graft reperfusion. We sampled blood from systemic circulation as well as blood entering and exiting the liver. After immunodepletion of six high-abundant plasma proteins, trypsin digestion, iTRAQ labeling, and cation-exchange fractionation, the peptides were analyzed by reverse phase nano-LC-MS/MS. In total, 72 proteins were identified of which 31 could be quantified in all patient specimens collected. Of these 31 proteins, ten, mostly medium-to-high abundance plasma proteins with a concentration range of 50–2000 mg/L, displayed relative abundance change of more than 10%. The changes in protein abundance observed in this study allow further research on the role of several proteins in ischemia-reperfusion injury during liver transplantation and possibly in other surgery. PMID:22187521

  20. The AFGL absolute gravity program

    NASA Technical Reports Server (NTRS)

    Hammond, J. A.; Iliff, R. L.

    1978-01-01

    A brief discussion of the AFGL's (Air Force Geophysics Laboratory) program in absolute gravity is presented. Support of outside work and in-house studies relating to gravity instrumentation are discussed. A description of the current transportable system is included and the latest results are presented. These results show good agreement with measurements at the AFGL site by an Italian system. The accuracy obtained by the transportable apparatus is better than 0.1 microns sq sec 10 microgal and agreement with previous measurements is within the combined uncertainties of the measurements.

  1. Cosmology with negative absolute temperatures

    NASA Astrophysics Data System (ADS)

    Vieira, J. P. P.; Byrnes, Christian T.; Lewis, Antony

    2016-08-01

    Negative absolute temperatures (NAT) are an exotic thermodynamical consequence of quantum physics which has been known since the 1950's (having been achieved in the lab on a number of occasions). Recently, the work of Braun et al. [1] has rekindled interest in negative temperatures and hinted at a possibility of using NAT systems in the lab as dark energy analogues. This paper goes one step further, looking into the cosmological consequences of the existence of a NAT component in the Universe. NAT-dominated expanding Universes experience a borderline phantom expansion (w < ‑1) with no Big Rip, and their contracting counterparts are forced to bounce after the energy density becomes sufficiently large. Both scenarios might be used to solve horizon and flatness problems analogously to standard inflation and bouncing cosmologies. We discuss the difficulties in obtaining and ending a NAT-dominated epoch, and possible ways of obtaining density perturbations with an acceptable spectrum.

  2. Data set of the protein expression profiles of Luminal A, Claudin-low and overexpressing HER2(+) breast cancer cell lines by iTRAQ labelling and tandem mass spectrometry.

    PubMed

    Calderón-González, Karla Grisel; Valero Rustarazo, Ma Luz; Labra-Barrios, Maria Luisa; Bazán-Méndez, César Isaac; Tavera-Tapia, Alejandra; Herrera-Aguirre, Marí aEsther; Sánchez Del Pino, Manuel M; Gallegos-Pérez, José Luis; González-Márquez, Humberto; Hernández-Hernández, Jose Manuel; León-Ávila, Gloria; Rodríguez-Cuevas, Sergio; Guisa-Hohenstein, Fernando; Luna-Arias, Juan Pedro

    2015-09-01

    Breast cancer is the most common and the leading cause of mortality in women worldwide. There is a dire necessity of the identification of novel molecules useful in diagnosis and prognosis. In this work we determined the differentially expression profiles of four breast cancer cell lines compared to a control cell line. We identified 1020 polypeptides labelled with iTRAQ with more than 95% in confidence. We analysed the common proteins in all breast cancer cell lines through IPA software (IPA core and Biomarkers). In addition, we selected the specific overexpressed and subexpressed proteins of the different molecular classes of breast cancer cell lines, and classified them according to protein class and biological process. Data in this article is related to the research article "Determination of the protein expression profiles of breast cancer cell lines by Quantitative Proteomics using iTRAQ Labelling and Tandem Mass Spectrometry" (Calderón-González et al. [1] in press). PMID:26217805

  3. iTRAQ analysis of hepatic proteins in free-living Mus spretus mice to assess the contamination status of areas surrounding Doñana National Park (SW Spain).

    PubMed

    Abril, Nieves; Chicano-Gálvez, Eduardo; Michán, Carmen; Pueyo, Carmen; López-Barea, Juan

    2015-08-01

    This work aims to develop and integrate new -omics tools that would be applicable to different ecosystem types for a technological updating of environmental evaluations. We used a 2nd-generation (iTRAQ-8plex) proteomic approach to identify/quantify proteins differentially expressed in the liver of free-living Mus spretus mice from Doñana National Park or its proximities. Mass spectrometry was performed in an LTQ Orbitrap system for iTRAQ reporter ion quantitation and protein identification using a Mus musculus database as reference. A prior IEF step improved the separation of the complex peptide mixture. Over 2000 identified proteins were altered, of which 118 changed by ≥2.5-fold in mice from at least two problem sites. Part of the results obtained with the iTRAQ analysis was confirmed by Western blot. Over 75% of the 118 proteins were upregulated in animals captured at polluted sites and only 16 proteins were downregulated. Upregulated proteins were involved in stress response; cell proliferation and apoptosis; signal transduction; metastasis or tumour suppression; xenobiotic export or vesicular trafficking; and metabolism. The downregulated proteins, all potentially harmful, were classified as oncoproteins and proteins favouring genome instability. The iTRAQ results presented here demonstrated that the survival of hepatic cells is compromised in animals living at polluted sites, which showed deep alterations in metabolism and the signalling pathways. The identified proteins may be useful as biomarkers of environmental pollution and provide insight about the metabolic pathways and/or physiological processes affected by pollutants in DNP and its surrounding areas. PMID:25847312

  4. Isolation and Analysis of Cell Wall Proteome in Elsholtzia splendens Roots Using ITRAQ with LC-ESI-MS/MS.

    PubMed

    Liu, Tingting; Huang, Canke; Shen, Chaofeng; Shi, Jiyan

    2015-06-01

    Cell wall proteins (CWPs) are a prime site for signal perception and defense responses to environmental stresses. To gain further insights into CWPs and their molecular function, traditional techniques (e.g., two-dimensional gel electrophoresis) may be ineffective for special proteins. Elsholtzia splendens is a copper-tolerant plant species that grow on copper deposits. In this study, a fourplex isobaric tag was used for relative and absolute quantitation with liquid chromatography-tandem mass spectrometry approach to analyze the root CWPs of E. splendens. A total of 479 unique proteins were identified, including 121 novel proteins. Approximately 80.79 % of the proteins were extracted in the CaCl2 fraction, 16.08 % were detected in the NaCl fraction, and 3.13 % were identified in both fractions. The identified proteins have been involved in various processes, including cell wall remodeling, signal transduction, defense, and carbohydrate metabolism, thereby indicating a complex regulatory network in the apoplast of E. splendens roots. This study presents the first large-scale analysis of CWPs in metal-tolerant plants, which may be of paramount importance to understand the molecular functions and metabolic pathways in the root cell wall of copper-tolerant plants. PMID:25926012

  5. Improving HST Pointing & Absolute Astrometry

    NASA Astrophysics Data System (ADS)

    Lallo, Matthew; Nelan, E.; Kimmer, E.; Cox, C.; Casertano, S.

    2007-05-01

    Accurate absolute astrometry is becoming increasingly important in an era of multi-mission archives and virtual observatories. Hubble Space Telescope's (HST's) Guidestar Catalog II (GSC2) has reduced coordinate error to around 0.25 arcsecond, a factor 2 or more compared with GSC1. With this reduced catalog error, special attention must be given to calibrate and maintain the Fine Guidance Sensors (FGSs) and Science Instruments (SIs) alignments in HST to a level well below this in order to ensure that the accuracy of science product's astrometry keywords and target positioning are limited only by the catalog errors. After HST Servicing Mission 4, such calibrations' improvement in "blind" pointing accuracy will allow for more efficient COS acquisitions. Multiple SIs and FGSs each have their own footprints in the spatially shared HST focal plane. It is the small changes over time in primarily the whole-body positions & orientations of these instruments & guiders relative to one another that is addressed by this work. We describe the HST Cycle 15 program CAL/OTA 11021 which, along with future variants of it, determines and maintains positions and orientations of the SIs and FGSs to better than 50 milli- arcseconds and 0.04 to 0.004 degrees of roll, putting errors associated with the alignment sufficiently below GSC2 errors. We present recent alignment results and assess their errors, illustrate trends, and describe where and how the observer sees benefit from these calibrations when using HST.

  6. Absolute oral bioavailability of ciprofloxacin.

    PubMed

    Drusano, G L; Standiford, H C; Plaisance, K; Forrest, A; Leslie, J; Caldwell, J

    1986-09-01

    We evaluated the absolute bioavailability of ciprofloxacin, a new quinoline carboxylic acid, in 12 healthy male volunteers. Doses of 200 mg were given to each of the volunteers in a randomized, crossover manner 1 week apart orally and as a 10-min intravenous infusion. Half-lives (mean +/- standard deviation) for the intravenous and oral administration arms were 4.2 +/- 0.77 and 4.11 +/- 0.74 h, respectively. The serum clearance rate averaged 28.5 +/- 4.7 liters/h per 1.73 m2 for the intravenous administration arm. The renal clearance rate accounted for approximately 60% of the corresponding serum clearance rate and was 16.9 +/- 3.0 liters/h per 1.73 m2 for the intravenous arm and 17.0 +/- 2.86 liters/h per 1.73 m2 for the oral administration arm. Absorption was rapid, with peak concentrations in serum occurring at 0.71 +/- 0.15 h. Bioavailability, defined as the ratio of the area under the curve from 0 h to infinity for the oral to the intravenous dose, was 69 +/- 7%. We conclude that ciprofloxacin is rapidly absorbed and reliably bioavailable in these healthy volunteers. Further studies with ciprofloxacin should be undertaken in target patient populations under actual clinical circumstances. PMID:3777908

  7. Absolute Instability in Coupled-Cavity TWTs

    NASA Astrophysics Data System (ADS)

    Hung, D. M. H.; Rittersdorf, I. M.; Zhang, Peng; Lau, Y. Y.; Simon, D. H.; Gilgenbach, R. M.; Chernin, D.; Antonsen, T. M., Jr.

    2014-10-01

    This paper will present results of our analysis of absolute instability in a coupled-cavity traveling wave tube (TWT). The structure mode at the lower and upper band edges are respectively approximated by a hyperbola in the (omega, k) plane. When the Briggs-Bers criterion is applied, a threshold current for onset of absolute instability is observed at the upper band edge, but not the lower band edge. The nonexistence of absolute instability at the lower band edge is mathematically similar to the nonexistence of absolute instability that we recently demonstrated for a dielectric TWT. The existence of absolute instability at the upper band edge is mathematically similar to the existence of absolute instability in a gyroton traveling wave amplifier. These interesting observations will be discussed, and the practical implications will be explored. This work was supported by AFOSR, ONR, and L-3 Communications Electron Devices.

  8. Absolute negative mobility of interacting Brownian particles

    NASA Astrophysics Data System (ADS)

    Ou, Ya-li; Hu, Cai-tian; Wu, Jian-chun; Ai, Bao-quan

    2015-12-01

    Transport of interacting Brownian particles in a periodic potential is investigated in the presence of an ac force and a dc force. From Brownian dynamic simulations, we find that both the interaction between particles and the thermal fluctuations play key roles in the absolute negative mobility (the particle noisily moves backwards against a small constant bias). When no the interaction acts, there is only one region where the absolute negative mobility occurs. In the presence of the interaction, the absolute negative mobility may appear in multiple regions. The weak interaction can be helpful for the absolute negative mobility, while the strong interaction has a destructive impact on it.

  9. Large scale systematic proteomic quantification from non-metastatic to metastatic colorectal cancer

    NASA Astrophysics Data System (ADS)

    Yin, Xuefei; Zhang, Yang; Guo, Shaowen; Jin, Hong; Wang, Wenhai; Yang, Pengyuan

    2015-07-01

    A systematic proteomic quantification of formalin-fixed, paraffin-embedded (FFPE) colorectal cancer tissues from stage I to stage IIIC was performed in large scale. 1017 proteins were identified with 338 proteins in quantitative changes by label free method, while 341 proteins were quantified with significant expression changes among 6294 proteins by iTRAQ method. We found that proteins related to migration expression increased and those for binding and adherent decreased during the colorectal cancer development according to the gene ontology (GO) annotation and ingenuity pathway analysis (IPA). The integrin alpha 5 (ITA5) in integrin family was focused, which was consistent with the metastasis related pathway. The expression level of ITA5 decreased in metastasis tissues and the result has been further verified by Western blotting. Another two cell migration related proteins vitronectin (VTN) and actin-related protein (ARP3) were also proved to be up-regulated by both mass spectrometry (MS) based quantification results and Western blotting. Up to now, our result shows one of the largest dataset in colorectal cancer proteomics research. Our strategy reveals a disease driven omics-pattern for the metastasis colorectal cancer.

  10. Quantitative proteomic analysis of milk fat globule membrane (MFGM) proteins in human and bovine colostrum and mature milk samples through iTRAQ labeling.

    PubMed

    Yang, Mei; Cong, Min; Peng, Xiuming; Wu, Junrui; Wu, Rina; Liu, Biao; Ye, Wenhui; Yue, Xiqing

    2016-05-18

    Milk fat globule membrane (MFGM) proteins have many functions. To explore the different proteomics of human and bovine MFGM, MFGM proteins were separated from human and bovine colostrum and mature milk, and analyzed by the iTRAQ proteomic approach. A total of 411 proteins were recognized and quantified. Among these, 232 kinds of differentially expressed proteins were identified. These differentially expressed proteins were analyzed based on multivariate analysis, gene ontology (GO) annotation and KEGG pathway. Biological processes involved were response to stimulus, localization, establishment of localization, and the immune system process. Cellular components engaged were the extracellular space, extracellular region parts, cell fractions, and vesicles. Molecular functions touched upon were protein binding, nucleotide binding, and enzyme inhibitor activity. The KEGG pathway analysis showed several pathways, including regulation of the actin cytoskeleton, focal adhesion, neurotrophin signaling pathway, leukocyte transendothelial migration, tight junction, complement and coagulation cascades, vascular endothelial growth factor signaling pathway, and adherens junction. These results enhance our understanding of different proteomes of human and bovine MFGM across different lactation phases, which could provide important information and potential directions for the infant milk powder and functional food industries. PMID:27159491

  11. Discovery and initial verification of differentially abundant proteins between multiple sclerosis patients and controls using iTRAQ and SID-SRM.

    PubMed

    Kroksveen, Ann C; Aasebø, Elise; Vethe, Heidrun; Van Pesch, Vincent; Franciotta, Diego; Teunissen, Charlotte E; Ulvik, Rune J; Vedeler, Christian; Myhr, Kjell-Morten; Barsnes, Harald; Berven, Frode S

    2013-01-14

    In the present study, we aimed to discover cerebrospinal fluid (CSF) proteins with significant abundance difference between early multiple sclerosis patients and controls, and do an initial verification of these proteins using selected reaction monitoring (SRM). iTRAQ and Orbitrap MS were used to compare the CSF proteome of patients with clinically isolated syndrome (CIS) (n=5), patients with relapsing-remitting multiple sclerosis that had CIS at the time of lumbar puncture (n=5), and controls with other inflammatory neurological disease (n=5). Of more than 1200 identified proteins, five proteins were identified with significant abundance difference between the patients and controls. In the initial verification using SRM we analyzed a larger patient and control cohort (n=132) and also included proteins reported as differentially abundant in multiple sclerosis in the literature. We found significant abundance difference for 11 proteins after verification, of which the five proteins alpha-1-antichymotrypsin, contactin-1, apolipoprotein D, clusterin, and kallikrein-6 were significantly differentially abundant in several of the group comparisons. This initial study form the basis for further biomarker verification studies in even larger sample cohorts, to determine if these proteins have relevance as diagnostic or prognostic biomarkers for multiple sclerosis. PMID:23059536

  12. Neuroproteome Changes after Ischemia/Reperfusion Injury and Tissue Plasminogen Activator Administration in Rats: A Quantitative iTRAQ Proteomics Study

    PubMed Central

    Merali, Zamir; Gao, Meah MingYang; Bowes, Tim; Chen, Jian; Evans, Kenneth; Kassner, Andrea

    2014-01-01

    The thrombolytic, recombinant tissue plasminogen activator (rt-PA) is the only approved therapy for acute ischemic stroke (AIS). When administered after AIS, rt-PA has many adverse pleiotropic actions, which are currently poorly understood. The identification of proteins showing differential expression after rt-PA administration may provide insight into these pleiotropic actions. In this study we used a 2D-LC MS/MS iTRAQ proteomic analysis, western blotting, and pathway analysis to analyze changes in protein expression 24-hours after rt-PA administration in the cortical brain tissue of 36 rats that underwent a sham or transient middle cerebral artery occlusion surgery. After rt-PA administration we reported alterations in the expressions of 18 proteins, many of which were involved in excitatory neurotransmitter function or cytoskeletal structure. The expression changes of GAD2 and EAAT1 were validated with western blot. The interactions between the identified proteins were analyzed with the IPA pathway analysis tool and three proteins: DPYSL2, RTN4, and the NF-kB complex, were found to have characteristics of being key proteins in the network. The differential protein expressions we observed may reflect pleiotropic actions of rt-PA after experimental stroke, and shine light on the mechanisms of rt-PA's adverse effects. This may have important implications in clinical settings where thrombolytic therapy is used to treat AIS. PMID:24879061

  13. [Comparative proteomics study of different processing technology for pilose antler using iTRAQ technology coupled with 2D LC-MS].

    PubMed

    Jin, Meng-ya; Dong, Ling; Luo, Yuan-ming; Yu, Li; Mo, Mei; Hou, Cheng-bo; Li, Zhi-yuan

    2015-12-01

    This study was designed to use iTRAQ technology coupled with 2D LC-MS/MS to study the comparative proteomics of different processing technology for pilose antler. 1015 proteins were identified with 2D LC combined with MOLDI TOF/TOF mass spectrometry. Comparative analysis with Protein Pilot (Version 4.5) revealed that 87 proteins were changed (P ≤ 0.05, the ratio of > 1.50 or < 0.60 as the threshold selection of difference proteins), of which 24 were up regulated and 33 were down regulated in the traditional frying process (TFP) compared with the fresh pilose antler (P ≤ 0.05). 7 significant different proteins (P ≤ 0.001), most of these significantly changed proteins were found to be involved in calcium ion binding and ATP binding associated with human healthy. Freeze drying with protective agent (FDP) (Trehalose) can improve the content of significantly different proteins (P ≤ 0.001) including Collagen alpha-1 (XII) chain (COL12A1) and Collagen alpha-1 (II) chain (COL2A1). The significant function involves in platelets activating, maintenance of spermatogonium, and disorder expression in tumor cells. The functional annotation by Hierarchical clustering and GO (gene ontology) showed that the main molecule functions of the proteins significantly changed in these processes were involved in binding (52.7%), catalytic (25.3%), structural molecule and transporter (6.6%). PMID:27169289

  14. Scoliosis quantification: an overview

    PubMed Central

    Kawchuk, Greg; McArthur, Ross

    1997-01-01

    Scoliotic curvatures have long been a focus of attention for clinicians and research scientists alike. The study, treatment and ultimately, the prevention of this prevalent health condition are impeded by the absence of an accurate, reliable, convenient and safe method of scoliosis quantification. The purpose of this paper is to provide an overview of the current methods of scoliosis quantification for clinicians who address this condition in their practices.

  15. Direct immunomagnetic quantification of lymphocyte subsets in blood.

    PubMed Central

    Brinchmann, J E; Vartdal, F; Gaudernack, G; Markussen, G; Funderud, S; Ugelstad, J; Thorsby, E

    1988-01-01

    A method is described where superparamagnetic polymer microspheres coated with monoclonal antibodies (MoAb) are used for the direct and fast quantification of the absolute number of cells of various lymphocyte subsets in blood. Blood samples were incubated with microspheres coated with a subset specific MoAb. Using a magnet the microsphere-rosetted cells were isolated and washed. Following lysis of the cell walls to detach the microspheres, the cell nuclei were stained with acridine orange and counted in a haemocytometer using an immunofluorescence microscope. With MoAb specific for CD2, CD4, CD8 and CD19, reproducible absolute counts of the corresponding lymphocyte subsets were obtained which correlated closely with those obtained by an indirect quantification method. PMID:3349645

  16. Absolute Efficiency Calibration of a Beta-Gamma Detector

    SciTech Connect

    Cooper, Matthew W.; Ely, James H.; Haas, Derek A.; Hayes, James C.; McIntyre, Justin I.; Lidey, Lance S.; Schrom, Brian T.

    2013-04-10

    Abstract- Identification and quantification of nuclear events such as the Fukushima reactor failure and nuclear explosions rely heavily on the accurate measurement of radioxenon releases. One radioxenon detection method depends on detecting beta-gamma coincident events paired with a stable xenon measurement to determine the concentration of a plume. Like all measurements, the beta-gamma method relies on knowing the detection efficiency for each isotope measured. Several methods are commonly used to characterize the detection efficiency for a beta-gamma detector. The most common method is using a NIST certified sealed source to determine the efficiency. A second method determines the detection efficiencies relative to an already characterized detector. Finally, a potentially more accurate method is to use the expected sample to perform an absolute efficiency calibration; in the case of a beta-gamma detector, this relies on radioxenon gas samples. The complication of the first method is it focuses only on the gamma detectors and does not offer a solution for determining the beta efficiency. The second method listed is not similarly constrained, however it relies on another detector to have a well-known efficiency calibration. The final method using actual radioxenon samples to make an absolute efficiency determination is the most desirable, but until recently it was not possible to produce all four isotopically pure radioxenon. The production, by University of Texas (UT), of isotopically pure radioxenon has allowed the beta-gamma detectors to be calibrated using the absolute efficiency method. The first four radioxenon isotope calibration will be discussed is this paper.

  17. Inequalities, Absolute Value, and Logical Connectives.

    ERIC Educational Resources Information Center

    Parish, Charles R.

    1992-01-01

    Presents an approach to the concept of absolute value that alleviates students' problems with the traditional definition and the use of logical connectives in solving related problems. Uses a model that maps numbers from a horizontal number line to a vertical ray originating from the origin. Provides examples solving absolute value equations and…

  18. Absolute optical metrology : nanometers to kilometers

    NASA Technical Reports Server (NTRS)

    Dubovitsky, Serge; Lay, O. P.; Peters, R. D.; Liebe, C. C.

    2005-01-01

    We provide and overview of the developments in the field of high-accuracy absolute optical metrology with emphasis on space-based applications. Specific work on the Modulation Sideband Technology for Absolute Ranging (MSTAR) sensor is described along with novel applications of the sensor.

  19. Monolithically integrated absolute frequency comb laser system

    DOEpatents

    Wanke, Michael C.

    2016-07-12

    Rather than down-convert optical frequencies, a QCL laser system directly generates a THz frequency comb in a compact monolithically integrated chip that can be locked to an absolute frequency without the need of a frequency-comb synthesizer. The monolithic, absolute frequency comb can provide a THz frequency reference and tool for high-resolution broad band spectroscopy.

  20. Introducing the Mean Absolute Deviation "Effect" Size

    ERIC Educational Resources Information Center

    Gorard, Stephen

    2015-01-01

    This paper revisits the use of effect sizes in the analysis of experimental and similar results, and reminds readers of the relative advantages of the mean absolute deviation as a measure of variation, as opposed to the more complex standard deviation. The mean absolute deviation is easier to use and understand, and more tolerant of extreme…

  1. Investigating Absolute Value: A Real World Application

    ERIC Educational Resources Information Center

    Kidd, Margaret; Pagni, David

    2009-01-01

    Making connections between various representations is important in mathematics. In this article, the authors discuss the numeric, algebraic, and graphical representations of sums of absolute values of linear functions. The initial explanations are accessible to all students who have experience graphing and who understand that absolute value simply…

  2. Absolute Income, Relative Income, and Happiness

    ERIC Educational Resources Information Center

    Ball, Richard; Chernova, Kateryna

    2008-01-01

    This paper uses data from the World Values Survey to investigate how an individual's self-reported happiness is related to (i) the level of her income in absolute terms, and (ii) the level of her income relative to other people in her country. The main findings are that (i) both absolute and relative income are positively and significantly…

  3. Absolute instability of the Gaussian wake profile

    NASA Technical Reports Server (NTRS)

    Hultgren, Lennart S.; Aggarwal, Arun K.

    1987-01-01

    Linear parallel-flow stability theory has been used to investigate the effect of viscosity on the local absolute instability of a family of wake profiles with a Gaussian velocity distribution. The type of local instability, i.e., convective or absolute, is determined by the location of a branch-point singularity with zero group velocity of the complex dispersion relation for the instability waves. The effects of viscosity were found to be weak for values of the wake Reynolds number, based on the center-line velocity defect and the wake half-width, larger than about 400. Absolute instability occurs only for sufficiently large values of the center-line wake defect. The critical value of this parameter increases with decreasing wake Reynolds number, thereby indicating a shrinking region of absolute instability with decreasing wake Reynolds number. If backflow is not allowed, absolute instability does not occur for wake Reynolds numbers smaller than about 38.

  4. PSAQ™ standards for accurate MS-based quantification of proteins: from the concept to biomedical applications.

    PubMed

    Picard, Guillaume; Lebert, Dorothée; Louwagie, Mathilde; Adrait, Annie; Huillet, Céline; Vandenesch, François; Bruley, Christophe; Garin, Jérôme; Jaquinod, Michel; Brun, Virginie

    2012-10-01

    Absolute protein quantification, i.e. determining protein concentrations in biological samples, is essential to our understanding of biological and physiopathological phenomena. Protein quantification methods based on the use of antibodies are very effective and widely used. However, over the last ten years, absolute protein quantification by mass spectrometry has attracted considerable interest, particularly for the study of systems biology and as part of biomarker development. This interest is mainly linked to the high multiplexing capacity of MS analysis, and to the availability of stable-isotope-labelled standards for quantification. This article describes the details of how to produce, control the quality and use a specific type of standard: Protein Standard Absolute Quantification (PSAQ™) standards. These standards are whole isotopically labelled proteins, analogues of the proteins to be assayed. PSAQ standards can be added early during sample treatment, thus they can correct for protein losses during sample prefractionation and for incomplete sample digestion. Because of this, quantification of target proteins is very accurate and precise using these standards. To illustrate the advantages of the PSAQ method, and to contribute to the increase in its use, selected applications in the biomedical field are detailed here. PMID:23019168

  5. A Group of Novel Serum Diagnostic Biomarkers for Multidrug-Resistant Tuberculosis by iTRAQ-2D LC-MS/MS and Solexa Sequencing

    PubMed Central

    Wang, Chong; Liu, Chang-Ming; Wei, Li-Liang; Shi, Li-Ying; Pan, Zhi-Fen; Mao, Lian-Gen; Wan, Xiao-Chen; Ping, Ze-Peng; Jiang, Ting-Ting; Chen, Zhong-Liang; Li, Zhong-Jie; Li, Ji-Cheng

    2016-01-01

    The epidemic of pulmonary tuberculosis (TB), especially multidrug-resistance tuberculosis (MDR-TB) presented a major challenge for TB treatment today. We performed iTRAQ labeling coupled with two-dimensional liquid chromatography-tandem mass spectrometry (2D LC-MS/MS) and Solexa sequencing among MDR-TB patients, drug-sensitive tuberculosis (DS-TB) patients, and healthy controls. A total of 50 differentially expressed proteins and 43 differentially expressed miRNAs (fold change >1.50 or <0.60, P<0.05) were identified in the MDR-TB patients compared to both DS-TB patients and healthy controls. We found that 22.00% of differentially expressed proteins and 32.56% of differentially expressed miRNAs were related, and could construct a network mainly in complement and coagulation cascades. Significant differences in CD44 antigen (CD44), coagulation factor XI (F11), kininogen-1 (KNG1), miR-4433b-5p, miR-424-5p, and miR-199b-5p were found among MDR-TB patients, DS-TB patients and healthy controls (P<0.05) by enzyme-linked immunosorbent assay (ELISA) and SYBR green qRT-PCR validation. A strong negative correlation, consistent with the target gene prediction, was found between miR-199b-5p and KNG1 (r=-0.232, P=0.017). Moreover, we established the MDR-TB diagnostic model based on five biomarkers (CD44, KNG1, miR-4433b-5p, miR-424-5p, and miR-199b-5p). Our study proposes potential biomarkers for MDR-TB diagnosis, and also provides a new experimental basis to understand the pathogenesis of MDR-TB. PMID:26884721

  6. iTRAQ and multiple reaction monitoring as proteomic tools for biomarker search in cerebrospinal fluid of patients with Parkinson's disease dementia.

    PubMed

    Lehnert, Stefan; Jesse, Sarah; Rist, Wolfgang; Steinacker, Petra; Soininen, Hilkka; Herukka, Sanna-Kaisa; Tumani, Hayrettin; Lenter, Martin; Oeckl, Patrick; Ferger, Boris; Hengerer, Bastian; Otto, Markus

    2012-04-01

    About 30% of patients with Parkinson's disease (PD) develop Parkinson's disease dementia (PDD) in the course of the disease. Until now, diagnosis is based on clinical and neuropsychological examinations, since so far there is no laboratory marker. In this study we aimed to find a neurochemical marker which would allow a risk assessment for the development of a dementia in PD patients. For this purpose, we adopted a gel-free proteomic approach (iTRAQ-method) to identify biomarker-candidates in the cerebrospinal fluid (CSF) of patients with PD, PDD and non-demented controls (NDC). Validation of these candidates was then carried out by multiple-reaction-monitoring (MRM) optimised for CSF. Using the iTRAQ-approach, we were able to identify 16 differentially regulated proteins. Fourteen out of these 16 proteins could then be followed-up simultaneously in our optimised MRM-measurement protocol. However only Tyrosine-kinase-non-receptor-type 13 and Netrin-G1 differed significantly between PDD and NDC cohorts. In addition, a significant difference was found for Golgin-160 and Apolipoprotein B-100 between PD and NDC. Apart from possible pathophysiological considerations, we propose that Tyrosine-kinase non-receptor-type 13 and Netrin G1 are biomarker candidates for the development of a Parkinson's disease dementia. Furthermore we suggest that iTRAQ and MRM are valuable tools for the discovery of biomarker in cerebrospinal fluid. However further validation studies need to be done with larger patient cohorts and other proteins need to be checked as well. PMID:22327139

  7. Quantification of nonclassicality

    NASA Astrophysics Data System (ADS)

    Gehrke, C.; Sperling, J.; Vogel, W.

    2012-11-01

    To quantify single-mode nonclassicality, we start from an operational approach. A positive semidefinite observable is introduced to describe a measurement setup. The quantification is based on the negativity of the normally ordered version of this observable. Perfect operational quantumness corresponds to the quantum-noise-free measurement of the chosen observable. Surprisingly, even moderately squeezed states may exhibit perfect quantumness for a properly designed measurement. The quantification is also considered from an axiomatic viewpoint, based on the algebraic structure of the quantum states and the quantum superposition principle. Basic conclusions from both approaches are consistent with this fundamental principle of the quantum world.

  8. Absolute optical instruments without spherical symmetry

    NASA Astrophysics Data System (ADS)

    Tyc, Tomáš; Dao, H. L.; Danner, Aaron J.

    2015-11-01

    Until now, the known set of absolute optical instruments has been limited to those containing high levels of symmetry. Here, we demonstrate a method of mathematically constructing refractive index profiles that result in asymmetric absolute optical instruments. The method is based on the analogy between geometrical optics and classical mechanics and employs Lagrangians that separate in Cartesian coordinates. In addition, our method can be used to construct the index profiles of most previously known absolute optical instruments, as well as infinitely many different ones.

  9. Utilizing a reference material for assessing absolute tumor mechanical properties in modality independent elastography

    NASA Astrophysics Data System (ADS)

    Kim, Dong Kyu; Weis, Jared A.; Yankeelov, Thomas E.; Miga, Michael I.

    2014-03-01

    There is currently no reliable method for early characterization of breast cancer response to neoadjuvant chemotherapy (NAC) [1,2]. Given that disruption of normal structural architecture occurs in cancer-bearing tissue, we hypothesize that further structural changes occur in response to NAC. Consequently, we are investigating the use of modalityindependent elastography (MIE) [3-8] as a method for monitoring mechanical integrity to predict long term outcomes in NAC. Recently, we have utilized a Demons non-rigid image registration method that allows 3D elasticity reconstruction in abnormal tissue geometries, making it particularly amenable to the evaluation of breast cancer mechanical properties. While past work has reflected relative elasticity contrast ratios [3], this study improves upon that work by utilizing a known stiffness reference material within the reconstruction framework such that a stiffness map becomes an absolute measure. To test, a polyvinyl alcohol (PVA) cryogel phantom and a silicone rubber mock mouse tumor phantom were constructed with varying mechanical stiffness. Results showed that an absolute measure of stiffness could be obtained based on a reference value. This reference technique demonstrates the ability to generate accurate measurements of absolute stiffness to characterize response to NAC. These results support that `referenced MIE' has the potential to reliably differentiate absolute tumor stiffness with significant contrast from that of surrounding tissue. The use of referenced MIE to obtain absolute quantification of biomarkers is also translatable across length scales such that the characterization method is mechanics-consistent at the small animal and human application.

  10. Absolute magnitudes of trans-neptunian objects

    NASA Astrophysics Data System (ADS)

    Duffard, R.; Alvarez-candal, A.; Pinilla-Alonso, N.; Ortiz, J. L.; Morales, N.; Santos-Sanz, P.; Thirouin, A.

    2015-10-01

    Accurate measurements of diameters of trans- Neptunian objects are extremely complicated to obtain. Radiomatric techniques applied to thermal measurements can provide good results, but precise absolute magnitudes are needed to constrain diameters and albedos. Our objective is to measure accurate absolute magnitudes for a sample of trans- Neptunian objects, many of which have been observed, and modelled, by the "TNOs are cool" team, one of Herschel Space Observatory key projects grantes with ~ 400 hours of observing time. We observed 56 objects in filters V and R, if possible. These data, along with data available in the literature, was used to obtain phase curves and to measure absolute magnitudes by assuming a linear trend of the phase curves and considering magnitude variability due to rotational light-curve. In total we obtained 234 new magnitudes for the 56 objects, 6 of them with no reported previous measurements. Including the data from the literature we report a total of 109 absolute magnitudes.

  11. A New Gimmick for Assigning Absolute Configuration.

    ERIC Educational Resources Information Center

    Ayorinde, F. O.

    1983-01-01

    A five-step procedure is provided to help students in making the assignment absolute configuration less bothersome. Examples for both single (2-butanol) and multi-chiral carbon (3-chloro-2-butanol) molecules are included. (JN)

  12. Jasminum flexile flower absolute from India--a detailed comparison with three other jasmine absolutes.

    PubMed

    Braun, Norbert A; Kohlenberg, Birgit; Sim, Sherina; Meier, Manfred; Hammerschmidt, Franz-Josef

    2009-09-01

    Jasminum flexile flower absolute from the south of India and the corresponding vacuum headspace (VHS) sample of the absolute were analyzed using GC and GC-MS. Three other commercially available Indian jasmine absolutes from the species: J. sambac, J. officinale subsp. grandiflorum, and J. auriculatum and the respective VHS samples were used for comparison purposes. One hundred and twenty-one compounds were characterized in J. flexile flower absolute, with methyl linolate, benzyl salicylate, benzyl benzoate, (2E,6E)-farnesol, and benzyl acetate as the main constituents. A detailed olfactory evaluation was also performed. PMID:19831037

  13. Universal Cosmic Absolute and Modern Science

    NASA Astrophysics Data System (ADS)

    Kostro, Ludwik

    The official Sciences, especially all natural sciences, respect in their researches the principle of methodic naturalism i.e. they consider all phenomena as entirely natural and therefore in their scientific explanations they do never adduce or cite supernatural entities and forces. The purpose of this paper is to show that Modern Science has its own self-existent, self-acting, and self-sufficient Natural All-in Being or Omni-Being i.e. the entire Nature as a Whole that justifies the scientific methodic naturalism. Since this Natural All-in Being is one and only It should be considered as the own scientifically justified Natural Absolute of Science and should be called, in my opinion, the Universal Cosmic Absolute of Modern Science. It will be also shown that the Universal Cosmic Absolute is ontologically enormously stratified and is in its ultimate i.e. in its most fundamental stratum trans-reistic and trans-personal. It means that in its basic stratum. It is neither a Thing or a Person although It contains in Itself all things and persons with all other sentient and conscious individuals as well, On the turn of the 20th century the Science has begun to look for a theory of everything, for a final theory, for a master theory. In my opinion the natural Universal Cosmic Absolute will constitute in such a theory the radical all penetrating Ultimate Basic Reality and will substitute step by step the traditional supernatural personal Absolute.

  14. Absolute quantitative analysis for sorbic acid in processed foods using proton nuclear magnetic resonance spectroscopy.

    PubMed

    Ohtsuki, Takashi; Sato, Kyoko; Sugimoto, Naoki; Akiyama, Hiroshi; Kawamura, Yoko

    2012-07-13

    An analytical method using solvent extraction and quantitative proton nuclear magnetic resonance (qHNMR) spectroscopy was applied and validated for the absolute quantification of sorbic acid (SA) in processed foods. The proposed method showed good linearity. The recoveries for samples spiked at the maximum usage level specified for food in Japan and at 0.13 g kg(-1) (beverage: 0.013 g kg(-1)) were larger than 80%, whereas those for samples spiked at 0.063 g kg(-1) (beverage: 0.0063 g kg(-1)) were between 56.9 and 83.5%. The limit of quantification was 0.063 g kg(-1) for foods (and 0.0063 g kg(-1) for beverages containing Lactobacillus species). Analysis of the SA content of commercial processed foods revealed quantities equal to or greater than those measured using conventional steam-distillation extraction and high-performance liquid chromatography quantification. The proposed method was rapid, simple, accurate, and precise, and provided International System of Units traceability without the need for authentic analyte standards. It could therefore be used as an alternative to the quantification of SA in processed foods using conventional method. PMID:22704472

  15. Quantificational logic of context

    SciTech Connect

    Buvac, Sasa

    1996-12-31

    In this paper we extend the Propositional Logic of Context, to the quantificational (predicate calculus) case. This extension is important in the declarative representation of knowledge for two reasons. Firstly, since contexts are objects in the semantics which can be denoted by terms in the language and which can be quantified over, the extension enables us to express arbitrary first-order properties of contexts. Secondly, since the extended language is no longer only propositional, we can express that an arbitrary predicate calculus formula is true in a context. The paper describes the syntax and the semantics of a quantificational language of context, gives a Hilbert style formal system, and outlines a proof of the system`s completeness.

  16. Absolute Quantification of Matrix Metabolites Reveals the Dynamics of Mitochondrial Metabolism.

    PubMed

    Chen, Walter W; Freinkman, Elizaveta; Wang, Tim; Birsoy, Kıvanç; Sabatini, David M

    2016-08-25

    Mitochondria house metabolic pathways that impact most aspects of cellular physiology. While metabolite profiling by mass spectrometry is widely applied at the whole-cell level, it is not routinely possible to measure the concentrations of small molecules in mammalian organelles. We describe a method for the rapid and specific isolation of mitochondria and use it in tandem with a database of predicted mitochondrial metabolites ("MITObolome") to measure the matrix concentrations of more than 100 metabolites across various states of respiratory chain (RC) function. Disruption of the RC reveals extensive compartmentalization of mitochondrial metabolism and signatures unique to the inhibition of each RC complex. Pyruvate enables the proliferation of RC-deficient cells but has surprisingly limited effects on matrix contents. Interestingly, despite failing to restore matrix NADH/NAD balance, pyruvate does increase aspartate, likely through the exchange of matrix glutamate for cytosolic aspartate. We demonstrate the value of mitochondrial metabolite profiling and describe a strategy applicable to other organelles. PMID:27565352

  17. Genomic DNA-based absolute quantification of gene expression in Vitis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many studies in which gene expression is quantified by polymerase chain reaction represent the expression of a gene of interest (GOI) relative to that of a reference gene (RG). Relative expression is founded on the assumptions that RG expression is stable across samples, treatments, organs, etc., an...

  18. Virus detection and quantification using electrical parameters

    PubMed Central

    Ahmad, Mahmoud Al; Mustafa, Farah; Ali, Lizna M.; Rizvi, Tahir A.

    2014-01-01

    Here we identify and quantitate two similar viruses, human and feline immunodeficiency viruses (HIV and FIV), suspended in a liquid medium without labeling, using a semiconductor technique. The virus count was estimated by calculating the impurities inside a defined volume by observing the change in electrical parameters. Empirically, the virus count was similar to the absolute value of the ratio of the change of the virus suspension dopant concentration relative to the mock dopant over the change in virus suspension Debye volume relative to mock Debye volume. The virus type was identified by constructing a concentration-mobility relationship which is unique for each kind of virus, allowing for a fast (within minutes) and label-free virus quantification and identification. For validation, the HIV and FIV virus preparations were further quantified by a biochemical technique and the results obtained by both approaches corroborated well. We further demonstrate that the electrical technique could be applied to accurately measure and characterize silica nanoparticles that resemble the virus particles in size. Based on these results, we anticipate our present approach to be a starting point towards establishing the foundation for label-free electrical-based identification and quantification of an unlimited number of viruses and other nano-sized particles. PMID:25355078

  19. Absolute isotopic abundances of TI in meteorites

    NASA Astrophysics Data System (ADS)

    Niederer, F. R.; Papanastassiou, D. A.; Wasserburg, G. J.

    1985-03-01

    The absolute isotope abundance of Ti has been determined in Ca-Al-rich inclusions from the Allende and Leoville meteorites and in samples of whole meteorites. The absolute Ti isotope abundances differ by a significant mass dependent isotope fractionation transformation from the previously reported abundances, which were normalized for fractionation using 46Ti/48Ti. Therefore, the absolute compositions define distinct nucleosynthetic components from those previously identified or reflect the existence of significant mass dependent isotope fractionation in nature. The authors provide a general formalism for determining the possible isotope compositions of the exotic Ti from the measured composition, for different values of isotope fractionation in nature and for different mixing ratios of the exotic and normal components.

  20. Molecular iodine absolute frequencies. Final report

    SciTech Connect

    Sansonetti, C.J.

    1990-06-25

    Fifty specified lines of {sup 127}I{sub 2} were studied by Doppler-free frequency modulation spectroscopy. For each line the classification of the molecular transition was determined, hyperfine components were identified, and one well-resolved component was selected for precise determination of its absolute frequency. In 3 cases, a nearby alternate line was selected for measurement because no well-resolved component was found for the specified line. Absolute frequency determinations were made with an estimated uncertainty of 1.1 MHz by locking a dye laser to the selected hyperfine component and measuring its wave number with a high-precision Fabry-Perot wavemeter. For each line results of the absolute measurement, the line classification, and a Doppler-free spectrum are given.

  1. Stimulus probability effects in absolute identification.

    PubMed

    Kent, Christopher; Lamberts, Koen

    2016-05-01

    This study investigated the effect of stimulus presentation probability on accuracy and response times in an absolute identification task. Three schedules of presentation were used to investigate the interaction between presentation probability and stimulus position within the set. Data from individual participants indicated strong effects of presentation probability on both proportion correct and response times. The effects were moderated by the ubiquitous stimulus position effect. The accuracy and response time data were predicted by an exemplar-based model of perceptual cognition (Kent & Lamberts, 2005). The bow in discriminability was also attenuated when presentation probability for middle items was relatively high, an effect that will constrain future model development. The study provides evidence for item-specific learning in absolute identification. Implications for other theories of absolute identification are discussed. (PsycINFO Database Record PMID:26478959

  2. Absolute calibration in vivo measurement systems

    SciTech Connect

    Kruchten, D.A.; Hickman, D.P.

    1991-02-01

    Lawrence Livermore National Laboratory (LLNL) is currently investigating a new method for obtaining absolute calibration factors for radiation measurement systems used to measure internally deposited radionuclides in vivo. Absolute calibration of in vivo measurement systems will eliminate the need to generate a series of human surrogate structures (i.e., phantoms) for calibrating in vivo measurement systems. The absolute calibration of in vivo measurement systems utilizes magnetic resonance imaging (MRI) to define physiological structure, size, and composition. The MRI image provides a digitized representation of the physiological structure, which allows for any mathematical distribution of radionuclides within the body. Using Monte Carlo transport codes, the emission spectrum from the body is predicted. The in vivo measurement equipment is calibrated using the Monte Carlo code and adjusting for the intrinsic properties of the detection system. The calibration factors are verified using measurements of existing phantoms and previously obtained measurements of human volunteers. 8 refs.

  3. Capillary Isoelectric Focusing-Tandem Mass Spectrometry And Reversed-Phase Liquid Chromatography-Tandem Mass Spectrometry For Quantitative Proteomic Analysis Of Differentiating PC12 Cells By Eight-Plex iTRAQ

    PubMed Central

    Zhu, Guijie; Sun, Liangliang; Keithley, Richard B.; Dovichi, Norman J.

    2013-01-01

    We report the application of capillary isoelectric focusing for quantitative analysis of a complex proteome. Biological duplicates were generated from PC12 cells at days 0, 3, 7, and 12 following treatment with nerve growth factor. These biological duplicates were digested with trypsin, labeled using eight-plex iTRAQ chemistry, and pooled. The pooled peptides were separated into 25 fractions using reversed-phase liquid chromatography (RPLC). Technical duplicates of each fraction were separated by capillary isoelectric focusing (cIEF) using a set of amino acids as ampholytes. The cIEF column was interfaced to an Orbitrap Velos mass spectrometer with an electrokinetically-pumped sheath-flow nanospray interface. This HPLC-cIEF-ESIMS/MS approach identified 835 protein groups and produced 2,329 unique peptides IDs. The biological duplicates were analyzed in parallel using conventional strong-cation exchange (SCX) – RPLC-ESIMS/MS. The iTRAQ peptides were first separated into eight fractions using SCX. Each fraction was then analyzed by RPLC-ESI-MS/MS. The SCX-RPLC approach generated 1,369 protein groups and 3,494 unique peptide IDs. For protein quantitation, 96 and 198 differentially expressed proteins were obtained with RPLC-cIEF and SCX-RPLC, respectively. The combined set identified 231 proteins. Protein expression changes measured by RPLC-cEIF and SCX-RPLC were highly correlated. PMID:23822771

  4. Data set of the protein expression profiles of Luminal A, Claudin-low and overexpressing HER2+ breast cancer cell lines by iTRAQ labelling and tandem mass spectrometry

    PubMed Central

    Calderón-González, Karla Grisel; Valero Rustarazo, Ma Luz; Labra-Barrios, Maria Luisa; Bazán-Méndez, César Isaac; Tavera-Tapia, Alejandra; Herrera-Aguirre, Marí;aEsther; Sánchez del Pino, Manuel M.; Gallegos-Pérez, José Luis; González-Márquez, Humberto; Hernández-Hernández, Jose Manuel; León-Ávila, Gloria; Rodríguez-Cuevas, Sergio; Guisa-Hohenstein, Fernando; Luna-Arias, Juan Pedro

    2015-01-01

    Breast cancer is the most common and the leading cause of mortality in women worldwide. There is a dire necessity of the identification of novel molecules useful in diagnosis and prognosis. In this work we determined the differentially expression profiles of four breast cancer cell lines compared to a control cell line. We identified 1020 polypeptides labelled with iTRAQ with more than 95% in confidence. We analysed the common proteins in all breast cancer cell lines through IPA software (IPA core and Biomarkers). In addition, we selected the specific overexpressed and subexpressed proteins of the different molecular classes of breast cancer cell lines, and classified them according to protein class and biological process. Data in this article is related to the research article “Determination of the protein expression profiles of breast cancer cell lines by Quantitative Proteomics using iTRAQ Labelling and Tandem Mass Spectrometry” (Calderón-González et al. [1] in press). PMID:26217805

  5. Precise Measurement of the Absolute Fluorescence Yield

    NASA Astrophysics Data System (ADS)

    Ave, M.; Bohacova, M.; Daumiller, K.; Di Carlo, P.; di Giulio, C.; San Luis, P. Facal; Gonzales, D.; Hojvat, C.; Hörandel, J. R.; Hrabovsky, M.; Iarlori, M.; Keilhauer, B.; Klages, H.; Kleifges, M.; Kuehn, F.; Monasor, M.; Nozka, L.; Palatka, M.; Petrera, S.; Privitera, P.; Ridky, J.; Rizi, V.; D'Orfeuil, B. Rouille; Salamida, F.; Schovanek, P.; Smida, R.; Spinka, H.; Ulrich, A.; Verzi, V.; Williams, C.

    2011-09-01

    We present preliminary results of the absolute yield of fluorescence emission in atmospheric gases. Measurements were performed at the Fermilab Test Beam Facility with a variety of beam particles and gases. Absolute calibration of the fluorescence yield to 5% level was achieved by comparison with two known light sources--the Cherenkov light emitted by the beam particles, and a calibrated nitrogen laser. The uncertainty of the energy scale of current Ultra-High Energy Cosmic Rays experiments will be significantly improved by the AIRFLY measurement.

  6. Absolutely relative or relatively absolute: violations of value invariance in human decision making.

    PubMed

    Teodorescu, Andrei R; Moran, Rani; Usher, Marius

    2016-02-01

    Making decisions based on relative rather than absolute information processing is tied to choice optimality via the accumulation of evidence differences and to canonical neural processing via accumulation of evidence ratios. These theoretical frameworks predict invariance of decision latencies to absolute intensities that maintain differences and ratios, respectively. While information about the absolute values of the choice alternatives is not necessary for choosing the best alternative, it may nevertheless hold valuable information about the context of the decision. To test the sensitivity of human decision making to absolute values, we manipulated the intensities of brightness stimuli pairs while preserving either their differences or their ratios. Although asked to choose the brighter alternative relative to the other, participants responded faster to higher absolute values. Thus, our results provide empirical evidence for human sensitivity to task irrelevant absolute values indicating a hard-wired mechanism that precedes executive control. Computational investigations of several modelling architectures reveal two alternative accounts for this phenomenon, which combine absolute and relative processing. One account involves accumulation of differences with activation dependent processing noise and the other emerges from accumulation of absolute values subject to the temporal dynamics of lateral inhibition. The potential adaptive role of such choice mechanisms is discussed. PMID:26022836

  7. Quantification Bias Caused by Plasmid DNA Conformation in Quantitative Real-Time PCR Assay

    PubMed Central

    Lin, Chih-Hui; Chen, Yu-Chieh; Pan, Tzu-Ming

    2011-01-01

    Quantitative real-time PCR (qPCR) is the gold standard for the quantification of specific nucleic acid sequences. However, a serious concern has been revealed in a recent report: supercoiled plasmid standards cause significant over-estimation in qPCR quantification. In this study, we investigated the effect of plasmid DNA conformation on the quantification of DNA and the efficiency of qPCR. Our results suggest that plasmid DNA conformation has significant impact on the accuracy of absolute quantification by qPCR. DNA standard curves shifted significantly among plasmid standards with different DNA conformations. Moreover, the choice of DNA measurement method and plasmid DNA conformation may also contribute to the measurement error of DNA standard curves. Due to the multiple effects of plasmid DNA conformation on the accuracy of qPCR, efforts should be made to assure the highest consistency of plasmid standards for qPCR. Thus, we suggest that the conformation, preparation, quantification, purification, handling, and storage of standard plasmid DNA should be described and defined in the Minimum Information for Publication of Quantitative Real-Time PCR Experiments (MIQE) to assure the reproducibility and accuracy of qPCR absolute quantification. PMID:22194997

  8. Fully distributed absolute blood flow velocity measurement for middle cerebral arteries using Doppler optical coherence tomography.

    PubMed

    Qi, Li; Zhu, Jiang; Hancock, Aneeka M; Dai, Cuixia; Zhang, Xuping; Frostig, Ron D; Chen, Zhongping

    2016-02-01

    Doppler optical coherence tomography (DOCT) is considered one of the most promising functional imaging modalities for neuro biology research and has demonstrated the ability to quantify cerebral blood flow velocity at a high accuracy. However, the measurement of total absolute blood flow velocity (BFV) of major cerebral arteries is still a difficult problem since it is related to vessel geometry. In this paper, we present a volumetric vessel reconstruction approach that is capable of measuring the absolute BFV distributed along the entire middle cerebral artery (MCA) within a large field-of-view. The Doppler angle at each point of the MCA, representing the vessel geometry, is derived analytically by localizing the artery from pure DOCT images through vessel segmentation and skeletonization. Our approach could achieve automatic quantification of the fully distributed absolute BFV across different vessel branches. Experiments on rodents using swept-source optical coherence tomography showed that our approach was able to reveal the consequences of permanent MCA occlusion with absolute BFV measurement. PMID:26977365

  9. Determination of absolute threshold and just noticeable difference in the sensory perception of pungency.

    PubMed

    Orellana-Escobedo, L; Ornelas-Paz, J J; Olivas, G I; Guerrero-Beltran, J A; Jimenez-Castro, J; Sepulveda, D R

    2012-03-01

    Absolute threshold and just noticeable difference (JND) were determined for the perception of pungency using chili pepper in aqueous solutions. Absolute threshold and JND were determined using 2 alternative forced-choice sensory tests tests. High-performance liquid chromatography technique was used to determine capsaicinoids concentration in samples used for sensory analysis. Sensory absolute threshold was 0.050 mg capsaicinoids/kg sample. Five JND values were determined using 5 reference solutions with different capsaicinoids concentration. JND values changed proportionally as capsaicinoids concentration of the reference sample solutions changed. Weber fraction remained stable for the first 4 reference capsaicinoid solutions (0.05, 0.11, 0.13, and 0.17 mg/kg) but changed when the most concentrated reference capsaicinoids solution was used (0.23 mg/kg). Quantification limit for instrumental analysis was 1.512 mg/kg capsaicinoids. Sensory methods employed in this study proved to be more sensitive than instrumental methods. Practical Application: A better understanding of the process involved in the sensory perception of pungency is currently required because "hot" foods are becoming more popular in western cuisine. Absolute thresholds and differential thresholds are useful tools in the formulation and development of new food products. These parameters may help in defining how much chili pepper is required in a formulated product to ensure a perceptible level of pungency, as well as in deciding how much more chili pepper is required in a product to produce a perceptible increase in its pungency. PMID:22384966

  10. Fully distributed absolute blood flow velocity measurement for middle cerebral arteries using Doppler optical coherence tomography

    PubMed Central

    Qi, Li; Zhu, Jiang; Hancock, Aneeka M.; Dai, Cuixia; Zhang, Xuping; Frostig, Ron D.; Chen, Zhongping

    2016-01-01

    Doppler optical coherence tomography (DOCT) is considered one of the most promising functional imaging modalities for neuro biology research and has demonstrated the ability to quantify cerebral blood flow velocity at a high accuracy. However, the measurement of total absolute blood flow velocity (BFV) of major cerebral arteries is still a difficult problem since it is related to vessel geometry. In this paper, we present a volumetric vessel reconstruction approach that is capable of measuring the absolute BFV distributed along the entire middle cerebral artery (MCA) within a large field-of-view. The Doppler angle at each point of the MCA, representing the vessel geometry, is derived analytically by localizing the artery from pure DOCT images through vessel segmentation and skeletonization. Our approach could achieve automatic quantification of the fully distributed absolute BFV across different vessel branches. Experiments on rodents using swept-source optical coherence tomography showed that our approach was able to reveal the consequences of permanent MCA occlusion with absolute BFV measurement. PMID:26977365

  11. Absolute partial photoionization cross sections of ozone.

    SciTech Connect

    Berkowitz, J.; Chemistry

    2008-04-01

    Despite the current concerns about ozone, absolute partial photoionization cross sections for this molecule in the vacuum ultraviolet (valence) region have been unavailable. By eclectic re-evaluation of old/new data and plausible assumptions, such cross sections have been assembled to fill this void.

  12. Solving Absolute Value Equations Algebraically and Geometrically

    ERIC Educational Resources Information Center

    Shiyuan, Wei

    2005-01-01

    The way in which students can improve their comprehension by understanding the geometrical meaning of algebraic equations or solving algebraic equation geometrically is described. Students can experiment with the conditions of the absolute value equation presented, for an interesting way to form an overall understanding of the concept.

  13. Teaching Absolute Value Inequalities to Mature Students

    ERIC Educational Resources Information Center

    Sierpinska, Anna; Bobos, Georgeana; Pruncut, Andreea

    2011-01-01

    This paper gives an account of a teaching experiment on absolute value inequalities, whose aim was to identify characteristics of an approach that would realize the potential of the topic to develop theoretical thinking in students enrolled in prerequisite mathematics courses at a large, urban North American university. The potential is…

  14. Increasing Capacity: Practice Effects in Absolute Identification

    ERIC Educational Resources Information Center

    Dodds, Pennie; Donkin, Christopher; Brown, Scott D.; Heathcote, Andrew

    2011-01-01

    In most of the long history of the study of absolute identification--since Miller's (1956) seminal article--a severe limit on performance has been observed, and this limit has resisted improvement even by extensive practice. In a startling result, Rouder, Morey, Cowan, and Pfaltz (2004) found substantially improved performance with practice in the…

  15. On Relative and Absolute Conviction in Mathematics

    ERIC Educational Resources Information Center

    Weber, Keith; Mejia-Ramos, Juan Pablo

    2015-01-01

    Conviction is a central construct in mathematics education research on justification and proof. In this paper, we claim that it is important to distinguish between absolute conviction and relative conviction. We argue that researchers in mathematics education frequently have not done so and this has lead to researchers making unwarranted claims…

  16. Absolute Points for Multiple Assignment Problems

    ERIC Educational Resources Information Center

    Adlakha, V.; Kowalski, K.

    2006-01-01

    An algorithm is presented to solve multiple assignment problems in which a cost is incurred only when an assignment is made at a given cell. The proposed method recursively searches for single/group absolute points to identify cells that must be loaded in any optimal solution. Unlike other methods, the first solution is the optimal solution. The…

  17. Nonequilibrium equalities in absolutely irreversible processes

    NASA Astrophysics Data System (ADS)

    Murashita, Yuto; Funo, Ken; Ueda, Masahito

    2015-03-01

    Nonequilibrium equalities have attracted considerable attention in the context of statistical mechanics and information thermodynamics. Integral nonequilibrium equalities reveal an ensemble property of the entropy production σ as = 1 . Although nonequilibrium equalities apply to rather general nonequilibrium situations, they break down in absolutely irreversible processes, where the forward-path probability vanishes and the entropy production diverges. We identify the mathematical origins of this inapplicability as the singularity of probability measure. As a result, we generalize conventional integral nonequilibrium equalities to absolutely irreversible processes as = 1 -λS , where λS is the probability of the singular part defined based on Lebesgue's decomposition theorem. The acquired equality contains two physical quantities related to irreversibility: σ characterizing ordinary irreversibility and λS describing absolute irreversibility. An inequality derived from the obtained equality demonstrates the absolute irreversibility leads to the fundamental lower bound on the entropy production. We demonstrate the validity of the obtained equality for a simple model.

  18. Stimulus Probability Effects in Absolute Identification

    ERIC Educational Resources Information Center

    Kent, Christopher; Lamberts, Koen

    2016-01-01

    This study investigated the effect of stimulus presentation probability on accuracy and response times in an absolute identification task. Three schedules of presentation were used to investigate the interaction between presentation probability and stimulus position within the set. Data from individual participants indicated strong effects of…

  19. Precision absolute positional measurement of laser beams.

    PubMed

    Fitzsimons, Ewan D; Bogenstahl, Johanna; Hough, James; Killow, Christian J; Perreur-Lloyd, Michael; Robertson, David I; Ward, Henry

    2013-04-20

    We describe an instrument which, coupled with a suitable coordinate measuring machine, facilitates the absolute measurement within the machine frame of the propagation direction of a millimeter-scale laser beam to an accuracy of around ±4 μm in position and ±20 μrad in angle. PMID:23669658

  20. Quantitative Analysis of Tissue Samples by Combining iTRAQ Isobaric Labeling with Selected/Multiple Reaction Monitoring (SRM/MRM).

    PubMed

    Narumi, Ryohei; Tomonaga, Takeshi

    2016-01-01

    Mass spectrometry-based phosphoproteomics is an indispensible technique used in the discovery and quantification of phosphorylation events on proteins in biological samples. The application of this technique to tissue samples is especially useful for the discovery of biomarkers as well as biological studies. We herein describe the application of a large-scale phosphoproteome analysis and SRM/MRM-based quantitation to develop a strategy for the systematic discovery and validation of biomarkers using tissue samples. PMID:26584920

  1. Combined Use of Absolute and Differential Seismic Arrival Time Data to Improve Absolute Event Location

    NASA Astrophysics Data System (ADS)

    Myers, S.; Johannesson, G.

    2012-12-01

    Arrival time measurements based on waveform cross correlation are becoming more common as advanced signal processing methods are applied to seismic data archives and real-time data streams. Waveform correlation can precisely measure the time difference between the arrival of two phases, and differential time data can be used to constrain relative location of events. Absolute locations are needed for many applications, which generally requires the use of absolute time data. Current methods for measuring absolute time data are approximately two orders of magnitude less precise than differential time measurements. To exploit the strengths of both absolute and differential time data, we extend our multiple-event location method Bayesloc, which previously used absolute time data only, to include the use of differential time measurements that are based on waveform cross correlation. Fundamentally, Bayesloc is a formulation of the joint probability over all parameters comprising the multiple event location system. The Markov-Chain Monte Carlo method is used to sample from the joint probability distribution given arrival data sets. The differential time component of Bayesloc includes scaling a stochastic estimate of differential time measurement precision based the waveform correlation coefficient for each datum. For a regional-distance synthetic data set with absolute and differential time measurement error of 0.25 seconds and 0.01 second, respectively, epicenter location accuracy is improved from and average of 1.05 km when solely absolute time data are used to 0.28 km when absolute and differential time data are used jointly (73% improvement). The improvement in absolute location accuracy is the result of conditionally limiting absolute location probability regions based on the precise relative position with respect to neighboring events. Bayesloc estimates of data precision are found to be accurate for the synthetic test, with absolute and differential time measurement

  2. Absolute and relative dosimetry for ELIMED

    SciTech Connect

    Cirrone, G. A. P.; Schillaci, F.; Scuderi, V.; Cuttone, G.; Candiano, G.; Musumarra, A.; Pisciotta, P.; Romano, F.; Carpinelli, M.; Presti, D. Lo; Raffaele, L.; Tramontana, A.; Cirio, R.; Sacchi, R.; Monaco, V.; Marchetto, F.; Giordanengo, S.

    2013-07-26

    The definition of detectors, methods and procedures for the absolute and relative dosimetry of laser-driven proton beams is a crucial step toward the clinical use of this new kind of beams. Hence, one of the ELIMED task, will be the definition of procedures aiming to obtain an absolute dose measure at the end of the transport beamline with an accuracy as close as possible to the one required for clinical applications (i.e. of the order of 5% or less). Relative dosimetry procedures must be established, as well: they are necessary in order to determine and verify the beam dose distributions and to monitor the beam fluence and the energetic spectra during irradiations. Radiochromic films, CR39, Faraday Cup, Secondary Emission Monitor (SEM) and transmission ionization chamber will be considered, designed and studied in order to perform a fully dosimetric characterization of the ELIMED proton beam.

  3. Probing absolute spin polarization at the nanoscale.

    PubMed

    Eltschka, Matthias; Jäck, Berthold; Assig, Maximilian; Kondrashov, Oleg V; Skvortsov, Mikhail A; Etzkorn, Markus; Ast, Christian R; Kern, Klaus

    2014-12-10

    Probing absolute values of spin polarization at the nanoscale offers insight into the fundamental mechanisms of spin-dependent transport. Employing the Zeeman splitting in superconducting tips (Meservey-Tedrow-Fulde effect), we introduce a novel spin-polarized scanning tunneling microscopy that combines the probing capability of the absolute values of spin polarization with precise control at the atomic scale. We utilize our novel approach to measure the locally resolved spin polarization of magnetic Co nanoislands on Cu(111). We find that the spin polarization is enhanced by 65% when increasing the width of the tunnel barrier by only 2.3 Å due to the different decay of the electron orbitals into vacuum. PMID:25423049

  4. Absolute-magnitude distributions of supernovae

    SciTech Connect

    Richardson, Dean; Wright, John; Jenkins III, Robert L.; Maddox, Larry

    2014-05-01

    The absolute-magnitude distributions of seven supernova (SN) types are presented. The data used here were primarily taken from the Asiago Supernova Catalogue, but were supplemented with additional data. We accounted for both foreground and host-galaxy extinction. A bootstrap method is used to correct the samples for Malmquist bias. Separately, we generate volume-limited samples, restricted to events within 100 Mpc. We find that the superluminous events (M{sub B} < –21) make up only about 0.1% of all SNe in the bias-corrected sample. The subluminous events (M{sub B} > –15) make up about 3%. The normal Ia distribution was the brightest with a mean absolute blue magnitude of –19.25. The IIP distribution was the dimmest at –16.75.

  5. Absolute radiometry and the solar constant

    NASA Technical Reports Server (NTRS)

    Willson, R. C.

    1974-01-01

    A series of active cavity radiometers (ACRs) are described which have been developed as standard detectors for the accurate measurement of irradiance in absolute units. It is noted that the ACR is an electrical substitution calorimeter, is designed for automatic remote operation in any environment, and can make irradiance measurements in the range from low-level IR fluxes up to 30 solar constants with small absolute uncertainty. The instrument operates in a differential mode by chopping the radiant flux to be measured at a slow rate, and irradiance is determined from two electrical power measurements together with the instrumental constant. Results are reported for measurements of the solar constant with two types of ACRs. The more accurate measurement yielded a value of 136.6 plus or minus 0.7 mW/sq cm (1.958 plus or minus 0.010 cal/sq cm per min).

  6. Asteroid absolute magnitudes and slope parameters

    NASA Technical Reports Server (NTRS)

    Tedesco, Edward F.

    1991-01-01

    A new listing of absolute magnitudes (H) and slope parameters (G) has been created and published in the Minor Planet Circulars; this same listing will appear in the 1992 Ephemerides of Minor Planets. Unlike previous listings, the values of the current list were derived from fits of data at the V band. All observations were reduced in the same fashion using, where appropriate, a single basis default value of 0.15 for the slope parameter. Distances and phase angles were computed for each observation. The data for 113 asteroids was of sufficiently high quality to permit derivation of their H and G. These improved absolute magnitudes and slope parameters will be used to deduce the most reliable bias-corrected asteroid size-frequency distribution yet made.

  7. Absolute calibration of TFTR helium proportional counters

    SciTech Connect

    Strachan, J.D.; Diesso, M.; Jassby, D.; Johnson, L.; McCauley, S.; Munsat, T.; Roquemore, A.L.; Barnes, C.W. |; Loughlin, M. |

    1995-06-01

    The TFTR helium proportional counters are located in the central five (5) channels of the TFTR multichannel neutron collimator. These detectors were absolutely calibrated using a 14 MeV neutron generator positioned at the horizontal midplane of the TFTR vacuum vessel. The neutron generator position was scanned in centimeter steps to determine the collimator aperture width to 14 MeV neutrons and the absolute sensitivity of each channel. Neutron profiles were measured for TFTR plasmas with time resolution between 5 msec and 50 msec depending upon count rates. The He detectors were used to measure the burnup of 1 MeV tritons in deuterium plasmas, the transport of tritium in trace tritium experiments, and the residual tritium levels in plasmas following 50:50 DT experiments.

  8. Absolute enantioselective separation: optical activity ex machina.

    PubMed

    Bielski, Roman; Tencer, Michal

    2005-11-01

    The paper describes methodology of using three independent macroscopic factors affecting molecular orientation to accomplish separation of a racemic mixture without the presence of any other chiral compounds, i. e., absolute enantioselective separation (AES) which is an extension of a concept of applying these factors to absolute asymmetric synthesis. The three factors may be applied simultaneously or, if their effects can be retained, consecutively. The resulting three mutually orthogonal or near orthogonal directors constitute a true chiral influence and their scalar triple product is the measure of the chirality of the system. AES can be executed in a chromatography-like microfluidic process in the presence of an electric field. It may be carried out on a chemically modified flat surface, a monolithic polymer column made of a mesoporous material, each having imparted directional properties. Separation parameters were estimated for these media and possible implications for the natural homochirality are discussed. PMID:16342798

  9. An absolute measure for a key currency

    NASA Astrophysics Data System (ADS)

    Oya, Shunsuke; Aihara, Kazuyuki; Hirata, Yoshito

    It is generally considered that the US dollar and the euro are the key currencies in the world and in Europe, respectively. However, there is no absolute general measure for a key currency. Here, we investigate the 24-hour periodicity of foreign exchange markets using a recurrence plot, and define an absolute measure for a key currency based on the strength of the periodicity. Moreover, we analyze the time evolution of this measure. The results show that the credibility of the US dollar has not decreased significantly since the Lehman shock, when the Lehman Brothers bankrupted and influenced the economic markets, and has increased even relatively better than that of the euro and that of the Japanese yen.

  10. From Hubble's NGSL to Absolute Fluxes

    NASA Technical Reports Server (NTRS)

    Heap, Sara R.; Lindler, Don

    2012-01-01

    Hubble's Next Generation Spectral Library (NGSL) consists of R-l000 spectra of 374 stars of assorted temperature, gravity, and metallicity. Each spectrum covers the wavelength range, 0.18-1.00 microns. The library can be viewed and/or downloaded from the website, http://archive.stsci.edu/prepds/stisngsll. Stars in the NGSL are now being used as absolute flux standards at ground-based observatories. However, the uncertainty in the absolute flux is about 2%, which does not meet the requirements of dark-energy surveys. We are therefore developing an observing procedure that should yield fluxes with uncertainties less than 1 % and will take part in an HST proposal to observe up to 15 stars using this new procedure.

  11. Metallic Magnetic Calorimeters for Absolute Activity Measurement

    NASA Astrophysics Data System (ADS)

    Loidl, M.; Leblanc, E.; Rodrigues, M.; Bouchard, J.; Censier, B.; Branger, T.; Lacour, D.

    2008-05-01

    We present a prototype of metallic magnetic calorimeters that we are developing for absolute activity measurements of low energy emitting radionuclides. We give a detailed description of the realization of the prototype, containing an 55Fe source inside the detector absorber. We present the analysis of first data taken with this detector and compare the result of activity measurement with liquid scintillation counting. We also propose some ways for reducing the uncertainty on the activity determination with this new technique.

  12. Absolute photoionization cross sections of atomic oxygen

    NASA Technical Reports Server (NTRS)

    Samson, J. A. R.; Pareek, P. N.

    1985-01-01

    The absolute values of photoionization cross sections of atomic oxygen were measured from the ionization threshold to 120 A. An auto-ionizing resonance belonging to the 2S2P4(4P)3P(3Do, 3So) transition was observed at 479.43 A and another line at 389.97 A. The experimental data is in excellent agreement with rigorous close-coupling calculations that include electron correlations in both the initial and final states.

  13. Absolute photoionization cross sections of atomic oxygen

    NASA Technical Reports Server (NTRS)

    Samson, J. A. R.; Pareek, P. N.

    1982-01-01

    The absolute values of photoionization cross sections of atomic oxygen were measured from the ionization threshold to 120 A. An auto-ionizing resonance belonging to the 2S2P4(4P)3P(3Do, 3So) transition was observed at 479.43 A and another line at 389.97 A. The experimental data is in excellent agreement with rigorous close-coupling calculations that include electron correlations in both the initial and final states.

  14. Silicon Absolute X-Ray Detectors

    SciTech Connect

    Seely, John F.; Korde, Raj; Sprunck, Jacob; Medjoubi, Kadda; Hustache, Stephanie

    2010-06-23

    The responsivity of silicon photodiodes having no loss in the entrance window, measured using synchrotron radiation in the 1.75 to 60 keV range, was compared to the responsivity calculated using the silicon thickness measured using near-infrared light. The measured and calculated responsivities agree with an average difference of 1.3%. This enables their use as absolute x-ray detectors.

  15. Blood pressure targets and absolute cardiovascular risk.

    PubMed

    Odutayo, Ayodele; Rahimi, Kazem; Hsiao, Allan J; Emdin, Connor A

    2015-08-01

    In the Eighth Joint National Committee guideline on hypertension, the threshold for the initiation of blood pressure-lowering treatment for elderly adults (≥60 years) without chronic kidney disease or diabetes mellitus was raised from 140/90 mm Hg to 150/90 mm Hg. However, the committee was not unanimous in this decision, particularly because a large proportion of adults ≥60 years may be at high cardiovascular risk. On the basis of Eighth Joint National Committee guideline, we sought to determine the absolute 10-year risk of cardiovascular disease among these adults through analyzing the National Health and Nutrition Examination Survey (2005-2012). The primary outcome measure was the proportion of adults who were at ≥20% predicted absolute cardiovascular risk and above goals for the Seventh Joint National Committee guideline but reclassified as at target under the Eighth Joint National Committee guideline (reclassified). The Framingham General Cardiovascular Disease Risk Score was used. From 2005 to 2012, the surveys included 12 963 adults aged 30 to 74 years with blood pressure measurements, of which 914 were reclassified based on the guideline. Among individuals reclassified as not in need of additional treatment, the proportion of adults 60 to 74 years without chronic kidney disease or diabetes mellitus at ≥20% absolute risk was 44.8%. This corresponds to 0.8 million adults. The proportion at high cardiovascular risk remained sizable among adults who were not receiving blood pressure-lowering treatment. Taken together, a sizable proportion of reclassified adults 60 to 74 years without chronic kidney disease or diabetes mellitus was at ≥20% absolute cardiovascular risk. PMID:26056340

  16. Relative errors can cue absolute visuomotor mappings.

    PubMed

    van Dam, Loes C J; Ernst, Marc O

    2015-12-01

    When repeatedly switching between two visuomotor mappings, e.g. in a reaching or pointing task, adaptation tends to speed up over time. That is, when the error in the feedback corresponds to a mapping switch, fast adaptation occurs. Yet, what is learned, the relative error or the absolute mappings? When switching between mappings, errors with a size corresponding to the relative difference between the mappings will occur more often than other large errors. Thus, we could learn to correct more for errors with this familiar size (Error Learning). On the other hand, it has been shown that the human visuomotor system can store several absolute visuomotor mappings (Mapping Learning) and can use associated contextual cues to retrieve them. Thus, when contextual information is present, no error feedback is needed to switch between mappings. Using a rapid pointing task, we investigated how these two types of learning may each contribute when repeatedly switching between mappings in the absence of task-irrelevant contextual cues. After training, we examined how participants changed their behaviour when a single error probe indicated either the often-experienced error (Error Learning) or one of the previously experienced absolute mappings (Mapping Learning). Results were consistent with Mapping Learning despite the relative nature of the error information in the feedback. This shows that errors in the feedback can have a double role in visuomotor behaviour: they drive the general adaptation process by making corrections possible on subsequent movements, as well as serve as contextual cues that can signal a learned absolute mapping. PMID:26280315

  17. Absolute distance measurements by variable wavelength interferometry

    NASA Astrophysics Data System (ADS)

    Bien, F.; Camac, M.; Caulfield, H. J.; Ezekiel, S.

    1981-02-01

    This paper describes a laser interferometer which provides absolute distance measurements using tunable lasers. An active feedback loop system, in which the laser frequency is locked to the optical path length difference of the interferometer, is used to tune the laser wavelengths. If the two wavelengths are very close, electronic frequency counters can be used to measure the beat frequency between the two laser frequencies and thus to determine the optical path difference between the two legs of the interferometer.

  18. Absolute dosimetry for extreme-ultraviolet lithography

    NASA Astrophysics Data System (ADS)

    Berger, Kurt W.; Campiotti, Richard H.

    2000-06-01

    The accurate measurement of an exposure dose reaching the wafer on an extreme ultraviolet (EUV) lithographic system has been a technical challenge directly applicable to the evaluation of candidate EUV resist materials and calculating lithography system throughputs. We have developed a dose monitoring sensor system that can directly measure EUV intensities at the wafer plane of a prototype EUV lithographic system. This sensor system, located on the wafer stage adjacent to the electrostatic chuck used to grip wafers, operates by translating the sensor into the aerial image, typically illuminating an 'open' (unpatterned) area on the reticle. The absolute signal strength can be related to energy density at the wafer, and thus used to determine resist sensitivity, and the signal as a function of position can be used to determine illumination uniformity at the wafer plane. Spectral filtering to enhance the detection of 13.4 nm radiation was incorporated into the sensor. Other critical design parameters include the packaging and amplification technologies required to place this device into the space and vacuum constraints of a EUV lithography environment. We describe two approaches used to determine the absolute calibration of this sensor. The first conventional approach requires separate characterization of each element of the sensor. A second novel approach uses x-ray emission from a mildly radioactive iron source to calibrate the absolute response of the entire sensor system (detector and electronics) in a single measurement.

  19. Biomarker discovery in low-grade breast cancer using isobaric stable isotope tags and two-dimensional liquid chromatography-tandem mass spectrometry (iTRAQ-2DLC-MS/MS) based quantitative proteomic analysis.

    PubMed

    Bouchal, Pavel; Roumeliotis, Theodoros; Hrstka, Roman; Nenutil, Rudolf; Vojtesek, Borivoj; Garbis, Spiros D

    2009-01-01

    The present pilot study constitutes a proof-of-principle in the use of a quantitative LC-MS/MS based proteomic method for the comparative analysis of representative low-grade breast primary tumor tissues with and without metastases and metastasis in lymph node relative to the nonmetastatic tumor type. The study method incorporated iTRAQ stable isotope labeling, two-dimensional liquid chromatography, nanoelectrospray ionization and high resolution tandem mass spectrometry using the hybrid QqTOF platform (iTRAQ-2DLC-MS/MS). The principal aims of this study were (1) to define the protein spectrum obtainable using this approach, and (2) to highlight potential candidates for verification and validation studies focused on biomarkers involved in metastatic processes in breast cancer. The study resulted in the reproducible identification of 605 nonredundant proteins (p < or = 0.05). A quantitative comparison revealed 3/3 proteins with significantly increased/decreased level in metastatic primary tumor and 13/6 proteins with increased/decreased level in lymph node metastasis compared to nonmetastatic primary tumor (p < 0.01). Changes in selected differentially expressed proteins were verified with qRT-PCR. Although our pilot scale study does not warrant general biological conclusions, the synergic regulation of some proteins with related function (e.g., heme binding proteins, proteins of energetic metabolism, interferon induced proteins, proteins with adhesive function) determined in our sample set reflects the ability of our method in providing biologically meaningful data. The main conclusion from this pilot study was that our quantitative proteomic method constitutes a novel way of analyzing cancerous breast tissue biopsy samples that can be extended as part of a larger scale biomarker discovery program. PMID:19053527

  20. Clock time is absolute and universal

    NASA Astrophysics Data System (ADS)

    Shen, Xinhang

    2015-09-01

    A critical error is found in the Special Theory of Relativity (STR): mixing up the concepts of the STR abstract time of a reference frame and the displayed time of a physical clock, which leads to use the properties of the abstract time to predict time dilation on physical clocks and all other physical processes. Actually, a clock can never directly measure the abstract time, but can only record the result of a physical process during a period of the abstract time such as the number of cycles of oscillation which is the multiplication of the abstract time and the frequency of oscillation. After Lorentz Transformation, the abstract time of a reference frame expands by a factor gamma, but the frequency of a clock decreases by the same factor gamma, and the resulting multiplication i.e. the displayed time of a moving clock remains unchanged. That is, the displayed time of any physical clock is an invariant of Lorentz Transformation. The Lorentz invariance of the displayed times of clocks can further prove within the framework of STR our earth based standard physical time is absolute, universal and independent of inertial reference frames as confirmed by both the physical fact of the universal synchronization of clocks on the GPS satellites and clocks on the earth, and the theoretical existence of the absolute and universal Galilean time in STR which has proved that time dilation and space contraction are pure illusions of STR. The existence of the absolute and universal time in STR has directly denied that the reference frame dependent abstract time of STR is the physical time, and therefore, STR is wrong and all its predictions can never happen in the physical world.

  1. Achieving Climate Change Absolute Accuracy in Orbit

    NASA Technical Reports Server (NTRS)

    Wielicki, Bruce A.; Young, D. F.; Mlynczak, M. G.; Thome, K. J; Leroy, S.; Corliss, J.; Anderson, J. G.; Ao, C. O.; Bantges, R.; Best, F.; Bowman, K.; Brindley, H.; Butler, J. J.; Collins, W.; Dykema, J. A.; Doelling, D. R.; Feldman, D. R.; Fox, N.; Huang, X.; Holz, R.; Huang, Y.; Jennings, D.; Jin, Z.; Johnson, D. G.; Jucks, K.; Kato, S.; Kratz, D. P.; Liu, X.; Lukashin, C.; Mannucci, A. J.; Phojanamongkolkij, N.; Roithmayr, C. M.; Sandford, S.; Taylor, P. C.; Xiong, X.

    2013-01-01

    The Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission will provide a calibration laboratory in orbit for the purpose of accurately measuring and attributing climate change. CLARREO measurements establish new climate change benchmarks with high absolute radiometric accuracy and high statistical confidence across a wide range of essential climate variables. CLARREO's inherently high absolute accuracy will be verified and traceable on orbit to Système Internationale (SI) units. The benchmarks established by CLARREO will be critical for assessing changes in the Earth system and climate model predictive capabilities for decades into the future as society works to meet the challenge of optimizing strategies for mitigating and adapting to climate change. The CLARREO benchmarks are derived from measurements of the Earth's thermal infrared spectrum (5-50 micron), the spectrum of solar radiation reflected by the Earth and its atmosphere (320-2300 nm), and radio occultation refractivity from which accurate temperature profiles are derived. The mission has the ability to provide new spectral fingerprints of climate change, as well as to provide the first orbiting radiometer with accuracy sufficient to serve as the reference transfer standard for other space sensors, in essence serving as a "NIST [National Institute of Standards and Technology] in orbit." CLARREO will greatly improve the accuracy and relevance of a wide range of space-borne instruments for decadal climate change. Finally, CLARREO has developed new metrics and methods for determining the accuracy requirements of climate observations for a wide range of climate variables and uncertainty sources. These methods should be useful for improving our understanding of observing requirements for most climate change observations.

  2. The National Geodetic Survey absolute gravity program

    NASA Astrophysics Data System (ADS)

    Peter, George; Moose, Robert E.; Wessells, Claude W.

    1989-03-01

    The National Geodetic Survey absolute gravity program will utilize the high precision afforded by the JILAG-4 instrument to support geodetic and geophysical research, which involves studies of vertical motions, identification and modeling of other temporal variations, and establishment of reference values. The scientific rationale of these objectives is given, the procedures used to collect gravity and environmental data in the field are defined, and the steps necessary to correct and remove unwanted environmental effects are stated. In addition, site selection criteria, methods of concomitant environmental data collection and relative gravity observations, and schedule and logistics are discussed.

  3. An absolute radius scale for Saturn's rings

    NASA Technical Reports Server (NTRS)

    Nicholson, Philip D.; Cooke, Maren L.; Pelton, Emily

    1990-01-01

    Radio and stellar occultation observations of Saturn's rings made by the Voyager spacecraft are discussed. The data reveal systematic discrepancies of almost 10 km in some parts of the rings, limiting some of the investigations. A revised solution for Saturn's rotation pole has been proposed which removes the discrepancies between the stellar and radio occultation profiles. Corrections to previously published radii vary from -2 to -10 km for the radio occultation, and +5 to -6 km for the stellar occultation. An examination of spiral density waves in the outer A Ring supports that the revised absolute radii are in error by no more than 2 km.

  4. Characterization of the DARA solar absolute radiometer

    NASA Astrophysics Data System (ADS)

    Finsterle, W.; Suter, M.; Fehlmann, A.; Kopp, G.

    2011-12-01

    The Davos Absolute Radiometer (DARA) prototype is an Electrical Substitution Radiometer (ESR) which has been developed as a successor of the PMO6 type on future space missions and ground based TSI measurements. The DARA implements an improved thermal design of the cavity detector and heat sink assembly to minimize air-vacuum differences and to maximize thermal symmetry of measuring and compensating cavity. The DARA also employs an inverted viewing geometry to reduce internal stray light. We will report on the characterization and calibration experiments which were carried out at PMOD/WRC and LASP (TRF).

  5. Absolute calibration of the Auger fluorescence detectors

    SciTech Connect

    Bauleo, P.; Brack, J.; Garrard, L.; Harton, J.; Knapik, R.; Meyhandan, R.; Rovero, A.C.; Tamashiro, A.; Warner, D.

    2005-07-01

    Absolute calibration of the Pierre Auger Observatory fluorescence detectors uses a light source at the telescope aperture. The technique accounts for the combined effects of all detector components in a single measurement. The calibrated 2.5 m diameter light source fills the aperture, providing uniform illumination to each pixel. The known flux from the light source and the response of the acquisition system give the required calibration for each pixel. In the lab, light source uniformity is studied using CCD images and the intensity is measured relative to NIST-calibrated photodiodes. Overall uncertainties are presently 12%, and are dominated by systematics.

  6. Absolute angular positioning in ultrahigh vacuum

    SciTech Connect

    Schief, H.; Marsico, V.; Kern, K.

    1996-05-01

    Commercially available angular resolvers, which are routinely used in machine tools and robotics, are modified and adapted to be used under ultrahigh-vacuum (UHV) conditions. They provide straightforward and reliable measurements of angular positions for any kind of UHV sample manipulators. The corresponding absolute reproducibility is on the order of 0.005{degree}, whereas the relative resolution is better than 0.001{degree}, as demonstrated by high-resolution helium-reflectivity measurements. The mechanical setup and possible applications are discussed. {copyright} {ital 1996 American Institute of Physics.}

  7. Absolute method of measuring magnetic susceptibility

    USGS Publications Warehouse

    Thorpe, A.; Senftle, F.E.

    1959-01-01

    An absolute method of standardization and measurement of the magnetic susceptibility of small samples is presented which can be applied to most techniques based on the Faraday method. The fact that the susceptibility is a function of the area under the curve of sample displacement versus distance of the magnet from the sample, offers a simple method of measuring the susceptibility without recourse to a standard sample. Typical results on a few substances are compared with reported values, and an error of less than 2% can be achieved. ?? 1959 The American Institute of Physics.

  8. Absolute Priority for a Vehicle in VANET

    NASA Astrophysics Data System (ADS)

    Shirani, Rostam; Hendessi, Faramarz; Montazeri, Mohammad Ali; Sheikh Zefreh, Mohammad

    In today's world, traffic jams waste hundreds of hours of our life. This causes many researchers try to resolve the problem with the idea of Intelligent Transportation System. For some applications like a travelling ambulance, it is important to reduce delay even for a second. In this paper, we propose a completely infrastructure-less approach for finding shortest path and controlling traffic light to provide absolute priority for an emergency vehicle. We use the idea of vehicular ad-hoc networking to reduce the imposed travelling time. Then, we simulate our proposed protocol and compare it with a centrally controlled traffic light system.

  9. Determination of the absolute contours of optical flats

    NASA Technical Reports Server (NTRS)

    Primak, W.

    1969-01-01

    Emersons procedure is used to determine true absolute contours of optical flats. Absolute contours of standard flats are determined and a comparison is then made between standard and unknown flats. Contour differences are determined by deviation of Fizeau fringe.

  10. Wrappers, Aspects, Quantification and Events

    NASA Technical Reports Server (NTRS)

    Filman, Robert E.

    2005-01-01

    Talk overview: Object infrastructure framework (OIF). A system development to simplify building distributed applications by allowing independent implementation of multiple concern. Essence and state of AOP. Trinity. Quantification over events. Current work on a generalized AOP technology.

  11. Standardization of the cumulative absolute velocity

    SciTech Connect

    O'Hara, T.F.; Jacobson, J.P. )

    1991-12-01

    EPRI NP-5930, A Criterion for Determining Exceedance of the Operating Basis Earthquake,'' was published in July 1988. As defined in that report, the Operating Basis Earthquake (OBE) is exceeded when both a response spectrum parameter and a second damage parameter, referred to as the Cumulative Absolute Velocity (CAV), are exceeded. In the review process of the above report, it was noted that the calculation of CAV could be confounded by time history records of long duration containing low (nondamaging) acceleration. Therefore, it is necessary to standardize the method of calculating CAV to account for record length. This standardized methodology allows consistent comparisons between future CAV calculations and the adjusted CAV threshold value based upon applying the standardized methodology to the data set presented in EPRI NP-5930. The recommended method to standardize the CAV calculation is to window its calculation on a second-by-second basis for a given time history. If the absolute acceleration exceeds 0.025g at any time during each one second interval, the earthquake records used in EPRI NP-5930 have been reanalyzed and the adjusted threshold of damage for CAV was found to be 0.16g-set.

  12. Absolute rates of hole transfer in DNA.

    PubMed

    Senthilkumar, Kittusamy; Grozema, Ferdinand C; Guerra, Célia Fonseca; Bickelhaupt, F Matthias; Lewis, Frederick D; Berlin, Yuri A; Ratner, Mark A; Siebbeles, Laurens D A

    2005-10-26

    Absolute rates of hole transfer between guanine nucleobases separated by one or two A:T base pairs in stilbenedicarboxamide-linked DNA hairpins were obtained by improved kinetic analysis of experimental data. The charge-transfer rates in four different DNA sequences were calculated using a density-functional-based tight-binding model and a semiclassical superexchange model. Site energies and charge-transfer integrals were calculated directly as the diagonal and off-diagonal matrix elements of the Kohn-Sham Hamiltonian, respectively, for all possible combinations of nucleobases. Taking into account the Coulomb interaction between the negative charge on the stilbenedicarboxamide linker and the hole on the DNA strand as well as effects of base pair twisting, the relative order of the experimental rates for hole transfer in different hairpins could be reproduced by tight-binding calculations. To reproduce quantitatively the absolute values of the measured rate constants, the effect of the reorganization energy was taken into account within the semiclassical superexchange model for charge transfer. The experimental rates could be reproduced with reorganization energies near 1 eV. The quantum chemical data obtained were used to discuss charge carrier mobility and hole-transport equilibria in DNA. PMID:16231945

  13. Transient absolute robustness in stochastic biochemical networks.

    PubMed

    Enciso, German A

    2016-08-01

    Absolute robustness allows biochemical networks to sustain a consistent steady-state output in the face of protein concentration variability from cell to cell. This property is structural and can be determined from the topology of the network alone regardless of rate parameters. An important question regarding these systems is the effect of discrete biochemical noise in the dynamical behaviour. In this paper, a variable freezing technique is developed to show that under mild hypotheses the corresponding stochastic system has a transiently robust behaviour. Specifically, after finite time the distribution of the output approximates a Poisson distribution, centred around the deterministic mean. The approximation becomes increasingly accurate, and it holds for increasingly long finite times, as the total protein concentrations grow to infinity. In particular, the stochastic system retains a transient, absolutely robust behaviour corresponding to the deterministic case. This result contrasts with the long-term dynamics of the stochastic system, which eventually must undergo an extinction event that eliminates robustness and is completely different from the deterministic dynamics. The transiently robust behaviour may be sufficient to carry out many forms of robust signal transduction and cellular decision-making in cellular organisms. PMID:27581485

  14. Absolute Electron Extraction Efficiency of Liquid Xenon

    NASA Astrophysics Data System (ADS)

    Kamdin, Katayun; Mizrachi, Eli; Morad, James; Sorensen, Peter

    2016-03-01

    Dual phase liquid/gas xenon time projection chambers (TPCs) currently set the world's most sensitive limits on weakly interacting massive particles (WIMPs), a favored dark matter candidate. These detectors rely on extracting electrons from liquid xenon into gaseous xenon, where they produce proportional scintillation. The proportional scintillation from the extracted electrons serves to internally amplify the WIMP signal; even a single extracted electron is detectable. Credible dark matter searches can proceed with electron extraction efficiency (EEE) lower than 100%. However, electrons systematically left at the liquid/gas boundary are a concern. Possible effects include spontaneous single or multi-electron proportional scintillation signals in the gas, or charging of the liquid/gas interface or detector materials. Understanding EEE is consequently a serious concern for this class of rare event search detectors. Previous EEE measurements have mostly been relative, not absolute, assuming efficiency plateaus at 100%. I will present an absolute EEE measurement with a small liquid/gas xenon TPC test bed located at Lawrence Berkeley National Laboratory.

  15. Sentinel-2/MSI absolute calibration: first results

    NASA Astrophysics Data System (ADS)

    Lonjou, V.; Lachérade, S.; Fougnie, B.; Gamet, P.; Marcq, S.; Raynaud, J.-L.; Tremas, T.

    2015-10-01

    Sentinel-2 is an optical imaging mission devoted to the operational monitoring of land and coastal areas. It is developed in partnership between the European Commission and the European Space Agency. The Sentinel-2 mission is based on a satellites constellation deployed in polar sun-synchronous orbit. It will offer a unique combination of global coverage with a wide field of view (290km), a high revisit (5 days with two satellites), a high resolution (10m, 20m and 60m) and multi-spectral imagery (13 spectral bands in visible and shortwave infra-red domains). CNES is involved in the instrument commissioning in collaboration with ESA. This paper reviews all the techniques that will be used to insure an absolute calibration of the 13 spectral bands better than 5% (target 3%), and will present the first results if available. First, the nominal calibration technique, based on an on-board sun diffuser, is detailed. Then, we show how vicarious calibration methods based on acquisitions over natural targets (oceans, deserts, and Antarctica during winter) will be used to check and improve the accuracy of the absolute calibration coefficients. Finally, the verification scheme, exploiting photometer in-situ measurements over Lacrau plain, is described. A synthesis, including spectral coherence, inter-methods agreement and temporal evolution, will conclude the paper.

  16. Absolute Spectrophotometry of 237 Open Cluster Stars

    NASA Astrophysics Data System (ADS)

    Clampitt, L.; Burstein, D.

    1994-12-01

    We present absolute spectrophotometry of 237 stars in 7 nearby open clusters: Hyades, Pleiades, Alpha Persei, Praesepe, Coma Berenices, IC 4665, and M 39. The observations were taken using the Wampler single-channel scanner (Wampler 1966) on the Crossley 0.9m telescope at Lick Observatory from July 1973 through December 1974. 21 bandpasses spanning the spectral range 3500 Angstroms to 7780 Angstroms were observed for each star, with bandwiths ranging from 32Angstroms to 64 Angstroms. Data are standardized to the Hayes--Latham (1975) system. Our measurements are compared to filter colors on the Johnson BV, Stromgren ubvy, and Geneva U V B_1 B_2 V_1 G systems, as well as to spectrophotometry of a few stars published by Gunn, Stryker & Tinsley and in the Spectrophotometric Standards Catalog (Adelman; as distributed by the NSSDC). Both internal and external comparisons to the filter systems indicate a formal statistical accuracy per bandpass of 0.01 to 0.02 mag, with apparent larger ( ~ 0.03 mag) differences in absolute calibration between this data set and existing spectrophotometry. These data will comprise part of the spectrophotometry that will be used to calibrate the Beijing-Arizona-Taipei-Connecticut Color Survey of the Sky (see separate paper by Burstein et al. at this meeting).

  17. A Conceptual Approach to Absolute Value Equations and Inequalities

    ERIC Educational Resources Information Center

    Ellis, Mark W.; Bryson, Janet L.

    2011-01-01

    The absolute value learning objective in high school mathematics requires students to solve far more complex absolute value equations and inequalities. When absolute value problems become more complex, students often do not have sufficient conceptual understanding to make any sense of what is happening mathematically. The authors suggest that the…

  18. Using, Seeing, Feeling, and Doing Absolute Value for Deeper Understanding

    ERIC Educational Resources Information Center

    Ponce, Gregorio A.

    2008-01-01

    Using sticky notes and number lines, a hands-on activity is shared that anchors initial student thinking about absolute value. The initial point of reference should help students successfully evaluate numeric problems involving absolute value. They should also be able to solve absolute value equations and inequalities that are typically found in…

  19. 20 CFR 404.1205 - Absolute coverage groups.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 20 Employees' Benefits 2 2010-04-01 2010-04-01 false Absolute coverage groups. 404.1205 Section... INSURANCE (1950- ) Coverage of Employees of State and Local Governments What Groups of Employees May Be Covered § 404.1205 Absolute coverage groups. (a) General. An absolute coverage group is a...

  20. Nitrogen quantification with SNMS

    NASA Astrophysics Data System (ADS)

    Goschnick, J.; Natzeck, C.; Sommer, M.

    1999-04-01

    Plasma-based secondary neutral mass spectrometry (plasma SNMS) is a powerful analytical method for determining the elemental concentrations of almost any kind of material at low cost by using a cheap quadrupole mass filter. However, a quadrupole-based mass spectrometer is limited to nominal mass resolution. Atomic signals are sometimes superimposed by molecular signals (2 or 3 atomic clusters such as CH +, CH 2+ or metal oxide clusters) and/or intensities of double-charged species. Especially in the case of nitrogen several interferences can impede the quantification. This article reports on methods to recognize and deconvolute superpositions of N + with CH 2+, Li 2+, and Si 2+ at mass 14 D (Debye) occurring during analysis of organic and inorganic substances. The recognition is based on the signal pattern of N +, Li +, CH +, and Si +. The latter serve as indicators for a probable interference of molecular or double-charged species with N on mass 14 D. The subsequent deconvolution use different shapes of atomic and cluster kinetic energy distributions (kEDs) to determine the quantities of the intensity components by a linear fit of N + and non-atomic kEDs obtained from several organic and inorganic standards into the measured kED. The atomic intensity fraction yields a much better nitrogen concentration than the total intensity of mass 14 D after correction.

  1. Quantification of human responses

    NASA Technical Reports Server (NTRS)

    Steinlage, R. C.; Gantner, T. E.; Lim, P. Y. W.

    1992-01-01

    Human perception is a complex phenomenon which is difficult to quantify with instruments. For this reason, large panels of people are often used to elicit and aggregate subjective judgments. Print quality, taste, smell, sound quality of a stereo system, softness, and grading Olympic divers and skaters are some examples of situations where subjective measurements or judgments are paramount. We usually express what is in our mind through language as a medium but languages are limited in available choices of vocabularies, and as a result, our verbalizations are only approximate expressions of what we really have in mind. For lack of better methods to quantify subjective judgments, it is customary to set up a numerical scale such as 1, 2, 3, 4, 5 or 1, 2, 3, ..., 9, 10 for characterizing human responses and subjective judgments with no valid justification except that these scales are easy to understand and convenient to use. But these numerical scales are arbitrary simplifications of the complex human mind; the human mind is not restricted to such simple numerical variations. In fact, human responses and subjective judgments are psychophysical phenomena that are fuzzy entities and therefore difficult to handle by conventional mathematics and probability theory. The fuzzy mathematical approach provides a more realistic insight into understanding and quantifying human responses. This paper presents a method for quantifying human responses and subjective judgments without assuming a pattern of linear or numerical variation for human responses. In particular, quantification and evaluation of linguistic judgments was investigated.

  2. Use of Absolute and Comparative Performance Feedback in Absolute and Comparative Judgments and Decisions

    ERIC Educational Resources Information Center

    Moore, Don A.; Klein, William M. P.

    2008-01-01

    Which matters more--beliefs about absolute ability or ability relative to others? This study set out to compare the effects of such beliefs on satisfaction with performance, self-evaluations, and bets on future performance. In Experiment 1, undergraduate participants were told they had answered 20% correct, 80% correct, or were not given their…

  3. Absolute calibration of ultraviolet filter photometry

    NASA Technical Reports Server (NTRS)

    Bless, R. C.; Fairchild, T.; Code, A. D.

    1972-01-01

    The essential features of the calibration procedure can be divided into three parts. First, the shape of the bandpass of each photometer was determined by measuring the transmissions of the individual optical components and also by measuring the response of the photometer as a whole. Secondly, each photometer was placed in the essentially-collimated synchrotron radiation bundle maintained at a constant intensity level, and the output signal was determined from about 100 points on the objective. Finally, two or three points on the objective were illuminated by synchrotron radiation at several different intensity levels covering the dynamic range of the photometers. The output signals were placed on an absolute basis by the electron counting technique described earlier.

  4. MAGSAT: Vector magnetometer absolute sensor alignment determination

    NASA Technical Reports Server (NTRS)

    Acuna, M. H.

    1981-01-01

    A procedure is described for accurately determining the absolute alignment of the magnetic axes of a triaxial magnetometer sensor with respect to an external, fixed, reference coordinate system. The method does not require that the magnetic field vector orientation, as generated by a triaxial calibration coil system, be known to better than a few degrees from its true position, and minimizes the number of positions through which a sensor assembly must be rotated to obtain a solution. Computer simulations show that accuracies of better than 0.4 seconds of arc can be achieved under typical test conditions associated with existing magnetic test facilities. The basic approach is similar in nature to that presented by McPherron and Snare (1978) except that only three sensor positions are required and the system of equations to be solved is considerably simplified. Applications of the method to the case of the MAGSAT Vector Magnetometer are presented and the problems encountered discussed.

  5. Absolute geostrophic currents in global tropical oceans

    NASA Astrophysics Data System (ADS)

    Yang, Lina; Yuan, Dongliang

    2016-03-01

    A set of absolute geostrophic current (AGC) data for the period January 2004 to December 2012 are calculated using the P-vector method based on monthly gridded Argo profiles in the world tropical oceans. The AGCs agree well with altimeter geostrophic currents, Ocean Surface Current Analysis-Real time currents, and moored current-meter measurements at 10-m depth, based on which the classical Sverdrup circulation theory is evaluated. Calculations have shown that errors of wind stress calculation, AGC transport, and depth ranges of vertical integration cannot explain non-Sverdrup transport, which is mainly in the subtropical western ocean basins and equatorial currents near the Equator in each ocean basin (except the North Indian Ocean, where the circulation is dominated by monsoons). The identified non-Sverdrup transport is thereby robust and attributed to the joint effect of baroclinicity and relief of the bottom (JEBAR) and mesoscale eddy nonlinearity.

  6. Absolute Measurement of Electron Cloud Density

    SciTech Connect

    Covo, M K; Molvik, A W; Cohen, R H; Friedman, A; Seidl, P A; Logan, G; Bieniosek, F; Baca, D; Vay, J; Orlando, E; Vujic, J L

    2007-06-21

    Beam interaction with background gas and walls produces ubiquitous clouds of stray electrons that frequently limit the performance of particle accelerator and storage rings. Counterintuitively we obtained the electron cloud accumulation by measuring the expelled ions that are originated from the beam-background gas interaction, rather than by measuring electrons that reach the walls. The kinetic ion energy measured with a retarding field analyzer (RFA) maps the depressed beam space-charge potential and provides the dynamic electron cloud density. Clearing electrode current measurements give the static electron cloud background that complements and corroborates with the RFA measurements, providing an absolute measurement of electron cloud density during a 5 {micro}s duration beam pulse in a drift region of the magnetic transport section of the High-Current Experiment (HCX) at LBNL.

  7. Absolute instability of a viscous hollow jet

    NASA Astrophysics Data System (ADS)

    Gañán-Calvo, Alfonso M.

    2007-02-01

    An investigation of the spatiotemporal stability of hollow jets in unbounded coflowing liquids, using a general dispersion relation previously derived, shows them to be absolutely unstable for all physical values of the Reynolds and Weber numbers. The roots of the symmetry breakdown with respect to the liquid jet case, and the validity of asymptotic models are here studied in detail. Asymptotic analyses for low and high Reynolds numbers are provided, showing that old and well-established limiting dispersion relations [J. W. S. Rayleigh, The Theory of Sound (Dover, New York, 1945); S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability (Dover, New York, 1961)] should be used with caution. In the creeping flow limit, the analysis shows that, if the hollow jet is filled with any finite density and viscosity fluid, a steady jet could be made arbitrarily small (compatible with the continuum hypothesis) if the coflowing liquid moves faster than a critical velocity.

  8. Stitching interferometry: recent results and absolute calibration

    NASA Astrophysics Data System (ADS)

    Bray, Michael

    2004-02-01

    Stitching Interferometry is a method of analysing large optical components using a standard "small" interferometer. This result is obtained by taking multiple overlapping images of the large component, and numerically "stitching" these sub-apertures together. We have already reported the industrial use our Stitching Interferometry systems (Previous SPIE symposia), but experimental results had been lacking because this technique is still new, and users needed to get accustomed to it before producing reliable measurements. We now have more results. We will report user comments and show new, unpublished results. We will discuss sources of error, and show how some of these can be reduced to arbitrarily small values. These will be discussed in some detail. We conclude with a few graphical examples of absolute measurements performed by us.

  9. Swarm's Absolute Scalar Magnetometer metrological performances

    NASA Astrophysics Data System (ADS)

    Leger, J.; Fratter, I.; Bertrand, F.; Jager, T.; Morales, S.

    2012-12-01

    The Absolute Scalar Magnetometer (ASM) has been developed for the ESA Earth Observation Swarm mission, planned for launch in November 2012. As its Overhauser magnetometers forerunners flown on Oersted and Champ satellites, it will deliver high resolution scalar measurements for the in-flight calibration of the Vector Field Magnetometer manufactured by the Danish Technical University. Latest results of the ground tests carried out to fully characterize all parameters that may affect its accuracy, both at instrument and satellite level, will be presented. In addition to its baseline function, the ASM can be operated either at a much higher sampling rate (burst mode at 250 Hz) or in a dual mode where it also delivers vector field measurements as a by-product. The calibration procedure and the relevant vector performances will be discussed.

  10. Absolute nonlocality via distributed computing without communication

    NASA Astrophysics Data System (ADS)

    Czekaj, Ł.; Pawłowski, M.; Vértesi, T.; Grudka, A.; Horodecki, M.; Horodecki, R.

    2015-09-01

    Understanding the role that quantum entanglement plays as a resource in various information processing tasks is one of the crucial goals of quantum information theory. Here we propose an alternative perspective for studying quantum entanglement: distributed computation of functions without communication between nodes. To formalize this approach, we propose identity games. Surprisingly, despite no signaling, we obtain that nonlocal quantum strategies beat classical ones in terms of winning probability for identity games originating from certain bipartite and multipartite functions. Moreover we show that, for a majority of functions, access to general nonsignaling resources boosts success probability two times in comparison to classical ones for a number of large enough outputs. Because there are no constraints on the inputs and no processing of the outputs in the identity games, they detect very strong types of correlations: absolute nonlocality.

  11. Mass Spectrometric Quantification of N-Linked Glycans by Reference to Exogenous Standards.

    PubMed

    Mehta, Nickita; Porterfield, Mindy; Struwe, Weston B; Heiss, Christian; Azadi, Parastoo; Rudd, Pauline M; Tiemeyer, Michael; Aoki, Kazuhiro

    2016-09-01

    Environmental and metabolic processes shape the profile of glycoprotein glycans expressed by cells, whether in culture, developing tissues, or mature organisms. Quantitative characterization of glycomic changes associated with these conditions has been achieved historically by reductive coupling of oligosaccharides to various fluorophores following release from glycoprotein and subsequent HPLC or capillary electrophoretic separation. Such labeling-based approaches provide a robust means of quantifying glycan amount based on fluorescence yield. Mass spectrometry, on the other hand, has generally been limited to relative quantification in which the contribution of the signal intensity for an individual glycan is expressed as a percent of the signal intensity summed over the total profile. Relative quantification has been valuable for highlighting changes in glycan expression between samples; sensitivity is high, and structural information can be derived by fragmentation. We have investigated whether MS-based glycomics is amenable to absolute quantification by referencing signal intensities to well-characterized oligosaccharide standards. We report the qualification of a set of N-linked oligosaccharide standards by NMR, HPLC, and MS. We also demonstrate the dynamic range, sensitivity, and recovery from complex biological matrices for these standards in their permethylated form. Our results indicate that absolute quantification for MS-based glycomic analysis is reproducible and robust utilizing currently available glycan standards. PMID:27432553

  12. Artifact correction and absolute radiometric calibration techniques employed in the Landsat 7 image assessment system

    USGS Publications Warehouse

    Boncyk, Wayne C.; Markham, Brian L.; Barker, John L.; Helder, Dennis

    1996-01-01

    The Landsat-7 Image Assessment System (IAS), part of the Landsat-7 Ground System, will calibrate and evaluate the radiometric and geometric performance of the Enhanced Thematic Mapper Plus (ETM +) instrument. The IAS incorporates new instrument radiometric artifact correction and absolute radiometric calibration techniques which overcome some limitations to calibration accuracy inherent in historical calibration methods. Knowledge of ETM + instrument characteristics gleaned from analysis of archival Thematic Mapper in-flight data and from ETM + prelaunch tests allow the determination and quantification of the sources of instrument artifacts. This a priori knowledge will be utilized in IAS algorithms designed to minimize the effects of the noise sources before calibration, in both ETM + image and calibration data.

  13. Gyrokinetic Statistical Absolute Equilibrium and Turbulence

    SciTech Connect

    Jian-Zhou Zhu and Gregory W. Hammett

    2011-01-10

    A paradigm based on the absolute equilibrium of Galerkin-truncated inviscid systems to aid in understanding turbulence [T.-D. Lee, "On some statistical properties of hydrodynamical and magnetohydrodynamical fields," Q. Appl. Math. 10, 69 (1952)] is taken to study gyrokinetic plasma turbulence: A finite set of Fourier modes of the collisionless gyrokinetic equations are kept and the statistical equilibria are calculated; possible implications for plasma turbulence in various situations are discussed. For the case of two spatial and one velocity dimension, in the calculation with discretization also of velocity v with N grid points (where N + 1 quantities are conserved, corresponding to an energy invariant and N entropy-related invariants), the negative temperature states, corresponding to the condensation of the generalized energy into the lowest modes, are found. This indicates a generic feature of inverse energy cascade. Comparisons are made with some classical results, such as those of Charney-Hasegawa-Mima in the cold-ion limit. There is a universal shape for statistical equilibrium of gyrokinetics in three spatial and two velocity dimensions with just one conserved quantity. Possible physical relevance to turbulence, such as ITG zonal flows, and to a critical balance hypothesis are also discussed.

  14. Absolute surface energy for zincblende semiconductors

    NASA Astrophysics Data System (ADS)

    Zhang, S. B.; Wei, Su-Huai

    2003-03-01

    Recent advance in nanosciences requires the determination of surface (or facet) energy of semiconductors, which is often difficult due to the polar nature of some of the most important surfaces such as the (111)A/(111)B surfaces. Several approaches have been developed in the past [1-3] to deal with the problem but an unambiguous division of the polar surface energies is yet to come [2]. Here we show that an accurate division is indeed possible for the zincblende semiconductors and will present the results for GaAs, ZnSe, and CuInSe2 [4], respectively. A general trend emerges, relating the absolute surface energy to the ionicity of the bulk materials. [1] N. Chetty and R. M. Martin, Phys. Rev. B 45, 6074 (1992). [2] N. Moll, et al., Phys. Rev. B 54, 8844 (1996). [3] S. Mankefors, Phys. Rev. B 59, 13151 (1999). [4] S. B. Zhang and S.-H. Wei, Phys. Rev. B 65, 081402 (2002).

  15. Climate Absolute Radiance and Refractivity Observatory (CLARREO)

    NASA Technical Reports Server (NTRS)

    Leckey, John P.

    2015-01-01

    The Climate Absolute Radiance and Refractivity Observatory (CLARREO) is a mission, led and developed by NASA, that will measure a variety of climate variables with an unprecedented accuracy to quantify and attribute climate change. CLARREO consists of three separate instruments: an infrared (IR) spectrometer, a reflected solar (RS) spectrometer, and a radio occultation (RO) instrument. The mission will contain orbiting radiometers with sufficient accuracy, including on orbit verification, to calibrate other space-based instrumentation, increasing their respective accuracy by as much as an order of magnitude. The IR spectrometer is a Fourier Transform spectrometer (FTS) working in the 5 to 50 microns wavelength region with a goal of 0.1 K (k = 3) accuracy. The FTS will achieve this accuracy using phase change cells to verify thermistor accuracy and heated halos to verify blackbody emissivity, both on orbit. The RS spectrometer will measure the reflectance of the atmosphere in the 0.32 to 2.3 microns wavelength region with an accuracy of 0.3% (k = 2). The status of the instrumentation packages and potential mission options will be presented.

  16. Absolute decay width measurements in 16O

    NASA Astrophysics Data System (ADS)

    Wheldon, C.; Ashwood, N. I.; Barr, M.; Curtis, N.; Freer, M.; Kokalova, Tz; Malcolm, J. D.; Spencer, S. J.; Ziman, V. A.; Faestermann, Th; Krücken, R.; Wirth, H.-F.; Hertenberger, R.; Lutter, R.; Bergmaier, A.

    2012-09-01

    The reaction 126C(63Li, d)168O* at a 6Li bombarding energy of 42 MeV has been used to populate excited states in 16O. The deuteron ejectiles were measured using the high-resolution Munich Q3D spectrograph. A large-acceptance silicon-strip detector array was used to register the recoil and break-up products. This complete kinematic set-up has enabled absolute α-decay widths to be measured with high-resolution in the 13.9 to 15.9 MeV excitation energy regime in 16O; many for the first time. This energy region spans the 14.4 MeV four-α breakup threshold. Monte-Carlo simulations of the detector geometry and break-up processes yield detection efficiencies for the two dominant decay modes of 40% and 37% for the α+12C(g.s.) and a+12C(2+1) break-up channels respectively.

  17. Absolute calibration of forces in optical tweezers

    NASA Astrophysics Data System (ADS)

    Dutra, R. S.; Viana, N. B.; Maia Neto, P. A.; Nussenzveig, H. M.

    2014-07-01

    Optical tweezers are highly versatile laser traps for neutral microparticles, with fundamental applications in physics and in single molecule cell biology. Force measurements are performed by converting the stiffness response to displacement of trapped transparent microspheres, employed as force transducers. Usually, calibration is indirect, by comparison with fluid drag forces. This can lead to discrepancies by sizable factors. Progress achieved in a program aiming at absolute calibration, conducted over the past 15 years, is briefly reviewed. Here we overcome its last major obstacle, a theoretical overestimation of the peak stiffness, within the most employed range for applications, and we perform experimental validation. The discrepancy is traced to the effect of primary aberrations of the optical system, which are now included in the theory. All required experimental parameters are readily accessible. Astigmatism, the dominant effect, is measured by analyzing reflected images of the focused laser spot, adapting frequently employed video microscopy techniques. Combined with interface spherical aberration, it reveals a previously unknown window of instability for trapping. Comparison with experimental data leads to an overall agreement within error bars, with no fitting, for a broad range of microsphere radii, from the Rayleigh regime to the ray optics one, for different polarizations and trapping heights, including all commonly employed parameter domains. Besides signaling full first-principles theoretical understanding of optical tweezers operation, the results may lead to improved instrument design and control over experiments, as well as to an extended domain of applicability, allowing reliable force measurements, in principle, from femtonewtons to nanonewtons.

  18. Absolute spectrophotometry of northern compact planetary nebulae

    NASA Astrophysics Data System (ADS)

    Wright, S. A.; Corradi, R. L. M.; Perinotto, M.

    2005-06-01

    We present medium-dispersion spectra and narrowband images of six northern compact planetary nebulae (PNe): BoBn 1, DdDm 1, IC 5117, M 1-5, M 1-71, and NGC 6833. From broad-slit spectra, total absolute fluxes and equivalent widths were measured for all observable emission lines. High signal-to-noise emission line fluxes of Hα, Hβ, [Oiii], [Nii], and HeI may serve as emission line flux standards for northern hemisphere observers. From narrow-slit spectra, we derive systemic radial velocities. For four PNe, available emission line fluxes were measured with sufficient signal-to-noise to probe the physical properties of their electron densities, temperatures, and chemical abundances. BoBn 1 and DdDm 1, both type IV PNe, have an Hβ flux over three sigma away from previous measurements. We report the first abundance measurements of M 1-71. NGC 6833 measured radial velocity and galactic coordinates suggest that it is associated with the outer arm or possibly the galactic halo, and its low abundance ([O/H]=1.3× 10-4) may be indicative of low metallicity within that region.

  19. MAMA Software Features: Quantification Verification Documentation-1

    SciTech Connect

    Ruggiero, Christy E.; Porter, Reid B.

    2014-05-21

    This document reviews the verification of the basic shape quantification attributes in the MAMA software against hand calculations in order to show that the calculations are implemented mathematically correctly and give the expected quantification results.

  20. Absolute nuclear material assay using count distribution (LAMBDA) space

    DOEpatents

    Prasad, Mano K.; Snyderman, Neal J.; Rowland, Mark S.

    2015-12-01

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  1. Absolute nuclear material assay using count distribution (LAMBDA) space

    DOEpatents

    Prasad, Manoj K.; Snyderman, Neal J.; Rowland, Mark S.

    2012-06-05

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  2. The absolute disparity anomaly and the mechanism of relative disparities.

    PubMed

    Chopin, Adrien; Levi, Dennis; Knill, David; Bavelier, Daphne

    2016-06-01

    There has been a long-standing debate about the mechanisms underlying the perception of stereoscopic depth and the computation of the relative disparities that it relies on. Relative disparities between visual objects could be computed in two ways: (a) using the difference in the object's absolute disparities (Hypothesis 1) or (b) using relative disparities based on the differences in the monocular separations between objects (Hypothesis 2). To differentiate between these hypotheses, we measured stereoscopic discrimination thresholds for lines with different absolute and relative disparities. Participants were asked to judge the depth of two lines presented at the same distance from the fixation plane (absolute disparity) or the depth between two lines presented at different distances (relative disparity). We used a single stimulus method involving a unique memory component for both conditions, and no extraneous references were available. We also measured vergence noise using Nonius lines. Stereo thresholds were substantially worse for absolute disparities than for relative disparities, and the difference could not be explained by vergence noise. We attribute this difference to an absence of conscious readout of absolute disparities, termed the absolute disparity anomaly. We further show that the pattern of correlations between vergence noise and absolute and relative disparity acuities can be explained jointly by the existence of the absolute disparity anomaly and by the assumption that relative disparity information is computed from absolute disparities (Hypothesis 1). PMID:27248566

  3. The absolute disparity anomaly and the mechanism of relative disparities

    PubMed Central

    Chopin, Adrien; Levi, Dennis; Knill, David; Bavelier, Daphne

    2016-01-01

    There has been a long-standing debate about the mechanisms underlying the perception of stereoscopic depth and the computation of the relative disparities that it relies on. Relative disparities between visual objects could be computed in two ways: (a) using the difference in the object's absolute disparities (Hypothesis 1) or (b) using relative disparities based on the differences in the monocular separations between objects (Hypothesis 2). To differentiate between these hypotheses, we measured stereoscopic discrimination thresholds for lines with different absolute and relative disparities. Participants were asked to judge the depth of two lines presented at the same distance from the fixation plane (absolute disparity) or the depth between two lines presented at different distances (relative disparity). We used a single stimulus method involving a unique memory component for both conditions, and no extraneous references were available. We also measured vergence noise using Nonius lines. Stereo thresholds were substantially worse for absolute disparities than for relative disparities, and the difference could not be explained by vergence noise. We attribute this difference to an absence of conscious readout of absolute disparities, termed the absolute disparity anomaly. We further show that the pattern of correlations between vergence noise and absolute and relative disparity acuities can be explained jointly by the existence of the absolute disparity anomaly and by the assumption that relative disparity information is computed from absolute disparities (Hypothesis 1). PMID:27248566

  4. Orion Absolute Navigation System Progress and Challenge

    NASA Technical Reports Server (NTRS)

    Holt, Greg N.; D'Souza, Christopher

    2012-01-01

    The absolute navigation design of NASA's Orion vehicle is described. It has undergone several iterations and modifications since its inception, and continues as a work-in-progress. This paper seeks to benchmark the current state of the design and some of the rationale and analysis behind it. There are specific challenges to address when preparing a timely and effective design for the Exploration Flight Test (EFT-1), while still looking ahead and providing software extensibility for future exploration missions. The primary onboard measurements in a Near-Earth or Mid-Earth environment consist of GPS pseudo-range and delta-range, but for future explorations missions the use of star-tracker and optical navigation sources need to be considered. Discussions are presented for state size and composition, processing techniques, and consider states. A presentation is given for the processing technique using the computationally stable and robust UDU formulation with an Agee-Turner Rank-One update. This allows for computational savings when dealing with many parameters which are modeled as slowly varying Gauss-Markov processes. Preliminary analysis shows up to a 50% reduction in computation versus a more traditional formulation. Several state elements are discussed and evaluated, including position, velocity, attitude, clock bias/drift, and GPS measurement biases in addition to bias, scale factor, misalignment, and non-orthogonalities of the accelerometers and gyroscopes. Another consideration is the initialization of the EKF in various scenarios. Scenarios such as single-event upset, ground command, and cold start are discussed as are strategies for whole and partial state updates as well as covariance considerations. Strategies are given for dealing with latent measurements and high-rate propagation using multi-rate architecture. The details of the rate groups and the data ow between the elements is discussed and evaluated.

  5. Evaluation of the Absolute Regional Temperature Potential

    NASA Technical Reports Server (NTRS)

    Shindell, D. T.

    2012-01-01

    The Absolute Regional Temperature Potential (ARTP) is one of the few climate metrics that provides estimates of impacts at a sub-global scale. The ARTP presented here gives the time-dependent temperature response in four latitude bands (90-28degS, 28degS-28degN, 28-60degN and 60-90degN) as a function of emissions based on the forcing in those bands caused by the emissions. It is based on a large set of simulations performed with a single atmosphere-ocean climate model to derive regional forcing/response relationships. Here I evaluate the robustness of those relationships using the forcing/response portion of the ARTP to estimate regional temperature responses to the historic aerosol forcing in three independent climate models. These ARTP results are in good accord with the actual responses in those models. Nearly all ARTP estimates fall within +/-20%of the actual responses, though there are some exceptions for 90-28degS and the Arctic, and in the latter the ARTP may vary with forcing agent. However, for the tropics and the Northern Hemisphere mid-latitudes in particular, the +/-20% range appears to be roughly consistent with the 95% confidence interval. Land areas within these two bands respond 39-45% and 9-39% more than the latitude band as a whole. The ARTP, presented here in a slightly revised form, thus appears to provide a relatively robust estimate for the responses of large-scale latitude bands and land areas within those bands to inhomogeneous radiative forcing and thus potentially to emissions as well. Hence this metric could allow rapid evaluation of the effects of emissions policies at a finer scale than global metrics without requiring use of a full climate model.

  6. Absolute optical surface measurement with deflectometry

    NASA Astrophysics Data System (ADS)

    Li, Wansong; Sandner, Marc; Gesierich, Achim; Burke, Jan

    Deflectometry utilises the deformation and displacement of a sample pattern after reflection from a test surface to infer the surface slopes. Differentiation of the measurement data leads to a curvature map, which is very useful for surface quality checks with sensitivity down to the nanometre range. Integration of the data allows reconstruction of the absolute surface shape, but the procedure is very error-prone because systematic errors may add up to large shape deviations. In addition, there are infinitely many combinations for slope and object distance that satisfy a given observation. One solution for this ambiguity is to include information on the object's distance. It must be known very accurately. Two laser pointers can be used for positioning the object, and we also show how a confocal chromatic distance sensor can be used to define a reference point on a smooth surface from which the integration can be started. The used integration algorithm works without symmetry constraints and is therefore suitable for free-form surfaces as well. Unlike null testing, deflectometry also determines radius of curvature (ROC) or focal lengths as a direct result of the 3D surface reconstruction. This is shown by the example of a 200 mm diameter telescope mirror, whose ROC measurements by coordinate measurement machine and deflectometry coincide to within 0.27 mm (or a sag error of 1.3μm). By the example of a diamond-turned off-axis parabolic mirror, we demonstrate that the figure measurement uncertainty comes close to a well-calibrated Fizeau interferometer.

  7. Absolute determination of local tropospheric OH concentrations

    NASA Technical Reports Server (NTRS)

    Armerding, Wolfgang; Comes, Franz-Josef

    1994-01-01

    Long path absorption (LPA) according to Lambert Beer's law is a method to determine absolute concentrations of trace gases such as tropospheric OH. We have developed a LPA instrument which is based on a rapid tuning of the light source which is a frequency doubled dye laser. The laser is tuned across two or three OH absorption features around 308 nm with a scanning speed of 0.07 cm(exp -1)/microsecond and a repetition rate of 1.3 kHz. This high scanning speed greatly reduces the fluctuation of the light intensity caused by the atmosphere. To obtain the required high sensitivity the laser output power is additionally made constant and stabilized by an electro-optical modulator. The present sensitivity is of the order of a few times 10(exp 5) OH per cm(exp 3) for an acquisition time of a minute and an absorption path length of only 1200 meters so that a folding of the optical path in a multireflection cell was possible leading to a lateral dimension of the cell of a few meters. This allows local measurements to be made. Tropospheric measurements have been carried out in 1991 resulting in the determination of OH diurnal variation at specific days in late summer. Comparison with model calculations have been made. Interferences are mainly due to SO2 absorption. The problem of OH self generation in the multireflection cell is of minor extent. This could be shown by using different experimental methods. The minimum-maximum signal to noise ratio is about 8 x 10(exp -4) for a single scan. Due to the small size of the absorption cell the realization of an open air laboratory is possible in which by use of an additional UV light source or by additional fluxes of trace gases the chemistry can be changed under controlled conditions allowing kinetic studies of tropospheric photochemistry to be made in open air.

  8. Absolute Radiometric Calibration of KOMPSAT-3A

    NASA Astrophysics Data System (ADS)

    Ahn, H. Y.; Shin, D. Y.; Kim, J. S.; Seo, D. C.; Choi, C. U.

    2016-06-01

    This paper presents a vicarious radiometric calibration of the Korea Multi-Purpose Satellite-3A (KOMPSAT-3A) performed by the Korea Aerospace Research Institute (KARI) and the Pukyong National University Remote Sensing Group (PKNU RSG) in 2015.The primary stages of this study are summarized as follows: (1) A field campaign to determine radiometric calibrated target fields was undertaken in Mongolia and South Korea. Surface reflectance data obtained in the campaign were input to a radiative transfer code that predicted at-sensor radiance. Through this process, equations and parameters were derived for the KOMPSAT-3A sensor to enable the conversion of calibrated DN to physical units, such as at-sensor radiance or TOA reflectance. (2) To validate the absolute calibration coefficients for the KOMPSAT-3A sensor, we performed a radiometric validation with a comparison of KOMPSAT-3A and Landsat-8 TOA reflectance using one of the six PICS (Libya 4). Correlations between top-of-atmosphere (TOA) radiances and the spectral band responses of the KOMPSAT-3A sensors at the Zuunmod, Mongolia and Goheung, South Korea sites were significant for multispectral bands. The average difference in TOA reflectance between KOMPSAT-3A and Landsat-8 image over the Libya 4, Libya site in the red-green-blue (RGB) region was under 3%, whereas in the NIR band, the TOA reflectance of KOMPSAT-3A was lower than the that of Landsat-8 due to the difference in the band passes of two sensors. The KOMPSAT-3Aensor includes a band pass near 940 nm that can be strongly absorbed by water vapor and therefore displayed low reflectance. Toovercome this, we need to undertake a detailed analysis using rescale methods, such as the spectral bandwidth adjustment factor.

  9. Mid-infrared absolute spectral responsivity scale based on an absolute cryogenic radiometer and an optical parametric oscillator laser

    NASA Astrophysics Data System (ADS)

    Zhao, Kun; Shi, Xueshun; Chen, Haidong; Liu, Yulong; Liu, Changming; Chen, Kunfeng; Li, Ligong; Gan, Haiyong; Ma, Chong

    2016-06-01

    We are reporting on a laser-based absolute spectral responsivity scale in the mid-infrared spectral range. By using a mid-infrared tunable optical parametric oscillator as the laser source, the absolute responsivity scale has been established by calibrating thin-film thermopile detectors against an absolute cryogenic radiometer. The thin-film thermopile detectors can be then used as transfer standard detectors. The extended uncertainty of the absolute spectral responsivity measurement has been analyzed to be 0.58%–0.68% (k  =  2).

  10. RNAontheBENCH: computational and empirical resources for benchmarking RNAseq quantification and differential expression methods.

    PubMed

    Germain, Pierre-Luc; Vitriolo, Alessandro; Adamo, Antonio; Laise, Pasquale; Das, Vivek; Testa, Giuseppe

    2016-06-20

    RNA sequencing (RNAseq) has become the method of choice for transcriptome analysis, yet no consensus exists as to the most appropriate pipeline for its analysis, with current benchmarks suffering important limitations. Here, we address these challenges through a rich benchmarking resource harnessing (i) two RNAseq datasets including ERCC ExFold spike-ins; (ii) Nanostring measurements of a panel of 150 genes on the same samples; (iii) a set of internal, genetically-determined controls; (iv) a reanalysis of the SEQC dataset; and (v) a focus on relative quantification (i.e. across-samples). We use this resource to compare different approaches to each step of RNAseq analysis, from alignment to differential expression testing. We show that methods providing the best absolute quantification do not necessarily provide good relative quantification across samples, that count-based methods are superior for gene-level relative quantification, and that the new generation of pseudo-alignment-based software performs as well as established methods, at a fraction of the computing time. We also assess the impact of library type and size on quantification and differential expression analysis. Finally, we have created a R package and a web platform to enable the simple and streamlined application of this resource to the benchmarking of future methods. PMID:27190234

  11. RNAontheBENCH: computational and empirical resources for benchmarking RNAseq quantification and differential expression methods

    PubMed Central

    Germain, Pierre-Luc; Vitriolo, Alessandro; Adamo, Antonio; Laise, Pasquale; Das, Vivek; Testa, Giuseppe

    2016-01-01

    RNA sequencing (RNAseq) has become the method of choice for transcriptome analysis, yet no consensus exists as to the most appropriate pipeline for its analysis, with current benchmarks suffering important limitations. Here, we address these challenges through a rich benchmarking resource harnessing (i) two RNAseq datasets including ERCC ExFold spike-ins; (ii) Nanostring measurements of a panel of 150 genes on the same samples; (iii) a set of internal, genetically-determined controls; (iv) a reanalysis of the SEQC dataset; and (v) a focus on relative quantification (i.e. across-samples). We use this resource to compare different approaches to each step of RNAseq analysis, from alignment to differential expression testing. We show that methods providing the best absolute quantification do not necessarily provide good relative quantification across samples, that count-based methods are superior for gene-level relative quantification, and that the new generation of pseudo-alignment-based software performs as well as established methods, at a fraction of the computing time. We also assess the impact of library type and size on quantification and differential expression analysis. Finally, we have created a R package and a web platform to enable the simple and streamlined application of this resource to the benchmarking of future methods. PMID:27190234

  12. Quantification in MALDI-MS imaging: what can we learn from MALDI-selected reaction monitoring and what can we expect for imaging?

    PubMed

    Porta, Tiffany; Lesur, Antoine; Varesio, Emmanuel; Hopfgartner, Gérard

    2015-03-01

    Quantification by mass spectrometry imaging (Q-MSI) is one of the hottest topics of the current discussions among the experts of the MS imaging community. If MSI is established as a powerful qualitative tool in drug and biomarker discovery, its reliability for absolute and accurate quantification (QUAN) is still controversial. Indeed, Q-MSI has to deal with several fundamental aspects that are difficult to control, and to account for absolute quantification. The first objective of this manuscript is to review the state-of-the-art of Q-MSI and the current strategies developed for absolute quantification by direct surface sampling from tissue sections. This includes comments on the quest for the perfect matrix-matched standards and signal normalization approaches. Furthermore, this work investigates quantification at a pixel level to determine how many pixels must be considered for accurate quantification by ultraviolet matrix-assisted laser desorption/ionization (MALDI), the most widely used technique for MSI. Particularly, this study focuses on the MALDI-selected reaction monitoring (SRM) in rastering mode, previously demonstrated as a quantitative and robust approach for small analyte and peptide-targeted analyses. The importance of designing experiments of good quality and the use of a labeled compound for signal normalization is emphasized to minimize the signal variability. This is exemplified by measuring the signal for cocaine and a tryptic peptide (i.e., obtained after digestion of a monoclonal antibody) upon different experimental conditions, such as sample stage velocity, laser power and frequency, or distance between two raster lines. Our findings show that accurate quantification cannot be performed on a single pixel but requires averaging of at least 4-5 pixels. The present work demonstrates that MALDI-SRM/MSI is quantitative with precision better than 10-15 %, which meets the requirements of most guidelines (i.e., in bioanalysis or toxicology) for

  13. Quantification of nitrotyrosine in nitrated proteins

    PubMed Central

    Zhang, Yingyi; Pöschl, Ulrich

    2010-01-01

    For kinetic studies of protein nitration reactions, we have developed a method for the quantification of nitrotyrosine residues in protein molecules by liquid chromatography coupled to a diode array detector of ultraviolet-visible absorption. Nitrated bovine serum albumin (BSA) and nitrated ovalbumin (OVA) were synthesized and used as standards for the determination of the protein nitration degree (ND), which is defined as the average number of nitrotyrosine residues divided by the total number of tyrosine residues in a protein molecule. The obtained calibration curves of the ratio of chromatographic peak areas of absorbance at 357 and at 280 nm vs. nitration degree are nearly the same for BSA and OVA (relative deviations <5%). They are near-linear at low ND (< 0.1) and can be described by a second-order polynomial fit up to \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$ {\\hbox{ND}} = 0.5\\left( {{R^2} > 0.99} \\right) $$\\end{document}. A change of chromatographic column led to changes in absolute peak areas but not in the peak area ratios and related calibration functions, which confirms the robustness of the analytical method. First results of laboratory experiments confirm that the method is applicable for the investigation of the reaction kinetics of protein nitration. The main advantage over alternative methods is that nitration degrees can be efficiently determined without hydrolysis or digestion of the investigated protein molecules. PMID:20300739

  14. Supplementary and Enrichment Series: Absolute Value. Teachers' Commentary. SP-25.

    ERIC Educational Resources Information Center

    Bridgess, M. Philbrick, Ed.

    This is one in a series of manuals for teachers using SMSG high school supplementary materials. The pamphlet includes commentaries on the sections of the student's booklet, answers to the exercises, and sample test questions. Topics covered include addition and multiplication in terms of absolute value, graphs of absolute value in the Cartesian…

  15. Supplementary and Enrichment Series: Absolute Value. SP-24.

    ERIC Educational Resources Information Center

    Bridgess, M. Philbrick, Ed.

    This is one in a series of SMSG supplementary and enrichment pamphlets for high school students. This series is designed to make material for the study of topics of special interest to students readily accessible in classroom quantity. Topics covered include absolute value, addition and multiplication in terms of absolute value, graphs of absolute…

  16. Novalis' Poetic Uncertainty: A "Bildung" with the Absolute

    ERIC Educational Resources Information Center

    Mika, Carl

    2016-01-01

    Novalis, the Early German Romantic poet and philosopher, had at the core of his work a mysterious depiction of the "absolute." The absolute is Novalis' name for a substance that defies precise knowledge yet calls for a tentative and sensitive speculation. How one asserts a truth, represents an object, and sets about encountering things…

  17. Absolute Humidity and the Seasonality of Influenza (Invited)

    NASA Astrophysics Data System (ADS)

    Shaman, J. L.; Pitzer, V.; Viboud, C.; Grenfell, B.; Goldstein, E.; Lipsitch, M.

    2010-12-01

    Much of the observed wintertime increase of mortality in temperate regions is attributed to seasonal influenza. A recent re-analysis of laboratory experiments indicates that absolute humidity strongly modulates the airborne survival and transmission of the influenza virus. Here we show that the onset of increased wintertime influenza-related mortality in the United States is associated with anomalously low absolute humidity levels during the prior weeks. We then use an epidemiological model, in which observed absolute humidity conditions temper influenza transmission rates, to successfully simulate the seasonal cycle of observed influenza-related mortality. The model results indicate that direct modulation of influenza transmissibility by absolute humidity alone is sufficient to produce this observed seasonality. These findings provide epidemiological support for the hypothesis that absolute humidity drives seasonal variations of influenza transmission in temperate regions. In addition, we show that variations of the basic and effective reproductive numbers for influenza, caused by seasonal changes in absolute humidity, are consistent with the general timing of pandemic influenza outbreaks observed for 2009 A/H1N1 in temperate regions. Indeed, absolute humidity conditions correctly identify the region of the United States vulnerable to a third, wintertime wave of pandemic influenza. These findings suggest that the timing of pandemic influenza outbreaks is controlled by a combination of absolute humidity conditions, levels of susceptibility and changes in population mixing and contact rates.

  18. Karst Water System Investigated by Absolute Gravimetry

    NASA Astrophysics Data System (ADS)

    Quinif, Y.; Meus, P.; van Camp, M.; Kaufmann, O.; van Ruymbeke, M.; Vandiepenbeeck, M.; Camelbeeck, T.

    2006-12-01

    The highly anisotropic and heterogeneous hydrogeological characteristics of karst aquifers are difficult to characterize and present challenges for modeling of storage capacities. Little is known about the surface and groundwater interconnection, about the connection between the porous formations and the draining cave and conduits, and about the variability of groundwater volume within the system. Usually, an aquifer is considered as a black box, where water fluxes are monitored as input and output. However, water inflow and outflow are highly variable and cannot be measured directly. A recent project, begun in 2006 sought to constrain the water budget in a Belgian karst aquifer and to assess the porosity and water dynamics, combining absolute gravity (AG) measurements and piezometric levels around the Rochefort cave. The advantage of gravity measurements is that they integrate all the subsystems in the karst system. This is not the case with traditional geophysical tools like boring or monitoring wells, which are soundings affected by their near environment and its heterogeneity. The investigated cave results from the meander cutoff system of the Lomme River. The main inputs are swallow holes of the river crossing the limestone massif. The river is canalized and the karst system is partly disconnected from the hydraulic system. In February and March 2006, when the river spilled over its dyke and sank into the most important swallow hole, this resulted in dramatic and nearly instantaneous increases in the piezometric levels in the cave, reaching up to 13 meters. Meanwhile, gravity increased by 50 and 90 nms-2 in February and March, respectively. A first conclusion is that during these sudden floods, the pores and fine fissures were poorly connected with the enlarged fractures, cave, and conduits. With a rise of 13 meters in the water level and a 5% porosity, a gravity change of 250 nms-2 should have been expected. This moderate gravity variation suggests either a

  19. Absolute radiometric calibration of advanced remote sensing systems

    NASA Technical Reports Server (NTRS)

    Slater, P. N.

    1982-01-01

    The distinction between the uses of relative and absolute spectroradiometric calibration of remote sensing systems is discussed. The advantages of detector-based absolute calibration are described, and the categories of relative and absolute system calibrations are listed. The limitations and problems associated with three common methods used for the absolute calibration of remote sensing systems are addressed. Two methods are proposed for the in-flight absolute calibration of advanced multispectral linear array systems. One makes use of a sun-illuminated panel in front of the sensor, the radiance of which is monitored by a spectrally flat pyroelectric radiometer. The other uses a large, uniform, high-radiance reference ground surface. The ground and atmospheric measurements required as input to a radiative transfer program to predict the radiance level at the entrance pupil of the orbital sensor are discussed, and the ground instrumentation is described.

  20. Testing the quasi-absolute method in photon activation analysis

    SciTech Connect

    Sun, Z. J.; Wells, D.; Starovoitova, V.; Segebade, C.

    2013-04-19

    In photon activation analysis (PAA), relative methods are widely used because of their accuracy and precision. Absolute methods, which are conducted without any assistance from calibration materials, are seldom applied for the difficulty in obtaining photon flux in measurements. This research is an attempt to perform a new absolute approach in PAA - quasi-absolute method - by retrieving photon flux in the sample through Monte Carlo simulation. With simulated photon flux and database of experimental cross sections, it is possible to calculate the concentration of target elements in the sample directly. The QA/QC procedures to solidify the research are discussed in detail. Our results show that the accuracy of the method for certain elements is close to a useful level in practice. Furthermore, the future results from the quasi-absolute method can also serve as a validation technique for experimental data on cross sections. The quasi-absolute method looks promising.

  1. Learning in the temporal bisection task: Relative or absolute?

    PubMed

    de Carvalho, Marilia Pinheiro; Machado, Armando; Tonneau, François

    2016-01-01

    We examined whether temporal learning in a bisection task is absolute or relational. Eight pigeons learned to choose a red key after a t-seconds sample and a green key after a 3t-seconds sample. To determine whether they had learned a relative mapping (short→Red, long→Green) or an absolute mapping (t-seconds→Red, 3t-seconds→Green), the pigeons then learned a series of new discriminations in which either the relative or the absolute mapping was maintained. Results showed that the generalization gradient obtained at the end of a discrimination predicted the pattern of choices made during the first session of a new discrimination. Moreover, most acquisition curves and generalization gradients were consistent with the predictions of the learning-to-time model, a Spencean model that instantiates absolute learning with temporal generalization. In the bisection task, the basis of temporal discrimination seems to be absolute, not relational. PMID:26752233

  2. Isobaric Labeling and Data Normalization without Requiring Protein Quantitation

    PubMed Central

    Kim, Phillip D.; Patel, Bhavinkumar B.; Yeung, Anthony T.

    2012-01-01

    Isobaric multiplexed quantitative proteomics can complement high-resolution sample isolation techniques. Here, we report a simple workflow exponentially modified protein abundance index (emPAI)-MW deconvolution (EMMOL) for normalizing isobaric reporter ratios within and between experiments, where small or unknown amounts of protein are used. EMMOL deconvolutes the isobaric tags for relative and absolute quantification (iTRAQ) data to yield the quantity of each protein of each sample in the pool, a new approach that enables the comparison of many samples without including a channel of reference standard. Moreover, EMMOL allows using a sufficient quantity of control sample to facilitate the peptide fractionation (isoelectric-focusing was used in this report), and mass spectrometry MS/MS sequencing yet relies on the broad dynamic range of iTRAQ quantitation to compare relative protein abundance. We demonstrated EMMOL by comparing four pooled samples with 20-fold range differences in protein abundance and performed data normalization without using prior knowledge of the amounts of proteins in each sample, simulating an iTRAQ experiment without protein quantitation prior to labeling. We used emPAI,1 the target protein MW, and the iTRAQ reporter ratios to calculate the amount of each protein in each of the four channels. Importantly, the EMMOL-delineated proteomes from separate iTRAQ experiments can be assorted for comparison without using a reference sample. We observed no compression of expression in iTRAQ ratios over a 20-fold range for all protein abundances. To complement this ability to analyze minute samples, we report an optimized iTRAQ labeling protocol for using 5 μg protein as the starting material. PMID:22468137

  3. Neurostereology protocol for unbiased quantification of neuronal injury and neurodegeneration

    PubMed Central

    Golub, Victoria M.; Brewer, Jonathan; Wu, Xin; Kuruba, Ramkumar; Short, Jenessa; Manchi, Maunica; Swonke, Megan; Younus, Iyan; Reddy, Doodipala Samba

    2015-01-01

    Neuronal injury and neurodegeneration are the hallmark pathologies in a variety of neurological conditions such as epilepsy, stroke, traumatic brain injury, Parkinson’s disease and Alzheimer’s disease. Quantification of absolute neuron and interneuron counts in various brain regions is essential to understand the impact of neurological insults or neurodegenerative disease progression in animal models. However, conventional qualitative scoring-based protocols are superficial and less reliable for use in studies of neuroprotection evaluations. Here, we describe an optimized stereology protocol for quantification of neuronal injury and neurodegeneration by unbiased counting of neurons and interneurons. Every 20th section in each series of 20 sections was processed for NeuN(+) total neuron and parvalbumin(+) interneuron immunostaining. The sections that contain the hippocampus were then delineated into five reliably predefined subregions. Each region was separately analyzed with a microscope driven by the stereology software. Regional tissue volume was determined by using the Cavalieri estimator, as well as cell density and cell number were determined by using the optical disector and optical fractionator. This protocol yielded an estimate of 1.5 million total neurons and 0.05 million PV(+) interneurons within the rat hippocampus. The protocol has greater predictive power for absolute counts as it is based on 3D features rather than 2D images. The total neuron counts were consistent with literature values from sophisticated systems, which are more expensive than our stereology system. This unbiased stereology protocol allows for sensitive, medium-throughput counting of total neurons in any brain region, and thus provides a quantitative tool for studies of neuronal injury and neurodegeneration in a variety of acute brain injury and chronic neurological models. PMID:26582988

  4. Quantification of HEV RNA by Droplet Digital PCR.

    PubMed

    Nicot, Florence; Cazabat, Michelle; Lhomme, Sébastien; Marion, Olivier; Sauné, Karine; Chiabrando, Julie; Dubois, Martine; Kamar, Nassim; Abravanel, Florence; Izopet, Jacques

    2016-01-01

    The sensitivity of real-time PCR for hepatitis E virus (HEV) RNA quantification differs greatly among techniques. Standardized tools that measure the real quantity of virus are needed. We assessed the performance of a reverse transcription droplet digital PCR (RT-ddPCR) assay that gives absolute quantities of HEV RNA. Analytical and clinical validation was done on HEV genotypes 1, 3 and 4, and was based on open reading frame (ORF)3 amplification. The within-run and between-run reproducibilities were very good, the analytical sensitivity was 80 HEV RNA international units (IU)/mL and linearities of HEV genotype 1, 3 and 4 were very similar. Clinical validation based on 45 samples of genotype 1, 3 or 4 gave results that correlated well with a validated reverse transcription quantitative PCR (RT-qPCR) assay (Spearman rs = 0.89, p < 0.0001). The RT-ddPCR assay is a sensitive method and could be a promising tool for standardizing HEV RNA quantification in various sample types. PMID:27548205

  5. Quantification of HEV RNA by Droplet Digital PCR

    PubMed Central

    Nicot, Florence; Cazabat, Michelle; Lhomme, Sébastien; Marion, Olivier; Sauné, Karine; Chiabrando, Julie; Dubois, Martine; Kamar, Nassim; Abravanel, Florence; Izopet, Jacques

    2016-01-01

    The sensitivity of real-time PCR for hepatitis E virus (HEV) RNA quantification differs greatly among techniques. Standardized tools that measure the real quantity of virus are needed. We assessed the performance of a reverse transcription droplet digital PCR (RT-ddPCR) assay that gives absolute quantities of HEV RNA. Analytical and clinical validation was done on HEV genotypes 1, 3 and 4, and was based on open reading frame (ORF)3 amplification. The within-run and between-run reproducibilities were very good, the analytical sensitivity was 80 HEV RNA international units (IU)/mL and linearities of HEV genotype 1, 3 and 4 were very similar. Clinical validation based on 45 samples of genotype 1, 3 or 4 gave results that correlated well with a validated reverse transcription quantitative PCR (RT-qPCR) assay (Spearman rs = 0.89, p < 0.0001). The RT-ddPCR assay is a sensitive method and could be a promising tool for standardizing HEV RNA quantification in various sample types. PMID:27548205

  6. Digital Quantification of Proteins and mRNA in Single Mammalian Cells.

    PubMed

    Albayrak, Cem; Jordi, Christian A; Zechner, Christoph; Lin, Jing; Bichsel, Colette A; Khammash, Mustafa; Tay, Savaş

    2016-03-17

    Absolute quantification of macromolecules in single cells is critical for understanding and modeling biological systems that feature cellular heterogeneity. Here we show extremely sensitive and absolute quantification of both proteins and mRNA in single mammalian cells by a very practical workflow that combines proximity ligation assay (PLA) and digital PCR. This digital PLA method has femtomolar sensitivity, which enables the quantification of very small protein concentration changes over its entire 3-log dynamic range, a quality necessary for accounting for single-cell heterogeneity. We counted both endogenous (CD147) and exogenously expressed (GFP-p65) proteins from hundreds of single cells and determined the correlation between CD147 mRNA and the protein it encodes. Using our data, a stochastic two-state model of the central dogma was constructed and verified using joint mRNA/protein distributions, allowing us to estimate transcription burst sizes and extrinsic noise strength and calculate the transcription and translation rate constants in single mammalian cells. PMID:26990994

  7. Mini-implants and miniplates generate sub-absolute and absolute anchorage

    PubMed Central

    Consolaro, Alberto

    2014-01-01

    The functional demand imposed on bone promotes changes in the spatial properties of osteocytes as well as in their extensions uniformly distributed throughout the mineralized surface. Once spatial deformation is established, osteocytes create the need for structural adaptations that result in bone formation and resorption that happen to meet the functional demands. The endosteum and the periosteum are the effectors responsible for stimulating adaptive osteocytes in the inner and outer surfaces.Changes in shape, volume and position of the jaws as a result of skeletal correction of the maxilla and mandible require anchorage to allow bone remodeling to redefine morphology, esthetics and function as a result of spatial deformation conducted by orthodontic appliances. Examining the degree of changes in shape, volume and structural relationship of areas where mini-implants and miniplates are placed allows us to classify mini-implants as devices of subabsolute anchorage and miniplates as devices of absolute anchorage. PMID:25162561

  8. Absolute brightness temperature measurements at 2.1-mm wavelength

    NASA Technical Reports Server (NTRS)

    Ulich, B. L.

    1974-01-01

    Absolute measurements of the brightness temperatures of the Sun, new Moon, Venus, Mars, Jupiter, Saturn, and Uranus, and of the flux density of DR21 at 2.1-mm wavelength are reported. Relative measurements at 3.5-mm wavelength are also preented which resolve the absolute calibration discrepancy between The University of Texas 16-ft radio telescope and the Aerospace Corporation 15-ft antenna. The use of the bright planets and DR21 as absolute calibration sources at millimeter wavelengths is discussed in the light of recent observations.

  9. Absolute Antenna Calibration at the US National Geodetic Survey

    NASA Astrophysics Data System (ADS)

    Mader, G. L.; Bilich, A. L.

    2012-12-01

    Geodetic GNSS applications routinely demand millimeter precision and extremely high levels of accuracy. To achieve these accuracies, measurement and instrument biases at the centimeter to millimeter level must be understood. One of these biases is the antenna phase center, the apparent point of signal reception for a GNSS antenna. It has been well established that phase center patterns differ between antenna models and manufacturers; additional research suggests that the addition of a radome or the choice of antenna mount can significantly alter those a priori phase center patterns. For the more demanding GNSS positioning applications and especially in cases of mixed-antenna networks, it is all the more important to know antenna phase center variations as a function of both elevation and azimuth in the antenna reference frame and incorporate these models into analysis software. Determination of antenna phase center behavior is known as "antenna calibration". Since 1994, NGS has computed relative antenna calibrations for more than 350 antennas. In recent years, the geodetic community has moved to absolute calibrations - the IGS adopted absolute antenna phase center calibrations in 2006 for use in their orbit and clock products, and NGS's CORS group began using absolute antenna calibration upon the release of the new CORS coordinates in IGS08 epoch 2005.00 and NAD 83(2011,MA11,PA11) epoch 2010.00. Although NGS relative calibrations can be and have been converted to absolute, it is considered best practice to independently measure phase center characteristics in an absolute sense. Consequently, NGS has developed and operates an absolute calibration system. These absolute antenna calibrations accommodate the demand for greater accuracy and for 2-dimensional (elevation and azimuth) parameterization. NGS will continue to provide calibration values via the NGS web site www.ngs.noaa.gov/ANTCAL, and will publish calibrations in the ANTEX format as well as the legacy ANTINFO

  10. Direct comparisons between absolute and relative geomagnetic paleointensities: Absolute calibration of a relative paleointensity stack

    NASA Astrophysics Data System (ADS)

    Mochizuki, N.; Yamamoto, Y.; Hatakeyama, T.; Shibuya, H.

    2013-12-01

    Absolute geomagnetic paleointensities (APIs) have been estimated from igneous rocks, while relative paleomagnetic intensities (RPIs) have been reported from sediment cores. These two datasets have been treated separately, as correlations between APIs and RPIs are difficult on account of age uncertainties. High-resolution RPI stacks have been constructed from globally distributed sediment cores with high sedimentation rates. Previous studies often assumed that the RPI stacks have a linear relationship with geomagnetic axial dipole moments, and calibrated the RPI values to API values. However, the assumption of a linear relationship between APIs and RPIs has not been evaluated. Also, a quantitative calibration method for the RPI is lacking. We present a procedure for directly comparing API and RPI stacks, thus allowing reliable calibrations of RPIs. Direct comparisons between APIs and RPIs were conducted with virtually no associated age errors using both tephrochronologic correlations and RPI minima. Using the stratigraphic positions of tephra layers in oxygen isotope stratigraphic records, we directly compared the RPIs and APIs reported from welded tuffs contemporaneously extruded with the tephra layers. In addition, RPI minima during geomagnetic reversals and excursions were compared with APIs corresponding to the reversals and excursions. The comparison of APIs and RPIs at these exact points allowed a reliable calibration of the RPI values. We applied this direct comparison procedure to the global RPI stack PISO-1500. For six independent calibration points, virtual axial dipole moments (VADMs) from the corresponding APIs and RPIs of the PISO-1500 stack showed a near-linear relationship. On the basis of the linear relationship, RPIs of the stack were successfully calibrated to the VADMs. The direct comparison procedure provides an absolute calibration method that will contribute to the recovery of temporal variations and distributions of geomagnetic axial dipole

  11. The absolute CBF response to activation is preserved during elevated perfusion: Implications for neurovascular coupling measures

    PubMed Central

    Whittaker, Joseph R.; Driver, Ian D.; Bright, Molly G.; Murphy, Kevin

    2016-01-01

    Functional magnetic resonance imaging (fMRI) techniques in which the blood oxygenation level dependent (BOLD) and cerebral blood flow (CBF) response to a neural stimulus are measured, can be used to estimate the fractional increase in the cerebral metabolic rate of oxygen consumption (CMRO2) that accompanies evoked neural activity. A measure of neurovascular coupling is obtained from the ratio of fractional CBF and CMRO2 responses, defined as n, with the implicit assumption that relative rather than absolute changes in CBF and CMRO2 adequately characterise the flow-metabolism response to neural activity. The coupling parameter n is important in terms of its effect on the BOLD response, and as potential insight into the flow-metabolism relationship in both normal and pathological brain function. In 10 healthy human subjects, BOLD and CBF responses were measured to test the effect of baseline perfusion (modulated by a hypercapnia challenge) on the coupling parameter n during graded visual stimulation. A dual-echo pulsed arterial spin labelling (PASL) sequence provided absolute quantification of CBF in baseline and active states as well as relative BOLD signal changes, which were used to estimate CMRO2 responses to the graded visual stimulus. The absolute CBF response to the visual stimuli were constant across different baseline CBF levels, meaning the fractional CBF responses were reduced at the hyperperfused baseline state. For the graded visual stimuli, values of n were significantly reduced during hypercapnia induced hyperperfusion. Assuming the evoked neural responses to the visual stimuli are the same for both baseline CBF states, this result has implications for fMRI studies that aim to measure neurovascular coupling using relative changes in CBF. The coupling parameter n is sensitive to baseline CBF, which would confound its interpretation in fMRI studies where there may be significant differences in baseline perfusion between groups. The absolute change in

  12. Proteomics technologies for the global identification and quantification of proteins.

    PubMed

    Brewis, Ian A; Brennan, P

    2010-01-01

    This review provides an introduction for the nonspecialist to proteomics and in particular the major approaches available for global protein identification and quantification. Proteomics technologies offer considerable opportunities for improved biological understanding and biomarker discovery. The central platform for proteomics is tandem mass spectrometry (MS) but a number of other technologies, resources, and expertise are absolutely required to perform meaningful experiments. These include protein separation science (and protein biochemistry in general), genomics, and bioinformatics. There are a range of workflows available for protein (or peptide) separation prior to tandem MS and subsequent bioinformatics analysis to achieve protein identifications. The predominant approaches are 2D electrophoresis (2DE) and subsequent MS, liquid chromatography-MS (LC-MS), and GeLC-MS. Beyond protein identification, there are a number of well-established options available for protein quantification. Difference gel electrophoresis (DIGE) following 2DE is one option but MS-based methods (most commonly iTRAQ-Isobaric Tags for Relative and Absolute Quantification or SILAC-Stable Isotope Labeling by Amino Acids) are now the preferred options. Sample preparation is critical to performing good experiments and subcellular fractionation can additionally provide protein localization information compared with whole cell lysates. Differential detergent solubilization is another valid option. With biological fluids, it is possible to remove the most abundant proteins by immunodepletion. Sample enrichment is also used extensively in certain analyses and most commonly in phosphoproteomics with the initial purification of phosphopeptides. Proteomics produces considerable datasets and resources to facilitate the necessary extended analysis of this data are improving all the time. Beyond the opportunities afforded by proteomics there are definite challenges to achieving full proteomic coverage

  13. Absolute calibration of sniffer probes on Wendelstein 7-X.

    PubMed

    Moseev, D; Laqua, H P; Marsen, S; Stange, T; Braune, H; Erckmann, V; Gellert, F; Oosterbeek, J W

    2016-08-01

    Here we report the first measurements of the power levels of stray radiation in the vacuum vessel of Wendelstein 7-X using absolutely calibrated sniffer probes. The absolute calibration is achieved by using calibrated sources of stray radiation and the implicit measurement of the quality factor of the Wendelstein 7-X empty vacuum vessel. Normalized absolute calibration coefficients agree with the cross-calibration coefficients that are obtained by the direct measurements, indicating that the measured absolute calibration coefficients and stray radiation levels in the vessel are valid. Close to the launcher, the stray radiation in the empty vessel reaches power levels up to 340 kW/m(2) per MW injected beam power. Furthest away from the launcher, i.e., half a toroidal turn, still 90 kW/m(2) per MW injected beam power is measured. PMID:27587121

  14. Absolute Value Boundedness, Operator Decomposition, and Stochastic Media and Equations

    NASA Technical Reports Server (NTRS)

    Adomian, G.; Miao, C. C.

    1973-01-01

    The research accomplished during this period is reported. Published abstracts and technical reports are listed. Articles presented include: boundedness of absolute values of generalized Fourier coefficients, propagation in stochastic media, and stationary conditions for stochastic differential equations.

  15. The conditions of absolute summability of multiple trigonometric series

    NASA Astrophysics Data System (ADS)

    Bitimkhan, Samat; Akishev, Gabdolla

    2015-09-01

    In this work necessary and sufficient conditions of absolute summability of multiple trigonometric Fourier series of functions from anisotropic spaces of Lebesque are found in terms of its best approximation, the module of smoothness and the mixed smoothness module.

  16. Absolute calibration of sniffer probes on Wendelstein 7-X

    NASA Astrophysics Data System (ADS)

    Moseev, D.; Laqua, H. P.; Marsen, S.; Stange, T.; Braune, H.; Erckmann, V.; Gellert, F.; Oosterbeek, J. W.

    2016-08-01

    Here we report the first measurements of the power levels of stray radiation in the vacuum vessel of Wendelstein 7-X using absolutely calibrated sniffer probes. The absolute calibration is achieved by using calibrated sources of stray radiation and the implicit measurement of the quality factor of the Wendelstein 7-X empty vacuum vessel. Normalized absolute calibration coefficients agree with the cross-calibration coefficients that are obtained by the direct measurements, indicating that the measured absolute calibration coefficients and stray radiation levels in the vessel are valid. Close to the launcher, the stray radiation in the empty vessel reaches power levels up to 340 kW/m2 per MW injected beam power. Furthest away from the launcher, i.e., half a toroidal turn, still 90 kW/m2 per MW injected beam power is measured.

  17. Absolute and Convective Instability of a Liquid Jet in Microgravity

    NASA Technical Reports Server (NTRS)

    Lin, Sung P.; Vihinen, I.; Honohan, A.; Hudman, Michael D.

    1996-01-01

    The transition from convective to absolute instability is observed in the 2.2 second drop tower of the NASA Lewis Research Center. In convective instability the disturbance grows spatially as it is convected downstream. In absolute instability the disturbance propagates both downstream and upstream, and manifests itself as an expanding sphere. The transition Reynolds numbers are determined for two different Weber numbers by use of Glycerin and a Silicone oil. Preliminary comparisons with theory are made.

  18. Absolute biphoton meter of the quantum efficiency of photomultipliers

    NASA Astrophysics Data System (ADS)

    Ginzburg, V. M.; Keratishvili, N. G.; Korzhenevich, E. L.; Lunev, G. V.; Sapritskii, V. I.

    1992-07-01

    An biphoton absolute meter of photomultiplier quantum efficiency is presented which is based on spontaneous parametric down-conversion. Calculation and experiment results were obtained which made it possible to choose the parameters of the setup that guarantee a linear dependence of wavelength on the Z coordinate (along the axicon axis). Results of a series of absolute measurements of the quantum efficiency of a specific photomultiplier (FEU-136) are presented.

  19. Absolute/convective instability of planar viscoelastic jets

    NASA Astrophysics Data System (ADS)

    Ray, Prasun K.; Zaki, Tamer A.

    2015-01-01

    Spatiotemporal linear stability analysis is used to investigate the onset of local absolute instability in planar viscoelastic jets. The influence of viscoelasticity in dilute polymer solutions is modeled with the FENE-P constitutive equation which requires the specification of a non-dimensional polymer relaxation time (the Weissenberg number, We), the maximum polymer extensibility, L, and the ratio of solvent and solution viscosities, β. A two-parameter family of velocity profiles is used as the base state with the parameter, S, controlling the amount of co- or counter-flow while N-1 sets the thickness of the jet shear layer. We examine how the variation of these fluid and flow parameters affects the minimum value of S at which the flow becomes locally absolutely unstable. Initially setting the Reynolds number to Re = 500, we find that the first varicose jet-column mode dictates the presence of absolute instability, and increasing the Weissenberg number produces important changes in the nature of the instability. The region of absolute instability shifts towards thin shear layers, and the amount of back-flow needed for absolute instability decreases (i.e., the influence of viscoelasticity is destabilizing). Additionally, when We is sufficiently large and N-1 is sufficiently small, single-stream jets become absolutely unstable. Numerical experiments with approximate equations show that both the polymer and solvent contributions to the stress become destabilizing when the scaled shear rate, η = /W e dU¯1/dx 2L ( /d U ¯ 1 d x 2 is the base-state velocity gradient), is sufficiently large. These qualitative trends are largely unchanged when the Reynolds number is reduced; however, the relative importance of the destabilizing stresses increases tangibly. Consequently, absolute instability is substantially enhanced, and single-stream jets become absolutely unstable over a sizable portion of the parameter space.

  20. Heat capacity and absolute entropy of iron phosphides

    SciTech Connect

    Dobrokhotova, Z.V.; Zaitsev, A.I.; Litvina, A.D.

    1994-09-01

    There is little or no data on the thermodynamic properties of iron phosphides despite their importance for several areas of science and technology. The information available is of a qualitative character and is based on assessments of the heat capacity and absolute entropy. In the present work, we measured the heat capacity over the temperature range of 113-873 K using a differential scanning calorimeter (DSC) and calculated the absolute entropy.

  1. Absolute mRNA quantification of Pseudomonas fluorescens Pf-5 by qRT-PCR using universal RNA controls

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Real time quantitative RT-PCR is considered as standard for gene expression and mRNA estimate. As a calibration standard, a conserved control gene such as housekeeping genes is commonly used for data normalization and analysis. A significant problem has been observed with increased applications; h...

  2. Droplet Digital PCR for Absolute Quantification of EML4-ALK Gene Rearrangement in Lung Adenocarcinoma.

    PubMed

    Wang, Qiushi; Yang, Xin; He, Yong; Ma, Qiang; Lin, Li; Fu, Ping; Xiao, Hualiang

    2015-09-01

    Crizotinib treatment significantly prolongs progression-free survival, increases response rates, and improves the quality of life in patients with ALK-positive non-small-cell lung cancer. Droplet Digital PCR (ddPCR), a recently developed technique with high sensitivity and specificity, was used in this study to evaluate the association between the abundance of ALK rearrangements and crizotinib effectiveness. FFPE tissues were obtained from 103 consecutive patients with lung adenocarcinoma. Fluorescent in situ hybridization (FISH) and ddPCR were performed. The results revealed that 14 (13.6%) of the 103 patients were positive by dual-color, break-apart FISH. Three variants (1, 2, and 3) of the EML4-ALK gene rearrangements were detected. Thirteen of 14 ALK-positive cases identified by FISH were confirmed by ddPCR (four with variant 1, two with variant 2, and seven with variant 3). The case missed by ddPCR was identified as KIF5B-ALK gene rearrangement by PCR-based direct sequencing. Sixteen patients were detected with low copy numbers of EML4-ALK gene rearrangement, which failed to meet the positive cutoff point of FISH. Two of them responded well to crizotinib after unsuccessful chemotherapy. Our study indicates that ddPCR can be used as a molecular analytical tool to accurately measure the EML4-ALK rearrangement copy numbers in FFPE samples of lung adenocarcinoma patients. PMID:26142544

  3. Quantification of absolute myocardial perfusion at rest and during exercise with positron emission tomography after human cardiac transplantation.

    PubMed

    Krivokapich, J; Stevenson, L W; Kobashigawa, J; Huang, S C; Schelbert, H R

    1991-08-01

    The maximal exercise capacity of cardiac transplant recipients is reduced compared with that of normal subjects. To determine if this reduced exercise capacity is related to inadequate myocardial perfusion during exercise, myocardial perfusion was measured noninvasively with use of positron emission tomography and nitrogen (N)-13 ammonia. Twelve transplant recipients with no angiographic evidence of accelerated coronary atherosclerosis were studied. Serial N-13 ammonia imaging was performed at rest and during supine bicycle exercise. The results were compared with those from 10 normal volunteers with a low probability of having cardiac disease. A two-compartment kinetic model for estimating myocardial perfusion was applied to the data. Transplant recipients achieved a significant lower exercise work load than did the volunteers (42 +/- 16 vs. 128 +/- 22 W), but a higher venous lactate concentration (31.3 +/- 14.9 vs. 13.7 +/- 4.1 mg/100 ml). Despite the difference in exercise work load, there was no significant difference in the cardiac work achieved by transplant recipients and normal subjects as evidenced by similar rate-pressure products of 24,000 +/- 3,400 versus 21,300 +/- 2,800 betas/min per mm Hg, respectively. In addition, myocardial blood flow during exercise was not significantly different between the two groups (1.70 +/- 0.60 vs. 1.56 +/- 0.71 ml/min per g, respectively). This study demonstrates that the myocardial flow response to the physiologic stress of exercise is appropriate in transplant recipients and does not appear to explain the decreased exercise capacity in these patients. PMID:1856420

  4. Quantification of absolute myocardial perfusion at rest and during exercise with positron emission tomography after human cardiac transplantation

    SciTech Connect

    Krivokapich, J.; Stevenson, L.W.; Kobashigawa, J.; Huang, S.C.; Schelbert, H.R. )

    1991-08-01

    The maximal exercise capacity of cardiac transplant recipients is reduced compared with that of normal subjects. To determine if this reduced exercise capacity is related to inadequate myocardial perfusion during exercise, myocardial perfusion was measured noninvasively with use of positron emission tomography and nitrogen (N)-13 ammonia. Twelve transplant recipients with no angiographic evidence of accelerated coronary atherosclerosis were studied. Serial N-13 ammonia imaging was performed at rest and during supine bicycle exercise. The results were compared with those from 10 normal volunteers with a low probability of having cardiac disease. A two-compartment kinetic model for estimating myocardial perfusion was applied to the data. Transplant recipients achieved a significant lower exercise work load than did the volunteers (42 {plus minus} 16 vs. 128 {plus minus} 22 W), but a higher venous lactate concentration (31.3 {plus minus} 14.9 vs. 13.7 {plus minus} 4.1 mg/100 ml). Despite the difference in exercise work load, there was no significant difference in the cardiac work achieved by transplant recipients and normal subjects as evidenced by similar rate-pressure products of 24,000 {plus minus} 3,400 versus 21,300 {plus minus} 2,800 betas/min per mm Hg, respectively. In addition, myocardial blood flow during exercise was not significantly different between the two groups (1.70 {plus minus} 0.60 vs. 1.56 {plus minus} 0.71 ml/min per g, respectively). This study demonstrates that the myocardial flow response to the physiologic stress of exercise is appropriate in transplant recipients and does not appear to explain the decreased exercise capacity in these patients.

  5. Absolute quantification of the host-to-parasite DNA ratio in theileria parva-infected lymphocyte cell lines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Theileria parva is a tick-transmitted intracellular apicomplexan pathogen of cattle in sub-Saharan Africa that causes East Coast fever (ECF). ECF is an acute fatal disease that kills over one million cattle annually, imposing a tremendous burden on African small-holder cattle farmers. The pathology ...

  6. Global absolut gravity reference system as replacement of IGSN 71

    NASA Astrophysics Data System (ADS)

    Wilmes, Herbert; Wziontek, Hartmut; Falk, Reinhard

    2015-04-01

    The determination of precise gravity field parameters is of great importance in a period in which earth sciences are achieving the necessary accuracy to monitor and document global change processes. This is the reason why experts from geodesy and metrology joined in a successful cooperation to make absolute gravity observations traceable to SI quantities, to improve the metrological kilogram definition and to monitor mass movements and smallest height changes for geodetic and geophysical applications. The international gravity datum is still defined by the International Gravity Standardization Net adopted in 1971 (IGSN 71). The network is based upon pendulum and spring gravimeter observations taken in the 1950s and 60s supported by the early free fall absolute gravimeters. Its gravity values agreed in every case to better than 0.1 mGal. Today, more than 100 absolute gravimeters are in use worldwide. The series of repeated international comparisons confirms the traceability of absolute gravity measurements to SI quantities and confirm the degree of equivalence of the gravimeters in the order of a few µGal. For applications in geosciences where e.g. gravity changes over time need to be analyzed, the temporal stability of an absolute gravimeter is most important. Therefore, the proposition is made to replace the IGSN 71 by an up-to-date gravity reference system which is based upon repeated absolute gravimeter comparisons and a global network of well controlled gravity reference stations.

  7. Revisiting absolute and relative judgments in the WITNESS model.

    PubMed

    Fife, Dustin; Perry, Colton; Gronlund, Scott D

    2014-04-01

    The WITNESS model (Clark in Applied Cognitive Psychology 17:629-654, 2003) provides a theoretical framework with which to investigate the factors that contribute to eyewitness identification decisions. One key factor involves the contributions of absolute versus relative judgments. An absolute contribution is determined by the degree of match between an individual lineup member and memory for the perpetrator; a relative contribution involves the degree to which the best-matching lineup member is a better match to memory than the remaining lineup members. In WITNESS, the proportional contributions of relative versus absolute judgments are governed by the values of the decision weight parameters. We conducted an exploration of the WITNESS model's parameter space to determine the identifiability of these relative/absolute decision weight parameters, and compared the results to a restricted version of the model that does not vary the decision weight parameters. This exploration revealed that the decision weights in WITNESS are difficult to identify: Data often can be fit equally well by setting the decision weights to nearly any value and compensating with a criterion adjustment. Clark, Erickson, and Breneman (Law and Human Behavior 35:364-380, 2011) claimed to demonstrate a theoretical basis for the superiority of lineup decisions that are based on absolute contributions, but the relationship between the decision weights and the criterion weakens this claim. These findings necessitate reconsidering the role of the relative/absolute judgment distinction in eyewitness decision making. PMID:23943556

  8. Automated pericardial fat quantification from coronary magnetic resonance angiography: feasibility study.

    PubMed

    Ding, Xiaowei; Pang, Jianing; Ren, Zhou; Diaz-Zamudio, Mariana; Jiang, Chenfanfu; Fan, Zhaoyang; Berman, Daniel S; Li, Debiao; Terzopoulos, Demetri; Slomka, Piotr J; Dey, Damini

    2016-01-01

    Pericardial fat volume (PFV) is emerging as an important parameter for cardiovascular risk stratification. We propose a hybrid approach for automated PFV quantification from water/fat-resolved whole-heart noncontrast coronary magnetic resonance angiography (MRA). Ten coronary MRA datasets were acquired. Image reconstruction and phase-based water-fat separation were conducted offline. Our proposed algorithm first roughly segments the heart region on the original image using a simplified atlas-based segmentation with four cases in the atlas. To get exact boundaries of pericardial fat, a three-dimensional graph-based segmentation is used to generate fat and nonfat components on the fat-only image. The algorithm then selects the components that represent pericardial fat. We validated the quantification results on the remaining six subjects and compared them with manual quantifications by an expert reader. The PFV quantified by our algorithm was [Formula: see text], compared to [Formula: see text] by the expert reader, which were not significantly different ([Formula: see text]) and showed excellent correlation ([Formula: see text],[Formula: see text]). The mean absolute difference in PFV between the algorithm and the expert reader was [Formula: see text]. The mean value of the paired differences was [Formula: see text] (95% confidence interval: [Formula: see text] to 6.21). The mean Dice coefficient of pericardial fat voxels was [Formula: see text]. Our approach may potentially be applied in a clinical setting, allowing for accurate magnetic resonance imaging (MRI)-based PFV quantification without tedious manual tracing. PMID:26958578

  9. Towards Quantification of Functional Breast Images Using Dedicated SPECT With Non-Traditional Acquisition Trajectories

    PubMed Central

    Perez, Kristy L.; Cutler, Spencer J.; Madhav, Priti; Tornai, Martin P.

    2012-01-01

    Quantification of radiotracer uptake in breast lesions can provide valuable information to physicians in deciding patient care or determining treatment efficacy. Physical processes (e.g., scatter, attenuation), detector/collimator characteristics, sampling and acquisition trajectories, and reconstruction artifacts contribute to an incorrect measurement of absolute tracer activity and distribution. For these experiments, a cylinder with three syringes of varying radioactivity concentration, and a fillable 800 mL breast with two lesion phantoms containing aqueous 99mTc pertechnetate were imaged using the SPECT sub-system of the dual-modality SPECT-CT dedicated breast scanner. SPECT images were collected using a compact CZT camera with various 3D acquisitions including vertical axis of rotation, 30° tilted, and complex sinusoidal trajectories. Different energy windows around the photopeak were quantitatively compared, along with appropriate scatter energy windows, to determine the best quantification accuracy after attenuation and dual-window scatter correction. Measured activity concentrations in the reconstructed images for syringes with greater than 10 µCi /mL corresponded to within 10% of the actual dose calibrator measured activity concentration for ±4% and ±8% photopeak energy windows. The same energy windows yielded lesion quantification results within 10% in the breast phantom as well. Results for the more complete complex sinsusoidal trajectory are similar to the simple vertical axis acquisition, and additionally allows both anterior chest wall sampling, no image distortion, and reasonably accurate quantification. PMID:22262925

  10. Towards Quantification of Functional Breast Images Using Dedicated SPECT With Non-Traditional Acquisition Trajectories.

    PubMed

    Perez, Kristy L; Cutler, Spencer J; Madhav, Priti; Tornai, Martin P

    2011-10-01

    Quantification of radiotracer uptake in breast lesions can provide valuable information to physicians in deciding patient care or determining treatment efficacy. Physical processes (e.g., scatter, attenuation), detector/collimator characteristics, sampling and acquisition trajectories, and reconstruction artifacts contribute to an incorrect measurement of absolute tracer activity and distribution. For these experiments, a cylinder with three syringes of varying radioactivity concentration, and a fillable 800 mL breast with two lesion phantoms containing aqueous (99m)Tc pertechnetate were imaged using the SPECT sub-system of the dual-modality SPECT-CT dedicated breast scanner. SPECT images were collected using a compact CZT camera with various 3D acquisitions including vertical axis of rotation, 30° tilted, and complex sinusoidal trajectories. Different energy windows around the photopeak were quantitatively compared, along with appropriate scatter energy windows, to determine the best quantification accuracy after attenuation and dual-window scatter correction. Measured activity concentrations in the reconstructed images for syringes with greater than 10 µCi /mL corresponded to within 10% of the actual dose calibrator measured activity concentration for ±4% and ±8% photopeak energy windows. The same energy windows yielded lesion quantification results within 10% in the breast phantom as well. Results for the more complete complex sinsusoidal trajectory are similar to the simple vertical axis acquisition, and additionally allows both anterior chest wall sampling, no image distortion, and reasonably accurate quantification. PMID:22262925

  11. Circulating MicroRNA Quantification Using DNA-binding Dye Chemistry and Droplet Digital PCR.

    PubMed

    Ferracin, Manuela; Salamon, Irene; Lupini, Laura; Miotto, Elena; Sabbioni, Silvia; Negrini, Massimo

    2016-01-01

    Circulating (of cell-free) microRNAs (miRNAs) are released from cells into the blood stream. The amount of specific microRNAs in the circulation has been linked to a disease state and has the potential to be used as disease biomarker. A sensitive and accurate method for circulating microRNA quantification using a dye-based chemistry and droplet digital PCR technology has been recently developed. Specifically, using Locked Nucleic Acid (LNA)-based miRNA-specific primers with a green fluorescent DNA-binding dye in a compatible droplet digital PCR system it is possible to obtain the absolute quantification of specific miRNAs. Here, we describe how performing this technique to assess miRNA amount in biological fluids, such as plasma and serum, is both feasible and effective. PMID:27403944

  12. An Absolute Index (Ab-index) to Measure a Researcher’s Useful Contributions and Productivity

    PubMed Central

    Biswal, Akshaya Kumar

    2013-01-01

    Bibliographic analysis has been a very powerful tool in evaluating the effective contributions of a researcher and determining his/her future research potential. The lack of an absolute quantification of the author’s scientific contributions by the existing measurement system hampers the decision-making process. In this paper, a new metric system, Absolute index (Ab-index), has been proposed that allows a more objective comparison of the contributions of a researcher. The Ab-index takes into account the impact of research findings while keeping in mind the physical and intellectual contributions of the author(s) in accomplishing the task. The Ab-index and h-index were calculated for 10 highly cited geneticists and molecular biologist and 10 young researchers of biological sciences and compared for their relationship to the researchers input as a primary author. This is the first report of a measuring method clarifying the contributions of the first author, corresponding author, and other co-authors and the sharing of credit in a logical ratio. A java application has been developed for the easy calculation of the Ab-index. It can be used as a yardstick for comparing the credibility of different scientists competing for the same resources while the Productivity index (Pr-index), which is the rate of change in the Ab-index per year, can be used for comparing scientists of different age groups. The Ab-index has clear advantage over other popular metric systems in comparing scientific credibility of young scientists. The sum of the Ab-indices earned by individual researchers of an institute per year can be referred to as Pr-index of the institute. PMID:24391941

  13. Statistical Approach to Protein Quantification*

    PubMed Central

    Gerster, Sarah; Kwon, Taejoon; Ludwig, Christina; Matondo, Mariette; Vogel, Christine; Marcotte, Edward M.; Aebersold, Ruedi; Bühlmann, Peter

    2014-01-01

    A major goal in proteomics is the comprehensive and accurate description of a proteome. This task includes not only the identification of proteins in a sample, but also the accurate quantification of their abundance. Although mass spectrometry typically provides information on peptide identity and abundance in a sample, it does not directly measure the concentration of the corresponding proteins. Specifically, most mass-spectrometry-based approaches (e.g. shotgun proteomics or selected reaction monitoring) allow one to quantify peptides using chromatographic peak intensities or spectral counting information. Ultimately, based on these measurements, one wants to infer the concentrations of the corresponding proteins. Inferring properties of the proteins based on experimental peptide evidence is often a complex problem because of the ambiguity of peptide assignments and different chemical properties of the peptides that affect the observed concentrations. We present SCAMPI, a novel generic and statistically sound framework for computing protein abundance scores based on quantified peptides. In contrast to most previous approaches, our model explicitly includes information from shared peptides to improve protein quantitation, especially in eukaryotes with many homologous sequences. The model accounts for uncertainty in the input data, leading to statistical prediction intervals for the protein scores. Furthermore, peptides with extreme abundances can be reassessed and classified as either regular data points or actual outliers. We used the proposed model with several datasets and compared its performance to that of other, previously used approaches for protein quantification in bottom-up mass spectrometry. PMID:24255132

  14. Quantification of wastewater sludge dewatering.

    PubMed

    Skinner, Samuel J; Studer, Lindsay J; Dixon, David R; Hillis, Peter; Rees, Catherine A; Wall, Rachael C; Cavalida, Raul G; Usher, Shane P; Stickland, Anthony D; Scales, Peter J

    2015-10-01

    Quantification and comparison of the dewatering characteristics of fifteen sewage sludges from a range of digestion scenarios are described. The method proposed uses laboratory dewatering measurements and integrity analysis of the extracted material properties. These properties were used as inputs into a model of filtration, the output of which provides the dewatering comparison. This method is shown to be necessary for quantification and comparison of dewaterability as the permeability and compressibility of the sludges varies by up to ten orders of magnitude in the range of solids concentration of interest to industry. This causes a high sensitivity of the dewaterability comparison to the starting concentration of laboratory tests, thus simple dewaterability comparison based on parameters such as the specific resistance to filtration is difficult. The new approach is demonstrated to be robust relative to traditional methods such as specific resistance to filtration analysis and has an in-built integrity check. Comparison of the quantified dewaterability of the fifteen sludges to the relative volatile solids content showed a very strong correlation in the volatile solids range from 40 to 80%. The data indicate that the volatile solids parameter is a strong indicator of the dewatering behaviour of sewage sludges. PMID:26003332

  15. Hotspot quantification of myocardial focal tracer uptake from molecular targeted SPECT/CT images: experimental validation

    NASA Astrophysics Data System (ADS)

    Liu, Yi-Hwa; Sahul, Zakir; Weyman, Christopher A.; Ryder, William J.; Dione, Donald P.; Dobrucki, Lawrence W.; Mekkaoui, Choukri; Brennan, Matthew P.; Hu, Xiaoyue; Hawley, Christi; Sinusas, Albert J.

    2008-03-01

    We have developed a new single photon emission computerized tomography (SPECT) hotspot quantification method incorporating extra cardiac activity correction and hotspot normal limit estimation. The method was validated for estimation accuracy of myocardial tracer focal uptake in a chronic canine model of myocardial infarction (MI). Dogs (n = 4) at 2 weeks post MI were injected with Tl-201 and a Tc-99m-labeled hotspot tracer targeted at matrix metalloproteinases (MMPs). An external point source filled with Tc-99m was used for a reference of absolute radioactivity. Dual-isotope (Tc-99m/Tl-201) SPECT images were acquired simultaneously followed by an X-ray CT acquisition. Dogs were sacrificed after imaging for myocardial gamma well counting. Images were reconstructed with CT-based attenuation correction (AC) and without AC (NAC) and were quantified using our quantification method. Normal limits for myocardial hotspot uptake were estimated based on 3 different schemes: maximum entropy, meansquared-error minimization (MSEM) and global minimization. Absolute myocardial hotspot uptake was quantified from SPECT images using the normal limits and compared with well-counted radioactivity on a segment-by-segment basis (n = 12 segments/dog). Radioactivity was expressed as % injected dose (%ID). There was an excellent correlation (r = 0.78-0.92) between the estimated activity (%ID) derived using the SPECT quantitative approach and well-counting, independent of AC. However, SPECT quantification without AC resulted in the significant underestimation of radioactivity. Quantification using SPECT with AC and the MSEM normal limit yielded the best results compared with well-counting. In conclusion, focal myocardial "hotspot" uptake of a targeted radiotracer can be accurately quantified in vivo using a method that incorporates SPECT imaging with AC, an external reference, background scatter compensation, and a suitable normal limit. This hybrid SPECT/CT approach allows for the serial

  16. Detection and Quantification of Neurotransmitters in Dialysates

    PubMed Central

    Zapata, Agustin; Chefer, Vladimir I.; Shippenberg, Toni S.; Denoroy, Luc

    2010-01-01

    Sensitive analytical methods are needed for the separation and quantification of neurotransmitters obtained in microdialysate studies. This unit describes methods that permit quantification of nanomolar concentrations of monoamines and their metabolites (high-pressure liquid chromatography electrochemical detection), acetylcholine (HPLC-coupled to an enzyme reactor), and amino acids (HPLC-fluorescence detection; capillary electrophoresis with laser-induced fluorescence detection). PMID:19575473

  17. Absolute irradiance of the Moon for on-orbit calibration

    USGS Publications Warehouse

    Stone, T.C.; Kieffer, H.H.

    2002-01-01

    The recognized need for on-orbit calibration of remote sensing imaging instruments drives the ROLO project effort to characterize the Moon for use as an absolute radiance source. For over 5 years the ground-based ROLO telescopes have acquired spatially-resolved lunar images in 23 VNIR (Moon diameter ???500 pixels) and 9 SWIR (???250 pixels) passbands at phase angles within ??90 degrees. A numerical model for lunar irradiance has been developed which fits hundreds of ROLO images in each band, corrected for atmospheric extinction and calibrated to absolute radiance, then integrated to irradiance. The band-coupled extinction algorithm uses absorption spectra of several gases and aerosols derived from MODTRAN to fit time-dependent component abundances to nightly observations of standard stars. The absolute radiance scale is based upon independent telescopic measurements of the star Vega. The fitting process yields uncertainties in lunar relative irradiance over small ranges of phase angle and the full range of lunar libration well under 0.5%. A larger source of uncertainty enters in the absolute solar spectral irradiance, especially in the SWIR, where solar models disagree by up to 6%. Results of ROLO model direct comparisons to spacecraft observations demonstrate the ability of the technique to track sensor responsivity drifts to sub-percent precision. Intercomparisons among instruments provide key insights into both calibration issues and the absolute scale for lunar irradiance.

  18. Absolute luminosity measurements with the LHCb detector at the LHC

    NASA Astrophysics Data System (ADS)

    LHCb Collaboration

    2012-01-01

    Absolute luminosity measurements are of general interest for colliding-beam experiments at storage rings. These measurements are necessary to determine the absolute cross-sections of reaction processes and are valuable to quantify the performance of the accelerator. Using data taken in 2010, LHCb has applied two methods to determine the absolute scale of its luminosity measurements for proton-proton collisions at the LHC with a centre-of-mass energy of 7 TeV. In addition to the classic ``van der Meer scan'' method a novel technique has been developed which makes use of direct imaging of the individual beams using beam-gas and beam-beam interactions. This beam imaging method is made possible by the high resolution of the LHCb vertex detector and the close proximity of the detector to the beams, and allows beam parameters such as positions, angles and widths to be determined. The results of the two methods have comparable precision and are in good agreement. Combining the two methods, an overal precision of 3.5% in the absolute luminosity determination is reached. The techniques used to transport the absolute luminosity calibration to the full 2010 data-taking period are presented.

  19. System and method for calibrating a rotary absolute position sensor

    NASA Technical Reports Server (NTRS)

    Davis, Donald R. (Inventor); Permenter, Frank Noble (Inventor); Radford, Nicolaus A (Inventor)

    2012-01-01

    A system includes a rotary device, a rotary absolute position (RAP) sensor generating encoded pairs of voltage signals describing positional data of the rotary device, a host machine, and an algorithm. The algorithm calculates calibration parameters usable to determine an absolute position of the rotary device using the encoded pairs, and is adapted for linearly-mapping an ellipse defined by the encoded pairs to thereby calculate the calibration parameters. A method of calibrating the RAP sensor includes measuring the rotary position as encoded pairs of voltage signals, linearly-mapping an ellipse defined by the encoded pairs to thereby calculate the calibration parameters, and calculating an absolute position of the rotary device using the calibration parameters. The calibration parameters include a positive definite matrix (A) and a center point (q) of the ellipse. The voltage signals may include an encoded sine and cosine of a rotary angle of the rotary device.

  20. Method and apparatus for two-dimensional absolute optical encoding

    NASA Technical Reports Server (NTRS)

    Leviton, Douglas B. (Inventor)

    2004-01-01

    This invention presents a two-dimensional absolute optical encoder and a method for determining position of an object in accordance with information from the encoder. The encoder of the present invention comprises a scale having a pattern being predetermined to indicate an absolute location on the scale, means for illuminating the scale, means for forming an image of the pattern; and detector means for outputting signals derived from the portion of the image of the pattern which lies within a field of view of the detector means, the field of view defining an image reference coordinate system, and analyzing means, receiving the signals from the detector means, for determining the absolute location of the object. There are two types of scale patterns presented in this invention: grid type and starfield type.

  1. Absolute and Convective Instability in Fluid-Conveying Flexible Pipes

    NASA Astrophysics Data System (ADS)

    de Langre, E.; Ouvrard, A. E.

    1998-11-01

    The effect of internal plug flow on the lateral stability of fluid conveying flexible pipes is investigated by determining the absolute/convective nature of the instability from the analytically derived linear dispersion relation. The fluid-structure interaction is modeled following the work of Gregory and Paidoussis (1966). The different domains of stability, convective instability, and absolute instability are explicitly derived in parameter space. The effect of flow velocity, mass ratio between the fluid and the structure, stiffness of the elastic foundation and axial tension is considered. Absolute instability prevails over a wide range of parameters. Convective instability only takes place at very high mass ratio, small stiffness and small axial tension. Relation is made with previous work of Brazier-Smith & Scott (1984) and Crighton (1991), considered here as a short wave approximation.

  2. Absolute surface metrology by rotational averaging in oblique incidence interferometry.

    PubMed

    Lin, Weihao; He, Yumei; Song, Li; Luo, Hongxin; Wang, Jie

    2014-06-01

    A modified method for measuring the absolute figure of a large optical flat surface in synchrotron radiation by a small aperture interferometer is presented. The method consists of two procedures: the first step is oblique incidence measurement; the second is multiple rotating measurements. This simple method is described in terms of functions that are symmetric or antisymmetric with respect to reflections at the vertical axis. Absolute deviations of a large flat surface could be obtained when mirror antisymmetric errors are removed by N-position rotational averaging. Formulas are derived for measuring the absolute surface errors of a rectangle flat, and experiments on high-accuracy rectangle flats are performed to verify the method. Finally, uncertainty analysis is carried out in detail. PMID:24922410

  3. Non-Invasive Method of Determining Absolute Intracranial Pressure

    NASA Technical Reports Server (NTRS)

    Yost, William T. (Inventor); Cantrell, John H., Jr. (Inventor); Hargens, Alan E. (Inventor)

    2004-01-01

    A method is presented for determining absolute intracranial pressure (ICP) in a patient. Skull expansion is monitored while changes in ICP are induced. The patient's blood pressure is measured when skull expansion is approximately zero. The measured blood pressure is indicative of a reference ICP value. Subsequently, the method causes a known change in ICP and measured the change in skull expansion associated therewith. The absolute ICP is a function of the reference ICP value, the known change in ICP and its associated change in skull expansion; and a measured change in skull expansion.

  4. Measurements of the reactor neutron power in absolute units

    NASA Astrophysics Data System (ADS)

    Lebedev, G. V.

    2015-12-01

    The neutron power of the reactor of the Yenisei space nuclear power plant is measured in absolute units using the modernized method of correlation analysis during the ground-based tests of the Yenisei prototypes. Results of the experiments are given. The desired result is obtained in a series of experiments carried out at the stage of the plant preparation for tests. The acceptability of experimental data is confirmed by the results of measuring the reactor neutron power in absolute units at the nominal level by the thermal balance during the life cycle tests of the ground prototypes.

  5. In-flight absolute radiometric calibration of the thematic mapper

    NASA Technical Reports Server (NTRS)

    Castle, K. R.; Holm, R. G.; Kastner, C. J.; Palmer, J. M.; Slater, P. N.; Dinguirard, M.; Ezra, C. E.; Jackson, R. D.; Savage, R. K.

    1983-01-01

    The TM multispectral scanner system was calibrated in an absolute manner before launch. To determine the temporal changes of the absolute radiometric calibration of the entire system, spectroradiometric measurements of the ground and the atmosphere were made simultaneously with TM collections over White Sands, New Mexico. By entering the measured values in an atmospheric radiative transfer program, the radiance levels of the in four of the spectral bands of the TM were determined. Tables show values for the reflectance of snow at White Sands measured by a modular 8 channel radiometer, and values for exoatmospheric irradiance within the TM passbands, calculated for the Earth-Sun distance using a solar radiometer.

  6. Absolute photon-flux measurements in the vacuum ultraviolet

    NASA Technical Reports Server (NTRS)

    Samson, J. A. R.; Haddad, G. N.

    1974-01-01

    Absolute photon-flux measurements in the vacuum ultraviolet have extended to short wavelengths by use of rare-gas ionization chambers. The technique involves the measurement of the ion current as a function of the gas pressure in the ion chamber. The true value of the ion current, and hence the absolute photon flux, is obtained by extrapolating the ion current to zero gas pressure. Examples are given at 162 and 266 A. The short-wavelength limit is determined only by the sensitivity of the current-measuring apparatus and by present knowledge of the photoionization processes that occur in the rate gases.

  7. Notes on Van der Meer scan for absolute luminosity measurement

    NASA Astrophysics Data System (ADS)

    Balagura, Vladislav

    2011-10-01

    The absolute luminosity can be measured in an accelerator by sweeping beams transversely across each other in the so-called van der Meer scan. We prove that the method can be applied in the general case of arbitrary beam directions and a separation scan plane. A simple method to develop an image of the beam in its transverse plane from spatial distributions of interaction vertexes is also proposed. From the beam images one can determine their overlap and the absolute luminosity. This provides an alternative way of the luminosity measurement during van der Meer scan.

  8. Measurements of the reactor neutron power in absolute units

    SciTech Connect

    Lebedev, G. V.

    2015-12-15

    The neutron power of the reactor of the Yenisei space nuclear power plant is measured in absolute units using the modernized method of correlation analysis during the ground-based tests of the Yenisei prototypes. Results of the experiments are given. The desired result is obtained in a series of experiments carried out at the stage of the plant preparation for tests. The acceptability of experimental data is confirmed by the results of measuring the reactor neutron power in absolute units at the nominal level by the thermal balance during the life cycle tests of the ground prototypes.

  9. Absolute Stability Analysis of a Phase Plane Controlled Spacecraft

    NASA Technical Reports Server (NTRS)

    Jang, Jiann-Woei; Plummer, Michael; Bedrossian, Nazareth; Hall, Charles; Jackson, Mark; Spanos, Pol

    2010-01-01

    Many aerospace attitude control systems utilize phase plane control schemes that include nonlinear elements such as dead zone and ideal relay. To evaluate phase plane control robustness, stability margin prediction methods must be developed. Absolute stability is extended to predict stability margins and to define an abort condition. A constrained optimization approach is also used to design flex filters for roll control. The design goal is to optimize vehicle tracking performance while maintaining adequate stability margins. Absolute stability is shown to provide satisfactory stability constraints for the optimization.

  10. A general relativistic model for free-fall absolute gravimeters

    NASA Astrophysics Data System (ADS)

    Tan, Yu-Jie; Shao, Cheng-Gang; Li, Jia; Hu, Zhong-Kun

    2016-04-01

    Although the relativistic manifestations of gravitational fields in gravimetry were first studied 40 years ago, the relativistic effects combined with free-fall absolute gravimeters have rarely been considered. In light of this, we present a general relativistic model for free-fall absolute gravimeters in a local-Fermi coordinates system, where we focus on effects related to the measuring devices: relativistic transverse Doppler effects, gravitational redshift effects and Earth’s rotation effects. Based on this model, a general relativistic expression of the measured gravity acceleration is obtained.

  11. Validation of absolute quantitative real-time PCR for the diagnosis of Streptococcus agalactiae in fish.

    PubMed

    Sebastião, Fernanda de A; Lemos, Eliana G M; Pilarski, Fabiana

    2015-12-01

    Streptococcus agalactiae (GBS) are Gram-positive cocci responsible for substantial losses in tilapia fish farms in Brazil and worldwide. It causes septicemia, meningoencephalitis and mortality of whole shoals that can occur within 72 h. Thus, diagnostic methods are needed that are rapid, specific and sensitive. In this study, a pair of specific primers for GBS was generated based on the cfb gene sequence and initially evaluated by conventional PCR. The protocols for absolute quantitative real-time PCR (qPCR) were then adapted to validate the technique for the identification and quantification of GBS isolated by real-time detection of amplicons using fluorescence measurements. Finally, an infectivity test was conducted in tilapia infected with GBS strains. Total DNA from the host brain was subjected to the same technique, and the strains were re-isolated to validate Koch's postulates. The assay showed 100% specificity for the other bacterial species evaluated and a sensitivity of 367 gene copies per 20 mg of brain tissue within 4 h, making this test a valuable tool for health monitoring programs. PMID:26519771

  12. An absolute method for determination of misalignment of an immersion ultrasonic transducer.

    PubMed

    Narayanan, M M; Singh, Narender; Kumar, Anish; Babu Rao, C; Jayakumar, T

    2014-12-01

    An absolute methodology has been developed for quantification of misalignment of an ultrasonic transducer using a corner-cube retroreflector. The amplitude based and the time of flight (TOF) based C-scans of the reflector are obtained for various misalignments of the transducer. At zero degree orientation of the transducer, the vertical positions of the maximum amplitude and the minimum TOF in the C-scan coincide. At any other orientation of the transducer with the horizontal plane, there is a vertical shift in the position of the maximum amplitude with respect to the minimum TOF. The position of the minimum (TOF) remains the same irrespective of the orientation of the transducer and hence is used as a reference for any misalignment of the transducer. With the measurement of the vertical shift and the horizontal distance between the transducer and the vertex of the reflector, the misalignment of the transducer is quantified. Based on the methodology developed in the present study, retroreflectors are placed in the Indian 500MWe Prototype Fast Breeder Reactor for assessment of the orientation of the ultrasonic transducer prior to the under-sodium ultrasonic scanning for detection of any protrusion of the subassemblies. PMID:25041979

  13. Quantification of viral DNA during HIV-1 infection: A review of relevant clinical uses and laboratory methods.

    PubMed

    Alidjinou, E K; Bocket, L; Hober, D

    2015-02-01

    Effective antiretroviral therapy usually leads to undetectable HIV-1 RNA in the plasma. However, the virus persists in some cells of infected patients as various DNA forms, both integrated and unintegrated. This reservoir represents the greatest challenge to the complete cure of HIV-1 infection and its characteristics highly impact the course of the disease. The quantification of HIV-1 DNA in blood samples constitutes currently the most practical approach to measure this residual infection. Real-time quantitative PCR (qPCR) is the most common method used for HIV-DNA quantification and many strategies have been developed to measure the different forms of HIV-1 DNA. In the literature, several "in-house" PCR methods have been used and there is a need for standardization to have comparable results. In addition, qPCR is limited for the precise quantification of low levels by background noise. Among new assays in development, digital PCR was shown to allow an accurate quantification of HIV-1 DNA. Total HIV-1 DNA is most commonly measured in clinical routine. The absolute quantification of proviruses and unintegrated forms is more often used for research purposes. PMID:25201144

  14. Advancing agricultural greenhouse gas quantification*

    NASA Astrophysics Data System (ADS)

    Olander, Lydia; Wollenberg, Eva; Tubiello, Francesco; Herold, Martin

    2013-03-01

    1. Introduction Better information on greenhouse gas (GHG) emissions and mitigation potential in the agricultural sector is necessary to manage these emissions and identify responses that are consistent with the food security and economic development priorities of countries. Critical activity data (what crops or livestock are managed in what way) are poor or lacking for many agricultural systems, especially in developing countries. In addition, the currently available methods for quantifying emissions and mitigation are often too expensive or complex or not sufficiently user friendly for widespread use. The purpose of this focus issue is to capture the state of the art in quantifying greenhouse gases from agricultural systems, with the goal of better understanding our current capabilities and near-term potential for improvement, with particular attention to quantification issues relevant to smallholders in developing countries. This work is timely in light of international discussions and negotiations around how agriculture should be included in efforts to reduce and adapt to climate change impacts, and considering that significant climate financing to developing countries in post-2012 agreements may be linked to their increased ability to identify and report GHG emissions (Murphy et al 2010, CCAFS 2011, FAO 2011). 2. Agriculture and climate change mitigation The main agricultural GHGs—methane and nitrous oxide—account for 10%-12% of anthropogenic emissions globally (Smith et al 2008), or around 50% and 60% of total anthropogenic methane and nitrous oxide emissions, respectively, in 2005. Net carbon dioxide fluxes between agricultural land and the atmosphere linked to food production are relatively small, although significant carbon emissions are associated with degradation of organic soils for plantations in tropical regions (Smith et al 2007, FAO 2012). Population growth and shifts in dietary patterns toward more meat and dairy consumption will lead to

  15. Absolute determination of inelastic mean-free paths and surface excitation parameters by absolute reflection electron energy loss spectrum analysis

    NASA Astrophysics Data System (ADS)

    Nagatomi, T.; Goto, K.

    2005-11-01

    An analytical approach was proposed for simultaneously determining an inelastic mean-free path (IMFP) and a surface excitation parameter (SEP) with absolute units by the analysis of an absolute experimental reflection electron energy loss spectrum. The IMFPs and SEPs in Ni were deduced for electrons of 300 to 3000 eV. The obtained IMFPs were in good agreement with those calculated using the TPP-2M equation. The Chen-type empirical formula was proposed for determining the SEP. The results confirmed the applicability of the present approach for determining the IMFP and SEP for medium-energy electrons.

  16. Series that Converge Absolutely but Don't Converge

    ERIC Educational Resources Information Center

    Kantrowitz, Robert; Schramm, Michael

    2012-01-01

    If a series of real numbers converges absolutely, then it converges. The usual proof requires completeness in the form of the Cauchy criterion. Failing completeness, the result is false. We provide examples of rational series that illustrate this point. The Cantor set appears in connection with one of the examples.

  17. Population-based absolute risk estimation with survey data.

    PubMed

    Kovalchik, Stephanie A; Pfeiffer, Ruth M

    2014-04-01

    Absolute risk is the probability that a cause-specific event occurs in a given time interval in the presence of competing events. We present methods to estimate population-based absolute risk from a complex survey cohort that can accommodate multiple exposure-specific competing risks. The hazard function for each event type consists of an individualized relative risk multiplied by a baseline hazard function, which is modeled nonparametrically or parametrically with a piecewise exponential model. An influence method is used to derive a Taylor-linearized variance estimate for the absolute risk estimates. We introduce novel measures of the cause-specific influences that can guide modeling choices for the competing event components of the model. To illustrate our methodology, we build and validate cause-specific absolute risk models for cardiovascular and cancer deaths using data from the National Health and Nutrition Examination Survey. Our applications demonstrate the usefulness of survey-based risk prediction models for predicting health outcomes and quantifying the potential impact of disease prevention programs at the population level. PMID:23686614

  18. Invalid phase values removal method for absolute phase recovery.

    PubMed

    Lu, Jin; Mo, Rong; Sun, Huibin; Chang, Zhiyong; Zhao, Xiaxia

    2016-01-10

    A novel approach is presented for more effectively removing invalid phase values in absolute phase recovery. The approach is based on a detailed study involving the types and cases of invalid phase values. Meanwhile, some commonalities of the existing removal algorithms also are thoroughly analyzed. It is well known that rough absolute phase and fringe order maps can very easily be obtained by temporal phase unwrapping techniques. After carefully analyzing the components and fringe order distribution of the rough fringe order map, the proposed method chiefly adopts an entirely new strategy to refine a pure fringe order map. The strategy consists of three parts: (1) the square of an image gradient, (2) subregion areas of the binary image, and (3) image decomposition and composition. In combination with the pure fringe order map and a removal criterion, the invalid phase values can be identified and filtered out from the rough absolute phase map. This new strategy not only gets rid of the limitations of traditional removal methods but also has a two-fold function. The paper also offers different metrics from the experiment to evaluate the quality of the final absolute phase. In contrast with other removal methods, experimental results have verified the feasibility, effectiveness, and superiority of the proposed method. PMID:26835776

  19. Absolute Value Inequalities: High School Students' Solutions and Misconceptions

    ERIC Educational Resources Information Center

    Almog, Nava; Ilany, Bat-Sheva

    2012-01-01

    Inequalities are one of the foundational subjects in high school math curricula, but there is a lack of academic research into how students learn certain types of inequalities. This article fills part of the research gap by presenting the findings of a study that examined high school students' methods of approaching absolute value inequalities,…

  20. Lyman alpha SMM/UVSP absolute calibration and geocoronal correction

    NASA Technical Reports Server (NTRS)

    Fontenla, Juan M.; Reichmann, Edwin J.

    1987-01-01

    Lyman alpha observations from the Ultraviolet Spectrometer Polarimeter (UVSP) instrument of the Solar Maximum Mission (SMM) spacecraft were analyzed and provide instrumental calibration details. Specific values of the instrument quantum efficiency, Lyman alpha absolute intensity, and correction for geocoronal absorption are presented.

  1. An improved generalized Newton method for absolute value equations.

    PubMed

    Feng, Jingmei; Liu, Sanyang

    2016-01-01

    In this paper, we suggest and analyze an improved generalized Newton method for solving the NP-hard absolute value equations [Formula: see text] when the singular values of A exceed 1. We show that the global and local quadratic convergence of the proposed method. Numerical experiments show the efficiency of the method and the high accuracy of calculation. PMID:27462490

  2. Relative versus Absolute Stimulus Control in the Temporal Bisection Task

    ERIC Educational Resources Information Center

    de Carvalho, Marilia Pinhiero; Machado, Armando

    2012-01-01

    When subjects learn to associate two sample durations with two comparison keys, do they learn to associate the keys with the short and long samples (relational hypothesis), or with the specific sample durations (absolute hypothesis)? We exposed 16 pigeons to an ABA design in which phases A and B corresponded to tasks using samples of 1 s and 4 s,…

  3. Absolute calibration of Landsat instruments using the moon.

    USGS Publications Warehouse

    Kieffer, H.H.; Wildey, R.L.

    1985-01-01

    A lunar observation by Landsat could provide improved radiometric and geometric calibration of both the Thematic Mapper and the Multispectral Scanner in terms of absolute radiometry, determination of the modulation transfer function, and sensitivity to scattered light. A pitch of the spacecraft would be required. -Authors

  4. Absence of absolutely continuous spectrum for random scattering zippers

    NASA Astrophysics Data System (ADS)

    Boumaza, Hakim; Marin, Laurent

    2015-02-01

    A scattering zipper is a system obtained by concatenation of scattering events with equal even number of incoming and outgoing channels. The associated scattering zipper operator is the unitary analog of Jacobi matrices with matrix entries. For infinite identical events and independent and identically distributed random phases, Lyapunov exponents positivity is proved and yields absence of absolutely continuous spectrum by Kotani's theory.

  5. Individual Differences in Absolute and Relative Metacomprehension Accuracy

    ERIC Educational Resources Information Center

    Maki, Ruth H.; Shields, Micheal; Wheeler, Amanda Easton; Zacchilli, Tammy Lowery

    2005-01-01

    The authors investigated absolute and relative metacomprehension accuracy as a function of verbal ability in college students. Students read hard texts, revised texts, or a mixed set of texts. They then predicted their performance, took a multiple-choice test on the texts, and made posttest judgments about their performance. With hard texts,…

  6. Mathematical Model for Absolute Magnetic Measuring Systems in Industrial Applications

    NASA Astrophysics Data System (ADS)

    Fügenschuh, Armin; Fügenschuh, Marzena; Ludszuweit, Marina; Mojsic, Aleksandar; Sokół, Joanna

    2015-09-01

    Scales for measuring systems are either based on incremental or absolute measuring methods. Incremental scales need to initialize a measurement cycle at a reference point. From there, the position is computed by counting increments of a periodic graduation. Absolute methods do not need reference points, since the position can be read directly from the scale. The positions on the complete scales are encoded using two incremental tracks with different graduation. We present a new method for absolute measuring using only one track for position encoding up to micrometre range. Instead of the common perpendicular magnetic areas, we use a pattern of trapezoidal magnetic areas, to store more complex information. For positioning, we use the magnetic field where every position is characterized by a set of values measured by a hall sensor array. We implement a method for reconstruction of absolute positions from the set of unique measured values. We compare two patterns with respect to uniqueness, accuracy, stability and robustness of positioning. We discuss how stability and robustness are influenced by different errors during the measurement in real applications and how those errors can be compensated.

  7. Absolute Radiometer for Reproducing the Solar Irradiance Unit

    NASA Astrophysics Data System (ADS)

    Sapritskii, V. I.; Pavlovich, M. N.

    1989-01-01

    A high-precision absolute radiometer with a thermally stabilized cavity as receiving element has been designed for use in solar irradiance measurements. The State Special Standard of the Solar Irradiance Unit has been built on the basis of the developed absolute radiometer. The Standard also includes the sun tracking system and the system for automatic thermal stabilization and information processing, comprising a built-in microcalculator which calculates the irradiance according to the input program. During metrological certification of the Standard, main error sources have been analysed and the non-excluded systematic and accidental errors of the irradiance-unit realization have been determined. The total error of the Standard does not exceed 0.3%. Beginning in 1984 the Standard has been taking part in a comparison with the Å 212 pyrheliometer and other Soviet and foreign standards. In 1986 it took part in the international comparison of absolute radiometers and standard pyrheliometers of socialist countries. The results of the comparisons proved the high metrological quality of this Standard based on an absolute radiometer.

  8. Multifrequency continuous wave terahertz spectroscopy for absolute thickness determination

    SciTech Connect

    Scheller, Maik; Baaske, Kai; Koch, Martin

    2010-04-12

    We present a tunable multifrequency continuous wave terahertz spectrometer based on two laser diodes, photoconductive antennas, and a coherent detection scheme. The system is employed to determine the absolute thickness of samples utilizing a proposed synthetic difference frequency method to circumvent the 2pi uncertainty known from conventional photomixing systems while preserving a high spatial resolution.

  9. Ion chambers simplify absolute intensity measurements in the vacuum ultraviolet

    NASA Technical Reports Server (NTRS)

    Sampson, J. A. R.

    1966-01-01

    Single or double ion chamber technique measures absolute radiation intensities in the extreme vacuum ultraviolet region of the spectrum. The ion chambers use rare gases as the ion carrier. Photon absorbed by the gas creates one ion pair so a measure of these is a measure of the number of incident photons.

  10. Urey: to measure the absolute age of Mars

    NASA Technical Reports Server (NTRS)

    Randolph, J. E.; Plescia, J.; Bar-Cohen, Y.; Bartlett, P.; Bickler, D.; Carlson, R.; Carr, G.; Fong, M.; Gronroos, H.; Guske, P. J.; Herring, M.; Javadi, H.; Johnson, D. W.; Larson, T.; Malaviarachchi, K.; Sherrit, S.; Stride, S.; Trebi-Ollennu, A.; Warwick, R.

    2003-01-01

    UREY, a proposed NASA Mars Scout mission will, for the first time, measure the absolute age of an identified igneous rock formation on Mars. By extension to relatively older and younger rock formations dated by remote sensing, these results will enable a new and better understanding of Martian geologic history.

  11. Is There a Rule of Absolute Neutralization in Nupe?

    ERIC Educational Resources Information Center

    Krohn, Robert

    1975-01-01

    A previously prosed rule of absolute neutralization (merging underlying low vowels) is eliminated in an alternative analysis including instead a rule that "breaks" the feature matrix of certain low vowels and redistributes the features of each vowel as a sequence of vowel-like transition plus (a). (Author/RM)

  12. Assignment of absolute stereochemistry by computation of optical rotation angles

    NASA Astrophysics Data System (ADS)

    Kondru, Rama Krishna

    We have developed simple wire and molecular orbital models to qualitatively and quantitatively understand optical rotation angles of molecules. We reported the first ab initio theoretical approach to determine the absolute stereochemistry of a complex natural product by calculating molar rotation angles, [M]D. We applied this method for an unambiguous assignment of the absolute stereochemistry of the hennoxazole A. A protocol analogous to population analysis was devised to analyze atomic contributions to the rotation angles for oxiranes, orthoesters, and other organic compounds. The molar rotations for an indoline, an indonone, menthol and menthone were calculated using ab inito methods and compared with experimental values. We reported the first prediction of the absolute configuration of a natural product, i.e. an a priori assignment of the relative and absolute stereochemistry of pitiamide A. Furthermore, we described a strategy that may help to establish structure-function relations for rotation angles by visualizing the electric and magnetic-field perturbations to a molecule's molecular orbitals.

  13. Hitting the target: relatively easy, yet absolutely difficult.

    PubMed

    Mapp, Alistair P; Ono, Hiroshi; Khokhotva, Mykola

    2007-01-01

    It is generally agreed that absolute-direction judgments require information about eye position, whereas relative-direction judgments do not. The source of this eye-position information, particularly during monocular viewing, is a matter of debate. It may be either binocular eye position, or the position of the viewing-eye only, that is crucial. Using more ecologically valid stimulus situations than the traditional LED in the dark, we performed two experiments. In experiment 1, observers threw darts at targets that were fixated either monocularly or binocularly. In experiment 2, observers aimed a laser gun at targets while fixating either the rear or the front gunsight monocularly, or the target either monocularly or binocularly. We measured the accuracy and precision of the observers' absolute- and relative-direction judgments. We found that (a) relative-direction judgments were precise and independent of phoria, and (b) monocular absolute-direction judgments were inaccurate, and the magnitude of the inaccuracy was predictable from the magnitude of phoria. These results confirm that relative-direction judgments do not require information about eye position. Moreover, they show that binocular eye-position information is crucial when judging the absolute direction of both monocular and binocular targets. PMID:17972479

  14. Absolute Risk Aversion and the Returns to Education.

    ERIC Educational Resources Information Center

    Brunello, Giorgio

    2002-01-01

    Uses 1995 Italian household income and wealth survey to measure individual absolute risk aversion of 1,583 married Italian male household heads. Uses this measure as an instrument for attained education in a standard-log earnings equation. Finds that the IV estimate of the marginal return to schooling is much higher than the ordinary least squares…

  15. Improved cavity-type absolute total-radiation radiometer

    NASA Technical Reports Server (NTRS)

    Kendall, J. M., Sr.; Plamondon, J. A., Jr.

    1967-01-01

    Conical cavity-type absolute radiometer measures the intensity of radiant energy to an accuracy of one to two percent in a vacuum of ten to the minus fifth torr or lower. There is a uniform response over the ultraviolet, visible, and infrared range, and it requires no calibration or comparison with a radiation standard.

  16. Absolute Interrogative Intonation Patterns in Buenos Aires Spanish

    ERIC Educational Resources Information Center

    Lee, Su Ar

    2010-01-01

    In Spanish, each uttered phrase, depending on its use, has one of a variety of intonation patterns. For example, a phrase such as "Maria viene manana" "Mary is coming tomorrow" can be used as a declarative or as an absolute interrogative (a yes/no question) depending on the intonation pattern that a speaker produces. Patterns of usage also…

  17. Absolute configurations of zingiberenols isolated from ginger (Zingiber officinale) rhizomes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The sesquiterpene alcohol zingiberenol, or 1,10-bisaboladien-3-ol, was isolated some time ago from ginger, Zingiber officinale, rhizomes, but its absolute configuration had not been determined. With three chiral centers present in the molecule, zingiberenol can exist in eight stereoisomeric forms. ...

  18. Four Years of Absolute Gravity in the Taiwan Orogen (AGTO)

    NASA Astrophysics Data System (ADS)

    Mouyen, Maxime; Masson, Frédéric; Hwang, Cheinway; Cheng, Ching-Chung; Le Moigne, Nicolas; Lee, Chiung-Wu; Kao, Ricky; Hsieh, Nicky

    2010-05-01

    AGTO is a scientific project between Taiwanese and French institutes, which aim is to improve tectonic knowledge of Taiwan primarily using absolute gravity measurements and permanent GPS stations. Both tools are indeed useful to study vertical movements and mass transfers involved in mountain building, a major process in Taiwan located at the convergent margin between Philippine Sea plate and Eurasian plate. This convergence results in two subductions north and south of Taiwan (Ryukyu and Manilla trenches, respectively), while the center is experiencing collision. These processes make Taiwan very active tectonically, as illustrated by numerous large earthquakes and rapid uplift of the Central Range. High slopes of Taiwan mountains and heavy rains brought by typhoons together lead to high landslides and mudflows risks. Practically, absolute gravity measurements have been yearly repeated since 2006 along a transect across south Taiwan, from Penghu to Lutao islands, using FG5 absolute gravimeters. This transect contains ten sites for absolute measurements and has been densified in 2008 by incorporating 45 sites for relative gravity measurements with CG5 gravimeters. The last relative and absolute measurements have been performed in November 2009. Most of the absolute sites have been measured with a good accuracy, about 1 or 2 ?Gal. Only the site located in Tainan University has higher standard deviation, due to the city noise. We note that absolute gravity changes seem to follow a trend in every site. However, straightforward tectonic interpretation of these trends is not valuable as many non-tectonic effects are supposed to change g with time, like groundwater or erosion. Estimating and removing these effects leads to a tectonic gravity signal, which has theoretically two origins : deep mass transfers around the site and vertical movements of the station. The latter can be well constrained by permanent GPS stations located close to the measurement pillar. Deep mass

  19. Four Years of Absolute Gravity in the Taiwan Orogen (AGTO)

    NASA Astrophysics Data System (ADS)

    Mouyen, M.; Masson, F.; Hwang, C.; Cheng, C.; Le Moigne, N.; Lee, C.; Kao, R.; Hsieh, N.

    2009-12-01

    AGTO is a scientific project between Taiwanese and French institutes which aim is to improve tectonic knowledge of Taiwan primarily using absolute gravity measurements and permanent GPS stations. Both tools are indeed useful to study vertical movements and mass transfers involved in mountain building, a major process in Taiwan located at the convergent margin between Philippine Sea plate and Eurasian plate. This convergence results in two subductions north and south of Taiwan (Ryukyu and Manilla trenches, respectively), while the center is experiencing collision. These processes make Taiwan very active tectonically, as illustrated by numerous large earthquakes and rapid uplift of the Central Range. High slopes of Taiwan mountains and heavy rains brought by typhoons together lead to high landslides and mudflows risks. Practically, absolute gravity measurements have been yearly repeated since 2006 along a transect across south Taiwan, from Penghu to Lutao island, using FG5 absolute gravimeters. This transect contains ten sites for absolute measurements and has been densified in 2008 by incorporating 45 sites for relative gravity measurements with CG5 gravimeters. At the end of 2009, the relative gravity network will be densified again in its eastern part, i.e. in the Longitudinal Valley and the Central Range. A fourth set of absolute gravity measurements will also be performed at the same period. Most of the absolute sites have been measured with a good accuracy, about 1 or 2 μGal. Only the site located in Tainan University has higher standard deviation, due to the city noise. The stronger change in gravity reaches -7 μGal a -1 west of the Longitudinal Valley and might be explained by tectonic movement along a fault. A large decrease of -5 μGal a-1 is also measured in Tainan city and could be correlated with uplift of this region, also denoted by InSAR, leveling and GPS. Changes occurring in the Central Range are more difficult to interpret due to the small

  20. High performance liquid chromatography-charged aerosol detection applying an inverse gradient for quantification of rhamnolipid biosurfactants.

    PubMed

    Behrens, Beate; Baune, Matthias; Jungkeit, Janek; Tiso, Till; Blank, Lars M; Hayen, Heiko

    2016-07-15

    A method using high performance liquid chromatography coupled to charged-aerosol detection (HPLC-CAD) was developed for the quantification of rhamnolipid biosurfactants. Qualitative sample composition was determined by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). The relative quantification of different derivatives of rhamnolipids including di-rhamnolipids, mono-rhamnolipids, and their precursors 3-(3-hydroxyalkanoyloxy)alkanoic acids (HAAs) differed for two compared LC-MS instruments and revealed instrument dependent responses. Our here reported HPLC-CAD method provides uniform response. An inverse gradient was applied for the absolute quantification of rhamnolipid congeners to account for the detector's dependency on the solvent composition. The CAD produces a uniform response not only for the analytes but also for structurally different (nonvolatile) compounds. It was demonstrated that n-dodecyl-β-d-maltoside or deoxycholic acid can be used as alternative standards. The method of HPLC-ultra violet (UV) detection after a derivatization of rhamnolipids and HAAs to their corresponding phenacyl esters confirmed the obtained results but required additional, laborious sample preparation steps. Sensitivity determined as limit of detection and limit of quantification for four mono-rhamnolipids was in the range of 0.3-1.0 and 1.2-2.0μg/mL, respectively, for HPLC-CAD and 0.4 and 1.5μg/mL, respectively, for HPLC-UV. Linearity for HPLC-CAD was at least 0.996 (R(2)) in the calibrated range of about 1-200μg/mL. Hence, the here presented HPLC-CAD method allows absolute quantification of rhamnolipids and derivatives. PMID:27283098

  1. GNSS Absolute Antenna Calibration at the National Geodetic Survey

    NASA Astrophysics Data System (ADS)

    Mader, G. L.; Bilich, A. L.; Geoghegan, C.

    2011-12-01

    Geodetic GNSS applications routinely demand millimeter precision and extremely high levels of accuracy. To achieve these accuracies, measurement and instrument biases at the centimeter to millimeter level must be understood. One of these biases is the antenna phase center, the apparent point of signal reception for a GNSS antenna. It has been well established that phase center patterns differ between antenna models and manufacturers; additional research suggests that the addition of a radome or the choice of antenna mount can significantly alter those a priori phase center patterns. For the more demanding GNSS positioning applications and especially in cases of mixed-antenna networks, it is all the more important to know antenna phase center variations as a function of both elevation and azimuth in the antenna reference frame and incorporate these models into analysis software. To help meet the needs of the high-precision GNSS community, the National Geodetic Survey (NGS) now operates an absolute antenna calibration facility. Located in Corbin, Virginia, this facility uses field measurements and actual GNSS satellite signals to quantitatively determine the carrier phase advance/delay introduced by the antenna element. The NGS facility was built to serve traditional NGS constituents such as the surveying and geodesy communities, however calibration services are open and available to all GNSS users as the calibration schedule permits. All phase center patterns computed by this facility will be publicly available and disseminated in both the ANTEX and NGS formats. We describe the NGS calibration facility, and discuss the observation models and strategy currently used to generate NGS absolute calibrations. We demonstrate that NGS absolute phase center variation (PCV) patterns are consistent with published values determined by other absolute antenna calibration facilities, and compare absolute calibrations to the traditional NGS relative calibrations.

  2. Absolute Gravity Datum in the Age of Cold Atom Gravimeters

    NASA Astrophysics Data System (ADS)

    Childers, V. A.; Eckl, M. C.

    2014-12-01

    The international gravity datum is defined today by the International Gravity Standardization Net of 1971 (IGSN-71). The data supporting this network was measured in the 1950s and 60s using pendulum and spring-based gravimeter ties (plus some new ballistic absolute meters) to replace the prior protocol of referencing all gravity values to the earlier Potsdam value. Since this time, gravimeter technology has advanced significantly with the development and refinement of the FG-5 (the current standard of the industry) and again with the soon-to-be-available cold atom interferometric absolute gravimeters. This latest development is anticipated to provide improvement in the range of two orders of magnitude as compared to the measurement accuracy of technology utilized to develop ISGN-71. In this presentation, we will explore how the IGSN-71 might best be "modernized" given today's requirements and available instruments and resources. The National Geodetic Survey (NGS), along with other relevant US Government agencies, is concerned about establishing gravity control to establish and maintain high order geodetic networks as part of the nation's essential infrastructure. The need to modernize the nation's geodetic infrastructure was highlighted in "Precise Geodetic Infrastructure, National Requirements for a Shared Resource" National Academy of Science, 2010. The NGS mission, as dictated by Congress, is to establish and maintain the National Spatial Reference System, which includes gravity measurements. Absolute gravimeters measure the total gravity field directly and do not involve ties to other measurements. Periodic "intercomparisons" of multiple absolute gravimeters at reference gravity sites are used to constrain the behavior of the instruments to ensure that each would yield reasonably similar measurements of the same location (i.e. yield a sufficiently consistent datum when measured in disparate locales). New atomic interferometric gravimeters promise a significant

  3. Absolute magnitudes and phase coefficients of trans-Neptunian objects

    NASA Astrophysics Data System (ADS)

    Alvarez-Candal, A.; Pinilla-Alonso, N.; Ortiz, J. L.; Duffard, R.; Morales, N.; Santos-Sanz, P.; Thirouin, A.; Silva, J. S.

    2016-02-01

    Context. Accurate measurements of diameters of trans-Neptunian objects (TNOs) are extremely difficult to obtain. Thermal modeling can provide good results, but accurate absolute magnitudes are needed to constrain the thermal models and derive diameters and geometric albedos. The absolute magnitude, HV, is defined as the magnitude of the object reduced to unit helio- and geocentric distances and a zero solar phase angle and is determined using phase curves. Phase coefficients can also be obtained from phase curves. These are related to surface properties, but only few are known. Aims: Our objective is to measure accurate V-band absolute magnitudes and phase coefficients for a sample of TNOs, many of which have been observed and modeled within the program "TNOs are cool", which is one of the Herschel Space Observatory key projects. Methods: We observed 56 objects using the V and R filters. These data, along with those available in the literature, were used to obtain phase curves and measure V-band absolute magnitudes and phase coefficients by assuming a linear trend of the phase curves and considering a magnitude variability that is due to the rotational light-curve. Results: We obtained 237 new magnitudes for the 56 objects, six of which were without previously reported measurements. Including the data from the literature, we report a total of 110 absolute magnitudes with their respective phase coefficients. The average value of HV is 6.39, bracketed by a minimum of 14.60 and a maximum of -1.12. For the phase coefficients we report a median value of 0.10 mag per degree and a very large dispersion, ranging from -0.88 up to 1.35 mag per degree.

  4. The NASA Langley Multidisciplinary Uncertainty Quantification Challenge

    NASA Technical Reports Server (NTRS)

    Crespo, Luis G.; Kenny, Sean P.; Giesy, Daniel P.

    2014-01-01

    This paper presents the formulation of an uncertainty quantification challenge problem consisting of five subproblems. These problems focus on key aspects of uncertainty characterization, sensitivity analysis, uncertainty propagation, extreme-case analysis, and robust design.

  5. Absolute nutrient concentration measurements in cell culture media: (1)H q-NMR spectra and data to compare the efficiency of pH-controlled protein precipitation versus CPMG or post-processing filtering approaches.

    PubMed

    Goldoni, Luca; Beringhelli, Tiziana; Rocchia, Walter; Realini, Natalia; Piomelli, Daniele

    2016-09-01

    The NMR spectra and data reported in this article refer to the research article titled "A simple and accurate protocol for absolute polar metabolite quantification in cell cultures using q-NMR" [1]. We provide the (1)H q-NMR spectra of cell culture media (DMEM) after removal of serum proteins, which show the different efficiency of various precipitating solvents, the solvent/DMEM ratios, and pH of the solution. We compare the data of the absolute nutrient concentrations, measured by PULCON external standard method, before and after precipitation of serum proteins and those obtained using CPMG (Carr-Purcell-Meiboom-Gill) sequence or applying post-processing filtering algorithms to remove, from the (1)H q-NMR spectra, the proteins signal contribution. For each of these approaches, the percent error in the absolute value of every measurement for all the nutrients is also plotted as accuracy assessment. PMID:27331118

  6. MAMA Software Features: Visual Examples of Quantification

    SciTech Connect

    Ruggiero, Christy E.; Porter, Reid B.

    2014-05-20

    This document shows examples of the results from quantifying objects of certain sizes and types in the software. It is intended to give users a better feel for some of the quantification calculations, and, more importantly, to help users understand the challenges with using a small set of ‘shape’ quantification calculations for objects that can vary widely in shapes and features. We will add more examples to this in the coming year.

  7. Stirling Convertor Fasteners Reliability Quantification

    NASA Technical Reports Server (NTRS)

    Shah, Ashwin R.; Korovaichuk, Igor; Kovacevich, Tiodor; Schreiber, Jeffrey G.

    2006-01-01

    Onboard Radioisotope Power Systems (RPS) being developed for NASA s deep-space science and exploration missions require reliable operation for up to 14 years and beyond. Stirling power conversion is a candidate for use in an RPS because it offers a multifold increase in the conversion efficiency of heat to electric power and reduced inventory of radioactive material. Structural fasteners are responsible to maintain structural integrity of the Stirling power convertor, which is critical to ensure reliable performance during the entire mission. Design of fasteners involve variables related to the fabrication, manufacturing, behavior of fasteners and joining parts material, structural geometry of the joining components, size and spacing of fasteners, mission loads, boundary conditions, etc. These variables have inherent uncertainties, which need to be accounted for in the reliability assessment. This paper describes these uncertainties along with a methodology to quantify the reliability, and provides results of the analysis in terms of quantified reliability and sensitivity of Stirling power conversion reliability to the design variables. Quantification of the reliability includes both structural and functional aspects of the joining components. Based on the results, the paper also describes guidelines to improve the reliability and verification testing.

  8. Uncertainty Quantification in Solidification Modelling

    NASA Astrophysics Data System (ADS)

    Fezi, K.; Krane, M. J. M.

    2015-06-01

    Numerical models have been used to simulate solidification processes, to gain insight into physical phenomena that cannot be observed experimentally. Often validation of such models has been done through comparison to a few or single experiments, in which agreement is dependent on both model and experimental uncertainty. As a first step to quantifying the uncertainty in the models, sensitivity and uncertainty analysis were performed on a simple steady state 1D solidification model of continuous casting of weld filler rod. This model includes conduction, advection, and release of latent heat was developed for use in uncertainty quantification in the calculation of the position of the liquidus and solidus and the solidification time. Using this model, a Smolyak sparse grid algorithm constructed a response surface that fit model outputs based on the range of uncertainty in the inputs to the model. The response surface was then used to determine the probability density functions (PDF's) of the model outputs and sensitivities of the inputs. This process was done for a linear fraction solid and temperature relationship, for which there is an analytical solution, and a Scheil relationship. Similar analysis was also performed on a transient 2D model of solidification in a rectangular domain.

  9. Quantification of Hepatitis E Virus in Naturally-Contaminated Pig Liver Products.

    PubMed

    Martin-Latil, Sandra; Hennechart-Collette, Catherine; Delannoy, Sabine; Guillier, Laurent; Fach, Patrick; Perelle, Sylvie

    2016-01-01

    Hepatitis E virus (HEV), the cause of self-limiting acute hepatitis in humans, is widespread and endemic in many parts of the world. The foodborne transmission of HEV has become of concern due to the identification of undercooked pork products as a risk factor for infection. Foodborne enteric viruses are conventionally processed by quantitative RT-PCR (RT-qPCR), which gives sensitive and quantitative detection results. Recently, digital PCR (dPCR) has been described as a novel approach to genome quantification with no need for a standard curve. The performance of microfluidic digital RT-PCR (RT-dPCR) was compared to RT-qPCR when detecting HEV in pig liver products. The sensitivity of the RT-dPCR assay was similar to that of RT-qPCR, and quantitative data obtained by both detection methods were not significantly different for almost all samples. This absolute quantification approach may be useful for standardizing quantification of HEV in food samples and may be extended to quantifying other human pathogens in food samples. PMID:27536278

  10. Precision and accuracy of clinical quantification of myocardial blood flow by dynamic PET: A technical perspective.

    PubMed

    Moody, Jonathan B; Lee, Benjamin C; Corbett, James R; Ficaro, Edward P; Murthy, Venkatesh L

    2015-10-01

    A number of exciting advances in PET/CT technology and improvements in methodology have recently converged to enhance the feasibility of routine clinical quantification of myocardial blood flow and flow reserve. Recent promising clinical results are pointing toward an important role for myocardial blood flow in the care of patients. Absolute blood flow quantification can be a powerful clinical tool, but its utility will depend on maintaining precision and accuracy in the face of numerous potential sources of methodological errors. Here we review recent data and highlight the impact of PET instrumentation, image reconstruction, and quantification methods, and we emphasize (82)Rb cardiac PET which currently has the widest clinical application. It will be apparent that more data are needed, particularly in relation to newer PET technologies, as well as clinical standardization of PET protocols and methods. We provide recommendations for the methodological factors considered here. At present, myocardial flow reserve appears to be remarkably robust to various methodological errors; however, with greater attention to and more detailed understanding of these sources of error, the clinical benefits of stress-only blood flow measurement may eventually be more fully realized. PMID:25868451

  11. Quantification of airway morphometry: the effect of CT acquisition and reconstruction parameters

    NASA Astrophysics Data System (ADS)

    Leader, J. Ken; Zheng, Bin; Sciurba, Frank C.; Coxson, Harvey O.; Fuhrman, Carl R.; McMurray, Jessica M.; Park, Sang C.; Maitz, Glenn S.; Gur, David

    2007-03-01

    This study measured the accuracy of our airway quantification scheme using phantoms airway under different CT protocols. Airway remodeling is associated with several thoracic diseases (e.g., chronic bronchitis, asthma, and bronchiectasis), and, therefore, quantification of airway remodeling may have wide clinical application. Our scheme assigns pixels partial membership in the airway wall and lumen based on the pixel's HU value, which is intended to account for partial volume averaging inherent in CT image reconstruction. Twenty-four phantom airways with an outer diameter from 2.6 to 14.0 mm and wall thicknesses from 0.5 to 2.0 mm were analyzed. The absolute differences between measurements supplied by the manufacture and computed from CT images acquired at 40 mAs and reconstructed at 1.25 mm thickness using GE's "soft" and "lung" reconstruction kernels for lumen area ranged from 1.4% to 49.3% and 0.4% to 33.0%, respectively, and for wall area ranged from 0.3% to 118.0% and 2.1 to 92.9%, respectively. Accuracy typically improved as the kernel's spatial frequency increased. Airways whose wall thickness was close to the pixels dimensions were challenging to quantify. The partial membership assignment of our airway quantification accurately computed airway morphometry across a range of phantom airway sizes.

  12. Quantification of Hepatitis E Virus in Naturally-Contaminated Pig Liver Products

    PubMed Central

    Martin-Latil, Sandra; Hennechart-Collette, Catherine; Delannoy, Sabine; Guillier, Laurent; Fach, Patrick; Perelle, Sylvie

    2016-01-01

    Hepatitis E virus (HEV), the cause of self-limiting acute hepatitis in humans, is widespread and endemic in many parts of the world. The foodborne transmission of HEV has become of concern due to the identification of undercooked pork products as a risk factor for infection. Foodborne enteric viruses are conventionally processed by quantitative RT-PCR (RT-qPCR), which gives sensitive and quantitative detection results. Recently, digital PCR (dPCR) has been described as a novel approach to genome quantification with no need for a standard curve. The performance of microfluidic digital RT-PCR (RT-dPCR) was compared to RT-qPCR when detecting HEV in pig liver products. The sensitivity of the RT-dPCR assay was similar to that of RT-qPCR, and quantitative data obtained by both detection methods were not significantly different for almost all samples. This absolute quantification approach may be useful for standardizing quantification of HEV in food samples and may be extended to quantifying other human pathogens in food samples. PMID:27536278

  13. Absolute charge calibration of scintillating screens for relativistic electron detection

    SciTech Connect

    Buck, A.; Popp, A.; Schmid, K.; Karsch, S.; Krausz, F.; Zeil, K.; Jochmann, A.; Kraft, S. D.; Sauerbrey, R.; Cowan, T.; Schramm, U.; Hidding, B.; Kudyakov, T.; Sears, C. M. S.; Veisz, L.; Pawelke, J.

    2010-03-15

    We report on new charge calibrations and linearity tests with high-dynamic range for eight different scintillating screens typically used for the detection of relativistic electrons from laser-plasma based acceleration schemes. The absolute charge calibration was done with picosecond electron bunches at the ELBE linear accelerator in Dresden. The lower detection limit in our setup for the most sensitive scintillating screen (KODAK Biomax MS) was 10 fC/mm{sup 2}. The screens showed a linear photon-to-charge dependency over several orders of magnitude. An onset of saturation effects starting around 10-100 pC/mm{sup 2} was found for some of the screens. Additionally, a constant light source was employed as a luminosity reference to simplify the transfer of a one-time absolute calibration to different experimental setups.

  14. Absolute calibration for a broad range single shot electron spectrometer

    SciTech Connect

    Glinec, Y.; Faure, J.; Guemnie-Tafo, A.; Malka, V.; Monard, H.; Larbre, J. P.; De Waele, V.; Marignier, J. L.; Mostafavi, M.

    2006-10-15

    This article gives a detailed description of a single shot electron spectrometer which was used to characterize electron beams produced by laser-plasma interaction. Contrary to conventional electron sources, electron beams from laser-plasma accelerators can produce a broad range of energies. Therefore, diagnosing these electron spectra requires specific attention and experimental development. Here, we provide an absolute calibration of the Lanex Kodak Fine screen on a laser-triggered radio frequency picosecond electron accelerator. The efficiency of scintillating screens irradiated by electron beams has never been investigated so far. This absolute calibration is then compared to charge measurements from an integrating current transformer for quasimonoenergetic electron spectra from laser-plasma interaction.

  15. Absolute charge calibration of scintillating screens for relativistic electron detection

    NASA Astrophysics Data System (ADS)

    Buck, A.; Zeil, K.; Popp, A.; Schmid, K.; Jochmann, A.; Kraft, S. D.; Hidding, B.; Kudyakov, T.; Sears, C. M. S.; Veisz, L.; Karsch, S.; Pawelke, J.; Sauerbrey, R.; Cowan, T.; Krausz, F.; Schramm, U.

    2010-03-01

    We report on new charge calibrations and linearity tests with high-dynamic range for eight different scintillating screens typically used for the detection of relativistic electrons from laser-plasma based acceleration schemes. The absolute charge calibration was done with picosecond electron bunches at the ELBE linear accelerator in Dresden. The lower detection limit in our setup for the most sensitive scintillating screen (KODAK Biomax MS) was 10 fC/mm2. The screens showed a linear photon-to-charge dependency over several orders of magnitude. An onset of saturation effects starting around 10-100 pC/mm2 was found for some of the screens. Additionally, a constant light source was employed as a luminosity reference to simplify the transfer of a one-time absolute calibration to different experimental setups.

  16. From Hubble's Next Generation Spectral Library (NGSL) to Absolute Fluxes

    NASA Astrophysics Data System (ADS)

    Heap, S. R.; Lindler, D.

    2016-05-01

    Hubble's Next Generation Spectral Library (NGSL) consists of R˜1000 spectra of 374 stars of assorted temperature, gravity, and metallicity. Each spectrum covers the wavelength range, 0.18–1.03 μ. The library can be viewed and/or downloaded from the website, http://archive.stsci.edu/prepds/stisngsl/. Stars in the NGSL are now being used as absolute flux standards at ground-based observatories. However, the uncertainty in the absolute flux is about 2%, which does not meet the requirements of dark-energy surveys. We have therefore developed an observing procedure, data-reduction procedure, and correction algorithms that should yield fluxes with uncertainties less than 1%.

  17. Determination of absolute internal conversion coefficients using the SAGE spectrometer

    NASA Astrophysics Data System (ADS)

    Sorri, J.; Greenlees, P. T.; Papadakis, P.; Konki, J.; Cox, D. M.; Auranen, K.; Partanen, J.; Sandzelius, M.; Pakarinen, J.; Rahkila, P.; Uusitalo, J.; Herzberg, R.-D.; Smallcombe, J.; Davies, P. J.; Barton, C. J.; Jenkins, D. G.

    2016-03-01

    A non-reference based method to determine internal conversion coefficients using the SAGE spectrometer is carried out for transitions in the nuclei of 154Sm, 152Sm and 166Yb. The Normalised-Peak-to-Gamma method is in general an efficient tool to extract internal conversion coefficients. However, in many cases the required well-known reference transitions are not available. The data analysis steps required to determine absolute internal conversion coefficients with the SAGE spectrometer are presented. In addition, several background suppression methods are introduced and an example of how ancillary detectors can be used to select specific reaction products is given. The results obtained for ground-state band E2 transitions show that the absolute internal conversion coefficients can be extracted using the methods described with a reasonable accuracy. In some cases of less intense transitions only an upper limit for the internal conversion coefficient could be given.

  18. Absolute magnitude calibration using trigonometric parallax - Incomplete, spectroscopic samples

    NASA Technical Reports Server (NTRS)

    Ratnatunga, Kavan U.; Casertano, Stefano

    1991-01-01

    A new numerical algorithm is used to calibrate the absolute magnitude of spectroscopically selected stars from their observed trigonometric parallax. This procedure, based on maximum-likelihood estimation, can retrieve unbiased estimates of the intrinsic absolute magnitude and its dispersion even from incomplete samples suffering from selection biases in apparent magnitude and color. It can also make full use of low accuracy and negative parallaxes and incorporate censorship on reported parallax values. Accurate error estimates are derived for each of the fitted parameters. The algorithm allows an a posteriori check of whether the fitted model gives a good representation of the observations. The procedure is described in general and applied to both real and simulated data.

  19. In-flight Absolute Radiometric Calibration of the Thematic Mapper

    NASA Technical Reports Server (NTRS)

    Castle, K. R.; Holm, R. G.; Kastner, C. J.; Palmer, J. M.; Slater, P. N.; Dinguirard, M.; Ezra, C. E.; Jackson, D.; Savage, R. K.

    1984-01-01

    The Thematic Mapper (TM) multispectral scanner system was placed into Earth orbit on July 16, 1982, as part of NASA's LANDSAT 4 payload. To determine temporal changes of the absolute radiometric calibration of the entire system in flight, spectroradiometric measurements of the ground and the atmosphere are made simultaneously with TM image acquisitions over the White Sands, New Mexico area. By entering the measured values into an atmospheric radiative transfer program, the radiance levels at the entrance pupil of the TM in four of the TM spectral bands are determined. These levels are compared to the output digital counts from the detectors that sampled the radiometrically measured ground area, thus providing an absolute radiometric calibration of the entire TM system utilizing those detectors. By reference to an adjacent, larger uniform area, the calibration is extended to all 16 detectors in each of the three bands.

  20. Absolute measurement of the extreme UV solar flux

    NASA Technical Reports Server (NTRS)

    Carlson, R. W.; Ogawa, H. S.; Judge, D. L.; Phillips, E.

    1984-01-01

    A windowless rare-gas ionization chamber has been developed to measure the absolute value of the solar extreme UV flux in the 50-575-A region. Successful results were obtained on a solar-pointing sounding rocket. The ionization chamber, operated in total absorption, is an inherently stable absolute detector of ionizing UV radiation and was designed to be independent of effects from secondary ionization and gas effusion. The net error of the measurement is + or - 7.3 percent, which is primarily due to residual outgassing in the instrument, other errors such as multiple ionization, photoelectron collection, and extrapolation to the zero atmospheric optical depth being small in comparison. For the day of the flight, Aug. 10, 1982, the solar irradiance (50-575 A), normalized to unit solar distance, was found to be 5.71 + or - 0.42 x 10 to the 10th photons per sq cm sec.

  1. In-flight absolute radiometric calibration of the thematic mapper

    NASA Technical Reports Server (NTRS)

    Castle, K. R.; Holm, R. G.; Kastner, C. J.; Palmer, J. M.; Slater, P. N.; Dinguirard, M.; Ezra, C. E.; Jackson, R. D.; Savage, R. K.

    1984-01-01

    In order to determine temporal changes of the absolute radiometric calibration of the entire TM system in flight spectroradiometric measurements of the ground and the atmosphere were made simultaneously with TM image collections over the White Sands, New Mexico area. By entering the measured values in an atmospheric radiative transfer program, the radiance levels in four of the spectral bands of the TM were determined, band 1:0.45 to 0.52 micrometers, band 2:0.53 to 0.61 micrometers band 3:0.62 to 0.70 micrometers and 4:0.78 to 0.91 micrometers. These levels were compared to the output digital counts from the detectors that sampled the radiometrically measured ground area, thus providing an absolute radiometric calibration of the entire TM system utilizing those detectors.

  2. In-flight absolute radiometric calibration of the Thematic Mapper

    NASA Technical Reports Server (NTRS)

    Castle, K. R.; Holm, R. G.; Kastner, C. J.; Palmer, J. M.; Slater, P. N.; Dinguirard, M.; Ezra, C. E.; Jackson, R. D.; Savage, R. K.

    1984-01-01

    In order to determine temporal changes of the absolute radiometric calibration of the entire TM system in flight spectroradiometric measurements of the ground and the atmosphere were made simultaneously with TM image collections over the White Sands, NM area. By entering the measured values in an atmospheric radiative transfer program, the radiance levels in four of the spectral bands of the TM were determined, band 1: 0.45 to 0.52 micrometers, band 2: 0.53 to 0.61 micrometers, band 3: 0.62 to 0.70 micrometers, and 4: 0.78 to 0.91 micrometers. These levels were compared to the output digital counts from the detectors that sampled the radiometrically measured ground area, thus providing an absolute radiometric calibration of the entire TM system utilizing those detectors. Previously announced in STAR as N84-15633

  3. Absolute calibration of vacuum ultraviolet spectrograph system for plasma diagnostics

    SciTech Connect

    Yoshikawa, M.; Kubota, Y.; Kobayashi, T.; Saito, M.; Numada, N.; Nakashima, Y.; Cho, T.; Koguchi, H.; Yagi, Y.; Yamaguchi, N.

    2004-10-01

    A space- and time-resolving vacuum ultraviolet (VUV) spectrograph system has been applied to diagnose impurity ions behavior in plasmas produced in the tandem mirror GAMMA 10 and the reversed field pinch TPE-RX. We have carried out ray tracing calculations for obtaining the characteristics of the VUV spectrograph and calibration experiments to measure the absolute sensitivities of the VUV spectrograph system for the wavelength range from 100 to 1100 A. By changing the incident angle, 50.6 deg. -51.4 deg., to the spectrograph whose nominal incident angle is 51 deg., we can change the observing spectral range of the VUV spectrograph. In this article, we show the ray tracing calculation results and absolute sensitivities when the angle of incidence into the VUV spectrograph is changed, and the results of VUV spectroscopic measurement in both GAMMA 10 and TPE-RX plasmas.

  4. Absolute Configurations of Zingiberenols Isolated from Ginger (Zingiber officinale) Rhizomes.

    PubMed

    Khrimian, Ashot; Shirali, Shyam; Guzman, Filadelfo

    2015-12-24

    Two stereoisomeric zingiberenols in ginger were identified as (3R,6R,7S)-1,10-bisaboladien-3-ol (2) and (3S,6R,7S)-1,10-bisaboladien-3-ol (5). Absolute configurations were assigned by utilizing 1,10-bisaboladien-3-ol stereoisomers and two gas-chromatography columns: a 25 m Hydrodex-β-6TBDM and 60 m DB-5MS. The C-6 and C-7 absolute configurations in both zingiberenols match those of zingiberene present abundantly in ginger rhizomes. Interestingly, zingiberenol 2 has recently been identified as a male-produced sex pheromone of the rice stink bug, Oebalus poecilus, thus indicating that ginger plants may be a potential source of the sex pheromone of this bug. PMID:26606508

  5. Absolute limit on rotation of gravitationally bound stars

    SciTech Connect

    Glendenning, N.K.

    1994-03-01

    The authors seek an absolute limit on the rotational period for a neutron star as a function of its mass, based on the minimal constraints imposed by Einstein`s theory of relativity, Le Chatelier`s principle, causality and a low-density equation of state, uncertainties which can be evaluated as to their effect on the result. This establishes a limiting curve in the mass-period plane below which no pulsar that is a neutron star can lie. For example, the minimum possible Kepler period, which is an absolute limit on rotation below which mass-shedding would occur, is 0.33 ms for a M = 1.442 M{circle_dot} neutron star (the mass of PSR1913+16). If the limit were found to be broken by any pulsar, it would signal that the confined hadronic phase of ordinary nucleons and nuclei is only metastable, an extraordinary conclusion.

  6. Validation of GOCE by absolute and relative gravimetry

    NASA Astrophysics Data System (ADS)

    Pettersen, B. R.; Sprlak, M.; Lysaker, D. I.; Omang, O. C. D.; Sekowski, M.; Dykowski, P.

    2012-04-01

    Absolute gravimetry has been performed in 2011 by FG5 and A10 instruments in selected sites of the Norwegian first order gravity network. These observations are used as reference values to transform a large number of relative gravity values collected in 1968-1972. The outcome is a database at current epoch in a reference frame defined by the absolute gravity values. This constitutes our test field for validation of GOCE results. In the test fields, validation of GOCE-derived gravity anomalies was performed. The spectral enhancement method was applied to avoid the spectral inconsistency between the terrestrial and the satellite data. For this purpose, contributions of the EGM2008 model and a gravitational effect of a residual terrain model were calculated.

  7. Proposal for an absolute, atomic definition of mass

    NASA Astrophysics Data System (ADS)

    Wignall, J. W. G.

    1991-11-01

    It is proposed that the mass of a particle be defined absolutely as its de Broglie frequency, measured as the mean de Broglie wavelength of the particle when it has a mean speed (v) and Lorentz factor (gamma); the masses of systems too large to have a measurable de Broglie wavelength mean are then to be derived by specifying the usual inertial and additive properties of mass. This definition avoids the use of an arbitrary macroscopic standard such as the prototype kilogram, and, if present theory is correct, does not even require the choice of a specific particle as a mass standard. Suggestions are made as to how this absolute mass can be realized and measured at the macroscopic level and, finally, some comments are made on the effect of the new definition on the form of the equations of physics.

  8. Absolute phase effects on CPMG-type pulse sequences

    NASA Astrophysics Data System (ADS)

    Mandal, Soumyajit; Oh, Sangwon; Hürlimann, Martin D.

    2015-12-01

    We describe and analyze the effects of transients within radio-frequency (RF) pulses on multiple-pulse NMR measurements such as the well-known Carr-Purcell-Meiboom-Gill (CPMG) sequence. These transients are functions of the absolute RF phases at the beginning and end of the pulse, and are thus affected by the timing of the pulse sequence with respect to the period of the RF waveform. Changes in transients between refocusing pulses in CPMG-type sequences can result in signal decay, persistent oscillations, changes in echo shape, and other effects. We have explored such effects by performing experiments in two different low-frequency NMR systems. The first uses a conventional tuned-and-matched probe circuit, while the second uses an ultra-broadband un-tuned or non-resonant probe circuit. We show that there are distinct differences between the absolute phase effects in these two systems, and present simple models that explain these differences.

  9. Henry More and the development of absolute time.

    PubMed

    Thomas, Emily

    2015-12-01

    This paper explores the nature, development and influence of the first English account of absolute time, put forward in the mid-seventeenth century by the 'Cambridge Platonist' Henry More. Against claims in the literature that More does not have an account of time, this paper sets out More's evolving account and shows that it reveals the lasting influence of Plotinus. Further, this paper argues that More developed his views on time in response to his adoption of Descartes' vortex cosmology and cosmogony, providing new evidence of More's wider project to absorb Cartesian natural philosophy into his Platonic metaphysics. Finally, this paper argues that More should be added to the list of sources that later English thinkers - including Newton and Samuel Clarke - drew on in constructing their absolute accounts of time. PMID:26568082

  10. Improved Absolute Approximation Ratios for Two-Dimensional Packing Problems

    NASA Astrophysics Data System (ADS)

    Harren, Rolf; van Stee, Rob

    We consider the two-dimensional bin packing and strip packing problem, where a list of rectangles has to be packed into a minimal number of rectangular bins or a strip of minimal height, respectively. All packings have to be non-overlapping and orthogonal, i.e., axis-parallel. Our algorithm for strip packing has an absolute approximation ratio of 1.9396 and is the first algorithm to break the approximation ratio of 2 which was established more than a decade ago. Moreover, we present a polynomial time approximation scheme (mathcal{PTAS}) for strip packing where rotations by 90 degrees are permitted and an algorithm for two-dimensional bin packing with an absolute worst-case ratio of 2, which is optimal provided mathcal{P} not= mathcal{NP}.

  11. Flow rate calibration for absolute cell counting rationale and design.

    PubMed

    Walker, Clare; Barnett, David

    2006-05-01

    There is a need for absolute leukocyte enumeration in the clinical setting, and accurate, reliable (and affordable) technology to determine absolute leukocyte counts has been developed. Such technology includes single platform and dual platform approaches. Derivations of these counts commonly incorporate the addition of a known number of latex microsphere beads to a blood sample, although it has been suggested that the addition of beads to a sample may only be required to act as an internal quality control procedure for assessing the pipetting error. This unit provides the technical details for undertaking flow rate calibration that obviates the need to add reference beads to each sample. It is envisaged that this report will provide the basis for subsequent clinical evaluations of this novel approach. PMID:18770842

  12. Enumeration of absolute cell counts using immunophenotypic techniques.

    PubMed

    Mandy, F; Brando, B

    2001-05-01

    Absolute counting of cells or cell subsets has a number of significant clinical applications: monitoring the disease status of HIV-infected patients, enumerating residual white blood cells in leukoreduced blood products, and assessing immunodeficiency in a variety of situations. The single-platform method (flow cytometry alone) has emerged as the method of choice for absolute cell enumeration. This technology counts only the cells of interest in a precisely determined blood volume. Exact cell identification is accomplished by a logical electronic gating algorithm capable of identifying lineage-specific immunofluorescent markers. Exclusion of unwanted cells is automatic. This extensive and detailed unit presents protocols for both volumetric and flow-rate determination of residual white blood cells and of leukocyte subsets. PMID:18770719

  13. Absolute calibration for a broad range single shot electron spectrometer

    NASA Astrophysics Data System (ADS)

    Glinec, Y.; Faure, J.; Guemnie-Tafo, A.; Malka, V.; Monard, H.; Larbre, J. P.; De Waele, V.; Marignier, J. L.; Mostafavi, M.

    2006-10-01

    This article gives a detailed description of a single shot electron spectrometer which was used to characterize electron beams produced by laser-plasma interaction. Contrary to conventional electron sources, electron beams from laser-plasma accelerators can produce a broad range of energies. Therefore, diagnosing these electron spectra requires specific attention and experimental development. Here, we provide an absolute calibration of the Lanex Kodak Fine screen on a laser-triggered radio frequency picosecond electron accelerator. The efficiency of scintillating screens irradiated by electron beams has never been investigated so far. This absolute calibration is then compared to charge measurements from an integrating current transformer for quasimonoenergetic electron spectra from laser-plasma interaction.

  14. Absolute GNSS Antenna Calibration at the National Geodetic Survey

    NASA Astrophysics Data System (ADS)

    Mader, G.; Bilich, A.; Geoghegan, C.

    2012-04-01

    Geodetic GNSS applications routinely demand millimeter precision and extremely high levels of accuracy. To achieve these accuracies, measurement and instrument biases at the centimeter to millimeter level must be understood. One of these biases is the antenna phase center, the apparent point of signal reception for a GNSS antenna. It has been well established that phase center patterns differ between antenna models and manufacturers; additional research suggests that the addition of a radome or the choice of antenna mount can significantly alter those a priori phase center patterns. For the more demanding GNSS positioning applications and especially in cases of mixed-antenna networks, it is all the more important to know antenna phase center variations as a function of both elevation and azimuth in the antenna reference frame and incorporate these models into analysis software. To help meet the needs of the high-precision GNSS community, the National Geodetic Survey (NGS) now operates an absolute antenna calibration facility. Located in Corbin, Virginia, this facility uses field measurements and actual GNSS satellite signals to quantitatively determine the carrier phase advance/delay introduced by the antenna element. The NGS facility was built to serve traditional NGS constituents such as the surveying and geodesy communities, however calibration services are open and available to all GNSS users as the calibration schedule permits. All phase center patterns computed by this facility will be publicly available and disseminated in both the ANTEX and NGS formats. We describe the NGS calibration facility, and discuss the observation models and strategy currently used to generate NGS absolute calibrations. We demonstrate that NGS absolute phase center variation (PCV) patterns are consistent with published values determined by other absolute antenna calibration facilities, and outline future planned refinements to the system.

  15. Engine performance and the determination of absolute ceiling

    NASA Technical Reports Server (NTRS)

    Diehl, Walter S

    1924-01-01

    This report contains a brief study of the variation of engine power with temperature and pressure. The variation of propeller efficiency in standard atmosphere is obtained from the general efficiency curve which is developed in NACA report no. 168. The variation of both power available and power required are then determined and curves plotted, so that the absolute ceiling may be read directly from any known sea-level value of the ratio of power available to power required.

  16. On the Absolute Continuity of the Blackwell Measure

    NASA Astrophysics Data System (ADS)

    Bárány, Balázs; Kolossváry, István

    2015-04-01

    In 1957, Blackwell expressed the entropy of hidden Markov chains using a measure which can be characterised as an invariant measure for an iterated function system with place-dependent weights. This measure, called the Blackwell measure, plays a central role in understanding the entropy rate and other important characteristics of fundamental models in information theory. We show that for a suitable set of parameter values the Blackwell measure is absolutely continuous for almost every parameter in the case of binary symmetric channels.

  17. Electroweak absolute, meta-, and thermal stability in neutrino mass models

    NASA Astrophysics Data System (ADS)

    Lindner, Manfred; Patel, Hiren H.; Radovčić, Branimir

    2016-04-01

    We analyze the stability of the electroweak vacuum in neutrino mass models containing right-handed neutrinos or fermionic isotriplets. In addition to considering absolute stability, we place limits on the Yukawa couplings of new fermions based on metastability and thermal stability in the early Universe. Our results reveal that the upper limits on the neutrino Yukawa couplings can change significantly when the top quark mass is allowed to vary within the experimental range of uncertainty in its determination.

  18. Successful treatment of pyogenic granuloma with injection of absolute ethanol.

    PubMed

    Ichimiya, Makoto; Yoshikawa, Yoshiaki; Hamamoto, Yoshiaki; Muto, Masahiko

    2004-04-01

    Pyogenic granuloma (PG) is a small, almost always solitary, sessile or pedunculated, raspberry-like vegetation of exuberant granulation tissue. Conservative treatment by techniques such as cryosurgery, laser surgery, and electrodesiccation are usually adequate, whereas excisional treatment can often result in noticeable scars. We attempted a different approach using an injection of absolute ethanol in five patients with recurrence due to inadequate cryosurgery. This therapy is less invasive than surgical excision and appears to be an alternative therapy for PG. PMID:15187331

  19. Diagnostic Application of Absolute Neutron Activation Analysis in Hematology

    SciTech Connect

    Zamboni, C.B.; Oliveira, L.C.; Dalaqua, L. Jr.

    2004-10-03

    The Absolute Neutron Activation Analysis (ANAA) technique was used to determine element concentrations of Cl and Na in blood of healthy group (male and female blood donators), select from Blood Banks at Sao Paulo city, to provide information which can help in diagnosis of patients. This study permitted to perform a discussion about the advantages and limitations of using this nuclear methodology in hematological examinations.

  20. Absolute intensity of radiation emitted by uranium plasmas

    NASA Technical Reports Server (NTRS)

    Jalufka, N. W.; Lee, J. H.; Mcfarland, D. R.

    1975-01-01

    The absolute intensity of radiation emitted by fissioning and nonfissioning uranium plasmas in the spectral range from 350 nm to 1000 nm was measured. The plasma was produced in a plasma-focus apparatus and the plasma properties are simular to those anticipated for plasma-core nuclear reactors. The results are expected to contribute to the establishment of design criteria for the development of plasma-core reactors.

  1. THE ABSOLUTE MAGNITUDES OF TYPE Ia SUPERNOVAE IN THE ULTRAVIOLET

    SciTech Connect

    Brown, Peter J.; Roming, Peter W. A.; Ciardullo, Robin; Gronwall, Caryl; Hoversten, Erik A.; Pritchard, Tyler; Milne, Peter; Bufano, Filomena; Mazzali, Paolo; Elias-Rosa, Nancy; Filippenko, Alexei V.; Li Weidong; Foley, Ryan J.; Hicken, Malcolm; Kirshner, Robert P.; Gehrels, Neil; Holland, Stephen T.; Immler, Stefan; Phillips, Mark M.; Still, Martin

    2010-10-01

    We examine the absolute magnitudes and light-curve shapes of 14 nearby (redshift z = 0.004-0.027) Type Ia supernovae (SNe Ia) observed in the ultraviolet (UV) with the Swift Ultraviolet/Optical Telescope. Colors and absolute magnitudes are calculated using both a standard Milky Way extinction law and one for the Large Magellanic Cloud that has been modified by circumstellar scattering. We find very different behavior in the near-UV filters (uvw1{sub rc} covering {approx}2600-3300 A after removing optical light, and u {approx} 3000-4000 A) compared to a mid-UV filter (uvm2 {approx}2000-2400 A). The uvw1{sub rc} - b colors show a scatter of {approx}0.3 mag while uvm2-b scatters by nearly 0.9 mag. Similarly, while the scatter in colors between neighboring filters is small in the optical and somewhat larger in the near-UV, the large scatter in the uvm2 - uvw1 colors implies significantly larger spectral variability below 2600 A. We find that in the near-UV the absolute magnitudes at peak brightness of normal SNe Ia in our sample are correlated with the optical decay rate with a scatter of 0.4 mag, comparable to that found for the optical in our sample. However, in the mid-UV the scatter is larger, {approx}1 mag, possibly indicating differences in metallicity. We find no strong correlation between either the UV light-curve shapes or the UV colors and the UV absolute magnitudes. With larger samples, the UV luminosity might be useful as an additional constraint to help determine distance, extinction, and metallicity in order to improve the utility of SNe Ia as standardized candles.

  2. Absolute partial decay branching-ratios in 16O

    NASA Astrophysics Data System (ADS)

    Wheldon, C.; Ashwood, N. I.; Barr, M.; Curtis, N.; Freer, M.; Kokalova, Tz; Malcolm, J. D.; Spencer, S. J.; Ziman, V. A.; Faestermann, Th; Krücken, R.; Wirth, H.-F.; Hertenberger, R.; Lutter, R.; Bergmaier, A.

    2013-04-01

    The a-transfer reaction 126C(63Li, d)168O* has been performed at a 6Li bombarding energy of 42 MeV to populate excited states in 13C and 16O. Absolute branching ratios have been unambiguously determined for states in the excitation energy range 13.85 to 15.87 MeV and reduced widths are extracted.

  3. The Electromotive Series and Other Non-Absolute Scales

    NASA Astrophysics Data System (ADS)

    Peckham, Gavin D.

    1998-01-01

    This article describes an analogy which may be used to illustrate the principles that underlie the establishment of non-absolute scales of measurements that are evaluated relative to a chosen reference point. The analogy is interwoven with the establishment of the electromotive series, but may be extended to other parameters such as the Celsius and Fahrenheit temperature scales, potential energies, formation and reaction enthalpies, etc.

  4. On the Absolutely Continuous Spectrum of Stark Operators

    NASA Astrophysics Data System (ADS)

    Perelman, Galina

    The stability of the absolutely continuous spectrum of the one-dimensional Stark operator under perturbations of the potential is discussed. The focus is on proving this stability under minimal assumptions on smoothness of the perturbation. A general criterion is presented together with some applications. These include the case of periodic perturbations where we show that any perturbation vL1()∩H-1/2() preserves the a.c. spectrum.

  5. Overspecification of color, pattern, and size: salience, absoluteness, and consistency

    PubMed Central

    Tarenskeen, Sammie; Broersma, Mirjam; Geurts, Bart

    2015-01-01

    The rates of overspecification of color, pattern, and size are compared, to investigate how salience and absoluteness contribute to the production of overspecification. Color and pattern are absolute and salient attributes, whereas size is relative and less salient. Additionally, a tendency toward consistent responses is assessed. Using a within-participants design, we find similar rates of color and pattern overspecification, which are both higher than the rate of size overspecification. Using a between-participants design, however, we find similar rates of pattern and size overspecification, which are both lower than the rate of color overspecification. This indicates that although many speakers are more likely to include color than pattern (probably because color is more salient), they may also treat pattern like color due to a tendency toward consistency. We find no increase in size overspecification when the salience of size is increased, suggesting that speakers are more likely to include absolute than relative attributes. However, we do find an increase in size overspecification when mentioning the attributes is triggered, which again shows that speakers tend to refer in a consistent manner, and that there are circumstances in which even size overspecification is frequently produced. PMID:26594190

  6. Measurement of Absolute Carbon Isotope Ratios: Mechanisms and Implications

    NASA Astrophysics Data System (ADS)

    Vogel, J. S.; Giacomo, J. A.; Dueker, S. R.

    2012-12-01

    An accelerator mass spectrometer (AMS) produced absolute isotope ratio measurements for 14C/13C as tested against >500 samples of NIST SRM-4990-C (OxII 14C standard) to an accuracy of 2.2±0.6‰ over a period of one year with measurements made to 1% counting statistics. The spectrometer is not maximized for 13C/12C, but measured ∂13C to 0.4±0.1‰ accuracy, with known methods for improvement. An AMS produces elemental anions from a sputter ion source and includes a charge-changing collision in a gas cell to isolate the rare 14C from the common isotopes and molecular isobars. Both these physical processes have been modeled to determine the parameters providing such absolute measures. Neutral resonant ionization in a cesium plasma produces mass-independent ionization, while velocity dependent charge-state distributions in gas collisions produce relative ion beam intensities that are linear in mass at specific collision energies. The mechanisms are not specific to carbon isotopes, but stand alone absolute IRMS (AIR-MS) instruments have not yet been made. Aside from the obvious applications in metrology, AIR-MS is particularly valuable in coupled separatory MS because no internal or external standards are required. Sample definition processes can be compared, even if no exact standard reference sample exists. Isotope dilution measurements do not require standards matching the dilution end-points and can be made over an extended, even extrapolated, range.

  7. Peripheral absolute threshold spectral sensitivity in retinitis pigmentosa.

    PubMed Central

    Massof, R W; Johnson, M A; Finkelstein, D

    1981-01-01

    Dark-adapted spectral sensitivities were measured in the peripheral retinas of 38 patients diagnosed as having typical retinitis pigmentosa (RP) and in 3 normal volunteers. The patients included those having autosomal dominant and autosomal recessive inheritance patterns. Results were analysed by comparisons with the CIE standard scotopic spectral visibility function and with Judd's modification of the photopic spectral visibility function, with consideration of contributions from changes in spectral transmission of preretinal media. The data show 3 general patterns. One group of patients had absolute threshold spectral sensitivities that were fit by Judd's photopic visibility curve. Absolute threshold spectral sensitivities for a second group of patients were fit by a normal scotopic spectral visibility curve. The third group of patients had absolute threshold spectral sensitivities that were fit by a combination of scotopic and photopic spectral visibility curves. The autosomal dominant and autosomal recessive modes of inheritance were represented in each group of patients. These data indicate that RP patients have normal rod and/or cone spectral sensitivities, and support the subclassification of patients described previously by Massof and Finkelstein. PMID:7459312

  8. Absolute orientations from EBSD measurements - as easy as it seems?

    NASA Astrophysics Data System (ADS)

    Kilian, Rüdiger; Bestmann, Michel; Heilbronner, Renée

    2016-04-01

    In structural geology, some problems can be addressed by inspecting the crystal orientation of grains in a rock. Deriving shear senses, kinematics of flow, information on deformation processes and recrystallization are some examples. Usually, oriented samples are taken in the field and, if inspected in an universal stage, the researcher has full control over the procedure and can make sure that the derived orientation is related to our geographic reference frame - that it is an absolute orientation. Nowadays, usage of electron backscatter diffraction (EBSD) has greatly improved the information in the derived data (fully crystal orientations, mappings, etc…), and the speed of data acquisition. However, this comes to the price of having to rely on the vendor supplied software and machine setup. Recent benchmarks and comparison of reference data revealed that for various EBSD setups around the world, the orientation data defaults to the wrong absolute orientation. The absolute orientation is not correctly derived - it commonly suffer a 180 degree rotation around the normal of the sample surface. In this contribution we will discuss the implications of such erroneous measurements and what kind of interpretations derived by orientation and texture data will be affected.

  9. Determination of absolute structure using Bayesian statistics on Bijvoet differences

    PubMed Central

    Hooft, Rob W. W.; Straver, Leo H.; Spek, Anthony L.

    2008-01-01

    A new probabilistic approach is introduced for the determination of the absolute structure of a compound which is known to be enantiopure based on Bijvoet-pair intensity differences. The new method provides relative probabilities for different models of the chiral composition of the structure. The outcome of this type of analysis can also be cast in the form of a new value, along with associated standard uncertainty, that resembles the value of the well known Flack x parameter. The standard uncertainty we obtain is often about half of the standard uncertainty in the value of the Flack x parameter. The proposed formalism is suited in particular to absolute configuration determination from diffraction data of biologically active (pharmaceutical) compounds where the strongest resonant scattering signal often comes from oxygen. It is shown that a reliable absolute configuration assignment in such cases can be made on the basis of Cu Kα data, and in some cases even with carefully measured Mo Kα data. PMID:19461838

  10. Son preference in Indian families: absolute versus relative wealth effects.

    PubMed

    Gaudin, Sylvestre

    2011-02-01

    The desire for male children is prevalent in India, where son preference has been shown to affect fertility behavior and intrahousehold allocation of resources. Economic theory predicts less gender discrimination in wealthier households, but demographers and sociologists have argued that wealth can exacerbate bias in the Indian context. I argue that these apparently conflicting theories can be reconciled and simultaneously tested if one considers that they are based on two different notions of wealth: one related to resource constraints (absolute wealth), and the other to notions of local status (relative wealth). Using cross-sectional data from the 1998-1999 and 2005-2006 National Family and Health Surveys, I construct measures of absolute and relative wealth by using principal components analysis. A series of statistical models of son preference is estimated by using multilevel methods. Results consistently show that higher absolute wealth is strongly associated with lower son preference, and the effect is 20%-40% stronger when the household's community-specific wealth score is included in the regression. Coefficients on relative wealth are positive and significant although lower in magnitude. Results are robust to using different samples, alternative groupings of households in local areas, different estimation methods, and alternative dependent variables. PMID:21302027

  11. Absolute Performance of AUSGeoid09 in Mountainous Regions

    NASA Astrophysics Data System (ADS)

    Sussanna, Vittorio; Janssen, Volker; Gibbings, Peter

    2014-09-01

    The Australian Height Datum (AHD) is the current national vertical datum for Australia, and AUSGeoid09 is the latest quasigeoid model used to compute (normal-orthometric)AHDheights fromGlobalNavigation Satellite System (GNSS) derived ellipsoidal heights. While previous studies have evaluated the AUSGeoid09 model across Australia, such studies have not focused on mountainous regions in particular. This paper investigates the performance of AUSGeoid09 in an absolute sense in the Mid Hunter and Snowy Mountains regions of New South Wales. Absolute (i.e. single point) comparisons were undertaken between AUSGeoid09-derived heights and published AHD heights. The performance of AUSGeoid09 was evaluated relative to its predecessor AUSGeoid98. In both study areas, an overall improvement is evident when applying AUSGeoid09 to compute AHD heights in an absolute sense. In the MidHunter, AUSGeoid09 provided a substantial improvement over its predecessor, clearly demonstrating the benefits of its new geometric component on GNSS-derived AHD height determination. In the Snowy Mountains, moderate improvement over AUSGeoid98 was evident. However, a slope was detected for AUSGeoid09 residuals, and it appears that the geometric component may have overcompensated for sea surface topography in this area. While this appraisal of AUSGeoid09 performance in mountainous regions is encouraging, it has been shown that some discrepancies still remain between AUSGeoid09-derived heights and AHD. Eventually, a new vertical datum will be necessary to ensure homogeneity across Australia.

  12. Neutron activation analysis of certified samples by the absolute method

    NASA Astrophysics Data System (ADS)

    Kadem, F.; Belouadah, N.; Idiri, Z.

    2015-07-01

    The nuclear reactions analysis technique is mainly based on the relative method or the use of activation cross sections. In order to validate nuclear data for the calculated cross section evaluated from systematic studies, we used the neutron activation analysis technique (NAA) to determine the various constituent concentrations of certified samples for animal blood, milk and hay. In this analysis, the absolute method is used. The neutron activation technique involves irradiating the sample and subsequently performing a measurement of the activity of the sample. The fundamental equation of the activation connects several physical parameters including the cross section that is essential for the quantitative determination of the different elements composing the sample without resorting to the use of standard sample. Called the absolute method, it allows a measurement as accurate as the relative method. The results obtained by the absolute method showed that the values are as precise as the relative method requiring the use of standard sample for each element to be quantified.

  13. Absolute length measurement using manually decided stereo correspondence for endoscopy

    NASA Astrophysics Data System (ADS)

    Sasaki, M.; Koishi, T.; Nakaguchi, T.; Tsumura, N.; Miyake, Y.

    2009-02-01

    In recent years, various kinds of endoscope have been developed and widely used to endoscopic biopsy, endoscopic operation and endoscopy. The size of the inflammatory part is important to determine a method of medical treatment. However, it is not easy to measure absolute size of inflammatory part such as ulcer, cancer and polyp from the endoscopic image. Therefore, it is required measuring the size of those part in endoscopy. In this paper, we propose a new method to measure the absolute length in a straight line between arbitrary two points based on the photogrammetry using endoscope with magnetic tracking sensor which gives camera position and angle. In this method, the stereo-corresponding points between two endoscopic images are determined by the endoscopist without any apparatus of projection and calculation to find the stereo correspondences, then the absolute length can be calculated on the basis of the photogrammetry. The evaluation experiment using a checkerboard showed that the errors of the measurements are less than 2% of the target length when the baseline is sufficiently-long.

  14. Absolute surface reconstruction by slope metrology and photogrammetry

    NASA Astrophysics Data System (ADS)

    Dong, Yue

    Developing the manufacture of aspheric and freeform optical elements requires an advanced metrology method which is capable of inspecting these elements with arbitrary freeform surfaces. In this dissertation, a new surface measurement scheme is investigated for such a purpose, which is to measure the absolute surface shape of an object under test through its surface slope information obtained by photogrammetric measurement. A laser beam propagating toward the object reflects on its surface while the vectors of the incident and reflected beams are evaluated from the four spots they leave on the two parallel transparent windows in front of the object. The spots' spatial coordinates are determined by photogrammetry. With the knowledge of the incident and reflected beam vectors, the local slope information of the object surface is obtained through vector calculus and finally yields the absolute object surface profile by a reconstruction algorithm. An experimental setup is designed and the proposed measuring principle is experimentally demonstrated by measuring the absolute surface shape of a spherical mirror. The measurement uncertainty is analyzed, and efforts for improvement are made accordingly. In particular, structured windows are designed and fabricated to generate uniform scattering spots left by the transmitted laser beams. Calibration of the fringe reflection instrument, another typical surface slope measurement method, is also reported in the dissertation. Finally, a method for uncertainty analysis of a photogrammetry measurement system by optical simulation is investigated.

  15. Bio-Inspired Stretchable Absolute Pressure Sensor Network

    PubMed Central

    Guo, Yue; Li, Yu-Hung; Guo, Zhiqiang; Kim, Kyunglok; Chang, Fu-Kuo; Wang, Shan X.

    2016-01-01

    A bio-inspired absolute pressure sensor network has been developed. Absolute pressure sensors, distributed on multiple silicon islands, are connected as a network by stretchable polyimide wires. This sensor network, made on a 4’’ wafer, has 77 nodes and can be mounted on various curved surfaces to cover an area up to 0.64 m × 0.64 m, which is 100 times larger than its original size. Due to Micro Electro-Mechanical system (MEMS) surface micromachining technology, ultrathin sensing nodes can be realized with thicknesses of less than 100 µm. Additionally, good linearity and high sensitivity (~14 mV/V/bar) have been achieved. Since the MEMS sensor process has also been well integrated with a flexible polymer substrate process, the entire sensor network can be fabricated in a time-efficient and cost-effective manner. Moreover, an accurate pressure contour can be obtained from the sensor network. Therefore, this absolute pressure sensor network holds significant promise for smart vehicle applications, especially for unmanned aerial vehicles. PMID:26729134

  16. Bio-Inspired Stretchable Absolute Pressure Sensor Network.

    PubMed

    Guo, Yue; Li, Yu-Hung; Guo, Zhiqiang; Kim, Kyunglok; Chang, Fu-Kuo; Wang, Shan X

    2016-01-01

    A bio-inspired absolute pressure sensor network has been developed. Absolute pressure sensors, distributed on multiple silicon islands, are connected as a network by stretchable polyimide wires. This sensor network, made on a 4'' wafer, has 77 nodes and can be mounted on various curved surfaces to cover an area up to 0.64 m × 0.64 m, which is 100 times larger than its original size. Due to Micro Electro-Mechanical system (MEMS) surface micromachining technology, ultrathin sensing nodes can be realized with thicknesses of less than 100 µm. Additionally, good linearity and high sensitivity (~14 mV/V/bar) have been achieved. Since the MEMS sensor process has also been well integrated with a flexible polymer substrate process, the entire sensor network can be fabricated in a time-efficient and cost-effective manner. Moreover, an accurate pressure contour can be obtained from the sensor network. Therefore, this absolute pressure sensor network holds significant promise for smart vehicle applications, especially for unmanned aerial vehicles. PMID:26729134

  17. Absolute Timing Calibration of the USA Experiment Using Pulsar Observations

    NASA Astrophysics Data System (ADS)

    Ray, P. S.; Wood, K. S.; Wolff, M. T.; Lovellette, M. N.; Sheikh, S.; Moon, D.-S.; Eikenberry, S. S.; Roberts, M.; Lyne, A.; Jordon, C.; Bloom, E. D.; Tournear, D.; Saz Parkinson, P.; Reilly, K.

    2003-03-01

    We update the status of the absolute time calibration of the USA Experiment as determined by observations of X-ray emitting rotation-powered pulsars. The brightest such source is the Crab Pulsar and we have obtained observations of the Crab at radio, IR, optical, and X-ray wavelengths. We directly compare arrival time determinations for 2--10 keV X-ray observations made contemporaneously with the PCA on the Rossi X-ray Timing Explorer and the USA Experiment on ARGOS. These two X-ray measurements employ very different means of measuring time and satellite position and thus have different systematic error budgets. The comparison with other wavelengths requires additional steps such as dispersion measure corrections and a precise definition of the ``peak'' of the light curve since the light curve shape varies with observing wavelength. We will describe each of these effects and quantify the magnitude of the systematic error that each may contribute. We will also include time comparison results for other pulsars, such as PSR B1509-58 and PSR B1821-24. Once the absolute time calibrations are well understood, comparing absolute arrival times at multiple energies can provide clues to the magnetospheric structure and emission region geometry. Basic research on X-ray Astronomy at NRL is funded by NRL/ONR.

  18. Absolute photoionization cross-section of the propargyl radical

    SciTech Connect

    Savee, John D.; Welz, Oliver; Taatjes, Craig A.; Osborn, David L.; Soorkia, Satchin; Selby, Talitha M.

    2012-04-07

    Using synchrotron-generated vacuum-ultraviolet radiation and multiplexed time-resolved photoionization mass spectrometry we have measured the absolute photoionization cross-section for the propargyl (C{sub 3}H{sub 3}) radical, {sigma}{sub propargyl}{sup ion}(E), relative to the known absolute cross-section of the methyl (CH{sub 3}) radical. We generated a stoichiometric 1:1 ratio of C{sub 3}H{sub 3} : CH{sub 3} from 193 nm photolysis of two different C{sub 4}H{sub 6} isomers (1-butyne and 1,3-butadiene). Photolysis of 1-butyne yielded values of {sigma}{sub propargyl}{sup ion}(10.213 eV)=(26.1{+-}4.2) Mb and {sigma}{sub propargyl}{sup ion}(10.413 eV)=(23.4{+-}3.2) Mb, whereas photolysis of 1,3-butadiene yielded values of {sigma}{sub propargyl}{sup ion}(10.213 eV)=(23.6{+-}3.6) Mb and {sigma}{sub propargyl}{sup ion}(10.413 eV)=(25.1{+-}3.5) Mb. These measurements place our relative photoionization cross-section spectrum for propargyl on an absolute scale between 8.6 and 10.5 eV. The cross-section derived from our results is approximately a factor of three larger than previous determinations.

  19. Uncertainty Quantification in Climate Modeling

    NASA Astrophysics Data System (ADS)

    Sargsyan, K.; Safta, C.; Berry, R.; Debusschere, B.; Najm, H.

    2011-12-01

    We address challenges that sensitivity analysis and uncertainty quantification methods face when dealing with complex computational models. In particular, climate models are computationally expensive and typically depend on a large number of input parameters. We consider the Community Land Model (CLM), which consists of a nested computational grid hierarchy designed to represent the spatial heterogeneity of the land surface. Each computational cell can be composed of multiple land types, and each land type can incorporate one or more sub-models describing the spatial and depth variability. Even for simulations at a regional scale, the computational cost of a single run is quite high and the number of parameters that control the model behavior is very large. Therefore, the parameter sensitivity analysis and uncertainty propagation face significant difficulties for climate models. This work employs several algorithmic avenues to address some of the challenges encountered by classical uncertainty quantification methodologies when dealing with expensive computational models, specifically focusing on the CLM as a primary application. First of all, since the available climate model predictions are extremely sparse due to the high computational cost of model runs, we adopt a Bayesian framework that effectively incorporates this lack-of-knowledge as a source of uncertainty, and produces robust predictions with quantified uncertainty even if the model runs are extremely sparse. In particular, we infer Polynomial Chaos spectral expansions that effectively encode the uncertain input-output relationship and allow efficient propagation of all sources of input uncertainties to outputs of interest. Secondly, the predictability analysis of climate models strongly suffers from the curse of dimensionality, i.e. the large number of input parameters. While single-parameter perturbation studies can be efficiently performed in a parallel fashion, the multivariate uncertainty analysis

  20. The new Absolute Quantum Gravimeter (AQG): first results and perspectives

    NASA Astrophysics Data System (ADS)

    Bonvalot, Sylvain; Le Moigne, Nicolas; Merlet, Sebastien; Desruelle, Bruno; Lautier-Gaud, Jean; Menoret, Vincent; Vermeulen, Pierre

    2016-04-01

    Cold atom gravimetry represents one of the most innovative evolution in gravity instrumentation since the last 20 years. The concept of measuring the gravitational acceleration by dropping atoms and the development of the first instrumental devices during this last decade quickly revealed the promising perspectives of this new generation of gravity meters enabling accurate and absolute measurements of the Earth's gravity field for a wide range of applications (geophysics, geodesy, metrology, etc.). The Absolute Quantum Gravimeter (AQG) gravity meter, developed by MUQUANS (Talence, France - http://www.muquans.com/) with the support of RESIF, the French Seismologic and Geodetic Network (http://www.resif.fr/) belongs to this new generation of instruments. It also represents the first commercial device based on the utilization of advanced matter-wave interferometry techniques, which allow to characterize precisely the vertical acceleration experienced by a cloud of cold atoms. Recently, the first operational unit (AQG01) has been achieved as a compact transportable gravimeter with the aim of satisfying absolute gravity measurements in laboratory conditions under the following specifications: measurements the μGal level at a few Hz cycling frequency, sensitivity of 50μGal/√Hz, immunity to ground vibrations, easy and quickness of operation, automated continuous data acquisition for several months, etc. In order to evaluate the current performances of the AQG01, several experiments are carried out in collaboration between RESIF user's teams and the MUQUANS manufacturer on different reference gravity sites and laboratories in France. These measurements performed in indoor conditions including simultaneous observations with classical reference gravity instruments (corner-cube absolute gravity meters, relative superconducting meters) as well with the Cold Atom Gravity meter (CAG) developed by LNE-SYRTE, lead to a first objective characterization of the performances of

  1. Separation and quantification of microalgal carbohydrates.

    PubMed

    Templeton, David W; Quinn, Matthew; Van Wychen, Stefanie; Hyman, Deborah; Laurens, Lieve M L

    2012-12-28

    Structural carbohydrates can constitute a large fraction of the dry weight of algal biomass and thus accurate identification and quantification is important for summative mass closure. Two limitations to the accurate characterization of microalgal carbohydrates are the lack of a robust analytical procedure to hydrolyze polymeric carbohydrates to their respective monomers and the subsequent identification and quantification of those monosaccharides. We address the second limitation, chromatographic separation of monosaccharides, here by identifying optimum conditions for the resolution of a synthetic mixture of 13 microalgae-specific monosaccharides, comprised of 8 neutral, 2 amino sugars, 2 uronic acids and 1 alditol (myo-inositol as an internal standard). The synthetic 13-carbohydrate mix showed incomplete resolution across 11 traditional high performance liquid chromatography (HPLC) methods, but showed improved resolution and accurate quantification using anion exchange chromatography (HPAEC) as well as alditol acetate derivatization followed by gas chromatography (for the neutral- and amino-sugars only). We demonstrate the application of monosaccharide quantification using optimized chromatography conditions after sulfuric acid analytical hydrolysis for three model algae strains and compare the quantification and complexity of monosaccharides in analytical hydrolysates relative to a typical terrestrial feedstock, sugarcane bagasse. PMID:23177152

  2. Carotid intraplaque neovascularization quantification software (CINQS).

    PubMed

    Akkus, Zeynettin; van Burken, Gerard; van den Oord, Stijn C H; Schinkel, Arend F L; de Jong, Nico; van der Steen, Antonius F W; Bosch, Johan G

    2015-01-01

    Intraplaque neovascularization (IPN) is an important biomarker of atherosclerotic plaque vulnerability. As IPN can be detected by contrast enhanced ultrasound (CEUS), imaging-biomarkers derived from CEUS may allow early prediction of plaque vulnerability. To select the best quantitative imaging-biomarkers for prediction of plaque vulnerability, a systematic analysis of IPN with existing and new analysis algorithms is necessary. Currently available commercial contrast quantification tools are not applicable for quantitative analysis of carotid IPN due to substantial motion of the carotid artery, artifacts, and intermittent perfusion of plaques. We therefore developed a specialized software package called Carotid intraplaque neovascularization quantification software (CINQS). It was designed for effective and systematic comparison of sets of quantitative imaging biomarkers. CINQS includes several analysis algorithms for carotid IPN quantification and overcomes the limitations of current contrast quantification tools and existing carotid IPN quantification approaches. CINQS has a modular design which allows integrating new analysis tools. Wizard-like analysis tools and its graphical-user-interface facilitate its usage. In this paper, we describe the concept, analysis tools, and performance of CINQS and present analysis results of 45 plaques of 23 patients. The results in 45 plaques showed excellent agreement with visual IPN scores for two quantitative imaging-biomarkers (The area under the receiver operating characteristic curve was 0.92 and 0.93). PMID:25561454

  3. Quantification of sweat gland innervation

    PubMed Central

    Gibbons, Christopher H.; Illigens, Ben M. W.; Wang, Ningshan; Freeman, Roy

    2009-01-01

    Objective: To evaluate a novel method to quantify the density of nerve fibers innervating sweat glands in healthy control and diabetic subjects, to compare the results to an unbiased stereologic technique, and to identify the relationship to standardized physical examination and patient-reported symptom scores. Methods: Thirty diabetic and 64 healthy subjects had skin biopsies performed at the distal leg and distal and proximal thigh. Nerve fibers innervating sweat glands, stained with PGP 9.5, were imaged by light microscopy. Sweat gland nerve fiber density (SGNFD) was quantified by manual morphometry. As a gold standard, three additional subjects had biopsies analyzed by confocal microscopy using unbiased stereologic quantification. Severity of neuropathy was measured by standardized instruments including the Neuropathy Impairment Score in the Lower Limb (NIS-LL) while symptoms were measured by the Michigan Neuropathy Screening Instrument. Results: Manual morphometry increased with unbiased stereology (r = 0.93, p < 0.01). Diabetic subjects had reduced SGNFD compared to controls at the distal leg (p < 0.001), distal thigh (p < 0.01), and proximal thigh (p < 0.05). The SGNFD at the distal leg of diabetic subjects decreased as the NIS-LL worsened (r = −0.89, p < 0.001) and was concordant with symptoms of reduced sweat production (p < 0.01). Conclusions: We describe a novel method to quantify the density of nerve fibers innervating sweat glands. The technique differentiates groups of patients with mild diabetic neuropathy from healthy control subjects and correlates with both physical examination scores and symptoms relevant to sudomotor dysfunction. This method provides a reliable structural measure of sweat gland innervation that complements the investigation of small fiber neuropathies. GLOSSARY AOI = area of interest; CI = confidence interval; ICC = intraclass correlation coefficient; IENFD = intraepidermal nerve fiber density; IgG = immunoglobulin G; NIS

  4. Quantification and pharmacokinetics of crizotinib in rats by liquid chromatography-tandem mass spectrometry.

    PubMed

    Qiu, Feng; Gu, Yanan; Wang, Tingting; Gao, Yingying; Li, Xiao; Gao, Xiangyu; Cheng, Shan

    2016-06-01

    Crizotinib is a small molecule inhibitor of anaplastic lymphoma kinase (ALK) and can be used to treat ALK-positive nonsmall-cell lung cancer. A rapid and simple high-performance liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed and validated for the quantification of crizotinib in rat plasma using a chemical synthetic compound buspirone as the internal standard (IS). The plasma samples were pretreated by a simple protein precipitation with methanol-acetonitrile (1:1, v/v). Chromatographic separation was successfully achieved on an Agilent Zorbax XDB C18 column (2.1 × 50 mm, 3.5 µm). The gradient elution system was composed of 0.1% formic acid aqueous solution and 0.1% formic acid in methanol solution. The flow rate was set at 0.50 mL/min. The multiple reaction monitoring was based on the transitions of m/z = 450.3 → 177.1 for crizotinib and 386.2 → 122.2 for buspirone (IS). The assay was successfully validated to demonstrate the selectivity, matrix effect, linearity, lower limit of quantification, accuracy, precision, recovery and stability according to the international guidelines. The lower limit of quantification was 1.00 ng/mL in 50 μL of rat plasma. This LC-MS/MS assay was successfully applied to the quantification and pharmacokinetic study of crizotinib in rats after intravenous and oral administration of crizotinib. The oral absolute bioavailability of crizotinib in rats was 68.6 ± 9.63%. Copyright © 2015 John Wiley & Sons, Ltd. PMID:26467669

  5. Validation of a digital PCR method for quantification of DNA copy number concentrations by using a certified reference material.

    PubMed

    Deprez, Liesbet; Corbisier, Philippe; Kortekaas, Anne-Marie; Mazoua, Stéphane; Beaz Hidalgo, Roxana; Trapmann, Stefanie; Emons, Hendrik

    2016-09-01

    Digital PCR has become the emerging technique for the sequence-specific detection and quantification of nucleic acids for various applications. During the past years, numerous reports on the development of new digital PCR methods have been published. Maturation of these developments into reliable analytical methods suitable for diagnostic or other routine testing purposes requires their validation for the intended use. Here, the results of an in-house validation of a droplet digital PCR method are presented. This method is intended for the quantification of the absolute copy number concentration of a purified linearized plasmid in solution with a nucleic acid background. It has been investigated which factors within the measurement process have a significant effect on the measurement results, and the contribution to the overall measurement uncertainty has been estimated. A comprehensive overview is provided on all the aspects that should be investigated when performing an in-house method validation of a digital PCR method. PMID:27617230

  6. Quantification of low-expressed mRNA using 5' LNA-containing real-time PCR primers

    SciTech Connect

    Malgoyre, A.; Banzet, S.; Mouret, C.; Bigard, A.X.; Peinnequin, A. . E-mail: andrepeinnequin@crssa.net

    2007-03-02

    Real-time RT-PCR is the most sensitive and accurate method for mRNA quantification. Using specific recombinant DNA as a template, real-time PCR allows accurate quantification within a 7-log range and increased sensitivity below 10 copies. However, when using RT-PCR to quantify mRNA in biological samples, a stochastic off-targeted amplification can occur. Classical adjustments of assay parameters have minimal effects on such amplification. This undesirable amplification appears mostly to be dependent on specific to non-specific target ratio rather than on the absolute quantity of the specific target. This drawback, which decreases assay reliability, mostly appears when quantifying low-expressed transcript in a whole organ. An original primer design using properties of LNA allows to block off-target amplification. 5'-LNA substitution strengthens 5'-hybridization. Consequently on-target hybridization is stabilized and the probability for the off-target to lead to amplification is decreased.

  7. Tumor Quantification in Clinical Positron Emission Tomography

    PubMed Central

    Bai, Bing; Bading, James; Conti, Peter S

    2013-01-01

    Positron emission tomography (PET) is used extensively in clinical oncology for tumor detection, staging and therapy response assessment. Quantitative measurements of tumor uptake, usually in the form of standardized uptake values (SUVs), have enhanced or replaced qualitative interpretation. In this paper we review the current status of tumor quantification methods and their applications to clinical oncology. Factors that impede quantitative assessment and limit its accuracy and reproducibility are summarized, with special emphasis on SUV analysis. We describe current efforts to improve the accuracy of tumor uptake measurements, characterize overall metabolic tumor burden and heterogeneity of tumor uptake, and account for the effects of image noise. We also summarize recent developments in PET instrumentation and image reconstruction and their impact on tumor quantification. Finally, we offer our assessment of the current development needs in PET tumor quantification, including practical techniques for fully quantitative, pharmacokinetic measurements. PMID:24312151

  8. GNSS Absolute Antenna Calibration at the National Geodetic Survey

    NASA Astrophysics Data System (ADS)

    Bilich, A. L.; Mader, G. L.

    2009-12-01

    GNSS applications now routinely demand measurement and instrument biases at the centimeter to millimeter level in order to achieve the high precision and accuracy required for geodetic position solutions. One of these biases is the antenna phase center, the point of signal reception for a GNSS antenna. It has been well established that phase center patterns differ between antenna models and manufacturers; additional research suggests that the addition of a radome or the choice of antenna mount can significantly alter those a priori phase center patterns. As baseline lengths increase, or with antenna mixing, phase center effects on carrier phase data become more pronounced. To meet the needs of the high-precision GNSS community, the National Geodetic Survey (NGS) has constructed an absolute antenna calibration facility which uses field measurements and actual GNSS satellite signals to determine antenna phase center patterns. A pan/tilt motor changes the orientation of the antenna under test; signals are received at a wide range of angles, allowing computation of a robust phase center pattern. Ultimately, this facility will be used to measure antenna phase center variations of commonly-used geodetic GNSS antennas, as well as antennas submitted by users. The phase center patterns will be publicly available and disseminated in both the ANTEX and NGS formats. We provide information on the observation models and strategy currently used to generate NGS absolute calibrations, and propose some future refinements. We discuss the multipath mitigation strategy currently in use, and provide examples of antenna calibrations from the NGS facility. These examples are compared to the NGS relative calibrations as well as absolute calibrations generated by other organizations.

  9. Morphology and Absolute Magnitudes of the SDSS DR7 QSOs

    NASA Astrophysics Data System (ADS)

    Coelho, B.; Andrei, A. H.; Antón, S.

    2014-10-01

    The ESA mission Gaia will furnish a complete census of the Milky Way, delivering astrometrics, dynamics, and astrophysics information for 1 billion stars. Operating in all-sky repeated survey mode, Gaia will also provide measurements of extra-galactic objects. Among the later there will be at least 500,000 QSOs that will be used to build the reference frame upon which the several independent observations will be combined and interpreted. Not all the QSOs are equally suited to fulfill this role of fundamental, fiducial grid-points. Brightness, morphology, and variability define the astrometric error budget for each object. We made use of 3 morphological parameters based on the PSF sharpness, circularity and gaussianity, which enable us to distinguish the "real point-like" QSOs. These parameters are being explored on the spectroscopically certified QSOs of the SDSS DR7, to compare the performance against other morphology classification schemes, as well as to derive properties of the host galaxy. We present a new method, based on the Gaia quasar database, to derive absolute magnitudes, on the SDSS filters domain. The method can be extrapolated all over the optical window, including the Gaia filters. We discuss colors derived from SDSS apparent magnitudes and colors based on absolute magnitudes that we obtained tanking into account corrections for dust extinction, either intergalactic or from the QSO host, and for the Lyman α forest. In the future we want to further discuss properties of the host galaxies, comparing for e.g. the obtained morphological classification with the color, the apparent and absolute magnitudes, and the redshift distributions.

  10. Absolute dose calculations for Monte Carlo simulations of radiotherapy beams.

    PubMed

    Popescu, I A; Shaw, C P; Zavgorodni, S F; Beckham, W A

    2005-07-21

    Monte Carlo (MC) simulations have traditionally been used for single field relative comparisons with experimental data or commercial treatment planning systems (TPS). However, clinical treatment plans commonly involve more than one field. Since the contribution of each field must be accurately quantified, multiple field MC simulations are only possible by employing absolute dosimetry. Therefore, we have developed a rigorous calibration method that allows the incorporation of monitor units (MU) in MC simulations. This absolute dosimetry formalism can be easily implemented by any BEAMnrc/DOSXYZnrc user, and applies to any configuration of open and blocked fields, including intensity-modulated radiation therapy (IMRT) plans. Our approach involves the relationship between the dose scored in the monitor ionization chamber of a radiotherapy linear accelerator (linac), the number of initial particles incident on the target, and the field size. We found that for a 10 x 10 cm2 field of a 6 MV photon beam, 1 MU corresponds, in our model, to 8.129 x 10(13) +/- 1.0% electrons incident on the target and a total dose of 20.87 cGy +/- 1.0% in the monitor chambers of the virtual linac. We present an extensive experimental verification of our MC results for open and intensity-modulated fields, including a dynamic 7-field IMRT plan simulated on the CT data sets of a cylindrical phantom and of a Rando anthropomorphic phantom, which were validated by measurements using ionization chambers and thermoluminescent dosimeters (TLD). Our simulation results are in excellent agreement with experiment, with percentage differences of less than 2%, in general, demonstrating the accuracy of our Monte Carlo absolute dose calculations. PMID:16177516

  11. Absolute versus relative ascertainment of pedophilia in men.

    PubMed

    Blanchard, Ray; Kuban, Michael E; Blak, Thomas; Cantor, James M; Klassen, Philip E; Dickey, Robert

    2009-12-01

    There are at least two different criteria for assessing pedophilia in men: absolute ascertainment (their sexual interest in children is intense) and relative ascertainment (their sexual interest in children is greater than their interest in adults). The American Psychiatric Association's Diagnostic and Statistical Manual of Mental Disorders, 3rd edition (DSM-III) used relative ascertainment in its diagnostic criteria for pedophilia; this was abandoned and replaced by absolute ascertainment in the DSM-III-R and all subsequent editions. The present study was conducted to demonstrate the continuing need for relative ascertainment, particularly in the laboratory assessment of pedophilia. A total of 402 heterosexual men were selected from a database of patients referred to a specialty clinic. These had undergone phallometric testing, a psychophysiological procedure in which their penile blood volume was monitored while they were presented with a standardized set of laboratory stimuli depicting male and female children, pubescents, and adults.The 130 men selected for the Teleiophilic Profile group responded substantially to prepubescent girls but even more to adult women; the 272 men selected for the Pedophilic Profile group responded weakly to prepubescent girls but even less to adult women. In terms of absolute magnitude, every patient in the Pedophilic Profile group had a lesser penile response to prepubescent girls than every patient in the Teleiophilic Profile group. Nevertheless, the Pedophilic Profile group had a significantly greater number of known sexual offenses against prepubescent girls, indicating that they contained a higher proportion of true pedophiles. These results dramatically demonstrate the utility-or perhaps necessity-of relative ascertainment in the laboratory assessment of erotic age-preference. PMID:19901237

  12. Absolute dose calculations for Monte Carlo simulations of radiotherapy beams

    NASA Astrophysics Data System (ADS)

    Popescu, I. A.; Shaw, C. P.; Zavgorodni, S. F.; Beckham, W. A.

    2005-07-01

    Monte Carlo (MC) simulations have traditionally been used for single field relative comparisons with experimental data or commercial treatment planning systems (TPS). However, clinical treatment plans commonly involve more than one field. Since the contribution of each field must be accurately quantified, multiple field MC simulations are only possible by employing absolute dosimetry. Therefore, we have developed a rigorous calibration method that allows the incorporation of monitor units (MU) in MC simulations. This absolute dosimetry formalism can be easily implemented by any BEAMnrc/DOSXYZnrc user, and applies to any configuration of open and blocked fields, including intensity-modulated radiation therapy (IMRT) plans. Our approach involves the relationship between the dose scored in the monitor ionization chamber of a radiotherapy linear accelerator (linac), the number of initial particles incident on the target, and the field size. We found that for a 10 × 10 cm2 field of a 6 MV photon beam, 1 MU corresponds, in our model, to 8.129 × 1013 ± 1.0% electrons incident on the target and a total dose of 20.87 cGy ± 1.0% in the monitor chambers of the virtual linac. We present an extensive experimental verification of our MC results for open and intensity-modulated fields, including a dynamic 7-field IMRT plan simulated on the CT data sets of a cylindrical phantom and of a Rando anthropomorphic phantom, which were validated by measurements using ionization chambers and thermoluminescent dosimeters (TLD). Our simulation results are in excellent agreement with experiment, with percentage differences of less than 2%, in general, demonstrating the accuracy of our Monte Carlo absolute dose calculations.

  13. On the convective-absolute nature of river bedform instabilities

    NASA Astrophysics Data System (ADS)

    Vesipa, Riccardo; Camporeale, Carlo; Ridolfi, Luca; Chomaz, Jean Marc

    2014-12-01

    River dunes and antidunes are induced by the morphological instability of stream-sediment boundary. Such bedforms raise a number of subtle theoretical questions and are crucial for many engineering and environmental problems. Despite their importance, the absolute/convective nature of the instability has never been addressed. The present work fills this gap as we demonstrate, by the cusp map method, that dune instability is convective for all values of the physical control parameters, while the antidune instability exhibits both behaviors. These theoretical predictions explain some previous experimental and numerical observations and are important to correctly plan flume experiments, numerical simulations, paleo-hydraulic reconstructions, and river works.

  14. Strategy for the absolute neutron emission measurement on ITER

    SciTech Connect

    Sasao, M.; Bertalot, L.; Ishikawa, M.; Popovichev, S.

    2010-10-15

    Accuracy of 10% is demanded to the absolute fusion measurement on ITER. To achieve this accuracy, a functional combination of several types of neutron measurement subsystem, cross calibration among them, and in situ calibration are needed. Neutron transport calculation shows the suitable calibration source is a DT/DD neutron generator of source strength higher than 10{sup 10} n/s (neutron/second) for DT and 10{sup 8} n/s for DD. It will take eight weeks at the minimum with this source to calibrate flux monitors, profile monitors, and the activation system.

  15. Absolute spectrophotometry of Neptune - 3390 to 7800 A

    NASA Astrophysics Data System (ADS)

    Bergstralh, J. T.; Neff, J. S.

    1983-07-01

    Absolute spectrophotometry of Neptune from 3390 to 7800 Å, with spectral resolution of 10 Å in the interval 3390 - 6055 and 20 Å in the interval 6055 - 7800 Å, is reported. The results are compared with filter photometry (Appleby, 1973; Wamsteker, 1973; Savage et al., 1980) and with synthetic spectra computed on the basis of a parameterization proposed by Podolak and Danielson (1977) for aerosol scattering and absorption. A CH4/H2 ratio is derived for the convectively mixed part of Neptune's atmosphere, and constrains optical properties of hypothetical aerosol layers.

  16. Prelaunch absolute radiometric calibration of LANDSAT-4 protoflight Thematic Mapper

    NASA Technical Reports Server (NTRS)

    Barker, J. L.; Ball, D. L.; Leung, K. C.; Walker, J. A.

    1984-01-01

    Results are summarized and analyzed from several prelaunch tests with a 122 cm integrating sphere used as part of the absolute radiometric calibration experiments for the protoflight TM sensor carried on the LANDSAT-4 satellite. The calibration procedure is presented and the radiometric sensitivity of the TM is assessed. The internal calibrator and dynamic range after calibration are considered. Tables show dynamic range after ground processing, spectral radiance to digital number and digital number to spectral radiance values for TM bands 1, 2, 3, 4, 5, 7 and for channel 4 of band 6.

  17. Method of differential-phase/absolute-amplitude QAM

    DOEpatents

    Dimsdle, Jeffrey William

    2007-07-03

    A method of quadrature amplitude modulation involving encoding phase differentially and amplitude absolutely, allowing for a high data rate and spectral efficiency in data transmission and other communication applications, and allowing for amplitude scaling to facilitate data recovery; amplitude scale tracking to track-out rapid and severe scale variations and facilitate successful demodulation and data retrieval; 2.sup.N power carrier recovery; incoherent demodulation where coherent carrier recovery is not possible or practical due to signal degradation; coherent demodulation; multipath equalization to equalize frequency dependent multipath; and demodulation filtering.

  18. Method of differential-phase/absolute-amplitude QAM

    DOEpatents

    Dimsdle, Jeffrey William

    2008-10-21

    A method of quadrature amplitude modulation involving encoding phase differentially and amplitude absolutely, allowing for a high data rate and spectral efficiency in data transmission and other communication applications, and allowing for amplitude scaling to facilitate data recovery; amplitude scale tracking to track-out rapid and severe scale variations and facilitate successful demodulation and data retrieval; 2.sup.N power carrier recovery; incoherent demodulation where coherent carrier recovery is not possible or practical due to signal degradation; coherent demodulation; multipath equalization to equalize frequency dependent multipath; and demodulation filtering.

  19. Method of differential-phase/absolute-amplitude QAM

    DOEpatents

    Dimsdle, Jeffrey William

    2007-07-17

    A method of quadrature amplitude modulation involving encoding phase differentially and amplitude absolutely, allowing for a high data rate and spectral efficiency in data transmission and other communication applications, and allowing for amplitude scaling to facilitate data recovery; amplitude scale tracking to track-out rapid and severe scale variations and facilitate successful demodulation and data retrieval; 2.sup.N power carrier recovery; incoherent demodulation where coherent carrier recovery is not possible or practical due to signal degradation; coherent demodulation; multipath equalization to equalize frequency dependent multipath; and demodulation filtering.

  20. Method of differential-phase/absolute-amplitude QAM

    DOEpatents

    Dimsdle, Jeffrey William

    2007-10-02

    A method of quadrature amplitude modulation involving encoding phase differentially and amplitude absolutely, allowing for a high data rate and spectral efficiency in data transmission and other communication applications, and allowing for amplitude scaling to facilitate data recovery; amplitude scale tracking to track-out rapid and severe scale variations and facilitate successful demodulation and data retrieval; 2.sup.N power carrier recovery; incoherent demodulation where coherent carrier recovery is not possible or practical due to signal degradation; coherent demodulation; multipath equalization to equalize frequency dependent multipath; and demodulation filtering.

  1. Method of differential-phase/absolute-amplitude QAM

    DOEpatents

    Dimsdle, Jeffrey William

    2009-09-01

    A method of quadrature amplitude modulation involving encoding phase differentially and amplitude absolutely, allowing for a high data rate and spectral efficiency in data transmission and other communication applications, and allowing for amplitude scaling to facilitate data recovery; amplitude scale tracking to track-out rapid and severe scale variations and facilitate successful demodulation and data retrieval; 2.sup.N power carrier recovery; incoherent demodulation where coherent carrier recovery is not possible or practical due to signal degradation; coherent demodulation; multipath equalization to equalize frequency dependent multipath; and demodulation filtering.

  2. Stability of array spectroradiometers and their suitability for absolute calibrations

    NASA Astrophysics Data System (ADS)

    Nevas, Saulius; Teuber, Annette; Sperling, Armin; Lindemann, Matthias

    2012-04-01

    An investigation of the short- and long-term stability of various low-end and high-end array spectroradiometers is presented. Potentially weak points of array spectroradiometers with respect to their suitability for absolute calibrations are pointed out. The influence of ambient conditions on relevant instrumental characteristics and their temporal stability is discussed. It is shown that the temporal stability of some instruments can be significantly affected by high ambient humidity. Most important ambient temperature effects on instrument properties are also discussed.

  3. Absolute photoionization cross-section of the methyl radical.

    SciTech Connect

    Taatjes, C. A.; Osborn, D. L.; Selby, T.; Meloni, G.; Fan, H.; Pratt, S. T.; Chemical Sciences and Engineering Division; SNL

    2008-01-01

    The absolute photoionization cross-section of the methyl radical has been measured using two completely independent methods. The CH{sub 3} photoionization cross-section was determined relative to that of acetone and methyl vinyl ketone at photon energies of 10.2 and 11.0 eV by using a pulsed laser-photolysis/time-resolved synchrotron photoionization mass spectrometry method. The time-resolved depletion of the acetone or methyl vinyl ketone precursor and the production of methyl radicals following 193 nm photolysis are monitored simultaneously by using time-resolved synchrotron photoionization mass spectrometry. Comparison of the initial methyl signal with the decrease in precursor signal, in combination with previously measured absolute photoionization cross-sections of the precursors, yields the absolute photoionization cross-section of the methyl radical; {sigma}{sub CH}(10.2 eV) = (5.7 {+-} 0.9) x 10{sup -18} cm{sup 2} and {sigma}{sub CH{sub 3}}(11.0 eV) = (6.0 {+-} 2.0) x 10{sup -18} cm{sup 2}. The photoionization cross-section for vinyl radical determined by photolysis of methyl vinyl ketone is in good agreement with previous measurements. The methyl radical photoionization cross-section was also independently measured relative to that of the iodine atom by comparison of ionization signals from CH{sub 3} and I fragments following 266 nm photolysis of methyl iodide in a molecular-beam ion-imaging apparatus. These measurements gave a cross-section of (5.4 {+-} 2.0) x 10{sup -18} cm{sup 2} at 10.460 eV, (5.5 {+-} 2.0) x 10{sup -18} cm{sup 2} at 10.466 eV, and (4.9 {+-} 2.0) x 10{sup -18} cm{sup 2} at 10.471 eV. The measurements allow relative photoionization efficiency spectra of methyl radical to be placed on an absolute scale and will facilitate quantitative measurements of methyl concentrations by photoionization mass spectrometry.

  4. Albendazole sulfoxide enantiomers: preparative chiral separation and absolute stereochemistry.

    PubMed

    Lourenço, Tiago C; Batista, João M; Furlan, Maysa; He, Yanan; Nafie, Laurence A; Santana, Cesar C; Cass, Quezia B

    2012-03-23

    The enantiomeric separation of albendazole sulfoxide was carried out by simulated moving bed chromatography with variable zones (VARICOL). An overall recovery of 97% was achieved and enantiomeric ratios of 99.5% for raffinate and 99.0% for extract were attained. A total of 880 mg of (+)-albendazol sulfoxide and 930 mg of its antipode were collected after 55 cycles or 11 h of process, resulting in a mass rate of 2 g/day. Furthermore the absolute configuration of the enantiopure compounds was determined for the first time by vibrational circular dichroism (VCD) with the aid of theoretical calculations as (-)-(S) and (+)-(R)-albendazole sulfoxide. PMID:22341660

  5. Absolute magnetic helicity and the cylindrical magnetic field

    NASA Astrophysics Data System (ADS)

    Low, B. C.

    2011-05-01

    The different magnetic helicities conserved under conditions of perfect electrical conductivity are expressions of the fundamental property that every evolving fluid surface conserves its net magnetic flux. This basic hydromagnetic point unifies the well known Eulerian helicities with the Lagrangian helicity defined by the conserved fluxes frozen into a prescribed set of disjoint toroidal tubes of fluid flowing as a permanent partition of the entire fluid [B. C. Low, Astrophys. J. 649, 1064 (2006)]. This unifying theory is constructed from first principles, beginning with an analysis of the Eulerian and Lagrangian descriptions of fluids, separating the ideas of fluid and magnetic-flux tubes and removing the complication of the magnetic vector potential's free gauge from the concept of helicity. The analysis prepares for the construction of a conserved Eulerian helicity, without that gauge complication, to describe a 3D anchored flux in an upright cylindrical domain, this helicity called absolute to distinguish it from the well known relative helicity. In a version of the Chandrasekhar-Kendall representation, the evolving field at any instant is a unique superposition of a writhed, untwisted axial flux with a circulating flux of field lines all closed and unlinked within the cylindrical domain. The absolute helicity is then a flux-weighted sum of the writhe of that axial flux and its mutual linkage with the circulating flux. The absolute helicity is also conserved if the frozen-in field and its domain are continuously deformed by changing the separation between the rigid cylinder-ends with no change of cylinder radius. This hitherto intractable cylindrical construction closes a crucial conceptual gap for the fundamentals to be complete at last. The concluding discussion shows the impact of this development on our understanding of helicity, covering (i) the helicities of wholly contained and anchored fields; (ii) the Eulerian and Lagrangian descriptions of field

  6. Testing and evaluation of thermal cameras for absolute temperature measurement

    NASA Astrophysics Data System (ADS)

    Chrzanowski, Krzysztof; Fischer, Joachim; Matyszkiel, Robert

    2000-09-01

    The accuracy of temperature measurement is the most important criterion for the evaluation of thermal cameras used in applications requiring absolute temperature measurement. All the main international metrological organizations currently propose a parameter called uncertainty as a measure of measurement accuracy. We propose a set of parameters for the characterization of thermal measurement cameras. It is shown that if these parameters are known, then it is possible to determine the uncertainty of temperature measurement due to only the internal errors of these cameras. Values of this uncertainty can be used as an objective criterion for comparisons of different thermal measurement cameras.

  7. Precision Absolute Beam Current Measurement of Low Power Electron Beam

    SciTech Connect

    Ali, M. M.; Bevins, M. E.; Degtiarenko, P.; Freyberger, A.; Krafft, G. A.

    2012-11-01

    Precise measurements of low power CW electron beam current for the Jefferson Lab Nuclear Physics program have been performed using a Tungsten calorimeter. This paper describes the rationale for the choice of the calorimeter technique, as well as the design and calibration of the device. The calorimeter is in use presently to provide a 1% absolute current measurement of CW electron beam with 50 to 500 nA of average beam current and 1-3 GeV beam energy. Results from these recent measurements will also be presented.

  8. Spatially resolved absolute spectrophotometry of Saturn - 3390 to 8080 A

    NASA Technical Reports Server (NTRS)

    Bergstralh, J. T.; Diner, D. J.; Baines, K. H.; Neff, J. S.; Allen, M. A.; Orton, G. S.

    1981-01-01

    A series of spatially resolved absolute spectrophotometric measurements of Saturn was conducted for the expressed purpose of calibrating the data obtained with the Imaging Photopolarimeter (IPP) on Pioneer 11 during its recent encounter with Saturn. All observations reported were made at the Mt. Wilson 1.5-m telescope, using a 1-m Ebert-Fastie scanning spectrometer. Spatial resolution was 1.92 arcsec. Photometric errors are considered, taking into account the fixed error, the variable error, and the composite error. The results are compared with earlier observations, as well as with synthetic spectra derived from preliminary physical models, giving attention to the equatorial region and the South Temperate Zone.

  9. Verification of Absolute Calibration of Quantum Efficiency for LSST CCDs

    NASA Astrophysics Data System (ADS)

    Coles, Rebecca; Chiang, James; Cinabro, David; Gilbertson, Woodrow; Haupt, justine; Kotov, Ivan; Neal, Homer; Nomerotski, Andrei; O'Connor, Paul; Stubbs, Christopher; Takacs, Peter

    2016-01-01

    We describe a system to measure the Quantum Efficiency in the wavelength range of 300nm to 1100nm of 40x40 mm n-channel CCD sensors for the construction of the 3.2 gigapixel LSST focal plane. The technique uses a series of instruments to create a very uniform flux of photons of controllable intensity in the wavelength range of interest across the face of the sensor. This allows the absolute Quantum Efficiency to be measured with an accuracy in the 1% range. This system will be part of a production facility at Brookhaven National Lab for the basic components of the LSST camera.

  10. Lens transmission measurement for an absolute radiation thermometer

    SciTech Connect

    Hao, X.; Yuan, Z.; Lu, X.

    2013-09-11

    The lens transmission for the National Institute of Metrology of China absolute radiation thermometer is measured by a hybrid method. The results of the lens transmission measurements are 99.002% and 86.792% for filter radiometers with center wavelengths 633 nm and 900 nm, respectively. These results, after correcting for diffraction factors and the size-of-source effect when the lens is incorporated within the radiometer, can be used for measurement of thermodynamic temperature. The expanded uncertainty of the lens transmission measurement system has been evaluated. It is 1.3×10{sup −3} at 633 nm and 900 nm, respectively.

  11. Quantification of a Selective Expansion of T Cell Receptor Vβ by Superantigen Using Real-Time PCR.

    PubMed

    Park, Joo Youn; Seo, Keun Seok

    2016-01-01

    Selective expansion of T cells bearing specific T cell receptor Vβ segments is a hallmark of superantigens. Analyzing Vβ specificity of superantigens is important for characterizing newly discovered superantigens and understanding differential T cell responses to each toxin. Here, we describe a real-time PCR method using SYBR green I and primers specific to Cβ and Vβ genes for an absolute quantification. The established method was applied to quantify a selective expansion of T cell receptor Vβ expansion by superantigens and generated accurate, reproducible, and comparable results. PMID:26676047

  12. Laser interferometry method for absolute measurement of the acceleration of gravity

    NASA Technical Reports Server (NTRS)

    Hudson, O. K.

    1971-01-01

    Gravimeter permits more accurate and precise absolute measurement of g without reference to Potsdam values as absolute standards. Device is basically Michelson laser beam interferometer in which one arm is mass fitted with corner cube reflector.

  13. Advancing agricultural greenhouse gas quantification*

    NASA Astrophysics Data System (ADS)

    Olander, Lydia; Wollenberg, Eva; Tubiello, Francesco; Herold, Martin

    2013-03-01

    1. Introduction Better information on greenhouse gas (GHG) emissions and mitigation potential in the agricultural sector is necessary to manage these emissions and identify responses that are consistent with the food security and economic development priorities of countries. Critical activity data (what crops or livestock are managed in what way) are poor or lacking for many agricultural systems, especially in developing countries. In addition, the currently available methods for quantifying emissions and mitigation are often too expensive or complex or not sufficiently user friendly for widespread use. The purpose of this focus issue is to capture the state of the art in quantifying greenhouse gases from agricultural systems, with the goal of better understanding our current capabilities and near-term potential for improvement, with particular attention to quantification issues relevant to smallholders in developing countries. This work is timely in light of international discussions and negotiations around how agriculture should be included in efforts to reduce and adapt to climate change impacts, and considering that significant climate financing to developing countries in post-2012 agreements may be linked to their increased ability to identify and report GHG emissions (Murphy et al 2010, CCAFS 2011, FAO 2011). 2. Agriculture and climate change mitigation The main agricultural GHGs—methane and nitrous oxide—account for 10%-12% of anthropogenic emissions globally (Smith et al 2008), or around 50% and 60% of total anthropogenic methane and nitrous oxide emissions, respectively, in 2005. Net carbon dioxide fluxes between agricultural land and the atmosphere linked to food production are relatively small, although significant carbon emissions are associated with degradation of organic soils for plantations in tropical regions (Smith et al 2007, FAO 2012). Population growth and shifts in dietary patterns toward more meat and dairy consumption will lead to

  14. Absolute analytical prediction of photonic crystal guided mode resonance wavelengths

    SciTech Connect

    Hermannsson, Pétur Gordon; Vannahme, Christoph; Smith, Cameron L. C.; Kristensen, Anders

    2014-08-18

    A class of photonic crystal resonant reflectors known as guided mode resonant filters are optical structures that are widely used in the field of refractive index sensing, particularly in biosensing. For the purposes of understanding and design, their behavior has traditionally been modeled numerically with methods such as rigorous coupled wave analysis. Here it is demonstrated how the absolute resonance wavelengths of such structures can be predicted by analytically modeling them as slab waveguides in which the propagation constant is determined by a phase matching condition. The model is experimentally verified to be capable of predicting the absolute resonance wavelengths to an accuracy of within 0.75 nm, as well as resonance wavelength shifts due to changes in cladding index within an accuracy of 0.45 nm across the visible wavelength regime in the case where material dispersion is taken into account. Furthermore, it is demonstrated that the model is valid beyond the limit of low grating modulation, for periodically discontinuous waveguide layers, high refractive index contrasts, and highly dispersive media.

  15. MSTAR: an absolute metrology system with submicrometer accuracy

    NASA Astrophysics Data System (ADS)

    Lay, Oliver P.; Dubovitsky, Serge; Peters, Robert D.; Burger, Johan; Steier, Willian H.; Ahn, Seh-Won; Fetterman, Harrold R.

    2004-10-01

    Laser metrology systems are a key component of stellar interferometers, used to monitor path lengths and dimensions internal to the instrument. Most interferometers use 'relative' metrology, in which the integer number of wavelengths along the path is unknown, and the measurement of length is ambiguous. Changes in the path length can be measured relative to an initial calibration point, but interruption of the metrology beam at any time requires a re-calibration of the system. The MSTAR sensor (Modulation Sideband Technology for Absolute Ranging) is a new system for measuring absolute distance, capable of resolving the integer cycle ambiguity of standard interferometers, and making it possible to measure distance with sub-nanometer accuracy. We describe the design of the system, show results for target distances up to 1 meter, and demonstrate how the system can be scaled to kilometer-scale distances. In recent experiments, we have used white light interferometry to augment the 'truth' measurements and validate the zero-point of the system. MSTAR is a general-purpose tool for conveniently measuring length with much greater accuracy than was previously possible, and has a wide range of possible applications.

  16. Use of intensity quotients and differences in absolute structure refinement

    PubMed Central

    Parsons, Simon; Flack, Howard D.; Wagner, Trixie

    2013-01-01

    Several methods for absolute structure refinement were tested using single-crystal X-ray diffraction data collected using Cu Kα radiation for 23 crystals with no element heavier than oxygen: conventional refinement using an inversion twin model, estimation using intensity quotients in SHELXL2012, estimation using Bayesian methods in PLATON, estimation using restraints consisting of numerical intensity differences in CRYSTALS and estimation using differences and quotients in TOPAS-Academic where both quantities were coded in terms of other structural parameters and implemented as restraints. The conventional refinement approach yielded accurate values of the Flack parameter, but with standard uncertainties ranging from 0.15 to 0.77. The other methods also yielded accurate values of the Flack parameter, but with much higher precision. Absolute structure was established in all cases, even for a hydrocarbon. The procedures in which restraints are coded explicitly in terms of other structural parameters enable the Flack parameter to correlate with these other parameters, so that it is determined along with those parameters during refinement. PMID:23719469

  17. Absolute Temperature Monitoring Using RF Radiometry in the MRI Scanner.

    PubMed

    El-Sharkawy, Abdel-Monem M; Sotiriadis, Paul P; Bottomley, Paul A; Atalar, Ergin

    2006-11-01

    Temperature detection using microwave radiometry has proven value for noninvasively measuring the absolute temperature of tissues inside the body. However, current clinical radiometers operate in the gigahertz range, which limits their depth of penetration. We have designed and built a noninvasive radiometer which operates at radio frequencies (64 MHz) with ∼100-kHz bandwidth, using an external RF loop coil as a thermal detector. The core of the radiometer is an accurate impedance measurement and automatic matching circuit of 0.05 Ω accuracy to compensate for any load variations. The radiometer permits temperature measurements with accuracy of ±0.1°K, over a tested physiological range of 28° C-40° C in saline phantoms whose electric properties match those of tissue. Because 1.5 T magnetic resonance imaging (MRI) scanners also operate at 64 MHz, we demonstrate the feasibility of integrating our radiometer with an MRI scanner to monitor RF power deposition and temperature dosimetry, obtaining coarse, spatially resolved, absolute thermal maps in the physiological range. We conclude that RF radiometry offers promise as a direct, noninvasive method of monitoring tissue heating during MRI studies and thereby providing an independent means of verifying patient-safe operation. Other potential applications include titration of hyper- and hypo-therapies. PMID:18026562

  18. Standardization of the cumulative absolute velocity. Final report

    SciTech Connect

    O`Hara, T.F.; Jacobson, J.P.

    1991-12-01

    EPRI NP-5930, ``A Criterion for Determining Exceedance of the Operating Basis Earthquake,`` was published in July 1988. As defined in that report, the Operating Basis Earthquake (OBE) is exceeded when both a response spectrum parameter and a second damage parameter, referred to as the Cumulative Absolute Velocity (CAV), are exceeded. In the review process of the above report, it was noted that the calculation of CAV could be confounded by time history records of long duration containing low (nondamaging) acceleration. Therefore, it is necessary to standardize the method of calculating CAV to account for record length. This standardized methodology allows consistent comparisons between future CAV calculations and the adjusted CAV threshold value based upon applying the standardized methodology to the data set presented in EPRI NP-5930. The recommended method to standardize the CAV calculation is to window its calculation on a second-by-second basis for a given time history. If the absolute acceleration exceeds 0.025g at any time during each one second interval, the earthquake records used in EPRI NP-5930 have been reanalyzed and the adjusted threshold of damage for CAV was found to be 0.16g-set.

  19. Absolute cross section for recoil detection of deuterium

    NASA Astrophysics Data System (ADS)

    Besenbacher, F.; Stensgaard, I.; Vase, P.

    1986-04-01

    The D( 4He, D) 4He cross section used for recoil detection of deuterium (D) has been calibrated on an absolute scale against the cross section of the D( 3He, α)p nuclear reaction which is often used for D profiling. For 4He energies ranging from 0.8 to ~1.8 MeV. the D( 4He, D) 4He cross section varies only slightly with incident energy and recoil angle θ (for 0° ⩽ 8 ⩽ 35°) and has a value of ~ 500 mb/sr which is significantly higher than the ~ 65 mb/sr c.m.s. cross section of the D( 3He, α)p nuclear reaction. For 4He energies ranging from ~ 1.9 to ~ 2.3 MeV, the D( 4He,D) 4He cross section exhibits a fairly narrow resonance peak (fwhm ~ 70 keV), with a maximum value (for θ = 0°) of ~ 8.5 b/sr, corresponding to a 4He energy of ~ 2130 keV. The large values of the cross section in connection with the described energy dependence makes the use of forward-recoil detection of D attractive for many purposes, e.g., D Jepth profiling (with an extreme gain in sensitivity), absolute concentration or coverage measurements, and lattice-location experiments by transmission channeling.

  20. Use of intensity quotients and differences in absolute structure refinement.

    PubMed

    Parsons, Simon; Flack, Howard D; Wagner, Trixie

    2013-06-01

    Several methods for absolute structure refinement were tested using single-crystal X-ray diffraction data collected using Cu Kα radiation for 23 crystals with no element heavier than oxygen: conventional refinement using an inversion twin model, estimation using intensity quotients in SHELXL2012, estimation using Bayesian methods in PLATON, estimation using restraints consisting of numerical intensity differences in CRYSTALS and estimation using differences and quotients in TOPAS-Academic where both quantities were coded in terms of other structural parameters and implemented as restraints. The conventional refinement approach yielded accurate values of the Flack parameter, but with standard uncertainties ranging from 0.15 to 0.77. The other methods also yielded accurate values of the Flack parameter, but with much higher precision. Absolute structure was established in all cases, even for a hydrocarbon. The procedures in which restraints are coded explicitly in terms of other structural parameters enable the Flack parameter to correlate with these other parameters, so that it is determined along with those parameters during refinement. PMID:23719469

  1. Absolute Measurements of Radiation Damage in Nanometer Thick Films

    PubMed Central

    Alizadeh, Elahe; Sanche, Léon

    2013-01-01

    We address the problem of absolute measurements of radiation damage in films of nanometer thicknesses. Thin films of DNA (~ 2–160nm) are deposited onto glass substrates and irradiated with varying doses of 1.5 keV X-rays under dry N2 at atmospheric pressure and room temperature. For each different thickness, the damage is assessed by measuring the loss of the supercoiled configuration as a function of incident photon fluence. From the exposure curves, the G-values are deduced, assuming that X-ray photons interacting with DNA, deposit all of their energy in the film. The results show that the G-value (i.e., damage per unit of deposited energy) increases with film thickness and reaches a plateau at 30±5 nm. This thickness dependence provides a correction factor to estimate the actual G-value for films with thicknesses below 30nm thickness. Thus, the absolute values of damage can be compared with that of films of any thickness under different experimental conditions. PMID:22562941

  2. Closed-loop step motor control using absolute encoders

    SciTech Connect

    Hicks, J.S.; Wright, M.C.

    1997-08-01

    A multi-axis, step motor control system was developed to accurately position and control the operation of a triple axis spectrometer at the High Flux Isotope Reactor (HFIR) located at Oak Ridge National Laboratory. Triple axis spectrometers are used in neutron scattering and diffraction experiments and require highly accurate positioning. This motion control system can handle up to 16 axes of motion. Four of these axes are outfitted with 17-bit absolute encoders. These four axes are controlled with a software feedback loop that terminates the move based on real-time position information from the absolute encoders. Because the final position of the actuator is used to stop the motion of the step motors, the moves can be made accurately in spite of the large amount of mechanical backlash from a chain drive between the motors and the spectrometer arms. A modified trapezoidal profile, custom C software, and an industrial PC, were used to achieve a positioning accuracy of 0.00275 degrees of rotation. A form of active position maintenance ensures that the angles are maintained with zero error or drift.

  3. Stitching interferometry and absolute surface shape metrology: similarities

    NASA Astrophysics Data System (ADS)

    Bray, Michael

    2001-12-01

    Stitching interferometry is a method of analysing large optical components using a standard small interferometer. This result is obtained by taking multiple overlapping images of the large component, and numerically stitching these sub-apertures together by computing a correcting Tip- Tilt-Piston correction for each sub-aperture. All real-life measurement techniques require a calibration phase. By definition, a perfect surface does not exist. Methods abound for the accurate measurement of diameters (viz., the Three Flat Test). However, we need total surface knowledge of the reference surface, because the stitched overlap areas will suffer from the slightest deformation. One must not be induced into thinking that Stitching is the cause of this error: it simply highlights the lack of absolute knowledge of the reference surface, or the lack of adequate thermal control, issues which are often sidetracked... The goal of this paper is to highlight the above-mentioned calibration problems in interferometry in general, and in stitching interferometry in particular, and show how stitching hardware and software can be conveniently used to provide the required absolute surface shape metrology. Some measurement figures will illustrate this article.

  4. Absolute surface energies, fracture toughness, and cracking in nitrides

    NASA Astrophysics Data System (ADS)

    Dreyer, Cyrus E.; Janotti, Anderson; van de Walle, Chris G.

    2014-03-01

    Growth of high quality single crystals and epitaxial layers of GaN is critical for producing high-efficiency optoelectronic and power electronic devices. One of the fundamental material properties that govern growth of single crystals is the absolute surface energy of the crystallographic planes. Knowledge of these energies is required to understand and optimize growth rates of different facets in GaN, and provide fracture toughnesses for brittle fracture. By means of hybrid functional calculations, we have determined absolute surface energies for the non-polar {11-20} a and {10-10} m planes, and approximated values for polar (0001) + c and (000-1) - c planes in wurtzite GaN. For all surfaces, we consider low-energy bare and hydrogenated reconstructions under a variety of conditions relevant to experimental growth techniques. We find that the energies of the m and a planes are similar, and constant over the range of conditions studied. In contrast, the energies of the polar planes are strongly condition dependent. Even so, we find that the + c polar plane is systematically lower in energy than the - c plane. We have used our surface energies to determine brittle fracture toughnesses in AlN and GaN, as well as the critical thickness for cracking of AlGaN on GaN.

  5. Absolute phase effects on CPMG-type pulse sequences.

    PubMed

    Mandal, Soumyajit; Oh, Sangwon; Hürlimann, Martin D

    2015-12-01

    We describe and analyze the effects of transients within radio-frequency (RF) pulses on multiple-pulse NMR measurements such as the well-known Carr-Purcell-Meiboom-Gill (CPMG) sequence. These transients are functions of the absolute RF phases at the beginning and end of the pulse, and are thus affected by the timing of the pulse sequence with respect to the period of the RF waveform. Changes in transients between refocusing pulses in CPMG-type sequences can result in signal decay, persistent oscillations, changes in echo shape, and other effects. We have explored such effects by performing experiments in two different low-frequency NMR systems. The first uses a conventional tuned-and-matched probe circuit, while the second uses an ultra-broadband un-tuned or non-resonant probe circuit. We show that there are distinct differences between the absolute phase effects in these two systems, and present simple models that explain these differences. PMID:26575106

  6. Absolute uniqueness of phase retrieval with random illumination

    NASA Astrophysics Data System (ADS)

    Fannjiang, Albert

    2012-07-01

    Random illumination is proposed to enforce absolute uniqueness and resolve all types of ambiguity, trivial or nontrivial, in phase retrieval. Almost sure irreducibility is proved for any complex-valued object whose support set has rank ⩾ 2. While the new irreducibility result can be viewed as a probabilistic version of the classical result by Bruck, Sodin and Hayes, it provides a novel perspective and an effective method for phase retrieval. In particular, almost sure uniqueness, up to a global phase, is proved for complex-valued objects under general two-point conditions. Under a tight sector constraint absolute uniqueness is proved to hold with probability exponentially close to unity as the object sparsity increases. Under a magnitude constraint with random amplitude illumination, uniqueness modulo global phase is proved to hold with probability exponentially close to unity as object sparsity increases. For general complex-valued objects without any constraint, almost sure uniqueness up to global phase is established with two sets of Fourier magnitude data under two independent illuminations. Numerical experiments suggest that random illumination essentially alleviates most, if not all, numerical problems commonly associated with the standard phasing algorithms.

  7. Communication: The absolute shielding scales of oxygen and sulfur revisited

    SciTech Connect

    Komorovsky, Stanislav; Repisky, Michal; Malkin, Elena; Ruud, Kenneth; Gauss, Jürgen

    2015-03-07

    We present an updated semi-experimental absolute shielding scale for the {sup 17}O and {sup 33}S nuclei. These new shielding scales are based on accurate rotational microwave data for the spin–rotation constants of H{sub 2}{sup 17}O [Puzzarini et al., J. Chem. Phys. 131, 234304 (2009)], C{sup 17}O [Cazzoli et al., Phys. Chem. Chem. Phys. 4, 3575 (2002)], and H{sub 2}{sup 33}S [Helgaker et al., J. Chem. Phys. 139, 244308 (2013)] corrected both for vibrational and temperature effects estimated at the CCSD(T) level of theory as well as for the relativistic corrections to the relation between the spin–rotation constant and the absolute shielding constant. Our best estimate for the oxygen shielding constants of H{sub 2}{sup 17}O is 328.4(3) ppm and for C{sup 17}O −59.05(59) ppm. The relativistic correction for the sulfur shielding of H{sub 2}{sup 33}S amounts to 3.3%, and the new sulfur shielding constant for this molecule is 742.9(4.6) ppm.

  8. Simulation of absolute amplitudes of ultrasound signals using equivalent circuits.

    PubMed

    Johansson, Jonny; Martinsson, Pär-Erik; Delsing, Jerker

    2007-10-01

    Equivalent circuits for piezoelectric devices and ultrasonic transmission media can be used to cosimulate electronics and ultrasound parts in simulators originally intended for electronics. To achieve efficient system-level optimization, it is important to simulate correct, absolute amplitude of the ultrasound signal in the system, as this determines the requirements on the electronics regarding dynamic range, circuit noise, and power consumption. This paper presents methods to achieve correct, absolute amplitude of an ultrasound signal in a simulation of a pulse-echo system using equivalent circuits. This is achieved by taking into consideration loss due to diffraction and the effect of the cable that connects the electronics and the piezoelectric transducer. The conductive loss in the transmission line that models the propagation media of the ultrasound pulse is used to model the loss due to diffraction. Results show that the simulated amplitude of the echo follows measured values well in both near and far fields, with an offset of about 10%. The use of a coaxial cable introduces inductance and capacitance that affect the amplitude of a received echo. Amplitude variations of 60% were observed when the cable length was varied between 0.07 m and 2.3 m, with simulations predicting similar variations. The high precision in the achieved results show that electronic design and system optimization can rely on system simulations alone. This will simplify the development of integrated electronics aimed at ultrasound systems. PMID:18019234

  9. Absolute configuration and antimicrobial activity of acylhomoserine lactones.

    PubMed

    Pomini, Armando M; Marsaioli, Anita J

    2008-06-01

    (S)-N-Heptanoylhomoserine lactone is an uncommon acyl odd-chain natural product employed by many Gram-negative bacteria as a signaling substance in chemical communication mechanisms known as quorum sensing. The absolute configuration determination of the metabolite produced by the phytopathogen Pantoea ananatis Serrano is reported herein. As with all other substances of this class, the lactone moiety possesses S configuration, corroborating the hypothesis that it shares the same biosynthetic pathway as the (S)-N-hexanoylhomoserine lactone and also that some LuxI homologues can accept both hexanoyl- and heptanoyl-ACP as precursors. Evaluation of the antimicrobial activity of enantiomeric acylhomoserine lactones against three Gram-positive bacteria (Bacillus cereus, B. subtilis, and Staphylococcus aureus) revealed important features between absolute configuration and antimicrobial activity. The N-heptanoylhomoserine lactone was considerably less active than the 3-oxo derivatives. Surprisingly, non-natural (R)-N-(3-oxo-octanoyl)homoserine lactone was as active as the S enantiomer against B. cereus, while the synthetic racemic product was less active than either enantiomer. PMID:18465897

  10. A Special Application of Absolute Value Techniques in Authentic Problem Solving

    ERIC Educational Resources Information Center

    Stupel, Moshe

    2013-01-01

    There are at least five different equivalent definitions of the absolute value concept. In instances where the task is an equation or inequality with only one or two absolute value expressions, it is a worthy educational experience for learners to solve the task using each one of the definitions. On the other hand, if more than two absolute value…

  11. Constraint on Absolute Accuracy of Metacomprehension Assessments: The Anchoring and Adjustment Model vs. the Standards Model

    ERIC Educational Resources Information Center

    Kwon, Heekyung

    2011-01-01

    The objective of this study is to provide a systematic account of three typical phenomena surrounding absolute accuracy of metacomprehension assessments: (1) the absolute accuracy of predictions is typically quite low; (2) there exist individual differences in absolute accuracy of predictions as a function of reading skill; and (3) postdictions…

  12. HPC Analytics Support. Requirements for Uncertainty Quantification Benchmarks

    SciTech Connect

    Paulson, Patrick R.; Purohit, Sumit; Rodriguez, Luke R.

    2015-05-01

    This report outlines techniques for extending benchmark generation products so they support uncertainty quantification by benchmarked systems. We describe how uncertainty quantification requirements can be presented to candidate analytical tools supporting SPARQL. We describe benchmark data sets for evaluating uncertainty quantification, as well as an approach for using our benchmark generator to produce data sets for generating benchmark data sets.

  13. Quantification of Cannabinoid Content in Cannabis

    NASA Astrophysics Data System (ADS)

    Tian, Y.; Zhang, F.; Jia, K.; Wen, M.; Yuan, Ch.

    2015-09-01

    Cannabis is an economically important plant that is used in many fields, in addition to being the most commonly consumed illicit drug worldwide. Monitoring the spatial distribution of cannabis cultivation and judging whether it is drug- or fiber-type cannabis is critical for governments and international communities to understand the scale of the illegal drug trade. The aim of this study was to investigate whether the cannabinoids content in cannabis could be spectrally quantified using a spectrometer and to identify the optimal wavebands for quantifying the cannabinoid content. Spectral reflectance data of dried cannabis leaf samples and the cannabis canopy were measured in the laboratory and in the field, respectively. Correlation analysis and the stepwise multivariate regression method were used to select the optimal wavebands for cannabinoid content quantification based on the laboratory-measured spectral data. The results indicated that the delta-9-tetrahydrocannabinol (THC) content in cannabis leaves could be quantified using laboratory-measured spectral reflectance data and that the 695 nm band is the optimal band for THC content quantification. This study provides prerequisite information for designing spectral equipment to enable immediate quantification of THC content in cannabis and to discriminate drug- from fiber-type cannabis based on THC content quantification in the field.

  14. Cues, quantification, and agreement in language comprehension.

    PubMed

    Tanner, Darren; Bulkes, Nyssa Z

    2015-12-01

    We investigated factors that affect the comprehension of subject-verb agreement in English, using quantification as a window into the relationship between morphosyntactic processes in language production and comprehension. Event-related brain potentials (ERPs) were recorded while participants read sentences with grammatical and ungrammatical verbs, in which the plurality of the subject noun phrase was either doubly marked (via overt plural quantification and morphological marking on the noun) or singly marked (via only plural morphology on the noun). Both acceptability judgments and the ERP data showed heightened sensitivity to agreement violations when quantification provided an additional cue to the grammatical number of the subject noun phrase, over and above plural morphology. This is consistent with models of grammatical comprehension that emphasize feature prediction in tandem with cue-based memory retrieval. Our results additionally contrast with those of prior studies that showed no effects of plural quantification on agreement in language production. These findings therefore highlight some nontrivial divergences in the cues and mechanisms supporting morphosyntactic processing in language production and comprehension. PMID:25987192

  15. Colour thresholding and objective quantification in bioimaging

    NASA Technical Reports Server (NTRS)

    Fermin, C. D.; Gerber, M. A.; Torre-Bueno, J. R.

    1992-01-01

    Computer imaging is rapidly becoming an indispensable tool for the quantification of variables in research and medicine. Whilst its use in medicine has largely been limited to qualitative observations, imaging in applied basic sciences, medical research and biotechnology demands objective quantification of the variables in question. In black and white densitometry (0-256 levels of intensity) the separation of subtle differences between closely related hues from stains is sometimes very difficult. True-colour and real-time video microscopy analysis offer choices not previously available with monochrome systems. In this paper we demonstrate the usefulness of colour thresholding, which has so far proven indispensable for proper objective quantification of the products of histochemical reactions and/or subtle differences in tissue and cells. In addition, we provide interested, but untrained readers with basic information that may assist decisions regarding the most suitable set-up for a project under consideration. Data from projects in progress at Tulane are shown to illustrate the advantage of colour thresholding over monochrome densitometry and for objective quantification of subtle colour differences between experimental and control samples.

  16. Swarm Absolute Scalar Magnetometers first in-orbit results

    NASA Astrophysics Data System (ADS)

    Fratter, Isabelle; Léger, Jean-Michel; Bertrand, François; Jager, Thomas; Hulot, Gauthier; Brocco, Laura; Vigneron, Pierre

    2016-04-01

    The ESA Swarm mission will provide the best ever survey of the Earth's magnetic field and its temporal evolution. This will be achieved by a constellation of three identical satellites, launched together on the 22nd of November 2013. In order to observe the magnetic field thoroughly, each satellite carries two magnetometers: a Vector Field Magnetometer (VFM) coupled with a star tracker camera, to measure the direction of the magnetic field in space, and an Absolute Scalar Magnetometer (ASM), to measure its intensity. The ASM is the French contribution to the Swarm mission. This new generation instrument was designed by CEA-Leti and developed in close partnership with CNES, with scientific support from IPGP. Its operating principle is based on the atomic spectroscopy of the helium 4 metastable state. It makes use of the Zeeman's effect to transduce the magnetic field into a frequency, the signal being amplified by optical pumping. The primary role of the ASM is to provide absolute measurements of the magnetic field's strength at 1 Hz, for the in-flight calibration of the VFM. As the Swarm magnetic reference, the ASM scalar performance is crucial for the mission's success. Thanks to its innovative design, the ASM offers the best precision, resolution and absolute accuracy ever attained in space, with similar performance all along the orbit. In addition, thanks to an original architecture, the ASM implements on an experimental basis a capacity for providing simultaneously vector measurements at 1 Hz. This new feature makes it the first instrument capable of delivering both scalar and vector measurements simultaneously at the same point. Swarm offers a unique opportunity to validate the ASM vector data in orbit by comparison with the VFM's. Furthermore, the ASM can provide scalar data at a much higher sampling rate, when run in "burst" mode at 250 Hz, with a 100 Hz measurement bandwidth. An analysis of the spectral content of the magnetic field above 1 Hz becomes thus

  17. Absolute bioavailability and regional absorption of ticagrelor in healthy volunteers

    PubMed Central

    Teng, Renli; Maya, Juan

    2014-01-01

    Objective Ticagrelor is a direct-acting, reversibly-binding, oral P2Y12 receptor antagonist. It demonstrates predictable, linear pharmacokinetics. Two studies were undertaken to further elucidate the absolute bioavailability of ticagrelor and its regional absorption in the gastrointestinal (GI) tract. Design and methods In two open-label, randomized, cross-over studies, 12 volunteers received a single dose of ticagrelor: oral 90 mg and 15 mg IV (Study 1); or 100 mg oral suspension vs 100 mg immediate release (IR) tablet (Study 2). After the initial cross-over period in Study 2, patients received 100 mg suspension delivered to specific sites in the GI tract using an Enterion capsule. In both studies, plasma concentrations of ticagrelor and AR-C124910XX were measured following administration of each formulation. Results The mean absolute bioavailability of ticagrelor was 36% (95% confidence interval = 30–42%). Metabolite:parent ratios were higher after oral administration, compared with IV administration (maximum plasma concentration [Cmax] = 0.356 and 0.037; area under the plasma concentration-time curves [AUC] = 0.530 and 0.173, respectively). Following oral administration of the 100 mg IR tablet, the AUC and Cmax of ticagrelor were 78% and 58%, respectively, of those following oral administration of the 100 mg suspension. Exposure to ticagrelor decreased the further down the GI tract it was released: mean Cmax for ticagrelor was 91%, 68%, and 13% that for the oral suspension when released in the proximal small bowel, distal small bowel and ascending colon, respectively; mean AUCs were 89%, 73%, and 32%, respectively. Conclusion The mean absolute bioavailability of ticagrelor was 36% and the proportion of ticagrelor absorbed decreased the further down the GI tract it was released: the mean AUC for ticagrelor was 89% (proximal small bowel), 73% (distal small bowel), and 32% (ascending colon) that of the mean AUC for the orally

  18. Landsat-7 ETM+ radiometric stability and absolute calibration

    USGS Publications Warehouse

    Markham, B.L.; Barker, J.L.; Barsi, J.A.; Kaita, E.; Thome, K.J.; Helder, D.L.; Palluconi, Frank Don; Schott, J.R.; Scaramuzza, P.

    2002-01-01

    Launched in April 1999, the Landsat-7 ETM+ instrument is in its fourth year of operation. The quality of the acquired calibrated imagery continues to be high, especially with respect to its three most important radiometric performance parameters: reflective band instrument stability to better than ??1%, reflective band absolute calibration to better than ??5%, and thermal band absolute calibration to better than ??0.6 K. The ETM+ instrument has been the most stable of any of the Landsat instruments, in both the reflective and thermal channels. To date, the best on-board calibration source for the reflective bands has been the Full Aperture Solar Calibrator, which has indicated changes of at most -1.8% to -2.0% (95% C.I.) change per year in the ETM+ gain (band 4). However, this change is believed to be caused by changes in the solar diffuser panel, as opposed to a change in the instrument's gain. This belief is based partially on ground observations, which bound the changes in gain in band 4 at -0.7% to +1.5%. Also, ETM+ stability is indicated by the monitoring of desert targets. These image-based results for four Saharan and Arabian sites, for a collection of 35 scenes over the three years since launch, bound the gain change at -0.7% to +0.5% in band 4. Thermal calibration from ground observations revealed an offset error of +0.31 W/m 2 sr um soon after launch. This offset was corrected within the U. S. ground processing system at EROS Data Center on 21-Dec-00, and since then, the band 6 on-board calibration has indicated changes of at most +0.02% to +0.04% (95% C.I.) per year. The latest ground observations have detected no remaining offset error with an RMS error of ??0.6 K. The stability and absolute calibration of the Landsat-7 ETM+ sensor make it an ideal candidate to be used as a reference source for radiometric cross-calibrating to other land remote sensing satellite systems.

  19. Monitoring Groundwater Variations Using a Portable Absolute Gravimeter

    NASA Astrophysics Data System (ADS)

    Fukuda, Yoichi; Nishijima, Jun; Hasegawa, Takashi; Sofyan, Yayan; Taniguchi, Makoto; Abidin, Hasanuddin Z.; Delinom, Robert M.

    2010-05-01

    In urbanized areas, one of the urgent problems is to monitor the groundwater variations especially connected with land subsidence. Although the groundwater variations are usually measured by water level meters, gravity measurements can provide us additional information about the water mass movements which should be beneficial for the analyses of groundwater flow and the managements of water resources as well. Therefore, in order to establish a new technique to monitor the groundwater variations by means of the gravity measurements, we investigated the applicability of a portable type absolute gravimeter (Micro-G LaCoste Inc. A10-017). We will report the results of some test measurements in Japan, and the outline of the surveys in Jakarta, Indonesia. As for the absolute gravity measurements, FG-5 of MGL would be more popular. FG-5 is a high precision absolute gravimeter with a 2ugal-accuracy for laboratory use, while the nominal accuracy of A-10 is 10ugal (measurement precision: ±5ugal). In spite of the disadvantage, A-10 is well suited for the field surveys because it is much smaller than FG-5 and can be operated with 12VDC power. The repeated measurements using A10-017 in Kyushu University show good correlations between the measured gravity values and the groundwater levels in nearby observation wells. In a geothermal plant of Takigami, we also observed the gravity changes associated with the cycle of the geothermal fluid. All these test measurements have proved that the gravimeter can achieve a 10ugal (10nm/s2) or better accuracy in the field surveys. In Jakarta, Indonesia, excess groundwater pumping is going on and it causes land subsidence. To reveal the associated gravity changes, we conducted the first gravity survey in August 2008 and the second survey in July 2009. Mainly due to the instrumental troubles during the 2008 surveys, we have not obtained enough reliable data yet. Nevertheless the result obtained so far suggested the gravity increases in the

  20. Absolute Gravimetry in Fennoscandia - A Contribution to Understanding Postglacial Uplift

    NASA Astrophysics Data System (ADS)

    Pettersen, B. R.; Timmen, L.; Gitlein, O.; Muller, J.; Denker, H.; Makinen, J.; Bilker, M.; Lysaker, D. I.; Omang, O. C.; Svendsen, J. G.; Wilmes, H.; Falk, R.; Reinhold, A.; Hoppe, W.; Scherneck, H.; Lidberg, M.; Engen, B.; Kristiansen, O.; Engfeldt, A.; Strykowski, G.; Forsberg, R.; Klopping, F.; Sasagawa, G.

    2005-12-01

    The Fennoscandian postglacial uplift has been mapped geometrically using precise levelling, tide gauges, and networks of permanent GPS stations. The results identify major uplift rates at sites located around the northern part of the Gulf of Bothnia. The vertical motions decay in all directions away from this central location. An oval shaped zero uplift isoline tracks the general western and northern coastline of Norway and the Kola peninsula. It returns southwest through Russian Karelia and touches the southern tip of Sweden and northern Denmark. The uplift area (as measured by present day motions) has its major axis in the direction of southwest to northeast and covers a distance of about 2000 km. Absolute gravimetry was made in Finland and Norway in 1976 with a rise-and fall instrument. A decade later the number of gravity stations was expanded by JILAg-5, in Finland from 1988, in Norway from 1991, and in Sweden from 1992. FG5 was introduced in these three countries in 1993 (7 stations) and continued with an extended campaign in 1995 (12 stations). In 2003 a project was initiated by IfE, Hannover to collect observations simultaneously with GRACE on an annual cycle. New instruments were acquired by IfE (FG5-220), FGI (FG5-221), and UMB (FG5-226). New absolute gravity stations were established by the national mapping agencies in Denmark, Norway, and Sweden. The total number of prepared sites in Fennoscandia is now about 30. Most of them are co-located with permanent GPS, for many of which time series of several years are now available. Along the coast there are nearby tide gauge stations, many of which have time series of several decades. We describe the observing network, procedures, auxiliary observations, and discuss results obtained for selected sites. We compare the gravity results from different instruments and discuss the challenges of combining and validating such data products. Examples are shown where temporal gravity change may be compared to