Science.gov

Sample records for absolute quantification method

  1. Comparison and applications of label-free absolute proteome quantification methods on Escherichia coli.

    PubMed

    Arike, L; Valgepea, K; Peil, L; Nahku, R; Adamberg, K; Vilu, R

    2012-09-18

    Three different label-free proteome quantification methods--APEX, emPAI and iBAQ--were evaluated to measure proteome-wide protein concentrations in the cell. All the methods were applied to a sample from Escherichia coli chemostat culture. A Pearson squared correlation of approximately 0.6 among the three quantification methods was demonstrated. Importantly, the sum of quantified proteins by iBAQ and emPAI corresponded with the Lowry total protein quantification, demonstrating applicability of label-free methods for an accurate calculation of protein concentrations at the proteome level. The iBAQ method showed the best correlation between biological replicates, a normal distribution among all protein abundances, and the lowest variation among ribosomal protein abundances, which are expected to have equal amounts. Absolute quantitative proteome data enabled us to evaluate metabolic cost for protein synthesis and apparent catalytic activities of enzymes by integration with flux analysis. All the methods demonstrated similar ATP costs for protein synthesis for different cellular processes and that costs for expressing biomass synthesis related proteins were higher than those for energy generation. Importantly, catalytic activities of energy metabolism enzymes were an order or two higher than those of monomer synthesis. Interestingly, a staircase-like protein expression was demonstrated for most of the transcription units. PMID:22771841

  2. An improved method for absolute quantification of mRNA using multiplex polymerase chain reaction: determination of renin and angiotensinogen mRNA levels in various tissues.

    PubMed

    Dostal, D E; Rothblum, K N; Baker, K M

    1994-12-01

    We have developed a multiplex, competitive, reverse-transcriptase polymerase chain reaction (RT-PCR) method which measures absolute levels of renin, angiotensinogen, and the housekeeping transcript elongation factor-1 alpha (EF-1 alpha) mRNA. Sample RNA was simultaneously titrated with serial dilutions of renin, angiotensinogen, and EF-1 alpha competitor RNAs which flanked the endogenous concentrations of target transcripts. The samples were coreverse transcribed in the presence of random primers and resulting first-strand cDNA was coamplified for 10-15 cycles with [32P]-dCTP and primers for renin angiotensinogen, after which EF-1 alpha primers were added. Amplified DNA was separated by electrophoresis on polyacrylamide gel and radioactivity in the bands was quantified by direct radioanalytical scanning. Three conditions were necessary to obtain absolute quantification of renin and angiotensinogen mRNA levels: (a) exogenous competitor RNA was used to control for tube-to-tube variability in the efficiencies of reverse transcription and amplification; (b) Sample RNA was titrated with flanking concentrations of competitor RNA to correct for intraassay differences in the efficiency of amplification due to concentration differences between competitor and target templates; and (c) a housekeeping transcript EF-1 alpha was used to control for tube-to-tube differences in RNA loading and/or degradation. We show that the multiplex RT-PCR method is precise and accurate over approximately three logs of transcript concentration and sensitive to less than 5 and 0.5 fg for renin and angiotensinogen mRNA, respectively. This method will be useful for absolute quantification of target mRNAs, especially when the amount of sample RNA is limited or unknown and/or the gene expression is low. PMID:7887470

  3. Application of an LC-MS/MS method for the simultaneous quantification of human intestinal transporter proteins absolute abundance using a QconCAT technique.

    PubMed

    Harwood, M D; Achour, B; Russell, M R; Carlson, G L; Warhurst, G; Rostami-Hodjegan, A

    2015-06-10

    Transporter proteins expressed in the gastrointestinal tract play a major role in the oral absorption of some drugs, and their involvement may lead to drug-drug interaction (DDI) susceptibility when given in combination with drugs known to inhibit gut wall transporters. Anticipating such liabilities and predicting the magnitude of the impact of transporter proteins on oral drug absorption and DDIs requires quantification of their expression in human intestine, and linking these to data obtained through in vitro experiments. A quantitative targeted absolute proteomic method employing liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) together with a quantitative concatenation (QconCAT) strategy to provide proteotypic peptide standards has been applied to quantify ATP1A1 (sodium/potassium-ATPase; Na/K-ATPase), CDH17 (human peptide transporter 1; HPT1), ABCB1 (P-glycoprotein; P-gp), ABCG2 (breast cancer resistance protein; BCRP), ABCC2 (multidrug resistance-associated protein 2; MRP2) and SLC51A (Organic Solute Transporter subunit alpha; OST-α), in human distal jejunum (n=3) and distal ileum (n=1) enterocyte membranes. Previously developed selected reaction monitoring (SRM) schedules were optimised to enable quantification of the proteotypic peptides for each transporter. After harvesting enterocytes by calcium chelation elution and generating a total membrane fraction, the proteins were subjected to proteolytic digestion. To account for losses of peptides during the digestion procedure, a gravimetric method is also presented. The linearity of quantifying the QconCAT from an internal standard (correlation coefficient, R(2)=0.998) and quantification of all target peptides in a pooled intestinal quality control sample (R(2)≥ 0.980) was established. The assay was also assessed for within and between-day precision, demonstrating a <15% coefficient of variation for all peptides across 3 separate analytical runs, over 2 days. The methods were applied to

  4. Absolute Quantification of Endogenous Ras Isoform Abundance

    PubMed Central

    Mageean, Craig J.; Griffiths, John R.; Smith, Duncan L.; Clague, Michael J.; Prior, Ian A.

    2015-01-01

    Ras proteins are important signalling hubs situated near the top of networks controlling cell proliferation, differentiation and survival. Three almost identical isoforms, HRAS, KRAS and NRAS, are ubiquitously expressed yet have differing biological and oncogenic properties. In order to help understand the relative biological contributions of each isoform we have optimised a quantitative proteomics method for accurately measuring Ras isoform protein copy number per cell. The use of isotopic protein standards together with selected reaction monitoring for diagnostic peptides is sensitive, robust and suitable for application to sub-milligram quantities of lysates. We find that in a panel of isogenic SW48 colorectal cancer cells, endogenous Ras proteins are highly abundant with ≥260,000 total Ras protein copies per cell and the rank order of isoform abundance is KRAS>NRAS≥HRAS. A subset of oncogenic KRAS mutants exhibit increased total cellular Ras abundance and altered the ratio of mutant versus wild type KRAS protein. These data and methodology are significant because Ras protein copy number is required to parameterise models of signalling networks and informs interpretation of isoform-specific Ras functional data. PMID:26560143

  5. Improved Strategies and Optimization of Calibration Models for Real-time PCR Absolute Quantification

    EPA Science Inventory

    Real-time PCR absolute quantification applications rely on the use of standard curves to make estimates of DNA target concentrations in unknown samples. Traditional absolute quantification approaches dictate that a standard curve must accompany each experimental run. However, t...

  6. Absolute quantification of the alleles in somatic point mutations by bioluminometric methods based on competitive polymerase chain reaction in the presence of a locked nucleic acid blocker or an allele-specific primer.

    PubMed

    Iliadi, Alexandra; Petropoulou, Margarita; Ioannou, Penelope C; Christopoulos, Theodore K; Anagnostopoulos, Nikolaos I; Kanavakis, Emmanuel; Traeger-Synodinos, Jan

    2011-09-01

    In somatic (acquired) point mutations, the challenge is to quantify minute amounts of the mutant allele in the presence of a large excess of the normal allele that differs only in a single base pair. We report two bioluminometric methods that enable absolute quantification of the alleles. The first method exploits the ability of a locked nucleic acid (LNA) oligonucleotide to bind to and inhibit effectively the polymerase chain reaction (PCR) amplification of the normal allele while the amplification of the mutant allele remains unaffected. The second method employs allele-specific PCR primers, thereby allowing the amplification of the corresponding allele only. DNA internal standards (competitors) are added to the PCR mixture to compensate for any sample-to-sample variation in the amplification efficiency. The amplification products from the two alleles and the internal standards are quantified by a microtiter well-based bioluminometric hybridization assay using the photoprotein aequorin as a reporter. The methods allow absolute quantification of less than 300 copies of the mutant allele even in samples containing less than 1% of the mutant allele.

  7. Sulfur-based absolute quantification of proteins using isotope dilution inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Lee, Hyun-Seok; Heun Kim, Sook; Jeong, Ji-Seon; Lee, Yong-Moon; Yim, Yong-Hyeon

    2015-10-01

    An element-based reductive approach provides an effective means of realizing International System of Units (SI) traceability for high-purity biological standards. Here, we develop an absolute protein quantification method using double isotope dilution (ID) inductively coupled plasma mass spectrometry (ICP-MS) combined with microwave-assisted acid digestion for the first time. We validated the method and applied it to certify the candidate protein certified reference material (CRM) of human growth hormone (hGH). The concentration of hGH was determined by analysing the total amount of sulfur in hGH. Next, the size-exclusion chromatography method was used with ICP-MS to characterize and quantify sulfur-containing impurities. By subtracting the contribution of sulfur-containing impurities from the total sulfur content in the hGH CRM, we obtained a SI-traceable certification value. The quantification result obtained with the present method based on sulfur analysis was in excellent agreement with the result determined via a well-established protein quantification method based on amino acid analysis using conventional acid hydrolysis combined with an ID liquid chromatography-tandem mass spectrometry. The element-based protein quantification method developed here can be generally used for SI-traceable absolute quantification of proteins, especially pure-protein standards.

  8. A targeted proteomics toolkit for high-throughput absolute quantification of Escherichia coli proteins.

    PubMed

    Batth, Tanveer S; Singh, Pragya; Ramakrishnan, Vikram R; Sousa, Mirta M L; Chan, Leanne Jade G; Tran, Huu M; Luning, Eric G; Pan, Eva H Y; Vuu, Khanh M; Keasling, Jay D; Adams, Paul D; Petzold, Christopher J

    2014-11-01

    Transformation of engineered Escherichia coli into a robust microbial factory is contingent on precise control of metabolism. Yet, the throughput of omics technologies used to characterize cell components has lagged far behind our ability to engineer novel strains. To expand the utility of quantitative proteomics for metabolic engineering, we validated and optimized targeted proteomics methods for over 400 proteins from more than 20 major pathways in E. coli metabolism. Complementing these methods, we constructed a series of synthetic genes to produce concatenated peptides (QconCAT) for absolute quantification of the proteins and made them available through the Addgene plasmid repository (www.addgene.org). To facilitate high sample throughput, we developed a fast, analytical-flow chromatography method using a 5.5-min gradient (10 min total run time). Overall this toolkit provides an invaluable resource for metabolic engineering by increasing sample throughput, minimizing development time and providing peptide standards for absolute quantification of E. coli proteins.

  9. Self-Digitization Microfluidic Chip for Absolute Quantification of mRNA in Single Cells

    PubMed Central

    2015-01-01

    Quantification of mRNA in single cells provides direct insight into how intercellular heterogeneity plays a role in disease progression and outcomes. Quantitative polymerase chain reaction (qPCR), the current gold standard for evaluating gene expression, is insufficient for providing absolute measurement of single-cell mRNA transcript abundance. Challenges include difficulties in handling small sample volumes and the high variability in measurements. Microfluidic digital PCR provides far better sensitivity for minute quantities of genetic material, but the typical format of this assay does not allow for counting of the absolute number of mRNA transcripts samples taken from single cells. Furthermore, a large fraction of the sample is often lost during sample handling in microfluidic digital PCR. Here, we report the absolute quantification of single-cell mRNA transcripts by digital, one-step reverse transcription PCR in a simple microfluidic array device called the self-digitization (SD) chip. By performing the reverse transcription step in digitized volumes, we find that the assay exhibits a linear signal across a wide range of total RNA concentrations and agrees well with standard curve qPCR. The SD chip is found to digitize a high percentage (86.7%) of the sample for single-cell experiments. Moreover, quantification of transferrin receptor mRNA in single cells agrees well with single-molecule fluorescence in situ hybridization experiments. The SD platform for absolute quantification of single-cell mRNA can be optimized for other genes and may be useful as an independent control method for the validation of mRNA quantification techniques. PMID:25390242

  10. Self-digitization microfluidic chip for absolute quantification of mRNA in single cells.

    PubMed

    Thompson, Alison M; Gansen, Alexander; Paguirigan, Amy L; Kreutz, Jason E; Radich, Jerald P; Chiu, Daniel T

    2014-12-16

    Quantification of mRNA in single cells provides direct insight into how intercellular heterogeneity plays a role in disease progression and outcomes. Quantitative polymerase chain reaction (qPCR), the current gold standard for evaluating gene expression, is insufficient for providing absolute measurement of single-cell mRNA transcript abundance. Challenges include difficulties in handling small sample volumes and the high variability in measurements. Microfluidic digital PCR provides far better sensitivity for minute quantities of genetic material, but the typical format of this assay does not allow for counting of the absolute number of mRNA transcripts samples taken from single cells. Furthermore, a large fraction of the sample is often lost during sample handling in microfluidic digital PCR. Here, we report the absolute quantification of single-cell mRNA transcripts by digital, one-step reverse transcription PCR in a simple microfluidic array device called the self-digitization (SD) chip. By performing the reverse transcription step in digitized volumes, we find that the assay exhibits a linear signal across a wide range of total RNA concentrations and agrees well with standard curve qPCR. The SD chip is found to digitize a high percentage (86.7%) of the sample for single-cell experiments. Moreover, quantification of transferrin receptor mRNA in single cells agrees well with single-molecule fluorescence in situ hybridization experiments. The SD platform for absolute quantification of single-cell mRNA can be optimized for other genes and may be useful as an independent control method for the validation of mRNA quantification techniques.

  11. Identification and absolute quantification of enzymes in laundry detergents by liquid chromatography tandem mass spectrometry.

    PubMed

    Gaubert, Alexandra; Jeudy, Jérémy; Rougemont, Blandine; Bordes, Claire; Lemoine, Jérôme; Casabianca, Hervé; Salvador, Arnaud

    2016-07-01

    In a stricter legislative context, greener detergent formulations are developed. In this way, synthetic surfactants are frequently replaced by bio-sourced surfactants and/or used at lower concentrations in combination with enzymes. In this paper, a LC-MS/MS method was developed for the identification and quantification of enzymes in laundry detergents. Prior to the LC-MS/MS analyses, a specific sample preparation protocol was developed due to matrix complexity (high surfactant percentages). Then for each enzyme family mainly used in detergent formulations (protease, amylase, cellulase, and lipase), specific peptides were identified on a high resolution platform. A LC-MS/MS method was then developed in selected reaction monitoring (SRM) MS mode for the light and corresponding heavy peptides. The method was linear on the peptide concentration ranges 25-1000 ng/mL for protease, lipase, and cellulase; 50-1000 ng/mL for amylase; and 5-1000 ng/mL for cellulase in both water and laundry detergent matrices. The application of the developed analytical strategy to real commercial laundry detergents enabled enzyme identification and absolute quantification. For the first time, identification and absolute quantification of enzymes in laundry detergent was realized by LC-MS/MS in a single run. Graphical Abstract Identification and quantification of enzymes by LC-MS/MS.

  12. Relative and absolute quantification of postsynaptic density proteome isolated from rat forebrain and cerebellum.

    PubMed

    Cheng, Dongmei; Hoogenraad, Casper C; Rush, John; Ramm, Elizabeth; Schlager, Max A; Duong, Duc M; Xu, Ping; Wijayawardana, Sameera R; Hanfelt, John; Nakagawa, Terunaga; Sheng, Morgan; Peng, Junmin

    2006-06-01

    The postsynaptic density (PSD) of central excitatory synapses is essential for postsynaptic signaling, and its components are heterogeneous among different neuronal subtypes and brain structures. Here we report large scale relative and absolute quantification of proteins in PSDs purified from adult rat forebrain and cerebellum. PSD protein profiles were determined using the cleavable ICAT strategy and LC-MS/MS. A total of 296 proteins were identified and quantified with 43 proteins exhibiting statistically significant abundance change between forebrain and cerebellum, indicating marked molecular heterogeneity of PSDs between different brain regions. Moreover we utilized absolute quantification strategy, in which synthetic isotope-labeled peptides were used as internal standards, to measure the molar abundance of 32 key PSD proteins in forebrain and cerebellum. These data confirm the abundance of calcium/calmodulin-dependent protein kinase II and PSD-95 and reveal unexpected stoichiometric ratios between glutamate receptors, scaffold proteins, and signaling molecules in the PSD. Our data also demonstrate that the absolute quantification method is well suited for targeted quantitative proteomic analysis. Overall this study delineates a crucial molecular difference between forebrain and cerebellar PSDs and provides a quantitative framework for measuring the molecular stoichiometry of the PSD. PMID:16507876

  13. Absolute quantification of cell-bound DNA aptamers during SELEX.

    PubMed

    Avci-Adali, Meltem; Wilhelm, Nadja; Perle, Nadja; Stoll, Heidi; Schlensak, Christian; Wendel, Hans P

    2013-04-01

    In the fields of diagnosis, imaging, regenerative medicine, and drug targeting, aptamers are promising nucleic acid ligands for specific recognition and binding of whole living cells. These aptamers are selected by a combinatorial chemistry technique called cell-SELEX (Systematic Evolution of Ligands by EXponential enrichment). During this iterative procedure of in vitro selection and enzymatic amplification, the enrichment of cell binding aptamers is generally monitored by flow cytometry. This method needs the use of fluorophore-labeled oligonucleotides for detection and allows only the relative evaluation of the aptamer binding compared with the control. Here, we describe the development and validation of a new quantitative real time polymerase chain reaction (qPCR) method for the absolute determination of cell bound aptamers during cell-SELEX. The method is based on SYBR Green I real-time PCR technology and uses an aptamer standard curve to determine the accurate aptamer amount on cells after the incubations. Lysates of cells with bound aptamers were used to identify the absolute amount of aptamers on cells. This method is highly sensitive and allows the detection of very small quantities of aptamers in cell lysate samples. The lower detection limit is 20 fg. The established qPCR method can be used as an additional monitoring tool during cell-SELEX to determine the enrichment of cell binding aptamers on cells, whereby the absolute quantity is determined. Furthermore, the contamination of the amplified aptamer pool with by-products can be prevented by prior determination of bound aptamer amount on cells. PMID:23405949

  14. Absolute quantification of dehydroacetic acid in processed foods using quantitative ¹H NMR.

    PubMed

    Ohtsuki, Takashi; Sato, Kyoko; Furusho, Noriko; Kubota, Hiroki; Sugimoto, Naoki; Akiyama, Hiroshi

    2013-11-15

    An absolute quantification method for the determination of dehydroacetic acid in processed foods using quantitative (1)H NMR was developed and validated. The level of dehydroacetic acid was determined using the proton signals of dehydroacetic acid referenced to 1,4-bis (trimethylsilyl) benzene-d4 after simple solvent extraction from processed foods. All the recoveries from three processed foods spiked at two different concentrations were larger than 85%. The proposed method also proved to be precise, with inter-day precision and excellent linearity. The limit of quantification was confirmed as 0.13g/kg in processed foods, which is sufficiently low for the purposes of monitoring dehydroacetic acid. Furthermore, the method is rapid and easy to apply, and provides International System of Units traceability without the need for authentic analyte reference materials. Therefore, the proposed method is a useful and practical tool for determining the level of dehydroacetic acid in processed foods.

  15. Mass spectrometry-based absolute quantification reveals rhythmic variation of mouse circadian clock proteins.

    PubMed

    Narumi, Ryohei; Shimizu, Yoshihiro; Ukai-Tadenuma, Maki; Ode, Koji L; Kanda, Genki N; Shinohara, Yuta; Sato, Aya; Matsumoto, Katsuhiko; Ueda, Hiroki R

    2016-06-14

    Absolute values of protein expression levels in cells are crucial information for understanding cellular biological systems. Precise quantification of proteins can be achieved by liquid chromatography (LC)-mass spectrometry (MS) analysis of enzymatic digests of proteins in the presence of isotope-labeled internal standards. Thus, development of a simple and easy way for the preparation of internal standards is advantageous for the analyses of multiple target proteins, which will allow systems-level studies. Here we describe a method, termed MS-based Quantification By isotope-labeled Cell-free products (MS-QBiC), which provides the simple and high-throughput preparation of internal standards by using a reconstituted cell-free protein synthesis system, and thereby facilitates both multiplexed and sensitive quantification of absolute amounts of target proteins. This method was applied to a systems-level dynamic analysis of mammalian circadian clock proteins, which consist of transcription factors and protein kinases that govern central and peripheral circadian clocks in mammals. Sixteen proteins from 20 selected circadian clock proteins were successfully quantified from mouse liver over a 24-h time series, and 14 proteins had circadian variations. Quantified values were applied to detect internal body time using a previously developed molecular timetable method. The analyses showed that single time-point data from wild-type mice can predict the endogenous state of the circadian clock, whereas data from clock mutant mice are not applicable because of the disappearance of circadian variation. PMID:27247408

  16. Absolute quantification of transferrin in blood samples of harbour seals using HPLC-ICP-MS.

    PubMed

    Grebe, Mechthild; Pröfrock, Daniel; Kakuschke, Antje; Broekaert, Jose A C; Prange, Andreas

    2011-02-01

    Harbour seals (Phoca vitulina) are bio-indicators for the assessment of their habitat and environmental changes. Besides population parameters and trends (survival, age structure, sex ratio), the individual health status represents a further important parameter for this assessment. The health status of seals is a complex and vague term, determined by a wide range of diagnostic parameters. Quantities of important blood proteins such as transferrin (Tf), as well as altered distribution patterns of its glycoforms, are frequently used as biomarkers in clinical diagnosis. Within this context Tf quantities and a varying pattern of its glycoforms are used as indicator for e.g. certain liver diseases, which also represents one of the most frequently observed pathological indication in harbour seals of the North Sea. Currently, most assay based quantification methods for Tf are limited since they often provide only information regarding the total Tf concentration rather than information of its different glycoforms. Due to a lack of suitable seal Tf antibodies also the application of more specific antibody based approaches is not possible. Within this background a new approach for the absolute quantification of the iron-transport protein Tf in the blood of harbour seals using its characteristic iron content and HPLC-ICP-MS detection is described. Method validation was performed using a certified human serum reference material (ERM-DA470K/IFCC). A Tf concentration of 2.33 ± 0.03 g L(-1) (sum of all quantified glycoforms) has been calculated, which is in good agreement with the certified total Tf concentration of 2.35 ± 0.08 g L(-1), confirming the accuracy of the proposed analytical method. Finally, different seal samples were analysed to demonstrate the suitability of the procedure for the quantification of Tf in real samples as well as to observe modified glycoform patterns. Compared to our previous studies for the first time it was possible to quantify the serum Tf

  17. Evaluation of serum phosphopeptides as potential cancer biomarkers by mass spectrometric absolute quantification.

    PubMed

    Zhai, Guijin; Wu, Xiaoyan; Luo, Qun; Wu, Kui; Zhao, Yao; Liu, Jianan; Xiong, Shaoxiang; Feng, Yu-Qi; Yang, Liping; Wang, Fuyi

    2014-07-01

    Mass spectrometric quantification of phosphopeptides is a challenge due to the ion suppression effect of highly abundant non-phosphorylated peptides in complex samples such as serum. Several strategies for relative quantification of serum phosphopeptides based on MS have been developed, but the power of relative quantities was limited when making direct comparisons between two groups of samples or acting as a clinical examination index. Herein, we describe an MS absolute quantification strategy combined with Titania Coated Magnetic Hollow Mesoporous Silica Microspheres (TiO2/MHMSM) enrichment and stable isotopic acetyl labeling for phosphopeptides in human serum. Four endogenous serum phosphopeptides generated by degradation of fibrinogen were identified by LC-ESI-MS/MS following TiO2/MHMSM enrichment. The ESI-MS signal intensity ratios of the four phosphopeptide standards labeled with N-acetoxy-H3-succinimide (H3-NAS) and N-acetoxy-D3-succinimide (D3-NAS), following TiO2/MHMSM capture are linearly correlated with the molar ratios of the "light" to "heavy" phosphopeptides over the range of 0.1-4 with an r(2) of up to 0.998 and a slope of close to 1. The recovery of the four phosphopeptides spiked at low, medium and high levels in human sera were 98.4-111.9% with RSDs ranging 2.0-10.1%. The absolute quantification of the phosphopeptides in serum samples of 20 healthy persons and 20 gastric cancer patients by the developed method demonstrated that 3 out of the 4 phosphopeptides showed remarkable variation in serum level between healthy and cancer groups, and the phosphopeptide DpSGEGDFLAEGGGVR is significantly down-regulated in the serum of patients, being a potential biomarker for gastric cancer diagnosis. PMID:24840465

  18. Picoliter Well Array Chip-Based Digital Recombinase Polymerase Amplification for Absolute Quantification of Nucleic Acids.

    PubMed

    Li, Zhao; Liu, Yong; Wei, Qingquan; Liu, Yuanjie; Liu, Wenwen; Zhang, Xuelian; Yu, Yude

    2016-01-01

    Absolute, precise quantification methods expand the scope of nucleic acids research and have many practical applications. Digital polymerase chain reaction (dPCR) is a powerful method for nucleic acid detection and absolute quantification. However, it requires thermal cycling and accurate temperature control, which are difficult in resource-limited conditions. Accordingly, isothermal methods, such as recombinase polymerase amplification (RPA), are more attractive. We developed a picoliter well array (PWA) chip with 27,000 consistently sized picoliter reactions (314 pL) for isothermal DNA quantification using digital RPA (dRPA) at 39°C. Sample loading using a scraping liquid blade was simple, fast, and required small reagent volumes (i.e., <20 μL). Passivating the chip surface using a methoxy-PEG-silane agent effectively eliminated cross-contamination during dRPA. Our creative optical design enabled wide-field fluorescence imaging in situ and both end-point and real-time analyses of picoliter wells in a 6-cm(2) area. It was not necessary to use scan shooting and stitch serial small images together. Using this method, we quantified serial dilutions of a Listeria monocytogenes gDNA stock solution from 9 × 10(-1) to 4 × 10(-3) copies per well with an average error of less than 11% (N = 15). Overall dRPA-on-chip processing required less than 30 min, which was a 4-fold decrease compared to dPCR, requiring approximately 2 h. dRPA on the PWA chip provides a simple and highly sensitive method to quantify nucleic acids without thermal cycling or precise micropump/microvalve control. It has applications in fast field analysis and critical clinical diagnostics under resource-limited settings. PMID:27074005

  19. Picoliter Well Array Chip-Based Digital Recombinase Polymerase Amplification for Absolute Quantification of Nucleic Acids.

    PubMed

    Li, Zhao; Liu, Yong; Wei, Qingquan; Liu, Yuanjie; Liu, Wenwen; Zhang, Xuelian; Yu, Yude

    2016-01-01

    Absolute, precise quantification methods expand the scope of nucleic acids research and have many practical applications. Digital polymerase chain reaction (dPCR) is a powerful method for nucleic acid detection and absolute quantification. However, it requires thermal cycling and accurate temperature control, which are difficult in resource-limited conditions. Accordingly, isothermal methods, such as recombinase polymerase amplification (RPA), are more attractive. We developed a picoliter well array (PWA) chip with 27,000 consistently sized picoliter reactions (314 pL) for isothermal DNA quantification using digital RPA (dRPA) at 39°C. Sample loading using a scraping liquid blade was simple, fast, and required small reagent volumes (i.e., <20 μL). Passivating the chip surface using a methoxy-PEG-silane agent effectively eliminated cross-contamination during dRPA. Our creative optical design enabled wide-field fluorescence imaging in situ and both end-point and real-time analyses of picoliter wells in a 6-cm(2) area. It was not necessary to use scan shooting and stitch serial small images together. Using this method, we quantified serial dilutions of a Listeria monocytogenes gDNA stock solution from 9 × 10(-1) to 4 × 10(-3) copies per well with an average error of less than 11% (N = 15). Overall dRPA-on-chip processing required less than 30 min, which was a 4-fold decrease compared to dPCR, requiring approximately 2 h. dRPA on the PWA chip provides a simple and highly sensitive method to quantify nucleic acids without thermal cycling or precise micropump/microvalve control. It has applications in fast field analysis and critical clinical diagnostics under resource-limited settings.

  20. Picoliter Well Array Chip-Based Digital Recombinase Polymerase Amplification for Absolute Quantification of Nucleic Acids

    PubMed Central

    Li, Zhao; Liu, Yong; Wei, Qingquan; Liu, Yuanjie; Liu, Wenwen; Zhang, Xuelian; Yu, Yude

    2016-01-01

    Absolute, precise quantification methods expand the scope of nucleic acids research and have many practical applications. Digital polymerase chain reaction (dPCR) is a powerful method for nucleic acid detection and absolute quantification. However, it requires thermal cycling and accurate temperature control, which are difficult in resource-limited conditions. Accordingly, isothermal methods, such as recombinase polymerase amplification (RPA), are more attractive. We developed a picoliter well array (PWA) chip with 27,000 consistently sized picoliter reactions (314 pL) for isothermal DNA quantification using digital RPA (dRPA) at 39°C. Sample loading using a scraping liquid blade was simple, fast, and required small reagent volumes (i.e., <20 μL). Passivating the chip surface using a methoxy-PEG-silane agent effectively eliminated cross-contamination during dRPA. Our creative optical design enabled wide-field fluorescence imaging in situ and both end-point and real-time analyses of picoliter wells in a 6-cm2 area. It was not necessary to use scan shooting and stitch serial small images together. Using this method, we quantified serial dilutions of a Listeria monocytogenes gDNA stock solution from 9 × 10-1 to 4 × 10-3 copies per well with an average error of less than 11% (N = 15). Overall dRPA-on-chip processing required less than 30 min, which was a 4-fold decrease compared to dPCR, requiring approximately 2 h. dRPA on the PWA chip provides a simple and highly sensitive method to quantify nucleic acids without thermal cycling or precise micropump/microvalve control. It has applications in fast field analysis and critical clinical diagnostics under resource-limited settings. PMID:27074005

  1. Time-resolved Absolute Velocity Quantification with Projections

    PubMed Central

    Langham, Michael C.; Jain, Varsha; Magland, Jeremy F.; Wehrli, Felix W.

    2010-01-01

    Quantitative information on time-resolved blood velocity along the femoral/popliteal artery can provide clinical information on peripheral arterial disease and complement MR angiography since not all stenoses are hemodynamically significant. The key disadvantages of the most widely used approach to time-resolve pulsatile blood flow by cardiac-gated velocity-encoded gradient-echo imaging are gating errors and long acquisition time. Here we demonstrate a rapid non-triggered method that quantifies absolute velocity on the basis of phase difference between successive velocity-encoded projections after selectively removing the background static tissue signal via a reference image. The tissue signal from the reference image’s center k-space line is isolated by masking out the vessels in the image domain. The performance of the technique, in terms of reproducibility and agreement with results obtained with conventional phase contrast (PC)-MRI was evaluated at 3T field strength with a variable-flow rate phantom and in vivo of the triphasic velocity waveforms at several segments along the femoral and popliteal arteries. Additionally, time-resolved flow velocity was quantified in five healthy subjects and compared against gated PC-MRI results. To illustrate clinical feasibility the proposed method was shown to be able to identify hemodynamic abnormalities and impaired reactivity in a diseased femoral artery. For both phantom and in vivo studies, velocity measurements were within 1.5 cm/s and the coefficient of variation was less than 5% in an in vivo reproducibility study. In five healthy subjects, the average differences in mean peak velocities and their temporal locations were within 1 cm/s and 10 ms compared to gated PC-MRI. In conclusion, the proposed method provides temporally-resolved arterial velocity with a temporal resolution of 20 ms with minimal post-processing. PMID:20677235

  2. Evaluation of Digital PCR for Absolute RNA Quantification

    PubMed Central

    Sanders, Rebecca; Mason, Deborah J.; Foy, Carole A.; Huggett, Jim F.

    2013-01-01

    Gene expression measurements detailing mRNA quantities are widely employed in molecular biology and are increasingly important in diagnostic fields. Reverse transcription (RT), necessary for generating complementary DNA, can be both inefficient and imprecise, but remains a quintessential RNA analysis tool using qPCR. This study developed a Transcriptomic Calibration Material and assessed the RT reaction using digital (d)PCR for RNA measurement. While many studies characterise dPCR capabilities for DNA quantification, less work has been performed investigating similar parameters using RT-dPCR for RNA analysis. RT-dPCR measurement using three, one-step RT-qPCR kits was evaluated using single and multiplex formats when measuring endogenous and synthetic RNAs. The best performing kit was compared to UV quantification and sensitivity and technical reproducibility investigated. Our results demonstrate assay and kit dependent RT-dPCR measurements differed significantly compared to UV quantification. Different values were reported by different kits for each target, despite evaluation of identical samples using the same instrument. RT-dPCR did not display the strong inter-assay agreement previously described when analysing DNA. This study demonstrates that, as with DNA measurement, RT-dPCR is capable of accurate quantification of low copy RNA targets, but the results are both kit and target dependent supporting the need for calibration controls. PMID:24073259

  3. Absolute quantification of superoxide dismutase (SOD) using species-specific isotope dilution analysis.

    PubMed

    Deitrich, Christian L; Braukmann, Sandra; Raab, Andrea; Munro, Caroline; Pioselli, Barbara; Krupp, Eva M; Thomas-Oates, Jane E; Feldmann, Jörg

    2010-08-01

    Here we report for the first time the use of species-specific isotope dilution mass spectrometry for the absolute quantification of a metalloprotein using nondenaturing gel electrophoresis laser ablation inductively coupled plasma mass spectrometry (GE-LA-ICP-MS). The concept utilises the intrinsic metals of the metalloprotein for labelling of the isotopically labelled spike ((65)Cu, (68)Zn SOD). The stability of the metal-protein complex under non-denaturing conditions during 1-D PAGE was confirmed and the performance of the method evaluated. Between 4 and 64 microg, SOD was quantified with a recovery rate between 82% and 110% in a standard. The use of the isotopically enriched SOD was utilised to identify the extent of orthogonal diffusion in 1-D gel electrophoresis. Orthogonal diffusion of natural and isotopically enriched SOD in the gel can interfere with the correct determination of the isotope ratios. The matrix effect of a cytosolic liver extract on the non-covalently bound copper and zinc in SOD was evaluated and no significant metal loss from the SOD spike was observed. This study represents the first step necessary for establishing and evaluating the use of a species-specific isotope dilution approach for the absolute quantification of SOD in real samples based on the combination of gel electrophoresis and LA-ICP-MS.

  4. Non-invasive quantification of brain glycogen absolute concentration

    PubMed Central

    van Heeswijk, Ruud B.; Xin, Lijing; Laus, Sabrina; Frenkel, Hanne; Lei, Hongxia; Gruetter, Rolf

    2009-01-01

    The only currently available method to measure brain glycogen in vivo is 13C NMR spectroscopy. Incorporation of 13C-labeled glucose (Glc) is necessary to allow glycogen measurement, but might be affected by turnover changes. Our aim was to measure glycogen absolute concentration in the rat brain by eliminating label turnover as variable. The approach is based on establishing an increased, constant 13C isotopic enrichment (IE). 13C-Glc infusion is then performed at the IE of brain glycogen. As glycogen IE cannot be assessed in vivo, we validated that it can be inferred from that of N-acetyl-aspartate IE in vivo: After [1-13C]-Glc ingestion, glycogen IE was 2.2 ± 0.1 fold that of N-acetyl-aspartate (n = 11, R2 = 0.77). After subsequent Glc infusion, glycogen IE equaled brain Glc IE (n = 6, paired t-test, p = 0.37), implying isotopic steady-state achievement and complete turnover of the glycogen molecule. Glycogen concentration measured in vivo by 13C NMR (mean ± SD: 5.8 ± 0.7 μmol/g) was in excellent agreement with that in vitro (6.4 ± 0.6 μmol/g, n = 5). When insulin was administered, the stability of glycogen concentration was analogous to previous biochemical measurements implying that glycogen turnover is activated by insulin. We conclude that the entire glycogen molecule is turned over and that insulin activates glycogen turnover. PMID:19013831

  5. Absolute protein quantification of the yeast chaperome under conditions of heat shock

    PubMed Central

    Mackenzie, Rebecca J.; Lawless, Craig; Holman, Stephen W.; Lanthaler, Karin; Beynon, Robert J.; Grant, Chris M.; Hubbard, Simon J.

    2016-01-01

    Chaperones are fundamental to regulating the heat shock response, mediating protein recovery from thermal‐induced misfolding and aggregation. Using the QconCAT strategy and selected reaction monitoring (SRM) for absolute protein quantification, we have determined copy per cell values for 49 key chaperones in Saccharomyces cerevisiae under conditions of normal growth and heat shock. This work extends a previous chemostat quantification study by including up to five Q‐peptides per protein to improve confidence in protein quantification. In contrast to the global proteome profile of S. cerevisiae in response to heat shock, which remains largely unchanged as determined by label‐free quantification, many of the chaperones are upregulated with an average two‐fold increase in protein abundance. Interestingly, eight of the significantly upregulated chaperones are direct gene targets of heat shock transcription factor‐1. By performing absolute quantification of chaperones under heat stress for the first time, we were able to evaluate the individual protein‐level response. Furthermore, this SRM data was used to calibrate label‐free quantification values for the proteome in absolute terms, thus improving relative quantification between the two conditions. This study significantly enhances the largely transcriptomic data available in the field and illustrates a more nuanced response at the protein level. PMID:27252046

  6. Absolute quantification for benzoic acid in processed foods using quantitative proton nuclear magnetic resonance spectroscopy.

    PubMed

    Ohtsuki, Takashi; Sato, Kyoko; Sugimoto, Naoki; Akiyama, Hiroshi; Kawamura, Yoko

    2012-09-15

    The absolute quantification method of benzoic acid (BA) in processed foods using solvent extraction and quantitative proton nuclear magnetic resonance spectroscopy was developed and validated. BA levels were determined using proton signals (δ(H) 7.53 and 7.98) referenced to 2-dimethyl-2-silapentane-5-sulfonate-d(6) sodium salt (DSS-d(6)) after simple solvent extraction from processed foods. All recoveries from several kinds of processed foods, spiked at their specified maximum Japanese usage levels (0.6-2.5 g kg(-1)) and at 0.13 g kg(-1) and 0.063 g kg(-1), were greater than 80%. The limit of quantification was confirmed as 0.063 g kg(-1) in processed foods, which was sufficiently low for the purposes of monitoring BA. The accuracy of the proposed method is equivalent to the conventional method using steam-distillation extraction and high-performance liquid chromatography. The proposed method was both rapid and simple. Moreover, it provided International System of Units traceability without the need for authentic analyte standards. Therefore, the proposed method is a useful and practical tool for determining BA levels in processed foods. PMID:22967562

  7. Absolute quantification for benzoic acid in processed foods using quantitative proton nuclear magnetic resonance spectroscopy.

    PubMed

    Ohtsuki, Takashi; Sato, Kyoko; Sugimoto, Naoki; Akiyama, Hiroshi; Kawamura, Yoko

    2012-09-15

    The absolute quantification method of benzoic acid (BA) in processed foods using solvent extraction and quantitative proton nuclear magnetic resonance spectroscopy was developed and validated. BA levels were determined using proton signals (δ(H) 7.53 and 7.98) referenced to 2-dimethyl-2-silapentane-5-sulfonate-d(6) sodium salt (DSS-d(6)) after simple solvent extraction from processed foods. All recoveries from several kinds of processed foods, spiked at their specified maximum Japanese usage levels (0.6-2.5 g kg(-1)) and at 0.13 g kg(-1) and 0.063 g kg(-1), were greater than 80%. The limit of quantification was confirmed as 0.063 g kg(-1) in processed foods, which was sufficiently low for the purposes of monitoring BA. The accuracy of the proposed method is equivalent to the conventional method using steam-distillation extraction and high-performance liquid chromatography. The proposed method was both rapid and simple. Moreover, it provided International System of Units traceability without the need for authentic analyte standards. Therefore, the proposed method is a useful and practical tool for determining BA levels in processed foods.

  8. Absolute method of measuring magnetic susceptibility

    USGS Publications Warehouse

    Thorpe, A.; Senftle, F.E.

    1959-01-01

    An absolute method of standardization and measurement of the magnetic susceptibility of small samples is presented which can be applied to most techniques based on the Faraday method. The fact that the susceptibility is a function of the area under the curve of sample displacement versus distance of the magnet from the sample, offers a simple method of measuring the susceptibility without recourse to a standard sample. Typical results on a few substances are compared with reported values, and an error of less than 2% can be achieved. ?? 1959 The American Institute of Physics.

  9. Absolute quantification of allergens from complex mixtures: a new sensitive tool for standardization of allergen extracts for specific immunotherapy.

    PubMed

    Seppälä, Ulla; Dauly, Claire; Robinson, Sarah; Hornshaw, Martin; Larsen, Jørgen Nedergaard; Ipsen, Henrik

    2011-04-01

    Products for specific diagnosis and immunotherapy of IgE-mediated allergies are currently based on natural extracts. Quantification of major allergen content is an important aspect of standardization as important allergens particularly impact vaccine potency. The aim of the study was to develop a mass spectrometry (MS) based assay for absolute quantification of Timothy (Phleum pratense) pollen allergens Phl p 1 and Phl p 5 in P. pratense extract. High-resolution and accurate mass (HRAM) MS was selected for its ability to detect peptides with high selectivity and mass accuracy (<3 ppm). Isotope labeled heavy peptides were used for absolute quantification of specific isoallergens of Phl p 1 and Phl p 5 at low femtomole level in P. pratense extract. Robustness and linearity of the method was demonstrated with intra day precision ≤ 5% (n = 3). Phl p 1b was shown to be 5 times less abundant than its variant Phl p 1a and Phl p 5b was shown to be 9 times more abundant than the Phl p 5a. The present study shows that allergen, and/or isoallergen specific, surrogate signature peptides analyzed with HRAM MS is a sensitive and accurate tool for identification and quantification of allergens from complex allergen sources.

  10. Refinements to the structure of graphite oxide: absolute quantification of functional groups via selective labelling

    NASA Astrophysics Data System (ADS)

    Eng, Alex Yong Sheng; Chua, Chun Kiang; Pumera, Martin

    2015-11-01

    Chemical modification and functionalization of inherent functional groups within graphite oxide (GO) are essential aspects of graphene-based nano-materials used in wide-ranging applications. Despite extensive research, there remains some discrepancy in its structure, with current knowledge limited primarily to spectroscopic data from XPS, NMR and vibrational spectroscopies. We report herein an innovative electrochemistry-based approach. Four electroactive labels are chosen to selectively functionalize groups in GO, and quantification of each group is achieved by voltammetric analysis. This allows for the first time quantification of absolute amounts of each group, with a further advantage of distinguishing various carbonyl species: namely ortho- and para-quinones from aliphatic ketones. Intrinsic variations in the compositions of permanganate versus chlorate-oxidized GOs were thus observed. Principal differences include permanganate-GO exhibiting substantial quinonyl content, in comparison to chlorate-GO with the vast majority of its carbonyls as isolated ketones. The results confirm that carboxylic groups are rare in actuality, and are in fact entirely absent from chlorate-GO. These observations refine and advance our understanding of GO structure by addressing certain disparities in past models resulting from employment of different oxidation routes, with the vital implication that GO production methods cannot be used interchangeably in the manufacture of graphene-based devices.Chemical modification and functionalization of inherent functional groups within graphite oxide (GO) are essential aspects of graphene-based nano-materials used in wide-ranging applications. Despite extensive research, there remains some discrepancy in its structure, with current knowledge limited primarily to spectroscopic data from XPS, NMR and vibrational spectroscopies. We report herein an innovative electrochemistry-based approach. Four electroactive labels are chosen to selectively

  11. Metal Stable Isotope Tagging: Renaissance of Radioimmunoassay for Multiplex and Absolute Quantification of Biomolecules.

    PubMed

    Liu, Rui; Zhang, Shixi; Wei, Chao; Xing, Zhi; Zhang, Sichun; Zhang, Xinrong

    2016-05-17

    The unambiguous quantification of biomolecules is of great significance in fundamental biological research as well as practical clinical diagnosis. Due to the lack of a detectable moiety, the direct and highly sensitive quantification of biomolecules is often a "mission impossible". Consequently, tagging strategies to introduce detectable moieties for labeling target biomolecules were invented, which had a long and significant impact on studies of biomolecules in the past decades. For instance, immunoassays have been developed with radioisotope tagging by Yalow and Berson in the late 1950s. The later languishment of this technology can be almost exclusively ascribed to the use of radioactive isotopes, which led to the development of nonradioactive tagging strategy-based assays such as enzyme-linked immunosorbent assay, fluorescent immunoassay, and chemiluminescent and electrochemiluminescent immunoassay. Despite great success, these strategies suffered from drawbacks such as limited spectral window capacity for multiplex detection and inability to provide absolute quantification of biomolecules. After recalling the sequences of tagging strategies, an apparent question is why not use stable isotopes from the start? A reasonable explanation is the lack of reliable means for accurate and precise quantification of stable isotopes at that time. The situation has changed greatly at present, since several atomic mass spectrometric measures for metal stable isotopes have been developed. Among the newly developed techniques, inductively coupled plasma mass spectrometry is an ideal technique to determine metal stable isotope-tagged biomolecules, for its high sensitivity, wide dynamic linear range, and more importantly multiplex and absolute quantification ability. Since the first published report by our group, metal stable isotope tagging has become a revolutionary technique and gained great success in biomolecule quantification. An exciting research highlight in this area

  12. Metal Stable Isotope Tagging: Renaissance of Radioimmunoassay for Multiplex and Absolute Quantification of Biomolecules.

    PubMed

    Liu, Rui; Zhang, Shixi; Wei, Chao; Xing, Zhi; Zhang, Sichun; Zhang, Xinrong

    2016-05-17

    The unambiguous quantification of biomolecules is of great significance in fundamental biological research as well as practical clinical diagnosis. Due to the lack of a detectable moiety, the direct and highly sensitive quantification of biomolecules is often a "mission impossible". Consequently, tagging strategies to introduce detectable moieties for labeling target biomolecules were invented, which had a long and significant impact on studies of biomolecules in the past decades. For instance, immunoassays have been developed with radioisotope tagging by Yalow and Berson in the late 1950s. The later languishment of this technology can be almost exclusively ascribed to the use of radioactive isotopes, which led to the development of nonradioactive tagging strategy-based assays such as enzyme-linked immunosorbent assay, fluorescent immunoassay, and chemiluminescent and electrochemiluminescent immunoassay. Despite great success, these strategies suffered from drawbacks such as limited spectral window capacity for multiplex detection and inability to provide absolute quantification of biomolecules. After recalling the sequences of tagging strategies, an apparent question is why not use stable isotopes from the start? A reasonable explanation is the lack of reliable means for accurate and precise quantification of stable isotopes at that time. The situation has changed greatly at present, since several atomic mass spectrometric measures for metal stable isotopes have been developed. Among the newly developed techniques, inductively coupled plasma mass spectrometry is an ideal technique to determine metal stable isotope-tagged biomolecules, for its high sensitivity, wide dynamic linear range, and more importantly multiplex and absolute quantification ability. Since the first published report by our group, metal stable isotope tagging has become a revolutionary technique and gained great success in biomolecule quantification. An exciting research highlight in this area

  13. Absolute and direct microRNA quantification using DNA-gold nanoparticle probes.

    PubMed

    Degliangeli, Federica; Kshirsagar, Prakash; Brunetti, Virgilio; Pompa, Pier Paolo; Fiammengo, Roberto

    2014-02-12

    DNA-gold nanoparticle probes are implemented in a simple strategy for direct microRNA (miRNA) quantification. Fluorescently labeled DNA-probe strands are immobilized on PEGylated gold nanoparticles (AuNPs). In the presence of target miRNA, DNA-RNA heteroduplexes are formed and become substrate for the endonuclease DSN (duplex-specific nuclease). Enzymatic hydrolysis of the DNA strands yields a fluorescence signal due to diffusion of the fluorophores away from the gold surface. We show that the molecular design of our DNA-AuNP probes, with the DNA strands immobilized on top of the PEG-based passivation layer, results in nearly unaltered enzymatic activity toward immobilized heteroduplexes compared to substrates free in solution. The assay, developed in a real-time format, allows absolute quantification of as little as 0.2 fmol of miR-203. We also show the application of the assay for direct quantification of cancer-related miR-203 and miR-21 in samples of extracted total RNA from cell cultures. The possibility of direct and absolute quantification may significantly advance the use of microRNAs as biomarkers in the clinical praxis.

  14. Absolute quantification of carnosine in human calf muscle by proton magnetic resonance spectroscopy

    NASA Astrophysics Data System (ADS)

    Özdemir, Mahir S.; Reyngoudt, Harmen; DeDeene, Yves; Sazak, Hakan S.; Fieremans, Els; Delputte, Steven; D'Asseler, Yves; Derave, Wim; Lemahieu, Ignace; Achten, Eric

    2007-12-01

    Carnosine has been shown to be present in the skeletal muscle and in the brain of a variety of animals and humans. Despite the various physiological functions assigned to this metabolite, its exact role remains unclear. It has been suggested that carnosine plays a role in buffering in the intracellular physiological pHi range in skeletal muscle as a result of accepting hydrogen ions released in the development of fatigue during intensive exercise. It is thus postulated that the concentration of carnosine is an indicator for the extent of the buffering capacity. However, the determination of the concentration of this metabolite has only been performed by means of muscle biopsy, which is an invasive procedure. In this paper, we utilized proton magnetic resonance spectroscopy (1H MRS) in order to perform absolute quantification of carnosine in vivo non-invasively. The method was verified by phantom experiments and in vivo measurements in the calf muscles of athletes and untrained volunteers. The measured mean concentrations in the soleus and the gastrocnemius muscles were found to be 2.81 ± 0.57/4.8 ± 1.59 mM (mean ± SD) for athletes and 2.58 ± 0.65/3.3 ± 0.32 mM for untrained volunteers, respectively. These values are in agreement with previously reported biopsy-based results. Our results suggest that 1H MRS can provide an alternative method for non-invasively determining carnosine concentration in human calf muscle in vivo.

  15. Absolute quantification of Bovine Viral Diarrhea Virus (BVDV) RNA by the digital PCR technique

    NASA Astrophysics Data System (ADS)

    Flatschart, R. B.; Almeida, D. O.; Heinemann, M. B.; Medeiros, M. N.; Granjeiro, J. M.; Folgueras-Flatschart, A. V.

    2015-01-01

    The quality control of cell lines used in research and industry is critical to ensure confidence in experimental results and to guarantee the safety of biopharmaceuticals to consumers. The BVDV is a common adventitious agent in many cell lines. We preliminarly evaluate the use of Digital Droplet PCR (ddPCR) for the detection and enumeration of genome copies of BVDV in cell culture and on FBS. The application of a commercial Real-Time PCR kit with the ddPCR technique was successful on different matrices. The technique allowed the absolute quantification of the genome without the use of calibration standards, suggesting its promising application on the development of reference materials for quantification of nucleic acids.

  16. Absolute quantification of genetically modified MON810 maize (Zea mays L.) by digital polymerase chain reaction.

    PubMed

    Corbisier, Philippe; Bhat, Somanath; Partis, Lina; Xie, Vicki Rui Dan; Emslie, Kerry R

    2010-03-01

    Quantitative analysis of genetically modified (GM) foods requires estimation of the amount of the transgenic event relative to an endogenous gene. Regulatory authorities in the European Union (EU) have defined the labelling threshold for GM food on the copy number ratio between the transgenic event and an endogenous gene. Real-time polymerase chain reaction (PCR) is currently being used for quantification of GM organisms (GMOs). Limitations in real-time PCR applications to detect very low number of DNA targets has led to new developments such as the digital PCR (dPCR) which allows accurate measurement of DNA copies without the need for a reference calibrator. In this paper, the amount of maize MON810 and hmg copies present in a DNA extract from seed powders certified for their mass content and for their copy number ratio was measured by dPCR. The ratio of these absolute copy numbers determined by dPCR was found to be identical to the ratios measured by real-time quantitative PCR (qPCR) using a plasmid DNA calibrator. These results indicate that both methods could be applied to determine the copy number ratio in MON810. The reported values were in agreement with estimations from a model elaborated to convert mass fractions into copy number fractions in MON810 varieties. This model was challenged on two MON810 varieties used for the production of MON810 certified reference materials (CRMs) which differ in the parental origin of the introduced GM trait. We conclude that dPCR has a high metrological quality and can be used for certifying GM CRMs in terms of DNA copy number ratio.

  17. Absolute Quantification of the Host-To-Parasite DNA Ratio in Theileria parva-Infected Lymphocyte Cell Lines.

    PubMed

    Gotia, Hanzel T; Munro, James B; Knowles, Donald P; Daubenberger, Claudia A; Bishop, Richard P; Silva, Joana C

    2016-01-01

    Theileria parva is a tick-transmitted intracellular apicomplexan pathogen of cattle in sub-Saharan Africa that causes East Coast fever (ECF). ECF is an acute fatal disease that kills over one million cattle annually, imposing a tremendous burden on African small-holder cattle farmers. The pathology and level of T. parva infections in its wildlife host, African buffalo (Syncerus caffer), and in cattle are distinct. We have developed an absolute quantification method based on quantitative PCR (qPCR) in which recombinant plasmids containing single copy genes specific to the parasite (apical membrane antigen 1 gene, ama1) or the host (hypoxanthine phosphoribosyltransferase 1, hprt1) are used as the quantification reference standards. Our study shows that T. parva and bovine cells are present in similar numbers in T. parva-infected lymphocyte cell lines and that consequently, due to its much smaller genome size, T. parva DNA comprises between 0.9% and 3% of the total DNA samples extracted from these lines. This absolute quantification assay of parasite and host genome copy number in a sample provides a simple and reliable method of assessing T. parva load in infected bovine lymphocytes, and is accurate over a wide range of host-to-parasite DNA ratios. Knowledge of the proportion of target DNA in a sample, as enabled by this method, is essential for efficient high-throughput genome sequencing applications for a variety of intracellular pathogens. This assay will also be very useful in future studies of interactions of distinct host-T. parva stocks and to fully characterize the dynamics of ECF infection in the field. PMID:26930209

  18. Absolute Quantification of the Host-To-Parasite DNA Ratio in Theileria parva-Infected Lymphocyte Cell Lines

    PubMed Central

    Gotia, Hanzel T.; Munro, James B.; Knowles, Donald P.; Daubenberger, Claudia A.; Bishop, Richard P.; Silva, Joana C.

    2016-01-01

    Theileria parva is a tick-transmitted intracellular apicomplexan pathogen of cattle in sub-Saharan Africa that causes East Coast fever (ECF). ECF is an acute fatal disease that kills over one million cattle annually, imposing a tremendous burden on African small-holder cattle farmers. The pathology and level of T. parva infections in its wildlife host, African buffalo (Syncerus caffer), and in cattle are distinct. We have developed an absolute quantification method based on quantitative PCR (qPCR) in which recombinant plasmids containing single copy genes specific to the parasite (apical membrane antigen 1 gene, ama1) or the host (hypoxanthine phosphoribosyltransferase 1, hprt1) are used as the quantification reference standards. Our study shows that T. parva and bovine cells are present in similar numbers in T. parva-infected lymphocyte cell lines and that consequently, due to its much smaller genome size, T. parva DNA comprises between 0.9% and 3% of the total DNA samples extracted from these lines. This absolute quantification assay of parasite and host genome copy number in a sample provides a simple and reliable method of assessing T. parva load in infected bovine lymphocytes, and is accurate over a wide range of host-to-parasite DNA ratios. Knowledge of the proportion of target DNA in a sample, as enabled by this method, is essential for efficient high-throughput genome sequencing applications for a variety of intracellular pathogens. This assay will also be very useful in future studies of interactions of distinct host-T. parva stocks and to fully characterize the dynamics of ECF infection in the field. PMID:26930209

  19. Droplet Digital Enzyme-Linked Oligonucleotide Hybridization Assay for Absolute RNA Quantification

    PubMed Central

    Guan, Weihua; Chen, Liben; Rane, Tushar D.; Wang, Tza-Huei

    2015-01-01

    We present a continuous-flow droplet-based digital Enzyme-Linked Oligonucleotide Hybridization Assay (droplet digital ELOHA) for sensitive detection and absolute quantification of RNA molecules. Droplet digital ELOHA incorporates direct hybridization and single enzyme reaction via the formation of single probe-RNA-probe (enzyme) complex on magnetic beads. It enables RNA detection without reverse transcription and PCR amplification processes. The magnetic beads are subsequently encapsulated into a large number of picoliter-sized droplets with enzyme substrates in a continuous-flow device. This device is capable of generating droplets at high-throughput. It also integrates in-line enzymatic incubation and detection of fluorescent products. Our droplet digital ELOHA is able to accurately quantify (differentiate 40% difference) as few as ~600 RNA molecules in a 1 mL sample (equivalent to 1 aM or lower) without molecular replication. The absolute quantification ability of droplet digital ELOHA is demonstrated with the analysis of clinical Neisseria gonorrhoeae 16S rRNA to show its potential value in real complex samples. PMID:26333806

  20. Droplet Digital Enzyme-Linked Oligonucleotide Hybridization Assay for Absolute RNA Quantification

    NASA Astrophysics Data System (ADS)

    Guan, Weihua; Chen, Liben; Rane, Tushar D.; Wang, Tza-Huei

    2015-09-01

    We present a continuous-flow droplet-based digital Enzyme-Linked Oligonucleotide Hybridization Assay (droplet digital ELOHA) for sensitive detection and absolute quantification of RNA molecules. Droplet digital ELOHA incorporates direct hybridization and single enzyme reaction via the formation of single probe-RNA-probe (enzyme) complex on magnetic beads. It enables RNA detection without reverse transcription and PCR amplification processes. The magnetic beads are subsequently encapsulated into a large number of picoliter-sized droplets with enzyme substrates in a continuous-flow device. This device is capable of generating droplets at high-throughput. It also integrates in-line enzymatic incubation and detection of fluorescent products. Our droplet digital ELOHA is able to accurately quantify (differentiate 40% difference) as few as ~600 RNA molecules in a 1 mL sample (equivalent to 1 aM or lower) without molecular replication. The absolute quantification ability of droplet digital ELOHA is demonstrated with the analysis of clinical Neisseria gonorrhoeae 16S rRNA to show its potential value in real complex samples.

  1. Absolute quantification of lung cancer related microRNA by droplet digital PCR.

    PubMed

    Wang, Ping; Jing, Fengxiang; Li, Gang; Wu, Zhenhua; Cheng, Zule; Zhang, Jishen; Zhang, Honglian; Jia, Chunping; Jin, Qinghui; Mao, Hongju; Zhao, Jianlong

    2015-12-15

    Digital polymerase chain reaction (digital PCR) enables the absolute quantification of nucleic acids through the counting of single molecules, thus eliminating the need for standard curves or endogenous controls. In this study, we developed a droplet digital PCR (ddPCR) system based on an oil saturated PDMS (OSP) microfluidic chip platform for quantification of lung cancer related microRNA (miRNA). The OSP chip was made with PDMS and was oil saturated to constrain oil swallow and maintain the stability of droplets. Two inlets were designed for oil and sample injection with a syringe pump at the outlet. Highly uniform monodisperse water-in-oil emulsion droplets to be used for subsequent detection and analysis were generated at the cross section of the channel. We compared miRNA quantification by the ddPCR system and quantitative real-time PCR (qPCR) to demonstrate that the ddPCR system was superior to qPCR both in its detection limit and smaller fold changes measurement. This droplet PCR system provides new possibilities for highly sensitive and efficient detection of cancer-related genes. PMID:26232679

  2. Novel isotopic N, N-dimethyl leucine (iDiLeu) reagents enable absolute quantification of peptides and proteins using a standard curve approach

    PubMed Central

    Greer, Tyler; Lietz, Christopher B.; Xiang, Feng; Li, Lingjun

    2014-01-01

    Absolute quantification of protein targets using liquid chromatography-mass spectrometry (LC-MS) is a key component of candidate biomarker validation. One popular method combines multiple reaction monitoring (MRM) using a triple quadrupole instrument with stable isotope-labeled standards (SIS) for absolute quantification (AQUA). LC-MRM AQUA assays are sensitive and specific, but they are also expensive due to the cost of synthesizing stable isotope peptide standards. While the chemical modification approach using Mass Differential Tags for Relative and Absolute Quantification (mTRAQ) represents a more economical approach when quantifying large numbers of peptides, these reagents are costly and still suffer from lower throughput because only two concentration values per peptide can be obtained in a single LC-MS run. Here, we have developed and applied a set of five novel mass difference reagents, isotopic N,N-dimethyl leucine (iDiLeu). These labels contain an amine reactive group, triazine ester, are cost effective due to their synthetic simplicity, and have increased throughput compared to previous LC-MS quantification methods by allowing construction of a four-point standard curve in one run. iDiLeu-labeled peptides show remarkably similar retention time shifts, slightly lower energy thresholds for higher-energy collisional dissociation (HCD) fragmentation, and high quantification accuracy for trypsin-digested protein samples (median errors <15%). By spiking in an iDiLeu-labeled neuropeptide, allatostatin, into mouse urine matrix, two quantification methods are validated. The first uses one labeled peptide as an internal standard to normalize labeled peptide peak areas across runs (<19% error) while the second enables standard curve creation and analyte quantification in one run (<8% error). PMID:25377360

  3. Targeted absolute quantification of intact proteins by reversed phase liquid chromatography-mass spectrometry, charge reduced electrospray, and condensation particle counting.

    PubMed

    Adou, Kouame; Johnston, Murray V; Dykins, John L

    2012-08-21

    A novel approach involving the use of reversed phase liquid chromatography-mass spectrometry (RPLC-MS), charge reduced electrospray (CRES), and condensation particle counting (CPC) for the absolute quantification of intact proteins in liquid solutions is introduced. Under analysis conditions optimized for the quantification of select proteins within their predetermined linear ranges, a set of at least five protein standards with molecular weights (MW) spanning the dynamic ranges of both a quadrupole time-of-flight (QTOF) MS and a suitably selected RPLC column is used to generate a calibration curve of CPC detection efficiency (DE) as a function of the square root of MW. Next, the sample of interest is analyzed, and from the MS-generated MW data, the DE of each target protein is determined from the calibration curve. On the basis of MW, DE, and number concentration (molecules/unit volume), absolute quantification is achieved for each protein of interest. Application of this approach to the absolute quantification of cytochrome C (as target compound) in a commercial protein mixture is demonstrated with a deviation of 8%, a coefficient of variation (CV) of 5%, and a quantification limit of 432 fmol. For nontarget components of the mixture (ribonuclease A, holotransferrin, and apomyoglobin), the percent deviation from the stated concentrations and the CV varied from 0.20 to 23 and from 4.1 to 18, respectively. Performance of the method was further assessed by analyzing a laboratory quality control mixture comprising 0.33 μM of cytochrome C. The calculated value was 0.34 (CV: 5.1%). Universal in essence, the new technique holds strong promise for the absolute quantification of select proteins in liquid samples under conditions of good peak resolution and stable baseline.

  4. Non-Invasive Quantification of Absolute Cerebral Blood Volume During Functional Activation Applicable to the Whole Human Brain

    PubMed Central

    Ciris, Pelin Aksit; Qiu, Maolin; Constable, Robert Todd

    2013-01-01

    Purpose Cerebral blood volume (CBV) changes in many diverse pathologic conditions, and in response to functional challenges along with changes in blood flow, blood oxygenation, and the cerebral metabolic rate of oxygen. The feasibility of a new method for non-invasive quantification of absolute cerebral blood volume that can be applicable to the whole human brain was investigated. Methods Multi-slice data were acquired at 3 T using a novel inversion recovery echo planar imaging (IR-EPI) pulse sequence with varying contrast weightings and an efficient rotating slice acquisition order, at rest and during visual activation. A biophysical model was used to estimate absolute cerebral blood volume at rest and during activation, and oxygenation during activation, on data from 13 normal human subjects. Results Cerebral blood volume increased by 21.7% from 6.6±0.8 mL/100 mL of brain parenchyma at rest to 8.0±1.3 mL/100 mL of brain parenchyma in the occipital cortex during visual activation, with average blood oxygenation of 84±2.1% during activation, comparing well with literature. Conclusion The method is feasible, and could foster improved understanding of the fundamental physiological relationship between neuronal activity, hemodynamic changes, and metabolism underlying brain activation; complement existing methods for estimating compartmental changes; and potentially find utility in evaluating vascular health. PMID:23475774

  5. Direct and Absolute Quantification of over 1800 Yeast Proteins via Selected Reaction Monitoring*

    PubMed Central

    Lawless, Craig; Holman, Stephen W.; Brownridge, Philip; Lanthaler, Karin; Harman, Victoria M.; Watkins, Rachel; Hammond, Dean E.; Miller, Rebecca L.; Sims, Paul F. G.; Grant, Christopher M.; Eyers, Claire E.; Beynon, Robert J.

    2016-01-01

    Defining intracellular protein concentration is critical in molecular systems biology. Although strategies for determining relative protein changes are available, defining robust absolute values in copies per cell has proven significantly more challenging. Here we present a reference data set quantifying over 1800 Saccharomyces cerevisiae proteins by direct means using protein-specific stable-isotope labeled internal standards and selected reaction monitoring (SRM) mass spectrometry, far exceeding any previous study. This was achieved by careful design of over 100 QconCAT recombinant proteins as standards, defining 1167 proteins in terms of copies per cell and upper limits on a further 668, with robust CVs routinely less than 20%. The selected reaction monitoring-derived proteome is compared with existing quantitative data sets, highlighting the disparities between methodologies. Coupled with a quantification of the transcriptome by RNA-seq taken from the same cells, these data support revised estimates of several fundamental molecular parameters: a total protein count of ∼100 million molecules-per-cell, a median of ∼1000 proteins-per-transcript, and a linear model of protein translation explaining 70% of the variance in translation rate. This work contributes a “gold-standard” reference yeast proteome (including 532 values based on high quality, dual peptide quantification) that can be widely used in systems models and for other comparative studies. PMID:26750110

  6. Comparison of different standards for real-time PCR-based absolute quantification.

    PubMed

    Dhanasekaran, S; Doherty, T Mark; Kenneth, John

    2010-03-31

    Quantitative real-time PCR (qPCR) is a powerful tool used for both research and diagnostic, which has the advantage, compared to relative quantification, of providing an absolute copy number for a particular target. However, reliable standards are essential for qPCR. In this study, we have compared four types of commonly-used standards--PCR products (with and without purification) and cloned target sequences (circular and linear plasmid) for their stability during storage (using percentage of variance in copy numbers, PCR efficiency and regression curve correlation coefficient (R(2))) using hydrolysis probe (TaqMan) chemistry. Results, expressed as copy numbers/microl, are presented from a sample human system in which absolute levels of HuPO (reference gene) and the cytokine gene IFN-gamma were measured. To ensure the suitability and stability of the four standards, the experiments were performed at 0, 7 and 14 day intervals and repeated 6 times. We have found that the copy numbers vary (due to degradation of standards) over the period of time during storage at 4 degrees C and -20 degrees C, which affected PCR efficiency significantly. The cloned target sequences were noticeably more stable than the PCR product, which could lead to substantial variance in results using standards constructed by different routes. Standard quality and stability should be routinely tested for assays using qPCR.

  7. Global absolute quantification reveals tight regulation of protein expression in single Xenopus eggs

    PubMed Central

    Smits, Arne H.; Lindeboom, Rik G.H.; Perino, Matteo; van Heeringen, Simon J.; Veenstra, Gert Jan C.; Vermeulen, Michiel

    2014-01-01

    While recent developments in genomic sequencing technology have enabled comprehensive transcriptome analyses of single cells, single cell proteomics has thus far been restricted to targeted studies. Here, we perform global absolute protein quantification of fertilized Xenopus laevis eggs using mass spectrometry-based proteomics, quantifying over 5800 proteins in the largest single cell proteome characterized to date. Absolute protein amounts in single eggs are highly consistent, thus indicating a tight regulation of global protein abundance. Protein copy numbers in single eggs range from tens of thousands to ten trillion copies per cell. Comparison between the single-cell proteome and transcriptome reveal poor expression correlation. Finally, we identify 439 proteins that significantly change in abundance during early embryogenesis. Downregulated proteins include ribosomal proteins and upregulated proteins include basal transcription factors, among others. Many of these proteins do not show regulation at the transcript level. Altogether, our data reveal that the transcriptome is a poor indicator of the proteome and that protein levels are tightly controlled in X. laevis eggs. PMID:25056316

  8. Absolute quantification of olive oil DNA by droplet digital-PCR (ddPCR): Comparison of isolation and amplification methodologies.

    PubMed

    Scollo, Francesco; Egea, Leticia A; Gentile, Alessandra; La Malfa, Stefano; Dorado, Gabriel; Hernandez, Pilar

    2016-12-15

    Olive oil is considered a premium product for its nutritional value and health benefits, and the ability to define its origin and varietal composition is a key step towards ensuring the traceability of the product. However, isolating the DNA from such a matrix is a difficult task. In this study, the quality and quantity of olive oil DNA, isolated using four different DNA isolation protocols, was evaluated using the qRT-PCR and ddPCR techniques. The results indicate that CTAB-based extraction methods were the best for unfiltered oil, while Nucleo Spin-based extraction protocols showed greater overall reproducibility. The use of both qRT-PCR and ddPCR led to the absolute quantification of the DNA copy number. The results clearly demonstrate the importance of the choice of DNA-isolation protocol, which should take into consideration the qualitative aspects of DNA and the evaluation of the amplified DNA copy number. PMID:27451195

  9. Absolute quantification of olive oil DNA by droplet digital-PCR (ddPCR): Comparison of isolation and amplification methodologies.

    PubMed

    Scollo, Francesco; Egea, Leticia A; Gentile, Alessandra; La Malfa, Stefano; Dorado, Gabriel; Hernandez, Pilar

    2016-12-15

    Olive oil is considered a premium product for its nutritional value and health benefits, and the ability to define its origin and varietal composition is a key step towards ensuring the traceability of the product. However, isolating the DNA from such a matrix is a difficult task. In this study, the quality and quantity of olive oil DNA, isolated using four different DNA isolation protocols, was evaluated using the qRT-PCR and ddPCR techniques. The results indicate that CTAB-based extraction methods were the best for unfiltered oil, while Nucleo Spin-based extraction protocols showed greater overall reproducibility. The use of both qRT-PCR and ddPCR led to the absolute quantification of the DNA copy number. The results clearly demonstrate the importance of the choice of DNA-isolation protocol, which should take into consideration the qualitative aspects of DNA and the evaluation of the amplified DNA copy number.

  10. Toward greener analytical techniques for the absolute quantification of peptides in pharmaceutical and biological samples.

    PubMed

    Van Eeckhaut, Ann; Mangelings, Debby

    2015-09-10

    Peptide-based biopharmaceuticals represent one of the fastest growing classes of new drug molecules. New reaction types included in the synthesis strategies to reduce the rapid metabolism of peptides, along with the availability of new formulation and delivery technologies, resulted in an increased marketing of peptide drug products. In this regard, the development of analytical methods for quantification of peptides in pharmaceutical and biological samples is of utmost importance. From the sample preparation step to their analysis by means of chromatographic or electrophoretic methods, many difficulties should be tackled to analyze them. Recent developments in analytical techniques emphasize more and more on the use of green analytical techniques. This review will discuss the progresses in and challenges observed during green analytical method development for the quantification of peptides in pharmaceutical and biological samples. PMID:25864956

  11. Toward greener analytical techniques for the absolute quantification of peptides in pharmaceutical and biological samples.

    PubMed

    Van Eeckhaut, Ann; Mangelings, Debby

    2015-09-10

    Peptide-based biopharmaceuticals represent one of the fastest growing classes of new drug molecules. New reaction types included in the synthesis strategies to reduce the rapid metabolism of peptides, along with the availability of new formulation and delivery technologies, resulted in an increased marketing of peptide drug products. In this regard, the development of analytical methods for quantification of peptides in pharmaceutical and biological samples is of utmost importance. From the sample preparation step to their analysis by means of chromatographic or electrophoretic methods, many difficulties should be tackled to analyze them. Recent developments in analytical techniques emphasize more and more on the use of green analytical techniques. This review will discuss the progresses in and challenges observed during green analytical method development for the quantification of peptides in pharmaceutical and biological samples.

  12. A practical method for sensor absolute calibration.

    PubMed

    Meisenholder, G W

    1966-04-01

    This paper describes a method of performing sensor calibrations using an NBS standard of spectral irradiance. The method shown, among others, was used for calibration of the Mariner IV Canopus sensor. Agreement of inflight response to preflight calibrations performed by this technique has been found to be well within 10%. PMID:20048890

  13. Selective and absolute quantification of endogenous hypochlorous acid with quantum-dot conjugated microbeads.

    PubMed

    Yang, Yi-Cyun; Lu, Hsueh-Han; Wang, Wei-Ti; Liau, Ian

    2011-11-01

    Endogenous hypochlorous acid (HOCl) secreted by leukocytes plays a critical role in both the immune defense of mammalians and the pathogenesis of various diseases intimately related to inflammation. We report the first selective and absolute quantification of endogenous HOCl produced by leukocytes in vitro and in vivo with a novel quantum dot-based sensor. An activated human neutrophil secreted 6.5 ± 0.9 × 10(8) HOCl molecules into its phagosome, and kinetic measurement for the secretions showed that the extracellular generation of HOCl was temporally retarded, but the quantity eventually attained a level comparable with its intraphagosomal counterpart with a delay of about 1.5 h. The quantity of HOCl secreted from the hepatic leukocytes of rats with or without stimulation of lipopolysaccharide was also determined. These results indicate a possibility to extend our approach to not only clinical settings for quantitative assessment of the bactericidal capability of isolated leukocytes of patients but also fundamental biomedical research that requires critical evaluation of the inflammatory response of animals. PMID:21950322

  14. Centrifugal step emulsification applied for absolute quantification of nucleic acids by digital droplet RPA.

    PubMed

    Schuler, Friedrich; Schwemmer, Frank; Trotter, Martin; Wadle, Simon; Zengerle, Roland; von Stetten, Felix; Paust, Nils

    2015-07-01

    Aqueous microdroplets provide miniaturized reaction compartments for numerous chemical, biochemical or pharmaceutical applications. We introduce centrifugal step emulsification for the fast and easy production of monodisperse droplets. Homogenous droplets with pre-selectable diameters in a range from 120 μm to 170 μm were generated with coefficients of variation of 2-4% and zero run-in time or dead volume. The droplet diameter depends on the nozzle geometry (depth, width, and step size) and interfacial tensions only. Droplet size is demonstrated to be independent of the dispersed phase flow rate between 0.01 and 1 μl s(-1), proving the robustness of the centrifugal approach. Centrifugal step emulsification can easily be combined with existing centrifugal microfluidic unit operations, is compatible to scalable manufacturing technologies such as thermoforming or injection moulding and enables fast emulsification (>500 droplets per second and nozzle) with minimal handling effort (2-3 pipetting steps). The centrifugal microfluidic droplet generation was used to perform the first digital droplet recombinase polymerase amplification (ddRPA). It was used for absolute quantification of Listeria monocytogenes DNA concentration standards with a total analysis time below 30 min. Compared to digital droplet polymerase chain reaction (ddPCR), with processing times of about 2 hours, the overall processing time of digital analysis was reduced by more than a factor of 4.

  15. Centrifugal step emulsification applied for absolute quantification of nucleic acids by digital droplet RPA.

    PubMed

    Schuler, Friedrich; Schwemmer, Frank; Trotter, Martin; Wadle, Simon; Zengerle, Roland; von Stetten, Felix; Paust, Nils

    2015-07-01

    Aqueous microdroplets provide miniaturized reaction compartments for numerous chemical, biochemical or pharmaceutical applications. We introduce centrifugal step emulsification for the fast and easy production of monodisperse droplets. Homogenous droplets with pre-selectable diameters in a range from 120 μm to 170 μm were generated with coefficients of variation of 2-4% and zero run-in time or dead volume. The droplet diameter depends on the nozzle geometry (depth, width, and step size) and interfacial tensions only. Droplet size is demonstrated to be independent of the dispersed phase flow rate between 0.01 and 1 μl s(-1), proving the robustness of the centrifugal approach. Centrifugal step emulsification can easily be combined with existing centrifugal microfluidic unit operations, is compatible to scalable manufacturing technologies such as thermoforming or injection moulding and enables fast emulsification (>500 droplets per second and nozzle) with minimal handling effort (2-3 pipetting steps). The centrifugal microfluidic droplet generation was used to perform the first digital droplet recombinase polymerase amplification (ddRPA). It was used for absolute quantification of Listeria monocytogenes DNA concentration standards with a total analysis time below 30 min. Compared to digital droplet polymerase chain reaction (ddPCR), with processing times of about 2 hours, the overall processing time of digital analysis was reduced by more than a factor of 4. PMID:25947077

  16. Absolute quantification of protein and post-translational modification abundance with stable isotope–labeled synthetic peptides

    PubMed Central

    Kettenbach, Arminja N; Rush, John; Gerber, Scott A

    2013-01-01

    In the analysis of biological systems, it is of interest to identify the components of the system and to monitor their changes in abundance under different conditions. The AQUA (for ‘absolute quantification’) method allows sensitive and specific targeted quantification of protein and post-translational modifications in complex protein mixtures using stable isotope–labeled peptides as internal standards. Each AQUA experiment is composed of two stages: method development and application to a biological scenario. In the method development stage, peptides from the protein of interest are chosen and then synthesized with stable isotopes such as 13C, 2H or 15N. The abundance of these internal standards and their endogenous counterparts can be measured by mass spectrometry with selected reaction monitoring or selected ion monitoring methods. Once an AQUA method is established, it can be rapidly applied to a wide range of biological samples, from tissue culture cells to human plasma and tissue. After AQUA peptide synthesis, the development, optimization and application of AQUA analyses to a specific biological problem can be achieved in ~1 week. Here we demonstrate the usefulness of this method by monitoring both Polo-like kinase 1 (Plk1) protein abundance in multiple lung cancer cell lines and the extent of Plk1 activation loop phosphorylation (pThr-210) during release from S phase. PMID:21293459

  17. Absolute quantification of γH2AX using liquid chromatography-triple quadrupole tandem mass spectrometry.

    PubMed

    Matsuda, Shun; Ikura, Tsuyoshi; Matsuda, Tomonari

    2015-07-01

    Ser139-phosphorylated histone H2AX (γH2AX) is a useful biomarker of DNA double strand breaks. γH2AX has been conventionally detected by immunology-based methods using anti-γH2AX antibody, but quantitative analysis is difficult to perform with such methods. Here, we describe an absolute quantification method using liquid chromatography-triple quadrupole tandem mass spectrometry that is applicable to peptides derived from γH2AX (ATQA(pS)QEY) and unphosphorylated H2AX (ATQASQEY). Our method was successfully applied to histones extracted from human cervix adenocarcinoma HeLa S3 cells. The estimated number of molecules of γH2AX (ATQA(pS)QEY) per vehicle-treated HeLa S3 cell was 9.4 × 10(4) and increased to 6.2 × 10(5) molecules/cell after exposure to the DNA-damaging agent camptothecin (10 μM) for 1 h. The estimated total amount of H2AX (ATQA(pS)QEY + ATQASQEY) was 3.3-3.6 × 10(6) molecules/cell. Due to its broad adaptability and throughput performance, we believe that our method is a powerful tool for mechanistic studies of the DNA-damage response as well as for genotoxicity testing, cancer drug screening, clinical studies, and other fields.

  18. The Multispecimen Method for Absolute Paleointensity Determination

    NASA Astrophysics Data System (ADS)

    Dekkers, M. J.; de Groot, L. V.; Monster, M.

    2015-12-01

    Paleointensity methods have seen a large improvement in the 21th century. This included optimizing classic Thellier-style protocols along with establishing stringent sets of quality criteria, developing microwave excitation as an alternative to thermal treatment, selecting sample material that contains the most suitable remanence carriers (i.e. single domain magnetic particles), calibrating non-heating paleointensity methods, and the introduction of the multispecimen paleointensity (MSP) protocol. An MSP experiment is carried out at one specific temperature selected to avoid thermochemical alteration; a series of specimens is heated and cooled in various applied furnace fields oriented parallel to the specimen's NRM. The furnace field value at which no change in NRM occurs is the paleofield. While the rationale of the MSP approach is surprisingly straightforward, some of the original claims (Dekkers and Böhnel, 2006) are by now shown to be untenable. This pertains to the claimed domain state independence in the original MSP method, although the Fabian and Leonhardt (2010) extended protocol largely corrects for domain state effects. Here we describe the optimal workflow for MSP experiments derived from our collection of historic flows from four volcanic edifices: Mt. Etna, Hawaii, the Canary Islands, and the Azores. By comparing the experimental outcome derived from historic flows with known paleointensities we found that technically acceptable experiments may yield overestimates, correct determinations, as well as underestimates of the paleofield. The so-called "ARM test" (de Groot et al., 2012) can distinguish between those three options. Based on TRM and ARM being analogues, this test compares ARM acquisition curves of sister samples before and after heating to the MSP experiment temperature. Simulated paleointensity experiments following this workflow consistently deliver the correct answer (Monster et al., submitted).

  19. Validation of RPS13 as a reference gene for absolute quantification of SIV RNA in tissue of rhesus macaques.

    PubMed

    Robichaux, Spencer; Lacour, Nedra; Bagby, Gregory J; Amedee, Angela M

    2016-10-01

    Persistent HIV reservoirs and the absolute quantification of viral RNA copies in tissues have become a prominent focus of multiple areas ofHIV/SIV research. Absolute quantification of viral RNA via reverse transcription, quantitative PCR (RT-qPCR) necessitates the use of an appropriate RNA reference gene whose expression is unaffected by both experimental and confounding conditions. In this study, we demonstrate the utility of ribosomal protein S13 mRNA (RPS13) as a stable, medium abundance reference gene for RT-qPCR normalization of HIV/SIV RNA copy number. We developed a RPS13 RNA standard assay utilizing an in vitro RNA transcript for normalization of absolute SIV RNA quantities in tissues reservoirs. The RT-qPCR assay showed a high degree of repeatability and reproducibility across RNA levels appropriate for absolute SIV quantification. In assessing the utility of RPS13 as a reference gene, limited variation in the absolute, inter-tissue quantities of RPS13 mRNA was observed within multiple tissue samples obtained from rhesus macaques (average CV=2.86%). We demonstrate rhesus macaque RPS13 mRNA expression is not affected by alcohol administration, SIV infection, or antiviral therapy (PMPA/FTC). Additionally, assay functionality was validated for normalization of SIV copy number using cellular RNA prepared from samples of variable RNA integrity. RPS13 is a suitable reference gene for normalization of absolute SIV RNA quantities in tissues and is most appropriate for intra-tissue or similar tissue type comparisons of SIV copy number. PMID:27510462

  20. Validation of RPS13 as a reference gene for absolute quantification of SIV RNA in tissue of rhesus macaques.

    PubMed

    Robichaux, Spencer; Lacour, Nedra; Bagby, Gregory J; Amedee, Angela M

    2016-10-01

    Persistent HIV reservoirs and the absolute quantification of viral RNA copies in tissues have become a prominent focus of multiple areas ofHIV/SIV research. Absolute quantification of viral RNA via reverse transcription, quantitative PCR (RT-qPCR) necessitates the use of an appropriate RNA reference gene whose expression is unaffected by both experimental and confounding conditions. In this study, we demonstrate the utility of ribosomal protein S13 mRNA (RPS13) as a stable, medium abundance reference gene for RT-qPCR normalization of HIV/SIV RNA copy number. We developed a RPS13 RNA standard assay utilizing an in vitro RNA transcript for normalization of absolute SIV RNA quantities in tissues reservoirs. The RT-qPCR assay showed a high degree of repeatability and reproducibility across RNA levels appropriate for absolute SIV quantification. In assessing the utility of RPS13 as a reference gene, limited variation in the absolute, inter-tissue quantities of RPS13 mRNA was observed within multiple tissue samples obtained from rhesus macaques (average CV=2.86%). We demonstrate rhesus macaque RPS13 mRNA expression is not affected by alcohol administration, SIV infection, or antiviral therapy (PMPA/FTC). Additionally, assay functionality was validated for normalization of SIV copy number using cellular RNA prepared from samples of variable RNA integrity. RPS13 is a suitable reference gene for normalization of absolute SIV RNA quantities in tissues and is most appropriate for intra-tissue or similar tissue type comparisons of SIV copy number.

  1. An improved generalized Newton method for absolute value equations.

    PubMed

    Feng, Jingmei; Liu, Sanyang

    2016-01-01

    In this paper, we suggest and analyze an improved generalized Newton method for solving the NP-hard absolute value equations [Formula: see text] when the singular values of A exceed 1. We show that the global and local quadratic convergence of the proposed method. Numerical experiments show the efficiency of the method and the high accuracy of calculation. PMID:27462490

  2. BACOM2.0 facilitates absolute normalization and quantification of somatic copy number alterations in heterogeneous tumor

    NASA Astrophysics Data System (ADS)

    Fu, Yi; Yu, Guoqiang; Levine, Douglas A.; Wang, Niya; Shih, Ie-Ming; Zhang, Zhen; Clarke, Robert; Wang, Yue

    2015-09-01

    Most published copy number datasets on solid tumors were obtained from specimens comprised of mixed cell populations, for which the varying tumor-stroma proportions are unknown or unreported. The inability to correct for signal mixing represents a major limitation on the use of these datasets for subsequent analyses, such as discerning deletion types or detecting driver aberrations. We describe the BACOM2.0 method with enhanced accuracy and functionality to normalize copy number signals, detect deletion types, estimate tumor purity, quantify true copy numbers, and calculate average-ploidy value. While BACOM has been validated and used with promising results, subsequent BACOM analysis of the TCGA ovarian cancer dataset found that the estimated average tumor purity was lower than expected. In this report, we first show that this lowered estimate of tumor purity is the combined result of imprecise signal normalization and parameter estimation. Then, we describe effective allele-specific absolute normalization and quantification methods that can enhance BACOM applications in many biological contexts while in the presence of various confounders. Finally, we discuss the advantages of BACOM in relation to alternative approaches. Here we detail this revised computational approach, BACOM2.0, and validate its performance in real and simulated datasets.

  3. Non-Invasive Method of Determining Absolute Intracranial Pressure

    NASA Technical Reports Server (NTRS)

    Yost, William T. (Inventor); Cantrell, John H., Jr. (Inventor); Hargens, Alan E. (Inventor)

    2004-01-01

    A method is presented for determining absolute intracranial pressure (ICP) in a patient. Skull expansion is monitored while changes in ICP are induced. The patient's blood pressure is measured when skull expansion is approximately zero. The measured blood pressure is indicative of a reference ICP value. Subsequently, the method causes a known change in ICP and measured the change in skull expansion associated therewith. The absolute ICP is a function of the reference ICP value, the known change in ICP and its associated change in skull expansion; and a measured change in skull expansion.

  4. Trypsin immobilization on hairy polymer chains hybrid magnetic nanoparticles for ultra fast, highly efficient proteome digestion, facile 18O labeling and absolute protein quantification.

    PubMed

    Qin, Weijie; Song, Zifeng; Fan, Chao; Zhang, Wanjun; Cai, Yun; Zhang, Yangjun; Qian, Xiaohong

    2012-04-01

    In recent years, quantitative proteomic research attracts great attention because of the urgent needs in biological and clinical research, such as biomarker discovery and verification. Currently, mass spectrometry (MS) based bottom up strategy has become the method of choice for proteomic quantification. In this strategy, the amount of proteins is determined by quantifying the corresponding proteolytic peptides of the proteins, therefore highly efficient and complete protein digestion is crucial for achieving accurate quantification results. However, the digestion efficiency and completeness obtained using conventional free protease digestion is not satisfactory for highly complex proteomic samples. In this work, we developed a new type of immobilized trypsin using hairy noncross-linked polymer chains hybrid magnetic nanoparticle as the matrix aiming at ultra fast, highly efficient proteomic digestion and facile (18)O labeling for absolution protein quantification. The hybrid nanoparticle is synthesized by in situ growth of hairy polymer chains from the magnetic nanoparticle surface using surface initiated atom transfer radical polymerization technique. The flexible noncross-linked polymer chains not only provide large amount of binding sites but also work as scaffolds to support three-dimensional trypsin immobilization which leads to increased loading amount and improved accessibility of the immobilized trypsin. For complex proteomic samples, obviously increased digestion efficiency and completeness was demonstrated by 27.2% and 40.8% increase in the number of identified proteins and peptides as well as remarkably reduced undigested proteins residues compared with that obtained using conventional free trypsin digestion. The successful application in absolute protein quantification of enolase from Thermoanaerobacter tengcongensis protein extracts using (18)O labeling and MRM strategy further demonstrated the potential of this hybrid nanoparticle immobilized trypsin

  5. Method for estimating absolute lung volumes at constant inflation pressure.

    PubMed

    Hills, B A; Barrow, R E

    1979-10-01

    A method has been devised for measuring functional residual capacity in the intact killed animal or absolute lung volumes in any excised lung preparation without changing the inflation pressure. This is achieved by titrating the absolute pressure of a chamber in which the preparation is compressed until a known volume of air has entered the lungs. This technique was used to estimate the volumes of five intact rabbit lungs and five rigid containers of known dimensions by means of Boyle's law. Results were found to agree to within +/- 1% with values determined by alternative methods. In the discussion the advantage of determining absolute lung volumes at almost any stage in a study of lung mechanics without the determination itself changing inflation pressure and, hence, lung volume is emphasized. PMID:511699

  6. The Application of Optimisation Methods to Constrain Absolute Plate Motions

    NASA Astrophysics Data System (ADS)

    Tetley, M. G.; Williams, S.; Hardy, S.; Müller, D.

    2015-12-01

    Plate tectonic reconstructions are an excellent tool for understanding the configuration and behaviour of continents through time on both global and regional scales, and are relatively well understood back to ~200 Ma. However, many of these models represent only relative motions between continents, providing little information of absolute tectonic motions and their relationship with the deep Earth. Significant issues exist in solving this problem, including how to combine constraints from multiple, diverse data into a unified model of absolute plate motions; and how to address uncertainties both in the available data, and in the assumptions involved in this process (e.g. hotspot motion, true polar wander). In deep time (pre-Pangea breakup), plate reconstructions rely more heavily on paleomagnetism, but these data often imply plate velocities much larger than those observed since the breakup of the supercontinent Pangea where plate velocities are constrained by the seafloor spreading record. Here we present two complementary techniques to address these issues, applying parallelized numerical methods to quantitatively investigate absolute plate motions through time. Firstly, we develop a data-fit optimized global absolute reference frame constrained by kinematic reconstruction data, hotspot-trail observations, and trench migration statistics. Secondly we calculate optimized paleomagnetic data-derived apparent polar wander paths (APWPs) for both the Phanerozoic and Precambrian. Paths are generated from raw pole data with optimal spatial and temporal pole configurations calculated using all known uncertainties and quality criteria to produce velocity-optimized absolute motion paths through deep time.

  7. System and method for calibrating a rotary absolute position sensor

    NASA Technical Reports Server (NTRS)

    Davis, Donald R. (Inventor); Permenter, Frank Noble (Inventor); Radford, Nicolaus A (Inventor)

    2012-01-01

    A system includes a rotary device, a rotary absolute position (RAP) sensor generating encoded pairs of voltage signals describing positional data of the rotary device, a host machine, and an algorithm. The algorithm calculates calibration parameters usable to determine an absolute position of the rotary device using the encoded pairs, and is adapted for linearly-mapping an ellipse defined by the encoded pairs to thereby calculate the calibration parameters. A method of calibrating the RAP sensor includes measuring the rotary position as encoded pairs of voltage signals, linearly-mapping an ellipse defined by the encoded pairs to thereby calculate the calibration parameters, and calculating an absolute position of the rotary device using the calibration parameters. The calibration parameters include a positive definite matrix (A) and a center point (q) of the ellipse. The voltage signals may include an encoded sine and cosine of a rotary angle of the rotary device.

  8. Method and apparatus for two-dimensional absolute optical encoding

    NASA Technical Reports Server (NTRS)

    Leviton, Douglas B. (Inventor)

    2004-01-01

    This invention presents a two-dimensional absolute optical encoder and a method for determining position of an object in accordance with information from the encoder. The encoder of the present invention comprises a scale having a pattern being predetermined to indicate an absolute location on the scale, means for illuminating the scale, means for forming an image of the pattern; and detector means for outputting signals derived from the portion of the image of the pattern which lies within a field of view of the detector means, the field of view defining an image reference coordinate system, and analyzing means, receiving the signals from the detector means, for determining the absolute location of the object. There are two types of scale patterns presented in this invention: grid type and starfield type.

  9. Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays.

    PubMed

    Bustin, S A

    2000-10-01

    The reverse transcription polymerase chain reaction (RT-PCR) is the most sensitive method for the detection of low-abundance mRNA, often obtained from limited tissue samples. However, it is a complex technique, there are substantial problems associated with its true sensitivity, reproducibility and specificity and, as a quantitative method, it suffers from the problems inherent in PCR. The recent introduction of fluorescence-based kinetic RT-PCR procedures significantly simplifies the process of producing reproducible quantification of mRNAs and promises to overcome these limitations. Nevertheless, their successful application depends on a clear understanding of the practical problems, and careful experimental design, application and validation remain essential for accurate quantitative measurements of transcription. This review discusses the technical aspects involved, contrasts conventional and kinetic RT-PCR methods for quantitating gene expression and compares the different kinetic RT-PCR systems. It illustrates the usefulness of these assays by demonstrating the significantly different levels of transcription between individuals of the housekeeping gene family, glyceraldehyde-3-phosphate-dehydrogenase (GAPDH).

  10. Towards absolute quantification of therapeutic monoclonal antibody in serum by LC-MS/MS using isotope-labeled antibody standard and protein cleavage isotope dilution mass spectrometry.

    PubMed

    Heudi, Olivier; Barteau, Samuel; Zimmer, Dieter; Schmidt, Joerg; Bill, Kurt; Lehmann, Natalie; Bauer, Christian; Kretz, Olivier

    2008-06-01

    Although LC-MS methods are increasingly used for the absolute quantification of proteins, the lack of appropriate internal standard (IS) hinders the development of rapid and standardized analytical methods for both in vitro and in vivo studies. Here, we have developed a novel method for the absolute quantification of a therapeutic protein, which is monoclonal antibody (mAb). The method combines liquid chromatography tandem mass spectrometry (LC-MS/MS) and protein cleavage isotope dilution mass spectrometry with the isotope-labeled mAb as IS. The latter was identical to the analyzed mAb with the exception that each threonine contains four (13)C atoms and one (15)N atom. Serum samples were spiked with IS prior to the overnight trypsin digestion and subsequent sample cleanup. Sample extracts were analyzed on a C18 ACE column (150 mm x 4.6 mm) using an LC gradient time of 11 min. Endogenous mAb concentrations were determined by calculating the peak height ratio of its signature peptide to the corresponding isotope-labeled peptide. The linear dynamic range was established between 5.00 and 1000 microg/mL mAb with accuracy and precision within +/-15% at all concentrations and below +/-20% at the LLOQ (lower limit of quantification). The overall method recovery in terms of mAb was 14%. The losses due to sample preparation (digestion and purification) were 72% from which about 32% was due to the first step of the method, the sample digestion. This huge loss during sample preparation strongly emphasizes the necessity to employ an IS right from the beginning. Our method was successfully applied to the mAb quantification in marmoset serum study samples, and the precision obtained on duplicate samples was, in most cases, below 20%. The comparison with enzyme-linked immunosorbent assay (ELISA) showed higher exposure in terms of AUC and Cmax with the LC-MS/MS method. Possible reasons for this discrepancy are discussed in this study. The results of this study indicate that our LC

  11. Simultaneous absolute quantification of 11 cytochrome P450 isoforms in human liver microsomes by liquid chromatography tandem mass spectrometry with in silico target peptide selection.

    PubMed

    Kawakami, Hirotaka; Ohtsuki, Sumio; Kamiie, Junichi; Suzuki, Takashi; Abe, Takaaki; Terasaki, Tetsuya

    2011-01-01

    Cytochrome P450 (CYP) proteins are involved in the biological oxidation and reduction of xenobiotics, affecting the pharmacological efficiency of drugs. This study aimed to establish a method to simultaneously quantify 11 CYP isoforms by multiplexed-multiple reaction monitoring analysis with liquid chromatography tandem mass spectrometry and in silico peptide selection to clarify CYP isoform expression profiles in human liver tissue. CYP1A2, 2A6, and 2D6 target peptides were identified by shot-gun proteomic analysis, and those of other isoforms were selected by in silico peptide selection criteria. The established quantification method detected target peptides at 10  fmol, and the dynamic range of calibration curves was at least 500-fold. The quantification value of CYP1A2 in Supersomes was not significantly different between the established method and quantitative immunoblot analysis. The absolute protein expression levels of 11 CYP isoforms were determined from one pooled and 10 individual human liver microsomes. In the individual microsomes, CYP2C9 showed the highest protein expression level, and CYP1A2, 2A6, 2C19, and 3A4 protein expression exhibited more than a 20-fold difference among individuals. This highly sensitive and selective quantification method is a useful tool for the analysis of highly homologous CYP isoforms and the contribution made by each CYP isoform to drug metabolism. PMID:20564338

  12. Quantification of silane molecules on oxidized silicon: are there options for a traceable and absolute determination?

    PubMed

    Dietrich, P M; Streeck, C; Glamsch, S; Ehlert, C; Lippitz, A; Nutsch, A; Kulak, N; Beckhoff, B; Unger, W E S

    2015-10-01

    Organosilanes are used routinely to functionalize various support materials for further modifications. Nevertheless, reliable quantitative information about surface functional group densities after layer formation is rarely available. Here, we present the analysis of thin organic nanolayers made from nitrogen containing silane molecules on naturally oxidized silicon wafers with reference-free total reflection X-ray fluorescence (TXRF) and X-ray photoelectron spectroscopy (XPS). An areic density of 2-4 silane molecules per nm(2) was calculated from the layer's nitrogen mass deposition per area unit obtained by reference-free TXRF. Complementary energy and angle-resolved XPS (ER/AR-XPS) in the Si 2p core-level region was used to analyze the outermost surface region of the organic (silane layer)-inorganic (silicon wafer) interface. Different coexisting silicon species as silicon, native silicon oxide, and silane were identified and quantified. As a result of the presented proof-of-concept, absolute and traceable values for the areic density of silanes containing nitrogen as intrinsic marker are obtained by calibration of the XPS methods with reference-free TXRF. Furthermore, ER/AR-XPS is shown to facilitate the determination of areic densities in (mono)layers made from silanes having no heteroatomic marker other than silicon. After calibration with reference-free TXRF, these areic densities of silane molecules can be determined when using the XPS component intensity of the silane's silicon atom.

  13. [Absolute quantification of carminic acid in cochineal extract by quantitative NMR].

    PubMed

    Sugimoto, Naoki; Tada, Atsuko; Suematsu, Takako; Arifuku, Kazunori; Saito, Takeshi; Ihara, Toshihide; Yoshida, Yuuichi; Kubota, Reiji; Tahara, Maiko; Shimizu, Kumiko; Ito, Sumio; Yamazaki, Takeshi; Kawamura, Yoko; Nishimura, Tetsuji

    2010-01-01

    A quantitative NMR (qNMR) method was applied for the determination of carminic acid. Carminic acid is the main component in cochineal dye that is widely used as a natural food colorant. Since several manufacturers only provide reagent-grade carminic acid, there is no reference material of established purity. To improve the reliability of analytical data, we are developing quantitative nuclear magnetic resonance (qNMR), based on the fact that the intensity of a given NMR resonance is directly proportional to the molar amount of that nucleus in the sample. The purities and contents of carminic acid were calculated from the ratio of the signal intensities of an aromatic proton on carminic acid to nine protons of three methyl groups on DSS-d6 used as the internal standard. The concentration of DSS-d6 itself was corrected using potassium hydrogen phthalate, which is a certified reference material (CRM). The purities of the reagents and the contents of carminic acid in cochineal dye products were determined with SI-traceability as 25.3-92.9% and 4.6-30.5% based on the crystalline formula, carminic acid potassium salt trihydrate, which has been confirmed by X-ray analysis. The qNMR method does not require a reference compound, and is rapid and simple, with an overall analysis time of only 10 min. Our approach thus represents an absolute quantitation method with SI-traceability that should be readily applicable to analysis and quality control of any natural product. PMID:20208405

  14. Method for determining the absolute number concentration of nanoparticles from electrospray sources.

    PubMed

    Li, Mingdong; Guha, Suvajyoti; Zangmeister, Rebecca; Tarlov, Michael J; Zachariah, Michael R

    2011-12-20

    We have developed a simple, fast, and accurate method to measure the absolute number concentration of nanoparticles in solution. The method combines electrospray differential mobility analysis (ES-DMA) with a statistical analysis of droplet-induced oligomer formation. A key feature of the method is that it allows determination of the absolute number concentration of particles by knowing only the droplet size generated from a particular ES source, thereby eliminating the need for sample-specific calibration standards or detailed analysis of transport losses. The approach was validated by comparing the total number concentration of monodispersed Au nanoparticles determined by ES-DMA with UV/vis measurements. We also show that this approach is valid for protein molecules by quantifying the absolute number concentration of Rituxan monoclonal antibody in solution. The methodology is applicable for quantification of any electrospray process coupled to an analytical tool that can distinguish monomers from higher order oligomers. The only requirement is that the droplet size distribution be evaluated. For users only interested in implementation of the theory, we provide a section that summarizes the relevant formulas. This method eliminates the need for sample-specific calibration standards or detailed analysis of transport losses.

  15. Absolute Quantification of Rifampicin by MALDI Imaging Mass Spectrometry Using Multiple TOF/TOF Events in a Single Laser Shot

    NASA Astrophysics Data System (ADS)

    Prentice, Boone M.; Chumbley, Chad W.; Caprioli, Richard M.

    2016-09-01

    Matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI IMS) allows for the visualization of molecular distributions within tissue sections. While providing excellent molecular specificity and spatial information, absolute quantification by MALDI IMS remains challenging. Especially in the low molecular weight region of the spectrum, analysis is complicated by matrix interferences and ionization suppression. Though tandem mass spectrometry (MS/MS) can be used to ensure chemical specificity and improve sensitivity by eliminating chemical noise, typical MALDI MS/MS modalities only scan for a single MS/MS event per laser shot. Herein, we describe TOF/TOF instrumentation that enables multiple fragmentation events to be performed in a single laser shot, allowing the intensity of the analyte to be referenced to the intensity of the internal standard in each laser shot while maintaining the benefits of MS/MS. This approach is illustrated by the quantitative analyses of rifampicin (RIF), an antibiotic used to treat tuberculosis, in pooled human plasma using rifapentine (RPT) as an internal standard. The results show greater than 4-fold improvements in relative standard deviation as well as improved coefficients of determination (R2) and accuracy (>93% quality controls, <9% relative errors). This technology is used as an imaging modality to measure absolute RIF concentrations in liver tissue from an animal dosed in vivo. Each microspot in the quantitative image measures the local RIF concentration in the tissue section, providing absolute pixel-to-pixel quantification from different tissue microenvironments. The average concentration determined by IMS is in agreement with the concentration determined by HPLC-MS/MS, showing a percent difference of 10.6%.

  16. Tutorial examples for uncertainty quantification methods.

    SciTech Connect

    De Bord, Sarah

    2015-08-01

    This report details the work accomplished during my 2015 SULI summer internship at Sandia National Laboratories in Livermore, CA. During this internship, I worked on multiple tasks with the common goal of making uncertainty quantification (UQ) methods more accessible to the general scientific community. As part of my work, I created a comprehensive numerical integration example to incorporate into the user manual of a UQ software package. Further, I developed examples involving heat transfer through a window to incorporate into tutorial lectures that serve as an introduction to UQ methods.

  17. Absolute Quantification of Enterococcal 23S rRNA Gene Using Digital PCR.

    PubMed

    Wang, Dan; Yamahara, Kevan M; Cao, Yiping; Boehm, Alexandria B

    2016-04-01

    We evaluated the ability of chip-based digital PCR (dPCR) to quantify enterococci, the fecal indicator recommended by the United States Environmental Protection Agency (USEPA) for water-quality monitoring. dPCR uses Poisson statistics to estimate the number of DNA fragments in a sample with a specific sequence. Underestimation may occur when a gene is redundantly encoded in the genome and multiple copies of that gene are on one DNA fragment. When genomic DNA (gDNA) was extracted using two commercial DNA extraction kits, we confirmed that dPCR could discern individual copies of the redundant 23s rRNA gene in the enterococcal genome. dPCR quantification was accurate when compared to the nominal concentration inferred from fluorometer measurements (linear regression slope = 0.98, intercept = 0.03, R(2) = 0.99, and p value <0.0001). dPCR quantification was also consistent with quantitative PCR (qPCR) measurements as well as cell counts for BioBall reference standard and 24 environmental water samples. qPCR and dPCR quantification of enterococci in the 24 environmental samples were significantly correlated (linear regression slope =1.08, R(2) of 0.96, and p value <0.0001); the group mean of the qPCR measurements was 0.19 log units higher than that of the dPCR measurements. At environmentally relevant concentrations, dPCR quantification was more precise (i.e., had narrower 95% confidence intervals than qPCR quantification). We observed that humic acid caused a similar level of inhibition in both dPCR and qPCR, but calcium inhibited dPCR to a lesser degree than qPCR. Inhibition of dPCR was partially relieved when the number of thermal cycles was increased. Based on these results, we conclude that dPCR is a viable option for enumerating enterococci in ambient water. PMID:26903207

  18. Method of differential-phase/absolute-amplitude QAM

    DOEpatents

    Dimsdle, Jeffrey William

    2007-07-03

    A method of quadrature amplitude modulation involving encoding phase differentially and amplitude absolutely, allowing for a high data rate and spectral efficiency in data transmission and other communication applications, and allowing for amplitude scaling to facilitate data recovery; amplitude scale tracking to track-out rapid and severe scale variations and facilitate successful demodulation and data retrieval; 2.sup.N power carrier recovery; incoherent demodulation where coherent carrier recovery is not possible or practical due to signal degradation; coherent demodulation; multipath equalization to equalize frequency dependent multipath; and demodulation filtering.

  19. Method of differential-phase/absolute-amplitude QAM

    DOEpatents

    Dimsdle, Jeffrey William

    2008-10-21

    A method of quadrature amplitude modulation involving encoding phase differentially and amplitude absolutely, allowing for a high data rate and spectral efficiency in data transmission and other communication applications, and allowing for amplitude scaling to facilitate data recovery; amplitude scale tracking to track-out rapid and severe scale variations and facilitate successful demodulation and data retrieval; 2.sup.N power carrier recovery; incoherent demodulation where coherent carrier recovery is not possible or practical due to signal degradation; coherent demodulation; multipath equalization to equalize frequency dependent multipath; and demodulation filtering.

  20. Method of differential-phase/absolute-amplitude QAM

    DOEpatents

    Dimsdle, Jeffrey William

    2007-07-17

    A method of quadrature amplitude modulation involving encoding phase differentially and amplitude absolutely, allowing for a high data rate and spectral efficiency in data transmission and other communication applications, and allowing for amplitude scaling to facilitate data recovery; amplitude scale tracking to track-out rapid and severe scale variations and facilitate successful demodulation and data retrieval; 2.sup.N power carrier recovery; incoherent demodulation where coherent carrier recovery is not possible or practical due to signal degradation; coherent demodulation; multipath equalization to equalize frequency dependent multipath; and demodulation filtering.

  1. Method of differential-phase/absolute-amplitude QAM

    DOEpatents

    Dimsdle, Jeffrey William

    2007-10-02

    A method of quadrature amplitude modulation involving encoding phase differentially and amplitude absolutely, allowing for a high data rate and spectral efficiency in data transmission and other communication applications, and allowing for amplitude scaling to facilitate data recovery; amplitude scale tracking to track-out rapid and severe scale variations and facilitate successful demodulation and data retrieval; 2.sup.N power carrier recovery; incoherent demodulation where coherent carrier recovery is not possible or practical due to signal degradation; coherent demodulation; multipath equalization to equalize frequency dependent multipath; and demodulation filtering.

  2. Method of differential-phase/absolute-amplitude QAM

    DOEpatents

    Dimsdle, Jeffrey William

    2009-09-01

    A method of quadrature amplitude modulation involving encoding phase differentially and amplitude absolutely, allowing for a high data rate and spectral efficiency in data transmission and other communication applications, and allowing for amplitude scaling to facilitate data recovery; amplitude scale tracking to track-out rapid and severe scale variations and facilitate successful demodulation and data retrieval; 2.sup.N power carrier recovery; incoherent demodulation where coherent carrier recovery is not possible or practical due to signal degradation; coherent demodulation; multipath equalization to equalize frequency dependent multipath; and demodulation filtering.

  3. Standardization of Gene Expression Quantification by Absolute Real-Time qRT-PCR System Using a Single Standard for Marker and Reference Genes.

    PubMed

    Zhou, Yi-Hong; Raj, Vinay R; Siegel, Eric; Yu, Liping

    2010-08-16

    In the last decade, genome-wide gene expression data has been collected from a large number of cancer specimens. In many studies utilizing either microarray-based or knowledge-based gene expression profiling, both the validation of candidate genes and the identification and inclusion of biomarkers in prognosis-modeling has employed real-time quantitative PCR on reverse transcribed mRNA (qRT-PCR) because of its inherent sensitivity and quantitative nature. In qRT-PCR data analysis, an internal reference gene is used to normalize the variation in input sample quantity. The relative quantification method used in current real-time qRT-PCR analysis fails to ensure data comparability pivotal in identification of prognostic biomarkers. By employing an absolute qRT-PCR system that uses a single standard for marker and reference genes (SSMR) to achieve absolute quantification, we showed that the normalized gene expression data is comparable and independent of variations in the quantities of sample as well as the standard used for generating standard curves. We compared two sets of normalized gene expression data with same histological diagnosis of brain tumor from two labs using relative and absolute real-time qRT-PCR. Base-10 logarithms of the gene expression ratio relative to ACTB were evaluated for statistical equivalence between tumors processed by two different labs. The results showed an approximate comparability for normalized gene expression quantified using a SSMR-based qRT-PCR. Incomparable results were seen for the gene expression data using relative real-time qRT-PCR, due to inequality in molar concentration of two standards for marker and reference genes. Overall results show that SSMR-based real-time qRT-PCR ensures comparability of gene expression data much needed in establishment of prognostic/predictive models for cancer patients-a process that requires large sample sizes by combining independent sets of data.

  4. Music Proficiency and Quantification of Absolute Pitch: A Large-Scale Study among Brazilian Musicians

    PubMed Central

    Leite, Raphael B. C.; Mota-Rolim, Sergio A.; Queiroz, Claudio M. T.

    2016-01-01

    Absolute pitch (AP) is the ability to identify and name the pitch of a sound without external reference. Often, accuracy and speed at naming isolated musical pitches are correlated with demographic, biological, and acoustical parameters to gain insight into the genesis and evolution of this ability in specific cohorts. However, the majority of those studies were conducted in North America, Europe, or Asia. To fill this gap, here we investigated the pitch-naming performance in a large population of Brazilian conservatory musicians (N = 200). As previously shown, we found that the population performance was rather a continuum than an “all-or-none” ability. By comparing the observed distribution of correct responses to a theoretical binomial distribution, we estimated the prevalence of AP as being 18% amongst regular music students. High accuracy thresholds (e.g., 85% of correct responses) yielded a prevalence of 4%, suggesting that AP might have been underestimated in previous reports. Irrespective of the threshold used, AP prevalence was higher in musicians who started their musical practice and formal musical education early in life. Finally, we compared the performance of those music students (average proficiency group) with another group of students selected to take part in the conservatory orchestra (high proficiency group, N = 30). Interestingly, the prevalence of AP was higher in the latter in comparison to the former group. In addition, even when the response was incorrect, the mean absolute deviation from the correct response was smaller in the high proficiency group compared to the average proficiency group (Glass's Δ: 0.5). Taken together, our results show that the prevalence of AP in Brazilian students is similar to other non-tonal language populations, although this measure is highly dependent on the scoring threshold used. Despite corroborating that early involvement with musical practice and formal education can foster AP ability, the present data

  5. Comparison of analysis methods for airway quantification

    NASA Astrophysics Data System (ADS)

    Odry, Benjamin L.; Kiraly, Atilla P.; Novak, Carol L.; Naidich, David P.

    2012-03-01

    Diseased airways have been known for several years as a possible contributing factor to airflow limitation in Chronic Obstructive Pulmonary Diseases (COPD). Quantification of disease severity through the evaluation of airway dimensions - wall thickness and lumen diameter - has gained increased attention, thanks to the availability of multi-slice computed tomography (CT). Novel approaches have focused on automated methods of measurement as a faster and more objective means that the visual assessment routinely employed in the clinic. Since the Full-Width Half-Maximum (FWHM) method of airway measurement was introduced two decades ago [1], several new techniques for quantifying airways have been detailed in the literature, but no approach has truly become a standard for such analysis. Our own research group has presented two alternative approaches for determining airway dimensions, one involving a minimum path and the other active contours [2, 3]. With an increasing number of techniques dedicated to the same goal, we decided to take a step back and analyze the differences of these methods. We consequently put to the test our two methods of analysis and the FWHM approach. We first measured a set of 5 airways from a phantom of known dimensions. Then we compared measurements from the three methods to those of two independent readers, performed on 35 airways in 5 patients. We elaborate on the differences of each approach and suggest conclusions on which could be defined as the best one.

  6. Method and apparatus for making absolute range measurements

    DOEpatents

    Allison, S.W.; Cates, M.R.; Key, W.S.; Sanders, A.J.; Earl, D.D.

    1999-06-22

    This invention relates to a method and apparatus for making absolute distance or ranging measurements using Fresnel diffraction. The invention employs a source of electromagnetic radiation having a known wavelength or wavelength distribution, which sends a beam of electromagnetic radiation through an object which causes it to be split (hereinafter referred to as a beam splitter''), and then to a target. The beam is reflected from the target onto a screen containing an aperture spaced a known distance from the beam splitter. The aperture is sized so as to produce a Fresnel diffraction pattern. A portion of the beam travels through the aperture to a detector, spaced a known distance from the screen. The detector detects the central intensity of the beam. The distance from the object which causes the beam to be split to the target can then be calculated based upon the known wavelength, aperture radius, beam intensity, and distance from the detector to the screen. Several apparatus embodiments are disclosed for practicing the method embodiments of the present invention. 9 figs.

  7. Method and apparatus for making absolute range measurements

    DOEpatents

    Allison, Stephen W.; Cates, Michael R.; Key, William S.; Sanders, Alvin J.; Earl, Dennis D.

    1999-01-01

    This invention relates to a method and apparatus for making absolute distance or ranging measurements using Fresnel diffraction. The invention employs a source of electromagnetic radiation having a known wavelength or wavelength distribution, which sends a beam of electromagnetic radiation through an object which causes it to be split (hereinafter referred to as a "beamsplitter"), and then to a target. The beam is reflected from the target onto a screen containing an aperture spaced a known distance from the beamsplitter. The aperture is sized so as to produce a Fresnel diffraction pattern. A portion of the beam travels through the aperture to a detector, spaced a known distance from the screen. The detector detects the central intensity of the beam. The distance from the object which causes the beam to be split to the target can then be calculated based upon the known wavelength, aperture radius, beam intensity, and distance from the detector to the screen. Several apparatus embodiments are disclosed for practicing the method embodiments of the present invention.

  8. Absolute Quantification of Human Liver Phosphorus-Containing Metabolites In Vivo Using an Inhomogeneous Spoiling Magnetic Field Gradient

    PubMed Central

    Bashir, Adil; Gropler, Robert; Ackerman, Joseph

    2015-01-01

    Purpose Absolute concentrations of high-energy phosphorus (31P) metabolites in liver provide more important insight into physiologic status of liver disease compared to resonance integral ratios. A simple method for measuring absolute concentrations of 31P metabolites in human liver is described. The approach uses surface spoiling inhomogeneous magnetic field gradient to select signal from liver tissue. The technique avoids issues caused by respiratory motion, chemical shift dispersion associated with linear magnetic field gradients, and increased tissue heat deposition due to radiofrequency absorption, especially at high field strength. Methods A method to localize signal from liver was demonstrated using superficial and highly non-uniform magnetic field gradients, which eliminate signal(s) from surface tissue(s) located between the liver and RF coil. A double standard method was implemented to determine absolute 31P metabolite concentrations in vivo. 8 healthy individuals were examined in a 3 T MR scanner. Results Concentrations of metabolites measured in eight healthy individuals are: γ-adenosine triphosphate (ATP) = 2.44 ± 0.21 (mean ± sd) mmol/l of wet tissue volume, α-ATP = 3.2 ± 0.63 mmol/l, β-ATP = 2.98 ± 0.45 mmol/l, inorganic phosphates (Pi) = 1.87 ± 0.25 mmol/l, phosphodiesters (PDE) = 10.62 ± 2.20 mmol/l and phosphomonoesters (PME) = 2.12 ± 0.51 mmol/l. All are in good agreement with literature values. Conclusions The technique offers robust and fast means to localize signal from liver tissue, allows absolute metabolite concentration determination, and avoids problems associated with constant field gradient (linear field variation) localization methods. PMID:26633549

  9. Weighted Wilcoxon-type Smoothly Clipped Absolute Deviation Method

    PubMed Central

    Wang, Lan; Li, Runze

    2009-01-01

    Summary Shrinkage-type variable selection procedures have recently seen increasing applications in biomedical research. However, their performance can be adversely influenced by outliers in either the response or the covariate space. This paper proposes a weighted Wilcoxon-type smoothly clipped absolute deviation (WW-SCAD) method, which deals with robust variable selection and robust estimation simultaneously. The new procedure can be conveniently implemented with the statistical software R. We establish that the WW-SCAD correctly identifies the set of zero coefficients with probability approaching one and estimates the nonzero coefficients with the rate n−1/2. Moreover, with appropriately chosen weights the WW-SCAD is robust with respect to outliers in both the x and y directions. The important special case with constant weights yields an oracle-type estimator with high efficiency at the presence of heavier-tailed random errors. The robustness of the WW-SCAD is partly justified by its asymptotic performance under local shrinking contamination. We propose a BIC-type tuning parameter selector for the WW-SCAD. The performance of the WW-SCAD is demonstrated via simulations and by an application to a study that investigates the effects of personal characteristics and dietary factors on plasma beta-carotene level. PMID:18647294

  10. Elucidation of Xylem-Specific Transcription Factors and Absolute Quantification of Enzymes Regulating Cellulose Biosynthesis in Populus trichocarpa.

    PubMed

    Loziuk, Philip L; Parker, Jennifer; Li, Wei; Lin, Chien-Yuan; Wang, Jack P; Li, Quanzi; Sederoff, Ronald R; Chiang, Vincent L; Muddiman, David C

    2015-10-01

    Cellulose, the main chemical polymer of wood, is the most abundant polysaccharide in nature.1 The ability to perturb the abundance and structure of cellulose microfibrils is of critical importance to the pulp and paper industry as well as for the textile, wood products, and liquid biofuels industries. Although much has been learned at the transcript level about the biosynthesis of cellulose, a quantitative understanding at the proteome level has yet to be established. The study described herein sought to identify the proteins directly involved in cellulose biosynthesis during wood formation in Populus trichocarpa along with known xylem-specific transcription factors involved in regulating these key proteins. Development of an effective discovery proteomic strategy through a combination of subcellular fractionation of stem differentiating xylem tissue (SDX) with recently optimized FASP digestion protocols, StageTip fractionation, as well as optimized instrument parameters for global proteomic analysis using the quadrupole-orbitrap mass spectrometer resulted in the deepest proteomic coverage of SDX protein from P. trichocarpa with 9,146 protein groups being identified (1% FDR). Of these, 20 cellulosic/hemicellulosic enzymes and 43 xylem-specific transcription factor groups were identified. Finally, selection of surrogate peptides led to an assay for absolute quantification of 14 cellulosic proteins in SDX of P. trichocarpa.

  11. Absolute Quantification of Matrix Metabolites Reveals the Dynamics of Mitochondrial Metabolism.

    PubMed

    Chen, Walter W; Freinkman, Elizaveta; Wang, Tim; Birsoy, Kıvanç; Sabatini, David M

    2016-08-25

    Mitochondria house metabolic pathways that impact most aspects of cellular physiology. While metabolite profiling by mass spectrometry is widely applied at the whole-cell level, it is not routinely possible to measure the concentrations of small molecules in mammalian organelles. We describe a method for the rapid and specific isolation of mitochondria and use it in tandem with a database of predicted mitochondrial metabolites ("MITObolome") to measure the matrix concentrations of more than 100 metabolites across various states of respiratory chain (RC) function. Disruption of the RC reveals extensive compartmentalization of mitochondrial metabolism and signatures unique to the inhibition of each RC complex. Pyruvate enables the proliferation of RC-deficient cells but has surprisingly limited effects on matrix contents. Interestingly, despite failing to restore matrix NADH/NAD balance, pyruvate does increase aspartate, likely through the exchange of matrix glutamate for cytosolic aspartate. We demonstrate the value of mitochondrial metabolite profiling and describe a strategy applicable to other organelles. PMID:27565352

  12. Absolute quantification of the pretreatment PML-RARA transcript defines the relapse risk in acute promyelocytic leukemia.

    PubMed

    Albano, Francesco; Zagaria, Antonella; Anelli, Luisa; Coccaro, Nicoletta; Tota, Giuseppina; Brunetti, Claudia; Minervini, Crescenzio Francesco; Impera, Luciana; Minervini, Angela; Cellamare, Angelo; Orsini, Paola; Cumbo, Cosimo; Casieri, Paola; Specchia, Giorgina

    2015-05-30

    In this study we performed absolute quantification of the PML-RARA transcript by droplet digital polymerase chain reaction (ddPCR) in 76 newly diagnosed acute promyelocytic leukemia (APL) cases to verify the prognostic impact of the PML-RARA initial molecular burden. ddPCR analysis revealed that the amount of PML-RARA transcript at diagnosis in the group of patients who relapsed was higher than in that with continuous complete remission (CCR) (272 vs 89.2 PML-RARA copies/ng, p = 0.0004, respectively). Receiver operating characteristic analysis detected the optimal PML-RARA concentration threshold as 209.6 PML-RARA/ng (AUC 0.78; p < 0.0001) for discriminating between outcomes (CCR versus relapse). Among the 67 APL cases who achieved complete remission after the induction treatment, those with >209.6 PML-RARA/ng had a worse relapse-free survival (p = 0.0006). At 5-year follow-up, patients with >209.6 PML-RARA/ng had a cumulative incidence of relapse of 50.3% whereas 7.5% of the patients with suffered a relapse (p < 0.0001). Multivariate analysis identified the amount of PML-RARA before induction treatment as the sole independent prognostic factor for APL relapse.Our results show that the pretreatment PML-RARA molecular burden could therefore be used to improve risk stratification in order to develop more individualized treatment regimens for high-risk APL cases. PMID:25944686

  13. Absolute quantification of acetylation and phosphorylation of the histone variant H2AX upon ionizing radiation reveals distinct cellular responses in two cancer cell lines.

    PubMed

    Matsuda, Shun; Furuya, Kanji; Ikura, Masae; Matsuda, Tomonari; Ikura, Tsuyoshi

    2015-11-01

    Histone modifications change upon the cellular response to ionizing radiation, and their cellular amounts could reflect the DNA damage response activity. We previously reported a sensitive and reliable method for the absolute quantification of γH2AX within cells, using liquid chromatography-tandem mass spectrometry (LC/MS/MS). The technique has broad adaptability to a variety of biological systems and can quantitate different modifications of histones. In this study, we applied it to quantitate the levels of γH2AX and K5-acetylated H2AX, and to compare the radiation responses between two cancer cell lines: HeLa and U-2 OS. The two cell lines have distinct properties in terms of their H2AX modifications. HeLa cells have relatively high γH2AX (3.1 %) against the total H2AX even in un-irradiated cells, while U-2 OS cells have an essentially undetectable level (nearly 0 %) of γH2AX. In contrast, the amounts of acetylated histones are lower in HeLa cells (9.3 %) and higher in U-2 OS cells (24.2 %) under un-irradiated conditions. Furthermore, after ionizing radiation exposure, the time-dependent increases and decreases in the amounts of histone modifications differed between the two cell lines, especially at the early time points. These results suggest that each biological system has distinct kinase/phosphatase and/or acetylase/deacetylase activities. In conclusion, for the first time, we have succeeded in simultaneously monitoring the absolute amounts of phosphorylated and acetylated cellular H2AX after ionizing radiation exposure. This multi-criteria assessment enables precise comparisons of the effects of radiation between any biological systems.

  14. Absolute quantification of norovirus capsid protein in food, water, and soil using synthetic peptides with electrospray and MALDI mass spectrometry.

    PubMed

    Hartmann, Erica M; Colquhoun, David R; Schwab, Kellogg J; Halden, Rolf U

    2015-04-01

    Norovirus infections are one of the most prominent public health problems of microbial origin in the U.S. and other industrialized countries. Surveillance is necessary to prevent secondary infection, confirm successful cleanup after outbreaks, and track the causative agent. Quantitative mass spectrometry, based on absolute quantitation with stable-isotope labeled peptides, is a promising tool for norovirus monitoring because of its speed, sensitivity, and robustness in the face of environmental inhibitors. In the current study, we present two new methods for the detection of the norovirus genogroup I capsid protein using electrospray and matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. The peptide TLDPIEVPLEDVR was used to quantify norovirus-like particles down to 500 attomoles with electrospray and 100 attomoles with MALDI. With MALDI, we also demonstrate a detection limit of 1 femtomole and a quantitative dynamic range of 5 orders of magnitude in the presence of an environmental matrix effect. Due to the rapid processing time and applicability to a wide range of environmental sample types (bacterial lysate, produce, milk, soil, and groundwater), mass spectrometry-based absolute quantitation has a strong potential for use in public health and environmental sciences.

  15. Noninvasive optical quantification of absolute blood flow, blood oxygenation, and oxygen consumption rate in exercising skeletal muscle

    NASA Astrophysics Data System (ADS)

    Gurley, Katelyn; Shang, Yu; Yu, Guoqiang

    2012-07-01

    This study investigates a method using novel hybrid diffuse optical spectroscopies [near-infrared spectroscopy (NIRS) and diffuse correlation spectroscopy (DCS)] to obtain continuous, noninvasive measurement of absolute blood flow (BF), blood oxygenation, and oxygen consumption rate (\\Vdot O2) in exercising skeletal muscle. Healthy subjects (n=9) performed a handgrip exercise to increase BF and \\Vdot O2 in forearm flexor muscles, while a hybrid optical probe on the skin surface directly monitored oxy-, deoxy-, and total hemoglobin concentrations ([HbO2], [Hb], and THC), tissue oxygen saturation (StO2), relative BF (rBF), and relative oxygen consumption rate (r\\Vdot O2). The rBF and r\\Vdot O2 signals were calibrated with absolute baseline BF and \\Vdot O2 obtained through venous and arterial occlusions, respectively. Known problems with muscle-fiber motion artifacts in optical measurements during exercise were mitigated using a novel gating algorithm that determined muscle contraction status based on control signals from a dynamometer. Results were consistent with previous findings in the literature. This study supports the application of NIRS/DCS technology to quantitatively evaluate hemodynamic and metabolic parameters in exercising skeletal muscle and holds promise for improving diagnosis and treatment evaluation for patients suffering from diseases affecting skeletal muscle and advancing fundamental understanding of muscle and exercise physiology.

  16. Absolute Quantification of Norovirus Capsid Protein in Food, Water, and Soil Using Synthetic Peptides with Electrospray and MALDI Mass Spectrometry

    PubMed Central

    Hartmann, Erica M.; Colquhoun, David R.; Schwab, Kellogg J.; Halden, Rolf U.

    2015-01-01

    Norovirus infections are one of the most prominent public health problems of microbial origin in the U.S. and other industrialized countries. Surveillance is necessary to prevent secondary infection, confirm successful cleanup after outbreaks, and track the causative agent. Quantitative mass spectrometry, based on absolute quantitation with stable-isotope labeled peptides, is a promising tool for norovirus monitoring because of its speed, sensitivity, and robustness in the face of environmental inhibitors. In the current study, we present two new methods for the detection of the norovirus genogroup I capsid protein using electrospray and matrixassisted laser desorption/ionization (MALDI) mass spectrometry. The peptide TLDPIEVPLEDVR was used to quantify norovirus-like particles down to 500 attomoles with electrospray and 100 attomoles with MALDI. With MALDI, we also demonstrate a detection limit of 1 femtomole and a quantitative dynamic range of 5 orders of magnitude in the presence of an environmental matrix effect. Due to the rapid processing time and applicability to a wide range of environmental sample types (bacterial lysate, produce, milk, soil, and groundwater), mass spectrometry-based absolute quantitation has a strong potential for use in public health and environmental sciences. PMID:25603302

  17. A quick colorimetric method for total lipid quantification in microalgae.

    PubMed

    Byreddy, Avinesh R; Gupta, Adarsha; Barrow, Colin J; Puri, Munish

    2016-06-01

    Discovering microalgae with high lipid productivity are among the key milestones for achieving sustainable biodiesel production. Current methods of lipid quantification are time intensive and costly. A rapid colorimetric method based on sulfo-phospho-vanillin (SPV) reaction was developed for the quantification of microbial lipids to facilitate screening for lipid producing microalgae. This method was successfully tested on marine thraustochytrid strains and vegetable oils. The colorimetric method results correlated well with gravimetric method estimates. The new method was less time consuming than gravimetric analysis and is quantitative for lipid determination, even in the presence of carbohydrates, proteins and glycerol. PMID:27050419

  18. A detailed analysis of next generation sequencing reads of microRNA expression in Barrett’s Esophagus: absolute versus relative quantification

    PubMed Central

    2014-01-01

    Background Next generation sequencing (NGS) is a state of the art technology for microRNA (miRNA) analysis. The quantitative interpretation of the primary output of NGS i.e. the read counts for a miRNA sequence that can vary by several orders of magnitude (1 to 107) remains incompletely understood. Findings NGS (SOLiD 3 technology) was performed on biopsies from 6 Barrett’s esophagus (BE) and 5 Gastroesophageal Reflux Disease (GERD) patients. Read sequences were aligned to miRBase 18.0. Differential expression analysis was adjusted for false discovery rate of 5%. Quantitative real-time polymerase chain reaction (qRT-PCR) was performed for 36 miRNA in a validation cohort of 47 patients (27 BE and 20 GERD). Correlation coefficients, accuracy, precision and recall of NGS compared to qRT-PCR were calculated. Increase in NGS reads was associated with progressively lower Cq values, p < 0.05. Although absolute quantification between NGS reads and Cq values correlated modestly: -0.38, p = 0.01 for BE and -0.32, p = 0.05 for GERD, relative quantification (fold changes) of miRNA expression between BE &GERD by NGS correlated highly with qRT-PCR 0.86, p = 2.45E-11. Fold change correlations were unaffected when different thresholds of NGS read counts were compared (>1000 vs. <1000, >500 vs. <500 and >100 vs. <100). The accuracy, precision and recall of NGS to label a miRNA as differentially expressed were 0.71, 0.88 and 0.74 respectively. Conclusion Absolute NGS reads correlated modestly with qRT-PCR but fold changes correlated highly. NGS is robust at relative but not absolute quantification of miRNA levels and accurate for high-throughput identification of differentially expressed miRNA. PMID:24708854

  19. Reproducibility and absolute quantification of muscle glycogen in patients with glycogen storage disease by 13C NMR spectroscopy at 7 Tesla.

    PubMed

    Heinicke, Katja; Dimitrov, Ivan E; Romain, Nadine; Cheshkov, Sergey; Ren, Jimin; Malloy, Craig R; Haller, Ronald G

    2014-01-01

    Carbon-13 magnetic resonance spectroscopy (13C MRS) offers a noninvasive method to assess glycogen levels in skeletal muscle and to identify excess glycogen accumulation in patients with glycogen storage disease (GSD). Despite the clinical potential of the method, it is currently not widely used for diagnosis or for follow-up of treatment. While it is possible to perform acceptable 13C MRS at lower fields, the low natural abundance of 13C and the inherently low signal-to-noise ratio of 13C MRS makes it desirable to utilize the advantage of increased signal strength offered by ultra-high fields for more accurate measurements. Concomitant with this advantage, however, ultra-high fields present unique technical challenges that need to be addressed when studying glycogen. In particular, the question of measurement reproducibility needs to be answered so as to give investigators insight into meaningful inter-subject glycogen differences. We measured muscle glycogen levels in vivo in the calf muscle in three patients with McArdle disease (MD), one patient with phosphofructokinase deficiency (PFKD) and four healthy controls by performing 13C MRS at 7T. Absolute quantification of the MRS signal was achieved by using a reference phantom with known concentration of metabolites. Muscle glycogen concentration was increased in GSD patients (31.5±2.9 g/kg w. w.) compared with controls (12.4±2.2 g/kg w. w.). In three GSD patients glycogen was also determined biochemically in muscle homogenates from needle biopsies and showed a similar 2.5-fold increase in muscle glycogen concentration in GSD patients compared with controls. Repeated inter-subject glycogen measurements yield a coefficient of variability of 5.18%, while repeated phantom measurements yield a lower 3.2% system variability. We conclude that noninvasive ultra-high field 13C MRS provides a valuable, highly reproducible tool for quantitative assessment of glycogen levels in health and disease.

  20. Absolute Quantification of Prion Protein (90-231) Using Stable Isotope-Labeled Chymotryptic Peptide Standards in a LC-MRM AQUA Workflow

    NASA Astrophysics Data System (ADS)

    Sturm, Robert; Sheynkman, Gloria; Booth, Clarissa; Smith, Lloyd M.; Pedersen, Joel A.; Li, Lingjun

    2012-09-01

    Substantial evidence indicates that the disease-associated conformer of the prion protein (PrPTSE) constitutes the etiologic agent in prion diseases. These diseases affect multiple mammalian species. PrPTSE has the ability to convert the conformation of the normal prion protein (PrPC) into a β-sheet rich form resistant to proteinase K digestion. Common immunological techniques lack the sensitivity to detect PrPTSE at subfemtomole levels, whereas animal bioassays, cell culture, and in vitro conversion assays offer higher sensitivity but lack the high-throughput the immunological assays offer. Mass spectrometry is an attractive alternative to the above assays as it offers high-throughput, direct measurement of a protein's signature peptide, often with subfemtomole sensitivities. Although a liquid chromatography-multiple reaction monitoring (LC-MRM) method has been reported for PrPTSE, the chemical composition and lack of amino acid sequence conservation of the signature peptide may compromise its accuracy and make it difficult to apply to multiple species. Here, we demonstrate that an alternative protease (chymotrypsin) can produce signature peptides suitable for a LC-MRM absolute quantification (AQUA) experiment. The new method offers several advantages, including: (1) a chymotryptic signature peptide lacking chemically active residues (Cys, Met) that can confound assay accuracy; (2) low attomole limits of detection and quantitation (LOD and LOQ); and (3) a signature peptide retaining the same amino acid sequence across most mammals naturally susceptible to prion infection as well as important laboratory models. To the authors' knowledge, this is the first report on the use of a non-tryptic peptide in a LC-MRM AQUA workflow.

  1. Proteomics of Microparticles with SILAC Quantification (PROMIS-Quan): A Novel Proteomic Method for Plasma Biomarker Quantification*

    PubMed Central

    Harel, Michal; Oren-Giladi, Pazit; Kaidar-Person, Orit; Shaked, Yuval; Geiger, Tamar

    2015-01-01

    Unbiased proteomic analysis of plasma samples holds the promise to reveal clinically invaluable disease biomarkers. However, the tremendous dynamic range of the plasma proteome has so far hampered the identification of such low abundant markers. To overcome this challenge we analyzed the plasma microparticle proteome, and reached an unprecedented depth of over 3000 plasma proteins in single runs. To add a quantitative dimension, we developed PROMIS-Quan—PROteomics of MIcroparticles with Super-Stable Isotope Labeling with Amino Acids in Cell Culture (SILAC) Quantification, a novel mass spectrometry-based technology for plasma microparticle proteome quantification. PROMIS-Quan enables a two-step relative and absolute SILAC quantification. First, plasma microparticle proteomes are quantified relative to a super-SILAC mix composed of cell lines from distinct origins. Next, the absolute amounts of selected proteins of interest are quantified relative to the super-SILAC mix. We applied PROMIS-Quan to prostate cancer and compared plasma microparticle samples of healthy individuals and prostate cancer patients. We identified in total 5374 plasma-microparticle proteins, and revealed a predictive signature of three proteins that were elevated in the patient-derived plasma microparticles. Finally, PROMIS-Quan enabled determination of the absolute quantitative changes in prostate specific antigen (PSA) upon treatment. We propose PROMIS-Quan as an innovative platform for biomarker discovery, validation, and quantification in both the biomedical research and in the clinical worlds. PMID:25624350

  2. Methods to calibrate the absolute receive sensitivity of single-element, focused transducers.

    PubMed

    Rich, Kyle T; Mast, T Douglas

    2015-09-01

    Absolute pressure measurements of acoustic emissions by single-element, focused passive cavitation detectors would be facilitated by improved wideband receive calibration techniques. Here, calibration methods were developed to characterize the absolute, frequency-dependent receive sensitivity of a spherically focused, single-element transducer using pulse-echo and pitch-catch techniques. Validation of these calibration methods on a focused receiver were made by generating a pulse from a small diameter source at the focus of the transducer and comparing the absolute pressure measured by a calibrated hydrophone to that of the focused transducer using the receive sensitivities determined here. PMID:26428812

  3. Methods to calibrate the absolute receive sensitivity of single-element, focused transducers

    PubMed Central

    Rich, Kyle T.; Mast, T. Douglas

    2015-01-01

    Absolute pressure measurements of acoustic emissions by single-element, focused passive cavitation detectors would be facilitated by improved wideband receive calibration techniques. Here, calibration methods were developed to characterize the absolute, frequency-dependent receive sensitivity of a spherically focused, single-element transducer using pulse-echo and pitch-catch techniques. Validation of these calibration methods on a focused receiver were made by generating a pulse from a small diameter source at the focus of the transducer and comparing the absolute pressure measured by a calibrated hydrophone to that of the focused transducer using the receive sensitivities determined here. PMID:26428812

  4. Quantification of total phosphorothioate in bacterial DNA by a bromoimane-based fluorescent method.

    PubMed

    Xiao, Lu; Xiang, Yu

    2016-06-01

    The discovery of phosphorothioate (PT) modifications in bacterial DNA has challenged our understanding of conserved phosphodiester backbone structure of cellular DNA. This exclusive DNA modification in bacteria is not found in animal cells yet, and its biological function in bacteria is still poorly understood. Quantitative information about the bacterial PT modifications is thus important for the investigation of their possible biological functions. In this study, we have developed a simple fluorescence method for selective quantification of total PTs in bacterial DNA, based on fluorescent labeling of PTs and subsequent release of the labeled fluorophores for absolute quantification. The method was highly selective to PTs and not interfered by the presence of reactive small molecules or proteins. The quantification of PTs in an E. coli DNA sample was successfully achieved using our method and gave a result of about 455 PTs per million DNA nucleotides, while almost no detectable PTs were found in a mammalian calf thymus DNA. With this new method, the content of phosphorothioate in bacterial DNA could be successfully quantified, serving as a simple method suitable for routine use in biological phosphorothioate related studies. PMID:27168171

  5. Standardization of Sm-153 solution by absolute methods.

    PubMed

    Dziel, T; Broda, R; Ziemek, T; Muklanowicz, A; Listkowska, A

    2014-05-01

    Standardization of (153)Sm by 4π(LS)-γ coincidence and anticoincidence counting and the CIEMAT/NIST method in three LS-counters is presented. This short half-life radionuclide is applied in tumor therapy and bone pain palliation. A simplified disintegration scheme of (153)Sm was applied in the calculation of the counting efficiency. Standard uncertainties of 0.4% for the (153)Sm measurements by the 4π(LS)-γ coincidence and anticoincidence techniques and 0.7% by the C/N method were evaluated, respectively. An agreement of the standardization results by both methods within the respective uncertainties was obtained. The half-life of (153)Sm of (1.92895±0.00024) days was determined during one month of measurements and correction for europium isotope impurities by the C/N method in the TriCarb 2910 LS-counter.

  6. Pyridoxamine-5-phosphate enzyme-linked immune mass spectrometric assay substrate for linear absolute quantification of alkaline phosphatase to the yoctomole range applied to prostate specific antigen.

    PubMed

    Florentinus-Mefailoski, Angelique; Marshall, John G

    2014-11-01

    There is a need to measure proteins that are present in concentrations below the detection limits of existing colorimetric approaches with enzyme-linked immunoabsorbent assays (ELISA). The powerful enzyme alkaline phosphatase conjugated to the highly specific bacterial protein streptavidin binds to biotinylated macromolecules like proteins, antibodies, or other ligands and receptors with a high affinity. The binding of the biotinylated detection antibody, with resulting amplification of the signal by the catalytic production of reporter molecules, is key to the sensitivity of ELISA. The specificity and amplification of the signal by the enzyme alkaline phosphatase in ELISA together with the sensitivity of liquid chromatography electrospray ionization and mass spectrometry (LC-ESI-MS) to detect femtomole to picomole amounts of reporter molecules results in an ultrasensitive enzyme-linked immune mass spectrometric assay (ELIMSA). The novel ELIMSA substrate pyridoxamine-5-phosphate (PA5P) is cleaved by the enzyme alkaline phosphatase to yield the basic and hydrophilic product pyridoxamine (PA) that elutes rapidly with symmetrical peaks and a flat baseline. Pyridoxamine (PA) and (13)C PA were both observed to show a linear relationship between log ion intensity and quantity from picomole to femtomole amounts by liquid chromatography-electrospray ionization and mass spectrometry. Four independent methods, (i) internal (13)C isotope PA dilution curves, (ii) internal (13)C isotope one-point calibration, (iii) external PA standard curve, and (iv) external (13)C PA standard curve, all agreed within 1 digit in the same order of magnitude on the linear quantification of PA. Hence, a mass spectrometer can be used to robustly detect 526 ymol of the alkaline phosphatase streptavidin probe and accurately quantify zeptomole amounts of PSA against log linear absolute standard by micro electrospray on a simple ion trap.

  7. An improved stair phase encoding method for absolute phase retrieval

    NASA Astrophysics Data System (ADS)

    Zhou, Canlin; Liu, Tongchuan; Si, Shuchun; Xu, Jianqiang; Liu, Yepeng; Lei, Zhenkun

    2015-03-01

    An improved phase unwrapping method is proposed to reduce the projection fringes in three-dimensional (3D) surface measurement. Color fringe patterns are generated by encoding with sinusoidal fringe and stair phase fringe patterns in red and blue channels. These color fringe patterns are projected onto the tested objects and then captured by a color CCD camera. The recorded fringe patterns are separated into their RGB components. Two groups of four-step phase-shifting fringe patterns are obtained. One group of the stripes are four sinusoidal patterns, which are used to determine the wrapped phase. The other group of stripes are four sinusoidal patterns with the codeword embedded into stair phase, whose stair changes are perfectly aligned with the 2π discontinuities of sinusoidal fringe phase, which are used to determine the fringe order for the phase unwrapping. The experimental results are analyzed and compared with those of the method in Zheng and Da (2012. Opt Express 20(22):24139-24150). The results show that the proposed method needs only four fringe patterns while having less error. It can effectively reduce the number of projection fringes and improve the measuring speed.

  8. Method to obtain absolute impurity density profiles combining charge exchange and beam emission spectroscopy without absolute intensity calibrationa)

    NASA Astrophysics Data System (ADS)

    Kappatou, A.; Jaspers, R. J. E.; Delabie, E.; Marchuk, O.; Biel, W.; Jakobs, M. A.

    2012-10-01

    Investigation of impurity transport properties in tokamak plasmas is essential and a diagnostic that can provide information on the impurity content is required. Combining charge exchange recombination spectroscopy (CXRS) and beam emission spectroscopy (BES), absolute radial profiles of impurity densities can be obtained from the CXRS and BES intensities, electron density and CXRS and BES emission rates, without requiring any absolute calibration of the spectra. The technique is demonstrated here with absolute impurity density radial profiles obtained in TEXTOR plasmas, using a high efficiency charge exchange spectrometer with high etendue, that measures the CXRS and BES spectra along the same lines-of-sight, offering an additional advantage for the determination of absolute impurity densities.

  9. Comparison of Two Methods for Anthocyanin Quantification

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The pH differential method (AOAC method 2005.02) by spectrophotometer, and high performance liquid chromatography (HPLC) are methods commonly used by researchers and the food industry for quantifying anthocyanins of samples or products. This study was carried out to establish a relationship between ...

  10. Comparison of Two Methods for Anthocyanin Quantification

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The pH differential method (AOAC method 2005.02) by spectrophotometer and high performance liquid chromatography (HPLC) are methods commonly used by researchers and the food industry for quantifying anthocyanins of samples or products. This study was carried out to establish a relationship between t...

  11. Comparison of Two Methods for Anthocyanin Quantification

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The pH differential method (AOAC method 2005.02) by spectrophotometer, and high performance liquid chromatography (HPLC) are methods commonly used by researchers and the food industry for quantifying anthocyanins of samples or products. This study was carried out to establish a relationship between...

  12. Spectroscopic characterization of coumarin-stained beads: quantification of the number of fluorophores per particle with solid-state 19F-NMR and measurement of absolute fluorescence quantum yields.

    PubMed

    Huber, Alexandra; Behnke, Thomas; Würth, Christian; Jaeger, Christian; Resch-Genger, Ute

    2012-04-17

    The rational design of nano- and micrometer-sized particles with tailor-made optical properties for biological, diagnostic, and photonic applications requires tools to characterize the signal-relevant properties of these typically scattering bead suspensions. This includes methods for the preferably nondestructive quantification of the number of fluorophores per particle and the measurement of absolute fluorescence quantum yields and absorption coefficients of suspensions of fluorescent beads for material performance optimization and comparison. Here, as a first proof-of-concept, we present the first time determination of the number of dye molecules per bead using nondestructive quantitative ((19)F) NMR spectroscopy and 1000 nm-sized carboxylated polystyrene particles loaded with varying concentrations of the laser dye coumarin 153 containing a CF(3) group. Additionally, the signal-relevant optical properties of these dye-loaded particles were determined in aqueous suspension in comparison to the free dye in solvents of different polarity with a custom-built integrating sphere setup that enables spectrally resolved measurements of emission, transmission, and reflectance as well absolute fluorescence quantum yields. These measurements present an important step toward absolute brightness values and quantitative fluorescence analysis with particle systems that can be exploited, for example, for optical imaging techniques and different fluorescence assays as well as for the metrological traceability of fluorescence methods. PMID:22404690

  13. Comparison of DNA Quantification Methods for Next Generation Sequencing

    PubMed Central

    Robin, Jérôme D.; Ludlow, Andrew T.; LaRanger, Ryan; Wright, Woodring E.; Shay, Jerry W.

    2016-01-01

    Next Generation Sequencing (NGS) is a powerful tool that depends on loading a precise amount of DNA onto a flowcell. NGS strategies have expanded our ability to investigate genomic phenomena by referencing mutations in cancer and diseases through large-scale genotyping, developing methods to map rare chromatin interactions (4C; 5C and Hi-C) and identifying chromatin features associated with regulatory elements (ChIP-seq, Bis-Seq, ChiA-PET). While many methods are available for DNA library quantification, there is no unambiguous gold standard. Most techniques use PCR to amplify DNA libraries to obtain sufficient quantities for optical density measurement. However, increased PCR cycles can distort the library’s heterogeneity and prevent the detection of rare variants. In this analysis, we compared new digital PCR technologies (droplet digital PCR; ddPCR, ddPCR-Tail) with standard methods for the titration of NGS libraries. DdPCR-Tail is comparable to qPCR and fluorometry (QuBit) and allows sensitive quantification by analysis of barcode repartition after sequencing of multiplexed samples. This study provides a direct comparison between quantification methods throughout a complete sequencing experiment and provides the impetus to use ddPCR-based quantification for improvement of NGS quality. PMID:27048884

  14. Digital Droplet PCR for the Absolute Quantification of Exon Skipping Induced by Antisense Oligonucleotides in (Pre-)Clinical Development for Duchenne Muscular Dystrophy.

    PubMed

    Verheul, Ruurd C; van Deutekom, Judith C T; Datson, Nicole A

    2016-01-01

    Antisense oligonucleotides (AONs) in clinical development for Duchenne muscular dystrophy (DMD) aim to induce skipping of a specific exon of the dystrophin transcript during pre-mRNA splicing. This results in restoration of the open reading frame and consequently synthesis of a dystrophin protein with a shorter yet functional central rod domain. To monitor the molecular therapeutic effect of exon skip-inducing AONs in clinical studies, accurate quantification of pre- and post-treatment exon skip levels is required. With the recent introduction of 3rd generation digital droplet PCR (ddPCR), a state-of-the-art technology became available which allows absolute quantification of transcript copy numbers with and without specific exon skip with high precision, sensitivity and reproducibility. Using Taqman assays with probes targeting specific exon-exon junctions, we here demonstrate that ddPCR reproducibly quantified cDNA fragments with and without exon 51 of the DMD gene over a 4-log dynamic range. In a comparison of conventional nested PCR, qPCR and ddPCR using cDNA constructs with and without exon 51 mixed in different molar ratios using, ddPCR quantification came closest to the expected outcome over the full range of ratios (0-100%), while qPCR and in particular nested PCR overestimated the relative percentage of the construct lacking exon 51. Highest accuracy was similarly obtained with ddPCR in DMD patient-derived muscle cells treated with an AON inducing exon 51 skipping. We therefore recommend implementation of ddPCR for quantification of exon skip efficiencies of AONs in (pre)clinical development for DMD. PMID:27612288

  15. Digital Droplet PCR for the Absolute Quantification of Exon Skipping Induced by Antisense Oligonucleotides in (Pre-)Clinical Development for Duchenne Muscular Dystrophy

    PubMed Central

    Verheul, Ruurd C.; van Deutekom, Judith C. T.; Datson, Nicole A.

    2016-01-01

    Antisense oligonucleotides (AONs) in clinical development for Duchenne muscular dystrophy (DMD) aim to induce skipping of a specific exon of the dystrophin transcript during pre-mRNA splicing. This results in restoration of the open reading frame and consequently synthesis of a dystrophin protein with a shorter yet functional central rod domain. To monitor the molecular therapeutic effect of exon skip-inducing AONs in clinical studies, accurate quantification of pre- and post-treatment exon skip levels is required. With the recent introduction of 3rd generation digital droplet PCR (ddPCR), a state-of-the-art technology became available which allows absolute quantification of transcript copy numbers with and without specific exon skip with high precision, sensitivity and reproducibility. Using Taqman assays with probes targeting specific exon-exon junctions, we here demonstrate that ddPCR reproducibly quantified cDNA fragments with and without exon 51 of the DMD gene over a 4-log dynamic range. In a comparison of conventional nested PCR, qPCR and ddPCR using cDNA constructs with and without exon 51 mixed in different molar ratios using, ddPCR quantification came closest to the expected outcome over the full range of ratios (0–100%), while qPCR and in particular nested PCR overestimated the relative percentage of the construct lacking exon 51. Highest accuracy was similarly obtained with ddPCR in DMD patient-derived muscle cells treated with an AON inducing exon 51 skipping. We therefore recommend implementation of ddPCR for quantification of exon skip efficiencies of AONs in (pre)clinical development for DMD. PMID:27612288

  16. Metrological activity determination of 133Ba by sum-peak absolute method

    NASA Astrophysics Data System (ADS)

    da Silva, R. L.; de Almeida, M. C. M.; Delgado, J. U.; Poledna, R.; Santos, A.; de Veras, E. V.; Rangel, J.; Trindade, O. L.

    2016-07-01

    The National Laboratory for Metrology of Ionizing Radiation provides gamma sources of radionuclide and standardized in activity with reduced uncertainties. Relative methods require standards to determine the sample activity while the absolute methods, as sum-peak, not. The activity is obtained directly with good accuracy and low uncertainties. 133Ba is used in research laboratories and on calibration of detectors for analysis in different work areas. Classical absolute methods don't calibrate 133Ba due to its complex decay scheme. The sum-peak method using gamma spectrometry with germanium detector standardizes 133Ba samples. Uncertainties lower than 1% to activity results were obtained.

  17. Validation of a digital PCR method for quantification of DNA copy number concentrations by using a certified reference material.

    PubMed

    Deprez, Liesbet; Corbisier, Philippe; Kortekaas, Anne-Marie; Mazoua, Stéphane; Beaz Hidalgo, Roxana; Trapmann, Stefanie; Emons, Hendrik

    2016-09-01

    Digital PCR has become the emerging technique for the sequence-specific detection and quantification of nucleic acids for various applications. During the past years, numerous reports on the development of new digital PCR methods have been published. Maturation of these developments into reliable analytical methods suitable for diagnostic or other routine testing purposes requires their validation for the intended use. Here, the results of an in-house validation of a droplet digital PCR method are presented. This method is intended for the quantification of the absolute copy number concentration of a purified linearized plasmid in solution with a nucleic acid background. It has been investigated which factors within the measurement process have a significant effect on the measurement results, and the contribution to the overall measurement uncertainty has been estimated. A comprehensive overview is provided on all the aspects that should be investigated when performing an in-house method validation of a digital PCR method. PMID:27617230

  18. Absolute Quantification of Lipophilic Shellfish Toxins by Quantitative Nuclear Magnetic Resonance Using Removable Internal Reference Substance with SI Traceability.

    PubMed

    Kato, Tsuyoshi; Saito, Maki; Nagae, Mika; Fujita, Kazuhiro; Watai, Masatoshi; Igarashi, Tomoji; Yasumoto, Takeshi; Inagaki, Minoru

    2016-01-01

    Okadaic acid (OA), a lipophilic shellfish toxin, was accurately quantified using quantitative nuclear magnetic resonance with internal standards for the development of an authentic reference standard. Pyridine and the residual proton in methanol-d4 were used as removable internal standards to limit any contamination. They were calibrated based on a maleic acid certified reference material. Thus, the concentration of OA was traceable to the SI units through accurate quantitative NMR with an internal reference substance. Signals from the protons on the oxygenated and unsaturated carbons of OA were used for quantification. A reasonable accuracy was obtained by integrating between the lower and upper (13)C satellite signal range when more than 4 mg of OA was used. The best-determined purity was 97.4% (0.16% RSD) when 20 mg of OA was used. Dinophysistoxin-1, a methylated analog of OA having an almost identical spectrum, was also quantified by using the same methodology. PMID:27396652

  19. New identification method for Hammerstein models based on approximate least absolute deviation

    NASA Astrophysics Data System (ADS)

    Xu, Bao-Chang; Zhang, Ying-Dan

    2016-07-01

    Disorder and peak noises or large disturbances can deteriorate the identification effects of Hammerstein non-linear models when using the least-square (LS) method. The least absolute deviation technique can be used to resolve this problem; however, its absolute value cannot meet the need of differentiability required by most algorithms. To improve robustness and resolve the non-differentiable problem, an approximate least absolute deviation (ALAD) objective function is established by introducing a deterministic function that exhibits the characteristics of absolute value under certain situations. A new identification method for Hammerstein models based on ALAD is thus developed in this paper. The basic idea of this method is to apply the stochastic approximation theory in the process of deriving the recursive equations. After identifying the parameter matrix of the Hammerstein model via the new algorithm, the product terms in the matrix are separated by calculating the average values. Finally, algorithm convergence is proven by applying the ordinary differential equation method. The proposed algorithm has a better robustness as compared to other LS methods, particularly when abnormal points exist in the measured data. Furthermore, the proposed algorithm is easier to apply and converges faster. The simulation results demonstrate the efficacy of the proposed algorithm.

  20. Re-creating Gauss's method for non-electrical absolute measurements of magnetic fields and moments

    NASA Astrophysics Data System (ADS)

    Van Baak, D. A.

    2013-10-01

    In 1832, Gauss made the first absolute measurements of magnetic fields and of magnetic moments in experiments that are straightforward and instructive to replicate. We show, using rare-earth permanent magnets and a variation of Gauss's technique, that the horizontal component of the ambient geomagnetic field, as well as the size of the magnetic moments of such magnets, can be found. The method shows the connection between the SI and cgs emu unit systems for these quantities and permits an absolute realization of the Ampere with considerable precision.

  1. A facile method to determine the absolute structure of achiral molecules: supramolecular-tilt structures.

    PubMed

    Tejedor, Rosa María; Uriel, Santiago; Graus, Sara; Sierra, Teresa; Serrano, José Luis; Claramunt, Rosa M; López, Concepción; Pérez-Torralba, Marta; Alkorta, Ibon; Elguero, José

    2013-05-01

    Achiral compounds 4-methoxy-4-(p-methoxyphenyl)cyclohexanoneethylene ketal (2), 4-hydroxy-4-(p-methoxy phenyl)cyclohexanoneethylene ketal (3), and 3,5-dimethyl-4-nitropyrazole (4) crystallized in chiral structures and the samples showed an enantiomeric excess. We have determined the absolute structures of these compounds by using X-ray diffraction with copper radiation at low temperatures. Moreover, we have also established the prevalent absolute structures in these samples, by comparing their calculated and solid-state vibrational circular dichroism (VCD) spectra. The consistency of this method was confirmed by using (R,R)-2,8-diiodo-4,10-dimethyl-6 H,12H-5,11-methano-dibenzo[b,f][1,5]diazocine, Tröger's base, (R,R)-1, as a chiral compound of known absolute configuration.

  2. Relative and Absolute Error Control in a Finite-Difference Method Solution of Poisson's Equation

    ERIC Educational Resources Information Center

    Prentice, J. S. C.

    2012-01-01

    An algorithm for error control (absolute and relative) in the five-point finite-difference method applied to Poisson's equation is described. The algorithm is based on discretization of the domain of the problem by means of three rectilinear grids, each of different resolution. We discuss some hardware limitations associated with the algorithm,…

  3. Assessment methods for angiogenesis and current approaches for its quantification

    PubMed Central

    AlMalki, Waleed Hassan; Shahid, Imran; Mehdi, Abeer Yousaf; Hafeez, Muhammad Hassan

    2014-01-01

    Angiogenesis is a physiological process which describes the development of new blood vessels from the existing vessels. It is a common and the most important process in the formation and development of blood vessels, so it is supportive in the healing of wounds and granulation of tissues. The different assays for the evaluation of angiogenesis have been described with distinct advantages and some limitations. In order to develop angiogenic and antiangiogenic techniques, continuous efforts have been resulted to give animal models for more quantitative analysis of angiogenesis. Most of the studies on angiogenic inducers and inhibitors rely on various models, both in vitro, in vivo and in ova, as indicators of efficacy. The angiogenesis assays are very much helpful to test efficacy of both pro- and anti- angiogenic agents. The development of non-invasive procedures for quantification of angiogenesis will facilitate this process significantly. The main objective of this review article is to focus on the novel and existing methods of angiogenesis and their quantification techniques. These findings will be helpful to establish the most convenient methods for the detection, quantification of angiogenesis and to develop a novel, well tolerated and cost effective anti-angiogenic treatment in the near future. PMID:24987169

  4. Thallium lung-to-heart quantification: three methods of evaluation

    SciTech Connect

    Harler, M.B.; Mahoney, M.; Bartlett, B.; Patel, K.; Turbiner, E.

    1986-12-01

    Lung-to-heart quantification, when used in conjunction with visual assessment of /sup 201/Tl stress test images, has been found useful in diagnosing cardiac dysfunction. The authors evaluated three methods of quantification in terms of inter- and intraobserver variability and reproducibility. Fifty anterior /sup 201/Tl stress images were quantified by each of the following methods: Method A (sum region), which involved one region of interest (ROI) in the measurement of pulmonary activity relative to that of the myocardium; Method B (count density), which required two ROIs, the lung-to-heart ratio being dependent on count density; and Method C (maximum pixel), which used the gray scale of the computer to determine the most intense pixels in the lung field and myocardium. Statistical evaluation has shown that the three methods assess clinical data equally well. Method C was found to be most reproducible in terms of inter- and intraobserver variability followed by Methods A and B. Although nearly equivalent in terms of statistics, the three methods possess inherent differences and therefore should not be used interchangeably without conversion factors.

  5. Optically based quantification of absolute cerebral metabolic rate of oxygen (CMRO2) with high spatial resolution in rodents

    NASA Astrophysics Data System (ADS)

    Yaseen, Mohammad A.; Srinivasan, Vivek J.; Sakadžić, Sava; Vinogradov, Sergei A.; Boas, David A.

    2010-02-01

    Measuring oxygen delivery in brain tissue is important for identifying the pathophysiological changes associated with brain injury and various diseases such as cancer, stroke, and Alzheimer's disease. We have developed a multi-modal imaging system for minimally invasive measurement of cerebral oxygenation and blood flow in small animals with high spatial resolution. The system allows for simultaneous measurement of blood flow using Fourier-domain optical coherence tomography, and oxygen partial pressure (pO2) using either confocal or multiphoton phosphorescence lifetime imaging with exogenous porphyrin-based dyes sensitive to dissolved oxygen. Here we present the changes in pO2 and blood flow in superficial cortical vessels of Sprague Dawley rats in response to conditions such as hypoxia, hyperoxia, and functional stimulation. pO2 measurements display considerable heterogeneity over distances that cannot be resolved with more widely used oxygen-monitoring techniques such as BOLD-fMRI. Large increases in blood flow are observed in response to functional stimulation and hypoxia. Our system allows for quantification of cerebral metabolic rate of oxygen (CMRO2) with high spatial resolution, providing a better understanding of metabolic dynamics during functional stimulation and under various neuropathologies. Ultimately, better insight into the underlying mechanisms of neuropathologies will facilitate the development of improved therapeutic strategies to minimize damage to brain tissue.

  6. Absolute quantification of DcR3 and GDF15 from human serum by LC-ESI MS

    PubMed Central

    Lancrajan, Ioana; Schneider-Stock, Regine; Naschberger, Elisabeth; Schellerer, Vera S; Stürzl, Michael; Enz, Ralf

    2015-01-01

    Biomarkers are widely used in clinical diagnosis, prognosis and therapy monitoring. Here, we developed a protocol for the efficient and selective enrichment of small and low concentrated biomarkers from human serum, involving a 95% effective depletion of high-abundant serum proteins by partial denaturation and enrichment of low-abundant biomarkers by size exclusion chromatography. The recovery of low-abundance biomarkers was above 97%. Using this protocol, we quantified the tumour markers DcR3 and growth/differentiation factor (GDF)15 from 100 μl human serum by isotope dilution mass spectrometry, using 15N metabolically labelled and concatamerized fingerprint peptides for the both proteins. Analysis of three different fingerprint peptides for each protein by liquid chromatography electrospray ionization mass spectrometry resulted in comparable concentrations in three healthy human serum samples (DcR3: 27.23 ± 2.49 fmol/ml; GDF15: 98.11 ± 0.49 fmol/ml). In contrast, serum levels were significantly elevated in tumour patients for DcR3 (116.94 ± 57.37 fmol/ml) and GDF15 (164.44 ± 79.31 fmol/ml). Obtained data were in good agreement with ELISA and qPCR measurements, as well as with literature data. In summary, our protocol allows the reliable quantification of biomarkers, shows a higher resolution at low biomarker concentrations than antibody-based strategies, and offers the possibility of multiplexing. Our proof-of-principle studies in patient sera encourage the future analysis of the prognostic value of DcR3 and GDF15 for colon cancer patients in larger patient cohorts. PMID:25823874

  7. [Research on absolute calibration of sun channel of sun photometer using laser raster scanning method].

    PubMed

    Xu, Wen-Bin; Li, Jian-Jun; Zheng, Xiao-Bing

    2013-01-01

    In the present paper, a new calibration method of absolute spectral irradiance responsivity of sun channel of sun photometer was developed. A tunable laser was used as source and a standard tranfer detector, calibrated against cryogenic absolute radiometer, was used to measure laser beam power. By raster scanning of a single collimated laser beam to generate the uniform irradiance field at the plane of effective aperture stop of sun photometer, the absolute irradiance responsivity of center wavelength of the 870 nm unpolarized sun channels of sun photometer was obtained accurately. The relative spectral irradiance responsivity of corresponding channel was obtained by using lamp-monochromator system and then used to acquire the absolute spectral irradiance responsivity in the laboratory. On the basis of the above results, the top-of-the-atmosphere responsive constant V0 was obtained by integration with extraterrestrial solar spectral irradiance data. Comparing the calibration result with that from GSFC, NASA in 2009, the difference is only 3.75%. In the last, the uncertainties of calibration were evaluated and reached to 2.06%. The principle feasibility of the new method was validated.

  8. Quantification of brain endocannabinoid levels: methods, interpretations and pitfalls

    PubMed Central

    Buczynski, Matthew W; Parsons, Loren H

    2010-01-01

    Endocannabinoids play an important role in a diverse range of neurophysiological processes including neural development, neuroimmune function, synaptic plasticity, pain, reward and affective state. This breadth of influence and evidence for altered endocannabinoid signalling in a variety of neuropathologies has fuelled interest in the accurate quantification of these lipids in brain tissue. Established methods for endocannabinoid quantification primarily employ solvent-based lipid extraction with further sample purification by solid phase extraction. In recent years in vivo microdialysis methods have also been developed for endocannabinoid sampling from the brain interstitial space. However, considerable variability in estimates of endocannabinoid content has led to debate regarding the physiological range of concentrations present in various brain regions. This paper provides a critical review of factors that influence the quantification of brain endocannabinoid content as determined by lipid extraction from bulk tissue and by in vivo microdialysis. A variety of methodological issues are discussed including analytical approaches, endocannabinoid extraction and purification, post-mortem changes in brain endocannabinoid content, cellular reactions to microdialysis probe implantation and caveats related to lipid sampling from the extracellular space. The application of these methods for estimating brain endocannabinoid content and the effects of endocannabinoid clearance inhibition are discussed. The benefits, limitations and pitfalls associated with each approach are emphasized, with an eye toward the appropriate interpretation of data gathered by each method. This article is part of a themed issue on Cannabinoids. To view the editorial for this themed issue visit http://dx.doi.org/10.1111/j.1476-5381.2010.00831.x PMID:20590555

  9. [Study on the absolute spectral irradiation calibration method for far ultraviolet spectrometer in remote sensing].

    PubMed

    Yu, Lei; Lin, Guan-Yu; Chen, Bin

    2013-01-01

    The present paper studied spectral irradiation responsivities calibration method which can be applied to the far ultraviolet spectrometer for upper atmosphere remote sensing. It is difficult to realize the calibration for far ultraviolet spectrometer for many reasons. Standard instruments for far ultraviolet waveband calibration are few, the degree of the vacuum experiment system is required to be high, the stabilities of the experiment are hardly maintained, and the limitation of the far ultraviolet waveband makes traditional diffuser and the integrating sphere radiance calibration method difficult to be used. To solve these problems, a new absolute spectral irradiance calibration method was studied, which can be applied to the far ultraviolet calibration. We build a corresponding special vacuum experiment system to verify the calibration method. The light source system consists of a calibrated deuterium lamp, a vacuum ultraviolet monochromater and a collimating system. We used the calibrated detector to obtain the irradiance responsivities of it. The three instruments compose the calibration irradiance source. We used the "calibration irradiance source" to illuminate the spectrometer prototype and obtained the spectral irradiance responsivities. It realized the absolute spectral irradiance calibration for the far ultraviolet spectrometer utilizing the calibrated detector. The absolute uncertainty of the calibration is 7.7%. The method is significant for the ground irradiation calibration of the far ultraviolet spectrometer in upper atmosphere remote sensing.

  10. Verification of 235U mass content in nuclear fuel plates by an absolute method

    NASA Astrophysics Data System (ADS)

    El-Gammal, W.

    2007-01-01

    Nuclear Safeguards is referred to a verification System by which a State can control all nuclear materials (NM) and nuclear activities under its authority. An effective and efficient Safeguards System must include a system of measurements with capabilities sufficient to verify such NM. Measurements of NM using absolute methods could eliminate the dependency on NM Standards, which are necessary for other relative or semi-absolute methods. In this work, an absolute method has been investigated to verify the 235U mass content in nuclear fuel plates of Material Testing Reactor (MTR) type. The most intense gamma-ray signature at 185.7 keV emitted after α-decay of the 235U nuclei was employed in the method. The measuring system (an HPGe-spectrometer) was mathematically calibrated for efficiency using the general Monte Carlo transport code MCNP-4B. The calibration results and the measured net count rate were used to estimate the 235U mass content in fuel plates at different detector-to-fuel plate distances. Two sets of fuel plates, containing natural and low enriched uranium, were measured at the Fuel Fabrication Facility. Average accuracies for the estimated 235U masses of about 2.62% and 0.3% are obtained for the fuel plates containing natural and low enriched uranium; respectively, with a precision of about 3%.

  11. Deployment dynamics of a simplified spinning IKAROS solar sail via absolute coordinate based method

    NASA Astrophysics Data System (ADS)

    Zhao, Jiang; Tian, Qiang; Hu, Hai-Yan

    2013-02-01

    The spinning solar sail of large scale has been well developed in recent years. Such a solar sail can be considered as a rigid-flexible multibody system mainly composed of a spinning central rigid hub, a number of flexible thin tethers, sail membranes, and tip masses. A simplified interplanetary kite-craft accelerated by radiation of the Sun (IKAROS) model is established in this study by using the absolute-coordinate-based (ACB) method that combines the natural coordinate formulation (NCF) describing the central rigid hub and the absolute nodal coordinate formulation (ANCF) describing flexible parts. The initial configuration of the system in the second-stage deployment is determined through both dynamic and static analyses. The huge set of stiff equations of system dynamics is solved by using the generalized-alpha method, and thus the deployment dynamics of the system can be well understood.

  12. Quantification of leukocyte migration: improvement of a method.

    PubMed

    Sunder-Plassmann, G; Hofbauer, R; Sengoelge, G; Hörl, W H

    1996-01-01

    Eighteen different permeable membrane supports with and without confluent endothelial cell monolayers were incubated with normal donor derived neutrophils in the upper chambers of a 24 multiwell double chamber system. In order to study transmembrane or transendothelial leukocyte migration leukocytes were stimulated by chemoattractants, or endothelial cells were activated by IL-1. After coincubation the membrane supports building the upper chambers were discarded. Using this technique, leukocytes that had migrated into the lower chamber were exposed to the fluorescent dye calcein AM without additional washing or transfer steps. Absolute cell counts were determined computer assisted using dilution series of calcein AM labeled leukocytes as standards. Serial dilutions of neutrophils exposed to calcein AM showed reproducible linear fluorescence intensity, and relative fluorescence intensity correlated significant with cell counts (r2 = 0.974, p < 0.0001). Out of 18 membrane supports only one was suitable for our assay set up. Best technical and optical performance was achieved with a membrane made of polyethylene terephtalate with a pore size of 3 mm at a pore density of 0.8 x 10(6)/cm2. Stimulation of leukocytes or endothelium by FMLP or IL-1 revealed an increase of transendothelial migration to 7.2 +/- 1.8 x 10(5) PMN and 5.1 +/- 0.7 x 10(5) PMN respectively if compared with medium (0.6 +/- 0.2 x 10(5) PMN). IL-1 induced migration of neutrophils was inhibited by anti IL-1 autoantibodies derived from chronic renal failure patients (IL-1: 100% of PMN migrated, anti IL-1 antibody: 39% of PMN migrated, control antibody: 84% of PMN migrated). In summary, a simple fluorimetric assay was established for the quantification of transmembrane and transendothelial leukocyte migration. PMID:8675234

  13. A surrogate accelerated multicanonical Monte Carlo method for uncertainty quantification

    NASA Astrophysics Data System (ADS)

    Wu, Keyi; Li, Jinglai

    2016-09-01

    In this work we consider a class of uncertainty quantification problems where the system performance or reliability is characterized by a scalar parameter y. The performance parameter y is random due to the presence of various sources of uncertainty in the system, and our goal is to estimate the probability density function (PDF) of y. We propose to use the multicanonical Monte Carlo (MMC) method, a special type of adaptive importance sampling algorithms, to compute the PDF of interest. Moreover, we develop an adaptive algorithm to construct local Gaussian process surrogates to further accelerate the MMC iterations. With numerical examples we demonstrate that the proposed method can achieve several orders of magnitudes of speedup over the standard Monte Carlo methods.

  14. [Comparison of methods for quantification of MVOC in indoor environments].

    PubMed

    Fischer, G; Möller, M; Gabrio, T; Palmgren, U; Keller, R; Richter, H; Dott, W; Paul, R

    2005-01-01

    For several years now, MVOC have been regarded as indicators for microbial growth in indoor environments. Until now, a direct correlation between the occurrence of microfungi and MVOC could not be shown in scientific investigations. One reason may be that different analytical methods were applied, and moreover they were not validated sufficiently. The present investigation aimed to test the comparability of both methods (Tenax adsorption/thermal desorption; charcoal adsorption/elution). It turned out that with both methods comparable results can be achieved if the technical handling of the calibration is standardized to a wide extent. Thus, highest demands have to be made on quality assurance. Therefore, it is necessary to formulate technical regulations for the quantification of MVOC.

  15. Rapid quantification method for Legionella pneumophila in surface water.

    PubMed

    Wunderlich, Anika; Torggler, Carmen; Elsässer, Dennis; Lück, Christian; Niessner, Reinhard; Seidel, Michael

    2016-03-01

    World-wide legionellosis outbreaks caused by evaporative cooling systems have shown that there is a need for rapid screening methods for Legionella pneumophila in water. Antibody-based methods for the quantification of L. pneumophila are rapid, non-laborious, and relatively cheap but not sensitive enough for establishment as a screening method for surface and drinking water. Therefore, preconcentration methods have to be applied in advance to reach the needed sensitivity. In a basic test, monolithic adsorption filtration (MAF) was used as primary preconcentration method that adsorbs L. pneumophila with high efficiency. Ten-liter water samples were concentrated in 10 min and further reduced to 1 mL by centrifugal ultrafiltration (CeUF). The quantification of L. pneumophila strains belonging to the monoclonal subtype Bellingham was performed via flow-based chemiluminescence sandwich microarray immunoassays (CL-SMIA) in 36 min. The whole analysis process takes 90 min. A polyclonal antibody (pAb) against L. pneumophila serogroup 1-12 and a monoclonal antibody (mAb) against L. pneumophila SG 1 strain Bellingham were immobilized on a microarray chip. Without preconcentration, the detection limit was 4.0 × 10(3) and 2.8 × 10(3) CFU/mL determined by pAb and mAb 10/6, respectively. For samples processed by MAF-CeUF prior to SMIA detection, the limit of detection (LOD) could be decreased to 8.7 CFU/mL and 0.39 CFU/mL, respectively. A recovery of 99.8 ± 15.9% was achieved for concentrations between 1-1000 CFU/mL. The established combined analytical method is sensitive for rapid screening of surface and drinking water to allow fast hygiene control of L. pneumophila. PMID:26873217

  16. Stochastic methods for uncertainty quantification in radiation transport

    SciTech Connect

    Fichtl, Erin D; Prinja, Anil K; Warsa, James S

    2009-01-01

    The use of generalized polynomial chaos (gPC) expansions is investigated for uncertainty quantification in radiation transport. The gPC represents second-order random processes in terms of an expansion of orthogonal polynomials of random variables and is used to represent the uncertain input(s) and unknown(s). We assume a single uncertain input-the total macroscopic cross section-although this does not represent a limitation of the approaches considered here. Two solution methods are examined: The Stochastic Finite Element Method (SFEM) and the Stochastic Collocation Method (SCM). The SFEM entails taking Galerkin projections onto the orthogonal basis, which, for fixed source problems, yields a linear system of fully -coupled equations for the PC coefficients of the unknown. For k-eigenvalue calculations, the SFEM system is non-linear and a Newton-Krylov method is employed to solve it. The SCM utilizes a suitable quadrature rule to compute the moments or PC coefficients of the unknown(s), thus the SCM solution involves a series of independent deterministic transport solutions. The accuracy and efficiency of the two methods are compared and contrasted. The PC coefficients are used to compute the moments and probability density functions of the unknown(s), which are shown to be accurate by comparing with Monte Carlo results. Our work demonstrates that stochastic spectral expansions are a viable alternative to sampling-based uncertainty quantification techniques since both provide a complete characterization of the distribution of the flux and the k-eigenvalue. Furthermore, it is demonstrated that, unlike perturbation methods, SFEM and SCM can handle large parameter uncertainty.

  17. Rapid quantification method for Legionella pneumophila in surface water.

    PubMed

    Wunderlich, Anika; Torggler, Carmen; Elsässer, Dennis; Lück, Christian; Niessner, Reinhard; Seidel, Michael

    2016-03-01

    World-wide legionellosis outbreaks caused by evaporative cooling systems have shown that there is a need for rapid screening methods for Legionella pneumophila in water. Antibody-based methods for the quantification of L. pneumophila are rapid, non-laborious, and relatively cheap but not sensitive enough for establishment as a screening method for surface and drinking water. Therefore, preconcentration methods have to be applied in advance to reach the needed sensitivity. In a basic test, monolithic adsorption filtration (MAF) was used as primary preconcentration method that adsorbs L. pneumophila with high efficiency. Ten-liter water samples were concentrated in 10 min and further reduced to 1 mL by centrifugal ultrafiltration (CeUF). The quantification of L. pneumophila strains belonging to the monoclonal subtype Bellingham was performed via flow-based chemiluminescence sandwich microarray immunoassays (CL-SMIA) in 36 min. The whole analysis process takes 90 min. A polyclonal antibody (pAb) against L. pneumophila serogroup 1-12 and a monoclonal antibody (mAb) against L. pneumophila SG 1 strain Bellingham were immobilized on a microarray chip. Without preconcentration, the detection limit was 4.0 × 10(3) and 2.8 × 10(3) CFU/mL determined by pAb and mAb 10/6, respectively. For samples processed by MAF-CeUF prior to SMIA detection, the limit of detection (LOD) could be decreased to 8.7 CFU/mL and 0.39 CFU/mL, respectively. A recovery of 99.8 ± 15.9% was achieved for concentrations between 1-1000 CFU/mL. The established combined analytical method is sensitive for rapid screening of surface and drinking water to allow fast hygiene control of L. pneumophila.

  18. A simplified diphenylamine colorimetric method for growth quantification.

    PubMed

    Zhao, Youbao; Xiang, Sihai; Dai, Xida; Yang, Keqian

    2013-06-01

    Cell growth needs to be monitored in biological studies and bioprocess optimization. In special circumstances, such as microbial fermentations in media containing insoluble particles, accurate cell growth quantification is a challenge with current methods. Only the Burton method is applicable in such circumstances. The original Burton method was previously simplified by adopting a two-step sample pretreatment in perchloric acid procedure to eliminate the need for DNA extraction. Here, we further simplified the Burton method by replacing the previous two-step perchloric acid pretreatment with a new and one-step diphenylamine reagent pretreatment. The reliability and accuracy of this simplified method were assessed by measuring the biomass of four model microorganisms: Escherichia coli, Streptomyces clavuligerus, Saccharomyces cerevisiae, and Trichoderma reesei grown in normal media or those containing solid particles. The results demonstrate that this new simplified method performs comparably to the conventional methods, such as OD600 or the previously modified Burton method, and is much more sensitive than the dry weight method. Overall, the new method is simple, reliable, easy to perform, and generally applicable in most circumstances, and it reduces the operation time from more than 12 h (for the previously simplified Burton method) to about 2 h.

  19. Uncertainty Quantification in State Estimation using the Probabilistic Collocation Method

    SciTech Connect

    Lin, Guang; Zhou, Ning; Ferryman, Thomas A.; Tuffner, Francis K.

    2011-03-23

    In this study, a new efficient uncertainty quantification technique, probabilistic collocation method (PCM) on sparse grid points is employed to enable the evaluation of uncertainty in state estimation. The PCM allows us to use just a small number of ensembles to quantify the uncertainty in estimating the state variables of power systems. By sparse grid points, the PCM approach can handle large number of uncertain parameters in power systems with relatively lower computational cost, when comparing with classic Monte Carlo (MC) simulations. The algorithm and procedure is outlined and we demonstrate the capability and illustrate the application of PCM on sparse grid points approach on uncertainty quantification in state estimation of the IEEE 14 bus model as an example. MC simulations have also been conducted to verify accuracy of the PCM approach. By comparing the results obtained from MC simulations with PCM results for mean and standard deviation of uncertain parameters, it is evident that the PCM approach is computationally more efficient than MC simulations.

  20. Absolute determination of radiation bursts and of proportional counters space charge effect through the influence method

    NASA Astrophysics Data System (ADS)

    Rios, I. J.; Mayer, R. E.

    2016-11-01

    When proportional counters are employed in charge integration mode to determine the magnitude of a radiation pulse, so intense that individual detection events take place in a time too short to produce individual output pulses, mostly in pulsed neutron sources, the strong build-up of positive space charge reduces the electric multiplication factor of the proportional detector. Under such conditions the ensuing measurement underestimates the amount of radiation that interacted with the detector. If the geometric characteristics, the filling gas pressure and the voltage applied to that detector are known, it becomes possible to apply an analytical correction method to the measurement. In this article we present a method that allows to determine the absolute value of the detected radiation burst without the need to know the characteristics of the employed detectors. It is necessary to employ more than one detector, taking advantage of the Influence Method. The "Influence Method" is conceived for the absolute determination of a nuclear particle flux in the absence of known detector efficiency and without the need to register coincidences of any kind. This method exploits the influence of the presence of one detector in the count rate of another detector, when they are placed one behind the other and define statistical estimators for the absolute number of incident particles and for the efficiency (Rios and Mayer, 2015 [1,2]). Its practical implementation in the measurement of a moderated neutron flux arising from an isotopic neutron source was exemplified in (Rios and Mayer, 2016 [3]) and the extension for multiple detectors in (Rios and Mayer 2016 [4]).

  1. 21 CFR 530.24 - Procedure for announcing analytical methods for drug residue quantification.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Procedure for announcing analytical methods for...-Producing Animals § 530.24 Procedure for announcing analytical methods for drug residue quantification. (a) FDA may issue an order announcing a specific analytical method or methods for the quantification...

  2. Radioactivity measurements of 177Lu, 111In and 123I by different absolute methods.

    PubMed

    Rezende, E A; Correia, A R; Iwahara, A; da Silva, C J; Tauhata, L; Poledna, R; da Silva, R L; de Oliveira, E M; de Oliveira, A E

    2012-09-01

    The activities of (177)Lu, (111)In and (123)I solutions have been absolutely determined using three different measurement methods. (177)Lu solution was standardized using the 4πβ(PC)-γ(NaI) coincidence and 4πβ(LS)-γ(NaI) live-timed anticoincidence methods. For the (111)In and (123)I solutions, besides these two mentioned methods, the coincidence sum-peak method was also applied. The measured activities results using these different methods are consistent within the evaluated experimental uncertainties demonstrating the equivalence of these methods. As an additional contribution to nuclear data, the half-lives have been determined using a well type IG12 ionization chamber.

  3. Radioactivity measurements of 177Lu, 111In and 123I by different absolute methods.

    PubMed

    Rezende, E A; Correia, A R; Iwahara, A; da Silva, C J; Tauhata, L; Poledna, R; da Silva, R L; de Oliveira, E M; de Oliveira, A E

    2012-09-01

    The activities of (177)Lu, (111)In and (123)I solutions have been absolutely determined using three different measurement methods. (177)Lu solution was standardized using the 4πβ(PC)-γ(NaI) coincidence and 4πβ(LS)-γ(NaI) live-timed anticoincidence methods. For the (111)In and (123)I solutions, besides these two mentioned methods, the coincidence sum-peak method was also applied. The measured activities results using these different methods are consistent within the evaluated experimental uncertainties demonstrating the equivalence of these methods. As an additional contribution to nuclear data, the half-lives have been determined using a well type IG12 ionization chamber. PMID:22401938

  4. A novel automated image analysis method for accurate adipocyte quantification

    PubMed Central

    Osman, Osman S; Selway, Joanne L; Kępczyńska, Małgorzata A; Stocker, Claire J; O’Dowd, Jacqueline F; Cawthorne, Michael A; Arch, Jonathan RS; Jassim, Sabah; Langlands, Kenneth

    2013-01-01

    Increased adipocyte size and number are associated with many of the adverse effects observed in metabolic disease states. While methods to quantify such changes in the adipocyte are of scientific and clinical interest, manual methods to determine adipocyte size are both laborious and intractable to large scale investigations. Moreover, existing computational methods are not fully automated. We, therefore, developed a novel automatic method to provide accurate measurements of the cross-sectional area of adipocytes in histological sections, allowing rapid high-throughput quantification of fat cell size and number. Photomicrographs of H&E-stained paraffin sections of murine gonadal adipose were transformed using standard image processing/analysis algorithms to reduce background and enhance edge-detection. This allowed the isolation of individual adipocytes from which their area could be calculated. Performance was compared with manual measurements made from the same images, in which adipocyte area was calculated from estimates of the major and minor axes of individual adipocytes. Both methods identified an increase in mean adipocyte size in a murine model of obesity, with good concordance, although the calculation used to identify cell area from manual measurements was found to consistently over-estimate cell size. Here we report an accurate method to determine adipocyte area in histological sections that provides a considerable time saving over manual methods. PMID:23991362

  5. Absolute testing of flats in sub-stitching interferometer by rotation-shift method

    NASA Astrophysics Data System (ADS)

    Jia, Xin; Xu, Fuchao; Xie, Weimin; Li, Yun; Xing, Tingwen

    2015-09-01

    Most of the commercial available sub-aperture stitching interferometers measure the surface with a standard lens that produces a reference wavefront, and the precision of the interferometer is generally limited by the standard lens. The test accuracy can be achieved by removing the error of reference surface by the absolute testing method. When the testing accuracy (repeatability and reproducibility) is close to 1nm, in addition to the reference surface, other factors will also affect the measuring accuracy such as environment, zoom magnification, stitching precision, tooling and fixture, the characteristics of optical materials and so on. We establish a stitching system in the thousand level cleanroom. The stitching system is including the Zygo interferometer, the motion system with Bilz active isolation system at level VC-F. We review the traditional absolute flat testing methods and emphasize the method of rotation-shift functions. According to the rotation-shift method we get the profile of the reference lens and the testing lens. The problem of the rotation-shift method is the tilt error. In the motion system, we control the tilt error no more than 4 second to reduce the error. In order to obtain higher testing accuracy, we analyze the influence surface shape measurement accuracy by recording the environment error with the fluke testing equipment.

  6. Current analytical methods for plant auxin quantification--A review.

    PubMed

    Porfírio, Sara; Gomes da Silva, Marco D R; Peixe, Augusto; Cabrita, Maria J; Azadi, Parastoo

    2016-01-01

    Plant hormones, and especially auxins, are low molecular weight compounds highly involved in the control of plant growth and development. Auxins are also broadly used in horticulture, as part of vegetative plant propagation protocols, allowing the cloning of genotypes of interest. Over the years, large efforts have been put in the development of more sensitive and precise methods of analysis and quantification of plant hormone levels in plant tissues. Although analytical techniques have evolved, and new methods have been implemented, sample preparation is still the limiting step of auxin analysis. In this review, the current methods of auxin analysis are discussed. Sample preparation procedures, including extraction, purification and derivatization, are reviewed and compared. The different analytical techniques, ranging from chromatographic and mass spectrometry methods to immunoassays and electrokinetic methods, as well as other types of detection are also discussed. Considering that auxin analysis mirrors the evolution in analytical chemistry, the number of publications describing new and/or improved methods is always increasing and we considered appropriate to update the available information. For that reason, this article aims to review the current advances in auxin analysis, and thus only reports from the past 15 years will be covered.

  7. Numerical Continuation Methods for Intrusive Uncertainty Quantification Studies

    SciTech Connect

    Safta, Cosmin; Najm, Habib N.; Phipps, Eric Todd

    2014-09-01

    Rigorous modeling of engineering systems relies on efficient propagation of uncertainty from input parameters to model outputs. In recent years, there has been substantial development of probabilistic polynomial chaos (PC) Uncertainty Quantification (UQ) methods, enabling studies in expensive computational models. One approach, termed ”intrusive”, involving reformulation of the governing equations, has been found to have superior computational performance compared to non-intrusive sampling-based methods in relevant large-scale problems, particularly in the context of emerging architectures. However, the utility of intrusive methods has been severely limited due to detrimental numerical instabilities associated with strong nonlinear physics. Previous methods for stabilizing these constructions tend to add unacceptably high computational costs, particularly in problems with many uncertain parameters. In order to address these challenges, we propose to adapt and improve numerical continuation methods for the robust time integration of intrusive PC system dynamics. We propose adaptive methods, starting with a small uncertainty for which the model has stable behavior and gradually moving to larger uncertainty where the instabilities are rampant, in a manner that provides a suitable solution.

  8. An evaluation method based on absolute difference to validate the performance of SBNUC algorithms

    NASA Astrophysics Data System (ADS)

    Jin, Minglei; Jin, Weiqi; Li, Yiyang; Li, Shuo

    2016-09-01

    Scene-based non-uniformity correction (SBNUC) algorithms are an important part of infrared image processing; however, SBNUC algorithms usually cause two defects: (1) ghosting artifacts and (2) over-correction. In this paper, we use the absolute difference based on guided image filter (AD-GF) method to validate the performance of SBNUC algorithms. We obtain a self-separation source using the improved guided image filter to process the input image, and use the self-separation source to obtain the space-high-frequency parts of the input image and the corrected image. Finally, we use the absolute difference between the two space-high-frequency parts as the evaluation result. Based on experimental results, the AD-GF method has better robustness and can validate the performance of SBNUC algorithms even if ghosting artifacts or over-correction occur. Also the AD-GF method can measure how SBNUC algorithms perform in the time domain, it's an effective evaluation method for SBNUC algorithm.

  9. Primary activity standardization of ⁹⁹Tc by three different absolute methods.

    PubMed

    da Cruz, Paulo A L; da Silva, Carlos J; Moreira, Denise S; Iwahara, Akira; Tauhata, Luiz; Lopes, Ricardo T

    2014-05-01

    The activity concentration of a solution of (99)Tc was absolutely determined by liquid scintillation measurements based on the triple-to double-coincidence ratio method (TDCR) and compared with the results given by 4πβ(LS)-γ(NaI) live-timed anticoincidence (with extending dead-time) and classical 4πβ(PC)-γ(NaI) coincidence counting systems based on using (60)Co as the efficiency-tracing radionuclide. The results of anticoincidence and coincidence counting are, respectively, 0.18% and 0.66% higher than the result from TDCR measurements, but they are consistent within uncertainties. PMID:24365467

  10. Direct field method for root biomass quantification in agroecosystems.

    PubMed

    Frasier, Ileana; Noellemeyer, Elke; Fernández, Romina; Quiroga, Alberto

    2016-01-01

    The present article describes a field auger sampling method for row-crop root measurements. In agroecosystems where crops are planted in a specific design (row crops), sampling procedures for root biomass quantification need to consider the spatial variability of the root system. This article explains in detail how to sample and calculate root biomass considering the sampling position in the field and the differential weight of the root biomass in the inter-row compared to the crop row when expressing data per area unit. This method is highly reproducible in the field and requires no expensive equipment and/or special skills. It proposes to use a narrow auger thus reducing field labor with less destructive sampling, and decreases laboratory time because samples are smaller. The small sample size also facilitates the washing and root separation with tweezers. This method is suitable for either winter- or summer crop roots. •Description of a direct field method for row-crop root measurements.•Description of data calculation for total root-biomass estimation per unit area.•The proposed method is simple, less labor- and less time consuming. PMID:27630821

  11. Easy Absolute Values? Absolutely

    ERIC Educational Resources Information Center

    Taylor, Sharon E.; Mittag, Kathleen Cage

    2015-01-01

    The authors teach a problem-solving course for preservice middle-grades education majors that includes concepts dealing with absolute-value computations, equations, and inequalities. Many of these students like mathematics and plan to teach it, so they are adept at symbolic manipulations. Getting them to think differently about a concept that they…

  12. An improved competitive inhibition enzymatic immunoassay method for tetrodotoxin quantification.

    PubMed

    Stokes, Amber N; Williams, Becky L; French, Susannah S

    2012-01-01

    Quantifying tetrodotoxin (TTX) has been a challenge in both ecological and medical research due to the cost, time and training required of most quantification techniques. Here we present a modified Competitive Inhibition Enzymatic Immunoassay for the quantification of TTX, and to aid researchers in the optimization of this technique for widespread use with a high degree of accuracy and repeatability.

  13. Laser interferometry method for absolute measurement of the acceleration of gravity

    NASA Technical Reports Server (NTRS)

    Hudson, O. K.

    1971-01-01

    Gravimeter permits more accurate and precise absolute measurement of g without reference to Potsdam values as absolute standards. Device is basically Michelson laser beam interferometer in which one arm is mass fitted with corner cube reflector.

  14. Teaching Absolute Value Meaningfully

    ERIC Educational Resources Information Center

    Wade, Angela

    2012-01-01

    What is the meaning of absolute value? And why do teachers teach students how to solve absolute value equations? Absolute value is a concept introduced in first-year algebra and then reinforced in later courses. Various authors have suggested instructional methods for teaching absolute value to high school students (Wei 2005; Stallings-Roberts…

  15. Rapid method for the quantification of hydroquinone concentration: chemiluminescent analysis.

    PubMed

    Chen, Tung-Sheng; Liou, Show-Yih; Kuo, Wei-Wen; Wu, Hsi-Chin; Jong, Gwo-Ping; Wang, Hsueh-Fang; Shen, Chia-Yao; Padma, V Vijaya; Huang, Chih-Yang; Chang, Yen-Lin

    2015-11-01

    Topical hydroquinone serves as a skin whitener and is usually available in cosmetics or on prescription based on the hydroquinone concentration. Quantification of hydroquinone content therefore becomes an important issue in topical agents. High-performance liquid chromatography (HPLC) is the commonest method for determining hydroquinone content in topical agents, but this method is time-consuming and uses many solvents that can become an environmental issue. We report a rapid method for quantifying hydroquinone content by chemiluminescent analysis. Hydroquinone induces the production of hydrogen peroxide in the presence of basic compounds. Hydrogen peroxide induced by hydroquinone oxidized light-emitting materials such as lucigenin, resulted in the production of ultra-weak chemiluminescence that was detected by a chemiluminescence analyzer. The intensity of the chemiluminescence was found to be proportional to the hydroquinone concentration. We suggest that the rapid (measurement time, 60 s) and virtually solvent-free (solvent volume, <2 mL) chemiluminescent method described here for quantifying hydroquinone content may be an alternative to HPLC analysis. PMID:25693839

  16. An improved method for the quantification of SOA bound peroxides

    NASA Astrophysics Data System (ADS)

    Mutzel, Anke; Rodigast, Maria; Iinuma, Yoshiteru; Böge, Olaf; Herrmann, Hartmut

    2013-03-01

    An improvement is made to a method for the quantification of SOA-bound peroxides. The procedure is based on an iodometric-spectrophotometric method that has been commonly used for the determination of peroxides in a wide range of biological and environmental samples. The improved method was applied to determine the peroxide content of laboratory-generated SOA from α-pinene ozonolysis. Besides main improvements for the detection conditions, the use of more environmentally sound solvents is considered instead of carcinogenic solvents. In addition to the improved method for peroxide determination, the present study provides evidence for artefact formation caused by ultrasonic agitation for the extraction of organic compounds in SOA filter samples. The concentration of SOA-bound peroxides in the extracts from ultrasonic agitation were up to three times higher than those from a laboratory orbital shaker under the same extraction conditions, indicating peroxide formation caused by acoustic cavitation during extraction. In contrast, pinic acid, terebic acid and terpenylic acid showed significantly lower concentrations in the sample extract prepared using ultrasonic agitation, indicating that these compounds react with OH radicals that are formed from acoustic cavitation. Great care should be taken when extracting SOA samples and the use of ultrasound should be avoided.

  17. Reflectance- and radiance-based methods for the in-flight absolute calibration of multispectral sensors

    NASA Technical Reports Server (NTRS)

    Slater, P. N.; Biggar, S. F.; Holm, R. G.; Jackson, R. D.; Mao, Y.

    1987-01-01

    Variations reported in the in-flight absolute radiometric calibration of the Coastal Zone Color Scanner (CZCS) and the Thematic Mapper (TM) on Landsat 4 are reviewed. At short wavelengths these sensors exhibited a gradual reduction in response, while in the midinfrared the TM showed oscillatory variations, according to the results of TM internal calibration. The methodology and results are presented for five reflectance-based calibrations of the Landsat 5 TM at White Sands, NM, in the period July 1984 to November 1985. These show a + or - 2.8 percent standard deviation for the six solar-reflective bands. Analysis and preliminary results of a second, independent calibration method, based on radiance measurements from a helicopter at White Sands, indicate that this is potentially an accurate method for corroborating the results from the reflectance-based method.

  18. Reflectance- and radiance-based methods for the in-flight absolute calibration of multispectral sensors

    NASA Astrophysics Data System (ADS)

    Slater, P. N.; Biggar, S. F.; Holm, R. G.; Jackson, R. D.; Mao, Y.

    1987-06-01

    Variations reported in the in-flight absolute radiometric calibration of the Coastal Zone Color Scanner (CZCS) and the Thematic Mapper (TM) on Landsat 4 are reviewed. At short wavelengths these sensors exhibited a gradual reduction in response, while in the midinfrared the TM showed oscillatory variations, according to the results of TM internal calibration. The methodology and results are presented for five reflectance-based calibrations of the Landsat 5 TM at White Sands, NM, in the period July 1984 to November 1985. These show a + or - 2.8 percent standard deviation for the six solar-reflective bands. Analysis and preliminary results of a second, independent calibration method, based on radiance measurements from a helicopter at White Sands, indicate that this is potentially an accurate method for corroborating the results from the reflectance-based method.

  19. An experimental database for evaluating PIV uncertainty quantification methods

    NASA Astrophysics Data System (ADS)

    Warner, Scott; Neal, Douglas; Sciacchitano, Andrea

    2014-11-01

    Uncertainty quantification for particle image velocimetry (PIV) data has recently become a topic of great interest as shown by the publishing of several different methods within the past few years. A unique experiment has been designed to test the efficacy of PIV uncertainty methods, using a rectangular jet as the flow field. The novel aspect of the experimental setup consists of simultaneous measurements by means of two different time-resolved PIV systems and a hot-wire anemometer (HWA). The first PIV system, called the ``PIV-Measurement'' system, collects the data for which uncertainty is to be evaluated. It is based on a single camera and features a dynamic velocity range (DVR) representative of many PIV experiments. The second PIV system, called the ``PIV-HDR'' (high dynamic range) system, has a significantly higher DVR obtained with a higher digital imaging resolution. The hot-wire was placed in close proximity to the PIV measurement domain. All three of the measurement systems were carefully set to simultaneously collect time-resolved data on a point-by-point basis. The HWA validates the PIV-HDR system as the reference velocity so that it can be used to evaluate the instantaneous error in the PIV-measurement system.

  20. In vivo cell tracking and quantification method in adult zebrafish

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Alt, Clemens; Li, Pulin; White, Richard M.; Zon, Leonard I.; Wei, Xunbin; Lin, Charles P.

    2012-03-01

    Zebrafish have become a powerful vertebrate model organism for drug discovery, cancer and stem cell research. A recently developed transparent adult zebrafish using double pigmentation mutant, called casper, provide unparalleled imaging power in in vivo longitudinal analysis of biological processes at an anatomic resolution not readily achievable in murine or other systems. In this paper we introduce an optical method for simultaneous visualization and cell quantification, which combines the laser scanning confocal microscopy (LSCM) and the in vivo flow cytometry (IVFC). The system is designed specifically for non-invasive tracking of both stationary and circulating cells in adult zebrafish casper, under physiological conditions in the same fish over time. The confocal imaging part in this system serves the dual purposes of imaging fish tissue microstructure and a 3D navigation tool to locate a suitable vessel for circulating cell counting. The multi-color, multi-channel instrument allows the detection of multiple cell populations or different tissues or organs simultaneously. We demonstrate initial testing of this novel instrument by imaging vasculature and tracking circulating cells in CD41: GFP/Gata1: DsRed transgenic casper fish whose thrombocytes/erythrocytes express the green and red fluorescent proteins. Circulating fluorescent cell incidents were recorded and counted repeatedly over time and in different types of vessels. Great application opportunities in cancer and stem cell researches are discussed.

  1. Absolute 24 h quantification of 99Tcm-DMSA uptake in patients with severely reduced kidney function: a comparison with 51Cr-EDTA clearance.

    PubMed

    van de Wiele, C; van den Eeckhaut, A; Verweire, W; van Haelst, J P; Versijpt, J; Dierckx, R A

    1999-09-01

    The aim of this study was to determine whether absolute 24 h DMSA uptake measurements (%DMSA) correlate well with 51Cr-EDTA clearance measurements in patients with severely reduced kidney function (SRKF). Between 1990 and 1997, 55 of 482 patients who underwent EDTA clearance measurements also underwent %DMSA within 1 week. Of these, 31 were women and 24 were men (mean age 60 years; range 19-77 years). EDTA clearance was determined using the slope-intercept method. Absolute depth- and background-corrected %DMSA were determined 24 h following the injection of 185 MBq per 1.73 m2 freshly prepared 99Tcm-DMSA. All patients had EDTA clearance < or = 60 ml.min-1. Eighteen patients (group A: 9 men and 9 women, mean age 55.8 years, range 28-73 years) had EDTA clearance > 20 ml.min-1 (mean +/- S.D. = 30.9 +/- 13.8 ml.min-1), whereas 37 patients (group B: 22 women and 15 men, mean age 62.0 years, range 19-77 years) had EDTA clearance < 20 ml.min-1 (mean +/- S.D. = 10.2 +/- 6.6 ml.min-1). EDTA clearance correlated well with %DMSA for the patients as a whole and for group A (r = 0.87, P = 0.73; r = 0.79, P = 0.0001 respectively). The regression equation suggests that %DMSA is not a marker of early renal dysfunction. In group B, the r-value (r = 0.48, P = 0.004) suggests that %DMSA is reliable as a marker of severe renal dysfunction to the extent that it provides rough information. In conclusion, %DMSA may not be used as a marker of early renal impairment. Additionally, in patients with severely reduced kidney function (EDTA clearance < 20 ml.min-1), it only provides a rough estimate.

  2. A new method for the absolute radiance calibration for UV-vis measurements of scattered sunlight

    NASA Astrophysics Data System (ADS)

    Wagner, T.; Beirle, S.; Dörner, S.; Penning de Vries, M.; Remmers, J.; Rozanov, A.; Shaiganfar, R.

    2015-10-01

    Absolute radiometric calibrations are important for measurements of the atmospheric spectral radiance. Such measurements can be used to determine actinic fluxes, the properties of aerosols and clouds, and the shortwave energy budget. Conventional calibration methods in the laboratory are based on calibrated light sources and reflectors and are expensive, time consuming and subject to relatively large uncertainties. Also, the calibrated instruments might change during transport from the laboratory to the measurement sites. Here we present a new calibration method for UV-vis instruments that measure the spectrally resolved sky radiance, for example zenith sky differential optical absorption spectroscopy (DOAS) instruments or multi-axis (MAX)-DOAS instruments. Our method is based on the comparison of the solar zenith angle dependence of the measured zenith sky radiance with radiative transfer simulations. For the application of our method, clear-sky measurements during periods with almost constant aerosol optical depth are needed. The radiative transfer simulations have to take polarisation into account. We show that the calibration results are almost independent from the knowledge of the aerosol optical properties and surface albedo, which causes a rather small uncertainty of about < 7 %. For wavelengths below about 330 nm it is essential that the ozone column density during the measurements be constant and known.

  3. Probing carbohydrate product expulsion from a processive cellulase with multiple absolute binding free energy methods.

    PubMed

    Bu, Lintao; Beckham, Gregg T; Shirts, Michael R; Nimlos, Mark R; Adney, William S; Himmel, Michael E; Crowley, Michael F

    2011-05-20

    Understanding the enzymatic mechanism that cellulases employ to degrade cellulose is critical to efforts to efficiently utilize plant biomass as a sustainable energy resource. A key component of cellulase action on cellulose is product inhibition from monosaccharide and disaccharides in the product site of cellulase tunnel. The absolute binding free energy of cellobiose and glucose to the product site of the catalytic tunnel of the Family 7 cellobiohydrolase (Cel7A) of Trichoderma reesei (Hypocrea jecorina) was calculated using two different approaches: steered molecular dynamics (SMD) simulations and alchemical free energy perturbation molecular dynamics (FEP/MD) simulations. For the SMD approach, three methods based on Jarzynski's equality were used to construct the potential of mean force from multiple pulling trajectories. The calculated binding free energies, -14.4 kcal/mol using SMD and -11.2 kcal/mol using FEP/MD, are in good qualitative agreement. Analysis of the SMD pulling trajectories suggests that several protein residues (Arg-251, Asp-259, Asp-262, Trp-376, and Tyr-381) play key roles in cellobiose and glucose binding to the catalytic tunnel. Five mutations (R251A, D259A, D262A, W376A, and Y381A) were made computationally to measure the changes in free energy during the product expulsion process. The absolute binding free energies of cellobiose to the catalytic tunnel of these five mutants are -13.1, -6.0, -11.5, -7.5, and -8.8 kcal/mol, respectively. The results demonstrated that all of the mutants tested can lower the binding free energy of cellobiose, which provides potential applications in engineering the enzyme to accelerate the product expulsion process and improve the efficiency of biomass conversion. PMID:21454590

  4. Probing Carbohydrate Product Expulsion from a Processive Cellulase with Multiple Absolute Binding Free Energy Methods*

    PubMed Central

    Bu, Lintao; Beckham, Gregg T.; Shirts, Michael R.; Nimlos, Mark R.; Adney, William S.; Himmel, Michael E.; Crowley, Michael F.

    2011-01-01

    Understanding the enzymatic mechanism that cellulases employ to degrade cellulose is critical to efforts to efficiently utilize plant biomass as a sustainable energy resource. A key component of cellulase action on cellulose is product inhibition from monosaccharide and disaccharides in the product site of cellulase tunnel. The absolute binding free energy of cellobiose and glucose to the product site of the catalytic tunnel of the Family 7 cellobiohydrolase (Cel7A) of Trichoderma reesei (Hypocrea jecorina) was calculated using two different approaches: steered molecular dynamics (SMD) simulations and alchemical free energy perturbation molecular dynamics (FEP/MD) simulations. For the SMD approach, three methods based on Jarzynski's equality were used to construct the potential of mean force from multiple pulling trajectories. The calculated binding free energies, −14.4 kcal/mol using SMD and −11.2 kcal/mol using FEP/MD, are in good qualitative agreement. Analysis of the SMD pulling trajectories suggests that several protein residues (Arg-251, Asp-259, Asp-262, Trp-376, and Tyr-381) play key roles in cellobiose and glucose binding to the catalytic tunnel. Five mutations (R251A, D259A, D262A, W376A, and Y381A) were made computationally to measure the changes in free energy during the product expulsion process. The absolute binding free energies of cellobiose to the catalytic tunnel of these five mutants are −13.1, −6.0, −11.5, −7.5, and −8.8 kcal/mol, respectively. The results demonstrated that all of the mutants tested can lower the binding free energy of cellobiose, which provides potential applications in engineering the enzyme to accelerate the product expulsion process and improve the efficiency of biomass conversion. PMID:21454590

  5. A Simplified Confinement Method (SCM) for Calculating Absolute Free Energies and Free Energy and Entropy Differences

    PubMed Central

    Ovchinnikov, Victor; Cecchini, Marco; Karplus, Martin

    2013-01-01

    A simple and robust formulation of the path-independent confinement method for the calculation of free energies is presented. The simplified confinement method (SCM) does not require matrix diagonalization or switching off the molecular force field, and has a simple convergence criterion. The method can be readily implemented in molecular dynamics programs with minimal or no code modifications. Because the confinement method is a special case of thermodynamic integration, it is trivially parallel over the integration variable. The accuracy of the method is demonstrated using a model diatomic molecule, for which exact results can be computed analytically. The method is then applied to the alanine dipeptide in vacuum, and to the α-helix ↔ β-sheet transition in a sixteen-residue peptide modeled in implicit solvent. The SCM requires less effort for the calculation of free energy differences than previous formulations because it does not require computing normal modes. The SCM has a diminished advantage for determining absolute free energy values, because it requires decreasing the MD integration step to obtain accurate results. An approximate confinement procedure is introduced, which can be used to estimate directly the configurational entropy difference between two macrostates, without the need for additional computation of the difference in the free energy or enthalpy. The approximation has similar convergence properties as the standard confinement method for the calculation of free energies. The use of the approximation requires about five times less wall-clock simulation time than that needed to compute enthalpy differences to similar precision from an MD trajectory. For the biomolecular systems considered in this study, the errors in the entropy approximation are under 10%. The approximation will therefore be most useful for cases in which the dominant source of error is insufficient sampling in the estimation of enthalpies, as arises in simulations of large

  6. [Calculation method of absolute quantum yields in photocatalytic slurry reactor based on cylindrical light].

    PubMed

    Shen, Xun-wei; Yuan, Chun-wei

    2005-01-01

    Heterogeneous photocatalysis in slurry reactors have the particular characteristic that the catalyst particles not only absorb but also scatter photons so the radiation scattering can not be neglected. However, it is very difficult in mathematics to obtain the rigorous solution of the radiative transfer equation. Consequently present methods, in which the apparent quantum yields can be calculated by employing the incident radiation intensity, always underestimate quantum yields calculations. In this paper, a method is developed to produce absolute values of photocatalytic quantum yields in slurry reactor based on cylindrical UV light source. In a typical laboratory reactor (diameter equal to 5.6 cm and length equal to 10 cm) the values for the photocatalytic degradation of phenol are reported under precisely defined conditions. The true value of the local volumetric rate of photon absorption (LVRPA) can be obtained. It was shown that apparent quantum yields differ from true quantum yields 7.08% and that for the same geometric arrangement, vanishing fraction accounts for 1.1% of the incident radiation. The method can be used to compare reactivity of different catalysts or, for a given catalyst, reactivity with different model compounds and as a principle to design a reactor.

  7. Optical methods for the quantification of the fibrillation degree of bleached MFC materials.

    PubMed

    Chinga-Carrasco, Gary

    2013-05-01

    In this study, the suitability of optical devices for quantification of the fibrillation degree of bleached microfibrillated cellulose (MFC) materials has been assessed. The techniques for optical assessment include optical scanner, UV-vis spectrophotometry, turbidity, quantification of the fiber fraction and a camera system for dynamic measurements. The results show that the assessed optical devices are most adequate for quantification of the light transmittance of bleached MFC materials. Such quantification yields an estimation of the fibrillation degree. Films made of poorly fibrillated materials are opaque, while films made of highly fibrillated materials containing a major fraction of nanofibrils are translucent, with light transmittance larger than 90%. Finally, the concept of using images acquired with a CCD camera system, for estimating the fibrillation degree in dynamic conditions was exemplified. Such systems are most interesting as this will widen the applicability of optical methods for quantification of fibrillation degree online in production lines, which is expected to appear in the years to come.

  8. Methods for external event screening quantification: Risk Methods Integration and Evaluation Program (RMIEP) methods development

    SciTech Connect

    Ravindra, M.K.; Banon, H. )

    1992-07-01

    In this report, the scoping quantification procedures for external events in probabilistic risk assessments of nuclear power plants are described. External event analysis in a PRA has three important goals; (1) the analysis should be complete in that all events are considered; (2) by following some selected screening criteria, the more significant events are identified for detailed analysis; (3) the selected events are analyzed in depth by taking into account the unique features of the events: hazard, fragility of structures and equipment, external-event initiated accident sequences, etc. Based on the above goals, external event analysis may be considered as a three-stage process: Stage I: Identification and Initial Screening of External Events; Stage II: Bounding Analysis; Stage III: Detailed Risk Analysis. In the present report, first, a review of published PRAs is given to focus on the significance and treatment of external events in full-scope PRAs. Except for seismic, flooding, fire, and extreme wind events, the contributions of other external events to plant risk have been found to be negligible. Second, scoping methods for external events not covered in detail in the NRC's PRA Procedures Guide are provided. For this purpose, bounding analyses for transportation accidents, extreme winds and tornadoes, aircraft impacts, turbine missiles, and chemical release are described.

  9. Methods for external event screening quantification: Risk Methods Integration and Evaluation Program (RMIEP) methods development

    SciTech Connect

    Ravindra, M.K.; Banon, H.

    1992-07-01

    In this report, the scoping quantification procedures for external events in probabilistic risk assessments of nuclear power plants are described. External event analysis in a PRA has three important goals; (1) the analysis should be complete in that all events are considered; (2) by following some selected screening criteria, the more significant events are identified for detailed analysis; (3) the selected events are analyzed in depth by taking into account the unique features of the events: hazard, fragility of structures and equipment, external-event initiated accident sequences, etc. Based on the above goals, external event analysis may be considered as a three-stage process: Stage I: Identification and Initial Screening of External Events; Stage II: Bounding Analysis; Stage III: Detailed Risk Analysis. In the present report, first, a review of published PRAs is given to focus on the significance and treatment of external events in full-scope PRAs. Except for seismic, flooding, fire, and extreme wind events, the contributions of other external events to plant risk have been found to be negligible. Second, scoping methods for external events not covered in detail in the NRC`s PRA Procedures Guide are provided. For this purpose, bounding analyses for transportation accidents, extreme winds and tornadoes, aircraft impacts, turbine missiles, and chemical release are described.

  10. Tsunakawa-Shaw method - an absolute paleointensity technique using alternating field demagnetization

    NASA Astrophysics Data System (ADS)

    Yamamoto, Y.; Mochizuki, N.; Shibuya, H.; Tsunakawa, H.

    2015-12-01

    Among geologic materials volcanic rocks have been typically used to deduce an absolute paleointensity. In the last decade, however, there seems a becoming consensus that volcanic rocks are not so ideal materials due to such as magnetic grains other than non-interacting single domain particles. One approach to obtain a good paleointensity estimate from the rocks is to reduce and correct the non-ideality, suppress alterations in laboratory and screen out suspicious results. We have been working on a development and an application of the Tsunakawa-Shaw method, which has been previously called the LTD-DHT Shaw method. This method is an AF(alternating field)-based technique and thus a paleointensity is estimated using coercivity spectra. To reduce the non-ideality, all remanences undergo low-temperature demagnetization (LTD) before any AF demagnetizations to remove multi-domain like component. To correct the non-ideality, anhysteretic remanent magnetizations (ARMs) are imparted with their directions parallel to natural remanent magnetizations and laboratory-imparted thermoremanent magnetizations (TRMs) and measured before and after laboratory heating. These ARMs are used to correct remanence anisotropies, possible interaction effects originated from the non-ideal grains and TRM changes caused by laboratory alterations. TRMs are imparted by heating specimens above their Curie temperatures and then cooling to room temperature at once to simulate nature conditions. These cycles are done in vacuum to suppress alterations in laboratory. Obtained results are judged by selection criteria, including a check for validity of the ARM corrections.It has been demonstrated that successful paleointensities are obtained from historical lavas in Japan and Hawaii, and from baked clay samples from a reconstructed ancient kiln, with the flow-mean precision of 5-10%. In case of old volcanic rocks, however, the method does not necessarily seem to be perfect. We will summarize these points in

  11. ID-SERS Based Reference Method for Quantification of Large Biomolecules on a Single Chip

    SciTech Connect

    Yaghobian, Fatemeh; Stosch, Rainer; Henrion, Andre; Guettler, Bernd

    2010-08-06

    Accuracy and precision of quantitative SERS results have been significantly increased by applying a method based on the so-called isotope-dilution (ID) principle. In this ID-SERS approach, an isotopically labeled analogue of the target molecule (isotopologue) is spiked to the sample at a known concentration. Due to the slight difference in their molar masses, some Raman bands of the heavier isotopologue are red-shifted with respect to the same signals resulting from the unlabelled compound. As a result, spectra evaluation is reduced to the determination of intensity ratios rather than absolute intensities, and the unknown quantity of the analyte can be calculated from the known quantity of the standard. This procedure is of particular interest in the development of highly accurate reference procedures for metrology in chemistry. Because the sample is spiked prior to any further treatment, potential loss of material or matrix effects would equally affect both isotopologues, without influencing the final result. The method has been successfully applied for quantifying small diagnostic marker molecules like creatinine at their relevant serum concentration levels using silver colloids as SERS substrates. Now, the ID-SERS approach has been realized as a 'one-chip' approach using 'Bio-chips' made of intrinsically grown spherical silver nanoparticles with gaps less than 10 nm in between (Fig. 1). In addition, the scope of the method has been extended to larger biomolecules like peptides which will be shown using the example of the human growth-hormone (hGH) peptide T12 at physiologically relevant serum concentration levels (Fig. 2). Further developments towards the quantification of full proteins will also be reported.

  12. ID-SERS Based Reference Method for Quantification of Large Biomolecules on a Single Chip

    NASA Astrophysics Data System (ADS)

    Yaghobian, Fatemeh; Stosch, Rainer; Henrion, André; Güttler, Bernd

    2010-08-01

    Accuracy and precision of quantitative SERS results have been significantly increased by applying a method based on the so-called isotope-dilution (ID) principle. In this ID-SERS approach, an isotopically labeled analogue of the target molecule (isotopologue) is spiked to the sample at a known concentration. Due to the slight difference in their molar masses, some Raman bands of the heavier isotopologue are red-shifted with respect to the same signals resulting from the unlabelled compound. As a result, spectra evaluation is reduced to the determination of intensity ratios rather than absolute intensities, and the unknown quantity of the analyte can be calculated from the known quantity of the standard. This procedure is of particular interest in the development of highly accurate reference procedures for metrology in chemistry. Because the sample is spiked prior to any further treatment, potential loss of material or matrix effects would equally affect both isotopologues, without influencing the final result. The method has been successfully applied for quantifying small diagnostic marker molecules like creatinine at their relevant serum concentration levels using silver colloids as SERS substrates. Now, the ID-SERS approach has been realized as a "one-chip" approach using "Bio-chips" made of intrinsically grown spherical silver nanoparticles with gaps less than 10 nm in between (Fig. 1). In addition, the scope of the method has been extended to larger biomolecules like peptides which will be shown using the example of the human growth-hormone (hGH) peptide T12 at physiologically relevant serum concentration levels (Fig. 2). Further developments towards the quantification of full proteins will also be reported.

  13. Absolute calibration method for nanosecond-resolved, time-streaked, fiber optic light collection, spectroscopy systems

    NASA Astrophysics Data System (ADS)

    Johnston, Mark D.; Oliver, Bryan V.; Droemer, Darryl W.; Frogget, Brent; Crain, Marlon D.; Maron, Yitzhak

    2012-08-01

    This paper describes a convenient and accurate method to calibrate fast (<1 ns resolution) streaked, fiber optic light collection, spectroscopy systems. Such systems are inherently difficult to calibrate due to the lack of sufficiently intense, calibrated light sources. Such a system is used to collect spectral data on plasmas generated in electron beam diodes fielded on the RITS-6 accelerator (8-12MV, 140-200kA) at Sandia National Laboratories. On RITS, plasma light is collected through a small diameter (200 μm) optical fiber and recorded on a fast streak camera at the output of a 1 meter Czerny-Turner monochromator. For this paper, a 300 W xenon short arc lamp (Oriel Model 6258) was used as the calibration source. Since the radiance of the xenon arc varies from cathode to anode, just the area around the tip of the cathode ("hotspot") was imaged onto the fiber, to produce the highest intensity output. To compensate for chromatic aberrations, the signal was optimized at each wavelength measured. Output power was measured using 10 nm bandpass interference filters and a calibrated photodetector. These measurements give power at discrete wavelengths across the spectrum, and when linearly interpolated, provide a calibration curve for the lamp. The shape of the spectrum is determined by the collective response of the optics, monochromator, and streak tube across the spectral region of interest. The ratio of the spectral curve to the measured bandpass filter curve at each wavelength produces a correction factor (Q) curve. This curve is then applied to the experimental data and the resultant spectra are given in absolute intensity units (photons/sec/cm2/steradian/nm). Error analysis shows this method to be accurate to within +/- 20%, which represents a high level of accuracy for this type of measurement.

  14. Absolute calibration method for nanosecond-resolved, time-streaked, fiber optic light collection, spectroscopy systems.

    PubMed

    Johnston, Mark D; Oliver, Bryan V; Droemer, Darryl W; Frogget, Brent; Crain, Marlon D; Maron, Yitzhak

    2012-08-01

    This paper describes a convenient and accurate method to calibrate fast (<1 ns resolution) streaked, fiber optic light collection, spectroscopy systems. Such systems are inherently difficult to calibrate due to the lack of sufficiently intense, calibrated light sources. Such a system is used to collect spectral data on plasmas generated in electron beam diodes fielded on the RITS-6 accelerator (8-12MV, 140-200kA) at Sandia National Laboratories. On RITS, plasma light is collected through a small diameter (200 μm) optical fiber and recorded on a fast streak camera at the output of a 1 meter Czerny-Turner monochromator. For this paper, a 300 W xenon short arc lamp (Oriel Model 6258) was used as the calibration source. Since the radiance of the xenon arc varies from cathode to anode, just the area around the tip of the cathode ("hotspot") was imaged onto the fiber, to produce the highest intensity output. To compensate for chromatic aberrations, the signal was optimized at each wavelength measured. Output power was measured using 10 nm bandpass interference filters and a calibrated photodetector. These measurements give power at discrete wavelengths across the spectrum, and when linearly interpolated, provide a calibration curve for the lamp. The shape of the spectrum is determined by the collective response of the optics, monochromator, and streak tube across the spectral region of interest. The ratio of the spectral curve to the measured bandpass filter curve at each wavelength produces a correction factor (Q) curve. This curve is then applied to the experimental data and the resultant spectra are given in absolute intensity units (photons/sec/cm(2)/steradian/nm). Error analysis shows this method to be accurate to within +∕- 20%, which represents a high level of accuracy for this type of measurement. PMID:22938275

  15. Prospective Comparison of Liver Stiffness Measurements between Two Point Shear Wave Elastography Methods: Virtual Touch Quantification and Elastography Point Quantification

    PubMed Central

    Yoo, Hyunsuk; Yoon, Jeong Hee; Lee, Dong Ho; Chang, Won; Han, Joon Koo

    2016-01-01

    Objective To prospectively compare technical success rate and reliable measurements of virtual touch quantification (VTQ) elastography and elastography point quantification (ElastPQ), and to correlate liver stiffness (LS) measurements obtained by the two elastography techniques. Materials and Methods Our study included 85 patients, 80 of whom were previously diagnosed with chronic liver disease. The technical success rate and reliable measurements of the two kinds of point shear wave elastography (pSWE) techniques were compared by χ2 analysis. LS values measured using the two techniques were compared and correlated via Wilcoxon signed-rank test, Spearman correlation coefficient, and 95% Bland-Altman limit of agreement. The intraobserver reproducibility of ElastPQ was determined by 95% Bland-Altman limit of agreement and intraclass correlation coefficient (ICC). Results The two pSWE techniques showed similar technical success rate (98.8% for VTQ vs. 95.3% for ElastPQ, p = 0.823) and reliable LS measurements (95.3% for VTQ vs. 90.6% for ElastPQ, p = 0.509). The mean LS measurements obtained by VTQ (1.71 ± 0.47 m/s) and ElastPQ (1.66 ± 0.41 m/s) were not significantly different (p = 0.209). The LS measurements obtained by the two techniques showed strong correlation (r = 0.820); in addition, the 95% limit of agreement of the two methods was 27.5% of the mean. Finally, the ICC of repeat ElastPQ measurements was 0.991. Conclusion Virtual touch quantification and ElastPQ showed similar technical success rate and reliable measurements, with strongly correlated LS measurements. However, the two methods are not interchangeable due to the large limit of agreement. PMID:27587964

  16. Method for Indirect Quantification of CH4 Production via H2O Production Using Hydrogenotrophic Methanogens.

    PubMed

    Taubner, Ruth-Sophie; Rittmann, Simon K-M R

    2016-01-01

    Hydrogenotrophic methanogens are an intriguing group of microorganisms from the domain Archaea. Methanogens exhibit extraordinary ecological, biochemical, and physiological characteristics and possess a huge biotechnological potential. Yet, the only possibility to assess the methane (CH4) production potential of hydrogenotrophic methanogens is to apply gas chromatographic quantification of CH4. In order to be able to effectively screen pure cultures of hydrogenotrophic methanogens regarding their CH4 production potential we developed a novel method for indirect quantification of the volumetric CH4 production rate by measuring the volumetric water production rate. This method was established in serum bottles for cultivation of methanogens in closed batch cultivation mode. Water production was estimated by determining the difference in mass increase in a quasi-isobaric setting. This novel CH4 quantification method is an accurate and precise analytical technique, which can be used to rapidly screen pure cultures of methanogens regarding their volumetric CH4 evolution rate. It is a cost effective alternative determining CH4 production of methanogens over CH4 quantification by using gas chromatography, especially if applied as a high throughput quantification method. Eventually, the method can be universally applied for quantification of CH4 production from psychrophilic, thermophilic and hyperthermophilic hydrogenotrophic methanogens. PMID:27199898

  17. Method for Indirect Quantification of CH4 Production via H2O Production Using Hydrogenotrophic Methanogens

    PubMed Central

    Taubner, Ruth-Sophie; Rittmann, Simon K.-M. R.

    2016-01-01

    Hydrogenotrophic methanogens are an intriguing group of microorganisms from the domain Archaea. Methanogens exhibit extraordinary ecological, biochemical, and physiological characteristics and possess a huge biotechnological potential. Yet, the only possibility to assess the methane (CH4) production potential of hydrogenotrophic methanogens is to apply gas chromatographic quantification of CH4. In order to be able to effectively screen pure cultures of hydrogenotrophic methanogens regarding their CH4 production potential we developed a novel method for indirect quantification of the volumetric CH4 production rate by measuring the volumetric water production rate. This method was established in serum bottles for cultivation of methanogens in closed batch cultivation mode. Water production was estimated by determining the difference in mass increase in a quasi-isobaric setting. This novel CH4 quantification method is an accurate and precise analytical technique, which can be used to rapidly screen pure cultures of methanogens regarding their volumetric CH4 evolution rate. It is a cost effective alternative determining CH4 production of methanogens over CH4 quantification by using gas chromatography, especially if applied as a high throughput quantification method. Eventually, the method can be universally applied for quantification of CH4 production from psychrophilic, thermophilic and hyperthermophilic hydrogenotrophic methanogens. PMID:27199898

  18. AN ACCURATE NEW METHOD OF CALCULATING ABSOLUTE MAGNITUDES AND K-CORRECTIONS APPLIED TO THE SLOAN FILTER SET

    SciTech Connect

    Beare, Richard; Brown, Michael J. I.; Pimbblet, Kevin

    2014-12-20

    We describe an accurate new method for determining absolute magnitudes, and hence also K-corrections, that is simpler than most previous methods, being based on a quadratic function of just one suitably chosen observed color. The method relies on the extensive and accurate new set of 129 empirical galaxy template spectral energy distributions from Brown et al. A key advantage of our method is that we can reliably estimate random errors in computed absolute magnitudes due to galaxy diversity, photometric error and redshift error. We derive K-corrections for the five Sloan Digital Sky Survey filters and provide parameter tables for use by the astronomical community. Using the New York Value-Added Galaxy Catalog, we compare our K-corrections with those from kcorrect. Our K-corrections produce absolute magnitudes that are generally in good agreement with kcorrect. Absolute griz magnitudes differ by less than 0.02 mag and those in the u band by ∼0.04 mag. The evolution of rest-frame colors as a function of redshift is better behaved using our method, with relatively few galaxies being assigned anomalously red colors and a tight red sequence being observed across the whole 0.0 < z < 0.5 redshift range.

  19. A new objective method for acquisition and quantification of reflex receptive fields.

    PubMed

    Jensen, Michael Brun; Manresa, José Biurrun; Andersen, Ole Kæseler

    2015-03-01

    The nociceptive withdrawal reflex (NWR) is a polysynaptic spinal reflex correlated with pain perception. Assessment of this objective physiological measure constitutes the core of existing methods for quantification of reflex receptive fields (RRFs), which however still suffer from a certain degree of subjective involvement. This article proposes a strictly objective methodology for RRF quantification based on automated identification of NWR thresholds (NWR-Ts). Nociceptive withdrawal reflex thresholds were determined for 10 individual stimulation sites using an interleaved up-down staircase method. Reflexes were detected from electromyography by evaluation of interval peak z scores and application of conduction velocity analysis. Reflex receptive field areas were quantified from interpolated mappings of NWR-Ts and compared with existing RRF quantifications. A total of 3 repeated measures were performed in 2 different sessions to evaluate the test-retest reliability of the various quantifications, using coefficients of repeatability (CRs) and hypothetical sample sizes. The novel quantifications based on identification of NWR-Ts showed a similar level of reliability within and between sessions, whereas existing quantifications all demonstrated worse between-session than within-session reliability. The NWR-T-based quantifications required a smaller sample size than any of the existing RRF measures to detect a clinically relevant effect in a crossover study design involving more than 1 session. Of all measures, quantification from mapping of inversed NWR-Ts demonstrated superior reliability both within (CR, 0.25) and between sessions (CR, 0.28). The study presents a more reliable and robust quantification of the RRF to be used as biomarker of pain hypersensitivity in clinical and experimental research.

  20. Selected methods for quantification of community exposure to aircraft noise

    NASA Technical Reports Server (NTRS)

    Edge, P. M., Jr.; Cawthorn, J. M.

    1976-01-01

    A review of the state-of-the-art for the quantification of community exposure to aircraft noise is presented. Physical aspects, people response considerations, and practicalities of useful application of scales of measure are included. Historical background up through the current technology is briefly presented. The developments of both single-event and multiple-event scales are covered. Selective choice is made of scales currently in the forefront of interest and recommended methodology is presented for use in computer programing to translate aircraft noise data into predictions of community noise exposure. Brief consideration is given to future programing developments and to supportive research needs.

  1. A Concurrent Mixed Methods Approach to Examining the Quantitative and Qualitative Meaningfulness of Absolute Magnitude Estimation Scales in Survey Research

    ERIC Educational Resources Information Center

    Koskey, Kristin L. K.; Stewart, Victoria C.

    2014-01-01

    This small "n" observational study used a concurrent mixed methods approach to address a void in the literature with regard to the qualitative meaningfulness of the data yielded by absolute magnitude estimation scaling (MES) used to rate subjective stimuli. We investigated whether respondents' scales progressed from less to more and…

  2. The performance of different propensity score methods for estimating absolute effects of treatments on survival outcomes: A simulation study

    PubMed Central

    Schuster, Tibor

    2014-01-01

    Observational studies are increasingly being used to estimate the effect of treatments, interventions and exposures on outcomes that can occur over time. Historically, the hazard ratio, which is a relative measure of effect, has been reported. However, medical decision making is best informed when both relative and absolute measures of effect are reported. When outcomes are time-to-event in nature, the effect of treatment can also be quantified as the change in mean or median survival time due to treatment and the absolute reduction in the probability of the occurrence of an event within a specified duration of follow-up. We describe how three different propensity score methods, propensity score matching, stratification on the propensity score and inverse probability of treatment weighting using the propensity score, can be used to estimate absolute measures of treatment effect on survival outcomes. These methods are all based on estimating marginal survival functions under treatment and lack of treatment. We then conducted an extensive series of Monte Carlo simulations to compare the relative performance of these methods for estimating the absolute effects of treatment on survival outcomes. We found that stratification on the propensity score resulted in the greatest bias. Caliper matching on the propensity score and a method based on earlier work by Cole and Hernán tended to have the best performance for estimating absolute effects of treatment on survival outcomes. When the prevalence of treatment was less extreme, then inverse probability of treatment weighting-based methods tended to perform better than matching-based methods. PMID:24463885

  3. A new formalism for the quantification of tissue perfusion by the destruction-replenishment method in contrast ultrasound imaging.

    PubMed

    Arditi, Marcel; Frinking, Peter J A; Zhou, Xiang; Rognin, Nicolas G

    2006-06-01

    A new formalism is presented for the destruction-replenishment perfusion quantification approach at low mechanical index. On the basis of physical considerations, best-fit methods should be applied using perfusion functions with S-shape characteristics. These functions are first described for the case of a geometry with a single flow velocity, then extended to the case of vascular beds with blood vessels having multiple flow velocity values and directions. The principles guiding the analysis are, on one hand, a linearization of video echo signals to overcome the log-compression of the imaging instrument, and, on the other hand, the spatial distribution of the transmit-receive ultrasound beam in the elevation direction. An in vitro model also is described; it was used to confirm experimentally the validity of the approach using a commercial contrast agent. The approach was implemented in the form of a computer program, taking as input a sequence of contrast-specific images, as well as parameters related to the ultrasound imaging equipment used. The generated output is either flow-parameter values computed in regions-of-interest, or parametric flow-images (e.g., mean velocity, mean transit time, mean flow, flow variance, or skewness). This approach thus establishes a base for extracting information about the morphology of vascular beds in vivo, and could allow absolute quantification provided that appropriate instrument calibration is implemented. PMID:16846144

  4. The realization of the dipole (γ, γ) method and its application to determine the absolute optical oscillator strengths of helium

    NASA Astrophysics Data System (ADS)

    Xu, Long-Quan; Liu, Ya-Wei; Kang, Xu; Ni, Dong-Dong; Yang, Ke; Hiraoka, Nozomu; Tsuei, Ku-Ding; Zhu, Lin-Fan

    2015-12-01

    The dipole (γ, γ) method, which is the inelastic x-ray scattering operated at a negligibly small momentum transfer, is proposed and realized to determine the absolute optical oscillator strengths of the vanlence-shell excitations of atoms and molecules. Compared with the conventionally used photoabsorption method, this new method is free from the line saturation effect, which can seriously limit the accuracies of the measured photoabsorption cross sections for discrete transitions with narrow natural linewidths. Furthermore, the Bethe-Born conversion factor of the dipole (γ, γ) method varies much more slowly with the excitation energy than does that of the dipole (e, e) method. Absolute optical oscillator strengths for the excitations of 1s2 → 1 snp(n = 3 - 7) of atomic helium have been determined using the high-resolution dipole (γ, γ) method, and the excellent agreement of the present measurements with both those measured by the dipole (e, e) method and the previous theoretical calculations indicates that the dipole (γ, γ) method is a powerful tool to measure the absolute optical oscillator strengths of the valence-shell excitations of atoms and molecules.

  5. The realization of the dipole (γ, γ) method and its application to determine the absolute optical oscillator strengths of helium.

    PubMed

    Xu, Long-Quan; Liu, Ya-Wei; Kang, Xu; Ni, Dong-Dong; Yang, Ke; Hiraoka, Nozomu; Tsuei, Ku-Ding; Zhu, Lin-Fan

    2015-01-01

    The dipole (γ, γ) method, which is the inelastic x-ray scattering operated at a negligibly small momentum transfer, is proposed and realized to determine the absolute optical oscillator strengths of the vanlence-shell excitations of atoms and molecules. Compared with the conventionally used photoabsorption method, this new method is free from the line saturation effect, which can seriously limit the accuracies of the measured photoabsorption cross sections for discrete transitions with narrow natural linewidths. Furthermore, the Bethe-Born conversion factor of the dipole (γ, γ) method varies much more slowly with the excitation energy than does that of the dipole (e, e) method. Absolute optical oscillator strengths for the excitations of 1s(2) → 1 snp(n = 3-7) of atomic helium have been determined using the high-resolution dipole (γ, γ) method, and the excellent agreement of the present measurements with both those measured by the dipole (e, e) method and the previous theoretical calculations indicates that the dipole (γ, γ) method is a powerful tool to measure the absolute optical oscillator strengths of the valence-shell excitations of atoms and molecules.

  6. The realization of the dipole (γ, γ) method and its application to determine the absolute optical oscillator strengths of helium

    PubMed Central

    Xu, Long-Quan; Liu, Ya-Wei; Kang, Xu; Ni, Dong-Dong; Yang, Ke; Hiraoka, Nozomu; Tsuei, Ku-Ding; Zhu, Lin-Fan

    2015-01-01

    The dipole (γ, γ) method, which is the inelastic x-ray scattering operated at a negligibly small momentum transfer, is proposed and realized to determine the absolute optical oscillator strengths of the vanlence-shell excitations of atoms and molecules. Compared with the conventionally used photoabsorption method, this new method is free from the line saturation effect, which can seriously limit the accuracies of the measured photoabsorption cross sections for discrete transitions with narrow natural linewidths. Furthermore, the Bethe-Born conversion factor of the dipole (γ, γ) method varies much more slowly with the excitation energy than does that of the dipole (e, e) method. Absolute optical oscillator strengths for the excitations of 1s2 → 1 snp(n = 3 − 7) of atomic helium have been determined using the high-resolution dipole (γ, γ) method, and the excellent agreement of the present measurements with both those measured by the dipole (e, e) method and the previous theoretical calculations indicates that the dipole (γ, γ) method is a powerful tool to measure the absolute optical oscillator strengths of the valence-shell excitations of atoms and molecules. PMID:26678298

  7. The realization of the dipole (γ, γ) method and its application to determine the absolute optical oscillator strengths of helium.

    PubMed

    Xu, Long-Quan; Liu, Ya-Wei; Kang, Xu; Ni, Dong-Dong; Yang, Ke; Hiraoka, Nozomu; Tsuei, Ku-Ding; Zhu, Lin-Fan

    2015-01-01

    The dipole (γ, γ) method, which is the inelastic x-ray scattering operated at a negligibly small momentum transfer, is proposed and realized to determine the absolute optical oscillator strengths of the vanlence-shell excitations of atoms and molecules. Compared with the conventionally used photoabsorption method, this new method is free from the line saturation effect, which can seriously limit the accuracies of the measured photoabsorption cross sections for discrete transitions with narrow natural linewidths. Furthermore, the Bethe-Born conversion factor of the dipole (γ, γ) method varies much more slowly with the excitation energy than does that of the dipole (e, e) method. Absolute optical oscillator strengths for the excitations of 1s(2) → 1 snp(n = 3-7) of atomic helium have been determined using the high-resolution dipole (γ, γ) method, and the excellent agreement of the present measurements with both those measured by the dipole (e, e) method and the previous theoretical calculations indicates that the dipole (γ, γ) method is a powerful tool to measure the absolute optical oscillator strengths of the valence-shell excitations of atoms and molecules. PMID:26678298

  8. Determination of absolute configuration using heavy atom based co-crystallization method: Halogen atom effects

    NASA Astrophysics Data System (ADS)

    Wang, Jian-Rong; Fan, Xiaowu; Ding, Qiaoce; Mei, Xuefeng

    2016-09-01

    Heavy atom (chloride, bromide, and iodide) based co-crystals for determination of absolute configuration (AC) for chiral molecules were synthesized and evaluated. Co-crystals of cholestanol and L-ascorbic acid were analysed and the effects and potential benefits of varying the heavy atom are discussed. Changing the halogen atoms (chloride, bromide, or iodide) affects the co-crystal formation, X-ray absorption, and anomalous dispersion, and hence the ability to determine AC.

  9. A high throughout semi-quantification method for screening organic contaminants in river sediments.

    PubMed

    Bu, Qingwei; Wang, Donghong; Liu, Xin; Wang, Zijian

    2014-10-01

    A high throughout semi-quantification method for screening nearly 900 organic contaminants (OCs) in river sediments has been developed. For most OCs tested, concentrations calculated from the proposed semi-quantification method deviated from actual values by a factor of 4. The overall recovery tests indicated that most OCs can be successfully extracted from sediments with recovery rates from 84.1 to 128.6%. To demonstrate the effectiveness of our method towards OC quantification, we screened OCs from sediments collected from the Haihe River basin. Seventy unregulated OCs (including pesticides, flame retardants, PPCPs, etc.) were identified and quantified at concentrations up to 2600 ng/g from 24 sediment samples. From these results, it is confirmed that the developed method is a useful way to fulfill a comprehensive analysis of OCs in sediments and would be valuable for the identification and prioritization of priority pollutants in watershed management.

  10. Comparison of two methods for estimating absolute risk of prostate cancer based on SNPs and family history

    PubMed Central

    Hsu, Fang-Chi; Sun, Jielin; Zhu, Yi; Kim, Seong-Tae; Jin, Tao; Zhang, Zheng; Wiklund, Fredrik; Kader, A. Karim; Zheng, S. Lilly; Isaacs, William; Grönberg, Henrik; Xu, Jianfeng

    2010-01-01

    Disease risk-associated single nucleotide polymorphisms (SNPs) identified from genome-wide association studies have the potential to be used for disease risk prediction. An important feature of these risk-associated SNPs is their weak individual effect but stronger cumulative effect on disease risk. Several approaches are commonly used to model the combined effect in risk prediction but their performance is unclear. We compared two methods to model the combined effect of 14 prostate cancer (PCa) risk-associated SNPs and family history for the estimation of absolute risk for PCa in a population-based case-control study in Sweden (2,899 cases and 1,722 controls). Method 1 weighs each risk allele equally using a simple method of counting the number of risk alleles while Method 2 weighs each risk SNP differently based on their respective Odds Ratios. We found considerable differences between the two methods. Absolute risk estimates from Method 1 were generally higher than that of Method 2, especially among men at higher risk. The difference in the overall discriminative performance, measured by area under the curve (AUC) of the receiver operating characteristic was small between Method 1 (0.614) and Method 2 (0.618), P = 0.20. However, the performance of these two methods in identifying high-risk individuals (two-fold or three-fold higher than average risk), measured by positive predictive values (PPV), was higher for Method 2 than Method 1. In conclusion, these results suggest that Method 2 is superior to Method 1 in estimating absolute risk if the purpose of risk prediction is to identify high-risk individuals. PMID:20332264

  11. Direct liquid chromatography method for the simultaneous quantification of hydroxytyrosol and tyrosol in red wines.

    PubMed

    Piñeiro, Zulema; Cantos-Villar, Emma; Palma, Miguel; Puertas, Belen

    2011-11-01

    A validated HPLC method with fluorescence detection for the simultaneous quantification of hydroxytyrosol and tyrosol in red wines is described. Detection conditions for both compounds were optimized (excitation at 279 and 278 and emission at 631 and 598 nm for hydroxytyrosol and tyrosol, respectively). The validation of the analytical method was based on selectivity, linearity, robustness, detection and quantification limits, repeatability, and recovery. The detection and quantification limits in red wines were set at 0.023 and 0.076 mg L(-1) for hydroxytyrosol and at 0.007 and 0.024 mg L(-1) for tyrosol determination, respectively. Precision values, both within-day and between-day (n = 5), remained below 3% for both compounds. In addition, a fractional factorial experimental design was developed to analyze the influence of six different conditions on analysis. The final optimized HPLC-fluorescence method allowed the analysis of 30 nonpretreated Spanish red wines to evaluate their hydroxytyrosol and tyrosol contents.

  12. Antioxidant Activity and Validation of Quantification Method for Lycopene Extracted from Tomato.

    PubMed

    Cefali, Letícia Caramori; Cazedey, Edith Cristina Laignier; Souza-Moreira, Tatiana Maria; Correa, Marcos Antônio; Salgado, Hérida Regina Nunes; Isaac, Vera Lucia Borges

    2015-01-01

    Lycopene is a carotenoid found in tomatoes with potent antioxidant activity. The aim of the study was to obtain an extract containing lycopene from four types of tomatoes, validate a quantification method for the extracts by HPLC, and assess its antioxidant activity. Results revealed that the tomatoes analyzed contained lycopene and antioxidant activity. Salad tomato presented the highest concentration of this carotenoid and antioxidant activity. The quantification method exhibited linearity with a correlation coefficient of 0.9992. Tests for the assessment of precision, accuracy, and robustness achieved coefficients with variation of less than 5%. The LOD and LOQ were 0.0012 and 0.0039 μg/mL, respectively. Salad tomato can be used as a source of lycopene for the development of topical formulations, and based on performed tests, the chosen method for the identification and quantification of lycopene was considered to be linear, precise, exact, selective, and robust. PMID:26525253

  13. Critical review of current and emerging quantification methods for the development of influenza vaccine candidates.

    PubMed

    Manceur, Aziza P; Kamen, Amine A

    2015-11-01

    Significant improvements in production and purification have been achieved since the first approved influenza vaccines were administered 75 years ago. Global surveillance and fast response have limited the impact of the last pandemic in 2009. In case of another pandemic, vaccines can be generated within three weeks with certain platforms. However, our Achilles heel is at the quantification level. Production of reagents for the quantification of new vaccines using the SRID, the main method formally approved by regulatory bodies, requires two to three months. The impact of such delays can be tragic for vulnerable populations. Therefore, efforts have been directed toward developing alternative quantification methods, which are sensitive, accurate, easy to implement and independent of the availability of specific reagents. The use of newly-developed antibodies against a conserved region of hemagglutinin (HA), a surface protein of influenza, holds great promises as they are able to recognize multiple subtypes of influenza; these new antibodies could be used in immunoassays such as ELISA and slot-blot analysis. HA concentration can also be determined using reversed-phase high performance liquid chromatography (RP-HPLC), which obviates the need for antibodies but still requires a reference standard. The number of viral particles can be evaluated using ion-exchange HPLC and techniques based on flow cytometry principles, but non-viral vesicles have to be taken into account with cellular production platforms. As new production systems are optimized, new quantification methods that are adapted to the type of vaccine produced are required. The nature of these new-generation vaccines might dictate which quantification method to use. In all cases, an alternative method will have to be validated against the current SRID assay. A consensus among the scientific community would have to be reached so that the adoption of new quantification methods would be harmonized between

  14. A SIMPLE METHOD FOR THE EXTRACTION AND QUANTIFICATION OF PHOTOPIGMENTS FROM SYMBIODINIUM SPP.

    EPA Science Inventory

    John E. Rogers and Dragoslav Marcovich. Submitted. Simple Method for the Extraction and Quantification of Photopigments from Symbiodinium spp.. Limnol. Oceanogr. Methods. 19 p. (ERL,GB 1192).

    We have developed a simple, mild extraction procedure using methanol which, when...

  15. A Clinical Method for the Detection and Quantification of Quick Respiratory Hyperkinesia

    ERIC Educational Resources Information Center

    Hixon, Thomas J.; Hoit, Jeannette D.

    2006-01-01

    Purpose: Quick respiratory hyperkinesia can be difficult to detect with the naked eye. A clinical method is described for the detection and quantification of quick respiratory hyperkinesia. Method: Flow at the airway opening is sensed during spontaneous apnea (rest), voluntary breath holding (postural fixation), and voluntary volume displacement…

  16. Application of Mean of Absolute Deviation Method for the Selection of Best Nonlinear Component Based on Video Encryption

    NASA Astrophysics Data System (ADS)

    Anees, Amir; Khan, Waqar Ahmad; Gondal, Muhammad Asif; Hussain, Iqtadar

    2013-07-01

    The aim of this work is to make use of the mean of absolute deviation (MAD) method for the evaluation process of substitution boxes used in the advanced encryption standard. In this paper, we use the MAD technique to analyze some popular and prevailing substitution boxes used in encryption processes. In particular, MAD is applied to advanced encryption standard (AES), affine power affine (APA), Gray, Lui J., Residue Prime, S8 AES, SKIPJACK, and Xyi substitution boxes.

  17. Dakota uncertainty quantification methods applied to the NEK-5000 SAHEX model.

    SciTech Connect

    Weirs, V. Gregory

    2014-03-01

    This report summarizes the results of a NEAMS project focused on the use of uncertainty and sensitivity analysis methods within the NEK-5000 and Dakota software framework for assessing failure probabilities as part of probabilistic risk assessment. NEK-5000 is a software tool under development at Argonne National Laboratory to perform computational fluid dynamics calculations for applications such as thermohydraulics of nuclear reactor cores. Dakota is a software tool developed at Sandia National Laboratories containing optimization, sensitivity analysis, and uncertainty quantification algorithms. The goal of this work is to demonstrate the use of uncertainty quantification methods in Dakota with NEK-5000.

  18. Absolute nuclear material assay

    DOEpatents

    Prasad, Manoj K.; Snyderman, Neal J.; Rowland, Mark S.

    2012-05-15

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  19. Absolute nuclear material assay

    DOEpatents

    Prasad, Manoj K.; Snyderman, Neal J.; Rowland, Mark S.

    2010-07-13

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  20. Methods for Quantification of Soil-Transmitted Helminths in Environmental Media: Current Techniques and Recent Advances.

    PubMed

    Collender, Philip A; Kirby, Amy E; Addiss, David G; Freeman, Matthew C; Remais, Justin V

    2015-12-01

    Limiting the environmental transmission of soil-transmitted helminths (STHs), which infect 1.5 billion people worldwide, will require sensitive, reliable, and cost-effective methods to detect and quantify STHs in the environment. We review the state-of-the-art of STH quantification in soil, biosolids, water, produce, and vegetation with regard to four major methodological issues: environmental sampling; recovery of STHs from environmental matrices; quantification of recovered STHs; and viability assessment of STH ova. We conclude that methods for sampling and recovering STHs require substantial advances to provide reliable measurements for STH control. Recent innovations in the use of automated image identification and developments in molecular genetic assays offer considerable promise for improving quantification and viability assessment.

  1. Comprehensive panel of real-time TaqMan polymerase chain reaction assays for detection and absolute quantification of filoviruses, arenaviruses, and New World hantaviruses.

    PubMed

    Trombley, Adrienne R; Wachter, Leslie; Garrison, Jeffrey; Buckley-Beason, Valerie A; Jahrling, Jordan; Hensley, Lisa E; Schoepp, Randal J; Norwood, David A; Goba, Augustine; Fair, Joseph N; Kulesh, David A

    2010-05-01

    Viral hemorrhagic fever is caused by a diverse group of single-stranded, negative-sense or positive-sense RNA viruses belonging to the families Filoviridae (Ebola and Marburg), Arenaviridae (Lassa, Junin, Machupo, Sabia, and Guanarito), and Bunyaviridae (hantavirus). Disease characteristics in these families mark each with the potential to be used as a biological threat agent. Because other diseases have similar clinical symptoms, specific laboratory diagnostic tests are necessary to provide the differential diagnosis during outbreaks and for instituting acceptable quarantine procedures. We designed 48 TaqMan-based polymerase chain reaction (PCR) assays for specific and absolute quantitative detection of multiple hemorrhagic fever viruses. Forty-six assays were determined to be virus-specific, and two were designated as pan assays for Marburg virus. The limit of detection for the assays ranged from 10 to 0.001 plaque-forming units (PFU)/PCR. Although these real-time hemorrhagic fever virus assays are qualitative (presence of target), they are also quantitative (measure a single DNA/RNA target sequence in an unknown sample and express the final results as an absolute value (e.g., viral load, PFUs, or copies/mL) on the basis of concentration of standard samples and can be used in viral load, vaccine, and antiviral drug studies.

  2. Large-scale multiplex absolute protein quantification of drug-metabolizing enzymes and transporters in human intestine, liver, and kidney microsomes by SWATH-MS: Comparison with MRM/SRM and HR-MRM/PRM.

    PubMed

    Nakamura, Kenji; Hirayama-Kurogi, Mio; Ito, Shingo; Kuno, Takuya; Yoneyama, Toshihiro; Obuchi, Wataru; Terasaki, Tetsuya; Ohtsuki, Sumio

    2016-08-01

    The purpose of the present study was to examine simultaneously the absolute protein amounts of 152 membrane and membrane-associated proteins, including 30 metabolizing enzymes and 107 transporters, in pooled microsomal fractions of human liver, kidney, and intestine by means of SWATH-MS with stable isotope-labeled internal standard peptides, and to compare the results with those obtained by MRM/SRM and high resolution (HR)-MRM/PRM. The protein expression levels of 27 metabolizing enzymes, 54 transporters, and six other membrane proteins were quantitated by SWATH-MS; other targets were below the lower limits of quantitation. Most of the values determined by SWATH-MS differed by less than 50% from those obtained by MRM/SRM or HR-MRM/PRM. Various metabolizing enzymes were expressed in liver microsomes more abundantly than in other microsomes. Ten, 13, and eight transporters listed as important for drugs by International Transporter Consortium were quantified in liver, kidney, and intestinal microsomes, respectively. Our results indicate that SWATH-MS enables large-scale multiplex absolute protein quantification while retaining similar quantitative capability to MRM/SRM or HR-MRM/PRM. SWATH-MS is expected to be useful methodology in the context of drug development for elucidating the molecular mechanisms of drug absorption, metabolism, and excretion in the human body based on protein profile information.

  3. Comparing model-based and model-free analysis methods for QUASAR arterial spin labeling perfusion quantification.

    PubMed

    Chappell, Michael A; Woolrich, Mark W; Petersen, Esben T; Golay, Xavier; Payne, Stephen J

    2013-05-01

    Amongst the various implementations of arterial spin labeling MRI methods for quantifying cerebral perfusion, the QUASAR method is unique. By using a combination of labeling with and without flow suppression gradients, the QUASAR method offers the separation of macrovascular and tissue signals. This permits local arterial input functions to be defined and "model-free" analysis, using numerical deconvolution, to be used. However, it remains unclear whether arterial spin labeling data are best treated using model-free or model-based analysis. This work provides a critical comparison of these two approaches for QUASAR arterial spin labeling in the healthy brain. An existing two-component (arterial and tissue) model was extended to the mixed flow suppression scheme of QUASAR to provide an optimal model-based analysis. The model-based analysis was extended to incorporate dispersion of the labeled bolus, generally regarded as the major source of discrepancy between the two analysis approaches. Model-free and model-based analyses were compared for perfusion quantification including absolute measurements, uncertainty estimation, and spatial variation in cerebral blood flow estimates. Major sources of discrepancies between model-free and model-based analysis were attributed to the effects of dispersion and the degree to which the two methods can separate macrovascular and tissue signal.

  4. Localized 2D COSY sequences: Method and experimental evaluation for a whole metabolite quantification approach

    NASA Astrophysics Data System (ADS)

    Martel, Dimitri; Tse Ve Koon, K.; Le Fur, Yann; Ratiney, Hélène

    2015-11-01

    Two-dimensional spectroscopy offers the possibility to unambiguously distinguish metabolites by spreading out the multiplet structure of J-coupled spin systems into a second dimension. Quantification methods that perform parametric fitting of the 2D MRS signal have recently been proposed for resolved PRESS (JPRESS) but not explicitly for Localized Correlation Spectroscopy (LCOSY). Here, through a whole metabolite quantification approach, correlation spectroscopy quantification performances are studied. The ability to quantify metabolite relaxation constant times is studied for three localized 2D MRS sequences (LCOSY, LCTCOSY and the JPRESS) in vitro on preclinical MR systems. The issues encountered during implementation and quantification strategies are discussed with the help of the Fisher matrix formalism. The described parameterized models enable the computation of the lower bound for error variance - generally known as the Cramér Rao bounds (CRBs), a standard of precision - on the parameters estimated from these 2D MRS signal fittings. LCOSY has a theoretical net signal loss of two per unit of acquisition time compared to JPRESS. A rapid analysis could point that the relative CRBs of LCOSY compared to JPRESS (expressed as a percentage of the concentration values) should be doubled but we show that this is not necessarily true. Finally, the LCOSY quantification procedure has been applied on data acquired in vivo on a mouse brain.

  5. Method and apparatus for ultra-high-sensitivity, incremental and absolute optical encoding

    NASA Technical Reports Server (NTRS)

    Leviton, Douglas B. (Inventor)

    1999-01-01

    An absolute optical linear or rotary encoder which encodes the motion of an object (3) with increased resolution and encoding range and decreased sensitivity to damage to the scale includes a scale (5), which moves with the object and is illuminated by a light source (11). The scale carries a pattern (9) which is imaged by a microscope optical system (13) on a CCD array (17) in a camera head (15). The pattern includes both fiducial markings (31) which are identical for each period of the pattern and code areas (33) which include binary codings of numbers identifying the individual periods of the pattern. The image of the pattern formed on the CCD array is analyzed by an image processor (23) to locate the fiducial marking, decode the information encoded in the code area, and thereby determine the position of the object.

  6. The revised human liver cytochrome P450 "Pie": absolute protein quantification of CYP4F and CYP3A enzymes using targeted quantitative proteomics.

    PubMed

    Michaels, Scott; Wang, Michael Zhuo

    2014-08-01

    The CYP4F subfamily of enzymes has been identified recently to be involved in the metabolism of endogenous compounds (arachidonic acid and leukotriene B4), nutrients (vitamins K1 and E), and xenobiotics (pafuramidine and fingolimod). CYP4F2 and CYP4F3B are reported to be expressed in the human liver. However, absolute concentrations of these enzymes in human liver microsomes (HLMs) and their interindividual variability have yet to be determined because of the lack of specific antibodies. Here, an liquid chromatography with tandem mass spectrometry (LC-MS/MS)-based targeted quantitative proteomic approach was employed to determine the absolute protein concentrations of CYP4F2 and CYP4F3B compared with CYP3A in two panels of HLMs (n = 31). As a result, the human hepatic cytochrome P450 (P450) "pie" has been revised to include the contribution of CYP4F enzymes, which amounts to 15% of the total hepatic cytochrome P450 enzymes. CYP4F3B displayed low interindividual variability (3.3-fold) in the HLM panels whereas CYP4F2 displayed large variability (21-fold). However, CYP4F2 variability decreased to 3.4-fold if the two donors with the lowest expression were excluded. In contrast, CYP3A exhibited 29-fold interindividual variability in the same HLM panels. The proposed marker reaction for CYP4F enzymes pafuramidine/DB289 M1 formation did not correlate with CYP4F protein content, suggesting alternate metabolic pathways for DB289 M1 formation in HLMs. In conclusion, CYP4F enzymes are highly expressed in the human liver and their physiologic and pharmacologic roles warrant further investigation.

  7. A probabilistic crack size quantification method using in-situ Lamb wave test and Bayesian updating

    NASA Astrophysics Data System (ADS)

    Yang, Jinsong; He, Jingjing; Guan, Xuefei; Wang, Dengjiang; Chen, Huipeng; Zhang, Weifang; Liu, Yongming

    2016-10-01

    This paper presents a new crack size quantification method based on in-situ Lamb wave testing and Bayesian method. The proposed method uses coupon test to develop a baseline quantification model between the crack size and damage sensitive features. In-situ Lamb wave testing data on actual structures are used to update the baseline model parameters using Bayesian method to achieve more accurate crack size predictions. To demonstrate the proposed method, Lamb wave testing on simple plates with artificial cracks of different sizes is performed using surface-bonded piezoelectric wafers, and the data are used to obtain the baseline model. Two damage sensitive features, namely, the phase change and normalized amplitude are identified using signal processing techniques and used in the model. To validate the effectiveness of the method, the damage data from an in-situ fatigue testing on a realistic lap-joint component are used to update the baseline model using Bayesian method.

  8. Development of a new method for d-xylose detection and quantification in urine, based on the use of recombinant xylose dehydrogenase from Caulobacter crescentus.

    PubMed

    Sánchez-Moreno, Israel; García-Junceda, Eduardo; Hermida, Carmen; Fernández-Mayoralas, Alfonso

    2016-09-20

    The gene xylB from Caulobacter crescentus has been cloned and expressed in Escherichia coli providing a high yield of xylose dehydrogenase (XylB) production and excellent purity (97%). Purified recombinant XylB showed an absolute dependence on the cofactor NAD(+) and a strong preference for d-xylose against other assayed mono and disaccharides. Additionally, XylB showed strong stability when stored as freeze-dried powder at least 250days both at 4°C and room temperature. In addition, more than 80% of the initial activity of rehydrated freeze-dried enzyme remained after 150days of incubation at 4°C. Based on these characteristics, the capability of XylB in d-xylose detection and quantification was studied. The linearity of the method was maintained up to concentrations of d-xylose of 10mg/dL and the calculated limits of detection (LoD) and quantification (LoQ) of xylose in buffer were 0.568mg/dL and 1.89mg/dL respectively. Thus, enzymatic detection was found to be an excellent method for quantification of d-xylose in both buffer and urine samples. This method can easily be incorporated in a new test for the diagnosis of hypolactasia through the measurement of intestinal lactase activity. PMID:27480343

  9. Comparison of biochemical and microscopic methods for quantification of mycorrhizal fungi in soil and roots

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Arbuscular mycorrhizal fungi (AMF) are well-known plant symbionts which provide enhanced phosphorus uptake as well as other benefits to their host plants. Quantification of mycorrhizal biomass and root colonization has traditionally been performed by root staining and microscopic examination methods...

  10. THE QUANTIFICATION OF AQUEOUS TRACERS IN LABORATORY AQUIFER MODELS USING A LIGHT TRANSMISSION VISUALIZATION METHOD - 2

    EPA Science Inventory

    The quantification of solute concentrations in laboratory aquifer models has been largely limited to the use of sampling ports, from which samples are collected for external analysis. One of the drawbacks to this method is that the act of sampling may disturb plume dynamics and ...

  11. THE QUANTIFICATION OF AQUEOUS TRACERS IN LABORATORY AQUIFER MODELS USING LIGHT TRANSMISSION VISUALIZATION METHOD

    EPA Science Inventory

    The quantification of solute concentrations in laboratory aquifer models has been largely limited to the use of sampling ports, from which samples are collected for external analysis. One of the drawbacks to this method is that the act of sampling may disturb plume dynamics and ...

  12. THE QUANTIFICATION OF AQUEOUS TRACERS IN LABORATORY AQUIFER MODELS USING A LIGHT TRANSMISSION VISUALIZATION METHOD - 3

    EPA Science Inventory

    The quantification of solute concentrations in laboratory aquifer models has been largely limited to the use of sampling ports, from which samples are collected for external analysis. One of the drawbacks to this method is that the act of sampling may disturb plume dynamics and ...

  13. THE QUANTIFICATION OF AQUEOUS TRACERS IN LABORATORY AQUIFER MODELS USING A LIGHT TRANSMISSION VISUALIZATION METHOD - 1

    EPA Science Inventory

    The quantification of solute concentrations in laboratory aquifer models has been largely limited to the use of sampling ports, from which samples are collected for external analysis. One of the drawbacks to this method is that the act of sampling may disturb plume dynamics and ...

  14. Quantification of fungicides in snow-melt runoff from turf: A comparison of four extraction methods

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A variety of pesticides are used to control diverse stressors to turf. These pesticides have a wide range in physical and chemical properties. The objective of this project was to develop an extraction and analysis method for quantification of chlorothalonil and PCNB (pentachloronitrobenzene), two p...

  15. A new spectrophotometric method for quantification of potassium solubilized by bacterial cultures.

    PubMed

    Rajawat, Mahendra Vikram Singh; Singh, Surender; Saxena, Anil Kumar

    2014-03-01

    A new spectrophotometric method was developed for the quantification of potassium in the culture broth supernatant of K-solubilizing bacteria. The standard curve of potassium with the new method, which is based on the measurement of cobalt, showed a regression coefficient (R2) of 0.998. The quantification values of potassium obtained with flame photometric method and the newly developed method showed a significant correlation (r) of 0.978. The new method depends on the precipitation of sodium cobaltinitrite with solubilized potassium in liquid medium as potassium sodium cobaltinitrite, which develops bluish green colour by the addition of conc. HCl. The intensity of developed colour can be recorded at 623 nm. This method involves less number of steps, is easy and time saving, and can be used for the reliable estimation of available potassium in culture broth supernatant of K-solubilizing bacteria. PMID:24669669

  16. The quest for an absolute chronology in human prehistory: anthropologists, chemists and the fluorine dating method in palaeoanthropology.

    PubMed

    Goodrum, Matthew R; Olson, Cora

    2009-03-01

    By the early twentieth century there was a growing need within palaeoanthropology and prehistoric archaeology to find a way of dating fossils and artefacts in order to know the age of specific specimens, but more importantly to establish an absolute chronology for human prehistory. The radiocarbon and potassium-argon dating methods revolutionized palaeoanthropology during the last half of the twentieth century. However, prior to the invention of these methods there were attempts to devise chemical means of dating fossil bone. Collaborations between Emile Rivière and Adolphe Carnot in the 1890s led to the development of the fluorine dating method, but it was not until the 1940s that this method was improved and widely implemented by Kenneth Oakley to resolve a number of problems in palaeoanthropology, including the Piltdown Man controversy. The invention of the fluorine dating method marked a significant advance in the quest for absolute dating in palaeoanthropology, but it also highlights interesting problems and issues relating to the ability of palaeoanthropologists and chemists to bring together different skills and bodies of knowledge in order successfully to develop and apply the fluorine dating method.

  17. A reversed-phase high performance liquid chromatography method for quantification of methotrexate in cancer patients serum.

    PubMed

    Li, Yuan-dong; Li, Yan; Liang, Ning-sheng; Yang, Fan; Kuang, Zhi-peng

    2015-10-01

    A simple, rapid and sensitive reversed-phase high performance liquid chromatography (HPLC) method has been developed for the determination of methotrexate in human serum. After deproteinization of the serum with 40% silver nitrate solution, methotrexate and internal standard (IS) were separated on a reversed-phase column with a mobile phase consisting of 10mM sodium phosphate buffer (pH6.40)-methanol (78:22%, v/v) and ultraviolet detection at 310nm. The linearity is evaluated by a calibration curve in the concentration range of 0.05-10.0μg/mL and presented a correlation coefficient of 0.9995. The absolute recoveries were 97.52±3.9% and 96.87±3.7% for methotrexate and ferulic acid (internal standard), respectively. The intra- and inter-day precision were less 6.19 and 5.89%, respectively (n=6). The limit of quantitation was 0.02μg/mL and the limit of detection was 0.006μg/mL. The complete analysis was achieved less than 10min with no interference from endogenous components or 22 examined drugs. This method was validated by using serum samples from high-dose methotrexate treated patients with osteosarcoma, breast cancer, acute leukemia and lymphoma. The method was demonstrated to be a simple, rapid and reliable approach in quantification of methotrexate in serum samples from patients with high-dose methotrexate therapy.

  18. Absolute and relative quantification and calibration for sectioning fluorescence microscopy using standardized uniform fluorescent layers and SIPchart-based correction procedures

    NASA Astrophysics Data System (ADS)

    Zwier, J. M.; Oomen, L.; Brocks, L.; Jalink, K.; Brakenhoff, G. J.

    2007-02-01

    The total or integrated fluorescence intensity of a through-focus series of a thin standardized uniform fluorescent or calibration layer is shown to be suitable for image intensity correction and calibration in sectioning microscopy. This integrated intensity can be derived from the earlier introduced SectionedImagingProperty or SIPcharts, derived from the 3D layer datasets. By correcting the 3D image of an object with the 3D image of the standardized uniform fluorescent layer obtained under identical conditions one is able to express the object fluorescence in units fluorescence of the calibration layer. With object fluorescence intensities in fluorescence layer unit's or FLU's the object image intensities becomes independent of microscope system and imaging conditions. A direct result is that the often-appreciable lateral intensity variations present in confocal microscopy are eliminated (shading correction). Of more general value is that images obtained with different objectives, magnifications or from different microscope systems can be quantitatively related to each other. The effectiveness of shading correction and relating images obtained under various microscope conditions is demonstrated on images of standard fluorocent beads. Expressing the object fluorescence in FLU units seems to be a promising approach for general quantification of sectioning imaging enabling cross-correlation of imaging results over time and between imaging systems.

  19. A Method to Access Absolute fIPAR fo Vegetation in Spatially Complex Ecosystems

    NASA Technical Reports Server (NTRS)

    Wessman, Carol A.; Nel, Elizabeth M.; Bateson, C. Ann; Asner, Gregory P.

    1998-01-01

    Arid and semi-arid lands compose a large fraction of the earth's terrestrial vegetation, and thereby contribute significantly to global atmospheric-biospheric interactions. The thorny shrubs and small trees in these semi-arid shrub lands have counterparts throughout much of the world's tropical and subtropical zones and have captured substantial areas of the world's former grasslands. The objective of our field and remotely sensed measurements in the semi-arid shrublands of Texas is to monitor interannual variability and directional change in landscape structure, ecosystem processes and atmosphere-biosphere exchanges. To understand the role ecosystems play in controlling the composition of the atmosphere, it is necessary to quantify processes such as photosynthesis and primary production, decomposition and soil carbon storage, and trace gas exchanges. Photosynthesis is the link whereby surface-atmosphere exchanges such as the radiation balance and exchange of heat, moisture, and gas can be inferred. It also describes the efficiency of carbon dioxide exchange and is directly related to the primary production of vegetation. Our efforts in this paper focus on the indirect, quantification of photosynthesis, and thereby carbon flux and net primary production, via remote sensing and direct measurements of intercepted photosynthetically active radiation (IPAR).

  20. Quantification of geopolymers production by chemical methods- A short review

    NASA Astrophysics Data System (ADS)

    Siyal, Ahmer Ali; Azizli, Khairun Azizi; Ismail, Lukman; Man, Zakaria; Khan, Muhammad Irfan

    2015-07-01

    Inorganic polymers are the aluminosilicate materials possessing properties superior than ordinary Portland cement. In this review paper the chemical techniques used for determining degree of reaction of fly ash or the quantity of geopolymer material produced have been discussed. These methods determine the amount of product formed in percentages. The methods include HCl method, salicylic acid method, and picric acid method. These methods are not only used for fly ash but they are being used for determining the degree of reactions of metakaolin and other pozzolanic materials. The picric acid is an explosive material and its transportation in high concentration is dangerous. During its use in laboratory there is also the risk of fire associated with it. According to the microscopic analysis results the picric acid attack dissolves small amount of fine unreacted fly ash particles also. The salicylic acid is easily available but the residue from its treatment contains unreacted fly ash particles, hydration phases, and certain parts of unreacted OPC. The residue from HCl and salicylic acid attack contains MgO particles which is the part of the hydration product. The HCl method is mostly used due to simple process and lower standard deviation.

  1. Absolute calibration method for laser megajoule neutron yield measurement by activation diagnostics

    NASA Astrophysics Data System (ADS)

    Landoas, Olivier; Yu Glebov, Vladimir; Rossé, Bertrand; Briat, Michelle; Disdier, Laurent; Sangster, Thomas C.; Duffy, Tim; Marmouget, Jean Gabriel; Varignon, Cyril; Ledoux, Xavier; Caillaud, Tony; Thfoin, Isabelle; Bourgade, Jean-Luc

    2011-07-01

    The laser megajoule (LMJ) and the National Ignition Facility (NIF) plan to demonstrate thermonuclear ignition using inertial confinement fusion (ICF). The neutron yield is one of the most important parameters to characterize ICF experiment performance. For decades, the activation diagnostic was chosen as a reference at ICF facilities and is now planned to be the first nuclear diagnostic on LMJ, measuring both 2.45 MeV and 14.1 MeV neutron yields. Challenges for the activation diagnostic development are absolute calibration, accuracy, range requirement, and harsh environment. At this time, copper and zirconium material are identified for 14.1 MeV neutron yield measurement and indium material for 2.45 MeV neutrons. A series of calibrations were performed at Commissariat à l'Energie Atomique (CEA) on a Van de Graff facility to determine activation diagnostics efficiencies and to compare them with results from calculations. The CEA copper activation diagnostic was tested on the OMEGA facility during DT implosion. Experiments showed that CEA and Laboratory for Laser Energetics (LLE) diagnostics agree to better than 1% on the neutron yield measurement, with an independent calibration for each system. Also, experimental sensitivities are in good agreement with simulations and allow us to scale activation diagnostics for the LMJ measurement range.

  2. Gallic Acid: Review of the Methods of Determination and Quantification.

    PubMed

    Fernandes, Felipe Hugo Alencar; Salgado, Hérida Regina Nunes

    2016-05-01

    Gallic acid (3,4,5 trihydroxybenzoic acid) is a secondary metabolite present in most plants. This metabolite is known to exhibit a range of bioactivities including antioxidant, antimicrobial, anti-inflammatory, and anticancer. There are various methods to analyze gallic acid including spectrometry, chromatography, and capillary electrophoresis, among others. They have been developed to identify and quantify this active ingredient in most biological matrices. The aim of this article is to review the available information on analytical methods for gallic acid, as well as presenting the advantages and limitations of each technique.

  3. Quantification of sudomotor innervation: a comparison of three methods.

    PubMed

    Gibbons, Christopher H; Illigens, Ben M W; Wang, Ningshan; Freeman, Roy

    2010-07-01

    Peripheral sudomotor dysfunction is present in many peripheral neuropathies, but structural assessments of sudomotor fibers rarely occur. We evaluated 36 diabetic and 72 healthy control subjects who underwent detailed neurologic examinations and punch skin biopsies. Physical exam findings were quantified by neuropathy impairment score in the lower limb. Skin biopsies quantified intraepidermal nerve fiber density (IENFD) and sweat gland nerve fiber density (SGNFD) by a manual, automated, and semiquantitative method. The automated and manual SGNFD correlated with the IENFD at the same site (r = 0.62, P < 0.05 automated method, r = 0.67, P < 0.05 manual method). As neuropathy worsened, the SGNFD at the distal leg declined (automated counting r = -0.81, P < 0.001; manual counting r = -0.88, P < 0.001). The semiquantitative method displayed poor inter- and intrareviewer reliability and correlated poorly with standard neuropathy evaluation scores. Our results suggest that sudomotor fibers can be rapidly and reproducibly quantified, and results correlate well with physical exam findings. PMID:20544913

  4. Software-assisted serum metabolite quantification using NMR.

    PubMed

    Jung, Young-Sang; Hyeon, Jin-Seong; Hwang, Geum-Sook

    2016-08-31

    The goal of metabolomics is to analyze a whole metabolome under a given set of conditions, and accurate and reliable quantitation of metabolites is crucial. Absolute concentration is more valuable than relative concentration; however, the most commonly used method in NMR-based serum metabolic profiling, bin-based and full data point peak quantification, provides relative concentration levels of metabolites and are not reliable when metabolite peaks overlap in a spectrum. In this study, we present the software-assisted serum metabolite quantification (SASMeQ) method, which allows us to identify and quantify metabolites in NMR spectra using Chenomx software. This software uses the ERETIC2 utility from TopSpin to add a digitally synthesized peak to a spectrum. The SASMeQ method will advance NMR-based serum metabolic profiling by providing an accurate and reliable method for absolute quantification that is superior to bin-based quantification. PMID:27506360

  5. Development and validation of an ESI-LC-MS/MS method for simultaneous identification and quantification of 24 analytes of forensic relevance in vitreous humour, whole blood and plasma.

    PubMed

    Arora, Beauty; Velpandian, Thirumurthy; Saxena, Rohit; Lalwani, Sanjeev; Dogra, T D; Ghose, Supriyo

    2016-01-01

    Detection and quantification of drugs from various biological matrices are of immense importance in forensic toxicological analysis. Despite the various reported methods, development of a new method for the detection and quantification of drugs is still an active area of research. However, every method and biological matrix has its own limitation, which further encourage forensic toxicologists to develop new methods and to explore new matrices for the analysis of drugs. In this study, an electrospray ionization-liquid chromatograph-tandem mass spectrometry (ESI-LC-MS/MS) method is developed and validated for simultaneous identification and quantification of 24 drugs of forensic relevance in various body fluids, namely, whole blood, plasma and vitreous humour. The newly developed method has been validated for intra-day and inter-day accuracy, precision, selectivity and sensitivity. Absolute recovery shows a mean of 84.5, 86.2, and 103% in the vitreous humour, whole blood and plasma respectively, which is suitable for the screening procedure. Further, the absolute matrix effect (AME) shows a mean of 105, 96.5, and 109% in the vitreous humour, whole blood and plasma, respectively. In addition, to examine the practical utility of this method, it has been applied for screening of drugs in post-mortem samples of the vitreous humour, whole blood and plasma collected at autopsy from ten cadavers. Experimental results show that the newly developed method is well applicable for screening of analytes in all the three matrices.

  6. Real‐time dielectrophoretic signaling and image quantification methods for evaluating electrokinetic properties of nanoparticles

    PubMed Central

    Bailey, Joe; Holmes, David

    2015-01-01

    Real‐time image signaling and quantification methods are described that allow easy‐to‐use, fast extraction of the electrical properties of nanoparticles. Positive dielectrophoretic (pDEP) collection rate analysis enables the dielectric properties of very small samples of nanoparticles to be accurately quantified. Advancing earlier work involving dual‐cycle pulsed pDEP 1 collection experiments, we report the development of a statistical image quantification method that significantly advances the evaluation of nanoparticle dielectric properties. Compared with traditional methods that require information about the geometry of the electrode array to be entered for semiautomated quantification 2, the new statistical approach described does not require a priori knowledge of device geometry. The efficacy of the statistical method is experimentally demonstrated using 200 nm diameter latex nanospheres, suspended in low conductivity medium, that are attracted by pDEP onto planar castellated electrode arrays with 5‐micron‐sized features. The method is shown to yield estimates for the nanoparticle conductivity and surface conductance, σp=25.8 mS/m and KS=1.29 nS, that concur closely with those obtained using traditional geometric methods previously reported 1. Consequently, the statistical method is accurate, fast, robust, supervisor‐free, and useful for determining nanoparticle electrokinetic parameters. PMID:25872874

  7. Quantification of emissions from knapsack sprayers: 'the weight method

    NASA Astrophysics Data System (ADS)

    Garcia-Santos, Glenda; Binder, Claudia R.

    2010-05-01

    Misuse of pesticides kill or seriously sicken thousands of people every year and poison the natural environment. Investigations of occupational and environmental risk have received considerable interest over the last decades. And yet, lack of staff and analytical equipments as well the costs of chemical analyses make difficult, if not impossible, the control of the pesticide contamination and residues in humans, air, water, and soils in developing countries. To assess emissions of pesticides (transport and deposition) during spray application and the risk for the human health and the environment, tracers can be useful tools. Uranine was used to quantify drift airborne and later deposition on the neighbouring field and clothes of the applicator after spraying with a knapsack sprayer in one of the biggest areas of potato production in Colombia. Keeping the same setup the amount of wet drift was measured by difference in the weight of high absorbent papers used to collect the tracer. Surprisingly this weight method (Weight-HAP) was able to explain 71% of the drift variance measured with the tracer. Therefore the weight method is presented as a suitable rapid low cost screening tool, complementary to toxicological tests, to assess air pollution, occupational and environmental exposure generated by the emissions from knapsack sprayers during pesticide application. This technique might be important in places were there is lack of analytical instruments.

  8. Radar prediction of absolute rain fade distributions for earth-satellite paths and general methods for extrapolation of fade statistics to other locations

    NASA Technical Reports Server (NTRS)

    Goldhirsh, J.

    1982-01-01

    The first absolute rain fade distribution method described establishes absolute fade statistics at a given site by means of a sampled radar data base. The second method extrapolates absolute fade statistics from one location to another, given simultaneously measured fade and rain rate statistics at the former. Both methods employ similar conditional fade statistic concepts and long term rain rate distributions. Probability deviations in the 2-19% range, with an 11% average, were obtained upon comparison of measured and predicted levels at given attenuations. The extrapolation of fade distributions to other locations at 28 GHz showed very good agreement with measured data at three sites located in the continental temperate region.

  9. Quantification of detergent using colorimetric methods in membrane protein crystallography.

    PubMed

    Prince, Chelsy; Jia, Zongchao

    2015-01-01

    Membrane protein crystallography has the potential to greatly aid our understanding of membrane protein biology. Yet, membrane protein crystals remain challenging to produce. Although robust methods for the expression and purification of membrane proteins continue to be developed, the detergent component of membrane protein samples is equally important to crystallization efforts. This chapter describes the development of three colorimetric assays for the quantitation of detergent in membrane protein samples and provides detailed protocols. All of these techniques use small sample volumes and have potential applications in crystallography. The application of these techniques in crystallization prescreening, detergent concentration modification, and detergent exchange experiments is demonstrated. It has been observed that the concentration of detergent in a membrane protein sample can be just as important as the protein concentration when attempting to reproduce crystallization lead conditions.

  10. A simple method for the quantification of biliary reflux.

    PubMed

    Nicolai, J J; Silberbusch, J; van Roon, F; Schopman, W; vd Berg, J W

    1980-01-01

    99mTc-diethyl-IDA is completely excreted into the bile. When cholecystokinin is given after priming of the biliary tract with this tracer, gallbladder contraction leads to expulsion of bile into the duodenum. At the same time cholecystokinin causes contraction of the pylorus, which should normally prevent substantial reflux of tracer into the stomach. We have applied these physiological characteristics in a method to quantify biliary gastric reflux. Fourteen controls had a median reflux of 4.3% of the intravenous dose (93% of controls had values less than 9%). In 18 patients with Billroth II gastrectomies the median reflux was 46% (p less than 0.001). Patients with chronic gastritis (no. = 18) had also increased reflux (median 18.1%, p less than 0.001). The same was found in gastric ulcer (no. = 18, median 11.8%, p less than 0.003). In duodenal ulcer (no. = 7) increased reflux existed in only two patients with pyloric deformation. Patients with hiatal hernia did not show increased reflux (no. = 10, median 2.2%). Bilirubin measurements tended to underestimate reflux in pathological cases, whereas bile acid measurements and reflux percentages of tracer showed a close relationship (r = 0.87, p less than 0.001). PMID:7209386

  11. Absolute optical oscillator strengths for the electronic excitation of atoms at high resolution: Experimental methods and measurements for helium

    SciTech Connect

    Chan, W.F.; Cooper, G.; Brion, C.E. )

    1991-07-01

    An alternative method is described for the measurement of absolute optical oscillator strengths (cross sections) for electronic excitation of free atoms and molecules throughout the discrete region of the valence-shell spectrum at high energy resolution (full width at half maximum of 0.048 eV). The technique, utilizing the virtual-photon field of a fast electron inelastically scattered at negligible momentum transfer, avoids many of the difficulties associated with the various direct optical techniques that have traditionally been used for absolute optical oscillator strength measurements. The method is also free of the bandwidth (line saturation) effects that can seriously limit the accuracy of photoabsorption cross-section measurements for discrete transitions of narrow linewidth obtained using the Beer-Lambert law ({ital I}{sub 0}/{ital I}=exp({ital nl}{sigma}{sub {ital p}})). Since the line-saturation effects are not widely appreciated and are only usually considered in the context of peak heights, a detailed analysis of this problem is presented, with consideration of the integrated cross section (oscillator strength) over the profile of each discrete peak.

  12. New method to remove the electronic noise for absolutely calibrating low gain photomultiplier tubes with a higher precision

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaodong; Hayward, Jason P.; Laubach, Mitchell A.

    2014-08-01

    A new method to remove the electronic noise in order to absolutely calibrate low gain photomultiplier tubes with a higher precision is proposed and validated with experiments using a digitizer-based data acquisition system. This method utilizes the fall time difference between the electronic noise (about 0.5 ns) and the real PMT signal (about 2.4 ns for Hamamatsu H10570 PMT assembly). Using this technique along with a convolution algorithm, the electronic noise and the real signals are separated very well, even including the very small signals heavily influenced by the electronic noise. One application that this method allows is for us to explore the energy relationship for gamma sensing in Cherenkov radiators while maintaining the fastest possible timing performance and high dynamic range.

  13. A simple SPR-based method for the quantification of the effect of potential virus inhibitors.

    PubMed

    Boltovets, Praskoviya M; Polischuk, Olena M; Kovalenko, Oleksiy G; Snopok, Boris A

    2013-01-21

    Here, we describe a highly sensitive method that allows for the correct quantification of inhibition effect with a higher degree of accuracy directly at the molecular level. The protocol involves two stages, namely serological virus titration in comparison with the same procedure for virus-effector mixture. Owing to the robustness of the analysis this assay can be performed on crude cellular and plant extracts, and therefore it may be suitable for the routine analysis of clinical samples, or in the field. The efficiency of the approach to the quantification of the inhibition effect of polysaccharide glucuronoxylomannan (GXM) on the infection efficiency of the tobacco mosaic virus (TMV) was investigated using advanced serological approaches based on label-free surface plasmon resonance technique. It was shown that GXM drastically decreases the efficiency of TMV infection by blocking up to 70% of the virus shell. The obtained results are in conformity with the method of indicator plant infection.

  14. Validation of a HPLC/FLD Method for Quantification of Tocotrienols in Human Plasma.

    PubMed

    Che, Hui-Ling; Tan, Doryn Meam-Yee; Meganathan, Puvaneswari; Gan, Yee-Lin; Abdul Razak, Ghazali; Fu, Ju-Yen

    2015-01-01

    Quantification of tocotrienols in human plasma is critical when the attention towards tocotrienols on its distinctive properties is arising. We aim to develop a simple and practical normal-phase high performance liquid chromatography method to quantify the amount of four tocotrienol homologues in human plasma. Using both the external and internal standards, tocotrienol homologues were quantified via a normal-phase high performance liquid chromatography with fluorescence detector maintained at the excitation wavelength of 295 nm and the emission wavelength of 325 nm. The four tocotrienol homologues were well separated within 30 minutes. A large interindividual variation between subjects was observed as the absorption of tocotrienols is dependent on food matrix and gut lipolysis. The accuracies of lower and upper limit of quantification ranged between 92% and 109% for intraday assays and 90% and 112% for interday assays. This method was successfully applied to quantify the total amount of four tocotrienol homologues in human plasma. PMID:26604927

  15. Protein binding of antimicrobials: methods for quantification and for investigation of its impact on bacterial killing.

    PubMed

    Beer, Jürgen; Wagner, Claudia Christina; Zeitlinger, Markus

    2009-03-01

    Plasma protein binding of antimicrobial agents is considered to be a key characteristic of antibiotics as it affects both their pharmacokinetics and pharmacodynamics. However, up to the present, no standard methods for measuring protein binding or for quantification of the influence of protein binding on antimicrobial activity exist. This short-coming has previously led to conflicting results on antibacterial activity of highly protein-bound antibiotics. The present review, therefore, set out to summarize (1) methods for quantification of protein binding, (2) microbiological growth media used for determination of the impact of protein binding on antimicrobial activity of antibiotics, and (3) different pharmacodynamic in vitro studies that are used in this context. The advantages and disadvantages of a wide range of different approaches are discussed and compared. The urgent call for international standardization by microbiological societies and laboratories may be considered as a logical consequence of the presented data. PMID:19117135

  16. Correction to Method of Establishing the Absolute Radiometric Accuracy of Remote Sensing Systems While On-orbit Using Characterized Stellar Sources

    NASA Technical Reports Server (NTRS)

    Bowen, Howard S.; Cunningham, Douglas M.

    2007-01-01

    The contents include: 1) Brief history of related events; 2) Overview of original method used to establish absolute radiometric accuracy of remote sensing instruments using stellar sources; and 3) Considerations to improve the stellar calibration approach.

  17. An immunomagnetic separation-real-time PCR method for quantification of Cryptosporidium parvum in water samples.

    PubMed

    Fontaine, Melanie; Guillot, Emmanuelle

    2003-07-01

    The protozoan parasite Cryptosporidium parvum is known to occur widely in both raw and drinking water and is the cause of waterborne outbreaks of gastroenteritis throughout the world. The routinely used method for the detection of Cryptosporidium oocysts in water is based on an immunofluorescence assay (IFA). It is both time-consuming and nonspecific for the human pathogenic species C. parvum. We have developed a TaqMan polymerase chain reaction (PCR) test that accurately quantifies C. parvum oocysts in treated and untreated water samples. The protocol consisted of the following successive steps: Envirochek capsule filtration, immunomagnetic separation (IMS), thermal lysis followed by DNA purification using Nanosep centrifugal devices and, finally, real-time PCR using fluorescent TaqMan technology. Quantification was accomplished by comparing the fluorescence signals obtained from test samples with those from standard dilutions of C. parvum oocysts. This IMS-real-time PCR assay permits rapid and reliable quantification over six orders of magnitude, with a detection limit of five oocysts for purified oocyst solutions and eight oocysts for spiked water samples. Replicate samples of spiked tap water and Seine River water samples (with approximately 78 and 775 oocysts) were tested. C. parvum oocyst recoveries, which ranged from 47.4% to 99% and from 39.1% to 68.3%, respectively, were significantly higher and less variable than those reported using the traditional US Environmental Protection Agency (USEPA) method 1622. This new molecular method offers a rapid, sensitive and specific alternative for C. parvum oocyst quantification in water.

  18. Greenhouse gas emissions from waste management--assessment of quantification methods.

    PubMed

    Mohareb, Eugene A; MacLean, Heather L; Kennedy, Christopher A

    2011-05-01

    Of the many sources of urban greenhouse gas (GHG) emissions, solid waste is the only one for which management decisions are undertaken primarily by municipal governments themselves and is hence often the largest component of cities' corporate inventories. It is essential that decision-makers select an appropriate quantification methodology and have an appreciation of methodological strengths and shortcomings. This work compares four different waste emissions quantification methods, including Intergovernmental Panel on Climate Change (IPCC) 1996 guidelines, IPCC 2006 guidelines, U.S. Environmental Protection Agency (EPA) Waste Reduction Model (WARM), and the Federation of Canadian Municipalities-Partners for Climate Protection (FCM-PCP) quantification tool. Waste disposal data for the greater Toronto area (GTA) in 2005 are used for all methodologies; treatment options (including landfill, incineration, compost, and anaerobic digestion) are examined where available in methodologies. Landfill was shown to be the greatest source of GHG emissions, contributing more than three-quarters of total emissions associated with waste management. Results from the different landfill gas (LFG) quantification approaches ranged from an emissions source of 557 kt carbon dioxide equivalents (CO2e) (FCM-PCP) to a carbon sink of -53 kt CO2e (EPA WARM). Similar values were obtained between IPCC approaches. The IPCC 2006 method was found to be more appropriate for inventorying applications because it uses a waste-in-place (WIP) approach, rather than a methane commitment (MC) approach, despite perceived onerous data requirements for WIP. MC approaches were found to be useful from a planning standpoint; however, uncertainty associated with their projections of future parameter values limits their applicability for GHG inventorying. MC and WIP methods provided similar results in this case study; however, this is case specific because of similarity in assumptions of present and future landfill

  19. An improved HPLC-DAD method for clavulanic acid quantification in fermentation broths of Streptomyces clavuligerus.

    PubMed

    Ramirez-Malule, Howard; Junne, Stefan; López, Carlos; Zapata, Julian; Sáez, Alex; Neubauer, Peter; Rios-Estepa, Rigoberto

    2016-02-20

    Clavulanic acid (CA) is an important secondary metabolite commercially produced by cultivation of Streptomyces clavuligerus (Sc). It is a potent inhibitor of bacterial β-lactamases. In this work, a specific and improved high performance liquid chromatography (HPLC) method, using a C-18 reversed phase column, diode array detector and gradient elution for CA quantification in fermentation broths of Sc, was developed and successfully validated. Samples were imidazole-derivatized for the purpose of creating a stable chromophore (clavulanate-imidazole). The calibration curve was linear over a typical range of CA concentration between 0.2 and 400mg/L. The detection and quantification limits were 0.01 and 0.02mg/L, respectively. The precision of the method was evaluated for CA spiked into production media and a recovery of 103.8%, on average, was obtained. The clavulanate-imidazole complex was not stable when the samples were not cooled during the analysis. The recovery rate was 39.3% on average. This assay was successfully tested for CA quantification in samples from Sc fermentation, using both, a chemically defined and a complex medium.

  20. Dietary Sugars Analysis: Quantification of Fructooligossacharides during Fermentation by HPLC-RI Method

    PubMed Central

    Correia, Daniela M.; Dias, Luís G.; Veloso, Ana C. A.; Dias, Teresa; Rocha, Isabel; Rodrigues, Lígia R.; Peres, António M.

    2014-01-01

    In this work, a simple chromatographic method is proposed and in-house validated for the quantification of total and individual fructooligossacharides (e.g., 1-kestose, nystose, and 1F-fructofuranosylnystose). It was shown that a high-performance liquid chromatography with refractive index detector could be used to monitor the dynamic of fructooligossacharides production via sucrose fermentation using Aspergillus aculeatus. This analytical technique may be easily implemented at laboratorial or industrial scale for fructooligossacharides mass-production monitoring allowing also controlling the main substrate (sucrose) and the secondary by-products (glucose and fructose). The proposed chromatographic method had a satisfactory intra- and inter-day variability (in general, with a relative standard deviation lower than 5%), high sensitivity for each sugar (usually, with a relative error lower than 5%), and low detection (lower than 0.06 ± 0.04 g/L) and quantification (lower than 0.2 ± 0.1 g/L) limits. The correct quantification of fructooligossacharides in fermentative media may allow a more precise nutritional formulation of new functional foods, since it is reported that different fructooligossacharides exhibit different biological activities and effects. PMID:25988114

  1. Assessment of methods for organic and inorganic carbon quantification in carbonate-containing Mediterranean soils

    NASA Astrophysics Data System (ADS)

    Apesteguia, Marcos; Virto, Iñigo; Plante, Alain

    2014-05-01

    Quantification of soil organic matter (SOM) stocks and fluxes continues to be an important endeavor in assessments of soil quality, and more broadly in assessments of ecosystem functioning. The quantification of SOM in alkaline, carbonate-containing soils, such as those found in Mediterranean areas, is complicated by the need to differentiate between organic carbon (OC) and inorganic carbon (IC), which continues to present methodological challenges. Acidification is frequently used to eliminate carbonates prior to soil OC quantification, but when performed in the liquid phase, can promote the dissolution and loss of a portion of the OC. Acid fumigation (AF) is increasingly preferred for carbonate removal, but its effectiveness is difficult to assess using conventional elemental and isotopic analyses. In addition, the potential effects of AF on SOM are not well characterized. The objective of the current study was to apply a multi-method approach to determine the efficacy of carbonate removal by AF and its effects on the residual SOM. We selected a set of 24 surface agricultural soils representing a large range of textures, SOM contents and presumed carbonate contents. For each soil, OC was determined using wet combustion (Walkley-Black) and IC was determined using the calcimeter method. Samples were then subjected to elemental (total C) and isotopic (δ13C) analyses by dry combustion using a Costech autoanalyzer coupled to a Thermo Finnigan Delta Plus isotope ratio mass spectrometer (IRMS) before and after AF. IC was equated to total C determined after fumigation, and OC was estimated as the different in total C before and after AF. Samples were also subjected to ramped oxidation using a Netzsch STA109 PC Luxx thermal analyzer coupled to a LICOR 820A infrared gas analyzer (IRGA). Quantification of OC was performed using evolved gas analysis of CO2 (CO2-EGA) in the exothermic region 200-500° C associated with organic matter combustion. IC was quantified by CO2-EGA

  2. Evaluating hydropyrolysis as a method for quantification and characterisation of Black Carbon in environmental matrices

    NASA Astrophysics Data System (ADS)

    Ascough, P. L.; Meredith, W.; Bird, M. I.; Large, D.; Snape, C.; Tilston, E.

    2012-04-01

    Black carbon (BC) is the highly aromatic, recalcitrant product of incomplete biomass and fossil fuel combustion. Black carbon is generally accepted to display extreme environmental longevity, whereas other products of biomass combustion often appear subject to environmental degradation on comparatively short timescales. It is clear that BC plays a key role within global biogeochemical cycles, and improved understanding of BC cycling is an important research goal. Currently a wide selection of thermal, chemical and optical methods are available for BC quantification in environmental matrices, and large method-dependant differences in results are apparent. We present results of a study to evaluate the efficacy of a new approach for BC isolation, known as hydropyrolysis (hypy). In this process sample pyrolysis is assisted by high hydrogen pressures (15 MPa), facilitating complete reductive removal of labile organic matter, while suppressing the neoformation of secondary char. The potential of hypy for both isolation and quantification of BC was evaluated using 12 reference materials of the International BC Ring Trial (http://www.geo.uzh.ch/en/units/physical-geography-soilbio/services/black-carbon-reference-materials/), including high-BC samples, BC-containing environmental matrices and potentially interfering materials. The results show that it is possible to identify hypy operating conditions whereby lignocellulosic, humic and other labile organic carbon is removed, while the sample BC is preserved for recovery. This is apparent for all of the environmental samples tested, facilitating BC quantification in a wide range of materials. The BC contents of all 12 samples are within the range of the inter-comparison study of the International BC Ring Trial, and the technique appears to reproducibly (±2%) isolate a carbonaceous fraction comprising a chemically well-defined polyaromatic structure from a wide range of different samples. Hypy therefore provides a means of

  3. A new method for measuring absolute total electron-impact cross sections with forward scattering corrections

    SciTech Connect

    Ma, C.; Liescheski, P.B.; Bonham, R.A. )

    1989-12-01

    In this article we describe an experimental technique to measure the total electron-impact cross section by measurement of the attenuation of an electron beam passing through a gas at constant pressure with the unwanted forward scattering contribution removed. The technique is based on the different spatial propagation properties of scattered and unscattered electrons. The correction is accomplished by measuring the electron beam attenuation dependence on both the target gas pressure (number density) and transmission length. Two extended forms of the Beer--Lambert law which approximately include the contributions for forward scattering and for forward scattering plus multiple scattering from the gas outside the electron beam were developed. It is argued that the dependence of the forward scattering on the path length through the gas is approximately independent of the model used to describe it. The proposed methods were used to determine the total cross section and forward scattering contribution from argon (Ar) with 300-eV electrons. Our results are compared with those in the literature and the predictions of theory and experiment for the forward scattering and multiple scattering contributions. In addition, Monte Carlo simulations were performed as a further test of the method.

  4. Absolute calibration method for fast-streaked, fiber optic light collection, spectroscopy systems.

    SciTech Connect

    Johnston, Mark D.; Frogget, Brent; Oliver, Bryan Velten; Maron, Yitzhak; Droemer, Darryl W.; Crain, Marlon D.

    2010-04-01

    This report outlines a convenient method to calibrate fast (<1ns resolution) streaked, fiber optic light collection, spectroscopy systems. Such a system is used to collect spectral data on plasmas generated in the A-K gap of electron beam diodes fielded on the RITS-6 accelerator (8-12MV, 140-200kA). On RITS, light is collected through a small diameter (200 micron) optical fiber and recorded on a fast streak camera at the output of 1 meter Czerny-Turner monochromator (F/7 optics). To calibrate such a system, it is necessary to efficiently couple light from a spectral lamp into a 200 micron diameter fiber, split it into its spectral components, with 10 Angstroms or less resolution, and record it on a streak camera with 1ns or less temporal resolution.

  5. SU-E-T-33: An EPID-Based Method for Testing Absolute Leaf Position for MLC Without Backup Jaws

    SciTech Connect

    Hancock, S; Whitaker, M

    2014-06-01

    Purpose: Methods in common use for MLC leaf position QA are limited to measurements relative to an arbitrary reference position. The authors previously presented an EPID-based method for efficiently testing accuracy of leaf position relative to the mechanical isocenter for MLC with backup jaws. The purpose of this work is to extend that method to the general case of MLC without backup jaws. Methods: A pair of collimator walkout images is used to determine the location of the mechanical isocenter relative to the center of one field using a parameter called X-offset. The method allows for shift of the imager panel to cover subsets of MLC leaves within the limited field of view of the imager. For a shifted panel position, an image of three beam strips defined by a subset of MLC leaves allows determination of the position of each leaf relative to the isocenter. The location of the isocenter is determined by applying X-offset to an image of a single rectangular field obtained at that panel position. The method can also be used to test backup jaws instead of MLC leaves. A software tool was developed to efficiently analyze the images. Results: The software tool reports leaf position and deviation from nominal position, and provides visual displays to facilitate rapid qualitative interpretation. Test results using this method agree well with results using the previous method requiring backup jaws. Test results have been successfully used to recalibrate one model MLC (Elekta MLCi2™). Work in progress includes extension of the software tool to other MLC models, and quantification of reproducibility of the measurements. Conclusion: This work successfully demonstrates a method to efficiently and accurately measure MLC leaf position, or backup jaw position, relative to the mechanical isocenter of the collimator.

  6. Absolute Summ

    NASA Astrophysics Data System (ADS)

    Phillips, Alfred, Jr.

    Summ means the entirety of the multiverse. It seems clear, from the inflation theories of A. Guth and others, that the creation of many universes is plausible. We argue that Absolute cosmological ideas, not unlike those of I. Newton, may be consistent with dynamic multiverse creations. As suggested in W. Heisenberg's uncertainty principle, and with the Anthropic Principle defended by S. Hawking, et al., human consciousness, buttressed by findings of neuroscience, may have to be considered in our models. Predictability, as A. Einstein realized with Invariants and General Relativity, may be required for new ideas to be part of physics. We present here a two postulate model geared to an Absolute Summ. The seedbed of this work is part of Akhnaton's philosophy (see S. Freud, Moses and Monotheism). Most important, however, is that the structure of human consciousness, manifest in Kenya's Rift Valley 200,000 years ago as Homo sapiens, who were the culmination of the six million year co-creation process of Hominins and Nature in Africa, allows us to do the physics that we do. .

  7. Mapping the African thunderstorm center in absolute units using Schumann resonance spectral decomposition method

    NASA Astrophysics Data System (ADS)

    Dyrda, Michal; Kulak, Andrzej; Mlynarczyk, Janusz

    2015-04-01

    Monitoring of the global lightning activity provides a very useful tool to study the global warming phenomenon and the other longer-scale climate changes induced by humans. The lightning activity is measured using various observational methods form space (optical satellite observations) as well as from the ground mostly by VLF /LF lightning detection networks, i.e. World Wide Lightning Location Network (WWLLN) or lightning detection network (LINET) in Europe. However, the global lightning activity measurements are possible only in the ELF range. Here we examine the African thunderstorm activity center, which is the most violent and active one. In a spherical damped resonator, such as the Earth-ionosphere cavity, the electromagnetic field is described by the solution of an inhomogeneous wave equation. For such equation the general solution can be expressed by the superposition of the solutions of the homogeneous equation, describing the resonance field, and the component, which is quite strong close to the source and weakens with source-observer separation. Thus, the superposition of the standing wave field with the field of traveling waves, which supply the energy from the lighting discharges to the global resonator, is a main reason for an asymmetric shape of the observational Schumann resonance (SR) power spectra, which highly deviate from the Lorentz curves. It is possible to separate this component from the signal using the spectrum decomposition method proposed by Kułak et al. [2006]. In our approach, we apply the inverse problem solution for determining the distance of the dominant lightning source. The distances to the thunderstorm centers are calculated using the analytical models for the electromagnetic waves propagation in the Earth-ionosphere cavity. Such forms of analytic solutions of the resonant field in the spherical cavity is the zonal harmonic series representation, described by Mushtak and Williams [2002] and we calculated the sets of such curves

  8. Ultra-trace quantification method for chlordecone in human fluids and tissues.

    PubMed

    Bichon, Emmanuelle; Guiffard, Ingrid; Vénisseau, Anaïs; Marchand, Philippe; Antignac, Jean-Philippe; Le Bizec, Bruno

    2015-08-21

    Chlordecone is an organochlorine pesticide (OCP) considered as a Persistent Organic Pollutant (POP) as it persists in the environment, bio-accumulates through the food web, causes adverse effects to human health and the environment and transports across international boundaries far from its sources. The atypical physico-chemical properties of chlordecone make its inclusion in classical analytical approaches non applicable. The aim of our work was to include chlordecone in a multi organochlorine residue method preventing any degradation during the analytical process and thus allowing quantification at ppt (ngkg(-1) or ngL(-1)) levels for a wide range of OCPs in breast milk, human serum and adipose tissue. After GC-HRMS vs. MS/MS and EI vs. APCI comparisons, the major improvement in terms of sensitivity was found in decreasing the length and film thickness of the gas chromatography column. Thanks to a linear correlation between relative response and quantity of chlordecone injected, LC-(ESI-)-MS/MS was finally preferred. An acetonitrile based gradient optimized on a C30 coreshell HPLC column has led to reaching limits of quantification as low as 8ngL(-1), 25pgmL(-1) and 0.2ngg(-1) fat for breast milk, serum and adipose tissue, respectively, allowing multiresidue OCP quantification at concentration levels compatible with biomonitoring purposes and pre-requisites. PMID:26184709

  9. MPQ-cytometry: a magnetism-based method for quantification of nanoparticle-cell interactions

    NASA Astrophysics Data System (ADS)

    Shipunova, V. O.; Nikitin, M. P.; Nikitin, P. I.; Deyev, S. M.

    2016-06-01

    Precise quantification of interactions between nanoparticles and living cells is among the imperative tasks for research in nanobiotechnology, nanotoxicology and biomedicine. To meet the challenge, a rapid method called MPQ-cytometry is developed, which measures the integral non-linear response produced by magnetically labeled nanoparticles in a cell sample with an original magnetic particle quantification (MPQ) technique. MPQ-cytometry provides a sensitivity limit 0.33 ng of nanoparticles and is devoid of a background signal present in many label-based assays. Each measurement takes only a few seconds, and no complicated sample preparation or data processing is required. The capabilities of the method have been demonstrated by quantification of interactions of iron oxide nanoparticles with eukaryotic cells. The total amount of targeted nanoparticles that specifically recognized the HER2/neu oncomarker on the human cancer cell surface was successfully measured, the specificity of interaction permitting the detection of HER2/neu positive cells in a cell mixture. Moreover, it has been shown that MPQ-cytometry analysis of a HER2/neu-specific iron oxide nanoparticle interaction with six cell lines of different tissue origins quantitatively reflects the HER2/neu status of the cells. High correlation of MPQ-cytometry data with those obtained by three other commonly used in molecular and cell biology methods supports consideration of this method as a prospective alternative for both quantifying cell-bound nanoparticles and estimating the expression level of cell surface antigens. The proposed method does not require expensive sophisticated equipment or highly skilled personnel and it can be easily applied for rapid diagnostics, especially under field conditions.Precise quantification of interactions between nanoparticles and living cells is among the imperative tasks for research in nanobiotechnology, nanotoxicology and biomedicine. To meet the challenge, a rapid method

  10. Preliminary Method for Direct Quantification of Colistin Methanesulfonate by Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy

    PubMed Central

    Niece, Krista L.

    2015-01-01

    Colistin use has increased in response to the advent of infections caused by multidrug-resistant organisms. It is administered parenterally as an inactive prodrug, colistin methanesulfonate (CMS). Various formulations of CMS and labeling conventions can lead to confusion about colistin dosing, and questions remain about the pharmacokinetics of CMS. Since CMS does not have strong UV absorbance, current methods employ a laborious process of chemical conversion to colistin followed by precolumn derivatization to detect formed colistin by high-performance liquid chromatography. Here, we report a method for direct quantification of colistin methanesulfonate by attenuated total reflectance Fourier transform infrared spectroscopy (ATR FTIR). PMID:26124160

  11. Preliminary method for direct quantification of colistin methanesulfonate by attenuated total reflectance Fourier transform infrared spectroscopy.

    PubMed

    Niece, Krista L; Akers, Kevin S

    2015-09-01

    Colistin use has increased in response to the advent of infections caused by multidrug-resistant organisms. It is administered parenterally as an inactive prodrug, colistin methanesulfonate (CMS). Various formulations of CMS and labeling conventions can lead to confusion about colistin dosing, and questions remain about the pharmacokinetics of CMS. Since CMS does not have strong UV absorbance, current methods employ a laborious process of chemical conversion to colistin followed by precolumn derivatization to detect formed colistin by high-performance liquid chromatography. Here, we report a method for direct quantification of colistin methanesulfonate by attenuated total reflectance Fourier transform infrared spectroscopy (ATR FTIR).

  12. Improved quantification of pyrogenic carbon in soils and sediments by a HPLC-DAD method

    NASA Astrophysics Data System (ADS)

    Wiedemeier, D. B.; Hilf, M. D.; Smittenberg, R. H.; Schmidt, M. W. I.

    2012-04-01

    Fire-derived (pyrogenic) carbon (PyC) is produced by the incomplete combustion of biomass, for example during wildfires. It can persist in the environment for a long time due to its relative resistance against biological and chemical breakdown. Its accurate quantification in soils and sediments is of great interest because the slow turn-over of PyC has implications for the global carbon cycle and carbon budget calculations. Moreover, PyC in pedological and sedimentological records can be used to reconstruct wildfire history or to investigate historical periods like the industrialization. A whole suite of PyC quantification methods exists because PyC is not a defined chemical structure but rather a continuum of thermally altered biomass. The benzene polycarboxylic acids (BPCA) analysis is a molecular marker method that was shown to give conservative estimates of PyC quantity in soils. In addition, it yields qualitative information about the degree of aromaticity and condensation of PyC. The commonly used BPCA method consists in digesting samples with nitric acid that breaks down the PyC into a suite of BPCAs, which are cleaned, derivatized and finally analyzed by gas chromatography-flame ionization detection (GC-FID). Here, we present a modified BPCA method for soils and sediments that uses a high performance liquid chromatography system coupled to diode array detection (HPLC-DAD). We demonstrate that this method greatly enhances the reproducibility of PyC quantification in soil and sediment samples while significantly reducing analysis time. Moreover, much less sample material is needed for precise PyC quantification and we show that the HPLC-DAD method yields consistently higher PyC contents than the GC-FID method. Additionally, the modified method also facilitates δ13C and 14C measurements of the PyC fraction in these complex matrix samples. The isotopic information further improves the assessment of PyC budgets in the environment and the reconstruction of past

  13. Evaluations of Bayesian and maximum likelihood methods in PK models with below-quantification-limit data.

    PubMed

    Yang, Shuying; Roger, James

    2010-01-01

    Pharmacokinetic (PK) data often contain concentration measurements below the quantification limit (BQL). While specific values cannot be assigned to these observations, nevertheless these observed BQL data are informative and generally known to be lower than the lower limit of quantification (LLQ). Setting BQLs as missing data violates the usual missing at random (MAR) assumption applied to the statistical methods, and therefore leads to biased or less precise parameter estimation. By definition, these data lie within the interval [0, LLQ], and can be considered as censored observations. Statistical methods that handle censored data, such as maximum likelihood and Bayesian methods, are thus useful in the modelling of such data sets. The main aim of this work was to investigate the impact of the amount of BQL observations on the bias and precision of parameter estimates in population PK models (non-linear mixed effects models in general) under maximum likelihood method as implemented in SAS and NONMEM, and a Bayesian approach using Markov chain Monte Carlo (MCMC) as applied in WinBUGS. A second aim was to compare these different methods in dealing with BQL or censored data in a practical situation. The evaluation was illustrated by simulation based on a simple PK model, where a number of data sets were simulated from a one-compartment first-order elimination PK model. Several quantification limits were applied to each of the simulated data to generate data sets with certain amounts of BQL data. The average percentage of BQL ranged from 25% to 75%. Their influence on the bias and precision of all population PK model parameters such as clearance and volume distribution under each estimation approach was explored and compared.

  14. MPQ-cytometry: a magnetism-based method for quantification of nanoparticle-cell interactions.

    PubMed

    Shipunova, V O; Nikitin, M P; Nikitin, P I; Deyev, S M

    2016-07-01

    Precise quantification of interactions between nanoparticles and living cells is among the imperative tasks for research in nanobiotechnology, nanotoxicology and biomedicine. To meet the challenge, a rapid method called MPQ-cytometry is developed, which measures the integral non-linear response produced by magnetically labeled nanoparticles in a cell sample with an original magnetic particle quantification (MPQ) technique. MPQ-cytometry provides a sensitivity limit 0.33 ng of nanoparticles and is devoid of a background signal present in many label-based assays. Each measurement takes only a few seconds, and no complicated sample preparation or data processing is required. The capabilities of the method have been demonstrated by quantification of interactions of iron oxide nanoparticles with eukaryotic cells. The total amount of targeted nanoparticles that specifically recognized the HER2/neu oncomarker on the human cancer cell surface was successfully measured, the specificity of interaction permitting the detection of HER2/neu positive cells in a cell mixture. Moreover, it has been shown that MPQ-cytometry analysis of a HER2/neu-specific iron oxide nanoparticle interaction with six cell lines of different tissue origins quantitatively reflects the HER2/neu status of the cells. High correlation of MPQ-cytometry data with those obtained by three other commonly used in molecular and cell biology methods supports consideration of this method as a prospective alternative for both quantifying cell-bound nanoparticles and estimating the expression level of cell surface antigens. The proposed method does not require expensive sophisticated equipment or highly skilled personnel and it can be easily applied for rapid diagnostics, especially under field conditions.

  15. Optical factors determined by the T-matrix method in turbidity measurement of absolute coagulation rate constants.

    PubMed

    Xu, Shenghua; Liu, Jie; Sun, Zhiwei

    2006-12-01

    Turbidity measurement for the absolute coagulation rate constants of suspensions has been extensively adopted because of its simplicity and easy implementation. A key factor in deriving the rate constant from experimental data is how to theoretically evaluate the so-called optical factor involved in calculating the extinction cross section of doublets formed during aggregation. In a previous paper, we have shown that compared with other theoretical approaches, the T-matrix method provides a robust solution to this problem and is effective in extending the applicability range of the turbidity methodology, as well as increasing measurement accuracy. This paper will provide a more comprehensive discussion of the physical insight for using the T-matrix method in turbidity measurement and associated technical details. In particular, the importance of ensuring the correct value for the refractive indices for colloidal particles and the surrounding medium used in the calculation is addressed, because the indices generally vary with the wavelength of the incident light. The comparison of calculated results with experiments shows that the T-matrix method can correctly calculate optical factors even for large particles, whereas other existing theories cannot. In addition, the data of the optical factor calculated by the T-matrix method for a range of particle radii and incident light wavelengths are listed.

  16. A new method for the absolute radiance calibration for UV/vis measurements of scattered sun light

    NASA Astrophysics Data System (ADS)

    Wagner, T.; Beirle, S.; Dörner, S.; Penning de Vries, M.; Remmers, J.; Rozanov, A.; Shaiganfar, R.

    2015-05-01

    Absolute radiometric calibrations are important for measurements of the atmospheric spectral radiance. Such measurements can be used to determine actinic fluxes, the properties of aerosols and clouds and the short wave energy budget. Conventional calibration methods in the laboratory are based on calibrated light sources and reflectors and are expensive, time consuming and subject to relatively large uncertainties. Also, the calibrated instruments might change during transport from the laboratory to the measurement sites. Here we present a new calibration method for UV/vis instruments that measure the spectrally resolved sky radiance, like for example zenith sky Differential Optical Absorption Spectroscopy (DOAS-) instruments or Multi-AXis (MAX-) DOAS instruments. Our method is based on the comparison of the solar zenith angle dependence of the measured zenith sky radiance with radiative transfer simulations. For the application of our method clear sky measurements during periods with almost constant aerosol optical depth are needed. The radiative transfer simulations have to take polarisation into account. We show that the calibration results are almost independent from the knowledge of the aerosol optical properties and surface albedo, which causes a rather small uncertainty of about <7%. For wavelengths below about 330 nm it is essential that the ozone column density during the measurements is constant and known.

  17. Susceptibility and size quantification of small human veins from an MRI method.

    PubMed

    Hsieh, Ching-Yi; Cheng, Yu-Chung N; Xie, He; Haacke, E Mark; Neelavalli, Jaladhar

    2015-12-01

    Recently a method called CISSCO (Complex Image Summation around a Spherical or a Cylindrical Object) was introduced for accurately quantifying the susceptibility and the radius of any narrow cylindrical object at any orientation using a typical two-echo gradient echo sequence. This work further optimizes the method for quantifying oxygen saturation in small cerebral veins in the human brain. The revised method is first validated through numerical simulations and then applied to data from phantom and human brain. The effect of phase high pass filtering on the quantified parameters is studied and procedures for mitigating its adverse effects are suggested. Uncertainty of each measurement is estimated from the error propagation method. It is shown that the revised method allows for accurate quantification of both the vessel size and its oxygen saturation even in the case of a low SNR (signal to noise ratio) in the vein. The results are self consistent across different veins within a given subject with a variation of less than 6%. Finally, imaging parameters and some procedures are suggested for accurate susceptibility and radius quantifications of small human veins. PMID:26248271

  18. A rapid HPLC method for indirect quantification of β-lactamase activity in milk.

    PubMed

    Zhou, Shuang; Wang, Dan; Zhao, Yunfeng; Wu, Yongning

    2015-04-01

    To circumvent the strictly regulated limits of antibiotics in milk, illegal addition of β-lactamase to lower the antibiotic levels in milk has been reported recently in China. Herein, we describe a fast, sensitive, and robust HPLC-UV method for the determination of β-lactamase activity in milk, based on an indirect quantification strategy. The test milk sample was mixed with a known amount of penicillin G, a specific substrate of β-lactamase. After incubation, an aliquot of the mixture was injected into the HPLC-UV system to quantify the remaining penicillin G in less than 10 min. Comparative analysis of the amount of penicillin G before and after incubation was used to indirectly deduce the activity of β-lactamase in the test sample. This method was successfully applied to milk products with different fat percentages, resulting in a detection limit of 0.6 U/mL. Good recoveries, ranging from 94 to 105%, were obtained from blank milk samples spiked with β-lactamase at levels of 2 to 50 U/mL, with relative standard deviations <6%. A good correlation was demonstrated between the HPLC method and the conventional culture-based assay. Using this method, the activity changes in β-lactamase during milk pasteurization, sterilization, and storage were investigated. The advantages of low-cost, accurate quantification and easily accessible instrumentation make the proposed method an ideal alternative for high-throughput routine analysis in the dairy industry.

  19. Voxel-wise quantification of myocardial perfusion by cardiac magnetic resonance. Feasibility and methods comparison.

    PubMed

    Zarinabad, Niloufar; Chiribiri, Amedeo; Hautvast, Gilion L T F; Ishida, Masaki; Schuster, Andreas; Cvetkovic, Zoran; Batchelor, Philip G; Nagel, Eike

    2012-12-01

    The purpose of this study is to enable high spatial resolution voxel-wise quantitative analysis of myocardial perfusion in dynamic contrast-enhanced cardiovascular MR, in particular by finding the most favorable quantification algorithm in this context. Four deconvolution algorithms--Fermi function modeling, deconvolution using B-spline basis, deconvolution using exponential basis, and autoregressive moving average modeling--were tested to calculate voxel-wise perfusion estimates. The algorithms were developed on synthetic data and validated against a true gold-standard using a hardware perfusion phantom. The accuracy of each method was assessed for different levels of spatial averaging and perfusion rate. Finally, voxel-wise analysis was used to generate high resolution perfusion maps on real data acquired from five patients with suspected coronary artery disease and two healthy volunteers. On both synthetic and perfusion phantom data, the B-spline method had the highest error in estimation of myocardial blood flow. The autoregressive moving average modeling and exponential methods gave accurate estimates of myocardial blood flow. The Fermi model was the most robust method to noise. Both simulations and maps in the patients and hardware phantom showed that voxel-wise quantification of myocardium perfusion is feasible and can be used to detect abnormal regions.

  20. A stable isotope dilution LC-ESI-MS/MS method for the quantification of pyridoxal-5'-phosphate in whole blood.

    PubMed

    van Zelst, Bertrand D; de Jonge, Robert

    2012-08-15

    Vitamin B6 is a cofactor in numerous biologic processes that include gluconeogenesis, neurotransmitter synthesis and amino acid metabolism. The aim of this study was to develop a method to measure the concentration of the biologically active form of vitamin B6 (pyridoxal-5'-phosphate, PLP) in whole blood with stable isotope dilution LC-ESI-MS/MS and compare this new procedure with an established HPLC method based on derivatization of pyridoxal-5'-phosphate. 50 μl of stable isotope (PLP-d3) was added to 250 μl of sample, followed by deproteinization with 10% trichloroacetic acid. After centrifugation, 20 μl of the supernatant was injected into the LC-ESI-MS/MS. Reversed phase chromatography was performed on a UPLC system, using a Waters™ Symmetry C18 column, with a gradient of 0.1% formic acid in methanol. PLP was measured on a tandem MS with a mass transition of 247.8>149.8 in the positive ion mode with a collision energy of 14 eV. The chromatographic run lasted 4 min. The method was linear from 4 to 8000 nmol/l. The intra-day and inter-day precision ranged between 1.7-2.8% and 3.0-4.1%, respectively. The mean absolute matrix-effect was 99.3% [97-102%]. The relative matrix-effect was 98.8%. The mean recovery was 98% [89-103%]. The lower limit of quantification was 4 nmol/l. The comparison of the LC-ESI-MS/MS method with our current HPLC method yielded the following equation: LC-ESI-MS/MS=1.11 [confidence interval, CI: 1.03-1.20] × HPLC+4.6 [CI: -1.3 to 11.0] (r²=0.94). This LC-ESI-MS/MS based method is characterized by simple sample processing and a short run time. The comparison with the current HPLC method is excellent although a significant proportional bias was detected. To conclude, the LC-ESI-MS/MS method is an appropriate method to determine PLP in whole blood.

  1. Automated measurement and quantification of heterotrophic bacteria in water samples based on the MPN method.

    PubMed

    Fuchsluger, C; Preims, M; Fritz, I

    2011-01-01

    Quantification of heterotrophic bacteria is a widely used measure for water analysis. Especially in terms of drinking water analysis, testing for microorganisms is strictly regulated by the European Drinking Water Directive, including quality criteria and detection limits. The quantification procedure presented in this study is based on the most probable number (MPN) method, which was adapted to comply with the need for a quick and easy screening tool for different kinds of water samples as well as varying microbial loads. Replacing tubes with 24-well titer plates for cultivation of bacteria drastically reduces the amount of culture media and also simplifies incubation. Automated photometric measurement of turbidity instead of visual evaluation of bacterial growth avoids misinterpretation by operators. Definition of a threshold ensures definite and user-independent determination of microbial growth. Calculation of the MPN itself is done using a program provided by the US Food and Drug Administration (FDA). For evaluation of the method, real water samples of different origins as well as pure cultures of bacteria were analyzed in parallel with the conventional plating methods. Thus, the procedure described requires less preparation time, reduces costs and ensures both stable and reliable results for water samples. PMID:20835882

  2. Quantification method for the appearance of melanin pigmentation using independent component analysis

    NASA Astrophysics Data System (ADS)

    Ojima, Nobutoshi; Okiyama, Natsuko; Okaguchi, Saya; Tsumura, Norimichi; Nakaguchi, Toshiya; Hori, Kimihiko; Miyake, Yoichi

    2005-04-01

    In the cosmetics industry, skin color is very important because skin color gives a direct impression of the face. In particular, many people suffer from melanin pigmentation such as liver spots and freckles. However, it is very difficult to evaluate melanin pigmentation using conventional colorimetric values because these values contain information on various skin chromophores simultaneously. Therefore, it is necessary to extract information of the chromophore of individual skins independently as density information. The isolation of the melanin component image based on independent component analysis (ICA) from a single skin image was reported in 2003. However, this technique has not developed a quantification method for melanin pigmentation. This paper introduces a quantification method based on the ICA of a skin color image to isolate melanin pigmentation. The image acquisition system we used consists of commercially available equipment such as digital cameras and lighting sources with polarized light. The images taken were analyzed using ICA to extract the melanin component images, and Laplacian of Gaussian (LOG) filter was applied to extract the pigmented area. As a result, for skin images including those showing melanin pigmentation and acne, the method worked well. Finally, the total amount of extracted area had a strong correspondence to the subjective rating values for the appearance of pigmentation. Further analysis is needed to recognize the appearance of pigmentation concerning the size of the pigmented area and its spatial gradation.

  3. Quantification of sugars in wheat flours with an HPAEC-PAD method.

    PubMed

    Pico, Joana; Martínez, Mario M; Martín, M Teresa; Gómez, Manuel

    2015-04-15

    An HPAEC-PAD method has been developed and validated for the simultaneous determination and quantification of six sugars (glucose, isomaltose, maltose, maltotriose, maltotetraose and maltopentaose) in wheat flours, by extraction with water and precipitation of proteins with Carrez II. Analyses were carried out on a Hamilton RCX-30 column with a gradient elution of NaOH 50mM (A) and NaOH 50mM+NaAcO 500 mM (B). Total run time was 38 min. Detector conditions were as follows: E1, +100 mV; E2, +550 mV; E3, -100 mV. The method was validated, with LODs ranging between 0.03-0.21 mg L(-1) and LOQs between 0.10-0.71 mg L(-1), R(2) between 0.9941 and 0.9983; recoveries were from 74.16% to 110.86% and RSDs for intraday repeatability, interday repeatability and reproducibility between 0.35-8.34%, 2.34-6.64% and 1.90-5.68%, respectively. The method was successfully applied to quantification of these sugars in wheat flours.

  4. A novel method for the quantification of quinic acid in food using stable isotope dilution analysis.

    PubMed

    Erk, Thomas; Bergmann, Hannah; Richling, Elke

    2009-01-01

    Organic acids play an important role in the flavor and taste of plant-derived foods. Quinic acid (QA) is one of the major acids. In the past, several methods like HPLC/UV, GC, and capillary electrophoresis were used for identification and quantification of QA. For the first time, a novel, sensitive, and selective method for the quantification of QA in food using stable isotope dilution analysis with HPLC/MS/MS has been established. Uniformly labeled 13C-QA was used as a standard to reduce sample preparations and to overcome matrix and ionization effects. The method was used to determine the QA content of red wines, instant coffees, and cloudy apple juices. QA contents of instant coffees were 64.4 and 63.6 g/kg powder. The concentrations in red wines were 24.0 and 25.1 mg/L, and 1493.3 and 1705.2 mg/L in cloudy apple juices.

  5. A high throughput method for quantification of cell surface bound and internalized chitosan nanoparticles.

    PubMed

    Tammam, Salma N; Azzazy, Hassan M E; Lamprecht, Alf

    2015-11-01

    Chitosan has become a popular polymer for drug delivery. It's hydro solubility and mild formulation conditions have made it an attractive polymer for macromolecular delivery. Accurate quantification of internalized chitosan nanoparticles (NPs) is imperative for fair assessment of the nano-formulation where it is important to determine the exact amount of drug actually being delivered into the cell, especially for macromolecular drugs where cellular entry is limited by molecule size and/or charge. The preferential affinity of wheat germ agglutinin tagged with fluorescein isothiocyanate (WGA-FITC) to chitosan is exploited in the development of a simple and rapid method for the differentiation between and quantification of cell surface bound and internalized chitosan NPs. The percentage of cell surface bound NPs could be easily determined and corrected NP uptake could be calculated accordingly. The developed method is applicable in several cell lines and has successfully been tested with NPs with different sizes (25 and 150nm) and with very low NP concentrations (20μg/mL). The method will allow for the correct evaluation of chitosan NP uptake and could be further used to evaluate chitosan based nanomedicine and provide guidelines on how to modify NPs for enhanced internalization, and improved drug delivery.

  6. A simple identification method for vaginal secretions using relative quantification of Lactobacillus DNA.

    PubMed

    Doi, Masanori; Gamo, Shinsuke; Okiura, Tatsuyuki; Nishimukai, Hiroaki; Asano, Migiwa

    2014-09-01

    In criminal investigations there are some cases in which identifying the presence of vaginal secretions provides crucial evidence in proving sexual assault. However, there are no methods for definitively identifying vaginal secretions. In the present study, we focused on Lactobacillus levels in vaginal secretions and developed a novel identification method for vaginal secretions by relative quantification based on real time PCR. We designed a Lactobacillus conserved region primer pair (LCP) by aligning 16S rRNA gene sequences from major vaginal Lactobacillus species (Lactobacillus crispatus, Lactobacillus gasseri, Lactobacillus iners and Lactobacillus jensenii), and selected the human specific primer pair (HSP) as an endogenous control for relative quantification. As a result, the ΔCt (ΔCt=Ct[LCP]-Ct[HSP]) values of vaginal secretions (11 out of 12 samples) were significantly lower than those of saliva, semen and skin surface samples, and it was possible to discriminate between vaginal secretions and other body fluids. For the one remaining sample, it was confirmed that the predominant species in the microflora was not of the Lactobacillus genus. The ΔCt values in this study were calculated when the total DNA input used from the vaginal secretions was 10pg or more. Additionally, the ΔCt values of samples up to 6-months-old, which were kept at room temperature, remained unchanged. Thus, we concluded in this study that the simple ΔCt method by real time PCR is a useful tool for detecting the presence of vaginal secretions.

  7. Flow Cytometric Methods for Indirect Analysis and Quantification of Gametogenesis in Chlamydomonas reinhardtii (Chlorophyceae)

    PubMed Central

    Tomkins, Joseph L.

    2016-01-01

    Induction of sexual reproduction in the facultatively sexual Chlamydomonas reinhardtii is cued by depletion of nitrogen. We explore the capacity for indirect monitoring of population variation in the gametogenic process using flow cytometry. We describe a high-throughput method capable of identifying fluorescence, ploidy and scatter profiles that track vegetative cells entering and undergoing gametogenesis. We demonstrate for the first time, that very early and late growth phases reduce the capacity to distinguish putative gametes from vegetative cells based on scatter and fluorescence profiles, and that early/mid-logarithmic cultures show the optimal distinction between vegetative cells and gamete scatter profiles. We argue that early/mid logarithmic cultures are valuable in such high throughput comparative approaches when investigating optimisation or quantification of gametogenesis based on scatter and fluorescence profiles. This approach provides new insights into the impact of culture conditions on gametogenesis, while documenting novel scatter and fluorescence profile shifts which typify the process. This method has potential applications to; enabling quick high-throughput monitoring, uses in increasing efficiency in the quantification of gametogenesis, as a method of comparing the switch between vegetative and gametic states across treatments, and as criteria for enrichment of gametic phenotypes in cell sorting assays. PMID:27676075

  8. A comparison of conventional methods for the quantification of bacterial cells after exposure to metal oxide nanoparticles

    PubMed Central

    2014-01-01

    Background Due to potential interference of nanoparticles on bacterial quantification, there is a challenge to develop a fast, accurate and reproducible method for bacterial quantification. Currently various bacterial quantification methods are used by researchers performing nanoparticles study, but there has been no efficacy evaluation of these methods. Here we study interference of nanoparticles on three most commonly used conventional bacterial quantification methods, including colony counting to determine the colony-forming units (CFU), spectrophotometer method of optical density (OD) measurement, and flow cytometry (FCM). Results Three oxide nanoparticles including ZnO, TiO2, and SiO2 and four bacterial species including Salmonella enterica serovar Newport, Staphylococcus epidermidis, Enterococcus faecalis, and Escherichia coli were included in the test. Results showed that there is no apparent interference of the oxide nanoparticles on quantifications of all four bacterial species by FCM measurement; CFU counting is time consuming, less accurate and not suitable for automation; and the spectrophotometer method using OD measurement was the most unreliable method to quantify and detect the bacteria in the presence of the nanoparticles. Conclusion In summary, FCM measurement proved to be the best method, which is suitable for rapid, accurate and automatic detection of bacteria in the presence of the nanoparticles. PMID:25138641

  9. Emphysema quantification from CT scans using novel application of diaphragm curvature estimation: comparison with standard quantification methods and pulmonary function data

    NASA Astrophysics Data System (ADS)

    Keller, Brad M.; Reeves, Anthony P.; Yankelevitz, David F.; Henschke, Claudia I.; Barr, R. Graham

    2009-02-01

    Emphysema is a disease of the lungs that destroys the alveolar air sacs and induces long-term respiratory dysfunction. CT scans allow for the imaging of the anatomical basis of emphysema and quantification of the underlying disease state. Several measures have been introduced for the quantification emphysema directly from CT data; most,however, are based on the analysis of density information provided by the CT scans, which vary by scanner and can be hard to standardize across sites and time. Given that one of the anatomical variations associated with the progression of emphysema is the flatting of the diaphragm due to the loss of elasticity in the lung parenchyma, curvature analysis of the diaphragm would provide information about emphysema from CT. Therefore, we propose a new, non-density based measure of the curvature of the diaphragm that would allow for further quantification methods in a robust manner. To evaluate the new method, 24 whole-lung scans were analyzed using the ratios of the lung height and diaphragm width to diaphragm height as curvature estimates as well as using the emphysema index as comparison. Pearson correlation coefficients showed a strong trend of several of the proposed diaphragm curvature measures to have higher correlations, of up to r=0.57, with DLCO% and VA than did the emphysema index. Furthermore, we found emphysema index to have only a 0.27 correlation to the proposed measures, indicating that the proposed measures evaluate different aspects of the disease.

  10. Effect of various methods for rectum delineation on relative and absolute dose-volume histograms for prostate IMRT treatment planning.

    PubMed

    Kusumoto, Chiaki; Ohira, Shingo; Miyazaki, Masayoshi; Ueda, Yoshihiro; Isono, Masaru; Teshima, Teruki

    2016-01-01

    Several reports have dealt with correlations of late rectal toxicity with rectal dose-volume histograms (DVHs) for high dose levels. There are 2 techniques to assess rectal volume for reception of a specific dose: relative-DVH (R-DVH, %) that indicates relative volume for a vertical axis, and absolute-DVH (A-DVH, cc) with its vertical axis showing absolute volume of the rectum. The parameters of DVH vary depending on the rectum delineation method, but the literature does not present any standardization of such methods. The aim of the present study was to evaluate the effects of different delineation methods on rectal DVHs. The enrollment for this study comprised 28 patients with high-risk localized prostate cancer, who had undergone intensity-modulated radiation therapy (IMRT) with the prescription dose of 78Gy. The rectum was contoured with 4 different methods using 2 lengths, short (Sh) and long (Lg), and 2 cross sections, rectum (Rec) and rectal wall (Rw). Sh means the length from 1cm above the seminal vesicles to 1cm below the prostate and Lg the length from the rectosigmoid junction to the anus. Rec represents the entire rectal volume including the rectal contents and Rw the rectal volume of the area with a wall thickness of 4mm. We compared dose-volume parameters by using 4 rectal contour methods for the same plan with the R-DVHs as well as the A-DVHs. For the high dose levels, the R-DVH parameters varied widely. The mean of V70 for Sh-Rw was the highest (19.4%) and nearly twice as high as that for Lg-Rec (10.4%). On the contrary, only small variations were observed in the A-DVH parameters (4.3, 4.3, 5.5, and 5.5cc for Sh-Rw, Lg-Rw, Sh-Rec, and Lg-Rec, respectively). As for R-DVHs, the parameters of V70 varied depending on the rectal lengths (Sh-Rec vs Lg-Rec: R = 0.76; Sh-Rw vs Lg-Rw: R = 0.85) and cross sections (Sh-Rec vs Sh-Rw: R = 0.49; Lg-Rec vs Lg-Rw: R = 0.65). For A-DVHs, however, the parameters of Sh rectal A-DVHs hardly changed regardless of

  11. The parallel reaction monitoring method contributes to a highly sensitive polyubiquitin chain quantification

    SciTech Connect

    Tsuchiya, Hikaru; Tanaka, Keiji Saeki, Yasushi

    2013-06-28

    Highlights: •The parallel reaction monitoring method was applied to ubiquitin quantification. •The ubiquitin PRM method is highly sensitive even in biological samples. •Using the method, we revealed that Ufd4 assembles the K29-linked ubiquitin chain. -- Abstract: Ubiquitylation is an essential posttranslational protein modification that is implicated in a diverse array of cellular functions. Although cells contain eight structurally distinct types of polyubiquitin chains, detailed function of several chain types including K29-linked chains has remained largely unclear. Current mass spectrometry (MS)-based quantification methods are highly inefficient for low abundant atypical chains, such as K29- and M1-linked chains, in complex mixtures that typically contain highly abundant proteins. In this study, we applied parallel reaction monitoring (PRM), a quantitative, high-resolution MS method, to quantify ubiquitin chains. The ubiquitin PRM method allows us to quantify 100 attomole amounts of all possible ubiquitin chains in cell extracts. Furthermore, we quantified ubiquitylation levels of ubiquitin-proline-β-galactosidase (Ub-P-βgal), a historically known model substrate of the ubiquitin fusion degradation (UFD) pathway. In wild-type cells, Ub-P-βgal is modified with ubiquitin chains consisting of 21% K29- and 78% K48-linked chains. In contrast, K29-linked chains are not detected in UFD4 knockout cells, suggesting that Ufd4 assembles the K29-linked ubiquitin chain(s) on Ub-P-βgal in vivo. Thus, the ubiquitin PRM is a novel, useful, quantitative method for analyzing the highly complicated ubiquitin system.

  12. Effect of platform, reference material, and quantification model on enumeration of Enterococcus by quantitative PCR methods.

    PubMed

    Cao, Yiping; Sivaganesan, Mano; Kinzelman, Julie; Blackwood, A Denene; Noble, Rachel T; Haugland, Richard A; Griffith, John F; Weisberg, Stephen B

    2013-01-01

    Quantitative polymerase chain reaction (qPCR) is increasingly being used for the quantitative detection of fecal indicator bacteria in beach water. QPCR allows for same-day health warnings, and its application is being considered as an option for recreational water quality testing in the United States (USEPA, 2011. EPA-OW-2011-0466, FRL-9609-3, Notice of Availability of Draft Recreational Water Quality Criteria and Request for Scientific Views). However, transition of qPCR from a research tool to routine water quality testing requires information on how various method variations affect target enumeration. Here we compared qPCR performance and enumeration of enterococci in spiked and environmental water samples using three qPCR platforms (Applied Biosystem StepOnePlus™, the BioRad iQ™5 and the Cepheid SmartCycler(®) II), two reference materials (lyophilized cells and frozen cells on filters) and two comparative CT quantification models (ΔCT and ΔΔCT). Reference materials exerted the biggest influence, consistently affecting results by approximately 0.5 log(10) unit. Platform had the smallest effect, generally exerting <0.1 log(10) unit difference in final results. Quantification model led to small differences (0.04-0.2 log(10) unit) in this study with relatively uninhibited samples, but has the potential to cause as much as 8-fold (0.9 log(10) unit) difference in potentially inhibitory samples. Our findings indicate the need for a certified and centralized source of reference materials and additional studies to assess applicability of the quantification models in analyses of PCR inhibitory samples.

  13. Application of Photothermal Methods for Quantification of Carotenoids in Apricot Jams

    NASA Astrophysics Data System (ADS)

    Dóka, O.; Bicanic, D.; Stéger-Máté, M.; Végvári, Gy.

    2015-09-01

    Carotenes, found in a diversity of fruit-containing foods, are important sources of antioxidants; a good example is apricot jam. In the study described in this paper, both the total carotenoid content ( TCC) as well as the content of \\upbeta -carotene in six different apricot jams were quantified using traditional (UV-VIS) spectrophotometry (SP), high-performance liquid chromatography (HPLC), laser photoacoustic spectroscopy (LPAS), and the optothermal window (OW) method. Unlike SP and HPLC, LPAS and the OW methods require the minimum of sample preparation and only a one time calibration step which enables practically direct quantification of the TCC. Results were verified versus data obtained with SP as the reference technique. It was shown that LPAS and the OW method (at 473 nm) provide satisfactory results with R2=0.9884 and 0.9766 for LPAS and OW, respectively.

  14. HUMAN ERROR QUANTIFICATION USING PERFORMANCE SHAPING FACTORS IN THE SPAR-H METHOD

    SciTech Connect

    Harold S. Blackman; David I. Gertman; Ronald L. Boring

    2008-09-01

    This paper describes a cognitively based human reliability analysis (HRA) quantification technique for estimating the human error probabilities (HEPs) associated with operator and crew actions at nuclear power plants. The method described here, Standardized Plant Analysis Risk-Human Reliability Analysis (SPAR-H) method, was developed to aid in characterizing and quantifying human performance at nuclear power plants. The intent was to develop a defensible method that would consider all factors that may influence performance. In the SPAR-H approach, calculation of HEP rates is especially straightforward, starting with pre-defined nominal error rates for cognitive vs. action-oriented tasks, and incorporating performance shaping factor multipliers upon those nominal error rates.

  15. APR1400 LBLOCA uncertainty quantification by Monte Carlo method and comparison with Wilks' formula

    SciTech Connect

    Hwang, M.; Bae, S.; Chung, B. D.

    2012-07-01

    An analysis of the uncertainty quantification for the PWR LBLOCA by the Monte Carlo calculation has been performed and compared with the tolerance level determined by Wilks' formula. The uncertainty range and distribution of each input parameter associated with the LBLOCA accident were determined by the PIRT results from the BEMUSE project. The Monte-Carlo method shows that the 95. percentile PCT value can be obtained reliably with a 95% confidence level using the Wilks' formula. The extra margin by the Wilks' formula over the true 95. percentile PCT by the Monte-Carlo method was rather large. Even using the 3 rd order formula, the calculated value using the Wilks' formula is nearly 100 K over the true value. It is shown that, with the ever increasing computational capability, the Monte-Carlo method is accessible for the nuclear power plant safety analysis within a realistic time frame. (authors)

  16. Comparison of methods for the quantification of the different carbon fractions in atmospheric aerosol samples

    NASA Astrophysics Data System (ADS)

    Nunes, Teresa; Mirante, Fátima; Almeida, Elza; Pio, Casimiro

    2010-05-01

    Atmospheric carbon consists of: organic carbon (OC, including various organic compounds), elemental carbon (EC, or black carbon [BC]/soot, a non-volatile/light-absorbing carbon), and a small quantity of carbonate carbon. Thermal/optical methods (TOM) have been widely used for quantifying total carbon (TC), OC, and EC in ambient and source particulate samples. Unfortunately, the different thermal evolution protocols in use can result in a wide elemental carbon-to-total carbon variation. Temperature evolution in thermal carbon analysis is critical to the allocation of carbon fractions. Another critical point in OC and EC quantification by TOM is the interference of carbonate carbon (CC) that could be present in the particulate samples, mainly in the coarse fraction of atmospheric aerosol. One of the methods used to minimize this interference consists on the use of a sample pre-treatment with acid to eliminate CC prior to thermal analysis (Chow et al., 2001; Pio et al., 1994). In Europe, there is currently no standard procedure for determining the carbonaceous aerosol fraction, which implies that data from different laboratories at various sites are of unknown accuracy and cannot be considered comparable. In the framework of the EU-project EUSAAR, a comprehensive study has been carried out to identify the causes of differences in the EC measured using different thermal evolution protocols. From this study an optimised protocol, the EUSAAR-2 protocol, was defined (Cavali et al., 2009). During the last two decades thousands of aerosol samples have been taken over quartz filters at urban, industrial, rural and background sites, and also from plume forest fires and biomass burning in a domestic closed stove. These samples were analysed for OC and EC, by a TOM, similar to that in use in the IMPROVE network (Pio et al., 2007). More recently we reduced the number of steps in thermal evolution protocols, without significant repercussions in the OC/EC quantifications. In order

  17. Freshwater phytoplankton quantification by chlorophyll a: a comparative study of in vitro, in vivo and in situ methods.

    PubMed

    Gregor, J; Marsálek, B

    2004-02-01

    Standard ISO method for chlorophyll a quantification (extraction into ethanol, spectrophotometrical quantification at 665 and 750 nm), spectrofluorometry (reader for 96 wells, excitation 410 nm, emission 670 nm), and a submersible fluorescence probe for in situ phytoplankton quantification (excitation 410, 525, 570, 590, and 610 nm, emission 685 nm) were compared in different freshwater environments-reservoirs and rivers. The ISO method is accepted as a standard method but requires sample handling and transport to the laboratory. Spectrofluorometry is a sensitive method, even for natural phytoplankton populations. Nevertheless, it cannot be recommended for the quantification of cyanobacterial water blooms because colonial and filamentous species such as Microcystis, Anabaena, or Aphanizomenon display unacceptable variability (18-33%). The submersible probe featured high correlation with a standard ISO method (r=0.97, P<0.05). This probe can provide the selective measurement of technologically important phytoplankton groups like cyanobacteria, diatoms, green algae, and cryptophytes in lake vertical profiles of up to 100 m. The limitation of this instrument is the possible reabsorption of the light signal, e.g. in the presence of humic substances, or dense algal blooms. The use of submersible probes for in situ phytoplankton quantification can be recommended as a sensitive tool for water management, especially in the case of drinking water resources.

  18. Flow cytometry for intracellular SPION quantification: specificity and sensitivity in comparison with spectroscopic methods

    PubMed Central

    Friedrich, Ralf P; Janko, Christina; Poettler, Marina; Tripal, Philipp; Zaloga, Jan; Cicha, Iwona; Dürr, Stephan; Nowak, Johannes; Odenbach, Stefan; Slabu, Ioana; Liebl, Maik; Trahms, Lutz; Stapf, Marcus; Hilger, Ingrid; Lyer, Stefan; Alexiou, Christoph

    2015-01-01

    Due to their special physicochemical properties, iron nanoparticles offer new promising possibilities for biomedical applications. For bench to bedside translation of super-paramagnetic iron oxide nanoparticles (SPIONs), safety issues have to be comprehensively clarified. To understand concentration-dependent nanoparticle-mediated toxicity, the exact quantification of intracellular SPIONs by reliable methods is of great importance. In the present study, we compared three different SPION quantification methods (ultraviolet spectrophotometry, magnetic particle spectroscopy, atomic adsorption spectroscopy) and discussed the shortcomings and advantages of each method. Moreover, we used those results to evaluate the possibility to use flow cytometric technique to determine the cellular SPION content. For this purpose, we correlated the side scatter data received from flow cytometry with the actual cellular SPION amount. We showed that flow cytometry provides a rapid and reliable method to assess the cellular SPION content. Our data also demonstrate that internalization of iron oxide nanoparticles in human umbilical vein endothelial cells is strongly dependent to the SPION type and results in a dose-dependent increase of toxicity. Thus, treatment with lauric acid-coated SPIONs (SEONLA) resulted in a significant increase in the intensity of side scatter and toxicity, whereas SEONLA with an additional protein corona formed by bovine serum albumin (SEONLA-BSA) and commercially available Rienso® particles showed only a minimal increase in both side scatter intensity and cellular toxicity. The increase in side scatter was in accordance with the measurements for SPION content by the atomic adsorption spectroscopy reference method. In summary, our data show that flow cytometry analysis can be used for estimation of uptake of SPIONs by mammalian cells and provides a fast tool for scientists to evaluate the safety of nanoparticle products. PMID:26170658

  19. Flow cytometry for intracellular SPION quantification: specificity and sensitivity in comparison with spectroscopic methods.

    PubMed

    Friedrich, Ralf P; Janko, Christina; Poettler, Marina; Tripal, Philipp; Zaloga, Jan; Cicha, Iwona; Dürr, Stephan; Nowak, Johannes; Odenbach, Stefan; Slabu, Ioana; Liebl, Maik; Trahms, Lutz; Stapf, Marcus; Hilger, Ingrid; Lyer, Stefan; Alexiou, Christoph

    2015-01-01

    Due to their special physicochemical properties, iron nanoparticles offer new promising possibilities for biomedical applications. For bench to bedside translation of super-paramagnetic iron oxide nanoparticles (SPIONs), safety issues have to be comprehensively clarified. To understand concentration-dependent nanoparticle-mediated toxicity, the exact quantification of intracellular SPIONs by reliable methods is of great importance. In the present study, we compared three different SPION quantification methods (ultraviolet spectrophotometry, magnetic particle spectroscopy, atomic adsorption spectroscopy) and discussed the shortcomings and advantages of each method. Moreover, we used those results to evaluate the possibility to use flow cytometric technique to determine the cellular SPION content. For this purpose, we correlated the side scatter data received from flow cytometry with the actual cellular SPION amount. We showed that flow cytometry provides a rapid and reliable method to assess the cellular SPION content. Our data also demonstrate that internalization of iron oxide nanoparticles in human umbilical vein endothelial cells is strongly dependent to the SPION type and results in a dose-dependent increase of toxicity. Thus, treatment with lauric acid-coated SPIONs (SEON(LA)) resulted in a significant increase in the intensity of side scatter and toxicity, whereas SEON(LA) with an additional protein corona formed by bovine serum albumin (SEON(LA-BSA)) and commercially available Rienso(®) particles showed only a minimal increase in both side scatter intensity and cellular toxicity. The increase in side scatter was in accordance with the measurements for SPION content by the atomic adsorption spectroscopy reference method. In summary, our data show that flow cytometry analysis can be used for estimation of uptake of SPIONs by mammalian cells and provides a fast tool for scientists to evaluate the safety of nanoparticle products. PMID:26170658

  20. Development and validation of a specific and sensitive HPLC-ESI-MS method for quantification of lysophosphatidylinositols and evaluation of their levels in mice tissues.

    PubMed

    Masquelier, Julien; Muccioli, Giulio G

    2016-07-15

    Increasing evidence suggests that lysophosphatidylinositols (LPIs), a subspecies of lysophospholipids, are important endogenous mediators. Although LPIs long remained among the less studied lysophospholipids, the identification of GPR55 as their molecular target sparked a renewed interest in the study of these bioactive lipids. Furthermore, increasing evidence points towards a role for LPIs in cancer development. However, a better understanding of the role and functions of LPIs in physiology and disease requires methods that allow for the quantification of LPI levels in cells and tissues. Because dedicated efficient methods for quantifying LPIs were missing, we decided to develop and validate an HPLC-ESI-MS method for the quantification of LPI species from tissues. LPIs are extracted from tissues by liquid/liquid extraction, pre-purified by solid-phase extraction, and finally analyzed by HPLC-ESI-MS. We determined the method's specificity and selectivity, we established calibration curves, determined the carry over (< 2%), LOD and LLOQ (between 0.116-7.82 and 4.62-92.5pmol on column, respectively), linearity (0.988 80%), intermediate precision (CV<20%) as well as the recovery from tissues. We then applied the method to determine the relative abundance of the LPI species in 15 different mouse tissues. Finally, we quantified the absolute LPI levels in six different mouse tissues. We found that while 18:0 LPI represents more than 60% of all the LPI species in the periphery (e.g. liver, gastrointestinal tract, lungs, spleen) it is much less abundant in the central nervous system where the levels of 20:4 LPI are significantly higher. Thus this validated HPLC-ESI-MS method for quantifying LPIs represents a powerful tool that will facilitate the comprehension of the pathophysiological roles of LPIs.

  1. A HPLC method for the quantification of butyramide and acetamide at ppb levels in hydrogeothermal waters

    SciTech Connect

    Gracy Elias; Earl D. Mattson; Jessica E. Little

    2012-01-01

    A quantitative analytical method to determine butyramide and acetamide concentrations at the low ppb levels in geothermal waters has been developed. The analytes are concentrated in a preparation step by evaporation and analyzed using HPLC-UV. Chromatographic separation is achieved isocratically with a RP C-18 column using a 30 mM phosphate buffer solution with 5 mM heptane sulfonic acid and methanol (98:2 ratio) as the mobile phase. Absorbance is measured at 200 nm. The limit of detection (LOD) for BA and AA were 2.0 {mu}g L{sup -1} and 2.5 {mu}g L{sup -1}, respectively. The limit of quantification (LOQ) for BA and AA were 5.7 {mu}g L{sup -1} and 7.7 {mu}g L{sup -1}, respectively, at the detection wavelength of 200 nm. Attaining these levels of quantification better allows these amides to be used as thermally reactive tracers in low-temperature hydrogeothermal systems.

  2. Development of a method for detection and quantification of B. brongniartii and B. bassiana in soil

    NASA Astrophysics Data System (ADS)

    Canfora, L.; Malusà, E.; Tkaczuk, C.; Tartanus, M.; Łabanowska, B. H.; Pinzari, F.

    2016-03-01

    A culture independent method based on qPCR was developed for the detection and quantification of two fungal inoculants in soil. The aim was to adapt a genotyping approach based on SSR (Simple Sequence Repeat) marker to a discriminating tracing of two different species of bioinoculants in soil, after their in-field release. Two entomopathogenic fungi, Beauveria bassiana and B. brongniartii, were traced and quantified in soil samples obtained from field trials. These two fungal species were used as biological agents in Poland to control Melolontha melolontha (European cockchafer), whose larvae live in soil menacing horticultural crops. Specificity of SSR markers was verified using controls consisting of: i) soil samples containing fungal spores of B. bassiana and B. brongniartii in known dilutions; ii) the DNA of the fungal microorganisms; iii) soil samples singly inoculated with each fungus species. An initial evaluation of the protocol was performed with analyses of soil DNA and mycelial DNA. Further, the simultaneous detection and quantification of B. bassiana and B. brongniartii in soil was achieved in field samples after application of the bio-inoculants. The protocol can be considered as a relatively low cost solution for the detection, identification and traceability of fungal bio-inoculants in soil.

  3. Longitudinal quantification of incipient carious lesions in postorthodontic patients using a fluorescence method.

    PubMed

    Aljehani, Abdulaziz; Yousif, Mirgani A; Angmar-Månsson, Birgit; Shi, Xie-Qi

    2006-10-01

    The aims of this study were to evaluate the effect of two caries-preventive programs, and to apply the laser fluorescence method, DIAGNOdent, for longitudinal quantification of changes in incipient carious lesions. Twelve subjects with 127 test teeth exhibiting white spot lesions on the buccal surfaces after completed orthodontic therapy were enrolled in the study. Visual examination was performed at baseline and after 12 months. The subjects were divided into two groups: one group received repeated professional tooth cleaning combined with oral hygiene instruction; and the control group received repeated oral hygiene instruction only. The white spot lesions were measured by DIAGNOdent at baseline, and at 3, 6, 9, and 12 months thereafter. There was a significant difference in the DIAGNOdent readings between the first and the final evaluations. However, there was no statistically significant difference between the two treatment groups regarding changes of DIAGNOdent values over time. In conclusion, it may be possible to use DIAGNOdent for longitudinal quantification of carious lesions on smooth surfaces over a period of 1 yr under in vivo conditions. The combination of professional tooth cleaning and oral hygiene instruction had a similar efficacy to professional tooth cleaning only for promoting the remineralization of white spot lesions.

  4. A zone immunoelectrophoresis assay method for quantification of apolipoprotein D in human cerebrospinal fluid.

    PubMed

    Holmquist, L; Fredrikson, S; Vesterberg, O

    1996-10-15

    A zone immunoelectrophoresis assay (ZIA) has been developed for the quantification of apolipoprotein D (apo D) in human unconcentrated cerebrospinal fluid (CSF). The apo D concentrations of samples of the serum, plasma and CSF were directly proportional to the migration distances of the corresponding zones of immunoprecipitates developed during electrophoresis in glass capillaries filled with antibody-containing agarose gel. A linear standard curve, between about 1 and 12 mg of apo D/1 was obtained using a commercial serum preparation. Seronorm, as apo D standard. The coefficients of variation of the ZIA were below 8% (n = 5 x 6) and 10% (n = 8) for within-run and between-run reproducibility, respectively. Quantification experiments with disulfide-reducing agent, mixtures of CSF and urine as well as frozen and stored CSF samples indicated parallelism between the precipitate-forming immunologic reactions of apo D in different sample matrices when performed with ZIA. Application of this method to quantify apo D of CSF and plasma samples from 51 normal healthy men aged 16-72 years yielded means +/- SD of 5.3 +/- 1.5 mg/l and 128.4 +/- 22.7 mg/l, respectively. No correlation was found between the CSF and plasma apo D concentrations.

  5. Development of a method for detection and quantification of B. brongniartii and B. bassiana in soil

    PubMed Central

    Canfora, L.; Malusà, E.; Tkaczuk, C.; Tartanus, M.; Łabanowska, B.H.; Pinzari, F.

    2016-01-01

    A culture independent method based on qPCR was developed for the detection and quantification of two fungal inoculants in soil. The aim was to adapt a genotyping approach based on SSR (Simple Sequence Repeat) marker to a discriminating tracing of two different species of bioinoculants in soil, after their in-field release. Two entomopathogenic fungi, Beauveria bassiana and B. brongniartii, were traced and quantified in soil samples obtained from field trials. These two fungal species were used as biological agents in Poland to control Melolontha melolontha (European cockchafer), whose larvae live in soil menacing horticultural crops. Specificity of SSR markers was verified using controls consisting of: i) soil samples containing fungal spores of B. bassiana and B. brongniartii in known dilutions; ii) the DNA of the fungal microorganisms; iii) soil samples singly inoculated with each fungus species. An initial evaluation of the protocol was performed with analyses of soil DNA and mycelial DNA. Further, the simultaneous detection and quantification of B. bassiana and B. brongniartii in soil was achieved in field samples after application of the bio-inoculants. The protocol can be considered as a relatively low cost solution for the detection, identification and traceability of fungal bio-inoculants in soil. PMID:26975931

  6. Development of a method for detection and quantification of B. brongniartii and B. bassiana in soil.

    PubMed

    Canfora, L; Malusà, E; Tkaczuk, C; Tartanus, M; Łabanowska, B H; Pinzari, F

    2016-01-01

    A culture independent method based on qPCR was developed for the detection and quantification of two fungal inoculants in soil. The aim was to adapt a genotyping approach based on SSR (Simple Sequence Repeat) marker to a discriminating tracing of two different species of bioinoculants in soil, after their in-field release. Two entomopathogenic fungi, Beauveria bassiana and B. brongniartii, were traced and quantified in soil samples obtained from field trials. These two fungal species were used as biological agents in Poland to control Melolontha melolontha (European cockchafer), whose larvae live in soil menacing horticultural crops. Specificity of SSR markers was verified using controls consisting of: i) soil samples containing fungal spores of B. bassiana and B. brongniartii in known dilutions; ii) the DNA of the fungal microorganisms; iii) soil samples singly inoculated with each fungus species. An initial evaluation of the protocol was performed with analyses of soil DNA and mycelial DNA. Further, the simultaneous detection and quantification of B. bassiana and B. brongniartii in soil was achieved in field samples after application of the bio-inoculants. The protocol can be considered as a relatively low cost solution for the detection, identification and traceability of fungal bio-inoculants in soil. PMID:26975931

  7. A near-infrared calibration method suitable for quantification of broadband data in humans.

    PubMed

    Zhang, Qiong; Srinivasan, Sathyanarayanan; Wu, Ying; Natah, Siraj; Dunn, Jeff F

    2010-05-15

    Broadband near-infrared spectroscopy (bNIRS) is a powerful non-invasive technique for the measurement of hemoglobin. bNIRS systems are relatively simple to construct compared with many near-infrared instruments since they operate on the principle of continuous wave. The advantage of the broadband method is the capacity to model the spectra and to use "the second differential method" to quantify deoxyhemoglobin (HHb). An "anoxia pulse" method can be applied to quantify total haemoglobin (tHb) and tissue oxygen saturation (S(t)O(2)). A disadvantage is that this calibration method is not suitable for application in humans. In this study, we compared the "anoxia pulse" method with "graded hypoxia" method, which can be applied for human studies, to quantify tHb and S(t)O(2). The values obtained with the two methods were respectively (tHb=47.8+/-2.8 and 49.4+/-7.7 microM, mean+/-S.D., n=8) and (S(t)O(2)=72.8+/-3.7% and 73.2+/-5.7%, mean+/-S.D., n=8). There was no significant difference (p<0.05) between the two methods, indicating that the graded hypoxia method could be used for quantification of tHb and S(t)O(2) in human subjects. PMID:20156483

  8. Development of a real-time PCR method for the differential detection and quantification of four solanaceae in GMO analysis: potato (Solanum tuberosum), tomato (Solanum lycopersicum), eggplant (Solanum melongena), and pepper (Capsicum annuum).

    PubMed

    Chaouachi, Maher; El Malki, Redouane; Berard, Aurélie; Romaniuk, Marcel; Laval, Valérie; Brunel, Dominique; Bertheau, Yves

    2008-03-26

    The labeling of products containing genetically modified organisms (GMO) is linked to their quantification since a threshold for the presence of fortuitous GMOs in food has been established. This threshold is calculated from a combination of two absolute quantification values: one for the specific GMO target and the second for an endogenous reference gene specific to the taxon. Thus, the development of reliable methods to quantify GMOs using endogenous reference genes in complex matrixes such as food and feed is needed. Plant identification can be difficult in the case of closely related taxa, which moreover are subject to introgression events. Based on the homology of beta-fructosidase sequences obtained from public databases, two couples of consensus primers were designed for the detection, quantification, and differentiation of four Solanaceae: potato (Solanum tuberosum), tomato (Solanum lycopersicum), pepper (Capsicum annuum), and eggplant (Solanum melongena). Sequence variability was studied first using lines and cultivars (intraspecies sequence variability), then using taxa involved in gene introgressions, and finally, using taxonomically close taxa (interspecies sequence variability). This study allowed us to design four highly specific TaqMan-MGB probes. A duplex real time PCR assay was developed for simultaneous quantification of tomato and potato. For eggplant and pepper, only simplex real time PCR tests were developed. The results demonstrated the high specificity and sensitivity of the assays. We therefore conclude that beta-fructosidase can be used as an endogenous reference gene for GMO analysis.

  9. Preanalytical Conditions and DNA Isolation Methods Affect Telomere Length Quantification in Whole Blood

    PubMed Central

    Tolios, Alexander; Teupser, Daniel; Holdt, Lesca M.

    2015-01-01

    Telomeres are located at chromosome ends and their length (TL) has been associated with aging and human diseases such as cancer. Whole blood DNA is frequently used for TL measurements but the influence of preanalytical conditions and DNA isolation methods on TL quantification has not been thoroughly investigated. To evaluate potential preanalytical as well as methodological bias on TL, anonymized leftover EDTA-whole blood samples were pooled according to leukocyte counts and were incubated with and without actinomycin D to induce apoptosis as a prototype of sample degradation. DNA was isolated from fresh blood pools and after freezing at -80°C. Commercially available kits using beads (Invitrogen), spin columns (Qiagen, Macherey-Nagel and 5prime) or precipitation (Stratec/Invisorb) and a published isopropanol precipitation protocol (IPP) were used for DNA isolation. TL was assessed by qPCR, and normalized to the single copy reference gene 36B4 using two established single-plex and a new multiplex protocol. We show that the method of DNA isolation significantly affected TL (e.g. 1.86-fold longer TL when comparing IPP vs. Invitrogen). Sample degradation led to an average TL decrease of 22% when using all except for one DNA isolation method (5prime). Preanalytical storage conditions did not affect TL with exception of samples that were isolated with the 5prime kit, where a 27% increase in TL was observed after freezing. Finally, performance of the multiplex qPCR protocol was comparable to the single-plex assays, but showed superior time- and cost-effectiveness and required > 80% less DNA. Findings of the current study highlight the need for standardization of whole blood processing and DNA isolation in clinical study settings to avoid preanalytical bias of TL quantification and show that multiplex assays may improve TL/SCG measurements. PMID:26636575

  10. A probabilistic decomposition-synthesis method for the quantification of rare events due to internal instabilities

    NASA Astrophysics Data System (ADS)

    Mohamad, Mustafa A.; Cousins, Will; Sapsis, Themistoklis P.

    2016-10-01

    We consider the problem of the probabilistic quantification of dynamical systems that have heavy-tailed characteristics. These heavy-tailed features are associated with rare transient responses due to the occurrence of internal instabilities. Systems with these properties can be found in a variety of areas including mechanics, fluids, and waves. Here we develop a computational method, a probabilistic decomposition-synthesis technique, that takes into account the nature of internal instabilities to inexpensively determine the non-Gaussian probability density function for any arbitrary quantity of interest. Our approach relies on the decomposition of the statistics into a 'non-extreme core', typically Gaussian, and a heavy-tailed component. This decomposition is in full correspondence with a partition of the phase space into a 'stable' region where we have no internal instabilities, and a region where non-linear instabilities lead to rare transitions with high probability. We quantify the statistics in the stable region using a Gaussian approximation approach, while the non-Gaussian distribution associated with the intermittently unstable regions of phase space is inexpensively computed through order-reduction methods that take into account the strongly nonlinear character of the dynamics. The probabilistic information in the two domains is analytically synthesized through a total probability argument. The proposed approach allows for the accurate quantification of non-Gaussian tails at more than 10 standard deviations, at a fraction of the cost associated with the direct Monte-Carlo simulations. We demonstrate the probabilistic decomposition-synthesis method for rare events for two dynamical systems exhibiting extreme events: a two-degree-of-freedom system of nonlinearly coupled oscillators, and in a nonlinear envelope equation characterizing the propagation of unidirectional water waves.

  11. Leak Rate Quantification Method for Gas Pressure Seals with Controlled Pressure Differential

    NASA Technical Reports Server (NTRS)

    Daniels, Christopher C.; Braun, Minel J.; Oravec, Heather A.; Mather, Janice L.; Taylor, Shawn C.

    2015-01-01

    An enhancement to the pressure decay leak rate method with mass point analysis solved deficiencies in the standard method. By adding a control system, a constant gas pressure differential across the test article was maintained. As a result, the desired pressure condition was met at the onset of the test, and the mass leak rate and measurement uncertainty were computed in real-time. The data acquisition and control system were programmed to automatically stop when specified criteria were met. Typically, the test was stopped when a specified level of measurement uncertainty was attained. Using silicone O-ring test articles, the new method was compared with the standard method that permitted the downstream pressure to be non-constant atmospheric pressure. The two methods recorded comparable leak rates, but the new method recorded leak rates with significantly lower measurement uncertainty, statistical variance, and test duration. Utilizing this new method in leak rate quantification, projects will reduce cost and schedule, improve test results, and ease interpretation between data sets.

  12. A novel computer aided quantification method of focal arteriolar narrowing using colour retinal image.

    PubMed

    Roy, Pallab Kanti; Bhuiyan, Alauddin; Lee, Kim; Wong, Tien Yin; Ramamohanarao, Kotagiri

    2016-07-01

    We present a novel method for the quantification of focal arteriolar narrowing (FAN) in human retina, a precursor for hypertension, stroke and other cardiovascular diseases. A reliable and robust arteriolar boundary mapping method is proposed where intensity, gradient and spatial prior knowledge about the arteriolar shape is incorporated into a graph based optimization method to obtain the arteriolar boundary. Following the mapping of the arteriolar boundaries, arteriolar widths are analysed to quantify the severity of focal arteriolar narrowing (FAN). We evaluate our proposed method on a dataset of 116 retinal arteriolar segments which are manually graded by two expert graders. The experimental results indicate a strong correlation between the quantified FAN measurement scores provided by our method and two experts graded FAN severity levels. Our proposed FAN measurement score: percent narrowing (PN) shows high correlation (Spearman correlation coefficient of 0.82(p<0.0001) for grader-1 and 0.84(p<0.0001) for grade-2) with the manually graded FAN severity levels provided by two expert graders. In addition to that, the proposed method shows better reproducibility (Spearman correlation coefficient ρ=0.92(p<0.0001)) compared to two expert graders ( [Formula: see text] (p<0.0001) and [Formula: see text] ) in two successive sessions. The quantitative measurements provided by the proposed method can help us to establish a more reliable link between FAN and known systemic and eye diseases. PMID:27160638

  13. A BAYESIAN METHOD FOR CALCULATING REAL-TIME QUANTITATIVE PCR CALIBRATION CURVES USING ABSOLUTE PLASMID DNA STANDARDS

    EPA Science Inventory

    In real-time quantitative PCR studies using absolute plasmid DNA standards, a calibration curve is developed to estimate an unknown DNA concentration. However, potential differences in the amplification performance of plasmid DNA compared to genomic DNA standards are often ignore...

  14. Improved quantification of protein in vaccines containing aluminum hydroxide by simple modification of the Lowry method.

    PubMed

    Lee, Naery; Shin, SukJin; Chung, Hye Joo; Kim, Do Keun; Lim, Jong-Mi; Park, Hyunsung; Oh, Ho Jung

    2015-09-22

    Aluminum (Al) components in vaccines are known to act as adsorbents that interfere with accurate protein quantification by the Lowry method. Therefore, certain modifications based on the characteristics and compositions of the vaccine are required for determination of protein contents. We investigated the effects of an additional centrifugal separation and found that protein contents were overestimated by up to 238% without centrifugation through a collaborative study performed with hepatitis B vaccines containing Al. However, addition of a centrifugation step yielded protein concentrations that were similar to the actual values, with small coefficients of variation (CVs). Proficiency testing performed in 11 laboratories showed that four laboratories did not have satisfactory results for vaccines containing aluminum hydroxide, although all laboratories were proficient in protein analysis when samples did not contain aluminum hydroxide. Incomplete resuspension of aluminum hydroxide solution with alkaline copper solution was the major cause of insufficient proficiency in these laboratories. PMID:26275477

  15. Automated quantification of budding Saccharomyces cerevisiae using a novel image cytometry method.

    PubMed

    Laverty, Daniel J; Kury, Alexandria L; Kuksin, Dmitry; Pirani, Alnoor; Flanagan, Kevin; Chan, Leo Li-Ying

    2013-06-01

    The measurements of concentration, viability, and budding percentages of Saccharomyces cerevisiae are performed on a routine basis in the brewing and biofuel industries. Generation of these parameters is of great importance in a manufacturing setting, where they can aid in the estimation of product quality, quantity, and fermentation time of the manufacturing process. Specifically, budding percentages can be used to estimate the reproduction rate of yeast populations, which directly correlates with metabolism of polysaccharides and bioethanol production, and can be monitored to maximize production of bioethanol during fermentation. The traditional method involves manual counting using a hemacytometer, but this is time-consuming and prone to human error. In this study, we developed a novel automated method for the quantification of yeast budding percentages using Cellometer image cytometry. The automated method utilizes a dual-fluorescent nucleic acid dye to specifically stain live cells for imaging analysis of unique morphological characteristics of budding yeast. In addition, cell cycle analysis is performed as an alternative method for budding analysis. We were able to show comparable yeast budding percentages between manual and automated counting, as well as cell cycle analysis. The automated image cytometry method is used to analyze and characterize corn mash samples directly from fermenters during standard fermentation. Since concentration, viability, and budding percentages can be obtained simultaneously, the automated method can be integrated into the fermentation quality assurance protocol, which may improve the quality and efficiency of beer and bioethanol production processes.

  16. A novel method to determine the electron temperature and density from the absolute intensity of line and continuum emission: application to atmospheric microwave induced Ar plasmas

    NASA Astrophysics Data System (ADS)

    Iordanova, E.; Palomares, J. M.; Gamero, A.; Sola, A.; van der Mullen, J. J. A. M.

    2009-08-01

    An absolute intensity measurement (AIM) technique is presented that combines the absolute measurements of the line and the continuum emitted by strongly ionizing argon plasmas. AIM is an iterative combination of the absolute line intensity-collisional radiative model (ALI-CRM) and the absolute continuum intensity (ACI) method. The basis of ALI-CRM is that the excitation temperature T13 determined by the method of ALI is transformed into the electron temperature Te using a CRM. This gives Te as a weak function of electron density ne. The ACI method is based on the absolute value of the continuum radiation and determines the electron density in a way that depends on Te. The iterative combination gives ne and Te. As a case study the AIM method is applied to plasmas created by torche à injection axiale (TIA) at atmospheric pressure and fixed frequency at 2.45 GHz. The standard operating settings are a gas flow of 1 slm and a power of 800 W; the measurements have been performed at a position of 1 mm above the nozzle. With AIM we found an electron temperature of 1.2 eV and electron density values around 1021 m-3. There is not much dependence of these values on the plasma control parameters (power and gas flow). From the error analysis we can conclude that the determination of Te is within 7% and thus rather accurate but comparison with other studies shows strong deviations. The ne determination comes with an error of 40% but is in reasonable agreement with other experimental results.

  17. Quantification of organ motion based on an adaptive image-based scale invariant feature method

    SciTech Connect

    Paganelli, Chiara; Peroni, Marta

    2013-11-15

    Purpose: The availability of corresponding landmarks in IGRT image series allows quantifying the inter and intrafractional motion of internal organs. In this study, an approach for the automatic localization of anatomical landmarks is presented, with the aim of describing the nonrigid motion of anatomo-pathological structures in radiotherapy treatments according to local image contrast.Methods: An adaptive scale invariant feature transform (SIFT) was developed from the integration of a standard 3D SIFT approach with a local image-based contrast definition. The robustness and invariance of the proposed method to shape-preserving and deformable transforms were analyzed in a CT phantom study. The application of contrast transforms to the phantom images was also tested, in order to verify the variation of the local adaptive measure in relation to the modification of image contrast. The method was also applied to a lung 4D CT dataset, relying on manual feature identification by an expert user as ground truth. The 3D residual distance between matches obtained in adaptive-SIFT was then computed to verify the internal motion quantification with respect to the expert user. Extracted corresponding features in the lungs were used as regularization landmarks in a multistage deformable image registration (DIR) mapping the inhale vs exhale phase. The residual distances between the warped manual landmarks and their reference position in the inhale phase were evaluated, in order to provide a quantitative indication of the registration performed with the three different point sets.Results: The phantom study confirmed the method invariance and robustness properties to shape-preserving and deformable transforms, showing residual matching errors below the voxel dimension. The adapted SIFT algorithm on the 4D CT dataset provided automated and accurate motion detection of peak to peak breathing motion. The proposed method resulted in reduced residual errors with respect to standard SIFT

  18. Application of the homology method for quantification of low-attenuation lung region inpatients with and without COPD

    PubMed Central

    Nishio, Mizuho; Nakane, Kazuaki; Tanaka, Yutaka

    2016-01-01

    Background Homology is a mathematical concept that can be used to quantify degree of contact. Recently, image processing with the homology method has been proposed. In this study, we used the homology method and computed tomography images to quantify emphysema. Methods This study included 112 patients who had undergone computed tomography and pulmonary function test. Low-attenuation lung regions were evaluated by the homology method, and homology-based emphysema quantification (b0, b1, nb0, nb1, and R) was performed. For comparison, the percentage of low-attenuation lung area (LAA%) was also obtained. Relationships between emphysema quantification and pulmonary function test results were evaluated by Pearson’s correlation coefficients. In addition to the correlation, the patients were divided into the following three groups based on guidelines of the Global initiative for chronic Obstructive Lung Disease: Group A, nonsmokers; Group B, smokers without COPD, mild COPD, and moderate COPD; Group C, severe COPD and very severe COPD. The homology-based emphysema quantification and LAA% were compared among these groups. Results For forced expiratory volume in 1 second/forced vital capacity, the correlation coefficients were as follows: LAA%, −0.603; b0, −0.460; b1, −0.500; nb0, −0.449; nb1, −0.524; and R, −0.574. For forced expiratory volume in 1 second, the coefficients were as follows: LAA%, −0.461; b0, −0.173; b1, −0.314; nb0, −0.191; nb1, −0.329; and R, −0.409. Between Groups A and B, difference in nb0 was significant (P-value = 0.00858), and those in the other types of quantification were not significant. Conclusion Feasibility of the homology-based emphysema quantification was validated. The homology-based emphysema quantification was useful for the assessment of emphysema severity.

  19. Application of the homology method for quantification of low-attenuation lung region inpatients with and without COPD

    PubMed Central

    Nishio, Mizuho; Nakane, Kazuaki; Tanaka, Yutaka

    2016-01-01

    Background Homology is a mathematical concept that can be used to quantify degree of contact. Recently, image processing with the homology method has been proposed. In this study, we used the homology method and computed tomography images to quantify emphysema. Methods This study included 112 patients who had undergone computed tomography and pulmonary function test. Low-attenuation lung regions were evaluated by the homology method, and homology-based emphysema quantification (b0, b1, nb0, nb1, and R) was performed. For comparison, the percentage of low-attenuation lung area (LAA%) was also obtained. Relationships between emphysema quantification and pulmonary function test results were evaluated by Pearson’s correlation coefficients. In addition to the correlation, the patients were divided into the following three groups based on guidelines of the Global initiative for chronic Obstructive Lung Disease: Group A, nonsmokers; Group B, smokers without COPD, mild COPD, and moderate COPD; Group C, severe COPD and very severe COPD. The homology-based emphysema quantification and LAA% were compared among these groups. Results For forced expiratory volume in 1 second/forced vital capacity, the correlation coefficients were as follows: LAA%, −0.603; b0, −0.460; b1, −0.500; nb0, −0.449; nb1, −0.524; and R, −0.574. For forced expiratory volume in 1 second, the coefficients were as follows: LAA%, −0.461; b0, −0.173; b1, −0.314; nb0, −0.191; nb1, −0.329; and R, −0.409. Between Groups A and B, difference in nb0 was significant (P-value = 0.00858), and those in the other types of quantification were not significant. Conclusion Feasibility of the homology-based emphysema quantification was validated. The homology-based emphysema quantification was useful for the assessment of emphysema severity. PMID:27660430

  20. Quantification of Rifaximin in Tablets by Spectrophotometric Method Ecofriendly in Ultraviolet Region

    PubMed Central

    2016-01-01

    Rifaximin is an oral nonabsorbable antibiotic that acts locally in the gastrointestinal tract with minimal systemic adverse effects. It does not have spectrophotometric method ecofriendly in the ultraviolet region described in official compendiums and literature. The analytical techniques for determination of rifaximin reported in the literature require large amount of time to release results and are significantly onerous. Furthermore, they use toxic reagents both for the operator and environment and, therefore, cannot be considered environmentally friendly analytical techniques. The objective of this study was to develop and validate an ecofriendly spectrophotometric method in the ultraviolet region to quantify rifaximin in tablets. The method was validated, showing linearity, selectivity, precision, accuracy, and robustness. It was linear over the concentration range of 10–30 mg L−1 with correlation coefficients greater than 0.9999 and limits of detection and quantification of 1.39 and 4.22 mg L−1, respectively. The validated method is useful and applied for the routine quality control of rifaximin, since it is simple with inexpensive conditions and fast in the release of results, optimizes analysts and equipment, and uses environmentally friendly solvents, being considered a green method, which does not prejudice either the operator or the environment. PMID:27429835

  1. A simple and sensitive HPLC method for quantification of the metabolin of meclofenoxate in human plasma.

    PubMed

    Ni, Bin; Zhang, Junren; Zou, Jianjun; Zhao, Wei; Li, JianHua

    2010-01-01

    A simple and sensitive high-performance liquid chromatographic method was developed for quantification of the metabolin of meclofenoxate, chlorophenoxyacetic acid, in human plasma. Ibuprofen was used as an internal standard. The present method used protein precipitation for extraction of chlorophenoxyacetic acid from human plasma. Separation was carried out on a reversed-phase C(18) column. The column effluent was monitored by UV detection at 254 nm. The mobile phase was a mixture of methanol and water containing 1.0% glacial acetic acid (70:30 v/v) at a flow rate of 1.0 mL/min. The column temperature was 20 degrees C. This method was linear over the range of 0.047-28.20 microg/mL with a regression coefficient greater than 0.99. The mean recovery of chlorophenoxyacetic acid and IS were (79.54 +/- 6.33)% and (78.48 +/- 2.14)%, respectively, and the method was found to be precise, accurate, and specific during the study. The method was successfully applied for pharmacokinetic study of chlorophenoxyacetic acid in human.

  2. A novel method to prioritize RNAseq data for post-hoc analysis based on absolute changes in transcript abundance.

    PubMed

    McNutt, Patrick; Gut, Ian; Hubbard, Kyle; Beske, Phil

    2015-06-01

    The use of fold-change (FC) to prioritize differentially expressed genes (DEGs) for post-hoc characterization is a common technique in the analysis of RNA sequencing datasets. However, the use of FC can overlook certain population of DEGs, such as high copy number transcripts which undergo metabolically expensive changes in expression yet fail to exceed the ratiometric FC cut-off, thereby missing potential important biological information. Here we evaluate an alternative approach to prioritizing RNAseq data based on absolute changes in normalized transcript counts (ΔT) between control and treatment conditions. In five pairwise comparisons with a wide range of effect sizes, rank-ordering of DEGs based on the magnitude of ΔT produced a power curve-like distribution, in which 4.7-5.0% of transcripts were responsible for 36-50% of the cumulative change. Thus, differential gene expression is characterized by the high production-cost expression of a small number of genes (large ΔT genes), while the differential expression of the majority of genes involves a much smaller metabolic investment by the cell. To determine whether the large ΔT datasets are representative of coordinated changes in the transcriptional program, we evaluated large ΔT genes for enrichment of gene ontologies (GOs) and predicted protein interactions. In comparison to randomly selected DEGs, the large ΔT transcripts were significantly enriched for both GOs and predicted protein interactions. Furthermore, enrichments were were consistent with the biological context of each comparison yet distinct from those produced using equal-sized populations of large FC genes, indicating that the large ΔT genes represent an orthagonal transcriptional response. Finally, the composition of the large ΔT gene sets were unique to each pairwise comparison, indicating that they represent coherent and context-specific responses to biological conditions rather than the non-specific upregulation of a family of genes

  3. Time lapse imaging of water content with geoelectrical methods: on the interest of working with absolute water content data

    NASA Astrophysics Data System (ADS)

    Dumont, Gaël; Pilawski, Tamara; Robert, Tanguy; Hermans, Thomas; Garré, Sarah; Nguyen, Frederic

    2016-04-01

    The electrical resistivity tomography is a suitable method to estimate the water content of a waste material and detect changes in water content. Various ERT profiles, both static data and time-lapse, where acquired on a landfill during the Minerve project. In the literature, the relative change of resistivity (Δρ/ρ) is generally computed. For saline or heat tracer tests in the saturated zone, the Δρ/ρ can be easily translated into pore water conductivity or underground temperature changes (provided that the initial salinity or temperature condition is homogeneous over the ERT panel extension). For water content changes in the vadose zone resulting of an infiltration event or injection experiment, many authors also work with the Δρ/ρ or relative changes of water content Δθ/θ (linked to the change of resistivity through one single parameter: the Archie's law exponent "m"). This parameter is not influenced by the underground temperature and pore fluid conductivity (ρ¬w) condition but is influenced by the initial water content distribution. Therefore, you never know if the loss of Δθ/θ signal is representative of the limit of the infiltration front or more humid initial condition. Another approach for the understanding of the infiltration process is the assessment of the absolute change of water content (Δθ). This requires the direct computation of the water content of the waste from the resistivity data. For that purpose, we used petrophysical laws calibrated with laboratory experiments and our knowledge of the in situ temperature and pore fluid conductivity parameters. Then, we investigated water content changes in the waste material after a rainfall event (Δθ= Δθ/θ* θ). This new observation is really representatives of the quantity of water infiltrated in the waste material. However, the uncertainty in the pore fluid conductivity value may influence the computed water changes (Δθ=k*m√(ρw) ; where "m" is the Archie's law exponent

  4. Quantification of methane emissions from 15 Danish landfills using the mobile tracer dispersion method

    SciTech Connect

    Mønster, Jacob; Samuelsson, Jerker; Scheutz, Charlotte

    2015-01-15

    Highlights: • Quantification of whole landfill site methane emission at 15 landfills. • Multiple on-site source identification and quantification. • Quantified methane emission from shredder waste and composting. • Large difference between measured and reported methane emissions. - Abstract: Whole-site methane emissions from 15 Danish landfills were assessed using a mobile tracer dispersion method with either Fourier transform infrared spectroscopy (FTIR), using nitrous oxide as a tracer gas, or cavity ring-down spectrometry (CRDS), using acetylene as a tracer gas. The landfills were chosen to represent the different stages of the lifetime of a landfill, including open, active, and closed covered landfills, as well as those with and without gas extraction for utilisation or flaring. Measurements also included landfills with biocover for oxidizing any fugitive methane. Methane emission rates ranged from 2.6 to 60.8 kg h{sup −1}, corresponding to 0.7–13.2 g m{sup −2} d{sup −1}, with the largest emission rates per area coming from landfills with malfunctioning gas extraction systems installed, and the smallest emission rates from landfills closed decades ago and landfills with an engineered biocover installed. Landfills with gas collection and recovery systems had a recovery efficiency of 41–81%. Landfills where shredder waste was deposited showed significant methane emissions, with the largest emission from newly deposited shredder waste. The average methane emission from the landfills was 154 tons y{sup −1}. This average was obtained from a few measurement campaigns conducted at each of the 15 landfills and extrapolating to annual emissions requires more measurements. Assuming that these landfills are representative of the average Danish landfill, the total emission from Danish landfills were calculated at 20,600 tons y{sup −1}, which is significantly lower than the 33,300 tons y{sup −1} estimated for the national greenhouse gas inventory for

  5. Crack Imaging and Quantification in Aluminum Plates with Guided Wave Wavenumber Analysis Methods

    NASA Technical Reports Server (NTRS)

    Yu, Lingyu; Tian, Zhenhua; Leckey, Cara A. C.

    2015-01-01

    Guided wavefield analysis methods for detection and quantification of crack damage in an aluminum plate are presented in this paper. New wavenumber components created by abrupt wave changes at the structural discontinuity are identified in the frequency-wavenumber spectra. It is shown that the new wavenumbers can be used to detect and characterize the crack dimensions. Two imaging based approaches, filter reconstructed imaging and spatial wavenumber imaging, are used to demonstrate how the cracks can be evaluated with wavenumber analysis. The filter reconstructed imaging is shown to be a rapid method to map the plate and any existing damage, but with less precision in estimating crack dimensions; while the spatial wavenumber imaging provides an intensity image of spatial wavenumber values with enhanced resolution of crack dimensions. These techniques are applied to simulated wavefield data, and the simulation based studies show that spatial wavenumber imaging method is able to distinguish cracks of different severities. Laboratory experimental validation is performed for a single crack case to confirm the methods' capabilities for imaging cracks in plates.

  6. Quantification of Self Pollution from Two Diesel School Buses using Three Independent Methods

    PubMed Central

    Liu, L.-J. Sally; Phuleria, Harish C.; Webber, Whitney; Davey, Mark; Lawson, Douglas R.; Ireson, Robert G.; Zielinska, Barbara; Ondov, John M.; Weaver, Christopher S.; Lapin, Charles A.; Easter, Michael; Hesterberg, Thomas W.; Larson, Timothy

    2010-01-01

    We monitored two Seattle school buses to quantify the buses’ self pollution using the dual tracers (DT), lead vehicle (LV), and chemical mass balance (CMB) methods. Each bus drove along a residential route simulating stops, with windows closed or open. Particulate matter (PM) and its constituents were monitored in the bus and from a LV. We collected source samples from the tailpipe and crankcase emissions using an on-board dilution tunnel. Concentrations of PM1, ultrafine particle counts, elemental and organic carbon (EC/OC) were higher on the bus than the LV. The DT method estimated that the tailpipe and the crankcase emissions contributed 1.1 and 6.8 μg/m3 of PM2.5 inside the bus, respectively, with significantly higher crankcase self pollution (SP) when windows were closed. Approximately two-thirds of in-cabin PM2.5 originated from background sources. Using the LV approach, SP estimates from the EC and the active personal DataRAM (pDR) measurements correlated well with the DT estimates for tailpipe and crankcase emissions, respectively, although both measurements need further calibration for accurate quantification. CMB results overestimated SP from the DT method but confirmed crankcase emissions as the major SP source. We confirmed buses’ SP using three independent methods and quantified crankcase emissions as the dominant contributor. PMID:20694046

  7. Collaborative validation of the quantification method for suspected allergens and test of an automated data treatment.

    PubMed

    Chaintreau, Alain; Cicchetti, Esmeralda; David, Nathalie; Earls, Andy; Gimeno, Pascal; Grimaud, Béatrice; Joulain, Daniel; Kupfermann, Nikolai; Kuropka, Gryta; Saltron, Frédéric; Schippa, Christine

    2011-10-28

    Previous publications investigated different data treatment strategies for quantification of volatile suspected allergens by GC/MS. This publication presents the validation results obtained on "ready to inject" samples under reproducibility conditions following inter-laboratory ring-testing. The approach is based on the monitoring of three selected ions per analyte using two different GC capillary columns. To aid the analysts a decisional tree is used for guidance during the interpretation of the analytical results. The method is evaluated using a fragrance oil concentrate spiked with all suspected allergens to mimic the difficulty of a real sample extract or perfume oil. At the concentrations of 10 and 100mg/kg, imposed by Directive 76/768/EEC for labeling of leave-on and rinse-off cosmetics, the mean bias is +14% and -4%, respectively. The method is linear for all analytes, and the prediction intervals for each analyte have been determined. To speed up the analyst's task, an automated data treatment is also proposed. The method mean bias is slightly shifted towards negative values, but the method prediction intervals are close to that resulting from the decisional tree.

  8. Quantification of designer nuclease induced mutation rates: a direct comparison of different methods

    PubMed Central

    Ehrke-Schulz, Eric; Bergmann, Thorsten; Schiwon, Maren; Doerner, Johannes; Saydaminova, Kamola; Lieber, Andre; Ehrhardt, Anja

    2016-01-01

    Designer nucleases are broadly applied to induce site-specific DNA double-strand breaks (DSB) in genomic DNA. These are repaired by nonhomologous end joining leading to insertions or deletions (in/dels) at the respective DNA-locus. To detect in/del mutations, the heteroduplex based T7-endonuclease I -assay is widely used. However, it only provides semi-quantitative evidence regarding the number of mutated alleles. Here we compared T7-endonuclease I- and heteroduplex mobility assays, with a quantitative polymerase chain reaction mutation detection method. A zinc finger nuclease pair specific for the human adeno-associated virus integration site 1 (AAVS1), a transcription activator-like effector nuclease pair specific for the human DMD gene, and a zinc finger nuclease- and a transcription activator-like effector nuclease pair specific for the human CCR5 gene were explored. We found that the heteroduplex mobility assays and T7-endonuclease I - assays detected mutations but the relative number of mutated cells/alleles can only be estimated. In contrast, the quantitative polymerase chain reaction based method provided quantitative results which allow calculating mutation and homologous recombination rates in different eukaryotic cell types including human peripheral blood mononuclear cells. In conclusion, our quantitative polymerase chain reaction based mutation detection method expands the array of methods for in/del mutation detection and facilitates quantification of introduced in/del mutations for a genomic locus containing a mixture of mutated and unmutated DNA. PMID:27419195

  9. Kinetic detection method for the quantification of isoenzymes on electrophoretic media

    SciTech Connect

    Hampton, R.S.; Rutan, S.C. )

    1993-04-01

    A method has been developed for the quantitative determination of isozymes that combines electrophoresis, charge coupled device imaging, denaturation, and kinetic analysis. Detection of the Isozymes after electrophoresis is achieved by introducing a substrate that upon reaction with the isozymes forms a colored or fluorescent product. A tetrazolium dye and 4-methylumbelfferyl phosphate (MUP) are used to visualize lactose dehydrogenase (LDH) and alkaline phosphatase (ALP), respectively. The rate of product formation can be related to the activity of the isozymes. Poorly resolved bands can be distinguished by the addition of a denaturant, guanidine hydrochloride that differently deactivities the isozymes. The data are then analyzed using zero-and first-order kinetic models. Studies with LDH show that this method is as accurate and precise as traditional fixed time methods of analysis for the qualification of well-separated isozyme bands on planar separation media, with an average precision of 6.4% as compared to 7.4% with a fixed time analysis. The ALP studies provided information on the capability of the method for quantification of poorly resolved bands after electrophoresis. Linear calibration curves were obtained for the bovine intestinal and liver ALP in the range of 0-200 and 0-700 units/L, respectively. The deactivation constant is consistent for liver isozyme samples containing 180-640 units/L. 41 refs., 5 figs., 3 tabs.

  10. Pre-staining paper chromatography method for quantification of gamma-aminobutyric acid.

    PubMed

    Li, Haixing; Qiu, Ting; Cao, Yusheng; Yang, Jiyan; Huang, Zhibing

    2009-06-19

    The routine method of paper chromatography includes five steps: spotting, separating, drying, spraying/immersing and color development. In this paper, a pre-staining paper chromatography which only consisted of spotting, separating and color development was developed for quantitative analysis of gamma-aminobutyric acid. Compared to the routine paper chromatography, the improved method is clean, rapid, inexpensive and reproducible. The effects of ninhydrin concentration, color temperature, color time and Cu(2+) concentration on the color yield in the ninhydrin reaction were optimized. And then the pre-staining paper chromatography coupled with vis spectrophotometry was applied to gamma-aminobutyric acid quantification. The results indicated that the limit of detection was 0.05 mg mL(-1) and the linear range was from 0.5 to 20.0 mg mL(-1). Furthermore, an excellent correlation coefficient was observed with an R(2)=0.998. The method is accurate (RSD<2.64%), and has good recoveries (102.7-103.9%). The validation of the modified technique was verified by a HPLC method.

  11. Development of a CZE method for the quantification of pseudoephedrine and cetirizine.

    PubMed

    Alnajjar, Ahmed O; Idris, Abubakr M

    2014-10-01

    Pseudoephedrine and cetirizine have been combined in dosage forms with more therapeutic benefits when compared with single-drug treatment. The current manuscript reports the development of the first capillary zone electrophoresis (CZE) assay method for that combination. The effects of pH and buffer concentration on resolution, noise, migration time and peak area were examined employing experimental design approach. The analytes were electropherographed into a 50.2 cm-long and 50 µm i.d. fused-silica capillary column using 10 mmol/L borate at pH 8.3 with a potential of 25 kV at 25°C and UV detection at 214 nm. The method was successfully validated in order to verify its suitability for pharmaceutical analysis for the purposes of quality control. Over previous high-performance liquid chromatographic methods, the current CZE method features the benefits of the use of cost-effective electrolyte, besides high sample throughput (11 samples/h). Furthermore, other analytical results including linear dynamic ranges, recovery (96.9-98.1%), intra- and interday precision (relative standard deviation ≤ 1.70%) as well as the limits of detection and quantification (≤2.65 µg/mL) were all satisfactory for the intended purpose.

  12. Comparison of different immunochemical methods for the detection and quantification of hazelnut proteins in food products.

    PubMed

    Koppelman, S J; Knulst, A C; Koers, W J; Penninks, A H; Peppelman, H; Vlooswijk, R; Pigmans, I; van Duijn, G; Hessing, M

    1999-10-29

    Hazelnuts are widely used in the food industry owing to their nutritive value and taste. The amount of hazelnut present in a recipe is usually considered as a mark of quality. On the other hand, contamination of foods that normally do not contain hazelnuts is a threat for patients with a hazelnut allergy. For this reason, the availability of a method for the detection and quantification of hazelnuts in foods would be desirable. The objective of this study was to develop a method for the detection and quantification of minor amounts of hazelnut protein in food products that is potentially applicable for the food industry. Several immunochemical methods, e.g., immunoblotting and enzyme-linked immunosorbent assay (ELISA), were developed with antibodies from both hazelnut-sensitized patient sera and the sera of rabbits hyperimmunized with hazelnut protein. Immunoblotting appeared to be non-specific when the sera of patients were used as a source of antibodies. Using immunopurified antibodies from rabbits immunized with hazelnuts, immunoblotting became specific, but the sensitivity of this method was limited. Inhibition of IgE binding is a generally used test in clinical laboratories to establish contamination with hazelnuts. This approach is sensitive and specific, but not readily accessible for the food industry since patient serum is needed. Similar results in terms of sensitivity and specificity were obtained with a sandwich ELISA constructed with an immunopurified antibody from rabbits sensitized to hazelnuts. No substantial cross-reactivity with other nuts, legumes or other food constituents was observed, and concentrations as low as 5 ng/ml, corresponding to 1 ppm in food products, were detected. In a field test, several consumer products regarded to be free of hazelnuts were shown to contain traces of hazelnut. This sandwich ELISA constructed with immunopurified antibodies from rabbits sensitized with hazelnut protein is a sensitive and specific method to detect

  13. Volatile organic silicon compounds in biogases: development of sampling and analytical methods for total silicon quantification by ICP-OES.

    PubMed

    Chottier, Claire; Chatain, Vincent; Julien, Jennifer; Dumont, Nathalie; Lebouil, David; Germain, Patrick

    2014-01-01

    Current waste management policies favor biogases (digester gases (DGs) and landfill gases (LFGs)) valorization as it becomes a way for energy politics. However, volatile organic silicon compounds (VOSiCs) contained into DGs/LFGs severely damage combustion engines and endanger the conversion into electricity by power plants, resulting in a high purification level requirement. Assessing treatment efficiency is still difficult. No consensus has been reached to provide a standardized sampling and quantification of VOSiCs into gases because of their diversity, their physicochemical properties, and the omnipresence of silicon in analytical chains. Usually, samplings are done by adsorption or absorption and quantification made by gas chromatography-mass spectrometry (GC-MS) or inductively coupled plasma-optical emission spectrometry (ICP-OES). In this objective, this paper presents and discusses the optimization of a patented method consisting in VOSiCs sampling by absorption of 100% ethanol and quantification of total Si by ICP-OES.

  14. Volatile Organic Silicon Compounds in Biogases: Development of Sampling and Analytical Methods for Total Silicon Quantification by ICP-OES

    PubMed Central

    Julien, Jennifer; Dumont, Nathalie; Lebouil, David; Germain, Patrick

    2014-01-01

    Current waste management policies favor biogases (digester gases (DGs) and landfill gases (LFGs)) valorization as it becomes a way for energy politics. However, volatile organic silicon compounds (VOSiCs) contained into DGs/LFGs severely damage combustion engines and endanger the conversion into electricity by power plants, resulting in a high purification level requirement. Assessing treatment efficiency is still difficult. No consensus has been reached to provide a standardized sampling and quantification of VOSiCs into gases because of their diversity, their physicochemical properties, and the omnipresence of silicon in analytical chains. Usually, samplings are done by adsorption or absorption and quantification made by gas chromatography-mass spectrometry (GC-MS) or inductively coupled plasma-optical emission spectrometry (ICP-OES). In this objective, this paper presents and discusses the optimization of a patented method consisting in VOSiCs sampling by absorption of 100% ethanol and quantification of total Si by ICP-OES. PMID:25379538

  15. Video meteor light curve analysis of Orionids and Geminids and developing a method for obtaining the absolute light curves of shower meteors from the single station data

    NASA Astrophysics Data System (ADS)

    Grašić, L.; Milanović, N.; Pavlović, D.

    2016-01-01

    We developed a method for obtaining the absolute light curves of the shower meteors from single station video data. We found that even though the height of a meteor atmospheric trajectory obtained by using this method may have a large error, the absolute light curve shape is preserved. We used our method to calculate the F parameters of the Orionid and Geminid light curves. The light curves were obtained from the single station video data by the instrument with a limiting sensitivity of 3.5m. We found that for our sample of the light curves the zenith distance of meteor radiant does not affect the F parameter for either of the two showers. The value of F parameter of the Orionids obtained in this paper matches the values obtained by other authors, whilst for the Geminids it is significantly different.

  16. An optimized and validated (1)H NMR method for the quantification of α-pinene in essentials oils.

    PubMed

    Cerceau, Cristiane I; Barbosa, Luiz C A; Filomeno, Claudinei A; Alvarenga, Elson S; Demuner, Antônio J; Fidencio, Paulo H

    2016-04-01

    The authenticity and composition of commercial essential oils requires strict quality control. Due to the importance of α-pinene containing essential oils, a rapid and efficient method for quantification of this terpene in oils of eucalyptus, pink pepper and turpentine using (1)H NMR was developed and validated. All evaluated parameters (selectivity, linearity, accuracy/precision, repeatability, robustness, stability of analyte and internal standard in solutions) showed satisfactory results. The limit of detection (LOD) and limit of quantification (LOQ) were 0.1 and 2.5mg respectively. These values indicated that α-pinene was detected in 35 mg samples containing at least 0.3% of this compound. In addition, a minimum of 8% of α-pinene in the sample was required for quantification. Furthermore, the standard deviations found in the (1)H NMR methodology were less than 1% and were lower than those obtained by gas chromatographic analysis. Statistical tests have shown that the results obtained by (1)H NMR methodology are similar to those obtained by GC-FID technique using external and internal standardization and normalization within 95% confidence. R&R values lower than 10% have shown that all the methods are appropriate and the (1)H NMR method is suitable for quantification of α-pinene in samples of essential oils since this method possessed the smallest R&R (1.81) value. PMID:26838386

  17. Validated method for the quantification of free and total carnitine, butyrobetaine, and acylcarnitines in biological samples.

    PubMed

    Minkler, Paul E; Stoll, Maria S K; Ingalls, Stephen T; Kerner, Janos; Hoppel, Charles L

    2015-09-01

    A validated quantitative method for the determination of free and total carnitine, butyrobetaine, and acylcarnitines is presented. The versatile method has four components: (1) isolation using strong cation-exchange solid-phase extraction, (2) derivatization with pentafluorophenacyl trifluoromethanesulfonate, (3) sequential ion-exchange/reversed-phase (ultra) high-performance liquid chromatography [(U)HPLC] using a strong cation-exchange trap in series with a fused-core HPLC column, and (4) detection with electrospray ionization multiple reaction monitoring (MRM) mass spectrometry (MS). Standardized carnitine along with 65 synthesized, standardized acylcarnitines (including short-chain, medium-chain, long-chain, dicarboxylic, hydroxylated, and unsaturated acyl moieties) were used to construct multiple-point calibration curves, resulting in accurate and precise quantification. Separation of the 65 acylcarnitines was accomplished in a single chromatogram in as little as 14 min. Validation studies were performed showing a high level of accuracy, precision, and reproducibility. The method provides capabilities unavailable by tandem MS procedures, making it an ideal approach for confirmation of newborn screening results and for clinical and basic research projects, including treatment protocol studies, acylcarnitine biomarker studies, and metabolite studies using plasma, urine, tissue, or other sample matrixes. PMID:26270397

  18. A fast method for the quantification of methylamine in fermentation broths by gas chromatography.

    PubMed

    Jérôme, Valérie; Hermann, Markus; Hilbrig, Frank; Freitag, Ruth

    2008-01-01

    The objective of this study was to develop a method for the quantitative analysis of the methylamine concentration in fermentation broths of Hyphomicrobium zavarzinii ZV 580 cultures. For this purpose an established method for the quantification of free amino acids in such matrices was adapted and validated. The detection limit was 10 microM, the calibration curve showed good linearity (R2=0.9998) in the concentration range between 0.1 and 8 mM. The standard deviation of the injection-to-injection reproducibility (n=10) of the retention coefficient was <1%, that of the peak area<5%. In case of the sample-to-sample reproducibility (n=8), the standard deviation was <5% for the retention coefficient and <10% for the peak area. The validated method was successfully applied for monitoring a fed-batch bioprocess (starting volume: 8L, initial methylamine hydrochloride concentration: 10 mM) producing a dye-linked formaldehyde dehydrogenase in H. zavarzinii ZV 580. PMID:18082472

  19. A flexible uncertainty quantification method for linearly coupled multi-physics systems

    SciTech Connect

    Chen, Xiao Ng, Brenda; Sun, Yunwei; Tong, Charles

    2013-09-01

    Highlights: •We propose a “modularly hybrid” UQ methodology suitable for independent development of module-based multi-physics simulation. •Our algorithmic framework allows for each module to have its own UQ method (either intrusive or non-intrusive). •Information from each module is combined systematically to propagate “global uncertainty”. •Our proposed approach can allow for easy swapping of new methods for any modules without the need to address incompatibilities. •We demonstrate the proposed framework on a practical application involving a multi-species reactive transport model. -- Abstract: This paper presents a novel approach to building an integrated uncertainty quantification (UQ) methodology suitable for modern-day component-based approach for multi-physics simulation development. Our “hybrid” UQ methodology supports independent development of the most suitable UQ method, intrusive or non-intrusive, for each physics module by providing an algorithmic framework to couple these “stochastic” modules for propagating “global” uncertainties. We address algorithmic and computational issues associated with the construction of this hybrid framework. We demonstrate the utility of such a framework on a practical application involving a linearly coupled multi-species reactive transport model.

  20. An optimized whole-body cortisol quantification method for assessing stress levels in larval zebrafish.

    PubMed

    Yeh, Chen-Min; Glöck, Mario; Ryu, Soojin

    2013-01-01

    Glucocorticoids serve important regulatory functions for many physiological processes and are critical mediators of the stress response. The stress response is a set of bodily processes aimed at counteracting a state of threatened homeostasis. Proper stress response is critical for the survival of an animal, however prolonged or abnormal stress response can be detrimental and is implicated in a number of human diseases such as depression and metabolic diseases. To dissect the underlying mechanism of this complex and important response, the zebrafish, Danio rerio offer important advantages such as ease of genetic manipulations and high-throughput behavioral analyses. However, there is a paucity of suitable methods to measure stress level in larval zebrafish. Therefore, an efficient low-cost method to monitor stress hormone levels will greatly facilitate stress research in zebrafish larvae. In this study, we optimized sample collection as well as cortisol extraction methods and developed a home-made ELISA protocol for measuring whole-body cortisol level in zebrafish larvae. Further, using our customized protocols, we characterized the response of larval zebrafish to a variety of stressors. This assay, developed for efficient cortisol quantification, will be useful for systematic and large-scale stress analyses in larval zebrafish. PMID:24223943

  1. Testing the Multispecimen Absolute Paleointensity Method with Archaeological Baked Clays and Bricks: New Data for Central Europe

    NASA Astrophysics Data System (ADS)

    Schnepp, Elisabeth; Leonhardt, Roman

    2014-05-01

    The domain-state corrected multiple-specimen paleointensity determination technique (MSP-DSC, Fabian & Leonhardt, EPSL 297, 84, 2010) has been tested for archaeological baked clays and bricks. The following procedure was applied: (1) Exclusion of secondary overprints using alternating field (AF) or thermal demagnetization and assignment of characteristic remanent magnetization (ChRM) direction. (2) Determination of magneto mineralogical alteration using anhysteretic remanent magnetization (ARM) or temperature dependence of susceptibility. (3) Measurement of ARM anisotropy tensor, calculation of the ancient magnetic field direction. (4) Sister specimens were subjected to the MSP-DSC technique aligned (anti-)parallel to the ancient magnetic field direction. (5) Several checks were applied in order to exclude data points from further evaluation: (a) The accuracy of orientation (< 10°), (b) absence of secondary components (< 10°), (c) use of a considerable NRM fraction (20 to 80%), (d) weak alteration (smaller than for domain state change) and finally (e) domain state correction was applied. Bricks and baked clays from archaeological sites with ages between 645 BC and 2003 AD have been subjected to MSP-DSC absolute paleointensity (PI) determination. Aims of study are to check precision and reliability of the method. The obtained PI values are compared with direct field observation, the IGRF, the GUFM1 or Thellier results. The Thellier experiments often show curved lines and pTRM checks fail for higher temperatures. Nevertheless in the low temperature range straight lines have been obtained but they provide scattered paleointensity values. Mean paleointensites have relative errors often exceeding 10%, which are not considered as high quality PI estimates. MSP-DSC experiments for the structures older than 300 years are still under progress. The paleointensities obtained from the MSP-DSC experiments for the young materials (after 1700 AD) have small relative errors of a

  2. A validated ultra high pressure liquid chromatographic method for qualification and quantification of folic acid in pharmaceutical preparations.

    PubMed

    Deconinck, E; Crevits, S; Baten, P; Courselle, P; De Beer, J

    2011-04-01

    A fully validated UHPLC method for the identification and quantification of folic acid in pharmaceutical preparations was developed. The starting conditions for the development were calculated starting from the HPLC conditions of a validated method. These start conditions were tested on four different UHPLC columns: Grace Vision HT™ C18-P, C18, C18-HL and C18-B (2 mm × 100 mm, 1.5 μm). After selection of the stationary phase, the method was further optimised by testing two aqueous and two organic phases and by adapting to a gradient method. The obtained method was fully validated based on its measurement uncertainty (accuracy profile) and robustness tests. A UHPLC method was obtained for the identification and quantification of folic acid in pharmaceutical preparations, which will cut analysis times and solvent consumption.

  3. ON A NEW NEAR-INFRARED METHOD TO ESTIMATE THE ABSOLUTE AGES OF STAR CLUSTERS: NGC 3201 AS A FIRST TEST CASE

    SciTech Connect

    Bono, G.; Di Cecco, A.; Sanna, N.; Buonanno, R.; Stetson, P. B.; VandenBerg, D. A.; Calamida, A.; Amico, P.; Marchetti, E.; D'Odorico, S.; Gilmozzi, R.; Dall'Ora, M.; Iannicola, G.; Caputo, F.; Corsi, C. E.; Ferraro, I.; Monelli, M.; Walker, A. R.; Zoccali, M.; Degl'Innocenti, S.

    2010-01-10

    We present a new method to estimate the absolute ages of stellar systems. This method is based on the difference in magnitude between the main-sequence turnoff (MSTO) and a well-defined knee located along the lower main sequence (MSK). This feature is caused by the collisionally induced absorption of molecular hydrogen, and it can easily be identified in near-infrared (NIR) and in optical-NIR color-magnitude diagrams of stellar systems. We took advantage of deep and accurate NIR images collected with the Multi-Conjugate Adaptive Optics Demonstrator temporarily available on the Very Large Telescope and of optical images collected with the Advanced Camera for Surveys Wide Field Camera on the Hubble Space Telescope and with ground-based telescopes to estimate the absolute age of the globular NGC 3201 using both the MSTO and the {delta}(MSTO-MSK). We have adopted a new set of cluster isochrones, and we found that the absolute ages based on the two methods agree to within 1{sigma}. However, the errors of the ages based on the {delta}(MSTO-MSK) method are potentially more than a factor of 2 smaller, since they are not affected by uncertainties in cluster distance or reddening. Current isochrones appear to predict slightly bluer ({approx}0.05 mag) NIR and optical-NIR colors than observed for magnitudes fainter than the MSK.

  4. Quantification and Statistical Analysis Methods for Vessel Wall Components from Stained Images with Masson's Trichrome

    PubMed Central

    Hernández-Morera, Pablo; Castaño-González, Irene; Travieso-González, Carlos M.; Mompeó-Corredera, Blanca; Ortega-Santana, Francisco

    2016-01-01

    Purpose To develop a digital image processing method to quantify structural components (smooth muscle fibers and extracellular matrix) in the vessel wall stained with Masson’s trichrome, and a statistical method suitable for small sample sizes to analyze the results previously obtained. Methods The quantification method comprises two stages. The pre-processing stage improves tissue image appearance and the vessel wall area is delimited. In the feature extraction stage, the vessel wall components are segmented by grouping pixels with a similar color. The area of each component is calculated by normalizing the number of pixels of each group by the vessel wall area. Statistical analyses are implemented by permutation tests, based on resampling without replacement from the set of the observed data to obtain a sampling distribution of an estimator. The implementation can be parallelized on a multicore machine to reduce execution time. Results The methods have been tested on 48 vessel wall samples of the internal saphenous vein stained with Masson’s trichrome. The results show that the segmented areas are consistent with the perception of a team of doctors and demonstrate good correlation between the expert judgments and the measured parameters for evaluating vessel wall changes. Conclusion The proposed methodology offers a powerful tool to quantify some components of the vessel wall. It is more objective, sensitive and accurate than the biochemical and qualitative methods traditionally used. The permutation tests are suitable statistical techniques to analyze the numerical measurements obtained when the underlying assumptions of the other statistical techniques are not met. PMID:26761643

  5. An Optimized Method for Quantification of Pathogenic Leptospira in Environmental Water Samples.

    PubMed

    Riediger, Irina N; Hoffmaster, Alex R; Casanovas-Massana, Arnau; Biondo, Alexander W; Ko, Albert I; Stoddard, Robyn A

    2016-01-01

    Leptospirosis is a zoonotic disease usually acquired by contact with water contaminated with urine of infected animals. However, few molecular methods have been used to monitor or quantify pathogenic Leptospira in environmental water samples. Here we optimized a DNA extraction method for the quantification of leptospires using a previously described Taqman-based qPCR method targeting lipL32, a gene unique to and highly conserved in pathogenic Leptospira. QIAamp DNA mini, MO BIO PowerWater DNA and PowerSoil DNA Isolation kits were evaluated to extract DNA from sewage, pond, river and ultrapure water samples spiked with leptospires. Performance of each kit varied with sample type. Sample processing methods were further evaluated and optimized using the PowerSoil DNA kit due to its performance on turbid water samples and reproducibility. Centrifugation speeds, water volumes and use of Escherichia coli as a carrier were compared to improve DNA recovery. All matrices showed a strong linearity in a range of concentrations from 106 to 10° leptospires/mL and lower limits of detection ranging from <1 cell /ml for river water to 36 cells/mL for ultrapure water with E. coli as a carrier. In conclusion, we optimized a method to quantify pathogenic Leptospira in environmental waters (river, pond and sewage) which consists of the concentration of 40 mL samples by centrifugation at 15,000×g for 20 minutes at 4°C, followed by DNA extraction with the PowerSoil DNA Isolation kit. Although the method described herein needs to be validated in environmental studies, it potentially provides the opportunity for effective, timely and sensitive assessment of environmental leptospiral burden. PMID:27487084

  6. An Optimized Method for Quantification of Pathogenic Leptospira in Environmental Water Samples

    PubMed Central

    Riediger, Irina N.; Hoffmaster, Alex R.; Biondo, Alexander W.; Ko, Albert I.; Stoddard, Robyn A.

    2016-01-01

    Leptospirosis is a zoonotic disease usually acquired by contact with water contaminated with urine of infected animals. However, few molecular methods have been used to monitor or quantify pathogenic Leptospira in environmental water samples. Here we optimized a DNA extraction method for the quantification of leptospires using a previously described Taqman-based qPCR method targeting lipL32, a gene unique to and highly conserved in pathogenic Leptospira. QIAamp DNA mini, MO BIO PowerWater DNA and PowerSoil DNA Isolation kits were evaluated to extract DNA from sewage, pond, river and ultrapure water samples spiked with leptospires. Performance of each kit varied with sample type. Sample processing methods were further evaluated and optimized using the PowerSoil DNA kit due to its performance on turbid water samples and reproducibility. Centrifugation speeds, water volumes and use of Escherichia coli as a carrier were compared to improve DNA recovery. All matrices showed a strong linearity in a range of concentrations from 106 to 10° leptospires/mL and lower limits of detection ranging from <1 cell /ml for river water to 36 cells/mL for ultrapure water with E. coli as a carrier. In conclusion, we optimized a method to quantify pathogenic Leptospira in environmental waters (river, pond and sewage) which consists of the concentration of 40 mL samples by centrifugation at 15,000×g for 20 minutes at 4°C, followed by DNA extraction with the PowerSoil DNA Isolation kit. Although the method described herein needs to be validated in environmental studies, it potentially provides the opportunity for effective, timely and sensitive assessment of environmental leptospiral burden. PMID:27487084

  7. A Single Chiroptical Spectroscopic Method May Not Be Able To Establish the Absolute Configurations of Diastereomers: Dimethylesters of Hibiscus and Garcinia Acids

    PubMed Central

    Polavarapu, Prasad L.; Donahue, Emily A.; Shanmugam, Ganesh; Scalmani, Giovanni; Hawkins, Edward K.; Rizzo, Carmelo; Ibnusaud, Ibrahim; Thomas, Grace; Habel, Deenamma; Sebastian, Dellamol

    2013-01-01

    Electronic circular dichroism (ECD), optical rotatory dispersion (ORD), and vibrational circular dichroism (VCD) spectra of hibiscus acid dimethyl ester have been measured and analyzed in combination with quantum chemical calculations of corresponding spectra. These results, along with those reported previously for garcinia acid dimethyl ester, reveal that none of these three (ECD, ORD, or VCD) spectroscopic methods, in isolation, can unequivocally establish the absolute configurations of diastereomers. This deficiency is eliminated when a combined spectral analysis of either ECD and VCD or ORD and VCD methods is used. It is also found that the ambiguities in the assignment of absolute configurations of diastereomers may also be overcome when unpolarized vibrational absorption is included in the spectral analysis. PMID:21568330

  8. A single chiroptical spectroscopic method may not be able to establish the absolute configurations of diastereomers: dimethylesters of hibiscus and garcinia acids.

    PubMed

    Polavarapu, Prasad L; Donahue, Emily A; Shanmugam, Ganesh; Scalmani, Giovanni; Hawkins, Edward K; Rizzo, Carmelo; Ibnusaud, Ibrahim; Thomas, Grace; Habel, Deenamma; Sebastian, Dellamol

    2011-06-01

    Electronic circular dichroism (ECD), optical rotatory dispersion (ORD), and vibrational circular dichroism (VCD) spectra of hibiscus acid dimethyl ester have been measured and analyzed in combination with quantum chemical calculations of corresponding spectra. These results, along with those reported previously for garcinia acid dimethyl ester, reveal that none of these three (ECD, ORD, or VCD) spectroscopic methods, in isolation, can unequivocally establish the absolute configurations of diastereomers. This deficiency is eliminated when a combined spectral analysis of either ECD and VCD or ORD and VCD methods is used. It is also found that the ambiguities in the assignment of absolute configurations of diastereomers may also be overcome when unpolarized vibrational absorption is included in the spectral analysis. PMID:21568330

  9. Development of a reliable extraction and quantification method for glucosinolates in Moringa oleifera.

    PubMed

    Förster, Nadja; Ulrichs, Christian; Schreiner, Monika; Müller, Carsten T; Mewis, Inga

    2015-01-01

    Glucosinolates are the characteristic secondary metabolites of plants in the order Brassicales. To date the common DIN extraction 'desulfo glucosinolates' method remains the common procedure for determination and quantification of glucosinolates. However, the desulfation step in the extraction of glucosinolates from Moringa oleifera leaves resulted in complete conversion and degradation of the naturally occurring glucosinolates in this plant. Therefore, a method for extraction of intact Moringa glucosinolates was developed and no conversion and degradation of the different rhamnopyranosyloxy-benzyl glucosinolates was found. Buffered eluents (0.1 M ammonium acetate) were necessary to stabilize 4-α-rhamnopyranosyloxy-benzyl glucosinolate (Rhamno-Benzyl-GS) and acetyl-4-α-rhamnopyranosyloxy-benzyl glucosinolate isomers (Ac-Isomers-GS) during HPLC analysis. Due to the instability of intact Moringa glucosinolates at room temperature and during the purification process of single glucosinolates, influences of different storage (room temperature, frozen, thawing and refreezing) and buffer conditions on glucosinolate conversion were analysed. Conversion and degradations processes were especially determined for the Ac-Isomers-GS III.

  10. Size-exclusion HPLC as a sensitive and calibrationless method for complex peptide mixtures quantification.

    PubMed

    Bodin, Alice; Framboisier, Xavier; Alonso, Dominique; Marc, Ivan; Kapel, Romain

    2015-12-01

    This work describes an original methodology to quantify complex peptide mixtures by size-exclusion high-performance liquid chromatography (SE-HPLC). The methodology was first tested on simulated elutions of peptide mixtures. For this set of experiments, a good estimation of the total peptide concentration was observed (error less than 10 %). Then 30 fractions obtained by ultrafiltration of hydrolysates from two different sources were titrated by Kjeldahl or BCA analysis and analysed by SE-HPLC for an experimental validation of the methodology. Very good matchs between methods were obtained. The linear working range depends on the hydrolysate but is generally between 0.2 and 4gL(-1) (i.e. between 10 and 200μg). Moreover, the presence of organic solvents or salts in samples does not impact the accuracy of the methodology contrary to common quantification methods. Hence, the findings of this study show that total concentration of complex peptide mixture can be efficiently determinate by the proposed methodology using simple SE-HPLC analysis.

  11. A comprehensive study of the delay vector variance method for quantification of nonlinearity in dynamical systems

    PubMed Central

    Mandic, D. P.; Ryan, K.; Basu, B.; Pakrashi, V.

    2016-01-01

    Although vibration monitoring is a popular method to monitor and assess dynamic structures, quantification of linearity or nonlinearity of the dynamic responses remains a challenging problem. We investigate the delay vector variance (DVV) method in this regard in a comprehensive manner to establish the degree to which a change in signal nonlinearity can be related to system nonlinearity and how a change in system parameters affects the nonlinearity in the dynamic response of the system. A wide range of theoretical situations are considered in this regard using a single degree of freedom (SDOF) system to obtain numerical benchmarks. A number of experiments are then carried out using a physical SDOF model in the laboratory. Finally, a composite wind turbine blade is tested for different excitations and the dynamic responses are measured at a number of points to extend the investigation to continuum structures. The dynamic responses were measured using accelerometers, strain gauges and a Laser Doppler vibrometer. This comprehensive study creates a numerical and experimental benchmark for structurally dynamical systems where output-only information is typically available, especially in the context of DVV. The study also allows for comparative analysis between different systems driven by the similar input. PMID:26909175

  12. A comprehensive study of the delay vector variance method for quantification of nonlinearity in dynamical systems.

    PubMed

    Jaksic, V; Mandic, D P; Ryan, K; Basu, B; Pakrashi, V

    2016-01-01

    Although vibration monitoring is a popular method to monitor and assess dynamic structures, quantification of linearity or nonlinearity of the dynamic responses remains a challenging problem. We investigate the delay vector variance (DVV) method in this regard in a comprehensive manner to establish the degree to which a change in signal nonlinearity can be related to system nonlinearity and how a change in system parameters affects the nonlinearity in the dynamic response of the system. A wide range of theoretical situations are considered in this regard using a single degree of freedom (SDOF) system to obtain numerical benchmarks. A number of experiments are then carried out using a physical SDOF model in the laboratory. Finally, a composite wind turbine blade is tested for different excitations and the dynamic responses are measured at a number of points to extend the investigation to continuum structures. The dynamic responses were measured using accelerometers, strain gauges and a Laser Doppler vibrometer. This comprehensive study creates a numerical and experimental benchmark for structurally dynamical systems where output-only information is typically available, especially in the context of DVV. The study also allows for comparative analysis between different systems driven by the similar input. PMID:26909175

  13. Comparison and evaluation of RNA quantification methods using viral, prokaryotic, and eukaryotic RNA over a 10(4) concentration range.

    PubMed

    Aranda, Roman; Dineen, Shauna M; Craig, Rhonda L; Guerrieri, Richard A; Robertson, James M

    2009-04-01

    Quantification of RNA is essential for various molecular biology studies. In this work, three quantification methods were evaluated: ultraviolet (UV) absorbance, microcapillary electrophoresis (MCE), and fluorescence-based quantification. Viral, bacterial, and eukaryotic RNA were measured in the 500 to 0.05-ng microl(-1) range via an ND-1000 spectrophotometer (UV), Agilent RNA 6000 kits (MCE), and Quant-iT RiboGreen assay (fluorescence). The precision and accuracy of each method were assessed and compared with a concentration derived independently using inductively coupled plasma-optical emission spectroscopy (ICP-OES). Cost, operator time and skill, and required sample volumes were also considered in the evaluation. Results indicate an ideal concentration range for each quantification technique to optimize accuracy and precision. The ND-1000 spectrophotometer exhibits high precision and accurately quantifies a 1-microl sample in the 500 to 5-ng microl(-1) range. The Quant-iT RiboGreen assay demonstrates high precision in the 1 to 0.05-ng microl(-1) range but is limited to lower RNA concentrations and is more costly than the ND-1000 spectrophotometer. The Agilent kits exhibit less precision than the ND-1000 spectrophotometer and Quant-iT RiboGreen assays in the 500 to 0.05-ng microl(-1) range. However, the Agilent kits require 1 microl of sample and can determine the integrity of the RNA, a useful feature for verifying whether the isolation process was successful. PMID:19454255

  14. A new analytical method for the quantification of glycidol fatty acid esters in edible oils.

    PubMed

    Masukawa, Yoshinori; Shiro, Hiroki; Nakamura, Shun; Kondo, Naoki; Jin, Norikazu; Suzuki, Nobuyoshi; Ooi, Naoki; Kudo, Naoto

    2010-01-01

    A novel method to quantify glycidol fatty acid esters (GEs), supposed to present as food processing contaminants in edible oils, has been developed in combination with double solid-phase extractions (SPEs) and LC-MS measurements. The analytes were five species of synthetic GEs: glycidol palmitic, stearic, oleic, linoleic and linolenic acid esters. The use of selected ion monitoring in a positive ion mode of atmospheric chemical ionization-MS with a reversed-phase gradient LC provided a limit of quantification of 0.0045-0.012 microg/mL for the standard GEs, which enables the detection of GEs in microg ranges per gram of edible oil. Using the double SPE procedure first in reversed-phase and then in normal-phase second, allowed large amounts of co-existing acylglycerols in the oils to be removed, which improved the robustness and stability of the method in sequential runs of LC-MS measurements. When the method was used to quantify GEs in three commercial sources of edible oils, the recovery% ranged from 71.3 to 94.6% (average 79.4%) with a relative standard deviation of 2.9-12.1% for the two oils containing triacylglycerols as major components, and ranged from 90.8 to 105.1% (average 97.2%) with a relative standard deviation of 2.1-12.0% for the other, diacylglycerol-rich oil. Although the accuracy and precision of the method may not be yet sufficient, it is useful for determining trace levels of GEs and will be helpful for the quality control of edible oils.

  15. Testing 3D landform quantification methods with synthetic drumlins in a real digital elevation model

    NASA Astrophysics Data System (ADS)

    Hillier, John K.; Smith, Mike J.

    2012-06-01

    Metrics such as height and volume quantifying the 3D morphology of landforms are important observations that reflect and constrain Earth surface processes. Errors in such measurements are, however, poorly understood. A novel approach, using statistically valid ‘synthetic' landscapes to quantify the errors is presented. The utility of the approach is illustrated using a case study of 184 drumlins observed in Scotland as quantified from a Digital Elevation Model (DEM) by the ‘cookie cutter' extraction method. To create the synthetic DEMs, observed drumlins were removed from the measured DEM and replaced by elongate 3D Gaussian ones of equivalent dimensions positioned randomly with respect to the ‘noise' (e.g. trees) and regional trends (e.g. hills) that cause the errors. Then, errors in the cookie cutter extraction method were investigated by using it to quantify these ‘synthetic' drumlins, whose location and size is known. Thus, the approach determines which key metrics are recovered accurately. For example, mean height of 6.8 m is recovered poorly at 12.5 ± 0.6 (2σ) m, but mean volume is recovered correctly. Additionally, quantification methods can be compared: A variant on the cookie cutter using an un-tensioned spline induced about twice (× 1.79) as much error. Finally, a previously reportedly statistically significant (p = 0.007) difference in mean volume between sub-populations of different ages, which may reflect formational processes, is demonstrated to be only 30-50% likely to exist in reality. Critically, the synthetic DEMs are demonstrated to realistically model parameter recovery, primarily because they are still almost entirely the original landscape. Results are insensitive to the exact method used to create the synthetic DEMs, and the approach could be readily adapted to assess a variety of landforms (e.g. craters, dunes and volcanoes).

  16. Quantification of methane and nitrous oxide emissions from various waste treatment facilities by tracer dilution method

    NASA Astrophysics Data System (ADS)

    Mønster, Jacob; Rella, Chris; Jacobson, Gloria; Kjeldsen, Peter; Scheutz, Charlotte

    2013-04-01

    Urban activities generate solid and liquid waste, and the handling and aftercare of the waste results in the emission of various compounds into the surrounding environment. Some of these compounds are emitted as gasses into the atmosphere, including methane and nitrous oxide. Methane and nitrous oxide are strong greenhouse gases and are considered to have 25 and 298 times the greenhouse gas potential of carbon dioxide on a hundred years term (Solomon et al. 2007). Global observations of both gasses have shown increasing concentrations that significantly contribute to the greenhouse gas effect. Methane and nitrous oxide are emitted from both natural and anthropogenic sources and inventories of source specific fugitive emissions from the anthropogenic sources of methane and nitrous oxide of are often estimated on the basis of modeling and mass balance. Though these methods are well-developed, actual measurements for quantification of the emissions is a very useful tool for verifying the modeling and mass balance as well as for validation initiatives done for lowering the emissions of methane and nitrous oxide. One approach to performing such measurements is the tracer dilution method (Galle et al. 2001, Scheutz et al. 2011), where the exact location of the source is located and a tracer gas is released at this source location at a known flow. The ratio of downwind concentrations of the tracer gas and the methane and nitrous oxide gives the emissions rates of the greenhouse gases. This tracer dilution method can be performed using both stationary and mobile measurements and in both cases, real-time measurements of both tracer and quantified gas are required, placing high demands on the analytical detection method. To perform the methane and nitrous oxide measurements, two robust instruments capable of real-time measurements were used, based on cavity ring-down spectroscopy and operating in the near-infrared spectral region. One instrument measured the methane and

  17. Quantification method analysis of the relationship between occupant injury and environmental factors in traffic accidents.

    PubMed

    Ju, Yong Han; Sohn, So Young

    2011-01-01

    Injury analysis following a vehicle crash is one of the most important research areas. However, most injury analyses have focused on one-dimensional injury variables, such as the AIS (Abbreviated Injury Scale) or the IIS (Injury Impairment Scale), at a time in relation to various traffic accident factors. However, these studies cannot reflect the various injury phenomena that appear simultaneously. In this paper, we apply quantification method II to the NASS (National Automotive Sampling System) CDS (Crashworthiness Data System) to find the relationship between the categorical injury phenomena, such as the injury scale, injury position, and injury type, and the various traffic accident condition factors, such as speed, collision direction, vehicle type, and seat position. Our empirical analysis indicated the importance of safety devices, such as restraint equipment and airbags. In addition, we found that narrow impact, ejection, air bag deployment, and higher speed are associated with more severe than minor injury to the thigh, ankle, and leg in terms of dislocation, abrasion, or laceration. PMID:21094332

  18. In vivo reliability of an infrared fluorescence method for quantification of carious lesions in orthodontic patients.

    PubMed

    Aljehani, Abdulaziz; Bamzahim, Mohammad; Yousif, Mirgani Awad; Shi, Xie-Qi

    2006-01-01

    The aim of this study was to evaluate the reliability of a laser-induced infrared fluorescence method, DIAGNOdent, for measuring orthodontically induced white spot lesions. The subjects comprised 13 orthodontic patients, aged 13-17 years, who had recently completed fixed appliance therapy: 137 test teeth were selected, with white spot lesions on the facial or buccal smooth surfaces. An initial visual inspection was performed to localise and record the measuring region. The predetermined measuring regions were scanned to locate the sites of the highest reading. The readings and their corresponding sites were registered on the print out photographs. Following the measurement by the first examiner, the second and the third examiners took DIAGNOdent readings independently at the same lesion sites indicated on the photographs, under identical conditions. One week later, DIAGNOdent readings of the same lesions were retaken by the three observers working independently. Intra- and inter- examiner agreements on DIAGNOdent quantification of lesion severity were analysed by Intra-class correlation coefficient (ICC). The ICC values for intra-examiner agreement for the three examiners were 0.91, 0.97, and 0.98, respectively, with a mean value of 0.95, indicating excellent agreement. The ICC values for inter-examiner agreement were comparatively lower: 0.69 and 0.82 for the first and second measurements, respectively. It was concluded that the reliability of the DIAGNOdent readings on white spot lesions associated with orthodontic banding was good.

  19. New quantification methods for carotid intra-plaque neovascularization using contrast-enhanced ultrasound.

    PubMed

    Akkus, Zeynettin; Hoogi, Assaf; Renaud, Guillaume; van den Oord, Stijn C H; Ten Kate, Gerrit L; Schinkel, Arend F L; Adam, Dan; de Jong, Nico; van der Steen, Antonius F W; Bosch, Johan G

    2014-01-01

    As carotid intra-plaque neovascularization (IPN) is linked to progressive atherosclerotic disease and plaque vulnerability, its accurate quantification might allow early detection of plaque vulnerability. We therefore developed several new quantitative methods for analyzing IPN perfusion and structure. From our analyses, we derived six quantitative parameters-IPN surface area (IPNSA), IPN surface ratio (IPNSR), plaque mean intensity, plaque-to-lumen enhancement ratio, mean plaque contrast percentage and number of micro-vessels (MVN)-and compared these with visual grading of IPN by two independent physicians. A total of 45 carotid arteries with symptomatic stenosis in 23 patients were analyzed. IPNSA (correlation r = 0.719), IPNSR (r = 0.538) and MVN (r = 0.484) were found to be significantly correlated with visual scoring (p < 0.01). IPNSA was the best match to visual scoring. These results indicate that IPNSA, IPNSR and MVN may have the potential to replace qualitative visual scoring and to measure the degree of carotid IPN. PMID:24161799

  20. The Next-Generation PCR-Based Quantification Method for Ambient Waters: Digital PCR.

    PubMed

    Cao, Yiping; Griffith, John F; Weisberg, Stephen B

    2016-01-01

    Real-time quantitative PCR (qPCR) is increasingly being used for ambient water monitoring, but development of digital polymerase chain reaction (digital PCR) has the potential to further advance the use of molecular techniques in such applications. Digital PCR refines qPCR by partitioning the sample into thousands to millions of miniature reactions that are examined individually for binary endpoint results, with DNA density calculated from the fraction of positives using Poisson statistics. This direct quantification removes the need for standard curves, eliminating the labor and materials associated with creating and running standards with each batch, and removing biases associated with standard variability and mismatching amplification efficiency between standards and samples. Confining reactions and binary endpoint measurements to small partitions also leads to other performance advantages, including reduced susceptibility to inhibition, increased repeatability and reproducibility, and increased capacity to measure multiple targets in one analysis. As such, digital PCR is well suited for ambient water monitoring applications and is particularly advantageous as molecular methods move toward autonomous field application. PMID:27460373

  1. Quantification of camalexin, a phytoalexin from Arabidopsis thaliana: a comparison of five analytical methods.

    PubMed

    Beets, Caryn; Dubery, Ian

    2011-12-15

    Camalexin is a phytoalexin of Arabidopsis thaliana and an important component of inducible defenses. Accurate quantification of low concentrations suffers from interference by structurally related metabolites. A. thaliana plants were induced with silver nitrate and camalexin was extracted using methanol and identified and quantified by (i) TLC as a blue fluorescent band, (ii) microtiter plate-based fluorescence spectroscopy, (iii) GC on a midpolar column coupled to flame ionization detection, (iv) C(18) HPLC coupled to a photodiode detector, and (v) UPLC coupled to a mass spectrometer detector. Standard curves over the range of 0.1-15 μg ml(-1) gave R(2) values from 0.996 to 0.999. The different methods were compared and evaluated for their ability to detect and quantify increasing concentrations (<0.4-8 μgg(-1) FW) of camalexin. Each of the techniques presented advantages and disadvantages with regard to accuracy, precision, interference, analytical sensitivity, and limits of detection. TLC is a good qualitative technique for the identification of camalexin and fluorescence spectroscopy is subject to quenching when performed on crude extracts. Comparable results were obtained with GC-FID, HPLC-PDA, and UPLC-MS, with UPLC-MS having the added advantage of short analysis times and detection based on accurate mass. PMID:21910963

  2. Nonspecific particle-based method with two-photon excitation detection for sensitive protein quantification and cell counting.

    PubMed

    Pihlasalo, Sari; Engbert, Anke; Martikkala, Eija; Ylander, Pilvi; Hänninen, Pekka; Härmä, Harri

    2013-03-01

    A novel easy-to-use homogeneous method utilizing two-photon excitation (TPX) for quantification of proteins or counting of eukaryotic cells in solution has been developed. This highly sensitive technique is based on the adsorption competition between the sample and fluorescently labeled protein to micrometer-sized carboxylate modified polystyrene particles and detection of two-photon excited fluorescence. The adsorption of the labeled protein to the particles was detected as a distinct fluorescence on individual microparticles. Analyte protein or eukaryotic cells interacted with particle surface and reduced the adsorption of labeled protein to the particles resulting in a decrease of the fluorescence. The optimizations of assay conditions were performed separately for protein quantification and cell counting, and the principle of the method was confirmed with the fluorescence microscopy imaging. The protein quantification assay allowed the determination of picogram quantities (1.2 μg/L) of protein, and the cell counting assay allowed three cells in the sample with an average variation of approximately 10% in the signal. The protein assay sensitivity was more than 500-fold improved from the common most sensitive commercial methods. Moreover, the dynamic range of the assay was broad, approximately 4 orders of magnitude. The cell assay has sensitivity comparable to the most sensitive commercial method. The developed method tolerates interfering agents such as neutral detergents found in cell lysate samples even at high concentrations. The method is experimentally fairly simple and allows the expansion for the use of the TPX technology.

  3. Improved method for measuring absolute O2(a1Δg) concentration by O2(a1Δg-->X3Σg-) IR radiation

    NASA Astrophysics Data System (ADS)

    Deng, Liezheng; Shi, Wenbo; Yang, Heping; Sha, Guohe; Zhang, Cunhao

    2004-11-01

    We describe an improved technique for measuring the absolute O2(a1Δ) concentration via the quantitative determination of IR radiation from O2(a1Δg→X3Σg-) transition. An exact geometrical optical model was first established, in which the influence of reflection and refraction on the radiation characteristics of a luminous volume source was given full consideration, making possible the accurate calculation of the coupling efficiency between the volume source and a receiving area. Then, an IR radiation receiving apparatus (IRRRA) was constructed and its responsivity (mV/W) to the power of IR radiation calibrated by a tungsten standard lamp. An optical detection system was, in turn, built according to the optical model with fine alignment between the IRRRA and an optical cell. We then demonstrate the procedure to obtain the absolute concentration of O2(a1Δ) flowing through the optical cell from a jet singlet oxygen generator from the signal of the IRRRA, the optical cell volume, and the coupling efficiency between the cell and the IRRRA. Moreover, to verify the accuracy of this method, the absolute O2(a1Δ) concentration was compared to that measured by an established isothermal calorimetry method. Based on the comparison of the O2(a1Δ) concentrations determined by the two methods, the Einstein A-coefficient was estimated as (2.70±0.84)×10-4 s-1, which agrees with Badger's value of 2.58×10-4, Špalek's of 2.24×10-4, Newman's of 2.19×10-4, and Miller's of 2.3×10-4 within the uncertainty of the experimental techniques. The method advanced in this article is worthwhile for the measurement of absolute O2(a1Δ) concentration in a chemical oxygen iodine laser or a singlet oxygen generator. It can also provide a general technique for the measurement of absolute concentrations of long-lifetime luminous species other than O2(a1Δ).

  4. Rapid and simple UPLC-MS/MS method for precise phytochelatin quantification in alga extracts.

    PubMed

    Bräutigam, Anja; Wesenberg, Dirk; Preud'homme, Hugues; Schaumlöffel, Dirk

    2010-09-01

    Quantitative phytochelatin (PC) analysis is, due to oxidation sensitivity of the PCs, matrix effects, and time consuming sample preparation, still a challenging analytical task. In this study, a rapid, simple, and sensitive method for precise determination of native PCs in crude extracts of the green alga Chlamydomonas reinhardtii was developed. Algae were exposed 48 h to 70 μM Cd. Coupling of ultra performance liquid chromatography and electrospray ionization tandem mass spectrometry with multi-reaction mode transitions for detection permitted the required short-time, high-resolution separation and detection specificity. Thus, under optimized chromatographic conditions, 10 thiol peptides were baseline-separated within 7 min. Relative detection limits in the nanomolar range in microliter sample volumes were achieved (corresponding to absolute detection limits at femtomole level). Next to glutathione (GSH), the most abundant cadmium-induced PCs in C. reinhardtii, namely CysGSH, PC(2), PC(3), CysPC(2), and CysPC(3), were quantified with high reproducibility at concentrations between 15 and 198 nmol g(-1) fresh weight. The biological variation of PC synthesis of nine independently grown alga cultures was determined to be on average 13.7%. PMID:20632163

  5. New method of on-line quantification of regional wall motion with automated segmental motion analysis.

    PubMed

    Fujino, T; Ono, S; Murata, K; Tanaka, N; Tone, T; Yamamura, T; Tomochika, Y; Kimura, K; Ueda, K; Liu, J; Wada, Y; Murashita, M; Kondo, Y; Matsuzaki, M

    2001-09-01

    We have recently developed an automated segmental motion analysis (A-SMA) system, based on an automatic "blood-tissue interface" detection technique, to provide real-time and on-line objective echocardiographic segmental wall motion analysis. To assess the feasibility of A-SMA in detecting regional left ventricular (LV) wall motion abnormalities, we performed 2-dimensional echocardiography with A-SMA in 13 healthy subjects, 22 patients with prior myocardial infarction (MI), and 9 with dilated cardiomyopathy (DCM). Midpapillary parasternal short-axis and apical 2- and 4-chamber views were obtained to clearly trace the blood-tissue interface. The LV cavity was then divided into 6 wedge-shaped segments by A-SMA. The area of each segment was calculated automatically throughout a cardiac cycle, and the area changes of each segment were displayed as bar graphs or time-area curves. The systolic fractional area change (FAC), peak ejection rate (PER), and filling rate (PFR) were also calculated with the use of A-SMA. In the control group, a uniform FAC was observed in real time among 6 segments in the short-axis view (60% +/- 10% to 78% +/- 9%), or among 5 segments in either the 2-chamber (59% +/- 12% to 75% +/- 16%) or 4-chamber view (58% +/- 13% to 72% +/- 12%). The variations of FAC, PER, and PFR were obviously decreased in infarct-related regions in the MI group and were globally decreased in the DCM group. We conclude that A-SMA is an objective and time-saving method for assessing regional wall motion abnormalities in real time. This method is a reliable new tool that provides on-line quantification of regional wall motion.

  6. A rapid Fourier-transform infrared (FTIR) spectroscopic method for direct quantification of paracetamol content in solid pharmaceutical formulations

    NASA Astrophysics Data System (ADS)

    Mallah, Muhammad Ali; Sherazi, Syed Tufail Hussain; Bhanger, Muhammad Iqbal; Mahesar, Sarfaraz Ahmed; Bajeer, Muhammad Ashraf

    2015-04-01

    A transmission FTIR spectroscopic method was developed for direct, inexpensive and fast quantification of paracetamol content in solid pharmaceutical formulations. In this method paracetamol content is directly analyzed without solvent extraction. KBr pellets were formulated for the acquisition of FTIR spectra in transmission mode. Two chemometric models: simple Beer's law and partial least squares employed over the spectral region of 1800-1000 cm-1 for quantification of paracetamol content had a regression coefficient of (R2) of 0.999. The limits of detection and quantification using FTIR spectroscopy were 0.005 mg g-1 and 0.018 mg g-1, respectively. Study for interference was also done to check effect of the excipients. There was no significant interference from the sample matrix. The results obviously showed the sensitivity of transmission FTIR spectroscopic method for pharmaceutical analysis. This method is green in the sense that it does not require large volumes of hazardous solvents or long run times and avoids prior sample preparation.

  7. Evaluating open-path FTIR spectrometer data using different quantification methods, libraries, and background spectra obtained under varying environmental conditions

    SciTech Connect

    Tomasko, M.S.

    1995-12-31

    Studies were performed to evaluate the accuracy of open-path Fourier Transform Infrared (OP-FTIR) spectrometers using a 35 foot outdoor exposure chamber in Pittsboro, North Carolina. Results obtained with the OP-FTIR spectrometer were compared to results obtained with a reference method (a gas chromatograph equipped with a flame ionization detector, GC-FID). Concentration results were evaluated in terms of the mathematical methods and spectral libraries used for quantification. In addition, the research investigated the effect on quantification of using different backgrounds obtained at various times during the day. The chemicals used in this study were toluene, cyclohexane, and methanol; and these were evaluated over the concentration range of 5-30 ppm.

  8. Metal-tag labeling coupled with multiple reaction monitoring-mass spectrometry for absolute quantitation of proteins.

    PubMed

    Wang, Xueying; Wang, Xin; Qin, Weijie; Lin, Hongjun; Wang, Jifeng; Wei, Junying; Zhang, Yangjun; Qian, Xiaohong

    2013-09-21

    Mass spectrometry-based quantitative proteomics, consisting of relative and absolute parts, has been used to discover and validate proteins with key functions related to physiological and pathological processes. Currently, stable isotope dilution-multiple reaction monitoring-mass spectrometry (SID-MRM-MS) is the most commonly used method for the absolute determination of proteins in a biological sample. A prerequisite for this method is obtaining internal standards with isotope labels. Although many approaches have been developed for the labeling and preparation of internal peptides, expensive stable isotope labeling coupled with SID-MRM-MS has limited the application and development of an absolute quantitative method. Recently, a low-cost strategy using metal-tag labeling and MS has been developed for relative quantification of peptides or proteins. The introduction of labeling using metal tags has the merits of allowing multiple labeling and enlarging the mass shift to overcome the overlap of adjacent isotope clusters. However, most papers described MRM-MS for protein absolute quantification based on the metal in its peptides labelled with metal by inductively coupled plasma mass spectrometry (ICP MS) but not on its peptides labelled with metal. In this work, a novel approach based on metal-tag labeling coupled with MRM-MS was established for the absolute quantification of peptides or proteins. The principle of the method is that a bifunctional chelator, 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid bearing an N-hydroxysuccinimide ester (DOTA-NHS ester), is used to modify the N-termini of signature peptides from a target protein, and the modified peptides then chelate a certain metal, such as thulium, to form metal-tagged peptides (Tm-DOTA-P). Internal peptides are chemically synthesized and labeled with another metal, such as terbium (Tb-DOTA-P), as the internal standard. Both the Tb-DOTA- and Tm-DOTA-labeled peptides in samples can be analysed via

  9. Standardized Method for Quantification of Developing Lymphedema in Patients Treated for Breast Cancer

    SciTech Connect

    Ancukiewicz, Marek; Russell, Tara A.; Otoole, Jean; Specht, Michelle; Singer, Marybeth; Kelada, Alexandra; Murphy, Colleen D.; Pogachar, Jessica; Gioioso, Valeria; Patel, Megha; Skolny, Melissa; Smith, Barbara L.; Taghian, Alphonse G.

    2011-04-01

    Purpose: To develop a simple and practical formula for quantifying breast cancer-related lymphedema, accounting for both the asymmetry of upper extremities' volumes and their temporal changes. Methods and Materials: We analyzed bilateral perometer measurements of the upper extremity in a series of 677 women who prospectively underwent lymphedema screening during treatment for unilateral breast cancer at Massachusetts General Hospital between August 2005 and November 2008. Four sources of variation were analyzed: between repeated measurements on the same arm at the same session; between both arms at baseline (preoperative) visit; in follow-up measurements; and between patients. Effects of hand dominance, time since diagnosis and surgery, age, weight, and body mass index were also analyzed. Results: The statistical distribution of variation of measurements suggests that the ratio of volume ratios is most appropriate for quantification of both asymmetry and temporal changes. Therefore, we present the formula for relative volume change (RVC): RVC = (A{sub 2}U{sub 1})/(U{sub 2}A{sub 1}) - 1, where A{sub 1}, A{sub 2} are arm volumes on the side of the treated breast at two different time points, and U{sub 1}, U{sub 2} are volumes on the contralateral side. Relative volume change is not significantly associated with hand dominance, age, or time since diagnosis. Baseline weight correlates (p = 0.0074) with higher RVC; however, baseline body mass index or weight changes over time do not. Conclusions: We propose the use of the RVC formula to assess the presence and course of breast cancer-related lymphedema in clinical practice and research.

  10. Quantification of enterococci and bifidobacteria in Georgia estuaries using conventional and molecular methods.

    PubMed

    Morrison, Clayton R; Bachoon, Dave S; Gates, Keith W

    2008-08-01

    Fecal pollution is a serious threat to the estuarine environment along the Georgia coast. Culture-dependant and molecular methodologies were utilized to compare and evaluate the abundance of fecal indicator bacteria in four Georgia estuaries (Darien River, Frederica River, Gulley Hole Creek, and St. Marys River). The functionality of enterococci and bifidobacteria as indicator organisms in marine environments was assessed, as well as Bifidobacterium adolescentis densities. At each study site, enterococci were enumerated as colony forming units (CFU) on mEI agar. For quantitative polymerase chain reaction (qPCR), genus- and species-specific primer sets were used to quantify bifidobacteria and B. adolescentis as 16S rRNA gene copies and enterococci as tuf gene copies. A high correlation (r=0.925) was observed between CFU and qPCR enumeration of enterococci. Enterococci densities in the estuarine rivers ranged from 3-449CFU/100ml on mEI plates and 4.58-5.39Log(10) gene copies/100ml by qPCR. Bifidobacteria densities ranged from 3.62-4.14Log(10) gene copies/100ml and suggested the Frederica River as least affected by fecal bacteria and the Darien River as most affected by fecal pollution. A correlation of 0.46 was observed among qPCR densities of enterococci and bifidobacteria at all sample sites. Quantitative polymerase chain reaction detection of B. adolescentis was a rapid (i.e., less than 2h) indicator of presumptive human fecal pollution and suggested that Gulley Hole Creek, the Darien River, and the St. Marys River were affected by fecal bacteria derived from a human source. Gulley Hole Creek and the Darien River had the highest levels of fecal pollution detected in the studied estuaries. Molecular quantification of bifidobacteria may be a more accurate method of determining immediate health risks associated with fecal pollution in estuarine water than traditional and contemporary assessments of enterococci.

  11. Quantification of Viral and Prokaryotic Production Rates in Benthic Ecosystems: A Methods Comparison

    PubMed Central

    Rastelli, Eugenio; Dell’Anno, Antonio; Corinaldesi, Cinzia; Middelboe, Mathias; Noble, Rachel T.; Danovaro, Roberto

    2016-01-01

    Viruses profoundly influence benthic marine ecosystems by infecting and subsequently killing their prokaryotic hosts, thereby impacting the cycling of carbon and nutrients. Previously conducted studies, based on different methodologies, have provided widely differing estimates of the relevance of viruses on benthic prokaryotes. There has been no attempt so far to compare these independent approaches, including contextual comparisons among different approaches for sample manipulation (i.e., dilution or not of the sediments during incubations), between methods based on epifluorescence microscopy (EFM) or radiotracers, and between the use of different radiotracers. Therefore, it has been difficult to identify the most suitable methodologies and protocols to be used as standard approaches for the quantification of viral infections of prokaryotes. Here, we compared for the first time different methods for determining viral and prokaryotic production rates in marine sediments collected at two benthic sites, differing in depth and environmental conditions. We used a highly replicated experimental design, testing the potential biases associated to the incubation of sediments as diluted or undiluted. In parallel, we also compared EFM counts with the 3H-thymidine incubations for the determination of viral production rates, and the use of 3H-thymidine versus 3H-leucine radiotracers for the determination of prokaryotic production. We show here that, independent from sediment dilution, EFM-based values of viral production ranged from 1.4 to 4.6 × 107 viruses g-1 h-1, and were similar but overall less variable compared to those obtained by the 3H-thymidine method (0.3 to 9.0 × 107 viruses g-1h-1). In addition, the prokaryotic production rates were not affected by sediment dilution, and the use of different radiotracers provided very consistent estimates (10.3–35.1 and 9.3–34.6 ngC g-1h-1 using the 3H-thymidine or 3H-leucine method, respectively). These results indicated

  12. Development of a quantification method for x-ray microanalysis with an electron microscope

    NASA Astrophysics Data System (ADS)

    Horny, Paula

    The overview of the history of quantitative x-ray microanalysis shows the efficiency of the use of standards to achieve the most reliable quantification. State-of-the-art cold field emission gun scanning electron microscopes offer excellent resolution but lack a sufficient level of beam current stability essential for reliable quantitative microanalysis. The purpose of this work is to develop a new method for quantitative x-ray microanalysis adapted to unstable beam current conditions. In the Cliff and Lorimer method, which was developed for the analytical transmission electron microscope, the composition was calculated from the ratio of the characteristic x-ray intensities of two elements in the same spectrum. In this work, this ratio method is applied to bulk specimens in a scanning electron microscope (SEM). In order to reduce the amplitude of error propagation, the proposed ratio for SEM quantitative microanalysis is the intensity of a x-ray divided by the sum of intensities of one or more characteristic lines of each of tire elements found in the specimen. Moreover, the calculated x-ray intensities are corrected for the effects of absorption, fluorescence and Coster-Kronig yields, and other physical factors normally considered in microbeam analysis. Uncertainties in physical parameters and models, clue to the lack of exhaustive measurements as well as their scattering, revealed by a disaggrement between the measured and calculated ratios, are minimized by the use of a calibration factor inserted into the ratio. This calibration factor is determined using a standard for a given element. It can be used as often as needed and allows for the correction of uncertainties in the x-ray detector efficiency. In order to quantify the specimen, the measured experimental ratio is compared to a simulated ratio with the appropriate calibration factor. The composition is interpolated from the theoretical ratio curves. Two methods of calculation of emitted x-ray intensity are

  13. Eosinophil count - absolute

    MedlinePlus

    Eosinophils; Absolute eosinophil count ... the white blood cell count to give the absolute eosinophil count. ... than 500 cells per microliter (cells/mcL). Normal value ranges may vary slightly among different laboratories. Talk ...

  14. Burnett Method with Absolute Pressure Transducer and Measurements for PVT Properties of Nitrogen and Hydrogen up to 473 K and 100 MPa

    NASA Astrophysics Data System (ADS)

    Sakoda, N.; Shindo, K.; Motomura, K.; Shinzato, K.; Kohno, M.; Takata, Y.; Fujii, M.

    2012-01-01

    A measurement method for PVT properties of high-temperature and high-pressure gases was developed by simplifying the Burnett method and revising the data acquisition procedure. Instead of a differential pressure transducer, which is traditionally used, an absolute pressure transducer is used in the present method, and the measurement of pressure becomes easier. However, the absolute pressure transducer is placed outside the constant temperature bath because of the difficulty of its use in high-temperature surroundings, and some parts with different temperatures from the sample vessels exist as dead space. The present method takes into account the effect of the dead space in the data acquisition procedure. Nitrogen was measured in the temperature range from 353 K to 473 K and at pressures up to 100 MPa to determine the apparatus constants, and then, hydrogen was measured at 473 K and up to 100 MPa. The determined densities are in agreement within uncertainties of 0.07% to 0.24% ( k = 2), both with the latest equation of state and existing measured data.

  15. A validated SPME-GC-MS method for simultaneous quantification of club drugs in human urine.

    PubMed

    Brown, Stacy D; Rhodes, Daniel J; Pritchard, Boyd J

    2007-09-13

    A solid-phase microextraction-gas chromatographic-mass spectrometric (SPME-GC-MS) method has been developed and validated for measuring four club drugs in human urine. These drugs include gamma-hydroxybutyrate (GHB), ketamine (KET), methamphetamine (MAMP), and methylenedioxymethamphetamine (MDMA). These drugs are referred to as 'club drugs' because of their prevalence at parties and raves. Deuterium labeled internal standards for each of the four drugs was included in the assay to aid in quantitation. The drugs were spiked into human urine and derivatized using pyridine and hexylchloroformate to make them suitable for GC-MS analysis. The SPME conditions of extraction time/temperature and desorption time/temperature were optimized to yield the highest peak area for each of the four drugs. The final SPME parameters included a 90 degrees C extraction for 20min with a 1min desorption in the GC injector at 225 degrees C using a splitless injection. All SPME work was done using a 100microm PDMS fiber by Supelco. The ratio of pyridine to hexylchloroformate for derivatization was also optimized. The GC separation was carried out on a VF-5ht column by Varian (30m, 0.25mm i.d., 0.10microm film thickness) using a temperature program of 150-270 degrees C at 10 degrees C/min. The instrument used was a ThermoFinnigan Trace GC-Polaris Q interfaced with a LEAP CombiPal autosampler. The data was collected by using extracted ion chromatograms of marker m/z values for each drug from the total ion chromatograms (TIC) (full scan mode). Calibration curves with R(2)>0.99 were generated each day using the peak area ratios (peak area drug/peak area internal standard) versus concentration. The validated method resulted in intra-day and inter-day precision (% R.S.D.) of less than 15% and a % error of less than 15% for four concentrations in the range of 0.05-20microg/mL (MAMP) and 0.10-20microg/mL (GHB, KET, and MDMA). This method has the advantage of an easy sample preparation with

  16. A sensitive method for the detection and quantification of ginkgo flavonols from plasma.

    PubMed

    Zhao, Yang; Wang, Li; Bao, Yuanwu; Li, Chuan

    2007-01-01

    demonstrated that our bioassay is valid, reproducible, and reliable. The newly developed assay provided lower limits of quantification of 1.3, 1.3 and 0.4 pg on-column for QCT, KMF and ISR, respectively, which is more sensitive than any previously reported method for determining ginkgo flavonols. Finally, the assay suitability was demonstrated in a pilot pharmacokinetic measurement of a pharmaceutical ginkgo product in a beagle dog. This newly developed method should prove useful for wide-scale monitoring of ginkgo flavonol plasma concentrations for both pharmaceutical investigations and clinical applications. PMID:17300134

  17. Absolute cascade-free cross-sections for the 2S to 2P transition in Zn(+) using electron-energy-loss and merged-beams methods

    NASA Technical Reports Server (NTRS)

    Smith, Steven J.; Man, K.-F.; Chutjian, A.; Mawhorter, R. J.; Williams, I. D.

    1991-01-01

    Absolute cascade-free excitation cross-sections in an ion have been measured for the resonance 2S to 2P transition in Zn(+) using electron-energy-loss and merged electron-ion beams methods. Measurements were carried out at electron energies of below threshold to 6 times threshold. Comparisons are made with 2-, 5-, and 15-state close-coupling and distorted-wave theories. There is good agreement between experiment and the 15-state close-coupling cross-sections over the energy range of the calculations.

  18. Development and Validation of an LC-MS/MS Method for the Quantification of Agaritine in Mushrooms.

    PubMed

    Merdivan, Simon; Willke, Christoph; Lindequist, Ulrike

    2016-01-01

    Agaritine, an aromatic hydrazine, is found as a secondary metabolite in mushroom species. It is among others suspected to exhibit genotoxic activity. This publication describes the validation of a method for the quantification of agaritine in mushrooms (i.e., extraction and purification by solid phase extraction) and measurement by liquid chromatography with tandem mass spectrometry detection in positive ionization mode. The results show this method to be selective, accurate, and precise. This method could be used for the quality control of pharmaceutical preparations containing mushrooms. PMID:27279441

  19. Quantification of Norwalk virus inocula: Comparison of endpoint titration and real-time reverse transcription-PCR methods.

    PubMed

    Liu, Pengbo; Hsiao, Hui-Mien; Jaykus, Lee-Ann; Moe, Christine

    2010-09-01

    Human noroviruses (NoV) are the leading cause of epidemic acute gastroenteritis. In order to fully characterize features such as persistence and infectious dose, precise quantification of virus concentration is necessary. The purpose of this study was to compare two methods [endpoint titration RT-PCR and quantitative RT-PCR (RT-qPCR)] with respect to quantification of Norwalk virus (NV) in inocula made from purified stock suspensions of human fecal specimens. A full-length NV RNA transcript was developed to facilitate quantification using RT-qPCR and provided log linear detection in the range of 49-4.9 x 10(4) genome equivalent copies (GEC) per reaction. Endpoint titration RT-PCR was used to estimate PCR detection units, and RT-qPCR was used to estimate genome copies in two NV inocula (8fIIa and 8fIIb) used in previous human challenge studies. Overall, RT-qPCR was 1.1-1.6 log(10) more sensitive (lower detection limit) than endpoint titration RT-PCR when the same RNA release method, PCR primers and thermocycle program were used. These findings have important implications for many experimental interpretations, not the least of which is estimating the median infectious dose in human challenge studies.

  20. Simultaneous Assessment of Cardiomyocyte DNA Synthesis and Ploidy: A Method to Assist Quantification of Cardiomyocyte Regeneration and Turnover.

    PubMed

    Richardson, Gavin D

    2016-01-01

    Although it is accepted that the heart has a limited potential to regenerate cardiomyocytes following injury and that low levels of cardiomyocyte turnover occur during normal ageing, quantification of these events remains challenging. This is in part due to the rarity of the process and the fact that multiple cellular sources contribute to myocardial maintenance. Furthermore, DNA duplication within cardiomyocytes often leads to a polyploid cardiomyocyte and only rarely leads to new cardiomyocytes by cellular division. In order to accurately quantify cardiomyocyte turnover discrimination between these processes is essential. The protocol described here employs long term nucleoside labeling in order to label all nuclei which have arisen as a result of DNA replication and cardiomyocyte nuclei identified by utilizing nuclei isolation and subsequent PCM1 immunolabeling. Together this allows the accurate and sensitive identification of the nucleoside labeling of the cardiomyocyte nuclei population. Furthermore, 4',6-diamidino-2-phenylindole labeling and analysis of nuclei ploidy, enables the discrimination of neo-cardiomyocyte nuclei from nuclei which have incorporated nucleoside during polyploidization. Although this method cannot control for cardiomyocyte binucleation, it allows a rapid and robust quantification of neo-cardiomyocyte nuclei while accounting for polyploidization. This method has a number of downstream applications including assessing the potential therapeutics to enhance cardiomyocyte regeneration or investigating the effects of cardiac disease on cardiomyocyte turnover and ploidy. This technique is also compatible with additional downstream immunohistological techniques, allowing quantification of nucleoside incorporation in all cardiac cell types. PMID:27285379

  1. Simultaneous Assessment of Cardiomyocyte DNA Synthesis and Ploidy: A Method to Assist Quantification of Cardiomyocyte Regeneration and Turnover

    PubMed Central

    Richardson, Gavin D.

    2016-01-01

    Although it is accepted that the heart has a limited potential to regenerate cardiomyocytes following injury and that low levels of cardiomyocyte turnover occur during normal ageing, quantification of these events remains challenging. This is in part due to the rarity of the process and the fact that multiple cellular sources contribute to myocardial maintenance. Furthermore, DNA duplication within cardiomyocytes often leads to a polyploid cardiomyocyte and only rarely leads to new cardiomyocytes by cellular division. In order to accurately quantify cardiomyocyte turnover discrimination between these processes is essential. The protocol described here employs long term nucleoside labeling in order to label all nuclei which have arisen as a result of DNA replication and cardiomyocyte nuclei identified by utilizing nuclei isolation and subsequent PCM1 immunolabeling. Together this allows the accurate and sensitive identification of the nucleoside labeling of the cardiomyocyte nuclei population. Furthermore, 4′,6-diamidino-2-phenylindole labeling and analysis of nuclei ploidy, enables the discrimination of neo-cardiomyocyte nuclei from nuclei which have incorporated nucleoside during polyploidization. Although this method cannot control for cardiomyocyte binucleation, it allows a rapid and robust quantification of neo-cardiomyocyte nuclei while accounting for polyploidization. This method has a number of downstream applications including assessing the potential therapeutics to enhance cardiomyocyte regeneration or investigating the effects of cardiac disease on cardiomyocyte turnover and ploidy. This technique is also compatible with additional downstream immunohistological techniques, allowing quantification of nucleoside incorporation in all cardiac cell types. PMID:27285379

  2. Robust optimization of well location to enhance hysteretical trapping of CO2: Assessment of various uncertainty quantification methods and utilization of mixed response surface surrogates

    NASA Astrophysics Data System (ADS)

    Babaei, Masoud; Pan, Indranil; Alkhatib, Ali

    2015-12-01

    The paper aims to solve a robust optimization problem (optimization in presence of uncertainty) for finding the optimal locations of a number of CO2 injection wells for geological sequestration of carbon dioxide in a saline aquifer. The parametric uncertainties are the interfacial tension between CO2 and aquifer brine, the Land's trapping coefficient and the boundary aquifer's absolute permeability. The spatial uncertainties are due to the channelized permeability field which exhibits a binary channel-non-channel system. The objective function of the optimization is the amount of residually trapped CO2 due to the hysteresis of the relative permeability curves. A risk-averse value derived from the cumulative density function of the distribution of the amount of trapped gas is chosen as the objective function value. In order to ensure that the uncertainties are effectively taken into account, Monte Carlo simulation and Polynomial Chaos Expansion (PCE)-based methods are used and compared with each other. For different cases of parametric and spatial uncertainties, the most accurate uncertainty quantification (UQ) method is chosen to be integrated within the optimization algorithm. While for parametric uncertainty cases of up to two uncertain variables, PCE-based methods computationally outperform Monte Carlo simulations, it is shown that for the multimodal distributions of the function of trapped gas occurring for the spatial uncertainty case, Monte Carlo simulations are more reliable than PCE-based UQ methods. For the discrete (integer) optimization problem, various mixed response surface surrogate models are tested and the robust optimization resulted in optimal CO2 injection well locations.

  3. Quantification of dental prostheses on cone-beam CT images by the Taguchi method.

    PubMed

    Kuo, Rong-Fu; Fang, Kwang-Ming; Ty, Wong; Hu, Chia Yu

    2016-01-01

    The gray values accuracy of dental cone-beam computed tomography (CBCT) is affected by dental metal prostheses. The distortion of dental CBCT gray values could lead to inaccuracies of orthodontic and implant treatment. The aim of this study was to quantify the effect of scanning parameters and dental metal prostheses on the accuracy of dental cone-beam computed tomography (CBCT) gray values using the Taguchi method. Eight dental model casts of an upper jaw including prostheses, and a ninth prosthesis-free dental model cast, were scanned by two dental CBCT devices. The mean gray value of the selected circular regions of interest (ROIs) were measured using dental CBCT images of eight dental model casts and were compared with those measured from CBCT images of the prosthesis-free dental model cast. For each image set, four consecutive slices of gingiva were selected. The seven factors (CBCTs, occlusal plane canting, implant connection, prosthesis position, coping material, coping thickness, and types of dental restoration) were used to evaluate scanning parameter and dental prostheses effects. Statistical methods of signal to noise ratio (S/N) and analysis of variance (ANOVA) with 95% confidence were applied to quantify the effects of scanning parameters and dental prostheses on dental CBCT gray values accuracy. For ROIs surrounding dental prostheses, the accuracy of CBCT gray values were affected primarily by implant connection (42%), followed by type of restoration (29%), prostheses position (19%), coping material (4%), and coping thickness (4%). For a single crown prosthesis (without support of implants) placed in dental model casts, gray value differences for ROIs 1-9 were below 12% and gray value differences for ROIs 13-18 away from pros-theses were below 10%. We found the gray value differences set to be between 7% and 8% for regions next to a single implant-supported titanium prosthesis, and between 46% and 59% for regions between double implant

  4. Validation of a P-Glycoprotein (P-gp) Humanized Mouse Model by Integrating Selective Absolute Quantification of Human MDR1, Mouse Mdr1a and Mdr1b Protein Expressions with In Vivo Functional Analysis for Blood-Brain Barrier Transport

    PubMed Central

    Sadiq, Muhammad Waqas; Uchida, Yasuo; Hoshi, Yutaro; Tachikawa, Masanori; Terasaki, Tetsuya; Hammarlund-Udenaes, Margareta

    2015-01-01

    It is essential to establish a useful validation method for newly generated humanized mouse models. The novel approach of combining our established species-specific protein quantification method combined with in vivo functional studies is evaluated to validate a humanized mouse model of P-gp/MDR1 efflux transporter. The P-gp substrates digoxin, verapamil and docetaxel were administered to male FVB Mdr1a/1b(+/+) (FVB WT), FVB Mdr1a/1b(-/-) (Mdr1a/1b(-/-)), C57BL/6 Mdr1a/1b(+/+) (C57BL/6 WT) and humanized C57BL (hMDR1) mice. Brain-to-plasma total concentration ratios (Kp) were measured. Quantitative targeted absolute proteomic (QTAP) analysis was used to selectively quantify the protein expression levels of hMDR1, Mdr1a and Mdr1b in the isolated brain capillaries. The protein expressions of other transporters, receptors and claudin-5 were also quantified. The Kp for digoxin, verapamil, and docetaxel were 20, 30 and 4 times higher in the Mdr1a/1b(-/-) mice than in the FVB WT controls, as expected. The Kp for digoxin, verapamil and docetaxel were 2, 16 and 2-times higher in the hMDR1 compared to the C57BL/6 WT mice. The hMDR1 mice had 63- and 9.1-fold lower expressions of the hMDR1 and Mdr1a proteins than the corresponding expression of Mdr1a in C57BL/6 WT mice, respectively. The protein expression levels of other molecules were almost consistent between C57BL/6 WT and hMDR1 mice. The P-gp function at the BBB in the hMDR1 mice was smaller than that in WT mice due to lower protein expression levels of hMDR1 and Mdr1a. The combination of QTAP and in vivo functional analyses was successfully applied to validate the humanized animal model and evaluates its suitability for further studies. PMID:25932627

  5. Characterisation and optimisation of a method for the detection and quantification of atmospherically relevant carbonyl compounds in aqueous medium

    NASA Astrophysics Data System (ADS)

    Rodigast, M.; Mutzel, A.; Iinuma, Y.; Haferkorn, S.; Herrmann, H.

    2015-01-01

    Carbonyl compounds are ubiquitous in the atmosphere and either emitted primarily from anthropogenic and biogenic sources or they are produced secondarily from the oxidation of volatile organic compounds (VOC). Despite a number of studies about the quantification of carbonyl compounds a comprehensive description of optimised methods is scarce for the quantification of atmospherically relevant carbonyl compounds. Thus a method was systematically characterised and improved to quantify carbonyl compounds. Quantification with the present method can be carried out for each carbonyl compound sampled in the aqueous phase regardless of their source. The method optimisation was conducted for seven atmospherically relevant carbonyl compounds including acrolein, benzaldehyde, glyoxal, methyl glyoxal, methacrolein, methyl vinyl ketone and 2,3-butanedione. O-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine hydrochloride (PFBHA) was used as derivatisation reagent and the formed oximes were detected by gas chromatography/mass spectrometry (GC/MS). The main advantage of the improved method presented in this study is the low detection limit in the range of 0.01 and 0.17 μmol L-1 depending on carbonyl compounds. Furthermore best results were found for extraction with dichloromethane for 30 min followed by derivatisation with PFBHA for 24 h with 0.43 mg mL-1 PFBHA at a pH value of 3. The optimised method was evaluated in the present study by the OH radical initiated oxidation of 3-methylbutanone in the aqueous phase. Methyl glyoxal and 2,3-butanedione were found to be oxidation products in the samples with a yield of 2% for methyl glyoxal and 14% for 2,3-butanedione.

  6. A method for in situ absolute DD yield calibration of neutron time-of-flight detectors on OMEGA using CR-39-based proton detectors.

    PubMed

    Waugh, C J; Rosenberg, M J; Zylstra, A B; Frenje, J A; Séguin, F H; Petrasso, R D; Glebov, V Yu; Sangster, T C; Stoeckl, C

    2015-05-01

    Neutron time of flight (nTOF) detectors are used routinely to measure the absolute DD neutron yield at OMEGA. To check the DD yield calibration of these detectors, originally calibrated using indium activation systems, which in turn were cross-calibrated to NOVA nTOF detectors in the early 1990s, a direct in situ calibration method using CR-39 range filter proton detectors has been successfully developed. By measuring DD neutron and proton yields from a series of exploding pusher implosions at OMEGA, a yield calibration coefficient of 1.09 ± 0.02 (relative to the previous coefficient) was determined for the 3m nTOF detector. In addition, comparison of these and other shots indicates that significant reduction in charged particle flux anisotropies is achieved when bang time occurs significantly (on the order of 500 ps) after the trailing edge of the laser pulse. This is an important observation as the main source of the yield calibration error is due to particle anisotropies caused by field effects. The results indicate that the CR-39-nTOF in situ calibration method can serve as a valuable technique for calibrating and reducing the uncertainty in the DD absolute yield calibration of nTOF detector systems on OMEGA, the National Ignition Facility, and laser megajoule. PMID:26026524

  7. A method for in situ absolute DD yield calibration of neutron time-of-flight detectors on OMEGA using CR-39-based proton detectors

    SciTech Connect

    Waugh, C. J. Zylstra, A. B.; Frenje, J. A.; Séguin, F. H.; Petrasso, R. D.; Rosenberg, M. J.; Glebov, V. Yu.; Sangster, T. C.; Stoeckl, C.

    2015-05-15

    Neutron time of flight (nTOF) detectors are used routinely to measure the absolute DD neutron yield at OMEGA. To check the DD yield calibration of these detectors, originally calibrated using indium activation systems, which in turn were cross-calibrated to NOVA nTOF detectors in the early 1990s, a direct in situ calibration method using CR-39 range filter proton detectors has been successfully developed. By measuring DD neutron and proton yields from a series of exploding pusher implosions at OMEGA, a yield calibration coefficient of 1.09 ± 0.02 (relative to the previous coefficient) was determined for the 3m nTOF detector. In addition, comparison of these and other shots indicates that significant reduction in charged particle flux anisotropies is achieved when bang time occurs significantly (on the order of 500 ps) after the trailing edge of the laser pulse. This is an important observation as the main source of the yield calibration error is due to particle anisotropies caused by field effects. The results indicate that the CR-39-nTOF in situ calibration method can serve as a valuable technique for calibrating and reducing the uncertainty in the DD absolute yield calibration of nTOF detector systems on OMEGA, the National Ignition Facility, and laser megajoule.

  8. A method for in situ absolute DD yield calibration of neutron time-of-flight detectors on OMEGA using CR-39-based proton detectors

    DOE PAGES

    Waugh, C. J.; Rosenberg, M. J.; Zylstra, A. B.; Frenje, J. A.; Seguin, F. H.; Petrasso, R. D.; Glebov, V. Yu.; Sangster, T. C.; Stoeckl, C.

    2015-05-27

    Neutron time of flight (nTOF) detectors are used routinely to measure the absolute DD neutron yield at OMEGA. To check the DD yield calibration of these detectors, originally calibrated using indium activation systems, which in turn were cross-calibrated to NOVA nTOF detectors in the early 1990s, a direct in situ calibration method using CR-39 range filter proton detectors has been successfully developed. By measuring DD neutron and proton yields from a series of exploding pusher implosions at OMEGA, a yield calibration coefficient of 1.09 ± 0.02 (relative to the previous coefficient) was determined for the 3m nTOF detector. In addition,more » comparison of these and other shots indicates that significant reduction in charged particle flux anisotropies is achieved when bang time occurs significantly (on the order of 500 ps) after the trailing edge of the laser pulse. This is an important observation as the main source of the yield calibration error is due to particle anisotropies caused by field effects. The results indicate that the CR-39-nTOF in situ calibration method can serve as a valuable technique for calibrating and reducing the uncertainty in the DD absolute yield calibration of nTOF detector systems on OMEGA, the National Ignition Facility, and laser megajoule.« less

  9. A method for in situ absolute DD yield calibration of neutron time-of-flight detectors on OMEGA using CR-39-based proton detectors

    SciTech Connect

    Waugh, C. J.; Rosenberg, M. J.; Zylstra, A. B.; Frenje, J. A.; Seguin, F. H.; Petrasso, R. D.; Glebov, V. Yu.; Sangster, T. C.; Stoeckl, C.

    2015-05-27

    Neutron time of flight (nTOF) detectors are used routinely to measure the absolute DD neutron yield at OMEGA. To check the DD yield calibration of these detectors, originally calibrated using indium activation systems, which in turn were cross-calibrated to NOVA nTOF detectors in the early 1990s, a direct in situ calibration method using CR-39 range filter proton detectors has been successfully developed. By measuring DD neutron and proton yields from a series of exploding pusher implosions at OMEGA, a yield calibration coefficient of 1.09 ± 0.02 (relative to the previous coefficient) was determined for the 3m nTOF detector. In addition, comparison of these and other shots indicates that significant reduction in charged particle flux anisotropies is achieved when bang time occurs significantly (on the order of 500 ps) after the trailing edge of the laser pulse. This is an important observation as the main source of the yield calibration error is due to particle anisotropies caused by field effects. The results indicate that the CR-39-nTOF in situ calibration method can serve as a valuable technique for calibrating and reducing the uncertainty in the DD absolute yield calibration of nTOF detector systems on OMEGA, the National Ignition Facility, and laser megajoule.

  10. Development of a Robust Method for Simultaneous Quantification of Polymer (HPMC) and Surfactant (Dodecyl β-D-Maltoside) in Nanosuspensions.

    PubMed

    Patel, Salin Gupta; Bummer, Paul M

    2016-10-01

    This report describes the development of a chromatographic method for the simultaneous quantification of a polymer, hydroxypropyl methylcellulose (HPMC), and a surfactant, dodecyl β-D-maltoside (DM), that are commonly used in the physical stabilization of pharmaceutical formulations such as nanosuspensions and solid dispersions. These excipients are often challenging to quantify due to the lack of chromophores. A reverse phase size exclusion chromatography (SEC) with evaporative light scattering detector (ELSD) technique was utilized to develop an accurate and robust assay for the simultaneous quantification of HPMC and DM in a nanosuspension formulation. The statistical design of experiments was used to determine the influence of critical ELSD variables including temperature, pressure, and gain on accuracy, precision, and sensitivity of the assay. A robust design space was identified where it was determined that an increase in the temperature of the drift tube and gain of the instrument increased the accuracy and precision of the assay and a decrease in the nebulizer pressure value increased the sensitivity of the assay. In the optimized design space, response data showed that the assay could quantify HPMC and DM simultaneously with good accuracy, precision, and reproducibility. Overall, SEC-ELSD proved to be a powerful technique for the simultaneous quantification of HPMC and DM. This technique can be used to quantify the amount of HPMC and DM in nanosuspensions, which is critical to understanding their effects on the physical stability of nanosuspensions.

  11. A method to quantify infectious airborne pathogens at concentrations below the threshold of quantification by culture

    PubMed Central

    Cutler, Timothy D.; Wang, Chong; Hoff, Steven J.; Zimmerman, Jeffrey J.

    2013-01-01

    In aerobiology, dose-response studies are used to estimate the risk of infection to a susceptible host presented by exposure to a specific dose of an airborne pathogen. In the research setting, host- and pathogen-specific factors that affect the dose-response continuum can be accounted for by experimental design, but the requirement to precisely determine the dose of infectious pathogen to which the host was exposed is often challenging. By definition, quantification of viable airborne pathogens is based on the culture of micro-organisms, but some airborne pathogens are transmissible at concentrations below the threshold of quantification by culture. In this paper we present an approach to the calculation of exposure dose at microbiologically unquantifiable levels using an application of the “continuous-stirred tank reactor (CSTR) model” and the validation of this approach using rhodamine B dye as a surrogate for aerosolized microbial pathogens in a dynamic aerosol toroid (DAT). PMID:24082399

  12. Development and Validation of an Affinity Chromatography-Protein G Method for IgG Quantification

    PubMed Central

    Paradina Fernández, Lesly; Calvo, Loany; Viña, Lisel

    2014-01-01

    Nimotuzumab, an IgG that recognizes the epidermal growth factor receptor (EGF-R) overexpressed in some tumors, is used in the treatment of advanced head and neck cancer. For the quantification of this protein in cell culture supernatants, protein G-HPLC affinity chromatography is used due to its high affinity and specificity for antibodies of this class. The technique relies on the comparison of the area under the curve of the elution peak of the samples to be evaluated versus to a calibration curve of well-known concentrations and was validated by assessment of its robustness, specificity, repeatability, intermediate precision, accuracy, linearity, limit of detection, limit of quantification, and range. According to results of the study all validation parameters fulfilled the preestablished acceptance criteria and demonstrated the feasibility of the assay for the analysis of samples of cell culture supernatant as well as drug product. PMID:27379284

  13. Validated LC-MS/MS Method for the Quantification of Ponatinib in Plasma: Application to Metabolic Stability

    PubMed Central

    Kadi, Adnan A.; Darwish, Hany W.; Attwa, Mohamed W.; Amer, Sawsan M.

    2016-01-01

    In the current work, a rapid, specific, sensitive and validated liquid chromatography tandem mass-spectrometric method was developed for the quantification of ponatinib (PNT) in human plasma and rat liver microsomes (RLMs) with its application to metabolic stability. Chromatographic separation of PNT and vandetanib (IS) were accomplished on Agilent eclipse plus C18 analytical column (50 mm × 2.1 mm, 1.8 μm particle size) maintained at 21±2°C. Flow rate was 0.25 mLmin-1 with run time of 4 min. Mobile phase consisted of solvent A (10 mM ammonium formate, pH adjusted to 4.1 with formic acid) and solvent B (acetonitrile). Ions were generated by electrospray (ESI) and multiple reaction monitoring (MRM) was used as basis for quantification. The results revealed a linear calibration curve in the range of 5–400 ngmL-1 (r2 ≥ 0.9998) with lower limit of quantification (LOQ) and lower limit of detection (LOD) of 4.66 and 1.53 ngmL-1 in plasma, 4.19 and 1.38 ngmL-1 in RLMs. The intra- and inter-day precision and accuracy in plasma ranged from1.06 to 2.54% and -1.48 to -0.17, respectively. Whereas in RLMs ranged from 0.97 to 2.31% and -1.65 to -0.3%. The developed procedure was applied for quantification of PNT in human plasma and RLMs for study metabolic stability of PNT. PNT disappeared rapidly in the 1st 10 minutes of RLM incubation and the disappearance plateaued out for the rest of the incubation. In vitro half-life (t1/2) was 6.26 min and intrinsic clearance (CLin) was 15.182± 0.477. PMID:27764191

  14. Comparison of two enzymatic immunoassays, high resolution mass spectrometry method and radioimmunoassay for the quantification of human plasma histamine.

    PubMed

    Poli, Caroline; Laurichesse, Mathieu; Rostan, Octavie; Rossille, Delphine; Jeannin, Pascale; Drouet, Martine; Renier, Gilles; Chevailler, Alain; Tarte, Karin; Bendavid, Claude; Beauvillain, Céline; Amé-Thomas, Patricia

    2016-01-25

    Histamine (HA) is one of the main immediate mediators involved in allergic reactions. HA plasma concentration is well correlated with the severity of vascular and respiratory signs of anaphylaxis. Consequently, plasma quantification of HA is useful to comfort the diagnosis of anaphylaxis. Currently, radioimmunoassay (RIA) is the gold standard method to quantify HA due to its high sensitivity, but it is time consuming, implicates specific formations and cautions for technicians, and produces hazardous radioactive wastes. The aim of this study was to compare two enzymatic immunoassays (EIA) and one in-house liquid chromatography high-resolution mass spectrometry method (LC-HRMS) with the gold standard method for HA quantification in plasma samples of patients suspected of anaphylaxis reactions. Ninety-two plasma samples were tested with the 4 methods (RIA, 2 EIA and LC-HRMS) for HA quantification. Fifty-eight samples displayed HA concentrations above the positive cut-off of 10nM evaluated by RIA, including 18 highly positive samples (>100 nM). This study shows that Immunotech(®) EIA and LC-HRMS concentrations were highly correlated with RIA values, in particular for samples with a HA concentration around the positive cut-off. In our hands, plasma concentrations obtained with the Demeditec Diagnostics(®) EIA correlated less with results obtained by RIA, and an underestimation of plasma HA levels led to a lack of sensitivity. In conclusion, this study demonstrates that Immunotech(®) EIA and LC-HRMS method could be used instead of RIA to assess plasma HA in human diagnostic use. PMID:26580828

  15. Comparison of two enzymatic immunoassays, high resolution mass spectrometry method and radioimmunoassay for the quantification of human plasma histamine.

    PubMed

    Poli, Caroline; Laurichesse, Mathieu; Rostan, Octavie; Rossille, Delphine; Jeannin, Pascale; Drouet, Martine; Renier, Gilles; Chevailler, Alain; Tarte, Karin; Bendavid, Claude; Beauvillain, Céline; Amé-Thomas, Patricia

    2016-01-25

    Histamine (HA) is one of the main immediate mediators involved in allergic reactions. HA plasma concentration is well correlated with the severity of vascular and respiratory signs of anaphylaxis. Consequently, plasma quantification of HA is useful to comfort the diagnosis of anaphylaxis. Currently, radioimmunoassay (RIA) is the gold standard method to quantify HA due to its high sensitivity, but it is time consuming, implicates specific formations and cautions for technicians, and produces hazardous radioactive wastes. The aim of this study was to compare two enzymatic immunoassays (EIA) and one in-house liquid chromatography high-resolution mass spectrometry method (LC-HRMS) with the gold standard method for HA quantification in plasma samples of patients suspected of anaphylaxis reactions. Ninety-two plasma samples were tested with the 4 methods (RIA, 2 EIA and LC-HRMS) for HA quantification. Fifty-eight samples displayed HA concentrations above the positive cut-off of 10nM evaluated by RIA, including 18 highly positive samples (>100 nM). This study shows that Immunotech(®) EIA and LC-HRMS concentrations were highly correlated with RIA values, in particular for samples with a HA concentration around the positive cut-off. In our hands, plasma concentrations obtained with the Demeditec Diagnostics(®) EIA correlated less with results obtained by RIA, and an underestimation of plasma HA levels led to a lack of sensitivity. In conclusion, this study demonstrates that Immunotech(®) EIA and LC-HRMS method could be used instead of RIA to assess plasma HA in human diagnostic use.

  16. Methane fugitive emissions quantification using the novel 'plume camera' (spatial correlation) method

    NASA Astrophysics Data System (ADS)

    Crosson, E.; Rella, C.

    2012-12-01

    Fugitive emissions of methane into the atmosphere are a major concern facing the natural gas production industry. Given that the global warming potential of methane is many times greater than that of carbon dioxide, the importance of quantifying methane emissions becomes clear. The rapidly increasing reliance on shale gas (or other unconventional sources) is only intensifying the interest in fugitive methane releases. Natural gas (which is predominantly methane) is an attractive energy source, as it emits 40% less carbon dioxide per Joule of energy generated than coal. However, if just a small percentage of the natural gas consumed is lost due to fugitive emissions during production, processing, or transport, this global warming benefit is lost (Howarth et al. 2012). It is therefore imperative, as production of natural gas increases, that the fugitive emissions of methane are quantified accurately. Traditional direct measurement techniques often involve physical access of the leak itself to quantify the emissions rate, and are generally require painstaking effort to first find the leak and then quantify the emissions rate. With over half a million natural gas producing wells in the U.S. (U.S. Energy Information Administration), not including the associated processing, storage, and transport facilities, and with each facility having hundreds or even thousands of fittings that can potentially leak, the need is clear to develop methodologies that can provide a rapid and accurate assessment of the total emissions rate on a per-well head basis. In this paper we present a novel method for emissions quantification which uses a 'plume camera' with three 'pixels' to quantify emissions using direct measurements of methane concentration in the downwind plume. By analyzing the spatial correlation between the pixels, the spatial extent of the instantaneous plume can be inferred. This information, when combined with the wind speed through the measurement plane, provides a direct

  17. FT-IR Method for the Quantification of Isoflavonol Glycosides in Nutritional Supplements of Soy (Glycine max (L.) MERR.).

    PubMed

    Mulsow, Katharina; Eidenschink, Juliane; Melzig, Matthias F

    2015-01-01

    Due to increasing health consciousness, a lot of food supplements are sold and used. Dietary supplements of Glycine max (L.) MERR. are used as an alternative treatment for menopausal complaints such as hot flashes. Thereby, the effective soy compounds are the isoflavones daidzin, genistin, and glycitin. However, only the total soy extract content of the nutritional supplements is indicated. The aim of this study is to introduce a fast, efficient, and economic Fourier transformation infrared (FT-IR) spectroscopy method to quantify the active ingredients in the complex matrix of soy-based supplements. Five different nutritional supplements of Glycine max (L.) MERR. were purchased from a German pharmacy and were extracted with 80% aqueous methanol. A high-performance liquid chromatography (HPLC) method was used for the separation. The samples were concentrated and measured with infrared spectroscopy. An FT-IR method was established to quantify the active ingredients in the complex matrix of soy-based nutritional supplements. The partial least-squares algorithm was used to develop the method, which enabled the estimation of the content of particular isoflavones (daidzin R(2) = 0.86, glycitin R(2) = 0.94, genistin R(2) = 0.96) and the quantification of the total isoflavone content (R(2) = 0.92) despite peak overlap in the infrared (IR) spectra. The method for the quantification of the isoflavonol glycosides is precise with the standard error of prediction being 13.54%.

  18. Fast quantification of ethanol in whole blood specimens by the enzymatic alcohol dehydrogenase method. Optimization by experimental design.

    PubMed

    Kristoffersen, Lena; Skuterud, Bjørn; Larssen, Bente R; Skurtveit, Svetlana; Smith-Kielland, Anne

    2005-01-01

    A sensitive, fast, simple, and high-throughput enzymatic method for the quantification of ethanol in whole blood (blood) on Hitachi 917 is presented. Alcohol dehydrogenase (ADH) oxidizes ethanol to acetaldehyde using the coenzyme nicotinamide adenine dinucleotide (NAD), which is concurrently reduced to form NADH. Method development was performed with the aid of factorial design, varying pH, and concentrations of NAD+ and ADH. The linear range increased and reaction end point decreased with increasing NAD+ concentration and pH. The method was linear in the concentration range 0.0024-0.4220 g/dL. The limits of detection and quantification were 0.0007 g/dL and 0.0024 g/dL, respectively. Relative standard deviations for the repeatability and within-laboratory reproducibility were in the ranges 0.7-5.7% and 1.6-8.9%, respectively. The correlation coefficient when compared with headspace gas chromatography-flame ionization detection methods was 0.9903. Analysis of authentic positive blood specimens gave results that were slightly lower than those of the reference method.

  19. Absolute flux scale for radioastronomy

    SciTech Connect

    Ivanov, V.P.; Stankevich, K.S.

    1986-07-01

    The authors propose and provide support for a new absolute flux scale for radio astronomy, which is not encumbered with the inadequacies of the previous scales. In constructing it the method of relative spectra was used (a powerful tool for choosing reference spectra). A review is given of previous flux scales. The authors compare the AIS scale with the scale they propose. Both scales are based on absolute measurements by the ''artificial moon'' method, and they are practically coincident in the range from 0.96 to 6 GHz. At frequencies above 6 GHz, 0.96 GHz, the AIS scale is overestimated because of incorrect extrapolation of the spectra of the primary and secondary standards. The major results which have emerged from this review of absolute scales in radio astronomy are summarized.

  20. Multiclass method for pesticides quantification in honey by means of modified QuEChERS and UHPLC-MS/MS.

    PubMed

    Tette, Patrícia Amaral Souza; da Silva Oliveira, Fabiano Aurélio; Pereira, Elba Nathália Corrêa; Silva, Gilsara; de Abreu Glória, Maria Beatriz; Fernandes, Christian

    2016-11-15

    Bee products can be produced in an environment contaminated by pesticides that can be transported by honey bees to the hive and incorporated into the honey. Therefore, rapid and modern methods to determine pesticide residues in honey samples are essential to guarantee consumers' health. In this study, a simple multiresidue method for the quantification of 116 pesticides in honey is proposed. It involves the use of a modified QuEChERS procedure followed by UHPLC-MS/MS analysis. The method was validated according to the European Union SANCO/12571/2013 guidelines. Acceptable values were obtained for the following parameters: linearity, limit of detection (0.005mg/kg) and limit of quantification (0.010 and 0.025mg/kg), trueness (for the four tested levels the recovery assays values were between 70 and 120%), intermediate precision (RSD<20.0%) and measurement uncertainty tests (<50.0%). The validated method was applied for determination of 100 honey samples from five states of Brazil. PMID:27283616

  1. Multiclass method for pesticides quantification in honey by means of modified QuEChERS and UHPLC-MS/MS.

    PubMed

    Tette, Patrícia Amaral Souza; da Silva Oliveira, Fabiano Aurélio; Pereira, Elba Nathália Corrêa; Silva, Gilsara; de Abreu Glória, Maria Beatriz; Fernandes, Christian

    2016-11-15

    Bee products can be produced in an environment contaminated by pesticides that can be transported by honey bees to the hive and incorporated into the honey. Therefore, rapid and modern methods to determine pesticide residues in honey samples are essential to guarantee consumers' health. In this study, a simple multiresidue method for the quantification of 116 pesticides in honey is proposed. It involves the use of a modified QuEChERS procedure followed by UHPLC-MS/MS analysis. The method was validated according to the European Union SANCO/12571/2013 guidelines. Acceptable values were obtained for the following parameters: linearity, limit of detection (0.005mg/kg) and limit of quantification (0.010 and 0.025mg/kg), trueness (for the four tested levels the recovery assays values were between 70 and 120%), intermediate precision (RSD<20.0%) and measurement uncertainty tests (<50.0%). The validated method was applied for determination of 100 honey samples from five states of Brazil.

  2. Development of a fast and reliable method for the assessment of microbial colonization and growth on textiles by DNA quantification.

    PubMed

    Teufel, Linda; Schuster, K Christian; Merschak, Petra; Bechtold, Thomas; Redl, Bernhard

    2008-01-01

    There is a lack of relevant methods to assess the colonization of textiles by skin bacteria because present methods are mainly culture-based procedures. Therefore, the goal of this study was to develop a fast and sensitive culture-independent procedure for the quantification of microbial colonization and growth on textiles. We have established a suitable protocol to use DNA quantification as a reliable method for in vitroand in vivoinvestigations of textiles. For DNA extraction, a two-step procedure comprising treatment of the textile with a solution containing Triton X-100 and lysozyme for 1 h and a successive treatment by SDS and proteinase K for 2 h turned out to be most efficient. DNA extracted from textiles and fabrics was than quantified with the highly sensitive PicoGreen fluorescent dye. In vitrochallenge tests demonstrated a strong correlation between numbers of bacteria on textiles and amount of DNA extracted from textiles. Therefore, this method was used to compare different materials after in vivotrials for assessment of their susceptibility for microbial colonization and growth.

  3. High-performance capillary electrophoretic method for the quantification of 5-methyl 2'-deoxycytidine in genomic DNA: application to plant, animal and human cancer tissues.

    PubMed

    Fraga, Mario F; Uriol, Esther; Borja Diego, L; Berdasco, María; Esteller, Manel; Cañal, María Jesús; Rodríguez, Roberto

    2002-06-01

    A new approach to the evaluation of the relative degree of genomic DNA methylation through the quantification of 2'-deoxynucleosides is proposed. Detection and quantification of 5-methyl 2'-deoxycytidine in genomic DNA has been performed using micellar high-performance capillary electrophoresis (HPCE) with UV-Vis detection. This approach has been demonstrated to be more sensitive and specific than other HPCE methods for the quantification of DNA methylation degree and also to be faster than other HPLC-based methods. The detection and quantification of nucleosides through enzymatic hydrolyses notably increases the specificity of the technique and allows its exploitation in the analysis of poorly purified and/or concentrated DNA samples such as those obtained from meristematic plant regions and paraffin-embedded tissues.

  4. A comparative fluorescent beacon-based method for serum microRNA quantification.

    PubMed

    Beta, Madhu; Krishnakumar, Subramanian; Elchuri, Sailaja V; Salim, Bindu; Narayanan, Janakiraman

    2015-01-01

    Circulating serum microRNAs (miRNAs) are promising biomarkers for disease diagnosis. The quantification of the serum miRNA copy number is a challenge due to the presence of low levels in the serum. Here, we report on a direct measurement of the miRNA copy number from human serum using a locked nucleic acid (LNA) modified beacon probe with a single step using fluorescence spectroscopy and microscopy. We had used a minimum volume of 0.1 μL healthy human serum and retinoblastoma serum to show the biological variation of the miRNA copy number.

  5. Utilizing a reference material for assessing absolute tumor mechanical properties in modality independent elastography

    NASA Astrophysics Data System (ADS)

    Kim, Dong Kyu; Weis, Jared A.; Yankeelov, Thomas E.; Miga, Michael I.

    2014-03-01

    There is currently no reliable method for early characterization of breast cancer response to neoadjuvant chemotherapy (NAC) [1,2]. Given that disruption of normal structural architecture occurs in cancer-bearing tissue, we hypothesize that further structural changes occur in response to NAC. Consequently, we are investigating the use of modalityindependent elastography (MIE) [3-8] as a method for monitoring mechanical integrity to predict long term outcomes in NAC. Recently, we have utilized a Demons non-rigid image registration method that allows 3D elasticity reconstruction in abnormal tissue geometries, making it particularly amenable to the evaluation of breast cancer mechanical properties. While past work has reflected relative elasticity contrast ratios [3], this study improves upon that work by utilizing a known stiffness reference material within the reconstruction framework such that a stiffness map becomes an absolute measure. To test, a polyvinyl alcohol (PVA) cryogel phantom and a silicone rubber mock mouse tumor phantom were constructed with varying mechanical stiffness. Results showed that an absolute measure of stiffness could be obtained based on a reference value. This reference technique demonstrates the ability to generate accurate measurements of absolute stiffness to characterize response to NAC. These results support that `referenced MIE' has the potential to reliably differentiate absolute tumor stiffness with significant contrast from that of surrounding tissue. The use of referenced MIE to obtain absolute quantification of biomarkers is also translatable across length scales such that the characterization method is mechanics-consistent at the small animal and human application.

  6. Simultaneous Quantification of Dexpanthenol and Resorcinol from Hair Care Formulation Using Liquid Chromatography: Method Development and Validation

    PubMed Central

    De, Amit Kumar; Chowdhury, Partha Pratim; Chattapadhyay, Shyamaprasad

    2016-01-01

    The current study presents the simultaneous quantification of dexpanthenol and resorcinol from marketed hair care formulation. Dexpanthenol is often present as an active ingredient in personal care products for its beautifying and invigorating properties and restorative and smoothing properties. On the other hand resorcinol is mainly prescribed for the treatment of seborrheic dermatitis of scalp. The toxic side effects of resorcinol limit its use in dermatological preparations. Therefore an accurate quantification technique for the simultaneous estimation of these two components can be helpful for the formulation industries for the accurate analysis of their product quality. In the current study a high performance liquid chromatographic technique has been developed using a C18 column and a mobile phase consisting of phosphate buffer of pH = 2.8 following a gradient elution. The mobile phase flow rate was 0.6 mL per minute and the detection wavelength was 210 nm for dexpanthenol and 280 nm for resorcinol. The linearity study was carried out using five solutions having concentrations ranging between 10.34 μg·mL−1 and 82.69 μg·mL−1 (r2 = 0.999) for resorcinol and 10.44 μg·mL−1 and 83.50 μg·mL−1 (r2 = 0.998) for dexpanthenol. The method has been validated as per ICH Q2(R1) guidelines. The ease of single step sample preparation, accuracy, and precision (intraday and interday) study presents the method suitable for the simultaneous quantification of dexpanthenol and resorcinol from any personal care product and dermatological preparations containing these two ingredients. PMID:27042377

  7. Separation, identification, quantification, and method validation of anthocyanins in botanical supplement raw materials by HPLC and HPLC-MS.

    PubMed

    Chandra, A; Rana, J; Li, Y

    2001-08-01

    A method has been established and validated for identification and quantification of individual, as well as total, anthocyanins by HPLC and LC/ES-MS in botanical raw materials used in the herbal supplement industry. The anthocyanins were separated and identified on the basis of their respective M(+) (cation) using LC/ES-MS. Separated anthocyanins were individually calculated against one commercially available anthocyanin external standard (cyanidin-3-glucoside chloride) and expressed as its equivalents. Amounts of each anthocyanin calculated as external standard equivalent were then multiplied by a molecular-weight correction factor to afford their specific quantities. Experimental procedures and use of a molecular-weight correction factors are substantiated and validated using Balaton tart cherry and elderberry as templates. Cyanidin-3-glucoside chloride has been widely used in the botanical industry to calculate total anthocyanins. In our studies on tart cherry and elderberry, its use as external standard followed by use of molecular-weight correction factors should provide relatively accurate results for total anthocyanins, because of the presence of cyanidin as their major anthocyanidin backbone. The method proposed here is simple and has a direct sample preparation procedure without any solid-phase extraction. It enables selection and use of commercially available anthocyanins as external standards for quantification of specific anthocyanins in the sample matrix irrespective of their commercial availability as analytical standards. It can be used as a template and applied for similar quantification in several anthocyanin-containing raw materials for routine quality control procedures, thus providing consistency in analytical testing of botanical raw materials used for manufacturing efficacious and true-to-the-label nutritional supplements.

  8. A flow-cytometric method for quantification of neurolipofuscin and comparison with existing histological and biochemical approaches.

    PubMed

    Sheehy, M R J

    2002-01-01

    The ability to measure lipofuscin accumulation accurately is essential for understanding its role in physiological ageing and human disease, and for its recent use as an ecological tool for age determination. Existing quantification methods are problematic. In situ histological measurement by microscopy can be very precise but is labour intensive. Spectrofluorimetric measurement of whole lipid extracts is rapid but not sufficiently specific. A recent HPLC assay for the retinal pigment epithelium lipofuscin fluorophore, A2-E, is potentially both precise and rapid but not applicable to lipofuscin in other tissues, or from fixed samples. In this study, I explore the use of flow cytometry or fluorescence activated cell sorting (FACS) for specific quantification of lipofuscin granules in formalin-fixed CNS homogenates from lobsters (Homarus gammarus). Free neurolipofuscin granules were discriminated in FACS samples by their size distribution (forward scatter), distinctive orange autofluorescence (FL3) and refractive internal structure (side scatter). A quantitative neurolipofuscin index was developed, which was highly correlated with the microscopically measured neurolipofuscin concentration in the same tissue. Sample-processing rate was at least an order of magnitude greater for FACS than for quantitative microscopy but the latter yielded a much more precise estimate of neurolipofuscin concentration. While the FACS approach may be ideal where rapid handling and only semiquantitative results are required, loss of precision will preclude use in many ecological studies where the highest available resolution is needed. Further refinements to the FACS approach are possible but advanced histological methods for neurolipofuscin quantification remain the most reliable at this time. PMID:14764326

  9. Simultaneous Quantification of Dexpanthenol and Resorcinol from Hair Care Formulation Using Liquid Chromatography: Method Development and Validation.

    PubMed

    De, Amit Kumar; Chowdhury, Partha Pratim; Chattapadhyay, Shyamaprasad

    2016-01-01

    The current study presents the simultaneous quantification of dexpanthenol and resorcinol from marketed hair care formulation. Dexpanthenol is often present as an active ingredient in personal care products for its beautifying and invigorating properties and restorative and smoothing properties. On the other hand resorcinol is mainly prescribed for the treatment of seborrheic dermatitis of scalp. The toxic side effects of resorcinol limit its use in dermatological preparations. Therefore an accurate quantification technique for the simultaneous estimation of these two components can be helpful for the formulation industries for the accurate analysis of their product quality. In the current study a high performance liquid chromatographic technique has been developed using a C18 column and a mobile phase consisting of phosphate buffer of pH = 2.8 following a gradient elution. The mobile phase flow rate was 0.6 mL per minute and the detection wavelength was 210 nm for dexpanthenol and 280 nm for resorcinol. The linearity study was carried out using five solutions having concentrations ranging between 10.34 μg·mL(-1) and 82.69 μg·mL(-1) (r (2) = 0.999) for resorcinol and 10.44 μg·mL(-1) and 83.50 μg·mL(-1) (r (2) = 0.998) for dexpanthenol. The method has been validated as per ICH Q2(R1) guidelines. The ease of single step sample preparation, accuracy, and precision (intraday and interday) study presents the method suitable for the simultaneous quantification of dexpanthenol and resorcinol from any personal care product and dermatological preparations containing these two ingredients. PMID:27042377

  10. A direct quantification method for measuring plasma MicroRNAs identified potential biomarkers for detecting metastatic breast cancer.

    PubMed

    Zhao, Qian; Deng, Shengqiong; Wang, Guangxue; Liu, Cuicui; Meng, Lingyu; Qiao, Shanshan; Shen, Lei; Zhang, Yue; Lü, Jinhui; Li, Wenshu; Zhang, Yuzhen; Wang, Min; Pestell, Richard G; Liang, Chunli; Yu, Zuoren

    2016-04-19

    Circulating miRNAs are protected from ribonuclease degradation by assembly into microvesicles and exosomes. Releasing miRNAs completely from these particles is the key step to quantify the circulating miRNAs. Currently purified RNA-based quantitative analysis is widely used while it is time and cost consuming with high risk for those circulating miRNAs with low abundance due to partial loss of RNA during the steps of total RNA extraction and small RNA enrichment. Herein, we optimized a simple, effective and time-saving method to directly measure plasma miRNAs without RNA isolation. It is based on complete miRNA release from the protein complexes, followed by miRNA-specific reverse transcription and quantitative real-time PCR amplification. By comparison to the RNA-based approach, the direct quantification method showed more efficiency for circulating miRNA analysis, higher accuracy and specificity. By application of the direct quantification method to clinical samples combined with the RNA-based miRNA screening analysis, upregulation of miR-106a in blood was validated in metastatic breast cancer patients, indicating miR-106a are a potential biomarker for metastatic breast cancer. PMID:26967564

  11. Validation and application of an HPLC-CAD-TOF/MS method for identification and quantification of pharmaceutical counterions.

    PubMed

    Ilko, D; Nap, C J; Holzgrabe, U; Almeling, S

    2014-01-01

    A generic approach for the analysis of counterions of pharmaceutical reference substances, which are established by the laboratory department of the European Pharmacopoeia (Ph. Eur.), was developed. A mixed-mode chromatography method using charged aerosol detection (CAD) published by Zhang et al. separating 25 commonly used pharmaceutical counterions was selected for this purpose. The method was validated in terms of specificity, repeatability, limits of quantification (LOQs), linearity and range according to ICH guideline Q2(R1) and the Technical Guide for the Elaboration of Monographs of the Ph. Eur. Moreover, the applicability of the method for the purpose of counterion identification and quantification in drug substances as well as for the control of inorganic ions as impurities was demonstrated using selected examples of Ph. Eur. reference standards and other samples of substances for pharmaceutical use (e.g. cloxacillin sodium, somatostatin). It was shown that for identification purposes of the parent substance as well as organic ions the chromatographic system can easily be coupled to a mass selective detector without any modification.

  12. Bioanalytical LC-MS Method for the Quantification of Plasma Androgens and Androgen Glucuronides in Breast Cancer.

    PubMed

    Kalogera, Eleni; Pistos, Constantinos; Provatopoulou, Xeni; Christophi, Costas A; Zografos, George C; Stefanidou, Maria; Spiliopoulou, Chara; Athanaselis, Sotirios; Gounaris, Antonia

    2016-04-01

    The physiological and pathological development of the breast is strongly affected by the hormonal milieu consisting of steroid hormones. Mass spectrometry (MS) technologies of high sensitivity and specificity enable the quantification of androgens and consequently the characterization of the hormonal status. The aim of this study is the assessment of plasma androgens and androgen glucuronides, in the par excellence hormone-sensitive tissue of the breast, through the application of liquid chromatography-mass spectrometry (LC-MS). A simple and efficient fit-for-purpose method for the simultaneous identification and quantification of dehydroepiandrosterone sulfate (DHEAS), androstenedione (A4), androsterone glucuronide (ADTG) and androstane-3α, 17β-diol-17-glucuronide (3α-diol-17G) in human plasma was developed and validated. The presented method permits omission of derivatization, requires a single solid-phase extraction procedure and the chromatographic separation can be achieved on a single C18 analytical column, for all four analytes. The validated method was successfully applied for the analysis of 191 human plasma samples from postmenopausal women with benign breast disease (BBD), lobular neoplasia (LN), ductal carcinoma in situ and invasive ductal carcinoma (IDC). DHEAS plasma levels exhibited significant differences between LN, IDC and BBD patients (P < 0.05). Additionally, ADTG levels were significantly higher in patients with LN compared with those with BBD (P < 0.05). PMID:26762957

  13. A direct quantification method for measuring plasma MicroRNAs identified potential biomarkers for detecting metastatic breast cancer

    PubMed Central

    Liu, Cuicui; Meng, Lingyu; Qiao, Shanshan; Shen, Lei; Zhang, Yue; Lü, Jinhui; Li, Wenshu; Zhang, Yuzhen; Wang, Min; Pestell, Richard G.; Liang, Chunli; Yu, Zuoren

    2016-01-01

    Circulating miRNAs are protected from ribonuclease degradation by assembly into microvesicles and exosomes. Releasing miRNAs completely from these particles is the key step to quantify the circulating miRNAs. Currently purified RNA-based quantitative analysis is widely used while it is time and cost consuming with high risk for those circulating miRNAs with low abundance due to partial loss of RNA during the steps of total RNA extraction and small RNA enrichment. Herein, we optimized a simple, effective and time-saving method to directly measure plasma miRNAs without RNA isolation. It is based on complete miRNA release from the protein complexes, followed by miRNA-specific reverse transcription and quantitative real-time PCR amplification. By comparison to the RNA-based approach, the direct quantification method showed more efficiency for circulating miRNA analysis, higher accuracy and specificity. By application of the direct quantification method to clinical samples combined with the RNA-based miRNA screening analysis, upregulation of miR-106a in blood was validated in metastatic breast cancer patients, indicating miR-106a are a potential biomarker for metastatic breast cancer. PMID:26967564

  14. Absolute calibration of OH density in a nanosecond pulsed plasma filament in atmospheric pressure He-H2O: comparison of independent calibration methods

    NASA Astrophysics Data System (ADS)

    Verreycken, T.; van der Horst, R. M.; Sadeghi, N.; Bruggeman, P. J.

    2013-11-01

    The absolute density of OH radicals generated in a nanosecond pulsed filamentary discharge in atmospheric pressure He +0.84% H2O is measured independently by UV absorption and laser induced fluorescence (LIF) calibrated with Rayleigh scattering. For the calibration of LIF with Rayleigh scattering, two LIF models, with six levels and four levels, are studied to investigate the influence of the rotational and vibrational energy transfers. In addition, a chemical model is used to deduce the OH density in the afterglow from the relative LIF intensity as function of time. The different models show good correspondence and by comparing these different methods, the accuracy and the effect of assumptions on the obtained OH density are discussed in detail. This analysis includes an analysis of the sensitivity to parameters used in the LIF models.

  15. First-principles calculation of spectral features, chemical shift and absolute threshold of ELNES and XANES using a plane wave pseudopotential method

    NASA Astrophysics Data System (ADS)

    Mizoguchi, Teruyasu; Tanaka, Isao; Gao, Shang-Peng; Pickard, Chris J.

    2009-03-01

    Spectral features, chemical shifts, and absolute thresholds of electron energy loss near-edge structure (ELNES) and x-ray absorption near-edge structure (XANES) for selected compounds, i.e. TiO2 (rutile), TiO2 (anatase), SrTiO3, Ti2O3, Al2O3, AlN and β-Ga2O3, were calculated by a plane wave pseudopotential method. Experimental ELNES/XANES of those compounds were well reproduced when an excited pseudopotential, which includes a core hole, was used. In addition to the spectral features, it was found that chemical shifts among different compounds were also reproduced by correcting the contribution of the excited pseudopotentials to the energy of the core orbital.

  16. New method for stem cell quantification: applications to the management of peripheral blood stem cell transplantation.

    PubMed

    Legros, M; Fleury, J; Curé, H; Condat, P; Lenat, A; Subtil, E; Sanderson, D; Communal, Y; Basile, M; Tavernier, F

    1995-01-01

    A dramatic increase in peripheral blood stem cells (PBSC) is observed after high-dose chemotherapy followed by haematopoietic growth factors. The degree of mobilisation of PBSC is quantified by the level of clonogenic cells detected by CFU assays (CFU-GM or CFU-GEMM) or CD34+ cell determination. Working under the hypothesis that, in peripheral blood, mononuclear cells in DNA synthesis (MCDS) are proliferating stem cells, we decided to detect these cells by flow cytometric measurement of their DNA content. The relations between the number of MCDS and well-known haematopoietic progenitor indicators such as CFU-GM or CD34+ cells were analysed. We studied the kinetics of recruitment of PBSC in cancer patients, treated with rmeHuG-CSF following VP-16 cytoxan chemotherapy, until the first day of leukapheresis. For the 31 patients studied the individual curves of peripheral MCDS and CFU-GM reconstitutions showed identical profiles and a good correlation was noted between the numbers of peripheral MCDS and CFU-GM (r = 0.73). In the leukapheresis product, the predictive value of MCDS was equivalent to CFU-GM for PBSC quantification (r = 0.70). In conclusion, MCDS analysis by flow cytometry provides reliable results and appears to be an alternative to CFU-GM assay or CD34+ cell determination for PBSC quantification.

  17. Multi-level Monte Carlo finite volume methods for uncertainty quantification of acoustic wave propagation in random heterogeneous layered medium

    NASA Astrophysics Data System (ADS)

    Mishra, S.; Schwab, Ch.; Šukys, J.

    2016-05-01

    We consider the very challenging problem of efficient uncertainty quantification for acoustic wave propagation in a highly heterogeneous, possibly layered, random medium, characterized by possibly anisotropic, piecewise log-exponentially distributed Gaussian random fields. A multi-level Monte Carlo finite volume method is proposed, along with a novel, bias-free upscaling technique that allows to represent the input random fields, generated using spectral FFT methods, efficiently. Combined together with a recently developed dynamic load balancing algorithm that scales to massively parallel computing architectures, the proposed method is able to robustly compute uncertainty for highly realistic random subsurface formations that can contain a very high number (millions) of sources of uncertainty. Numerical experiments, in both two and three space dimensions, illustrating the efficiency of the method are presented.

  18. Quantification of infarct size on focal cerebral ischemia model of rats using a simple and economical method.

    PubMed

    Yang, Y; Shuaib, A; Li, Q

    1998-10-01

    Quantification of infarct size is a very useful index to assess models of focal cerebral ischemia and effects of new therapies. Currently-used image analysis systems to carry out this task usually involve dedicated and expensive equipment. We present a low-cost and simple method to perform the image acquisition and analysis. Twelve Wistar rats were subject to focal cerebral ischemia and scarified 24 h after the insult. 2,3,5-triphenyl tetrazolium chloride (TTC) stain was used as a conventional method to differentiate ischemic damage from healthy brain tissue. Digital images were captured from the stained coronal sections using a flatbed color scanner and analyzed with a commercial image processing software. To evaluate the accuracy and reproducibility of this method, the data obtained with the current procedure was correlated with those from a dedicated standard image analysis system and intra-observor correlation coefficient was estimated. Also the sensitivity of this method in quantification of infarct volume was tested in two different experimental settings. There was close correlation in the outcome of infarct size measurement between the current method and the standard system (r = 0.93, p < 0.001). A high agreement of measurement of the percentage of infarct volume between two different examiners with the same source of samples (r = 0.98, p < 0.001). We demonstrated that this method was sensitive in detection of difference of infarct sizes when placebo-treated animals (n = 6) were compared to the group treated with a neuroprotective agent (n = 6). Our data demonstrated that ischemic lesion of focal cerebral ischemia in rat can be accurately and reproducibly quantified using this method. The low-cost and simplicity of this method may facilitate the application in determination of ischemic damage.

  19. Evaluation of the Re-Os Geochronometer in Organic-rich Mudrocks as a Method for Constraining the Absolute Ages of Neoproterozoic Glaciogenic Deposits

    NASA Astrophysics Data System (ADS)

    Kendall, B. S.; Creaser, R. A.; Ross, G. M.

    2002-12-01

    Absolute-age constraints on the Neoproterozoic glaciations are generally poor due to a paucity of suitable plutonic and volcanic igneous rocks that are temporally and spatially related to Neoproterozoic glaciogenic deposits and are amenable to radiometric dating methods. In this study, the Re-Os isotope systematics of dark gray, sulfidic slates from the Old Fort Point Formation (OFP) of the Windermere Supergroup (near Jasper, Alberta) were examined to test the ability of the Re-Os geochronometer to provide an absolute age constraint for a Neoproterozoic glaciogenic deposit. The OFP has been interpreted as the deep water expression of post-glacial sea level rise and therefore is comparable stratigraphically to cap carbonates that immediately overlie glaciogenic deposits worldwide. Despite the relatively low Re (6-16 ppb) and Os (0.07-0.14 ppb) concentrations and total organic contents (~ 0.5% TOC) of the slates compared to other organic-rich mudrocks used in previous Re-Os isotope studies, precise well-fitted Re-Os isochrons have been obtained with two different dissolution methods. An age of 620.8 +/- 8.1 Ma (MSWD = 0.9; initial 187Os/188Os = 0.68 +/- 0.06) is obtained using conventional aqua regia dissolution. Using a method designed to selectively dissolve organic matter alone, an age of 609.0 +/- 8.3 Ma (MSWD = 1.5; initial 187Os/188Os = 0.62 +/- 0.05) is obtained. These absolute age results are in accord with existing age constraints (e.g., stratigraphically younger Hamill Group with a U-Pb zircon age of 569 Ma). The well-defined Re-Os systematics of the OFP slates demonstrates for the first time that the Re-Os system is not disturbed in organic-rich sediments during lower greenschist (-chlorite) grade metamorphic conditions. The whole-rock analysis of each individual sample yields consistently higher initial 187Os/188Os isotope ratios than the corresponding organic matter analysis and suggests that a significant radiogenic detrital Os component is present

  20. Measurement of the absolute branching fractions B→Dπ, D*π, D**π with a missing mass method

    NASA Astrophysics Data System (ADS)

    Aubert, B.; Bona, M.; Boutigny, D.; Couderc, F.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Tisserand, V.; Zghiche, A.; Grauges, E.; Palano, A.; Chen, J. C.; Qi, N. D.; Rong, G.; Wang, P.; Zhu, Y. S.; Eigen, G.; Ofte, I.; Stugu, B.; Abrams, G. S.; Battaglia, M.; Brown, D. N.; Button-Shafer, J.; Cahn, R. N.; Charles, E.; Gill, M. S.; Groysman, Y.; Jacobsen, R. G.; Kadyk, J. A.; Kerth, L. T.; Kolomensky, Yu. G.; Kukartsev, G.; Lynch, G.; Mir, L. M.; Orimoto, T. J.; Pripstein, M.; Roe, N. A.; Ronan, M. T.; Wenzel, W. A.; Sanchez, P. Del Amo; Barrett, M.; Ford, K. E.; Harrison, T. J.; Hart, A. J.; Hawkes, C. M.; Watson, A. T.; Held, T.; Koch, H.; Lewandowski, B.; Pelizaeus, M.; Peters, K.; Schroeder, T.; Steinke, M.; Boyd, J. T.; Burke, J. P.; Cottingham, W. N.; Walker, D.; Asgeirsson, D. J.; Cuhadar-Donszelmann, T.; Fulsom, B. G.; Hearty, C.; Knecht, N. S.; Mattison, T. S.; McKenna, J. A.; Khan, A.; Kyberd, P.; Saleem, M.; Sherwood, D. J.; Teodorescu, L.; Blinov, V. E.; Bukin, A. D.; Druzhinin, V. P.; Golubev, V. B.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu; Bondioli, M.; Bruinsma, M.; Chao, M.; Curry, S.; Eschrich, I.; Kirkby, D.; Lankford, A. J.; Lund, P.; Mandelkern, M.; Mommsen, R. K.; Roethel, W.; Stoker, D. P.; Abachi, S.; Buchanan, C.; Foulkes, S. D.; Gary, J. W.; Long, O.; Shen, B. C.; Wang, K.; Zhang, L.; Hadavand, H. K.; Hill, E. J.; Paar, H. P.; Rahatlou, S.; Sharma, V.; Berryhill, J. W.; Campagnari, C.; Cunha, A.; Dahmes, B.; Hong, T. M.; Kovalskyi, D.; Richman, J. D.; Beck, T. W.; Eisner, A. M.; Flacco, C. J.; Heusch, C. A.; Kroseberg, J.; Lockman, W. S.; Nesom, G.; Schalk, T.; Schumm, B. A.; Seiden, A.; Spradlin, P.; Williams, D. C.; Wilson, M. G.; Albert, J.; Chen, E.; Dvoretskii, A.; Fang, F.; Hitlin, D. G.; Narsky, I.; Piatenko, T.; Porter, F. C.; Ryd, A.; Mancinelli, G.; Meadows, B. T.; Mishra, K.; Sokoloff, M. D.; Blanc, F.; Bloom, P. C.; Chen, S.; Ford, W. T.; Hirschauer, J. F.; Kreisel, A.; Nagel, M.; Nauenberg, U.; Olivas, A.; Ruddick, W. O.; Smith, J. G.; Ulmer, K. A.; Wagner, S. R.; Zhang, J.; Chen, A.; Eckhart, E. A.; Soffer, A.; Toki, W. H.; Wilson, R. J.; Winklmeier, F.; Zeng, Q.; Altenburg, D. D.; Feltresi, E.; Hauke, A.; Jasper, H.; Merkel, J.; Petzold, A.; Spaan, B.; Brandt, T.; Klose, V.; Lacker, H. M.; Mader, W. F.; Nogowski, R.; Schubert, J.; Schubert, K. R.; Schwierz, R.; Sundermann, J. E.; Volk, A.; Bernard, D.; Bonneaud, G. R.; Latour, E.; Thiebaux, Ch.; Verderi, M.; Clark, P. J.; Gradl, W.; Muheim, F.; Playfer, S.; Robertson, A. I.; Xie, Y.; Andreotti, M.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cibinetto, G.; Luppi, E.; Negrini, M.; Petrella, A.; Piemontese, L.; Prencipe, E.; Anulli, F.; Baldini-Ferroli, R.; Calcaterra, A.; de Sangro, R.; Finocchiaro, G.; Pacetti, S.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rama, M.; Zallo, A.; Buzzo, A.; Contri, R.; Vetere, M. Lo; Macri, M. M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Santroni, A.; Tosi, S.; Brandenburg, G.; Chaisanguanthum, K. S.; Morii, M.; Wu, J.; Dubitzky, R. S.; Marks, J.; Schenk, S.; Uwer, U.; Bard, D. J.; Bhimji, W.; Bowerman, D. A.; Dauncey, P. D.; Egede, U.; Flack, R. L.; Nash, J. A.; Nikolich, M. B.; Vazquez, W. Panduro; Behera, P. K.; Chai, X.; Charles, M. J.; Mallik, U.; Meyer, N. T.; Ziegler, V.; Cochran, J.; Crawley, H. B.; Dong, L.; Eyges, V.; Meyer, W. T.; Prell, S.; Rosenberg, E. I.; Rubin, A. E.; Gritsan, A. V.; Denig, A. G.; Fritsch, M.; Schott, G.; Arnaud, N.; Davier, M.; Grosdidier, G.; Höcker, A.; Diberder, F. Le; Lepeltier, V.; Lutz, A. M.; Oyanguren, A.; Pruvot, S.; Rodier, S.; Roudeau, P.; Schune, M. H.; Stocchi, A.; Wang, W. F.; Wormser, G.; Cheng, C. H.; Lange, D. J.; Wright, D. M.; Chavez, C. A.; Forster, I. J.; Fry, J. R.; Gabathuler, E.; Gamet, R.; George, K. A.; Hutchcroft, D. E.; Payne, D. J.; Schofield, K. C.; Touramanis, C.; Bevan, A. J.; Lodovico, F. Di; Menges, W.; Sacco, R.; Cowan, G.; Flaecher, H. U.; Hopkins, D. A.; Jackson, P. S.; McMahon, T. R.; Ricciardi, S.; Salvatore, F.; Wren, A. C.; Brown, D. N.; Davis, C. L.; Allison, J.; Barlow, N. R.; Barlow, R. J.; Chia, Y. M.; Edgar, C. L.; Lafferty, G. D.; Naisbit, M. T.; Williams, J. C.; Yi, J. I.; Chen, C.; Hulsbergen, W. D.; Jawahery, A.; Lae, C. K.; Roberts, D. A.; Simi, G.; Blaylock, G.; Dallapiccola, C.; Hertzbach, S. S.; Li, X.; Moore, T. B.; Saremi, S.; Staengle, H.; Cowan, R.; Sciolla, G.; Sekula, S. J.; Spitznagel, M.; Taylor, F.; Yamamoto, R. K.; Kim, H.; McLachlin, S. E.; Patel, P. M.; Robertson, S. H.; Lazzaro, A.; Lombardo, V.; Palombo, F.; Bauer, J. M.; Cremaldi, L.; Eschenburg, V.; Godang, R.; Kroeger, R.; Sanders, D. A.; Summers, D. J.; Zhao, H. W.; Brunet, S.; Côté, D.; Simard, M.; Taras, P.; Viaud, F. B.; Nicholson, H.; Cavallo, N.; Nardo, G. De; Fabozzi, F.; Gatto, C.; Lista, L.; Monorchio, D.; Paolucci, P.; Piccolo, D.; Sciacca, C.; Baak, M. A.; Raven, G.; Snoek, H. L.; Jessop, C. P.; Losecco, J. M.; Allmendinger, T.; Benelli, G.; Corwin, L. A.; Gan, K. K.; Honscheid, K.; Hufnagel, D.; Jackson, P. D.; Kagan, H.; Kass, R.; Rahimi, A. M.; Regensburger, J. J.; Ter-Antonyan, R.; Wong, Q. K.; Blount, N. L.; Brau, J.; Frey, R.; Igonkina, O.; Kolb, J. A.; Lu, M.; Rahmat, R.; Sinev, N. B.; Strom, D.; Strube, J.; Torrence, E.; Gaz, A.; Margoni, M.; Morandin, M.; Pompili, A.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.; Voci, C.; Benayoun, M.; Briand, H.; Chauveau, J.; David, P.; Buono, L. Del; de La Vaissière, Ch.; Hamon, O.; Hartfiel, B. L.; Leruste, Ph.; Malclès, J.; Ocariz, J.; Roos, L.; Therin, G.; Gladney, L.; Biasini, M.; Covarelli, R.; Angelini, C.; Batignani, G.; Bettarini, S.; Bucci, F.; Calderini, G.; Carpinelli, M.; Cenci, R.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Marchiori, G.; Mazur, M. A.; Morganti, M.; Neri, N.; Paoloni, E.; Rizzo, G.; Walsh, J. J.; Haire, M.; Judd, D.; Wagoner, D. E.; Biesiada, J.; Danielson, N.; Elmer, P.; Lau, Y. P.; Lu, C.; Olsen, J.; Smith, A. J. S.; Telnov, A. V.; Bellini, F.; Cavoto, G.; D'Orazio, A.; Del Re, D.; Marco, E. Di; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Gioi, L. Li; Mazzoni, M. A.; Morganti, S.; Piredda, G.; Polci, F.; Tehrani, F. Safai; Voena, C.; Ebert, M.; Schröder, H.; Waldi, R.; Adye, T.; Groot, N. De; Franek, B.; Olaiya, E. O.; Wilson, F. F.; Aleksan, R.; Emery, S.; Gaidot, A.; Ganzhur, S. F.; de Monchenault, G. Hamel; Kozanecki, W.; Legendre, M.; Vasseur, G.; Yèche, Ch.; Zito, M.; Chen, X. R.; Liu, H.; Park, W.; Purohit, M. V.; Wilson, J. R.; Allen, M. T.; Aston, D.; Bartoldus, R.; Bechtle, P.; Berger, N.; Claus, R.; Coleman, J. P.; Convery, M. R.; Cristinziani, M.; Dingfelder, J. C.; Dorfan, J.; Dubois-Felsmann, G. P.; Dujmic, D.; Dunwoodie, W.; Field, R. C.; Glanzman, T.; Gowdy, S. J.; Graham, M. T.; Grenier, P.; Halyo, V.; Hast, C.; Hryn'Ova, T.; Innes, W. R.; Kelsey, M. H.; Kim, P.; Leith, D. W. G. S.; Li, S.; Luitz, S.; Luth, V.; Lynch, H. L.; Macfarlane, D. B.; Marsiske, H.; Messner, R.; Muller, D. R.; O'Grady, C. P.; Ozcan, V. E.; Perazzo, A.; Perl, M.; Pulliam, T.; Ratcliff, B. N.; Roodman, A.; Salnikov, A. A.; Schindler, R. H.; Schwiening, J.; Snyder, A.; Stelzer, J.; Su, D.; Sullivan, M. K.; Suzuki, K.; Swain, S. K.; Thompson, J. M.; Va'Vra, J.; van Bakel, N.; Weaver, M.; Weinstein, A. J. R.; Wisniewski, W. J.; Wittgen, M.; Wright, D. H.; Yarritu, A. K.; Yi, K.; Young, C. C.; Burchat, P. R.; Edwards, A. J.; Majewski, S. A.; Petersen, B. A.; Roat, C.; Wilden, L.; Ahmed, S.; Alam, M. S.; Bula, R.; Ernst, J. A.; Jain, V.; Pan, B.; Saeed, M. A.; Wappler, F. R.; Zain, S. B.; Bugg, W.; Krishnamurthy, M.; Spanier, S. M.; Eckmann, R.; Ritchie, J. L.; Satpathy, A.; Schilling, C. J.; Schwitters, R. F.; Izen, J. M.; Lou, X. C.; Ye, S.; Bianchi, F.; Gallo, F.; Gamba, D.; Bomben, M.; Bosisio, L.; Cartaro, C.; Cossutti, F.; Ricca, G. Della; Dittongo, S.; Lanceri, L.; Vitale, L.; Azzolini, V.; Lopez-March, N.; Martinez-Vidal, F.; Banerjee, Sw.; Bhuyan, B.; Brown, C. M.; Fortin, D.; Hamano, K.; Kowalewski, R.; Nugent, I. M.; Roney, J. M.; Sobie, R. J.; Back, J. J.; Harrison, P. F.; Latham, T. E.; Mohanty, G. B.; Pappagallo, M.; Band, H. R.; Chen, X.; Cheng, B.; Dasu, S.; Datta, M.; Flood, K. T.; Hollar, J. J.; Kutter, P. E.; Mellado, B.; Mihalyi, A.; Pan, Y.; Pierini, M.; Prepost, R.; Wu, S. L.; Yu, Z.; Neal, H.

    2006-12-01

    We present branching fraction measurements of charged and neutral B decays to Dπ-, D*π-, and “D**”π- with a missing mass method, based on a sample of 231×106 Υ(4S)→BB¯ pairs collected by the BABAR detector at the PEP-II e+e- collider. One of the B mesons is fully reconstructed and the other one decays to a reconstructed charged π and a companion charmed meson identified by its recoil mass, inferred by kinematics. Here “D**” refers to the sum of all the nonstrange charm meson states with masses in the range 2.2 2.8GeV/c2. We measure the branching fractions: B(B-→D0π-)=(4.49±0.21±0.23)×10-3, B(B-→D*0π-)=(5.13±0.22±0.28)×10-3, B(B-→“D**0”π-)=(5.50±0.52±1.04)×10-3, B(B¯0→D+π-)=(3.03±0.23±0.23)×10-3, B(B¯0→D*+π-)=(2.99±0.23±0.24)×10-3, B(B¯0→“D**+”π-)=(2.34±0.65±0.88)×10-3, and their ratios.

  1. Four-leaf clover qRT-PCR: A convenient method for selective quantification of mature tRNA.

    PubMed

    Honda, Shozo; Shigematsu, Megumi; Morichika, Keisuke; Telonis, Aristeidis G; Kirino, Yohei

    2015-01-01

    Transfer RNAs (tRNAs) play a central role in translation and also recently appear to have a variety of other functions in biological processes beyond translation. Here we report the development of Four-Leaf clover qRT-PCR (FL-PCR), a convenient PCR-based method, which can specifically quantify individual mature tRNA species. In FL-PCR, T4 RNA ligase 2 specifically ligates a stem-loop adapter to mature tRNAs but not to precursor tRNAs or tRNA fragments. Subsequent TaqMan qRT-PCR amplifies only unmodified regions of the tRNA-adapter ligation products; therefore, FL-PCR quantification is not influenced by tRNA post-transcriptional modifications. FL-PCR has broad applicability for the quantification of various tRNAs in different cell types, and thus provides a much-needed simple method for analyzing tRNA abundance and heterogeneity.

  2. LV wall segmentation using the variational level set method (LSM) with additional shape constraint for oedema quantification

    NASA Astrophysics Data System (ADS)

    Kadir, K.; Gao, H.; Payne, A.; Soraghan, J.; Berry, C.

    2012-10-01

    In this paper an automatic algorithm for the left ventricle (LV) wall segmentation and oedema quantification from T2-weighted cardiac magnetic resonance (CMR) images is presented. The extent of myocardial oedema delineates the ischaemic area-at-risk (AAR) after myocardial infarction (MI). Since AAR can be used to estimate the amount of salvageable myocardial post-MI, oedema imaging has potential clinical utility in the management of acute MI patients. This paper presents a new scheme based on the variational level set method (LSM) with additional shape constraint for the segmentation of T2-weighted CMR image. In our approach, shape information of the myocardial wall is utilized to introduce a shape feature of the myocardial wall into the variational level set formulation. The performance of the method is tested using real CMR images (12 patients) and the results of the automatic system are compared to manual segmentation. The mean perpendicular distances between the automatic and manual LV wall boundaries are in the range of 1-2 mm. Bland-Altman analysis on LV wall area indicates there is no consistent bias as a function of LV wall area, with a mean bias of -121 mm2 between individual investigator one (IV1) and LSM, and -122 mm2 between individual investigator two (IV2) and LSM when compared to two investigators. Furthermore, the oedema quantification demonstrates good correlation when compared to an expert with an average error of 9.3% for 69 slices of short axis CMR image from 12 patients.

  3. Photometric method for the quantification of chlorophylls and their derivatives in complex mixtures: fitting with Gauss-peak spectra.

    PubMed

    Küpper, H; Spiller, M; Küpper, F C

    2000-11-15

    Accurate quantification of pigments in mixtures is essential in all cases in which separation of pigments by chromatography is impracticable for one reason or another. An example is the analysis of in vivo formation of heavy metal-substituted chlorophylls in heavy metal-stressed plants. We describe here a novel, accurate UV/VIS spectrophotometric method for the quantification of individual chlorophyll derivatives in complex mixtures, which has the potential for universal applicability for mixtures difficult to separate. The method is based on the description of each pigment spectrum by a series of Gaussian peaks. A sample spectrum is then fitted by a linear combination of these "Gauss-peak spectra" including an automatic correction of wavelength inaccuracy and baseline instability of the spectrometer as well as a correction of the widening of absorbance peaks in more concentrated pigment solutions. The automatic correction of peak shifts can also partially correct shifts caused by processes like allomerization. In this paper, we present the Gauss-peak spectra for Mg-chlorophyll a, b, c, pheophytin a, b, c, Cu-chlorophyll a, b, c, and Zn-chlorophyll a in acetone; Mg-chlorophyll a, b, pheophytin a, b, Cu-chlorophyll a, b, allomerized Cu-chlorophyll a, b, and Zn-chlorophyll a, b in cyclohexane; Mg-chlorophyll a, b, pheophytin a, b, and Cu-chlorophyll a, b in diethyl ether.

  4. GC-MS/MS method for the quantification of α-cedrene in rat plasma and its pharmacokinetic application.

    PubMed

    Hong, Joo Yeon; Lee, Byung Ho; Kim, Tae Hwan; Hong, Jongki; Lee, Kyoung Mee; Yoo, Sun Dong; Lee, Hye Suk

    2013-11-01

    α-Cedrene is a pharmacologically active ingredient isolated from the essential oil of cedar. A selective and sensitive GC-MS/MS method was developed for the quantification of α-cedrene in rat plasma for the first time. α-Cedrene was extracted from rat plasma using ethyl acetate at neutral pH. The analytes were determined in selective reaction monitoring mode using MS/MS: m/z 204.3→119.0 for α-cedrene and m/z 146.0→111.0 for 1,4-dichlorobenzene (internal standard). The standard curve was linear (r(2) ≥ 0.995) over the concentration ranges of 5-800 ng/mL. The lower limit of quantification was 5 ng/mL using 50 μL of rat plasma. The coefficient of variation and relative error for intra- and interassays at four quality control levels were 3.1-13.9% and -4.0-2.6%, respectively. The stability of processing (freeze-thaw, long-term storage at -80°C, and short-term storage at room temperature) and chromatography (reinjection) was shown to be of insignificant effect. The present method was applied successfully to the pharmacokinetic study of α-cedrene after its intravenous (10 mg/kg) and oral (25 mg/kg) administration in male Sprague-Dawley rats. PMID:23996797

  5. Use of the Relaxometry Technique for Quantification of Paramagnetic Ions in Aqueous Solutions and a Comparison with Other Analytical Methods

    PubMed Central

    Burato, Juliana Soares da Silva; Silva Lobo, Carlos Manuel; Colnago, Luiz Alberto

    2016-01-01

    We have demonstrated that the relaxometry technique is very efficient to quantify paramagnetic ions during in situ electrolysis measurements. Therefore, the goal of this work was to validate the relaxometry technique in the determination of the concentration of the ions contained in electrolytic solutions, Cu2+, Ni2+, Cr3+, and Mn2+, and compare it with other analytical methods. Two different NMR spectrometers were used: a commercial spectrometer with a homogeneous magnetic field and a home-built unilateral sensor with an inhomogeneous magnetic field. Without pretreatment, manganese ions do not have absorption bands in the UV-Visible region, but it is possible to quantify them using relaxometry (the limit of quantification is close to 10−5 mol L−1). Therefore, since the technique does not require chemical indicators and is a cheap and robust method, it can be used as a replacement for some conventional quantification techniques. The relaxometry technique could be applied to evaluate the corrosion of metallic surfaces. PMID:27293437

  6. A semi-automatic method for quantification and classification of erythrocytes infected with malaria parasites in microscopic images.

    PubMed

    Díaz, Gloria; González, Fabio A; Romero, Eduardo

    2009-04-01

    Visual quantification of parasitemia in thin blood films is a very tedious, subjective and time-consuming task. This study presents an original method for quantification and classification of erythrocytes in stained thin blood films infected with Plasmodium falciparum. The proposed approach is composed of three main phases: a preprocessing step, which corrects luminance differences. A segmentation step that uses the normalized RGB color space for classifying pixels either as erythrocyte or background followed by an Inclusion-Tree representation that structures the pixel information into objects, from which erythrocytes are found. Finally, a two step classification process identifies infected erythrocytes and differentiates the infection stage, using a trained bank of classifiers. Additionally, user intervention is allowed when the approach cannot make a proper decision. Four hundred fifty malaria images were used for training and evaluating the method. Automatic identification of infected erythrocytes showed a specificity of 99.7% and a sensitivity of 94%. The infection stage was determined with an average sensitivity of 78.8% and average specificity of 91.2%.

  7. Quantification and interpretation of total petroleum hydrocarbons in sediment samples by a GC/MS method and comparison with EPA 418.1 and a rapid field method.

    PubMed

    Xie, G; Barcelona, M J; Fang, J

    1999-05-01

    Total petroleum hydrocarbons (TPH) as a lumped parameter can be easily and rapidly measured or monitored. Despite interpretational problems, it has become an accepted regulatory benchmark used widely to evaluate the extent of petroleum product contamination. Three currently used methods (GC/MS, conventional EPA 418.1, and a rapid field method PetroFLAG) were performed to quantify the TPH content in samples collected from a site contaminated by transformer oil. To standardize the method and improve the comparability of TPH data, crucial GC-based quantification issues were examined, e.g., quantification based on internal standards (ISTD) vs external standards (ESTD), single vs multiple ISTD, and various area integration approaches. The interpretation of hydrocarbon chromatographic results was examined in the context of field samples. The performance of the GC/MS method was compared with those of EPA 418.1 and PetroFLAG. As a result, it was observed that the ISTD quantification method was preferred to the ESTD method, multiple ISTD might be better than single ISTD, and three different area integration approaches did not have a significant effect on TPH results. Evaluation of the chromatograms between a reference sample and three unknown samples showed that the extent of contamination varied appreciably with sample depth. It was also found that there existed a good positive correlation between GC/MS and both EPA 418.1 and PetroFLAG, and that EPA 418.1 produced the higher overall estimate while GC/MS and PetroFLAG resulted in lower, more statistically comparable TPH values.

  8. Comparing paired vs non-paired statistical methods of analyses when making inferences about absolute risk reductions in propensity-score matched samples.

    PubMed

    Austin, Peter C

    2011-05-20

    Propensity-score matching allows one to reduce the effects of treatment-selection bias or confounding when estimating the effects of treatments when using observational data. Some authors have suggested that methods of inference appropriate for independent samples can be used for assessing the statistical significance of treatment effects when using propensity-score matching. Indeed, many authors in the applied medical literature use methods for independent samples when making inferences about treatment effects using propensity-score matched samples. Dichotomous outcomes are common in healthcare research. In this study, we used Monte Carlo simulations to examine the effect on inferences about risk differences (or absolute risk reductions) when statistical methods for independent samples are used compared with when statistical methods for paired samples are used in propensity-score matched samples. We found that compared with using methods for independent samples, the use of methods for paired samples resulted in: (i) empirical type I error rates that were closer to the advertised rate; (ii) empirical coverage rates of 95 per cent confidence intervals that were closer to the advertised rate; (iii) narrower 95 per cent confidence intervals; and (iv) estimated standard errors that more closely reflected the sampling variability of the estimated risk difference. Differences between the empirical and advertised performance of methods for independent samples were greater when the treatment-selection process was stronger compared with when treatment-selection process was weaker. We recommend using statistical methods for paired samples when using propensity-score matched samples for making inferences on the effect of treatment on the reduction in the probability of an event occurring.

  9. High-performance liquid chromatographic method for the quantification of Mitragyna inermis alkaloids in order to perform pharmacokinetic studies.

    PubMed

    Sinou, Veronique; Fiot, Julien; Taudon, Nicolas; Mosnier, Joël; Martelloni, Maryse; Bun, Sok S; Parzy, Daniel; Ollivier, Evelyne

    2010-06-01

    In Africa, Mitragyna inermis (Willd.) O. Kuntze (Rubiaceae) is commonly used in traditional medicine to treat malaria. Antimalarial activity is mostly due to the hydromethanolic extract of M. inermis leaves and especially to the main alkaloids, uncarine D and isorhynchophilline. In the present study, we describe for the first time an HPLC method for the simultaneous quantification of uncarine D and isorhynchophylline in biological matrices. SPE was used to extract the components and the internal standard naphthalene from human and pig plasma samples. Chromatographic separation was performed on a C-18 reversed column at a flow rate of 1 mL/min, using methanol-phosphate buffer (10:90, pH 7), as a mobile phase. Good linearity was observed over the concentration ranges of 0.0662-3.31 microg/mL for uncarine D and 0.0476-2.38 microg/mL for isorynchophylline. The precision was less than 12% and the accuracy was from 86 to 107% without any discrepancy between the two species. Uncarine D and isorhynchophylline recoveries were over 80%. These results allowed the quantification of both uncarine D and isorhynchophylline in pig plasma after intravenous administration of M. inermis extract. PMID:20437411

  10. [Models for quantification of fluid saturation in two-phase flow system by light transmission method and its application].

    PubMed

    Zhang, Yan-Hong; Ye, Shu-Jun; Wu, Ji-Chun

    2014-06-01

    Based on light transmission method in quantification of liquid saturation and its application in two-phase flow system, two groups of sandbox experiments were set up to study the migration of gas or Dense Non-Aqueous Phase Liquids (DNAPLs) in water saturated porous media. The migration of gas or DNAPL was monitored in the study. Two modified Light Intensity-Saturation (LIS) models for water/gas two-phase system were applied and verified by the experiment data. Moreover two new LIS models for NAPL/water system were developed and applied to simulate the DNAPL infiltration experiment data. The gas injection experiment showed that gas moved upward to the top of the sandbox in the form of 'fingering' and finally formed continuous distribution. The results of DNAPL infiltration experiment showed that TCE mainly moved downward as the result of its gravity, eventually formed irregular plume and accumulated at the bottom of the sandbox. The outcomes of two LIS models for water/gas system (WG-A and WG-B) were consistent to the measured data. The results of two LIS models for NAPL/water system (NW-A and NW-B) fit well with the observations, and Model NW-A based on assumption of individual drainage gave better results. It could be a useful reference for quantification of NAPL/water saturation in porous media system.

  11. High-performance ion chromatography method for separation and quantification of inositol phosphates in diets and digesta.

    PubMed

    Blaabjerg, K; Hansen-Møller, J; Poulsen, H D

    2010-02-01

    A gradient high-performance ion chromatographic method for separation and quantification of inositol phosphates (InsP(2)-InsP(6)) in feedstuffs, diets, gastric and ileal digesta from pigs was developed and validated. The InsP(2)-InsP(6) were separated on a Dionex CarboPac PA1 column using a gradient with 1.5 mol L(-1) methanesulfonic acid and water. The exchange of the commonly used HCl with methanesulfonic acid has two advantages: (i) the obtained baseline during the separation is almost horizontal and (ii) it is not necessary to use an inert HPIC equipment as the methanesulfonic acid is not as aggressive as HCl. Twenty-three of the 27 separated inositol phosphate isomers were isolated. ICP-MS was used for quantification of phosphorus in the isolated isomers and used for calculation of correction factors for each isomer allowing InsP(6) to be used as calibration standard. The detection limits for InsP(2)-InsP(6) were in the range of 0.9-4.4 mg phosphorus L(-1). The recovery of the major part of the inositol phosphates was 80-100%, and the CV for repeatability and reproducibility were 1-17% and 1-14%, respectively. PMID:20022822

  12. A flow-cytometry-based method to simplify the analysis and quantification of protein association to chromatin in mammalian cells

    PubMed Central

    Forment, Josep V.; Jackson, Stephen P.

    2016-01-01

    Protein accumulation on chromatin has traditionally been studied using immunofluorescence microscopy or biochemical cellular fractionation followed by western immunoblot analysis. As a way to improve the reproducibility of this kind of analysis, make it easier to quantify and allow a stream-lined application in high-throughput screens, we recently combined a classical immunofluorescence microscopy detection technique with flow cytometry1. In addition to the features described above, and by combining it with detection of both DNA content and DNA replication, this method allows unequivocal and direct assignment of cell-cycle distribution of protein association to chromatin without the need for cell culture synchronization. Furthermore, it is relatively quick (no more than a working day from sample collection to quantification), requires less starting material compared to standard biochemical fractionation methods and overcomes the need for flat, adherent cell types that are required for immunofluorescence microscopy. PMID:26226461

  13. Quantification of pendimethalin in soil and garlic samples by microwave-assisted solvent extraction and HPLC method.

    PubMed

    Shah, Jasmin; Jan, M Rasul; Shehzad, Farhat-un-nisa; Ara, Behisht

    2011-04-01

    A method for the residual pendimethalin in soil and vegetable samples was developed. The method is based on extraction of pendimethalin from samples using microwave-assisted solvent extraction (MASE) with acetone, ethanol, and water as extraction solvent. Extracted pendimethalin samples were analyzed by high-performance liquid chromatography with ultraviolet detector at 240 nm. The MASE parameters, temperature, heating time, and solvent types were optimized with the feasibility of MASE application in the determination of pendimethalin extraction efficiency of pendimethalin from soil and vegetable samples. The maximum temperature that can be used during the heating for MASE is 60°C, where the recovery percentages reached 97%. Linearity for pendimethalin was found in the range of 2-20 μg mL(-1) with limits of detection and limits of quantification of 0.059 and 0.17 μg mL(-1), respectively.

  14. Using the Stochastic Collocation Method for the Uncertainty Quantification of Drug Concentration Due to Depot Shape Variability

    PubMed Central

    Preston, J. Samuel; Tasdizen, Tolga; Terry, Christi M.; Cheung, Alfred K.

    2010-01-01

    Numerical simulations entail modeling assumptions that impact outcomes. Therefore, characterizing, in a probabilistic sense, the relationship between the variability of model selection and the variability of outcomes is important. Under certain assumptions, the stochastic collocation method offers a computationally feasible alternative to traditional Monte Carlo approaches for assessing the impact of model and parameter variability. We propose a framework that combines component shape parameterization with the stochastic collocation method to study the effect of drug depot shape variability on the outcome of drug diffusion simulations in a porcine model. We use realistic geometries segmented from MR images and employ level-set techniques to create two alternative univariate shape parameterizations. We demonstrate that once the underlying stochastic process is characterized, quantification of the introduced variability is quite straightforward and provides an important step in the validation and verification process. PMID:19272865

  15. Optimization of [(11)C]raclopride positron emission tomographic rat studies: comparison of methods for image quantification.

    PubMed

    Torrent, Elia; Farré, Magí; Abasolo, Ibane; Millan, Olga; Llop, Jordi; Gispert, Juan Domingo; Ruiz, Alba; Pareto, Deborah

    2013-06-01

    The goal of this study was to compare different quantification approaches and reconstruction methods to estimate the binding potential in [11C]raclopride studies in rats. The final aim was to determine if the results obtained with short-acquisition scanning were comparable to the results obtained with long-acquistion (conventional) scanning. We analyzed two rat data sets: a baseline versus a pretreatment study (with cold raclopride) and a young versus an old animal group comparison. The study results support the contention that optimization of [11C]raclopride positron emission tomographic studies in rats by shortening the acquisition time is feasible. In addition, filtered backprojection is recommended as a reconstruction algorithm, although iterative methods may be more sensitive to detect within-group differences.

  16. Quantification Bias Caused by Plasmid DNA Conformation in Quantitative Real-Time PCR Assay

    PubMed Central

    Lin, Chih-Hui; Chen, Yu-Chieh; Pan, Tzu-Ming

    2011-01-01

    Quantitative real-time PCR (qPCR) is the gold standard for the quantification of specific nucleic acid sequences. However, a serious concern has been revealed in a recent report: supercoiled plasmid standards cause significant over-estimation in qPCR quantification. In this study, we investigated the effect of plasmid DNA conformation on the quantification of DNA and the efficiency of qPCR. Our results suggest that plasmid DNA conformation has significant impact on the accuracy of absolute quantification by qPCR. DNA standard curves shifted significantly among plasmid standards with different DNA conformations. Moreover, the choice of DNA measurement method and plasmid DNA conformation may also contribute to the measurement error of DNA standard curves. Due to the multiple effects of plasmid DNA conformation on the accuracy of qPCR, efforts should be made to assure the highest consistency of plasmid standards for qPCR. Thus, we suggest that the conformation, preparation, quantification, purification, handling, and storage of standard plasmid DNA should be described and defined in the Minimum Information for Publication of Quantitative Real-Time PCR Experiments (MIQE) to assure the reproducibility and accuracy of qPCR absolute quantification. PMID:22194997

  17. Absolute biological needs.

    PubMed

    McLeod, Stephen

    2014-07-01

    Absolute needs (as against instrumental needs) are independent of the ends, goals and purposes of personal agents. Against the view that the only needs are instrumental needs, David Wiggins and Garrett Thomson have defended absolute needs on the grounds that the verb 'need' has instrumental and absolute senses. While remaining neutral about it, this article does not adopt that approach. Instead, it suggests that there are absolute biological needs. The absolute nature of these needs is defended by appeal to: their objectivity (as against mind-dependence); the universality of the phenomenon of needing across the plant and animal kingdoms; the impossibility that biological needs depend wholly upon the exercise of the abilities characteristic of personal agency; the contention that the possession of biological needs is prior to the possession of the abilities characteristic of personal agency. Finally, three philosophical usages of 'normative' are distinguished. On two of these, to describe a phenomenon or claim as 'normative' is to describe it as value-dependent. A description of a phenomenon or claim as 'normative' in the third sense does not entail such value-dependency, though it leaves open the possibility that value depends upon the phenomenon or upon the truth of the claim. It is argued that while survival needs (or claims about them) may well be normative in this third sense, they are normative in neither of the first two. Thus, the idea of absolute need is not inherently normative in either of the first two senses. PMID:23586876

  18. Absolute biological needs.

    PubMed

    McLeod, Stephen

    2014-07-01

    Absolute needs (as against instrumental needs) are independent of the ends, goals and purposes of personal agents. Against the view that the only needs are instrumental needs, David Wiggins and Garrett Thomson have defended absolute needs on the grounds that the verb 'need' has instrumental and absolute senses. While remaining neutral about it, this article does not adopt that approach. Instead, it suggests that there are absolute biological needs. The absolute nature of these needs is defended by appeal to: their objectivity (as against mind-dependence); the universality of the phenomenon of needing across the plant and animal kingdoms; the impossibility that biological needs depend wholly upon the exercise of the abilities characteristic of personal agency; the contention that the possession of biological needs is prior to the possession of the abilities characteristic of personal agency. Finally, three philosophical usages of 'normative' are distinguished. On two of these, to describe a phenomenon or claim as 'normative' is to describe it as value-dependent. A description of a phenomenon or claim as 'normative' in the third sense does not entail such value-dependency, though it leaves open the possibility that value depends upon the phenomenon or upon the truth of the claim. It is argued that while survival needs (or claims about them) may well be normative in this third sense, they are normative in neither of the first two. Thus, the idea of absolute need is not inherently normative in either of the first two senses.

  19. Absolute quantitative analysis for sorbic acid in processed foods using proton nuclear magnetic resonance spectroscopy.

    PubMed

    Ohtsuki, Takashi; Sato, Kyoko; Sugimoto, Naoki; Akiyama, Hiroshi; Kawamura, Yoko

    2012-07-13

    An analytical method using solvent extraction and quantitative proton nuclear magnetic resonance (qHNMR) spectroscopy was applied and validated for the absolute quantification of sorbic acid (SA) in processed foods. The proposed method showed good linearity. The recoveries for samples spiked at the maximum usage level specified for food in Japan and at 0.13 g kg(-1) (beverage: 0.013 g kg(-1)) were larger than 80%, whereas those for samples spiked at 0.063 g kg(-1) (beverage: 0.0063 g kg(-1)) were between 56.9 and 83.5%. The limit of quantification was 0.063 g kg(-1) for foods (and 0.0063 g kg(-1) for beverages containing Lactobacillus species). Analysis of the SA content of commercial processed foods revealed quantities equal to or greater than those measured using conventional steam-distillation extraction and high-performance liquid chromatography quantification. The proposed method was rapid, simple, accurate, and precise, and provided International System of Units traceability without the need for authentic analyte standards. It could therefore be used as an alternative to the quantification of SA in processed foods using conventional method. PMID:22704472

  20. A novel and rapid method for quantification of magnetic nanoparticle cell interactions using a desktop susceptometer

    NASA Astrophysics Data System (ADS)

    Ström, Valter; Hultenby, Kjell; Grüttner, Cordula; Teller, Joachim; Xu, Bo; Holgersson, Jan

    2004-05-01

    Activated endothelial cells (EC) are attractive prime targets for specific drug delivery using drug-carrying magnetic nanoparticles. In order to accomplish EC targeting, the interaction between magnetic particles and resting as well as activated endothelial cells must be characterized and quantified, because it will influence particle biodistribution, circulation half-time, and targeting efficacy. Here, we have quantified in vitro the interaction (adhesion/phagocytosis) between human endothelial cells and magnetite (Fe3O4) particles carrying different surface coatings with varying degrees of hydrophilicity and surface charge. Almost no adhesion was observed (about 1% or less) for three out of five particle types carrying plain dextran, carboxyl-substituted poly(ethylene glycol) and silica C18 coatings. In contrast, carboxyl-functionalized dextran and poly(ethylene glycol)-coated particles adhered or were phagocytosed to a considerable degree (58 and 26%, respectively). These clear and accurate results were obtained by measuring the magnetic response, i.e. magnetic susceptibility, from different fractions of the cell cultures as a means of determining the concentration of magnetic particles. Visible light and electron microscopy confirmed the magnetic quantification. To meet the need for a rapid yet sensitive instrument, we have developed a desktop magnetic susceptometer especially adapted for liquid samples or particles in a suspension. Despite its very high sensitivity, it is easy to operate and requires but a few seconds for a measurement. We also describe the construction and operation of this instrument.

  1. New methods and results for quantification of lightning-aircraft electrodynamics

    NASA Technical Reports Server (NTRS)

    Pitts, Felix L.; Lee, Larry D.; Perala, Rodney A.; Rudolph, Terence H.

    1987-01-01

    The NASA F-106 collected data on the rates of change of electromagnetic parameters on the aircraft surface during over 700 direct lightning strikes while penetrating thunderstorms at altitudes from 15,000 t0 40,000 ft (4,570 to 12,190 m). These in situ measurements provided the basis for the first statistical quantification of the lightning electromagnetic threat to aircraft appropriate for determining indirect lightning effects on aircraft. These data are used to update previous lightning criteria and standards developed over the years from ground-based measurements. The proposed standards will be the first which reflect actual aircraft responses measured at flight altitudes. Nonparametric maximum likelihood estimates of the distribution of the peak electromagnetic rates of change for consideration in the new standards are obtained based on peak recorder data for multiple-strike flights. The linear and nonlinear modeling techniques developed provide means to interpret and understand the direct-strike electromagnetic data acquired on the F-106. The reasonable results obtained with the models, compared with measured responses, provide increased confidence that the models may be credibly applied to other aircraft.

  2. Rapid detection and quantification of Cryptosporidium baileyi oocysts in feces and organs of chickens using a microscopic slide flotation method.

    PubMed

    Abbassi, H; Wyers, M; Cabaret, J; Naciri, M

    2000-03-01

    A simple semiquantitative microscopic slide flotation (MSF) method using modified Sheather's sugar solution (MSSS) is presented for the rapid detection and quantification of Cryptosporidium baileyi oocysts in the feces and mucosal and/or organ scrapings of chickens. Oocyst shedding was evaluated by examination of the surface of coverslips, and the average quantitative score (0-5) recorded for 10 microscopic fields (magnification x250) is reported. The equivalence between these scores and the actual number of oocysts counted per gram of feces was assessed (rs = 0.89; P < 0.001). The applicability of this method was tested by comparison of the kinetics of oocyst shedding in feces of inoculated chickens with those reported by other authors working under similar conditions. In organs the MSF method was compared to histology. Fewer false-negative results were obtained using MSF versus the histology method. The MSF method was particularly more efficient in tracheae with low levels of infection and in the lungs, regardless of the level of infection. The MSF method was also very efficient in detecting oocysts in air sacs from chickens with aerosacculitis. It provides a specific and sufficiently sensitive, simple, rapid, reliable, and low-cost means of diagnosing C. baileyi in the feces and organs of chickens. This method can be used in the routine diagnosis of cryptosporidia in chickens, and it could be extended to other avian species and used in epidemiology studies to evaluate the prevalence of cryptosporidiosis in fowl.

  3. Limitations of amorphous content quantification by isothermal calorimetry using saturated salt solutions to control relative humidity: alternative methods.

    PubMed

    Khalef, Nawel; Pinal, Rodolfo; Bakri, Aziz

    2010-04-01

    Despite the high sensitivity of isothermal calorimetry (IC), reported measurements of amorphous content by this technique show significant variability even for the same compound. An investigation into the reasons behind such variability is presented using amorphous lactose and salbutamol sulfate as model compounds. An analysis was carried out on the heat evolved as a result of the exchange of water vapor between the solid sample during crystallization and the saline solution reservoir. The use of saturated salt solutions as means of control of the vapor pressure of water within sealed ampoules bears inherent limitations that lead in turn to the variability associated with the IC technique. We present an alternative IC method, based on an open cell configuration that effectively addresses the limitations encountered with the sealed ampoule system. The proposed approach yields an integral whose value is proportional to the amorphous content in the sample, thus enabling reliable and consistent quantifications. PMID:19774655

  4. Quantification of 4'-geranyloxyferulic acid (GOFA) in honey samples of different origin by validated RP-HPLC-UV method.

    PubMed

    Genovese, Salvatore; Taddeo, Vito Alessandro; Fiorito, Serena; Epifano, Francesco

    2016-01-01

    Natural honey has been employed as a nutraceutical agent with benefits and therapeutic promises for humans for many centuries. It has been largely used as food and medicine by all generations, traditions, and civilizations, both ancient and modern. Several chemicals having beneficial effects for human health have been reported as components of natural honey and these include sugars, organic acids, aminoacids, minerals, and vitamins. Also some important phytochemicals have been described and these comprise tannins, flavonoids, terpenes, saponins, and alkaloids. In this note it is described the successful application of a RP HPLC-UV-vis method for the separation and quantification of 4'-geranyloxyferulic acid (GOFA) in four honey samples of different origin. Concentration values showed a great variation between the four samples tested, being chestnut honey the one richest in GOFA (7.87 mg/g). The findings described herein represent the first example reported in the literature of the characterization of an oxyprenylated phenylpropanoid in honey.

  5. Validation of a fast and accurate chromatographic method for detailed quantification of vitamin E in green leafy vegetables.

    PubMed

    Cruz, Rebeca; Casal, Susana

    2013-11-15

    Vitamin E analysis in green vegetables is performed by an array of different methods, making it difficult to compare published data or choosing the adequate one for a particular sample. Aiming to achieve a consistent method with wide applicability, the current study reports the development and validation of a fast micro-method for quantification of vitamin E in green leafy vegetables. The methodology uses solid-liquid extraction based on the Folch method, with tocol as internal standard, and normal-phase HPLC with fluorescence detection. A large linear working range was confirmed, being highly reproducible, with inter-day precisions below 5% (RSD). Method sensitivity was established (below 0.02 μg/g fresh weight), and accuracy was assessed by recovery tests (>96%). The method was tested in different green leafy vegetables, evidencing diverse tocochromanol profiles, with variable ratios and amounts of α- and γ-tocopherol, and other minor compounds. The methodology is adequate for routine analyses, with a reduced chromatographic run (<7 min) and organic solvent consumption, and requires only standard chromatographic equipment available in most laboratories.

  6. Normalized Tritium Quantification Approach (NoTQA) a Method for Quantifying Tritium Contaminated Trash and Debris at LLNL

    SciTech Connect

    Dominick, J L; Rasmussen, C L

    2008-07-23

    Several facilities and many projects at LLNL work exclusively with tritium. These operations have the potential to generate large quantities of Low-Level Radioactive Waste (LLW) with the same or similar radiological characteristics. A standardized documented approach to characterizing these waste materials for disposal as radioactive waste will enhance the ability of the Laboratory to manage them in an efficient and timely manner while ensuring compliance with all applicable regulatory requirements. This standardized characterization approach couples documented process knowledge with analytical verification and is very conservative, overestimating the radioactivity concentration of the waste. The characterization approach documented here is the Normalized Tritium Quantification Approach (NoTQA). This document will serve as a Technical Basis Document which can be referenced in radioactive waste characterization documentation packages such as the Information Gathering Document. In general, radiological characterization of waste consists of both developing an isotopic breakdown (distribution) of radionuclides contaminating the waste and using an appropriate method to quantify the radionuclides in the waste. Characterization approaches require varying degrees of rigor depending upon the radionuclides contaminating the waste and the concentration of the radionuclide contaminants as related to regulatory thresholds. Generally, as activity levels in the waste approach a regulatory or disposal facility threshold the degree of required precision and accuracy, and therefore the level of rigor, increases. In the case of tritium, thresholds of concern for control, contamination, transportation, and waste acceptance are relatively high. Due to the benign nature of tritium and the resulting higher regulatory thresholds, this less rigorous yet conservative characterization approach is appropriate. The scope of this document is to define an appropriate and acceptable

  7. Development and validation of LC-MS methods for peptaibol quantification in fungal extracts according to their lengths.

    PubMed

    Van Bohemen, Anne-Isaline; Zalouk-Vergnoux, Aurore; Poirier, Laurence; Phuong, Nam Ngoc; Inguimbert, Nicolas; Ben Haj Salah, Khoubaib; Ruiz, Nicolas; Pouchus, Yves François

    2016-01-15

    Some terrestrial Trichoderma sp. strains are already used as biological control agents (BCAs). They all produce peptaibols, small antimicrobial peptides which are supposed to play a role in the anti-phytopathogenic activity of Trichoderma sp. Trichoderma strains producing high amounts of peptaibols could represent new potential BCAs. In this context, marine-derived Trichoderma strains from the marine fungal strain collection of the "Mer, Molécules, Santé" (MMS) laboratory were investigated for their peptaibol production. Previously, the quantification of peptaibols was performed using alamethicin, as standard (20-amino acid residues peptaibol). In this study, the development and validation of quantification LC/ESI-TI-MS methods using different standards of peptaibols (11-, 14- and 20-amino acid residues) was performed in order to quantify all of them, in a single analysis, in Trichoderma crude extracts according to their chain length. The developed and validated methods were used to study the peptaibol production kinetic of a marine-derived Trichoderma strain, i.e., Trichoderma longibrachiatum (MMS 151). The results showed the optimal culture time at the 9th day with concentrations reaching 1.4±0.2% and 2.3±0.4% of the fungal biomass respectively for 11- and 20-residue peptaibols. Then, the different peptaibol subgroups produced by 13 Trichoderma strains were quantified. According to their 18-, 19- and 20-residue peptaibol production, three strains referenced as MMS 1541, MMS 639 and MMS 151 seemed to be good candidates as potential new biological control agents with respective production of 0.4, 0.4 and 2.1%.

  8. LV wall segmentation using the variational level set method (LSM) with additional shape constraint for oedema quantification.

    PubMed

    Kadir, K; Gao, H; Payne, A; Soraghan, J; Berry, C

    2012-10-01

    In this paper an automatic algorithm for the left ventricle (LV) wall segmentation and oedema quantification from T2-weighted cardiac magnetic resonance (CMR) images is presented. The extent of myocardial oedema delineates the ischaemic area-at-risk (AAR) after myocardial infarction (MI). Since AAR can be used to estimate the amount of salvageable myocardial post-MI, oedema imaging has potential clinical utility in the management of acute MI patients. This paper presents a new scheme based on the variational level set method (LSM) with additional shape constraint for the segmentation of T2-weighted CMR image. In our approach, shape information of the myocardial wall is utilized to introduce a shape feature of the myocardial wall into the variational level set formulation. The performance of the method is tested using real CMR images (12 patients) and the results of the automatic system are compared to manual segmentation. The mean perpendicular distances between the automatic and manual LV wall boundaries are in the range of 1-2 mm. Bland-Altman analysis on LV wall area indicates there is no consistent bias as a function of LV wall area, with a mean bias of -121 mm(2) between individual investigator one (IV1) and LSM, and -122 mm(2) between individual investigator two (IV2) and LSM when compared to two investigators. Furthermore, the oedema quantification demonstrates good correlation when compared to an expert with an average error of 9.3% for 69 slices of short axis CMR image from 12 patients.

  9. Development and validation of LC-MS methods for peptaibol quantification in fungal extracts according to their lengths.

    PubMed

    Van Bohemen, Anne-Isaline; Zalouk-Vergnoux, Aurore; Poirier, Laurence; Phuong, Nam Ngoc; Inguimbert, Nicolas; Ben Haj Salah, Khoubaib; Ruiz, Nicolas; Pouchus, Yves François

    2016-01-15

    Some terrestrial Trichoderma sp. strains are already used as biological control agents (BCAs). They all produce peptaibols, small antimicrobial peptides which are supposed to play a role in the anti-phytopathogenic activity of Trichoderma sp. Trichoderma strains producing high amounts of peptaibols could represent new potential BCAs. In this context, marine-derived Trichoderma strains from the marine fungal strain collection of the "Mer, Molécules, Santé" (MMS) laboratory were investigated for their peptaibol production. Previously, the quantification of peptaibols was performed using alamethicin, as standard (20-amino acid residues peptaibol). In this study, the development and validation of quantification LC/ESI-TI-MS methods using different standards of peptaibols (11-, 14- and 20-amino acid residues) was performed in order to quantify all of them, in a single analysis, in Trichoderma crude extracts according to their chain length. The developed and validated methods were used to study the peptaibol production kinetic of a marine-derived Trichoderma strain, i.e., Trichoderma longibrachiatum (MMS 151). The results showed the optimal culture time at the 9th day with concentrations reaching 1.4±0.2% and 2.3±0.4% of the fungal biomass respectively for 11- and 20-residue peptaibols. Then, the different peptaibol subgroups produced by 13 Trichoderma strains were quantified. According to their 18-, 19- and 20-residue peptaibol production, three strains referenced as MMS 1541, MMS 639 and MMS 151 seemed to be good candidates as potential new biological control agents with respective production of 0.4, 0.4 and 2.1%. PMID:26688345

  10. The polymerase chain reaction: A stochastic model, methods of quantification, and applications to HIV. [HIV (human immunodeficiency virus)

    SciTech Connect

    Harris, O.A.

    1992-01-01

    This thesis is concerned with the development of the polymerase chain reaction (PCR) as an accurate and reliable measure of specific DNA copy number. This development is motivated by the need to quantify the number of copies of HIV in infected cells. In particular the extent of HIV infection, in terms of proviral load, can be determined by using PCR, leading to more accurate evaluation of drug treatments. The thesis is presented in four parts: (I) the assay, (II) the mathematics, (III) the models, and finally (IV) the applications. The first section includes a complete description of the assay. This section also includes descriptions of DNA structure and of cellular DNA replication. The second section contains the background material and presentation of new developments in the mathematics and statistics needed for the modeling of the assay. The assay is modeled as a branching process, and various aspects of the reaction dictate different types of branching processes. As a result, three types of processes are presented, classic Galton-Watson, generation-dependent, and population-size-dependent. These models lead to quantification procedures involving weighted linear regression and inverse prediction. In addition, new material is presented for the development of comparison methods and confidence intervals in this setting. The third section contains the actual modeling of the reaction through the three different types of branching processes mentioned. Complete characterizations of the distributions of the processes are derived for two of the models, from which new parametric statistical tests for the quantification of DNA, in particular of HIV, are developed. For the third model, simulations are used to explore the process and its moments. This model necessarily leads to a submodel reminiscent to that found in stochastic epidemics. The final section illustrates the application of methods developed to data from HIV-infected patients.

  11. High resolution LC-ESI-TOF-mass spectrometry method for fast separation, identification, and quantification of 12 isoflavones in soybeans and soybean products.

    PubMed

    Lee, Mi Jin; Chung, Ill-Min; Kim, Hunjung; Jung, Mun Yhung

    2015-06-01

    A high resolution LC-ESI-TOF-MS analytical method was established for the rapid isolation, identification, and quantification of 12 isoflavones in soybean and soybean products. Individual isoflavones were identified on the basis of the accurate mass data of their respective protonated mass ions, Na or K adduct ions, fragment ions, and isotope ion patterns. The protonated mass ions of isoflavones were extracted for their quantification in soybean products. Twelve different isoflavones in the soybean products were fully separated, identified and quantified within 12min separation time. The established LC-TOF/MS was an effective analytical method for the simultaneous characterization and quantification of isoflavones with exceptionally short analytical time, high selectivity, a high linearity (r(2)>0.992) in a wide range, low LOD and LOQ, high precision, inter-and intra-day repeatability, and no significant matrix effect. Furthermore, it requires simple sample preparation procedure (solvent extraction, dilution, and syringe filtration).

  12. Novel method for the simultaneous quantification of soil hydraulic functions in the laboratory under consideration of shrinkage

    NASA Astrophysics Data System (ADS)

    Schindler, Uwe; Mueller, Lothar

    2013-04-01

    Knowledge about the soil hydraulic properties - water retention curve and unsaturated hydraulic conductivity - is required for soil water modelling and various soil hydrological studies. In general, soils and their pore size system are assumed to be rigid during the loss of water on drying. This is different from reality for many soils, especially for soils with high contents of clay or organic matter which are shrinking dependent on the pore pressure. As a result, the porosity, the pore size distribution and the bulk density of these soils are changing. Measurements of soil hydraulic functions with the classical methods are time consuming, the equipment is costly and the measuring results are affected by uncertainties. Methods enabling the quantification of soil hydraulic functions under consideration of shrinkage are missing. A method frequently used for the simultaneous determination of both the hydraulic functions of unsaturated soil samples is the evaporation method. Due to the limited range of common tensiometers, all methodological variations of the evaporation method in the past suffered from the limitation that the hydraulic functions could only be determined to a maximum tension of 50 kPa. The extended evaporation method (EEM) overcomes this restriction. Using new boyling delay tensiometers and applying the air-entry pressure of the tensiometer's porous ceramic cup as final tension value allows the quantification of the soil hydraulic functions in a range to close to the wilting point. Based on EEM a practicable method was developed which additionally allows the consideration of shrinkage. The experimental setup followed the system HYPROP which is a commercial device with vertically aligned tensiometers that is optimized to perform evaporation measurements. Preliminary investigations were conducted to study the geometrical change of 24 samples different in texture and origin. The samples were enwrapped with a rubber membrane impermeable for water and air

  13. A practical method for quantification of phosphorus- and glycogen-accumulating organism populations in activated sludge systems.

    PubMed

    López-Vázquez, Carlos M; Hooijmans, Christine M; Brdjanovic, Damir; Gijzen, Huub J; van Loosdrecht, Mark C M

    2007-12-01

    Enhanced biological phosphorus removal (EBPR) from wastewater relies on the enrichment of activated sludge with phosphorus-accumulating organisms (PAOs). The presence and proliferation of glycogen-accumulating organisms (GAOs), which compete for substrate with PAOs, may be detrimental for EBPR systems, leading to deterioration and, in extreme cases, failure of the process. Therefore, from both process evaluation and modeling perspectives, the estimation of PAO and GAO populations in activated sludge systems is a relevant issue. A simple method for the quantification of PAO and GAO population fractions in activated sludge systems is presented in this paper. To develop such a method, the activity observed in anaerobic batch tests executed with different PAO/GAO ratios, by mixing highly enriched PAO and GAO cultures, was studied. Strong correlations between PAO/GAO population ratios and biomass activity were observed (R2 > 0.97). This served as a basis for the proposal of a simple and practical method to quantify the PAO and GAO populations in activated sludge systems, based on commonly measured and reliable analytical parameters (i.e., mixed liquor suspended solids, acetate, and orthophosphate) without requiring molecular techniques. This method relies on the estimation of the total active biomass population under anaerobic conditions (PAO plus GAO populations), by measuring the maximum acetate uptake rate in the presence of excess acetate. Later, the PAO and GAO populations present in the activated sludge system can be estimated, by taking into account the PAO/GAO ratio calculated on the basis of the anaerobic phosphorus release-to-acetate consumed ratio. The proposed method was evaluated using activated sludge from municipal wastewater treatment plants. The results from the quantification performed following the proposed method were compared with direct population estimations carried out with fluorescence in situ hybridization analysis (determining Candidatus

  14. 76 FR 29752 - Nomination of In Vitro Test Methods for Detection and Quantification of Botulinum Neurotoxins and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-23

    ... meeting (67 FR 23323), comments and data are ] requested by June 2, 2011. NICEATM and ICCVAM will accept... for the Detection and Quantification of BoNTs In 2006, NICEATM and ICCVAM convened a workshop... for the detection and quantification of BoNTs. These tests include the in vitro BoTest TM and...

  15. The absolute path command

    2012-05-11

    The ap command traveres all symlinks in a given file, directory, or executable name to identify the final absolute path. It can print just the final path, each intermediate link along with the symlink chan, and the permissions and ownership of each directory component in the final path. It has functionality similar to "which", except that it shows the final path instead of the first path. It is also similar to "pwd", but it canmore » provide the absolute path to a relative directory from the current working directory.« less

  16. The absolute path command

    SciTech Connect

    Moody, A.

    2012-05-11

    The ap command traveres all symlinks in a given file, directory, or executable name to identify the final absolute path. It can print just the final path, each intermediate link along with the symlink chan, and the permissions and ownership of each directory component in the final path. It has functionality similar to "which", except that it shows the final path instead of the first path. It is also similar to "pwd", but it can provide the absolute path to a relative directory from the current working directory.

  17. A method for determining weights for excess relative risk and excess absolute risk when applied in the calculation of lifetime risk of cancer from radiation exposure.

    PubMed

    Walsh, Linda; Schneider, Uwe

    2013-03-01

    Radiation-related risks of cancer can be transported from one population to another population at risk, for the purpose of calculating lifetime risks from radiation exposure. Transfer via excess relative risks (ERR) or excess absolute risks (EAR) or a mixture of both (i.e., from the life span study (LSS) of Japanese atomic bomb survivors) has been done in the past based on qualitative weighting. Consequently, the values of the weights applied and the method of application of the weights (i.e., as additive or geometric weighted means) have varied both between reports produced at different times by the same regulatory body and also between reports produced at similar times by different regulatory bodies. Since the gender and age patterns are often markedly different between EAR and ERR models, it is useful to have an evidence-based method for determining the relative goodness of fit of such models to the data. This paper identifies a method, using Akaike model weights, which could aid expert judgment and be applied to help to achieve consistency of approach and quantitative evidence-based results in future health risk assessments. The results of applying this method to recent LSS cancer incidence models are that the relative EAR weighting by cancer solid cancer site, on a scale of 0-1, is zero for breast and colon, 0.02 for all solid, 0.03 for lung, 0.08 for liver, 0.15 for thyroid, 0.18 for bladder and 0.93 for stomach. The EAR weighting for female breast cancer increases from 0 to 0.3, if a generally observed change in the trend between female age-specific breast cancer incidence rates and attained age, associated with menopause, is accounted for in the EAR model. Application of this method to preferred models from a study of multi-model inference from many models fitted to the LSS leukemia mortality data, results in an EAR weighting of 0. From these results it can be seen that lifetime risk transfer is most highly weighted by EAR only for stomach cancer. However

  18. Under proper control, oxidation of proteins with known chemical structure provides an accurate and absolute method for the determination of their molar concentration.

    PubMed

    Guermant, C; Azarkan, M; Smolders, N; Baeyens-Volant, D; Nijs, M; Paul, C; Brygier, J; Vincentelli, J; Looze, Y

    2000-01-01

    Oxidation at 120 degrees C of inorganic and organic (including amino acids, di- and tripeptides) model compounds by K(2)Cr(2)O(7) in the presence of H(2)SO(4) (mass fraction: 0.572), Ag(2)SO(4) (catalyst), and HgSO(4) results in the quantitative conversion of their C-atoms into CO(2) within 24 h or less. Under these stressed, well-defined conditions, the S-atoms present in cysteine and cystine residues are oxidized into SO(3) while, interestingly, the oxidation states of all the other (including the N-) atoms normally present in a protein do remain quite unchanged. When the chemical structure of a given protein is available, the total number of electrons the protein is able to transfer to K(2)Cr(2)O(7) and thereof, the total number of moles of Cr(3+) ions which the protein is able to generate upon oxidation can be accurately calculated. In such cases, unknown protein molar concentrations can thus be determined through straightforward spectrophotometric measurements of Cr(3+) concentrations. The values of molar absorption coefficients for several well-characterized proteins have been redetermined on this basis and observed to be in excellent agreement with the most precise values reported in the literature, which fully assesses the validity of the method. When applied to highly purified proteins of known chemical structure (more generally of known atomic composition), this method is absolute and accurate (+/-1%). Furthermore, it is well adapted to series measurements since available commercial kits for chemical oxygen demand (COD) measurements can readily be adapted to work under the experimental conditions recommended here for the protein assay. PMID:10610688

  19. Estimating the absolute wealth of households

    PubMed Central

    Gerkey, Drew; Hadley, Craig

    2015-01-01

    Abstract Objective To estimate the absolute wealth of households using data from demographic and health surveys. Methods We developed a new metric, the absolute wealth estimate, based on the rank of each surveyed household according to its material assets and the assumed shape of the distribution of wealth among surveyed households. Using data from 156 demographic and health surveys in 66 countries, we calculated absolute wealth estimates for households. We validated the method by comparing the proportion of households defined as poor using our estimates with published World Bank poverty headcounts. We also compared the accuracy of absolute versus relative wealth estimates for the prediction of anthropometric measures. Findings The median absolute wealth estimates of 1 403 186 households were 2056 international dollars per capita (interquartile range: 723–6103). The proportion of poor households based on absolute wealth estimates were strongly correlated with World Bank estimates of populations living on less than 2.00 United States dollars per capita per day (R2 = 0.84). Absolute wealth estimates were better predictors of anthropometric measures than relative wealth indexes. Conclusion Absolute wealth estimates provide new opportunities for comparative research to assess the effects of economic resources on health and human capital, as well as the long-term health consequences of economic change and inequality. PMID:26170506

  20. A porous graphitized carbon column HPLC method for the quantification of paracetamol, pseudoephedrine, and chlorpheniramine in a pharmaceutical formulation.

    PubMed

    Kalogria, Eleni; Koupparis, Michael; Panderi, Irene

    2010-01-01

    A simple, rapid, and stability-indicating HPLC method has been developed, fully validated, and applied to the quantification of paracetamol, pseudoephedrine hydrochloride, and chlorpheniramine maleate in a pharmaceutical formulation, using hydrochlorothiazide as an internal standard. Chromatographic separation was achieved isocratically on an RP porous graphitized carbon analytical column (125 x 2.1 mm id, particle size 5 microm) using 5.0 mM ammonium acetate-acetonitrile (35 + 65, v/v) mobile phase at a flow rate of 0.50 mL/min. UV spectrophotometric detection at 220 nm was used. The method had linear calibration curves over the range of 30-70 microg/mL for paracetamol, 1.8-4.2 microg/mL for pseudoephedrine hydrochloride, and 120-280 ng/mL for chlorpheniramine maleate. The intraday and interday RSD values were less than 3.2% for all compounds, while the relative error was less than 2.9%. Accelerated stability studies performed under various stress conditions proved the selectivity of the method. The developed method was applied successfully to QC and content uniformity tests of commercial tablets.

  1. An improved simplified high-sensitivity quantification method for determining brassinosteroids in different tissues of rice and Arabidopsis.

    PubMed

    Xin, Peiyong; Yan, Jijun; Fan, Jinshi; Chu, Jinfang; Yan, Cunyu

    2013-08-01

    Quantification of brassinosteroids is essential and extremely important to study the molecular mechanisms of their physiological roles in plant growth and development. Herein, we present a simple, material and cost-saving high-performance method for determining endogenous brassinosteroids (BRs) in model plants. This new method enables simultaneous enrichment of a wide range of bioactive BRs such as brassinolide, castasterone, teasterone, and typhasterol with ion exchange solid-phase extraction and high-sensitivity quantitation of these BRs based on isotope dilution combined with internal standard approach. For routine analysis, the consumption of plant materials was reduced to one-twentieth of previously reported and the overall process could be completed within 1 day compared with previous 3 to 4 days. The strategy was validated by profiling BRs in different ecotypes and mutants of rice (Oryza sativa) and Arabidopsis (Arabidopsis thaliana), and the BR distributions in different model plants tissues were determined with the new method. The method allows plant physiologists to monitor the dynamics and distributions of BRs with 1 gram fresh weight of model plant tissues, which will speed up the process for the molecular mechanism research of BRs with these model plants in future work.

  2. A simple HPLC-UV method for the quantification of theophylline in rabbit plasma and its pharmacokinetic application.

    PubMed

    Al-Jenoobi, Fahad I; Ahad, Abdul; Mahrous, Gamal M; Raish, Mohammad; Alam, Mohd Aftab; Al-Mohizea, Abdullah M

    2015-01-01

    A simple, precise and accurate high-performance liquid chromatography-ultraviolet method was developed and validated for the quantification of theophylline in rabbit plasma using hydroxyethyl theophylline as an internal standard. Separation was performed on Waters(®) C18 column (µBondapak™ 5 µm, 150 × 3.9 mm) using a mobile phase consisting of water-acetonitrile (96:4 v/v) at a flow rate of 1 mL/min. Validation of the method was performed in order to demonstrate its selectivity, linearity, precision, accuracy and stability. The calibration curves of theophylline were linear over a concentration range of 0.1-25 µg/mL. The within- and between-day coefficient of variation (CV) were <10%. The extraction recoveries of theophylline at the three levels of quality control samples were 63.1, 69.4 and 69.7%. The method was rapid with retention time of theophylline and the internal standard observed at ∼5.2 and 6.5 min, respectively. The developed method was applied successfully for studying the pharmacokinetics of theophylline in rabbits.

  3. Rapid method for quantification of seven synthetic pigments in colored Chinese steamed buns using UFLC-MS/MS without SPE.

    PubMed

    Gao, He-Gang; Gong, Wen-Jie; Zhao, Yong-Gang

    2015-01-01

    Synthetic pigments are still used instead of natural pigments in many foods and their residues in food could be an important risk to human health. A simple and rapid analytical method combining the low-cost extraction protocol with ultra-fast liquid chromatography-tandem quadrupole mass spectrometry (UFLC-MS/MS) was developed for the simultaneous determination of seven synthetic pigments used in colored Chinese steamed buns. For the first time, ethanol/ammonia solution/water (7:2:1, v/v/v) was used as extraction solution for the synthetic pigments in colored Chinese steamed buns. The results showed that the property of the extraction solution used in this method was more effective than critic acid solution, which is used in the polyamide adsorption method. The limits of quantification for the seven synthetic pigments ranged from 0.15 to 0.50 μg/kg. The present method was successfully applied to samples of colored Chinese steamed buns for food-safety risk monitoring in Zhejiang Province, China. The results found sunset yellow pigment in six out of 300 colored Chinese steamed buns (from 0.50 to 32.6 μg/kg).

  4. STATISTICAL VALIDATION OF SULFATE QUANTIFICATION METHODS USED FOR ANALYSIS OF ACID MINE DRAINAGE

    EPA Science Inventory

    Turbidimetric method (TM), ion chromatography (IC) and inductively coupled plasma atomic emission spectrometry (ICP-AES) with and without acid digestion have been compared and validated for the determination of sulfate in mining wastewater. Analytical methods were chosen to compa...

  5. Influence of DNA extraction methods, PCR inhibitors and quantification methods on real-time PCR assay of biotechnology-derived traits.

    PubMed

    Demeke, Tigst; Jenkins, G Ronald

    2010-03-01

    Biotechnology-derived varieties of canola, cotton, corn and soybean are being grown in the USA, Canada and other predominantly grain exporting countries. Although the amount of farmland devoted to production of biotechnology-derived crops continues to increase, lingering concerns that unintended consequences may occur provide the EU and most grain-importing countries with justification to regulate these crops. Legislation in the EU requires traceability of grains/oilseeds, food and feed products, and labelling, when a threshold level of 0.9% w/w of genetically engineered trait is demonstrated to be present in an analytical sample. The GE content is routinely determined by quantitative PCR (qPCR) and plant genomic DNA provides the template for the initial steps in this process. A plethora of DNA extraction methods exist for qPCR applications. Implementing standardized methods for detection of genetically engineered traits is necessary to facilitate grain marketing. The International Organization for Standardization draft standard 21571 identifies detergent-based methods and commercially available kits that are widely used for DNA extraction, but also indicates that adaptations may be necessary depending upon the sample matrix. This review assesses advantages and disadvantages of various commercially available DNA extraction kits, as well as modifications to published cetyltrimethylammonium bromide methods. Inhibitors are a major obstacle for efficient amplification in qPCR. The types of PCR inhibitors and techniques to minimize inhibition are discussed. Finally, accurate quantification of DNA for applications in qPCR is not trivial. Many confounders contribute to differences in analytical measurements when a particular DNA quantification method is applied and different methods do not always provide concordant results on the same DNA sample. How these differences impact measurement uncertainty in qPCR is considered.

  6. Influence of DNA extraction methods, PCR inhibitors and quantification methods on real-time PCR assay of biotechnology-derived traits.

    PubMed

    Demeke, Tigst; Jenkins, G Ronald

    2010-03-01

    Biotechnology-derived varieties of canola, cotton, corn and soybean are being grown in the USA, Canada and other predominantly grain exporting countries. Although the amount of farmland devoted to production of biotechnology-derived crops continues to increase, lingering concerns that unintended consequences may occur provide the EU and most grain-importing countries with justification to regulate these crops. Legislation in the EU requires traceability of grains/oilseeds, food and feed products, and labelling, when a threshold level of 0.9% w/w of genetically engineered trait is demonstrated to be present in an analytical sample. The GE content is routinely determined by quantitative PCR (qPCR) and plant genomic DNA provides the template for the initial steps in this process. A plethora of DNA extraction methods exist for qPCR applications. Implementing standardized methods for detection of genetically engineered traits is necessary to facilitate grain marketing. The International Organization for Standardization draft standard 21571 identifies detergent-based methods and commercially available kits that are widely used for DNA extraction, but also indicates that adaptations may be necessary depending upon the sample matrix. This review assesses advantages and disadvantages of various commercially available DNA extraction kits, as well as modifications to published cetyltrimethylammonium bromide methods. Inhibitors are a major obstacle for efficient amplification in qPCR. The types of PCR inhibitors and techniques to minimize inhibition are discussed. Finally, accurate quantification of DNA for applications in qPCR is not trivial. Many confounders contribute to differences in analytical measurements when a particular DNA quantification method is applied and different methods do not always provide concordant results on the same DNA sample. How these differences impact measurement uncertainty in qPCR is considered. PMID:19789856

  7. Optimized methods for total nucleic acid extraction and quantification of the bat white-nose syndrome fungus, Pseudogymnoascus destructans, from swab and environmental samples.

    PubMed

    Verant, Michelle L; Bohuski, Elizabeth A; Lorch, Jeffery M; Blehert, David S

    2016-03-01

    The continued spread of white-nose syndrome and its impacts on hibernating bat populations across North America has prompted nationwide surveillance efforts and the need for high-throughput, noninvasive diagnostic tools. Quantitative real-time polymerase chain reaction (qPCR) analysis has been increasingly used for detection of the causative fungus, Pseudogymnoascus destructans, in both bat- and environment-associated samples and provides a tool for quantification of fungal DNA useful for research and monitoring purposes. However, precise quantification of nucleic acid from P. destructans is dependent on effective and standardized methods for extracting nucleic acid from various relevant sample types. We describe optimized methodologies for extracting fungal nucleic acids from sediment, guano, and swab-based samples using commercial kits together with a combination of chemical, enzymatic, and mechanical modifications. Additionally, we define modifications to a previously published intergenic spacer-based qPCR test for P. destructans to refine quantification capabilities of this assay. PMID:26965231

  8. Near-infrared microscopic methods for the detection and quantification of processed by-products of animal origin

    NASA Astrophysics Data System (ADS)

    Abbas, O.; Fernández Pierna, J. A.; Dardenne, P.; Baeten, V.

    2010-04-01

    Since the BSE crisis, researches concern mainly the detection, identification, and quantification of meat and bone meal with an important focus on the development of new analytical methods. Microscopic based spectroscopy methods (NIR microscopy - NIRM or/and NIR hyperspectral imaging) have been proposed as complementary methods to the official method; the optical microscopy. NIR spectroscopy offers the advantage of being rapid, accurate and independent of human analyst skills. The combination of an NIR detector and a microscope or a camera allows the collection of high quality spectra for small feed particles having a size larger than 50 μm. Several studies undertaken have demonstrated the clear potential of NIR microscopic methods for the detection of animal particles in both raw and sediment fractions. Samples are sieved and only the gross fraction (superior than 250 μm) is investigated. Proposed methodologies have been developed to assure, with an acceptable level of confidence (95%), the detection of at least one animal particle when a feed sample is adulterated at a level of 0.1%. NIRM and NIR hyperspectral imaging are running under accreditation ISO 17025 since 2005 at CRA-W. A quantitative NIRM approach has been developed in order to fulfill the new requirements of the European commission policies. The capacities of NIRM method have been improved; only the raw fraction is analyzed, both the gross and the fine fractions of the samples are considered, and the acquisition parameters are optimized (the aperture, the gap, and the composition of the animal feed). A mapping method for a faster collection of spectra is also developed. The aim of this work is to show the new advances in the analytical methods developed in the frame of the feed ban applied in Europe.

  9. RP-HPLC method using one marker for quantification of four podophyllum lignans in medicinal plants.

    PubMed

    Lu, Ningwei; An, Qiong; Li, Ning; Dong, Yuming

    2014-07-01

    A high-performance liquid chromatographic method using a single standard has been established for the quantitative analysis of four podophyllum lignans in Dysosma versipellis (Hance) M. Cheng and Podophyllum emodi Wall. Var. chinesis Sprague. The method involved the quantitative analysis of multiple components by a single marker. The chromatographic method was validated for linearity and range, limit of detection and qualification, precision, stability, reproducibility and robustness. Relative correcting factors were calculated and examined by five concentrations of four podophyllum lignans, two high-performance liquid chromatographic systems and three chromatographic columns. The method was applied to analyze 10 batches of samples. The quantitative results were compared with the results by an external standard method through intra-class coefficient, which indicated that the established method was reliable for the determination of the four podophyllum lignans in the two medicinal plants.

  10. An improved UHPLC-UV method for separation and quantification of carotenoids in vegetable crops.

    PubMed

    Maurer, Megan M; Mein, Jonathan R; Chaudhuri, Swapan K; Constant, Howard L

    2014-12-15

    Carotenoid identification and quantitation is critical for the development of improved nutrition plant varieties. Industrial analysis of carotenoids is typically carried out on multiple crops with potentially thousands of samples per crop, placing critical needs on speed and broad utility of the analytical methods. Current chromatographic methods for carotenoid analysis have had limited industrial application due to their low throughput, requiring up to 60 min for complete separation of all compounds. We have developed an improved UHPLC-UV method that resolves all major carotenoids found in broccoli (Brassica oleracea L. var. italica), carrot (Daucus carota), corn (Zea mays), and tomato (Solanum lycopersicum). The chromatographic method is completed in 13.5 min allowing for the resolution of the 11 carotenoids of interest, including the structural isomers lutein/zeaxanthin and α-/β-carotene. Additional minor carotenoids have also been separated and identified with this method, demonstrating the utility of this method across major commercial food crops.

  11. Classification images predict absolute efficiency.

    PubMed

    Murray, Richard F; Bennett, Patrick J; Sekuler, Allison B

    2005-02-24

    How well do classification images characterize human observers' strategies in perceptual tasks? We show mathematically that from the classification image of a noisy linear observer, it is possible to recover the observer's absolute efficiency. If we could similarly predict human observers' performance from their classification images, this would suggest that the linear model that underlies use of the classification image method is adequate over the small range of stimuli typically encountered in a classification image experiment, and that a classification image captures most important aspects of human observers' performance over this range. In a contrast discrimination task and in a shape discrimination task, we found that observers' absolute efficiencies were generally well predicted by their classification images, although consistently slightly (approximately 13%) higher than predicted. We consider whether a number of plausible nonlinearities can account for the slight under prediction, and of these we find that only a form of phase uncertainty can account for the discrepancy.

  12. Performance review of a fast HPLC-UV method for the quantification of chlorogenic acids in green coffee bean extracts.

    PubMed

    Craig, Ana Paula; Fields, Christine; Liang, Ningjian; Kitts, David; Erickson, Aron

    2016-07-01

    The aim of this study was to test the performance of a HPLC method, designated for rapid quantification of chlorogenic acids (CGA) in green coffee extract (GCE). The precision statistics associated with the method were assessed using three independent laboratories with five samples analyzed in triplicate. Seven main CGA isomers (3-CQA, 5-CQA, 4-CQA, 5-FQA, 3,4-diCQA, 3,5-diCQA and 4,5-diCQA) were quantified. The concentration of total CGA in the samples varied from 32.24% to 52.65% w/w. The repeatability and reproducibility standard deviations for the determination of individual isomers varied, respectively, from 0.01 to 0.28 and 0.05-1.59. The repeatability and reproducibility standard deviations of the calculated total CGA, corresponding to the sum of the seven main CGA isomers, varied respectively, from 0.17 to 0.58 and 0.55-2.01. The fast HPLC method evaluated in this study was considered precise and appropriate for the determination of CGA in GCE. PMID:27154703

  13. A reversed-phase HPLC-UV method developed and validated for simultaneous quantification of six alkaloids from Nicotiana spp.

    PubMed

    Moghbel, Nahid; Ryu, BoMi; Steadman, Kathryn J

    2015-08-01

    A reversed-phase HPLC-UV method was developed, optimized, and validated for the separation and quantitation of six target alkaloids from leaves of Nicotiana species (nicotine, nornicotine, anatabine, anabasine, myosmine, and cotinine). A bidentate reversed-phase C18 column was used as stationary phase and an alkaline ammonium formate buffer and acetonitrile as mobile phase. The alkaloids were well separated in a short run time of 13min with mobile phase pH 10.5 and a small gradient of 9-13% acetonitrile, and detected using UV at 260nm. Peak parameters were acceptable for all six closely related alkaloids. The proposed method has enough linearity with correlation coefficient >0.999 within the investigated range for all tested alkaloids. Satisfactory precision was achieved for both intra- and inter-day assay, with RSD less than 2% for all alkaloid standards. Reproducibility was also within the acceptable range of RSD <2%. Limit of detection was 1.6μg/mL for nicotine and below 1μg/mL for all other alkaloids. The limit of quantification was 2.8 and 4.8μg/mL for nornicotine and nicotine respectively, and below 2μg/mL for all other alkaloids. The method was successfully applied for simultaneous analysis of alkaloids in leaves of Nicotiana benthamiana.

  14. Rapid method for quantification of nine sulfonamides in bovine milk using HPLC/MS/MS and without using SPE.

    PubMed

    Nebot, Carolina; Regal, Patricia; Miranda, Jose Manuel; Fente, Cristina; Cepeda, Alberto

    2013-12-01

    Sulfonamides are antimicrobial agents widely employed in animal production and their residues in food could be an important risk to human health. In the dairy industry, large quantities of milk are monitored daily for the presence of sulfonamides. A simple and low-cost extraction protocol followed by a liquid chromatographic-tandem mass spectrometry method was developed for the simultaneous detection of nine sulfonamides in whole milk. The method was validated at the maximum residue limits established by European legislation. The limits of quantification obtained for most sulfonamides were between 12.5 and 25 μg kg(-1), detection capabilities ranged from 116 to 145 μg kg(-1), and recoveries, at 100 μg kg(-1), were greater than 89±12.5%. The method was employed to analyse 100 raw whole bovine milk samples collected from dairy farms in the northwest region of Spain. All of the samples were found to be compliant, but two were positive; one for sulfadiazine and the other for sulfamethoxipyridazine.

  15. Performance review of a fast HPLC-UV method for the quantification of chlorogenic acids in green coffee bean extracts.

    PubMed

    Craig, Ana Paula; Fields, Christine; Liang, Ningjian; Kitts, David; Erickson, Aron

    2016-07-01

    The aim of this study was to test the performance of a HPLC method, designated for rapid quantification of chlorogenic acids (CGA) in green coffee extract (GCE). The precision statistics associated with the method were assessed using three independent laboratories with five samples analyzed in triplicate. Seven main CGA isomers (3-CQA, 5-CQA, 4-CQA, 5-FQA, 3,4-diCQA, 3,5-diCQA and 4,5-diCQA) were quantified. The concentration of total CGA in the samples varied from 32.24% to 52.65% w/w. The repeatability and reproducibility standard deviations for the determination of individual isomers varied, respectively, from 0.01 to 0.28 and 0.05-1.59. The repeatability and reproducibility standard deviations of the calculated total CGA, corresponding to the sum of the seven main CGA isomers, varied respectively, from 0.17 to 0.58 and 0.55-2.01. The fast HPLC method evaluated in this study was considered precise and appropriate for the determination of CGA in GCE.

  16. Accurate quantification of tio2 nanoparticles collected on air filters using a microwave-assisted acid digestion method.

    PubMed

    Mudunkotuwa, Imali A; Anthony, T Renée; Grassian, Vicki H; Peters, Thomas M

    2016-01-01

    Titanium dioxide (TiO(2)) particles, including nanoparticles with diameters smaller than 100 nm, are used extensively in consumer products. In a 2011 current intelligence bulletin, the National Institute of Occupational Safety and Health (NIOSH) recommended methods to assess worker exposures to fine and ultrafine TiO(2) particles and associated occupational exposure limits for these particles. However, there are several challenges and problems encountered with these recommended exposure assessment methods involving the accurate quantitation of titanium dioxide collected on air filters using acid digestion followed by inductively coupled plasma optical emission spectroscopy (ICP-OES). Specifically, recommended digestion methods include the use of chemicals, such as perchloric acid, which are typically unavailable in most accredited industrial hygiene laboratories due to highly corrosive and oxidizing properties. Other alternative methods that are used typically involve the use of nitric acid or combination of nitric acid and sulfuric acid, which yield very poor recoveries for titanium dioxide. Therefore, given the current state of the science, it is clear that a new method is needed for exposure assessment. In this current study, a microwave-assisted acid digestion method has been specifically designed to improve the recovery of titanium in TiO(2) nanoparticles for quantitative analysis using ICP-OES. The optimum digestion conditions were determined by changing several variables including the acids used, digestion time, and temperature. Consequently, the optimized digestion temperature of 210°C with concentrated sulfuric and nitric acid (2:1 v/v) resulted in a recovery of >90% for TiO(2). The method is expected to provide for a more accurate quantification of airborne TiO(2) particles in the workplace environment.

  17. Accurate quantification of tio2 nanoparticles collected on air filters using a microwave-assisted acid digestion method.

    PubMed

    Mudunkotuwa, Imali A; Anthony, T Renée; Grassian, Vicki H; Peters, Thomas M

    2016-01-01

    Titanium dioxide (TiO(2)) particles, including nanoparticles with diameters smaller than 100 nm, are used extensively in consumer products. In a 2011 current intelligence bulletin, the National Institute of Occupational Safety and Health (NIOSH) recommended methods to assess worker exposures to fine and ultrafine TiO(2) particles and associated occupational exposure limits for these particles. However, there are several challenges and problems encountered with these recommended exposure assessment methods involving the accurate quantitation of titanium dioxide collected on air filters using acid digestion followed by inductively coupled plasma optical emission spectroscopy (ICP-OES). Specifically, recommended digestion methods include the use of chemicals, such as perchloric acid, which are typically unavailable in most accredited industrial hygiene laboratories due to highly corrosive and oxidizing properties. Other alternative methods that are used typically involve the use of nitric acid or combination of nitric acid and sulfuric acid, which yield very poor recoveries for titanium dioxide. Therefore, given the current state of the science, it is clear that a new method is needed for exposure assessment. In this current study, a microwave-assisted acid digestion method has been specifically designed to improve the recovery of titanium in TiO(2) nanoparticles for quantitative analysis using ICP-OES. The optimum digestion conditions were determined by changing several variables including the acids used, digestion time, and temperature. Consequently, the optimized digestion temperature of 210°C with concentrated sulfuric and nitric acid (2:1 v/v) resulted in a recovery of >90% for TiO(2). The method is expected to provide for a more accurate quantification of airborne TiO(2) particles in the workplace environment. PMID:26181824

  18. Detection and quantification limits of the EPA Enterococcus qPCR method

    EPA Science Inventory

    The U.S. EPA will be recommending a quantitative polymerase chain reaction (qPCR) method targeting Enterococcus spp. as an option for monitoring recreational beach water quality in 2013 and has published preliminary proposed water quality criteria guidelines for the method. An im...

  19. Preservation And Processing Methods For Molecular Genetic Detection And Quantification Of Nosema Ceranae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The prevalence of Nosema ceranae in managed honey bee colonies has increased dramatically in the past 10 – 20 years worldwide. A variety of genetic testing methods for species identification and prevalence are now available. However sample size and preservation method of samples prior to testing hav...

  20. Ultra-performance liquid chromatography mass spectrometry and sensitive bioassay methods for quantification of posaconazole plasma concentrations after oral dosing.

    PubMed

    Rochat, Bertrand; Pascual, Andres; Pesse, Benoît; Lamoth, Frédéric; Sanglard, Dominique; Decosterd, Laurent A; Bille, Jacques; Marchetti, Oscar

    2010-12-01

    Posaconazole (POS) is a new antifungal agent for prevention and therapy of mycoses in immunocompromised patients. Variable POS pharmacokinetics after oral dosing may influence efficacy: a trough threshold of 0.5 μg/ml has been recently proposed. Measurement of POS plasma concentrations by complex chromatographic techniques may thus contribute to optimize prevention and management of life-threatening infections. No microbiological analytical method is available. The objective of this study was to develop and validate a new simplified ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) method and a sensitive bioassay for quantification of POS over the clinical plasma concentration range. The UPLC-MS/MS equipment consisted of a triple quadrupole mass spectrometer, an electrospray ionization (ESI) source, and a C(18) analytical column. The Candida albicans POS-hypersusceptible mutant (MIC of 0.002 μg/ml) Δcdr1 Δcdr2 Δflu Δmdr1 Δcan constructed by targeted deletion of multidrug efflux transporters and calcineurin genes was used for the bioassay. POS was extracted from plasma by protein precipitation with acetonitrile-methanol (75%/25%, vol/vol). Reproducible standard curves were obtained over the range 0.014 to 12 (UPLC-MS/MS) and 0.028 to 12 μg/ml (bioassay). Intra- and interrun accuracy levels were 106% ± 2% and 103% ± 4% for UPLC-MS/MS and 102% ± 8% and 104% ± 1% for bioassay, respectively. The intra- and interrun coefficients of variation were 7% ± 4% and 7% ± 3% for UPLC-MS/MS and 5% ± 3% and 4% ± 2% for bioassay, respectively. An excellent correlation between POS plasma concentrations measured by UPLC-MS/MS and bioassay was found (concordance, 0.96). In 26 hemato-oncological patients receiving oral POS, 27/69 (39%) trough plasma concentrations were lower than 0.5 μg/ml. The UPLC-MS/MS method and sensitive bioassay offer alternative tools for accurate and precise quantification of the plasma concentrations in patients

  1. Review of analytical methods for the quantification of iodine in complex matrices.

    PubMed

    Shelor, C Phillip; Dasgupta, Purnendu K

    2011-09-19

    Iodine is an essential element of human nutrition. Nearly a third of the global population has insufficient iodine intake and is at risk of developing Iodine Deficiency Disorders (IDD). Most countries have iodine supplementation and monitoring programs. Urinary iodide (UI) is the biomarker used for epidemiological studies; only a few methods are currently used routinely for analysis. These methods either require expensive instrumentation with qualified personnel (inductively coupled plasma-mass spectrometry, instrumental nuclear activation analysis) or oxidative sample digestion to remove potential interferences prior to analysis by a kinetic colorimetric method originally introduced by Sandell and Kolthoff ~75 years ago. The Sandell-Kolthoff (S-K) method is based on the catalytic effect of iodide on the reaction between Ce(4+) and As(3+). No available technique fully fits the needs of developing countries; research into inexpensive reliable methods and instrumentation are needed. There have been multiple reviews of methods used for epidemiological studies and specific techniques. However, a general review of iodine determination on a wide-ranging set of complex matrices is not available. While this review is not comprehensive, we cover the principal developments since the original development of the S-K method.

  2. Evaluation of multistep derivatization methods for identification and quantification of oxygenated species in organic aerosol.

    PubMed

    Flores, Rosa M; Doskey, Paul V

    2015-10-30

    Two, 3-step methods for derivatizing mono- and multi-functional species with carbonyl (CO), carboxylic acid (-COOH), and alcohol (-OH) moieties were compared and optimized. In Method 1, the CO, -COOH, and -OH moieties were converted (1) to methyloximes (R-CN-OCH3) with O-methylhydroxylamine hydrochloride (MHA), (2) to methyl esters (OC-R-OCH3) with (trimethylsilyl)diazomethane in methanol (TMSD/MeOH), and (3) to trimethylsilyl ethers [R-OSi(CH3)3] with N,O-bis(trimethylsilyl)-trifluoroacetamide (BSTFA) containing 1% trimethylchlorosilane (TMCS), respectively. Steps 1 and 3 of both methods were identical; however, in Step 2 of Method 2, -COOH moieties were derivatized with 10% (v/v) boron trifluoride (BF3) in MeOH or n-butanol (n-BuOH). The BF3/MeOH and BF3/n-BuOH were ineffective at converting species with more than 2-OH moieties. Average standard deviations for derivatization of 36 model compounds by the 3-step methods using TMSD/MeOH and BF3/(MeOH) were 7.4 and 14.8%, respectively. Average derivatization efficiencies for Methods 1 and 2 were 88.0 and 114%, respectively. Despite the lower average derivatization efficiency of Method 1, distinct advantages included a greater certainty of derivatization yield for the entire suite of mono- and multi-functional species and fewer processing steps for sequential derivatization. Detection limits for Method 1 using GC×GC-ToF-MS were 0.3-54pgm(-3). Approximately 100 oxygenated organic species were identified and quantified in aerosol filtered from 39m(3) of air in an urban location. Levels of species were 0.013-17ngm(-3) and were nearly all above the Method 1 limit of detection. PMID:26427323

  3. Quantification of Nitrous Oxide from Fugitive Emissions by Tracer Dilution Method using a Mobile Real-time Nitrous Oxide Analyzer

    NASA Astrophysics Data System (ADS)

    Mønster, J.; Rella, C.; Jacobson, G. A.; He, Y.; Hoffnagle, J.; Scheutz, C.

    2012-12-01

    Nitrous oxide is a powerful greenhouse gas considered 298 times stronger than carbon dioxide on a hundred years term (Solomon et al. 2007). The increasing global concentration is of great concern and is receiving increasing attention in various scientific and industrial fields. Nitrous oxide is emitted from both natural and anthropogenic sources. Inventories of source specific fugitive nitrous oxide emissions are often estimated on the basis of modeling and mass balance. While these methods are well-developed, actual measurements for quantification of the emissions can be a useful tool for verifying the existing estimation methods as well as providing validation for initiatives targeted at lowering unwanted nitrous oxide emissions. One approach to performing such measurements is the tracer dilution method (Galle et al. 2001), in which a tracer gas is released at the source location at a known flow. The ratio of downwind concentrations of both the tracer gas and nitrous oxide gives the ratios of the emissions rates. This tracer dilution method can be done with both stationary and mobile measurements; in either case, real-time measurements of both tracer and analyte gas is required, which places high demands on the analytical detection method. To perform the nitrous oxide measurements, a novel, robust instrument capable of real-time nitrous oxide measurements has been developed, based on cavity ring-down spectroscopy and operating in the near-infrared spectral region. We present the results of the laboratory and field tests of this instrument in both California and Denmark. Furthermore, results are presented from measurements using the mobile plume method with a tracer gas (acetylene) to quantify the nitrous oxide and methane emissions from known sources such as waste water treatment plants and composting facilities. Nitrous oxide (blue) and methane (yellow) plumes downwind from a waste water treatment facility.

  4. Adjustment of a rapid method for quantification of Fusarium spp. spore suspensions in plant pathology.

    PubMed

    Caligiore-Gei, Pablo F; Valdez, Jorge G

    2015-01-01

    The use of a Neubauer chamber is a broadly employed method when cell suspensions need to be quantified. However, this technique may take a long time and needs trained personnel. Spectrophotometry has proved to be a rapid, simple and accurate method to estimate the concentration of spore suspensions of isolates of the genus Fusarium. In this work we present a linear formula to relate absorbance measurements at 530nm with the number of microconidia/ml in a suspension.

  5. Quantification of histamine in various fish samples using square wave stripping voltammetric method.

    PubMed

    Yilmaz, Ummihan Taskoparan; Inan, Derya

    2015-10-01

    The objective of this study was to describe a new and simple method for the determination of histamine so that it can be used in routine food analysis. A square wave stripping voltammetric (SWSV) method has been used for the indirect determination of histamine. The method is based on accumulation copper (II) - histamine complex onto a hanging mercury drop electrode and reduction of complex. The optimum conditions include an accumulation potential of -420 mV (versus Ag/AgCl), an accumulation time of 10 s. Two linear calibration graphs were obtained with slopes of 0.078 (μM/μA) and 0.014 (μM/μA), respectively. The detection limits were found to be 3 × 10(-7) and 1 × 10(-5) M for histamine (S/N = 3), respectively. The validated SWSV method showed good linearity as well as satisfactory repeatability and immediate precision values, for both instrument and method. The effect of common excipients and metal ions on the peak height of Cu-histamine complex peak was studied. The method was successfully, applied to the determination of histamine in canned anchovy (Engraulis encrasicholus), frozen Tinca tinca (L.) and Cyprinus carpio fish samples. PMID:26396415

  6. A sensitive LC-MS/MS method for the quantification of febuxostat in human plasma and its pharmacokinetic application.

    PubMed

    Vaka, Venkata Rami Reddy; Inamadugu, Jaswanth Kumar; Pilli, Nageswara Rao; Ramesh, Mullangi; Katreddi, Hussain Reddy

    2013-11-01

    An improved, simple and highly sensitive LC-MS/MS method has been developed and validated for quantification of febuxostat with 100 μL human plasma using febuxostat-d7 as an internal standard (IS) according to regulatory guidelines. The analyte and IS were extracted from human plasma via liquid-liquid extraction using diethyl ether. The chromatographic separation was achieved on a Zorbax C18 column using a mixture of acetonitrile and 5 mm ammonium formate (60:40, v/v) as the mobile phase at a flow rate of 0.5 mL/min. The total run time was 5.0 min and the elution of febuxostat and IS occurred at 1.0 and 1.5 min, respectively. A linear response function was established for the range of concentrations 1-6000 ng/mL (r > 0.99). The precursor to product ion transitions monitored for febuxostat and IS were m/z 317.1 → 261.1 and 324.2 → 262.1, respectively. The intra- and inter-day precisions (%RSD) were within 1.29-9.19 and 2.85-7.69%, respectively. The proposed method was successfully applied to pharmacokinetic studies in humans.

  7. Validation of RP-HPLC Method for Simultaneous Quantification of Bicalutamide and Hesperetin in Polycaprolactone-Bicalutamide-Hesperetin-Chitosan Nanoparticles.

    PubMed

    Arya, Abhishek; Khandelwal, Kiran; Singh, Aanchal; Ahmad, Hafsa; Agrawal, Satish; Khatik, Renuka; Mittapelly, Naresh; Dwivedi, Anil Kumar

    2015-10-01

    Bicalutamide is a non-steroidal anti-androgen drug used for the treatment of androgen-dependent prostate cancer. Hesperetin is a natural bioflavonoid that can be used in combination with bicalutamide to improve efficacy and decrease tolerance. The aim of the present work was to develop and validate a simple, sensitive, rapid reverse phase-high performance liquid chromatographic method for simultaneous estimation of bicalutamide and hesperetin. The validation parameters such as specificity, linearity, precision and accuracy, limit of detection (LOD) and limit of quantification (LOQ) were determined according to International Conference on Harmonization ICH Q2 (R1) guidelines. Chromatographic separation was achieved on Lichrocart(®) CN column (250 × 4 mm, 5 µm, MERCK) with isocratic elution. The retention times and detection wavelength, for hesperetin and bicalutamide were 4.28 min, 288 nm and 5.90 min, 270 nm respectively. The intra-day and inter-day assay precision and accuracy were found to be <2% over linearity of 50-2000 ng/mL with R(2) 0.999. LOD and LOQ, of bicalutamide and hesperetin was 14.70, 44.57 ng/mL and 16.11, 48.84 ng/mL, respectively. The method was successfully applied for encapsulation efficiency and drug release studies from bicalutamide and hesperetin loaded nanoparticles.

  8. Analytical methods for the quantification of bisphenol A, alkylphenols, phthalate esters, and perfluoronated chemicals in biological samples.

    PubMed

    Nakazawa, Hiroyuki; Iwasaki, Yusuke; Ito, Rie

    2014-01-01

    Our modern society has created a large number of chemicals that are used for the production of everyday commodities including toys, food packaging, cosmetic products, and building materials. We enjoy a comfortable and convenient lifestyle with access to these items. In addition, in specialized areas, such as experimental science and various medical fields, laboratory equipment and devices that are manufactured using a wide range of chemical substances are also extensively employed. The association between human exposure to trace hazardous chemicals and an increased incidence of endocrine disease has been recognized. However, the evaluation of human exposure to such endocrine disrupting chemicals is therefore imperative, and the determination of exposure levels requires the analysis of human biological materials, such as blood and urine. To obtain as much information as possible from limited sample sizes, highly sensitive and reliable analytical methods are also required for exposure assessments. The present review focuses on effective analytical methods for the quantification of bisphenol A (BPA), alkylphenols (APs), phthalate esters (PEs), and perfluoronated chemicals (PFCs), which are chemicals used in the production of everyday commodities. Using data obtained from liquid chromatography/mass spectrometry (LC/MS) and LC/MS/MS analyses, assessments of the risks to humans were also presented based on the estimated levels of exposure to PFCs.

  9. Optimized ultra performance liquid chromatography tandem high resolution mass spectrometry method for the quantification of paraquat in plasma and urine.

    PubMed

    Lu, Haihua; Yu, Jing; Wu, Linlin; Xing, Jingjing; Wang, Jun; Huang, Peipei; Zhang, Jinsong; Xiao, Hang; Gao, Rong

    2016-08-01

    A simple, sensitive and specific ultra performance liquid chromatography coupled to electrospray tandem high resolution mass spectrometry (UPLC-ESI-HRMS/MS) method has been developed and validated for quantification of paraquat in plasma and urine. The sample preparation was carried out by one-step protein precipitation with acetonitrile. The paraquat was separated with a HILIC column in 10min. Detection was performed using Q Exactive Orbitrap mass spectrometer by Targeted-MS/MS scan mode. Methodological parameters, such as ammonium formate concentration, formic acid concentration, spray voltage, capillary temperature, heater temperature and normalized collision energy were optimized to achieve the highest sensitivity. The calibration curve was linear over the concentration range of LOQ-1000ng/mL. LOD was 0.1 and 0.3ng/mL, LOQ was 0.3 and 0.8ng/mL for urine and plasma, respectively. The intra- and inter-day precisions were <7.97% and 4.78% for plasma and urine. The accuracies were within the range 93.51-100.90%. The plasma and urine matrices had negligible relative matrix effect in this study. This method was successfully applied to determine paraquat concentration in plasma samples with hemoperfusion from 5 suspected paraquat poisoning patients. PMID:27270261

  10. A new and reliable method for live imaging and quantification of reactive oxygen species in Botrytis cinerea: technological advancement.

    PubMed

    Marschall, Robert; Tudzynski, Paul

    2014-10-01

    Reactive oxygen species (ROS) are produced in conserved cellular processes either as by-products of the cellular respiration in mitochondria, or purposefully for defense mechanisms, signaling cascades or cell homeostasis. ROS have two diametrically opposed attributes due to their highly damaging potential for DNA, lipids and other molecules and due to their indispensability for signaling and developmental processes. In filamentous fungi, the role of ROS in growth and development has been studied in detail, but these analyses were often hampered by the lack of reliable and specific techniques to monitor different activities of ROS in living cells. Here, we present a new method for live cell imaging of ROS in filamentous fungi. We demonstrate that by use of a mixture of two fluorescent dyes it is possible to monitor H2O2 and superoxide specifically and simultaneously in distinct cellular structures during various hyphal differentiation processes. In addition, the method allows for reliable fluorometric quantification of ROS. We demonstrate that this can be used to characterize different mutants with respect to their ROS production/scavenging potential.

  11. Quantification of urinary chorionic gonadotropin in spontaneous abortion of pre-clinically recognized pregnancy: method development and analytical validation.

    PubMed

    Reis, M Fátima; Aniceto, Pedro; Aguiar, Pedro; Simão, Filipa; Segurado, Susana

    2007-05-01

    Determination of environmental impacts on reproductive health and specifically on the incidence of early spontaneous abortion requires accurate estimates of the latter. This negative reproductive outcome can be detected by the pattern of elevation and decline of human chorionic gonadotropin (hCG) levels near and shortly beyond the expected time of implantation, requiring daily biomonitoring of hCG levels during the relevant period of the menstrual cycle. Prospective pregnancy studies to assess effects of potentially toxic exposures on human reproductive outcomes can involve up to three menstrual cycles and a huge number of samples in each, for the quantification of the inherently very low hCG levels usually can be determined only in serum. The invasive nature of blood collection, the number of samples needed for the development of prospective studies, and the lack of quantitative methods for the determination of low hCG levels in urine point to the need for collecting urine rather than blood and make it imperative to develop suitable quantitative methods for biomonitoring of very low levels of hCG in urine. This paper describes the development and validation procedures of an automated solid-phase two-site chemiluminescent immunometric assay for the quantification of urinary hCG in early pregnancy and early pregnancy loss. For the validation, both undiluted and diluted urine and control samples have been prepared. From the results, it can be concluded that the assay has a calibration range that extends to 5000 mIU/ml, with a detection limit of approximately 1.2 mIU/ml, practically identical to that found by the IMMULITE 2000 manufacturer's validation study. The intra- and inter-assay precision ranges up to a maximum of around 7%, meaning that the practical limit for functional sensitivity can be established as low as 10%. This means that the immunoassay from DPC can identify, with relatively high confidence, non-pregnant women and the typical "rise and fall" pattern