Science.gov

Sample records for absolute reaction rates

  1. Absolute rate of the reaction of hydrogen atoms with ozone from 219-360 K

    NASA Technical Reports Server (NTRS)

    Lee, J. H.; Michael, J. V.; Payne, W. A.; Stief, L. J.

    1978-01-01

    Absolute rate constants for the reaction of atomic hydrogen with ozone were obtained over the temperature range 219-360 K by the flash photolysis-resonance fluorescence technique. The results can be expressed in Arrhenius form by K = (1.33 plus or minus 0.32)x10 to the minus 10 power exp (-449 plus or minus 58/T) cu cm/molecule/s (two standard deviations). The present work is compared to two previous determinations and is discussed theoretically.

  2. The Br+HO 2 reaction revisited: Absolute determination of the rate constant at 298 K

    NASA Astrophysics Data System (ADS)

    Laverdet, G.; Le Bras, G.; Mellouki, A.; Poulet, G.

    1990-09-01

    The absolute determination of the rate constant for the reaction Br+HO 2→HBr+O 2 has been done at 298 K using the discharge-flor EPR method. The value k1 = (1.5±0.2) × 10 -12 cm 3 molecule -1 s -1 was obtained. Previous indirect measurements of k1 from a discharge-flow, LIF/mass spectrometric study of the Br/H 2CO/O 2 system have been reinterpreted, leading to values for k1 ranging from 1.0 × 10 -12 to 2.2 × 10 -12 cm 3 molecule -1 s -1 at 298 K. These results are discussed and compared with other literature values.

  3. Absolute rate parameters for the reaction of ground state atomic oxygen with carbonyl sulfide

    NASA Technical Reports Server (NTRS)

    Klemm, R. B.; Stief, L. J.

    1974-01-01

    The rate parameters for the reaction of O(3P) with carbonyl sulfide, O(3P) + OCS yields CO + SO, have been determined directly by monitoring O(3P) using the flash photolysis-resonance fluorescence technique. The value for reaction rate was measured over a temperature range of 263-502 K and the data were fitted to an Arrhenius expression with good linearity. A comparison of the present results with those from previous studies of this reaction is also presented.

  4. Absolute Rate Constants for the Reaction of OH with [|#11#|]Cyclopentane and Cycloheptane from 230-350 K

    NASA Astrophysics Data System (ADS)

    Dransfield, T. J.; Gennaco, M. M.; Huang, Y.; Hannun, R. A.

    2011-12-01

    We report absolute measurements of the rate constants of the reaction of hydroxyl radical (OH) with cyclopentane and cycloheptane in 6-8 Torr of nitrogen from 230-350 K using Harvard's High Pressure Flow System. Ethane's reactivity was simultaneously measured as a test of experimental performance. Hydroxyl concentrations were measured using Laser-Induced Fluorescence, and alkane concentrations were measured using Fourier-Transform Infrared Spectroscopy. Recent work on this flow system has suggested that cyclohexane has a significantly higher activation energy to reaction with OH than does cyclo-octane, a result which is not suggested by our understanding of hydrocarbon reactivity nor predicted by structure-activity relationships. This work examines the temperature dependent rates for two other similarly-sized cycloalkanes to determine whether they behave as cyclohexane or as cyclooctane. While several previous experiments have studied the reaction with cyclopentane, there is significant scatter in the room temperature rates, and only four absolute rate measurements are available at non-ambient temperatures. There are only two absolute rate measurements available for the reaction with cycloheptane; only one of these reports a temperature dependence, and that study is limited to temperatures above 298 K. Thus, this work significantly expands the available data set for both reactions. The data for the reactions of OH with ethane, cyclopentane, cyclohexane, and cycloheptane are all modeled using a simple Arrhenius fit, and also with a modified Arrhenius equation based on transition state theory, ignoring tunneling. Results from the latter fit indicate that the activation barriers for both title reactions are greater than that of OH + cyclo-octane. The measured activation energy for OH + cyclopentane actually exceeds that of OH + cyclohexane.

  5. Absolute rate of the reaction of bromine atoms with ozone from 200-360 K

    NASA Technical Reports Server (NTRS)

    Michael, J. V.; Lee, J. H.; Payne, W. A.; Stief, L. J.

    1978-01-01

    The rate constant for the reaction Br + O3 yields BrO + O2 was measured from 200 to 360 K by the technique of flash photolysis coupled to time resolved detection of bromine atoms by resonance fluorescence (FP-RF). Br atoms were produced by the flash photolysis of CH3Br at lambda 165nm.O3 was monitored continuously under reaction conditions by absorption at 253.7 nm. At each of five temperatures the results were independent of substantial variations in O3, total pressure and limited variations in flash intensity. The measured rate constants obeyed the Arrhenius expression, where the error quoted is two standard deviations. Results are compared with previous determinations which employed the discharge flow-mass spectrometric technique.

  6. Absolute rate of the reaction of bromine atoms with ozone from 200 to 360 K

    NASA Technical Reports Server (NTRS)

    Michael, J. V.; Lee, J. H.; Payne, W. A.; Stief, L. J.

    1978-01-01

    The rate constant for the reaction Br + O3 yields BrO + O2 has been measured from 200 to 360 K by the technique of flash photolysis coupled to time resolved detection of bromine atoms by resonance fluorescence (FP-RF). Br atoms were produced by the flash photolysis of CH3Br at a wavelength of 165 nm. O3 concentration was monitored continuously under reaction conditions by absorption at 253.7 nm. At each of five temperatures the results were independent of substantial variations in O3 concentration, total pressure (Ar), and limited variations in flash intensity (i.e., initial Br concentration). The measured rate constants obey the Arrhenius expression, k = (7.74 plus or minus 0.50) x 10 to the -12th exp(-603 plus or minus 16/T) cu cm/molecule/sec, where the error quoted is two standard deviations.

  7. Absolute rate constant of the reaction between chlorine /2P/ atoms and hydrogen peroxide from 298 to 424 K

    NASA Technical Reports Server (NTRS)

    Keyser, L. F.

    1980-01-01

    The absolute rate constant of the reaction between chlorine (2P) atoms and hydrogen peroxide was determined from 298 to 424 K, using the discharge flow resonance fluorescence technique. Pseudo-first-order conditions were used with hydrogen peroxide in large excess. A fast flow-sampling procedure limited hydrogen peroxide decomposition to less than 5% over the temperature range studied. At 298 K, the rate constant is (4.1 plus or minus 0.2) x 10 to the minus 13th cu cm/molecule-sec.

  8. Absolute rate constants for the reaction of atomic hydrogen with ketene from 298 to 500 K

    NASA Technical Reports Server (NTRS)

    Michael, J. V.; Nava, D. F.; Payne, W. A.; Stief, L. J.

    1979-01-01

    Rate constants for the reaction of atomic hydrogen with ketene have been measured at room temperature by two techniques, flash photolysis-resonance fluorescence and discharge flow-resonance fluorescence. The measured values are (6.19 + or - 1.68) x 10 to the -14th and (7.3 + or - 1.3) x 10 to the -14th cu cm/molecule/s, respectively. In addition, rate constants as a function of temperature have been measured over the range 298-500 K using the FP-RF technique. The results are best represented by the Arrhenius expression k = (1.88 + or - 1.12) x 10 to the -11th exp(-1725 + or - 190/T) cu cm/molecule/s, where the indicated errors are at the two standard deviation level.

  9. Pressure dependence of the absolute rate constant for the reaction OH + C2H2 from 228 to 413 K

    NASA Technical Reports Server (NTRS)

    Michael, J. V.; Nava, D. F.; Payne, W. A.; Stief, L. J.; Borkowski, R. P.

    1980-01-01

    The pressure dependence of the absolute rate constant for the reaction of the hydroxyl radical with acetylene, important in both atmospheric and combustion chemistry, is determined for temperatures between 228 and 413 K. The flash photolysis-resonance fluorescence technique was employed at five temperatures over wide ranges of pressure and acetylene concentrations, with the OH produced by water photolysis and hydroxyl resonance fluorescent photons measured by multiscaling techniques. Results indicate that, except at the lowest temperature, the bimolecular rate constant for the reaction depends strongly on total pressure, with the pressure effect becoming more pronounced with increasing temperature. At limiting high pressures, the rate constant is found to be equal to 6.83 + or - 1.19 x 10 to the -12th exp (-646 + or - 47/T) cu cm/molecule per sec, where T is the temperature. Results thus demonstrate the importance of environmental conditions in theoretical studies of atmospheric and combustion product compositions

  10. The reaction H + C4H2 - Absolute rate constant measurement and implication for atmospheric modeling of Titan

    NASA Technical Reports Server (NTRS)

    Nava, D. F.; Mitchell, M. B.; Stief, L. J.

    1986-01-01

    The absolute rate constant for the reaction H + C4H2 has been measured over the temperature (T) interval 210-423 K, using the technique of flash photolysis-resonance fluorescence. At each of the five temperatures employed, the results were independent of variations in C4H2 concentration, total pressure of Ar or N2, and flash intensity (i.e., the initial H concentration). The rate constant, k, was found to be equal to 1.39 x 10 to the -10th exp (-1184/T) cu cm/s, with an error of one standard deviation. The Arrhenius parameters at the high pressure limit determined here for the H + C4H2 reaction are consistent with those for the corresponding reactions of H with C2H2 and C3H4. Implications of the kinetic carbon chemistry results, particularly those at low temperature, are considered for models of the atmospheric carbon chemistry of Titan. The rate of this reaction, relative to that of the analogous, but slower, reaction of H + C2H2, appears to make H + C4H2 a very feasible reaction pathway for effective conversion of H atoms to molecular hydrogen in the stratosphere of Titan.

  11. Temperature and pressure dependence of the absolute rate constant for the reactions of NH2 radicals with acetylene and ethylene

    NASA Technical Reports Server (NTRS)

    Bosco, S. R.; Nava, D. F.; Brobst, W. D.; Stief, L. J.

    1984-01-01

    The absolute rate constants for the reaction between the NH2 free radical and acetylene and ethylene is measured experimentally using a flash photolysis technique. The constant is considered to be a function of temperature and pressure. At each temperature level of the experiment, the observed pseudo-first-order rate constants were assumed to be independent of flash intensity. The results of the experiment indicate that the bimolecular rate constant for the NH2 + C2H2 reaction increases with pressure at 373 K and 459 K but not at lower temperatures. Results near the pressure limit conform to an Arrhenius expression of 1.11 (+ or -) 0.36 x 10 to the -13th over the temperature range from 241 to 459 K. For the reaction NH2 + C2H4, a smaller rate of increase in the bimolecular rate constant was observed over the temperature range 250-465 K. The implications of these results for current theoretical models of NH2 + C2H2 (or H4) reactions in the atmospheres of Jupiter and Saturn are discussed.

  12. Pressure dependence of the absolute rate constant for the reaction OH + C2H2 from 228 to 413K

    NASA Technical Reports Server (NTRS)

    Michael, J. V.; Nava, D. F.; Borokowski, R. P.; Payne, W. A.; Stief, L. J.

    1980-01-01

    The pressure dependence of absolute rate constants for the reaction of OH + C2H2 yields products has been examined at five temperatures ranging from 228 to 413 K. The experimental techniques which was used is flash photolysis-resonance fluoresence. OH was produced by water photolysis and hydroxyl resonance fluorescent photons were measured by multiscaling techniques. The results indicate that the low pressure bimolecular rate constant is 4 x 10 the the minus 13th power cu cm molecule (-1) s(-1) over the temperature range studied. A substantial increase in the bimolecular rate constant with an increase in pressure was observed at all temperatures except 228 K. This indicates the importance of initial adduct formation and subsequent stablization. The high pressure results are well represented by the Arrhenius expression (k sub bi) sub infinity = (6.83 + or - 1.19) x 10 to the minus 12th power exp(-646 + or - 47/T)cu cm molecule (-1) s(-1). The results are compared to previous investigated and are theoretically discussed. The implications of these results on modeling of terrestrial and planetary atmospheres and also in combustion chemistry are discussed.

  13. Absolute rate of the reaction of Cl(p-2) with molecular hydrogen from 200 - 500 K

    NASA Technical Reports Server (NTRS)

    Whytock, D. A.; Lee, J. H.; Michael, J. V.; Payne, W. A.; Stief, L. J.

    1976-01-01

    Rate constants for the reaction of atomic chlorine with hydrogen are measured from 200 - 500 K using the flash photolysis-resonance fluorescence technique. The results are compared with previous work and are discussed with particular reference to the equilibrium constant for the reaction and to relative rate data for chlorine atom reactions. Theoretical calculations, using the BEBO method with tunneling, give excellent agreement with experiment.

  14. Absolute rate theories of epigenetic stability

    NASA Astrophysics Data System (ADS)

    Walczak, Aleksandra M.; Onuchic, José N.; Wolynes, Peter G.

    2005-12-01

    Spontaneous switching events in most characterized genetic switches are rare, resulting in extremely stable epigenetic properties. We show how simple arguments lead to theories of the rate of such events much like the absolute rate theory of chemical reactions corrected by a transmission factor. Both the probability of the rare cellular states that allow epigenetic escape and the transmission factor depend on the rates of DNA binding and unbinding events and on the rates of protein synthesis and degradation. Different mechanisms of escape from the stable attractors occur in the nonadiabatic, weakly adiabatic, and strictly adiabatic regimes, characterized by the relative values of those input rates. rate theory | stochastic gene expression | gene switches

  15. Absolute rate of the reaction of atomic hydrogen with ethylene from 198 to 320 K at high pressure

    NASA Technical Reports Server (NTRS)

    Lee, J. H.; Michael, J. V.; Payne, W. A.; Stief, L. J.

    1978-01-01

    The rate constant for the H+C2H4 reaction has been measured as a function of temperature. Experiments were performed with high pressures of Ar heat bath gas at seven temperatures from 198 to 320 K with the flash photolysis-resonance fluorescence (FP-RF) technique. Pressures were chosen so as to isolate the addition rate constant k1. The results are well represented by an Arrhenius expression. The results are compared with other studies and are theoretically discussed.

  16. Absolute rate of the reaction of O/3-P/ with hydrogen sulfide over the temperature range 263 to 495 K

    NASA Technical Reports Server (NTRS)

    Whytock, D. A.; Timmons, R. B.; Lee, J. H.; Michael, J. V.; Payne, W. A.; Stief, L. J.

    1976-01-01

    The technique of flash photolysis coupled with time resolved detection of O via resonance fluorescence has been used to obtain rate constants for the reaction of O(3-P) with H2S at temperatures from 263 to 495 K and at pressures in the range 10-400 torr. Under conditions where secondary reactions are avoided, the measured rate constants for the primary step obey the Arrhenius equation k = (7.24 plus or minus 1.07) x 10 to the -12th exp(-3300 plus or minus 100/1.987 T) cu cm/molecules/s. Experiments with D2S show that the reaction exhibits a primary isotope effect, in support of a hydrogen abstraction mechanism.

  17. Solid-state track recorder dosimetry device to measure absolute reaction rates and neutron fluence as a function of time

    DOEpatents

    Gold, Raymond; Roberts, James H.

    1989-01-01

    A solid state track recording type dosimeter is disclosed to measure the time dependence of the absolute fission rates of nuclides or neutron fluence over a period of time. In a primary species an inner recording drum is rotatably contained within an exterior housing drum that defines a series of collimating slit apertures overlying windows defined in the stationary drum through which radiation can enter. Film type solid state track recorders are positioned circumferentially about the surface of the internal recording drum to record such radiation or its secondary products during relative rotation of the two elements. In another species both the recording element and the aperture element assume the configuration of adjacent disks. Based on slit size of apertures and relative rotational velocity of the inner drum, radiation parameters within a test area may be measured as a function of time and spectra deduced therefrom.

  18. Pressure dependence of the absolute rate constant for the reaction Cl + C2H2 from 210-361 K

    NASA Technical Reports Server (NTRS)

    Brunning, J.; Stief, L. J.

    1985-01-01

    In recent years, considerable attention has been given to the role of chlorine compounds in the catalytic destruction of stratospheric ozone. However, while some reactions have been studied extensively, the kinetic data for the reaction of Cl with C2H2 is sparse with only three known determinations of the rate constant k3. The reactions involved are Cl + C2H2 yields reversibly ClC2H2(asterisk) (3a) and ClC2H2(asterisk) + M yields ClC2H2 + M (3b). In the present study, flash photolysis coupled with chlorine atomic resonance fluorescence have been employed to determine the pressure and temperature dependence of k3 with the third body M = Ar. Room temperature values are also reported for M = N2. The pressure dependence observed in the experiments confirms the expectation that the reaction involves addition of Cl to the unsaturated C2H2 molecule followed by collisional stabilization of the resulting adduct radical.

  19. Thiyl radical reaction with thymine: absolute rate constant for hydrogen abstraction and comparison to benzylic C-H bonds.

    PubMed

    Nauser, Thomas; Schöneich, Christian

    2003-09-01

    Free radical damage of DNA is a well-known process affecting biological tissue under conditions of oxidative stress. Thiols can repair DNA-derived radicals. However, the product thiyl radicals may also cause biological damage. To obtain quantitative information on the potential reactivity with DNA components, we measured the rate constant for hydrogen abstraction by cysteamine thiyl radicals from thymine C5-CH(3), k = (1.2 +/- 0.8) x 10(4) M(-1) s(-1), and thymidine-5'-monophosphate, k = (0.9 +/- 0.6) x 10(4) M(-1) s(-1). Hence, the hydrogen abstraction from C5-CH(3) occurs with rate constants similar to the hydrogen abstraction from the carbohydrate moieties. Especially at low oxygen concentration such as that found in skeletal muscle, such hydrogen abstraction processes by thiyl radicals may well compete against other dioxygen-dependent reactions. The rate constants for hydrogen abstraction at thymine C5-CH(3) were compared to those with benzylic substrates, toluenesulfonic acid, and benzyl alcohol.

  20. Kinetics of reaction of peroxynitrite with selenium- and sulfur-containing compounds: Absolute rate constants and assessment of biological significance.

    PubMed

    Storkey, Corin; Pattison, David I; Ignasiak, Marta T; Schiesser, Carl H; Davies, Michael J

    2015-12-01

    Peroxynitrite (the physiological mixture of ONOOH and its anion, ONOO(-)) is a powerful biologically-relevant oxidant capable of oxidizing and damaging a range of important targets including sulfides, thiols, lipids, proteins, carbohydrates and nucleic acids. Excessive production of peroxynitrite is associated with several human pathologies including cardiovascular disease, ischemic-reperfusion injury, circulatory shock, inflammation and neurodegeneration. This study demonstrates that low-molecular-mass selenols (RSeH), selenides (RSeR') and to a lesser extent diselenides (RSeSeR') react with peroxynitrite with high rate constants. Low molecular mass selenols react particularly rapidly with peroxynitrite, with second order rate constants k2 in the range 5.1 × 10(5)-1.9 × 10(6)M(-1)s(-1), and 250-830 fold faster than the corresponding thiols (RSH) and many other endogenous biological targets. Reactions of peroxynitrite with selenides, including selenosugars are approximately 15-fold faster than their sulfur homologs with k2 approximately 2.5 × 10(3)M(-1)s(-1). The rate constants for diselenides and sulfides were slower with k2 0.72-1.3 × 10(3)M(-1)s(-1) and approximately 2.1 × 10(2)M(-1)s(-1) respectively. These studies demonstrate that both endogenous and exogenous selenium-containing compounds may modulate peroxynitrite-mediated damage at sites of acute and chronic inflammation, with this being of particular relevance at extracellular sites where the thiol pool is limited.

  1. Absolute rate constant of the reaction OH + H2O2 yields HO2 + H2O from 245 to 423 K

    NASA Technical Reports Server (NTRS)

    Keyser, L. F.

    1980-01-01

    The absolute rate constant of the reaction between the hydroxyl radical and hydrogen peroxide was measured by using the discharge-flow resonance fluorescence technique at total pressure between 1 and 4 torr. At 298 K the result is (1.64 + or - 0.32) x 10 to the -12th cu cm/molecule s. The observed rate constant is independent of pressure, surface-to-volume ratio, the addition of vibrational quenchers, and the source of OH. The temperature dependence has also been determined between 245 and 423 K; the resulting Arrhenius expression is k cu cm/molecule s is equal to (2.51 + or - 0.6) x 10 to the -12th exp(-126 + or - 76/T).

  2. Absolute rate constant and O(3P) yield for the O(1D)+N2O reaction in the temperature range 227 K to 719 K

    NASA Astrophysics Data System (ADS)

    Vranckx, S.; Peeters, J.; Carl, S. A.

    2008-10-01

    The absolute rate constant for the reaction that is the major source of stratospheric NOx, O(1D)+N2O → products, has been determined in the temperature range 227 K to 719 K, and, in the temperature range 248 K to 600 K, the fraction of the reaction that yields O(3P). Both the rate constants and product yields were determined using a recently-developed chemiluminescence technique for monitoring O(1D) that allows for higher precision determinations for both rate constants, and, particularly, O(3P) yields, than do other methods. We found the rate constant, kR1, to be essentially independent of temperature between 400 K and 227 K, having a value of (1.37±0.11)×10-10 cm3 s-1, and for temperatures greater than 450 K a marked decrease in rate constant was observed, with a rate constant of only (0.94±0.11)×10-10 cm3 s-1 at 719 K. The rate constants determined over the 227 K 400 K range show very low scatter and are significantly greater, by 20% at room temperature and 15% at 227 K, than the current recommended values. The fraction of O(3P) produced in this reaction was determined to be 0.002±0.002 at 250 K rising steadily to 0.010±0.004 at 600 K, thus the channel producing O(3P) can be entirely neglected in atmospheric kinetic modeling calculations. A further result of this study is an expression of the relative quantum yields as a function of temperature for the chemiluminescence reactions (kCL1)C2H + O(1D) → CH(A) + CO and (kCL2)C2H + O(3P) → CH(A) + CO, both followed by CH(A) → CH(X) + hν, as kCL1(T)/kCL2(T)=(32.8T-3050)/(6.29T+398).

  3. Absolute rate constant and O(3P) yield for the O(1D)+N2O reaction in the temperature range 227 K to 719 K

    NASA Astrophysics Data System (ADS)

    Vranckx, S.; Peeters, J.; Carl, S. A.

    2008-05-01

    We have determined, in the temperature range 227 K to 719 K, the absolute rate constant for the reaction O(1D)+N2O → products and, in the temperature range 248 K to 600 K, the fraction of the reaction that yields O(3P). Both the rate constants and product yields were determined using a recently-developed chemiluminescence technique for monitoring O(1D) that allows for higher precision determinations for both rate constants, and, particularly, O(3P) yields, than do other methods. We found the rate constant, kR1, to be essentially independent of temperature between 400 K and 227 K, having a value of (1.37±0.09)×10-10 cm3 s-1. For temperatures greater than 450 K a marked decrease in value was observed, with a rate constant of only (0.94±0.11)×10-10 cm3 s-1 at 719 K. The rate constants determined over the 227 K-400 K range show very low scatter and are significantly greater, by 20% at room temperature and by 15% at 227 K, than the current recommended values. The fraction of O(3P) produced in this reaction was determined to be 0.002±0.002 at 250 K rising steadily to 0.010±0.004 at 600 K, thus the channel producing O(3P) can be entirely neglected in atmospheric kinetic modeling calculations. A further result of this study is an expression of the relative quantum yields as a function of temperature for the chemiluminescence reactions (kCL1) C2H+O(1D) → CH(A)+CO and (kCL2) C2H+O(3P) → CH(A)+CO, both followed by CH(A) → CH(X)+hν, as kCL1(T)/kCL2(T)=(32.8T-3050)/(6.29T+398).

  4. Absolute rate coefficients over extended temperature ranges and mechanisms of the CF(X(2)Pi) reactions with F(2), Cl(2) and O(2).

    PubMed

    Vetters, B; Dils, B; Nguyen, T L; Vereecken, L; Carl, S A; Peeters, J

    2009-06-01

    The absolute rate coefficients of the reactions of the carbyne-radical CF(X(2)Pi, nu = 0) with O(2), F(2) and Cl(2) have been measured over extended temperature ranges, using pulsed-laser photodissociation-laser-induced fluorescence (PLP-LIF) techniques. The CF(X(2)Pi) radicals were generated by KrF excimer laser 2-photon photolysis of CF(2)Br(2) at 248 nm and the real-time exponential decays of CF(X(2)Pi, nu = 0) at varying coreactant concentrations, in large excess, were monitored by LIF (A(2)Sigma(+), nu' = 1 <-- X(2)Pi, nu'' = 0 transition). The experimental bimolecular rate coefficients of the CF(X(2)Pi) reactions with F(2) and Cl(2) can be described by simple Arrhenius expressions: k(F2)(295-408 K) = (1.5 +/- 0.2) x 10(-11) exp[-(370 +/- 40)K/T] cm(3) molecule(-1) s(-1); and k(Cl2)(295-392 K) = (6.1 +/- 2.1) x 10(-12) exp[+(280 +/- 120)K/T]. The k(F2)(T) and k(Cl2)(T) results can be rationalized in terms of direct halogen-atom abstraction reactions in which the radical character of CF dominates; a quantum chemical CBS-Q//BHandHLYP/6-311G(d,p) study confirms that the ground state reactants CF(X(2)Pi) + F(2)(X(1)Sigma) connect directly with the ground-state products CF(2)(X(1)A(1)) + F((2)P) via a nearly barrierless F-atom abstraction route. The rate coefficient of CF(X(2)Pi) + O(2) can be represented by a two-term Arrhenius expression: k(O2)(258-780 K) = 1.1 x 10(-11) exp(-850 K/T) + 2.3 x 10(-13) exp(500 K/T), with a standard deviation of 5%. The first term dominates at higher temperatures T and the second at lower T where a negative temperature dependence is observed (<290 K). Quantum chemical computations at the CBS-QB3 and CCSD(T)/aug-cc-pVDZ levels of theory show that the k(O2)(T) behaviour is consistent with a change of the dominant rate-determining mechanism from a carbyne-type insertion into the O-O bond at high T to a radical-radical combination at low T.

  5. Validation of absolute axial neutron flux distribution calculations with MCNP with 197Au(n,γ)198Au reaction rate distribution measurements at the JSI TRIGA Mark II reactor.

    PubMed

    Radulović, Vladimir; Štancar, Žiga; Snoj, Luka; Trkov, Andrej

    2014-02-01

    The calculation of axial neutron flux distributions with the MCNP code at the JSI TRIGA Mark II reactor has been validated with experimental measurements of the (197)Au(n,γ)(198)Au reaction rate. The calculated absolute reaction rate values, scaled according to the reactor power and corrected for the flux redistribution effect, are in good agreement with the experimental results. The effect of different cross-section libraries on the calculations has been investigated and shown to be minor. PMID:24316530

  6. Absolute rate constant for the reaction of atomic chlorine with hydrogen peroxide vapor over the temperature range 265-400 K

    NASA Technical Reports Server (NTRS)

    Michael, J. V.; Whytock, D. A.; Lee, J. H.; Payne, W. A.; Stief, L. J.

    1977-01-01

    Rate constants for the reaction of atomic chlorine with hydrogen peroxide were measured from 265-400 K using the flash photolysis-resonance fluorescence technique. Analytical techniques were developed to measure H2O2 under reaction conditions. Due to ambiguity in the interpretation of the analytical results, the data combine to give two equally acceptable representations of the temperature dependence. The results are compared to previous work at 298 K and are theoretically discussed in terms of the mechanism of the reaction. Additional experiments on the H + H2O2 reaction at 298 and 359 K are compared with earlier results from this laboratory and give a slightly revised bimolecular rate constant.

  7. A full-dimensional model of ozone forming reaction: the absolute value of the recombination rate coefficient, its pressure and temperature dependencies.

    PubMed

    Teplukhin, Alexander; Babikov, Dmitri

    2016-07-28

    Rigorous calculations of scattering resonances in ozone are carried out for a broad range of rotational excitations. The accurate potential energy surface of Dawes is adopted, and a new efficient method for calculations of ro-vibrational energies, wave functions and resonance lifetimes is employed (which uses hyper-spherical coordinates, the sequential diagonalization/truncation approach, grid optimization and complex absorbing potential). A detailed analysis is carried out to characterize distributions of resonance energies and lifetimes, their rotational/vibrational content and their positions with respect to the centrifugal barrier. Emphasis is on the contribution of these resonances to the recombination process that forms ozone. It is found that major contributions come from localized resonances at energies near the top of the barrier. Delocalized resonances at higher energies should also be taken into account, while very narrow resonances at low energies (trapped far behind the centrifugal barrier) should be treated as bound states. The absolute value of the recombination rate coefficient, its pressure and temperature dependencies are obtained using the energy-transfer model developed in the earlier work. Good agreement with experimental data is obtained if one follows the suggestion of Troe, who argued that the energy transfer mechanism of recombination is responsible only for 55% of the recombination rate (with the remaining 45% coming from the competing chaperon mechanism). PMID:27364351

  8. A full-dimensional model of ozone forming reaction: the absolute value of the recombination rate coefficient, its pressure and temperature dependencies.

    PubMed

    Teplukhin, Alexander; Babikov, Dmitri

    2016-07-28

    Rigorous calculations of scattering resonances in ozone are carried out for a broad range of rotational excitations. The accurate potential energy surface of Dawes is adopted, and a new efficient method for calculations of ro-vibrational energies, wave functions and resonance lifetimes is employed (which uses hyper-spherical coordinates, the sequential diagonalization/truncation approach, grid optimization and complex absorbing potential). A detailed analysis is carried out to characterize distributions of resonance energies and lifetimes, their rotational/vibrational content and their positions with respect to the centrifugal barrier. Emphasis is on the contribution of these resonances to the recombination process that forms ozone. It is found that major contributions come from localized resonances at energies near the top of the barrier. Delocalized resonances at higher energies should also be taken into account, while very narrow resonances at low energies (trapped far behind the centrifugal barrier) should be treated as bound states. The absolute value of the recombination rate coefficient, its pressure and temperature dependencies are obtained using the energy-transfer model developed in the earlier work. Good agreement with experimental data is obtained if one follows the suggestion of Troe, who argued that the energy transfer mechanism of recombination is responsible only for 55% of the recombination rate (with the remaining 45% coming from the competing chaperon mechanism).

  9. First experimental determination of the absolute gas-phase rate coefficient for the reaction of OH with 4-hydroxy-2-butanone (4H2B) at 294 K by vapor pressure measurements of 4H2B.

    PubMed

    El Dib, Gisèle; Sleiman, Chantal; Canosa, André; Travers, Daniel; Courbe, Jonathan; Sawaya, Terufat; Mokbel, Ilham; Chakir, Abdelkhaleq

    2013-01-10

    The reaction of the OH radicals with 4-hydroxy-2-butanone was investigated in the gas phase using an absolute rate method at room temperature and over the pressure range 10-330 Torr in He and air as diluent gases. The rate coefficients were measured using pulsed laser photolysis (PLP) of H(2)O(2) to produce OH and laser induced fluorescence (LIF) to measure the OH temporal profile. An average value of (4.8 ± 1.2) × 10(-12) cm(3) molecule(-1) s(-1) was obtained. The OH quantum yield following the 266 nm pulsed laser photolysis of 4-hydroxy-2-butanone was measured for the first time and found to be about 0.3%. The investigated kinetic study required accurate measurements of the vapor pressure of 4-hydroxy-2-butanone, which was measured using a static apparatus. The vapor pressure was found to range from 0.056 to 7.11 Torr between 254 and 323 K. This work provides the first absolute rate coefficients for the reaction of 4-hydroxy-2-butanone with OH and the first experimental saturated vapor pressures of the studied compound below 311 K. The obtained results are compared to those of the literature and the effects of the experimental conditions on the reactivity are examined. The calculated tropospheric lifetime obtained in this work suggests that once emitted into the atmosphere, 4H2B may contribute to the photochemical pollution in a local or regional scale.

  10. Applications of Reaction Rate

    ERIC Educational Resources Information Center

    Cunningham, Kevin

    2007-01-01

    This article presents an assignment in which students are to research and report on a chemical reaction whose increased or decreased rate is of practical importance. Specifically, students are asked to represent the reaction they have chosen with an acceptable chemical equation, identify a factor that influences its rate and explain how and why it…

  11. The Absolute Rate of LGRB Formation

    NASA Astrophysics Data System (ADS)

    Graham, J. F.; Schady, P.

    2016-06-01

    We estimate the long-duration gamma-ray burst (LGRB) progenitor rate using our recent work on the effects of environmental metallically on LGRB formation in concert with supernovae (SNe) statistics via an approach patterned loosely off the Drake equation. Beginning with the cosmic star formation history, we consider the expected number of broad-line Type Ic events (the SNe type associated with LGRBs) that are in low-metallicity host environments adjusted by the contribution of high-metallicity host environments at a much reduced rate. We then compare this estimate to the observed LGRB rate corrected for instrumental selection effects to provide a combined estimate of the efficiency fraction of these progenitors to produce LGRBs and the fraction of which are beamed in our direction. From this we estimate that an aligned LGRB occurs for approximately every 4000 ± 2000 low-metallically broad-lined SNe Ic. Therefore, if one assumes a semi-nominal beaming factor of 100, then only about one such supernova out of 40 produce an LGRB. Finally, we propose an off-axis LGRB search strategy of targeting only broad-line Type Ic events that occur in low-metallicity hosts for radio observation.

  12. Measurement of Disintegration Rates and Absolute {gamma}-ray Intensities

    SciTech Connect

    DeVries, Daniel J.; Griffin, Henry C.

    2006-03-13

    The majority of practical radioactive materials decay by modes that include {gamma}-ray emission. For questions of 'how much' or 'how pure', one must know the absolute intensities of the major radiations. We are using liquid scintillation counting (LSC) to measurements of disintegration rates, coupled with {gamma}-ray spectroscopy to measure absolute {gamma}-ray emission probabilities. Described is a study of the 227Th chain yielding absolute {gamma}-ray intensities with {approx}0.5% accuracy and information on LSC efficiencies.

  13. What Is a Reaction Rate?

    ERIC Educational Resources Information Center

    Schmitz, Guy

    2005-01-01

    The definition of reaction rate is derived and demonstrations are made for the care to be taken while using the term. Reaction rate can be in terms of a reaction property, the extent of reaction and thus it is possible to give a definition applicable in open and closed systems.

  14. Flow rate calibration for absolute cell counting rationale and design.

    PubMed

    Walker, Clare; Barnett, David

    2006-05-01

    There is a need for absolute leukocyte enumeration in the clinical setting, and accurate, reliable (and affordable) technology to determine absolute leukocyte counts has been developed. Such technology includes single platform and dual platform approaches. Derivations of these counts commonly incorporate the addition of a known number of latex microsphere beads to a blood sample, although it has been suggested that the addition of beads to a sample may only be required to act as an internal quality control procedure for assessing the pipetting error. This unit provides the technical details for undertaking flow rate calibration that obviates the need to add reference beads to each sample. It is envisaged that this report will provide the basis for subsequent clinical evaluations of this novel approach. PMID:18770842

  15. The reaction NH2 + PH3 yields NH3 + PH2: Absolute rate constant measurement and implication for NH3 and PH3 photochemistry in the atmosphere of Jupiter

    NASA Technical Reports Server (NTRS)

    Bosco, S. R.; Brobst, W. D.; Nava, D. F.; Stief, L. J.

    1983-01-01

    The rate constant is measured over the temperature interval 218-456 K using the technique of flash photolysis-laser-induced fluorescence. NH2 radicals are produced by the flash photolysis of ammonia highly diluted in argon, and the decay of fluorescent NH2 photons is measured by multiscaling techniques. For each of the five temperatures employed in the study, the results are shown to be independent of variations in PH3 concentration, total pressure (argon), and flash intensity. It is found that the rate constant results are best represented for T between 218 and 456 K by the expression k = (1.52 + or - 0.16) x 10 to the -12th exp(-928 + or - 56/T) cu cm per molecule per sec; the error quoted is 1 standard deviation. This is the first determination of the rate constant for the reaction NH2 + PH3. The data are compared with an estimate made in order to explain results of the radiolysis of NH3-PH3 mixtures. The Arrhenius parameters determined here for NH2 + PH3 are then constrasted with those for the corresponding reactions of H and OH with PH3.

  16. The reaction NH2 + PH3 yields NH3 + PH2 - Absolute rate constant measurement and implication for NH3 and PH3 photochemistry in the atmosphere of Jupiter

    NASA Technical Reports Server (NTRS)

    Bosco, S. R.; Brobst, W. D.; Nava, D. F.; Stief, L. J.

    1983-01-01

    The rate constant is measured over the temperature interval 218-456 K using the technique of flash photolysis-laser-induced fluorescence. NH2 radicals are produced by the flash photolysis of ammonia highly diluted in argon, and the decay of fluorescent NH2 photons is measured by multiscaling techniques. For each of the five temperatures employed in the study, the results are shown to be indepenent of variations in PH3 concentration, total pressure (argon), and flash intensity. It is found that the rate constant results are best represented for T between 218 and 456 K by the expression k = (1.52 + or - 0.16) x 10 to the -12th exp(-928 + or - 56/T) cu cm per molecule per sec; the error quoted is 1 standard deviation. This is the first determination of the rate constant for the reaction NH2 + PH3. The data are compared with an estimate made in order to explain results of the radiolysis of NH3-PH3 mixtures. The Arrhenius parameters determined here for NH2 + PH3 are then contrasted with those for the corresponding reactions of H and OH with PH3.

  17. Rate Change Graph Technology: Absolute Value Point Methodology

    NASA Astrophysics Data System (ADS)

    Strickland, Ken; Duvernois, Michael

    2011-10-01

    Absolute Value Point Methodology (AVPM) is a new theoretical tool for science research centered on Rate Change Graph Technology (RCGT). The modeling techniques of AVPM surpass conventional methods by extending the geometrical rules of mathematics. Exact geometrical structures of matter and energy become clearer revealing new ways to compile advanced data. RCGT mechanics is realized from geometrical intersections that are the result of plotting changing value vs. changing geometry. RCGT methods ignore size and value to perform an objective analysis in geometry. Value and size are then re-introduced back into the analytical system for a clear and concise solution. Available AVPM applications reveal that a massive amount of data from the Big Bang to vast super-clusters is untouched by human thought. Once scientists learn to design tools from RCGT Mechanics, new and formidable approaches to experimentation and theory may lead to new discoveries. In the creation of AVPM, it has become apparent there is a particle-world that exists between strings and our familiar universe. These unrealized particles in their own nature exhibit inflation like properties and may be the progenitor of the implements of our universe. Thus space, time, energy, motion, space-time and gravity are born from its existence and decay. This announcement will be the beginning of many new ideas from the study of RCGT mechanics.

  18. Nova reaction rates and experiments

    NASA Astrophysics Data System (ADS)

    Bishop, S.; Herlitzius, C.; Fiehl, J.

    2011-04-01

    Oxygen-neon novae form a subset of classical novae events known to freshly synthesize nuclei up to mass number A≲40. Because several gamma-ray emitters lie in this mass range, these novae are also interesting candidates for gamma-ray astronomy. The properties of excited states within those nuclei in this mass region play a critical role in determining the resonant (p,γ) reaction rates, themselves, largely unknown for the unstable nuclei. We describe herein a new Doppler shift lifetime facility at the Maier-Leibnitz tandem laboratory, Technische Universität München, with which we will map out important resonant (p,γ) nova reaction rates.

  19. Direct and Absolute Quantification of over 1800 Yeast Proteins via Selected Reaction Monitoring*

    PubMed Central

    Lawless, Craig; Holman, Stephen W.; Brownridge, Philip; Lanthaler, Karin; Harman, Victoria M.; Watkins, Rachel; Hammond, Dean E.; Miller, Rebecca L.; Sims, Paul F. G.; Grant, Christopher M.; Eyers, Claire E.; Beynon, Robert J.

    2016-01-01

    Defining intracellular protein concentration is critical in molecular systems biology. Although strategies for determining relative protein changes are available, defining robust absolute values in copies per cell has proven significantly more challenging. Here we present a reference data set quantifying over 1800 Saccharomyces cerevisiae proteins by direct means using protein-specific stable-isotope labeled internal standards and selected reaction monitoring (SRM) mass spectrometry, far exceeding any previous study. This was achieved by careful design of over 100 QconCAT recombinant proteins as standards, defining 1167 proteins in terms of copies per cell and upper limits on a further 668, with robust CVs routinely less than 20%. The selected reaction monitoring-derived proteome is compared with existing quantitative data sets, highlighting the disparities between methodologies. Coupled with a quantification of the transcriptome by RNA-seq taken from the same cells, these data support revised estimates of several fundamental molecular parameters: a total protein count of ∼100 million molecules-per-cell, a median of ∼1000 proteins-per-transcript, and a linear model of protein translation explaining 70% of the variance in translation rate. This work contributes a “gold-standard” reference yeast proteome (including 532 values based on high quality, dual peptide quantification) that can be widely used in systems models and for other comparative studies. PMID:26750110

  20. Explaining the Relative and Absolute LGRB Rate with Metallically

    NASA Astrophysics Data System (ADS)

    Graham, John

    2016-01-01

    There is now strong evidence that Long-duration Gamma-Ray Bursts (LGRBs) have an intrinsic preference for low-metallicity environments despite the existence of some exceptions to this trend (Graham & Fruchter 2013). Here I will present a pair of results expanding on this work. First, a detailed effort to quantize magnitude of this effect, and characterized its change as a function of metallicity. Thus we directly address a fundamental question of this subfield: how much more likely is an LGRB to form at one metallicity as compared with another? Then, employing these results, we relate the LGRB rate as a function of redshift to the cosmic star-formation rate and provide a detailed breakdown of the intervening steps and their rate of occurrence. This provides interesting implications for radio search efforts to detect off axis LGRB events which will be discussed.

  1. The Rate Laws for Reversible Reactions.

    ERIC Educational Resources Information Center

    King, Edward L.

    1986-01-01

    Provides background information for teachers on the rate laws for reversible reactions. Indicates that although prediction of the form of the rate law for a reverse reaction given the rate law for the forward reaction is not certain, the number of possibilities is limited because of relationships described. (JN)

  2. Miniature high-throughput chemosensing of yield, ee, and absolute configuration from crude reaction mixtures

    PubMed Central

    Bentley, Keith W.; Zhang, Peng; Wolf, Christian

    2016-01-01

    High-throughput experimentation (HTE) has emerged as a widely used technology that accelerates discovery and optimization processes with parallel small-scale reaction setups. A high-throughput screening (HTS) method capable of comprehensive analysis of crude asymmetric reaction mixtures (eliminating product derivatization or isolation) would provide transformative impact by matching the pace of HTE. We report how spontaneous in situ construction of stereodynamic metal probes from readily available, inexpensive starting materials can be applied to chiroptical chemosensing of the total amount, enantiomeric excess (ee), and absolute configuration of a wide variety of amines, diamines, amino alcohols, amino acids, carboxylic acids, α-hydroxy acids, and diols. This advance and HTS potential are highlighted with the analysis of 1 mg of crude reaction mixtures of a catalytic asymmetric reaction. This operationally simple assay uses a robust mix-and-measure protocol, is amenable to microscale platforms and automation, and provides critical time efficiency and sustainability advantages over traditional serial methods. PMID:26933684

  3. Method of controlling fusion reaction rates

    DOEpatents

    Kulsrud, Russell M.; Furth, Harold P.; Valeo, Ernest J.; Goldhaber, Maurice

    1988-01-01

    A method of controlling the reaction rates of the fuel atoms in a fusion reactor comprises the step of polarizing the nuclei of the fuel atoms in a particular direction relative to the plasma confining magnetic field. Fusion reaction rates can be increased or decreased, and the direction of emission of the reaction products can be controlled, depending on the choice of polarization direction.

  4. Method of controlling fusion reaction rates

    DOEpatents

    Kulsrud, Russell M.; Furth, Harold P.; Valeo, Ernest J.; Goldhaber, Maurice

    1988-03-01

    A method of controlling the reaction rates of the fuel atoms in a fusion reactor comprises the step of polarizing the nuclei of the fuel atoms in a particular direction relative to the plasma confining magnetic field. Fusion reaction rates can be increased or decreased, and the direction of emission of the reaction products can be controlled, depending on the choice of polarization direction.

  5. Separation of Betti Reaction Product Enantiomers: Absolute Configuration and Inhibition of Botulinum Neurotoxin A

    PubMed Central

    2011-01-01

    The racemic product of the Betti reaction of 5-chloro-8-hydroxyquinoline, benzaldehyde, and 2-aminopyridine was separated by chiral HPLC to determine which enantiomer inhibited botulinum neurotoxin serotype A. When the enantiomers unexpectedly proved to have comparable activity, the absolute structures of (+)-(R)-1 and (−)-(S)-1 were determined by comparison of calculated and observed circular dichroism spectra. Molecular modeling studies were undertaken in an effort to understand the observed bioactivity and revealed different ensembles of binding modes, with roughly equal binding energies, for the two enantiomers. PMID:22102940

  6. Reaction Order Ambiguity in Integrated Rate Plots

    ERIC Educational Resources Information Center

    Lee, Joe

    2008-01-01

    Integrated rate plots are frequently used in reaction kinetics to determine orders of reactions. It is often emphasised, when using this methodology in practice, that it is necessary to monitor the reaction to a substantial fraction of completion for these plots to yield unambiguous orders. The present article gives a theoretical and statistical…

  7. Absolute and Relative Reliability of Percentage of Syllables Stuttered and Severity Rating Scales

    ERIC Educational Resources Information Center

    Karimi, Hamid; O'Brian, Sue; Onslow, Mark; Jones, Mark

    2014-01-01

    Purpose: Percentage of syllables stuttered (%SS) and severity rating (SR) scales are measures in common use to quantify stuttering severity and its changes during basic and clinical research conditions. However, their reliability has not been assessed with indices measuring both relative and absolute reliability. This study was designed to provide…

  8. pH & Rate of Enzymatic Reactions.

    ERIC Educational Resources Information Center

    Clariana, Roy B.

    1991-01-01

    A quantitative and inexpensive way to measure the rate of enzymatic reaction is provided. The effects of different pH levels on the reaction rate of an enzyme from yeast are investigated and the results graphed. Background information, a list of needed materials, directions for preparing solutions, procedure, and results and discussion are…

  9. Effective light absorption and absolute electron transport rates in the coral Pocillopora damicornis.

    PubMed

    Szabó, Milán; Wangpraseurt, Daniel; Tamburic, Bojan; Larkum, Anthony W D; Schreiber, Ulrich; Suggett, David J; Kühl, Michael; Ralph, Peter J

    2014-10-01

    Pulse Amplitude Modulation (PAM) fluorometry has been widely used to estimate the relative photosynthetic efficiency of corals. However, both the optical properties of intact corals as well as past technical constrains to PAM fluorometers have prevented calculations of the electron turnover rate of PSII. We used a new Multi-colour PAM (MC-PAM) in parallel with light microsensors to determine for the first time the wavelength-specific effective absorption cross-section of PSII photochemistry, σII(λ), and thus PAM-based absolute electron transport rates of the coral photosymbiont Symbiodinium both in culture and in hospite in the coral Pocillopora damicornis. In both cases, σII of Symbiodinium was highest in the blue spectral region and showed a progressive decrease towards red wavelengths. Absolute values for σII at 440 nm were up to 1.5-times higher in culture than in hospite. Scalar irradiance within the living coral tissue was reduced by 20% in the blue when compared to the incident downwelling irradiance. Absolute electron transport rates of P. damicornis at 440 nm revealed a maximum PSII turnover rate of ca. 250 electrons PSII(-1) s(-1), consistent with one PSII turnover for every 4 photons absorbed by PSII; this likely reflects the limiting steps in electron transfer between PSII and PSI. Our results show that optical properties of the coral host strongly affect light use efficiency of Symbiodinium. Therefore, relative electron transport rates do not reflect the productivity rates (or indeed how the photosynthesis-light response is parameterised). Here we provide a non-invasive approach to estimate absolute electron transport rates in corals.

  10. Effective reaction rates for diffusion-limited reaction cycles.

    PubMed

    Nałęcz-Jawecki, Paweł; Szymańska, Paulina; Kochańczyk, Marek; Miękisz, Jacek; Lipniacki, Tomasz

    2015-12-01

    Biological signals in cells are transmitted with the use of reaction cycles, such as the phosphorylation-dephosphorylation cycle, in which substrate is modified by antagonistic enzymes. An appreciable share of such reactions takes place in crowded environments of two-dimensional structures, such as plasma membrane or intracellular membranes, and is expected to be diffusion-controlled. In this work, starting from the microscopic bimolecular reaction rate constants and using estimates of the mean first-passage time for an enzyme-substrate encounter, we derive diffusion-dependent effective macroscopic reaction rate coefficients (EMRRC) for a generic reaction cycle. Each EMRRC was found to be half of the harmonic average of the microscopic rate constant (phosphorylation c or dephosphorylation d), and the effective (crowding-dependent) motility divided by a slowly decreasing logarithmic function of the sum of the enzyme concentrations. This implies that when c and d differ, the two EMRRCs scale differently with the motility, rendering the steady-state fraction of phosphorylated substrate molecules diffusion-dependent. Analytical predictions are verified using kinetic Monte Carlo simulations on the two-dimensional triangular lattice at the single-molecule resolution. It is demonstrated that the proposed formulas estimate the steady-state concentrations and effective reaction rates for different sets of microscopic reaction rates and concentrations of reactants, including a non-trivial example where with increasing diffusivity the fraction of phosphorylated substrate molecules changes from 10% to 90%.

  11. Effective reaction rates for diffusion-limited reaction cycles

    NASA Astrophysics Data System (ADS)

    Nałecz-Jawecki, Paweł; Szymańska, Paulina; Kochańczyk, Marek; Miekisz, Jacek; Lipniacki, Tomasz

    2015-12-01

    Biological signals in cells are transmitted with the use of reaction cycles, such as the phosphorylation-dephosphorylation cycle, in which substrate is modified by antagonistic enzymes. An appreciable share of such reactions takes place in crowded environments of two-dimensional structures, such as plasma membrane or intracellular membranes, and is expected to be diffusion-controlled. In this work, starting from the microscopic bimolecular reaction rate constants and using estimates of the mean first-passage time for an enzyme-substrate encounter, we derive diffusion-dependent effective macroscopic reaction rate coefficients (EMRRC) for a generic reaction cycle. Each EMRRC was found to be half of the harmonic average of the microscopic rate constant (phosphorylation c or dephosphorylation d), and the effective (crowding-dependent) motility divided by a slowly decreasing logarithmic function of the sum of the enzyme concentrations. This implies that when c and d differ, the two EMRRCs scale differently with the motility, rendering the steady-state fraction of phosphorylated substrate molecules diffusion-dependent. Analytical predictions are verified using kinetic Monte Carlo simulations on the two-dimensional triangular lattice at the single-molecule resolution. It is demonstrated that the proposed formulas estimate the steady-state concentrations and effective reaction rates for different sets of microscopic reaction rates and concentrations of reactants, including a non-trivial example where with increasing diffusivity the fraction of phosphorylated substrate molecules changes from 10% to 90%.

  12. Estimation of absolute protein quantities of unlabeled samples by selected reaction monitoring mass spectrometry.

    PubMed

    Ludwig, Christina; Claassen, Manfred; Schmidt, Alexander; Aebersold, Ruedi

    2012-03-01

    For many research questions in modern molecular and systems biology, information about absolute protein quantities is imperative. This information includes, for example, kinetic modeling of processes, protein turnover determinations, stoichiometric investigations of protein complexes, or quantitative comparisons of different proteins within one sample or across samples. To date, the vast majority of proteomic studies are limited to providing relative quantitative comparisons of protein levels between limited numbers of samples. Here we describe and demonstrate the utility of a targeting MS technique for the estimation of absolute protein abundance in unlabeled and nonfractionated cell lysates. The method is based on selected reaction monitoring (SRM) mass spectrometry and the "best flyer" hypothesis, which assumes that the specific MS signal intensity of the most intense tryptic peptides per protein is approximately constant throughout a whole proteome. SRM-targeted best flyer peptides were selected for each protein from the peptide precursor ion signal intensities from directed MS data. The most intense transitions per peptide were selected from full MS/MS scans of crude synthetic analogs. We used Monte Carlo cross-validation to systematically investigate the accuracy of the technique as a function of the number of measured best flyer peptides and the number of SRM transitions per peptide. We found that a linear model based on the two most intense transitions of the three best flying peptides per proteins (TopPep3/TopTra2) generated optimal results with a cross-correlated mean fold error of 1.8 and a squared Pearson coefficient R(2) of 0.88. Applying the optimized model to lysates of the microbe Leptospira interrogans, we detected significant protein abundance changes of 39 target proteins upon antibiotic treatment, which correlate well with literature values. The described method is generally applicable and exploits the inherent performance advantages of SRM

  13. The Kinetic Rate Law for Autocatalytic Reactions.

    ERIC Educational Resources Information Center

    Mata-Perez, Fernando; Perez-Benito, Joaquin F.

    1987-01-01

    Presented is a method of obtaining accurate rate constants for autocatalytic reactions. The autocatalytic oxidation of dimethylamine by permanganate ion in aqueous solution is used as an example. (RH)

  14. A Simple Apparatus for Screening Absolute Photosynthetic Rates of Single Algal Colonies in an Anoxic Atmosphere 1

    PubMed Central

    Graves, D. A.; Greenbaum, E.

    1989-01-01

    Photosynthetically generated O2 was measured from single algal colonies in a He atmosphere, using an enhanced Hersch galvanic cell. The enhancement consisted of using ultrapure potassium hydroxide as the electrolyte and ultrapure lead as the anode. The galvanic cell was placed in a regulated helium-flow system containing a reaction cuvette with the colonies and an electrolysis cell for calibration. Colonies were individually irradiated using a He-Ne laser. Data collection and laser positioning for colony irradiation were microcomputer controlled. This assay system was capable of detecting O2 production rates of 500 femtomoles per second with a signal to noise ratio of 2, a level of sensitivity that permitted the detection of photoevolved O2 from single algal colonies. This capability provides, for the first time, an approach for quantitatively measuring the absolute rate of photosynthetic O2 evolution from a single algal colony. PMID:16666743

  15. Absolute Density Calibration Cell for Laser Induced Fluorescence Erosion Rate Measurements

    NASA Technical Reports Server (NTRS)

    Domonkos, Matthew T.; Stevens, Richard E.

    2001-01-01

    Flight qualification of ion thrusters typically requires testing on the order of 10,000 hours. Extensive knowledge of wear mechanisms and rates is necessary to establish design confidence prior to long duration tests. Consequently, real-time erosion rate measurements offer the potential both to reduce development costs and to enhance knowledge of the dependency of component wear on operating conditions. Several previous studies have used laser-induced fluorescence (LIF) to measure real-time, in situ erosion rates of ion thruster accelerator grids. Those studies provided only relative measurements of the erosion rate. In the present investigation, a molybdenum tube was resistively heated such that the evaporation rate yielded densities within the tube on the order of those expected from accelerator grid erosion. This work examines the suitability of the density cell as an absolute calibration source for LIF measurements, and the intrinsic error was evaluated.

  16. Absolute rate coefficients for the recombination of open f-shell tungsten ions

    NASA Astrophysics Data System (ADS)

    Krantz, C.; Spruck, K.; Badnell, N. R.; Becker, A.; Bernhardt, D.; Grieser, M.; Hahn, M.; Novotný, O.; Repnow, R.; Savin, D. W.; Wolf, A.; Müller, A.; Schippers, S.

    2014-04-01

    We have carried out direct measurements of the absolute recombination rate coefficients of four charge states of tungsten in the range from W18+ to W21+ in a heavy ion storage ring. We find that the rich atomic fine structure of the open f-shell leads to very high resonant enhancement of the recombination rate at energies below ~50 eV. Even in the higher energy domain relevant to fusion plasma this leads to a recombination rate coefficient that is more than four times higher than predicted by the commonly used ADAS database of recombination rates. In addition to the experimental measurements we have carried out theoretical calculations using Autostructure. For W20+ these predict a plasma recombination rate coefficient that agrees much better with the measurement than the ADAS model but still fail to reproduce the experimental data in detail.

  17. Reaction rates for mesoscopic reaction-diffusion kinetics

    PubMed Central

    Hellander, Stefan; Hellander, Andreas; Petzold, Linda

    2016-01-01

    The mesoscopic reaction-diffusion master equation (RDME) is a popular modeling framework frequently applied to stochastic reaction-diffusion kinetics in systems biology. The RDME is derived from assumptions about the underlying physical properties of the system, and it may produce unphysical results for models where those assumptions fail. In that case, other more comprehensive models are better suited, such as hard-sphere Brownian dynamics (BD). Although the RDME is a model in its own right, and not inferred from any specific microscale model, it proves useful to attempt to approximate a microscale model by a specific choice of mesoscopic reaction rates. In this paper we derive mesoscopic scale-dependent reaction rates by matching certain statistics of the RDME solution to statistics of the solution of a widely used microscopic BD model: the Smoluchowski model with a Robin boundary condition at the reaction radius of two molecules. We also establish fundamental limits on the range of mesh resolutions for which this approach yields accurate results and show both theoretically and in numerical examples that as we approach the lower fundamental limit, the mesoscopic dynamics approach the microscopic dynamics. We show that for mesh sizes below the fundamental lower limit, results are less accurate. Thus, the lower limit determines the mesh size for which we obtain the most accurate results. PMID:25768640

  18. Reaction rates for mesoscopic reaction-diffusion kinetics

    NASA Astrophysics Data System (ADS)

    Hellander, Stefan; Hellander, Andreas; Petzold, Linda

    2015-02-01

    The mesoscopic reaction-diffusion master equation (RDME) is a popular modeling framework frequently applied to stochastic reaction-diffusion kinetics in systems biology. The RDME is derived from assumptions about the underlying physical properties of the system, and it may produce unphysical results for models where those assumptions fail. In that case, other more comprehensive models are better suited, such as hard-sphere Brownian dynamics (BD). Although the RDME is a model in its own right, and not inferred from any specific microscale model, it proves useful to attempt to approximate a microscale model by a specific choice of mesoscopic reaction rates. In this paper we derive mesoscopic scale-dependent reaction rates by matching certain statistics of the RDME solution to statistics of the solution of a widely used microscopic BD model: the Smoluchowski model with a Robin boundary condition at the reaction radius of two molecules. We also establish fundamental limits on the range of mesh resolutions for which this approach yields accurate results and show both theoretically and in numerical examples that as we approach the lower fundamental limit, the mesoscopic dynamics approach the microscopic dynamics. We show that for mesh sizes below the fundamental lower limit, results are less accurate. Thus, the lower limit determines the mesh size for which we obtain the most accurate results.

  19. Reaction rates for mesoscopic reaction-diffusion kinetics.

    PubMed

    Hellander, Stefan; Hellander, Andreas; Petzold, Linda

    2015-02-01

    The mesoscopic reaction-diffusion master equation (RDME) is a popular modeling framework frequently applied to stochastic reaction-diffusion kinetics in systems biology. The RDME is derived from assumptions about the underlying physical properties of the system, and it may produce unphysical results for models where those assumptions fail. In that case, other more comprehensive models are better suited, such as hard-sphere Brownian dynamics (BD). Although the RDME is a model in its own right, and not inferred from any specific microscale model, it proves useful to attempt to approximate a microscale model by a specific choice of mesoscopic reaction rates. In this paper we derive mesoscopic scale-dependent reaction rates by matching certain statistics of the RDME solution to statistics of the solution of a widely used microscopic BD model: the Smoluchowski model with a Robin boundary condition at the reaction radius of two molecules. We also establish fundamental limits on the range of mesh resolutions for which this approach yields accurate results and show both theoretically and in numerical examples that as we approach the lower fundamental limit, the mesoscopic dynamics approach the microscopic dynamics. We show that for mesh sizes below the fundamental lower limit, results are less accurate. Thus, the lower limit determines the mesh size for which we obtain the most accurate results.

  20. Universal reaction rates for ultracold molecular collisions

    NASA Astrophysics Data System (ADS)

    Julienne, Paul; Idziaszek, Zbigniew

    2010-03-01

    We offer a simple yet general model of reactive collisions using a quantum defect framework based on the separation of the collision dynamics into long-range and a short-range parts [1]. Two dimensionless quantum defect parameters s and y are used to characterize the S-matrix for a given entrance channel; s represents a phase parameter and y the probability of short-range reaction. The simple analytic expressions we obtain give universal values for s-wave and p-wave collision rates for a van der Waals potential when y approaches unity. In this limit, reaction rates are governed entirely by the threshold laws governing the quantum transmission of the long range potential and depend only on the van der Waals coefficient. The universal rate constants explain the magnitude of the observed rate constants for reactive collisions of fermionic KRb + KRb or K + KRb [2]. In contrast, reaction rates will be non-universal and depend strongly on the phase parameter s if the short range reaction probability is low, y << 1. [1] Z. Idziaszek and P. S. Julienne, arXiv:0912.0370. [2] S. Ospelkaus, K.-K. Ni, D. Wang, M. H. G. de Miranda, B. Neyenhuis, G. Qu'em'ener, P. S. Julienne, J. L. Bohn, D. S. Jin, and J. Ye, arXiv:0912.3854.

  1. Reaction rates for a generalized reaction-diffusion master equation

    PubMed Central

    Hellander, Stefan; Petzold, Linda

    2016-01-01

    It has been established that there is an inherent limit to the accuracy of the reaction-diffusion master equation. Specifically, there exists a fundamental lower bound on the mesh size, below which the accuracy deteriorates as the mesh is refined further. In this paper we extend the standard reaction-diffusion master equation to allow molecules occupying neighboring voxels to react, in contrast to the traditional approach in which molecules react only when occupying the same voxel. We derive reaction rates, in two dimensions as well as three dimensions, to obtain an optimal match to the more fine-grained Smoluchowski model, and show in two numerical examples that the extended algorithm is accurate for a wide range of mesh sizes, allowing us to simulate systems that are intractable with the standard reaction-diffusion master equation. In addition, we show that for mesh sizes above the fundamental lower limit of the standard algorithm, the generalized algorithm reduces to the standard algorithm. We derive a lower limit for the generalized algorithm which, in both two dimensions and three dimensions, is on the order of the reaction radius of a reacting pair of molecules. PMID:26871190

  2. Reaction rates for a generalized reaction-diffusion master equation

    NASA Astrophysics Data System (ADS)

    Hellander, Stefan; Petzold, Linda

    2016-01-01

    It has been established that there is an inherent limit to the accuracy of the reaction-diffusion master equation. Specifically, there exists a fundamental lower bound on the mesh size, below which the accuracy deteriorates as the mesh is refined further. In this paper we extend the standard reaction-diffusion master equation to allow molecules occupying neighboring voxels to react, in contrast to the traditional approach, in which molecules react only when occupying the same voxel. We derive reaction rates, in two dimensions as well as three dimensions, to obtain an optimal match to the more fine-grained Smoluchowski model and show in two numerical examples that the extended algorithm is accurate for a wide range of mesh sizes, allowing us to simulate systems that are intractable with the standard reaction-diffusion master equation. In addition, we show that for mesh sizes above the fundamental lower limit of the standard algorithm, the generalized algorithm reduces to the standard algorithm. We derive a lower limit for the generalized algorithm which, in both two dimensions and three dimensions, is of the order of the reaction radius of a reacting pair of molecules.

  3. Reaction rates for a generalized reaction-diffusion master equation.

    PubMed

    Hellander, Stefan; Petzold, Linda

    2016-01-01

    It has been established that there is an inherent limit to the accuracy of the reaction-diffusion master equation. Specifically, there exists a fundamental lower bound on the mesh size, below which the accuracy deteriorates as the mesh is refined further. In this paper we extend the standard reaction-diffusion master equation to allow molecules occupying neighboring voxels to react, in contrast to the traditional approach, in which molecules react only when occupying the same voxel. We derive reaction rates, in two dimensions as well as three dimensions, to obtain an optimal match to the more fine-grained Smoluchowski model and show in two numerical examples that the extended algorithm is accurate for a wide range of mesh sizes, allowing us to simulate systems that are intractable with the standard reaction-diffusion master equation. In addition, we show that for mesh sizes above the fundamental lower limit of the standard algorithm, the generalized algorithm reduces to the standard algorithm. We derive a lower limit for the generalized algorithm which, in both two dimensions and three dimensions, is of the order of the reaction radius of a reacting pair of molecules.

  4. Absolute quantification of genetically modified MON810 maize (Zea mays L.) by digital polymerase chain reaction.

    PubMed

    Corbisier, Philippe; Bhat, Somanath; Partis, Lina; Xie, Vicki Rui Dan; Emslie, Kerry R

    2010-03-01

    Quantitative analysis of genetically modified (GM) foods requires estimation of the amount of the transgenic event relative to an endogenous gene. Regulatory authorities in the European Union (EU) have defined the labelling threshold for GM food on the copy number ratio between the transgenic event and an endogenous gene. Real-time polymerase chain reaction (PCR) is currently being used for quantification of GM organisms (GMOs). Limitations in real-time PCR applications to detect very low number of DNA targets has led to new developments such as the digital PCR (dPCR) which allows accurate measurement of DNA copies without the need for a reference calibrator. In this paper, the amount of maize MON810 and hmg copies present in a DNA extract from seed powders certified for their mass content and for their copy number ratio was measured by dPCR. The ratio of these absolute copy numbers determined by dPCR was found to be identical to the ratios measured by real-time quantitative PCR (qPCR) using a plasmid DNA calibrator. These results indicate that both methods could be applied to determine the copy number ratio in MON810. The reported values were in agreement with estimations from a model elaborated to convert mass fractions into copy number fractions in MON810 varieties. This model was challenged on two MON810 varieties used for the production of MON810 certified reference materials (CRMs) which differ in the parental origin of the introduced GM trait. We conclude that dPCR has a high metrological quality and can be used for certifying GM CRMs in terms of DNA copy number ratio.

  5. Relevant energy ranges for astrophysical reaction rates

    SciTech Connect

    Rauscher, Thomas

    2010-04-15

    Effective energy windows (Gamow windows) of astrophysical reaction rates for (p,gamma), (p,n), (p,alpha), (alpha,gamma), (alpha,n), (alpha,p), (n,gamma), (n,p), and (n,alpha) on targets with 10<=Z<=83 from proton to neutron dripline are calculated using theoretical cross sections. It is shown that widely used approximation formulas for the relevant energy ranges are not valid for a large number of reactions relevant to hydrostatic and explosive nucleosynthesis. The influence of the energy dependence of the averaged widths on the location of the Gamow windows is discussed and the results are presented in tabular form.

  6. Rates of elementary reactions - Measurement and applications

    NASA Technical Reports Server (NTRS)

    Kaufman, F.

    1985-01-01

    Techniques used for characterizing elementary chemical reaction kinetics are explored. Flash- or laser-photolysis (FP) involves producing reactive species on the psec time scale and monitoring the changes spectroscopically. In the discharge flow (DF) method, reactive species are produced continuously in a flow of an inert gas containing the reactants. FP avoids surface and transport effects, while DF allows several reactions to be studied in different regions of one flow. Transport and surface boundary layer models are defined for DF calculations and sample calculations are carried out to illustrate the difficulties inherent in theoretically defining the rate constants for elementary reactions. Applications of the models thus far derived in atmospheric science and combustion studies are discussed.

  7. Two-temperature reaction and relaxation rates

    NASA Astrophysics Data System (ADS)

    Kolesnichenko, E.; Gorbachev, Yu.

    2016-09-01

    Within the method of solving the kinetic equations for gas mixtures with internal degrees of freedom developed by the authors and based on the approximate summational invariants (ASI) concept, gas-dynamic equations for a multi-temperature model for the spatially inhomogeneous case are derived. For the two-temperature case, the expressions for the non-equilibrium reaction and relaxation rates are obtained. Special attention is drawn to corresponding thermodynamic equations. Different possibilities of introducing the gas-dynamic variables related to the internal degrees of freedom are considered. One is based on the choice of quantum numbers as the ASI, while the other is based on the choice of internal (vibrational) energy as the ASI. Limits to a one-temperature situation are considered in all the cases. For the cutoff harmonic oscillator model, explicit expressions for the reaction and relaxation rates are derived.

  8. Pycnonuclear reaction rates for binary ionic mixtures

    NASA Technical Reports Server (NTRS)

    Ichimaru, S.; Ogata, S.; Van Horn, H. M.

    1992-01-01

    Through a combination of compositional scaling arguments and examinations of Monte Carlo simulation results for the interparticle separations in binary-ionic mixture (BIM) solids, we have derived parameterized expressions for the BIM pycnonuclear rates as generalizations of those in one-component solids obtained previously by Salpeter and Van Horn and by Ogata et al. We have thereby discovered a catalyzing effect of the heavier elements, which enhances the rates of reactions among the lighter elements when the charge ratio exceeds a critical value of approximately 2.3.

  9. Rate coefficient for the reaction N + NO

    NASA Technical Reports Server (NTRS)

    Fox, J. L.

    1994-01-01

    Evidence has been advanced that the rate coefficient for the reaction N + NO right arrow N2 + O has a small positive temperature dependence at the high temperatures (900 to 1500 K) that prevail in the terrestrial middle and upper thermosphere by Siskind and Rusch (1992), and at the low temperatures (100 to 200 K) of the Martian lower thermosphere by Fox (1993). Assuming that the rate coefficient recommended by the Jet Propulsion Laboratory evaluation (DeMore et al., 1992) is accurate at 300 K, we derive here the low temperature value of the activation energy for this reaction and thus the rate coefficient that best fits the Viking 1 measured NO densities. We find that the fit is acceptable for a rate coefficient of about 1.3 x 10(exp -10)(T/300)(exp 0.5)exp(-400/T) and better for a value of about 2.5 x 10(exp -10)(T/300)(exp 0.5)exp(-600/T)cu cm/s.

  10. Bayesian Estimation of Thermonuclear Reaction Rates

    NASA Astrophysics Data System (ADS)

    Iliadis, C.; Anderson, K. S.; Coc, A.; Timmes, F. X.; Starrfield, S.

    2016-11-01

    The problem of estimating non-resonant astrophysical S-factors and thermonuclear reaction rates, based on measured nuclear cross sections, is of major interest for nuclear energy generation, neutrino physics, and element synthesis. Many different methods have been applied to this problem in the past, almost all of them based on traditional statistics. Bayesian methods, on the other hand, are now in widespread use in the physical sciences. In astronomy, for example, Bayesian statistics is applied to the observation of extrasolar planets, gravitational waves, and Type Ia supernovae. However, nuclear physics, in particular, has been slow to adopt Bayesian methods. We present astrophysical S-factors and reaction rates based on Bayesian statistics. We develop a framework that incorporates robust parameter estimation, systematic effects, and non-Gaussian uncertainties in a consistent manner. The method is applied to the reactions d(p,γ)3He, 3He(3He,2p)4He, and 3He(α,γ)7Be, important for deuterium burning, solar neutrinos, and Big Bang nucleosynthesis.

  11. Study on improving the turbidity measurement of the absolute coagulation rate constant.

    PubMed

    Sun, Zhiwei; Liu, Jie; Xu, Shenghua

    2006-05-23

    The existing theories dealing with the evaluation of the absolute coagulation rate constant by turbidity measurement were experimentally tested for different particle-sized (radius = a) suspensions at incident wavelengths (lambda) ranging from near-infrared to ultraviolet light. When the size parameter alpha = 2pi a/lambda > 3, the rate constant data from previous theories for fixed-sized particles show significant inconsistencies at different light wavelengths. We attribute this problem to the imperfection of these theories in describing the light scattering from doublets through their evaluation of the extinction cross section. The evaluations of the rate constants by all previous theories become untenable as the size parameter increases and therefore hampers the applicable range of the turbidity measurement. By using the T-matrix method, we present a robust solution for evaluating the extinction cross section of doublets formed in the aggregation. Our experiments show that this new approach is effective in extending the applicability range of the turbidity methodology and increasing measurement accuracy.

  12. Fusion Reaction Rate in an Inhomogeneous Plasma

    SciTech Connect

    S. Son; N.J. Fisch

    2004-09-03

    The local fusion rate, obtained from the assumption that the distribution is a local Maxwellian, is inaccurate if mean-free-paths of fusing particles are not sufficiently small compared with the inhomogeneity length of the plasma. We calculate the first order correction of P0 in terms of the small spatial gradient and obtain a non-local modification of P(sub)0 in a shock region when the gradient is not small. Use is made of the fact that the fusion reaction cross section has a relatively sharp peak as a function of energy.

  13. Subjective evaluation of HDTV stereoscopic videos in IPTV scenarios using absolute category rating

    NASA Astrophysics Data System (ADS)

    Wang, K.; Barkowsky, M.; Cousseau, R.; Brunnström, K.; Olsson, R.; Le Callet, P.; Sjöström, M.

    2011-03-01

    Broadcasting of high definition (HD) stereobased 3D (S3D) TV are planned, or has already begun, in Europe, the US, and Japan. Specific data processing operations such as compression and temporal and spatial resampling are commonly used tools for saving network bandwidth when IPTV is the distribution form, as this results in more efficient recording and transmission of 3DTV signals, however at the same time it inevitably brings quality degradations to the processed video. This paper investigated observers quality judgments of state of the art video coding schemes (simulcast H.264/AVC or H.264/MVC), with or without added temporal and spatial resolution reduction of S3D videos, by subjective experiments using the Absolute Category Rating method (ACR) method. The results showed that a certain spatial resolution reduction working together with high quality video compressing was the most bandwidth efficient way of processing video data when the required video quality is to be judged as "good" quality. As the subjective experiment was performed in two different laboratories in two different countries in parallel, a detailed analysis of the interlab differences was performed.

  14. Metal-tag labeling coupled with multiple reaction monitoring-mass spectrometry for absolute quantitation of proteins.

    PubMed

    Wang, Xueying; Wang, Xin; Qin, Weijie; Lin, Hongjun; Wang, Jifeng; Wei, Junying; Zhang, Yangjun; Qian, Xiaohong

    2013-09-21

    Mass spectrometry-based quantitative proteomics, consisting of relative and absolute parts, has been used to discover and validate proteins with key functions related to physiological and pathological processes. Currently, stable isotope dilution-multiple reaction monitoring-mass spectrometry (SID-MRM-MS) is the most commonly used method for the absolute determination of proteins in a biological sample. A prerequisite for this method is obtaining internal standards with isotope labels. Although many approaches have been developed for the labeling and preparation of internal peptides, expensive stable isotope labeling coupled with SID-MRM-MS has limited the application and development of an absolute quantitative method. Recently, a low-cost strategy using metal-tag labeling and MS has been developed for relative quantification of peptides or proteins. The introduction of labeling using metal tags has the merits of allowing multiple labeling and enlarging the mass shift to overcome the overlap of adjacent isotope clusters. However, most papers described MRM-MS for protein absolute quantification based on the metal in its peptides labelled with metal by inductively coupled plasma mass spectrometry (ICP MS) but not on its peptides labelled with metal. In this work, a novel approach based on metal-tag labeling coupled with MRM-MS was established for the absolute quantification of peptides or proteins. The principle of the method is that a bifunctional chelator, 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid bearing an N-hydroxysuccinimide ester (DOTA-NHS ester), is used to modify the N-termini of signature peptides from a target protein, and the modified peptides then chelate a certain metal, such as thulium, to form metal-tagged peptides (Tm-DOTA-P). Internal peptides are chemically synthesized and labeled with another metal, such as terbium (Tb-DOTA-P), as the internal standard. Both the Tb-DOTA- and Tm-DOTA-labeled peptides in samples can be analysed via

  15. A simple reaction-rate model for turbulent diffusion flames

    NASA Technical Reports Server (NTRS)

    Bangert, L. H.

    1975-01-01

    A simple reaction rate model is proposed for turbulent diffusion flames in which the reaction rate is proportional to the turbulence mixing rate. The reaction rate is also dependent on the mean mass fraction and the mean square fluctuation of mass fraction of each reactant. Calculations are compared with experimental data and are generally successful in predicting the measured quantities.

  16. Current Absolute Plate Velocities Inferred from Hotspot Tracks, Comparison with Absolute Velocities Inferred from Seismic Anisotropy, and Bounds on Rates of Motion Between Groups of Hotspots

    NASA Astrophysics Data System (ADS)

    Wang, C.; Gordon, R. G.; Zheng, L.

    2015-12-01

    Hotspot tracks have been widely used to estimate the velocities of the plate relative to the lower mantle. Here we analyze the hotspot azimuth data set of Morgan and Phipps Morgan [2007] and show that the errors in plate velocity azimuths inferred from hotspot tracks in any one plate are correlated with the errors of other azimuths in the same plate. We use a two-tier analysis to account for this correlated error. First, we determine an individual best-fitting pole for each plate. Second, we determine the absolute plate velocity by minimizing the misfit while constrained by the MORVEL relative plate velocities [DeMets et al. 2010]. Our preferred model, HS4-MORVEL, uses azimuths from 9 major plates, which are weighted equally. We find that the Pacific plate rotates 0.860.016°Ma-1 right handed about 63.3°S, 96.1°E. Angular velocities of four plates (Amur, Eurasia, Yangtze and Antarctic) differ insignificantly from zero. The net rotation of the lithosphere is 0.24°±0.014° Ma-1 right handed about 52.3S, 56.9E. The angular velocities differ insignificantly from the absolute angular velocities inferred from the orientation of seismic anisotropy [Zheng et al. 2014]. The within-plate dispersion of hotspot track azimuths is 14°, which is comparable to the within-plate dispersion found from orientations of seismic anisotropy. The between-plate dispersion is 6.9±2.4° (95% confidence limits), which is smaller than that found from seismic anisotropy. The between-plate dispersion of 4.5° to 9.3° can be used to place bounds on how fast hotspots under one plate move relative to hotspots under another plate. For an average plate absolute speed of ≈50 mm/yr, the between-plate dispersion indicates a rate of motion of 4 mm/yr to 8 mm/yr for the component of hotspot motion perpendicular to plate motion. This upper bound is consistent with prior work that indicated upper bounds on motion between Pacific hotspots and Indo-Atlantic hotspots over the past 48 Ma of 8-13 mm

  17. Indirect techniques for astrophysical reaction rates determinations

    NASA Astrophysics Data System (ADS)

    Hammache, F.; Oulebsir, N.; Benamara, S.; De Séréville, N.; Coc, A.; Laird, A.; Stefan, I.; Roussel, P.

    2016-05-01

    Direct measurements of nuclear reactions of astrophysical interest can be challenging. Alternative experimental techniques such as transfer reactions and inelastic scattering reactions offer the possibility to study these reactions by using stable beams. In this context, I will present recent results that were obtained in Orsay using indirect techniques. The examples will concern various astrophysical sites, from the Big-Bang nucleo synthesis to the production of radioisotopes in massive stars.

  18. Absolute rate calculations: atom and proton transfers in hydrogen-bonded systems.

    PubMed

    Barroso, Mónica; Arnaut, Luis G; Formosinho, Sebastião J

    2005-02-01

    We calculate energy barriers of atom- and proton-transfer reactions in hydrogen-bonded complexes in the gas phase. Our calculations do not involve adjustable parameters and are based on bond-dissociation energies, ionization potentials, electron affinities, bond lengths, and vibration frequencies of the reactive bonds. The calculated barriers are in agreement with experimental data and high-level ab initio calculations. We relate the height of the barrier with the molecular properties of the reactants and complexes. The structure of complexes with strong hydrogen bonds approaches that of the transition state, and substantially reduces the barrier height. We calculate the hydrogen-abstraction rates in H-bonded systems using the transition-state theory with the semiclassical correction for tunneling, and show that they are in excellent agreement with the experimental data. H-bonding leads to an increase in tunneling corrections at room temperature. PMID:15751360

  19. Representing Rate Equations for Enzyme-Catalyzed Reactions

    ERIC Educational Resources Information Center

    Ault, Addison

    2011-01-01

    Rate equations for enzyme-catalyzed reactions are derived and presented in a way that makes it easier for the nonspecialist to see how the rate of an enzyme-catalyzed reaction depends upon kinetic constants and concentrations. This is done with distribution equations that show how the rate of the reaction depends upon the relative quantities of…

  20. Impact of THM reaction rates for astrophysics

    NASA Astrophysics Data System (ADS)

    Lamia, L.; Spitaleri, C.; Tognelli, E.; Degl'Innocenti, S.; Pizzone, R. G.; Moroni, P. G. Prada; Puglia, S. M. R.; Romano, S.; Sergi, M. L.

    2015-10-01

    Burning reaction S(E)-factor determinations are among the key ingredients for stellar models when one has to deal with energy generation evaluation and the genesis of the elements at stellar conditions. To by pass the still present uncertainties in extrapolating low-energies values, S(E)-factor measurements for charged-particle induced reactions involving light elements have been made available by devote Trojan Horse Method (THM) experiments. The recent results are here discussed together with their impact in astrophysics.

  1. Organocatalytic and enantioselective Michael reaction between α-nitroesters and nitroalkenes. Syn/anti-selectivity control using catalysts with the same absolute backbone chirality.

    PubMed

    Martínez, Jose I; Uria, Uxue; Muñiz, Maria; Reyes, Efraím; Carrillo, Luisa; Vicario, Jose L

    2015-01-01

    The asymmetric and catalytic Michael reaction between α-nitroesters and nitroalkenes has been studied in the presence of two bifunctional catalysts both containing the same absolute chirality at the carbon backbone. The reaction performed in similar conditions allows us to control the syn or anti selectivity of the Michael adduct obtaining good yields and high enantiocontrol in all cases.

  2. Comparison of Hydrogen Atom Abstraction Rates of Terminal and Bridging Hydrides in Triosmium Clusters: Absolute Abstraction Rate Constants for Benzyl Radical

    SciTech Connect

    Franz, James A.; Kolwaite, Douglas S.; Linehan, John C.; Rosenberg, Edward

    2004-02-02

    Absolute rate constants for hydrogen atom abstraction by benzyl radical from Os3(m-H)2 (CO)9PPh3(1), Os3 (m-H)(H)(CO)10PPh3(2), Os3(m-H)(CO)9(m3-h2-C9H6N)(3), Os3(m-H)(CO)9(m-h2-C9H6N)PPh3 (5) and Os3(m-H)(CO)10(m-h2-C9H6N) (4) were determined in benzene by competition of the abstraction reaction with the self termination of benzyl radical. Thus, experimental values of kabs/kt1/2 were combined with rate constants for self-termination of benzyl radical in benzene from the expression ln(2kt/M-1s-1= 27.23 - 2952.4/RT), RT in cal/mol, to give absolute rate constants for abstraction, kabs: for Os3(m-H)2 (CO)9PPh3(1) in benzene, log (kabs/M-1s-1)= (8.86 .20) - (6.90 .31)/q; for Os3 (m-H)(H)(CO)(10PPh3) (2) log (kabs/M-1s-1)= (8.15 .49) - (4.41 .72)/q; for Os3(m-H)(CO)9(m3-h2-C9H6N) (3) log (kabs/M-1s-1)= (8.9 2) (8.8 3)/q; value for 4 and for Os3(m-H)(CO9)(m-h2-C9H6N)(PPh3) (5) log (kabs/M-1s-1)= (7.0 .38) - (4.15 .56)/q, q= 2.303RT kcal/mol. The terminal hydride on the Os3 c luster 2 is about 10 times more reactive than bridging hydride in 1. The results show that while m-H bridging retards the rate of hydrogen abstraction relative to terminal hydrogen, the bridging hydrogen remains appreciably reactive in the m-H form. In fact, the highest rate observed was for the bridging hydride in 4, Os3(m-H)(CO)10(m-h2-C9H6N). Temperature dependent kinetics for compound 4 were not determined because of significant CO loss above room temperature. However at 293 K the rate constant of hydrogen atom abstraction from this electron-rich cluster, 5 2 x 104 M-1s-1, is at least twice as fast as that for the terminal hydrogen atom cluster, 2, Os3 (m-H)(H)(CO)10PPh3, kabs (298 K)= 1.8 x 104 M-1s-1. The rate constants for hydrogen atom abstraction by benzyl radical from these osmium clusters increase with increasing electron density on the osmium cluster and decrease with increasing steric bulk of the ligands.

  3. Equilibration Rates and Negative Absolute Temperatures for Ultracold Atoms in Optical Lattices

    NASA Astrophysics Data System (ADS)

    Rapp, Akos; Mandt, Stephan; Rosch, Achim

    2010-11-01

    As highly tunable interacting systems, cold atoms in optical lattices are ideal to realize and observe negative absolute temperatures, T<0. We show theoretically that, by reversing the confining potential, stable superfluid condensates at finite momentum and T<0 can be created with low entropy production for attractive bosons. They may serve as “smoking gun” signatures of equilibrated T<0. For fermions, we analyze the time scales needed to equilibrate to T<0. For moderate interactions, the equilibration time is proportional to the square of the radius of the cloud and grows with increasing interaction strengths as atoms and energy are transported by diffusive processes.

  4. Channel specific rate constants for reactions of O(1D) with HCl and HBr

    NASA Technical Reports Server (NTRS)

    Wine, P. H.; Wells, J. R.; Ravishankara, A. R.

    1986-01-01

    The absolute rate coefficients and product yields for reactions of O(1D) with HCl(1) and HBr(2) at 287 K are presently determined by means of the time-resolved resonance fluorescence detection of O(3P) and H(2S) in conjunction with pulsed laser photolysis of O3/HX/He mixtures. Total rate coefficients for O(1D) removal are found to be, in units of 10 to the -10th cu cm/molecule per sec, k(1) = 1.50 + or - 0.18 and k(2) 1.48 + or - 0.16; the absolute accuracy of these rate coefficients is estimated to be + or - 20 percent.

  5. Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays.

    PubMed

    Bustin, S A

    2000-10-01

    The reverse transcription polymerase chain reaction (RT-PCR) is the most sensitive method for the detection of low-abundance mRNA, often obtained from limited tissue samples. However, it is a complex technique, there are substantial problems associated with its true sensitivity, reproducibility and specificity and, as a quantitative method, it suffers from the problems inherent in PCR. The recent introduction of fluorescence-based kinetic RT-PCR procedures significantly simplifies the process of producing reproducible quantification of mRNAs and promises to overcome these limitations. Nevertheless, their successful application depends on a clear understanding of the practical problems, and careful experimental design, application and validation remain essential for accurate quantitative measurements of transcription. This review discusses the technical aspects involved, contrasts conventional and kinetic RT-PCR methods for quantitating gene expression and compares the different kinetic RT-PCR systems. It illustrates the usefulness of these assays by demonstrating the significantly different levels of transcription between individuals of the housekeeping gene family, glyceraldehyde-3-phosphate-dehydrogenase (GAPDH).

  6. NACRE: A European Compilation of Reaction rates for Astrophysics

    SciTech Connect

    Angulo, Carmen

    1999-11-16

    We report on the program and results of the NACRE network (Nuclear Astrophysics Compilation of REaction rates). We have compiled low-energy cross section data for 86 charged-particle induced reactions involving light (1{<=}Z{<=}14) nuclei. The corresponding Maxwellian-averaged thermonuclear reactions rates are calculated in the temperature range from 10{sup 6} K to 10{sup 10} K. The web site http://pntpm.ulb.ac.be/nacre.htm, including the cross section data base and the reaction rates, allows users to browse electronically all the information on the reactions studied in this compilation.

  7. NACRE: A European Compilation of Reaction Rates for Astrophysics

    SciTech Connect

    Carmen Angulo

    1999-12-31

    We report on the program and results of the NACRE network (Nuclear Astrophysics Compilation of Reaction rates). We have compiled low-energy cross section data for 86 charged-particle induced reactions involving light (1 {<=} Z {<=} 14) nuclei. The corresponding Maxwellian-averaged thermonuclear reactions rates are calculated in the temperature range from 10{sup 6} K to 10{sup 10} K. The web site, http://pntpm.ulb.ac.be/nacre.htm, including the cross section data base and the reaction rates, allows users to browse electronically all the information on the reactions studied in this compilation.

  8. Viscosity Dependence of Some Protein and Enzyme Reaction Rates: Seventy-Five Years after Kramers.

    PubMed

    Sashi, Pulikallu; Bhuyan, Abani K

    2015-07-28

    Kramers rate theory is a milestone in chemical reaction research, but concerns regarding the basic understanding of condensed phase reaction rates of large molecules in viscous milieu persist. Experimental studies of Kramers theory rely on scaling reaction rates with inverse solvent viscosity, which is often equated with the bulk friction coefficient based on simple hydrodynamic relations. Apart from the difficulty of abstraction of the prefactor details from experimental data, it is not clear why the linearity of rate versus inverse viscosity, k ∝ η(-1), deviates widely for many reactions studied. In most cases, the deviation simulates a power law k ∝ η(-n), where the exponent n assumes fractional values. In rate-viscosity studies presented here, results for two reactions, unfolding of cytochrome c and cysteine protease activity of human ribosomal protein S4, show an exceedingly overdamped rate over a wide viscosity range, registering n values up to 2.4. Although the origin of this extraordinary reaction friction is not known at present, the results indicate that the viscosity exponent need not be bound by the 0-1 limit as generally suggested. For the third reaction studied here, thermal dissociation of CO from nativelike cytochrome c, the rate-viscosity behavior can be explained using Grote-Hynes theory of time-dependent friction in conjunction with correlated motions intrinsic to the protein. Analysis of the glycerol viscosity-dependent rate for the CO dissociation reaction in the presence of urea as the second variable shows that the protein stabilizing effect of subdenaturing amounts of urea is not affected by the bulk viscosity. It appears that a myriad of factors as diverse as parameter uncertainty due to the difficulty of knowing the exact reaction friction and both mode and consequences of protein-solvent interaction work in a complex manner to convey as though Kramers rate equation is not absolute. PMID:26135219

  9. Viscosity Dependence of Some Protein and Enzyme Reaction Rates: Seventy-Five Years after Kramers.

    PubMed

    Sashi, Pulikallu; Bhuyan, Abani K

    2015-07-28

    Kramers rate theory is a milestone in chemical reaction research, but concerns regarding the basic understanding of condensed phase reaction rates of large molecules in viscous milieu persist. Experimental studies of Kramers theory rely on scaling reaction rates with inverse solvent viscosity, which is often equated with the bulk friction coefficient based on simple hydrodynamic relations. Apart from the difficulty of abstraction of the prefactor details from experimental data, it is not clear why the linearity of rate versus inverse viscosity, k ∝ η(-1), deviates widely for many reactions studied. In most cases, the deviation simulates a power law k ∝ η(-n), where the exponent n assumes fractional values. In rate-viscosity studies presented here, results for two reactions, unfolding of cytochrome c and cysteine protease activity of human ribosomal protein S4, show an exceedingly overdamped rate over a wide viscosity range, registering n values up to 2.4. Although the origin of this extraordinary reaction friction is not known at present, the results indicate that the viscosity exponent need not be bound by the 0-1 limit as generally suggested. For the third reaction studied here, thermal dissociation of CO from nativelike cytochrome c, the rate-viscosity behavior can be explained using Grote-Hynes theory of time-dependent friction in conjunction with correlated motions intrinsic to the protein. Analysis of the glycerol viscosity-dependent rate for the CO dissociation reaction in the presence of urea as the second variable shows that the protein stabilizing effect of subdenaturing amounts of urea is not affected by the bulk viscosity. It appears that a myriad of factors as diverse as parameter uncertainty due to the difficulty of knowing the exact reaction friction and both mode and consequences of protein-solvent interaction work in a complex manner to convey as though Kramers rate equation is not absolute.

  10. Absolute hydrogen depth profiling using the resonant 1H(15N, αγ)12C nuclear reaction

    NASA Astrophysics Data System (ADS)

    Reinhardt, Tobias P.; Akhmadaliev, Shavkat; Bemmerer, Daniel; Stöckel, Klaus; Wagner, Louis

    2016-08-01

    Resonant nuclear reactions are a powerful tool for the determination of the amount and profile of hydrogen in thin layers of material. Usually, this tool requires the use of a standard of well-known composition. The present work, by contrast, deals with standard-less hydrogen depth profiling. This approach requires precise nuclear data, e.g. on the widely used 1 H(15 N, αγ)12 C reaction, resonant at 6.4 MeV 15 N beam energy. Here, the strongly anisotropic angular distribution of the emitted γ -rays from this resonance has been re-measured, resolving a previous discrepancy. Coefficients of (0.38 ± 0.04) and (0.80 ± 0.04) have been deduced for the second and fourth order Legendre polynomials, respectively. In addition, the resonance strength has been re-evaluated to (25.0 ± 1.5) eV, 10% higher than previously reported. A simple working formula for the hydrogen concentration is given for cases with known γ -ray detection efficiency. Finally, the absolute approach is illustrated using two examples.

  11. Model-based evaluation of microbial mass fractions: effect of absolute anaerobic reaction time on microbial mass fractions.

    PubMed

    Tunçal, Tolga

    2010-04-14

    Although enhanced biological phosphorus removal processes (EBPR) are popular methods for nutrient control, unstable treatment performances of full-scale systems are still not well understood. In this study, the interaction between electron acceptors present at the start of the anaerobic phase of an EBPR system and the amount of organic acids generated from simple substrate (rbsCOD) was investigated in a full-scale wastewater treatment plant. Quantification of microbial groups including phosphorus-accumulating microorganisms (PAOs), denitrifying PAOs (DPAOs), glycogen-accumulating microorganisms (GAOs) and ordinary heterotrophic microorganisms (OHOs) was based on a modified dynamic model. The intracellular phosphorus content of PAOs was also determined by the execution of mass balances for the biological stages of the plant. The EBPR activities observed in the plant and in batch tests (under idealized conditions) were compared with each other statistically as well. Modelling efforts indicated that the use of absolute anaerobic reaction (eta1) instead of nominal anaerobic reaction time (eta), to estimate the amount of available substrate for PAOs, significantly improved model accuracy. Another interesting result of the study was the differences in EBPR characteristics observed in idealized and real conditions. PMID:20480829

  12. Field Based Constraints on Reaction Rates in the Crust

    NASA Astrophysics Data System (ADS)

    Baxter, E. F.

    2004-12-01

    Modern research in plate boundary processes involving metamorphism frequently employs complex physical models. Such models require some quantification (or assumption) of the rate at which metamorphic reactions, or chemical exchange, proceed in natural systems. Here, a compilation of available quantitative field-based constraints on high temperature reaction rates will be presented. These include quantifications based on isotopic exchange, porphyroblast and reaction corona growth models, geochronology, and textural analysis. Additionally, natural strain rates provide an important upper bound on simultaneous reaction rates by virtue of a direct mechanistic link between reaction and strain that applies in most situations within the deforming crust. These data show that reaction rates attending regional metamorphism are 4-7 orders of magnitude slower than most laboratory-based predictions. A general rate law for regional metamorphic reactions has been derived which best describes these field-based data: log10(Rnet) = .0029T-9.6±1, where Rnet is the net reaction rate in g/cm2/yr and T is temperature (C) (Baxter 2003, JGSL). Reaction rates attending contact metamorphism differ from laboratory-based predictions by less than 2 orders of magnitude, and are in closest agreement at higher temperatures. Regional metamorphic reaction rates may be limited by comparatively lesser (or transient) availability of aqueous fluid in the intergranular medium, slower heat input, and smaller deviations from equilibrium. Implications of slow natural metamorphic reaction rates may include a delay in the completion of metamorphic reactions which release (or take in) volatiles, and transform the mineralogy of the crust in dynamic plate boundary settings such as subduction zones.

  13. Multidimensional reaction rate theory with anisotropic diffusion.

    PubMed

    Berezhkovskii, Alexander M; Szabo, Attila; Greives, Nicholas; Zhou, Huan-Xiang

    2014-11-28

    An analytical expression is derived for the rate constant that describes diffusive transitions between two deep wells of a multidimensional potential. The expression, in contrast to the Kramers-Langer formula for the rate constant, is valid even when the diffusion is highly anisotropic. Our approach is based on a variational principle for the reactive flux and uses a trial function for the splitting probability or commitor. The theoretical result is validated by Brownian dynamics simulations.

  14. DSMC predictions of non-equilibrium reaction rates.

    SciTech Connect

    Gallis, Michail A.; Bond, Ryan Bomar; Torczynski, John Robert

    2010-04-01

    A set of Direct Simulation Monte Carlo (DSMC) chemical-reaction models recently proposed by Bird and based solely on the collision energy and the vibrational energy levels of the species involved is applied to calculate nonequilibrium chemical-reaction rates for atmospheric reactions in hypersonic flows. The DSMC non-equilibrium model predictions are in good agreement with theoretical models and experimental measurements. The observed agreement provides strong evidence that modeling chemical reactions using only the collision energy and the vibrational energy levels provides an accurate method for predicting non-equilibrium chemical-reaction rates.

  15. Product distributions and rate constants for ion-molecule reactions in water, hydrogen sulfide, ammonia, and methane

    NASA Technical Reports Server (NTRS)

    Huntress, W. T., Jr.; Pinizzotto, R. F., Jr.

    1973-01-01

    The thermal energy, bimolecular ion-molecule reactions occurring in gaseous water, hydrogen sulfide, ammonia, and methane have been identified and their rate constants determined using ion cyclotron resonance methods. Absolute rate constants were determined for the disappearance of the primary ions by using the trapped ion method, and product distributions were determined for these reactions by using the cyclotron ejection method. Previous measurements are reviewed and compared with the results using the present methods. The relative rate constants for hydrogen-atom abstraction, proton transfer, and charge transfer are also determined for reactions of the parent ions.

  16. Reaction rate modeling of PBXN-110

    NASA Astrophysics Data System (ADS)

    Miller, P. J.; Sutherland, G. T.

    1996-05-01

    The reactive rate model for Navy explosive PBXN-110 has been determined. The rate parameters for the Lee-Tarver model were evaluated by comparing the results of DYNA2D hydrocode simulations to the embedded gauge data of gas-gun tests in which the shock loading is mostly one-dimensional. The model parameters were refined such that the failure diameter of the explosive could be reproduced in the calculations. The model was used to simulate a series of Navy sensitivity tests. These are reported here and include detonation curvature, detonation velocity dependency on charge diameter, Modified Gap, and Underwater Sensitivity tests.

  17. Easy Absolute Values? Absolutely

    ERIC Educational Resources Information Center

    Taylor, Sharon E.; Mittag, Kathleen Cage

    2015-01-01

    The authors teach a problem-solving course for preservice middle-grades education majors that includes concepts dealing with absolute-value computations, equations, and inequalities. Many of these students like mathematics and plan to teach it, so they are adept at symbolic manipulations. Getting them to think differently about a concept that they…

  18. A review of reaction rates in high temperature air

    NASA Technical Reports Server (NTRS)

    Park, Chul

    1989-01-01

    The existing experimental data on the rate coefficients for the chemical reactions in nonequilibrium high temperature air are reviewed and collated, and a selected set of such values is recommended for use in hypersonic flow calculations. For the reactions of neutral species, the recommended values are chosen from the experimental data that existed mostly prior to 1970, and are slightly different from those used previously. For the reactions involving ions, the recommended rate coefficients are newly chosen from the experimental data obtained more recently. The reacting environment is assumed to lack thermal equilibrium, and the rate coefficients are expressed as a function of the controlling temperature, incorporating the recent multitemperature reaction concept.

  19. On the rate of relativistic surface chemical reactions.

    PubMed

    Veitsman, E V

    2004-07-15

    On the basis of special relativity and the classical theory of chemical reaction rates it is shown how the surface chemical reaction rates vary as v --> c, where v is the velocity of the object under study and c is the velocity of light. PMID:15178286

  20. Reversible intramolecular hydrogen transfer between cysteine thiyl radicals and glycine and alanine in model peptides: absolute rate constants derived from pulse radiolysis and laser flash photolysis

    PubMed Central

    Nauser, Thomas; Casi, Giulio; Koppenol, Willem H.; Schöneich, Christian

    2008-01-01

    The intramolecular reaction of cysteine thiyl radicals with peptide and protein αC-H bonds represents a potential mechanism for irreversible protein oxidation. Here, we have measured absolute rate constants for these reversible hydrogen transfer reactions by means of pulse radiolysis and laser flash photolysis of model peptides. For N-Ac-CysGly6 and N-Ac-CysGly2AspGly3, Cys thiyl radicals abstract hydrogen atoms from Gly with kf = (1.0-1.1)×105 s-1, generating carbon-centered radicals, while the reverse reaction proceeds with kr = (8.0-8.9)×105 s-1. The forward reaction shows a normal kinetic isotope effect of kH/kD = 6.9, while the reverse reaction shows a significantly higher normal kinetic isotope effect of 17.6, suggesting a contribution of tunneling. For N-Ac-CysAla2AspAla3, cysteine thiyl radicals abstract hydrogen atoms from Ala with kf =(0.9-1.0)×104 s-1, while the reverse reaction proceeds with kr = 1.0×105 s-1. The order of reactivity, Gly > Ala, is in accord with previous studies on intermolecular reactions of thiyl radicals with these amino acids. The fact that kf < kr suggests some secondary structure of the model peptides, which prevents the adoption of extended conformations, for which calculations of homolytic bond dissociation energies would have predicted kf > kr. Despite kf < kr, model calculations show that intramolecular hydrogen abstraction by Cys thiyl radicals can lead to significant oxidation of other amino acids in the presence of physiologic oxygen concentrations. PMID:18973367

  1. Rate constant for the reaction of O(3P) with diacetylene from 210 to 423 K

    NASA Technical Reports Server (NTRS)

    Mitchell, M. B.; Nava, D. F.; Stief, L. J.

    1986-01-01

    The absolute rate constant for the reaction of O(3P) with diacetylene (C4H2) has been measured as a function of pressure and temperature by the flash-photolysis/resonance-fluorescence method. At 298 K and below, no pressure dependence of the rate constant was observed, but at 423 K a moderate (factor-of-2) increase was detected in the range 3 to 75 torr Ar.Results at or near the high-pressure limit are represented by an Arrhenius expression over the temperature range 210 to 423 K. The results are compared with previous determinations, all of which employed the discharge-flow/mass-spectrometry technique. The mechanism of the reaction is considered, including both primary and secondary processes. The heats of formation of the reactants, adducts, and products for the O(3P) + C4H2 reaction are discussed and contrasted with those for O(3P) + C2H2.

  2. Non-resonant Triple- α Reaction Rate at Low Temperature

    NASA Astrophysics Data System (ADS)

    Tamii, A.; Aoi, N.; Fujita, H.; Fujita, Y.; Hatanaka, K.; Hashimoto, T.; Kawabata, T.; Miki, K.; Itoh, M.; Itoh, T.; Kamimura, M.; Ogata, K.; Ong, H. J.; Sakaguchi, H.; Shima, T.; Suzuki, T.; Yamamoto, T.

    2013-08-01

    The triple α reaction rate in stars is quite important in many astrophysical scenarios including the stellar evolution and carbon synthesis in stars. Recently the non-resonant triple α reaction rate has been reevaluated using a calculation with the continuum-discretized coupled-channels (CDCC) method, which dramatically increased the rate at low temperature compared to the widely-used NACRE compilation. Since the enhancement influences strongly on astrophysical model simulations, we have planned an experiment for drawing conclusion on the non-resonant triple α reaction rate at low temperature by measuring the three- α continuum state in 12C. We report the present situation of the experiment.

  3. Imaginary-time formalism for triple-α reaction rates

    NASA Astrophysics Data System (ADS)

    Akahori, T.; Funaki, Y.; Yabana, K.

    2015-08-01

    Using imaginary-time formalism, it is shown that the triple-α reaction rate can be reliably calculated without the need to solve scattering problems involving three charged particles. The calculated reaction rate is found to agree well with the empirical NACRE rate, which is widely adopted in stellar evolution calculations. The reason for this is explained using R -matrix theory. Extremely slow convergence is found to occur when a coupled-channel expansion is introduced, which helps to explain the very different reaction rates obtained using a coupled-channel approach.

  4. Estimating the Backup Reaction Wheel Orientation Using Reaction Wheel Spin Rates Flight Telemetry from a Spacecraft

    NASA Technical Reports Server (NTRS)

    Rizvi, Farheen

    2013-01-01

    A report describes a model that estimates the orientation of the backup reaction wheel using the reaction wheel spin rates telemetry from a spacecraft. Attitude control via the reaction wheel assembly (RWA) onboard a spacecraft uses three reaction wheels (one wheel per axis) and a backup to accommodate any wheel degradation throughout the course of the mission. The spacecraft dynamics prediction depends upon the correct knowledge of the reaction wheel orientations. Thus, it is vital to determine the actual orientation of the reaction wheels such that the correct spacecraft dynamics can be predicted. The conservation of angular momentum is used to estimate the orientation of the backup reaction wheel from the prime and backup reaction wheel spin rates data. The method is applied in estimating the orientation of the backup wheel onboard the Cassini spacecraft. The flight telemetry from the March 2011 prime and backup RWA swap activity on Cassini is used to obtain the best estimate for the backup reaction wheel orientation.

  5. Noninvasive optical quantification of absolute blood flow, blood oxygenation, and oxygen consumption rate in exercising skeletal muscle

    NASA Astrophysics Data System (ADS)

    Gurley, Katelyn; Shang, Yu; Yu, Guoqiang

    2012-07-01

    This study investigates a method using novel hybrid diffuse optical spectroscopies [near-infrared spectroscopy (NIRS) and diffuse correlation spectroscopy (DCS)] to obtain continuous, noninvasive measurement of absolute blood flow (BF), blood oxygenation, and oxygen consumption rate (\\Vdot O2) in exercising skeletal muscle. Healthy subjects (n=9) performed a handgrip exercise to increase BF and \\Vdot O2 in forearm flexor muscles, while a hybrid optical probe on the skin surface directly monitored oxy-, deoxy-, and total hemoglobin concentrations ([HbO2], [Hb], and THC), tissue oxygen saturation (StO2), relative BF (rBF), and relative oxygen consumption rate (r\\Vdot O2). The rBF and r\\Vdot O2 signals were calibrated with absolute baseline BF and \\Vdot O2 obtained through venous and arterial occlusions, respectively. Known problems with muscle-fiber motion artifacts in optical measurements during exercise were mitigated using a novel gating algorithm that determined muscle contraction status based on control signals from a dynamometer. Results were consistent with previous findings in the literature. This study supports the application of NIRS/DCS technology to quantitatively evaluate hemodynamic and metabolic parameters in exercising skeletal muscle and holds promise for improving diagnosis and treatment evaluation for patients suffering from diseases affecting skeletal muscle and advancing fundamental understanding of muscle and exercise physiology.

  6. Absolute rate coefficients for photorecombination of beryllium-like and boron-like silicon ions

    NASA Astrophysics Data System (ADS)

    Bernhardt, D.; Becker, A.; Brandau, C.; Grieser, M.; Hahn, M.; Krantz, C.; Lestinsky, M.; Novotný, O.; Repnow, R.; Savin, D. W.; Spruck, K.; Wolf, A.; Müller, A.; Schippers, S.

    2016-04-01

    We report measured rate coefficients for electron-ion recombination of Si10+ forming Si9+ and of Si9+ forming Si8+, respectively. The measurements were performed using the electron-ion merged-beams technique at a heavy-ion storage ring. Electron-ion collision energies ranged from 0 to 50 eV for Si9+ and from 0 to 2000 eV for Si10+, thus, extending previous measurements for Si10+ (Orban et al 2010 Astrophys. J. 721 1603) to much higher energies. Experimentally derived rate coefficients for the recombination of Si9+ and Si10+ ions in a plasma are presented along with simple parameterizations. These rate coefficients are useful for the modeling of the charge balance of silicon in photoionized plasmas (Si9+ and Si10+) and in collisionally ionized plasmas (Si10+ only). In the corresponding temperature ranges, the experimentally derived rate coefficients agree with the latest corresponding theoretical results within the experimental uncertainties.

  7. Creatine kinase reaction rates in rat brain during chronic ischemia.

    PubMed

    Mlynárik, V; Kasparová, S; Liptaj, T; Dobrota, D; Horecký, J; Belan, V

    1998-12-01

    Creatine kinase reaction rates were measured by magnetisation transfer technique in the brain of healthy adult and aged rats and in the rats with mild or severe chronic cerebral ischemia. These measurements indicated that the rate constant of the creatine kinase reaction is significantly reduced in the case of chronic brain ischemia in aged rats. In contrast, occlusion of both carotid arteries in adult rats produced a slight increase in the reaction rate 4 weeks after occlusion. At the same time, corresponding conventional phosphorus magnetic resonance spectra showed negligible changes in signal intensities. PMID:10050942

  8. Rate constant for reaction of atomic hydrogen with germane

    NASA Technical Reports Server (NTRS)

    Nava, David F.; Payne, Walter A.; Marston, George; Stief, Louis J.

    1990-01-01

    Due to the interest in the chemistry of germane in the atmospheres of Jupiter and Saturn, and because previously reported kinetic reaction rate studies at 298 K gave results differing by a factor of 200, laboratory measurements were performed to determine the reaction rate constant for H + GeH4. Results of the study at 298 K, obtained via the direct technique of flash photolysis-resonance fluorescence, yield the reaction rate constant, k = (4.08 + or - 0.22) x 10(exp -12) cu cm/s.

  9. Absolute depth-dose-rate measurements for an {sup 192}Ir HDR brachytherapy source in water using MOSFET detectors

    SciTech Connect

    Zilio, Valery Olivier; Joneja, Om Parkash; Popowski, Youri; Rosenfeld, Anatoly; Chawla, Rakesh

    2006-06-15

    Reported MOSFET measurements concern mostly external radiotherapy and in vivo dosimetry. In this paper, we apply the technique for absolute dosimetry in the context of HDR brachytherapy using an {sup 192}Ir source. Measured radial dose rate distributions in water for different planes perpendicular to the source axis are presented and special attention is paid to the calibration of the R and K type detectors, and to the determination of appropriate correction factors for the sensitivity variation with the increase of the threshold voltage and the energy dependence. The experimental results are compared with Monte Carlo simulated dose rate distributions. The experimental results show a good agreement with the Monte Carlo simulations: the discrepancy between experimental and Monte Carlo results being within 5% for 82% of the points and within 10% for 95% of the points. Moreover, all points except two are found to lie within the experimental uncertainties, confirming thereby the quality of the results obtained.

  10. Absolute vertical uplift rates in western Washington inferred from historical leveling and tide gauge data

    NASA Astrophysics Data System (ADS)

    Alba, S.; Weldon, R.; Livelybrooks, D.; Schmidt, D. A.

    2009-12-01

    We present a new uplift rate map for western Washington based on reanalysis of water levels from the 12 major NOAA tide gauges, three new water level series that combine NOAA’s historical records and our temporarily deployed gauges (at Cape Disappointment, Olympia, and Point Grenville), and reinterpretation of repeated 1st and 2nd order NGS leveling lines. As previous studies have concluded, EW gradients in the vertical deformation field are consistent with strain accumulation across the Cascadia subduction zone interface; however, uplift rates are highly variable along the outer Washington coast, ranging from approximately +4 to -2 mm/yr, suggesting significant changes in the depth of locking along strike. Improved measure of uplift rates from water level changes are accomplished by aggressively editing available hourly data and applying a transfer function approach to better remove tides, ocean and atmospheric “noise”. The analysis allows uplift to be determined from shorter and less complete records and in some cases permits the identification of transients like slow earthquakes. As we found in a similar study in Oregon (Burgette et al, JGR, 2009), releveled lines need to be anchored to as many tide gauges as possible to remove systematic error, and repeated releveling (especially of tidal benchmarks) is required to identify the few stable benchmarks that link water levels at the tidal stations to each other through time and to the regional NGS leveling lines. A portion of the westernmost Washington coast, from an approximate latitude of 47.4 to 47.9 N, is subsiding, and tilts suggest that the peak in uplift rate is well onshore, indicating that the locked zone extends onshore, in contrast to most previous studies. To the north, the peak in uplift approximately passes through Neah Bay (the NW corner of the Olympic Peninsula, lat. 48.3 N), and to the south the peak is offshore from Grays Harbor (lat. 47 N) to the Columbia River (lat. 46.2 N). A north

  11. An Improved Reaction Rate Equation for Simulating the Ignition and Growth of Reaction in High Explosives

    SciTech Connect

    Murphy, M J

    2010-03-08

    We describe an improved reaction rate equation for simulating ignition and growth of reaction in high explosives. It has been implemented into CALE and ALE3D as an alternate to the baseline the Lee-Tarver reactive flow model. The reactive flow model treats the explosive in two phases (unreacted/reactants and reacted/products) with a reaction rate equation to determine the fraction reacted, F. The improved rate equation has fewer parameters, is continuous with continuous derivative, results in a unique set of reaction rate parameters for each explosive while providing the same functionality as the baseline rate equation. The improved rate equation uses a cosine function in the ignition term and a sine function in the growth and completion terms. The improved rate equation is simpler with fewer parameters.

  12. Absolute rate constant determinations for the deactivation of O/1D/ by time resolved decay of O/1D/ yields O/3P/ emission

    NASA Technical Reports Server (NTRS)

    Davidson, J. A.; Sadowski, C. M.; Schiff, H. I.; Howard, C. J.; Schmeltekopf, A. L.; Jennings, D. A.; Streit, G. E.

    1976-01-01

    Absolute rate constants for the deactivation of O(1D) atoms by some atmospheric gases have been determined by observing the time-resolved emission of O(1D) at 630 nm. O(1D) atoms were produced by the dissociation of ozone via repetitive laser pulses at 266 nm. Absolute rate constants for the relaxation of O(1D) at 298 K are reported for N2, O2, CO2, O3, H2, D2, CH4, HCl, NH3, H2O, N2O, and Ne. The results obtained are compared with previous relative and absolute measurements reported in the literature.

  13. Non-resonant triple alpha reaction rate at low temperature

    SciTech Connect

    Itoh, T.; Tamii, A.; Aoi, N.; Fujita, H.; Hashimoto, T.; Miki, K.; Ogata, K.; Carter, J.; Donaldson, L.; Sideras-Haddad, E.; Furuno, T.; Kawabata, T.; Kamimura, M.; Nemulodi, F.; Neveling, R.; Smit, F. D.; Swarts, C.

    2014-05-02

    Our experimental goal is to study the non-resonant triple alpha reaction rate at low temperture (T < 10{sup 8} K). The {sup 13}C(p,d) reaction at 66 MeV has been used to probe the alpha-unbound continuum state in {sup 12}C just below the 2{sup nd} 0{sup +} state at 7.65 MeV. The transition strength to the continuum state is predicted to be sensitive to the non-resonant triple alpha reaction rate. The experiment has been performed at iThemba LABS. We report the present status of the experiment.

  14. Rate of reaction between molecular hydrogen and molecular oxygen

    NASA Technical Reports Server (NTRS)

    Brokaw, R. S.

    1973-01-01

    The shock tube data of Jachimowski and Houghton were rigorously analyzed to obtain rate constants for the candidate initiation reactions H2 + O2 yields H + HO2, H2 + O2 yields H2O + O, and H2 + O2 yields OH + OH. Reaction (01) is probably not the initiation process because the activation energy obtained is less than the endothermicity and because the derived rates greatly exceed values inferred in the literature from the reverse of reaction (01). Reactions (02) and (03) remain as possibilities, with reaction (02) slightly favored on the basis of steric and statistical considerations. The solution of the differential equations is presented in detail to show how the kinetics of other ignition systems may be solved.

  15. Tables of Nuclear Cross Sections and Reaction Rates: AN Addendum to the Paper ``ASTROPHYSICAL Reaction Rates from Statistical Model Calculations'' ()

    NASA Astrophysics Data System (ADS)

    Rauscher, Thomas; Thielemann, Friedrich-Karl

    2001-09-01

    In a previous publication (ATOMIC DATAAND NUCLEAR DATA TABLES75, 1 (2000)), we gave seven-parameter analytical fits to theoretical reaction rates derived from nuclear cross sections calculated in the statistical model (Hauser-Feshbach formalism) for targets with 10<=Z<=83 (Ne to Bi) and for a mass range reaching the neutron and proton driplines. Reactions considered were (n,γ), (n,p), (n,α), (p,γ), (p,α), (α,γ), and their inverse reactions. Here, we present the theoretical nuclear cross sections and astrophysical reaction rates from which those rate fits were derived, and we provide these data as on-line electronic files. Corresponding to the fitted rates, two complete data sets are provided, one of which includes a phenomenological treatment of shell quenching for neutron-rich nuclei.

  16. Analysis of reaction schemes using maximum rates of constituent steps.

    PubMed

    Motagamwala, Ali Hussain; Dumesic, James A

    2016-05-24

    We show that the steady-state kinetics of a chemical reaction can be analyzed analytically in terms of proposed reaction schemes composed of series of steps with stoichiometric numbers equal to unity by calculating the maximum rates of the constituent steps, rmax,i, assuming that all of the remaining steps are quasi-equilibrated. Analytical expressions can be derived in terms of rmax,i to calculate degrees of rate control for each step to determine the extent to which each step controls the rate of the overall stoichiometric reaction. The values of rmax,i can be used to predict the rate of the overall stoichiometric reaction, making it possible to estimate the observed reaction kinetics. This approach can be used for catalytic reactions to identify transition states and adsorbed species that are important in controlling catalyst performance, such that detailed calculations using electronic structure calculations (e.g., density functional theory) can be carried out for these species, whereas more approximate methods (e.g., scaling relations) are used for the remaining species. This approach to assess the feasibility of proposed reaction schemes is exact for reaction schemes where the stoichiometric coefficients of the constituent steps are equal to unity and the most abundant adsorbed species are in quasi-equilibrium with the gas phase and can be used in an approximate manner to probe the performance of more general reaction schemes, followed by more detailed analyses using full microkinetic models to determine the surface coverages by adsorbed species and the degrees of rate control of the elementary steps.

  17. Analysis of reaction schemes using maximum rates of constituent steps

    NASA Astrophysics Data System (ADS)

    Hussain Motagamwala, Ali; Dumesic, James A.

    2016-05-01

    We show that the steady-state kinetics of a chemical reaction can be analyzed analytically in terms of proposed reaction schemes composed of series of steps with stoichiometric numbers equal to unity by calculating the maximum rates of the constituent steps, rmax,i, assuming that all of the remaining steps are quasi-equilibrated. Analytical expressions can be derived in terms of rmax,i to calculate degrees of rate control for each step to determine the extent to which each step controls the rate of the overall stoichiometric reaction. The values of rmax,i can be used to predict the rate of the overall stoichiometric reaction, making it possible to estimate the observed reaction kinetics. This approach can be used for catalytic reactions to identify transition states and adsorbed species that are important in controlling catalyst performance, such that detailed calculations using electronic structure calculations (e.g., density functional theory) can be carried out for these species, whereas more approximate methods (e.g., scaling relations) are used for the remaining species. This approach to assess the feasibility of proposed reaction schemes is exact for reaction schemes where the stoichiometric coefficients of the constituent steps are equal to unity and the most abundant adsorbed species are in quasi-equilibrium with the gas phase and can be used in an approximate manner to probe the performance of more general reaction schemes, followed by more detailed analyses using full microkinetic models to determine the surface coverages by adsorbed species and the degrees of rate control of the elementary steps.

  18. Analysis of reaction schemes using maximum rates of constituent steps.

    PubMed

    Motagamwala, Ali Hussain; Dumesic, James A

    2016-05-24

    We show that the steady-state kinetics of a chemical reaction can be analyzed analytically in terms of proposed reaction schemes composed of series of steps with stoichiometric numbers equal to unity by calculating the maximum rates of the constituent steps, rmax,i, assuming that all of the remaining steps are quasi-equilibrated. Analytical expressions can be derived in terms of rmax,i to calculate degrees of rate control for each step to determine the extent to which each step controls the rate of the overall stoichiometric reaction. The values of rmax,i can be used to predict the rate of the overall stoichiometric reaction, making it possible to estimate the observed reaction kinetics. This approach can be used for catalytic reactions to identify transition states and adsorbed species that are important in controlling catalyst performance, such that detailed calculations using electronic structure calculations (e.g., density functional theory) can be carried out for these species, whereas more approximate methods (e.g., scaling relations) are used for the remaining species. This approach to assess the feasibility of proposed reaction schemes is exact for reaction schemes where the stoichiometric coefficients of the constituent steps are equal to unity and the most abundant adsorbed species are in quasi-equilibrium with the gas phase and can be used in an approximate manner to probe the performance of more general reaction schemes, followed by more detailed analyses using full microkinetic models to determine the surface coverages by adsorbed species and the degrees of rate control of the elementary steps. PMID:27162366

  19. Direct Determination of the Simplest Criegee Intermediate (CH2OO) Self Reaction Rate.

    PubMed

    Buras, Zachary J; Elsamra, Rehab M I; Green, William H

    2014-07-01

    The rate of self-reaction of the simplest Criegee intermediate, CH2OO, is of importance in many current laboratory experiments where CH2OO concentrations are high, such as flash photolysis and alkene ozonolysis. Using laser flash photolysis while simultaneously probing both CH2OO and I atom by direct absorption, we can accurately determine absolute CH2OO concentrations as well as the UV absorption cross section of CH2OO at our probe wavelength (λ = 375 nm), which is in agreement with a recently published value. Knowing absolute concentrations we can accurately measure kself = 6.0 ± 2.1 × 10(-11)cm(3) molecule(-1) s(-1) at 297 K. We are also able to put an upper bound on the rate coefficient for CH2OO + I of 1.0 × 10(-11) cm(3) molecule(-1) s(-1). Both of these rate coefficients are at least a factor of 5 smaller than other recent measurements of the same reactions.

  20. Absolute state-selected and state-to-state total cross sections for the Ar sup + ( sup 2 P sub 3/2,1/2 )+CO reactions

    SciTech Connect

    Flesch, G.D.; Nourbakhsh, S.; Ng, C.Y. . Ames Laboratory Iowa State University, Ames, Iowa . Department of Chemistry)

    1991-09-01

    Absolute spin--orbit state-selected total cross sections for the reactions, Ar{sup +}({sup 2}{ital P}{sub 3/2,1/2})+CO{r arrow}CO{sup +}+Ar (reaction (1)), C{sup +}+O+Ar (reaction (2)), O{sup +}+C+Ar (reaction (3)), and ArC{sup +}+O (reaction (4)), have been measured in the center-of-mass collision energy ({ital E}{sub c.m.}) range of 0.04--123.5 eV. Absolute spin--orbit state transition total cross sections for the Ar{sup +}({sup 2}{ital P}{sub 3/2,1/2})+CO reactions at {ital E}{sub c.m.} have also been obtained. The appearance energies (AE) for C{sup +}({ital E}{sub c.m.}=6.6{plus minus}0.4 eV) and O{sup +}({ital E}{sub c.m.}=8.6{plus minus}0.4 eV) are in agreement with the thermochemical thresholds for reactions (2) and (3), respectively. The observed AE for reaction (4) yields a lower bound of 0.5 eV for the ArC{sup +} bond dissociation energy. The kinetic energy dependence of the absolute cross sections and the retarding potential analysis of the product ions support that ArC{sup +}, C{sup +}, and O{sup +} are formed via a charge transfer predissociation mechanism, similar to that proposed to be responsible for the formation of O{sup +} (N{sup +}) and ArO{sup +} (ArN{sup +}) in the collisions of Ar{sup +}({sup 2}{ital P}{sub 3/2,1/2})+O{sub 2}(N{sub 2}).

  1. Reaction rate constant for uranium in water and water vapor

    SciTech Connect

    TRIMBLE, D.J.

    1998-11-09

    The literature on uranium oxidation in water and oxygen free water vapor was reviewed. Arrhenius rate equations were developed from the review data. These data and equations will be used as a baseline from which to compare reaction rates measured for K Basin fuel.

  2. Nonlinear dynamical effects on reaction rates in thermally fluctuating environments.

    PubMed

    Kawai, Shinnosuke; Komatsuzaki, Tamiki

    2010-07-21

    A framework to calculate the rate constants of condensed phase chemical reactions of manybody systems is presented without relying on the concept of transition state. The theory is based on a framework we developed recently adopting a multidimensional underdamped Langevin equation in the region of a rank-one saddle. The theory provides a reaction coordinate expressed as an analytical nonlinear functional of the position coordinates and velocities of the system (solute), the friction constants, and the random force of the environment (solvent). Up to moderately high temperature, the sign of the reaction coordinate can determine the final destination of the reaction in a thermally fluctuating media, irrespective of what values the other (nonreactive) coordinates may take. In this paper, it is shown that the reaction probability is analytically derived as the probability of the reaction coordinate being positive, and that the integration with the Boltzmann distribution of the initial conditions leads to the exact reaction rate constant when the local equilibrium holds and the quantum effect is negligible. Because of analytical nature of the theory taking into account all nonlinear effects and their combination with fluctuation and dissipation, the theory naturally provides us with the firm mathematical foundation of the origin of the reactivity of the reaction in a fluctuating media.

  3. Nonlinear dynamical effects on reaction rates in thermally fluctuating environments.

    PubMed

    Kawai, Shinnosuke; Komatsuzaki, Tamiki

    2010-07-21

    A framework to calculate the rate constants of condensed phase chemical reactions of manybody systems is presented without relying on the concept of transition state. The theory is based on a framework we developed recently adopting a multidimensional underdamped Langevin equation in the region of a rank-one saddle. The theory provides a reaction coordinate expressed as an analytical nonlinear functional of the position coordinates and velocities of the system (solute), the friction constants, and the random force of the environment (solvent). Up to moderately high temperature, the sign of the reaction coordinate can determine the final destination of the reaction in a thermally fluctuating media, irrespective of what values the other (nonreactive) coordinates may take. In this paper, it is shown that the reaction probability is analytically derived as the probability of the reaction coordinate being positive, and that the integration with the Boltzmann distribution of the initial conditions leads to the exact reaction rate constant when the local equilibrium holds and the quantum effect is negligible. Because of analytical nature of the theory taking into account all nonlinear effects and their combination with fluctuation and dissipation, the theory naturally provides us with the firm mathematical foundation of the origin of the reactivity of the reaction in a fluctuating media. PMID:20544104

  4. Indirectly estimated absolute lung cancer mortality rates by smoking status and histological type based on a systematic review

    PubMed Central

    2013-01-01

    Background National smoking-specific lung cancer mortality rates are unavailable, and studies presenting estimates are limited, particularly by histology. This hinders interpretation. We attempted to rectify this by deriving estimates indirectly, combining data from national rates and epidemiological studies. Methods We estimated study-specific absolute mortality rates and variances by histology and smoking habit (never/ever/current/former) based on relative risk estimates derived from studies published in the 20th century, coupled with WHO mortality data for age 70–74 for the relevant country and period. Studies with populations grossly unrepresentative nationally were excluded. 70–74 was chosen based on analyses of large cohort studies presenting rates by smoking and age. Variations by sex, period and region were assessed by meta-analysis and meta-regression. Results 148 studies provided estimates (Europe 59, America 54, China 22, other Asia 13), 54 providing estimates by histology (squamous cell carcinoma, adenocarcinoma). For all smoking habits and lung cancer types, mortality rates were higher in males, the excess less evident for never smokers. Never smoker rates were clearly highest in China, and showed some increasing time trend, particularly for adenocarcinoma. Ever smoker rates were higher in parts of Europe and America than in China, with the time trend very clear, especially for adenocarcinoma. Variations by time trend and continent were clear for current smokers (rates being higher in Europe and America than Asia), but less clear for former smokers. Models involving continent and trend explained much variability, but non-linearity was sometimes seen (with rates lower in 1991–99 than 1981–90), and there was regional variation within continent (with rates in Europe often high in UK and low in Scandinavia, and higher in North than South America). Conclusions The indirect method may be questioned, because of variations in definition of smoking and

  5. A rare gas optics-free absolute photon flux and energy analyzer to provide absolute photoionization rates of inflowing interstellar neutrals

    NASA Technical Reports Server (NTRS)

    Judge, Darrell L.

    1994-01-01

    A prototype spectrometer has been developed for space applications requiring long term absolute EUV photon flux measurements. The energy spectrum of the incoming photons is transformed directly into an electron energy spectrum by taking advantage of the photoelectric effect in one of several rare gases at low pressures. Using an electron energy spectrometer, followed by an electron multiplier detector, pulses due to individual electrons are counted. The overall efficiency of this process can be made essentially independent of gain drifts in the signal path, and the secular degradation of optical components which is often a problem in other techniques is avoided. A very important feature of this approach is its freedom from the problem of overlapping spectral orders that plagues grating EUV spectrometers. An instrument with these features has not been flown before, but is essential to further advances in our understanding of solar EUV flux dynamics, and the coupled dynamics of terrestrial and planetary atmospheres. The detailed characteristics of this optics-free spectrometer are presented in the publications section.

  6. Extension of a Kinetic-Theory Approach for Computing Chemical-Reaction Rates to Reactions with Charged Particles

    NASA Technical Reports Server (NTRS)

    Liechty, Derek S.; Lewis, Mark J.

    2010-01-01

    Recently introduced molecular-level chemistry models that predict equilibrium and nonequilibrium reaction rates using only kinetic theory and fundamental molecular properties (i.e., no macroscopic reaction rate information) are extended to include reactions involving charged particles and electronic energy levels. The proposed extensions include ionization reactions, exothermic associative ionization reactions, endothermic and exothermic charge exchange reactions, and other exchange reactions involving ionized species. The extensions are shown to agree favorably with the measured Arrhenius rates for near-equilibrium conditions.

  7. A Transition in the Cumulative Reaction Rate of Two Species Diffusion with Bimolecular Reaction

    NASA Astrophysics Data System (ADS)

    Rajaram, Harihar; Arshadi, Masoud

    2015-04-01

    Diffusion and bimolecular reaction between two initially separated reacting species is a prototypical small-scale description of reaction induced by transverse mixing. It is also relevant to diffusion controlled transport regimes as encountered in low-permeability matrix blocks in fractured media. In previous work, the reaction-diffusion problem has been analyzed as a Stefan problem involving a distinct moving boundary (reaction front), which predicts that front motion scales as √t, and the cumulative reaction rate scales as 1/√t-. We present a general non-dimensionalization of the problem and a perturbation analysis to show that there is an early time regime where the cumulative reaction rate scales as √t- rather than 1/√t. The duration of this early time regime (where the cumulative rate is kinetically rather than diffusion controlled) depends on the rate parameter, in a manner that is consistently predicted by our non-dimensionalization. We also present results on the scaling of the reaction front width. We present numerical simulations in homogeneous and heterogeneous porous media to demonstrate the limited influence of heterogeneity on the behavior of the reaction-diffusion system. We illustrate applications to the practical problem of in-situ chemical oxidation of TCE and PCE by permanganate, which is employed to remediate contaminated sites where the DNAPLs are largely dissolved in the rock matrix.

  8. Benchmark calculations of thermal reaction rates. I - Quantal scattering theory

    NASA Technical Reports Server (NTRS)

    Chatfield, David C.; Truhlar, Donald G.; Schwenke, David W.

    1991-01-01

    The thermal rate coefficient for the prototype reaction H + H2 yields H2 + H with zero total angular momentum is calculated by summing, averaging, and numerically integrating state-to-state reaction probabilities calculated by time-independent quantum-mechanical scattering theory. The results are very carefully converged with respect to all numerical parameters in order to provide high-precision benchmark results for confirming the accuracy of new methods and testing their efficiency.

  9. Hydroxyl-radical-induced degradative oxidation of beta-lactam antibiotics in water: absolute rate constant measurements.

    PubMed

    Dail, Michelle K; Mezyk, Stephen P

    2010-08-19

    The beta-lactam antibiotics are some of the most prevalent pharmaceutical contaminants currently being detected in aquatic environments. Because the presence of any trace level of antibiotic in water may adversely affect aquatic ecosystems and contribute to the production of antibiotic-resistant bacteria, active removal by additional water treatments, such as using advanced oxidation and reduction processes (AO/RPs), may be required. However, to ensure that any AOP treatment process occurs efficiently and quantitatively, a full understanding of the kinetics and mechanisms of all of the chemical reactions involved under the conditions of use is necessary. In this study, we report on our kinetic measurements for the hydroxyl-radical-induced oxidation of 11 beta-lactam antibiotics obtained using electron pulse radiolysis techniques. For the 5-member ring species, an average reaction rate constant of (7.9 +/- 0.8) x 10(9) M(-1) s(-1) was obtained, slightly faster than for the analogous 6-member ring containing antibiotics, (6.6 +/- 1.2) x 10(9) M(-1) s(-1). The consistency of these rate constants for each group infers a common reaction mechanism, consisting of the partitioning of the hydroxyl radical between addition to peripheral aromatic rings and reaction with the central double-ring core of these antibiotics.

  10. Rates of hydroxyl radical reactions with some HFCs. [HydroFluoroCarbons

    NASA Technical Reports Server (NTRS)

    Demore, William B.

    1993-01-01

    Relative rate constants for OH reactions with some HFCs have been determined at 298 K by a technique which measures the loss of HFC greater than OH. The following ratios were determine: k(152a)/k(CH4) = 5.2 +/- 0.5, k(CH4)/k(125) = 3.9 +/- 0.5, k(CH4)/k(134a) = 2.1 +/- 0.2, k(134a)/k(125) = 2.0 +/- 0.2, and k(C2H6)/k(152a) = 6.2 +/- 1.0. These results are in good agreement with literature values for the absolute rate constants except for HFC 134a, where a slower rate constant is indicated.

  11. Optical factors determined by the T-matrix method in turbidity measurement of absolute coagulation rate constants.

    PubMed

    Xu, Shenghua; Liu, Jie; Sun, Zhiwei

    2006-12-01

    Turbidity measurement for the absolute coagulation rate constants of suspensions has been extensively adopted because of its simplicity and easy implementation. A key factor in deriving the rate constant from experimental data is how to theoretically evaluate the so-called optical factor involved in calculating the extinction cross section of doublets formed during aggregation. In a previous paper, we have shown that compared with other theoretical approaches, the T-matrix method provides a robust solution to this problem and is effective in extending the applicability range of the turbidity methodology, as well as increasing measurement accuracy. This paper will provide a more comprehensive discussion of the physical insight for using the T-matrix method in turbidity measurement and associated technical details. In particular, the importance of ensuring the correct value for the refractive indices for colloidal particles and the surrounding medium used in the calculation is addressed, because the indices generally vary with the wavelength of the incident light. The comparison of calculated results with experiments shows that the T-matrix method can correctly calculate optical factors even for large particles, whereas other existing theories cannot. In addition, the data of the optical factor calculated by the T-matrix method for a range of particle radii and incident light wavelengths are listed.

  12. Size dependence of surface thermodynamic properties of nanoparticles and its determination method by reaction rate constant

    NASA Astrophysics Data System (ADS)

    Li, Wenjiao; Xue, Yongqiang; Cui, Zixiang

    2016-08-01

    Surface thermodynamic properties are the fundamental properties of nanomaterials, and these properties depend on the size of nanoparticles. In this paper, relations of molar surface thermodynamic properties and surface heat capacity at constant pressure of nanoparticles with particle size were derived theoretically, and the method of obtaining the surface thermodynamic properties by reaction rate constant was put forward. The reaction of nano-MgO with sodium bisulfate solution was taken as a research system. The influence regularities of the particle size on the surface thermodynamic properties were discussed theoretically and experimentally, which show that the experimental regularities are in accordance with the corresponding theoretical relations. With the decreasing of nanoparticle size, the molar surface thermodynamic properties increase, while the surface heat capacity decreases (the absolute value increases). In addition, the surface thermodynamic properties are linearly related to the reciprocal of nanoparticle diameter, respectively.

  13. The Influence of Particle Charge on Heterogeneous Reaction Rate Coefficients

    NASA Technical Reports Server (NTRS)

    Aikin, A. C.; Pesnell, W. D.

    2000-01-01

    The effects of particle charge on heterogeneous reaction rates are presented. Many atmospheric particles, whether liquid or solid are charged. This surface charge causes a redistribution of charge within a liquid particle and as a consequence a perturbation in the gaseous uptake coefficient. The amount of perturbation is proportional to the external potential and the square of the ratio of debye length in the liquid to the particle radius. Previous modeling has shown how surface charge affects the uptake coefficient of charged aerosols. This effect is now included in the heterogeneous reaction rate of an aerosol ensemble. Extension of this analysis to ice particles will be discussed and examples presented.

  14. Rate constant for the reaction of hydroxyl radical with formaldehyde over the temperature range 228-362 K

    NASA Technical Reports Server (NTRS)

    Stief, L. J.; Nava, D. F.; Payne, W. A.; Michael, J. V.

    1980-01-01

    Absolute rate constants for the reaction OH ? H2CO measured over the temperature range 228-362 K using the flash photolysis-resonance fluorescence technique are given. The results are independent of variations in H2CO concentration, total pressure Ar concentration, and flash intensity (i.e., initial OH concentration). The rate constant is found to be invariant with temperature in this range, the best representation being k sub 1 = (1.05 ? or - 0.11) x 10 to the 11th power cu cm molecule(-1) s(-1) where the error is two standard deviations. This result is compared with previous absolute and relative determinations of k sub 1. The reaction is also discussed from a theoretical point of view.

  15. A transition in the spatially integrated reaction rate of bimolecular reaction-diffusion systems

    NASA Astrophysics Data System (ADS)

    Arshadi, Masoud; Rajaram, Harihar

    2015-09-01

    Numerical simulations of diffusion with bimolecular reaction demonstrate a transition in the spatially integrated reaction rate—increasing with time initially, and transitioning to a decrease with time. In previous work, this reaction-diffusion problem has been analyzed as a Stefan problem involving a distinct moving boundary (reaction front), leading to predictions that front motion scales as √t, and correspondingly the spatially integrated reaction rate decreases as the square root of time 1/√t. We present a general nondimensionalization of the problem and a perturbation analysis to show that there is an early time regime where the spatially integrated reaction rate scales as √t rather than 1/√t. The duration of this early time regime (where the spatially integrated reaction rate is kinetically rather than diffusion controlled) is shown to depend on the kinetic rate parameters, diffusion coefficients, and initial concentrations of the two species. Numerical simulation results confirm the theoretical estimates of the transition time. We present illustrative calculations in the context of in situ chemical oxidation for remediation of fractured rock systems where contaminants are largely dissolved in the rock matrix. We consider different contaminants of concern (COCs), including TCE, PCE, MTBE, and RDX. While the early time regime is very short lived for TCE, it can persist over months to years for MTBE and RDX, due to slow oxidation kinetics.

  16. Prospective Teachers' Reactions to "Right-or-Wrong" Tasks: The Case of Derivatives of Absolute Value Functions

    ERIC Educational Resources Information Center

    Tsamir, Pessia; Rasslan, Shaker; Dreyfus, Tommy

    2006-01-01

    This paper illustrates the role of a "Thinking-about-Derivatives" task in identifying learners' derivative conceptions and for promoting their critical thinking about derivatives of absolute value functions. The task included three parts: "Define" the derivative of a function f(x) at x = x[subscript 0], "Solve-if-Possible" the derivative of f(x) =…

  17. Estimation of the rate of volcanism on Venus from reaction rate measurements

    NASA Technical Reports Server (NTRS)

    Fegley, Bruce, Jr.; Prinn, Ronald G.

    1989-01-01

    Laboratory rate data for the reaction between SO2 and calcite to form anhydrite are presented. If this reaction rate represents the SO2 reaction rate on Venus, then all SO2 in the Venusian atmosphere will disappear in 1.9 Myr unless volcanism replenishes the lost SO2. The required volcanism rate, which depends on the sulfur content of the erupted material, is in the range 0.4-11 cu km of magma erupted per year. The Venus surface composition at the Venera 13, 14, and Vega 2 landing sites implies a volcanism rate of about 1 cu km/yr. This geochemically estimated rate can be used to determine if either (or neither) of two discordant geophysically estimated rates is correct. It also suggests that Venus may be less volcanically active than the earth.

  18. Microwave-enhanced reaction rates for nanoparticle synthesis.

    PubMed

    Gerbec, Jeffrey A; Magana, Donny; Washington, Aaron; Strouse, Geoffrey F

    2005-11-16

    Microwave reactor methodologies are unique in their ability to be scaled-up without suffering thermal gradient effects, providing a potentially industrially important improvement in nanocrystal synthetic methodology over convective methods. Synthesis of high-quality, near monodispersity nanoscale InGaP, InP, and CdSe have been prepared via direct microwave heating of the molecular precursors rather than convective heating of the solvent. Microwave dielectric heating not only enhances the rate of formation, it also enhances the material quality and size distributions. The reaction rates are influenced by the microwave field and by additives. The final quality of the microwave-generated materials depends on the reactant choice, the applied power, the reaction time, and temperature. CdSe nanocrystals prepared in the presence of a strong microwave absorber exhibit sharp excitonic features and a QY of 68% for microwave-grown materials. InGaP and InP are rapidly formed at 280 degrees C in minutes, yielding clean reactions and monodisperse size distributions that require no size-selective precipitation and result in the highest out of batch quantum efficiency reported to date of 15% prior to chemical etching. The use of microwave (MW) methodology is readily scalable to larger reaction volumes, allows faster reaction times, removes the need for high-temperature injection, and suggests a specific microwave effect may be present in these reactions.

  19. Gas-phase rate coefficients of the reaction of ozone with four sesquiterpenes at 295 ± 2 K.

    PubMed

    Richters, Stefanie; Herrmann, Hartmut; Berndt, Torsten

    2015-05-01

    The rate coefficients of the reaction of ozone with the four atmospherically relevant sesquiterpenes β-caryophyllene, α-humulene, α-cedrene and isolongifolene were investigated at 295 ± 2 K and atmospheric pressure by at least two independent experimental investigations for each reaction. Relative rate experiments were carried out in a flow tube using two different experimental approaches with GC-MS detection (RR 1) and PTR-MS analysis (RR 2) as the analytical techniques. Absolute rate coefficients were determined in a stopped-flow experiment following the ozone depletion by means of UV spectroscopy. The average rate coefficients from the combined investigations representing the mean values of the different experimental methods are (unit: cm(3) molecule(-1) s(-1)): k(O3+β-caryophyllene) = (1.1 ± 0.3) × 10(-14) (methods: RR 1, RR 2, absolute), k(O3+α-humulene) = (1.2 ± 0.3) × 10(-14) (RR 1, RR 2), k(O3+α-cedrene) = (1.7 ± 0.5) × 10(-16) (RR 2, absolute) and k(O3+isolongifolene) = (1.1 ± 0.5) × 10(-17) (RR 2, absolute). The high ozonolysis rate coefficients for β-caryophyllene and α-humulene agree well with the results by Shu and Atkinson (Int. J. Chem. Kinet., 1994, 26) and lead to short atmospheric lifetimes of about two minutes with respect to the ozone reaction. The relatively small rate coefficients for α-cedrene and isolongifolene differ from the available literature values by a factor of about 2.5-6. Possible reasons for the deviations are discussed. Finally, calibrated sesquiterpene FT-IR spectra were recorded for the first time.

  20. Gas-phase rate coefficients of the reaction of ozone with four sesquiterpenes at 295 ± 2 K.

    PubMed

    Richters, Stefanie; Herrmann, Hartmut; Berndt, Torsten

    2015-05-01

    The rate coefficients of the reaction of ozone with the four atmospherically relevant sesquiterpenes β-caryophyllene, α-humulene, α-cedrene and isolongifolene were investigated at 295 ± 2 K and atmospheric pressure by at least two independent experimental investigations for each reaction. Relative rate experiments were carried out in a flow tube using two different experimental approaches with GC-MS detection (RR 1) and PTR-MS analysis (RR 2) as the analytical techniques. Absolute rate coefficients were determined in a stopped-flow experiment following the ozone depletion by means of UV spectroscopy. The average rate coefficients from the combined investigations representing the mean values of the different experimental methods are (unit: cm(3) molecule(-1) s(-1)): k(O3+β-caryophyllene) = (1.1 ± 0.3) × 10(-14) (methods: RR 1, RR 2, absolute), k(O3+α-humulene) = (1.2 ± 0.3) × 10(-14) (RR 1, RR 2), k(O3+α-cedrene) = (1.7 ± 0.5) × 10(-16) (RR 2, absolute) and k(O3+isolongifolene) = (1.1 ± 0.5) × 10(-17) (RR 2, absolute). The high ozonolysis rate coefficients for β-caryophyllene and α-humulene agree well with the results by Shu and Atkinson (Int. J. Chem. Kinet., 1994, 26) and lead to short atmospheric lifetimes of about two minutes with respect to the ozone reaction. The relatively small rate coefficients for α-cedrene and isolongifolene differ from the available literature values by a factor of about 2.5-6. Possible reasons for the deviations are discussed. Finally, calibrated sesquiterpene FT-IR spectra were recorded for the first time. PMID:25866852

  1. Rates and temperature dependences of the reaction of OH with isoprene, its oxidation products, and selected terpenes

    SciTech Connect

    Kleindienst, T.E.; Harris, G.W.; Pitts, J.N. Jr.

    1982-12-01

    Absolute rate constants determined by using the flash photolysis-resonance fluorescence technique are reported for the reactions of hydroxyl radicals with isoprene, ..cap alpha.., and ..beta..-pinene, methyl vinyl ketone, and methacrolein in the temperature range 297-424 K, and with methylglyoxal at 297 K. These results contribute to a more quantitative understanding of the tropospheric fate of gas-phase biomass-related organics and serve as input to models of the chemistry of the natural troposphere.

  2. Fusion Reaction Rate Coefficient for Different Beam and Target Scenarios

    NASA Astrophysics Data System (ADS)

    Ou, Wei; Zeng, Xian-Jun; Deng, Bai-Quan; Gou, Fu-Jun

    2015-02-01

    Fusion power output is proportional not only to the fuel particle number densities participating in reaction but also to the fusion reaction rate coefficient (or reactivity), which is dependent on reactant velocity distribution functions. They are usually assumed to be dual Maxwellian distribution functions with the same temperature for thermal nuclear fusion circumstances. However, if high power neutral beam injection and minority ion species ICRF plasma heating, or multi-pinched plasma beam head-on collision, in a converging region are required and investigated in future large scale fusion reactors, then the fractions of the injected energetic fast ion tail resulting from ionization or charge exchange will be large enough and their contribution to the non-Maxwellian distribution functions is not negligible, hence to the fusion reaction rate coefficient or calculation of fusion power. In such cases, beam-target, and beam-beam reaction enhancement effect contributions should play very important roles. In this paper, several useful formulae to calculate the fusion reaction rate coefficient for different beam and target combination scenarios are derived in detail.

  3. A compilation of charged-particle induced thermonuclear reaction rates

    NASA Astrophysics Data System (ADS)

    Angulo, C.; Arnould, M.; Rayet, M.; Descouvemont, P.; Baye, D.; Leclercq-Willain, C.; Coc, A.; Barhoumi, S.; Aguer, P.; Rolfs, C.; Kunz, R.; Hammer, J. W.; Mayer, A.; Paradellis, T.; Kossionides, S.; Chronidou, C.; Spyrou, K.; degl'Innocenti, S.; Fiorentini, G.; Ricci, B.; Zavatarelli, S.; Providencia, C.; Wolters, H.; Soares, J.; Grama, C.; Rahighi, J.; Shotter, A.; Lamehi Rachti, M.

    1999-08-01

    Low-energy cross section data for 86 charged-particle induced reactions involving light (1 <=Z <=14), mostly stable, nuclei are compiled. The corresponding Maxwellian-averaged thermonuclear reaction rates of relevance in astrophysical plasmas at temperatures in the range from 106 K to 1010 K are calculated. These evaluations assume either that the target nuclei are in their ground state, or that the target states are thermally populated following a Maxwell-Boltzmann distribution, except in some cases involving isomeric states. Adopted values complemented with lower and upper limits of the rates are presented in tabular form. Analytical approximations to the adopted rates, as well as to the inverse/direct rate ratios, are provided.

  4. A transport equation for reaction rate in turbulent flows

    NASA Astrophysics Data System (ADS)

    Sabelnikov, V. A.; Lipatnikov, A. N.; Chakraborty, N.; Nishiki, S.; Hasegawa, T.

    2016-08-01

    New transport equations for chemical reaction rate and its mean value in turbulent flows have been derived and analyzed. Local perturbations of the reaction zone by turbulent eddies are shown to play a pivotal role even for weakly turbulent flows. The mean-reaction-rate transport equation is shown to involve two unclosed dominant terms and a joint closure relation for the sum of these two terms is developed. Obtained analytical results and, in particular, the closure relation are supported by processing two widely recognized sets of data obtained from earlier direct numerical simulations of statistically planar 1D premixed flames associated with both weak large-scale and intense small-scale turbulence.

  5. Semiclassical Calculation of Reaction Rate Constants for Homolytical Dissociations

    NASA Technical Reports Server (NTRS)

    Cardelino, Beatriz H.

    2002-01-01

    There is growing interest in extending organometallic chemical vapor deposition (OMCVD) to III-V materials that exhibit large thermal decomposition at their optimum growth temperature, such as indium nitride. The group III nitrides are candidate materials for light-emitting diodes and semiconductor lasers operating into the blue and ultraviolet regions. To overcome decomposition of the deposited compound, the reaction must be conducted at high pressures, which causes problems of uniformity. Microgravity may provide the venue for maintaining conditions of laminar flow under high pressure. Since the selection of optimized parameters becomes crucial when performing experiments in microgravity, efforts are presently geared to the development of computational OMCVD models that will couple the reactor fluid dynamics with its chemical kinetics. In the present study, we developed a method to calculate reaction rate constants for the homolytic dissociation of III-V compounds for modeling OMCVD. The method is validated by comparing calculations with experimental reaction rate constants.

  6. Reaction rate uncertainties and the {nu}p-process

    SciTech Connect

    Froehlich, C.; Rauscher, T.

    2012-11-12

    Current hydrodynamical simulations of core collapse supernovae find proton-rich early ejecta. At the same time, the models fail to eject neutron-rich matter, thus leaving the origin of the main r-process elements unsolved. However, the proton-rich neutrino-driven winds from supernovae have been identified as a possible production site for light n-capture elements beyond iron (such as Ge, Sr, Y, Zr) through the {nu}p-process. The detailed nucleosynthesis patterns of the {nu}p-process depend on the hydrodynamic conditions and the nuclear reaction rates of key reactions. We investigate the impact of reaction rate uncertainties on the {nu}p-process nucleosynthesis.

  7. Helium Burning Reaction Rate Uncertainties and Consequences for Supernovae

    NASA Astrophysics Data System (ADS)

    Tur, C.; Heger, A.; Austin, S. M.

    2007-10-01

    The triple alpha and ^12C(,)^16O reaction rates determine the carbon to oxygen ratio at the completion of core helium burning in stars, which, in turn, influences the later stellar burning stages. We explored the dependence of massive star evolution and nucleosynthesis yields on the experimental uncertainties in the triple alpha rate (10 to 12%) and the ^12C(,)^16O rate (25 to 35%) using full stellar models followed to core collapse and including supernova explosion. The production factors of medium-weight elements obtained by using the Lodders (2003) solar abundances for the initial star composition, rather than the abundances of Anders & Grevesse (1989), provide a less stringent constraint on the ^12C(,)^16O rate. Variations within the current uncertainties in both reaction rates, however, induce significant changes in the central carbon abundance at core carbon ignition and in the mass of the supernova remnant. An experiment is being carried out by an NSCL/WMU collaboration to improve the accuracy of the triple alpha reaction rate.

  8. Reaction rates of graphite with ozone measured by etch decoration

    NASA Technical Reports Server (NTRS)

    Hennig, G. R.; Montet, G. L.

    1968-01-01

    Etch-decoration technique of detecting vacancies in graphite has been used to determine the reaction rates of graphite with ozone in the directions parallel and perpendicular to the layer planes. It consists essentially of peeling single atom layers off graphite crystals without affecting the remainder of the crystal.

  9. Quantum and semiclassical theories of chemical reaction rates

    SciTech Connect

    Miller, W.H. |

    1995-09-01

    A rigorous quantum mechanical theory (and a semiclassical approximation thereto) is described for calculating chemical reaction rates ``directly``, i.e., without having to solve the complete state-to-state reactive scattering problem. The approach has many vestiges of transition state theory, for which it may be thought of as the rigorous generalization.

  10. Prediction of Rate Constants for Catalytic Reactions with Chemical Accuracy.

    PubMed

    Catlow, C Richard A

    2016-08-01

    Ex machina: A computational method for predicting rate constants for reactions within microporous zeolite catalysts with chemical accuracy has recently been reported. A key feature of this method is a stepwise QM/MM approach that allows accuracy to be achieved while using realistic models with accessible computer resources.

  11. Rate-based screening of pressure-dependent reaction networks

    NASA Astrophysics Data System (ADS)

    Matheu, David M.; Lada, Thomas A.; Green, William H.; Dean, Anthony M.; Grenda, Jeffrey M.

    2001-08-01

    Computer tools to automatically generate large gas-phase kinetic models find increasing use in industry. Until recently, mechanism generation algorithms have been restricted to generating kinetic models in the high-pressure limit, unless special adjustments are made for particular cases. A new approach, recently presented, allows the automated generation of pressure-dependent reaction networks for chemically and thermally activated reactions (Grenda et al., 2000; Grenda and Dean, in preparation; Grenda et al., 1998; see Refs. [1-3]). These pressure-dependent reaction networks can be quite large and can contain a large number of unimportant pathways. We thus present an algorithm for the automated screening of pressure-dependent reaction networks. It allows a computer to discover and incorporate pressure-dependent reactions in a manner consistent with the existing rate-based model generation method. The new algorithm works by using a partially-explored (or "screened") pressure-dependent reaction network to predict rate constants, and updating predictions as more parts of the network are discovered. It requires only partial knowledge of the network connectivity, and allows the user to explore only the important channels at a given temperature and pressure. Applications to vinyl + O 2, 1-naphthyl + acetylene and phenylvinyl radical dissociation are presented. We show that the error involved in using a truncated pressure-dependent network to predict a rate constant is insignificant, for all channels whose yields are significantly greater than a user-specified tolerance. A bound for the truncation error is given. This work demonstrates the feasibility of using screened networks to predict pressure-dependent rate constants k(T,P).

  12. Continuous, online measurement of the absolute plasma refill rate during hemodialysis using feedback regulated ultrafiltration: preliminary results.

    PubMed

    Brummelhuis, Walter J; van Schelven, Leonard J; Boer, Walther H

    2008-01-01

    Methods to continuously measure absolute refill during dialysis are not available. It would be useful to have such a method because it would allow investigating the mechanism of refill the effect of interventions. We designed a feedback algorithm that adjusts ultrafiltration rate (QUF) according to hemoglobin (Hb) concentration changes in such a way that relative blood volume (BV) remains constant within a narrow target range. In this situation, the generated QUF quantitatively reflects refill. Refill patterns were studied in five hypotension prone patients. In addition, on separate occasions, we studied the effect of antiembolism stockings (AES) and infusion of hydroxy-ethylated starch (HAES) on refill in these patients. Refill during the first hour fell significantly from 21 +/- 3 ml/min to 9 +/- 2 ml/min (p < 0.05). In the second hour, refill decreased further and became zero in four out of five patients. Neither AES nor HAES measurably affected refill. The marked and rapid fall in refill in the early stages of dialysis suggests untimely depletion of the interstitial compartment and underestimation of dry weight. We propose that continuous, online measurement of refill patterns may be of value for accurate estimation of dry weight in dialysis patients. PMID:18204322

  13. Selective determination of rate constants of reactions of atomic hydrogen with various functional groups of a complex molecule

    NASA Astrophysics Data System (ADS)

    Brauer, G. B.; Pugachev, D. V.; Azatyan, V. V.

    2016-05-01

    The possibility of determining absolute values of the rate constants of reactions of active intermediate species with different functional groups of molecules is demonstrated by measuring macrokinetic combustion characteristics. The Arrhenius parameters of the rate constant of the reaction between atomic hydrogen with the methylene group of ethanol and molecular oxygen within the temperature range of 830-970 K are determined. The reasons for the differences between the rate constants of reactions with the methylene and methyl groups of an ethanol molecule are discussed using thermochemical data. It is found that the obtained values of activation energies and preexponential factors of rate constants are in good agreement with the literature data on the region of lower temperatures.

  14. Assessment of reaction-rate predictions of a collision-energy approach for chemical reactions in atmospheric flows.

    SciTech Connect

    Gallis, Michail A.; Bond, Ryan Bomar; Torczynski, John Robert

    2010-06-01

    A recently proposed approach for the Direct Simulation Monte Carlo (DSMC) method to calculate chemical-reaction rates is assessed for high-temperature atmospheric species. The new DSMC model reproduces measured equilibrium reaction rates without using any macroscopic reaction-rate information. Since it uses only molecular properties, the new model is inherently able to predict reaction rates for arbitrary non-equilibrium conditions. DSMC non-equilibrium reaction rates are compared to Park's phenomenological nonequilibrium reaction-rate model, the predominant model for hypersonic-flow-field calculations. For near-equilibrium conditions, Park's model is in good agreement with the DSMC-calculated reaction rates. For far-from-equilibrium conditions, corresponding to a typical shock layer, significant differences can be found. The DSMC predictions are also found to be in very good agreement with measured and calculated non-equilibrium reaction rates, offering strong evidence that this is a viable and reliable technique to predict chemical reaction rates.

  15. Rate of reaction of OH with HNO3

    NASA Technical Reports Server (NTRS)

    Wine, P. H.; Ravishankara, A. R.; Kreutter, N. M.; Shah, R. C.; Nicovich, J. M.; Thompson, R. L.; Wuebbles, D. J.

    1981-01-01

    Measurements of the kinetics of the reaction of OH with HNO3, and mechanisms of HNO3 removal from the stratosphere, are reported. Bimolecular rate constants were determined at temperatures between 224 and 366 K by monitoring the concentrations of OH radicals produced by HNO3 photolysis and HNO3 according to their resonance fluorescence and 184.9-nm absorption, respectively. The rate constant measured at 298 K is found to be somewhat faster than previously accepted values, with a negative temperature dependence. Calculations of a one-dimensional transport-kinetic atmospheric model on the basis of the new rate constant indicate reductions in O3 depletion due to chlorofluoromethane release and NOx injection, of magnitudes dependent on the nature of the reaction products.

  16. Reaction rate and products for the reaction O/3P/ + H2CO

    NASA Technical Reports Server (NTRS)

    Chang, J. S.; Barker, J. R.

    1979-01-01

    A study of reaction kinetics of O + H2CO in a discharge-flow system using mass spectrometric detection of reactants and products is presented. It was performed under both oxygen-atom-rich and formaldehyde-rich conditions over the 296 to 437 K range, showing that the global bimolecular rate constant is in agreement with other studies. This study differs from others in that the reaction products can be observed, and a substantial yield of a primary reaction product was measured with a mass spectral peak at m/e=44. This suggests that the global reaction rate probably consists of combination, as well as of simple abstraction. For the combination, one hypothesis is that triplet dioxymethylene is formed which polymerizes to triplet formic acid; the vibrationally excited triplet formic acid may decompose to form several sets of products, including HCO + OH and HCO2 + H.

  17. Code System to Calculate Integral Parameters with Reaction Rates from WIMS Output.

    1994-10-25

    Version 00 REACTION calculates different integral parameters related to neutron reactions on reactor lattices, from reaction rates calculated with WIMSD4 code, and comparisons with experimental values.

  18. Scaling of geochemical reaction rates via advective solute transport.

    PubMed

    Hunt, A G; Ghanbarian, B; Skinner, T E; Ewing, R P

    2015-07-01

    Transport in porous media is quite complex, and still yields occasional surprises. In geological porous media, the rate at which chemical reactions (e.g., weathering and dissolution) occur is found to diminish by orders of magnitude with increasing time or distance. The temporal rates of laboratory experiments and field observations differ, and extrapolating from laboratory experiments (in months) to field rates (in millions of years) can lead to order-of-magnitude errors. The reactions are transport-limited, but characterizing them using standard solute transport expressions can yield results in agreement with experiment only if spurious assumptions and parameters are introduced. We previously developed a theory of non-reactive solute transport based on applying critical path analysis to the cluster statistics of percolation. The fractal structure of the clusters can be used to generate solute distributions in both time and space. Solute velocities calculated from the temporal evolution of that distribution have the same time dependence as reaction-rate scaling in a wide range of field studies and laboratory experiments, covering some 10 decades in time. The present theory thus both explains a wide range of experiments, and also predicts changes in the scaling behavior in individual systems with increasing time and/or length scales. No other theory captures these variations in scaling by invoking a single physical mechanism. Because the successfully predicted chemical reactions include known results for silicate weathering rates, our theory provides a framework for understanding changes in the global carbon cycle, including its effects on extinctions, climate change, soil production, and denudation rates. It further provides a basis for understanding the fundamental time scales of hydrology and shallow geochemistry, as well as the basis of industrial agriculture. PMID:26232976

  19. STELLAR EVOLUTION CONSTRAINTS ON THE TRIPLE-{alpha} REACTION RATE

    SciTech Connect

    Suda, Takuma; Fujimoto, Masayuki Y.; Hirschi, Raphael

    2011-11-01

    We investigate the quantitative constraint on the triple-{alpha} reaction rate based on stellar evolution theory, motivated by the recent significant revision of the rate proposed by nuclear physics calculations. Targeted stellar models were computed in order to investigate the impact of that rate in the mass range of 0.8 {<=} M/M{sub sun} {<=} 25 and in the metallicity range between Z = 0 and Z = 0.02. The revised rate has a significant impact on the evolution of low- and intermediate-mass stars, while its influence on the evolution of massive stars (M {approx}> 10 M{sub sun}) is minimal. We find that employing the revised rate suppresses helium shell flashes on asymptotic giant branch phase for stars in the initial mass range 0.8 {<=} M/M{sub sun} {<=} 6, which is contradictory to what is observed. The absence of helium shell flashes is due to the weak temperature dependence of the revised triple-{alpha} reaction cross section at the temperature involved. In our models, it is suggested that the temperature dependence of the cross section should have at least {nu} > 10 at T = (1-1.2) Multiplication-Sign 10{sup 8} K where the cross section is proportional to T {sup {nu}}. We also derive the helium ignition curve to estimate the maximum cross section to retain the low-mass first red giants. The semi-analytically derived ignition curves suggest that the reaction rate should be less than {approx}10{sup -29} cm{sup 6} s{sup -1} mole{sup -2} at Almost-Equal-To 10{sup 7.8} K, which corresponds to about three orders of magnitude larger than that of the NACRE compilation. In an effort to compromise with the revised rates, we calculate and analyze models with enhanced CNO cycle reaction rates to increase the maximum luminosity of the first giant branch. However, it is impossible to reach the typical red giant branch tip luminosity even if all the reaction rates related to CNO cycles are enhanced by more than 10 orders of magnitude.

  20. The astrophysical reaction rate for the {sup 18}F(p,{alpha}){sup 15}O reaction

    SciTech Connect

    Rehm, K.E.; Paul, M.; Roberts, A.D.

    1996-03-01

    Proton and alpha widths for a 3/2{sup +} ({ell}{sub p} = 0) state in {sup 19}Ne at E{sub x} = 7.1 MeV have been extracted using the results of recent measurements of the {sup 18}F(p,{alpha}){sup 15}O reaction. This {ell}{sub p} = 0 resonance dominates the astrophysical reaction rates at temperatures T{sub 9} > 0.5.

  1. Reaction Rate Maxima at Large Distances between Reactants.

    PubMed

    Kuss-Petermann, Martin; Wenger, Oliver S

    2016-01-01

    One commonly thinks that two reactants need to come very close to one another in order for a chemical reaction to occur. This is true for most reaction types, but electron transfer is an exception in this regard. It is a well-documented fact that electron transfers can occur over long distances (≥15 Å), but it is much less well-known that theory predicts a regime in which electron transfer rates in crease with increasing distance between reactants. This contribution explains the physical origin of this counter-intuitive behavior, and it identifies a set of conditions that might facilitate its experimental observation.

  2. Reaction rates and effective parameters in stratified aquifers

    NASA Astrophysics Data System (ADS)

    Fernàndez-Garcia, Daniel; Sánchez-Vila, Xavier; Guadagnini, Alberto

    2008-10-01

    Chemical species are advected by water and undergo mixing processes due to effects of local diffusion and/or dispersion. In turn, mixing causes reactions to take place so that the system can locally equilibrate. In general, a multicomponent reactive transport problem is described through a system of coupled non-linear partial differential equations. Under instantaneous chemical equilibrium, a complex geochemical problem can be highly simplified by fully defining the system in terms of conservative quantities, termed master species or components, and the space-time distribution of reaction rates. We investigate the parameters controlling reaction rates in a heterogeneous aquifer at short distances from the source. Hydraulic conductivity at this scale is modeled as a random process with highly anisotropic correlation structure. In the limit for very large horizontal integral scales, the medium can be considered as stratified. Upon modeling transport by means of an ADE (Advection Dispersion Equation), we derive closed-form analytical solutions for statistical moments of reaction rates for the particular case of negligible transverse dispersion. This allows obtaining an expression for an effective hydraulic conductivity, KeffR, as a representative parameter describing the mean behavior of the reactive system. The resulting KeffR is significantly smaller than the effective conductivity representative of the flow problem. Finally, we analyze numerically the effect of accounting for transverse local dispersion. We show that transverse dispersion causes no variation in the distribution of (ensemble) moments of local reaction rates at very short travel times, while it becomes the dominant effect for intermediate to large travel times.

  3. Reaction of limonene with F2: rate coefficient and products.

    PubMed

    Bedjanian, Yuri; Romanias, Manolis N; Morin, Julien

    2014-11-01

    The kinetics of the reaction of limonene (C10H16) with F2 has been studied using a low pressure (P = 1 Torr) and a high pressure turbulent (P = 100 Torr) flow reactor coupled with an electron impact ionization and chemical ionization mass spectrometers, respectively: F2 + Limonene → products (1). The rate constant of the title reaction was determined under pseudo-first-order conditions by monitoring either limonene or F2 decay in excess of F2 or C10H16, respectively. The reaction rate constant, k1 = (1.15 ± 0.25) × 10(-12) exp(160 ± 70)/T) was determined over the temperature range 278-360 K, independent of pressure between 1 (He) and 100 (N2) Torr. F atom and HF were found to be formed in reaction 1 , with the yields of 0.60 ± 0.13 and 0.39 ± 0.09, respectively, independent of temperature in the range 296-355 K.

  4. A model for reaction rates in turbulent reacting flows

    NASA Technical Reports Server (NTRS)

    Chinitz, W.; Evans, J. S.

    1984-01-01

    To account for the turbulent temperature and species-concentration fluctuations, a model is presented on the effects of chemical reaction rates in computer analyses of turbulent reacting flows. The model results in two parameters which multiply the terms in the reaction-rate equations. For these two parameters, graphs are presented as functions of the mean values and intensity of the turbulent fluctuations of the temperature and species concentrations. These graphs will facilitate incorporation of the model into existing computer programs which describe turbulent reacting flows. When the model was used in a two-dimensional parabolic-flow computer code to predict the behavior of an experimental, supersonic hydrogen jet burning in air, some improvement in agreement with the experimental data was obtained in the far field in the region near the jet centerline. Recommendations are included for further improvement of the model and for additional comparisons with experimental data.

  5. Triple-{alpha} reaction rate constrained by stellar evolution models

    SciTech Connect

    Suda, Takuma; Hirschi, Raphael; Fujimoto, Masayuki Y.

    2012-11-12

    We investigate the quantitative constraint on the triple-{alpha} reaction rate based on stellar evolution theory, motivated by the recent significant revision of the rate proposed by nuclear physics calculations. Targeted stellar models were computed in order to investigate the impact of that rate in the mass range of 0.8{<=}M/M{sub Circled-Dot-Operator }{<=}25 and in the metallicity range between Z= 0 and Z= 0.02. The revised rate has a significant impact on the evolution of low-and intermediate-mass stars, while its influence on the evolution of massive stars (M > 10M{sub Circled-Dot-Operator }) is minimal. We find that employing the revised rate suppresses helium shell flashes on AGB phase for stars in the initial mass range 0.8{<=}M/M{sub Circled-Dot-Operator }{<=}6, which is contradictory to what is observed. The absence of helium shell flashes is due to the weak temperature dependence of the revised triple-{alpha} reaction cross section at the temperature involved. In our models, it is suggested that the temperature dependence of the cross section should have at least {nu} > 10 at T = 1-1.2 Multiplication-Sign 10{sup 8}K where the cross section is proportional to T{sup {nu}}. We also derive the helium ignition curve to estimate the maximum cross section to retain the low-mass first red giants. The semi-analytically derived ignition curves suggest that the reaction rate should be less than {approx} 10{sup -29} cm{sup 6} s{sup -1} mole{sup -2} at Almost-Equal-To 10{sup 7.8} K, which corresponds to about three orders of magnitude larger than that of the NACRE compilation.

  6. Triple-α reaction rate constrained by stellar evolution models

    NASA Astrophysics Data System (ADS)

    Suda, Takuma; Hirschi, Raphael; Fujimoto, Masayuki Y.

    2012-11-01

    We investigate the quantitative constraint on the triple-α reaction rate based on stellar evolution theory, motivated by the recent significant revision of the rate proposed by nuclear physics calculations. Targeted stellar models were computed in order to investigate the impact of that rate in the mass range of 0.8<=M/Msolar<=25 and in the metallicity range between Z = 0 and Z = 0.02. The revised rate has a significant impact on the evolution of low-and intermediate-mass stars, while its influence on the evolution of massive stars (M > 10Msolar) is minimal. We find that employing the revised rate suppresses helium shell flashes on AGB phase for stars in the initial mass range 0.8<=M/Msolar<=6, which is contradictory to what is observed. The absence of helium shell flashes is due to the weak temperature dependence of the revised triple-α reaction cross section at the temperature involved. In our models, it is suggested that the temperature dependence of the cross section should have at least ν > 10 at T = 1-1.2×108K where the cross section is proportional to Tν. We also derive the helium ignition curve to estimate the maximum cross section to retain the low-mass first red giants. The semi-analytically derived ignition curves suggest that the reaction rate should be less than ~ 10-29 cm6 s-1 mole-2 at ~ 107.8 K, which corresponds to about three orders of magnitude larger than that of the NACRE compilation.

  7. Reaction Rate Measurements at the National Criticality Experiments Research Center

    NASA Astrophysics Data System (ADS)

    Bredeweg, T. A.; Bounds, J. A.; Brooks, G. H., Jr.; Favorite, J. A.; Goda, J. M.; Hayes, D. K.; Jackman, K. R.; Little, R. C.; Macinnes, M. R.; Myers, W. L.; Oldham, W. J.; Rundberg, R. S.; Sanchez, R. G.; Schake, A. R.; White, M. C.; Wilkerson, C. W., Jr.

    2014-09-01

    With the resumption of regular operations of the Los Alamos Critical Assemblies at the National Criticality Experiments Research Center (NCERC), located at the Nevada National Security Site, we have embarked upon a series of campaigns to restore the capability to perform integral reaction rate and fission product yield measurements using historical radiochemical methods. This talk will present an overview of the current and future experimental plans, including results from our experimental campaigns on the Comet/Zeus and Flattop assemblies.

  8. Pressure variation of enzymatic reaction rates: III. Catalase.

    PubMed

    Morild, E; Olmheim, J E

    1981-01-01

    The effect of pressure on the catalytic decomposition of hydrogen peroxide by catalase has been investigated to 1000 bar by spectrophotometry and oxygen polarography. Comparison between the two methods showed good agreement up to 700 bar but increasing deviation above that pressure. The kinetic behavior of catalase is rather complicated and difficult to interpret. For small peroxide concentrations the reaction rate increased with pressure below 500 bar. For higher concentrations the rate decreased at all pressures. Temperature had no marked effect on the pressure behavior but addition of KCl led to a large increase in activation volume. PMID:7339635

  9. Application of semiclassical methods to reaction rate theory

    SciTech Connect

    Hernandez, R.

    1993-11-01

    This work is concerned with the development of approximate methods to describe relatively large chemical systems. This effort has been divided into two primary directions: First, we have extended and applied a semiclassical transition state theory (SCTST) originally proposed by Miller to obtain microcanonical and canonical (thermal) rates for chemical reactions described by a nonseparable Hamiltonian, i.e. most reactions. Second, we have developed a method to describe the fluctuations of decay rates of individual energy states from the average RRKM rate in systems where the direct calculation of individual rates would be impossible. Combined with the semiclassical theory this latter effort has provided a direct comparison to the experimental results of Moore and coworkers. In SCTST, the Hamiltonian is expanded about the barrier and the ``good`` action-angle variables are obtained perturbatively; a WKB analysis of the effectively one-dimensional reactive direction then provides the transmission probabilities. The advantages of this local approximate treatment are that it includes tunneling effects and anharmonicity, and it systematically provides a multi-dimensional dividing surface in phase space. The SCTST thermal rate expression has been reformulated providing increased numerical efficiency (as compared to a naive Boltzmann average), an appealing link to conventional transition state theory (involving a ``prereactive`` partition function depending on the action of the reactive mode), and the ability to go beyond the perturbative approximation.

  10. Mechanism and rate of the reaction CH3 + O--revisited.

    PubMed

    Hack, W; Hold, M; Hoyermann, K; Wehmeyer, J; Zeuch, T

    2005-05-01

    The primary products and the rate of the reaction of methyl radicals with oxygen atoms in the gas phase at room temperature have been studied using three different experimental arrangements: (A) laser flash photolysis to produce CH3 and O from the precursors CH3I and SO2 (the educts and the products were detected by quantitative FTIR spectroscopy); (B) the coupling of a conventional discharge flow reactor via a molecular sampling system to a mass spectrometer with electron impact ionization, which allowed the determination of labile and stable species; (C) laser induced multiphoton ionization combined with a TOF mass spectrometer-molecular beam sampling-flow reactor, which was used for the specific and sensitive detection of the CH3, CD3, C2H5 and C2D5 radicals and the determination of rate coefficients. The branching ratio of the reaction channels was determined by the experimental arrangements (A) and (B) leading to CH3 + O --> HCHO + H (55 +/- 5)% --> CO + H2 + H (45 +/- 5)%. The rate coefficients of the normal and deuterated methyl and ethyl radicals with atomic oxygen showed no isotope effect: k(CD3 + O)/k(CH3 + O) = 0.99 +/- 0.12, k(C2D5 + O)/k(C2H5 + O) = 1.01 +/- 0.07 (statistical error, 95% confidence level). The absolute rate coefficient of the reaction CH3 + O was derived with reference to the reaction C2H5 + O (k = 1.04 x 10(14) cm3 mol(-1) s(-1)) leading to k(CH3 + O) = (7.6 +/- 1.4) x 10(13) cm3 mol(-1) s(-1).

  11. OH reaction rate constants and UV absorption cross-sections of unsaturated esters

    NASA Astrophysics Data System (ADS)

    Teruel, M. A.; Lane, S. I.; Mellouki, A.; Solignac, G.; Le Bras, G.

    Absolute rate coefficients have been determined for the gas-phase reactions of hydroxyl radicals with methyl acrylate ( k1), methyl methacrylate ( k2) and ethyl acrylate ( k3). Experiments were performed using two different techniques, the relative rate method and the pulsed laser photolysis-laser induced fluorescence technique. The kinetic data obtained were used to derive the following Arrhenius expressions in the temperature range 253-374 K (in units of cm 3 molecule -1 s -1): k1=(2.0±0.8)×10exp[(553±51)/T], k2=(2.5±0.8)×10exp[(821±55)/T], k3=(2.3±0.8)×10exp[(580±65)/T]. At 298 K, the reaction rate constants obtained by the two methods were in good agreement. In addition, the UV absorption spectra for the three unsaturated esters have been determined at (298±2) K and the absorption cross-sections in the wavelength region 215-298 nm were reported. The results are presented, discussed and used to estimate the atmospheric lifetimes for the studied esters.

  12. r-PROCESS Reaction Rates for the Actinides and Beyond

    NASA Astrophysics Data System (ADS)

    Panov, I. V.; Korneev, I. Yu.; Rauscher, T.; Thielemann, F.-K.

    2011-10-01

    We discuss the importance of different fission rates for the formation of heavy and superheavy nuclei in the astrophysical r-process. Neutron-induced reaction rates, including fission and neutron capture, are calculated in the temperature range 108 ≤ T(K) ≤ 1010 within the framework of the statistical model for targets with the atomic number 84 ≤ Z ≤ 118 (from Po to Uuo) from the neutron to the proton drip-line for different mass and fission barrier predictions based on Thomas-Fermi (TF), Extended Thomas-Fermi plus Strutinsky Integral (ETFSI), Finite-Range Droplet Model (FRDM) and Hartree-Fock-Bogolyubov (HFB) approaches. The contribution of spontaneous fission as well as beta-delayed fission to the recycling r-process is discussed. We also discuss the possibility of rate tests, based on mini r-processed yields in nuclear explosions.

  13. Quantum instanton approximation for thermal rate constants of chemical reactions

    NASA Astrophysics Data System (ADS)

    Miller, William H.; Zhao, Yi; Ceotto, Michele; Yang, Sandy

    2003-07-01

    A quantum mechanical theory for chemical reaction rates is presented which is modeled after the [semiclassical (SC)] instanton approximation. It incorporates the desirable aspects of the instanton picture, which involves only properties of the (SC approximation to the) Boltzmann operator, but corrects its quantitative deficiencies by replacing the SC approximation for the Boltzmann operator by the quantum Boltzmann operator, exp(-βĤ). Since a calculation of the quantum Boltzmann operator is feasible for quite complex molecular systems (by Monte Carlo path integral methods), having an accurate rate theory that involves only the Boltzmann operator could be quite useful. The application of this quantum instanton approximation to several one- and two-dimensional model problems illustrates its potential; e.g., it is able to describe thermal rate constants accurately (˜10-20% error) from high to low temperatures deep in the tunneling regime, and applies equally well to asymmetric and symmetric potentials.

  14. Absolute rate constants for O + NO + M /= He, Ne, Ar, Kr/ yields NO2 + M from 217-500 K

    NASA Technical Reports Server (NTRS)

    Michael, J. V.; Payne, W. A.; Whytock, D. A.

    1976-01-01

    Rate constants for the reaction O + NO + M yields NO2 + M have been obtained at temperatures from 217-500 K in four different rare gases by a method combining flash photolysis with time resolved detection of O(3-P) by resonance fluorescence. The measured rate constants in Arrhenius form are (10.8 plus or minus 1.2) x 10 to the -33rd exp(1040 plus or minus 60/1.987 T) for helium; (9.01 plus or minus 1.16) x 10 to the -33rd exp(1180 plus or minus 70/1.987 T) for argon; (9.33 plus or minus 1.10) x 10 to the -33rd exp(1030 plus or minus 60/1.987 T) for neon; and (9.52 plus or minus 1.10) x 10 to the -33rd exp(1140 plus or minus 70/1.987 T) for krypton in units of cm to the 6th/sq molecule/s.

  15. Reaction rate constant for radiative association of CF(.).

    PubMed

    Öström, Jonatan; Bezrukov, Dmitry S; Nyman, Gunnar; Gustafsson, Magnus

    2016-01-28

    Reaction rate constants and cross sections are computed for the radiative association of carbon cations (C(+)) and fluorine atoms (F) in their ground states. We consider reactions through the electronic transition 1(1)Π → X(1)Σ(+) and rovibrational transitions on the X(1)Σ(+) and a(3)Π potentials. Semiclassical and classical methods are used for the direct contribution and Breit-Wigner theory for the resonance contribution. Quantum mechanical perturbation theory is used for comparison. A modified formulation of the classical method applicable to permanent dipoles of unequally charged reactants is implemented. The total rate constant is fitted to the Arrhenius-Kooij formula in five temperature intervals with a relative difference of <3%. The fit parameters will be added to the online database KIDA. For a temperature of 10-250 K, the rate constant is about 10(-21) cm(3) s(-1), rising toward 10(-16) cm(3) s(-1) for a temperature of 30,000 K.

  16. Primordial lithium: New reaction rates, new abundances, new constraints

    SciTech Connect

    Kawano, L.; Schramm, D.; Steigman, G.

    1986-12-01

    Newly measured nuclear reaction rates for /sup 3/H(..cap alpha..,..gamma..)/sup 7/Li (higher than previous values) and /sup 7/Li(p,..cap alpha..)/sup 4/He (lower than previous values) are shown to increase the /sup 7/Li yield from big bang nucleosynthesis for lower baryon to photon ratio (eta less than or equal to 4 x 10/sup -10/); the yield for higher eta is not affected. New, independent determinations of Li abundances in extreme Pop II stars are in excellent agreement with the earlier work of the Spites and give continued confidence in the use of /sup 7/Li in big bang baryon density determinations. The new /sup 7/Li constraints imply a lower limit on eta of 2 x 10/sup -10/ and an upper limit of 5 x 10/sup -10/. This lower limit to eta is concordant with that obtained from considerations of D + /sup 3/He. The upper limit is consistent with, but even more restrictive than, the D bound. With the new rates, any observed primordial Li/H ratio below 10/sup -10/ would be inexplicable by the standard big bang nucleosynthesis. A review is made of the strengths and possible weaknesses of utilizing conclusions drawn from big bang lithium considerations. An appendix discusses the null effect of a factor of 32 increase in the experimental rate for the D(d,..gamma..)/sup 4/He reaction. 28 refs., 1 fig.

  17. RPMDRATE: Bimolecular chemical reaction rates from ring polymer molecular dynamics

    NASA Astrophysics Data System (ADS)

    Suleimanov, Yu. V.; Allen, J. W.; Green, W. H.

    2013-03-01

    We present RPMDRATE, a computer program for the calculation of gas phase bimolecular reaction rate coefficients using the ring polymer molecular dynamics (RPMD) method. The RPMD rate coefficient is calculated using the Bennett-Chandler method as a product of a static (centroid density quantum transition state theory (QTST) rate) and a dynamic (ring polymer transmission coefficient) factor. The computational procedure is general and can be used to treat bimolecular polyatomic reactions of any complexity in their full dimensionality. The program has been tested for the H+H2, H+CH4, OH+CH4 and H+C2H6 reactions. Catalogue identifier: AENW_v1_0 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AENW_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: MIT license No. of lines in distributed program, including test data, etc.: 94512 No. of bytes in distributed program, including test data, etc.: 1395674 Distribution format: tar.gz Programming language: Fortran 90/95, Python (version 2.6.x or later, including any version of Python 3, is recommended). Computer: Not computer specific. Operating system: Any for which Python, Fortran 90/95 compiler and the required external routines are available. Has the code been vectorized or parallelized?: The program can efficiently utilize 4096+ processors, depending on problem and available computer. At low temperatures, 110 processors are reasonable for a typical umbrella integration run with an analytic potential energy function and gradients on the latest x86-64 machines.

  18. Metal-silicon reaction rates - The effects of capping

    NASA Technical Reports Server (NTRS)

    Weizer, Victor G.; Fatemi, Navid S.

    1989-01-01

    Evidence is presented showing that the presence of the commonly used anti-reflection coating material Ta2O5 on the free surface of contact metallization can either suppress or enhance, depending on the system, the interaction that takes place at elevated temperatures between the metallization and the underlying Si. The cap layer is shown to suppress both the generation and annihilation of vacancies at the free surface of the metal which are necessary to support metal-Si interactons. Evidence is also presented indicating that the mechanical condition of the free metal surface has a significant effect on the metal-silicon reaction rate.

  19. The reaction O((3)P) + HOBr: Temperature dependence of the rate constant and importance of the reaction as an HOBr stratospheric loss process

    NASA Technical Reports Server (NTRS)

    Nesbitt, F. L.; Monks, P. S.; Payne, W. A.; Stief, L. J.; Toumi, R.

    1995-01-01

    The absolute rate constant for the reaction O((3)P) + HOBr has been measured between T = 233K and 423K using the discharge-flow kinetic technique coupled to mass spectrometric detection. The value of the rate coefficient at room temperature is (2.5 +/- 0.6) x 10(exp -11)cu cm/molecule/s and the derived Arrhenius expression is (1.4 +/- 0.5) x 10(exp -10) exp((-430 +/- 260)/T)cu cm/molecule/s. From these rate data the atmospheric lifetime of HOBr with respect to reaction with O((3)P) is about 0.6h at z = 25 km which is comparable to the photolysis lifetime based on recent measurements of the UV cross section for HOBr. Implications for HOBr loss in the stratosphere have been tested using a 1D photochemical box model. With the inclusion of the rate parameters and products for the O + HOBr reaction, calculated concentration profiles of BrO increase by up to 33% around z = 35 km. This result indicates that the inclusion of the O + HOBr reaction in global atmospheric chemistry models may have an impact on bromine partitioning in the middle atmosphere.

  20. Kinetics of Imidazole Catalyzed Ester Hydrolysis: Use of Buffer Dilutions to Determine Spontaneous Rate, Catalyzed Rate, and Reaction Order.

    ERIC Educational Resources Information Center

    Lombardo, Anthony

    1982-01-01

    Described is an advanced undergraduate kinetics experiment using buffer dilutions to determine spontaneous rate, catalyzed rate, and reaction order. The reaction utilized is hydrolysis of p-nitro-phenyl acetate in presence of imidazole, which has been shown to enhance rate of the reaction. (Author/JN)

  1. Reaction rates in a theory of mechanochemical pathways.

    PubMed

    Quapp, Wolfgang; Bofill, Josep Maria

    2016-10-15

    If one applies mechanical stress to a molecule in a defined direction then one generates a new, effective potential energy surface (PES). Changes for minima and saddle points (SP) by the stress are described by Newton trajectories on the original PES (Quapp and Bofill, Theor. Chem. Acc. 2016, 135, 113). The barrier of a reaction fully breaks down for the maximal value of the norm of the gradient of the PES along a pulling Newton trajectory. This point is named barrier breakdown point (BBP). Depending on the pulling direction, different reaction pathways can be enforced. If the exit SP of the chosen pulling direction is not the lowest SP of the reactant valley, on the original PES, then the SPs must change their role anywhere: in this case the curve of the log(rate) over the pulling force of a forward reaction can show a deviation from the normal concave curvature. We discuss simple, two-dimensional examples for this model to understand more deeply the mechanochemistry of molecular systems under a mechanical stress. © 2016 Wiley Periodicals, Inc.

  2. Reaction rates in a theory of mechanochemical pathways.

    PubMed

    Quapp, Wolfgang; Bofill, Josep Maria

    2016-10-15

    If one applies mechanical stress to a molecule in a defined direction then one generates a new, effective potential energy surface (PES). Changes for minima and saddle points (SP) by the stress are described by Newton trajectories on the original PES (Quapp and Bofill, Theor. Chem. Acc. 2016, 135, 113). The barrier of a reaction fully breaks down for the maximal value of the norm of the gradient of the PES along a pulling Newton trajectory. This point is named barrier breakdown point (BBP). Depending on the pulling direction, different reaction pathways can be enforced. If the exit SP of the chosen pulling direction is not the lowest SP of the reactant valley, on the original PES, then the SPs must change their role anywhere: in this case the curve of the log(rate) over the pulling force of a forward reaction can show a deviation from the normal concave curvature. We discuss simple, two-dimensional examples for this model to understand more deeply the mechanochemistry of molecular systems under a mechanical stress. © 2016 Wiley Periodicals, Inc. PMID:27556915

  3. Primordial lithium - New reaction rates, new abundances, new constraints

    NASA Technical Reports Server (NTRS)

    Kawano, Lawrence; Schramm, David; Steigman, Gary

    1988-01-01

    Newly measured nuclear reaction rates for H-3(alpha, gamma)Li-7 (higher than previous values) and Li-7(p, alpha)He-4 (lower than previous values) are shown to increase the Li-7 yield from big band nucleosynthesis for lower baryon-to-photon ratio (less than about 4 x 10 to the 10th). Recent revisions in the He-3(alpha, gamma)Be-7 and the D(p, gamma)He-3 rates enhance the high (greater than 4 x 10 to the 10th) Li-7(Be) production. New, independent determinations of Li abundances in extreme population II stars are in excellent agreement with the work of Spites and give continued confidence in the use of Li-7 in big bang baryon density determinations.

  4. Rate constants for the gas phase reaction of OH radicals with peroxyacetyl nitrate (PAN) at 273 and 297 K

    NASA Astrophysics Data System (ADS)

    Wallington, Timothy J.; Atkinson, Roger; Winer, Arthur M.

    1984-09-01

    Recently, peroxyacetyl nitrate (PAN) has been postulated to be a potential tropospheric reservoir of oxides of nitrogen, and to be important in their long-range transport. To better assess its atmospheric chemistry, absolute rate constants for the reaction of OH radicals with peroxyacetyl nitrate (PAN) have been determined using a flash photolysis resonance fluorescence technique. Rate constants of (1.13 ± 0.06) × 10-13 cm³ molecule-1 s-1 and (1.37 ± 0.05) × 10-13 cm³ molecule-1 s-1, independent of total pressure over the range 25-100 torr of argon, were determined at 273 ± 2 and 297 ± 2 K, respectively. (The errors limits represent two standard deviations; systematic errors could contribute an additional ˜10% uncertainty.) These rate constants imply that reaction with the OH radical is the most important removal process for PAN in the upper troposphere.

  5. Effect of Substrate Character on Heterogeneous Ozone Reaction Rate with Individual PAHs and Their Reaction Mixtures

    NASA Astrophysics Data System (ADS)

    Holmen, B. A.; Stevens, T.

    2009-12-01

    Vehicle exhaust contains many unregulated chemical compounds that are harmful to human health and the natural environment, including polycyclic aromatic hydrocarbons (PAH), a class of organic compounds derived from fuel combustion that can be carcinogenic and mutagenic. PAHs have been quantified in vehicle-derived ultrafine particles (Dp<100nm), which are more toxic than larger particles and are linked to adverse health problems, including respiratory and cardiac disease. Once emitted into the atmosphere, particle-bound PAHs can undergo “aging” reactions with oxidants, such as ozone, to form more polar species. These polar reaction products include species such as quinones that can be more toxic than the parent PAH compounds. Here, 0.4ppm ozone was reacted over a 24-hour period with the 16 EPA priority PAHs plus coronene adsorbed to (i) a quartz fiber filter and (ii) NIST diesel PM. The difference in the PAH/O3 heterogeneous reaction rate resulting from the two substrates will be discussed. The experiments were completed by spiking a known PAH mixture to the solid, reacting the samples with gas-phase ozone, and determining both PAH loss over time and products formed, using thermal-desorption gas chromatography / mass spectrometry (TD-GC/MS). The individual PAHs anthracene, phenanthrene, and fluorene, adsorbed to a QFF were also separately reacted with 0.4 ppm ozone. A volatilization control and the collection of volatilized PAHs using a Tenax-packed thermal desorption vial completed the mass balance and aided determination parent-product relationships. Heterogeneous reaction products analyzed directly without derivatization indicate the formation of 9,10-anthracenedione, 9H-fluoren-9-one, and (1,1’-biphenyl)-2,2’-dicarboxaldehyde from the reaction of ozone with the PAH mix on a QFF, but only 9,10-anthracenedione was detected for the diesel PM reaction. The implications of these results for aging of diesel particulate in urban environments will be discussed.

  6. An improved method for absolute quantification of mRNA using multiplex polymerase chain reaction: determination of renin and angiotensinogen mRNA levels in various tissues.

    PubMed

    Dostal, D E; Rothblum, K N; Baker, K M

    1994-12-01

    We have developed a multiplex, competitive, reverse-transcriptase polymerase chain reaction (RT-PCR) method which measures absolute levels of renin, angiotensinogen, and the housekeeping transcript elongation factor-1 alpha (EF-1 alpha) mRNA. Sample RNA was simultaneously titrated with serial dilutions of renin, angiotensinogen, and EF-1 alpha competitor RNAs which flanked the endogenous concentrations of target transcripts. The samples were coreverse transcribed in the presence of random primers and resulting first-strand cDNA was coamplified for 10-15 cycles with [32P]-dCTP and primers for renin angiotensinogen, after which EF-1 alpha primers were added. Amplified DNA was separated by electrophoresis on polyacrylamide gel and radioactivity in the bands was quantified by direct radioanalytical scanning. Three conditions were necessary to obtain absolute quantification of renin and angiotensinogen mRNA levels: (a) exogenous competitor RNA was used to control for tube-to-tube variability in the efficiencies of reverse transcription and amplification; (b) Sample RNA was titrated with flanking concentrations of competitor RNA to correct for intraassay differences in the efficiency of amplification due to concentration differences between competitor and target templates; and (c) a housekeeping transcript EF-1 alpha was used to control for tube-to-tube differences in RNA loading and/or degradation. We show that the multiplex RT-PCR method is precise and accurate over approximately three logs of transcript concentration and sensitive to less than 5 and 0.5 fg for renin and angiotensinogen mRNA, respectively. This method will be useful for absolute quantification of target mRNAs, especially when the amount of sample RNA is limited or unknown and/or the gene expression is low. PMID:7887470

  7. Rate Constant for the OH + CO Reaction at Low Temperatures.

    PubMed

    Liu, Yingdi; Sander, Stanley P

    2015-10-01

    Rate constants for the reaction of OH + CO → products (1) have been measured using laser photolysis/laser-induced fluorescence (LP/LIF) over the temperature range 193–296 K and at pressures of 50–700 Torr of Ar and N2. The reaction was studied under pseudo-first-order conditions, monitoring the decay of OH in the presence of a large excess of CO. The rate constants can be expressed as a combination of bimolecular and termolecular components. The bimolecular component was found to be temperature-independent with an expression given by kbi(T) = (1.54 ± 0.14) × 10(–13)[e(–(13±17)/T)] cm(3) molecule(–1) s(–1), with an error of one standard deviation. The termolecular component was fitted to the expression, kter = k0(T)[M]/[1 + (k0(T)[M]/k∞(T)] × 0.6({1+[log10(k0(T)[M]/k∞(T))]2}−1) where k0(T) = k0(300)(T/300)(−n) and k∞(T) = k∞(300)(T/300)(−m). The parameters for k0(T) were determined to be k0(300) = (6.0±0.5) × 10(−33) cm(6) molecule(–2) s(–1) in N2 and k0(300) = (3.4 ± 0.3) × 10(–33) cm(6) molecule(–2) s(–1) in Ar, with n = 1.9±0.5 and 2.0±0.4 in N2 and Ar, respectively. These parameters were determined using k0(T) and m from the NASA kinetics data evaluation (JPL Publication No. 10-6) since the experimental pressure range was far from the high-pressure limit. Addition of low concentrations of O2 had no discernible effect on the mechanism of the OH + CO reaction but resulted in secondary reactions which regenerated OH.

  8. Comprehensive panel of real-time TaqMan polymerase chain reaction assays for detection and absolute quantification of filoviruses, arenaviruses, and New World hantaviruses.

    PubMed

    Trombley, Adrienne R; Wachter, Leslie; Garrison, Jeffrey; Buckley-Beason, Valerie A; Jahrling, Jordan; Hensley, Lisa E; Schoepp, Randal J; Norwood, David A; Goba, Augustine; Fair, Joseph N; Kulesh, David A

    2010-05-01

    Viral hemorrhagic fever is caused by a diverse group of single-stranded, negative-sense or positive-sense RNA viruses belonging to the families Filoviridae (Ebola and Marburg), Arenaviridae (Lassa, Junin, Machupo, Sabia, and Guanarito), and Bunyaviridae (hantavirus). Disease characteristics in these families mark each with the potential to be used as a biological threat agent. Because other diseases have similar clinical symptoms, specific laboratory diagnostic tests are necessary to provide the differential diagnosis during outbreaks and for instituting acceptable quarantine procedures. We designed 48 TaqMan-based polymerase chain reaction (PCR) assays for specific and absolute quantitative detection of multiple hemorrhagic fever viruses. Forty-six assays were determined to be virus-specific, and two were designated as pan assays for Marburg virus. The limit of detection for the assays ranged from 10 to 0.001 plaque-forming units (PFU)/PCR. Although these real-time hemorrhagic fever virus assays are qualitative (presence of target), they are also quantitative (measure a single DNA/RNA target sequence in an unknown sample and express the final results as an absolute value (e.g., viral load, PFUs, or copies/mL) on the basis of concentration of standard samples and can be used in viral load, vaccine, and antiviral drug studies.

  9. Application of Semiclassical Methods to Reaction Rate Theory

    NASA Astrophysics Data System (ADS)

    Hernandez, Rigoberto

    This work is concerned with the development of approximate methods to describe relatively large chemical systems. This effort has been divided into two primary directions: First, we have extended and applied a semiclassical transition state theory (SCTST) originally proposed by Miller* to obtain microcanonical and canonical (thermal) rates for chemical reactions described by a nonseparable Hamiltonian, i.e., most reactions. Second, we have developed a method to describe the fluctuations of decay rates of individual energy states from the average RRKM rate in systems where the direct calculation of individual rates would be impossible. Combined with the semiclassical theory this latter effort has provided a direct comparison to the experimental results of Moore and coworkers. ^dagger. In SCTST, the Hamiltonian is expanded about the barrier and the "good" action-angle variables are obtained perturbatively; a WKB analysis of the effectively one-dimensional reactive direction then provides the transmission probabilities. ^ddagger The advantages of this local approximate treatment are that it includes tunneling effects and anharmonicity, and it systematically provides a multi-dimensional dividing surface in phase space. The SCTST thermal rate expression has been reformulated providing increased numerical efficiency (as compared to a naive Boltzmann average), an appealing link to conventional transition state theory (involving a "pre-reactive" partition function depending on the action of the reactive mode), and the ability to go beyond the perturbative approximation. ^S. In addition, the distribution of unimolecular decay rates at threshold energies to dissociation has been modeled by describing the quasi-bound states as strongly -mixed. The possible existence of globally conserved symmetries --which would break this ansatz--is included by treating each symmetry block of the Hamiltonian separably and assuming the ansatz for each symmetry manifold. Use of SCTST to

  10. A slow reaction rate in detonations due to carbon clustering

    SciTech Connect

    Shaw, M.S.; Johnson, J.D.

    1987-07-01

    Theoretical calculations have been made to estimate the rate of heat release due to the carbon clustering process in detonations where elemental carbon is a reaction product. The process is assumed to be diffusion limited. Diffusion constants are determined using modified Enskog theory and the Stokes-Einstein relation. The carbon cluster energy is treated by a surface correction to the bulk. The amount of energy yet to be released has an asymptotic time dependence of t/sup -1/3/. For some explosives, this leads to time dependent detonations where the effective CJ pressure is 10-20% above CJ for run distances of the order of centimeters. 9 refs., 3 figs.

  11. The effects of vacuum polarization on thermonuclear reaction rates

    NASA Technical Reports Server (NTRS)

    Gould, Robert J.

    1990-01-01

    Added to the pure Coulomb potential, the contribution from vacuum polarization increases the barrier, reducing the wave function (u) for reacting nuclei within the range of nuclear forces. The cross section and reaction rate are then reduced accordingly by a factor proportional to u squared. The effect is treated by evaluating the vacuum polarization potential as a small correction to the Coulomb term, then computing u in a WKB formulation. The calculation is done analytically employing the small r power-series expansion for the Uehling potential to express the final result in terms of convenient parameters. At a temperature of 1.4 x 10 to the 7th K the (negative) correction is 1.3 percent for the fundamental fusion process p + p yields d + e(+) + nu.

  12. Manual choice reaction times in the rate-domain

    PubMed Central

    Harris, Christopher M.; Waddington, Jonathan; Biscione, Valerio; Manzi, Sean

    2014-01-01

    Over the last 150 years, human manual reaction times (RTs) have been recorded countless times. Yet, our understanding of them remains remarkably poor. RTs are highly variable with positively skewed frequency distributions, often modeled as an inverse Gaussian distribution reflecting a stochastic rise to threshold (diffusion process). However, latency distributions of saccades are very close to the reciprocal Normal, suggesting that “rate” (reciprocal RT) may be the more fundamental variable. We explored whether this phenomenon extends to choice manual RTs. We recorded two-alternative choice RTs from 24 subjects, each with 4 blocks of 200 trials with two task difficulties (easy vs. difficult discrimination) and two instruction sets (urgent vs. accurate). We found that rate distributions were, indeed, very close to Normal, shifting to lower rates with increasing difficulty and accuracy, and for some blocks they appeared to become left-truncated, but still close to Normal. Using autoregressive techniques, we found temporal sequential dependencies for lags of at least 3. We identified a transient and steady-state component in each block. Because rates were Normal, we were able to estimate autoregressive weights using the Box-Jenkins technique, and convert to a moving average model using z-transforms to show explicit dependence on stimulus input. We also found a spatial sequential dependence for the previous 3 lags depending on whether the laterality of previous trials was repeated or alternated. This was partially dissociated from temporal dependency as it only occurred in the easy tasks. We conclude that 2-alternative choice manual RT distributions are close to reciprocal Normal and not the inverse Gaussian. This is not consistent with stochastic rise to threshold models, and we propose a simple optimality model in which reward is maximized to yield to an optimal rate, and hence an optimal time to respond. We discuss how it might be implemented. PMID:24959134

  13. The Absolute Rates of the Solution Phase Addition of Atomic Hydrogen to a Vinyl Ether and a Vinyl Ester. The Effect of Oxygen Substitution on Hydrogen Atom Reactivity with Olefins

    SciTech Connect

    Tanner, D. D.; Kandanarachchi, P.; Das, N. C.; Franz, James A.

    2003-04-08

    The reactions of vinyl butyl ether and vinyl butyrate with atomic hydrogen and deuterium lead to addition of atomic hydrogen to the terminal position of the olefins. This observation is consistent with the reactions carried out earlier with other olefins. Both the absolute rates of addition to vinylbutyl ether and vinyl butyrate in acetone and hexane were carried out at several temperatures. The relative rates are consistent with only modest stabilization of the transition state of the radical adduct by the ??-o substituent compared with hydrogen atom addition to 1-octene. The relative rates measured in acetone and hexane indicate no significant differential solvation of ground state relative to the transition structures of the hydrogen atom addition. The kinetics reveal that the early transition states of hydrogen atom addition exhibit little selectivity (vinyl ether versus simple olefin) in either abstraction of hydrogen ??- to the oxygen or by terminal addition to the olefinic ether, reflecting the modest influence of the increased enthalpy of reaction associated with resonance stabilization by the oxygen substituent at the developing radical site.

  14. Absolute Rates of the Solution-Phase Addition of Atomic Hydrogen to a Vinyl Ether and a Vinyl Ester: Effect of Oxygen Substitution on Hydrogen Atom Reactivity with Olefins

    SciTech Connect

    Tanner, D D.; Kandanarachchi, P; Das, N. C.; Franz, James A.

    2003-04-08

    The reactions of vinyl butyl ether and vinyl butyrate with atomic hydrogen and deuterium lead to addition at the terminal position of the olefins. This observation is consistent with the reactions carried out earlier with other olefins. Both of the absolute rates of addition to vinylbutyl ether and vinyl butyrate, in acetone and hexane, were measured at several temperatures. The relative rates are consistent with only modest stabilization of the transition state of the radical adduct by the R-O substituent compared with that of hydrogen atom addition to 1-octene. The relative rates measured in acetone and hexane indicate no significant differential solvation of the ground state relative to the transition structures of the hydrogen atom addition. The kinetics reveal that the early transition states for hydrogen atom addition exhibit little selectivity (vinyl ether versus simple olefin) in either the abstraction of hydrogen R to the oxygen or by terminal addition to the olefinic ether and reflects the modest influence of the increased enthalpy of reaction associated with resonance stabilization by the oxygen substituent at the developing radical site.

  15. Faster rates with less catalyst in template-directed reactions

    NASA Technical Reports Server (NTRS)

    Kanavarioti, A.; Baird, E. E.

    1995-01-01

    We have recently shown that the polycytidylic acid-directed polymerization of guanosine 5'-monophosphate 2-methylimidazolide (2-MeImpG) is amenable to kinetic study and that rate determinations as a function of 2-MeImpG concentration can reveal much mechanistic detail (Kanavarioti et al. 1993). Here we report kinetic data which show that, once the reaction has been initiated by the formation of dimers, the elongation of dimers to form longer oligomers is accelerated by decreasing polycytidylate (poly(C)) concentration from 0.05 to 0.002 M. This result is consistent with the previously proposed mechanism. The increase in the observed pseudo-first order rate constant for formation of the trimer, k3', and the corresponding constant for formation of oligomers longer than the trimer, ki' (ki' is independent of oligomer length for i > or = 4), with decreasing template concentration for a given monomer concentration is attributed to an increase in template occupancy as template concentration is reduced.

  16. Measurement of sulfur dioxide reaction rates in wintertime orographic clouds

    SciTech Connect

    Snider, J.R.

    1989-01-01

    Releases of SO2 into the wintertime orographic clouds at Elk Mountain in southeastern Wyoming were utilized to accelerate the rate of SO2 oxidation to cloud-water dissolved sulfate (SO4(-2)). Background SO2 mixing ratios were 0.6 parts-per-billion by volume (ppbv) and were consistent with the remote location of the experimental site and with supplemental cloud water, snow, and aerosol composition measurements. Background mixing ratios of hydrogen peroxide (H2O2) and the organohydroperoxides, expressed as methyl hydroperoxide (MHP), were 0.15 and 0.17 ppbv, respectively. The concentration of H2O2 in cloud water, obtained as rime, was also monitored. Analysis of these findings suggests that both reactive loss of H2O2 and volatilization during riming are mechanisms for H2O2 loss. The pseudo first-order SO2 depletion rates varied between 2 and 72 percent /hr (x=32 plus or minus 22 percent/hr, n=10). Observed depletions of H2O2 (x=0.030 ppbv) were consistent with observed yields of SO4(-2) (x=0.027 ppbv) and with model predictions. Observed depletions of MHP were not significantly different from 0.0 ppbv. This observation is both consistent with the much smaller solubility of MHP, compared with H2O2, and with the results of 16 model simulations. Reactions between dissolved SO2 and O3, between SO2 and O2, and between SO2 and HCHO were calculated to contribute less than 40 percent to the total amount of SO4(-2). These reactions were inferred to be inhibited by the low pH (less than 5) of the Elk Mountain cloud water. It is concluded that H2O2 is the dominant SO2 oxidant in these clouds, and that the laboratory measurements form an adequate basis for predicting the rate of in-cloud oxidation of SO2 by H2O2.

  17. Studies of reactions of importance in the stratosphere. III. Rate constant and products of the reaction between ClO and HO2 radicals at 298 K

    NASA Astrophysics Data System (ADS)

    Leck, Thomas J.; Cook, Jac-E. L.; Birks, John W.

    1980-02-01

    The rate constant for the radical-radical reaction ClO+HO2→HOCl+O2 was measured at 298 K by the discharge flow technique using mass spectrometry for detection of the HOCl product at m/e=52. The ClO radical was generated by reacting ozone with chlorine atoms produced in a microwave discharge, and the concentration of ClO determined by measuring the decrease in ion current due to Cl2+ at m/e=70 upon activation of the discharge. This method was found to be in agreement with a nitric oxide titration of ClO and with the stochiometric conversion of ClO to NO2 by reaction with a large excess of NO followed by absolute calibration for NO2 at m/e=46. Two reactions were used to generate the hydroperoxyl radical: (1) H+O2+M→HO2+M, and (2) Cl+H2O2→HCl +HO2. The rate constant k1 was found to be independent of pressure over the range 2-6 Torr, the result being k1= (4.5±0.9) ×10-12 cm3 molecule-1 s-1, where the error includes our estimate of the maximum possible systematic error. An upper limit of 2% for the branching ratio to the alternative products of this reaction, HCl+O3, was established by attempting to detect ozone as a reaction product. For these measurements the reactions Cl+ClOCl→Cl2+ClO and Cl+OClO →2ClO were used to generate the ClO radical in the absence of ozone. No other reaction products could be identified in the mass spectrum.

  18. An Experiment To Demonstrate How a Catalyst Affects the Rate of a Reaction.

    ERIC Educational Resources Information Center

    Copper, Christine L.; Koubeck, Edward

    1999-01-01

    Describes a chemistry experiment that allows students to calculate rates of reaction, orders of reaction, and activation energies. The activity demonstrates that to increase a reaction's rate, a catalyst need only provide any additional pathway for the reaction, not necessarily a pathway having lower activation energy. (WRM)

  19. Pressure Dependence of Gas-Phase Reaction Rates

    ERIC Educational Resources Information Center

    De Persis, Stephanie; Dollet, Alain; Teyssandier, Francis

    2004-01-01

    It is presented that only simple concepts, mainly taken from activated-complex or transition-state theory, are required to explain and analytically describe the influence of pressure on gas-phase reaction kinetics. The simplest kind of elementary gas-phase reaction is a unimolecular decomposition reaction.

  20. Enhanced reaction rates in NDP analysis with neutron scattering

    SciTech Connect

    Downing, R. Gregory

    2014-04-15

    Neutron depth profiling (NDP) makes accessible quantitative information on a few isotopic concentration profiles ranging from the surface into the sample a few micrometers. Because the candidate analytes for NDP are few, there is little interference encountered. Furthermore, neutrons have no charge so mixed chemical states in the sample are of no direct concern. There are a few nuclides that exhibit large probabilities for neutron scattering. The effect of neutron scattering on NDP measurements has not previously been evaluated as a basis for either enhancing the reaction rates or as a source of measurement error. Hydrogen is a common element exhibiting large neutron scattering probability found in or around sample volumes being analyzed by NDP. A systematic study was conducted to determine the degree of signal change when neutron scattering occurs during analysis. The relative signal perturbation was evaluated for materials of varied neutron scattering probability, concentration, total mass, and geometry. Signal enhancements up to 50% are observed when the hydrogen density is high and in close proximity to the region of analysis with neutron beams of sub thermal energies. Greater signal enhancements for the same neutron number density are reported for thermal neutron beams. Even adhesive tape used to position the sample produces a measureable signal enhancement. Because of the shallow volume, negligible distortion of the NDP measured profile shape is encountered from neutron scattering.

  1. The reaction of atomic hydrogen with germane - Temperature dependence of the rate constant and implications for germane photochemistry in the atmospheres of Jupiter and Saturn

    NASA Technical Reports Server (NTRS)

    Nava, David F.; Payne, Walter A.; Marston, George; Stief, Louis J.

    1993-01-01

    Studies of the formation and loss processes for GeH4 are required in order to provide data to help determine the major chemical form in which germanium exists in the atmospheres of Jupiter and Saturn. The reaction of hydrogen atoms with germane is one of the most important of these reactions. The absolute rate constant for this reaction as a function of temperature and pressure is studied. Flash photolysis of dilute mixtures of GeH4 in argon, combined with time-resolved detection of H atoms via Lyman alpha resonance fluorescence, is employed to measure the reaction rate. The reaction is shown to be moderately rapid, independent of total pressure, but possessing a positive temperature dependence.

  2. The reaction of atomic hydrogen with germane - Temperature dependence of the rate constant and implications for germane photochemistry in the atmospheres of Jupiter and Saturn

    NASA Astrophysics Data System (ADS)

    Nava, D. F.; Payne, W. A.; Marston, G.; Stief, L. J.

    1993-03-01

    Studies of the formation and loss processes for GeH4 are required in order to provide data to help determine the major chemical form in which germanium exists in the atmospheres of Jupiter and Saturn. The reaction of hydrogen atoms with germane is one of the most important of these reactions. The absolute rate constant for this reaction as a function of temperature and pressure is studied. Flash photolysis of dilute mixtures of GeH4 in argon, combined with time-resolved detection of H atoms via Lyman alpha resonance fluorescence, is employed to measure the reaction rate. The reaction is shown to be moderately rapid, independent of total pressure, but possessing a positive temperature dependence.

  3. Relationship between severity of the local skin reactions and the rate of local skin reaction resolution in patients treated with ingenol mebutate gel

    PubMed Central

    Jim On, Shelbi C; Knudsen, Kim Mark; Skov, Torsten; Lebwohl, Mark

    2016-01-01

    Background Ingenol mebutate gel is a topical field treatment for actinic keratosis (AK). The treatment elicits application-site reactions in most patients. This analysis evaluated the relationship between the severity of reactions and the speed of their resolution. Methods Patients in Phase III studies were treated for AKs on the face (n=218), scalp (n=56), and trunk and extremities (n=209). All of the patients were treated with either ingenol mebutate gel 0.015% once daily for three consecutive days (face/scalp) or ingenol mebutate gel 0.05% once daily for two consecutive days (trunk/extremities). Local skin reactions (LSRs) were assessed on a 5-point scale from 0 to 4 in six categories, yielding composite scores in the range of 0 to 24. Results The composite LSR score on the day after the last application of ingenol mebutate gel was an important predictor of the speed of resolution of LSRs. The rate of resolution was greatest for AKs treated on the face, followed by the scalp, and then the trunk and extremities. All patients were expected to have minimal LSR scores for the face and scalp at 2 weeks, and for the trunk and extremities at 4 weeks. Conclusion The absolute reduction in LSR scores was proportional to the composite LSR score on the day after the last application of ingenol mebutate gel treatment. The rate of resolution for LSRs was dependent on the anatomic site treated as well as the day 4 composite score.

  4. Relationship between severity of the local skin reactions and the rate of local skin reaction resolution in patients treated with ingenol mebutate gel

    PubMed Central

    Jim On, Shelbi C; Knudsen, Kim Mark; Skov, Torsten; Lebwohl, Mark

    2016-01-01

    Background Ingenol mebutate gel is a topical field treatment for actinic keratosis (AK). The treatment elicits application-site reactions in most patients. This analysis evaluated the relationship between the severity of reactions and the speed of their resolution. Methods Patients in Phase III studies were treated for AKs on the face (n=218), scalp (n=56), and trunk and extremities (n=209). All of the patients were treated with either ingenol mebutate gel 0.015% once daily for three consecutive days (face/scalp) or ingenol mebutate gel 0.05% once daily for two consecutive days (trunk/extremities). Local skin reactions (LSRs) were assessed on a 5-point scale from 0 to 4 in six categories, yielding composite scores in the range of 0 to 24. Results The composite LSR score on the day after the last application of ingenol mebutate gel was an important predictor of the speed of resolution of LSRs. The rate of resolution was greatest for AKs treated on the face, followed by the scalp, and then the trunk and extremities. All patients were expected to have minimal LSR scores for the face and scalp at 2 weeks, and for the trunk and extremities at 4 weeks. Conclusion The absolute reduction in LSR scores was proportional to the composite LSR score on the day after the last application of ingenol mebutate gel treatment. The rate of resolution for LSRs was dependent on the anatomic site treated as well as the day 4 composite score. PMID:27601928

  5. Molecule-based approach for computing chemical-reaction rates in upper atmosphere hypersonic flows.

    SciTech Connect

    Gallis, Michail A.; Bond, Ryan Bomar; Torczynski, John Robert

    2009-08-01

    This report summarizes the work completed during FY2009 for the LDRD project 09-1332 'Molecule-Based Approach for Computing Chemical-Reaction Rates in Upper-Atmosphere Hypersonic Flows'. The goal of this project was to apply a recently proposed approach for the Direct Simulation Monte Carlo (DSMC) method to calculate chemical-reaction rates for high-temperature atmospheric species. The new DSMC model reproduces measured equilibrium reaction rates without using any macroscopic reaction-rate information. Since it uses only molecular properties, the new model is inherently able to predict reaction rates for arbitrary nonequilibrium conditions. DSMC non-equilibrium reaction rates are compared to Park's phenomenological non-equilibrium reaction-rate model, the predominant model for hypersonic-flow-field calculations. For near-equilibrium conditions, Park's model is in good agreement with the DSMC-calculated reaction rates. For far-from-equilibrium conditions, corresponding to a typical shock layer, the difference between the two models can exceed 10 orders of magnitude. The DSMC predictions are also found to be in very good agreement with measured and calculated non-equilibrium reaction rates. Extensions of the model to reactions typically found in combustion flows and ionizing reactions are also found to be in very good agreement with available measurements, offering strong evidence that this is a viable and reliable technique to predict chemical reaction rates.

  6. Absolute Summ

    NASA Astrophysics Data System (ADS)

    Phillips, Alfred, Jr.

    Summ means the entirety of the multiverse. It seems clear, from the inflation theories of A. Guth and others, that the creation of many universes is plausible. We argue that Absolute cosmological ideas, not unlike those of I. Newton, may be consistent with dynamic multiverse creations. As suggested in W. Heisenberg's uncertainty principle, and with the Anthropic Principle defended by S. Hawking, et al., human consciousness, buttressed by findings of neuroscience, may have to be considered in our models. Predictability, as A. Einstein realized with Invariants and General Relativity, may be required for new ideas to be part of physics. We present here a two postulate model geared to an Absolute Summ. The seedbed of this work is part of Akhnaton's philosophy (see S. Freud, Moses and Monotheism). Most important, however, is that the structure of human consciousness, manifest in Kenya's Rift Valley 200,000 years ago as Homo sapiens, who were the culmination of the six million year co-creation process of Hominins and Nature in Africa, allows us to do the physics that we do. .

  7. Recombination of W19 + ions with electrons: Absolute rate coefficients from a storage-ring experiment and from theoretical calculations

    NASA Astrophysics Data System (ADS)

    Badnell, N. R.; Spruck, K.; Krantz, C.; Novotný, O.; Becker, A.; Bernhardt, D.; Grieser, M.; Hahn, M.; Repnow, R.; Savin, D. W.; Wolf, A.; Müller, A.; Schippers, S.

    2016-05-01

    Experimentally measured and theoretically calculated rate coefficients for the recombination of W19 +([Kr ] 4 d10 4 f9 ) ions with free electrons (forming W18 +) are presented. At low electron-ion collision energies, the merged-beam rate coefficient is dominated by strong, mutually overlapping, recombination resonances as already found previously for the neighboring charge-state ions W18 + and W20 +. In the temperature range where W19 + is expected to form in a collisionally ionized plasma, the experimentally derived recombination rate coefficient deviates by up to a factor of about 20 from the theoretical rate coefficient obtained from the Atomic Data and Analysis Structure database. The present calculations, which employ a Breit-Wigner redistributive partitioning of autoionizing widths for dielectronic recombination via multi-electron resonances, reproduce the experimental findings over the entire temperature range.

  8. On the ambiguity of the reaction rate constants in multivariate curve resolution for reversible first-order reaction systems.

    PubMed

    Schröder, Henning; Sawall, Mathias; Kubis, Christoph; Selent, Detlef; Hess, Dieter; Franke, Robert; Börner, Armin; Neymeyr, Klaus

    2016-07-13

    If for a chemical reaction with a known reaction mechanism the concentration profiles are accessible only for certain species, e.g. only for the main product, then often the reaction rate constants cannot uniquely be determined from the concentration data. This is a well-known fact which includes the so-called slow-fast ambiguity. This work combines the question of unique or non-unique reaction rate constants with factor analytic methods of chemometrics. The idea is to reduce the rotational ambiguity of pure component factorizations by considering only those concentration factors which are possible solutions of the kinetic equations for a properly adapted set of reaction rate constants. The resulting set of reaction rate constants corresponds to those solutions of the rate equations which appear as feasible factors in a pure component factorization. The new analysis of the ambiguity of reaction rate constants extends recent research activities on the Area of Feasible Solutions (AFS). The consistency with a given chemical reaction scheme is shown to be a valuable tool in order to reduce the AFS. The new methods are applied to model and experimental data. PMID:27237834

  9. On the ambiguity of the reaction rate constants in multivariate curve resolution for reversible first-order reaction systems.

    PubMed

    Schröder, Henning; Sawall, Mathias; Kubis, Christoph; Selent, Detlef; Hess, Dieter; Franke, Robert; Börner, Armin; Neymeyr, Klaus

    2016-07-13

    If for a chemical reaction with a known reaction mechanism the concentration profiles are accessible only for certain species, e.g. only for the main product, then often the reaction rate constants cannot uniquely be determined from the concentration data. This is a well-known fact which includes the so-called slow-fast ambiguity. This work combines the question of unique or non-unique reaction rate constants with factor analytic methods of chemometrics. The idea is to reduce the rotational ambiguity of pure component factorizations by considering only those concentration factors which are possible solutions of the kinetic equations for a properly adapted set of reaction rate constants. The resulting set of reaction rate constants corresponds to those solutions of the rate equations which appear as feasible factors in a pure component factorization. The new analysis of the ambiguity of reaction rate constants extends recent research activities on the Area of Feasible Solutions (AFS). The consistency with a given chemical reaction scheme is shown to be a valuable tool in order to reduce the AFS. The new methods are applied to model and experimental data.

  10. Optimal reconstruction of reaction rates from particle distributions

    NASA Astrophysics Data System (ADS)

    Fernandez-Garcia, Daniel; Sanchez-Vila, Xavier

    2010-05-01

    Random walk particle tracking methodologies to simulate solute transport of conservative species constitute an attractive alternative for their computational efficiency and absence of numerical dispersion. Yet, problems stemming from the reconstruction of concentrations from particle distributions have typically prevented its use in reactive transport problems. The numerical problem mainly arises from the need to first reconstruct the concentrations of species/components from a discrete number of particles, which is an error prone process, and then computing a spatial functional of the concentrations and/or its derivatives (either spatial or temporal). Errors are then propagated, so that common strategies to reconstruct this functional require an unfeasible amount of particles when dealing with nonlinear reactive transport problems. In this context, this article presents a methodology to directly reconstruct this functional based on kernel density estimators. The methodology mitigates the error propagation in the evaluation of the functional by avoiding the prior estimation of the actual concentrations of species. The multivariate kernel associated with the corresponding functional depends on the size of the support volume, which defines the area over which a given particle can influence the functional. The shape of the kernel functions and the size of the support volume determines the degree of smoothing, which is optimized to obtain the best unbiased predictor of the functional using an iterative plug-in support volume selector. We applied the methodology to directly reconstruct the reaction rates of a precipitation/dissolution problem involving the mixing of two different waters carrying two aqueous species in chemical equilibrium and moving through a randomly heterogeneous porous medium.

  11. Cross sections and reaction rates of relevance to aeronomy

    SciTech Connect

    Fox, J.L. )

    1991-01-01

    Experimental and theoretical data relevant to models and measurements of the chemical and thermal structures and luminosity of the thermospheres of the earth and planets published during the last four years are surveyed. Among chemical processes, attention is given to ion-molecule reactions, dissociative recombination of molecular ions, and reactions between neutral species. Both reactions between ground state species and species in excited states are considered, including energy transfer and quenching. Measured and calculated cross sections for interactions of solar radiation with atmospheric species, such as photoabsorption, photoionization, and photodissociation and related processes are surveyed.

  12. Rate constants for the reactions of OH with CH3Cl, CH2Cl2, CHCl3, and CH3Br

    NASA Technical Reports Server (NTRS)

    Hsu, K.-J.; Demore, W. B.

    1994-01-01

    Rate constants for the reactions of OH with CH3Cl, CH2Cl2, CHCl3, and CH3Br have been measured by a relative rate technique in which the reaction rate of each compound was compared to that of HFC-152a (CH3CHF2) and (for CH2Cl2) HFC-161 (CH3CH2F). Using absolute rate constants for HFC-152a and HFC-161, which we have determined relative to those for CH4, CH3CCl3, and C2H6, temperature dependent rate constants of both compounds were derived. The derived rate constant for CH3Br is in good agreement with recent absolute measurements. However, for the chloromethanes all the rate constants are lower at atmospheric temperatures than previously reported, especially for CH2Cl2 where the present rate constant is about a factor of 1.6 below the JPL 92-20 value. The new rate constant appears to resolve a discrepancy between the observed atmospheric concentrations and those calculated from the previous rate constant and estimated release rates.

  13. Students' Ideas about Reaction Rate and Its Relationship with Concentration or Pressure

    ERIC Educational Resources Information Center

    Cakmakci, Gultekin; Leach, John; Donnelly, James

    2006-01-01

    This cross-sectional study identifies key conceptual difficulties experienced by upper secondary school and pre-service chemistry teachers (N = 191) in the area of reaction rates. Students' ideas about reaction rates were elicited through a series of written tasks and individual interviews. In this paper, students' ideas related to reaction rate…

  14. Big-Bang reaction rates within the R-matrix model

    NASA Astrophysics Data System (ADS)

    Descouvemont, P.; Adahchour, A.; Angulo, C.; Coc, A.; Vangioni-Flam, E.

    2005-07-01

    We use the R-matrix theory to fit S-factor data on nuclear reactions involved in Big Bang nucleosynthesis. We derive the reaction rates with associated uncertainties, which are evaluated on statistical grounds. We provide S factors and reaction rates in tabular and graphical formats (available at http://pntpm3.ulb.ac.be/bigbang).

  15. Rates of primary electron transfer reactions in the photosystem I reaction center reconstituted with different quinones as the secondary acceptor

    SciTech Connect

    Kumazaki, Shigeichi; Kandori, Hideki; Yoshihara, Keitaro ); Iwaki, Masayo; Itoh, Shigeru ); Ikegamu, Isamu )

    1994-10-27

    Rates of sequential electron transfer reactions from the primary electron donor chlorophyll dimer (P700) to the electron acceptor chlorophyll a-686 (A[sub 0]) and to the secondary acceptor quinone (Q[sub [phi

  16. "Depletion": A Game with Natural Rules for Teaching Reaction Rate Theory.

    ERIC Educational Resources Information Center

    Olbris, Donald J.; Herzfeld, Judith

    2002-01-01

    Depletion is a game that reinforces central concepts of reaction rate theory through simulation. Presents the game with a set of follow-up questions suitable for either a quiz or discussion. Also describes student reaction to the game. (MM)

  17. Reaction rate oscillations during catalytic CO oxidation: A brief overview

    NASA Technical Reports Server (NTRS)

    Tsotsis, T. T.; Sane, R. C.

    1987-01-01

    It is not the intent here to present a comprehensive review of the dynamic behavior of the catalytic oxidation of CO. This reaction is one of the most widely studied in the field of catalysis. A review paper by Engel and Ertl has examined the basic kinetic and mechanistic aspects, and a comprehensive paper by Razon and Schmitz was recently devoted to its dynamic behavior. Those interested in further study of the subject should consult these reviews and a number of general review papers on catalytic reaction dynamics. The goal is to present a brief overview of certain interesting aspects of the dynamic behavior of this reaction and to discuss a few questions and issues, which are still the subject of study and debate.

  18. Interactive Program System for Integration of Reaction Rate Equations.

    ERIC Educational Resources Information Center

    Chesick, John P.

    1988-01-01

    Describes a Pascal-language based kinetics rate package for the microcomputer. Considers possible ecological uses for the program and illustrates results for several rate laws. Discusses hardware and software needs for adequate operation. (ML)

  19. Women's Self-Disclosure of HIV Infection: Rates, Reasons, Reactions.

    ERIC Educational Resources Information Center

    Simoni, Jane M.; And Others

    1995-01-01

    A survey of 65 ethnically diverse women revealed relatively low rates of disclosure of HIV-positive serostatus to extended family members, somewhat higher rates for immediate family members, and highest rates for lovers or friends. Spanish-speaking Latinas were less likely to disclose their serostatus than English-speaking Latinas, African…

  20. Quick and Easy Rate Equations for Multistep Reactions

    ERIC Educational Resources Information Center

    Savage, Phillip E.

    2008-01-01

    Students rarely see closed-form analytical rate equations derived from underlying chemical mechanisms that contain more than a few steps unless restrictive simplifying assumptions (e.g., existence of a rate-determining step) are made. Yet, work published decades ago allows closed-form analytical rate equations to be written quickly and easily for…

  1. Development of the new approach to the diffusion-limited reaction rate theory

    SciTech Connect

    Veshchunov, M. S.

    2012-04-15

    The new approach to the diffusion-limited reaction rate theory, recently proposed by the author, is further developed on the base of a similar approach to Brownian coagulation. The traditional diffusion approach to calculation of the reaction rate is critically analyzed. In particular, it is shown that the traditional approach is applicable only in the special case of reactions with a large reaction radius and the mean inter-particle distances, and become inappropriate in calculating the reaction rate in the case of a relatively small reaction radius. In the latter case, most important for chemical reactions, particle collisions occur not in the diffusion regime but mainly in the kinetic regime characterized by homogeneous (random) spatial distribution of particles on the length scale of the mean inter-particle distance. The calculated reaction rate for a small reaction radius in three dimensions formally (and fortuitously) coincides with the expression derived in the traditional approach for reactions with a large reaction radius, but notably deviates at large times from the traditional result in the planar two-dimensional geometry. In application to reactions on discrete lattice sites, new relations for the reaction rate constants are derived for both three-dimensional and two-dimensional lattices.

  2. Optically based quantification of absolute cerebral metabolic rate of oxygen (CMRO2) with high spatial resolution in rodents

    NASA Astrophysics Data System (ADS)

    Yaseen, Mohammad A.; Srinivasan, Vivek J.; Sakadžić, Sava; Vinogradov, Sergei A.; Boas, David A.

    2010-02-01

    Measuring oxygen delivery in brain tissue is important for identifying the pathophysiological changes associated with brain injury and various diseases such as cancer, stroke, and Alzheimer's disease. We have developed a multi-modal imaging system for minimally invasive measurement of cerebral oxygenation and blood flow in small animals with high spatial resolution. The system allows for simultaneous measurement of blood flow using Fourier-domain optical coherence tomography, and oxygen partial pressure (pO2) using either confocal or multiphoton phosphorescence lifetime imaging with exogenous porphyrin-based dyes sensitive to dissolved oxygen. Here we present the changes in pO2 and blood flow in superficial cortical vessels of Sprague Dawley rats in response to conditions such as hypoxia, hyperoxia, and functional stimulation. pO2 measurements display considerable heterogeneity over distances that cannot be resolved with more widely used oxygen-monitoring techniques such as BOLD-fMRI. Large increases in blood flow are observed in response to functional stimulation and hypoxia. Our system allows for quantification of cerebral metabolic rate of oxygen (CMRO2) with high spatial resolution, providing a better understanding of metabolic dynamics during functional stimulation and under various neuropathologies. Ultimately, better insight into the underlying mechanisms of neuropathologies will facilitate the development of improved therapeutic strategies to minimize damage to brain tissue.

  3. Diffusion-controlled reaction rate to an active site

    NASA Astrophysics Data System (ADS)

    Traytak, S. D.

    1995-02-01

    The diffusion-controlled reactions of chemically anisotropic reactants are treated for the simplest model of Solc and Stockmayer (Intern. J. Chem. Kinet. 5 (1973) 733) in the absence of rotational diffusion. Using the dual series relations approach we can find the effective steric factor with any necessary accuracy. A few simple analytical approximations for the effective steric factor are proposed. The derived results we compare with the relevant analytical approximations and numerical calculations available in the literature.

  4. Error Rate Comparison during Polymerase Chain Reaction by DNA Polymerase

    DOE PAGES

    McInerney, Peter; Adams, Paul; Hadi, Masood Z.

    2014-01-01

    As larger-scale cloning projects become more prevalent, there is an increasing need for comparisons among high fidelity DNA polymerases used for PCR amplification. All polymerases marketed for PCR applications are tested for fidelity properties (i.e., error rate determination) by vendors, and numerous literature reports have addressed PCR enzyme fidelity. Nonetheless, it is often difficult to make direct comparisons among different enzymes due to numerous methodological and analytical differences from study to study. We have measured the error rates for 6 DNA polymerases commonly used in PCR applications, including 3 polymerases typically used for cloning applications requiring high fidelity. Errormore » rate measurement values reported here were obtained by direct sequencing of cloned PCR products. The strategy employed here allows interrogation of error rate across a very large DNA sequence space, since 94 unique DNA targets were used as templates for PCR cloning. The six enzymes included in the study, Taq polymerase, AccuPrime-Taq High Fidelity, KOD Hot Start, cloned Pfu polymerase, Phusion Hot Start, and Pwo polymerase, we find the lowest error rates with Pfu , Phusion, and Pwo polymerases. Error rates are comparable for these 3 enzymes and are >10x lower than the error rate observed with Taq polymerase. Mutation spectra are reported, with the 3 high fidelity enzymes displaying broadly similar types of mutations. For these enzymes, transition mutations predominate, with little bias observed for type of transition.« less

  5. Error Rate Comparison during Polymerase Chain Reaction by DNA Polymerase.

    PubMed

    McInerney, Peter; Adams, Paul; Hadi, Masood Z

    2014-01-01

    As larger-scale cloning projects become more prevalent, there is an increasing need for comparisons among high fidelity DNA polymerases used for PCR amplification. All polymerases marketed for PCR applications are tested for fidelity properties (i.e., error rate determination) by vendors, and numerous literature reports have addressed PCR enzyme fidelity. Nonetheless, it is often difficult to make direct comparisons among different enzymes due to numerous methodological and analytical differences from study to study. We have measured the error rates for 6 DNA polymerases commonly used in PCR applications, including 3 polymerases typically used for cloning applications requiring high fidelity. Error rate measurement values reported here were obtained by direct sequencing of cloned PCR products. The strategy employed here allows interrogation of error rate across a very large DNA sequence space, since 94 unique DNA targets were used as templates for PCR cloning. The six enzymes included in the study, Taq polymerase, AccuPrime-Taq High Fidelity, KOD Hot Start, cloned Pfu polymerase, Phusion Hot Start, and Pwo polymerase, we find the lowest error rates with Pfu, Phusion, and Pwo polymerases. Error rates are comparable for these 3 enzymes and are >10x lower than the error rate observed with Taq polymerase. Mutation spectra are reported, with the 3 high fidelity enzymes displaying broadly similar types of mutations. For these enzymes, transition mutations predominate, with little bias observed for type of transition. PMID:25197572

  6. Effects of salt concentration on the reaction rate of Glc with amino acids, peptides, and proteins.

    PubMed

    Yamaguchi, Keiko; Noumi, Yuri; Nakajima, Katsumi; Nagatsuka, Chiharu; Aizawa, Haruko; Nakawaki, Rie; Mizude, Eri; Otsuka, Yuzuru; Homma, Takeshi; Chuyen, Nguyen Van

    2009-11-01

    The reaction between the amino group and the carbonyl group is important in food quality control. Furthermore, advanced glycation end products from foods are considered to relate to aging and diabetes. Thus, it is important to control this reaction. In this study, we investigated the effects of salt concentration on the rates of browning reaction of amino acid, peptides, and proteins. A high concentration of sodium chloride retarded the reaction rate of Glc with amino acids as measured with the absorbance at 470 nm, but did not change the browning rate of Glc with peptides. On the other hand, sodium chloride retarded the browning reaction rate of proteins as measured with polymerization degree or by the loss of Lys. It is hoped that the results of this study will be applied in the control of amino-carbonyl reaction rates in the food industry. PMID:19897911

  7. Solvent effect on reaction rates: Reaction between sodium ethoxide and methyl iodide in ethanol + cyclohexane solvent systems

    SciTech Connect

    Papanastasiou, G.; Papoutsis, A.; Tsirtou, M.; Ziogas, I.

    1996-02-01

    The kinetics of the reaction between sodium ethoxide and methyl iodide has been studied at 25{degrees}C in various cyclohexane-ethanol solvent mixtures with a cyclohexane content of 10 to 50% per volume. The determination of the rate constants at t=0 were carried out by a new iterative method proposed in this investigation. The obtained results show that the reaction rate decreases with the increasing cyclohexane content. This behavior can be attributed to various solute-solvent interactions of electrostatic nature. On the other hand, the variation of ion and ion pairs rate constants with solvent composition permits the various solvation effects to be taken into account.

  8. Upper atmosphere research: Reaction rate and optical measurements

    NASA Technical Reports Server (NTRS)

    Stief, L. J.; Allen, J. E., Jr.; Nava, D. F.; Payne, W. A., Jr.

    1990-01-01

    The objective is to provide photochemical, kinetic, and spectroscopic information necessary for photochemical models of the Earth's upper atmosphere and to examine reactions or reactants not presently in the models to either confirm the correctness of their exclusion or provide evidence to justify future inclusion in the models. New initiatives are being taken in technique development (many of them laser based) and in the application of established techniques to address gaps in the photochemical/kinetic data base, as well as to provide increasingly reliable information.

  9. Rate constants and temperature dependences for the reactions of hydroxyl radical with several halogenated methanes, ethanes, and propanes by relative rate measurements

    NASA Technical Reports Server (NTRS)

    Hsu, K.-J.; DeMore, W. B.

    1995-01-01

    Rate constants of 15 OH reactions with halogen-substituted alkanes, C1 to C3, were studied using a relative rate technique in the temperature range 283-403 K. Compounds studied were CHF2Cl (22), CHF2Br (22B), CH3F (41), CH2F2 (32), CHF3 (23), CHClFCCl2F (122a), CHCl2CF3 (123), CHClFCF3 (124), CH3CF3 (143a), CH3CH2F (161), CF3CHFCF3 (227ea), CF3CH2CF3 (236fa), CF3CHFCHF2 (236ea), and CHF2CF2CH2F (245ca). Using CH4, CH3CCl3, CF3CF2H, and C2H6 as primary reference standards (JPL 92-20 rate constants), absolute rate constants are derived. Results are in good agreement with previous experimental results for six of the compounds studied, including CHF2Cl, CHF2Br, CH2F2, CH3CF3, CHFClCFCl2, and CF3CHFCF3. For the remainder the relative rate constants are lower than those derived from experiments in which OH loss was used to measure the reaction rate. Comparisons of the derived Arrhenius A factors with previous literature transition-state calculations show order of magnitude agreement in most cases. However, the experimental A factors show a much closer proportionality to the number of H atoms in the molecule than is evident from the transition state calculations. For most of the compounds studied, an A factor of (8 +/- 3)E-13 cm(exp 3)/(molecule s) per C-H bond is observed. A new measurement of the ratio k(CH3CCl3)/k(CH4) is reported that is in good agreement with previous data.

  10. Effect of temperature oscillation on chemical reaction rates in the atmosphere

    NASA Technical Reports Server (NTRS)

    Eberstein, I. J.

    1974-01-01

    The effect of temperature fluctuations on atmospheric ozone chemistry is examined by considering the Chapman photochemical theory of ozone transport to calculate globally averaged ozone production rates from mean reaction rates, activation energies, and recombination processes.

  11. Rate Constants for the Reactions of Hydroxyl Radical with Several Alkanes, Cycloalkanes, and Dimethyl Ether

    NASA Technical Reports Server (NTRS)

    DeMore, W.; Bayes, K.

    1998-01-01

    Relative rate experiements were used to measure rate constants and temperature denpendencies of the reactions of OH with propane, n-butane, n-pentane, n-hexane, cyclopropane, cyclobutane, cyclopentane, and dimethyl ether.

  12. Fluctuating reaction rate and non-exponential blinking statistics in single-enzyme kinetics

    NASA Astrophysics Data System (ADS)

    Tang, Jau; Yeh, Yi-Cheun; Tai, Po-Tse

    2008-09-01

    Extending the Michaelis-Menten kinetic scheme, we consider a three-state diffusion-controlled reaction model to investigate the effects of fluctuating reaction rate on the blinking statistics of single-enzyme catalytic reactions. As a result of conformational changes, the barrier-height and the reaction rate for the bottleneck enzymatic reaction could fluctuate in time, leading to non-exponential blinking statistics. To illustrate model applications, some reported experimental data for single β-galactosidase molecules were reanalyzed here to extract useful kinetic parameters.

  13. Interlaboratory reaction rate program. 12th progress report, November 1976-October 1979

    SciTech Connect

    Lippincott, E.P.; McElroy, W.N.; Preston, C.C.

    1980-09-01

    The Interlaboratory Reaction Rate UILRR) program is establishing the capability to accurately measure neutron-induced reactions and reaction rates for reactor fuels and materials development programs. The goal for the principal fission reactions, /sup 235/U, /sup 238/U and /sup 239/Pu, is an accuracy to within +- 5% at the 95% confidence level. Accurate measurement of other fission and nonfission reactions is also required, but to a lesser accuracy, between +- 5% and 10% at the 95% confidence level. A secondary program objective is improvement in knowledge of the nuclear parameters involved in the standarization of fuels and materials dosimetry measurements of neutron flux, spectra, fluence and burnup.

  14. Temperature-Dependent Rate Constants and Substituent Effects for the Reactions of Hydroxyl Radicals With Three Partially Fluorinated Ethers

    NASA Technical Reports Server (NTRS)

    Hsu, K.-J.; DeMore, W. B.

    1995-01-01

    Rate constants and temperature dependencies for the reactions of OH with CF3OCH3 (HFOC-143a), CF2HOCF2H (HFOC-134), and CF3OCF2H (HFOC-125) were studied using a relative rate technique in the temperature range 298-393 K. The following absolute rate constants were derived: HFOC-143a, 1.9E-12 exp(-1555/T); HFOC-134, 1.9E-12 exp(-2006/T); HFOC-125, 4.7E-13 exp(-2095/T). Units are cm(exp 3)molecule(exp -1) s(exp -1). Substituent effects on OH abstraction rate constants are discussed, and it is shown that the CF3O group has an effect on the OH rate constants similar to that of a fluorine atom. The effects are related to changes in the C-H bond energies of the reactants (and thereby the activation energies) rather than changes in the preexponential factors. On the basis of a correlation of rate constants with bond energies, the respective D(C-H) bond strengths in the three ethers are found to be 102, 104, and 106 kcal/mol, with an uncertainty of about 1 kcal/mol.

  15. Spatially resolved flamelet statistics for reaction rate modeling

    SciTech Connect

    Chew, T.C.; Bray, K.N.C.; Britter, R.E. . Dept. of Engineering)

    1990-04-01

    Using two-dimensional laser sheet tomography of Bunsen flames, important spatial statistics relating to premixed turbulent combustion modeling are measured. The integral length scale of flame wrinkling, evaluated along contours of reaction progress variable ({bar {ital c}}), is found to be almost constant for all values of {bar {ital c}}. Its magnitude is measured to be very close to the integral length scale in the unreacted turbulent flow. The flamelet crossing angle distribution in the plane of visualization is found to vary along a {bar {ital c}} contour reflecting the nonhomogeneity in the flame, but the overall distributions for different {bar {ital c}} values are approximately the same. The overall mean cosine value is found to be very close to 0.5. Other parameters of interest, including {bar {ital c}} contours, flamelet crossing lengths, and crossing frequencies, are also examined.

  16. Putting Reaction Rates and Collision Theory in the Hands of Your Students.

    ERIC Educational Resources Information Center

    Evenson, Andy

    2002-01-01

    Describes a simulation that can be used to give concrete analogies of collision theory and the factors that affect reaction rates including temperature, concentration, catalyst, and molecular orientation. The simulation works best if done as an introduction to the concepts to help prevent misconceptions about reaction rates and collision theory.…

  17. Reaction rate constants of HO2 + O3 in the temperature range 233-400 K

    NASA Technical Reports Server (NTRS)

    Wang, Xiuyan; Suto, Masako; Lee, L. C.

    1988-01-01

    The reaction rate constants of HO2 + O3 were measured in the temperature range 233-400 K using a discharge flow system with photofragment emission detection. In the range 233-253 K, the constants are approximately a constant value, and then increase with increasing temperature. This result suggests that the reaction may have two different channels. An expression representing the reaction rate constants is presented.

  18. The Gaseous Explosive Reaction : the Effect of Pressure on the Rate of Propagation of the Reaction Zone and upon the Rate of Molecular Transformation

    NASA Technical Reports Server (NTRS)

    Stevens, F W

    1932-01-01

    This study of gaseous explosive reaction has brought out a number of important fundamental characteristics of the explosive reaction indicating that the basal processes of the transformation are much simpler and corresponds more closely to the general laws and principles of ordinary transformations than is usually supposed. The report calls attention to the point that the rate of molecular transformation within the zone was found in all cases to be proportional to pressure, that the transformation within the zone is the result of binary impacts. This result is of unusual interest in the case of the reaction of heavy hydrocarbon fuels and the reaction mechanism proposed by the recent kinetic theory of chain reactions.

  19. Controlling the emotional heart: heart rate biofeedback improves cardiac control during emotional reactions.

    PubMed

    Peira, Nathalie; Fredrikson, Mats; Pourtois, Gilles

    2014-03-01

    When regulating negative emotional reactions, one goal is to reduce physiological reactions. However, not all regulation strategies succeed in doing that. We tested whether heart rate biofeedback helped participants reduce physiological reactions in response to negative and neutral pictures. When viewing neutral pictures, participants could regulate their heart rate whether the heart rate feedback was real or not. In contrast, when viewing negative pictures, participants could regulate heart rate only when feedback was real. Ratings of task success paralleled heart rate. Participants' general level of anxiety, emotion awareness, or cognitive emotion regulation strategies did not influence the results. Our findings show that accurate online heart rate biofeedback provides an efficient way to down-regulate autonomic physiological reactions when encountering negative stimuli. PMID:24373886

  20. Measuring the absolute disintegration rate of a radioactive gas with a moveable endplate discharge counter (MEP) and theoretical calculation of wall effect

    SciTech Connect

    Jaffey, A.H.; Gray, J.; Bentley, W.C.; Lerner, J.L.

    1987-09-01

    A precision built moveable endplate Geiger-Mueller counter was used to measure the absolute disintegration rate of a beta-emitting radioactive gas. A Geiger-Mueller counter used for measuring gaseous radioactivity has <100% counting efficiency owing to two factors: (1) ''end effect,'' due to decreased and distorted fields at the ends where wire-insulator joints are placed, and (2) ''wall effect,'' due to non-ionization by beta particles emitted near to and heading into the wall. The end effect was evaluated by making one end of the counter movable and measuring counting rates at a number of endplate positions. Much of the wall effect was calculated theoretically, based on known data for primary ionization of electrons as a function of energy and gas composition. Corrections were then made for the ''shakeoff'' effect in beta decay and for backscattering of electrons from the counter wall. Measurements and calculations were made for a sample of /sup 85/Kr (beta energy, 0.67 MeV). The wall effect calculation is readily extendable to other beta energies.

  1. An Experiment to Demonstrate How a Catalyst Affects the Rate of a Reaction

    NASA Astrophysics Data System (ADS)

    Copper, Christine L.; Koubek, Edward

    1999-12-01

    By performing this experiment, students in general and introductory physical chemistry can learn more about the effect of a catalyst on a chemical reaction. This experiment, which is a modified version of the traditional iodine clock reaction, allows students to calculate rates of reaction, orders of reactants, and activation energies. It also lets students discover that to increase a reaction's rate, a catalyst need only provide any additional pathway for the reaction, not necessarily a pathway having a lower activation energy. This experiment is designed so that students will notice that the amount of catalyst used is important. Furthermore, the slight amount (~10-5 M MoO42-) of catalyst needed to increase the overall reaction rate and the abrupt color change that occurs seem to pique the interest of our students.

  2. Simulation of biochemical reactions with time-dependent rates by the rejection-based algorithm

    SciTech Connect

    Thanh, Vo Hong; Priami, Corrado

    2015-08-07

    We address the problem of simulating biochemical reaction networks with time-dependent rates and propose a new algorithm based on our rejection-based stochastic simulation algorithm (RSSA) [Thanh et al., J. Chem. Phys. 141(13), 134116 (2014)]. The computation for selecting next reaction firings by our time-dependent RSSA (tRSSA) is computationally efficient. Furthermore, the generated trajectory is exact by exploiting the rejection-based mechanism. We benchmark tRSSA on different biological systems with varying forms of reaction rates to demonstrate its applicability and efficiency. We reveal that for nontrivial cases, the selection of reaction firings in existing algorithms introduces approximations because the integration of reaction rates is very computationally demanding and simplifying assumptions are introduced. The selection of the next reaction firing by our approach is easier while preserving the exactness.

  3. The effect of temperature fluctuations of reaction rate constants in turbulent reacting flows

    NASA Technical Reports Server (NTRS)

    Chinitz, W.; Antaki, P. J.; Kassar, G. M.

    1981-01-01

    Current models of turbulent reacting flows frequently use Arrhenius reaction rate constants obtained from static or laminar flow theory and/or experiments, or from best fits of static, laminar, and turbulent data. By treating the reaction rate constant as a continuous random variable which is temperature-dependent, the present study assesses the effect of turbulent temperature fluctuations on the reaction rate constant. This model requires that a probability density function (PDF) describing the nature of the fluctuations be specified. Three PDFs are examined: the clipped Gaussian, the beta PDF, and the ramp model. All the models indicate that the reaction rate constant is greater in a turbulent flow field than in an equivalent laminar flow. In addition, an amplification ratio, which is the ratio of the turbulent rate constant to the laminar rate constant, is defined and its behavior as a function of the mean temperature fluctuations is described

  4. Reaction of singlet oxygen with tryptophan in proteins: a pronounced effect of the local environment on the reaction rate.

    PubMed

    Jensen, Rasmus Lybech; Arnbjerg, Jacob; Ogilby, Peter R

    2012-06-13

    Singlet molecular oxygen, O(2)(a(1)Δ(g)), can influence many processes pertinent to the function of biological systems, including events that result in cell death. Many of these processes involve a reaction between singlet oxygen and a given amino acid in a protein. As a result, the behavior of that protein can change, either because of a structural alteration and/or a direct modification of an active site. Surprisingly, however, little is known about rate constants for reactions between singlet oxygen and amino acids when the latter are in a protein. In this report, we demonstrate using five separate proteins, each containing only a single tryptophan residue, that the rate constant for singlet oxygen reaction with tryptophan depends significantly on the position of this amino acid in the protein. Most importantly, the reaction rate constant depends not only on the accessibility of the tryptophan residue to oxygen, but also on factors that characterize the local molecular environment of the tryptophan in the protein. The fact that the local protein environment can either appreciably inhibit or accelerate the reaction of singlet oxygen with a given amino acid can have significant ramifications for singlet-oxygen-mediated events that perturb cell function.

  5. VizieR Online Data Catalog: Brussels nuclear reaction rate library (Aikawa+, 2005)

    NASA Astrophysics Data System (ADS)

    Aikawa, M.; Arnould, M.; Goriely, S.; Jorissen, A.; Takahashi, K.

    2005-07-01

    The present data is part of the Brussels nuclear reaction rate library (BRUSLIB) for astrophysics applications and concerns nuclear reaction rate predictions calculated within the statistical Hauser-Feshbach approximation and making use of global and coherent microscopic nuclear models for the quantities (nuclear masses, nuclear structure properties, nuclear level densities, gamma-ray strength functions, optical potentials) entering the rate calculations. (4 data files).

  6. Accessing reaction rate constants in on-column reaction chromatography: an extended unified equation for reaction educts and products with different response factors.

    PubMed

    Trapp, Oliver; Bremer, Sabrina; Weber, Sven K

    2009-11-01

    An extension of the unified equation of chromatography to directly access reaction rate constants k(1) of first-order reaction in on-column chromatography is presented. This extended equation reflects different response factors in the detection of the reaction educt and product which arise from structural changes by elimination or addition, e.g., under pseudo-first-order reaction conditions. The reaction rate constants k(1) and Gibbs activation energies DeltaG(double dagger) of first-order reactions taking place in a chromatographic system can be directly calculated from the chromatographic parameters, i.e., retention times of the educt E and product P (t(R)(A) and t(R)(B)), peak widths at half height (w(A) and w(B)), the relative plateau height (h(p)) of the conversion profile, and the individual response factors f(A) and f(B). The evaluation of on-column reaction gas chromatographic experiments is exemplified by the evaluation of elution profiles obtained by ring-closing metathesis reaction of N,N-diallytrifluoroacetamide in presence of Grubbs second-generation catalyst, dissolved in polydimethylsiloxane (GE SE 30).

  7. Determination of the Temperature Dependence of the Rate Constants for HO2/Acetonylperoxy Reaction and Acetonylperoxy Self-Reaction

    NASA Astrophysics Data System (ADS)

    Darby, E. C.; Grieman, F. J.; Hui, A. O.; Okumura, M.; Sander, S. P.

    2014-12-01

    Reactions of hydroperoxy radical, HO2, with carbonyl containing RO2 can play an important role in the oxidation chemistry of the troposphere. Discovered radical product channels in addition to radical termination channels have resulted in increased study of these important reactions. In our continued study of HO2 reactions with acetonylperoxy and acetylperoxy radicals, we report here our first results on the kinetics of the acetonylperoxy system. Previous studies have resulted in conflicting results and no temperature dependence of the rate constants. Using the Infrared Kinetic Spectroscopy (IRKS) method in which a temperature-controlled slow-flow tube apparatus and laser flash photolysis of Cl2 are used to produce HO2 and CH3C(O)CH2O2 from methanol and acetone, respectively, we studied the chemical kinetics involved over the temperature range of 295 to 240 K. Rates of chemical reaction were determined by monitoring the HO2 concentration as a function of time by sensitive near-IR diode laser wavelength modulation spectroscopy while simultaneously measuring the disappearance of [CH3C(O)CH2O2] in the ultraviolet at 300 nm. The simultaneous fits resulted in the determination of the temperature dependence of the rate constants for the HO2/acetonylperoxy reaction and the acetonylperoxy self-reaction. At the lower temperatures, the reactions of HO2 and CH3C(O)CH2O2 with the adducts HO2•CH3OH and HO2•CH3C(O)CH3 formed in significant concentrations needed to be included in the fitting models.

  8. Ozone-Induced Dissociation of Conjugated Lipids Reveals Significant Reaction Rate Enhancements and Characteristic Odd-Electron Product Ions

    NASA Astrophysics Data System (ADS)

    Pham, Huong T.; Maccarone, Alan T.; Campbell, J. Larry; Mitchell, Todd W.; Blanksby, Stephen J.

    2013-02-01

    Ozone-induced dissociation (OzID) is an alternative ion activation method that relies on the gas phase ion-molecule reaction between a mass-selected target ion and ozone in an ion trap mass spectrometer. Herein, we evaluated the performance of OzID for both the structural elucidation and selective detection of conjugated carbon-carbon double bond motifs within lipids. The relative reactivity trends for [M + X]+ ions (where X = Li, Na, K) formed via electrospray ionization (ESI) of conjugated versus nonconjugated fatty acid methyl esters (FAMEs) were examined using two different OzID-enabled linear ion-trap mass spectrometers. Compared with nonconjugated analogues, FAMEs derived from conjugated linoleic acids were found to react up to 200 times faster and to yield characteristic radical cations. The significantly enhanced reactivity of conjugated isomers means that OzID product ions can be observed without invoking a reaction delay in the experimental sequence (i.e., trapping of ions in the presence of ozone is not required). This possibility has been exploited to undertake neutral-loss scans on a triple quadrupole mass spectrometer targeting characteristic OzID transitions. Such analyses reveal the presence of conjugated double bonds in lipids extracted from selected foodstuffs. Finally, by benchmarking of the absolute ozone concentration inside the ion trap, second order rate constants for the gas phase reactions between unsaturated organic ions and ozone were obtained. These results demonstrate a significant influence of the adducting metal on reaction rate constants in the fashion Li > Na > K.

  9. Ozone-induced dissociation of conjugated lipids reveals significant reaction rate enhancements and characteristic odd-electron product ions.

    PubMed

    Pham, Huong T; Maccarone, Alan T; Campbell, J Larry; Mitchell, Todd W; Blanksby, Stephen J

    2013-02-01

    Ozone-induced dissociation (OzID) is an alternative ion activation method that relies on the gas phase ion-molecule reaction between a mass-selected target ion and ozone in an ion trap mass spectrometer. Herein, we evaluated the performance of OzID for both the structural elucidation and selective detection of conjugated carbon-carbon double bond motifs within lipids. The relative reactivity trends for [M + X](+) ions (where X = Li, Na, K) formed via electrospray ionization (ESI) of conjugated versus nonconjugated fatty acid methyl esters (FAMEs) were examined using two different OzID-enabled linear ion-trap mass spectrometers. Compared with nonconjugated analogues, FAMEs derived from conjugated linoleic acids were found to react up to 200 times faster and to yield characteristic radical cations. The significantly enhanced reactivity of conjugated isomers means that OzID product ions can be observed without invoking a reaction delay in the experimental sequence (i.e., trapping of ions in the presence of ozone is not required). This possibility has been exploited to undertake neutral-loss scans on a triple quadrupole mass spectrometer targeting characteristic OzID transitions. Such analyses reveal the presence of conjugated double bonds in lipids extracted from selected foodstuffs. Finally, by benchmarking of the absolute ozone concentration inside the ion trap, second order rate constants for the gas phase reactions between unsaturated organic ions and ozone were obtained. These results demonstrate a significant influence of the adducting metal on reaction rate constants in the fashion Li > Na > K.

  10. Stochastic behavior and stirring rate effects in the chlorite-iodide reaction

    NASA Astrophysics Data System (ADS)

    Nagypál, István; Epstein, Irving R.

    1988-12-01

    The autocatalytic reaction between chlorite and iodide ions in a closed system is a clock reaction, showing a sudden appearance of brown I2 followed by a rapid disappearance of the color. Under certain conditions, the reaction time displays a striking irreproducibility. This stochastic behavior is studied potentiometrically and spectrophotometrically as a function of initial [I- ], stirring rate and solution volume. The results imply that the irreproducibility is an inherent feature of the reaction generated by fluctuations in the solution after it is ``well mixed.'' The key contributors to the stochasticity are local concentration inhomogeneities resulting from imperfect stirring and the ``supercatalytic'' reaction kinetics. A qualitative explanation is given that incorporates these aspects.

  11. Atmospheric chemistry of (Z)-CF3CH═CHCF3: OH radical reaction rate coefficient and global warming potential.

    PubMed

    Baasandorj, Munkhbayar; Ravishankara, A R; Burkholder, James B

    2011-09-29

    Rate coefficients, k, for the gas-phase reaction of the OH radical with (Z)-CF(3)CH═CHCF(3) (cis-1,1,1,4,4,4-hexafluoro-2-butene) were measured under pseudo-first-order conditions in OH using pulsed laser photolysis (PLP) to produce OH and laser-induced fluorescence (LIF) to detect it. Rate coefficients were measured over a range of temperatures (212-374 K) and bath gas pressures (20-200 Torr; He, N(2)) and found to be independent of pressure over this range of conditions. The rate coefficient has a non-Arrhenius behavior that is well-described by the expression k(1)(T) = (5.73 ± 0.60) × 10(-19) × T(2) × exp[(678 ± 10)/T] cm(3) molecule(-1) s(-1) where k(1)(296 K) was measured to be (4.91 ± 0.50) × 10(-13) cm(3) molecule(-1) s(-1) and the uncertainties are at the 2σ level and include estimated systematic errors. Rate coefficients for the analogous OD radical reaction were determined over a range of temperatures (262-374 K) at 100 Torr (He) to be k(2)(T) = (4.81 ± 0.20) × 10(-19) × T(2) × exp[(776 ± 15)/T], with k(2)(296 K) = (5.73 ± 0.50) × 10(-13) cm(3) molecule(-1) s(-1). OH radical rate coefficients were also measured at 296, 345, and 375 K using a relative rate technique and found to be in good agreement with the PLP-LIF results. A room-temperature rate coefficient for the O(3) + (Z)-CF(3)CH═CHCF(3) reaction was measured using an absolute method with O(3) in excess to be <6 × 10(-21) cm(3) molecule(-1) s(-1). The atmospheric lifetime of (Z)-CF(3)CH═CHCF(3) due to loss by OH reaction was estimated to be ~20 days. Infrared absorption spectra of (Z)-CF(3)CH═CHCF(3) measured in this work were used to determine a (Z)-CF(3)CH═CHCF(3) global warming potential (GWP) of ~9 for the 100 year time horizon. A comparison of the OH reactivity of (Z)-CF(3)CH═CHCF(3) with other unsaturated fluorinated compounds is presented.

  12. Temperature trends for reaction rates, hydrogen generation, and partitioning of iron during experimental serpentinization of olivine

    NASA Astrophysics Data System (ADS)

    McCollom, Thomas M.; Klein, Frieder; Robbins, Mark; Moskowitz, Bruce; Berquó, Thelma S.; Jöns, Niels; Bach, Wolfgang; Templeton, Alexis

    2016-05-01

    A series of laboratory experiments were conducted to examine how partitioning of Fe among solid reaction products and rates of H2 generation vary as a function of temperature during serpentinization of olivine. Individual experiments were conducted at temperatures ranging from 200 to 320 °C, with reaction times spanning a few days to over a year. The extent of reaction ranged from <1% to ∼23%. Inferred rates for serpentinization of olivine during the experiments were 50-80 times slower than older studies had reported but are consistent with more recent results, indicating that serpentinization may proceed more slowly than previously thought. Reaction products were dominated by chrysotile, brucite, and magnetite, with minor amounts of magnesite, dolomite, and iowaite. The chrysotile contained only small amounts of Fe (XFe = 0.03-0.05, with ∼25% present as ferric Fe in octahedral sites), and displayed little variation in composition with reaction temperature. Conversely, the Fe contents of brucite (XFe = 0.01-0.09) increased steadily with decreasing reaction temperature. Analysis of the reaction products indicated that the stoichiometry of the serpentinization reactions varied with temperature, but remained constant with increasing reaction progress at a given temperature. The observed distribution of Fe among the reaction products does not appear to be entirely consistent with existing equilibrium models of Fe partitioning during serpentinization, suggesting improved models that include kinetic factors or multiple reaction steps need to be developed. Rates of H2 generation increased steeply from 200 to 300 °C, but dropped off at higher temperatures. This trend in H2 generation rates is attributable to a combination of the overall rate of serpentinization reactions and increased partitioning of Fe into brucite rather than magnetite at lower temperatures. The results suggest that millimolal concentration of H2 could be attained in moderately hot hydrothermal

  13. A mesoscopic reaction rate model for shock initiation of multi-component PBX explosives.

    PubMed

    Liu, Y R; Duan, Z P; Zhang, Z Y; Ou, Z C; Huang, F L

    2016-11-01

    The primary goal of this research is to develop a three-term mesoscopic reaction rate model that consists of a hot-spot ignition, a low-pressure slow burning and a high-pressure fast reaction terms for shock initiation of multi-component Plastic Bonded Explosives (PBX). Thereinto, based on the DZK hot-spot model for a single-component PBX explosive, the hot-spot ignition term as well as its reaction rate is obtained through a "mixing rule" of the explosive components; new expressions for both the low-pressure slow burning term and the high-pressure fast reaction term are also obtained by establishing the relationships between the reaction rate of the multi-component PBX explosive and that of its explosive components, based on the low-pressure slow burning term and the high-pressure fast reaction term of a mesoscopic reaction rate model. Furthermore, for verification, the new reaction rate model is incorporated into the DYNA2D code to simulate numerically the shock initiation process of the PBXC03 and the PBXC10 multi-component PBX explosives, and the numerical results of the pressure histories at different Lagrange locations in explosive are found to be in good agreements with previous experimental data.

  14. Imaginary time approach for reaction rate of triple-alpha process

    NASA Astrophysics Data System (ADS)

    Yabana, Kazuhiro; Akahori, Takahiko; Funaki, Yasuro

    2014-09-01

    We propose a new theoretical approach for the radiative capture reaction rate, which we call the imaginary-time theory. In the theory, inverse temperature is identified with the temperature. Since reaction rates can be calculated without solving any scattering problem in the theory, it is ideally suited for the triple-alpha process in which scattering problem of three charged particles has caused difficulties. Using the imaginary-time theory, we obtain the triple-alpha reaction rate in the quantum three-body model treating alpha particles as structureless point particles. The calculated rate is almost identical to the standard NACRE rate. We have also found that the reaction mechanism of the triple-alpha process changes at exactly the same temperatures as those in empirical theories. We may show that it is possible to derive an analytical formula close to that of the NACRE rate, if we introduce some assumptions in the three-body model. We demonstrate that, if we introduce a coupled-channel expansion with a truncation, reaction rate is substantially overestimated. This finding may help to explain the very different reaction rates obtained so far using different theoretical approaches.

  15. Sensitivity study of explosive nucleosynthesis in type Ia supernovae: Modification of individual thermonuclear reaction rates

    NASA Astrophysics Data System (ADS)

    Bravo, Eduardo; Martínez-Pinedo, Gabriel

    2012-05-01

    Background: Type Ia supernovae contribute significantly to the nucleosynthesis of many Fe-group and intermediate-mass elements. However, the robustness of nucleosynthesis obtained via models of this class of explosions has not been studied in depth until now.Purpose: We explore the sensitivity of the nucleosynthesis resulting from thermonuclear explosions of massive white dwarfs with respect to uncertainties in nuclear reaction rates. We put particular emphasis on indentifying the individual reactions rates that most strongly affect the isotopic products of these supernovae.Method: We have adopted a standard one-dimensional delayed detonation model of the explosion of a Chandrasekhar-mass white dwarf and have postprocessed the thermodynamic trajectories of every mass shell with a nucleosynthetic code to obtain the chemical composition of the ejected matter. We have considered increases (decreases) by a factor of 10 on the rates of 1196 nuclear reactions (simultaneously with their inverse reactions), repeating the nucleosynthesis calculations after modification of each reaction rate pair. We have computed as well hydrodynamic models for different rates of the fusion reactions of 12C and of 16O. From the calculations we have selected the reactions that have the largest impact on the supernova yields, and we have computed again the nucleosynthesis using two or three alternative prescriptions for their rates, taken from the JINA REACLIB database. For the three reactions with the largest sensitivity we have analyzed as well the temperature ranges where a modification of their rates has the strongest effect on nucleosynthesis.Results: The nucleosynthesis resulting from the type Ia supernova models is quite robust with respect to variations of nuclear reaction rates, with the exception of the reaction of fusion of two 12C nuclei. The energy of the explosion changes by less than ˜4% when the rates of the reactions 12C+12C or 16O+16O are multiplied by a factor of ×10 or

  16. ACTIVE: a program to calculate and plot reaction rates from ANISN calculated fluxes

    SciTech Connect

    Judd, J.L.

    1981-12-01

    The ACTIVE code calculates spatial heating rates, tritium production rates, neutron reaction rates, and energy spectra from particle fluxes calculated by ANISN. ACTIVE has a variety of input options including the capability to plot all calculated spatial distributions. The code was primarily designed for use with fusion first wall/blanket systems, but could be applied to any one-dimensional problem.

  17. Rate constants measured for hydrated electron reactions with peptides and proteins

    NASA Technical Reports Server (NTRS)

    Braams, R.

    1968-01-01

    Effects of ionizing radiation on the amino acids of proteins and the reactivity of the protonated amino group depends upon the pK subscript a of the group. Estimates of the rate constants for reactions involving the amino acid side chains are presented. These rate constants gave an approximate rate constant for three different protein molecules.

  18. Astrophysical S-Factors and Reaction Rates of Threshold (p, n)-Reactions on {sup 99-102}Ru

    SciTech Connect

    Skakun, Ye.; Rauscher, T.

    2010-08-12

    Astrophysical S-factors of (p, n) reactions on {sup 99}Ru, {sup 100}Ru, {sup 101}Ru, and {sup 102}Ru were derived from the sum of experimental isomeric and ground states cross sections measured in the incident proton energy range of 5-9 MeV. They were compared with Hauser-Feshbach statistical model predictions of the NON-SMOKER code. Good agreement was found in the majority of cases. Reaction rates were derived up to 8.7 GK stellar temperature by combining experiment and theory.

  19. Comprehensive model to determine the effects of temperature and species fluctuations on reaction rates in turbulent reaction flows

    SciTech Connect

    Magnotti, F.; Diskin, G.; Matulaitis, J.; Chinitz, W.

    1984-01-01

    The use of silane (SiH4) as an effective ignitor and flame stabilizing pilot fuel is well documented. A reliable chemical kinetic mechanism for prediction of its behavior at the conditions encountered in the combustor of a SCRAMJET engine was calculated. The effects of hydrogen addition on hydrocarbon ignition and flame stabilization as a means for reduction of lengthy ignition delays and reaction times were studied. The ranges of applicability of chemical kinetic models of hydrogen-air combustors were also investigated. The CHARNAL computer code was applied to the turbulent reaction rate modeling.

  20. A comprehensive model to determine the effects of temperature and species fluctuations on reaction rates in turbulent reaction flows

    NASA Technical Reports Server (NTRS)

    Magnotti, F.; Diskin, G.; Matulaitis, J.; Chinitz, W.

    1984-01-01

    The use of silane (SiH4) as an effective ignitor and flame stabilizing pilot fuel is well documented. A reliable chemical kinetic mechanism for prediction of its behavior at the conditions encountered in the combustor of a SCRAMJET engine was calculated. The effects of hydrogen addition on hydrocarbon ignition and flame stabilization as a means for reduction of lengthy ignition delays and reaction times were studied. The ranges of applicability of chemical kinetic models of hydrogen-air combustors were also investigated. The CHARNAL computer code was applied to the turbulent reaction rate modeling.

  1. Method and apparatus for obtaining enhanced production rate of thermal chemical reactions

    DOEpatents

    Tonkovich, Anna Lee Y [Pasco, WA; Wang, Yong [Richland, WA; Wegeng, Robert S [Richland, WA; Gao, Yufei [Kennewick, WA

    2003-04-01

    The present invention is a method and apparatus (vessel) for providing a heat transfer rate from a reaction chamber through a wall to a heat transfer chamber substantially matching a local heat transfer rate of a catalytic thermal chemical reaction. The key to the invention is a thermal distance defined on a cross sectional plane through the vessel inclusive of a heat transfer chamber, reaction chamber and a wall between the chambers. The cross sectional plane is perpendicular to a bulk flow direction of the reactant stream, and the thermal distance is a distance between a coolest position and a hottest position on the cross sectional plane. The thermal distance is of a length wherein the heat transfer rate from the reaction chamber to the heat transfer chamber substantially matches the local heat transfer rate.

  2. Nonequilibrium Contribution to the Rate of Reaction. III. Isothermal Multicomponent Systems

    DOE R&D Accomplishments Database

    Shizgal, B.; Karplus, M.

    1970-10-01

    The nonequilibrium contribution to the reaction rate of an isothermal multicomponent system is obtained by solution of the appropriate Chapman-Enskog equation; the system is composed of reactive species in contact with a heat bath of inert atoms M.

  3. Reaction mechanisms and rate constants of waste degradation in landfill bioreactor systems with enzymatic-enhancement.

    PubMed

    Jayasinghe, P A; Hettiaratchi, J P A; Mehrotra, A K; Kumar, S

    2014-06-01

    Augmenting leachate before recirculation with peroxidase enzymes is a novel method to increase the available carbon, and therefore the food supply to microorganisms at the declining phase of the anaerobic landfill bioreactor operation. In order to optimize the enzyme-catalyzed leachate recirculation process, it is necessary to identify the reaction mechanisms and determine rate constants. This paper presents a kinetic model developed to ascertain the reaction mechanisms and determine the rate constants for enzyme catalyzed anaerobic waste degradation. The maximum rate of reaction (Vmax) for MnP enzyme-catalyzed reactors was 0.076 g(TOC)/g(DS).day. The catalytic turnover number (k(cat)) of the MnP enzyme-catalyzed was 506.7 per day while the rate constant (k) of the un-catalyzed reaction was 0.012 per day.

  4. Reaction mechanisms and rate constants of waste degradation in landfill bioreactor systems with enzymatic-enhancement.

    PubMed

    Jayasinghe, P A; Hettiaratchi, J P A; Mehrotra, A K; Kumar, S

    2014-06-01

    Augmenting leachate before recirculation with peroxidase enzymes is a novel method to increase the available carbon, and therefore the food supply to microorganisms at the declining phase of the anaerobic landfill bioreactor operation. In order to optimize the enzyme-catalyzed leachate recirculation process, it is necessary to identify the reaction mechanisms and determine rate constants. This paper presents a kinetic model developed to ascertain the reaction mechanisms and determine the rate constants for enzyme catalyzed anaerobic waste degradation. The maximum rate of reaction (Vmax) for MnP enzyme-catalyzed reactors was 0.076 g(TOC)/g(DS).day. The catalytic turnover number (k(cat)) of the MnP enzyme-catalyzed was 506.7 per day while the rate constant (k) of the un-catalyzed reaction was 0.012 per day. PMID:24759644

  5. Coloring Rate of Phenolphthalein by Reaction with Alkaline Solution Observed by Liquid-Droplet Collision.

    PubMed

    Takano, Yuuka; Kikkawa, Shigenori; Suzuki, Tomoko; Kohno, Jun-ya

    2015-06-11

    Many important chemical reactions are induced by mixing two solutions. This paper presents a new way to measure rates of rapid chemical reactions induced by mixing two reactant solutions using a liquid-droplet collision. The coloring reaction of phenolphthalein (H2PP) by a reaction with NaOH is investigated kinetically. Liquid droplets of H2PP/ethanol and NaOH/H2O solutions are made to collide, which induces a reaction that transforms H2PP into a deprotonated form (PP(2-)). The concentration of PP(2-) is evaluated from the RGB values of pixels in the colored droplet images, and is measured as a function of the elapsed time from the collision. The obtained rate constant is (2.2 ± 0.7) × 10(3) M(-1) s(-1), which is the rate constant for the rate-determining step of the coloring reaction of H2PP. This method was shown to be applicable to determine rate constants of rapid chemical reactions between two solutions.

  6. The Effect of the Triple-α Reaction Rate on Stellar Evolution at Low-Metallicity

    NASA Astrophysics Data System (ADS)

    Suda, Takuma; Hirschi, Raphael; Fujimoto, Masayuki Y.

    2010-06-01

    We investigate the effect of the triple-α reaction rates on the evolution of low-mass stars and massive stars. The former is compared with the observations of metal-poor stars known to date. For the latter, we discuss the impact of recent calculation of triple-α reaction rate by Ogata et al. (2009, PTP, 122, 1055) on the evolution until carbon burning.

  7. A Unified Equation for the Reaction Rate in Dense Matter Stars

    SciTech Connect

    Gasques, L. R.; Wiescher, M.; Yakovlev, D. G.

    2007-10-26

    We analyze thermonuclear and pycnonuclear reaction rates in multi-component dense stellar plasma. First we describe calculations of the astrophysical S-factor at low energies using the Sao Paulo potential on the basis of the barrier penetration model. Then we present a simple phenomenological expression for a reaction rate. The expression contains several fit parameters which we adjust to reproduce the best microscopic calculations available in the literature.

  8. On the Sensitivity of Massive Star Nucleosynthesis and Evolution to Solar Abundances and to Uncertainties in Helium-Burning Reaction Rates

    NASA Astrophysics Data System (ADS)

    Tur, Clarisse; Heger, Alexander; Austin, Sam M.

    2007-12-01

    We explore the dependence of presupernova evolution and supernova nucleosynthesis yields on the uncertainties in helium-burning reaction rates. Using the revised solar abundances of Lodders for the initial stellar composition, instead of those of Anders and Grevesse, changes the supernova yields and limits the constraints that those yields place on the 12C(α,γ)16O reaction rate. The production factors of medium-weight elements (A=16-40) were found to be in reasonable agreement with observed solar ratios within the current experimental uncertainties in the triple-α reaction rate. Simultaneous variations by the same amount in both reaction rates or in either of them separately, however, can induce significant changes in the central 12C abundance at core carbon ignition and in the mass of the supernova remnant. It therefore remains important to have experimental determinations of the helium-burning rates so that their ratio and absolute values are known with an accuracy of 10% or better.

  9. Reaction rate and energy-loss rate for photopair production by relativistic nuclei

    NASA Technical Reports Server (NTRS)

    Chodorowski, Michal J.; Zdziarski, Andrzej A.; Sikora, Marek

    1992-01-01

    The process of e(+/-) pair production by relativistic nuclei on ambient photons is considered. The process is important for cosmic-ray nuclei in interstellar and intergalactic space as well as in galactic and extragalactic compact objects. The rate of this process is given by an integral of the cross section over the photon angular and energy distribution. In the case of isotropic photons, the angular integration is performed to provide an expression for the rate at given photon energy in the nucleus rest frame. The total rate then becomes a single integral of that rate over the photon energy distribution. Formulas are also given for the fractional energy loss of a relativistic nucleus colliding with a photon of a given energy in the rest frame. The nucleus energy-loss rate is integrated over the photon angular distribution in the case of isotropic photons, and simple fits are provided.

  10. Polar organic solvents accelerate the rate of DNA strand replacement reaction.

    PubMed

    Zhang, Tianchi; Shang, Chunli; Duan, Ruixue; Hakeem, Abdul; Zhang, Zhenyu; Lou, Xiaoding; Xia, Fan

    2015-03-21

    Herein, we report a novel strategy to accelerate the rate of DNA strand replacement reaction (DSRR) by polar organic solvents. DSRR plays a vital role in DNA nanotechnology but prolonged reaction time limits its further advancement. That is why it is extremely important to speed up the rate of DSRR. In this work, we introduce different polar organic solvents in both simple and complicated DSRR systems and observe that the rate constant is much more than in aqueous buffer. The rate acceleration of DSRR by polar organic solvents is very obvious and we believe that this strategy will extend the application of DNA nanotechnology in future.

  11. Up-Scaling Geochemical Reaction Rates for Carbon Dioxide (CO2) in Deep Saline Aquifers

    SciTech Connect

    Lindquist, W Brent

    2009-03-03

    The overall goal of the project was to bridge the gap between our knowledge of small-scale geochemical reaction rates and reaction rates meaningful for modeling transport at core scales. The working hypothesis was that reaction rates, determined from laboratory measurements based upon reactions typically conducted in well mixed batch reactors using pulverized reactive media may be significantly changed in in situ porous media flow due to rock microstructure heterogeneity. Specifically we hypothesized that, generally, reactive mineral surfaces are not uniformly accessible to reactive fluids due to the random deposition of mineral grains and to the variation in flow rates within a pore network. Expected bulk reaction rates would therefore have to be correctly up-scaled to reflect such heterogeneity. The specific objective was to develop a computational tool that integrates existing measurement capabilities with pore-scale network models of fluid flow and reactive transport. The existing measurement capabilities to be integrated consisted of (a) pore space morphology, (b) rock mineralogy, and (c) geochemical reaction rates. The objective was accomplished by: (1) characterizing sedimentary sandstone rock morphology using X-ray computed microtomography, (2) mapping rock mineralogy using back-scattered electron microscopy (BSE), X-ray dispersive spectroscopy (EDX) and CMT, (3) characterizing pore-accessible reactive mineral surface area, and (4) creating network models to model acidic CO{sub 2} saturated brine injection into the sandstone rock samples.

  12. High-precision (p,t) reaction to determine {sup 25}Al(p,{gamma}){sup 26}Si reaction rates

    SciTech Connect

    Matic, A.; Berg, A. M. van den; Harakeh, M. N.; Woertche, H. J.; Berg, G. P. A.; Couder, M.; Goerres, J.; LeBlanc, P.; O'Brien, S.; Wiescher, M.; Fujita, K.; Hatanaka, K.; Sakemi, Y.; Shimizu, Y.; Tameshige, Y.; Tamii, A.; Yosoi, M.; Adachi, T.; Fujita, Y.; Shimbara, Y.

    2010-08-15

    Since the identification of ongoing {sup 26}Al production in the universe, the reaction sequence {sup 24}Mg(p,{gamma}){sup 25}Al({beta}{sup +{nu}}){sup 25}Mg(p,{gamma}){sup 26}Al has been studied intensively. At temperatures where the radiative capture on {sup 25}Al (t{sub 1/2}=7.2 s) becomes faster than the {beta}{sup +} decay, the production of {sup 26}Al can be reduced due to the depletion of {sup 25}Al. To determine the resonances relevant for the {sup 25}Al(p,{gamma}){sup 26}Si bypass reaction, we measured the {sup 28}Si(p,t){sup 26}Si reaction with high-energy precision using the Grand Raiden spectrometer at the Research Center for Nuclear Physics, Osaka. Several new energy levels were found above the p threshold and for known states excitation energies were determined with smaller uncertainties. The calculated stellar rates of the bypass reaction agree well with previous results, suggesting that these rates are well established.

  13. Ignition delays, heats of combustion, and reaction rates of aluminum alkyl derivatives used as ignition and combustion enhancers for supersonic combustors

    NASA Technical Reports Server (NTRS)

    Ryan, T. W., III; Harlowe, W. W.; Schwab, S.

    1992-01-01

    The work was based on adapting an apparatus and procedure developed at Southwest Research Institute for rating the ignition quality of fuels for diesel engines. Aluminum alkyls and various Lewis-base adducts of these materials, both neat and mixed 50/50 with pure JP-10 hydrocarbon, were injected into the combustion bomb using a high-pressure injection system. The bomb was pre-charged with air that was set at various initial temperatures and pressures for constant oxygen density. The ignition delay times were determined for the test materials at these different initial conditions. The data are presented in absolute terms as well as comparisons with the parent alkyls. The relative heats of reaction of the various test materials were estimated based on a computation of the heat release, using the pressure data recorded during combustion in the bomb. In addition, the global reaction rates for each material were compared at a selected tmperature and pressure.

  14. Review of rate coefficients of ionic reactions determined from measurements made by the atmosphere explorer satellites

    NASA Technical Reports Server (NTRS)

    Torr, D. G.; Torr, M. R.

    1978-01-01

    The large data base of aeronomic parameters measured by the Atmosphere Explorer C, D, and E satellites since December 1973 has been used to determine a number of reaction rate coefficients highly relevant to our understanding of thermospheric chemistry. In this paper the results are reviewed for ionic rate coefficients for recombination of NO(+), O2(+), for reactions of O(+) + N2, N2(+) + O, and O(++) + O, and for various reactions involving O(+)(2D) and O(+)(2P) ions with O and N2.

  15. Thick target measurement of the 40Ca(alpha,gamma)44Ti reaction rate

    SciTech Connect

    Sheets, S A; Burke, J T; Scielzo, N D; Phair, L; Bleuel, D; Norman, E B; Grant, P G; Hurst, A M; Tumey, S; Brown, T A; Stoyer, M

    2009-02-06

    The thick-target yield for the {sup 40}Ca({alpha},{gamma}){sup 44}Ti reaction has been measured for E{sub beam} = 4.13, 4.54, and 5.36 MeV using both an activation measurement and online {gamma}-ray spectroscopy. The results of the two measurements agree. From the measured yield a reaction rate is deduced that is smaller than statistical model calculations. This implies a smaller {sup 44}Ti production in supernova compared to recently measured {sup 40}Ca({alpha},{gamma}){sup 44}Ti reaction rates.

  16. Teaching Absolute Value Meaningfully

    ERIC Educational Resources Information Center

    Wade, Angela

    2012-01-01

    What is the meaning of absolute value? And why do teachers teach students how to solve absolute value equations? Absolute value is a concept introduced in first-year algebra and then reinforced in later courses. Various authors have suggested instructional methods for teaching absolute value to high school students (Wei 2005; Stallings-Roberts…

  17. Design of experiments for zeroth and first-order reaction rates.

    PubMed

    Amo-Salas, Mariano; Martín-Martín, Raúl; Rodríguez-Aragón, Licesio J

    2014-09-01

    This work presents optimum designs for reaction rates experiments. In these experiments, time at which observations are to be made and temperatures at which reactions are to be run need to be designed. Observations are performed along time under isothermal conditions. Each experiment needs a fixed temperature and so the reaction can be measured at the designed times. For these observations under isothermal conditions over the same reaction a correlation structure has been considered. D-optimum designs are the aim of our work for zeroth and first-order reaction rates. Temperatures for the isothermal experiments and observation times, to obtain the most accurate estimates of the unknown parameters, are provided in these designs. D-optimum designs for a single observation in each isothermal experiment or for several correlated observations have been obtained. Robustness of the optimum designs for ranges of the correlation parameter and comparisons of the information gathered by different designs are also shown.

  18. Design of experiments for zeroth and first-order reaction rates.

    PubMed

    Amo-Salas, Mariano; Martín-Martín, Raúl; Rodríguez-Aragón, Licesio J

    2014-09-01

    This work presents optimum designs for reaction rates experiments. In these experiments, time at which observations are to be made and temperatures at which reactions are to be run need to be designed. Observations are performed along time under isothermal conditions. Each experiment needs a fixed temperature and so the reaction can be measured at the designed times. For these observations under isothermal conditions over the same reaction a correlation structure has been considered. D-optimum designs are the aim of our work for zeroth and first-order reaction rates. Temperatures for the isothermal experiments and observation times, to obtain the most accurate estimates of the unknown parameters, are provided in these designs. D-optimum designs for a single observation in each isothermal experiment or for several correlated observations have been obtained. Robustness of the optimum designs for ranges of the correlation parameter and comparisons of the information gathered by different designs are also shown. PMID:27535778

  19. Sensitivity of p-Nuclei to (n,g) Reaction Rates

    NASA Astrophysics Data System (ADS)

    Scriven, Dustin; Naqvi, Farheen; Spyrou, Artemis; Simon, Anna; Mayer, Brad

    2015-10-01

    The astrophysical p-process, which is responsible for the creation of the proton-rich p-nuclei, is still not well understood. A sensitivity study of p-nuclei abundances to (n, γ) and (γ,n) reaction rates was conducted at the National Superconducting Cyclotron Laboratory using a nuclear reaction network created at Clemson University. This network simulates the explosive shock front of a Type II supernova passing through the oxygen/neon layer of a 25 M⊙ star. Reaction rates of many (n, γ) reactions and their inverses were increased and decreased by a factor of 3 and the effects were observed. Probing the sensitivity of p-nuclei abundances aids in pointing out reactions important to the p-process. In turn, this information can be used as a tool to drive experimental research, helping to decrease uncertainties and increase the robustness of p-process and other stellar models.

  20. BRUSLIB and NETGEN: the Brussels nuclear reaction rate library and nuclear network generator for astrophysics

    NASA Astrophysics Data System (ADS)

    Aikawa, M.; Arnould, M.; Goriely, S.; Jorissen, A.; Takahashi, K.

    2005-10-01

    Nuclear reaction rates are quantities of fundamental importance in astrophysics. Substantial efforts have been devoted in the last decades to measuring or calculating them. This paper presents a detailed description of the Brussels nuclear reaction rate library BRUSLIB and of the nuclear network generator NETGEN. BRUSLIB is made of two parts. The first one contains the 1999 NACRE compilation based on experimental data for 86 reactions with (mainly) stable targets up to Si. BRUSLIB provides an electronic link to the published, as well as to a large body of unpublished, NACRE data containing adopted rates, as well as lower and upper limits. The second part of BRUSLIB concerns nuclear reaction rate predictions to complement the experimentally-based rates. An electronic access is provided to tables of rates calculated within a statistical Hauser-Feshbach approximation, which limits the reliability of the rates to reactions producing compound nuclei with a high enough level density. These calculations make use of global and coherent microscopic nuclear models for the quantities entering the rate calculations. The use of such models makes the BRUSLIB rate library unique. A description of the Nuclear Network Generator NETGEN that complements the BRUSLIB package is also presented. NETGEN is a tool to generate nuclear reaction rates for temperature grids specified by the user. The information it provides can be used for a large variety of applications, including Big Bang nucleosynthesis, the energy generation and nucleosynthesis associated with the non-explosive and explosive hydrogen to silicon burning stages, or the synthesis of the heavy nuclides through the s-, α- and r-, rp- or p-processes.

  1. Pore-Scale Process Coupling and Effective Surface Reaction Rates in Heterogeneous Subsurface Materials

    SciTech Connect

    Liu, Chongxuan; Liu, Yuanyuan; Kerisit, Sebastien N.; Zachara, John M.

    2015-09-01

    This manuscript provides a review of pore-scale researches in literature including experimental and numerical approaches, and scale-dependent behavior of geochemical and biogeochemical reaction rates in heterogeneous porous media. A mathematical equation that can be used to predict the scale-dependent behavior of geochemical reaction rates in heterogeneous porous media has been derived. The derived effective rate expression explicitly links the effective reaction rate constant to the intrinsic rate constant, and to the pore-scale variations in reactant concentrations in porous media. Molecular simulations to calculate the intrinsic rate constants were provided. A few examples of pore-scale simulations were used to demonstrate the application of the equation to calculate effective rate constants in heterogeneous materials. The results indicate that the deviation of effective rate constant from the intrinsic rate in heterogeneous porous media is caused by the pore-scale distributions of reactants and their correlation, which are affected by the pore-scale coupling of reactions and transport.

  2. Monte Carlo analysis of uncertainty propagation in a stratospheric model. 2: Uncertainties due to reaction rates

    NASA Technical Reports Server (NTRS)

    Stolarski, R. S.; Butler, D. M.; Rundel, R. D.

    1977-01-01

    A concise stratospheric model was used in a Monte-Carlo analysis of the propagation of reaction rate uncertainties through the calculation of an ozone perturbation due to the addition of chlorine. Two thousand Monte-Carlo cases were run with 55 reaction rates being varied. Excellent convergence was obtained in the output distributions because the model is sensitive to the uncertainties in only about 10 reactions. For a 1 ppby chlorine perturbation added to a 1.5 ppby chlorine background, the resultant 1 sigma uncertainty on the ozone perturbation is a factor of 1.69 on the high side and 1.80 on the low side. The corresponding 2 sigma factors are 2.86 and 3.23. Results are also given for the uncertainties, due to reaction rates, in the ambient concentrations of stratospheric species.

  3. New determination of 12C(α,γ)16O reaction rate

    NASA Astrophysics Data System (ADS)

    Oulebsir, N.

    2015-12-01

    The reaction 12C(α,γ)16O was investigated through the direct α-transfer reaction (7Li,t) at 28 and 34 MeV incident energies. We determined the reduced α-widths of the sub-threshold 2+ and 1- states of 16O from the DWBA analysis of the transfer reaction 12C(7Li,t)16O performed at two incident energies. The obtained result for the 2+ and 1- sub-threshold resonances as introduced in the R-matrix fitting of radiative capture and elastic-scattering data to determine the E2 and E1 S-factor from 0.01MeV to 4.2MeV in the center-of-mass energy. After determining the astrophysic factor of 12C(α,γ)16O S(E) with Pierre Descouvement code, I determined numerically the new reaction rate of this reaction at a different stellar temperature (0.06 Gk-2 GK). The 12C(α,γ)16O reaction rate at T9 = 0.2 is [7.21-2.25+2.15] × 10-15 cm3 s-1 mol-1. Some comparisons and discussions about our new 12C(α,γ)16O reaction rate are presented. The agreements of the reaction rate below T9 = 2 between our results and with those proposed by NACRE indicate that our results are reliable, and they could be included in the astrophysical reaction rate network.

  4. STARLIB: A Next-generation Reaction-rate Library for Nuclear Astrophysics

    NASA Astrophysics Data System (ADS)

    Sallaska, A. L.; Iliadis, C.; Champange, A. E.; Goriely, S.; Starrfield, S.; Timmes, F. X.

    2013-07-01

    STARLIB is a next-generation, all-purpose nuclear reaction-rate library. For the first time, this library provides the rate probability density at all temperature grid points for convenient implementation in models of stellar phenomena. The recommended rate and its associated uncertainties are also included. Currently, uncertainties are absent from all other rate libraries, and, although estimates have been attempted in previous evaluations and compilations, these are generally not based on rigorous statistical definitions. A common standard for deriving uncertainties is clearly warranted. STARLIB represents a first step in addressing this deficiency by providing a tabular, up-to-date database that supplies not only the rate and its uncertainty but also its distribution. Because a majority of rates are lognormally distributed, this allows the construction of rate probability densities from the columns of STARLIB. This structure is based on a recently suggested Monte Carlo method to calculate reaction rates, where uncertainties are rigorously defined. In STARLIB, experimental rates are supplemented with: (1) theoretical TALYS rates for reactions for which no experimental input is available, and (2) laboratory and theoretical weak rates. STARLIB includes all types of reactions of astrophysical interest to Z = 83, such as (p, γ), (p, α), (α, n), and corresponding reverse rates. Strong rates account for thermal target excitations. Here, we summarize our Monte Carlo formalism, introduce the library, compare methods of correcting rates for stellar environments, and discuss how to implement our library in Monte Carlo nucleosynthesis studies. We also present a method for accessing STARLIB on the Internet and outline updated Monte Carlo-based rates.

  5. Sensitivity of Type I X-Ray Bursts to rp-Process Reaction Rate

    NASA Astrophysics Data System (ADS)

    Amthor, Matthew A.; Galaviz, Daniel; Heger, Alexander; Sakharuk, Alexander; Schatz, Hendrik; Smith, Karl

    PoS(NIC-IX)068 First steps have been taken in a more comprehensive study of the dependence of observables in Type I X-ray bursts on uncertain (p,γ) reaction rates along the rp-process path. We use the multi- zone hydrodynamics code KEPLER which implicitly couples a full nuclear reaction network of more than 1000 isotopes, as needed, to follow structure and evolution of the X-ray burst layer and its ashes. This allows us to incorporate the full rp-process network, including all relevant nuclear reactions, and individually study changes in the X-ray burst light curves when modifying selected key nuclear reaction rates. In this work we considered all possible proton captures to nuclei with 10 < Z < 28 and N ≤ Z. When varying individual reaction rates within a symmetric full width uncertainty of a factor of 104 , early results for some rates show changes in the burst light curve as large as 10 percent of peak luminosity. This change is large enough to be detectable by current X-ray burst light curve observations. More precise reaction rates are therefore needed to test current X-ray burst models, particularly of the burst rise, with observational data and to constrain astrophysical parameters.

  6. Reaction rate and composition dependence of the stability of thermonuclear burning on accreting neutron stars

    SciTech Connect

    Keek, L.; Cyburt, R. H.; Heger, A.

    2014-06-01

    The stability of thermonuclear burning of hydrogen and helium accreted onto neutron stars is strongly dependent on the mass accretion rate. The burning behavior is observed to change from Type I X-ray bursts to stable burning, with oscillatory burning occurring at the transition. Simulations predict the transition at a 10 times higher mass accretion rate than observed. Using numerical models we investigate how the transition depends on the hydrogen, helium, and CNO mass fractions of the accreted material, as well as on the nuclear reaction rates of 3α and the hot-CNO breakout reactions {sup 15}O(α, γ){sup 19}Ne and {sup 18}Ne(α, p){sup 21}Na. For a lower hydrogen content the transition is at higher accretion rates. Furthermore, most experimentally allowed reaction rate variations change the transition accretion rate by at most 10%. A factor 10 decrease of the {sup 15}O(α, γ){sup 19}Ne rate, however, produces an increase of the transition accretion rate of 35%. None of our models reproduce the transition at the observed rate, and depending on the true {sup 15}O(α, γ){sup 19}Ne reaction rate, the actual discrepancy may be substantially larger. We find that the width of the interval of accretion rates with marginally stable burning depends strongly on both composition and reaction rates. Furthermore, close to the stability transition, our models predict that X-ray bursts have extended tails where freshly accreted fuel prolongs nuclear burning.

  7. Re-evaluation of the reaction rate coefficient of CH3Br + OH with implications for the atmospheric budget of methyl bromide

    NASA Astrophysics Data System (ADS)

    Nilsson, E. J. K.; Joelsson, L. M. T.; Heimdal, J.; Johnson, M. S.; Nielsen, O. J.

    2013-12-01

    The reaction rate coefficient k(CH3Br + OH) has been determined in the temperature range 298-373 K, using pulse radiolysis/UV kinetic spectroscopy, and at 298 K using a relative rate method. The Arrhenius expression obtained from a fit to the experimental results is (2.9 ± 0.9) × 10-12 exp(-(1230 ± 125)/T) cm3 molecule-1 s-1, which is greater than the expression currently recommended. The relative rate experiments give k(298 K) = (4.13 ± 0.63) × 10-14 cm3 molecule-1 s-1. The results of the absolute and relative rate experiments indicate that the source budget of atmospheric CH3Br should be reinvestigated, as was recently done for CH3Cl.

  8. Temperature-dependent reaction-rate expression for oxygen recombination at Shuttle entry conditions

    NASA Technical Reports Server (NTRS)

    Zoby, E. V.; Simmonds, A. L.; Gupta, R. N.

    1984-01-01

    A temperature-dependent oxygen surface reaction-rate coefficient has been determined from experimental STS-2 heating and wall temperature data at altitudes of 77.91 km, 74.98 km, and 71.29 km. The coefficient is presented in an Arrhenius form and is shown to be less temperature dependent than previous results. Finite-rate viscous-shock-layer heating rates based on this present expression have been compared with predicted heating rates using the previous rate coefficients and with experimental heating data obtained over an extensive range of STS-2 and STS-3 entry conditions. A substantial improvement is obtained in comparison of experimental data and predicted heating rates using the present oxygen reaction-rate expression.

  9. Rate constant for the reaction NH2 + NO from 216 to 480 K

    NASA Technical Reports Server (NTRS)

    Stief, L. J.; Brobst, W. D.; Nava, D. F.; Borkowski, R. P.; Michael, J. V.

    1982-01-01

    The absolute rate constant was measured by the technique of flash photolysis-laser induced fluorescence (FP-LIF). NH2 radicals were produced by the flash photolysis of ammonia and the fluorescent NH2 photons were measured by multiscaling techniques. At each temperature, the results were independent of variations in total pressure, and flash intensity. The results are compared with previous determinations using the techniques of mass spectrometry, absorption spectroscopy, laser absorption spectroscopy, and laser induced fluorescence. The implications of the results are discussed with regard to combustion, post combustion, and atmospheric chemistry. The results are also discussed theoretically.

  10. Estimation of the reaction rate constant of HOCl by SMILES observation

    NASA Astrophysics Data System (ADS)

    Kuribayashi, Kouta; Kasai, Yasuko; Sato, Tomohiro; Sagawa, Hideo

    2012-07-01

    Hypochlorous acid, HOCl plays an important role to link the odd ClOx and the odd HOx in the atmospheric chemistry with the reaction: {ClO} + {HO_{2}} \\longrightarrow {HOCl} + {O_{2}} Quantitative understanding of the rate constant of the reaction (1.1) is essential for understanding the ozone loss in the mid-latitude region because of a view point of its rate controlling role in the ozone depletion chemistry. Reassessment of the reaction rate constant was pointed out from MIPAS/Envisat observations (von Clarmann et al., 2011) and balloon-borne observations (Kovalenko et al., 2007). Several laboratory studies had been reported, although the reaction rate constants have large uncertainties, as k{_{HOCl}} = (1.75 ± 0.52) × 10^{-12} exp[(368 ± 78)/T] (Hickson et al., 2007), and large discrepancies (Hickson et al., 2007;Stimpfle et al., 1979). Moreover, theoretical ab initio studies pointed out the pressure dependence of the reaction (1.1) (Xu et al., 2003). A new high-sensitive remote sensing technology named Superconducting SubMillimeter-wave Limb-Emission Sounder (SMILES) on the International Space Station (ISS) had observed diurnal variations of HOCl in the upper stratosphere/lower mesosphere (US/LM) region for the first time. ClO and HO_{2} were slso observed simultaneously with HOCl. SMILES performed the observations between 12^{{th}} October 2009 and 21^{{th}} April 2010. The latitude coverage of SMILES observation is normally 38°S-65°N. The altitude region of HOCl observation is about 28-70 km. We estimated the time period in which the reaction (1.1) becomes dominant in the ClO_{y} diurnal chemistry in US/LM. The reaction rate constant was directly estimated by decay of [ClO] and [HO_{2}] amounts in that period. The derived reaction rate constant represented well the increase of [HOCl] amount.

  11. [Incidence rate of adverse reaction/event by Qingkailing injection: a Meta-analysis of single rate].

    PubMed

    Ai, Chun-ling; Xie, Yan-ming; Li, Ming-quan; Wang, Lian-xin; Liao, Xing

    2015-12-01

    To systematically review the incidence rate of adverse drug reaction/event by Qingkailing injection. Such databases as the PubMed, EMbase, the Cochrane library, CNKI, VIP WanFang data and CBM were searched by computer from foundation to July 30, 2015. Two reviewers independently screened literature according to the inclusion and exclusion criteria, extracted data and cross check data. Then, Meta-analysis was performed by using the R 3.2.0 software, subgroup sensitivity analysis was performed based on age, mode of medicine, observation time and research quality. Sixty-three studies involving 9,793 patients with Qingkailing injection were included, 367 cases of adverse reactions/events were reported in total. The incidence rate of adverse reaction in skin and mucosa group was 2% [95% CI (0.02; 0.03)]; the digestive system adverse reaction was 6% [95% CI(0.05; 0.07); the injection site adverse reaction was 4% [95% CI (0.02; 0.07)]. In the digestive system as the main types of adverse reactions/events, incidence of children and adults were 4.6% [0.021 1; 0.097 7] and 6.9% [0.053 5; 0.089 8], respectively. Adverse reactions to skin and mucous membrane damage as the main performance/event type, the observation time > 7 days and ≤ 7 days incidence of 3% [0.012 9; 0.068 3] and 1.9% [0.007 8; 0.046 1], respectively. Subgroup analysis showed that different types of adverse reactions, combination in the incidence of adverse reactions/events were higher than that of single drug, the difference was statistically significant (P < 0.05). This study suggested the influence factors of adverse reactions occur, and clinical rational drug use, such as combination, age and other fators, and the influence factors vary in different populations. Therefore, clinical doctors for children and the elderly use special care was required for a clear and open spirit injection, the implementation of individualized medication.

  12. [Incidence rate of adverse reaction/event by Qingkailing injection: a Meta-analysis of single rate].

    PubMed

    Ai, Chun-ling; Xie, Yan-ming; Li, Ming-quan; Wang, Lian-xin; Liao, Xing

    2015-12-01

    To systematically review the incidence rate of adverse drug reaction/event by Qingkailing injection. Such databases as the PubMed, EMbase, the Cochrane library, CNKI, VIP WanFang data and CBM were searched by computer from foundation to July 30, 2015. Two reviewers independently screened literature according to the inclusion and exclusion criteria, extracted data and cross check data. Then, Meta-analysis was performed by using the R 3.2.0 software, subgroup sensitivity analysis was performed based on age, mode of medicine, observation time and research quality. Sixty-three studies involving 9,793 patients with Qingkailing injection were included, 367 cases of adverse reactions/events were reported in total. The incidence rate of adverse reaction in skin and mucosa group was 2% [95% CI (0.02; 0.03)]; the digestive system adverse reaction was 6% [95% CI(0.05; 0.07); the injection site adverse reaction was 4% [95% CI (0.02; 0.07)]. In the digestive system as the main types of adverse reactions/events, incidence of children and adults were 4.6% [0.021 1; 0.097 7] and 6.9% [0.053 5; 0.089 8], respectively. Adverse reactions to skin and mucous membrane damage as the main performance/event type, the observation time > 7 days and ≤ 7 days incidence of 3% [0.012 9; 0.068 3] and 1.9% [0.007 8; 0.046 1], respectively. Subgroup analysis showed that different types of adverse reactions, combination in the incidence of adverse reactions/events were higher than that of single drug, the difference was statistically significant (P < 0.05). This study suggested the influence factors of adverse reactions occur, and clinical rational drug use, such as combination, age and other fators, and the influence factors vary in different populations. Therefore, clinical doctors for children and the elderly use special care was required for a clear and open spirit injection, the implementation of individualized medication. PMID:27245021

  13. REACLIB: A Reaction Rate Library for the Era of Collaborative Science

    NASA Astrophysics Data System (ADS)

    Meisel, Zachary

    2008-10-01

    Thermonuclear reaction rates and weak decay rates are of great importance to modern nuclear astrophysics. They are critical in the study of many topics such as Big Bang Nucleosynthesis, X-ray bursts, Supernovae, and S-process element formation, among others. The Joint Institute for Nuclear Astrophysics (JINA) has been created to increase connectivity amongst nuclear astrophysicists in our modern age of highly collaborative science. Within JINA there has been an effort to create a frequently updated and readily accessible database of thermonuclear reactions and weak decay rates. This database is the REACLIB library, which can be accessed at the web address: http://www.nscl.msu.edu/˜nero/db/. Here I will discuss the JINA REACLIB Project, including a new procedure to fit reaction rates as a function of temperature that takes full advantage of physicality. With these updated reaction rates, astrophysical modelers will no longer have to worry about the adverse effects of using obsolete reaction rate libraries lacking physical behavior.

  14. Reevaluation of the O(+)(2P) reaction rate coefficients derived from Atmosphere Explorer C observations

    NASA Technical Reports Server (NTRS)

    Chang, T.; Torr, D. G.; Richards, P. G.; Solomon, S. C.

    1993-01-01

    O(+)(2P) is an important species for studies of the ionosphere and thermosphere: its emission at 7320 A can be used as a diagnostic of the thermospheric atomic oxygen density. Unfortunately, there are no laboratory measurements of the O and N2 reaction rates which are needed to determine the major sinks of (O+)(2p). We have recalculated the O and N2 reaction rates for O(+) (2P) using recent improvements in the solar EUV flux, cross sections, and photoelectron fluxes. For the standard solar EUV flux, the new N2 reaction rate of 3.4 +/- 1.5 x 10 exp -10 cu cm/s is close to the value obtained by Rusch et al. (1977), but the new O reaction rate of 4.0 +/- 1.9 x 10 exp -10 cu cm/sec is about 8 times larger. These new reaction rates are derived using neutral densities, electron density, and solar EUV fluxes measured by Atmosphere Explorer C in 1974 during solar minimum. The new theoretical emission rates are in good agreement with the data for the two orbits studied by Rusch et al.

  15. Evolutionary implications of the new triple-α nuclear reaction rate for low mass stars

    NASA Astrophysics Data System (ADS)

    Dotter, A.; Paxton, B.

    2009-12-01

    Context: Ogata et al. (2009, Progr. Theor. Phys., 122, 1055) presented a theoretical determination of the ^4He(αα,γ)12C, or triple-α, nuclear reaction rate. Their rate differs from the NACRE rate by many orders of magnitude at temperatures relevant for low mass stars. Aims: We explore the evolutionary implications of adopting the OKK triple-α reaction rate in low mass stars and compare the results with those obtained using the NACRE rate. Methods: The triple-α reaction rates are compared by following the evolution of stellar models at 1 and 1.5 M⊙ with Z = 0.0002 and Z = 0.02. Results: Results show that the OKK rate has severe consequences for the late stages of stellar evolution in low mass stars. Most notable is the shortening-or disappearance-of the red giant phase. Conclusions: The OKK triple-α reaction rate is incompatible with observations of extended red giant branches and He burning stars in old stellar systems.

  16. The Effect of Conceptual Change Pedagogy on Students' Conceptions of Rate of Reaction

    ERIC Educational Resources Information Center

    Calik, Muammer; Kolomuc, Ali; Karagolge, Zafer

    2010-01-01

    This paper reports on an investigation of the effect of conceptual change pedagogy on students' conceptions of "rate of reaction" concepts. The study used a pre-test/post-test non-equivalent comparison group design approach and the sample consisted of 72 Turkish grade-11 students (aged 16-18 years) selected from two intact classrooms. The "Rate of…

  17. Method and apparatus for obtaining enhanced production rate of thermal chemical reactions

    DOEpatents

    Tonkovich, Anna Lee Y.; Wang, Yong; Wegeng, Robert S.; Gao, Yufei

    2003-09-09

    Reactors and processes are disclosed that can utilize high heat fluxes to obtain fast, steady-state reaction rates. Porous catalysts used in conjunction with microchannel reactors to obtain high rates of heat transfer are also disclosed. Reactors and processes that utilize short contact times, high heat flux and low pressure drop are described. Improved methods of steam reforming are also provided.

  18. Field measurement of slow metamorphic reaction rates at temperatures of 500 degrees to 600 degrees C

    PubMed

    Baxter; DePaolo

    2000-05-26

    High-temperature metamorphic reaction rates were measured using strontium isotopic ratios of garnet and whole rock from a field site near Simplon Pass, Switzerland. For metamorphic conditions of cooling from 612 degrees +/- 17 degrees C to 505 degrees +/- 15 degrees C at pressures up to 9.1 kilobars, the inferred bulk fluid-rock exchange rate is 1.3(-0.4)(+1.1) x 10(-7) grams of solid reacted per gram of solid per year, several orders of magnitude lower than laboratory-based estimates. The inferred reaction rate suggests that mineral chemistry may lag the evolving conditions in Earth's crust during mountain building. PMID:10827949

  19. Field measurement of slow metamorphic reaction rates at temperatures of 500 degrees to 600 degrees C

    PubMed

    Baxter; DePaolo

    2000-05-26

    High-temperature metamorphic reaction rates were measured using strontium isotopic ratios of garnet and whole rock from a field site near Simplon Pass, Switzerland. For metamorphic conditions of cooling from 612 degrees +/- 17 degrees C to 505 degrees +/- 15 degrees C at pressures up to 9.1 kilobars, the inferred bulk fluid-rock exchange rate is 1.3(-0.4)(+1.1) x 10(-7) grams of solid reacted per gram of solid per year, several orders of magnitude lower than laboratory-based estimates. The inferred reaction rate suggests that mineral chemistry may lag the evolving conditions in Earth's crust during mountain building.

  20. Venus volcanism: Rate estimates from laboratory studies of sulfur gas-solid reactions

    NASA Technical Reports Server (NTRS)

    Ehlers, K.; Fegley, B., Jr.; Prinn, R. G.

    1989-01-01

    Thermochemical reactions between sulfur-bearing gases in the atmosphere of Venus and calcium-, iron-, magnesium-, and sulfur-bearing minerals on the surface of Venus are an integral part of a hypothesized cycle of thermochemical and photochemical reactions responsible for the maintenance of the global sulfuric acid cloud cover on Venus. SO2 is continually removed from the Venus atmosphere by reaction with calcium bearing minerals on the planet's surface. The rate of volcanism required to balance SO2 depletion by reactions with calcium bearing minerals on the Venus surface can therefore be deduced from a knowledge of the relevant gas-solid reaction rates combined with reasonable assumptions about the sulfur content of the erupted material (gas + magma). A laboratory program was carried out to measure the rates of reaction between SO2 and possible crustal minerals on Venus. The reaction of CaCO3(calcite) + SO2 yields CaSO4 (anhydrite) + CO was studied. Brief results are given.

  1. Chemical Reaction Rate Coefficients from Ring Polymer Molecular Dynamics: Theory and Practical Applications

    DOE PAGES

    Suleimanov, Yury V.; Aoiz, F. Javier; Guo, Hua

    2016-11-03

    This Feature Article presents an overview of the current status of ring polymer molecular dynamics (RPMD) rate theory. We first analyze the RPMD approach and its connection to quantum transition-state theory. We then focus on its practical applications to prototypical chemical reactions in the gas phase, which demonstrate how accurate and reliable RPMD is for calculating thermal chemical reaction rate coefficients in multifarious cases. This review serves as an important checkpoint in RPMD rate theory development, which shows that RPMD is shifting from being just one of recent novel ideas to a well-established and validated alternative to conventional techniques formore » calculating thermal chemical rate coefficients. We also hope it will motivate further applications of RPMD to various chemical reactions.« less

  2. Rate Coefficient Measurements of the Reaction CH3+O2+CH3O+O

    NASA Technical Reports Server (NTRS)

    Hwang, S. M.; Ryu, Si-Ok; DeWitt, K. J.; Rabinowitz, M. J.

    1999-01-01

    Rate coefficients for the reaction CH3 + O2 = CH3O + O were measured behind reflected shock waves in a series of lean CH4-O2-Ar mixtures using hydroxyl and methyl radical diagnostics. The rate coefficients are well represented by an Arrhenius expression given as k = (1.60(sup +0.67, -0.47)) X 10(exp 13) exp(- 15813 +/- 587 K/T)cc/mol s. This expression, which is valid in the temperature range 1575-1822 K, supports the downward trend in the rate coefficients that has been reported in recent determinations. All measurements to date, including the present study, have been to some extent affected by secondary reactions. The complications due to secondary reactions, choice of thermochemical data, and shock-boundary layer interactions that affect the determination of the rate coefficients are examined.

  3. Rate Coefficient Measurements of the Reaction CH3 + O2 = CH3O + O

    NASA Technical Reports Server (NTRS)

    Hwang, S. M.; Ryu, Si-Ok; DeWitt, K. J.; Rabinowitz, M. J.

    1999-01-01

    Rate coefficients for the reaction CH3 + O2 = CH3O + O were measured behind reflected shock waves in a series of lean CH4-O2-Ar mixtures using hydroxyl and methyl radical diagnostics. The rate coefficients are well represented by an Arrhenius expression given as k = (1.60(sup +0.67, sub -0.47 ) x 10(exp 13) e(-15813 +/- 587 K/T)/cubic cm.mol.s. This expression, which is valid in the temperature range 1575-1822 K, supports the downward trend in the rate coefficients that has been reported in recent determinations. All measurements to date, including the present study, have been to some extent affected by secondary reactions. The complications due to secondary reactions, choice of thermochemical data, and shock-boundary layer interactions that affect the determination of the rate coefficients are examined.

  4. Rate of mixing controls rate and outcome of autocatalytic processes: theory and microfluidic experiments with chemical reactions and blood coagulation.

    PubMed

    Pompano, Rebecca R; Li, Hung-Wing; Ismagilov, Rustem F

    2008-08-01

    This article demonstrates that the rate of mixing can regulate the rate and outcome of both biological and nonbiological autocatalytic reaction systems that display a threshold response to the concentration of an activator. Plug-based microfluidics was used to control the timing of reactions, the rate of mixing, and surface chemistry in blood clotting and its chemical model. Initiation of clotting of human blood plasma required addition of a critical concentration of thrombin. Clotting could be prevented by rapid mixing when thrombin was added near the critical concentration, and mixing also affected the rate of clotting when thrombin was added at concentrations far above the critical concentration in two clinical clotting assays for human plasma. This phenomenon was modeled by a simple mechanism--local and global competition between the clotting reaction, which autocatalytically produces an activator, and mixing, which removes the activator. Numerical simulations showed that the Damköhler number, which describes this competition, predicts the effects of mixing. Many biological systems are controlled by thresholds, and these results shed light on the dynamics of these systems in the presence of spatial heterogeneities and provide simple guidelines for designing and interpreting experiments with such systems.

  5. Rate Constant Change of Photo Reaction of Bacteriorhodopsin Observed in Trimeric Molecular System.

    PubMed

    Tsujiuchi, Yutaka; Masumoto, Hiroshi; Goto, Takashi

    2016-04-01

    To elucidate the time evolution of photo reaction of bacteriorhodopsin in glycerol mixed purple membrane at around 196 K under irradiation by red light, a kinetic model was constructed. The change of absorption with irradiation at times of 560 nm and 412 nm was analyzed for the purpose of determining reaction rates of photo reaction of bacteriorhodopsin and its product M intermediate. In this study it is shown that reaction rates of conversion from bacteriorhodopsin to the M intermediate can be explained by a set of linear differential equations. This model analysis concludes that bacteriorhodopsin in which constitutes a trimer unit with other two bacteriorhodopsin molecules changes into M intermediates in the 1.73 of reaction rate, in the initial step, and according to the number of M intermediate in a trimer unit, from three to one, the reaction rate of bacteriorhodopsin into M intermediates smaller as 1.73, 0.80, 0.19 which caused by influence of inter-molecular interaction between bacteriorhodopsin.

  6. Rate Constant Change of Photo Reaction of Bacteriorhodopsin Observed in Trimeric Molecular System.

    PubMed

    Tsujiuchi, Yutaka; Masumoto, Hiroshi; Goto, Takashi

    2016-04-01

    To elucidate the time evolution of photo reaction of bacteriorhodopsin in glycerol mixed purple membrane at around 196 K under irradiation by red light, a kinetic model was constructed. The change of absorption with irradiation at times of 560 nm and 412 nm was analyzed for the purpose of determining reaction rates of photo reaction of bacteriorhodopsin and its product M intermediate. In this study it is shown that reaction rates of conversion from bacteriorhodopsin to the M intermediate can be explained by a set of linear differential equations. This model analysis concludes that bacteriorhodopsin in which constitutes a trimer unit with other two bacteriorhodopsin molecules changes into M intermediates in the 1.73 of reaction rate, in the initial step, and according to the number of M intermediate in a trimer unit, from three to one, the reaction rate of bacteriorhodopsin into M intermediates smaller as 1.73, 0.80, 0.19 which caused by influence of inter-molecular interaction between bacteriorhodopsin. PMID:27451646

  7. Reaction rate constants of H-abstraction by OH from large ketones: measurements and site-specific rate rules.

    PubMed

    Badra, Jihad; Elwardany, Ahmed E; Farooq, Aamir

    2014-06-28

    Reaction rate constants of the reaction of four large ketones with hydroxyl (OH) are investigated behind reflected shock waves using OH laser absorption. The studied ketones are isomers of hexanone and include 2-hexanone, 3-hexanone, 3-methyl-2-pentanone, and 4-methl-2-pentanone. Rate constants are measured under pseudo-first-order kinetics at temperatures ranging from 866 K to 1375 K and pressures near 1.5 atm. The reported high-temperature rate constant measurements are the first direct measurements for these ketones under combustion-relevant conditions. The effects of the position of the carbonyl group (C=O) and methyl (CH3) branching on the overall rate constant with OH are examined. Using previously published data, rate constant expressions covering, low-to-high temperatures, are developed for acetone, 2-butanone, 3-pentanone, and the hexanone isomers studied here. These Arrhenius expressions are used to devise rate rules for H-abstraction from various sites. Specifically, the current scheme is applied with good success to H-abstraction by OH from a series of n-ketones. Finally, general expressions for primary and secondary site-specific H-abstraction by OH from ketones are proposed as follows (the subscript numbers indicate the number of carbon atoms bonded to the next-nearest-neighbor carbon atom, the subscript CO indicates that the abstraction is from a site next to the carbonyl group (C=O), and the prime is used to differentiate different neighboring environments of a methylene group):

  8. Effective reaction rates in diffusion-limited phosphorylation-dephosphorylation cycles.

    PubMed

    Szymańska, Paulina; Kochańczyk, Marek; Miękisz, Jacek; Lipniacki, Tomasz

    2015-02-01

    We investigate the kinetics of the ubiquitous phosphorylation-dephosphorylation cycle on biological membranes by means of kinetic Monte Carlo simulations on the triangular lattice. We establish the dependence of effective macroscopic reaction rate coefficients as well as the steady-state phosphorylated substrate fraction on the diffusion coefficient and concentrations of opposing enzymes: kinases and phosphatases. In the limits of zero and infinite diffusion, the numerical results agree with analytical predictions; these two limits give the lower and the upper bound for the macroscopic rate coefficients, respectively. In the zero-diffusion limit, which is important in the analysis of dense systems, phosphorylation and dephosphorylation reactions can convert only these substrates which remain in contact with opposing enzymes. In the most studied regime of nonzero but small diffusion, a contribution linearly proportional to the diffusion coefficient appears in the reaction rate. In this regime, the presence of opposing enzymes creates inhomogeneities in the (de)phosphorylated substrate distributions: The spatial correlation function shows that enzymes are surrounded by clouds of converted substrates. This effect becomes important at low enzyme concentrations, substantially lowering effective reaction rates. Effective reaction rates decrease with decreasing diffusion and this dependence is more pronounced for the less-abundant enzyme. Consequently, the steady-state fraction of phosphorylated substrates can increase or decrease with diffusion, depending on relative concentrations of both enzymes. Additionally, steady states are controlled by molecular crowders which, mostly by lowering the effective diffusion of reactants, favor the more abundant enzyme.

  9. Dependence of X-Ray Burst Models on Nuclear Reaction Rates

    NASA Astrophysics Data System (ADS)

    Cyburt, R. H.; Amthor, A. M.; Heger, A.; Johnson, E.; Keek, L.; Meisel, Z.; Schatz, H.; Smith, K.

    2016-10-01

    X-ray bursts are thermonuclear flashes on the surface of accreting neutron stars, and reliable burst models are needed to interpret observations in terms of properties of the neutron star and the binary system. We investigate the dependence of X-ray burst models on uncertainties in (p, γ), (α, γ), and (α, p) nuclear reaction rates using fully self-consistent burst models that account for the feedbacks between changes in nuclear energy generation and changes in astrophysical conditions. A two-step approach first identified sensitive nuclear reaction rates in a single-zone model with ignition conditions chosen to match calculations with a state-of-the-art 1D multi-zone model based on the Kepler stellar evolution code. All relevant reaction rates on neutron-deficient isotopes up to mass 106 were individually varied by a factor of 100 up and down. Calculations of the 84 changes in reaction rate with the highest impact were then repeated in the 1D multi-zone model. We find a number of uncertain reaction rates that affect predictions of light curves and burst ashes significantly. The results provide insights into the nuclear processes that shape observables from X-ray bursts, and guidance for future nuclear physics work to reduce nuclear uncertainties in X-ray burst models.

  10. Effective reaction rates in diffusion-limited phosphorylation-dephosphorylation cycles

    NASA Astrophysics Data System (ADS)

    Szymańska, Paulina; Kochańczyk, Marek; Miekisz, Jacek; Lipniacki, Tomasz

    2015-02-01

    We investigate the kinetics of the ubiquitous phosphorylation-dephosphorylation cycle on biological membranes by means of kinetic Monte Carlo simulations on the triangular lattice. We establish the dependence of effective macroscopic reaction rate coefficients as well as the steady-state phosphorylated substrate fraction on the diffusion coefficient and concentrations of opposing enzymes: kinases and phosphatases. In the limits of zero and infinite diffusion, the numerical results agree with analytical predictions; these two limits give the lower and the upper bound for the macroscopic rate coefficients, respectively. In the zero-diffusion limit, which is important in the analysis of dense systems, phosphorylation and dephosphorylation reactions can convert only these substrates which remain in contact with opposing enzymes. In the most studied regime of nonzero but small diffusion, a contribution linearly proportional to the diffusion coefficient appears in the reaction rate. In this regime, the presence of opposing enzymes creates inhomogeneities in the (de)phosphorylated substrate distributions: The spatial correlation function shows that enzymes are surrounded by clouds of converted substrates. This effect becomes important at low enzyme concentrations, substantially lowering effective reaction rates. Effective reaction rates decrease with decreasing diffusion and this dependence is more pronounced for the less-abundant enzyme. Consequently, the steady-state fraction of phosphorylated substrates can increase or decrease with diffusion, depending on relative concentrations of both enzymes. Additionally, steady states are controlled by molecular crowders which, mostly by lowering the effective diffusion of reactants, favor the more abundant enzyme.

  11. A variable reaction rate model for chlorine decay in drinking water due to the reaction with dissolved organic matter.

    PubMed

    Hua, Pei; Vasyukova, Ekaterina; Uhl, Wolfgang

    2015-05-15

    A second order kinetic model for simulating chlorine decay in bulk water due to the reaction with dissolved organic matter (DOM) was developed. It takes into account the decreasing reactivity of dissolved organic matter using a variable reaction rate coefficient (VRRC) which decreases with an increasing conversion. The concentration of reducing species is surrogated by the maximum chlorine demand. Temperature dependency, respectively, is described by the Arrhenius-relationship. The accuracy and adequacy of the proposed model to describe chlorine decay in bulk water were evaluated and shown for very different waters and different conditions such as water mixing or rechlorination by applying statistical tests. It is thus very well suited for application in water quality modeling for distribution systems.

  12. Unbound states of (32)Cl andthe (31)S(p,gamma)(32)Cl reaction rate

    SciTech Connect

    Matos, M.; Blackmon, Jeff C; Linhardt, Laura; Bardayan, Daniel W; Nesaraja, Caroline D; Clark, Jason; Diebel, C.; O'Malley, Patrick; Parker, P.D.

    2011-01-01

    The {sup 31}S(p,{gamma}){sup 32}Cl reaction is expected to provide the dominant break-out path from the SiP cycle in novae and is important for understanding enrichments of sulfur observed in some nova ejecta. We studied the {sup 32}S(3He,t){sup 32}Cl charge-exchange reaction to determine properties of proton-unbound levels in {sup 32}Cl that have previously contributed significant uncertainties to the {sup 31}S(p,{gamma}){sup 32}Cl reaction rate. Measured triton magnetic rigidities were used to determine excitation energies in {sup 32}Cl. Proton-branching ratios were obtained by detecting decay protons from unbound {sup 32}Cl states in coincidence with tritons. An improved {sup 31}S(p,{gamma}){sup 32}Cl reaction rate was calculated including robust statistical and systematic uncertainties.

  13. Ab Initio Calculation of Rate Constants for Molecule-Surface Reactions with Chemical Accuracy.

    PubMed

    Piccini, GiovanniMaria; Alessio, Maristella; Sauer, Joachim

    2016-04-18

    The ab initio prediction of reaction rate constants for systems with hundreds of atoms with an accuracy that is comparable to experiment is a challenge for computational quantum chemistry. We present a divide-and-conquer strategy that departs from the potential energy surfaces obtained by standard density functional theory with inclusion of dispersion. The energies of the reactant and transition structures are refined by wavefunction-type calculations for the reaction site. Thermal effects and entropies are calculated from vibrational partition functions, and the anharmonic frequencies are calculated separately for each vibrational mode. This method is applied to a key reaction of an industrially relevant catalytic process, the methylation of small alkenes over zeolites. The calculated reaction rate constants (free energies), pre-exponential factors (entropies), and enthalpy barriers show that our computational strategy yields results that agree with experiment within chemical accuracy limits (less than one order of magnitude).

  14. The rate of the reaction between CN and C2H2 at interstellar temperatures

    NASA Technical Reports Server (NTRS)

    Woon, D. E.; Herbst, E.

    1997-01-01

    The rate coefficient for the important interstellar reaction between CN and C2H2 has been calculated as a function of temperature between 10 and 300 K. The potential surface for this reaction has been determined through ab initio quantum chemical techniques; the potential exhibits no barrier in the entrance channel but does show a small exit channel barrier, which lies below the energy of reactants. Phase-space calculations for the reaction dynamics, which take the exit channel barrier into account, show the same unusual temperature dependence as determined by experiment, in which the rate coefficient at first increases as the temperature is reduced below room temperature and then starts to decrease as the temperature drops below 50-100 K. The agreement between theory and experiment provides strong confirmation that the reaction occurs appreciably at cool interstellar temperatures.

  15. Ab Initio Calculation of Rate Constants for Molecule–Surface Reactions with Chemical Accuracy

    PubMed Central

    Piccini, GiovanniMaria; Alessio, Maristella

    2016-01-01

    Abstract The ab initio prediction of reaction rate constants for systems with hundreds of atoms with an accuracy that is comparable to experiment is a challenge for computational quantum chemistry. We present a divide‐and‐conquer strategy that departs from the potential energy surfaces obtained by standard density functional theory with inclusion of dispersion. The energies of the reactant and transition structures are refined by wavefunction‐type calculations for the reaction site. Thermal effects and entropies are calculated from vibrational partition functions, and the anharmonic frequencies are calculated separately for each vibrational mode. This method is applied to a key reaction of an industrially relevant catalytic process, the methylation of small alkenes over zeolites. The calculated reaction rate constants (free energies), pre‐exponential factors (entropies), and enthalpy barriers show that our computational strategy yields results that agree with experiment within chemical accuracy limits (less than one order of magnitude). PMID:27008460

  16. Development of a group contribution method to predict aqueous phase hydroxyl radical (HO*) reaction rate constants.

    PubMed

    Minakata, Daisuke; Li, Ke; Westerhoff, Paul; Crittenden, John

    2009-08-15

    The hydroxyl radical (HO*) is a strong oxidant that reacts with electron-rich sites of organic compounds and initiates complex chain mechanisms. In order to help understand the reaction mechanisms, a rule-based model was previously developed to predict the reaction pathways. For a kinetic model, there is a need to develop a rate constant estimator that predicts the rate constants for a variety of organic compounds. In this study, a group contribution method (GCM) is developed to predict the aqueous phase HO* rate constants for the following reaction mechanisms: (1) H-atom abstraction, (2) HO* addition to alkenes, (3) HO* addition to aromatic compounds, and (4) HO* interaction with sulfur (S)-, nitrogen (N)-, or phosphorus (P)-atom-containing compounds. The GCM hypothesizes that an observed experimental rate constant for a given organic compound is the combined rate of all elementary reactions involving HO*, which can be estimated using the Arrhenius activation energy, E(a), and temperature. Each E(a) for those elementary reactions can be comprised of two parts: (1) a base part that includes a reactive bond in each reaction mechanism and (2) contributions from its neighboring functional groups. The GCM includes 66 group rate constants and 80 group contribution factors, which characterize each HO* reaction mechanism with steric effects of the chemical structure groups and impacts of the neighboring functional groups, respectively. Literature-reported experimental HO* rate constants for 310 and 124 compounds were used for calibration and prediction, respectively. The genetic algorithms were used to determine the group rate constants and group contribution factors. The group contribution factors for H-atom abstraction and HO* addition to the aromatic compounds were found to linearly correlate with the Taft constants, sigma*, and electrophilic substituent parameters, sigma+, respectively. The best calibrations for 83% (257 rate constants) and predictions for 62% (77

  17. Depletion: A Game with Natural Rules for Teaching Reaction Rate Theory

    NASA Astrophysics Data System (ADS)

    Olbris, Donald J.; Herzfeld, Judith

    2002-10-01

    Depletion is a game that reinforces central concepts of reaction rate theory through simulation. Each player buys chemicals and guides them through a series of reactions, thereby earning money to buy more chemicals. The reactions occur when players roll a high enough value on two dice to overcome an activation barrier. The reactions may be accelerated by buying heat (which allows the player to roll three dice instead of two) or catalysts (which lower the activation barrier). The value of acceleration derives from the increasing price of fresh chemicals as resources are depleted and waste products accumulate. The player who nets the most money wins the game. The details of the game are presented, with a set of follow-up questions suitable for either a quiz or discussion. Student reaction to the game is also described.

  18. Generalization of the Activated Complex Theory of Reaction Rates. I. Quantum Mechanical Treatment

    DOE R&D Accomplishments Database

    Marcus, R. A.

    1964-01-01

    In its usual form activated complex theory assumes a quasi-equilibrium between reactants and activated complex, a separable reaction coordinate, a Cartesian reaction coordinate, and an absence of interaction of rotation with internal motion in the complex. In the present paper a rate expression is derived without introducing the Cartesian assumption. The expression bears a formal resemblance to the usual one and reduces to it when the added assumptions of the latter are introduced.

  19. Systematic analysis of astrophysical S-factors and thermonuclear reaction rates

    SciTech Connect

    Katsuma, M.

    2008-05-12

    The astrophysical S-factors of the {sup 13}C({alpha},n){sup 16}O, {sup 17}O({alpha},n){sup 20}Ne, {sup 21}Ne({alpha},n){sup 24}Mg and {sup 25}Mg({alpha},n){sup 28}Si reactions are analyzed with DWBA. The gross structures of the experimental data are reproduced by the DWBA calculations. The resulting reaction rates are compared with those in the CF88 and NACRE compilations.

  20. Kinetics of the benzyl + O(3P) reaction: a quantum chemical/statistical reaction rate theory study.

    PubMed

    da Silva, Gabriel; Bozzelli, Joseph W

    2012-12-14

    The resonance stabilized benzyl radical is an important intermediate in the combustion of aromatic hydrocarbons and in polycyclic aromatic hydrocarbon (PAH) formation in flames. Despite being a free radical, benzyl is relatively stable in thermal, oxidizing environments, and is predominantly removed through bimolecular reactions with open-shell species other than O(2). In this study the reaction of benzyl with ground-state atomic oxygen, O((3)P), is examined using quantum chemistry and statistical reaction rate theory. C(7)H(7)O energy surfaces are generated at the G3SX level, and include several novel pathways. Transition state theory is used to describe elementary reaction kinetics, with canonical variational transition state theory applied for barrierless O atom association with benzyl. Apparent rate constants and branching ratios to different product sets are obtained as a function of temperature and pressure from solving the time-dependent master equation, with RRKM theory for microcanonical k(E). These simulations indicate that the benzyl + O reaction predominantly forms the phenyl radical (C(6)H(5)) plus formaldehyde (HCHO), with lesser quantities of the C(7)H(6)O products benzaldehyde, ortho-quinone methide, and para-quinone methide (+H), along with minor amounts of the formyl radical (HCO) + benzene. Addition of O((3)P) to the methylene site in benzyl produces a highly vibrationally excited C(7)H(7)O* adduct, the benzoxyl radical, which can β-scission to benzaldehyde + H and phenyl + HCHO. In order to account for the experimental observation of benzene as the major reaction product, a roaming radical mechanism is proposed that converts the nascent products phenyl and HCHO to benzene + HCO. Oxygen atom addition at the ortho and para ring sites in benzyl, which has not been previously considered, is shown to lead to the quinone methides + H; these species are less-stable isomers of benzaldehyde that are proposed as important combustion intermediates, but

  1. NUCLEAR PHYSICS: Determination of the stellar reaction rate for 12C(α, γ)16O: using a new expression with the reaction mechanism

    NASA Astrophysics Data System (ADS)

    Xu, Yi; Xu, Wang; Ma, Yu-Gang; Cai, Xiang-Zhou; Chen, Jin-Gen; Fan, Gong-Tao; Fan, Guang-Wei; Guo, Wei; Luo, Wen; Pan, Qiang-Yan; Shen, Wen-Qing; Yang, Li-Feng

    2009-04-01

    The astrophysical reaction rate of 12C(α, γ)16O plays a key role in massive star evolution. However, this reaction rate and its uncertainties have not been well determined yet, especially at T9 = 0.2. The existing results even disagree with each other to a certain extent. In this paper, the E1, E2 and total (E1+E2) 12C(α, γ)16O reaction rates are calculated in the temperature range from T9 = 0.3 to 2 according to all the available cross section data. A new analytic expression of the 12C(α, γ)16O reaction rate is brought forward based on the reaction mechanism. In this expression, each part embodies the underlying physics of the reaction. Unlike previous works, some physical parameters are chosen from experimental results directly, instead of all the parameters obtained from fitting. These parameters in the new expression, with their 3σ fit errors, are obtained from fit to our calculated reaction rate from T9 = 0.3 to 2. Using the fit results, the analytic expression of 12C(α, γ)16O reaction rate is extrapolated down to T9 = 0.05 based on the underlying physics. The 12C(α, γ)16O reaction rate at T9 = 0.2 is (8.78 ± 1.52) × 1015 cm's-1 mol-1. Some comparisons and discussions about our new 12C(α, γ)16O reaction rate are presented, and the contributions of the reaction rate correspond to the different part of reaction mechanism are given. The agreements of the reaction rate below T9 = 2 between our results and previous works indicate that our results are reliable, and they could be included in the astrophysical reaction rate network. Furthermore, we believe our method to investigate the 12C(α, γ)16O reaction rate is reasonable, and this method can also be employed to study the reaction rate of other astrophysical reactions. Finally, a new constraint of the supernovae production factor of some isotopes are illustrated according to our 12C(α, γ)16O reaction rates.

  2. Correlation analysis of the progesterone-induced sperm acrosome reaction rate and the fertilisation rate in vitro.

    PubMed

    Jiang, T; Qin, Y; Ye, T; Wang, Y; Pan, J; Zhu, Y; Duan, L; Li, K; Teng, X

    2015-10-01

    In this study, we aimed to investigate whether progesterone-induced acrosome reaction (AR) rate could be an indicator for fertilisation rate in vitro. Twenty-six couples with unexplained infertility and undergoing in vitro fertilisation (IVF) treatment were involved. On the oocytes retrieval day after routine IVF, residual sperm samples were collected to receive progesterone induction (progesterone group) or not (control group). AR rate was calculated and fertilisation rate was recorded. The correlation between progesterone-induced AR and fertilisation rate and between sperm normal morphology and 3PN (tripronuclear) were analysed using the Spearman correlation analysis. The AR rate of progesterone group was statistically higher than that of the control group (15.6 ± 5.88% versus 9.66 ± 5.771%, P < 0.05), but not significantly correlated with fertilisation rate (r = -0.053, P > 0.01) or rate of high-quality embryo development (r = -0.055, P > 0.01). Normal sperm morphology also showed no significant correlation with the amount of 3PN zygotes (r = 0.029, P > 0.01), rate of 3PN zygotes production (r = 0.20, P > 0.01), rate of 3PN embryo development (r = -0.406, P > 0.01), fertilisation rate (r = -0.148, P > 0.01) or progesterone-induced AR rate (r = 0.214, P > 0.01). Progesterone can induce AR in vitro significantly; however, the progesterone-induced AR may not be used to indicate fertilisation rate.

  3. Unified equation for access to rate constants of first-order reactions in dynamic and on-column reaction chromatography.

    PubMed

    Trapp, O

    2006-01-01

    A unified equation to evaluate elution profiles of reversible as well as irreversible (pseudo-) first-order reactions in dynamic chromatography and on-column reaction chromatography has been derived. Rate constants k1 and k(-1) and Gibbs activation energies are directly obtained from the chromatographic parameters (retention times tR(A) and tR(B) of the interconverting or reacting species A and B, the peak widths at half-height wA and wB, and the relative plateau height h(p)), the initial amounts A0 and B0 of the reacting species, and the equilibrium constant K(A/B). The calculation of rate constants requires only a few iterative steps without the need of performing a computationally extensive simulation of elution profiles. The unified equation was validated by comparison with a data set of 125,000 simulated elution profiles to confirm the quality of this equation by statistical means and to predict the minimal experimental requirements. Surprisingly, the recovery rate from a defined data set is on average 35% higher using the unified equation compared to the evaluation by iterative computer simulation.

  4. An investigation of the reaction kinetics of luciferase and the effect of ionizing radiation on the reaction rate.

    PubMed

    Berovic, Nikolas; Parker, David J; Smith, Michael D

    2009-04-01

    The bioluminescence produced by luciferase, a firefly enzyme, requires three substrates: luciferin, ATP and oxygen. We find that ionizing radiation, in the form of a proton beam from a cyclotron, will eliminate dissolved oxygen prior to any damage to other substrates or to the protein. The dose constant for removal of oxygen is 70 +/- 20 Gy, a much smaller dose than required to cause damage to protein. Removal of oxygen, which is initially in excess, leads to a sigmoidal response of bioluminescence to radiation dose, consistent with a Michaelis-Menten relationship to substrate concentration. When excess oxygen is exhausted, the response becomes exponential. Following the irradiation, bioluminescence recovers due to a slow leak of oxygen into the solution. This may also explain previous observations on the response of bioluminescent bacteria to radiation. We have studied the dependence of the reaction rate on enzyme and substrate concentration and propose a model for the reaction pathway consistent with this data. The light output from unirradiated samples decreases significantly with time due to product inhibition. We observe that this inhibition rate changes dramatically immediately after a sample is exposed to the beam. This sudden change of the inhibition rate is unexplained but shows that enzyme regulatory function responds to ionizing radiation at a dose level less than 0.6 Gy.

  5. Exploiting time-resolved magnetic field effects for determining radical ion reaction rates

    NASA Astrophysics Data System (ADS)

    Bessmertnykh, A. O.; Borovkov, V. I.; Bagryansky, V. A.; Molin, Yu N.

    2016-07-01

    The capabilities of the method of time-resolved magnetic field effect in determining the rates of charge transfer reactions between radical ions and molecules on a nanosecond time scale have been investigated. The approach relies on the electron spin coherence in radical pair's partners generated by ionizing radiation. The spin evolution of the pair is sensitive to the reaction since the latter results in changing magnetic interactions of the unpaired electron. This process can be monitored by magnetic-field-sensitive fluorescence from an irradiated sample that is illustrated using reactions involving alkane radical cations. The accuracy and limitations of the approach are discussed.

  6. Considerations Based on Reaction Rate on Char Gasification Behavior in Two-stage Gasifier for Biomass

    NASA Astrophysics Data System (ADS)

    Taniguchi, Miki; Nishiyama, Akio; Sasauchi, Kenichi; Ito, Yusuke; Akamatsu, Fumiteru

    In order to develop a small-scale gasifier in which biomass can be converted to energy with high efficiency, we planned a gasification process that consists of two parts: pyrolysis part (rotary kiln) and gasification part (downdraft gasifier). We performed fundamental experiments on gasification part and discussed the appropriate conditions such as air supply location, air ratio, air temperature and hearth load. We considered the results by calculating reaction rates of representative reactions on char gasification part and found that water gas reaction is dominant in the reduction area and its behavior gives important information to decide the adequate length of the char layer.

  7. Rate constants for chemical reactions in high-temperature nonequilibrium air

    NASA Technical Reports Server (NTRS)

    Jaffe, R. L.

    1986-01-01

    In the nonequilibrium atmospheric chemistry regime that will be encountered by the proposed Aeroassisted Orbital Transfer Vehicle in the upper atmosphere, where air density is too low for thermal and chemical equilibrium to be maintained, the detailed high temperature air chemistry plays a critical role in defining radiative and convective heating loads. Although vibrational and electronic temperatures remain low (less than 15,000 K), rotational and translational temperatures may reach 50,000 K. Attention is presently given to the effects of multiple temperatures on the magnitudes of various chemical reaction rate constants, for the cases of both bimolecular exchange reactions and collisional excitation and dissociation reactions.

  8. A simple recipe for modeling reaction-rate in flows with turbulent-combustion

    NASA Technical Reports Server (NTRS)

    Girimaji, Sharath S.

    1991-01-01

    A computationally viable scheme to account for chemical reaction in turbulent flows is presented. The multivariate beta-pdf model for multiple scalar mixing forms the basis of this scheme. Using the model scalar joint pdf and a general form of the instantaneous reaction-rate, the unclosed chemical reaction terms are expressed as simple functions of scalar means and the turbulent scalar energy. The calculation procedure requires that the mean scalar equations and only one other transport equation - for the turbulent scalar energy - be solved.

  9. Reaction Rates for the Formation of Deuterium Tritide from Deuterium and Tritium

    SciTech Connect

    McConville, G. T.; Menke, D. A.; Ellefson, R. E.

    1985-04-01

    The rates of formation of DT in a mixture of D2 and T2 have been measured as a function of initial T2 concentration, pressure, temperature,and methane concentration in a stainless steel reaction container which had been treated to inhibit protium ingrowth. An attempt has been made to explain the experimental resuts on the basis of ion-molecule chain reactions. Some of the observations are consistent with a gas-phase ion, ground-state molecule reaction, but some of the more interesting observations require more complicated models. The addition of excited state molecules or heterogeneous catalytic effects are possibilities that will need further experiments for confirmation.

  10. Mineral/solution reaction rates in a mixed flow reactor: Wollastonite hydrolysis

    NASA Astrophysics Data System (ADS)

    Rimstidt, J. Donald; Dove, Patricia M.

    1986-11-01

    A newly developed mixed flow reactor was used to measure the rate of hydrolysis of wollastonite over the pH range of 3 to 8. This design avoids abrasion of the solid sample by confining it within a nylon mesh while the reacting solution is circulated over it by a stirrer. The rate of reaction was determined from the difference of the compositions of the input and output solutions following the methods used by chemical engineers for the analysis of mixed flow reactors, also called continuously stirred tank reactors (CSTR). This apparatus, constructed from easily obtainable parts, avoids many of the problems inherent in studying mineral/solution reaction kinetics in batch reactors. The hydrolysis of wollastonite CaSiO3 + 2 H+ + H2O = Ca2+ + H4SiO4 can be fit to a rate law of the form: dnH+/ dt = kadKH+mH+/(1.0 + KH+mH+) where kad = 9.80 × 10 -8molm-2sec-1 and KH+ = 2.08 × 10 5. Over the pH range of 4 to 7, the data also may fit a simple linear form: dnH+/ dt = - Ak+( aH+) 0.40 where k+ = 3.80 × 10 -6 sec -1 at 25°C. The presence of calcium ion in the solution at concentrations up to 1.0 mol kg -1 produces only a minor reduction of the reaction rate. The activation energy for this reaction is 79.2 kJ mol -1. Examination of the surfaces of the reacted grains showed no evidence of incongruent reaction leading to a product layer but did show the extensive development of etch pits leading to a rapid increase in the specific surface area. At large extents of reaction at low pH, diffusion of ions into or from these deep etch pits may limit the reaction rate.

  11. Determination of the rate constant of hydroperoxyl radical reaction with phenol

    NASA Astrophysics Data System (ADS)

    Kozmér, Zsuzsanna; Arany, Eszter; Alapi, Tünde; Takács, Erzsébet; Wojnárovits, László; Dombi, András

    2014-09-01

    The rate constant of HO2rad reaction with phenol (kHO2rad +phenol) was investigated. The primary radical set produced in water γ radiolysis (rad OH, eaq- and Hrad ) was transformed to HO2rad /O2rad - by using dissolved oxygen and formate anion (in the form of either formic acid or sodium formate). The concentration ratio of HO2rad /O2rad - was affected by the pH value of the solution: under acidic conditions (using HCOOH) almost all radicals were converted to HO2rad , while under alkaline conditions (using HCOONa) to O2rad -. The degradation rate of phenol was significantly higher using HCOOH. From the ratio of reaction rates under the two reaction conditions kHO2rad +phenol was estimated to be (2.7±1.2)×103 L mol-1 s-1.

  12. Calculations on the rate of the ion-molecule reaction between NH3(+) and H2

    NASA Technical Reports Server (NTRS)

    Herbst, Eric; Defrees, D. J.; Talbi, D.; Pauzat, F.; Koch, W.

    1991-01-01

    The rate coefficient for the ion-molecule reaction NH3(+) + H2 yields NH4(+) + H has been calculated as a function of temperature with the use of the statistical phase space approach. The potential surface and reaction complex and transition state parameters used in the calculation have been taken from ab initio quantum chemical calculations. The calculated rate coefficient has been found to mimic the unusual temperature dependence measured in the laboratory, in which the rate coefficient decreases with decreasing temperature until 50-100 K and then increases at still lower temperatures. Quantitative agreement between experimental and theoretical rate coefficients is satisfactory given the uncertainties in the ab initio results and in the dynamics calculations. The rate coefficient for the unusual three-body process NH3(+) + H2 + He yields NH4(+) + H + He has also been calculated as a function of temperature and the result found to agree well with a previous laboratory determination.

  13. Ab-Initio Based Computation of Rate Constants for Spin Forbidden Metalloprotein-Substrate Reactions

    NASA Astrophysics Data System (ADS)

    Ozkanlar, Abdullah; Rodriguez, Jorge H.

    2007-03-01

    Some chemical and biochemical reactions are non-adiabatic processes whereby the total spin angular momentum, before and after the reaction, is not conserved. These are named spin- forbidden reactions. The application of ab-initio methods, such as spin density functional theory (SDFT), to the prediction of rate constants is a challenging task of fundamental and practical importance. We apply non-adiabatic transition state theory (NA-TST) in conjuntion with SDFT to predict the rate constant of the spin- forbidden recombination of carbon monoxide with iron tetracarbonyl. To model the surface hopping probability between singlet and triplet states, the Landau-Zener formalism is used. The lowest energy point for singlet-triplet crossing, known as minimum energy crossing point (MECP), was located and used to compute, in a semi-quantum approach, reaction rate constants at 300 K. The predicted rates are in very good agreement with experiment. In addition, we present results for the spin- forbidden ligand binding reactions of iron-containing heme proteins such as myoglobin.

  14. Impact of strange quark matter nuggets on pycnonuclear reaction rates in the crusts of neutron stars

    SciTech Connect

    Golf, B.; Hellmers, J.; Weber, F.

    2009-07-15

    This article presents an investigation into the pycnonuclear reaction rates in dense crustal matter of neutron stars contaminated with strange quark matter nuggets. The presence of such nuggets in the crustal matter of neutron stars would be a natural consequence if Witten's strange quark matter hypothesis is correct. The methodology presented in this article is a recreation of a recent representation of nuclear force interactions embedded within pycnonuclear reaction processes. The study then extends the methodology to incorporate distinctive theoretical characteristics of strange quark matter nuggets, like their low charge-per-baryon ratio, and then assesses their effects on the pycnonuclear reaction rates. Particular emphasis is put on the impact of color superconductivity on the reaction rates. Depending on whether quark nuggets are in this novel state of matter, their electric charge properties vary drastically, which turns out to have a dramatic effect on the pycnonuclear reaction rates. Future nuclear fusion network calculations may thus have the potential to shed light on the existence of strange quark matter nuggets and on whether they are in a color superconducting state, as suggested by QCD.

  15. Triple-alpha reaction rate studied with the Faddeev three-body formalism

    NASA Astrophysics Data System (ADS)

    Ishikawa, Souichi

    2012-11-01

    The triple-alpha (3α) reaction, 4He+4He+4He-->12C+γ, which plays a significant role in the stellar evolution scenarios, is studied in terms of a three-alpha (3-α) model. The reaction rate of the process is calculated via an inverse process, 3-α photodisintegration of a 12C nucleus. Both of 3-α bound and-continuum states are calculated by a Faddeev method with accommodating the long range Coulomb interaction. With being adjusted to the empirical E2-strength for 12C(02+)-->12C(21+) transition, results of the 3α reaction rate <ααα> at higher temperature (T > 108 K), where the reaction proceeds mainly through the 8Be and 12C(02+) resonant states, almost agree with those of the Nuclear Astrophysics Compilation of Reaction Rates (NACRE). On the other hand, calculated values of <ααα> are about 103 times larger than the NACRE rate at a low temperature (T = 107 K), which means our results are remarkably smaller than recent CDCC results.

  16. Triple-alpha reaction rate studied with the Faddeev three-body formalism

    SciTech Connect

    Ishikawa, Souichi

    2012-11-12

    The triple-alpha (3{alpha}) reaction, {sup 4}He+{sup 4}He+{sup 4}He{yields}{sup 12}C+{gamma}, which plays a significant role in the stellar evolution scenarios, is studied in terms of a three-alpha (3-{alpha}) model. The reaction rate of the process is calculated via an inverse process, 3-{alpha} photodisintegration of a {sup 12}C nucleus. Both of 3-{alpha} bound and-continuum states are calculated by a Faddeev method with accommodating the long range Coulomb interaction. With being adjusted to the empirical E2-strength for {sup 12}C(0{sub 2}{sup +}){yields}{sup 12}C(2{sub 1}{sup +}) transition, results of the 3{alpha} reaction rate <{alpha}{alpha}{alpha}> at higher temperature (T > 10{sup 8} K), where the reaction proceeds mainly through the {sup 8}Be and {sup 12}C(0{sub 2}{sup +}) resonant states, almost agree with those of the Nuclear Astrophysics Compilation of Reaction Rates (NACRE). On the other hand, calculated values of <{alpha}{alpha}{alpha}> are about 10{sup 3} times larger than the NACRE rate at a low temperature (T= 10{sup 7} K), which means our results are remarkably smaller than recent CDCC results.

  17. Eosinophil count - absolute

    MedlinePlus

    Eosinophils; Absolute eosinophil count ... the white blood cell count to give the absolute eosinophil count. ... than 500 cells per microliter (cells/mcL). Normal value ranges may vary slightly among different laboratories. Talk ...

  18. Reaction rate constant of HO2+O3 measured by detecting HO2 from photofragment fluorescence

    NASA Technical Reports Server (NTRS)

    Manzanares, E. R.; Suto, Masako; Lee, Long C.; Coffey, Dewitt, Jr.

    1986-01-01

    A room-temperature discharge-flow system investigation of the rate constant for the reaction 'HO2 + O3 yields OH + 2O2' has detected HO2 through the OH(A-X) fluorescence produced by photodissociative excitation of HO2 at 147 nm. A reaction rate constant of 1.9 + or - 0.3 x 10 to the -15th cu cm/molecule per sec is obtained from first-order decay of HO2 in excess O3; this agrees well with published data.

  19. Direct use of the mass output of a thermobalance for controlling the reaction rate of solid-state reactions

    NASA Astrophysics Data System (ADS)

    Diánez, M. J.; Pérez Maqueda, L. A.; Criado, J. M.

    2004-08-01

    Sample controlled thermal analysis equipment has been developed constituted by an electrobalance in which the mass output (TG signal) is directly used for monitoring the temperature of thermal decomposition reactions under constant rate thermal analysis (CRTA) or stepwise isothermal analysis (SIA) control. The sample weight is programmed to follow a preset linear decrease as a function of the time by means of a conventional controller, that at the time control a second conventional temperature programmer. The CRTA control is achieved by controlling the temperature is such a way that if the mass input is higher than the setpoint, the temperature increases at a predefined heating rate; while if the mass input is lower than the setpoint, the temperature decreases at a predefined cooling rate. The SIA control is achieved by selecting the run-hold command from the menu of the digital input of the temperature programmer. In such a case, the programmed linear heating schedule is in progress while the sample weight is higher than the setpoint and an isothermal dwell is maintained as soon as the weight becomes lower than the setpoint. The direct use of the mass output for the control provides a higher sensitivity for selecting very low values of constant reaction rates than the more conventional methods using the DTG output as control parameter. The thermal degradation of polyvinye chloride (PVC) has been used for checking the behavior of the equipment here developed, showing that the dehydrochlorination of PVC is controlled either by a nucleation and growth of nuclei or by a random scission of the main chain of the polymer.

  20. Assessing hydrodynamic effects on jarosite dissolution rates, reaction products, and preservation on Mars

    NASA Astrophysics Data System (ADS)

    Dixon, Emily M.; Elwood Madden, Andrew S.; Hausrath, Elisabeth M.; Elwood Madden, Megan E.

    2015-04-01

    Jarosite flow-through dissolution experiments were conducted in ultrapure water (UPW), pH 2 sulfuric acid, and saturated NaCl and CaCl2 brines at 295-298 K to investigate how hydrologic variables may affect jarosite preservation and reaction products on Mars. K+-based dissolution rates in flowing UPW did not vary significantly with flow rate, indicating that mineral surface reactions control dissolution rates over the range of flow rates investigated. In all of the solutions tested, hydrologic variables do not significantly affect extent of jarosite alteration; therefore, jarosite is equally likely to be preserved in flowing or stagnant waters on Mars. However, increasing flow rate did affect the mineralogy and accumulation of secondary reaction products. Iron release rates in dilute solutions increased as the flow rate increased, likely due to nanoscale iron (hydr)oxide transport in flowing water. Anhydrite formed in CaCl2 brine flow-through experiments despite low temperatures, while metastable gypsum and bassanite were observed in batch experiments. Therefore, observations of the hydration state of calcium sulfate minerals on Mars may provide clues to unravel past salinity and hydrologic conditions as well as temperatures and vapor pressures.

  1. Evaluation of reaction rates in streambed sediments with seepage flow: a novel code

    NASA Astrophysics Data System (ADS)

    Boano, Fulvio; De Falco, Natalie; Arnon, Shai

    2015-04-01

    Streambed interfaces represent hotspots for nutrient transformations because they host different microbial species which perform many heterotrophic and autotrophic reactions. The evaluation of these reaction rates is crucial to assess the fate of nutrients in riverine environments, and it is often performed through the analysis of concentrations from water samples collected along vertical profiles. The most commonly employed evaluation tool is the Profile code developed by Berg et al. (1998), which determines reaction rates by fitting observed concentrations to a diffusion-reaction equation that neglects the presence of water flow within sediments. However, hyporheic flow is extremely common in streambeds, where solute transport is often controlled by advection rather than diffusion. There is hence a pressing need to develop new methods that can be applied even to advection-dominated sediments. This contribution fills this gap by presenting a novel approach that extends the method proposed by Berg et al. (1998). This new approach includes the influence of vertical solute transport by upwelling or downwelling water, and it is this suited to the typical flow conditions of stream sediments. The code is applied to vertical profiles of dissolved oxygen from a laboratory flume designed to mimic the complex flow conditions of real streams. The results show that it is fundamental to consider water flow to obtain reliable estimates of reaction rates in streambeds. Berg, P., N. Risgaard-Petersen, and S. Rysgaard, 1998, Interpretation of measured concentration profiles in the sediment porewater, Limnology and Oceanography, 43:1500-1510.

  2. Rate constant calculations of H-atom abstraction reactions from ethers by HȮ2 radicals.

    PubMed

    Mendes, Jorge; Zhou, Chong-Wen; Curran, Henry J

    2014-02-27

    In this work, we detail hydrogen atom abstraction reactions from six ethers by the hydroperoxyl radical, including dimethyl ether, ethyl methyl ether, propyl methyl ether, isopropyl methyl ether, butyl methyl ether, and isobutyl methyl ether, in order to test the effect of the functional group on the rate constant calculations. The Møller-Plesset (MP2) method with the 6-311G(d,p) basis set has been employed in the geometry optimizations and frequency calculations of all of the species involved in the above reaction systems. The connections between each transition state and the corresponding local minima have been determined by intrinsic reaction coordinate calculations. Energies are reported at the CCSD(T)/cc-pVTZ level of theory and include the zero-point energy corrections. As a benchmark in the electronic energy calculations, the CCSD(T)/CBS extrapolation was used for the reactions of dimethyl ether + HȮ2 radicals. A systematic calculation of the high-pressure limit rate constants has been performed using conventional transition-state theory, including asymmetric Eckart tunneling corrections, in the temperature range of 500-2000 K. The one dimensional hindrance potentials obtained at MP2/6-311G(d,p) for the reactants and transition states have been used to describe the low frequency torsional modes. Herein, we report the calculated individual, average, and total rate constants. A branching ratio analysis for every reaction site has also been performed. PMID:24483837

  3. Modeling of atmospheric OH reaction rates using newly developed variable distance weighted zero order connectivity index

    NASA Astrophysics Data System (ADS)

    Markelj, Jernej; Pompe, Matevž

    2016-04-01

    A new variable distance weighted zero order connectivity index was used for development of structure-activity relationship for modeling reactivity of OH radical with alkanes and non-conjugated alkenes in the atmosphere. The proposed model is based on the assumptions that the total reaction rate can be obtained by summing all partial reaction rates and that all reaction sites are interrelated by influencing each other. The results suggest that these assumptions are justified. The model was compared with the EPA implemented model in the studied application domain and showed superior prediction capabilities. Further, optimized values of the weights that were used in our model permit some insight into mechanisms that govern the reaction OH + alkane/alkene. The most important conclusion is that the branching degree of the forming radical seems to play a major role in site specific reaction rates. Relative qualitative structural interpretation is possible, e.g. allylic site is suggested to be much more reactive than even tertiary sp3 carbon. Novel modeling software MACI, which was developed in our lab and is now available for research purposes, was used for calculations. Various variable topological indices that are again starting to be recognized because of their great potentials in simplicity, fast calculations, very good correlations and structural information, were implemented in the program.

  4. Scale-Dependent Rates of Uranyl Surface Complexation Reaction in Sediments

    SciTech Connect

    Liu, Chongxuan; Shang, Jianying; Kerisit, Sebastien N.; Zachara, John M.; Zhu, Weihuang

    2013-03-15

    Scale-dependency of uranyl[U(VI)] surface complexation rates was investigated in stirred flow-cell and column systems using a U(VI)-contaminated sediment from the US Department of Energy, Hanford site, WA. The experimental results were used to estimate the apparent rate of U(VI) surface complexation at the grain-scale and in porous media. Numerical simulations using molecular, pore-scale, and continuum models were performed to provide insights into and to estimate the rate constants of U(VI) surface complexation at the different scales. The results showed that the grain-scale rate constant of U(VI) surface complexation was over 3 to 10 orders of magnitude smaller, dependent on the temporal scale, than the rate constant calculated using the molecular simulations. The grain-scale rate was faster initially and slower with time, showing the temporal scale-dependency. The largest rate constant at the grain-scale decreased additional 2 orders of magnitude when the rate was scaled to the porous media in the column. The scaling effect from the grain-scale to the porous media became less important for the slower sorption sites. Pore-scale simulations revealed the importance of coupled mass transport and reactions in both intragranular and inter-granular domains, which caused both spatial and temporal dependence of U(VI) surface complexation rates in the sediment. Pore-scale simulations also revealed a new rate-limiting mechanism in the intragranular porous domains that the rate of coupled diffusion and surface complexation reaction was slower than either process alone. The results provided important implications for developing models to scale geochemical/biogeochemical reactions.

  5. Pore and Continuum Scale Study of the Effect of Subgrid Transport Heterogeneity on Redox Reaction Rates

    SciTech Connect

    Liu, Yuanyuan; Liu, Chongxuan; Zhang, Changyong; Yang, Xiaofan; Zachara, John M.

    2015-08-01

    A micromodel system with a pore structure for heterogeneous flow and transport was used to investigate the effect of subgrid transport heterogeneity on redox reaction rates. Hematite reductive dissolution by injecting a reduced form of flavin mononucleotide (FMNH2) at variable flow rates was used as an example to probe the variations of redox reaction rates in different subgrid transport domains. Experiments, pore-scale simulations, and macroscopic modeling were performed to measure and simulate in-situ hematite reduction and to evaluate the scaling behavior of the redox reaction rates from the pore to macroscopic scales. The results indicated that the measured pore-scale rates of hematite reduction were consistent with the predictions from a pore scale reactive transport model. A general trend is that hematite reduction followed reductant transport pathways, starting from the advection-dominated pores toward the interior of diffusion-dominated domains. Two types of diffusion domains were considered in the micromodel: a micropore diffusion domain, which locates inside solid grains or aggregates where reactant transport is limited by diffusion; and a macropore diffusion domain, which locates at wedged, dead-end pore spaces created by the grain-grain contacts. The rate of hematite reduction in the advection-dominated domain was faster than those in the diffusion-controlled domains, and the rate in the macropore diffusion domain was faster than that in the micropore domain. The reduction rates in the advection and macropore diffusion domains increased with increasing flow rate, but were affected by different mechanisms. The rate increase in the advection domain was controlled by the mass action effect as a faster flow supplied more reactants, and the rate increase in the macropore domain was more affected by the rate of mass exchange with the advection domain, which increased with increasing flow rate. The hematite reduction rate in the micropore domain was, however

  6. Acid-base chemical reaction model for nucleation rates in the polluted atmospheric boundary layer.

    PubMed

    Chen, Modi; Titcombe, Mari; Jiang, Jingkun; Jen, Coty; Kuang, Chongai; Fischer, Marc L; Eisele, Fred L; Siepmann, J Ilja; Hanson, David R; Zhao, Jun; McMurry, Peter H

    2012-11-13

    Climate models show that particles formed by nucleation can affect cloud cover and, therefore, the earth's radiation budget. Measurements worldwide show that nucleation rates in the atmospheric boundary layer are positively correlated with concentrations of sulfuric acid vapor. However, current nucleation theories do not correctly predict either the observed nucleation rates or their functional dependence on sulfuric acid concentrations. This paper develops an alternative approach for modeling nucleation rates, based on a sequence of acid-base reactions. The model uses empirical estimates of sulfuric acid evaporation rates obtained from new measurements of neutral molecular clusters. The model predicts that nucleation rates equal the sulfuric acid vapor collision rate times a prefactor that is less than unity and that depends on the concentrations of basic gaseous compounds and preexisting particles. Predicted nucleation rates and their dependence on sulfuric acid vapor concentrations are in reasonable agreement with measurements from Mexico City and Atlanta. PMID:23091030

  7. Acid-base chemical reaction model for nucleation rates in the polluted atmospheric boundary layer.

    PubMed

    Chen, Modi; Titcombe, Mari; Jiang, Jingkun; Jen, Coty; Kuang, Chongai; Fischer, Marc L; Eisele, Fred L; Siepmann, J Ilja; Hanson, David R; Zhao, Jun; McMurry, Peter H

    2012-11-13

    Climate models show that particles formed by nucleation can affect cloud cover and, therefore, the earth's radiation budget. Measurements worldwide show that nucleation rates in the atmospheric boundary layer are positively correlated with concentrations of sulfuric acid vapor. However, current nucleation theories do not correctly predict either the observed nucleation rates or their functional dependence on sulfuric acid concentrations. This paper develops an alternative approach for modeling nucleation rates, based on a sequence of acid-base reactions. The model uses empirical estimates of sulfuric acid evaporation rates obtained from new measurements of neutral molecular clusters. The model predicts that nucleation rates equal the sulfuric acid vapor collision rate times a prefactor that is less than unity and that depends on the concentrations of basic gaseous compounds and preexisting particles. Predicted nucleation rates and their dependence on sulfuric acid vapor concentrations are in reasonable agreement with measurements from Mexico City and Atlanta.

  8. Estimating the effective rate of fast chemical reactions with turbulent mixing of reactants

    SciTech Connect

    Vorotilin, V. P. Yanovskii, Yu. G.

    2015-07-15

    On the basis of representation of a turbulent fluid as an aggregation of independent turbulent particles (vortexes), we derive relations for the effective rate of chemical reactions and obtain a closed system of equations describing reactions with turbulent mixing of reactants. A variant of instantaneous reactions is considered that explains the proposed approach simply. In particular, the turbulent mixing events according to this approach are uniquely related to the acts of chemical interaction, which makes it possible to exclude from consideration the mixing of inert impurities–the most difficult point of the theory formulated using classical notions. The obtained system of equations is closed without introducing arbitrarily adopted correlations, by naturally introducing the concept of effective reaction and writing the equations of conservation for both the concentrations of reactants and their volumes.

  9. On the enhancement of nuclear reaction rates in high-temperature plasma

    NASA Astrophysics Data System (ADS)

    Nakamura, M.; Voronchev, V. T.; Nakao, Y.

    2006-12-01

    We argue that the Maxwellian approximation can essentially underestimate the rates of some nuclear reactions in hot plasma under conditions very close to thermal equilibrium. This phenomenon is demonstrated explicitly on the example of reactions in self-sustained DT fusion plasma with admixture of light elements X=Li,Be,C. A kinetic analysis shows that the reactivity enhancement results from non-Maxwellian knock-on perturbations of ion distributions caused by close collisions with energetic fusion products. It is found that although the fraction of the knock-on ions is small, these particles appreciably affect the D + X and T + X reaction rates. The phenomenon discussed is likely to have general nature and can play role in other laboratory and probably astrophysical plasma processes.

  10. Reaction rates and kinetic isotope effects of H2 + OH → H2O + H.

    PubMed

    Meisner, Jan; Kästner, Johannes

    2016-05-01

    We calculated reaction rate constants including atom tunneling of the reaction of dihydrogen with the hydroxy radical down to a temperature of 50 K. Instanton theory and canonical variational theory with microcanonical optimized multidimensional tunneling were applied using a fitted potential energy surface [J. Chen et al., J. Chem. Phys. 138, 154301 (2013)]. All possible protium/deuterium isotopologues were considered. Atom tunneling increases at about 250 K (200 K for deuterium transfer). Even at 50 K the rate constants of all isotopologues remain in the interval 4 ⋅ 10(-20) to 4 ⋅ 10(-17) cm(3) s(-1), demonstrating that even deuterated versions of the title reaction are possibly relevant to astrochemical processes in molecular clouds. The transferred hydrogen atom dominates the kinetic isotope effect at all temperatures.

  11. Reaction rates and kinetic isotope effects of H2 + OH → H2O + H

    NASA Astrophysics Data System (ADS)

    Meisner, Jan; Kästner, Johannes

    2016-05-01

    We calculated reaction rate constants including atom tunneling of the reaction of dihydrogen with the hydroxy radical down to a temperature of 50 K. Instanton theory and canonical variational theory with microcanonical optimized multidimensional tunneling were applied using a fitted potential energy surface [J. Chen et al., J. Chem. Phys. 138, 154301 (2013)]. All possible protium/deuterium isotopologues were considered. Atom tunneling increases at about 250 K (200 K for deuterium transfer). Even at 50 K the rate constants of all isotopologues remain in the interval 4 ṡ 10-20 to 4 ṡ 10-17 cm3 s-1, demonstrating that even deuterated versions of the title reaction are possibly relevant to astrochemical processes in molecular clouds. The transferred hydrogen atom dominates the kinetic isotope effect at all temperatures.

  12. Rate constant for the reaction of atomic oxygen with phosphine at 298 K

    NASA Technical Reports Server (NTRS)

    Stief, L. J.; Payne, W. A.; Nava, D. F.

    1987-01-01

    The rate constant for the reaction of atomic oxygen with phosphine has been measured at 298 K using flash photolysis combined with time-resolved detection of O(3P) via resonance fluorescence. Atomic oxygen was produced by flash photolysis of N2O or NO highly diluted in argon. The results were shown to be independent of (PH3), (O), total pressure and the source of O(3P). The mean value of all the experiments is k1 = (3.6 + or -0.8) x 10 to the -11th cu cm/s (1 sigma). Two previous measurements of k1 differed by more than an order of magnitude, and the results support the higher value obtained in a discharge flow-mass spectrometry study. A comparison with rate data for other atomic and free radical reactions with phosphine is presented, and the role of these reactions in the aeronomy or photochemistry of Jupiter and Saturn is briefly considered.

  13. Rate constant for the reaction Cl + HO2NO2 yielding products. [in stratospheric chemistry

    NASA Technical Reports Server (NTRS)

    Simonaitis, R.; Leu, M. T.

    1985-01-01

    The rates for the reaction of Cl atoms iwth HO2NO2 were calculated from data obtained by the use of the discharge flow/resonance fluorescence (DF/RF) and the discharge flow/mass spectrometric (DF/MS) techniques. The total rate constant, k1, for the overall reaction: 1a (Cl + HO2NO2 yielding HCl + NO2 +O2), 1b (yielding HO2 + ClNO2), and the two possible additional channels was found to be less than 1.0 x 10 to the -13th cu cm/s at 296 K. The value of (k1a + k1b) was found to be 3.4 + or - 1.4) x 10 to the -14th cu cm/s. Thus, the reaction of Cl with peroxynitric acid is too slow, by a factor of 100, to contribute significantly to the hydrogen abstraction by Cl in the stratosphere.

  14. Toward a reaction rate model of condensed-phase RDX decomposition under high temperatures

    NASA Astrophysics Data System (ADS)

    Schweigert, Igor

    2015-06-01

    Shock ignition of energetic molecular solids is driven by microstructural heterogeneities, at which even moderate stresses can result in sufficiently high temperatures to initiate material decomposition and chemical energy release. Mesoscale modeling of these ``hot spots'' requires a reaction rate model that describes the energy release with a sub-microsecond resolution and under a wide range of temperatures. No such model is available even for well-studied energetic materials such as RDX. In this presentation, I will describe an ongoing effort to develop a reaction rate model of condensed-phase RDX decomposition under high temperatures using first-principles molecular dynamics, transition-state theory, and reaction network analysis. This work was supported by the Naval Research Laboratory, by the Office of Naval Research, and by the DoD High Performance Computing Modernization Program Software Application Institute for Multiscale Reactive Modeling of Insensitive Munitions.

  15. Toward a reaction rate model of condensed-phase RDX decomposition under high temperatures

    NASA Astrophysics Data System (ADS)

    Schweigert, Igor

    2014-03-01

    Shock ignition of energetic molecular solids is driven by microstructural heterogeneities, at which even moderate stresses can result in sufficiently high temperatures to initiate material decomposition and the release of the chemical energy. Mesoscale modeling of these ``hot spots'' requires a chemical reaction rate model that describes the energy release with a sub-microsecond resolution and under a wide range of temperatures. No such model is available even for well-studied energetic materials such as RDX. In this presentation, I will describe an ongoing effort to develop a reaction rate model of condensed-phase RDX decomposition under high temperatures using first-principles molecular dynamics, transition-state theory, and reaction network analysis. This work was supported by the Naval Research Laboratory, by the Office of Naval Research, and by the DOD High Performance Computing Modernization Program Software Application Institute for Multiscale Reactive Modeling of Insensitive Munitions.

  16. Reaction rates and kinetic isotope effects of H2 + OH → H2O + H.

    PubMed

    Meisner, Jan; Kästner, Johannes

    2016-05-01

    We calculated reaction rate constants including atom tunneling of the reaction of dihydrogen with the hydroxy radical down to a temperature of 50 K. Instanton theory and canonical variational theory with microcanonical optimized multidimensional tunneling were applied using a fitted potential energy surface [J. Chen et al., J. Chem. Phys. 138, 154301 (2013)]. All possible protium/deuterium isotopologues were considered. Atom tunneling increases at about 250 K (200 K for deuterium transfer). Even at 50 K the rate constants of all isotopologues remain in the interval 4 ⋅ 10(-20) to 4 ⋅ 10(-17) cm(3) s(-1), demonstrating that even deuterated versions of the title reaction are possibly relevant to astrochemical processes in molecular clouds. The transferred hydrogen atom dominates the kinetic isotope effect at all temperatures. PMID:27155636

  17. Consistency between kinetics and thermodynamics: general scaling conditions for reaction rates of nonlinear chemical systems without constraints far from equilibrium.

    PubMed

    Vlad, Marcel O; Popa, Vlad T; Ross, John

    2011-02-01

    We examine the problem of consistency between the kinetic and thermodynamic descriptions of reaction networks. We focus on reaction networks with linearly dependent (but generally kinetically independent) reactions for which only some of the stoichiometric vectors attached to the different reactions are linearly independent. We show that for elementary reactions without constraints preventing the system from approaching equilibrium there are general scaling relations for nonequilibrium rates, one for each linearly dependent reaction. These scaling relations express the ratios of the forward and backward rates of the linearly dependent reactions in terms of products of the ratios of the forward and backward rates of the linearly independent reactions raised to different scaling powers; the scaling powers are elements of the transformation matrix, which relates the linearly dependent stoichiometric vectors to the linearly independent stoichiometric vectors. These relations are valid for any network of elementary reactions without constraints, linear or nonlinear kinetics, far from equilibrium or close to equilibrium. We show that similar scaling relations for the reaction routes exist for networks of nonelementary reactions described by the Horiuti-Temkin theory of reaction routes where the linear dependence of the mechanistic (elementary) reactions is transferred to the overall (route) reactions. However, in this case, the scaling conditions are valid only at the steady state. General relationships between reaction rates of the two levels of description are presented. These relationships are illustrated for a specific complex reaction: radical chlorination of ethylene.

  18. Reaction Rate Acceleration and Tg Depression of Polycyanurate Under Nanopore Confinement

    NASA Astrophysics Data System (ADS)

    Lopez, Evelyn; Simon, Sindee L.

    2015-03-01

    Material properties such as Tg and the reaction kinetics are known to deviate from the bulk when subjected to nano-sized confinement. Previous work from our laboratory on the trimerization of cyanate esters found that the reaction kinetics were faster for a monofunctional reactant compared to a difunctional monomer, whereas the Tg depression was greater for the crosslinked product of the latter compared to the low molecular weight trimer of the former. The origin of the changes in nanoconfined reaction rates differs from those that govern changes in the Tg. The research objective is to further explore the effect that confinement has on reaction kinetics and Tg using a mixture consisting of mono- and di- cyanate ester monomers. The product is an uncrosslinked polycyanurate with Mn = 5240 g/mol and PDI = 1.78. The confinement mediums are controlled pore glasses with diameters ranging from 8.1 to 111.1 nm. The nanopore-confined material was synthesized in-situ and the reaction kinetics are followed by DSC; after the reaction, the Tg values of the nanoconfined polymer where also measured by DSC. An acceleration factor of 13 and a Tg depression of 38 °C are observed for the material confined in the smallest 8.1 nm-diameter pores. The Tg depression is between those of the trimer and network previously studied, while the acceleration of the reaction rate is lower. Our results are consistent with the reaction acceleration arising from packing effects at the pore wall and the Tg depression arising from intrinsic size effects.

  19. Enhancement of Diffusion-Controlled Reaction Rates by Surface-Induced Orientational Restriction

    PubMed Central

    Nag, Ambarish; Dinner, Aaron R.

    2006-01-01

    We explore the means by which immobilization of a substrate on a surface can increase the rate of a diffusion-controlled enzymatic reaction. A quasichemical approach is developed and compared with Brownian dynamics simulations. We use these methods to show that restricting only the orientation of the enzyme by long-range interactions with the surface is sufficient for enhancing catalysis. PMID:16299070

  20. Relative Reaction Rates of Sulfamic Acid and Hydroxylamine with Nitric Acid

    SciTech Connect

    Karraker, D.G.

    2001-03-28

    This report describes a study of comparative reaction rates where the reductant is in excess, as in the 1B bank in the Purex process. The results of this work apply to planned plant tests to partially substitute HAN for the ferrous sulfamate reductant in the Purex 1B bank.

  1. Should thermostatted ring polymer molecular dynamics be used to calculate thermal reaction rates?

    SciTech Connect

    Hele, Timothy J. H.; Suleimanov, Yury V.

    2015-08-21

    We apply Thermostatted Ring Polymer Molecular Dynamics (TRPMD), a recently proposed approximate quantum dynamics method, to the computation of thermal reaction rates. Its short-time transition-state theory limit is identical to rigorous quantum transition-state theory, and we find that its long-time limit is independent of the location of the dividing surface. TRPMD rate theory is then applied to one-dimensional model systems, the atom-diatom bimolecular reactions H + H{sub 2}, D + MuH, and F + H{sub 2}, and the prototypical polyatomic reaction H + CH{sub 4}. Above the crossover temperature, the TRPMD rate is virtually invariant to the strength of the friction applied to the internal ring-polymer normal modes, and beneath the crossover temperature the TRPMD rate generally decreases with increasing friction, in agreement with the predictions of Kramers theory. We therefore find that TRPMD is approximately equal to, or less accurate than, ring polymer molecular dynamics for symmetric reactions, and for certain asymmetric systems and friction parameters closer to the quantum result, providing a basis for further assessment of the accuracy of this method.

  2. Probing the Rate-Determining Step of the Claisen-Schmidt Condensation by Competition Reactions

    ERIC Educational Resources Information Center

    Mak, Kendrew K. W.; Chan, Wing-Fat; Lung, Ka-Ying; Lam, Wai-Yee; Ng, Weng-Cheong; Lee, Siu-Fung

    2007-01-01

    Competition experiments are a useful tool for preliminary study of the linear free energy relationship of organic reactions. This article describes a physical organic experiment for upper-level undergraduates to identify the rate-determining step of the Claisen-Schmidt condensation of benzaldehyde and acetophenone by studying the linear free…

  3. Effect of Conceptual Change Approach on Students' Understanding of Reaction Rate Concepts

    ERIC Educational Resources Information Center

    Kingir, Sevgi; Geban, Omer

    2012-01-01

    The purpose of the present study was to investigate the effect of conceptual change text oriented instruction compared to traditional instruction on 10th grade students' understanding of reaction rate concepts. 45 students from two classes of the same teacher in a public high school participated in this study. Students in the experimental group…

  4. Generalization of the Activated Complex Theory of Reaction Rates. II. Classical Mechanical Treatment

    DOE R&D Accomplishments Database

    Marcus, R. A.

    1964-01-01

    In its usual classical form activated complex theory assumes a particular expression for the kinetic energy of the reacting system -- one associated with a rectilinear motion along the reaction coordinate. The derivation of the rate expression given in the present paper is based on the general kinetic energy expression.

  5. Measurement of proton transfer reaction rates in a microwave cavity discharge flowing afterglow

    NASA Astrophysics Data System (ADS)

    Brooke, George M., IV

    The reaction rate coefficients between the hydronium ion and the molecules ethene (C2H4), propene (C 3H6), 1-butene (C4H8) and hydrogen sulfide (H2S) were measured at 296 K. The measured reaction rates were compared to collision rates calculated using average dipole orientation (ADO) theory. Reaction efficiency depends primarily upon the proton affinity of the molecules. All the measurements were obtained using the newly developed microwave cavity discharge flowing afterglow (MCD-FA) apparatus. This device uses an Asmussen-type microwave cavity discharge ion source that is spatially separated from the flow tube, eliminating many of the problems inherent with the original FA devices. In addition to measuring reaction rate coefficients, the MCD-FA was shown to be an effective tool for measuring trace compounds in atmospheric air. This method has many advantages over current detection techniques since compounds can be detected in almost real time, large mass ranges can be scanned quickly, and repeated calibration is not required. Preliminary measurements were made of car exhaust and exhaled alveolar air. Car exhaust showed the presence of numerous hydrocarbons, such as butene, benzene and toluene while the exhaled alveolar air showed the presence of various volatile organic compounds such as methanol and acetone.

  6. Reaction rates of the 113In(γ,n)112mIn and 115In(γ,n)114mIn

    NASA Astrophysics Data System (ADS)

    Skakun, Ye; Semisalov, I.; Kasilov, V.; Popov, V.; Kochetov, S.; Maslyuk, V.; Mazur, V.; Parlag, O.; Gajnish, I.

    2016-01-01

    The integral yields of the 113In(γ,n)112mIn (Jπ=9/2+→Jπ=4+) and 115In(γ,n)114mIn (Jπ=9/2+→Jπ=5+) photonuclear reactions were measured in the bremsstrahlung end-point energy range from the respective thresholds up to 14 MeV by a conventional activation/decay technique using the 197Au(γ,n)196Au reaction cross sections as the standard for the absolute photon intensity determination. The metallic indium samples of the natural and enriched compositions were irradiated by the bremsstrahlung beams from thin tantalum converters of the electron linear accelerator of NSC KIPT (Kharkiv) and the microtron of IEP (Ughhorod). The integral reaction yields were determined from the activities of the nuclei-products measured by the high resolution γ-ray spectrometry technique with Ge(Li)- and HPGe-detectors. The reaction rates for the Planck spectrum of a thermal photon bath were derived for the ground state target nuclei and compared to the predictions of the statistical model of nuclear reactions.

  7. Product distributions, rate constants, and mechanisms of LiH +H reactions

    NASA Astrophysics Data System (ADS)

    Defazio, Paolo; Petrongolo, Carlo; Gamallo, Pablo; González, Miguel

    2005-06-01

    We present a quantum-mechanical investigation of the LiH depletion reaction LiH +H→Li+H2 and of the H exchange reaction LiH +H'→LiH'+H. We report product distributions, rate constant, and mechanism of the former, and rate constant and mechanism of the latter reaction. We use the potential-energy surface by Dunne et al. [Chem. Phys. Lett. 336, 1 (2001)], the real-wave-packet method by Gray and Balint-Kurti [J. Chem. Phys. 108, 950 (1998)], and the J-shifting approximation. The H21 nuclear-spin statistics and progressions of vib-rotational states (v',j') rule both initial-state-resolved and thermal product distributions, which have saw-toothed shapes with odd j' preferred with respect to even j'. At high collision energies and temperatures, we obtain a regular 3-to-1 intensity alternation of rotational states. At low collision energies and temperatures, the degeneracy and density of many H2 levels can, however, give more irregular distributions. During the collision, the energy flows from the reactant translational mode to the product vibration and recoil ones. The rate constants of both reactions are not Arrhenius type because the reactions are barrier-less. The low-temperature, LiH depletion rate constant is larger than the H exchange one, whereas the contrary holds at high temperature. The real-time mechanisms show the nuclear rearrangements of the nonreactive channel and of the reactive ones, and point out that the LiH depletion is preferred over the H exchange at short times. This confirms the rate-constant results.

  8. Automated Prediction of Catalytic Mechanism and Rate Law Using Graph-Based Reaction Path Sampling.

    PubMed

    Habershon, Scott

    2016-04-12

    In a recent article [ J. Chem. Phys. 2015 , 143 , 094106 ], we introduced a novel graph-based sampling scheme which can be used to generate chemical reaction paths in many-atom systems in an efficient and highly automated manner. The main goal of this work is to demonstrate how this approach, when combined with direct kinetic modeling, can be used to determine the mechanism and phenomenological rate law of a complex catalytic cycle, namely cobalt-catalyzed hydroformylation of ethene. Our graph-based sampling scheme generates 31 unique chemical products and 32 unique chemical reaction pathways; these sampled structures and reaction paths enable automated construction of a kinetic network model of the catalytic system when combined with density functional theory (DFT) calculations of free energies and resultant transition-state theory rate constants. Direct simulations of this kinetic network across a range of initial reactant concentrations enables determination of both the reaction mechanism and the associated rate law in an automated fashion, without the need for either presupposing a mechanism or making steady-state approximations in kinetic analysis. Most importantly, we find that the reaction mechanism which emerges from these simulations is exactly that originally proposed by Heck and Breslow; furthermore, the simulated rate law is also consistent with previous experimental and computational studies, exhibiting a complex dependence on carbon monoxide pressure. While the inherent errors of using DFT simulations to model chemical reactivity limit the quantitative accuracy of our calculated rates, this work confirms that our automated simulation strategy enables direct analysis of catalytic mechanisms from first principles. PMID:26938837

  9. Automated Prediction of Catalytic Mechanism and Rate Law Using Graph-Based Reaction Path Sampling.

    PubMed

    Habershon, Scott

    2016-04-12

    In a recent article [ J. Chem. Phys. 2015 , 143 , 094106 ], we introduced a novel graph-based sampling scheme which can be used to generate chemical reaction paths in many-atom systems in an efficient and highly automated manner. The main goal of this work is to demonstrate how this approach, when combined with direct kinetic modeling, can be used to determine the mechanism and phenomenological rate law of a complex catalytic cycle, namely cobalt-catalyzed hydroformylation of ethene. Our graph-based sampling scheme generates 31 unique chemical products and 32 unique chemical reaction pathways; these sampled structures and reaction paths enable automated construction of a kinetic network model of the catalytic system when combined with density functional theory (DFT) calculations of free energies and resultant transition-state theory rate constants. Direct simulations of this kinetic network across a range of initial reactant concentrations enables determination of both the reaction mechanism and the associated rate law in an automated fashion, without the need for either presupposing a mechanism or making steady-state approximations in kinetic analysis. Most importantly, we find that the reaction mechanism which emerges from these simulations is exactly that originally proposed by Heck and Breslow; furthermore, the simulated rate law is also consistent with previous experimental and computational studies, exhibiting a complex dependence on carbon monoxide pressure. While the inherent errors of using DFT simulations to model chemical reactivity limit the quantitative accuracy of our calculated rates, this work confirms that our automated simulation strategy enables direct analysis of catalytic mechanisms from first principles.

  10. Mixing effects on apparent reaction rates and isotope fractionation during denitrification in a heterogeneous aquifer

    USGS Publications Warehouse

    Green, C.T.; Böhlke, J.K.; Bekins, B.A.; Phillips, S.P.

    2010-01-01

    Gradients in contaminant concentrations and isotopic compositions commonly are used to derive reaction parameters for natural attenuation in aquifers. Differences between field-scale (apparent) estimated reaction rates and isotopic fractionations and local-scale (intrinsic) effects are poorly understood for complex natural systems. For a heterogeneous alluvial fan aquifer, numerical models and field observations were used to study the effects of physical heterogeneity on reaction parameter estimates. Field measurements included major ions, age tracers, stable isotopes, and dissolved gases. Parameters were estimated for the O2 reduction rate, denitrification rate, O 2 threshold for denitrification, and stable N isotope fractionation during denitrification. For multiple geostatistical realizations of the aquifer, inverse modeling was used to establish reactive transport simulations that were consistent with field observations and served as a basis for numerical experiments to compare sample-based estimates of "apparent" parameters with "true" (intrinsic) values. For this aquifer, non-Gaussian dispersion reduced the magnitudes of apparent reaction rates and isotope fractionations to a greater extent than Gaussian mixing alone. Apparent and true rate constants and fractionation parameters can differ by an order of magnitude or more, especially for samples subject to slow transport, long travel times, or rapid reactions. The effect of mixing on apparent N isotope fractionation potentially explains differences between previous laboratory and field estimates. Similarly, predicted effects on apparent O2 threshold values for denitrification are consistent with previous reports of higher values in aquifers than in the laboratory. These results show that hydrogeological complexity substantially influences the interpretation and prediction of reactive transport. ?? 2010 by the American Geophysical Union.

  11. An Improved Reaction Rate Formulation for Charged-Particle Induced Thermonuclear Reaction of {sup 2}H(d,{gamma}){sup 4}He

    SciTech Connect

    Aziz, Azni Abdul; Yusof, Norhasliza; Idris, Mahirah; Kassim, Hasan Abu

    2011-03-30

    The reaction rate formula utilized in compilations such as the Nuclear Astrophysics Compilation of Reaction Rates (NACRE) uses low energy approximation due to temperatures in stars are in the region of a few keVs. Most nuclear reaction experiments were done in MeV range and the interior temperatures of massive stars are {approx}10{sup 9} K. Hence an improved formulation for calculating the nuclear reaction rate that is applicable to high temperatures is discussed in this work. The exact tunneling probability that is applicable for all energies is obtained by solving the Schroedinger equation. This yields an enhanced expression for the astrophysical S-factor for calculating the thermonuclear reaction rate at high temperature. The thermonuclear reaction rate from this work is applied to the {sup 2}H(d,{gamma}){sup 4}He reaction and is compared with the NACRE compilation. This improved reaction rate can be included in the nuclear reaction network in a Big Bang nucleosynthesis (BBN) code or a stellar nuclear network code.

  12. Estimating Reaction Rate Coefficients Within a Travel-Time Modeling Framework

    SciTech Connect

    Gong, R; Lu, C; Luo, Jian; Wu, Wei-min; Cheng, H.; Criddle, Craig; Kitanidis, Peter K.; Gu, Baohua; Watson, David B; Jardine, Philip M; Brooks, Scott C

    2011-03-01

    A generalized, efficient, and practical approach based on the travel-time modeling framework is developed to estimate in situ reaction rate coefficients for groundwater remediation in heterogeneous aquifers. The required information for this approach can be obtained by conducting tracer tests with injection of a mixture of conservative and reactive tracers and measurements of both breakthrough curves (BTCs). The conservative BTC is used to infer the travel-time distribution from the injection point to the observation point. For advection-dominant reactive transport with well-mixed reactive species and a constant travel-time distribution, the reactive BTC is obtained by integrating the solutions to advective-reactive transport over the entire travel-time distribution, and then is used in optimization to determine the in situ reaction rate coefficients. By directly working on the conservative and reactive BTCs, this approach avoids costly aquifer characterization and improves the estimation for transport in heterogeneous aquifers which may not be sufficiently described by traditional mechanistic transport models with constant transport parameters. Simplified schemes are proposed for reactive transport with zero-, first-, nth-order, and Michaelis-Menten reactions. The proposed approach is validated by a reactive transport case in a two-dimensional synthetic heterogeneous aquifer and a field-scale bioremediation experiment conducted at Oak Ridge, Tennessee. The field application indicates that ethanol degradation for U(VI)-bioremediation is better approximated by zero-order reaction kinetics than first-order reaction kinetics.

  13. Estimating reaction rate coefficients within a travel-time modeling framework.

    PubMed

    Gong, R; Lu, C; Wu, W-M; Cheng, H; Gu, B; Watson, D; Jardine, P M; Brooks, S C; Criddle, C S; Kitanidis, P K; Luo, J

    2011-01-01

    A generalized, efficient, and practical approach based on the travel-time modeling framework is developed to estimate in situ reaction rate coefficients for groundwater remediation in heterogeneous aquifers. The required information for this approach can be obtained by conducting tracer tests with injection of a mixture of conservative and reactive tracers and measurements of both breakthrough curves (BTCs). The conservative BTC is used to infer the travel-time distribution from the injection point to the observation point. For advection-dominant reactive transport with well-mixed reactive species and a constant travel-time distribution, the reactive BTC is obtained by integrating the solutions to advective-reactive transport over the entire travel-time distribution, and then is used in optimization to determine the in situ reaction rate coefficients. By directly working on the conservative and reactive BTCs, this approach avoids costly aquifer characterization and improves the estimation for transport in heterogeneous aquifers which may not be sufficiently described by traditional mechanistic transport models with constant transport parameters. Simplified schemes are proposed for reactive transport with zero-, first-, nth-order, and Michaelis-Menten reactions. The proposed approach is validated by a reactive transport case in a two-dimensional synthetic heterogeneous aquifer and a field-scale bioremediation experiment conducted at Oak Ridge, Tennessee. The field application indicates that ethanol degradation for U(VI)-bioremediation is better approximated by zero-order reaction kinetics than first-order reaction kinetics.

  14. Helium Ignition on Accreting Neutron Stars with a New Triple-α Reaction Rate

    NASA Astrophysics Data System (ADS)

    Peng, Fang; Ott, Christian D.

    2010-12-01

    We investigate the effect of a new triple-α reaction rate from Ogata et al. on helium ignition conditions on accreting neutron stars and on the properties of the subsequent type I X-ray burst. We find that the new rate leads to significantly lower ignition column density for accreting neutron stars at low accretion rates. We compare the results of our ignition models for a pure helium accretor to observations of bursts in ultracompact X-ray binaries (UCXBs), which are believed to have nearly pure helium donors. For \\dot{m}> 0.001 \\dot{m}_{{Edd}}, the new triple-α reaction rate from Ogata et al. predicts a maximum helium ignition column of ~3 × 109 g cm-2, corresponding to a burst energy of ~4 × 1040 erg. For \\dot{m}˜ 0.01 \\dot{m}_{{Edd}} at which intermediate long bursts occur, the predicted burst energies are at least a factor of 10 too low to explain the observed energies of such bursts in UCXBs. This finding adds to the doubts cast on the triple-α reaction rate of Ogata et al. by the low-mass stellar evolution results of Dotter & Paxton.

  15. Reaction and internal energy relaxation rates in viscous thermochemically non-equilibrium gas flows

    SciTech Connect

    Kustova, E. V.; Oblapenko, G. P.

    2015-01-15

    In the present paper, reaction and energy relaxation rates as well as the normal stress are studied for viscous gas flows with vibrational and chemical non-equilibrium. Using the modified Chapman-Enskog method, multi-temperature models based on the Treanor and Boltzmann vibrational distributions are developed for the general case taking into account all kinds of vibrational energy transitions, exchange reactions, dissociation, and recombination. Integral equations specifying the first-order corrections to the normal mean stress and reaction rates are derived, as well as approximate systems of linear equations for their numerical computation. Generalized thermodynamic driving forces associated with all non-equilibrium processes are introduced. It is shown that normal stresses and rates of non-equilibrium processes can be expressed in terms of the same driving forces; the symmetry of kinetic coefficients in these expressions is proven. The developed general model is applied to a particular case of a pure N{sub 2} viscous flow with slow VT relaxation. Normal stress and rates of vibrational relaxation are studied for various ratios of vibrational and translational temperatures. The cross effects between different vibrational transitions in viscous flows are evaluated, along with the influence of anharmonicity and flow compressibility on the first-order corrections to the relaxation rate. Limits of validity for the widely used Landau–Teller model of vibrational relaxation are indicated.

  16. Correcting reaction rates measured by saturation-transfer magnetic resonance spectroscopy

    NASA Astrophysics Data System (ADS)

    Gabr, Refaat E.; Weiss, Robert G.; Bottomley, Paul A.

    2008-04-01

    Off-resonance or spillover irradiation and incomplete saturation can introduce significant errors in the estimates of chemical rate constants measured by saturation-transfer magnetic resonance spectroscopy (MRS). Existing methods of correction are effective only over a limited parameter range. Here, a general approach of numerically solving the Bloch-McConnell equations to calculate exchange rates, relaxation times and concentrations for the saturation-transfer experiment is investigated, but found to require more measurements and higher signal-to-noise ratios than in vivo studies can practically afford. As an alternative, correction formulae for the reaction rate are provided which account for the expected parameter ranges and limited measurements available in vivo. The correction term is a quadratic function of experimental measurements. In computer simulations, the new formulae showed negligible bias and reduced the maximum error in the rate constants by about 3-fold compared to traditional formulae, and the error scatter by about 4-fold, over a wide range of parameters for conventional saturation transfer employing progressive saturation, and for the four-angle saturation-transfer method applied to the creatine kinase (CK) reaction in the human heart at 1.5 T. In normal in vivo spectra affected by spillover, the correction increases the mean calculated forward CK reaction rate by 6-16% over traditional and prior correction formulae.

  17. Rate Constant and Reaction Coordinate of Trp-Cage Folding in Explicit Water

    PubMed Central

    Juraszek, Jarek; Bolhuis, Peter G.

    2008-01-01

    We report rate constant calculations and a reaction coordinate analysis of the rate-limiting folding and unfolding process of the Trp-cage mini-protein in explicit solvent using transition interface sampling. Previous transition path sampling simulations revealed that in this (un)folding process the protein maintains its compact configuration, while a (de)increase of secondary structure is observed. The calculated folding rate agrees reasonably with experiment, while the unfolding rate is 10 times higher. We discuss possible origins for this mismatch. We recomputed the rates with the forward flux sampling method, and found a discrepancy of four orders of magnitude, probably caused by the method's higher sensitivity to the choice of order parameter with respect to transition interface sampling. Finally, we used the previously computed transition path-sampling ensemble to screen combinations of many order parameters for the best model of the reaction coordinate by employing likelihood maximization. We found that a combination of the root mean-square deviation of the helix and of the entire protein was, of the set of tried order parameters, the one that best describes the reaction coordination. PMID:18676648

  18. Reaction and internal energy relaxation rates in viscous thermochemically non-equilibrium gas flows

    NASA Astrophysics Data System (ADS)

    Kustova, E. V.; Oblapenko, G. P.

    2015-01-01

    In the present paper, reaction and energy relaxation rates as well as the normal stress are studied for viscous gas flows with vibrational and chemical non-equilibrium. Using the modified Chapman-Enskog method, multi-temperature models based on the Treanor and Boltzmann vibrational distributions are developed for the general case taking into account all kinds of vibrational energy transitions, exchange reactions, dissociation, and recombination. Integral equations specifying the first-order corrections to the normal mean stress and reaction rates are derived, as well as approximate systems of linear equations for their numerical computation. Generalized thermodynamic driving forces associated with all non-equilibrium processes are introduced. It is shown that normal stresses and rates of non-equilibrium processes can be expressed in terms of the same driving forces; the symmetry of kinetic coefficients in these expressions is proven. The developed general model is applied to a particular case of a pure N2 viscous flow with slow VT relaxation. Normal stress and rates of vibrational relaxation are studied for various ratios of vibrational and translational temperatures. The cross effects between different vibrational transitions in viscous flows are evaluated, along with the influence of anharmonicity and flow compressibility on the first-order corrections to the relaxation rate. Limits of validity for the widely used Landau-Teller model of vibrational relaxation are indicated.

  19. HO + CO reaction rates and H/D kinetic isotope effects: master equation models with ab initio SCTST rate constants.

    PubMed

    Weston, Ralph E; Nguyen, Thanh Lam; Stanton, John F; Barker, John R

    2013-02-01

    Ab initio microcanonical rate constants were computed using Semi-Classical Transition State Theory (SCTST) and used in two master equation formulations (1D, depending on active energy with centrifugal corrections, and 2D, depending on total energy and angular momentum) to compute temperature-dependent rate constants for the title reactions using a potential energy surface obtained by sophisticated ab initio calculations. The 2D master equation was used at the P = 0 and P = ∞ limits, while the 1D master equation with centrifugal corrections and an empirical energy transfer parameter could be used over the entire pressure range. Rate constants were computed for 75 K ≤ T ≤ 2500 K and 0 ≤ [He] ≤ 10(23) cm(-3). For all temperatures and pressures important for combustion and for the terrestrial atmosphere, the agreement with the experimental rate constants is very good, but at very high pressures and T ≤ 200 K, the theoretical rate constants are significantly smaller than the experimental values. This effect is possibly due to the presence in the experiments of dimers and prereactive complexes, which were not included in the model calculations. The computed H/D kinetic isotope effects are in acceptable agreement with experimental data, which show considerable scatter. Overall, the agreement between experimental and theoretical H/D kinetic isotope effects is much better than in previous work, and an assumption of non-RRKM behavior does not appear to be needed to reproduce experimental observations.

  20. Test of the quantum instanton approximation for thermal rate constants for some collinear reactions

    NASA Astrophysics Data System (ADS)

    Ceotto, Michele; Miller, William H.

    2004-04-01

    Two variants of the recently developed quantum instanton (QI) model for calculating thermal rate constants of chemical reactions are applied to several collinear atom-diatom reactions with various skew angles. The results show that the original QI version of the model is consistently more accurate than the "simplest" quantum instanton version (both being applied here with one "dividing surface") and thus to be preferred. Also, for these examples (as with other earlier applications) the QI results agree well with the correct quantum rates (to within ˜20% or better) for all temperatures >200 K, except for situations where dynamical corrections to transition state theory (i.e., "re-crossing" dynamics) are evident. (Since re-crossing effects are substantially reduced in higher dimensionality, this is not a cause for serious concern.) A procedure is also described which facilitates use of the METROPOLIS algorithm for evaluating all quantities that appear in the QI rate expression by Monte Carlo path integral methods.

  1. Quantum three-body calculation of nonresonant triple-alpha reaction rate at low temperatures

    SciTech Connect

    Ogata, Kazuyuki; Kan, Masataka; Kamimura, Masayasu

    2010-06-01

    Triple-alpha reaction rate is re-evaluated by directly solving the three-body Schroedinger equation. The resonant and nonresonant processes are treated on the same footing using the continuum-discretized coupled-channels method for three-body scattering. An accurate description of the alpha-alpha nonresonant states significantly quenches the Coulomb barrier between the first two alpha-particles and the third alpha-particle. Consequently, the alpha-alpha nonresonant continuum states give a markedly larger contribution at low temperatures than that reported in previous studies. We show that Nomoto's method for three-body nonresonant capture processes, which is adopted in the NACRE compilation and many other studies, is a crude approximation of the accurate quantum three-body model calculation. We find an increase in triple-alpha reaction rate by 26 orders of magnitude around 10{sup 7} K compared with the rate of NACRE.

  2. Quantum three-body calculation of nonresonant triple-{alpha} reaction rate at low temperatures

    SciTech Connect

    Ogata, Kazuyuki; Kan, Masataka; Kamimura, Masayasu

    2010-08-12

    Triple-{alpha} reaction rate is re-evaluated by directly solving the three-body Schroedinger equation. The resonant and nonresonant processes are treated on the same footing using the continuum-discretized coupled-channels method for three-body scattering. An accurate description of the {alpha}-{alpha} nonresonant states significantly quenches the Coulomb barrier between the first two {alpha}-particles and the third {alpha}-particle. Consequently, the{alpha}-{alpha} nonresonant continuum states give a markedly larger contribution at low temperatures than that reported in previous studies. We show that Nomoto's method for three-body nonresonant capture processes, which is adopted in the NACRE compilation and many other studies, is a crude approximation of the accurate quantum three-body model calculation. We find an increase in triple-{alpha} reaction rate by about 20 orders of magnitude around 10{sup 7} K compared with the rate of NACRE.

  3. Calculation of reaction rate constants using approximate evolution of quantum trajectories in imaginary and real time

    NASA Astrophysics Data System (ADS)

    Garashchuk, Sophya

    2010-05-01

    Reaction rate constants can be directly obtained from evolution of the flux operator eigenvectors under the Boltzmann and Hamiltonian operators. This is achieved by evolving the quantum trajectory ensemble, representing a wavefunction, in imaginary time seamlessly switching to the real-time dynamics. Quantum-mechanical effects are incorporated through the quantum potential dependent on the trajectory momenta or on the derivatives of the wavefunction amplitude. For practicality the quantum potential and wavefunction nodes are described using linear basis, which is exact for Gaussian wavefunctions. For the Eckart barrier approximate rate constants show significant improvement over the parabolic barrier rate constants.

  4. Theoretical investigation on H abstraction reaction mechanisms and rate constants of Isoflurane with the OH radical

    NASA Astrophysics Data System (ADS)

    Ren, Hongjiang; Li, Xiaojun

    2015-12-01

    The mechanism of H abstraction reactions for Isoflurane with the OH radical was investigated using density functional theory and G3(MP2) duel theory methods. The geometrical structures of all the species were fully optimised at B3LYP/6-311++G** level of theory. Thermochemistry data were obtained by utilising the high accurate model chemistry method G3(MP2) combined with the standard statistical thermodynamic calculations. Gibbs free energies were used for the reaction channels analysis. All the reaction channels were confirmed throughout the intrinsic reaction coordinate analysis. The results show that two channels were obtained, which correspond to P(1) and P(2) with the respective activation barriers of 63.03 and 54.82 kJ/mol. The rate constants for the two channels over a wide temperature range of 298.15-2000 K were predicted and the calculated data are in agreement with the experimental one. The results show that P(2) is the dominant reaction channel under 800 K and above 800 K, it can be found that P(1) will be more preferable reaction channel.

  5. Rate constants for the slow Mu + propane abstraction reaction at 300 K by diamagnetic RF resonance.

    PubMed

    Fleming, Donald G; Cottrell, Stephen P; McKenzie, Iain; Ghandi, Khashayar

    2015-08-14

    The study of kinetic isotope effects for H-atom abstraction rates by incident H-atoms from the homologous series of lower mass alkanes (CH4, C2H6 and, here, C3H8) provides important tests of reaction rate theory on polyatomic systems. With a mass of only 0.114 amu, the most sensitive test is provided by the rates of the Mu atom. Abstraction of H by Mu can be highly endoergic, due to the large zero-point energy shift in the MuH bond formed, which also gives rise to high activation energies from similar zero-point energy corrections at the transition state. Rates are then far too slow near 300 K to be measured by conventional TF-μSR techniques that follow the disappearance of the spin-polarised Mu atom with time. Reported here is the first measurement of a slow Mu reaction rate in the gas phase by the technique of diamagnetic radio frequency (RF) resonance, where the amplitude of the MuH product formed in the Mu + C3H8 reaction is followed with time. The measured rate constant, kMu = (6.8 ± 0.5) × 10(-16) cm(3) s(-1) at 300 K, is surprisingly only about a factor of three slower than that expected for H + C3H8, indicating a dominant contribution from quantum tunneling in the Mu reaction, consistent with elementary transition state theory calculations of the kMu/kH kinetic isotope effect.

  6. Inference of reaction rate parameters based on summary statistics from experiments

    DOE PAGES

    Khalil, Mohammad; Chowdhary, Kamaljit Singh; Safta, Cosmin; Sargsyan, Khachik; Najm, Habib N.

    2016-10-15

    Here, we present the results of an application of Bayesian inference and maximum entropy methods for the estimation of the joint probability density for the Arrhenius rate para meters of the rate coefficient of the H2/O2-mechanism chain branching reaction H + O2 → OH + O. Available published data is in the form of summary statistics in terms of nominal values and error bars of the rate coefficient of this reaction at a number of temperature values obtained from shock-tube experiments. Our approach relies on generating data, in this case OH concentration profiles, consistent with the given summary statistics, usingmore » Approximate Bayesian Computation methods and a Markov Chain Monte Carlo procedure. The approach permits the forward propagation of parametric uncertainty through the computational model in a manner that is consistent with the published statistics. A consensus joint posterior on the parameters is obtained by pooling the posterior parameter densities given each consistent data set. To expedite this process, we construct efficient surrogates for the OH concentration using a combination of Pad'e and polynomial approximants. These surrogate models adequately represent forward model observables and their dependence on input parameters and are computationally efficient to allow their use in the Bayesian inference procedure. We also utilize Gauss-Hermite quadrature with Gaussian proposal probability density functions for moment computation resulting in orders of magnitude speedup in data likelihood evaluation. Despite the strong non-linearity in the model, the consistent data sets all res ult in nearly Gaussian conditional parameter probability density functions. The technique also accounts for nuisance parameters in the form of Arrhenius parameters of other rate coefficients with prescribed uncertainty. The resulting pooled parameter probability density function is propagated through stoichiometric hydrogen-air auto-ignition computations to illustrate

  7. Reaction rate kinetics for in situ combustion retorting of Michigan Antrim oil shale

    USGS Publications Warehouse

    Rostam-Abadi, M.; Mickelson, R.W.

    1984-01-01

    The intrinsic reaction rate kinetics for the pyrolysis of Michigan Antrim oil shale and the oxidation of the carbonaceous residue of this shale have been determined using a thermogravimetric analysis method. The kinetics of the pyrolysis reaction were evaluated from both isothermal and nonisothermal rate data. The reaction was found to be second-order with an activation energy of 252.2 kJ/mole, and with a frequency factor of 9.25 ?? 1015 sec-1. Pyrolysis kinetics were not affected by heating rates between 0.01 to 0.67??K/s. No evidence of any reactions among the oil shale mineral constituents was observed at temperatures below 1173??K. However, it was found that the presence of pyrite in oil shale reduces the primary devolatilization rate of kerogen and increases the amount of residual char in the spent shale. Carbonaceous residues which were prepared by heating the oil shale at a rate of 0.166??K/s to temperatures between 923??K and 1073??K, had the highest reactivities when oxidized at 0.166??K/s in a gas having 21 volume percent oxygen. Oxygen chemisorption was found to be the initial precursor to the oxidation process. The kinetics governing oxygen chemisorption is (Equation Presented) where X is the fractional coverage. The oxidation of the carbonaceous residue was found also to be second-order. The activation energy and the frequency factor determined from isothermal experiments were 147 kJ/mole and 9.18??107 sec-1 respectively, while the values of these parameters obtained from a nonisothermal experiment were 212 kJ/mole and 1.5??1013 sec-1. The variation in the rate constants is attributed to the fact that isothermal and nonisothermal analyses represent two different aspects of the combustion process.

  8. Low-temperature rate coefficients for the reaction of ethynyl radical (C2H) with benzene.

    PubMed

    Goulay, Fabien; Leone, Stephen R

    2006-02-01

    The reaction of the C2H radical with benzene is studied at low temperature using a pulsed Laval nozzle apparatus. The C2H radical is prepared by 193-nm photolysis of acetylene, and the C2H concentration is monitored using CH(A2Delta) chemiluminescence from the C2H + O2 reaction. Measurements at very low photolysis energy are performed using CF3C2H as the C2H precursor to study the influence of benzene photodissociation on the rate coefficient. Rate coefficients are obtained over a temperature range between 105 and 298 K. The average rate coefficient is found to be five times greater than the estimated value presently used in the photochemical modeling of Titan's atmosphere. The reaction exhibits a slight negative temperature dependence which can be fitted to the expression k(cm3 molecule(-1) s(-1)) = 3.28(+/-1.0) x 10(-10) (T/298)(-0.18(+/-0.18)). The results show that this reaction has no barrier and may play an important role in the formation of large molecules and aerosols at low temperature. Our results are consistent with the formation of a short lifetime intermediate that decomposes to give the final products.

  9. Solvation effect on kinetic rate constant of reactions in supercritical solvents

    SciTech Connect

    Chialvo, A.A.; Cummings, P.T. |; Kalyuzhnyi, Yu.V.

    1998-03-01

    A statistical mechanical analysis of the solvation effects on the kinetic rate constants of reactions in near and supercritical solvents is presented to understand the experimental findings regarding the thermodynamic pressure effects. This is an extension of the solvation formalism of Chialvo and Cummings to the analysis of the microscopic basis for the macroscopic pressure and temperature effects on the kinetic rate constants of reactions conducted in the compressible region of the solvent phase diagram. This analysis is illustrated with integral equations calculations involving Lennard-Jones infinitely dilute quaternary systems to describe the species in solution during the reaction of triplet benzophenone ({sup 3}BP) with a cosolvent (either O{sub 2} or 1,4-cyclohexadiene) in supercritical CO{sub 2} along the supercritical isotherms T{sub r} = 1.01 and 1.06. The role of the species molecular asymmetries and consequently their solvation behavior in determining the thermodynamic pressure and temperature effects on the kinetic rate constant of reactions at near-critical conditions are discussed.

  10. Benchmark experiments for validation of reaction rates determination in reactor dosimetry

    NASA Astrophysics Data System (ADS)

    Rataj, J.; Huml, O.; Heraltova, L.; Bily, T.

    2014-11-01

    The precision of Monte Carlo calculations of quantities of neutron dosimetry strongly depends on precision of reaction rates prediction. Research reactor represents a very useful tool for validation of the ability of a code to calculate such quantities as it can provide environments with various types of neutron energy spectra. Especially, a zero power research reactor with well-defined core geometry and neutronic properties enables precise comparison between experimental and calculated data. Thus, at the VR-1 zero power research reactor, a set of benchmark experiments were proposed and carried out to verify the MCNP Monte Carlo code ability to predict correctly the reaction rates. For that purpose two frequently used reactions were chosen: He-3(n,p)H-3 and Au-197(n,γ)Au-198. The benchmark consists of response measurement of small He-3 gas filled detector in various positions of reactor core and of activated gold wires placed inside the core or to its vicinity. The reaction rates were calculated in MCNP5 code utilizing a detailed model of VR-1 reactor which was validated for neutronic calculations at the reactor. The paper describes in detail the experimental set-up of the benchmark, the MCNP model of the VR-1 reactor and provides a comparison between experimental and calculated data.

  11. A new theoretical approach to thermonuclear radiative-capture reaction rate

    SciTech Connect

    Funaki, Yasuro; Yabana, Kazuhiro; Akahori, Takahiko

    2012-11-12

    We propose a new computational method for astrophysical reaction rate of radiative capture process, which does not require any solution of scattering problem. It is tested for twobody radiative caputure reaction {sup 16}O({alpha},{gamma}){sup 20}Ne and a comparison is made with an ordinary method solving two-body scattering problem. The method is shown to work well in practice and thus will be useful for problems in which an explicit construction of scattering solution is difficult such as the triple-alpha capture process.

  12. Aqueous Complexation Reactions Governing the Rate and Extent of Biogeochemical U(VI) Reduction

    SciTech Connect

    Scott C. Brooks; Wenming Dong; Sue Carroll; James K. Fredrickson; Kenneth M. Kemner; Shelly D. Kelly

    2006-06-01

    The proposed research will elucidate the principal biogeochemical reactions that govern the concentration, chemical speciation, and reactivity of the redox-sensitive contaminant uranium. The results will provide an improved understanding and predictive capability of the mechanisms that govern the biogeochemical reduction of uranium in subsurface environments. In addition, the work plan is designed to: (1) Generate fundamental scientific understanding on the relationship between U(VI) chemical speciation and its susceptibility to biogeochemical reduction reactions. (2) Elucidate the controls on the rate and extent of contaminant reactivity. (3) Provide new insights into the aqueous and solid speciation of U(VI)/U(IV) under representative groundwater conditions.

  13. Aqueous Complexation Reactions Governing the Rate and Extent of Biogeochemical U(VI) Reduction

    SciTech Connect

    Scott C. Brooks; Wenming Dong; Sue Carroll; Jim Fredrickson; Ken Kemner; Shelly Kelly

    2006-06-01

    The proposed research will elucidate the principal biogeochemical reactions that govern the concentration, chemical speciation, and reactivity of the redox-sensitive contaminant uranium. The results will provide an improved understanding and predictive capability of the mechanisms that govern the biogeochemical reduction of uranium in subsurface environments. In addition, the work plan is designed to: (1) Generate fundamental scientific understanding on the relationship between U(VI) chemical speciation and its susceptibility to biogeochemical reduction reactions. ? Elucidate the controls on the rate and extent of contaminant reactivity. (2) Provide new insights into the aqueous and solid speciation of U(VI)/U(IV) under representative groundwater conditions.

  14. Absolute quantification of the alleles in somatic point mutations by bioluminometric methods based on competitive polymerase chain reaction in the presence of a locked nucleic acid blocker or an allele-specific primer.

    PubMed

    Iliadi, Alexandra; Petropoulou, Margarita; Ioannou, Penelope C; Christopoulos, Theodore K; Anagnostopoulos, Nikolaos I; Kanavakis, Emmanuel; Traeger-Synodinos, Jan

    2011-09-01

    In somatic (acquired) point mutations, the challenge is to quantify minute amounts of the mutant allele in the presence of a large excess of the normal allele that differs only in a single base pair. We report two bioluminometric methods that enable absolute quantification of the alleles. The first method exploits the ability of a locked nucleic acid (LNA) oligonucleotide to bind to and inhibit effectively the polymerase chain reaction (PCR) amplification of the normal allele while the amplification of the mutant allele remains unaffected. The second method employs allele-specific PCR primers, thereby allowing the amplification of the corresponding allele only. DNA internal standards (competitors) are added to the PCR mixture to compensate for any sample-to-sample variation in the amplification efficiency. The amplification products from the two alleles and the internal standards are quantified by a microtiter well-based bioluminometric hybridization assay using the photoprotein aequorin as a reporter. The methods allow absolute quantification of less than 300 copies of the mutant allele even in samples containing less than 1% of the mutant allele.

  15. UNBIASED MOMENT-RATE SPECTRA AND ABSOLUTE SITE EFFECTS IN THE KACHCHH BASIN, INDIA, FROM THE ANALYSIS OF THE AFTERSHOCKS OF THE 2001 Mw 7.6 BHUJ EARTHQUAKE

    SciTech Connect

    Malagnini, L; Bodin, P; Mayeda, K; Akinci, A

    2005-05-04

    What can be learned about absolute site effects on ground motions and about earthquake source spectra from recordings at temporary seismic stations, none of which could be considered a 'reference' (hard rock) site, for which no geotechnical information is available, in a very poorly instrumented region? This challenge motivated our current study of aftershocks of the 2001 Mw 7.6 Bhuj earthquake, in Western India. Crustal attenuation and spreading relationships based on the same data used here were determined in an earlier study. In this paper we decouple the ambiguity between absolute source radiation and site effects by first computing robust estimates of moment-rate spectra of about 200 aftershocks in each of two depth ranges. Using these new estimates of sourcespectra, and our understanding of regional wave propagation, we extract the absolute site terms of the sites of the temporary deployment. Absolute site terms (one for each component of the ground motion, for each station) are computed in an average sense, via an L{sub 1}-norm minimization, and results for each site are averaged over wide ranges of azimuths and takeoff angles. The Bhuj deployment is characterized by a variable shallow geology, mostly of soft sedimentary units. Vertical site terms in the region were observed to be almost featureless and slightly < 1.0 within wide frequency ranges. As a result, H/V spectral ratios mimic the absolute behaviors of absolute horizontal site terms, and they generally overpredict them. On the contrary, with respect to the results for sedimentary rock sites (limestone, dolomite) obtained by Malagnini et al. (2004), H/V spectral ratios in their study did not have much in common with absolute horizontal site terms. Spectral ratios between the vector sum of the computed horizontal site terms for the temporary deployment with respect to the same quantity computed at the hardest rock station available, BAC1, are seriously biased by its non-flat, non-unitary site response

  16. Rates for neutron-capture reactions on tungsten isotopes in iron meteorites. [Abstract only

    NASA Technical Reports Server (NTRS)

    Masarik, J.; Reedy, R. C.

    1994-01-01

    High-precision W isotopic analyses by Harper and Jacobsen indicate the W-182/W-183 ratio in the Toluca iron meteorite is shifted by -(3.0 +/- 0.9) x 10(exp -4) relative to a terrestrial standard. Possible causes of this shift are neutron-capture reactions on W during Toluca's approximately 600-Ma exposure to cosmic ray particles or radiogenic growth of W-182 from 9-Ma Hf-182 in the silicate portion of the Earth after removal of W to the Earth's core. Calculations for the rates of neutron-capture reactions on W isotopes were done to study the first possibility. The LAHET Code System (LCS) which consists of the Los Alamos High Energy Transport (LAHET) code and the Monte Carlo N-Particle(MCNP) transport code was used to numerically simulate the irradiation of the Toluca iron meteorite by galactic-cosmic-ray (GCR) particles and to calculate the rates of W(n, gamma) reactions. Toluca was modeled as a 3.9-m-radius sphere with the composition of a typical IA iron meteorite. The incident GCR protons and their interactions were modeled with LAHET, which also handled the interactions of neutrons with energies above 20 MeV. The rates for the capture of neutrons by W-182, W-183, and W-186 were calculated using the detailed library of (n, gamma) cross sections in MCNP. For this study of the possible effect of W(n, gamma) reactions on W isotope systematics, we consider the peak rates. The calculated maximum change in the normalized W-182/W-183 ratio due to neutron-capture reactions cannot account for more than 25% of the mass 182 deficit observed in Toluca W.

  17. Rate Constant and Temperature Dependence for the Reaction of Hydroxyl Radicals with 2-Flouropropane (FC-281ea) and Comparison with an Estimated Rate Constant

    NASA Technical Reports Server (NTRS)

    DeMore, W.; Wilson, E., Jr.

    1998-01-01

    Relative rate experiments were used to measure the rate constant and temperature dependence of the reaction of OH radicals with 2-fluoropropane (HFC-281ea), using ethane, propane, ethyl chloride as reference standards.

  18. Absolute nuclear material assay

    DOEpatents

    Prasad, Manoj K.; Snyderman, Neal J.; Rowland, Mark S.

    2012-05-15

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  19. Absolute nuclear material assay

    DOEpatents

    Prasad, Manoj K.; Snyderman, Neal J.; Rowland, Mark S.

    2010-07-13

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  20. Reaction of atomic bromine with acetylene and loss rate of atmospheric acetylene due to reaction with OH, Cl, O, and Br

    NASA Technical Reports Server (NTRS)

    Payne, W. A.; Nava, D. F.; Brunning, J.; Stief, L. J.

    1986-01-01

    The first-order, diffusion, and bimolecular rate constants for the reaction Br + C2H2 yields C2H3Br are evaluated. The rate constants are measured at 210, 248, 298, and 393 K and at pressures between 15-100 torr Ar using flash photolysis combined with time-resolved detection of atomic bromine via Br resonance radiation. It is observed that the reaction is not affected by pressure or temperature and the bimolecular constant = (4.0 + or - 0.8) x 10 to the -15th cu cm/sec with an error of two standard deviations. The C2H2 + Br reaction rates are compared with reactions of C2H2 with Cl, OH, NH2, and H. The loss rates for atmospheric C2H2 for reactions with OH, Cl, O, and Br are calculated as a function of altitude.

  1. Accurate label-free reaction kinetics determination using initial rate heat measurements.

    PubMed

    Ebrahimi, Kourosh Honarmand; Hagedoorn, Peter-Leon; Jacobs, Denise; Hagen, Wilfred R

    2015-01-01

    Accurate label-free methods or assays to obtain the initial reaction rates have significant importance in fundamental studies of enzymes and in application-oriented high throughput screening of enzyme activity. Here we introduce a label-free approach for obtaining initial rates of enzyme activity from heat measurements, which we name initial rate calorimetry (IrCal). This approach is based on our new finding that the data recorded by isothermal titration calorimetry for the early stages of a reaction, which have been widely ignored, are correlated to the initial rates. Application of the IrCal approach to various enzymes led to accurate enzyme kinetics parameters as compared to spectroscopic methods and enabled enzyme kinetic studies with natural substrate, e.g. proteases with protein substrates. Because heat is a label-free property of almost all reactions, the IrCal approach holds promise in fundamental studies of various enzymes and in use of calorimetry for high throughput screening of enzyme activity.

  2. Rate constant for the reaction SO + BrO yields SO2 + Br

    NASA Technical Reports Server (NTRS)

    Brunning, J.; Stief, L.

    1986-01-01

    The rate of the radical-radical reaction SO + BrO yields SO2 + Br has been determined at 298 K in a discharge flow system near 1 torr pressure with detection of SO and BrO via collision-free sampling mass spectrometry. The rate constant was determined using two different methods: measuring the decay of SO radicals in the presence of an excess of BrO and measuring the decay of BrO radicals in excess SO. The results from the two methods are in reasonable agreement and the simple mean of the two values gives the recommended rate constant at 298 K, k = (5.7 + or - 2.0) x 10 to the -11th cu cm/s. This represents the first determination of this rate constant and it is consistent with a previously derived lower limit based on SO2 formation. Comparison is made with other radical-radical reactions involving SO or BrO. The reaction SO + BrO yields SO2 + Br is of interest for models of the upper atmosphere of the earth and provides a potential coupling between atmospheric sulfur and bromine chemistry.

  3. Accurate label-free reaction kinetics determination using initial rate heat measurements

    PubMed Central

    Ebrahimi, Kourosh Honarmand; Hagedoorn, Peter-Leon; Jacobs, Denise; Hagen, Wilfred R.

    2015-01-01

    Accurate label-free methods or assays to obtain the initial reaction rates have significant importance in fundamental studies of enzymes and in application-oriented high throughput screening of enzyme activity. Here we introduce a label-free approach for obtaining initial rates of enzyme activity from heat measurements, which we name initial rate calorimetry (IrCal). This approach is based on our new finding that the data recorded by isothermal titration calorimetry for the early stages of a reaction, which have been widely ignored, are correlated to the initial rates. Application of the IrCal approach to various enzymes led to accurate enzyme kinetics parameters as compared to spectroscopic methods and enabled enzyme kinetic studies with natural substrate, e.g. proteases with protein substrates. Because heat is a label-free property of almost all reactions, the IrCal approach holds promise in fundamental studies of various enzymes and in use of calorimetry for high throughput screening of enzyme activity. PMID:26574737

  4. Effects of the anion salt nature on the rate constants of the aqueous proton exchange reactions.

    PubMed

    Paredes, Jose M; Garzon, Andres; Crovetto, Luis; Orte, Angel; Lopez, Sergio G; Alvarez-Pez, Jose M

    2012-04-28

    The proton-transfer ground-state rate constants of the xanthenic dye 9-[1-(2-methyl-4-methoxyphenyl)]-6-hydroxy-3H-xanthen-3-one (TG-II), recovered by Fluorescence Lifetime Correlation Spectroscopy (FLCS), have proven to be useful to quantitatively reflect specific cation effects in aqueous solutions (J. M. Paredes, L. Crovetto, A. Orte, J. M. Alvarez-Pez and E. M. Talavera, Phys. Chem. Chem. Phys., 2011, 13, 1685-1694). Since these phenomena are more sensitive to anions than to cations, in this paper we have accounted for the influence of salts with the sodium cation in common, and the anion classified according to the empirical Hofmeister series, on the proton transfer rate constants of TG-II. We demonstrate that the presence of ions accelerates the rate of the ground-state proton-exchange reaction in the same order than ions that affect ion solvation in water. The combination of FLCS with a fluorophore undergoing proton transfer reactions in the ground state, along with the desirable feature of a pseudo-dark state when the dye is protonated, allows one unique direct determination of kinetic rate constants of the proton exchange chemical reaction. PMID:22421957

  5. Estimation of the reaction times in tasks of varying difficulty from the phase coherence of the auditory steady-state response using the least absolute shrinkage and selection operator analysis.

    PubMed

    Yokota, Yusuke; Igarashi, Yasuhiko; Okada, Masato; Naruse, Yasushi

    2015-01-01

    Quantitative estimation of the workload in the brain is an important factor for helping to predict the behavior of humans. The reaction time when performing a difficult task is longer than that when performing an easy task. Thus, the reaction time reflects the workload in the brain. In this study, we employed an N-back task in order to regulate the degree of difficulty of the tasks, and then estimated the reaction times from the brain activity. The brain activity that we used to estimate the reaction time was the auditory steady-state response (ASSR) evoked by a 40-Hz click sound. Fifteen healthy participants participated in the present study and magnetoencephalogram (MEG) responses were recorded using a 148-channel magnetometer system. The least absolute shrinkage and selection operator (LASSO), which is a type of sparse modeling, was employed to estimate the reaction times from the ASSR recorded by MEG. The LASSO showed higher estimation accuracy than the least squares method. This result indicates that LASSO overcame the over-fitting to the learning data. Furthermore, the LASSO selected channels in not only the parietal region, but also in the frontal and occipital regions. Since the ASSR is evoked by auditory stimuli, it is usually large in the parietal region. However, since LASSO also selected channels in regions outside the parietal region, this suggests that workload-related neural activity occurs in many brain regions. In the real world, it is more practical to use a wearable electroencephalography device with a limited number of channels than to use MEG. Therefore, determining which brain areas should be measured is essential. The channels selected by the sparse modeling method are informative for determining which brain areas to measure. PMID:26737821

  6. Substituent effects on the reaction rates of hydrogen abstraction in the pyrolysis of phenethyl phenyl ethers

    SciTech Connect

    Beste, Ariana; Buchanan III, A C

    2010-01-01

    We report reaction profiles and forward rate constants for hydrogen abstraction reactions occurring in the pyrolysis of methoxy-substituted derivatives of phenethyl phenyl ether (PhCH{sub 2}CH{sub 2}OPh, PPE), where the substituents are located on the aryl ether ring (PhCH{sub 2}CH{sub 2}OPh-X). We use density functional theory in combination with transition-state theory, and anharmonic corrections are included within the independent mode approximation. PPE is the simplest model of the abundant {beta}-O-4 linkage in lignin. The mechanism of PPE pyrolysis and overall product selectivities have been studied experimentally by one of us, which was followed by computational analysis of key individual hydrogen-transfer reaction steps. In the previous work, we have been able to use a simplified kinetic model based on quasi-steady-state conditions to reproduce experimental {alpha}/{beta} selectivities for PPE and PPEs with substituents on the phenethyl ring (X-PhCH{sub 2}CH{sub 2}OPh). This model is not applicable to PPE derivatives where methoxy substituents are located on the phenyl ring adjacent to the ether oxygen because of the strongly endothermic character of the hydrogen abstraction by substituted phenoxy radicals as well as the decreased kinetic chain lengths resulting from enhanced rates of the initial C?O homolysis step. Substituents decelerate the hydrogen abstraction by the phenoxy radical, while the influence on the benzyl abstraction is less homogeneous. The calculations provide insight into the contributions of steric and polar effects in these important hydrogen-transfer steps. We emphasize the importance of an exhaustive conformational space search to calculate rate constants and product selectivities. The computed rate constants will be used in future work to numerically simulate the pyrolysis mechanism, pending the calculation of the rate constants of all participating reactions.

  7. Light elements burning reaction rates at stellar temperatures as deduced by the Trojan Horse measurements

    SciTech Connect

    Lamia, L.; Spitaleri, C.; La Cognata, M.; Palmerini, S.; Sergi, M. L.; Puglia, S. M. R.

    2015-02-24

    Experimental nuclear astrophysics aims at determining the reaction rates for astrophysically relevant reactions at their Gamow energies. For charged-particle induced reactions, the access to these energies is usually hindered, in direct measurements, by the presence of the Coulomb barrier between the interacting particles or by electron screening effects, which make hard the determination of the bare-nucleus S(E)-factor of interest for astrophysical codes. The use of the Trojan Horse Method (THM) appears as one of the most suitable tools for investigating nuclear processes of interest for astrophysics. Here, in view of the recent TH measurements, the main destruction channels for deuterium ({sup 2}H), for the two lithium {sup 6,7}Li isotopes, for the {sup 9}Be and the one for the two boron {sup 10,11}B isotopes will be discussed.

  8. Rate coefficients of hydroxyl radical reactions with pesticide molecules and related compounds: A review

    NASA Astrophysics Data System (ADS)

    Wojnárovits, László; Takács, Erzsébet

    2014-03-01

    Rate coefficients published in the literature on hydroxyl radical reactions with pesticides and related compounds are discussed together with the experimental methods and the basic reaction mechanisms. Recommendations are made for the most probable values. Most of the molecules whose rate coefficients are discussed have aromatic ring: their rate coefficients are in the range of 2×109-1×1010 mol-1 dm3 s-1. The rate coefficients show some variation with the electron withdrawing-donating nature of the substituent on the ring. The rate coefficients for triazine pesticides (simazine, atrazine, prometon) are all around 2.5×109 mol-1 dm3 s-1. The values do not show variation with the substituent on the s-triazine ring. The rate coefficients for the non-aromatic molecules which have C=C double bonds or several C-H bonds may also be above 1×109 mol-1 dm3 s-1. However, the values for molecules without C=C double bonds or several C-H bonds are in the 1×107-1×109 mol-1 dm3 s-1 range.

  9. The effects of physical and geochemical heterogeneities on hydro-geochemical transport and effective reaction rates

    NASA Astrophysics Data System (ADS)

    Atchley, Adam L.; Navarre-Sitchler, Alexis K.; Maxwell, Reed M.

    2014-09-01

    The role of coupled physical and geochemical heterogeneities in hydro-geochemical transport is investigated by simulating three-dimensional transport in a heterogeneous system with kinetic mineral reactions. Ensembles of 100 physically heterogeneous realizations were simulated for three geochemical conditions: 1) spatially homogeneous reactive mineral surface area, 2) reactive surface area positively correlated to hydraulic heterogeneity, and 3) reactive surface area negatively correlated to hydraulic heterogeneity. Groundwater chemistry and the corresponding effective reaction rates were calculated at three transverse planes to quantify differences in plume evolution due to heterogeneity in mineral reaction rates and solute residence time (τ). The model is based on a hypothetical CO2 intrusion into groundwater from a carbon capture utilization and storage (CCUS) operation where CO2 dissolution and formation of carbonic acid created geochemical dis-equilibrium between fluids and the mineral galena that resulted in increased aqueous lead (Pb2 +) concentrations. Calcite dissolution buffered the pH change and created conditions of galena oversaturation, which then reduced lead concentrations along the flow path. Near the leak kinetic geochemical reactions control the release of solutes into the fluid, but further along the flow path mineral solubility controls solute concentrations. Simulation results demonstrate the impact of heterogeneous distribution of geochemical reactive surface area in coordination with physical heterogeneity on the effective reaction rate (Krxn,eff) and Pb2 + concentrations within the plume. Dissimilarities between ensemble Pb2 + concentration and Krxn,eff are attributed to how geochemical heterogeneity affects the time (τeq) and therefore advection distance (Leq) required for the system to re-establish geochemical equilibrium. Only after geochemical equilibrium is re-established, Krxn,eff and Pb2 + concentrations are the same for all three

  10. The effects of physical and geochemical heterogeneities on hydro-geochemical transport and effective reaction rates.

    PubMed

    Atchley, Adam L; Navarre-Sitchler, Alexis K; Maxwell, Reed M

    2014-09-01

    The role of coupled physical and geochemical heterogeneities in hydro-geochemical transport is investigated by simulating three-dimensional transport in a heterogeneous system with kinetic mineral reactions. Ensembles of 100 physically heterogeneous realizations were simulated for three geochemical conditions: 1) spatially homogeneous reactive mineral surface area, 2) reactive surface area positively correlated to hydraulic heterogeneity, and 3) reactive surface area negatively correlated to hydraulic heterogeneity. Groundwater chemistry and the corresponding effective reaction rates were calculated at three transverse planes to quantify differences in plume evolution due to heterogeneity in mineral reaction rates and solute residence time (τ). The model is based on a hypothetical CO2 intrusion into groundwater from a carbon capture utilization and storage (CCUS) operation where CO2 dissolution and formation of carbonic acid created geochemical dis-equilibrium between fluids and the mineral galena that resulted in increased aqueous lead (Pb(2+)) concentrations. Calcite dissolution buffered the pH change and created conditions of galena oversaturation, which then reduced lead concentrations along the flow path. Near the leak kinetic geochemical reactions control the release of solutes into the fluid, but further along the flow path mineral solubility controls solute concentrations. Simulation results demonstrate the impact of heterogeneous distribution of geochemical reactive surface area in coordination with physical heterogeneity on the effective reaction rate (Krxn,eff) and Pb(2+) concentrations within the plume. Dissimilarities between ensemble Pb(2+) concentration and Krxn,eff are attributed to how geochemical heterogeneity affects the time (τeq) and therefore advection distance (Leq) required for the system to re-establish geochemical equilibrium. Only after geochemical equilibrium is re-established, Krxn,eff and Pb(2+) concentrations are the same for all

  11. New determination of the {sup 2}H(d,p){sup 3}H and {sup 2}H(d,n){sup 3}He reaction rates at astrophysical energies

    SciTech Connect

    Tumino, A.; Spartà, R.; Spitaleri, C.; Pizzone, R. G.; La Cognata, M.; Rapisarda, G. G.; Romano, S.; Sergi, M. L.; Mukhamedzhanov, A. M.; Typel, S.; Tognelli, E.; Degl'Innocenti, S.; Prada Moroni, P. G.; Burjan, V.; Kroha, V.; Hons, Z.; Mrazek, J.; Piskor, S.; Lamia, L.

    2014-04-20

    The cross sections of the {sup 2}H(d,p){sup 3}H and {sup 2}H(d,n){sup 3}He reactions have been measured via the Trojan Horse method applied to the quasi-free {sup 2}H({sup 3}He,p {sup 3}H){sup 1}H and {sup 2}H({sup 3}He,n {sup 3}He){sup 1}H processes at 18 MeV off the proton in {sup 3}He. For the first time, the bare nucleus S(E) factors have been determined from 1.5 MeV, across the relevant region for standard Big Bang nucleosynthesis, down to the thermal energies of deuterium burning in the pre-main-sequence (PMS) phase of stellar evolution, as well as of future fusion reactors. Both the energy dependence and the absolute value of the S(E) factors deviate by more than 15% from the available direct data and existing fitting curves, with substantial variations in the electron screening by more than 50%. As a consequence, the reaction rates for astrophysics experience relevant changes, with a maximum increase of up to 20% at the temperatures of the PMS phase. From a recent primordial abundance sensitivity study, it turns out that the {sup 2}H(d,n){sup 3}He reaction is quite influential on {sup 7}Li, and the present change in the reaction rate leads to a decrease in its abundance by up to 10%. The present reaction rates have also been included in an updated version of the FRANEC evolutionary code to analyze their influence on the central deuterium abundance in PMS stars with different masses. The largest variation of about 10%-15% pertains to young stars (≤1 Myr) with masses ≥1 M {sub ☉}.

  12. Rate constants of chemical reactions from semiclassical transition state theory in full and one dimension.

    PubMed

    Greene, Samuel M; Shan, Xiao; Clary, David C

    2016-06-28

    Semiclassical Transition State Theory (SCTST), a method for calculating rate constants of chemical reactions, offers gains in computational efficiency relative to more accurate quantum scattering methods. In full-dimensional (FD) SCTST, reaction probabilities are calculated from third and fourth potential derivatives along all vibrational degrees of freedom. However, the computational cost of FD SCTST scales unfavorably with system size, which prohibits its application to larger systems. In this study, the accuracy and efficiency of 1-D SCTST, in which only third and fourth derivatives along the reaction mode are used, are investigated in comparison to those of FD SCTST. Potential derivatives are obtained from numerical ab initio Hessian matrix calculations at the MP2/cc-pVTZ level of theory, and Richardson extrapolation is applied to improve the accuracy of these derivatives. Reaction barriers are calculated at the CCSD(T)/cc-pVTZ level. Results from FD SCTST agree with results from previous theoretical and experimental studies when Richardson extrapolation is applied. Results from our implementation of 1-D SCTST, which uses only 4 single-point MP2/cc-pVTZ energy calculations in addition to those for conventional TST, agree with FD results to within a factor of 5 at 250 K. This degree of agreement and the efficiency of the 1-D method suggest its potential as a means of approximating rate constants for systems too large for existing quantum scattering methods.

  13. Rate constants of chemical reactions from semiclassical transition state theory in full and one dimension

    NASA Astrophysics Data System (ADS)

    Greene, Samuel M.; Shan, Xiao; Clary, David C.

    2016-06-01

    Semiclassical Transition State Theory (SCTST), a method for calculating rate constants of chemical reactions, offers gains in computational efficiency relative to more accurate quantum scattering methods. In full-dimensional (FD) SCTST, reaction probabilities are calculated from third and fourth potential derivatives along all vibrational degrees of freedom. However, the computational cost of FD SCTST scales unfavorably with system size, which prohibits its application to larger systems. In this study, the accuracy and efficiency of 1-D SCTST, in which only third and fourth derivatives along the reaction mode are used, are investigated in comparison to those of FD SCTST. Potential derivatives are obtained from numerical ab initio Hessian matrix calculations at the MP2/cc-pVTZ level of theory, and Richardson extrapolation is applied to improve the accuracy of these derivatives. Reaction barriers are calculated at the CCSD(T)/cc-pVTZ level. Results from FD SCTST agree with results from previous theoretical and experimental studies when Richardson extrapolation is applied. Results from our implementation of 1-D SCTST, which uses only 4 single-point MP2/cc-pVTZ energy calculations in addition to those for conventional TST, agree with FD results to within a factor of 5 at 250 K. This degree of agreement and the efficiency of the 1-D method suggest its potential as a means of approximating rate constants for systems too large for existing quantum scattering methods.

  14. Up-Scaling Geochemical Reaction Rates for Carbon Dioxide (CO2) in Deep Saline Aquifers

    SciTech Connect

    Peters, Catherine A

    2013-02-28

    Geochemical reactions in deep subsurface environments are complicated by the consolidated nature and mineralogical complexity of sedimentary rocks. Understanding the kinetics of these reactions is critical to our ability to make long-term predictions about subsurface processes such as pH buffering, alteration in rock structure, permeability changes, and formation of secondary precipitates. In this project, we used a combination of experiments and numerical simulation to bridge the gap between our knowledge of these reactions at the lab scale and rates that are meaningful for modeling reactive transport at core scales. The focus is on acid-driven mineral dissolution, which is specifically relevant in the context of CO2-water-rock interactions in geological sequestration of carbon dioxide. The project led to major findings in three areas. First, we modeled reactive transport in pore-network systems to investigate scaling effects in geochemical reaction rates. We found significant scaling effects when CO2 concentrations are high and reaction rates are fast. These findings indicate that the increased acidity associated with geological sequestration can generate conditions for which proper scaling tools are yet to be developed. Second, we used mathematical modeling to investigate the extent to which SO2, if co-injected with CO2, would acidify formation brines. We found that there exist realistic conditions in which the impact on brine acidity will be limited due to diffusion rate-limited SO2 dissolution from the CO2 phase, and the subsequent pH shift may also be limited by the lack of availability of oxidants to produce sulfuric acid. Third, for three Viking sandstones (Alberta sedimentary basin, Canada), we employed backscattered electron microscopy and energy dispersive X-ray spectroscopy to statistically characterize mineral contact with pore space. We determined that for reactive minerals in sedimentary consolidated rocks, abundance alone is not a good predictor of

  15. The rate of the deoxygenation reaction limits myoglobin- and hemoglobin-facilitated O₂ diffusion in cells.

    PubMed

    Endeward, Volker

    2012-05-01

    A mathematical model describing facilitation of O(2) diffusion by the diffusion of myoglobin and hemoglobin is presented. The equations are solved numerically by a finite-difference method for the conditions as they prevail in cardiac and skeletal muscle and in red cells without major simplifications. It is demonstrated that, in the range of intracellular diffusion distances, the degree of facilitation is limited by the rate of the chemical reaction between myglobin or hemoglobin and O(2). The results are presented in the form of relationships between the degree of facilitation and the length of the diffusion path on the basis of the known kinetics of the oxygenation-deoxygenation reactions. It is concluded that the limitation by reaction kinetics reduces the maximally possible facilitated oxygen diffusion in cardiomyoctes by ∼50% and in skeletal muscle fibers by ∼ 20%. For human red blood cells, a reduction of facilitated O(2) diffusion by 36% is obtained in agreement with previous reports. This indicates that, especially in cardiomyocytes and red cells, chemical equilibrium between myoglobin or hemoglobin and O(2) is far from being established, an assumption that previously has often been made. Although the "O(2) transport function" of myoglobin in cardiac muscle cells thus is severely limited by the chemical reaction kinetics, and to a lesser extent also in skeletal muscle, it is noteworthy that the speed of release of O(2) from MbO(2), the "storage function," is not limited by the reaction kinetics under physiological conditions.

  16. Efficient kinetic Monte Carlo method for reaction-diffusion problems with spatially varying annihilation rates

    NASA Astrophysics Data System (ADS)

    Schwarz, Karsten; Rieger, Heiko

    2013-03-01

    We present an efficient Monte Carlo method to simulate reaction-diffusion processes with spatially varying particle annihilation or transformation rates as it occurs for instance in the context of motor-driven intracellular transport. Like Green's function reaction dynamics and first-passage time methods, our algorithm avoids small diffusive hops by propagating sufficiently distant particles in large hops to the boundaries of protective domains. Since for spatially varying annihilation or transformation rates the single particle diffusion propagator is not known analytically, we present an algorithm that generates efficiently either particle displacements or annihilations with the correct statistics, as we prove rigorously. The numerical efficiency of the algorithm is demonstrated with an illustrative example.

  17. Reacting gas mixtures in the state-to-state approach: The chemical reaction rates

    SciTech Connect

    Kustova, Elena V.; Kremer, Gilberto M.

    2014-12-09

    In this work chemically reacting mixtures of viscous flows are analyzed within the framework of Boltzmann equation. By applying a modified Chapman-Enskog method to the system of Boltzmann equations general expressions for the rates of chemical reactions and vibrational energy transitions are determined as functions of two thermodynamic forces: the velocity divergence and the affinity. As an application chemically reacting mixtures of N{sub 2} across a shock wave are studied, where the first lowest vibrational states are taken into account. Here we consider only the contributions from the first four single quantum vibrational-translational energy transitions. It is shown that the contribution to the chemical reaction rate related to the affinity is much larger than that of the velocity divergence.

  18. Modelling of silicon oxynitridation by nitrous oxide using the reaction rate approach

    SciTech Connect

    Dominique Krzeminski, Christophe

    2013-12-14

    Large technological progress in oxynitridation processing leads to the introduction of silicon oxynitride as ultra-thin gate oxide. On the theoretical side, few studies have been dedicated to the process modelling of oxynitridation. Such an objective is a considerable challenge regarding the various atomistic mechanisms occurring during this fabrication step. In this article, some progress performed to adapt the reaction rate approach for the modelling of oxynitride growth by a nitrous ambient are reported. The Ellis and Buhrman's approach is used for the gas phase decomposition modelling. Taking into account the mass balance of the species at the interface between the oxynitride and silicon, a minimal kinetic model describing the oxide growth has been calibrated and implemented. The influence of nitrogen on the reaction rate has been introduced in an empirical way. The oxidation kinetics predicted with this minimal model compares well with several experiments.

  19. Computational Approach for Ranking Mutant Enzymes According to Catalytic Reaction Rates

    PubMed Central

    Kumarasiri, Malika; Baker, Gregory A.; Soudackov, Alexander V.

    2009-01-01

    A computationally efficient approach for ranking mutant enzymes according to the catalytic reaction rates is presented. This procedure requires the generation and equilibration of the mutant structures, followed by the calculation of partial free energy curves using an empirical valence bond potential in conjunction with biased molecular dynamics simulations and umbrella integration. The individual steps are automated and optimized for computational efficiency. This approach is used to rank a series of 15 dihydrofolate reductase mutants according to the hydride transfer reaction rate. The agreement between the calculated and experimental changes in the free energy barrier upon mutation is encouraging. The computational approach predicts the correct direction of the change in free energy barrier for all mutants, and the correlation coefficient between the calculated and experimental data is 0.82. This general approach for ranking protein designs has implications for protein engineering and drug design. PMID:19235997

  20. Probing the interplay between factors determining reaction rates on silica gel using termolecular systems.

    PubMed

    Kirkpatrick, Iain; Worrall, David R; Williams, Siân L; Buck, Craig J T; Meseguer, Rafael G

    2012-10-01

    In this study we have compared energy and electron transfer reactions in termolecular systems using a nanosecond diffuse reflectance laser flash photolysis technique. We have previously investigated these processes on silica gel surfaces for bimolecular systems and electron transfer in termolecular systems. The latter systems involved electron transfer between three arene molecules with azulene acting as a molecular shuttle. In this study we present an alternative electron transfer system using trans β-carotene as an electron donor in order to effectively immobilise all species except the shuttle, providing the first unambiguous evidence for radical ion mobility. In the energy transfer system we use naphthalene, a structural isomer of azulene, as the shuttle, facilitating energy transfer from a selectively excited benzophenone sensitiser to 9-cyanoanthracene. Bimolecular rate constants for all of these processes have been measured and new insights into the factors determining the rates of these reactions on silica gel have been obtained.

  1. Turnover rate, reaction order, and elementary steps for the hydrodechlorination of chlorofluorocarbon compounds on palladium catalysts

    SciTech Connect

    Thompson, C.D.; Rioux, R.M.; Chen, N.; Ribeiro, F.H.

    2000-04-13

    The rates of hydrodechlorination catalyzed by Pd supported on carbon for four chlorofluorocarbons spanned a range of 7 orders of magnitude. The rates scaled up to the bond strength of the carbon-chlorine bond for the gas-phase reactant. This finding demonstrates that the rate-determining step involves the scission of the C-Cl bond and suggests, through Polanyi and linear free-energy relationships, that rates for other compounds can be estimated if the C-Cl bond strength is known. The reaction orders for the most abundant products are approximately first-order for the chlorine-containing compound, half-order in H{sub 2}, and inverse first-order in HCl. The reaction steps consistent with these orders include a rate-determining step involving the adsorption of the chlorofluorocarbon to a single site (which could be a single surface palladium atom) and equilibrated steps between gas-phase H{sub 2}, gas-phase HCl, and adsorbed hydrogen and chlorine atoms. The rates on the supported catalysts are comparable to the ones reported before on a Pd foil, indicating that the support does not play a role in the reaction. The product distribution is independent of conversion, implying that the various products are formed from a single visit of the reactant on the surface and not from readsorption of gas-phase products. The four compounds studied were chloropentafluoroethane (CF{sub 3}-CF{sub 2}Cl), 2-chloro-1,1,1,2-tetrafluoroethane (CF{sub 3}-CFClH), 1,1-dichlorotetrafluoroethane (CF{sub 3}-CFCl{sub 2}), and 1,1,1-trichloro-2,2,2-trifluoroethane (CF{sub 3}-CCl{sub 3}).

  2. A Review of the Thermodynamic, Transport, and Chemical Reaction Rate Properties of High-temperature Air

    NASA Technical Reports Server (NTRS)

    Hansen, C Frederick; Heims, Steve P

    1958-01-01

    Thermodynamic and transport properties of high temperature air, and the reaction rates for the important chemical processes which occur in air, are reviewed. Semiempirical, analytic expressions are presented for thermodynamic and transport properties of air. Examples are given illustrating the use of these properties to evaluate (1) equilibrium conditions following shock waves, (2) stagnation region heat flux to a blunt high-speed body, and (3) some chemical relaxation lengths in stagnation region flow.

  3. Effect of aminoglycoside concentration on reaction rates of aminoglycoside-modifying enzymes.

    PubMed Central

    Bongaerts, G P; Vliegenthart, J S

    1988-01-01

    Reaction rates of several reference aminoglycoside-modifying enzymes were studied at various substrate concentrations. The resulting concentration-response curves showed wide variation in threshold concentration, in curve slope, in enzyme saturation, and in substrate inhibition. Together, the curves of a defined aminoglycoside panel yielded more specific information for each individual aminoglycoside-modifying enzyme tested than did conventional substrate profiles obtained at a single substrate concentration. PMID:2840015

  4. Actinide complexation kinetics: rate and mechanism of dioxoneptunium (V) reaction with chlorophosphonazo III

    SciTech Connect

    Fugate, G.; Feil-Jenkins, J.F.; Sullivan, J.C.; Nash, K.L.

    1996-12-01

    Rates of complex formation and dissociation in NpO{sub 2}{sup +}- Chlorophosphonazo III (2,7-bis(4-chloro-2-phosphonobenzeneazo)-1,8- dihydroxynapthalene-3,6-disulfonic acid)(CLIII) were investigated by stopped-flow spectrophotometry. Also, limited studies were made of the rates of reaction of La{sup 3+}, Eu{sup 3+}, Dy{sup 3+}, and Fe{sup 3+} with CLIII. Rate determining step in each system is an intramolecular process, the NpO{sub 2}{sup +}-CLIII reaction proceeding by a first order approach to equilibrium in the acid range from 0.1 to 1.0 M. Complex formation occurs independent of acidity, while both acid dependent and independent dissociation pathways are observed. Activation parameters for the complex formation reaction are {Delta}H=46.2{+-}0.3 kJ/m and {Delta}S=7{+-} J/mK (I=1.0 M); these for the acid dependent and independent dissociation pathways are {Delta}H=38.8{+-}0.6 kJ/m, {Delta}S=-96{+-}18 J/mK, {Delta}H=70.0{+-} kJ/m, and {Delta}S=17{+-}1 J/mK, respectively. An isokinetic relationship is observed between the activation parameters for CLIII complex formation with NpO{sub 2}{sup +}, UO{sub 2}{sup 2+}, Th{sup 4+}, and Zr{sup 4+}. Rates of CLIII complex formation reactions for Fe{sup 3+}, Zr{sup 4+}, NpO{sub 2}{sup +}, UO{sub 2}{sup 2+}, Th{sup 4+}, La{sup 3+}, Eu{sup 3+}, and Dy{sup 3+} correlate with cation radius rather than charge/radius ratio.

  5. The Rate Constant for the Reaction H + C2H5 at T = 295 - 150K

    NASA Technical Reports Server (NTRS)

    Pimentel, Andre S.; Payne, Walter A.; Nesbitt, Fred L.; Cody, Regina J.; Stief, Louis J.

    2004-01-01

    The reaction between the hydrogen atom and the ethyl (C2H3) radical is predicted by photochemical modeling to be the most important loss process for C2H5 radicals in the atmospheres of Jupiter and Saturn. This reaction is also one of the major sources for the methyl radicals in these atmospheres. These two simplest hydrocarbon radicals are the initial species for the synthesis of larger hydrocarbons. Previous measurements of the rate constant for the H + C2H5 reaction varied by a factor of five at room temperature, and some studies showed a dependence upon temperature while others showed no such dependence. In addition, the previous studies were at higher temperatures and generally higher pressures than that needed for use in planetary atmospheric models. The rate constant for the reaction H + C2H5 has been measured directly at T = 150, 202 and 295 K and at P = 1.0 Torr He for all temperatures and additionally at P = 0.5 and 2.0 Torr He at T = 202 K. The measurements were performed in a discharge - fast flow system. The decay of the C2H5 radical in the presence of excess hydrogen was monitored by low-energy electron impact mass spectrometry under pseudo-first order conditions. H atoms and C2H5 radicals were generated rapidly and simultaneously by the reaction of fluorine atoms with H2 and C2H6, respectively. The total rate constant was found to be temperature and pressure independent. The measured total rate constant at each temperature are: k(sub 1)(295K) = (1.02+/-0.24)x10(exp -10), k(sub 1)(202K) = (1.02+/-0.22)x10(exp -10) and k(sub 1)(150K) = (0.93+/-0.21)x10(exp -10), all in units of cu cm/molecule/s. The total rate constant derived from all the combined measurements is k(sub 1) = (l.03+/-0.17)x10(exp -10) cu cm/molecule/s. At room temperature our results are about a factor of two higher than the recommended rate constant and a factor of three lower than the most recently published study.

  6. Experimental results for studies of the 40Ca(α,γ)44Ti reaction rates

    NASA Astrophysics Data System (ADS)

    Robertson, Daniel; Becker, Hans-Werner; Bowers, Matt; Collon, Philippe; Goerres, Joachim; Lu, Wenting; Schmitt, Chris; Wiescher, Michael

    2011-10-01

    Observational studies of galactic γ emitters such as 44Ti have highlighted their use in nucleosynthesis studies of massive stars in their late stage stellar evolution and final explosive demise in core collapse supernova events. Models used in the simulation of such γ emitters rely heavily upon reliable reaction rates for both the creation and annihilation of these isotopes over large temperature ranges. The production of 44Ti mainly through the 40Ca(α,γ)44Ti reaction is thought to take place primarily in the α-rich freeze out phase of a core collapse supernova. However, current supernova models predict lower 44Ti to 56Ni ratios than observed, creating a need for more information about its production mechanism. A number of previous studies include prompt γ-ray measurements, recoil mass separator experiments and the use of AMS, all giving greatly different reaction rates. Aiding in the refinement of these needed rates, the results of experiments at the DTL, Bochum and NSL, Notre Dame will be presented against the backdrop of these previous measurements. Work supported by grant # 0758100 and # 0822648.

  7. Rate coefficients for reaction of OH with acetone between 202 and 395 K

    SciTech Connect

    Wollenhaupt, M.; Carl, S.A.; Horowitz, A.; Crowley, J.N.

    2000-03-30

    The kinetics of the title reaction were investigated between 202 and 395 K and at 20, 50, and 100 Torr of Ar or N{sub 2} bath gas using pulsed laser photolysis (PLP) generation of OH combined with both resonance fluorescence (RF) and laser-induced fluorescence (LIF) detection. OH was generated either by the sequential 439 nm, two-photon dissociation of NO{sub 2} in the presence of H{sub 2}, or by HONO photolysis at 351 nm. The accuracy of the rate constants obtained was enhanced by optical absorption measurements of acetone concentrations both before and after the photolysis reactor. The temperature dependence is not describe by a simple Arrhenius expression but by k{sub 1} (202--395 K) = 8.8 x 10{sup {minus}12} exp({minus}1,320/T) + 1.7 x 10{sup {minus}14} exp(423/T) cm{sup 3} s{sup {minus}1}, indicating that a simple H atom abstraction may not be the only reaction mechanism. The estimated total error (95% confidence) associated wit the rate coefficient derived from this expression is estimated as 5% and is independent of temperature. The curvature in the Arrhenius plot results in a significantly larger rate coefficient at low temperatures than obtained by extrapolation of the previous measurement and implies greater significance for the reaction with OH as a sink for acetone in the upper troposphere than presently assumed.

  8. Gas-phase reaction of ( E)-β-farnesene with ozone: Rate coefficient and carbonyl products

    NASA Astrophysics Data System (ADS)

    Kourtchev, Ivan; Bejan, Iustinian; Sodeau, John R.; Wenger, John C.

    The gas-phase ozonolysis of ( E)-β-farnesene was investigated in a 3.91 m 3 atmospheric simulation chamber at 296 ± 2 K and relative humidity of around 0.1%. The relative rate method was used to determine the reaction rate coefficient of (4.01 ± 0.17) × 10 -16 cm 3 molecule -1 s -1, where the indicated errors are two least-squares standard deviations and do not include uncertainties in the rate coefficients for the reference compounds (γ-terpinene, cis-cyclooctene and 1,5-cyclooctadiene). Gas phase carbonyl products were collected using a denuder sampling technique and analyzed with GC/MS following derivatization with O-(2,3,4,5,6-pentafluorobenzyl) hydroxylamine (PFBHA). The reaction products detected were acetone, 4-oxopentanal, methylglyoxal, 4-methylenehex-5-enal, 6-methylhept-5-en-2-one, and ( E)-4-methyl-8-methylenedeca-4,9-dienal. A detailed mechanism for the gas-phase ozonolysis of ( E)-β-farnesene is proposed, which accounts for all of the products observed in this study. The results of this work indicate that the atmospheric reaction of ( E)-β-farnesene with ozone has a lifetime of around 1 h and is another possible source of the ubiquitous carbonyls, acetone, 4-oxopentanal and 6-methylhept-5-en-2-one in the atmosphere.

  9. Material interactions with the low earth orbital environment Accurate reaction rate measurements

    NASA Technical Reports Server (NTRS)

    Visentine, J. T.; Leger, L. J.

    1985-01-01

    Interactions between spacecraft surfaces and atomic oxygen within the low earth orbital (LEO) environment have been observed and measured during Space Shuttle flights over the past 3 yr. The results of these experiments have demonstrated that interaction rates for many materials proposed for spacecraft applications are high and that protective coatings must be developed to enable long-lived operation of spacecraft structures in the LEO environment. A flight experiment discussed herein uses the Space Shuttle as an orbiting exposure laboratory to obtain accurate reaction rate measurements for materials typically used in spacecraft construction. An ion-neutral mass spectrometer, installed in the Orbiter cargo bay, will measure diurnal ambient oxygen densities while material samples are exposed at low altitude (222 km) to the orbital environment. From in situ atomic oxygen density information and postflight material recession measurements, accurate reaction rates can be derived to update the Space Station materials interaction data base. Additionally, gases evolved from a limited number of material surfaces subjected to direct oxygen impingement will be identified using the mass spectrometer. These measurements will aid in mechanistic definitions of chemical reactions which cause atom-surface interactions and in validating results of upcoming degradation studies conducted in ground-based neutral beam laboratories.

  10. NMR studies of the equilibria and reaction rates in aqueous solutions of formaldehyde.

    PubMed

    Rivlin, Michal; Eliav, Uzi; Navon, Gil

    2015-03-26

    Formaldehyde has an important role in the chemical industry and in biological sciences. In dilute aqueous solutions of formaldehyde only traces of the molecular formaldehyde are present and the predominant species are methylene glycol and in lower concentrations, dimethylene glycol. The chemical equilibria and reaction rates of the hydration of formaldehyde in H2O and D2O solutions at low concentrations were studied by (1)H and (13)C NMR at various conditions of pH (1.8-7.8) and temperature (278-333 K). These measurements became possible by direct detection of formaldehyde (13)C and (1)H peaks. The equilibrium and rate constants of the dimerization reaction of methylene glycol were also measured. The rate constants for both the hydration and the dimerization reactions were measured by a new version of the conventional selective inversion transfer method. This study, together with previous published work, completes the description of dynamics and equilibria of all the processes occurring in dilute aqueous formaldehyde solutions.

  11. Rates and mechanisms of the atomic oxygen reaction with nickel at elevated temperatures

    NASA Technical Reports Server (NTRS)

    Christian, J. D.; Gilbreath, W. P.

    1973-01-01

    The oxidation of nickel by atomic oxygen at pressure from 1 to 45 N/sq m between 1050 and 1250 K was investigated. In these ranges, the oxidation was found to follow the parobolic rate law, viz., K sub p = 0.0000114 exp(-13410/T) g squared/cm4/sec for films of greater than 1 micron thickness and was pressure independent. The activation enthalpy for the oxidation reaction was 112 + or - 11 kj/mole (27 + or - 3 kcal/mole). Of a number of possible mechanisms and defect structures considered, it was shown that the most likely was a saturated surface defect model for atomic oxidation, based on reaction activation enthalpies, impurity effects, pressure independence, and magnitudes of rates. A model judged somewhat less likely was one having doubly ionized cationic defects rate controlling in both atomic and molecular oxygen. From comparisons of the appropriate processes, the following enthalpy values were derived: enthalpy of activation (Ni diffusion in Ni0) = 110 + or - 30 kj/mole and standard enthalpy change for reaction formation (doubly ionized cation vacancies in Ni0 from atomic oxygen)= -9 + or - 25 kj/mole.

  12. Relative rate constants for the reactions of OH with methane and methyl chloroform

    NASA Technical Reports Server (NTRS)

    Demore, W. B.

    1992-01-01

    Atmospheric lifetimes of methane and methyl chloroform are largely determined by the rates of their reactions with hydroxyl radical. The relative lifetimes for this loss path are inversely proportional to the ratio of the corresponding rate coefficients. The relative rate constants were measured in a slow-flow, temperature-controlled photochemical reactor, and were based on rates of disappearance of the parent compounds as measured by FTIR spectroscopy. The temperature range was 277-356 K. Hydroxyl radicals were generated by 254 nm photolysis of O3 in the presence of water vapor. The preferred Arrhenius expression for the results is k(CH3CCl3)/k(CH4) = 0.62 exp (291/T), corresponding to a value of 1.65 at 298 K and 1.77 at 277 K. The respective uncertainties are 5 and 7 percent.

  13. An investigation of the relationships between rate and driving force in simple uncatalysed and enzyme-catalysed reactions with applications of the findings to chemiosmotic reactions.

    PubMed Central

    Stoner, C D

    1992-01-01

    Both the rate and the driving force of a reaction can be expressed in terms of the concentrations of the reactants and products. Consequently, rate and driving force can be expressed as a function of each other. This has been done for a single-reactant, single-product, uncatalysed reaction and its enzyme-catalysed equivalent using the van't Hoff reaction isotherm and Haldane's generalized Michaelis-Menten rate equation, the primary objective being explanation of the exponential and sigmoidal relationships between reaction rate and delta mu H+ commonly observed in studies on chemiosmotic reactions. Acquisition of a purely thermodynamic rate vs. driving-force relationship requires recognition of the intensive and extensive variables and maintenance of the extensive variables constant. This relationship is identical for the two reactions and is hyperbolic or sigmoidal, depending on whether the equilibrium constant is smaller or larger than unity. In the case of the catalysed reaction, acquisition of the purely thermodynamic relationship requires the assumption that the enzyme be equally effective in catalysing the forward and backward reactions. If this condition is not met, the relationship is modified by the enzyme in a manner which can be determined from the ratio of the Michaelis constants of the reactant and product. Under conditions of enzyme saturation in respect to reactant+product, the rate vs. driving-force relationship is determined exclusively by the thermodynamics of the reaction and a single kinetic parameter, the magnitude of which is determined by the relative effectiveness of the enzyme in catalysing the forward and backward reactions. In view of this finding, it is pointed out that, since the catalytic components of chemiosmotic reactions appear to be saturated with respect to the reactant-product pair that is varied in experimental rate vs. delta mu H+ determinations, and that, since many complex enzymic reactions conform to the simple Michaelis

  14. Assessing the Effects of New Reaction Rates and Convection Theory on Studies of Supernova Progenitors

    NASA Astrophysics Data System (ADS)

    Starrfield, Sumner

    We request funding to carry out a systematic evaluation of nuclear reaction rates and convection on the pre-explosion evolution of core-collapse (SN II) and thermonuclear (SN Ia) supernovae. We will use MESA (Modules for Experiments in Stellar Astrophysics) a new stellar evolution computer code that is co-authored by Co-PI Timmes. One goal of this proposal is to determine the effects of new thermonuclear reaction rates, taken from the next-generation library STARLIB developed by Co-PI Iliadis, on the resulting evolution. Another goal is to test the effects of the latest convection theory, microphysics changes, and numerical techniques on the results. STARLIB is a first-of-its-kind nuclear reaction rate library and, unlike all other libraries, it contains the full reaction rate probability densities at all stellar temperatures. It is publicly available as of June 2013. Consequently, we are now in a unique position to model stellar evolution and nucleosynthesis in a quantitative manner that makes predictions for key observations by NASA ground-based and satellite observatories. We will use two complementary strategies. First, we will take the modern and multiple prescriptions of convection that are implemented in MESA, together with the recommended thermonuclear reaction rates provided by STARLIB, to generate new hydrodynamic simulations of SN Ia and SN II progenitor evolution. Second, we will take the temperature-density-time trajectories from the evolutionary results and do Monte Carlo post-processing nucleosynthesis calculations by sampling over the reaction rate probability densities. This procedure could not be applied previously and has only become feasible with the availability of STARLIB. Calculations of pre-supernova evolution with the STARLIB reaction rates and new convection prescriptions will provide, for the first time, statistically rigorous estimates for both their evolutionary structures and resulting nucleosynthesis. Significant insight into pre

  15. Reaction rate of a composite core-shell nanoreactor with multiple nanocatalysts.

    PubMed

    Galanti, Marta; Fanelli, Duccio; Angioletti-Uberti, Stefano; Ballauff, Matthias; Dzubiella, Joachim; Piazza, Francesco

    2016-07-27

    We present a detailed theory for the total reaction rate constant of a composite core-shell nanoreactor, consisting of a central solid core surrounded by a hydrogel layer of variable thickness, where a given number of small catalytic nanoparticles are embedded at prescribed positions and are endowed with a prescribed surface reaction rate constant. Besides the precise geometry of the assembly, our theory accounts explicitly for the diffusion coefficients of the reactants in the hydrogel and in the bulk as well as for their transfer free energy jump upon entering the hydrogel shell. Moreover, we work out an approximate analytical formula for the overall rate constant, which is valid in the physically relevant range of geometrical and chemical parameters. We discuss in depth how the diffusion-controlled part of the rate depends on the essential variables, including the size of the central core. In particular, we derive some simple rules for estimating the number of nanocatalysts per nanoreactor for an efficient catalytic performance in the case of small to intermediate core sizes. Our theoretical treatment promises to provide a very useful and flexible tool for the design of superior performing nanoreactor geometries with optimized nanoparticle load.

  16. Reaction rate of a composite core-shell nanoreactor with multiple nanocatalysts.

    PubMed

    Galanti, Marta; Fanelli, Duccio; Angioletti-Uberti, Stefano; Ballauff, Matthias; Dzubiella, Joachim; Piazza, Francesco

    2016-07-27

    We present a detailed theory for the total reaction rate constant of a composite core-shell nanoreactor, consisting of a central solid core surrounded by a hydrogel layer of variable thickness, where a given number of small catalytic nanoparticles are embedded at prescribed positions and are endowed with a prescribed surface reaction rate constant. Besides the precise geometry of the assembly, our theory accounts explicitly for the diffusion coefficients of the reactants in the hydrogel and in the bulk as well as for their transfer free energy jump upon entering the hydrogel shell. Moreover, we work out an approximate analytical formula for the overall rate constant, which is valid in the physically relevant range of geometrical and chemical parameters. We discuss in depth how the diffusion-controlled part of the rate depends on the essential variables, including the size of the central core. In particular, we derive some simple rules for estimating the number of nanocatalysts per nanoreactor for an efficient catalytic performance in the case of small to intermediate core sizes. Our theoretical treatment promises to provide a very useful and flexible tool for the design of superior performing nanoreactor geometries with optimized nanoparticle load. PMID:27411947

  17. Equation of state and reaction rate for condensed-phase explosives

    NASA Astrophysics Data System (ADS)

    Wescott, B. L.; Stewart, D. Scott; Davis, W. C.

    2005-09-01

    The wide-ranging equation of state is a nonideal equation of state based on empirical fitting forms argued from thermodynamic considerations that yield the proper physical features of detonation. The complete equation of state forms are presented and the equation of state and a reaction rate are calibrated for the condensed-phase explosive PBX-9502. Experimental overdriven Hugoniot data are used to calibrate the products equation of state off the principal isentrope passing through the Chapman-Jouguet state. Shock Hugoniot data are used to calibrate the reactants equation of state. The normal detonation shock speed-shock curvature data (Dn-κ) from rate-stick measurements and shock initiation data from wedge tests are used to calibrate the reaction rate. Simulations are carried out that predict detailed particle velocity transients that are measured experimentally with embedded electromagnetic gauge measurements from gas-gun experiments. Multidimensional simulations of steady detonation in a right circular cylinder rate stick are carried out and compared with experiment.

  18. Cluster states and container picture in light nuclei, and triple-alpha reaction rate

    NASA Astrophysics Data System (ADS)

    Funaki, Yasuro

    2015-04-01

    The excited states in 12C are investigated by using an extended version of the so- called Tohsaki-Horiuchi-Schuck-Röpke (THSR) wave function, where both the 3α condensate and 8Be + α cluster asymptotic configurations are included. We focus on the structures of the “Hoyle band” states, 2+2, and 4+2 states, which are recently observed above the Hoyle state, and of the 0+3 and 0+4 states, which are also quite recently identified in experiment. We show that the Hoyle band is not simply considered to be the 8Be(0+) + α rotation as suggested by previous cluster model calculations, nor to be a rotation of a rigid-body triangle-shaped object composed of the 3α particles. We also discuss the rate of the triple-alpha radiative capture reaction, applyng the imaginary-time method. Results of the triple-alpha reaction rate are consistent with NACRE rate for both high (≈ 109K) and low (≈ 107 K) temperatures. We show that the rate of the imaginary-time calculation in coupled-channels approach has a large enhancement for low temperatures if we truncate the number of channels.

  19. A study of the photocatalytic effects of aqueous suspensions of platinized semiconductor materials on the reaction rates of candidate redox reactions

    NASA Technical Reports Server (NTRS)

    Miles, A. M.

    1982-01-01

    The effectiveness of powdered semiconductor materials in photocatalyzing candidate redox reactions was investigated. The rate of the photocatalyzed oxidation of cyanide at platinized TiO2 was studied. The extent of the cyanide reaction was followed directly using an electroanalytical method (i.e. differential pulse polarography). Experiments were performed in natural or artificial light. A comparison was made of kinetic data obtained for photocatalysis at platinized powders with rate data for nonplatinized powders.

  20. Experimental and Estimated Rate Constants for the Reactions of Hydroxyl Radicals with Several Halocarbons

    NASA Technical Reports Server (NTRS)

    DeMore, W.B.

    1996-01-01

    Relative rate experiments are used to measure rate constants and temperature dependencies of the reactions of OH with CH3F (41), CH2FCl (31), CH2BrCl (30B1), CH2Br2 (3OB2), CHBr3 (2OB3), CF2BrCHFCl (123aBl(alpha)), and CF2ClCHCl2 (122). Rate constants for additional compounds of these types are estimated using an empirical rate constant estimation method which is based on measured rate constants for a wide range of halocarbons. The experimental data are combined with the estimated and previously reported rate constants to illustrate the effects of F, Cl, and Br substitution on OH rate constants for a series of 19 halomethanes and 25 haloethanes. Application of the estimation technique is further illustrated for some higher hydrofluorocarbons (HFCs), including CHF2CF2CF2CF2H (338pcc), CF3CHFCHFCF2CF3 (43-10mee), CF3CH2CH2CF3 (356ffa), CF3CH2CF2CH2CF3 (458mfcf), CF3CH2CHF2 (245fa), and CF3CH2CF2CH3 (365mfc). The predictions are compared with literature data for these compounds.

  1. Measuring OH Reaction Rate Constants and Estimating the Atmospheric Lifetimes of Trace Gases.

    NASA Astrophysics Data System (ADS)

    Orkin, Vladimir; Kurylo, Michael

    2015-04-01

    Reactions with hydroxyl radicals and photolysis are the main processes dictating a compound's residence time in the atmosphere for a majority of trace gases. In case of very short-lived halocarbons their reaction with OH dictates both the atmospheric lifetime and active halogen release. Therefore, the accuracy of OH kinetic data is of primary importance for the comprehensive modeling of a compound's impact on the atmosphere, such as in ozone depletion (i.e., the Ozone Depletion Potential, ODP) and climate change (i.e., the Global Warming Potential, GWP), each of which are dependent on the atmospheric lifetime of the compound. We have demonstrated the ability to conduct very high accuracy determinations of OH reaction rate constants over the temperature range of atmospheric interest, thereby decreasing the uncertainty of kinetic data to 2-3%. The atmospheric lifetime of a well-mixed compound due to its reaction with tropospheric hydroxyl radicals can be estimated by using a simple scaling procedure that is based on the results of field observations of methyl chloroform concentrations and detailed modeling of the OH distribution in the atmosphere. The currently available modeling results of the atmospheric fate of various trace gases allow for an improved understanding of the ability and accuracy of simplified semi-empirical estimations of atmospheric lifetimes. These aspects will be illustrated in this presentation for a variety of atmospheric trace gases.

  2. Measuring OH Reaction Rate Constants and Estimating the Atmospheric Lifetimes of Trace Gases.

    NASA Astrophysics Data System (ADS)

    Orkin, V. L.; Kurylo, M. J., III

    2014-12-01

    Reactions with hydroxyl radicals and photolysis are the main processes dictating a compound's residence time in the atmosphere for a majority of trace gases. In case of very short-lived halocarbons their reaction with OH dictates both the atmospheric lifetime and active halogen release. Therefore, the accuracy of OH kinetic data is of primary importance for the comprehensive modeling of a compound's impact on the atmosphere, such as in ozone depletion (i.e., the Ozone Depletion Potential, ODP) and climate change (i.e., the Global Warming Potential, GWP), each of which are dependent on the atmospheric lifetime of the compound. We have demonstrated the ability to conduct very high accuracy determinations of OH reaction rate constants over the temperature range of atmospheric interest, thereby decreasing the uncertainty of kinetic data to 2-3%. The atmospheric lifetime of a tropospherically well-mixed compound due to its reaction with tropospheric hydroxyl radicals can be estimated by using a simple scaling procedure that is based on the results of field observations of methyl chloroform concentrations and detailed modeling of the OH distribution in the atmosphere. The currently available modeling results of the atmospheric fate of various trace gases allow for an improved understanding of the ability and accuracy of simplified semi-empirical estimations of atmospheric lifetimes. These aspects will be illustrated in this presentation for a variety of atmospheric trace gases.

  3. Effective reaction rate for porous surfaces under strong shear: Beyond Damkohler

    NASA Astrophysics Data System (ADS)

    Shaqfeh, Eric S. G.; Shah, Preyas

    2014-11-01

    Traditonally, surface reactive porous media are modeled via an effective reaction/mass transfer rate based on the original ansatz of Damkohler, i.e, reaction limited transport at the microscale in the absence of flow. We are interested in modeling the microscale mass transfer to porous surfaces occuring in leaky tumor vasculature, where the Damkohler number can be O(1) and the Peclet number may be large. We model it as a uniform bath of a species in unbound shear flow over a wall with first order reactive circular patches (pores). We analyze the flux through a single pore using both analytic and boundary element simulations and observe the formation of a 3-D depletion region (wake) downstream of the pore. Wake sharing between adjacent pores in a multibody setting such as 2 pores aligned in the shear direction leads to a smaller flux per pore. Obtaining this interaction length scale and using the renormalized periodic Green's function, we study the flux through a periodic and disordered distribution of pores. This flux appears as the reaction rate in an effective boundary condition, valid up to non-dilute pore area fractions, and applicable at a wall-normal effective slip distance. It replaces the details of the surface and can be used directly in large scale physics simulations.

  4. Reaction kinetics, P-T-t paths and rates of tectonic processes

    SciTech Connect

    Bohlen, S.R.; Hankins, W.B.; Eckert, J.O. Jr.; Kirby, S.H.; Liu, J. ); Hacker, B.R.; Mosenfelder, J.L. . Dept. of Geology)

    1992-01-01

    The interpretation of portions of P-T-time (t) paths in metamorphic rocks assumes that continuous and discontinuous reactions record local equilibrium as P-T conditions change, implying that the kinetics of many reactions are rapid relative to dT/dt and dP/dt. Occurrence of eclogite veins in granulites from Bergen, Norway as well as occurrences of coesite and diamond in crustal rocks imply that, under certain conditions, this assumption is wrong. Knowledge of the kinetics of important reactions under appropriate conditions would provide limits on the duration of relatively narrowly defined P-T conditions, allow inference of the rates of exhumation of rocks containing high-pressure phases, and allow the calculation of the time required for the conversion of gabbro to eclogite in the lower crust as a function of P-T-t. The authors are currently assessing the rates of key phase transformations: calcite to aragonite, albite to jadeite + quartz, coesite to quartz, opx[sub Fs[sup 80

  5. Contribution of 19F resonances on 18O( p, α)15N reaction rate

    NASA Astrophysics Data System (ADS)

    Benmeslem, Meriem; Chafa, Azzedine; Barhoumi, Slimane; Tribeche, Mouloud

    2014-08-01

    The 18O( p, α)15N reaction influences the isotopes production such as 19F, 18O, and 15N which can be used to test the models of stellar evolution. 19F is synthesized in both asymptotic giant branch (AGB) and metal-rich Wolf-Rayet (WR) stars. Using R-matrix theory we allow new values of resonances parameters in 19F. We show that the most important contribution to the differential and total cross section at low energies, comes from the levels in 19F situated at resonances energies E R =151, 680 and 840 keV with spin and parity 1/2+. The total width of the 680 keV resonance is badly known. So, we have focused on this broad resonance corresponding to the 8.65 MeV level in 19F. We delimit the temperature range in which each resonance contribution to the total reaction rate occurs by analyzing the ratio ( N A < σν> i / N A < σν>). This allowed us to show that the 680 and 840 keV broad resonances strongly dominate the reaction rate over the stellar temperature range T 9=0.02-0.06 and T 9=0.5-5. Finally, these results were compared to NACRE and Iliadis astrophysical compilations.

  6. Modeling microbial reaction rates in a submarine hydrothermal vent chimney wall

    NASA Astrophysics Data System (ADS)

    LaRowe, Douglas E.; Dale, Andrew W.; Aguilera, David R.; L'Heureux, Ivan; Amend, Jan P.; Regnier, Pierre

    2014-01-01

    The fluids emanating from active submarine hydrothermal vent chimneys provide a window into subseafloor processes and, through mixing with seawater, are responsible for steep thermal and compositional gradients that provide the energetic basis for diverse biological communities. Although several models have been developed to better understand the dynamic interplay of seawater, hydrothermal fluid, minerals and microorganisms inside chimney walls, none provide a fully integrated approach to quantifying the biogeochemistry of these hydrothermal systems. In an effort to remedy this, a fully coupled biogeochemical reaction-transport model of a hydrothermal vent chimney has been developed that explicitly quantifies the rates of microbial catalysis while taking into account geochemical processes such as fluid flow, solute transport and oxidation-reduction reactions associated with fluid mixing as a function of temperature. The metabolisms included in the reaction network are methanogenesis, aerobic oxidation of hydrogen, sulfide and methane and sulfate reduction by hydrogen and methane. Model results indicate that microbial catalysis is generally fastest in the hottest habitable portion of the vent chimney (77-102 °C), and methane and sulfide oxidation peak near the seawater-side of the chimney. The fastest metabolisms are aerobic oxidation of H2 and sulfide and reduction of sulfate by H2 with maximum rates of 140, 900 and 800 pmol cm-3 d-1, respectively. The maximum rate of hydrogenotrophic methanogenesis is just under 0.03 pmol cm-3 d-1, the slowest of the metabolisms considered. Due to thermodynamic inhibition, there is no anaerobic oxidation of methane by sulfate (AOM). These simulations are consistent with vent chimney metabolic activity inferred from phylogenetic data reported in the literature. The model developed here provides a quantitative approach to describing the rates of biogeochemical transformations in hydrothermal systems and can be used to constrain the

  7. Quantifying metabolic rates in submarine hydrothermal vent chimneys: A reaction transport model

    NASA Astrophysics Data System (ADS)

    LaRowe, D.; Dale, A.; Aguilera, D.; Amend, J. P.; Regnier, P.

    2012-12-01

    The fluids emanating from active submarine hydrothermal vent chimneys provide a window into subseafloor processes and, through mixing with seawater, are responsible for steep thermal and compositional gradients that provide the energetic basis for diverse biological communities. Although several models have been developed to better understand the dynamic interplay of seawater, hydrothermal fluid, minerals and microorganisms inside chimney walls, none provide a fully integrated approach to quantifying the biogeochemistry of these hydrothermal systems. In an effort to remedy this, a fully coupled biogeochemical reaction transport model of a hydrothermal vent chimney has been developed that explicitly quantifies the rate of microbial catalysis while taking into account geochemical processes such as fluid flow, solute transport and oxidation-reduction reactions associated with fluid mixing as a function of temperature. Methanogenesis, hydrogen oxidation by oxygen and sulfate, sulfide oxidation by oxygen and methane oxidation by oxygen and sulfate are the metabolisms included in the reaction network. Model results indicate that microbial catalysis is fastest in the hottest habitable portion of the vent chimney except for methane oxidation by oxygen, which peaks near the seawater-side of the chimney at 20 nmol /cm^3 yr. The dominant metabolisms in the chimney are hydrogen oxidation by sulfate and oxygen and sulfide oxidation at peak rates 3200 , 300 and 900 nmol /cm^3 yr, respectively. The maximum rate of hydrogenotrophic methanogensis is just under 0.07 nmol /cm^3 yr, the slowest of the metabolisms considered. Due to thermodynamic inhibition, there is no anaerobic oxidation of methane by sulfate (AOM). The model developed here provides a quantitative approach to understanding the rates of biogeochemical transformations in hydrothermal systems and can be used to better understand the role of microbial activity in the deep subsurface.

  8. THE IMPACT OF HELIUM-BURNING REACTION RATES ON MASSIVE STAR EVOLUTION AND NUCLEOSYNTHESIS

    SciTech Connect

    West, Christopher; Heger, Alexander; Austin, Sam M. E-mail: alexander.heger@monash.edu

    2013-05-20

    We study the sensitivity of presupernova evolution and supernova nucleosynthesis yields of massive stars to variations of the helium-burning reaction rates within the range of their uncertainties. The current solar abundances from Lodders are used for the initial stellar composition. We compute a grid of 12 initial stellar masses and 176 models per stellar mass to explore the effects of independently varying the {sup 12}C({alpha}, {gamma}){sup 16}O and 3{alpha} reaction rates, denoted R{sub {alpha},12} and R{sub 3{alpha}}, respectively. The production factors of both the intermediate-mass elements (A = 16-40) and the s-only isotopes along the weak s-process path ({sup 70}Ge, {sup 76}Se, {sup 80}Kr, {sup 82}Kr, {sup 86}Sr, and {sup 87}Sr) were found to be in reasonable agreement with predictions for variations of R{sub 3{alpha}} and R{sub {alpha},12} of {+-}25%; the s-only isotopes, however, tend to favor higher values of R{sub 3{alpha}} than the intermediate-mass isotopes. The experimental uncertainty (one standard deviation) in R{sub 3{alpha}}(R{sub {alpha},12}) is approximately {+-}10%({+-}25%). The results show that a more accurate measurement of one of these rates would decrease the uncertainty in the other as inferred from the present calculations. We also observe sharp changes in production factors and standard deviations for small changes in the reaction rates, due to differences in the convection structure of the star. The compactness parameter was used to assess which models would likely explode as successful supernovae, and hence contribute explosive nucleosynthesis yields. We also provide the approximate remnant masses for each model and the carbon mass fractions at the end of core-helium burning as a key parameter for later evolution stages.

  9. A comprehensive model to determine the effects of temperature and species fluctuations on reaction rates in turbulent reacting flows

    NASA Technical Reports Server (NTRS)

    Chinitz, W.

    1986-01-01

    A computationally-viable model describing the interaction between fluid-mechanical turbulence and finite-rate combustion reactions, principally in high-speed flows was developed. Chemical kinetic mechanisms, complete and global, were developed describing the finite rate reaction of fuels of interest to NASA. These fuels included principally hydrogen and silane, although a limited amount of work involved hydrocarbon fuels as well.

  10. Non-explosive hydrogen and helium burnings: abundance predictions from the NACRE reaction rate compilation

    NASA Astrophysics Data System (ADS)

    Arnould, M.; Goriely, S.; Jorissen, A.

    1999-07-01

    The abundances of the isotopes of the elements from C to Al produced by the non-explosive CNO, NeNa and MgAl modes of hydrogen burning, as well as by helium burning, are calculated with the thermonuclear rates recommended by the European compilation of reaction rates for astrophysics (NACRE). The impact of nuclear physics uncertainties on the derived abundances is discussed in the framework of a simple parametric astrophysical model. These calculations have the virtue of being a guide in the selection of the nuclear uncertainties that have to be duly analyzed in detailed model stars, particularly in order to perform meaningful confrontations between abundance observations and predictions. They are also hoped to help nuclear astrophysicists pinpointing the rate uncertainties that have to be reduced most urgently. An electronic version of this paper, with colour figures, is available at {\\it http://astro.ulb.ac.be}

  11. CNO and 6Li from big-bang nucleosynthesis-Impact of unmeasured reaction rates

    NASA Astrophysics Data System (ADS)

    Madsen, Jes

    1990-04-01

    Rates for a number of nuclear reactions not studied in the laboratory are crucial for predicting the outcome of big-bang nucleosynthesis. It is shown in the present investigation that the mass fraction of CNO elements produced in neutron-rich zones in inhomogeneous nucleosynthesis (other parameters fixed) spans almost 3 orders of magnitude depending on the unmeasured rate of 8Li(α,n)11B. The possibility of producing observable quantities of primordial 6Li via 3H(3He,γ)6Li is discussed for the first time, and finally it is reported that helium production through 2H(2H, γ)4He is negligible in all nucleosynthesis scenarios, in spite of recent measurements increasing the low-energy rate by a factor 32.

  12. A reaction-diffusion-based coding rate control mechanism for camera sensor networks.

    PubMed

    Yamamoto, Hiroshi; Hyodo, Katsuya; Wakamiya, Naoki; Murata, Masayuki

    2010-01-01

    A wireless camera sensor network is useful for surveillance and monitoring for its visibility and easy deployment. However, it suffers from the limited capacity of wireless communication and a network is easily overflown with a considerable amount of video traffic. In this paper, we propose an autonomous video coding rate control mechanism where each camera sensor node can autonomously determine its coding rate in accordance with the location and velocity of target objects. For this purpose, we adopted a biological model, i.e., reaction-diffusion model, inspired by the similarity of biological spatial patterns and the spatial distribution of video coding rate. Through simulation and practical experiments, we verify the effectiveness of our proposal. PMID:22163620

  13. Evaluation of electron capture reaction rates in Ni isotopes in stellar environments

    SciTech Connect

    Suzuki, Toshio; Honma, Michio; Mao, Helene; Otsuka, Takaharu; Kajino, Toshitaka

    2011-04-15

    Electron capture rates in Ni isotopes are studied in stellar environments, that is, at high densities and high temperatures during the core-collapse and postbounce explosive nucleosynthesis in supernovae. Reaction rates in {sup 58}Ni and {sup 60}Ni, as well as in {sup 56}Ni, {sup 62}Ni, and {sup 64}Ni, are evaluated by shell-model calculations with the use of a new shell-model Hamiltonian in the fp shell, GXPF1J. While the previous shell-model calculations failed to reproduce the measured peaks of Gamow-Teller strength in {sup 58}Ni and {sup 60}Ni, the present new Hamiltonian is found to reproduce them very well, as well as the capture rates obtained from the observed strengths. Strengths and energies of the Gamow-Teller transitions in {sup 56}Ni, {sup 62}Ni, and {sup 64}Ni are also found to be consistent with the observations.

  14. A Reaction-Diffusion-Based Coding Rate Control Mechanism for Camera Sensor Networks

    PubMed Central

    Yamamoto, Hiroshi; Hyodo, Katsuya; Wakamiya, Naoki; Murata, Masayuki

    2010-01-01

    A wireless camera sensor network is useful for surveillance and monitoring for its visibility and easy deployment. However, it suffers from the limited capacity of wireless communication and a network is easily overflown with a considerable amount of video traffic. In this paper, we propose an autonomous video coding rate control mechanism where each camera sensor node can autonomously determine its coding rate in accordance with the location and velocity of target objects. For this purpose, we adopted a biological model, i.e., reaction-diffusion model, inspired by the similarity of biological spatial patterns and the spatial distribution of video coding rate. Through simulation and practical experiments, we verify the effectiveness of our proposal. PMID:22163620

  15. Linear free energy relationships between aqueous phase hydroxyl radical reaction rate constants and free energy of activation.

    PubMed

    Minakata, Daisuke; Crittenden, John

    2011-04-15

    The hydroxyl radical (HO(•)) is a strong oxidant that reacts with electron-rich sites on organic compounds and initiates complex radical chain reactions in aqueous phase advanced oxidation processes (AOPs). Computer based kinetic modeling requires a reaction pathway generator and predictions of associated reaction rate constants. Previously, we reported a reaction pathway generator that can enumerate the most important elementary reactions for aliphatic compounds. For the reaction rate constant predictor, we develop linear free energy relationships (LFERs) between aqueous phase literature-reported HO(•) reaction rate constants and theoretically calculated free energies of activation for H-atom abstraction from a C-H bond and HO(•) addition to alkenes. The theoretical method uses ab initio quantum mechanical calculations, Gaussian 1-3, for gas phase reactions and a solvation method, COSMO-RS theory, to estimate the impact of water. Theoretically calculated free energies of activation are found to be within approximately ±3 kcal/mol of experimental values. Considering errors that arise from quantum mechanical calculations and experiments, this should be within the acceptable errors. The established LFERs are used to predict the HO(•) reaction rate constants within a factor of 5 from the experimental values. This approach may be applied to other reaction mechanisms to establish a library of rate constant predictions for kinetic modeling of AOPs. PMID:21410278

  16. Accurate quantum thermal rate constants for the three-dimensional H+H2 reaction

    NASA Astrophysics Data System (ADS)

    Park, Tae Jun; Light, J. C.

    1989-07-01

    The rate constants for the three-dimensional H+H2 reaction on the Liu-Siegbahn-Truhlar-Horowitz (LSTH) surface are calculated using Pack-Parker hyperspherical (APH) coordinates and a C2v symmetry adapted direct product discrete variable representation (DVR). The C2v symmetry decomposition and the parity decoupling on the basis are performed for the internal coordinate χ. The symmetry decomposition results in a block diagonal representation of the flux and Hamiltonian operators. The multisurface flux is introduced to represent the multichannel reactive flux. The eigenvalues and eigenvectors of the J=0 internal Hamiltonian are obtained by sequential diagonalization and truncation. The individual symmetry blocks of the flux operator are propagated by the corresponding blocks of the Hamiltonian, and the J=0 rate constant k0(T) is obtained as a sum of the rate constants calculated for each block. k0(T) is compared with the exact k0(T) obtained from thermal averaging of the J=0 reaction probabilities; the errors are within 5%-20% up to T=1500 K. The sequential diagonalization-truncation method reduces the size of the Hamiltonian greatly, but the resulting Hamiltonian matrix still describes the time evolution very accurately. For the J≠0 rate constant calculations, the truncated internal Hamiltonian eigenvector basis is used to construct reduced (JKJ) blocks of the Hamiltonian. The individual (JKJ) blocks are diagonalized neglecting Coriolis coupling and treating the off-diagonal KJ±2 couplings by second order perturbation theory. The full wave function is parity decoupled. The rate constant is obtained as a sum over J of (2J+1)kJ(T). The time evolution of the flux for J≠0 is again very accurately described to give a well converged rate constant.

  17. Estimates of neutron reaction rates in three portable He-3 proportional counters

    SciTech Connect

    Descalle, M; Labov, S

    2007-03-01

    The goal of this study is to obtain Monte Carlo estimates of neutron reaction rates for the {sup 3}He(n,p){sup 3}H reaction in two portable He-3 proportional counters in several configurations to quantify contributions from the environment, and optimize the tube characteristics. The smallest tube (0.5-inch diameter, 2-inch long, P = 10 atm) will not meet requirements. The largest tube (1-inch diameter, 4-inch long, P = 6 or 10 atm) will meet requirements and the tube length could be decreased to 2-inch at 6 atm and 1-inch at 10 atm. The 'medium' tube (3/4-inch diameter, 2-inch long, P = 10 atm) will meet requirements for the parallelepiped body, but will not for the cylindrical body.

  18. Rate of reaction of the hydrogen atom with nitrous oxide in ambient water

    NASA Astrophysics Data System (ADS)

    Kazmierczak, Lukasz; Swiatla-Wojcik, Dorota; Szala-Bilnik, Joanna; Wolszczak, Marian

    2016-08-01

    The reaction of the hydrogen atom with nitrous oxide has been investigated by pulse radiolysis of N2O-saturated 0.1 M HCl solution at room temperature (24±1 °C). The value of (9±2)×104 M-1 s-1 obtained for the reaction rate constant is between the early estimates 1×104 M-1 s-1 by Czapski and Jortner (1960) and 4.3×105 M-1 s-1 by Thomas (1969), and is much lower than 2×106 M-1 s-1 used recently (Janik et al., 2007; Ismail et al., 2013; Liu et al., 2015; Meesungnoen et al., 2015).

  19. A comprehensive model to determine the effects of temperature and species fluctuations on reaction rates in turbulent reacting flows

    NASA Technical Reports Server (NTRS)

    Foy, E.; Ronan, G.; Chinitz, W.

    1982-01-01

    A principal element to be derived from modeling turbulent reacting flows is an expression for the reaction rates of the various species involved in any particular combustion process under consideration. A temperature-derived most-likely probability density function (pdf) was used to describe the effects of temperature fluctuations on the Arrhenius reaction rate constant. A most-likely bivariate pdf described the effects of temperature and species concentrations fluctuations on the reaction rate. A criterion is developed for the use of an "appropriate" temperature pdf. The formulation of models to calculate the mean turbulent Arrhenius reaction rate constant and the mean turbulent reaction rate is considered and the results of calculations using these models are presented.

  20. A kinetic-theory approach for computing chemical-reaction rates in upper-atmosphere hypersonic flows.

    PubMed

    Gallis, Michael A; Bond, Ryan B; Torczynski, John R

    2009-09-28

    Recently proposed molecular-level chemistry models that predict equilibrium and nonequilibrium reaction rates using only kinetic theory and fundamental molecular properties (i.e., no macroscopic reaction-rate information) are investigated for chemical reactions occurring in upper-atmosphere hypersonic flows. The new models are in good agreement with the measured Arrhenius rates for near-equilibrium conditions and with both measured rates and other theoretical models for far-from-equilibrium conditions. Additionally, the new models are applied to representative combustion and ionization reactions and are in good agreement with available measurements and theoretical models. Thus, molecular-level chemistry modeling provides an accurate method for predicting equilibrium and nonequilibrium chemical-reaction rates in gases.

  1. The effect of a mechanical force on quantum reaction rate: quantum Bell formula.

    PubMed

    Makarov, Dmitrii E

    2011-11-21

    The purpose of this note is to derive a quantum-mechanical analog of Bell's formula, which describes the sensitivity of a chemical reaction to a mechanical pulling force. According to this formula, the reaction rate depends exponentially on the force f, i.e., k(f) ~ exp(f/f(c)), where the force scale f(c) is estimated as the thermal energy k(B)T divided by a distance a between the reactant and transition states along the pulling coordinate. Here I use instanton theory to show that, at low temperatures where quantum tunneling is dominant, this force scale becomes f(c) ~ ℏω/a (in the limit where frictional damping is absent) or f(c) ~ ℏτ(-1)/a (in the strong damping limit). Here ω is a characteristic vibration frequency along the pulling coordinate and τ is a characteristic relaxation time in the reactant state. That is, unlike the classical case where f(c) is unaffected by dissipation, this force scale becomes friction dependent in the quantum limit. I further derive higher-order corrections in the force dependence of the rate, describe generalizations to many degrees of freedom, and discuss connection to other quantum rate theories. PMID:22112071

  2. New reaction rates for improved primordial D /H calculation and the cosmic evolution of deuterium

    NASA Astrophysics Data System (ADS)

    Coc, Alain; Petitjean, Patrick; Uzan, Jean-Philippe; Vangioni, Elisabeth; Descouvemont, Pierre; Iliadis, Christian; Longland, Richard

    2015-12-01

    Primordial or big bang nucleosynthesis (BBN) is one of the three historically strong evidences for the big bang model. Standard BBN is now a parameter-free theory, since the baryonic density of the Universe has been deduced with an unprecedented precision from observations of the anisotropies of the cosmic microwave background radiation. There is a good agreement between the primordial abundances of 4He, D, 3He, and 7Li deduced from observations and from primordial nucleosynthesis calculations. However, the 7Li calculated abundance is significantly higher than the one deduced from spectroscopic observations and remains an open problem. In addition, recent deuterium observations have drastically reduced the uncertainty on D /H , to reach a value of 1.6%. It needs to be matched by BBN predictions whose precision is now limited by thermonuclear reaction rate uncertainties. This is especially important as many attempts to reconcile Li observations with models lead to an increased D prediction. Here, we reevaluate the d (p ,γ )3He, d (d ,n ) 3H3, and d (d ,p ) 3H reaction rates that govern deuterium destruction, incorporating new experimental data and carefully accounting for systematic uncertainties. Contrary to previous evaluations, we use theoretical ab initio models for the energy dependence of the S factors. As a result, these rates increase at BBN temperatures, leading to a reduced value of D /H =(2.45 ±0.10 )×10-5 (2 σ ), in agreement with observations.

  3. 31Cl beta decay and the 30P31S reaction rate in nova nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Bennett, Michael; Wrede, C.; Brown, B. A.; Liddick, S. N.; Pérez-Loureiro, D.; NSCL e12028 Collaboration

    2016-03-01

    The 30P31S reaction rate is critical for modeling the final isotopic abundances of ONe nova nucleosynthesis, identifying the origin of presolar nova grains, and calibrating proposed nova thermometers. Unfortunately, this rate is essentially experimentally unconstrained because the strengths of key 31S proton capture resonances are not known, due to uncertainties in their spins and parities. Using a 31Cl beam produced at the National Superconducting Cyclotron Laboratory, we have populated several 31S states for study via beta decay and devised a new decay scheme which includes updated beta feedings and gamma branchings as well as multiple states previously unobserved in 31Cl beta decay. Results of this study, including the unambiguous identification due to isospin mixing of a new l = 0 , Jπ = 3 /2+ 31S resonance directly in the middle of the Gamow Window, will be presented, and significance to the evaluation of the 30P31S reaction rate will be discussed. Work supported by U.S. Natl. Sci. Foundation (Grants No. PHY-1102511, PHY-1404442, PHY-1419765, and PHY-1431052); U.S. Dept. of Energy, Natl. Nucl. Security Administration (Award No. DE-NA0000979); Nat. Sci. and Eng. Research Council of Canada.

  4. Test of the quantum instanton approximation for thermal rate constants for some collinear reactions.

    PubMed

    Ceotto, Michele; Miller, William H

    2004-04-01

    Two variants of the recently developed quantum instanton (QI) model for calculating thermal rate constants of chemical reactions are applied to several collinear atom-diatom reactions with various skew angles. The results show that the original QI version of the model is consistently more accurate than the "simplest" quantum instanton version (both being applied here with one "dividing surface") and thus to be preferred. Also, for these examples (as with other earlier applications) the QI results agree well with the correct quantum rates (to within approximately 20% or better) for all temperatures >200 K, except for situations where dynamical corrections to transition state theory (i.e., "re-crossing" dynamics) are evident. (Since re-crossing effects are substantially reduced in higher dimensionality, this is not a cause for serious concern.) A procedure is also described which facilitates use of the METROPOLIS algorithm for evaluating all quantities that appear in the QI rate expression by Monte Carlo path integral methods. PMID:15267524

  5. Eight-dimensional quantum reaction rate calculations for the H+CH4 and H2+CH3 reactions on recent potential energy surfaces.

    PubMed

    Zhou, Yong; Zhang, Dong H

    2014-11-21

    Eight-dimensional (8D) transition-state wave packet simulations have been performed on two latest potential energy surfaces (PES), the Zhou-Fu-Wang-Collins-Zhang (ZFWCZ) PES [Y. Zhou, B. Fu, C. Wang, M. A. Collins, and D. H. Zhang, J. Chem. Phys. 134, 064323 (2011)] and the Xu-Chen-Zhang (XCZ)-neural networks (NN) PES [X. Xu, J. Chen, and D. H. Zhang, Chin. J. Chem. Phys. 27, 373 (2014)]. Reaction rate constants for both the H+CH4 reaction and the H2+CH3 reaction are calculated. Simulations of the H+CH4 reaction based on the XCZ-NN PES show that the ZFWCZ PES predicts rate constants with reasonable high accuracy for low temperatures while leads to slightly lower results for high temperatures, in line with the distribution of interpolation error associated with the ZFWCZ PES. The 8D H+CH4 rate constants derived on the ZFWCZ PES compare well with full-dimensional 12D results based on the equivalent m-ZFWCZ PES, with a maximum relative difference of no more than 20%. Additionally, very good agreement is shown by comparing the 8D XCZ-NN rate constants with the 12D results obtained on the ZFWCZ-WM PES, after considering the difference in static barrier height between these two PESs. The reaction rate constants calculated for the H2+CH3 reaction are found to be in good consistency with experimental observations.

  6. Stress-associated cardiovascular reaction masks heart rate dependence on physical load in mice.

    PubMed

    Andreev-Andrievskiy, A A; Popova, A S; Borovik, A S; Dolgov, O N; Tsvirkun, D V; Custaud, M; Vinogradova, O L

    2014-06-10

    When tested on the treadmill mice do not display a graded increase of heart rate (HR), but rather a sharp shift of cardiovascular indices to high levels at the onset of locomotion. We hypothesized that under test conditions cardiovascular reaction to physical load in mice is masked with stress-associated HR increase. To test this hypothesis we monitored mean arterial pressure (MAP) and heart rate in C57BL/6 mice after exposure to stressful stimuli, during spontaneous locomotion in the open-field test, treadmill running or running in a wheel installed in the home cage. Mice were treated with β1-adrenoblocker atenolol (2mg/kg ip, A), cholinolytic ipratropium bromide (2mg/kg ip, I), combination of blockers (A+I), anxiolytic diazepam (5mg/kg ip, D) or saline (control trials, SAL). MAP and HR in mice increased sharply after handling, despite 3weeks of habituation to the procedure. Under stressful conditions of open field test cardiovascular parameters in mice were elevated and did not depend on movement speed. HR values did not differ in I and SAL groups and were reduced with A or A+I. HR was lower at rest in D pretreated mice. In the treadmill test HR increase over speeds of 6, 12 and 18m/min was roughly 1/7-1/10 of HR increase observed after placing the mice on the treadmill. HR could not be increased with cholinolytic (I), but was reduced after sympatholytic (A) or A+I treatment. Anxiolytic (D) reduced heart rate at lower speeds of movement and its overall effect was to unmask the dependency of HR on running speed. During voluntary running in non-stressful conditions of the home cage HR in mice linearly increased with increasing running speeds. We conclude that in test situations cardiovascular reactions in mice are governed predominantly by stress-associated sympathetic activation, rendering efforts to evaluate HR and MAP reactions to workload unreliable.

  7. Theory and simulation of the time-dependent rate coefficients of diffusion-influenced reactions.

    PubMed Central

    Zhou, H X; Szabo, A

    1996-01-01

    A general formalism is developed for calculating the time-dependent rate coefficient k(t) of an irreversible diffusion-influenced reaction. This formalism allows one to treat most factors that affect k(t), including rotational Brownian motion and conformational gating of reactant molecules and orientation constraint for product formation. At long times k(t) is shown to have the asymptotic expansion k(infinity)[1 + k(infinity) (pie Dt)-1/2 /4 pie D + ...], where D is the relative translational diffusion constant. An approximate analytical method for calculating k(t) is presented. This is based on the approximation that the probability density of the reactant pair in the reactive region keeps the equilibrium distribution but with a decreasing amplitude. The rate coefficient then is determined by the Green function in the absence of chemical reaction. Within the framework of this approximation, two general relations are obtained. The first relation allows the rate coefficient for an arbitrary amplitude of the reactivity to be found if the rate coefficient for one amplitude of the reactivity is known. The second relation allows the rate coefficient in the presence of conformational gating to be found from that in the absence of conformational gating. The ratio k(t)/k(0) is shown to be the survival probability of the reactant pair at time t starting from an initial distribution that is localized in the reactive region. This relation forms the basis of the calculation of k(t) through Brownian dynamics simulations. Two simulation procedures involving the propagation of nonreactive trajectories initiated only from the reactive region are described and illustrated on a model system. Both analytical and simulation results demonstrate the accuracy of the equilibrium-distribution approximation method. PMID:8913584

  8. Rates of reaction and process design data for the Hydrocarb Process

    SciTech Connect

    Steinberg, M.; Kobayashi, Atsushi ); Tung, Yuanki )

    1992-08-01

    In support of studies for developing the coprocessing of fossil fuels with biomass by the Hydrocarb Process, experimental and process design data are reported. The experimental work includes the hydropryolysis of biomass and the thermal decomposition of methane in a tubular reactor. The rates of reaction and conversion were obtained at temperature and pressure conditions pertaining to a Hydrocarb Process design. A Process Simulation Computer Model was used to design the process and obtain complete energy and mass balances. Multiple feedstocks including biomass with natural gas and biomass with coal were evaluated. Additional feedstocks including green waste, sewage sludge and digester gas were also evaluated for a pilot plant unit.

  9. Chemical reaction rates using the semiclassical Van-Vleck initialvalue representation

    SciTech Connect

    Venkataraman, Charulatha; Miller, William H.

    2006-11-29

    A semiclassical IVR formulation using the Van-Vleck propagator has been used to calculate the flux correlation function and thereby reaction rate constants. This Van-Vleck formulation of the flux-flux correlation function is computationally as simple as the classical Wigner model. However unlike the latter, it has the ability to capture quantum interference/coherence effects. Classical trajectories are evolved starting from the dividing surface that separates reactants and products, and are evolved negatively in time. This formulation has been tested on model problems ranging from the Eckart barrier, double well to the collinear H + H{sub 2}.

  10. Novel technique for constraining r-process (n, γ) reaction rates.

    PubMed

    Spyrou, A; Liddick, S N; Larsen, A C; Guttormsen, M; Cooper, K; Dombos, A C; Morrissey, D J; Naqvi, F; Perdikakis, G; Quinn, S J; Renstrøm, T; Rodriguez, J A; Simon, A; Sumithrarachchi, C S; Zegers, R G T

    2014-12-01

    A novel technique has been developed, which will open exciting new opportunities for studying the very neutron-rich nuclei involved in the r process. As a proof of principle, the γ spectra from the β decay of ^{76}Ga have been measured with the SuN detector at the National Superconducting Cyclotron Laboratory. The nuclear level density and γ-ray strength function are extracted and used as input to Hauser-Feshbach calculations. The present technique is shown to strongly constrain the ^{75}Ge(n,γ)^{76}Ge cross section and reaction rate.

  11. Redox reaction rates in shallow aquifers: Implications for nitrate transport in groundwater and streams

    USGS Publications Warehouse

    Tesoriero, Anthony J.

    2012-01-01

    Groundwater age and water chemistry data along flow paths from recharge areas to streams were used to evaluate the trends and transformations of agricultural chemicals. Results from this analysis indicate that median nitrate recharge concentrations in these agricultural areas have increased markedly over the last 50 years from 4 mg N/L in samples collected prior to 1983 to 7.5 mg N/L in samples collected since 1983. The effect that nitrate accumulation in shallow aquifers will have on drinking water quality and stream ecosystems is dependent on the rate of redox reactions along flow paths and on the age distribution of nitrate discharging to supply wells and streams.

  12. First Results of Reaction Propagation Rates in HMX at High Pressure

    SciTech Connect

    Farber, D L; Esposito, A; Zaug, J M; Aracne-Ruddle, C

    2001-06-15

    The authors have measured the reaction propagation rate (RPR) in weapons-grade, ultrafine octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) powder in a diamond anvil cell over the pressure range 0.7-35 GPa. In order to have a cross-comparison of their experiments, they carried out a series of experiments on nitromethane (NM) up to 15 GPa. The results on NM are indistinguishable from previous measurements of Rice and Folz. In comparison to high-pressure NM, the burn process for solid HMX is between 5-10 times faster at pressures above 10 GPa.

  13. First Results of Reaction Propagation Rates in HMX at High Pressure

    SciTech Connect

    Farber, D L; Esposito, A; Zaug, J M; Aracne-Ruddle, C

    2001-06-15

    The authors have measured the reaction propagation rate (RPR) in weapons-grade, ultrafine octahydro-1,3,57-tetranitro-1,3,5,7-tetrazocine (HMX) powder in a diamond anvil cell over the pressure range 0.7-35 GPa. In order to have a cross-comparison of their experiments, they carried out a series of experiments on nitromethane (NM) up to 15 GPa. The results on NM are indistinguishable from previous measurements of Rice and Folz. In comparison to high-pressure, NM, the burn process for solid HMX is not spatially uniform.

  14. Reduction in TFTR (Tokamak Fusion Test Reactor) fusion reaction rate by unbalanced beam injection and rotation

    SciTech Connect

    Hendel, H.W.; Jassby, D.L.; Bitter, M.L.; Taylor, G.

    1987-06-01

    In TFTR plasmas at low to moderate density, the highest fusion energy gain Q/sub dd/ (D-D fusion power/injected power P/sub b/) is obtained with nearly balanced co- and counter-injection of neutral beams. For a given beam power, significantly unbalanced injection reduces Q/sub dd/ because the accompanying plasma rotation reduces the beam-target fusion reactivity, the fast-ion slowing-down time, and the beam-beam reaction rate, while and decrease from their maximum values. 9 refs., 3 figs., 1 tab.

  15. Absolute biological needs.

    PubMed

    McLeod, Stephen

    2014-07-01

    Absolute needs (as against instrumental needs) are independent of the ends, goals and purposes of personal agents. Against the view that the only needs are instrumental needs, David Wiggins and Garrett Thomson have defended absolute needs on the grounds that the verb 'need' has instrumental and absolute senses. While remaining neutral about it, this article does not adopt that approach. Instead, it suggests that there are absolute biological needs. The absolute nature of these needs is defended by appeal to: their objectivity (as against mind-dependence); the universality of the phenomenon of needing across the plant and animal kingdoms; the impossibility that biological needs depend wholly upon the exercise of the abilities characteristic of personal agency; the contention that the possession of biological needs is prior to the possession of the abilities characteristic of personal agency. Finally, three philosophical usages of 'normative' are distinguished. On two of these, to describe a phenomenon or claim as 'normative' is to describe it as value-dependent. A description of a phenomenon or claim as 'normative' in the third sense does not entail such value-dependency, though it leaves open the possibility that value depends upon the phenomenon or upon the truth of the claim. It is argued that while survival needs (or claims about them) may well be normative in this third sense, they are normative in neither of the first two. Thus, the idea of absolute need is not inherently normative in either of the first two senses. PMID:23586876

  16. Absolute biological needs.

    PubMed

    McLeod, Stephen

    2014-07-01

    Absolute needs (as against instrumental needs) are independent of the ends, goals and purposes of personal agents. Against the view that the only needs are instrumental needs, David Wiggins and Garrett Thomson have defended absolute needs on the grounds that the verb 'need' has instrumental and absolute senses. While remaining neutral about it, this article does not adopt that approach. Instead, it suggests that there are absolute biological needs. The absolute nature of these needs is defended by appeal to: their objectivity (as against mind-dependence); the universality of the phenomenon of needing across the plant and animal kingdoms; the impossibility that biological needs depend wholly upon the exercise of the abilities characteristic of personal agency; the contention that the possession of biological needs is prior to the possession of the abilities characteristic of personal agency. Finally, three philosophical usages of 'normative' are distinguished. On two of these, to describe a phenomenon or claim as 'normative' is to describe it as value-dependent. A description of a phenomenon or claim as 'normative' in the third sense does not entail such value-dependency, though it leaves open the possibility that value depends upon the phenomenon or upon the truth of the claim. It is argued that while survival needs (or claims about them) may well be normative in this third sense, they are normative in neither of the first two. Thus, the idea of absolute need is not inherently normative in either of the first two senses.

  17. Breakdown of the reaction-diffusion master equation with nonelementary rates.

    PubMed

    Smith, Stephen; Grima, Ramon

    2016-05-01

    The chemical master equation (CME) is the exact mathematical formulation of chemical reactions occurring in a dilute and well-mixed volume. The reaction-diffusion master equation (RDME) is a stochastic description of reaction-diffusion processes on a spatial lattice, assuming well mixing only on the length scale of the lattice. It is clear that, for the sake of consistency, the solution of the RDME of a chemical system should converge to the solution of the CME of the same system in the limit of fast diffusion: Indeed, this has been tacitly assumed in most literature concerning the RDME. We show that, in the limit of fast diffusion, the RDME indeed converges to a master equation but not necessarily the CME. We introduce a class of propensity functions, such that if the RDME has propensities exclusively of this class, then the RDME converges to the CME of the same system, whereas if the RDME has propensities not in this class, then convergence is not guaranteed. These are revealed to be elementary and nonelementary propensities, respectively. We also show that independent of the type of propensity, the RDME converges to the CME in the simultaneous limit of fast diffusion and large volumes. We illustrate our results with some simple example systems and argue that the RDME cannot generally be an accurate description of systems with nonelementary rates.

  18. Breakdown of the reaction-diffusion master equation with nonelementary rates

    NASA Astrophysics Data System (ADS)

    Smith, Stephen; Grima, Ramon

    2016-05-01

    The chemical master equation (CME) is the exact mathematical formulation of chemical reactions occurring in a dilute and well-mixed volume. The reaction-diffusion master equation (RDME) is a stochastic description of reaction-diffusion processes on a spatial lattice, assuming well mixing only on the length scale of the lattice. It is clear that, for the sake of consistency, the solution of the RDME of a chemical system should converge to the solution of the CME of the same system in the limit of fast diffusion: Indeed, this has been tacitly assumed in most literature concerning the RDME. We show that, in the limit of fast diffusion, the RDME indeed converges to a master equation but not necessarily the CME. We introduce a class of propensity functions, such that if the RDME has propensities exclusively of this class, then the RDME converges to the CME of the same system, whereas if the RDME has propensities not in this class, then convergence is not guaranteed. These are revealed to be elementary and nonelementary propensities, respectively. We also show that independent of the type of propensity, the RDME converges to the CME in the simultaneous limit of fast diffusion and large volumes. We illustrate our results with some simple example systems and argue that the RDME cannot generally be an accurate description of systems with nonelementary rates.

  19. Elementary reaction rate measurements at high temperatures by tunable-laser flash-absorption

    SciTech Connect

    Hessler, J.P.

    1993-12-01

    The major objective of this program is to measure thermal rate coefficients and branching ratios of elementary reactions. To perform these measurements, the authors constructed an ultrahigh-purity shock tube to generate temperatures between 1000 and 5500 K. The tunable-laser flash-absorption technique is used to measure the rate of change of the concentration of species which absorb below 50,000 cm{sup {minus}1} e.g.: OH, CH, and CH{sub 3}. This technique is being extended into the vacuum-ultraviolet spectral region where one can measure atomic species e.g.: H, D, C, O, and N; and diatomic species e.g.: O{sub 2}, CO, and OH.

  20. Noise-induced convergence of the low flow rate chaos in the Belousov-Zhabotinsky reaction

    NASA Astrophysics Data System (ADS)

    Yoshimoto, Minoru; Nakaiwa, Masaru; Akiya, Takaji; Ohmori, Takao; Yamaguchi, Tomohiko

    The effect of noise on the low flow-rate chaos in the Belousov-Zhabotinsky (BZ) reaction was studied. The chaos was simulated using the three-variable model of Györgyi and Field. Gaussian white noise was imposed on the flow-rate of the reactant solutions fed into CSTR to simulate the so-called type P noise. The range of average noise amplitudes was chosen between 0.01% and 1% related to the inverse residence time. The calculated time series were analyzed on the basis of their Fourier spectra, maximum Lyapunov exponent, Kolmogorov entropies, return maps and invariant density. We found that the noise induces partial order of the period-3-like oscillations in the low flowrate chaos.

  1. Informing Neutron-Capture Rates through (d,p) Reactions on Neutron-Rich Tin Isotopes

    NASA Astrophysics Data System (ADS)

    Manning, B.; Cizewski, J. A.; Kozub, R. L.; Ahn, S.; Allmond, J. M.; Bardayan, D. W.; Chae, K. Y.; Chipps, K. A.; Howard, M. E.; Jones, K. L.; Liang, J. F.; Matos, M.; Nunes, F. M.; Nesaraja, C. D.; O'Malley, P. D.; Pain, S. D.; Peters, W. A.; Pittman, S. T.; Ratkiewicz, A.; Schmitt, K. T.; Shapira, D.; Smith, M. S.; Titus, L.

    2014-03-01

    Level energies and spectroscopic information for neutron-rich nuclei provide important input for r-process nucleosynthesis calculations; specifically, the location and strength of single-neutron l = 1 states when calculating neutron-capture rates. Surman and collaborators have performed sensitivity studies to show that varying neutron-capture rates can significantly alter final r-process abundances. However, there are many nuclei important to the r-process that cannot be studied. Extending studies to more neutron-rich nuclei will help constrain the nuclear shell-model in extrapolating to nuclei even further from stability. The (d,p) reaction has been measured with radioactive ion beams of 126Sn and 128Sn to complete the set of (d,p) studies on even mass tin isotopes from doubly-magic 132 to stable 124Sn. Work supported in part by the U.S. Department of Energy and National Science Foundation.

  2. Gas-phase rate constants for the reaction of NO 3 radicals with selected oxiranes

    NASA Astrophysics Data System (ADS)

    Kind, I.; Berndt, T.; Böge, O.; Rolle, W.

    1996-01-01

    The gas-phase reaction of NO 3 radicals with selected oxiranes has been studied in a flow system at T = 295 ± 2 K in the pressure range 3.4-50 mbar musing N 2 as carrier gas. The analysis of the organics was performed by means of on-line connected GC-FID. Rate constantswere obtained with the relative rate method: 3,4-epoxy-cyclohexene: (2.70 ± 0.18) × 10 -3; 2,2-dimethyl-vinyl)-oxirane; (4.74 ± 0.54) × 10 -12; 2-methyl-2-1(1-methyl-vinyl)-oxirane : (1.55 ± 0.12) × 10 -13; 2-methyl-2-vinyloxirane; (9.40 ± 2.62) × 10 -15; tetramethyloxirane: <5 × 10 -15; and cis-2,3-dimethyloxirane: <5 × 10 -15 cm -3 molecule -1 s -1.

  3. Temperature dependence of the rate coefficient for the alpha-pinene reaction with ozone in the range between 243 K and 303 K.

    PubMed

    Tillmann, Ralf; Saathoff, Harald; Brauers, Theo; Kiendler-Scharr, Astrid; Mentel, Thomas F

    2009-04-01

    The absolute rate coefficient for the reaction of alpha-pinene with ozone was determined in the temperature range between 243 K and 303 K at atmospheric pressure. In total, 30 experiments were performed in the large (85 m3) temperature-controlled simulation chamber AIDA, where the concentrations of the reactants ozone and alpha-pinene were measured directly. An Arrhenius expression for the alpha-pinene + ozone reaction was derived with a pre-exponential factor of (1.4 +/- 0.4) x 10(-15) cm3 s(-1) and a temperature coefficient of (833 +/- 86) K. This rate coefficient is in good agreement (-5%) with the current IUPAC (IUPAC 2007) recommendation at 298 K. The IUPAC recommendation is significantly larger (+27%), around 243 K where the recommended values were extrapolated from higher temperatures. This finding is relevant for tropical regions where strong updrafts can rapidly transport reactive hydrocarbons like alpha-pinene from the boundary layer into the cold regions of the free troposphere.

  4. PH-dependence of the steady-state rate of a two-step enzymic reaction.

    PubMed

    Brocklehurst, K; Dixon, H B

    1976-04-01

    1. The pH-dependence is considered of a reaction between E and S that proceeds through an intermediate ES under "Briggs-Haldane' conditions, i.e. there is a steady state in ES and [S]o greater than [E]T, where [S]o is the initial concentration of S and [E]T is the total concentration of all forms of E. Reactants and intermediates are assumed to interconvert in three protonic states (E equilibrium ES; EH equilibrium EHS; EH2 equilibrium EH2S), but only EHS provides products by an irreversible reaction whose rate constant is kcat. Protonations are assumed to be so fast that they are all at equilibrium. 2. The rate equation for this model is shown to be v = d[P]/dt = (kcat.[E]T[S]o/A)/[(KmBC/DA) + [S]o], where Km is the usual assembly of rate constants around EHS and A-D are functions of the form (1 + [H]/K1 + K2/[H]), in which K1 and K2 are: in A, the molecular ionization constants of ES; in B, the analogous constants of E; in C and D, apparent ionization constants composed of molecular ionization constants (of E or ES) and assemblies of rate constants. 3. As in earlier treatments of this type of reaction which involve either the assumption that the reactants and intermediate are in equilibrium or the assumption of Peller & Alberty [(1959) J. Am. Chem. Soc. 81, 5907-5914] that only EH and EHS interconvert directly, the pH-dependence of kcat. is determined only by A. 4. The pH-dependence of Km is determined in general by B-C/A-D, but when reactants and intermediate are in equilibrium, C identical to D and this expression simplifies to B/A. 5. The pH-dependence of kcat./Km, i.e. of the rate when [S]o less than Km, is not necessarily a simple bell-shaped curve characterized only by the ionization constants of B, but is a complex curve characterized by D/B-C. 6. Various situations are discussed in which the pH-dependence of kcat./Km is determined by assemblies simpler than D/B-C. The special situation in which a kcat./Km-pH profile provides the molecular pKa values of

  5. Scanning electrochemical microscopy of metallic biomaterials: reaction rate and ion release imaging modes.

    PubMed

    Gilbert, J L; Smith, S M; Lautenschlager, E P

    1993-11-01

    The Scanning Electrochemical Microscope (SECM) is a nonoptical scanning microscopic instrument capable of imaging highly localized electrical currents associated with charge transfer reactions on metallic biomaterials surfaces. The SECM operates as an aqueous electrochemical cell under bipotentiostatic control with a microelectrode and sample independently biased as working electrodes. Microelectrode current and position is recorded as it is scanned very near a metallurgically polished planar sample surface. To date, the SECM has imaged metallic biomaterials surfaces in oxygen reaction rate imaging (ORRI) and ion release and deposition imaging (IRDI) modes. In ORRI, sample and microelectrode are biased at sufficiently negative potentials to reduce absorbed oxygen. As the microelectrode scans areas of active oxygen reduction, localized diffusion fields with decreased oxygen solution concentrations are encountered and resultant decrements in microelectrode current are observed. In IRDI mode the sample is positively biased and the microelectrode is negatively biased. The microelectrode detects anodic dissolution products with highest currents being observed over the most active areas. Performance of the SECM has been evaluated on Ni minigrids, gamma-1 Hg-Ag dental amalgam crystals, and sintered beads of Co-Cr-Mo alloy which represent significantly different geometries and corrosion processes to help demonstrate the potential of this instrument. The SECM is a valuable tool for imaging microelectrochemical processes on the surfaces of metallurgically polished metallic biomaterials samples and a wide variety of other surfaces of biological interest where charge transfer reactions occur. The SECM allows selective biasing of metallic biomaterials surfaces and Faradaic reactions can be selectively imaged while the surface is in the active, passive, or transpassive state.

  6. Dissolution Dynamic Nuclear Polarization Instrumentation for Real-time Enzymatic Reaction Rate Measurements by NMR.

    PubMed

    Balzan, Riccardo; Fernandes, Laetitia; Comment, Arnaud; Pidial, Laetitia; Tavitian, Bertrand; Vasos, Paul R

    2016-01-01

    The main limitation of NMR-based investigations is low sensitivity. This prompts for long acquisition times, thus preventing real-time NMR measurements of metabolic transformations. Hyperpolarization via dissolution DNP circumvents part of the sensitivity issues thanks to the large out-of-equilibrium nuclear magnetization stemming from the electron-to-nucleus spin polarization transfer. The high NMR signal obtained can be used to monitor chemical reactions in real time. The downside of hyperpolarized NMR resides in the limited time window available for signal acquisition, which is usually on the order of the nuclear spin longitudinal relaxation time constant, T1, or, in favorable cases, on the order of the relaxation time constant associated with the singlet-state of coupled nuclei, TLLS. Cellular uptake of endogenous molecules and metabolic rates can provide essential information on tumor development and drug response. Numerous previous hyperpolarized NMR studies have demonstrated the relevancy of pyruvate as a metabolic substrate for monitoring enzymatic activity in vivo. This work provides a detailed description of the experimental setup and methods required for the study of enzymatic reactions, in particular the pyruvate-to-lactate conversion rate in presence of lactate dehydrogenase (LDH), by hyperpolarized NMR. PMID:26967906

  7. Advanced methods comparisons of reaction rates in the Purdue Fast Breeder Blanket Facility

    SciTech Connect

    Hill, R.N.; Ott, K.O.

    1988-01-01

    A review of worldwide results revealed that reaction rates in the blanket region are generally underpredicted with the discrepancy increasing with penetration; however, these results vary widely. Experiments in the large uniform Purdue Fast Breeder Blanket Facility (FBBF) blanket yield an accurate quantification of this discrepancy. Using standard production code methods (diffusion theory with 50 group cross sections), a consistent Calculated/Experimental (C/E) drop-off was observed for various reaction rates. A 50% increase in the calculated results at the outer edge of the blanket is necessary for agreement with experiments. The usefulness of refined group constant generation utilizing specialized weighting spectra and transport theory methods in correcting this discrepancy was analyzed. Refined group constants reduce the discrepancy to half that observed using the standard method. The surprising result was that transport methods had no effect on the blanket deviations; thus, transport theory considerations do not constitute or even contribute to an explanation of the blanket discrepancies. The residual blanket C/E drop-off (about half the standard drop-off) using advanced methods must be caused by some approximations which are applied in all current methods. 27 refs., 3 figs., 1 tab.

  8. Reaction Rate Measurement at the Californium User Facility (CUF) for unfolding the neutron spectrum

    NASA Astrophysics Data System (ADS)

    Hannan, Mohammad; Ortega, Ruben

    2011-03-01

    Neutron Activation Analysis was used to determine Reaction Rate measurement of several activation detectors at the ORNL Californium User Facility (CUF). The irradiations were performed with 34 mg Cf 252 neutron source strength.. Ten source capsules > 34 mgwerepositionedconcentricallyaroundasamplecavity . Wehavedeterminedabsoluteactivityperatomof 9 detectors : Au 197 (n , γ) Au 198 , Al 27 (n , α) Na 24 , Al 27 (n , p) Mg 27 , Fe 56 (n , p) Mn 5 , Fe 54 (n , p) Mn 54 , In 115 (n , γ) In 116 , Ti 46 (n , p) Sc 46 , Ni 60 (n , p) Co 60 , Fe 58 (n , γ) Fe 59 . Theerrorsarewithin 1.5 - 8 60 and Fe 58 have errors of 46% and 32 %. These high errors may be attributed to the counting statistics. These reaction rate values will be used to unfold the neutron spectrum of the CUF using the MAXED 2000, a computer code for the de convolution of multi sphere neutron spectrometer data and the results are discussed. The authors acknowledge help, advise, and using facility at ORNL-CUF to Dr. Rodger martin and Mr. David C. Galsgow.

  9. Reactions of OH with Butene Isomers. Measurements of the Overall Rates and a Theoretical Study

    SciTech Connect

    Vasu, Subith; Huynh, Lam; Davidson, David F.; Hanson, Ronald K.; Golden, David

    2011-03-09

    Reactions of hydroxyl (OH) radicals with 1-butene (k1), trans-2-butene (k2), and cis-2-butene (k3) were studied behind reflected shock waves over the temperature range 880-1341 K and at pressures near 2.2 atm. OH radicals were produced by shock-heating tert-butyl hydroperoxide, (CH3)3-CO-OH, and monitored by narrow-line width ring dye laser absorption of the well-characterized R1(5) line of the OH A-X (0, 0) band near 306.7 nm. OH time histories were modeled using a comprehensive C5 oxidation mechanism, and rate constants for the reaction of OH with butene isomers were extracted by matching modeled and measured OH concentration time histories. We present the first high-temperature measurement of OH + cis-2-butene and extend the temperature range of the only previous high-temperature study for both 1-butene and trans-2-butene. With the potential energy surface calculated using CCSD(T)/6-311++G(d,p)//QCISD/6-31G(d), the rate constants and branching fractions for the H-abstraction channels of the reaction of OH with 1-butene were calculated in the temperature range 300-1500 K. Corrections for variational and tunneling effects as well as hindered-rotation treatments were included. The calculations are in good agreement with current and previous experimental data and with a recent theoretical study.

  10. Thermal behaviors, nonisothermal decomposition reaction kinetics, thermal safety and burning rates of BTATz-CMDB propellant.

    PubMed

    Yi, Jian-Hua; Zhao, Feng-Qi; Wang, Bo-Zhou; Liu, Qian; Zhou, Cheng; Hu, Rong-Zu; Ren, Ying-Hui; Xu, Si-Yu; Xu, Kang-Zhen; Ren, Xiao-Ning

    2010-09-15

    The composite modified double base (CMDB) propellants (nos. RB0601 and RB0602) containing 3,6-bis (1H-1,2,3,4-tetrazol-5-yl-amino)-1,2,4,5-tetrazine (BTATz) without and with the ballistic modifier were prepared and their thermal behaviors, nonisothermal decomposition reaction kinetics, thermal safety and burning rates were investigated. The results show that there are three mass-loss stages in TG curve and two exothermic peaks in DSC curve for the BTATz-CMDB propellant. The first two mass-loss stages occur in succession and the temperature ranges are near apart, and the decomposition peaks of the two stages overlap each other, inducing only one visible exothermic peak appear in DSC curve during 350-550 K. The reaction mechanisms of the main exothermal decomposition processes of RB0601 and RB0602 are all classified as chemical reaction, the mechanism functions are f(alpha)=(1-alpha)(2), and the kinetic equations are dalpha/dt = 10(19.24)(1-alpha)(2)e(-2.32x10(4)/T) and dalpha/dt = 10(20.32)(1-alpha)(2)e(-2.32x10(4)/T). The thermal safety evaluation on the BTATz-CMDB propellants was obtained. With the substitution of 26% RDX by BTATz and with the help of the ballistic modifier in the CMDB propellant formulation, the burning rate can be improved by 89.0% at 8 MPa and 47.1% at 22 MPa, the pressure exponent can be reduced to 0.353 at 14-20 MPa.

  11. On rates and mechanisms of OH and O3 reactions with isoprene-derived hydroxy nitrates.

    PubMed

    Lee, Lance; Teng, Alex P; Wennberg, Paul O; Crounse, John D; Cohen, Ronald C

    2014-03-01

    Eight distinct hydroxy nitrates are stable products of the first step in the atmospheric oxidation of isoprene by OH. The subsequent chemical fate of these molecules affects global and regional production of ozone and aerosol as well as the location of nitrogen deposition. We synthesized and purified 3 of the 8 isoprene hydroxy nitrate isomers: (E/Z)-2-methyl-4-nitrooxybut-2-ene-1-ol and 3-methyl-2-nitrooxybut-3-ene-1-ol. Oxidation of these molecules by OH and ozone was studied using both chemical ionization mass spectrometry and thermo-dissociation laser induced fluorescence. The OH reaction rate constants at 300 K measured relative to propene at 745 Torr are (1.1 ± 0.2) × 10(-10) cm(3) molecule(-1) s(-1) for both the E and Z isomers and (4.2 ± 0.7) × 10(-11) cm(3) molecule(-1) s(-1) for the third isomer. The ozone reaction rate constants for (E/Z)-2-methyl-4-nitrooxybut-2-ene-1-ol are (2.7 ± 0.5) × 10(-17) and (2.9 ± 0.5) × 10(-17) cm(3) molecule(-1) s(-1), respectively. 3-Methyl-2-nitrooxybut-3-ene-1-ol reacts with ozone very slowly, within the range of (2.5-5) × 10(-19) cm(3) molecule(-1) s(-1). Reaction pathways, product yields, and implications for atmospheric chemistry are discussed. A condensed mechanism suitable for use in atmospheric chemistry models is presented.

  12. Acid-base chemical reaction model for nucleation rates in the polluted atmospheric boundary layer

    NASA Astrophysics Data System (ADS)

    Chen, Modi; Titcombe, Mari; Jiang, Jingkun; Jen, Coty; Kuang, Chongai; Fischer, Marc L.; Eisele, Fred L.; Siepmann, J. Ilja; Hanson, David R.; Zhao, Jun; McMurry, Peter H.

    2013-05-01

    Measurements of aerosol number distributions down to one molecule have provided information that we've used to develop a new approach for modeling atmospheric nucleation rates. Measurements were carried out with the Cluster Chemical Ionization Mass Spectrometer (Cluster CIMS), the scanning mobility spectrometer using a diethylene glycol condensation particle counter as detector (DEG SMPS), and an ambient pressure proton transfer mass spectrometer for ammonia and amines (AmPMS). The model explains nucleation as a result of cluster evolution due to a sequence of acid-base reactions. We conclude that the smallest stable cluster contains four sulfuric acid molecules. The model leads to a simple analytic expression for nucleation rates that is reasonably consistent (i.e., ± 10x) with atmospheric observations. The model predicts that nucleation rates are equal to a prefactor, P<1, times the sulfuric acid vapor collision rate, (i.e., J=Pṡ0.5ṡk11 *[H2SO4]2).

  13. Optomechanics for absolute rotation detection

    NASA Astrophysics Data System (ADS)

    Davuluri, Sankar

    2016-07-01

    In this article, we present an application of optomechanical cavity for the absolute rotation detection. The optomechanical cavity is arranged in a Michelson interferometer in such a way that the classical centrifugal force due to rotation changes the length of the optomechanical cavity. The change in the cavity length induces a shift in the frequency of the cavity mode. The phase shift corresponding to the frequency shift in the cavity mode is measured at the interferometer output to estimate the angular velocity of absolute rotation. We derived an analytic expression to estimate the minimum detectable rotation rate in our scheme for a given optomechanical cavity. Temperature dependence of the rotation detection sensitivity is studied.

  14. Ground Reaction Forces and Loading Rates Associated with Parkour and Traditional Drop Landing Techniques

    PubMed Central

    Puddle, Damien L.; Maulder, Peter S.

    2013-01-01

    Due to the relative infancy of Parkour there is currently a lack of empirical evidence on which to base specific technique instruction upon. The purpose of this study was to compare the ground reaction forces and loading rates involved in two Parkour landing techniques encouraged by local Parkour instructors and a traditional landing technique recommended in the literature. Ten male participants performed three different drop landing techniques (Parkour precision, Parkour roll, and traditional) onto a force plate. Compared to the traditional technique the Parkour precision technique demonstrated significantly less maximal vertical landing force (38%, p < 0.01, ES = 1.76) and landing loading rate (54%, p < 0.01, ES = 1.22). Similarly, less maximal vertical landing force (43%, p < 0.01, ES = 2.04) and landing loading rate (63%, p < 0.01, ES = 1.54) were observed in the Parkour roll technique compared to the traditional technique. It is unclear whether or not the Parkour precision technique produced lower landing forces and loading rates than the Parkour roll technique as no significant differences were found. The landing techniques encouraged by local Parkour instructors such as the precision and roll appear to be more appropriate for Parkour practitioners to perform than a traditional landing technique due to the lower landing forces and loading rates experienced. Key points Parkour precision and Parkour roll landings were found to be safer than a traditional landing technique, resulting in lower maximal vertical forces, slower times to maximal vertical force and ultimately lesser loading rates. Parkour roll may be more appropriate (safer) to utilize than the Parkour precision during Parkour landing scenarios. The Parkour landing techniques investigated n this study may be beneficial for landing by non-Parkour practitioners in everyday life. PMID:24149735

  15. Rate and reaction probability of the surface reaction between ozone and dihydromyrcenol measured in a bench scale reactor and a room-sized chamber

    NASA Astrophysics Data System (ADS)

    Shu, Shi; Morrison, Glenn C.

    2012-02-01

    Low volatility terpenoids emitted from consumer products can react with ozone on surfaces and may significantly alter concentrations of ozone, terpenoids and reaction products in indoor air. We measured the reaction probability and a second-order surface-specific reaction rate for the ozonation of dihydromyrcenol, a representative indoor terpenoid, adsorbed onto polyvinylchloride (PVC), glass, and latex paint coated spheres. The reaction probability ranged from (0.06-8.97) × 10 -5 and was very sensitive to humidity, substrate and mass adsorbed. The average surface reaction probability is about 10 times greater than that for the gas-phase reaction. The second-order surface-specific rate coefficient ranged from (0.32-7.05) × 10 -15 cm 4 s -1 molecule -1and was much less sensitive to humidity, substrate, or mass adsorbed. We also measured the ozone deposition velocity due to adsorbed dihydromyrcenol on painted drywall in a room-sized chamber, Based on that, we calculated the rate coefficient ((0.42-1.6) × 10 -15 cm 4 molecule -1 s -1), which was consistent with that derived from bench-scale experiments for the latex paint under similar conditions. We predict that more than 95% of dihydromyrcenol oxidation takes place on indoor surfaces, rather than in building air.

  16. Rate constant for reaction of vitamin C with protein radicals in γ-irradiated aqueous albumin solution at 295 K

    NASA Astrophysics Data System (ADS)

    Miyazaki, Tetsuo; Yoshimura, Toru; Mita, Kazuya; Suzuki, Keiji; Watanabe, Masami

    1995-02-01

    When an aqueous solution of albumin (0.1 kg dm -3) is irradiated by γ-rays at 295 K, albumin radicals with a long lifetime are observed by ESR. The reaction of vitamin C with the albumin radicals has been studied at 295 K in the albumin solution, which is considered as a model of cells. The rate constant for the reaction of vitamin C with the albumin radicals was measured as 0.014 dm 3 mol -1 s -1, which is much smaller than the reported rate constants (10 6-10 10 dm 3 mol -1 s -1) for the reaction of vitamin C with radicals in a dilute aqueous solution. The small rate constant for the reaction of vitamin C is ascribed to the reaction in polymer coils in the albumin solution, since vitamin C and albumin radicals diffuse very slowly in the coils.

  17. Absolute rate constants of Mo 2 (X 1Σg+) and Mo (a 7S 3) with O 2 at room temperature

    NASA Astrophysics Data System (ADS)

    Wakabayashi, Tomohiro; Ishikawa, Yo-ichi; Arai, Shigeyoshi

    1996-07-01

    The gas phase reactivities of ground-state molybdenum dimers and atoms for oxygen molecule have been investigated in a mass-flow controlled cell. Transient concentration of Mo 2 (X 1Σg+, ν = 0) or Mo (a 7S 3) produced by 355 nm multiphoton dissociation (MPD) of Mo(CO) 6 was monitored by a laser-induced fluorescence (LIF). The predictable disturbance caused by free electrons inevitably produced in the MPD of metal carbonyls was examined by an appropriate addition of SF 6 as an electron scavenger. The pseudo-first order decay rates of these molybdenum species were found to depend linearly on O 2 pressure both in the absence and in the presence of SF 6, giving the bimolecular rate constants of (1.1 ± 0.1) × 10 -11 for Mo 2 (X 1Σg+, ν = 0) + O 2 and (1.2 ± 0.1) × 10 -10 cm 3 molecule -1 s -1 for Mo (a 7S 3) + O 2 under the 6.5 Torr total pressure with balance Ar at room temperature.

  18. The absolute path command

    2012-05-11

    The ap command traveres all symlinks in a given file, directory, or executable name to identify the final absolute path. It can print just the final path, each intermediate link along with the symlink chan, and the permissions and ownership of each directory component in the final path. It has functionality similar to "which", except that it shows the final path instead of the first path. It is also similar to "pwd", but it canmore » provide the absolute path to a relative directory from the current working directory.« less

  19. The absolute path command

    SciTech Connect

    Moody, A.

    2012-05-11

    The ap command traveres all symlinks in a given file, directory, or executable name to identify the final absolute path. It can print just the final path, each intermediate link along with the symlink chan, and the permissions and ownership of each directory component in the final path. It has functionality similar to "which", except that it shows the final path instead of the first path. It is also similar to "pwd", but it can provide the absolute path to a relative directory from the current working directory.

  20. Termolecular kinetics for the Mu + CO + M recombination reaction: A unique test of quantum rate theory.

    PubMed

    Pan, James J; Arseneau, Donald J; Senba, Masayoshi; Garner, David M; Fleming, Donald G; Xie, Tiao; Bowman, Joel M

    2006-07-01

    The room-temperature termolecular rate constants, k0, for the Mu + CO + M<==>MuCO + M (M = He, N2, Ar) recombination reaction have been measured by the muSR technique, and are reported for moderator gas pressures of up to approximately 200 bar (densities less, similar 0.4 x 10(22) molec cm(-3)). The experimental relaxation rates reveal an unusual signature, in being dominated by the electron spin-rotation interaction in the MuCO radical that is formed in the addition step. In N2 moderator, k0 = 1.2+/-0.1 x 10(-34) cm(6) s(-1), only about 30% higher than found in Ar or He. The experimental results are compared with theoretical calculations carried out on the Werner-Keller-Schinke (WKS) surface [Keller et al., J. Chem. Phys. 105, 4983 (1996)], within the framework of the isolated resonance model (IRM). The positions and lifetimes of resonance states are obtained by solving the complex Hamiltonian for the nonrotating MuCO system, using an L2 method, with an absorbing potential in the asymptotic region. Accurate values of the vibrational bound and resonance states of MuCO reveal unprecedented isotope effects in comparisons with HCO, due to the remarkable effect of replacing H by the very light Mu atom (m(Mu) approximately (1/9)m(H)). Due to its pronounced zero-point energy shift, there are only two (J = 0) bound states in MuCO. Contributions from nonzero J states to the termolecular rate constants are evaluated through the J-shifting approximation, with rotational constants evaluated at the potential minimum. The value of the important A constant (181 cm(-1)) used in this approximation was supported by accurate J = K = 1 calculations, from which A = 180 cm(-1) was obtained by numerical evaluation. The calculations presented here, with a "weak collision factor" beta c = 0.001, indicative of the very sparse density of MuCO states, give a very good account of both the magnitude and pressure dependence of the experimental rates, but only when the fact that the two