Science.gov

Sample records for absolute recovery ranged

  1. Micron Accurate Absolute Ranging System: Range Extension

    NASA Technical Reports Server (NTRS)

    Smalley, Larry L.; Smith, Kely L.

    1999-01-01

    The purpose of this research is to investigate Fresnel diffraction as a means of obtaining absolute distance measurements with micron or greater accuracy. It is believed that such a system would prove useful to the Next Generation Space Telescope (NGST) as a non-intrusive, non-contact measuring system for use with secondary concentrator station-keeping systems. The present research attempts to validate past experiments and develop ways to apply the phenomena of Fresnel diffraction to micron accurate measurement. This report discusses past research on the phenomena, and the basis of the use Fresnel diffraction distance metrology. The apparatus used in the recent investigations, experimental procedures used, preliminary results are discussed in detail. Continued research and equipment requirements on the extension of the effective range of the Fresnel diffraction systems is also described.

  2. Absolute stress measurements at the rangely anticline, Northwestern Colorado

    USGS Publications Warehouse

    de la Cruz, R. V.; Raleigh, C.B.

    1972-01-01

    Five different methods of measuring absolute state of stress in rocks in situ were used at sites near Rangely, Colorado, and the results compared. For near-surface measurements, overcoring of the borehole-deformation gage is the most convenient and rapid means of obtaining reliable values for the magnitude and direction of the state of stress in rocks in situ. The magnitudes and directions of the principal stresses are compared to the geologic features of the different areas of measurement. The in situ stresses are consistent in orientation with the stress direction inferred from the earthquake focal-plane solutions and existing joint patterns but inconsistent with stress directions likely to have produced the Rangely anticline. ?? 1972.

  3. Method and apparatus for making absolute range measurements

    DOEpatents

    Earl, Dennis D [Knoxville, TN; Allison, Stephen W [Knoxville, TN; Cates, Michael R [Oak Ridge, TN; Sanders, Alvin J [Knoxville, TN

    2002-09-24

    This invention relates to a method and apparatus for making absolute distance or ranging measurements using Fresnel diffraction. The invention employs a source of electromagnetic radiation having a known wavelength or wavelength distribution, which sends a beam of electromagnetic radiation through a screen at least partially opaque at the wavelength. The screen has an aperture sized so as to produce a Fresnel diffraction pattern. A portion of the beam travels through the aperture to a detector spaced some distance from the screen. The detector detects the central intensity of the beam as well as a set of intensities displaced from a center of the aperture. The distance from the source to the target can then be calculated based upon the known wavelength, aperture radius, and beam intensity.

  4. Novel Absolute Displacement Sensor with Wide Range Based on Malus Law

    PubMed Central

    Li, Wei; Lu, Xiaoping; Lin, Yonggang

    2009-01-01

    The paper presents a novel wide range absolute displacement sensor based on polarized light detection principle. The sensor comprises of two sets of polarized light detecting systems which are coupled by pulleys. The inherent disadvantage in optic system like light source intensity drift is solved and absolute measurement with wide-range is achieved. A prototype and the relevant test bed have been built. The test results are in good agreement with expectation. Its measurement range is 540 mm, and its linearity is better than 0.05%. PMID:22303181

  5. Absolute lymphocyte count recovery after allogeneic hematopoietic stem cell transplantation predicts clinical outcome.

    PubMed

    Kim, Haesook T; Armand, Philippe; Frederick, David; Andler, Emily; Cutler, Corey; Koreth, John; Alyea, Edwin P; Antin, Joseph H; Soiffer, Robert J; Ritz, Jerome; Ho, Vincent T

    2015-05-01

    Immune reconstitution is critical for clinical outcome after allogeneic hematopoietic stem cell transplantation (HSCT). To determine the impact of absolute lymphocyte count (ALC) recovery on clinical outcomes, we conducted a retrospective study of 1109 adult patients who underwent a first allogeneic HSCT from 2003 through 2009, excluding patients who died or relapsed before day 30. The median age was 51 years (range, 18 to 74) with 52% undergoing reduced-intensity conditioning and 48% undergoing myeloablative conditioning HSCT with T cell-replete peripheral blood stem cells (93.7%) or marrow (6.4%) grafts. The median follow-up time was 6 years. To determine the threshold value of ALC for survival, the entire cohort was randomly split into a training set and a validation set in a 1:1 ratio, and then a restricted cubic spline smoothing method was applied to obtain relative hazard estimates of the relationship between ALC at 1 month and log hazard of progression-free survival (PFS). Based on this approach, ALC was categorized as ≤.2 × 10(9) cells/L (low) or >.2 × 10(9) cells/L. For patients with low ALC at 1, 2, or 3 months after HSCT, the overall survival (OS) (P ≤ .0001) and PFS (P ≤ .0002) were significantly lower and nonrelapse mortality (NRM) (P ≤ .002) was significantly higher compared with patients with ALC > .2 × 10(9) cells/L at each time point. When patients who had low ALC at 1, 2, or 3 months after HSCT were grouped together and compared, their outcomes were inferior to those of patients who had ALC > .2 × 10(9) cells/L at 1, 2, and 3 months after HSCT: the 5-year OS for patients with low ALC was 28% versus 46% for patients with ALC > .2 × 10(9) cells/L, P < .0001; the 5-year PFS was 21% versus 39%, P < .0001, respectively and 5-year NRM was 40% versus 18%, P < .0001, respectively. This result remained consistent when other prognostic factors, including occurrence of grade II to IV acute graft-versus-host disease (GVHD), were adjusted for in

  6. New apparatus for calibrations in the range of 2 kPa absolute pressure

    NASA Astrophysics Data System (ADS)

    Woo, S. Y.; Choi, I. M.

    2005-12-01

    Capacitance diaphragm gauges (CDGs) are precise electromechanical pressure sensors in which the displacement of a stretched thin metal diaphragm is detected by the measurement of a capacitance. These are very accurate gauges, and are frequently used as transfer gauges. To calibrate such accurate low-pressure gauges, precise mercury manometers have been used. However, complexity, concern about mercury vapour, and cost of mercury manometers have made it difficult to use these manometers in many industrial calibration laboratories. As a substitute, gas-operated piston gauges can be used for the calibration of such low-pressure gauges. However, the minimum pressure that is necessary to balance the tare weight, which generally corresponds to a pressure of several kilopascals, is a major obstacle. To reduce this minimum operating pressure, we adopted a variable bell-jar pressure method. To realize this method effectively, we developed a new mass-handling device that makes it possible to add or remove weights up to 200 g easily, with a resolution of 10 g, without breaking the vacuum during the calibration. This calibration system can be used to measure pressures from 100 Pa to 2 kPa in the absolute mode. In this paper, we also present the calibration results for two types of CDGs with full-scale ranges of 1330 Pa and 1000 Pa, respectively.

  7. Multi-chromatic analysis of a single SAR image for absolute ranging

    NASA Astrophysics Data System (ADS)

    Bovenga, Fabio; Gallitelli, Leonardo; Nitti, Davide O.

    2012-09-01

    The Multi-Chromatic Analysis (MCA) uses interferometric pairs of SAR images processed at range sub-bands located at different spectrum positions, and explores the phase trend of each pixel in the frequency domain. The phase of stable scatterers evolves linearly with the sub-band central wavelength, the slope being proportional to the absolute optical path difference. Consequently, both phase uwrapping and height computation can be performed on a pixel by pixel basis without spatial integration. Recently the technique has been used to derive ground elevation by processing interferometric pairs acquired in Spotlight mode by both TerraSAR-X and COSMO-SkyMed satellite missions. However, further potential applications are possible. In particular, this work is aimed at experimenting the use of MCA for measuring the optical path between the SAR sensor and the scene by processing a single SAR acquisition. In this configuration, the slope of the phase trend along frequencies depends on the full optical path. In order avoid liasing, we adopted a processing scheme which consists in subtracting from the SAR image phase a term proportional to the distance computed through inverse geocoding. Assuming negligible the positioning errors, the validation of this approach can be performed by comparing the distance measured by MCA with the atmospheric delay computed through analytical models. We carried out a feasibility study aimed at evaluating the maximum value for the errors in satellite and target positions, allowed to perform the reliable validation. Then, in order to reduce the error in the target positions and to guarantee good phase stability, we selected SAR acquisitions which include artificial corner reflectors to be used for MCA processing and the following validation procedure. We present results obtained by exploiting two corner reflectors visible within two TerraSAR-X images acquired in Spotlight mode over Venice Lagoon.

  8. Diode-laser-based high-precision absolute distance interferometer of 20 m range.

    PubMed

    Pollinger, Florian; Meiners-Hagen, Karl; Wedde, Martin; Abou-Zeid, Ahmed

    2009-11-10

    We present a hybrid absolute distance measurement method that is based on a combination of frequency sweeping, variable synthetic, and two-wavelength, fixed synthetic wavelength interferometry. Both experiments were realized by two external cavity diode lasers. The measurement uncertainty was experimentally and theoretically demonstrated to be smaller than 12 microm at a measurement distance of 20 m.

  9. Absolute Hugoniot measurements for CH foams in the 1.5-8 Mbar range

    NASA Astrophysics Data System (ADS)

    Aglitskiy, Y.; Velikovich, A. L.; Schmitt, A. J.; Karasik, M.; Serlin, V.; Weaver, J. L.; Oh, J.; Obenschain, S. P.

    2016-10-01

    We report the absolute Hugoniot measurements for dry CH foams at 10% of solid polystyrene density. The 400 μm thick, 500 μm wide planar foam slabs covered with a 10 μm solid plastic ablator were driven with 4 ns long Nike KrF laser pulses whose intensity was varied between 10 and 50 TW/cm2. The trajectories of the shock front and the ablative piston, as well as the rarefaction fan emerging after the shock breakout from the rear surface of the target were clearly observed using the side-on monochromatic x-ray imaging radiography. From these measurements the shock density compression ratio and the shock pressure are evaluated directly. The observed compression ratios varied between 4 and 8, and the corresponding shock pressures - between 1.5 and 8 Mbar. The data was simulated with the FASTRAD3D hydrocode, using standard models of inverse bremsstrahlung absorption, flux-limited thermal conduction, and multi-group radiation diffusion. The demonstrated diagnostics technique applied in a cryo experiment would make it possible to make the first absolute Hugoniot measurements for liquid deuterium or DT-wetted CH foams, which is relevant for designing the wetted-foam indirect-drive ignition targets for NIF. This work was supported by the US DOE/NNSA.

  10. Absolute phase recovery in structured light illumination systems: Sinusoidal vs. intensity discrete patterns

    NASA Astrophysics Data System (ADS)

    Porras-Aguilar, Rosario; Falaggis, Konstantinos

    2016-09-01

    Structured light illumination is a well-established technology for noncontact 3D surface measurements. A common challenge in those systems is to obtain the absolute surface information using few measurement frames. This work discusses techniques based on the projection of multiple sinusoidal fringe patterns with different fringe period, as well as the projection of intensity discrete Gray Code and grey-level coded patterns. The use of sinusoidal multi-frequency techniques has been since years an on-going area of research, where various algorithms have been developed based on beats, look-up tables, or number-theoretical approaches. This work shows that a related technique, the so-called algebraic reconstruction technique that is borrowed from the area of multi-wavelength interferometry can be used for this purpose. This approach provides a robust analytical solution to the phase-unwrapping problem. However, this work argues that despite these advances, the acquisition of additional phase maps obtained with different fringe periods requires too many measurement frames, and hence is inefficient. Motivated by that, this work proposes a new grey level coding scheme that uses only few measurement frames, overcomes typical defocus errors, and has an error detecting feature. The latter feature makes the need of separate error detecting algorithms obsolete. This so-called closed-loop space filling curve can be implemented with an arbitrary number of N grey-levels enabling to code up to (2N) code-words. The performance of this so-called closed-loop space filling curve is demonstrated using experimental data.

  11. Experimental investigation of factors affecting the absolute recovery coefficients in iodine-124 PET lesion imaging.

    PubMed

    Jentzen, Walter

    2010-04-21

    The use of recovery coefficients (RCs) in (124)I PET lesion imaging is a simple method to correct the imaged activity concentration (AC) primarily for the partial-volume effect and, to a minor extent, for the prompt gamma coincidence effect. The aim of this phantom study was to experimentally investigate a number of various factors affecting the (124)I RCs. Three RC-based correction approaches were considered. These approaches differ with respect to the volume of interest (VOI) drawn, which determines the imaged AC and the RCs: a single voxel VOI containing the maximum value (maximum RC), a spherical VOI with a diameter of the scanner resolution (resolution RC) and a VOI equaling the physical object volume (isovolume RC). Measurements were performed using mainly a stand-alone PET scanner (EXACT HR(+)) and a latest-generation PET/CT scanner (BIOGRAPH mCT). The RCs were determined using a cylindrical phantom containing spheres or rotational ellipsoids and were derived from images acquired with a reference acquisition protocol. For each type of RC, the influence of the following factors on the RC was assessed: object shape, background activity spill in and iterative image reconstruction parameters. To evaluate the robustness of the RC-based correction approaches, the percentage deviation between RC-corrected and true ACs was determined from images acquired with a clinical acquisition protocol of different AC regimes. The observed results of the shape and spill-in effects were compared with simulation data derived from a convolution-based model. The study demonstrated that the shape effect was negligible and, therefore, was in agreement with theoretical expectations. In contradiction to the simulation results, the observed spill-in effect was unexpectedly small. To avoid variations in the determination of RCs due to reconstruction parameter changes, image reconstruction with a pixel length of about one-third or less of the scanner resolution and an OSEM 1 x 32

  12. Experimental investigation of factors affecting the absolute recovery coefficients in iodine-124 PET lesion imaging

    NASA Astrophysics Data System (ADS)

    Jentzen, Walter

    2010-04-01

    The use of recovery coefficients (RCs) in 124I PET lesion imaging is a simple method to correct the imaged activity concentration (AC) primarily for the partial-volume effect and, to a minor extent, for the prompt gamma coincidence effect. The aim of this phantom study was to experimentally investigate a number of various factors affecting the 124I RCs. Three RC-based correction approaches were considered. These approaches differ with respect to the volume of interest (VOI) drawn, which determines the imaged AC and the RCs: a single voxel VOI containing the maximum value (maximum RC), a spherical VOI with a diameter of the scanner resolution (resolution RC) and a VOI equaling the physical object volume (isovolume RC). Measurements were performed using mainly a stand-alone PET scanner (EXACT HR+) and a latest-generation PET/CT scanner (BIOGRAPH mCT). The RCs were determined using a cylindrical phantom containing spheres or rotational ellipsoids and were derived from images acquired with a reference acquisition protocol. For each type of RC, the influence of the following factors on the RC was assessed: object shape, background activity spill in and iterative image reconstruction parameters. To evaluate the robustness of the RC-based correction approaches, the percentage deviation between RC-corrected and true ACs was determined from images acquired with a clinical acquisition protocol of different AC regimes. The observed results of the shape and spill-in effects were compared with simulation data derived from a convolution-based model. The study demonstrated that the shape effect was negligible and, therefore, was in agreement with theoretical expectations. In contradiction to the simulation results, the observed spill-in effect was unexpectedly small. To avoid variations in the determination of RCs due to reconstruction parameter changes, image reconstruction with a pixel length of about one-third or less of the scanner resolution and an OSEM 1 × 32 algorithm or

  13. Absolute Total Photoionization Cross Section of C60 in the Range of 25-120 eV: Revisited

    NASA Astrophysics Data System (ADS)

    Kafle, Bhim P.; Katayanagi, Hideki; Prodhan, Md. Serajul I.; Yagi, Hajime; Huang, Chaoqun; Mitsuke, Koichiro

    2008-01-01

    The absolute total photoionization cross section σabs,I of gaseous C60 is measured in the photon energy hν range from 25 to 120 eV by photoionization mass spectrometry with synchrotron radiation. The absolute detection efficiencies of photoions in different charge states are evaluated. The present σabs,I curve is combined with the photoabsorption cross section curves of C60 at hν=3.5--26 eV in the literature, after appropriate alterations of the vapor pressure are taken into account. The oscillator strengths are computed from the composite curve to be 178.5 and 230.5 for the hν ranges from 3.5 to 40.8 eV and from 3.5 to 119 eV, respectively. These oscillator strengths agree well with those expected from the Thomas-Kuhn-Reiche sum rule and 60 times the photoabsorption cross section of a carbon atom. Moreover, the present σabs,I curve behaves similarly to the relative photoionization cross section curve reported by Reinköster et al.

  14. Two-modality laser diode interferometer for high-accuracy measurement of long-range absolute distance

    NASA Astrophysics Data System (ADS)

    Wang, Bofan; Li, Zhongliang; Wang, Xiangzhao; Bu, Peng

    2010-08-01

    This paper presents a two-modality laser diode (LD) interferometer which combine as two-wavelength sinusoidal phase modulating (SPM) interferometer with a wavelength scanning interferometer (WSI) for measurement of distance over long range with high accuracy. Moreover, the intensity modulation due to power changes of LD is suppressed by appropriately choosing the modulation amplitude of injection current (IC) of LD. Triangle wave is used to modulate the IC of one LD with that of the other LD being constant at first. Thus the interferometer works as a wavelength scanning interferometer. An initial estimate of the distance can be obtained from the phase change of the interference signal. Then sinusoidal wave is used for modulating IC of both LDs to realize a two-wavelength SPM interferometer. However, the modulation of the IC of two LDs results in not only the wavelength modulation but also the intensity modulation. This intensity modulation will cause a measured phase error. To eliminate this error, SPM depths are appropriately chosen, therefore the distance to be measured can be accurately obtained with synthetic-wavelength algorithm. Experimental results indicate that an absolute distance measurement accuracy of 1μm can be achieved over the range of 40mm to 100mm.

  15. Absolute x-ray energy calibration over a wide energy range using a diffraction-based iterative method.

    PubMed

    Hong, Xinguo; Chen, Zhiqiang; Duffy, Thomas S

    2012-06-01

    In this paper, we report a method of precise and fast absolute x-ray energy calibration over a wide energy range using an iterative x-ray diffraction based method. Although accurate x-ray energy calibration is indispensable for x-ray energy-sensitive scattering and diffraction experiments, there is still a lack of effective methods to precisely calibrate energy over a wide range, especially when normal transmission monitoring is not an option and complicated micro-focusing optics are fixed in place. It is found that by using an iterative algorithm the x-ray energy is only tied to the relative offset of sample-to-detector distance, which can be readily varied with high precision of the order of 10(-5) -10(-6) spatial resolution using gauge blocks. Even starting with arbitrary initial values of 0.1 Å, 0.3 Å, and 0.4 Å, the iteration process converges to a value within 3.5 eV for 31.122 keV x-rays after three iterations. Different common diffraction standards CeO(2), Au, and Si show an energy deviation of 14 eV. As an application, the proposed method has been applied to determine the energy-sensitive first sharp diffraction peak of network forming GeO(2) glass at high pressure, exhibiting a distinct behavior in the pressure range of 2-4 GPa. Another application presented is pair distribution function measurement using calibrated high-energy x-rays at 82.273 keV. Unlike the traditional x-ray absorption-based calibration method, the proposed approach does not rely on any edges of specific elements, and is applicable to the hard x-ray region where no appropriate absorption edge is available.

  16. New Measurements of the Absolute Spectral Energy Distribution of Solar Radiation in the Range Double Lambda 650-1070 NM

    NASA Astrophysics Data System (ADS)

    Burlov-Vasilev, K. A.; Vasileva, I. E.; Matveev, Yu. B.

    1996-01-01

    Spectral measurements of the solar disk centre intensity for the near-IR region have been made at he Terskol High-Altitude Station in 1992. These measurements are the continuation of the program for the solar absolute spectral energy distribution investigation. Data published earlier are extended to the longwave spectral region up to 1070 nm. The special-purpose solar telescope SEF-1 was used. We compared the disk centre brightness with brightness of the calibrated region of the standard ribbon tungsten lamp. The atmospheric extinction was taken into account by the Bouguer method with simultaneous control of the atmosphere stability. The 1-nm integrals of the disk centre intensity in the range double lamda 650-1070 nm based on 5-day measurements in March-October 1992 are given. The uncertainty of these values is 2%. In regions with strong telluric absorption by oxygen and water-vapour bands, the reductions are made, using synthetic atmospheric absorption spectra computed on the basis of molecular parameter atlas HITRAN and the standard model atmosphere. By the use of the solar limb darkening coefficients the values of the solar flux at 1 A.U. were derived. Our measurements show the best agreement with the data of Makarova, Kharitonov, and Kazachevskaya as well as with the common data from Shaw and Frohlich. For lambda greater than 850 nm our data are systematically lower than the data by Neckel and Labs.

  17. Interference peak detection based on FPGA for real-time absolute distance ranging with dual-comb lasers

    NASA Astrophysics Data System (ADS)

    Ni, Kai; Dong, Hao; Zhou, Qian; Xu, Mingfei; Li, Xinghui; Wu, Guanhao

    2015-08-01

    Absolute distance measurement using dual femtosecond comb lasers can achieve higher accuracy and faster measurement speed, which makes it more and more attractive. The data processing flow consists of four steps: interference peak detection, fast Fourier transform (FFT), phase fitting and compensation of index of refraction. A realtime data processing system based on Field-Programmable Gate Array (FPGA) for dual-comb ranging has been newly developed. The design and implementation of the interference peak detection algorithm by FPGA and Verilog language is introduced in this paper, which is viewed as the most complicated part and an important guarantee for system precision and reliability. An adaptive sliding window for scanning is used to detect peaks. In the process of detection, the algorithm stores 16 sample data as a detection unit and calculates the average of each unit. The average result is used to determine the vertical center height of the sliding window. The algorithm estimates the noise intensity of each detection unit, and then calculates the average of the noise strength of successive 128 units. The noise average is used to calculate the signal to noise ratio of the current working environment, which is used to adjust the height of the sliding window. This adaptive sliding window helps to eliminate fake peaks caused by noise. The whole design is based on the way of pipeline, which can improves the real-time throughput of the overall peak detection module. Its execution speed is up to 140MHz in the FPGA, and the peak can be detected in 16 clock cycle when it appears.

  18. Easy Absolute Values? Absolutely

    ERIC Educational Resources Information Center

    Taylor, Sharon E.; Mittag, Kathleen Cage

    2015-01-01

    The authors teach a problem-solving course for preservice middle-grades education majors that includes concepts dealing with absolute-value computations, equations, and inequalities. Many of these students like mathematics and plan to teach it, so they are adept at symbolic manipulations. Getting them to think differently about a concept that they…

  19. Absolute total and partial cross sections for ionization of nucleobases by proton impact in the Bragg peak velocity range

    SciTech Connect

    Tabet, J.; Eden, S.; Feil, S.; Abdoul-Carime, H.; Farizon, B.; Farizon, M.; Ouaskit, S.; Maerk, T. D.

    2010-08-15

    We present experimental results for proton ionization of nucleobases (adenine, cytosine, thymine, and uracil) based on an event-by-event analysis of the different ions produced combined with an absolute target density determination. We are able to disentangle in detail the various proton ionization channels from mass-analyzed product ion signals in coincidence with the charge-analyzed projectile. In addition we are able to determine a complete set of cross sections for the ionization of these molecular targets by 20-150 keV protons including the total and partial cross sections and the direct-ionization and electron-capture cross sections.

  20. Spatiotemporal requirements of the Hainan gibbon: Does home range constrain recovery of the world's rarest ape?

    PubMed

    Bryant, Jessica V; Zeng, Xingyuan; Hong, Xiaojiang; Chatterjee, Helen J; Turvey, Samuel T

    2017-03-01

    Conservation management requires an evidence-based approach, as uninformed decisions can signify the difference between species recovery and loss. The Hainan gibbon, the world's rarest ape, reportedly exploits the largest home range of any gibbon species, with these apparently large spatial requirements potentially limiting population recovery. However, previous home range assessments rarely reported survey methods, effort, or analytical approaches, hindering critical evaluation of estimate reliability. For extremely rare species where data collection is challenging, it also is unclear what impact such limitations have on estimating home range requirements. We re-evaluated Hainan gibbon spatial ecology using 75 hr of observations from 35 contact days over 93 field-days across dry (November 2010-February 2011) and wet (June 2011-September 2011) seasons. We calculated home range area for three social groups (N = 21 individuals) across the sampling period, seasonal estimates for one group (based on 24 days of observation; 12 days per season), and between-group home range overlap using multiple approaches (Minimum Convex Polygon, Kernel Density Estimation, Local Convex Hull, Brownian Bridge Movement Model), and assessed estimate reliability and representativeness using three approaches (Incremental Area Analysis, spatial concordance, and exclusion of expected holes). We estimated a yearly home range of 1-2 km(2) , with 1.49 km(2) closest to the median of all estimates. Although Hainan gibbon spatial requirements are relatively large for gibbons, our new estimates are smaller than previous estimates used to explain the species' limited recovery, suggesting that habitat availability may be less important in limiting population growth. We argue that other ecological, genetic, and/or anthropogenic factors are more likely to constrain Hainan gibbon recovery, and conservation attention should focus on elucidating and managing these factors.

  1. Frequency-range discriminations and absolute pitch in black-capped chickadees (Poecile atricapillus), mountain chickadees (Poecile gambeli), and zebra finches (Taeniopygia guttata).

    PubMed

    Lee, Tiffany T Y; Charrier, Isabelle; Bloomfield, Laurie L; Weisman, Ronald G; Sturdy, Christopher B

    2006-08-01

    The acoustic frequency ranges in birdsongs provide important absolute pitch cues for the recognition of conspecifics. Black-capped chickadees (Poecile atricapillus), mountain chickadees (Poecile gambeli), and zebra finches (Taeniopygia guttata) were trained to sort tones contiguous in frequency into 8 ranges on the basis of associations between response to the tones in each range and reward. All 3 species acquired accurate frequency-range discriminations, but zebra finches acquired the discrimination in fewer trials and to a higher standard than black-capped or mountain chickadees, which did not differ appreciably in the discrimination. Chickadees' relatively poorer accuracy was traced to poorer discrimination of tones in the higher frequency ranges. During transfer tests, the discrimination generalized to novel tones when the training tones were included, but not when they were omitted.

  2. Recovery of absolute phases for the fringe patterns of three selected wavelengths with improved anti-error capability

    NASA Astrophysics Data System (ADS)

    Long, Jiale; Xi, Jiangtao; Zhang, Jianmin; Zhu, Ming; Cheng, Wenqing; Li, Zhongwei; Shi, Yusheng

    2016-09-01

    In a recent published work, we proposed a technique to recover the absolute phase maps of fringe patterns with two selected fringe wavelengths. To achieve higher anti-error capability, the proposed method requires employing the fringe patterns with longer wavelengths; however, longer wavelength may lead to the degradation of the signal-to-noise ratio (SNR) in the surface measurement. In this paper, we propose a new approach to unwrap the phase maps from their wrapped versions based on the use of fringes with three different wavelengths which is characterized by improved anti-error capability and SNR. Therefore, while the previous method works on the two-phase maps obtained from six-step phase-shifting profilometry (PSP) (thus 12 fringe patterns are needed), the proposed technique performs very well on three-phase maps from three steps PSP, requiring only nine fringe patterns and hence more efficient. Moreover, the advantages of the two-wavelength method in simple implementation and flexibility in the use of fringe patterns are also reserved. Theoretical analysis and experiment results are presented to confirm the effectiveness of the proposed method.

  3. Absolute calibration of Kodak Biomax-MS film response to x rays in the 1.5- to 8-keV energy range

    SciTech Connect

    Marshall, F. J.; Knauer, J. P.; Anderson, D.; Schmitt, B. L

    2006-10-15

    The absolute response of Kodak Biomax-MS film to x rays in the range from 1.5- to 8-keV has been measured using a laboratory electron-beam generated x-ray source. The measurements were taken at specific line energies by using Bragg diffraction to produce monochromatic beams of x rays. Multiple exposures were taken on Biomax MS film up to levels exceeding optical densities of 2 as measured by a microdensitometer. The absolute beam intensity for each exposure was measured with a Si(Li) detector. Additional response measurements were taken with Kodak direct exposure film (DEF) so as to compare the results of this technique to previously published calibrations. The Biomax-MS results have been fitted to a semiempirical mathematical model (Knauer et al., these proceedings). Users of the model can infer absolute fluences from observed exposure levels at either interpolated or extrapolated energies. To summarize the results: Biomax MS has comparable sensitivity to DEF film below 3 keV but has reduced sensitivity above 3 keV ({approx}50%). The lower exposure results from thinner emulsion layers, designed for use with phosphor screens. The ease with which Biomax-MS can be used in place of DEF (same format film, same developing process, and comparable sensitivity) makes it a good replacement.

  4. Compressed Sensing/Sparse-Recovery Approach for Improved Range Resolution in Narrow-Band Radar.

    PubMed

    Costanzo, Sandra

    2016-01-01

    A compressed sensing/sparse-recovery procedure is adopted to obtain enhanced range resolution capability from the processing of data acquired with narrow-band SFCW radars. A mathematical formulation for the proposed approach is reported and validity limitations are fully discussed, by demonstrating the ability to identify a great number of targets, up to 20, in the range direction. Both numerical and experimental validations are presented, by assuming also noise conditions. The proposed method can be usefully applied for the accurate detection of parameters with very small variations, such as those involved in the monitoring of soil deformations or biological objects.

  5. Compressed Sensing/Sparse-Recovery Approach for Improved Range Resolution in Narrow-Band Radar

    PubMed Central

    Costanzo, Sandra

    2016-01-01

    A compressed sensing/sparse-recovery procedure is adopted to obtain enhanced range resolution capability from the processing of data acquired with narrow-band SFCW radars. A mathematical formulation for the proposed approach is reported and validity limitations are fully discussed, by demonstrating the ability to identify a great number of targets, up to 20, in the range direction. Both numerical and experimental validations are presented, by assuming also noise conditions. The proposed method can be usefully applied for the accurate detection of parameters with very small variations, such as those involved in the monitoring of soil deformations or biological objects. PMID:27022617

  6. Comparison in gas media (absolute and gauge mode)in the range from 25 kPa TO 200 kPa (EURAMET.M.P-K8)

    NASA Astrophysics Data System (ADS)

    Wuethrich, C.; Alisic, S.; Altintas, A.; van Andel, I.; C, In­Mook; Eltawil, A. A.; Farár, P.; Hetherington, P.; Koçaş, I.; Lefkopoulos, A.; Otal, P.; Prazak, D.; Sabuga, W.; Salustiano, R.; Sandu, I.; Sardi, M.; Saxholm, S.; Setina, J.; Spohr, I.; Steindl, D.; Testa, N.; Vámossy, C.; Grgec Bermanec, L.

    2016-01-01

    It was decided at the EURAMET TC-M meeting in Torino in 2006 to realize a comparison in gauge and absolute pressure up to 200 kPa as it would allow a link to the CCM.P-K6 and CCM.P-K2 comparisons to be established. This project interested a lot of laboratories from the beginning with 23 participants, 22 of which have submitted results. The circulation of the transfer standard began in July 2009 and lasted until January 2012. No major problems occurred during the transport. The measurand of the comparison is the effective area of a piston-cylinder determined in gauge and absolute pressure from 25 kPa to 200 kPa with pressure steps of 25 kPa. The transfer standard is a gas lubricated tungsten carbide piston-cylinder with an effective area of ~9.8 cm2, fabricated by DH Instruments and compatible with a PG-7601 pressure balance. Some participants used their own pressure balance while a pressure balance with a reference vacuum sensor has been circulated for the participants not equipped with this system. One participant (SMU, Slovakia) has never provided the measurement results and another participant (FORCE Technology, Denmark) submitted a revised set of measurement results after the pilot laboratory mentioned that the equivalence was not met. After the determination of the reference value, all the 22 participants who delivered the results in gauge pressure demonstrated equivalence respective to the reference value on most of the range. In absolute pressure the equivalence is demonstrated, for all nominal pressures, by all 17 participants who submitted results. The comparison is linked to the CCM.P-K6 for gauge pressure and to CCM.P-K2 for absolute pressure. The link does not strongly affect the equivalence of the results and an excellent degree of equivalence is achieved in gauge and absolute pressure. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb

  7. Development and application of a water calorimeter for the absolute dosimetry of short-range particle beams

    NASA Astrophysics Data System (ADS)

    Renaud, J.; Rossomme, S.; Sarfehnia, A.; Vynckier, S.; Palmans, H.; Kacperek, A.; Seuntjens, J.

    2016-09-01

    In this work, we describe a new design of water calorimeter built to measure absorbed dose in non-standard radiation fields with reference depths in the range of 6-20 mm, and its initial testing in clinical electron and proton beams. A functioning calorimeter prototype with a total water equivalent thickness of less than 30 mm was constructed in-house and used to obtain measurements in clinical accelerator-based 6 MeV and 8 MeV electron beams and cyclotron-based 60 MeV monoenergetic and modulated proton beams. Corrections for the conductive heat transfer due to dose gradients and non-water materials was also accounted for using a commercial finite element method software package. Absorbed dose to water was measured with an associated type A standard uncertainty of approximately 0.4% and 0.2% for the electron and proton beam experiments, respectively. In terms of thermal stability, drifts were on the order of a couple of hundred µK min-1, with a short-term variation of 5-10 µK. Heat transfer correction factors ranged between 1.021 and 1.049. The overall combined standard uncertainty on the absorbed dose to water was estimated to be 0.6% for the 6 MeV and 8 MeV electron beams, as well as for the 60 MeV monoenergetic protons, and 0.7% for the modulated 60 MeV proton beam. This study establishes the feasibility of developing an absorbed dose transfer standard for short-range clinical electrons and protons and forms the basis for a transportable dose standard for direct calibration of ionization chambers in the user’s beam. The largest contributions to the combined standard uncertainty were the positioning (⩽0.5%) and the correction due to conductive heat transfer (⩽0.4%). This is the first time that water calorimetry has been used in such a low energy proton beam.

  8. Absolute rate of the reaction of O/3-P/ with hydrogen sulfide over the temperature range 263 to 495 K

    NASA Technical Reports Server (NTRS)

    Whytock, D. A.; Timmons, R. B.; Lee, J. H.; Michael, J. V.; Payne, W. A.; Stief, L. J.

    1976-01-01

    The technique of flash photolysis coupled with time resolved detection of O via resonance fluorescence has been used to obtain rate constants for the reaction of O(3-P) with H2S at temperatures from 263 to 495 K and at pressures in the range 10-400 torr. Under conditions where secondary reactions are avoided, the measured rate constants for the primary step obey the Arrhenius equation k = (7.24 plus or minus 1.07) x 10 to the -12th exp(-3300 plus or minus 100/1.987 T) cu cm/molecules/s. Experiments with D2S show that the reaction exhibits a primary isotope effect, in support of a hydrogen abstraction mechanism.

  9. Mitigation of Atmospheric Delay in SAR Absolute Ranging Using Global Numerical Weather Prediction Data: Corner Reflector Experiments at 3 Different Test Sites

    NASA Astrophysics Data System (ADS)

    Cong, Xiaoying; Balss, Ulrich; Eineder, Michael

    2015-04-01

    The atmospheric delay due to vertical stratification, the so-called stratified atmospheric delay, has a great impact on both interferometric and absolute range measurements. In our current researches [1][2][3], centimeter-range accuracy has been proven based on Corner Reflector (CR) based measurements by applying atmospheric delay correction using the Zenith Path Delay (ZPD) corrections derived from nearby Global Positioning System (GPS) stations. For a global usage, an effective method has been introduced to estimate the stratified delay based on global 4-dimensional Numerical Weather Prediction (NWP) products: the direct integration method [4][5]. Two products, ERA-Interim and operational data, provided by European Centre for Medium-Range Weather Forecast (ECMWF) are used to integrate the stratified delay. In order to access the integration accuracy, a validation approach is investigated based on ZPD derived from six permanent GPS stations located in different meteorological conditions. Range accuracy at centimeter level is demonstrated using both ECMWF products. Further experiments have been carried out in order to determine the best interpolation method by analyzing the temporal and spatial correlation of atmospheric delay using both ECMWF and GPS ZPD. Finally, the integrated atmospheric delays in slant direction (Slant Path Delay, SPD) have been applied instead of the GPS ZPD for CR experiments at three different test sites with more than 200 TerraSAR-X High Resolution SpotLight (HRSL) images. The delay accuracy is around 1-3 cm depending on the location of test site due to the local water vapor variation and the acquisition time/date. [1] Eineder M., Minet C., Steigenberger P., et al. Imaging geodesy - Toward centimeter-level ranging accuracy with TerraSAR-X. Geoscience and Remote Sensing, IEEE Transactions on, 2011, 49(2): 661-671. [2] Balss U., Gisinger C., Cong X. Y., et al. Precise Measurements on the Absolute Localization Accuracy of TerraSAR-X on the

  10. Absolute absorption coefficient of C6H2 in the mid-UV range at low temperature; implications for the interpretation of Titan atmospheric spectra.

    PubMed

    Bénilan, Y; Bruston, P; Raulin, F; Courtin, R; Guillemin, J C

    1995-01-01

    The interpretation of mid-UV albedo spectra of planetary atmospheres, especially that of Titan, is the main goal of the SIPAT (Spectroscopie uv d'Interet Prebiologique dans l'Atmosphere de Titan) research program. This laboratory experiment has been developed in order to systematically determine the absorption coefficients of molecular compounds which are potential absorbers of scattered sunlight in planetary atmospheres, with high spectral resolution, and at various temperatures below room temperature. From photochemical modelling and experimental simulations, we may expect triacetylene (C6H2) to be present in the atmosphere of Titan, even though it has not yet been detected. We present here the first determination of the absolute absorption coefficient of that compound in the 200-300 nm range and at two temperatures (296 K and 233 K). The temperature dependence of the C6H2 absorption coefficient in that wavelength range is compared to that previously observed in the case of cyanoacetylene (HC3N). We then discuss the implications of the present results for the interpretation of Titan UV spectra, where it appears that large uncertainities can be introduced either by the presence of trace impurities in laboratory samples or by the variations of absorption coefficients with temperature.

  11. Absolute measurements of the response function of an NE213 organic liquid scintillator for the neutron energy range up to 206 /MeV

    NASA Astrophysics Data System (ADS)

    Nakao, Noriaki; Kurosawa, Tadahiro; Nakamura, Takashi; Uwamino, Yoshitomo

    2001-05-01

    The absolute values of the neutron response functions of a 12.7 cm diameter by 12.7 cm long NE213 organic liquid scintillator were measured using a quasi-monoenergetic neutron field in the energy range of 66- 206 MeV via the 7Li(p,n) 7Be reaction in the ring cyclotron facility at RIKEN. The measured response functions were compared with calculations using a Monte Carlo code developed by Cecil et al. The measurements clarified that protons escaping through the scintillator wall induced by high-energy neutrons increase from 6% for 66 MeV neutrons to 35% for 206 MeV neutrons, and that this wall effect causes a difficult problem for n-γ discrimination. Measured response functions without the wall-effect events were also obtained by eliminating the escaping-proton events in the analysis, and compared with calculations using a modified Monte Carlo code. Comparisons between the measurements and calculations both with and without any wall-effect events gave a good agreement, but some discrepancy in the light output distribution could be found, mainly because the deuteron generation process was not taken into account in the calculation. The calculated efficiencies for 10 MeVee threshold, however, also gave good agreement within about 10% with the measurements.

  12. Absorption spectrum and absolute absorption cross sections of CH3O2 radicals and CH3I molecules in the wavelength range 7473-7497 cm(-1).

    PubMed

    Faragó, Eszter P; Viskolcz, Bela; Schoemaecker, Coralie; Fittschen, Christa

    2013-12-05

    The absorption spectrum of CH3O2 radicals and CH3I molecules has been measured in the range 7473-7497 cm(-1). CH3O2 radicals have been generated by 248 nm laser photolysis of CH3I in the presence of O2, and the relative absorption has been measured by time-resolved continuous-wave cavity ring-down spectroscopy (cw-CRDS). Calibration of the relative absorption spectrum has been carried out on three distinct wavelengths by carefully measuring CH3O2 decays under different experimental conditions and extracting the initial radical concentration (and with this the absolute absorption cross sections) by using the well-known rate constant for the CH3O2 self-reaction. The following, pressure-independent absorption cross sections were determined: 3.41 × 10(-20), 3.40 × 10(-20), and 2.11 × 10(-20) cm(2) at 7748.18, 7489.16, and 7493.33 cm(-1). These values are 2-3 times higher than previous determinations ( Pushkarsky, M. B.; Zalyubovsky, S. J.; Miller, T. A. J. Chem. Phys. 2000, 112 (24), 10695 - 10698 and Atkinson, D. B.; Spillman, J. L. J. Phys. Chem. A 2002, 106 (38), 8891 - 8902). The absorption spectrum of the stable precursor CH3I has also been determined and three characteristic sharp absorption lines with absorption cross sections up to 2 × 10(-21) cm(2) have been observed in this wavelength range.

  13. Water tables constrain height recovery of willow on Yellowstone's northern range.

    PubMed

    Bilyeu, Danielle M; Cooper, David J; Hobbs, N Thompson

    2008-01-01

    Excessive levels of herbivory may disturb ecosystems in ways that persist even when herbivory is moderated. These persistent changes may complicate efforts to restore ecosystems affected by herbivores. Willow (Salix spp.) communities within the northern range in Yellowstone National Park have been eliminated or degraded in many riparian areas by excessive elk (Cervus elaphus L.) browsing. Elk browsing of riparian willows appears to have diminished following the reintroduction of wolves (Canis lupis L.), but it remains uncertain whether reduced herbivory will restore willow communities. The direct effects of elk browsing on willows have been accompanied by indirect effects from the loss of beaver (Castor canadensis Kuhl) activity, including incision of stream channels, erosion of fine sediments, and lower water tables near streams historically dammed by beaver. In areas where these changes have occurred, lowered water tables may suppress willow height even in the absence of elk browsing. We conducted a factorial field experiment to understand willow responses to browsing and to height of water tables. After four years of protection from elk browsing, willows with ambient water tables averaged only 106 cm in height, with negligible height gain in two of three study species during the last year of the experiment. Willows that were protected from browsing and had artificially elevated water tables averaged 147 cm in height and gained 19 cm in the last year of the experiment. In browsed plots, elevated water tables doubled height gain during a period of slightly reduced browsing pressure. We conclude that water availability mediates the rate of willow height gain and may determine whether willows grow tall enough to escape the browse zone of elk and gain resistance to future elk browsing. Consequently, in areas where long-term beaver absence has resulted in incised stream channels and low water tables, a reduction in elk browsing alone may not be sufficient for recovery

  14. Absolute Zero

    NASA Astrophysics Data System (ADS)

    Donnelly, Russell J.; Sheibley, D.; Belloni, M.; Stamper-Kurn, D.; Vinen, W. F.

    2006-12-01

    Absolute Zero is a two hour PBS special attempting to bring to the general public some of the advances made in 400 years of thermodynamics. It is based on the book “Absolute Zero and the Conquest of Cold” by Tom Shachtman. Absolute Zero will call long-overdue attention to the remarkable strides that have been made in low-temperature physics, a field that has produced 27 Nobel Prizes. It will explore the ongoing interplay between science and technology through historical examples including refrigerators, ice machines, frozen foods, liquid oxygen and nitrogen as well as much colder fluids such as liquid hydrogen and liquid helium. A website has been established to promote the series: www.absolutezerocampaign.org. It contains information on the series, aimed primarily at students at the middle school level. There is a wealth of material here and we hope interested teachers will draw their student’s attention to this website and its substantial contents, which have been carefully vetted for accuracy.

  15. Cutaneous Functional Units Predict Shoulder Range of Motion Recovery in Children Receiving Rehabilitation.

    PubMed

    Parry, Ingrid; Sen, Soman; Sattler-Petrocchi, Kelly; Greenhalgh, David; Palmieri, Tina

    Cutaneous functional units (CFUs) are fields of skin that functionally contribute to range of motion (ROM) at an associated joint. When replaced with scar tissue, the skin is less extensible and may result in loss of movement at the joint. Consideration of the amount of CFU affected by burn injury is increasingly being used to predict the development of burn scar contracture (BSC) in burn survivors. Previous work established that, in adults, burn rehabilitation time per CFU was the greatest predictor of preventing BSC. Our study aimed to examine the direct relationship between percent involvement of CFU and ROM achieved in children with BSC who received 6 months of rehabilitation therapy services. ROM was measured at baseline and throughout the study period using traditional methods of goniometry as well as three-dimensional motion capture during the performance of functional tasks. Burn extent and distribution were mapped using an electronic diagram to calculate the percentage of CFU affected by scarring or skin grafts. Pearson's correlations and multivariate linear regression analyses were performed to determine associations between variables. Results showed that percent CFU involvement was negatively correlated with maximal goniometric and functional shoulder ROM achieved. That is, the amount of a given CFU scarred was predictive of less ROM achieved in the associated area. Percentage of CFU involved did not significantly correlate with baseline shoulder ROM, suggesting that other factors may be associated with initial limitations in ROM. Evaluation of the percentage of CFU scarred is useful for predicting shoulder ROM recovery with rehabilitation and may be used to help guide clinical decision making and allocation of time and resource for therapy services.

  16. Recovery

    NASA Video Gallery

    This video discusses the recovery events that occur in high-power rocketry and the various devices used in safely recovering the rocket. The video includes a discussion of black powder and ejection...

  17. Absolute Summ

    NASA Astrophysics Data System (ADS)

    Phillips, Alfred, Jr.

    Summ means the entirety of the multiverse. It seems clear, from the inflation theories of A. Guth and others, that the creation of many universes is plausible. We argue that Absolute cosmological ideas, not unlike those of I. Newton, may be consistent with dynamic multiverse creations. As suggested in W. Heisenberg's uncertainty principle, and with the Anthropic Principle defended by S. Hawking, et al., human consciousness, buttressed by findings of neuroscience, may have to be considered in our models. Predictability, as A. Einstein realized with Invariants and General Relativity, may be required for new ideas to be part of physics. We present here a two postulate model geared to an Absolute Summ. The seedbed of this work is part of Akhnaton's philosophy (see S. Freud, Moses and Monotheism). Most important, however, is that the structure of human consciousness, manifest in Kenya's Rift Valley 200,000 years ago as Homo sapiens, who were the culmination of the six million year co-creation process of Hominins and Nature in Africa, allows us to do the physics that we do. .

  18. Organic matter and palaeoenvironmental signals during the Early Triassic biotic recovery: The Salt Range and Surghar Range records

    NASA Astrophysics Data System (ADS)

    Hermann, Elke; Hochuli, Peter A.; Méhay, Sabine; Bucher, Hugo; Brühwiler, Thomas; Ware, David; Hautmann, Michael; Roohi, Ghazala; ur-Rehman, Khalil; Yaseen, Aamir

    2011-03-01

    Latest Permian to the Middle Triassic mixed siliciclastic-carbonate shelf deposits of the northern Gondwana margin have been studied in four sections (Nammal, Chhidru, Chitta-Landu, and Narmia) in the Salt Range and Surghar Range of Pakistan. Sedimentological and palynofacies patterns combined with a high resolution ammonoid based age control have been used to assess environmental changes such as sea-level change, distance from the shore, and oxygenation conditions of the sections in the aftermath of the end-Permian mass extinction. The base and the top of the Early Triassic are marked by second order sequence boundaries (SRT1, SRT8). Within the Early Triassic two third order sequence boundaries could be delineated by means of palynofacies analysis and sedimentology, one near the Dienerian-Smithian (SRT2) and the second one near the Smithian-Spathian boundary (SRT5). The extinction event at the Smithian-Spathian boundary seems to be closely associated to the latter globally recorded sea-level low stand. Five additional sequences of undetermined order (SRT3, SRT 4, SRT5/1, SRT6, and SRT7) are reflected in the sedimentological record of the studied sections. The observed changes in the composition of the particulate organic matter (POM) indicate a general shallowing upward trend, which is modulated by smaller transgressive-regressive cycles supporting the sedimentologically defined sequences. The POM is mostly dominated by terrestrial phytoclasts and sporomorphs. The strongest marine signal is reflected by increased abundance of amorphous organic matter (AOM) in the lower part of the Ceratite Marls at Nammal (late Dienerian) and Chhidru (earliest Smithian) and the Lower Ceratite Limestone at Chitta-Landu (late Dienerian). AOM of marine origin is characteristic for deeper, distal basinal settings and is preferentially preserved under dysoxic and anoxic conditions, indicating reduced oxygen conditions during these intervals. Up-section transgressive events are

  19. Absolute Photometry

    NASA Astrophysics Data System (ADS)

    Hartig, George

    1990-12-01

    The absolute sensitivity of the FOS will be determined in SV by observing 2 stars at 3 epochs, first in 3 apertures (1.0", 0.5", and 0.3" circular) and then in 1 aperture (1.0" circular). In cycle 1, one star, BD+28D4211 will be observed in the 1.0" aperture to establish the stability of the sensitivity and flat field characteristics and improve the accuracy obtained in SV. This star will also be observed through the paired apertures since these are not calibrated in SV. The stars will be observed in most detector/grating combinations. The data will be averaged to form the inverse sensitivity functions required by RSDP.

  20. Absolute distance measurement method without a non-measurable range and directional ambiguity based on the spectral-domain interferometer using the optical comb of the femtosecond pulse laser

    NASA Astrophysics Data System (ADS)

    Park, J.; Jin, J.; Kim, J.-A.; Kim, J. W.

    2016-12-01

    With the help of the optical comb of a femtosecond pulse laser, a spectral-domain interferometer has been utilized for measuring absolute distances. Even if the technique can measure distances at a high speed and with good precision, it has two fundamental problems: non-measurable range and directional ambiguity. First, the non-measurable range arises due to the sampling limit of the interference spectra at very short distances or the integer multiple of a double non-ambiguity range. Second, the peak corresponding to the desired distance in the Fourier domain has a directional ambiguity owing to the repeated property of the optical comb. Therefore, due to these two fundamental problems, most previous works never measure the absolute distances by itself in a single operation. In this letter, an interferometric method for measuring arbitrary absolute distances based on a spectral-domain interferometer operating with two reference mirrors is proposed and demonstrated. The two reference mirrors generate two distinguishable signals, primary and secondary, with a predetermined offset, thus solving these fundamental problems clearly. More importantly, as a practical advantage, the simple layout of the proposed method makes it readily applicable to most previous studies.

  1. Absolute Zero.

    ERIC Educational Resources Information Center

    Jones, Rebecca

    1997-01-01

    So far the courts have supported most schools' zero-tolerance policies--even those banning toy weapons, over-the-counter drugs, and unseemly conduct. However, wide-ranging get-tough policies can draw criticism. Policy experts advise school boards to ask the community, decide what people want, allow some wiggle room, create an appeals process,…

  2. (RS)-Propranolol: enantioseparation by HPLC using newly synthesized (S)-levofloxacin-based reagent, absolute configuration of diastereomers and recovery of native enantiomers by detagging.

    PubMed

    Alwera, Shiv; Bhushan, Ravi

    2016-08-01

    Diastereomers of (RS)-propranolol were synthesized using (S)-levofloxacin-based new chiral derivatizing reagents (CDRs). Levofloxacin was chosen as the pure (S)-enantiomer for its high molar absorptivity (εo  ∼ 24000) and availability at a low price. Its -COOH group had N-hydroxysuccinimide and N-hydroxybenzotriazole, which acted as good leaving groups during nucleophilic substitution by the amino group of the racemic (RS)-propranolol; the CDRs were characterized by UV, IR, (1) H-NMR, high resolution mass spectrometry (HRMS) and carbon, hydrogen, nitrogen, and sulphur fundamental elemental components analyser (CHNS). Diastereomers were separated quantitatively using open column chromatography; absolute configuration of the diastereomers was established and the reagent moiety was detagged under microwave-assisted acidic conditions. (S)- and (R)-propranolol as pure enantiomers and (S)-levofloxacin were separated, isolated and characterized. Optimized lowest-energy structures of the diastereomers were developed using Gaussian 09 Rev. A.02 program and hybrid density functional B3LYP with 6-31G* basis set (based on density functional theory) for explanation of elution order and configuration. In addition, RP HPLC conditions for separation of diastereomers were optimized with respect to pH, concentration of buffer, flow rate of mobile phase and nature of organic modifier. HPLC separation method was validated as per International Conference on Harmonization guidelines. With the systematic application of various analytical techniques, absolute configuration of the diastereomers (and the native enantiomers) of (RS)-propranolol was established. Copyright © 2016 John Wiley & Sons, Ltd.

  3. The recovery and utilization of space suit range-of-motion data

    NASA Technical Reports Server (NTRS)

    Reinhardt, AL; Walton, James S.

    1988-01-01

    A technique for recovering data for the range of motion of a subject wearing a space suit is described along with the validation of this technique on an EVA space suit. Digitized data are automatically acquired from video images of the subject; three-dimensional trajectories are recovered from these data, and can be displayed using three-dimensional computer graphics. Target locations are recovered using a unique video processor and close-range photogrammetry. It is concluded that such data can be used in such applications as the animation of anthropometric computer models.

  4. Multi-channel absolute distance measurement system with sub ppm-accuracy and 20 m range using frequency scanning interferometry and gas absorption cells.

    PubMed

    Dale, John; Hughes, Ben; Lancaster, Andrew J; Lewis, Andrew J; Reichold, Armin J H; Warden, Matthew S

    2014-10-06

    We present an implementation of an absolute distance measurement system which uses frequency scanning interferometry (FSI). The technique, referred to as dynamic FSI, uses two frequency scanning lasers, a gas absorption cell and a reference interferometer to determine the unknown optical path length difference (OPD) of one or many measurement interferometers. The gas absorption cell is the length reference for the measurement system and is traceable to international standards through knowledge of the frequencies of its absorption features. The OPD of the measurement interferometers can vary during the measurement and the variation is measured at the sampling rate of the system (2.77 MHz in the system described here). The system is shown to measure distances from 0.2 m to 20 m with a combined relative uncertainty of 0.41 × 10⁻⁶ at the two sigma level (k = 2). It will be shown that within a scan the change in OPD of the measurement interferometer can be determined to a resolution of 40 nm.

  5. Range of Motion as a Predictor of Clinical Shoulder Pain During Recovery From Delayed-Onset Muscle Soreness

    PubMed Central

    Larkin-Kaiser, Kelly A.; Parr, Jeffrey J.; Borsa, Paul A.; George, Steven Z.

    2015-01-01

    Context: Athletic trainers use clinical pain and range of motion (ROM) to gauge recovery after musculoskeletal injury. Limited evidence to date suggests which shoulder ROM measures can predict symptomatic relief and functional recovery after delayed-onset muscle soreness (DOMS). Objective: To determine whether shoulder passive internal rotation, passive external rotation, active abduction, and active flexion and evoked pain with abduction are associated with resting pain experienced after exercise-induced DOMS. Design: Descriptive laboratory study. Setting: Controlled research laboratory. Patients or Other Participants: A total of 110 healthy, right-hand–dominant participants (44 men: age = 25.39 ± 7.00 years, height = 178.93 ± 7.01 cm, weight = 78.59 ± 14.04 kg; 66 women: age = 22.98 ± 6.11 years, height = 164.64 ± 6.94 cm, weight = 61.86 ± 11.67 kg). Intervention(s): Participants completed an exercise-induced DOMS protocol for the external rotators of the dominant shoulder to replicate muscle injury. Main Outcome Measure(s): Current resting pain was assessed daily for 96 hours using the Brief Pain Inventory. We evaluated functional recovery with measures of ROM in abduction, internal rotation, external rotation, and flexion. Evoked pain with active abduction was reported, and the pain rating served as the dependent variable in the regression model. Results: Impairment measures explained resting pain at 48 (R2 = 0.392) and 96 hours (R2 = 0.164). Abduction and internal-rotation ROM and evoked pain with abduction predicted resting pain at 48 hours (P < .001). At 96 hours, evoked pain with abduction of the injured arm (P < .001) was the significant contributor to resting pain. Conclusions: These models suggest that resting pain after experimentally induced DOMS occurs at 48 hours and is associated with specific ranges of motion and evoked pain with abduction. PMID:25658817

  6. Final report on EURAMET.M.P-K4.2010: Key and supplementary comparison of national pressure standards in the range 1 Pa to 15 kPa of absolute and gauge pressure

    NASA Astrophysics Data System (ADS)

    Krajíček, Zdeněk; Bergoglio, Mercede; Jousten, Karl; Otal, Pierre; Sabuga, Wladimir; Saxholm, Sari; Pražák, Dominik; Vičar, Martin

    2014-01-01

    This report describes a EURAMET comparison of five European National Metrology Institutes in low gauge and absolute pressure in gas (nitrogen), denoted as EURAMET.M.P-K4.2010. Its main intention is to state equivalence of the pressure standards, in particular those based on the technology of force-balanced piston gauges such as e.g. FRS by Furness Controls, UK and FPG8601 by DHI-Fluke, USA. It covers the range from 1 Pa to 15 kPa, both gauge and absolute. The comparison in absolute mode serves as a EURAMET Key Comparison which can be linked to CCM.P-K4 and CCM.P-K2 via PTB. The comparison in gauge mode is a supplementary comparison. The comparison was carried out from September 2008 till October 2012. The participating laboratories were the following: CMI, INRIM, LNE, MIKES, PTB-Berlin (absolute pressure 1 kPa and below) and PTB-Braunschweig (absolute pressure 1 kPa and above and gauge pressure). CMI was the pilot laboratory and provided a transfer standard for the comparison. This transfer standard was also the laboratory standard of CMI at the same time, which resulted in a unique and logistically difficult star comparison. Both in gauge and absolute pressures all the participating institutes successfully proved their equivalence with respect to the reference value and all also proved mutual bilateral equivalences in all the points. All the participating laboratories are also equivalent with the reference values of CCM.P-K4 and CCM.P-K2 in the relevant points. The comparison also proved the ability of FPG8601 to serve as a transfer standard. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  7. Perfusion pressure-dependent recovery of cortical spreading depression is independent of tissue oxygenation over a wide physiologic range.

    PubMed

    Sukhotinsky, Inna; Yaseen, Mohammad A; Sakadzić, Sava; Ruvinskaya, Svetlana; Sims, John R; Boas, David A; Moskowitz, Michael A; Ayata, Cenk

    2010-06-01

    Spreading depression (SD) is a slowly propagating wave of transient neuronal and glial depolarization that develops after stroke, trauma and subarachnoid hemorrhage. In compromised tissue, repetitive SD-like injury depolarizations reduce tissue viability by worsening the mismatch between blood flow and metabolism. Although the mechanism remains unknown, SDs show delayed electrophysiological recovery within the ischemic penumbra. Here, we tested the hypothesis that the recovery rate of SD can be varied by modulating tissue perfusion pressure and oxygenation. Systemic blood pressure and arterial pO(2) were simultaneously manipulated in anesthetized rats under full physiologic monitoring. We found that arterial hypotension doubled the SD duration, whereas hypertension reduced it by a third compared with normoxic normotensive rats. Hyperoxia failed to shorten the prolonged SD durations in hypotensive rats, despite restoring tissue pO(2). Indeed, varying arterial pO(2) (40 to 400 mm Hg) alone did not significantly influence SD duration, whereas blood pressure (40 to 160 mm Hg) was inversely related to SD duration in compromised tissue. These data suggest that cerebral perfusion pressure is a critical determinant of SD duration independent of tissue oxygenation over a wide range of arterial pO(2) levels, and that hypotension may be detrimental in stroke and subarachnoid hemorrhage, where SD-like injury depolarizations have been observed.

  8. Teaching Absolute Value Meaningfully

    ERIC Educational Resources Information Center

    Wade, Angela

    2012-01-01

    What is the meaning of absolute value? And why do teachers teach students how to solve absolute value equations? Absolute value is a concept introduced in first-year algebra and then reinforced in later courses. Various authors have suggested instructional methods for teaching absolute value to high school students (Wei 2005; Stallings-Roberts…

  9. Report on BIPM/CIPM key comparison CCAUV.U-K4: absolute calibration of medical hydrophones in the frequency range 0.5 MHz to 20 MHz

    NASA Astrophysics Data System (ADS)

    Rajagopal, S.; Fury, C. R.; Zeqiri, B.; Brandt, M.; Wilkens, V.; Koch, C.; Matsuda, Y.; Yoshioka, M.; Ping, Y.; Yan, Z.; Wenping, B.; Costa-Felix, R. P. B.; Oliveira, E. G.

    2016-01-01

    The key compariosn CCAUV.U-K4 involved measurement of end-of-cable loaded sensitivity in units of volts/pascal of two travelling standards, 1 mm element diamater medical hydrophones at medical ultrasound frequencies. This is a repetition of key comparison CCAUV.U-K2 but the scope has been extended upwards to 20 MHz and downwards to 0.5 MHz. The reduction in the lower frequency provided an overlap with the underwater acoustics key comparison CCAUV.W-K1 which covers the range 1 kHz to 0.5 MHz. The results are analysed and presented in terms of degrees of equivalence, suitable for entry in the BIPM key comparison database. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCAUV, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  10. Endocrine, metabolic, and behavioral effects of and recovery from acute stress in a free-ranging bird.

    PubMed

    Deviche, Pierre; Bittner, Stephanie; Davies, Scott; Valle, Shelley; Gao, Sisi; Carpentier, Elodie

    2016-08-01

    Acute stress in vertebrates generally stimulates the hypothalamo-pituitary-adrenal axis and is often associated with multiple metabolic changes, such as increased gluconeogenesis, and with behavioral alterations. Little information is available, especially in free-ranging organisms, on the duration of these reversible effects once animals are no longer exposed to the stressor. To investigate this question, we exposed free-ranging adult male Rufous-winged Sparrows, Peucaea carpalis, in breeding condition to a standard protocol consisting of a social challenge (conspecific song playback) followed with capture and restraint for 30min, after which birds were released on site. Capture and restraint increased plasma corticosterone (CORT) and decreased plasma testosterone (T), glucose (GLU), and uric acid (UA). In birds that we recaptured the next day after exposure to conspecific song playback, plasma CORT and UA levels no longer differed from levels immediately after capture the preceding day. However, plasma T was similar to that measured after stress exposure the preceding day, and plasma GLU was markedly elevated. Thus, exposure to social challenge and acute stress resulted in persistent (⩾24h) parameter-specific effects. In recaptured sparrows, the territorial aggressive response to conspecific song playback, as measured by song rate and the number of flights over the song-broadcasting speakers, did not, however, differ between the first capture and the recapture, suggesting no proximate functional association between plasma T and conspecific territorial aggression. The study is the first in free-ranging birds to report the endocrine, metabolic, and behavioral recovery from the effects of combined social challenge and acute stress.

  11. Absolute-structure reports.

    PubMed

    Flack, Howard D

    2013-08-01

    All the 139 noncentrosymmetric crystal structures published in Acta Crystallographica Section C between January 2011 and November 2012 inclusive have been used as the basis of a detailed study of the reporting of absolute structure. These structure determinations cover a wide range of space groups, chemical composition and resonant-scattering contribution. Defining A and D as the average and difference of the intensities of Friedel opposites, their level of fit has been examined using 2AD and selected-D plots. It was found, regardless of the expected resonant-scattering contribution to Friedel opposites, that the Friedel-difference intensities are often dominated by random uncertainty and systematic error. An analysis of data collection strategy is provided. It is found that crystal-structure determinations resulting in a Flack parameter close to 0.5 may not necessarily be from crystals twinned by inversion. Friedifstat is shown to be a robust estimator of the resonant-scattering contribution to Friedel opposites, very little affected by the particular space group of a structure nor by the occupation of special positions. There is considerable confusion in the text of papers presenting achiral noncentrosymmetric crystal structures. Recommendations are provided for the optimal way of treating noncentrosymmetric crystal structures for which the experimenter has no interest in determining the absolute structure.

  12. Absolutely classical spin states

    NASA Astrophysics Data System (ADS)

    Bohnet-Waldraff, F.; Giraud, O.; Braun, D.

    2017-01-01

    We introduce the concept of "absolutely classical" spin states, in analogy to absolutely separable states of bipartite quantum systems. Absolutely classical states are states that remain classical (i.e., a convex sum of projectors on coherent states of a spin j ) under any unitary transformation applied to them. We investigate the maximal size of the ball of absolutely classical states centered on the maximally mixed state and derive a lower bound for its radius as a function of the total spin quantum number. We also obtain a numerical estimate of this maximal radius and compare it to the case of absolutely separable states.

  13. Absolute nuclear material assay

    DOEpatents

    Prasad, Manoj K [Pleasanton, CA; Snyderman, Neal J [Berkeley, CA; Rowland, Mark S [Alamo, CA

    2012-05-15

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  14. Absolute nuclear material assay

    DOEpatents

    Prasad, Manoj K.; Snyderman, Neal J.; Rowland, Mark S.

    2010-07-13

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  15. Effects of Three Recovery Protocols on Range of Motion, Heart Rate, Rating of Perceived Exertion, and Blood Lactate in Baseball Pitchers During a Simulated Game.

    PubMed

    Warren, Courtney D; Szymanski, David J; Landers, Merrill R

    2015-11-01

    Baseball pitching has been described as an anaerobic activity from a bioenergetics standpoint with short bouts of recovery. Depending on the physical conditioning and muscle fiber composition of the pitcher as well as the number of pitches thrown per inning and per game, there is the possibility of pitchers fatiguing during a game, which could lead to a decrease in pitching performance. Therefore, the purpose of this study was to evaluate the effects of 3 recovery protocols: passive recovery, active recovery (AR), and electrical muscle stimulation (EMS) on range of motion (ROM), heart rate (HR), rating of perceived exertion (RPE), and blood lactate concentration in baseball pitchers during a simulated game. Twenty-one Division I intercollegiate baseball pitchers (age = 20.4 ± 1.4 years; height = 185.9 ± 8.4 cm; weight = 86.5 ± 8.9 kg; percent body fat = 11.2 ± 2.6) volunteered to pitch 3 simulated 5-inning games, with a maximum of 70 fastballs thrown per game while wearing an HR monitor. Range of motion was measured pre, post, and 24 hours postpitching for shoulder internal and external rotation at 90° and elbow flexion and extension. Heart rate was recorded after each pitch and after every 30 seconds of the 6-minute recovery period. Rating of perceived exertion was recorded after the last pitch of each inning and after completing each 6-minute recovery period. Immediately after throwing the last pitch of each inning, postpitching blood lactate concentration (PPLa-) was measured. At the end of the 6-minute recovery period, before the next inning started, postrecovery blood lactate concentration (PRLa-) was measured. Pitchers were instructed to throw each pitch at or above 95% of their best-pitched fastball. This was enforced to ensure that each pitcher was throwing close to maximal effort for all 3 simulated games. All data presented represent group mean values. Results revealed that the method of recovery protocol did not significantly influence ROM (p > 0

  16. Facilitative Effect of a Generalist Herbivore on the Recovery of a Perennial Alga: Consequences for Persistence at the Edge of Their Geographic Range

    PubMed Central

    Aguilera, Moisés A.; Valdivia, Nelson; Broitman, Bernardo R.

    2015-01-01

    Understanding the impacts of consumers on the abundance, growth rate, recovery and persistence of their resources across their distributional range can shed light on the role of trophic interactions in determining species range shifts. Here, we examined if consumptive effects of the intertidal grazer Scurria viridula positively influences the abundance and recovery from disturbances of the alga Mazzaella laminarioides at the edge of its geographic distributions in northern-central Chilean rocky shores. Through field experiments conducted at a site in the region where M. laminarioides overlaps with the polar range edge of S. viridula, we estimated the effects of grazing on different life stages of M. laminarioides. We also used long-term abundance surveys conducted across ~700 km of the shore to evaluate co-occurrence patterns of the study species across their range overlap. We found that S. viridula had positive net effects on M. laminarioides by increasing its cover and re-growth from perennial basal crusts. Probability of occurrence of M. laminarioides increased significantly with increasing density of S. viridula across the range overlap. The negative effect of S. viridula on the percentage cover of opportunistic green algae—shown to compete for space with corticated algae—suggests that competitive release may be part of the mechanism driving the positive effect of the limpet on the abundance and recovery from disturbance of M. laminarioides. We suggest that grazer populations contribute to enhance the abundance of M. laminarioides, facilitating its recolonization and persistence at its distributional range edge. Our study highlights that indirect facilitation can determine the recovery and persistence of a resource at the limit of its distribution, and may well contribute to the ecological mechanisms governing species distributions and range shifts. PMID:26716986

  17. Facilitative Effect of a Generalist Herbivore on the Recovery of a Perennial Alga: Consequences for Persistence at the Edge of Their Geographic Range.

    PubMed

    Aguilera, Moisés A; Valdivia, Nelson; Broitman, Bernardo R

    2015-01-01

    Understanding the impacts of consumers on the abundance, growth rate, recovery and persistence of their resources across their distributional range can shed light on the role of trophic interactions in determining species range shifts. Here, we examined if consumptive effects of the intertidal grazer Scurria viridula positively influences the abundance and recovery from disturbances of the alga Mazzaella laminarioides at the edge of its geographic distributions in northern-central Chilean rocky shores. Through field experiments conducted at a site in the region where M. laminarioides overlaps with the polar range edge of S. viridula, we estimated the effects of grazing on different life stages of M. laminarioides. We also used long-term abundance surveys conducted across ~700 km of the shore to evaluate co-occurrence patterns of the study species across their range overlap. We found that S. viridula had positive net effects on M. laminarioides by increasing its cover and re-growth from perennial basal crusts. Probability of occurrence of M. laminarioides increased significantly with increasing density of S. viridula across the range overlap. The negative effect of S. viridula on the percentage cover of opportunistic green algae-shown to compete for space with corticated algae-suggests that competitive release may be part of the mechanism driving the positive effect of the limpet on the abundance and recovery from disturbance of M. laminarioides. We suggest that grazer populations contribute to enhance the abundance of M. laminarioides, facilitating its recolonization and persistence at its distributional range edge. Our study highlights that indirect facilitation can determine the recovery and persistence of a resource at the limit of its distribution, and may well contribute to the ecological mechanisms governing species distributions and range shifts.

  18. Shock recovery experiments in the range of 10 to 45 GPa - comparison of results of synthetic magnetite and terrestrial diabase

    NASA Astrophysics Data System (ADS)

    Kohout, T.; Pesonen, L.; Deutsch, A.; Honnermann, U.; Heikinheimo, E.

    2008-12-01

    Shock-induced changes in magnetic properties of rocks, minerals and meteorites play an important role in modelling the magnetic anomalies of impact structures (e.g. Vredefort), in interpretation of the magnetic anomalies of planetary bodies (e.g. Mars) and in understanding the paleomagnetic data of meteorites. To shed further light on these problems we report results of experimentally shocked samples of synthetic fine grained magnetite. We used cylindrical surface-polished discs (d 10 mm, h 4 mm) of the well characterized magnetite with SD-PSD grain size range. The magnetite powder was mixed with Al2O3 and sintered into disktype pellets. A series of shock recovery experiments from 10 to 45 GPa (nominal pressure) using a conventional high-explosive set-up with a steel (ARMCO) sample container, surrounded by a momentum trap of the identical material. As the samples were shocked inside the highly magnetic containers, the prevailing magnetic field was roughly five times higher than the ambient field. After the shock, the containers cooled down slowly to ambient temperatures. The estimated post-shock temperatures of the samples range from nearly ambient temperature (10 GPa) up to about 1400 K (45 GPa). Evaluating the "real" pressures reached in these experiments requires a model to account for the high porosity of the pellets. The porosity also affects significantly the post-shock temperature. Independent of the fact that pressure, shock- and post- shock tmperatures are not sufficiently constrained yet, the experiments form a well-characterized series of shocks with systematically increasing pressure. Surprisingly enough, the sample discs were not friable and could be removed by retaining shape largely unchanged. The shock induced changes in sample properties show, with the exception of the 45 GPa sample, with increasing shock pressure: 1. Reduction of bulk density and significant increase in porosity 2. Minor increase in magnetic susceptibility (10 GPa, 15 GPa and 45

  19. Absolute optical metrology : nanometers to kilometers

    NASA Technical Reports Server (NTRS)

    Dubovitsky, Serge; Lay, O. P.; Peters, R. D.; Liebe, C. C.

    2005-01-01

    We provide and overview of the developments in the field of high-accuracy absolute optical metrology with emphasis on space-based applications. Specific work on the Modulation Sideband Technology for Absolute Ranging (MSTAR) sensor is described along with novel applications of the sensor.

  20. Estimating Absolute Site Effects

    SciTech Connect

    Malagnini, L; Mayeda, K M; Akinci, A; Bragato, P L

    2004-07-15

    The authors use previously determined direct-wave attenuation functions as well as stable, coda-derived source excitation spectra to isolate the absolute S-wave site effect for the horizontal and vertical components of weak ground motion. They used selected stations in the seismic network of the eastern Alps, and find the following: (1) all ''hard rock'' sites exhibited deamplification phenomena due to absorption at frequencies ranging between 0.5 and 12 Hz (the available bandwidth), on both the horizontal and vertical components; (2) ''hard rock'' site transfer functions showed large variability at high-frequency; (3) vertical-motion site transfer functions show strong frequency-dependence, and (4) H/V spectral ratios do not reproduce the characteristics of the true horizontal site transfer functions; (5) traditional, relative site terms obtained by using reference ''rock sites'' can be misleading in inferring the behaviors of true site transfer functions, since most rock sites have non-flat responses due to shallow heterogeneities resulting from varying degrees of weathering. They also use their stable source spectra to estimate total radiated seismic energy and compare against previous results. they find that the earthquakes in this region exhibit non-constant dynamic stress drop scaling which gives further support for a fundamental difference in rupture dynamics between small and large earthquakes. To correct the vertical and horizontal S-wave spectra for attenuation, they used detailed regional attenuation functions derived by Malagnini et al. (2002) who determined frequency-dependent geometrical spreading and Q for the region. These corrections account for the gross path effects (i.e., all distance-dependent effects), although the source and site effects are still present in the distance-corrected spectra. The main goal of this study is to isolate the absolute site effect (as a function of frequency) by removing the source spectrum (moment-rate spectrum) from

  1. Absolute and relative blindsight.

    PubMed

    Balsdon, Tarryn; Azzopardi, Paul

    2015-03-01

    The concept of relative blindsight, referring to a difference in conscious awareness between conditions otherwise matched for performance, was introduced by Lau and Passingham (2006) as a way of identifying the neural correlates of consciousness (NCC) in fMRI experiments. By analogy, absolute blindsight refers to a difference between performance and awareness regardless of whether it is possible to match performance across conditions. Here, we address the question of whether relative and absolute blindsight in normal observers can be accounted for by response bias. In our replication of Lau and Passingham's experiment, the relative blindsight effect was abolished when performance was assessed by means of a bias-free 2AFC task or when the criterion for awareness was varied. Furthermore, there was no evidence of either relative or absolute blindsight when both performance and awareness were assessed with bias-free measures derived from confidence ratings using signal detection theory. This suggests that both relative and absolute blindsight in normal observers amount to no more than variations in response bias in the assessment of performance and awareness. Consideration of the properties of psychometric functions reveals a number of ways in which relative and absolute blindsight could arise trivially and elucidates a basis for the distinction between Type 1 and Type 2 blindsight.

  2. Absolute neutrino mass scale

    NASA Astrophysics Data System (ADS)

    Capelli, Silvia; Di Bari, Pasquale

    2013-04-01

    Neutrino oscillation experiments firmly established non-vanishing neutrino masses, a result that can be regarded as a strong motivation to extend the Standard Model. In spite of being the lightest massive particles, neutrinos likely represent an important bridge to new physics at very high energies and offer new opportunities to address some of the current cosmological puzzles, such as the matter-antimatter asymmetry of the Universe and Dark Matter. In this context, the determination of the absolute neutrino mass scale is a key issue within modern High Energy Physics. The talks in this parallel session well describe the current exciting experimental activity aiming to determining the absolute neutrino mass scale and offer an overview of a few models beyond the Standard Model that have been proposed in order to explain the neutrino masses giving a prediction for the absolute neutrino mass scale and solving the cosmological puzzles.

  3. Long Range River Discharge Forecasting Using the Gravity Recovery and Climate Experiment (GRACE) Satellite to Predict Conditions for Endemic Cholera

    NASA Astrophysics Data System (ADS)

    Jutla, A.; Akanda, A. S.; Colwell, R. R.

    2014-12-01

    Prediction of conditions of an impending disease outbreak remains a challenge but is achievable if the associated and appropriate large scale hydroclimatic process can be estimated in advance. Outbreaks of diarrheal diseases such as cholera, are related to episodic seasonal variability in river discharge in the regions where water and sanitation infrastructure are inadequate and insufficient. However, forecasting river discharge, few months in advance, remains elusive where cholera outbreaks are frequent, probably due to non-availability of geophysical data as well as transboundary water stresses. Here, we show that satellite derived water storage from Gravity Recovery and Climate Experiment Forecasting (GRACE) sensors can provide reliable estimates on river discharge atleast two months in advance over regional scales. Bayesian regression models predicted flooding and drought conditions, a prerequisite for cholera outbreaks, in Bengal Delta with an overall accuracy of 70% for upto 60 days in advance without using any other ancillary ground based data. Forecasting of river discharge will have significant impacts on planning and designing intervention strategies for potential cholera outbreaks in the coastal regions where the disease remain endemic and often fatal.

  4. The absolute path command

    SciTech Connect

    Moody, A.

    2012-05-11

    The ap command traveres all symlinks in a given file, directory, or executable name to identify the final absolute path. It can print just the final path, each intermediate link along with the symlink chan, and the permissions and ownership of each directory component in the final path. It has functionality similar to "which", except that it shows the final path instead of the first path. It is also similar to "pwd", but it can provide the absolute path to a relative directory from the current working directory.

  5. Absolute calibration of optical tweezers

    SciTech Connect

    Viana, N.B.; Mazolli, A.; Maia Neto, P.A.; Nussenzveig, H.M.; Rocha, M.S.; Mesquita, O.N.

    2006-03-27

    As a step toward absolute calibration of optical tweezers, a first-principles theory of trapping forces with no adjustable parameters, corrected for spherical aberration, is experimentally tested. Employing two very different setups, we find generally very good agreement for the transverse trap stiffness as a function of microsphere radius for a broad range of radii, including the values employed in practice, and at different sample chamber depths. The domain of validity of the WKB ('geometrical optics') approximation to the theory is verified. Theoretical predictions for the trapping threshold, peak position, depth variation, multiple equilibria, and 'jump' effects are also confirmed.

  6. Absolute realization of low BRDF value

    NASA Astrophysics Data System (ADS)

    Liu, Zilong; Liao, Ningfang; Li, Ping; Wang, Yu

    2010-10-01

    Low BRDF value is widespread used in many critical domains such as space and military fairs. These values below 0.1 Sr-1 . So the Absolute realization of these value is the most critical issue in the absolute measurement of BRDF. To develop the Absolute value realization theory of BRDF , defining an arithmetic operators of BRDF , achieving an absolute measurement Eq. of BRDF based on radiance. This is a new theory method to solve the realization problem of low BRDF value. This theory method is realized on a self-designed common double orientation structure in space. By designing an adding structure to extend the range of the measurement system and a control and processing software, Absolute realization of low BRDF value is achieved. A material of low BRDF value is measured in this measurement system and the spectral BRDF value are showed within different angles allover the space. All these values are below 0.4 Sr-1 . This process is a representative procedure about the measurement of low BRDF value. A corresponding uncertainty analysis of this measurement data is given depend on the new theory of absolute realization and the performance of the measurement system. The relative expand uncertainty of the measurement data is 0.078. This uncertainty analysis is suitable for all measurements using the new theory of absolute realization and the corresponding measurement system.

  7. Phantom Validation of Tc-99m Absolute Quantification in a SPECT/CT Commercial Device

    PubMed Central

    Leite Ferreira, Paulo; Malterre, Jerome; Laub, Priscille; Prior, John O.; Verdun, Francis R.

    2016-01-01

    Aim. Similar to PET, absolute quantitative imaging is becoming available in commercial SPECT/CT devices. This study's goal was to assess quantitative accuracy of activity recovery as a function of image reconstruction parameters and count statistics in a variety of phantoms. Materials and Methods. We performed quantitative 99mTc-SPECT/CT acquisitions (Siemens Symbia Intevo, Erlangen, Germany) of a uniform cylindrical, NEMA/IEC, and an anthropomorphic abdominal phantom. Background activity concentrations tested ranged: 2–80 kBq/mL. SPECT acquisitions used 120 projections (20 s/projection). Reconstructions were performed with the proprietary iterative conjugate gradient algorithm. NEMA phantom reconstructions were obtained as a function of the iteration number (range: 4–48). Recovery coefficients, hot contrast, relative lung error (NEMA phantom), and image noise were assessed. Results. In all cases, absolute activity and activity concentration were measured within 10% of the expected value. Recovery coefficients and hot contrast in hot inserts did not vary appreciably with count statistics. RC converged at 16 iterations for insert size > 22 mm. Relative lung errors were comparable to PET levels indicating the efficient integration of attenuation and scatter corrections with adequate detector modeling. Conclusions. The tested device provided accurate activity recovery within 10% of correct values; these performances are comparable to current generation PET/CT systems. PMID:28096891

  8. An Investigation of the Drag and Pressure Recovery of a Submerged Inlet and a Nose Inlet in the Transonic Flight Range with Free-fall Models

    NASA Technical Reports Server (NTRS)

    Selna, James; Schlaff, Bernard A

    1951-01-01

    The drag and pressure recovery of an NACA submerged-inlet model and an NACA series I nose-inlet model were investigated in the transonic flight range. The tests were conducted over a mass-flow-ratio range of 0.4 to 0.8 and a Mach number range of about 0.8 to 1.10 employing large-scale recoverable free-fall models. The results indicate that the Mach number of drag divergence of the inlet models was about the same as that of a basic model without inlets. The external drag coefficients of the nose-inlet model were less than those of the submerged-inlet model throughout the test range. The difference in drag coefficient based on the maximum cross-sectional area of the models was about 0.02 at supersonic speeds and about 0.015 at subsonic speeds. For a hypothetical airplane with a ratio of maximum fuselage cross-sectional area to wing area of 0.06, the difference in airplane drag coefficient would be relatively small, about 0.0012 at supersonic speeds and about 0.0009 at subsonic speeds. Additional drag comparisons between the two inlet models are made considering inlet incremental and additive drag.

  9. Electronic Absolute Cartesian Autocollimator

    NASA Technical Reports Server (NTRS)

    Leviton, Douglas B.

    2006-01-01

    An electronic absolute Cartesian autocollimator performs the same basic optical function as does a conventional all-optical or a conventional electronic autocollimator but differs in the nature of its optical target and the manner in which the position of the image of the target is measured. The term absolute in the name of this apparatus reflects the nature of the position measurement, which, unlike in a conventional electronic autocollimator, is based absolutely on the position of the image rather than on an assumed proportionality between the position and the levels of processed analog electronic signals. The term Cartesian in the name of this apparatus reflects the nature of its optical target. Figure 1 depicts the electronic functional blocks of an electronic absolute Cartesian autocollimator along with its basic optical layout, which is the same as that of a conventional autocollimator. Referring first to the optical layout and functions only, this or any autocollimator is used to measure the compound angular deviation of a flat datum mirror with respect to the optical axis of the autocollimator itself. The optical components include an illuminated target, a beam splitter, an objective or collimating lens, and a viewer or detector (described in more detail below) at a viewing plane. The target and the viewing planes are focal planes of the lens. Target light reflected by the datum mirror is imaged on the viewing plane at unit magnification by the collimating lens. If the normal to the datum mirror is parallel to the optical axis of the autocollimator, then the target image is centered on the viewing plane. Any angular deviation of the normal from the optical axis manifests itself as a lateral displacement of the target image from the center. The magnitude of the displacement is proportional to the focal length and to the magnitude (assumed to be small) of the angular deviation. The direction of the displacement is perpendicular to the axis about which the

  10. Absolute airborne gravimetry

    NASA Astrophysics Data System (ADS)

    Baumann, Henri

    This work consists of a feasibility study of a first stage prototype airborne absolute gravimeter system. In contrast to relative systems, which are using spring gravimeters, the measurements acquired by absolute systems are uncorrelated and the instrument is not suffering from problems like instrumental drift, frequency response of the spring and possible variation of the calibration factor. The major problem we had to resolve were to reduce the influence of the non-gravitational accelerations included in the measurements. We studied two different approaches to resolve it: direct mechanical filtering, and post-processing digital compensation. The first part of the work describes in detail the different mechanical passive filters of vibrations, which were studied and tested in the laboratory and later in a small truck in movement. For these tests as well as for the airborne measurements an absolute gravimeter FG5-L from Micro-G Ltd was used together with an Inertial navigation system Litton-200, a vertical accelerometer EpiSensor, and GPS receivers for positioning. These tests showed that only the use of an optical table gives acceptable results. However, it is unable to compensate for the effects of the accelerations of the drag free chamber. The second part describes the strategy of the data processing. It is based on modeling the perturbing accelerations by means of GPS, EpiSensor and INS data. In the third part the airborne experiment is described in detail, from the mounting in the aircraft and data processing to the different problems encountered during the evaluation of the quality and accuracy of the results. In the part of data processing the different steps conducted from the raw apparent gravity data and the trajectories to the estimation of the true gravity are explained. A comparison between the estimated airborne data and those obtained by ground upward continuation at flight altitude allows to state that airborne absolute gravimetry is feasible and

  11. Bias Properties of Extragalactic Distance Indicators. VII. Correlation of Absolute Luminosity and Rotational Velocity for SC Galaxies over the Range of Luminosity Class from I to III-IV

    NASA Astrophysics Data System (ADS)

    Sandage, Allan

    1999-01-01

    A distance-limited subset of the complete flux-limited sample of Sc galaxies in the Revised Shapley-Ames Catalog of Bright Galaxies is isolated by means of separate Spaenhauer diagrams for six individual van den Bergh luminosity class intervals from Sc I+I.2,.3 to Sc III-IV. The distribution functions of kinematic absolute B^0,i_T(220,50) magnitudes and 21 cm line widths, W_20, corrected to edge-on orientation, have been determined for the same six bins of luminosity class. The individual luminosity functions for each luminosity class are bounded on both the bright and faint ends, showing that the present sample includes no dwarf Sc spirals fainter than M(B_T)(220,50)=-18 belonging to luminosity classes I to III-IV, as defined by the regularity of the spiral pattern. Star-forming galaxies with spiral structures as regular as the ones found in these luminosity classes have absolute magnitudes brighter than M_B(H=50)=-18 and 21 cm line widths larger than W_20/sini=2v_rot(max)=165 km s^-1. Furthermore, the 21 cm line-width distributions move toward smaller rotational velocities as the luminosity classes change from I to III, showing that rotation is a principal parameter determining the regularity of the spiral pattern. Whether it is the only parameter awaits a similar investigation for spirals of all luminosity classes along the complete Hubble sequence. In particular, it has not yet been proved that all Im and Sm galaxies, where, by definition, the spiral arms are either lacking or are semichaotic, have absolute magnitudes that are fainter than M_B=-18 and whose 21 cm LWs are smaller than ~165 km s^-1, presumably because of smaller mass than the high-luminosity, regular spirals. The Teerikorpi ``cluster population incompleteness bias'' is demonstrated again. Here, however, as in Papers II-IV of this series, we use field galaxies to show that the slope and zero point of the Tully-Fisher (T-F) relation are systematically incorrect for flux-limited samples, the error

  12. Absolute Equilibrium Entropy

    NASA Technical Reports Server (NTRS)

    Shebalin, John V.

    1997-01-01

    The entropy associated with absolute equilibrium ensemble theories of ideal, homogeneous, fluid and magneto-fluid turbulence is discussed and the three-dimensional fluid case is examined in detail. A sigma-function is defined, whose minimum value with respect to global parameters is the entropy. A comparison is made between the use of global functions sigma and phase functions H (associated with the development of various H-theorems of ideal turbulence). It is shown that the two approaches are complimentary though conceptually different: H-theorems show that an isolated system tends to equilibrium while sigma-functions allow the demonstration that entropy never decreases when two previously isolated systems are combined. This provides a more complete picture of entropy in the statistical mechanics of ideal fluids.

  13. Absolute multilateration between spheres

    NASA Astrophysics Data System (ADS)

    Muelaner, Jody; Wadsworth, William; Azini, Maria; Mullineux, Glen; Hughes, Ben; Reichold, Armin

    2017-04-01

    Environmental effects typically limit the accuracy of large scale coordinate measurements in applications such as aircraft production and particle accelerator alignment. This paper presents an initial design for a novel measurement technique with analysis and simulation showing that that it could overcome the environmental limitations to provide a step change in large scale coordinate measurement accuracy. Referred to as absolute multilateration between spheres (AMS), it involves using absolute distance interferometry to directly measure the distances between pairs of plain steel spheres. A large portion of each sphere remains accessible as a reference datum, while the laser path can be shielded from environmental disturbances. As a single scale bar this can provide accurate scale information to be used for instrument verification or network measurement scaling. Since spheres can be simultaneously measured from multiple directions, it also allows highly accurate multilateration-based coordinate measurements to act as a large scale datum structure for localized measurements, or to be integrated within assembly tooling, coordinate measurement machines or robotic machinery. Analysis and simulation show that AMS can be self-aligned to achieve a theoretical combined standard uncertainty for the independent uncertainties of an individual 1 m scale bar of approximately 0.49 µm. It is also shown that combined with a 1 µm m‑1 standard uncertainty in the central reference system this could result in coordinate standard uncertainty magnitudes of 42 µm over a slender 1 m by 20 m network. This would be a sufficient step change in accuracy to enable next generation aerospace structures with natural laminar flow and part-to-part interchangeability.

  14. Environmental Restoration of Corrective Action Unit 408: Bomblet Target Area, Tonopah Test Range, Nevada (Funded by the American Reinvestment and Recovery Act)

    SciTech Connect

    Kevin Cabble , Mark Burmeister and Mark Krauss

    2011-03-03

    The mission of the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) Environmental Restoration Program is to address the environmental impacts of weapons testing conducted on the Nevada National Security Site and the Nevada Test and Training Range. The large physical size of these sites, along with limits on funding and other resources available for remediation efforts, means that environmental restoration activities must be prioritized and accomplished incrementally over time. The remediation of a bomblet target area on the Tonopah Test Range (TTR), which is located within the Nevada Test and Training Range, was originally planned in 2007 but was not carried out until funding became available in the summer of 2009 through the American Reinvestment and Recovery Act. This activity was implemented in accordance with the Federal Facility Agreement and Consent Order established between NNSA/NSO and the Nevada Division of Environmental Protection. This activity which was complete by the end of Fiscal Year 2010, involved the excavation of disposal pits suspected of containing submunitions and the surface clearance of submunitions on seven target areas amounting to approximately 6.7 square kilometers of land at the TTR. The TTR was used by Sandia National Laboratories from the late 1960s through the mid-1980s to conduct research into the deployment of submunitions. Although there were efforts to identify, collect, and dispose various amounts of unexploded ordnance on the TTR in the past, no comprehensive effort to remediate the entire flightline area for submunitions was undertaken before this project.

  15. Absolute Distance Measurement with the MSTAR Sensor

    NASA Technical Reports Server (NTRS)

    Lay, Oliver P.; Dubovitsky, Serge; Peters, Robert; Burger, Johan; Ahn, Seh-Won; Steier, William H.; Fetterman, Harrold R.; Chang, Yian

    2003-01-01

    The MSTAR sensor (Modulation Sideband Technology for Absolute Ranging) is a new system for measuring absolute distance, capable of resolving the integer cycle ambiguity of standard interferometers, and making it possible to measure distance with sub-nanometer accuracy. The sensor uses a single laser in conjunction with fast phase modulators and low frequency detectors. We describe the design of the system - the principle of operation, the metrology source, beamlaunching optics, and signal processing - and show results for target distances up to 1 meter. We then demonstrate how the system can be scaled to kilometer-scale distances.

  16. Eosinophil count - absolute

    MedlinePlus

    ... or 0.50 x 10^9/L. Normal value ranges may vary slightly among different laboratories. Talk to your doctor about the meaning of your specific test results. The example above shows the common measurements for results of these tests. Some laboratories use ...

  17. Method of differential-phase/absolute-amplitude QAM

    DOEpatents

    Dimsdle, Jeffrey William

    2008-10-21

    A method of quadrature amplitude modulation involving encoding phase differentially and amplitude absolutely, allowing for a high data rate and spectral efficiency in data transmission and other communication applications, and allowing for amplitude scaling to facilitate data recovery; amplitude scale tracking to track-out rapid and severe scale variations and facilitate successful demodulation and data retrieval; 2.sup.N power carrier recovery; incoherent demodulation where coherent carrier recovery is not possible or practical due to signal degradation; coherent demodulation; multipath equalization to equalize frequency dependent multipath; and demodulation filtering.

  18. Method of differential-phase/absolute-amplitude QAM

    DOEpatents

    Dimsdle, Jeffrey William

    2007-07-03

    A method of quadrature amplitude modulation involving encoding phase differentially and amplitude absolutely, allowing for a high data rate and spectral efficiency in data transmission and other communication applications, and allowing for amplitude scaling to facilitate data recovery; amplitude scale tracking to track-out rapid and severe scale variations and facilitate successful demodulation and data retrieval; 2.sup.N power carrier recovery; incoherent demodulation where coherent carrier recovery is not possible or practical due to signal degradation; coherent demodulation; multipath equalization to equalize frequency dependent multipath; and demodulation filtering.

  19. Method of differential-phase/absolute-amplitude QAM

    DOEpatents

    Dimsdle, Jeffrey William

    2007-10-02

    A method of quadrature amplitude modulation involving encoding phase differentially and amplitude absolutely, allowing for a high data rate and spectral efficiency in data transmission and other communication applications, and allowing for amplitude scaling to facilitate data recovery; amplitude scale tracking to track-out rapid and severe scale variations and facilitate successful demodulation and data retrieval; 2.sup.N power carrier recovery; incoherent demodulation where coherent carrier recovery is not possible or practical due to signal degradation; coherent demodulation; multipath equalization to equalize frequency dependent multipath; and demodulation filtering.

  20. Method of differential-phase/absolute-amplitude QAM

    SciTech Connect

    Dimsdle, Jeffrey William

    2009-09-01

    A method of quadrature amplitude modulation involving encoding phase differentially and amplitude absolutely, allowing for a high data rate and spectral efficiency in data transmission and other communication applications, and allowing for amplitude scaling to facilitate data recovery; amplitude scale tracking to track-out rapid and severe scale variations and facilitate successful demodulation and data retrieval; 2.sup.N power carrier recovery; incoherent demodulation where coherent carrier recovery is not possible or practical due to signal degradation; coherent demodulation; multipath equalization to equalize frequency dependent multipath; and demodulation filtering.

  1. Method of differential-phase/absolute-amplitude QAM

    DOEpatents

    Dimsdle, Jeffrey William

    2007-07-17

    A method of quadrature amplitude modulation involving encoding phase differentially and amplitude absolutely, allowing for a high data rate and spectral efficiency in data transmission and other communication applications, and allowing for amplitude scaling to facilitate data recovery; amplitude scale tracking to track-out rapid and severe scale variations and facilitate successful demodulation and data retrieval; 2.sup.N power carrier recovery; incoherent demodulation where coherent carrier recovery is not possible or practical due to signal degradation; coherent demodulation; multipath equalization to equalize frequency dependent multipath; and demodulation filtering.

  2. Absolute Radiation Thermometry in the NIR

    NASA Astrophysics Data System (ADS)

    Bünger, L.; Taubert, R. D.; Gutschwager, B.; Anhalt, K.; Briaudeau, S.; Sadli, M.

    2017-04-01

    A near infrared (NIR) radiation thermometer (RT) for temperature measurements in the range from 773 K up to 1235 K was characterized and calibrated in terms of the "Mise en Pratique for the definition of the Kelvin" (MeP-K) by measuring its absolute spectral radiance responsivity. Using Planck's law of thermal radiation allows the direct measurement of the thermodynamic temperature independently of any ITS-90 fixed-point. To determine the absolute spectral radiance responsivity of the radiation thermometer in the NIR spectral region, an existing PTB monochromator-based calibration setup was upgraded with a supercontinuum laser system (0.45 μm to 2.4 μm) resulting in a significantly improved signal-to-noise ratio. The RT was characterized with respect to its nonlinearity, size-of-source effect, distance effect, and the consistency of its individual temperature measuring ranges. To further improve the calibration setup, a new tool for the aperture alignment and distance measurement was developed. Furthermore, the diffraction correction as well as the impedance correction of the current-to-voltage converter is considered. The calibration scheme and the corresponding uncertainty budget of the absolute spectral responsivity are presented. A relative standard uncertainty of 0.1 % (k=1) for the absolute spectral radiance responsivity was achieved. The absolute radiometric calibration was validated at four temperature values with respect to the ITS-90 via a variable temperature heatpipe blackbody (773 K ...1235 K) and at a gold fixed-point blackbody radiator (1337.33 K).

  3. Silicon Absolute X-Ray Detectors

    SciTech Connect

    Seely, John F.; Korde, Raj; Sprunck, Jacob; Medjoubi, Kadda; Hustache, Stephanie

    2010-06-23

    The responsivity of silicon photodiodes having no loss in the entrance window, measured using synchrotron radiation in the 1.75 to 60 keV range, was compared to the responsivity calculated using the silicon thickness measured using near-infrared light. The measured and calculated responsivities agree with an average difference of 1.3%. This enables their use as absolute x-ray detectors.

  4. Cryogenic, Absolute, High Pressure Sensor

    NASA Technical Reports Server (NTRS)

    Chapman, John J. (Inventor); Shams. Qamar A. (Inventor); Powers, William T. (Inventor)

    2001-01-01

    A pressure sensor is provided for cryogenic, high pressure applications. A highly doped silicon piezoresistive pressure sensor is bonded to a silicon substrate in an absolute pressure sensing configuration. The absolute pressure sensor is bonded to an aluminum nitride substrate. Aluminum nitride has appropriate coefficient of thermal expansion for use with highly doped silicon at cryogenic temperatures. A group of sensors, either two sensors on two substrates or four sensors on a single substrate are packaged in a pressure vessel.

  5. From Hubble's NGSL to Absolute Fluxes

    NASA Technical Reports Server (NTRS)

    Heap, Sara R.; Lindler, Don

    2012-01-01

    Hubble's Next Generation Spectral Library (NGSL) consists of R-l000 spectra of 374 stars of assorted temperature, gravity, and metallicity. Each spectrum covers the wavelength range, 0.18-1.00 microns. The library can be viewed and/or downloaded from the website, http://archive.stsci.edu/prepds/stisngsll. Stars in the NGSL are now being used as absolute flux standards at ground-based observatories. However, the uncertainty in the absolute flux is about 2%, which does not meet the requirements of dark-energy surveys. We are therefore developing an observing procedure that should yield fluxes with uncertainties less than 1 % and will take part in an HST proposal to observe up to 15 stars using this new procedure.

  6. Absolute measurement of length with nanometric resolution

    NASA Astrophysics Data System (ADS)

    Apostol, D.; Garoi, F.; Timcu, A.; Damian, V.; Logofatu, P. C.; Nascov, V.

    2005-08-01

    Laser interferometer displacement measuring transducers have a well-defined traceability route to the definition of the meter. The laser interferometer is de-facto length scale for applications in micro and nano technologies. However their physical unit -half lambda is too large for nanometric resolution. Fringe interpolation-usual technique to improve the resolution-lack of reproducibility could be avoided using the principles of absolute distance measurement. Absolute distance refers to the use of interferometric techniques for determining the position of an object without the necessity of measuring continuous displacements between points. The interference pattern as produced by the interference of two point-like coherent sources is fitted to a geometric model so as to determine the longitudinal location of the target by minimizing least square errors. The longitudinal coordinate of the target was measured with accuracy better than 1 nm, for a target position range of 0.4μm.

  7. Database applicaton for absolute spectrophotometry

    NASA Astrophysics Data System (ADS)

    Bochkov, Valery V.; Shumko, Sergiy

    2002-12-01

    32-bit database application with multidocument interface for Windows has been developed to calculate absolute energy distributions of observed spectra. The original database contains wavelength calibrated observed spectra which had been already passed through apparatus reductions such as flatfielding, background and apparatus noise subtracting. Absolute energy distributions of observed spectra are defined in unique scale by means of registering them simultaneously with artificial intensity standard. Observations of sequence of spectrophotometric standards are used to define absolute energy of the artificial standard. Observations of spectrophotometric standards are used to define optical extinction in selected moments. FFT algorithm implemented in the application allows performing convolution (deconvolution) spectra with user-defined PSF. The object-oriented interface has been created using facilities of C++ libraries. Client/server model with Windows Socket functionality based on TCP/IP protocol is used to develop the application. It supports Dynamic Data Exchange conversation in server mode and uses Microsoft Exchange communication facilities.

  8. InSAR detection of aquifer recovery: Case studies of Koehn Lake (central California) and Lone Tree Gold Mine (Basin and Range)

    NASA Astrophysics Data System (ADS)

    Wdowinski, S.; Greene, F.; Amelung, F.

    2013-12-01

    Anthropogenic intervention in groundwater flow and aquifer storage often results in vertical movements of Earth's surface, which are well detected by InSAR observations. Most anthropogenic intervention occurs due to groundwater extraction for both agriculture and human consumption and results in land subsidence. However in some cases, ending anthropogenic intervention can lead to aquifer recovery and, consequently, surface uplift. In this study we present two such cases of aquifer recovery. The first case is the aquifer beneath Koehn Lake in Central California, which was overused to meet agricultural demands until the 1990's. The second case is the Lone Tree Gold Mine in Nevada that during active mining in the 1991-2006 groundwater pumping disrupted the aquifer and cause subsidence. But after mining ceased, groundwater flow was recovered and resulted in uplift. In both cases we studied the surface uplift using InSAR time series observations. We conduct an ERS and Envisat InSAR survey over Koehn Lake in California and Lone Tree Gold Mine in Nevada between 1992 and 2010. We followed the SBAS algorithm to generate a time-series of ground displacements and average velocities of pixels, which remain coherent through time in the SAR dataset. A total of 100 and 80 combined ERS and Envisat SAR dates are inverted for Koehn Lake and Lone Tree Gold Mine respectively. Results for the Koehn Lake area indicate a rapid uplift of about 3.5 mm/yr between 1992-2000 and a slower uplift rate of 1.6 mm/yr between 2000-2004, suggesting a decrease in the recovery process. The observed uplift correlates well with groundwater level increase in the Koehn Lake area. Results for the Lone Tree Gold Mine show a constant subsidence (~ 1 cm/yr) due to groundwater extraction between 1992-2006, but uplift of ~1 cm/yr since the beginning of 2007. In both case studies, InSAR observations reveal that the aquifer recovery is accompanied by surface uplift. We plan to use the InSAR observations and the

  9. Absolute classification with unsupervised clustering

    NASA Technical Reports Server (NTRS)

    Jeon, Byeungwoo; Landgrebe, D. A.

    1992-01-01

    An absolute classification algorithm is proposed in which the class definition through training samples or otherwise is required only for a particular class of interest. The absolute classification is considered as a problem of unsupervised clustering when one cluster is known initially. The definitions and statistics of the other classes are automatically developed through the weighted unsupervised clustering procedure, which is developed to keep the cluster corresponding to the class of interest from losing its identity as the class of interest. Once all the classes are developed, a conventional relative classifier such as the maximum-likelihood classifier is used in the classification.

  10. Absolute distance sensing by two laser optical interferometry.

    PubMed

    Thurner, Klaus; Braun, Pierre-François; Karrai, Khaled

    2013-11-01

    We have developed a method for absolute distance sensing by two laser optical interferometry. A particularity of this technique is that a target distance is determined in absolute and is no longer limited to within an ambiguity range affecting usually multiple wavelength interferometers. We implemented the technique in a low-finesse Fabry-Pérot miniature fiber based interferometer. We used two diode lasers, both operating in the 1550 nm wavelength range. The wavelength difference is chosen to create a 25 μm long periodic beating interferometric pattern allowing a nanometer precise position measurement but limited to within an ambiguity range of 25 μm. The ambiguity is then eliminated by scanning one of the wavelengths over a small range (3.4 nm). We measured absolute distances in the sub-meter range and this with just few nanometer repeatability.

  11. Absolute transition probabilities of phosphorus.

    NASA Technical Reports Server (NTRS)

    Miller, M. H.; Roig, R. A.; Bengtson, R. D.

    1971-01-01

    Use of a gas-driven shock tube to measure the absolute strengths of 21 P I lines and 126 P II lines (from 3300 to 6900 A). Accuracy for prominent, isolated neutral and ionic lines is estimated to be 28 to 40% and 18 to 30%, respectively. The data and the corresponding theoretical predictions are examined for conformity with the sum rules.-

  12. Relativistic Absolutism in Moral Education.

    ERIC Educational Resources Information Center

    Vogt, W. Paul

    1982-01-01

    Discusses Emile Durkheim's "Moral Education: A Study in the Theory and Application of the Sociology of Education," which holds that morally healthy societies may vary in culture and organization but must possess absolute rules of moral behavior. Compares this moral theory with current theory and practice of American educators. (MJL)

  13. Absolute Standards for Climate Measurements

    NASA Astrophysics Data System (ADS)

    Leckey, J.

    2016-10-01

    In a world of changing climate, political uncertainty, and ever-changing budgets, the benefit of measurements traceable to SI standards increases by the day. To truly resolve climate change trends on a decadal time scale, on-orbit measurements need to be referenced to something that is both absolute and unchanging. One such mission is the Climate Absolute Radiance and Refractivity Observatory (CLARREO) that will measure a variety of climate variables with an unprecedented accuracy to definitively quantify climate change. In the CLARREO mission, we will utilize phase change cells in which a material is melted to calibrate the temperature of a blackbody that can then be observed by a spectrometer. A material's melting point is an unchanging physical constant that, through a series of transfers, can ultimately calibrate a spectrometer on an absolute scale. CLARREO consists of two primary instruments: an infrared (IR) spectrometer and a reflected solar (RS) spectrometer. The mission will contain orbiting radiometers with sufficient accuracy to calibrate other space-based instrumentation and thus transferring the absolute traceability. The status of various mission options will be presented.

  14. Achieving Climate Change Absolute Accuracy in Orbit

    NASA Technical Reports Server (NTRS)

    Wielicki, Bruce A.; Young, D. F.; Mlynczak, M. G.; Thome, K. J; Leroy, S.; Corliss, J.; Anderson, J. G.; Ao, C. O.; Bantges, R.; Best, F.; Bowman, K.; Brindley, H.; Butler, J. J.; Collins, W.; Dykema, J. A.; Doelling, D. R.; Feldman, D. R.; Fox, N.; Huang, X.; Holz, R.; Huang, Y.; Jennings, D.; Jin, Z.; Johnson, D. G.; Jucks, K.; Kato, S.; Kratz, D. P.; Liu, X.; Lukashin, C.; Mannucci, A. J.; Phojanamongkolkij, N.; Roithmayr, C. M.; Sandford, S.; Taylor, P. C.; Xiong, X.

    2013-01-01

    The Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission will provide a calibration laboratory in orbit for the purpose of accurately measuring and attributing climate change. CLARREO measurements establish new climate change benchmarks with high absolute radiometric accuracy and high statistical confidence across a wide range of essential climate variables. CLARREO's inherently high absolute accuracy will be verified and traceable on orbit to Système Internationale (SI) units. The benchmarks established by CLARREO will be critical for assessing changes in the Earth system and climate model predictive capabilities for decades into the future as society works to meet the challenge of optimizing strategies for mitigating and adapting to climate change. The CLARREO benchmarks are derived from measurements of the Earth's thermal infrared spectrum (5-50 micron), the spectrum of solar radiation reflected by the Earth and its atmosphere (320-2300 nm), and radio occultation refractivity from which accurate temperature profiles are derived. The mission has the ability to provide new spectral fingerprints of climate change, as well as to provide the first orbiting radiometer with accuracy sufficient to serve as the reference transfer standard for other space sensors, in essence serving as a "NIST [National Institute of Standards and Technology] in orbit." CLARREO will greatly improve the accuracy and relevance of a wide range of space-borne instruments for decadal climate change. Finally, CLARREO has developed new metrics and methods for determining the accuracy requirements of climate observations for a wide range of climate variables and uncertainty sources. These methods should be useful for improving our understanding of observing requirements for most climate change observations.

  15. [Cardiac glycosides and metabolites--problems of recovery in tissue extracts. Separation of visible substance spots in the nanogram range (author's transl)].

    PubMed

    Aderjan, R; Doster, S; Petri, H; Schmidt, G

    1979-08-01

    The recovery measurements in rat tissues performed via i.p. injected radioactive digoxin derivates (3H-digoxin, 125J-digoxin derivative) showed that approximately 50% of the total glycoside content will be extracted. Thus, an addition of digoxin standards to drug-free tissues may lead to false negative determinations. By comparison of the radioactivity before and after extraction the following results were obtained: Recovery from tissues 3H-digoxin 50% 125J-digoxin 40% from serum 3H-digoxin 60% added to drug free tissue homogenates 3H-digoxin 85% After i.p. application of 15 mg/kg of beta-methyldigoxin to BD9 (Berlin)-rats the resulting tissue concentrations were extracted by Amberlite XAD-2. beta-Methyldigoxin and its metabolites digoxin and digoxinbisdigitoxide could be separated and distinguished from artifacts by fluorescence detection on HPTLC-plates with a detection limit of 60 ng/spot. Concentration determined by radioimmunoassay are in satisfactory agreement with HPTLC results.

  16. Absolute calibration of optical flats

    DOEpatents

    Sommargren, Gary E.

    2005-04-05

    The invention uses the phase shifting diffraction interferometer (PSDI) to provide a true point-by-point measurement of absolute flatness over the surface of optical flats. Beams exiting the fiber optics in a PSDI have perfect spherical wavefronts. The measurement beam is reflected from the optical flat and passed through an auxiliary optic to then be combined with the reference beam on a CCD. The combined beams include phase errors due to both the optic under test and the auxiliary optic. Standard phase extraction algorithms are used to calculate this combined phase error. The optical flat is then removed from the system and the measurement fiber is moved to recombine the two beams. The newly combined beams include only the phase errors due to the auxiliary optic. When the second phase measurement is subtracted from the first phase measurement, the absolute phase error of the optical flat is obtained.

  17. The Absolute Spectrum Polarimeter (ASP)

    NASA Technical Reports Server (NTRS)

    Kogut, A. J.

    2010-01-01

    The Absolute Spectrum Polarimeter (ASP) is an Explorer-class mission to map the absolute intensity and linear polarization of the cosmic microwave background and diffuse astrophysical foregrounds over the full sky from 30 GHz to 5 THz. The principal science goal is the detection and characterization of linear polarization from an inflationary epoch in the early universe, with tensor-to-scalar ratio r much greater than 1O(raised to the power of { -3}) and Compton distortion y < 10 (raised to the power of{-6}). We describe the ASP instrument and mission architecture needed to detect the signature of an inflationary epoch in the early universe using only 4 semiconductor bolometers.

  18. Physics of negative absolute temperatures

    NASA Astrophysics Data System (ADS)

    Abraham, Eitan; Penrose, Oliver

    2017-01-01

    Negative absolute temperatures were introduced into experimental physics by Purcell and Pound, who successfully applied this concept to nuclear spins; nevertheless, the concept has proved controversial: a recent article aroused considerable interest by its claim, based on a classical entropy formula (the "volume entropy") due to Gibbs, that negative temperatures violated basic principles of statistical thermodynamics. Here we give a thermodynamic analysis that confirms the negative-temperature interpretation of the Purcell-Pound experiments. We also examine the principal arguments that have been advanced against the negative temperature concept; we find that these arguments are not logically compelling, and moreover that the underlying "volume" entropy formula leads to predictions inconsistent with existing experimental results on nuclear spins. We conclude that, despite the counterarguments, negative absolute temperatures make good theoretical sense and did occur in the experiments designed to produce them.

  19. Optomechanics for absolute rotation detection

    NASA Astrophysics Data System (ADS)

    Davuluri, Sankar

    2016-07-01

    In this article, we present an application of optomechanical cavity for the absolute rotation detection. The optomechanical cavity is arranged in a Michelson interferometer in such a way that the classical centrifugal force due to rotation changes the length of the optomechanical cavity. The change in the cavity length induces a shift in the frequency of the cavity mode. The phase shift corresponding to the frequency shift in the cavity mode is measured at the interferometer output to estimate the angular velocity of absolute rotation. We derived an analytic expression to estimate the minimum detectable rotation rate in our scheme for a given optomechanical cavity. Temperature dependence of the rotation detection sensitivity is studied.

  20. Absolute GPS Positioning Using Genetic Algorithms

    NASA Astrophysics Data System (ADS)

    Ramillien, G.

    A new inverse approach for restoring the absolute coordinates of a ground -based station from three or four observed GPS pseudo-ranges is proposed. This stochastic method is based on simulations of natural evolution named genetic algorithms (GA). These iterative procedures provide fairly good and robust estimates of the absolute positions in the Earth's geocentric reference system. For comparison/validation, GA results are compared to the ones obtained using the classical linearized least-square scheme for the determination of the XYZ location proposed by Bancroft (1985) which is strongly limited by the number of available observations (i.e. here, the number of input pseudo-ranges must be four). The r.m.s. accuracy of the non -linear cost function reached by this latter method is typically ~10-4 m2 corresponding to ~300-500-m accuracies for each geocentric coordinate. However, GA can provide more acceptable solutions (r.m.s. errors < 10-5 m2), even when only three instantaneous pseudo-ranges are used, such as a lost of lock during a GPS survey. Tuned GA parameters used in different simulations are N=1000 starting individuals, as well as Pc=60-70% and Pm=30-40% for the crossover probability and mutation rate, respectively. Statistical tests on the ability of GA to recover acceptable coordinates in presence of important levels of noise are made simulating nearly 3000 random samples of erroneous pseudo-ranges. Here, two main sources of measurement errors are considered in the inversion: (1) typical satellite-clock errors and/or 300-metre variance atmospheric delays, and (2) Geometrical Dilution of Precision (GDOP) due to the particular GPS satellite configuration at the time of acquisition. Extracting valuable information and even from low-quality starting range observations, GA offer an interesting alternative for high -precision GPS positioning.

  1. Absolute Spectrophotometry of 237 Open Cluster Stars

    NASA Astrophysics Data System (ADS)

    Clampitt, L.; Burstein, D.

    1994-12-01

    We present absolute spectrophotometry of 237 stars in 7 nearby open clusters: Hyades, Pleiades, Alpha Persei, Praesepe, Coma Berenices, IC 4665, and M 39. The observations were taken using the Wampler single-channel scanner (Wampler 1966) on the Crossley 0.9m telescope at Lick Observatory from July 1973 through December 1974. 21 bandpasses spanning the spectral range 3500 Angstroms to 7780 Angstroms were observed for each star, with bandwiths ranging from 32Angstroms to 64 Angstroms. Data are standardized to the Hayes--Latham (1975) system. Our measurements are compared to filter colors on the Johnson BV, Stromgren ubvy, and Geneva U V B_1 B_2 V_1 G systems, as well as to spectrophotometry of a few stars published by Gunn, Stryker & Tinsley and in the Spectrophotometric Standards Catalog (Adelman; as distributed by the NSSDC). Both internal and external comparisons to the filter systems indicate a formal statistical accuracy per bandpass of 0.01 to 0.02 mag, with apparent larger ( ~ 0.03 mag) differences in absolute calibration between this data set and existing spectrophotometry. These data will comprise part of the spectrophotometry that will be used to calibrate the Beijing-Arizona-Taipei-Connecticut Color Survey of the Sky (see separate paper by Burstein et al. at this meeting).

  2. Absolute Integral Cross Sections for the State-selected Ion-Molecule Reaction N2+(X2Σg+ v+ = 0-2) + C2H2 in the Collision Energy Range of 0.03-10.00 eV

    NASA Astrophysics Data System (ADS)

    Xu, Yuntao; Xiong, Bo; Chung Chang, Yih; Ng, C. Y.

    2016-08-01

    Using the vacuum ultraviolet laser pulsed field ionization-photoion source, together with the double-quadrupole-double-octopole mass spectrometer developed in our laboratory, we have investigated the state-selected ion-molecule reaction {{{{N}}}2}+({X}2{{{{Σ }}}{{g}}}+; v + = 0-2, N+ = 0-9) + C2H2, achieving high internal-state selectivity and high kinetic energy resolution for reactant {{{{N}}}2}+ ions. The charge transfer (CT) and hydrogen-atom transfer (HT) channels, which lead to the respective formation of product {{{C}}}2{{{{H}}}2}+ and N2H+ ions, are observed. The vibrationally selected absolute integral cross sections for the CT [σ CT(v +)] and HT [[σ HT(v +)] channels obtained in the center-of-mass collision energy (E cm) range of 0.03-10.00 eV reveal opposite E cm dependences. The σ CT(v +) is found to increase as E cm is decreased, and is consistent with the long-range exothermic CT mechanism, whereas the E cm enhancement observed for the σ HT(v +) suggests effective coupling of kinetic energy to internal energy, enhancing the formation of N2H+. The σ HT(v +) curve exhibits a step at E cm = 0.70-1.00 eV, suggesting the involvement of the excited {{{C}}}2{{{{H}}}2}+({A}2{{{{Σ }}}{{g}}}+) state in the HT reaction. Contrary to the strong E cm dependences for σ CT(v +) and σ HT(v +), the effect of vibrational excitation of {{{{N}}}2}+ on both the CT and HT channels is marginal. The branching ratios and cross sections for the CT and HT channels determined in the present study are useful for modeling the atmospheric compositions of Saturn's largest moon, Titan. These cross sections and branching ratios are also valuable for benchmarking theoretical calculations on chemical dynamics of the titled reaction.

  3. The absolute absorption cross section of crystalline αg and βg HNO33H2O (NAT) and HNO32H2O (NAD) in the range 180 - 200 K in the mid-IR (4000 to 600 cm-1)

    NASA Astrophysics Data System (ADS)

    Rossi, Michel J.; Iannarelli, Riccardo

    2014-05-01

    Heterogeneous processing in the polar atmosphere requires the presence of polar stratospheric cloud particles (PSC's) that are the seat of interfacial chlorine and NOx chemistry. A subgroup of PSC's, namely PSC Ia, are known to consist of hydrates of nitric acid, mostly nitric acid trihydrate (NAT) as two polymorphs, α- and β-HNO33H2O occurring in the range 185 to 200 K under prevailing stratospheric partial pressure conditions of 10 ppb HNO3 or so. Despite the fact that reference IR spectra in the mid-IR range have been obtained some time ago (Ritzhaupt and Devlin (1991), Koehler et al. (1992)), no absolute absorption cross section of these important ice particles exist to date except a study of its refractive indices (Middlebrook et al. (1994), Berland et al. (1994)). Knowledge of optical cross sections would enable remote sensing of PSC's in the IR region using satellite and/or LIDAR platforms. We have embarked on a multidiagnostic research program aiming at studying the kinetics, thermodynamics and spectroscopy of PSC's using a stirred flow reactor equipped with FTIR absorption spectroscopy in transmission. The gas phase was monitored using electron-impact residual gas mass spectroscopy together with pulsed and steady-state gas admission and thorough characterization of the adsorption of HNO3, H2O and HCl onto the stainless-steel vessel walls under mass balance conditions using measured Langmuir adsorption isotherms. We have grown α- and β-NAT by doping thin (1 μm thick) ice films with metered amounts of HNO3. According to known phase diagrams we have obtained mixtures of pure ice with NAT whose IR spectrum was obtained after spectral subtraction of the pure ice phase. The concentration of HNO3 deposited on the ice film was determined by measuring the inflow and taking into account adsorption of HNO3 on the reactor walls as well as effusive loss out the reactor. We also independently checked the H2O concentration of α-NAT from the decrease of the pure H2O

  4. Absolute irradiance of the Moon for on-orbit calibration

    USGS Publications Warehouse

    Stone, T.C.; Kieffer, H.H.; ,

    2002-01-01

    The recognized need for on-orbit calibration of remote sensing imaging instruments drives the ROLO project effort to characterize the Moon for use as an absolute radiance source. For over 5 years the ground-based ROLO telescopes have acquired spatially-resolved lunar images in 23 VNIR (Moon diameter ???500 pixels) and 9 SWIR (???250 pixels) passbands at phase angles within ??90 degrees. A numerical model for lunar irradiance has been developed which fits hundreds of ROLO images in each band, corrected for atmospheric extinction and calibrated to absolute radiance, then integrated to irradiance. The band-coupled extinction algorithm uses absorption spectra of several gases and aerosols derived from MODTRAN to fit time-dependent component abundances to nightly observations of standard stars. The absolute radiance scale is based upon independent telescopic measurements of the star Vega. The fitting process yields uncertainties in lunar relative irradiance over small ranges of phase angle and the full range of lunar libration well under 0.5%. A larger source of uncertainty enters in the absolute solar spectral irradiance, especially in the SWIR, where solar models disagree by up to 6%. Results of ROLO model direct comparisons to spacecraft observations demonstrate the ability of the technique to track sensor responsivity drifts to sub-percent precision. Intercomparisons among instruments provide key insights into both calibration issues and the absolute scale for lunar irradiance.

  5. Cosmology with negative absolute temperatures

    NASA Astrophysics Data System (ADS)

    Vieira, J. P. P.; Byrnes, Christian T.; Lewis, Antony

    2016-08-01

    Negative absolute temperatures (NAT) are an exotic thermodynamical consequence of quantum physics which has been known since the 1950's (having been achieved in the lab on a number of occasions). Recently, the work of Braun et al. [1] has rekindled interest in negative temperatures and hinted at a possibility of using NAT systems in the lab as dark energy analogues. This paper goes one step further, looking into the cosmological consequences of the existence of a NAT component in the Universe. NAT-dominated expanding Universes experience a borderline phantom expansion (w < -1) with no Big Rip, and their contracting counterparts are forced to bounce after the energy density becomes sufficiently large. Both scenarios might be used to solve horizon and flatness problems analogously to standard inflation and bouncing cosmologies. We discuss the difficulties in obtaining and ending a NAT-dominated epoch, and possible ways of obtaining density perturbations with an acceptable spectrum.

  6. From Hubble's Next Generation Spectral Library (NGSL) to Absolute Fluxes

    NASA Astrophysics Data System (ADS)

    Heap, S. R.; Lindler, D.

    2016-05-01

    Hubble's Next Generation Spectral Library (NGSL) consists of R˜1000 spectra of 374 stars of assorted temperature, gravity, and metallicity. Each spectrum covers the wavelength range, 0.18-1.03 μ. The library can be viewed and/or downloaded from the website, http://archive.stsci.edu/prepds/stisngsl/. Stars in the NGSL are now being used as absolute flux standards at ground-based observatories. However, the uncertainty in the absolute flux is about 2%, which does not meet the requirements of dark-energy surveys. We have therefore developed an observing procedure, data-reduction procedure, and correction algorithms that should yield fluxes with uncertainties less than 1%.

  7. Automated absolute phase retrieval in across-track interferometry

    NASA Technical Reports Server (NTRS)

    Madsen, Soren N.; Zebker, Howard A.

    1992-01-01

    Discussed is a key element in the processing of topographic radar maps acquired by the NASA/JPL airborne synthetic aperture radar configured as an across-track interferometer (TOPSAR). TOPSAR utilizes a single transmit and two receive antennas; the three-dimensional target location is determined by triangulation based on a known baseline and two measured slant ranges. The slant range difference is determined very accurately from the phase difference between the signals received by the two antennas. This phase is measured modulo 2pi, whereas it is the absolute phase which relates directly to the difference in slant range. It is shown that splitting the range bandwidth into two subbands in the processor and processing each individually allows for the absolute phase. The underlying principles and system errors which must be considered are discussed, together with the implementation and results from processing data acquired during the summer of 1991.

  8. Reading Recovery.

    ERIC Educational Resources Information Center

    Jones, Joanna R., Ed.

    1992-01-01

    This issue of the Arizona Reading Journal focuses on the theme "reading recovery" and includes the following articles: "Why Is an Inservice Programme for Reading Recovery Teachers Necessary?" (Marie M. Clay); "What Is Reading Recovery?" (Gay Su Pinnell); "Teaching a Hard To Teach Child" (Constance A.…

  9. Absolute calibration of forces in optical tweezers

    NASA Astrophysics Data System (ADS)

    Dutra, R. S.; Viana, N. B.; Maia Neto, P. A.; Nussenzveig, H. M.

    2014-07-01

    Optical tweezers are highly versatile laser traps for neutral microparticles, with fundamental applications in physics and in single molecule cell biology. Force measurements are performed by converting the stiffness response to displacement of trapped transparent microspheres, employed as force transducers. Usually, calibration is indirect, by comparison with fluid drag forces. This can lead to discrepancies by sizable factors. Progress achieved in a program aiming at absolute calibration, conducted over the past 15 years, is briefly reviewed. Here we overcome its last major obstacle, a theoretical overestimation of the peak stiffness, within the most employed range for applications, and we perform experimental validation. The discrepancy is traced to the effect of primary aberrations of the optical system, which are now included in the theory. All required experimental parameters are readily accessible. Astigmatism, the dominant effect, is measured by analyzing reflected images of the focused laser spot, adapting frequently employed video microscopy techniques. Combined with interface spherical aberration, it reveals a previously unknown window of instability for trapping. Comparison with experimental data leads to an overall agreement within error bars, with no fitting, for a broad range of microsphere radii, from the Rayleigh regime to the ray optics one, for different polarizations and trapping heights, including all commonly employed parameter domains. Besides signaling full first-principles theoretical understanding of optical tweezers operation, the results may lead to improved instrument design and control over experiments, as well as to an extended domain of applicability, allowing reliable force measurements, in principle, from femtonewtons to nanonewtons.

  10. Documentation for the machine-readable version of the Absolute Calibration of Stellar Spectrophotometry

    NASA Technical Reports Server (NTRS)

    Warren, W. H., Jr.

    1982-01-01

    The machine-readable data file of The Absolute Calibration of Stellar Spectrophotometry as distributed by the Astronomical Data Center is described. The data file contains the absolute fluxes for 16 stars published in Tables 1 and 2 of Johnson (1980). The absolute calibrations were accomplished by combining the 13-color photometry calibrations of Johnson and Mitchell (1975) with spectra obtained with a Michelson spectrophotometer and covering the wavelength range 4000 to 10300 A (Johnson 1977). The agreement between this absolute calibration and another recent one based upon data for a Lyr and 109 Vir by Tug, White and Lockwood (1977) is shown by Johnson (1980) to be quite good.

  11. ON A SUFFICIENT CONDITION FOR ABSOLUTE CONTINUITY.

    DTIC Science & Technology

    The formulation of a condition which yields absolute continuity when combined with continuity and bounded variation is the problem considered in the...Briefly, the formulation is achieved through a discussion which develops a proof by contradiction of a sufficiently theorem for absolute continuity which uses in its hypothesis the condition of continuity and bounded variation .

  12. Introducing the Mean Absolute Deviation "Effect" Size

    ERIC Educational Resources Information Center

    Gorard, Stephen

    2015-01-01

    This paper revisits the use of effect sizes in the analysis of experimental and similar results, and reminds readers of the relative advantages of the mean absolute deviation as a measure of variation, as opposed to the more complex standard deviation. The mean absolute deviation is easier to use and understand, and more tolerant of extreme…

  13. Monolithically integrated absolute frequency comb laser system

    SciTech Connect

    Wanke, Michael C.

    2016-07-12

    Rather than down-convert optical frequencies, a QCL laser system directly generates a THz frequency comb in a compact monolithically integrated chip that can be locked to an absolute frequency without the need of a frequency-comb synthesizer. The monolithic, absolute frequency comb can provide a THz frequency reference and tool for high-resolution broad band spectroscopy.

  14. Absolute instability of the Gaussian wake profile

    NASA Technical Reports Server (NTRS)

    Hultgren, Lennart S.; Aggarwal, Arun K.

    1987-01-01

    Linear parallel-flow stability theory has been used to investigate the effect of viscosity on the local absolute instability of a family of wake profiles with a Gaussian velocity distribution. The type of local instability, i.e., convective or absolute, is determined by the location of a branch-point singularity with zero group velocity of the complex dispersion relation for the instability waves. The effects of viscosity were found to be weak for values of the wake Reynolds number, based on the center-line velocity defect and the wake half-width, larger than about 400. Absolute instability occurs only for sufficiently large values of the center-line wake defect. The critical value of this parameter increases with decreasing wake Reynolds number, thereby indicating a shrinking region of absolute instability with decreasing wake Reynolds number. If backflow is not allowed, absolute instability does not occur for wake Reynolds numbers smaller than about 38.

  15. Absolute quantitation of protein posttranslational modification isoform.

    PubMed

    Yang, Zhu; Li, Ning

    2015-01-01

    Mass spectrometry has been widely applied in characterization and quantification of proteins from complex biological samples. Because the numbers of absolute amounts of proteins are needed in construction of mathematical models for molecular systems of various biological phenotypes and phenomena, a number of quantitative proteomic methods have been adopted to measure absolute quantities of proteins using mass spectrometry. The liquid chromatography-tandem mass spectrometry (LC-MS/MS) coupled with internal peptide standards, i.e., the stable isotope-coded peptide dilution series, which was originated from the field of analytical chemistry, becomes a widely applied method in absolute quantitative proteomics research. This approach provides more and more absolute protein quantitation results of high confidence. As quantitative study of posttranslational modification (PTM) that modulates the biological activity of proteins is crucial for biological science and each isoform may contribute a unique biological function, degradation, and/or subcellular location, the absolute quantitation of protein PTM isoforms has become more relevant to its biological significance. In order to obtain the absolute cellular amount of a PTM isoform of a protein accurately, impacts of protein fractionation, protein enrichment, and proteolytic digestion yield should be taken into consideration and those effects before differentially stable isotope-coded PTM peptide standards are spiked into sample peptides have to be corrected. Assisted with stable isotope-labeled peptide standards, the absolute quantitation of isoforms of posttranslationally modified protein (AQUIP) method takes all these factors into account and determines the absolute amount of a protein PTM isoform from the absolute amount of the protein of interest and the PTM occupancy at the site of the protein. The absolute amount of the protein of interest is inferred by quantifying both the absolute amounts of a few PTM

  16. Postattack Recovery Strategies.

    DTIC Science & Technology

    1980-11-01

    relocation conditions --problems that range from financing and the stockpiling of needed resources to providing information about how, where, and with...sustain their health, improve economic and social conditions and start rebuilding for the long-term recovery. The types of information that would be...Postattack Economic Conditions One of the important federal roles for aiding postattack economic recovery will be that of supplying information on

  17. Absolute calibration of vacuum ultraviolet spectrograph system for plasma diagnostics

    SciTech Connect

    Yoshikawa, M.; Kubota, Y.; Kobayashi, T.; Saito, M.; Numada, N.; Nakashima, Y.; Cho, T.; Koguchi, H.; Yagi, Y.; Yamaguchi, N.

    2004-10-01

    A space- and time-resolving vacuum ultraviolet (VUV) spectrograph system has been applied to diagnose impurity ions behavior in plasmas produced in the tandem mirror GAMMA 10 and the reversed field pinch TPE-RX. We have carried out ray tracing calculations for obtaining the characteristics of the VUV spectrograph and calibration experiments to measure the absolute sensitivities of the VUV spectrograph system for the wavelength range from 100 to 1100 A. By changing the incident angle, 50.6 deg. -51.4 deg., to the spectrograph whose nominal incident angle is 51 deg., we can change the observing spectral range of the VUV spectrograph. In this article, we show the ray tracing calculation results and absolute sensitivities when the angle of incidence into the VUV spectrograph is changed, and the results of VUV spectroscopic measurement in both GAMMA 10 and TPE-RX plasmas.

  18. Mathematical Model for Absolute Magnetic Measuring Systems in Industrial Applications

    NASA Astrophysics Data System (ADS)

    Fügenschuh, Armin; Fügenschuh, Marzena; Ludszuweit, Marina; Mojsic, Aleksandar; Sokół, Joanna

    2015-09-01

    Scales for measuring systems are either based on incremental or absolute measuring methods. Incremental scales need to initialize a measurement cycle at a reference point. From there, the position is computed by counting increments of a periodic graduation. Absolute methods do not need reference points, since the position can be read directly from the scale. The positions on the complete scales are encoded using two incremental tracks with different graduation. We present a new method for absolute measuring using only one track for position encoding up to micrometre range. Instead of the common perpendicular magnetic areas, we use a pattern of trapezoidal magnetic areas, to store more complex information. For positioning, we use the magnetic field where every position is characterized by a set of values measured by a hall sensor array. We implement a method for reconstruction of absolute positions from the set of unique measured values. We compare two patterns with respect to uniqueness, accuracy, stability and robustness of positioning. We discuss how stability and robustness are influenced by different errors during the measurement in real applications and how those errors can be compensated.

  19. Absolute intensity of radiation emitted by uranium plasmas

    NASA Technical Reports Server (NTRS)

    Jalufka, N. W.; Lee, J. H.; Mcfarland, D. R.

    1975-01-01

    The absolute intensity of radiation emitted by fissioning and nonfissioning uranium plasmas in the spectral range from 350 nm to 1000 nm was measured. The plasma was produced in a plasma-focus apparatus and the plasma properties are simular to those anticipated for plasma-core nuclear reactors. The results are expected to contribute to the establishment of design criteria for the development of plasma-core reactors.

  20. Orion Absolute Navigation System Progress and Challenge

    NASA Technical Reports Server (NTRS)

    Holt, Greg N.; D'Souza, Christopher

    2012-01-01

    The absolute navigation design of NASA's Orion vehicle is described. It has undergone several iterations and modifications since its inception, and continues as a work-in-progress. This paper seeks to benchmark the current state of the design and some of the rationale and analysis behind it. There are specific challenges to address when preparing a timely and effective design for the Exploration Flight Test (EFT-1), while still looking ahead and providing software extensibility for future exploration missions. The primary onboard measurements in a Near-Earth or Mid-Earth environment consist of GPS pseudo-range and delta-range, but for future explorations missions the use of star-tracker and optical navigation sources need to be considered. Discussions are presented for state size and composition, processing techniques, and consider states. A presentation is given for the processing technique using the computationally stable and robust UDU formulation with an Agee-Turner Rank-One update. This allows for computational savings when dealing with many parameters which are modeled as slowly varying Gauss-Markov processes. Preliminary analysis shows up to a 50% reduction in computation versus a more traditional formulation. Several state elements are discussed and evaluated, including position, velocity, attitude, clock bias/drift, and GPS measurement biases in addition to bias, scale factor, misalignment, and non-orthogonalities of the accelerometers and gyroscopes. Another consideration is the initialization of the EKF in various scenarios. Scenarios such as single-event upset, ground command, and cold start are discussed as are strategies for whole and partial state updates as well as covariance considerations. Strategies are given for dealing with latent measurements and high-rate propagation using multi-rate architecture. The details of the rate groups and the data ow between the elements is discussed and evaluated.

  1. A New Gimmick for Assigning Absolute Configuration.

    ERIC Educational Resources Information Center

    Ayorinde, F. O.

    1983-01-01

    A five-step procedure is provided to help students in making the assignment absolute configuration less bothersome. Examples for both single (2-butanol) and multi-chiral carbon (3-chloro-2-butanol) molecules are included. (JN)

  2. Magnifying absolute instruments for optically homogeneous regions

    SciTech Connect

    Tyc, Tomas

    2011-09-15

    We propose a class of magnifying absolute optical instruments with a positive isotropic refractive index. They create magnified stigmatic images, either virtual or real, of optically homogeneous three-dimensional spatial regions within geometrical optics.

  3. The Simplicity Argument and Absolute Morality

    ERIC Educational Resources Information Center

    Mijuskovic, Ben

    1975-01-01

    In this paper the author has maintained that there is a similarity of thought to be found in the writings of Cudworth, Emerson, and Husserl in his investigation of an absolute system of morality. (Author/RK)

  4. Recovery Online

    ERIC Educational Resources Information Center

    Clark, John R.

    2007-01-01

    Since the founding of Alcoholics Anonymous (AA) in 1935, programs offering opportunity for recovery from alcoholism and other addictions have undergone vast changes. The Internet has created nearly limitless opportunities for recovering people and those seeking recovery to find both meetings and places where they can gather virtually and discuss…

  5. Absolute cross sections of compound nucleus reactions

    NASA Astrophysics Data System (ADS)

    Capurro, O. A.

    1993-11-01

    The program SEEF is a Fortran IV computer code for the extraction of absolute cross sections of compound nucleus reactions. When the evaporation residue is fed by its parents, only cumulative cross sections will be obtained from off-line gamma ray measurements. But, if one has the parent excitation function (experimental or calculated), this code will make it possible to determine absolute cross sections of any exit channel.

  6. Kelvin and the absolute temperature scale

    NASA Astrophysics Data System (ADS)

    Erlichson, Herman

    2001-07-01

    This paper describes the absolute temperature scale of Kelvin (William Thomson). Kelvin found that Carnot's axiom about heat being a conserved quantity had to be abandoned. Nevertheless, he found that Carnot's fundamental work on heat engines was correct. Using the concept of a Carnot engine Kelvin found that Q1/Q2 = T1/T2. Thermometers are not used to obtain absolute temperatures since they are calculated temperatures.

  7. Absolute Gravity Datum in the Age of Cold Atom Gravimeters

    NASA Astrophysics Data System (ADS)

    Childers, V. A.; Eckl, M. C.

    2014-12-01

    The international gravity datum is defined today by the International Gravity Standardization Net of 1971 (IGSN-71). The data supporting this network was measured in the 1950s and 60s using pendulum and spring-based gravimeter ties (plus some new ballistic absolute meters) to replace the prior protocol of referencing all gravity values to the earlier Potsdam value. Since this time, gravimeter technology has advanced significantly with the development and refinement of the FG-5 (the current standard of the industry) and again with the soon-to-be-available cold atom interferometric absolute gravimeters. This latest development is anticipated to provide improvement in the range of two orders of magnitude as compared to the measurement accuracy of technology utilized to develop ISGN-71. In this presentation, we will explore how the IGSN-71 might best be "modernized" given today's requirements and available instruments and resources. The National Geodetic Survey (NGS), along with other relevant US Government agencies, is concerned about establishing gravity control to establish and maintain high order geodetic networks as part of the nation's essential infrastructure. The need to modernize the nation's geodetic infrastructure was highlighted in "Precise Geodetic Infrastructure, National Requirements for a Shared Resource" National Academy of Science, 2010. The NGS mission, as dictated by Congress, is to establish and maintain the National Spatial Reference System, which includes gravity measurements. Absolute gravimeters measure the total gravity field directly and do not involve ties to other measurements. Periodic "intercomparisons" of multiple absolute gravimeters at reference gravity sites are used to constrain the behavior of the instruments to ensure that each would yield reasonably similar measurements of the same location (i.e. yield a sufficiently consistent datum when measured in disparate locales). New atomic interferometric gravimeters promise a significant

  8. Networks of Absolute Calibration Stars for SST, AKARI, and WISE

    NASA Astrophysics Data System (ADS)

    Cohen, M.

    2007-04-01

    I describe the Cohen-Walker-Witteborn (CWW) network of absolute calibration stars built to support ground-based, airborne, and space-based sensors, and how they are used to calibrate instruments on the SPITZER Space Telescope (SST and Japan's AKARI (formerly ASTRO-F), and to support NASA's planned MidEx WISE (the Wide-field Infrared Survey Explorer). All missions using this common calibration share a self-consistent framework embracing photometry and low-resolution spectroscopy. CWW also underpins COBE/DIRBE several instruments used on the Kuiper Airborne Observatory ({KAO}), the joint Japan-USA ``IR Telescope in Space" (IRTS) Near-IR and Mid-IR spectrometers, the European Space Agency's IR Space Observatory (ISO), and the US Department of Defense's Midcourse Space eXperiment (MSX). This calibration now spans the far-UV to mid-infrared range with Sirius (one specific Kurucz synthetic spectrum) as basis, and zero magnitude defined from another Kurucz spectrum intended to represent an ideal Vega (not the actual star with its pole-on orientation and mid-infrared dust excess emission). Precision 4-29 μm radiometric measurements on MSX validate CWW's absolute Kurucz spectrum of Sirius, the primary, and a set of bright K/MIII secondary standards. Sirius is measured to be 1.0% higher than predicted. CWW's definitions of IR zero magnitudes lie within 1.1% absolute of MSX measurements. The US Air Force Research Laboratory's independent analysis of on-orbit {MSX} stellar observations compared with emissive reference spheres show CWW primary and empirical secondary spectra lie well within the ±1.45% absolute uncertainty associated with this 15-year effort. Our associated absolute calibration for the InfraRed Array Camera (IRAC) on the SST lies within ˜2% of the recent extension of the calibration of the Hubble Space Telescope's STIS instrument to NICMOS (Bohlin, these Proceedings), showing the closeness of these two independent approaches to calibration.

  9. Evaluation of the Absolute Regional Temperature Potential

    NASA Technical Reports Server (NTRS)

    Shindell, D. T.

    2012-01-01

    The Absolute Regional Temperature Potential (ARTP) is one of the few climate metrics that provides estimates of impacts at a sub-global scale. The ARTP presented here gives the time-dependent temperature response in four latitude bands (90-28degS, 28degS-28degN, 28-60degN and 60-90degN) as a function of emissions based on the forcing in those bands caused by the emissions. It is based on a large set of simulations performed with a single atmosphere-ocean climate model to derive regional forcing/response relationships. Here I evaluate the robustness of those relationships using the forcing/response portion of the ARTP to estimate regional temperature responses to the historic aerosol forcing in three independent climate models. These ARTP results are in good accord with the actual responses in those models. Nearly all ARTP estimates fall within +/-20%of the actual responses, though there are some exceptions for 90-28degS and the Arctic, and in the latter the ARTP may vary with forcing agent. However, for the tropics and the Northern Hemisphere mid-latitudes in particular, the +/-20% range appears to be roughly consistent with the 95% confidence interval. Land areas within these two bands respond 39-45% and 9-39% more than the latitude band as a whole. The ARTP, presented here in a slightly revised form, thus appears to provide a relatively robust estimate for the responses of large-scale latitude bands and land areas within those bands to inhomogeneous radiative forcing and thus potentially to emissions as well. Hence this metric could allow rapid evaluation of the effects of emissions policies at a finer scale than global metrics without requiring use of a full climate model.

  10. An absolute sensitivity calibration of the JET VUV SPRED spectrometer

    NASA Astrophysics Data System (ADS)

    Lawson, K. D.; Coffey, I. H.; Zacks, J.; Stamp, M. F.; contributors, JET-EFDA

    2009-04-01

    The determination of a good relative and absolute sensitivity calibration for wideband VUV spectrometers is challenging. On JET, the possible T and Be contamination of the VUV spectrometer precludes its removal to a synchrotron source and, consequently, a range of alternative in situ techniques have been investigated in depth. This has resulted in a reliable calibration for the complete spectral range, the relative calibration at short wavelengths being particularly accurate. At these wavelengths, a novel approach is used, in which the calibration is extended using a number of Na- and Li-like metal doublets. At longer wavelengths, the Li-like doublets of Ar and Ne have been used in conjunction with CII, CIII and CIV line intensity ratios. Unexplained discrepancies between the measured and modelled C results have meant that the exceptional short wavelength accuracy has not be repeated at these longer wavelengths. The absolute sensitivity has been determined from branching ratios to an absolutely calibrated visible spectrometer. The long term stability of the calibration is discussed.

  11. Simultaneously improving the sensitivity and absolute accuracy of CPT magnetometer.

    PubMed

    Liang, Shang-Qing; Yang, Guo-Qing; Xu, Yun-Fei; Lin, Qiang; Liu, Zhi-Heng; Chen, Zheng-Xiang

    2014-03-24

    A new method to improve the sensitivity and absolute accuracy simultaneously for coherent population trapping (CPT) magnetometer based on the differential detection method is presented. Two modulated optical beams with orthogonal circular polarizations are applied, in one of which two magnetic resonances are excited simultaneously by modulating a 3.4GHz microwave with Larmor frequency. When a microwave frequency shift is introduced, the difference in the power transmitted through the cell in each beam shows a low noise resonance. The sensitivity of 2pT/Hz @ 10Hz is achieved. Meanwhile, the absolute accuracy of ± 0.5nT within the magnetic field ranging from 20000nT to 100000nT is realized.

  12. Self consistent, absolute calibration technique for photon number resolving detectors.

    PubMed

    Avella, A; Brida, G; Degiovanni, I P; Genovese, M; Gramegna, M; Lolli, L; Monticone, E; Portesi, C; Rajteri, M; Rastello, M L; Taralli, E; Traina, P; White, M

    2011-11-07

    Well characterized photon number resolving detectors are a requirement for many applications ranging from quantum information and quantum metrology to the foundations of quantum mechanics. This prompts the necessity for reliable calibration techniques at the single photon level. In this paper we propose an innovative absolute calibration technique for photon number resolving detectors, using a pulsed heralded photon source based on parametric down conversion. The technique, being absolute, does not require reference standards and is independent upon the performances of the heralding detector. The method provides the results of quantum efficiency for the heralded detector as a function of detected photon numbers. Furthermore, we prove its validity by performing the calibration of a Transition Edge Sensor based detector, a real photon number resolving detector that has recently demonstrated its effectiveness in various quantum information protocols.

  13. Jasminum flexile flower absolute from India--a detailed comparison with three other jasmine absolutes.

    PubMed

    Braun, Norbert A; Kohlenberg, Birgit; Sim, Sherina; Meier, Manfred; Hammerschmidt, Franz-Josef

    2009-09-01

    Jasminum flexile flower absolute from the south of India and the corresponding vacuum headspace (VHS) sample of the absolute were analyzed using GC and GC-MS. Three other commercially available Indian jasmine absolutes from the species: J. sambac, J. officinale subsp. grandiflorum, and J. auriculatum and the respective VHS samples were used for comparison purposes. One hundred and twenty-one compounds were characterized in J. flexile flower absolute, with methyl linolate, benzyl salicylate, benzyl benzoate, (2E,6E)-farnesol, and benzyl acetate as the main constituents. A detailed olfactory evaluation was also performed.

  14. Absolute pitch and pupillary response: effects of timbre and key color.

    PubMed

    Schlemmer, Kathrin B; Kulke, Franziska; Kuchinke, Lars; Van Der Meer, Elke

    2005-07-01

    The pitch identification performance of absolute pitch possessors has previously been shown to depend on pitch range, key color, and timbre of presented tones. In the present study, the dependence of pitch identification performance on key color and timbre of musical tones was examined by analyzing hit rates, reaction times, and pupillary responses of absolute pitch possessors (n = 9) and nonpossessors (n = 12) during a pitch identification task. Results revealed a significant dependence of pitch identification hit rate but not reaction time on timbre and key color in both groups. Among absolute pitch possessors, peak dilation of the pupil was significantly dependent on key color whereas the effect of timbre was marginally significant. Peak dilation of the pupil differed significantly between absolute pitch possessors and nonpossessors. The observed effects point to the importance of learning factors in the acquisition of absolute pitch.

  15. Universal Cosmic Absolute and Modern Science

    NASA Astrophysics Data System (ADS)

    Kostro, Ludwik

    The official Sciences, especially all natural sciences, respect in their researches the principle of methodic naturalism i.e. they consider all phenomena as entirely natural and therefore in their scientific explanations they do never adduce or cite supernatural entities and forces. The purpose of this paper is to show that Modern Science has its own self-existent, self-acting, and self-sufficient Natural All-in Being or Omni-Being i.e. the entire Nature as a Whole that justifies the scientific methodic naturalism. Since this Natural All-in Being is one and only It should be considered as the own scientifically justified Natural Absolute of Science and should be called, in my opinion, the Universal Cosmic Absolute of Modern Science. It will be also shown that the Universal Cosmic Absolute is ontologically enormously stratified and is in its ultimate i.e. in its most fundamental stratum trans-reistic and trans-personal. It means that in its basic stratum. It is neither a Thing or a Person although It contains in Itself all things and persons with all other sentient and conscious individuals as well, On the turn of the 20th century the Science has begun to look for a theory of everything, for a final theory, for a master theory. In my opinion the natural Universal Cosmic Absolute will constitute in such a theory the radical all penetrating Ultimate Basic Reality and will substitute step by step the traditional supernatural personal Absolute.

  16. Quantitative standards for absolute linguistic universals.

    PubMed

    Piantadosi, Steven T; Gibson, Edward

    2014-01-01

    Absolute linguistic universals are often justified by cross-linguistic analysis: If all observed languages exhibit a property, the property is taken to be a likely universal, perhaps specified in the cognitive or linguistic systems of language learners and users. In many cases, these patterns are then taken to motivate linguistic theory. Here, we show that cross-linguistic analysis will very rarely be able to statistically justify absolute, inviolable patterns in language. We formalize two statistical methods--frequentist and Bayesian--and show that in both it is possible to find strict linguistic universals, but that the numbers of independent languages necessary to do so is generally unachievable. This suggests that methods other than typological statistics are necessary to establish absolute properties of human language, and thus that many of the purported universals in linguistics have not received sufficient empirical justification.

  17. Absolute Pitch in Boreal Chickadees and Humans: Exceptions that Test a Phylogenetic Rule

    ERIC Educational Resources Information Center

    Weisman, Ronald G.; Balkwill, Laura-Lee; Hoeschele, Marisa; Moscicki, Michele K.; Bloomfield, Laurie L.; Sturdy, Christopher B.

    2010-01-01

    This research examined generality of the phylogenetic rule that birds discriminate frequency ranges more accurately than mammals. Human absolute pitch chroma possessors accurately tracked transitions between frequency ranges. Independent tests showed that they used note naming (pitch chroma) to remap the tones into ranges; neither possessors nor…

  18. Absolutely relative or relatively absolute: violations of value invariance in human decision making.

    PubMed

    Teodorescu, Andrei R; Moran, Rani; Usher, Marius

    2016-02-01

    Making decisions based on relative rather than absolute information processing is tied to choice optimality via the accumulation of evidence differences and to canonical neural processing via accumulation of evidence ratios. These theoretical frameworks predict invariance of decision latencies to absolute intensities that maintain differences and ratios, respectively. While information about the absolute values of the choice alternatives is not necessary for choosing the best alternative, it may nevertheless hold valuable information about the context of the decision. To test the sensitivity of human decision making to absolute values, we manipulated the intensities of brightness stimuli pairs while preserving either their differences or their ratios. Although asked to choose the brighter alternative relative to the other, participants responded faster to higher absolute values. Thus, our results provide empirical evidence for human sensitivity to task irrelevant absolute values indicating a hard-wired mechanism that precedes executive control. Computational investigations of several modelling architectures reveal two alternative accounts for this phenomenon, which combine absolute and relative processing. One account involves accumulation of differences with activation dependent processing noise and the other emerges from accumulation of absolute values subject to the temporal dynamics of lateral inhibition. The potential adaptive role of such choice mechanisms is discussed.

  19. Monkey Able After Recovery

    NASA Technical Reports Server (NTRS)

    1959-01-01

    On May 28, 1959, a Jupiter Intermediate Range Ballistic Missile provided by a U.S. Army team in Redstone Arsenal, Alabama, launched a nose cone carrying Baker, A South American squirrel monkey and Able, An American-born rhesus monkey. This photograph shows Able after recovery of the nose cone of the Jupiter rocket by U.S.S. Kiowa.

  20. A Glossary of Range Terminology

    DTIC Science & Technology

    1981-01-01

    GLOSSARY OF RANGE TERMINOLOGY" Final 6. PERFORMING ORG. REPORT NUMBER 7. AUTHOR(e) S. CONTRACT OR GRANT NUMUER(e) Documentation Group Range Commanders...Council White Sands Missile Range, NM 88002 9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK AREA & WORK UNIT NUMBERS Same...ABSOLUTE ADDRESS -- The label or number permanently assigned to a specific storage location, device or register. binary words together with an origin

  1. Biomass Program Recovery Act Factsheet

    SciTech Connect

    2010-03-01

    The Biomass Program has awarded about $718 million in American Recovery and Reinvestment Act (Recovery Act) funds. The projects the Program is supporting are intended to: Accelerate advanced biofuels research, development, and demonstration; Speed the deployment and commercialization of advanced biofuels and bioproducts; Further the U.S. bioindustry through market transformation and creating or saving a range of jobs.

  2. Crystal structure of meteoritic schreibersites: determination of absolute structure

    NASA Astrophysics Data System (ADS)

    Skála, Roman; Císařová, Ivana

    Minerals of the schreibersite nickelphosphide series (Fe,Ni)3P crystallize in the non-centrosymmetric space group Ibar 4. As a consequence, they can possess two different spatial arrangements of the constituting atoms within the unit cell, related by the inversion symmetry operation. Here, we present the crystal structure refinements from single crystal X-ray diffraction data for schreibersite grains from iron meteorites Acuña, Carlton, Hex River Mts. (three different crystals), Odessa (two different crystals), Sikhote Alin, and Toluca aiming for the determination of the absolute structure of the examined crystals. The crystals studied cover the composition range from 58 mol% to 80 mol% Fe3P end-member. Unit-cell parameter a and volume of the unit cell V, as well as certain topological structural parameters tightly correlate with Fe3P content. Unit-cell parameter c, on the other hand, does not show such strong correlation. Eight of the nine crystal structure refinements allowed unambiguous absolute structure assignment. The single crystal extracted from Toluca is, however, of poor quality and consequently the structure refinement did not provide as good results as the rest of the materials. Also, this crystal has only weak inversion distinguishing power to provide unequivocal absolute structure determination. Six of the eight unambiguous absolute structure determinations indicated inverted atomic arrangement compared to that reported in earlier structure refinements (here called standard). Only two grains, one taken from Odessa iron and the other from the Hex River Mts. meteorite, reveal the dominance of standard crystal structure setting.

  3. Comparative vs. Absolute Judgments of Trait Desirability

    ERIC Educational Resources Information Center

    Hofstee, Willem K. B.

    1970-01-01

    Reversals of trait desirability are studied. Terms indicating conservativw behavior appeared to be judged relatively desirable in comparative judgement, while traits indicating dynamic and expansive behavior benefited from absolute judgement. The reversal effect was shown to be a general one, i.e. reversals were not dependent upon the specific…

  4. New Techniques for Absolute Gravity Measurements.

    DTIC Science & Technology

    1983-01-07

    Hammond, J.A. (1978) Bollettino Di Geofisica Teorica ed Applicata Vol. XX. 8. Hammond, J. A., and Iliff, R. L. (1979) The AFGL absolute gravity system...International Gravimetric Bureau, No. L:I-43. 7. Hammond. J.A. (1978) Bollettino Di Geofisica Teorica ed Applicata Vol. XX. 8. Hammond, J.A., and

  5. An Absolute Electrometer for the Physics Laboratory

    ERIC Educational Resources Information Center

    Straulino, S.; Cartacci, A.

    2009-01-01

    A low-cost, easy-to-use absolute electrometer is presented: two thin metallic plates and an electronic balance, usually available in a laboratory, are used. We report on the very good performance of the device that allows precise measurements of the force acting between two charged plates. (Contains 5 footnotes, 2 tables, and 6 figures.)

  6. Stimulus Probability Effects in Absolute Identification

    ERIC Educational Resources Information Center

    Kent, Christopher; Lamberts, Koen

    2016-01-01

    This study investigated the effect of stimulus presentation probability on accuracy and response times in an absolute identification task. Three schedules of presentation were used to investigate the interaction between presentation probability and stimulus position within the set. Data from individual participants indicated strong effects of…

  7. Absolute Positioning Using the Global Positioning System

    DTIC Science & Technology

    1994-04-01

    Global Positioning System ( GPS ) has becom a useful tool In providing relativ survey...Includes the development of a low cost navigator for wheeled vehicles. ABSTRACT The Global Positioning System ( GPS ) has become a useful tool In providing...technique of absolute or point positioning involves the use of a single Global Positioning System ( GPS ) receiver to determine the three-dimenslonal

  8. The absolute radiometric calibration of the advanced very high resolution radiometer

    NASA Technical Reports Server (NTRS)

    Slater, P. N.; Teillet, P. M.; Ding, Y.

    1988-01-01

    The need for independent, redundant absolute radiometric calibration methods is discussed with reference to the Thematic Mapper. Uncertainty requirements for absolute calibration of between 0.5 and 4 percent are defined based on the accuracy of reflectance retrievals at an agricultural site. It is shown that even very approximate atmospheric corrections can reduce the error in reflectance retrieval to 0.02 over the reflectance range 0 to 0.4.

  9. Recovery definitions: Do they change?

    PubMed Central

    Kaskutas, Lee Ann; Witbrodt, Jane; Grella, Christine E.

    2015-01-01

    Background The term “recovery” is widely used in the substance abuse literature and clinical settings, but data have not been available to empirically validate how recovery is defined by individuals who are themselves in recovery. The “What Is Recovery?” project developed a 39-item definition of recovery based on a large nationwide online survey of individuals in recovery. The objective of this paper is to report on the stability of those definitions one to two years later. Methods To obtain a sample for studying recovery definitions that reflected the different pathways to recovery, the parent study involved intensive outreach. Follow-up interviews (n = 1237) were conducted online and by telephone among respondents who consented to participate in follow-up studies. Descriptive analyses considered endorsement of individual recovery items at both surveys, and t-tests of summary scores studied significant change in the sample overall and among key subgroups. To assess item reliability, Cronbach’s alpha was estimated. Results Rates of endorsement of individual items at both interviews was above 90% for a majority of the recovery elements, and there was about as much transition into endorsement as out of endorsement. Statistically significant t-test scores were of modest magnitude, and reliability statistics were high (ranging from .782 to .899). Conclusions Longitudinal analyses found little evidence of meaningful change in recovery definitions at follow-up. Results thus suggest that the recovery definitions developed in the parent “What Is Recovery?” survey represent stable definitions of recovery that can be used to guide service provision in Recovery-Oriented Systems of Care. PMID:26166666

  10. Absolute distance measurement based on multiple self-mixing interferometry

    NASA Astrophysics Data System (ADS)

    Duan, Zhiwei; Yu, Yangyang; Gao, Bingkun; Jiang, Chunlei

    2017-04-01

    To improve the precision of distance measurement using laser Self-Mixing Interferometry (SMI) and compute short distance, we propose a method of Multiple Self-Mixing Interferometry (MSMI) that is modulated with a triangular wave. The principle of this method has been described in this paper. Experiments at different distances and amplitudes of modulation current are based on the proposed method. Low-priced and easily operated experimental devices are built. Experimental results show that a resolution of 2.7 mm can be achieved for absolute distance ranging from 2.2 to 23 cm.

  11. Absolute Emission Spectroscopy of Electronically Excited Products of Dissociative Recombination

    NASA Astrophysics Data System (ADS)

    Skrzypkowski, M. P.; Gougousi, T.; Golde, M. F.; Johnsen, R.

    1997-10-01

    We have employed spatially-resolved optical emission spectroscopy in a flowing afterglow plasma to investigate radiations in the 200-400 nm range resulting from electron-ion dissociative recombination. Calibrated emission data combined with Langmuir probe electron-density measurements are analyzed to obtain branching ratios for electronically excited recombination products. In particular, we will report absolute yields of CO(a^3Π) resulting from recombining CO_2^+ ions, NO(B^2Π) from N_2O^+, OH(A^2Σ^+) from HCO_2^+, as well as NH(A^3Π_i), and OH(A^2Σ^+) from the recombination of N_2OH^+ ions.

  12. Absolute Temperature Monitoring Using RF Radiometry in the MRI Scanner

    PubMed Central

    El-Sharkawy, AbdEl-Monem M.; Sotiriadis, Paul P.; Bottomley, Paul A.; Atalar, Ergin

    2007-01-01

    Temperature detection using microwave radiometry has proven value for noninvasively measuring the absolute temperature of tissues inside the body. However, current clinical radiometers operate in the gigahertz range, which limits their depth of penetration. We have designed and built a noninvasive radiometer which operates at radio frequencies (64 MHz) with ∼100-kHz bandwidth, using an external RF loop coil as a thermal detector. The core of the radiometer is an accurate impedance measurement and automatic matching circuit of 0.05 Ω accuracy to compensate for any load variations. The radiometer permits temperature measurements with accuracy of ±0.1°K, over a tested physiological range of 28° C–40° C in saline phantoms whose electric properties match those of tissue. Because 1.5 T magnetic resonance imaging (MRI) scanners also operate at 64 MHz, we demonstrate the feasibility of integrating our radiometer with an MRI scanner to monitor RF power deposition and temperature dosimetry, obtaining coarse, spatially resolved, absolute thermal maps in the physiological range. We conclude that RF radiometry offers promise as a direct, noninvasive method of monitoring tissue heating during MRI studies and thereby providing an independent means of verifying patient-safe operation. Other potential applications include titration of hyper- and hypo-therapies. PMID:18026562

  13. The new Absolute Quantum Gravimeter (AQG): first results and perspectives

    NASA Astrophysics Data System (ADS)

    Bonvalot, Sylvain; Le Moigne, Nicolas; Merlet, Sebastien; Desruelle, Bruno; Lautier-Gaud, Jean; Menoret, Vincent; Vermeulen, Pierre

    2016-04-01

    Cold atom gravimetry represents one of the most innovative evolution in gravity instrumentation since the last 20 years. The concept of measuring the gravitational acceleration by dropping atoms and the development of the first instrumental devices during this last decade quickly revealed the promising perspectives of this new generation of gravity meters enabling accurate and absolute measurements of the Earth's gravity field for a wide range of applications (geophysics, geodesy, metrology, etc.). The Absolute Quantum Gravimeter (AQG) gravity meter, developed by MUQUANS (Talence, France - http://www.muquans.com/) with the support of RESIF, the French Seismologic and Geodetic Network (http://www.resif.fr/) belongs to this new generation of instruments. It also represents the first commercial device based on the utilization of advanced matter-wave interferometry techniques, which allow to characterize precisely the vertical acceleration experienced by a cloud of cold atoms. Recently, the first operational unit (AQG01) has been achieved as a compact transportable gravimeter with the aim of satisfying absolute gravity measurements in laboratory conditions under the following specifications: measurements the μGal level at a few Hz cycling frequency, sensitivity of 50μGal/√Hz, immunity to ground vibrations, easy and quickness of operation, automated continuous data acquisition for several months, etc. In order to evaluate the current performances of the AQG01, several experiments are carried out in collaboration between RESIF user's teams and the MUQUANS manufacturer on different reference gravity sites and laboratories in France. These measurements performed in indoor conditions including simultaneous observations with classical reference gravity instruments (corner-cube absolute gravity meters, relative superconducting meters) as well with the Cold Atom Gravity meter (CAG) developed by LNE-SYRTE, lead to a first objective characterization of the performances of

  14. Consistent thermostatistics forbids negative absolute temperatures

    NASA Astrophysics Data System (ADS)

    Dunkel, Jörn; Hilbert, Stefan

    2014-01-01

    Over the past 60 years, a considerable number of theories and experiments have claimed the existence of negative absolute temperature in spin systems and ultracold quantum gases. This has led to speculation that ultracold gases may be dark-energy analogues and also suggests the feasibility of heat engines with efficiencies larger than one. Here, we prove that all previous negative temperature claims and their implications are invalid as they arise from the use of an entropy definition that is inconsistent both mathematically and thermodynamically. We show that the underlying conceptual deficiencies can be overcome if one adopts a microcanonical entropy functional originally derived by Gibbs. The resulting thermodynamic framework is self-consistent and implies that absolute temperature remains positive even for systems with a bounded spectrum. In addition, we propose a minimal quantum thermometer that can be implemented with available experimental techniques.

  15. Asteroid absolute magnitudes and slope parameters

    NASA Technical Reports Server (NTRS)

    Tedesco, Edward F.

    1991-01-01

    A new listing of absolute magnitudes (H) and slope parameters (G) has been created and published in the Minor Planet Circulars; this same listing will appear in the 1992 Ephemerides of Minor Planets. Unlike previous listings, the values of the current list were derived from fits of data at the V band. All observations were reduced in the same fashion using, where appropriate, a single basis default value of 0.15 for the slope parameter. Distances and phase angles were computed for each observation. The data for 113 asteroids was of sufficiently high quality to permit derivation of their H and G. These improved absolute magnitudes and slope parameters will be used to deduce the most reliable bias-corrected asteroid size-frequency distribution yet made.

  16. Computer processing of spectrograms for absolute intensities.

    PubMed

    Guttman, A; Golden, J; Galbraith, H J

    1967-09-01

    A computer program was developed to process photographically recorded spectra for absolute intensity. Test and calibration films are subjected to densitometric scans that provide digitally recorded densities on magnetic tapes. The nonlinear calibration data are fitted by least-squares cubic polynomials to yield a good approximation to the monochromatic H&D curves for commonly used emulsions (2475 recording film, Royal-X, Tri-X, 4-X). Several test cases were made. Results of these cases show that the machine processed absolute intensities are accurate to within 15%o. Arbitrarily raising the sensitivity threshold by 0.1 density units above gross fog yields cubic polynomial fits to the H&D curves that are radiometrically accurate within 10%. In addition, curves of gamma vs wavelength for 2475, Tri-X, and 4-X emulsions were made. These data show slight evidence of the photographic Purkinje effect in the 2475 emulsion.

  17. An absolute measure for a key currency

    NASA Astrophysics Data System (ADS)

    Oya, Shunsuke; Aihara, Kazuyuki; Hirata, Yoshito

    It is generally considered that the US dollar and the euro are the key currencies in the world and in Europe, respectively. However, there is no absolute general measure for a key currency. Here, we investigate the 24-hour periodicity of foreign exchange markets using a recurrence plot, and define an absolute measure for a key currency based on the strength of the periodicity. Moreover, we analyze the time evolution of this measure. The results show that the credibility of the US dollar has not decreased significantly since the Lehman shock, when the Lehman Brothers bankrupted and influenced the economic markets, and has increased even relatively better than that of the euro and that of the Japanese yen.

  18. Probing absolute spin polarization at the nanoscale.

    PubMed

    Eltschka, Matthias; Jäck, Berthold; Assig, Maximilian; Kondrashov, Oleg V; Skvortsov, Mikhail A; Etzkorn, Markus; Ast, Christian R; Kern, Klaus

    2014-12-10

    Probing absolute values of spin polarization at the nanoscale offers insight into the fundamental mechanisms of spin-dependent transport. Employing the Zeeman splitting in superconducting tips (Meservey-Tedrow-Fulde effect), we introduce a novel spin-polarized scanning tunneling microscopy that combines the probing capability of the absolute values of spin polarization with precise control at the atomic scale. We utilize our novel approach to measure the locally resolved spin polarization of magnetic Co nanoislands on Cu(111). We find that the spin polarization is enhanced by 65% when increasing the width of the tunnel barrier by only 2.3 Å due to the different decay of the electron orbitals into vacuum.

  19. Absolute and relative dosimetry for ELIMED

    NASA Astrophysics Data System (ADS)

    Cirrone, G. A. P.; Cuttone, G.; Candiano, G.; Carpinelli, M.; Leonora, E.; Lo Presti, D.; Musumarra, A.; Pisciotta, P.; Raffaele, L.; Randazzo, N.; Romano, F.; Schillaci, F.; Scuderi, V.; Tramontana, A.; Cirio, R.; Marchetto, F.; Sacchi, R.; Giordanengo, S.; Monaco, V.

    2013-07-01

    The definition of detectors, methods and procedures for the absolute and relative dosimetry of laser-driven proton beams is a crucial step toward the clinical use of this new kind of beams. Hence, one of the ELIMED task, will be the definition of procedures aiming to obtain an absolute dose measure at the end of the transport beamline with an accuracy as close as possible to the one required for clinical applications (i.e. of the order of 5% or less). Relative dosimetry procedures must be established, as well: they are necessary in order to determine and verify the beam dose distributions and to monitor the beam fluence and the energetic spectra during irradiations. Radiochromic films, CR39, Faraday Cup, Secondary Emission Monitor (SEM) and transmission ionization chamber will be considered, designed and studied in order to perform a fully dosimetric characterization of the ELIMED proton beam.

  20. Negative absolute temperature for mobile particles

    NASA Astrophysics Data System (ADS)

    Braun, Simon; Ronzheimer, Philipp; Schreiber, Michael; Hodgman, Sean; Bloch, Immanuel; Schneider, Ulrich

    2013-05-01

    Absolute temperature is usually bound to be strictly positive. However, negative absolute temperature states, where the occupation probability of states increases with their energy, are possible in systems with an upper energy bound. So far, such states have only been demonstrated in localized spin systems with finite, discrete spectra. We realized a negative absolute temperature state for motional degrees of freedom with ultracold bosonic 39K atoms in an optical lattice, by implementing the attractive Bose-Hubbard Hamiltonian. This new state strikingly revealed itself by a quasimomentum distribution that is peaked at maximum kinetic energy. The measured kinetic energy distribution and the extracted negative temperature indicate that the ensemble is close to degeneracy, with coherence over several lattice sites. The state is as stable as a corresponding positive temperature state: The negative temperature stabilizes the system against mean-field collapse driven by negative pressure. Negative temperatures open up new parameter regimes for cold atoms, enabling fundamentally new many-body states. Additionally, they give rise to several counterintuitive effects such as heat engines with above unity efficiency.

  1. Measurement of absolute gravity acceleration in Firenze

    NASA Astrophysics Data System (ADS)

    de Angelis, M.; Greco, F.; Pistorio, A.; Poli, N.; Prevedelli, M.; Saccorotti, G.; Sorrentino, F.; Tino, G. M.

    2011-01-01

    This paper reports the results from the accurate measurement of the acceleration of gravity g taken at two separate premises in the Polo Scientifico of the University of Firenze (Italy). In these laboratories, two separate experiments aiming at measuring the Newtonian constant and testing the Newtonian law at short distances are in progress. Both experiments require an independent knowledge on the local value of g. The only available datum, pertaining to the italian zero-order gravity network, was taken more than 20 years ago at a distance of more than 60 km from the study site. Gravity measurements were conducted using an FG5 absolute gravimeter, and accompanied by seismic recordings for evaluating the noise condition at the site. The absolute accelerations of gravity at the two laboratories are (980 492 160.6 ± 4.0) μGal and (980 492 048.3 ± 3.0) μGal for the European Laboratory for Non-Linear Spectroscopy (LENS) and Dipartimento di Fisica e Astronomia, respectively. Other than for the two referenced experiments, the data here presented will serve as a benchmark for any future study requiring an accurate knowledge of the absolute value of the acceleration of gravity in the study region.

  2. System for absolute measurements by interferometric sensors

    NASA Astrophysics Data System (ADS)

    Norton, Douglas A.

    1993-03-01

    The most common problem of interferometric sensors is their inability to measure absolute path imbalance. Presented in this paper is a signal processing system that gives absolute, unambiguous reading of optical path difference for almost any style of interferometric sensor. Key components are a wide band (incoherent) optical source, a polychromator, and FFT electronics. Advantages include no moving parts in the signal processor, no active components at the sensor location, and the use of standard single mode fiber for sensor illumination and signal transmission. Actual absolute path imbalance of the interferometer is determined without using fringe counting or other inferential techniques. The polychromator extracts the interference information that occurs at each discrete wavelength within the spectral band of the optical source. The signal processing consists of analog and digital filtering, Fast Fourier analysis, and a peak detection and interpolation algorithm. This system was originally designed for use in a remote pressure sensing application that employed a totally passive fiber optic interferometer. A performance qualification was made using a Fabry-Perot interferometer and a commercially available laser interferometer to measure the reference displacement.

  3. Chemical composition of French mimosa absolute oil.

    PubMed

    Perriot, Rodolphe; Breme, Katharina; Meierhenrich, Uwe J; Carenini, Elise; Ferrando, Georges; Baldovini, Nicolas

    2010-02-10

    Since decades mimosa (Acacia dealbata) absolute oil has been used in the flavor and perfume industry. Today, it finds an application in over 80 perfumes, and its worldwide industrial production is estimated five tons per year. Here we report on the chemical composition of French mimosa absolute oil. Straight-chain analogues from C6 to C26 with different functional groups (hydrocarbons, esters, aldehydes, diethyl acetals, alcohols, and ketones) were identified in the volatile fraction. Most of them are long-chain molecules: (Z)-heptadec-8-ene, heptadecane, nonadecane, and palmitic acid are the most abundant, and constituents such as 2-phenethyl alcohol, methyl anisate, and ethyl palmitate are present in smaller amounts. The heavier constituents were mainly triterpenoids such as lupenone and lupeol, which were identified as two of the main components. (Z)-Heptadec-8-ene, lupenone, and lupeol were quantified by GC-MS in SIM mode using external standards and represents 6%, 20%, and 7.8% (w/w) of the absolute oil. Moreover, odorant compounds were extracted by SPME and analyzed by GC-sniffing leading to the perception of 57 odorant zones, of which 37 compounds were identified by their odorant description, mass spectrum, retention index, and injection of the reference compound.

  4. Constrained Least Absolute Deviation Neural Networks

    PubMed Central

    Wang, Zhishun; Peterson, Bradley S.

    2008-01-01

    It is well known that least absolute deviation (LAD) criterion or L1-norm used for estimation of parameters is characterized by robustness, i.e., the estimated parameters are totally resistant (insensitive) to large changes in the sampled data. This is an extremely useful feature, especially, when the sampled data are known to be contaminated by occasionally occurring outliers or by spiky noise. In our previous works, we have proposed the least absolute deviation neural network (LADNN) to solve unconstrained LAD problems. The theoretical proofs and numerical simulations have shown that the LADNN is Lyapunov-stable and it can globally converge to the exact solution to a given unconstrained LAD problem. We have also demonstrated its excellent application value in time-delay estimation. More generally, a practical LAD application problem may contain some linear constraints, such as a set of equalities and/or inequalities, which is called constrained LAD problem, whereas the unconstrained LAD can be considered as a special form of the constrained LAD. In this paper, we present a new neural network called constrained least absolute deviation neural network (CLADNN) to solve general constrained LAD problems. Theoretical proofs and numerical simulations demonstrate that the proposed CLADNN is Lyapunov stable and globally converges to the exact solution to a given constrained LAD problem, independent of initial values. The numerical simulations have also illustrated that the proposed CLADNN can be used to robustly estimate parameters for nonlinear curve fitting, which is extensively used in signal and image processing. PMID:18269958

  5. Absolute calibration of the EnviSat-1 radar altimeter

    NASA Astrophysics Data System (ADS)

    Roca, Monica; Francis, Richard

    1998-12-01

    The EnviSat-1 satellite will embark an innovative radar altimeter. The calibration of the measurements of range from this instrument will be performed using novel techniques. The range measurement will be calibrated absolutely by establishing the actual geocentric sea-level along the sub- satellite tracks. These tracks are located in a limited and well-controlled region in the western Mediterranean and will include a number of fully-equipped individual sites which will provide higher confidence in the overall analysis, combined with data from the whole area at lower weight. The determination of the geocentric sea-level is performed using tide gauges and geodetic means such as leveling and floating GPS receivers. The altimeter sea-level is derived from the altimeter range corrected for propagation effects and sea- state bias, and a precise restitution of the trajectory of the satellite. These measurements comprise three vectors: range, orbital height and sea-surface height. The difference between orbital-height minus range, and sea-surface height provides the bias. The backscatter coefficient measured by previous altimeters has not been absolutely calibrated. An emerging application of the RA-2 in investigation of surface properties has identified the need to perform this calibration. A number of techniques are under study to determine the feasibility of meeting this need, including the use of well-controlled natural targets, the use of the altimeter receiver as a passive radiometer in order to determine its gain and the use of a transponder to return a precisely known return echo power to the radar.

  6. The study of absolute distance measurement based on the self-mixing interference in laser diode

    NASA Astrophysics Data System (ADS)

    Wang, Ting-ting; Zhang, Chuang

    2009-07-01

    In this work, an absolute distance measurement method based on the self-mixing interference is presented. The principles of the method used three-mirror cavity equivalent model are studied in this paper, and the mathematical model is given. Wavelength modulation of the laser beam is obtained by saw-tooth modulating the infection current of the laser diode. Absolute distance of the external target is determined by Fourier analysis method. The frequency of signal from PD is linearly dependent on absolute distance, but also affected by temperature and fluctuation of current source. A dual-path method which uses the reference technique for absolute distance measurement has been proposed. The theoretical analysis shows that the method can eliminate errors resulting from distance-independent variations in the setup. Accuracy and stability can be improved. Simulated results show that a resolution of +/-0.2mm can be achieved for absolute distance ranging from 250mm to 500mm. In the same measurement range, the resolution we obtained is better than other absolute distance measurement system proposed base on self-mixing interference.

  7. Absolute calibration of Apollo lunar orbital mass spectrometer.

    NASA Technical Reports Server (NTRS)

    Yeager, P. R.; Smith, A.; Jackson, J. J.; Hoffman, J. H.

    1973-01-01

    Recent experiments were conducted in Langley Research Center's molecular beam system to perform an absolute calibration of the lunar orbital mass spectrometer which was flown on the Apollo 15 and 16 missions. Tests were performed with several models of the instrument using two test gases, argon and neon, in the 1 ntorr to .1 picotorr range. Sensitivity to argon at spacecraft orbital velocity was .00028 A/torr enabling partial pressures in the .01-picotorr range to be measured at the spacecraft altitude. Neon sensitivity was nearly a factor of 5 less. Test data support the feasibility of using the lunar orbital mass spectrometer as a tool to gather information about the lunar atmosphere.

  8. Clock time is absolute and universal

    NASA Astrophysics Data System (ADS)

    Shen, Xinhang

    2015-09-01

    A critical error is found in the Special Theory of Relativity (STR): mixing up the concepts of the STR abstract time of a reference frame and the displayed time of a physical clock, which leads to use the properties of the abstract time to predict time dilation on physical clocks and all other physical processes. Actually, a clock can never directly measure the abstract time, but can only record the result of a physical process during a period of the abstract time such as the number of cycles of oscillation which is the multiplication of the abstract time and the frequency of oscillation. After Lorentz Transformation, the abstract time of a reference frame expands by a factor gamma, but the frequency of a clock decreases by the same factor gamma, and the resulting multiplication i.e. the displayed time of a moving clock remains unchanged. That is, the displayed time of any physical clock is an invariant of Lorentz Transformation. The Lorentz invariance of the displayed times of clocks can further prove within the framework of STR our earth based standard physical time is absolute, universal and independent of inertial reference frames as confirmed by both the physical fact of the universal synchronization of clocks on the GPS satellites and clocks on the earth, and the theoretical existence of the absolute and universal Galilean time in STR which has proved that time dilation and space contraction are pure illusions of STR. The existence of the absolute and universal time in STR has directly denied that the reference frame dependent abstract time of STR is the physical time, and therefore, STR is wrong and all its predictions can never happen in the physical world.

  9. Absolute Radiometric Calibration of EUNIS-06

    NASA Technical Reports Server (NTRS)

    Thomas, R. J.; Rabin, D. M.; Kent, B. J.; Paustian, W.

    2007-01-01

    The Extreme-Ultraviolet Normal-Incidence Spectrometer (EUNIS) is a soundingrocket payload that obtains imaged high-resolution spectra of individual solar features, providing information about the Sun's corona and upper transition region. Shortly after its successful initial flight last year, a complete end-to-end calibration was carried out to determine the instrument's absolute radiometric response over its Longwave bandpass of 300 - 370A. The measurements were done at the Rutherford-Appleton Laboratory (RAL) in England, using the same vacuum facility and EUV radiation source used in the pre-flight calibrations of both SOHO/CDS and Hinode/EIS, as well as in three post-flight calibrations of our SERTS sounding rocket payload, the precursor to EUNIS. The unique radiation source provided by the Physikalisch-Technische Bundesanstalt (PTB) had been calibrated to an absolute accuracy of 7% (l-sigma) at 12 wavelengths covering our bandpass directly against the Berlin electron storage ring BESSY, which is itself a primary radiometric source standard. Scans of the EUNIS aperture were made to determine the instrument's absolute spectral sensitivity to +- 25%, considering all sources of error, and demonstrate that EUNIS-06 was the most sensitive solar E W spectrometer yet flown. The results will be matched against prior calibrations which relied on combining measurements of individual optical components, and on comparisons with theoretically predicted 'insensitive' line ratios. Coordinated observations were made during the EUNIS-06 flight by SOHO/CDS and EIT that will allow re-calibrations of those instruments as well. In addition, future EUNIS flights will provide similar calibration updates for TRACE, Hinode/EIS, and STEREO/SECCHI/EUVI.

  10. Brownian motion: Absolute negative particle mobility

    NASA Astrophysics Data System (ADS)

    Ros, Alexandra; Eichhorn, Ralf; Regtmeier, Jan; Duong, Thanh Tu; Reimann, Peter; Anselmetti, Dario

    2005-08-01

    Noise effects in technological applications, far from being a nuisance, can be exploited with advantage - for example, unavoidable thermal fluctuations have found application in the transport and sorting of colloidal particles and biomolecules. Here we use a microfluidic system to demonstrate a paradoxical migration mechanism in which particles always move in a direction opposite to the net acting force (`absolute negative mobility') as a result of an interplay between thermal noise, a periodic and symmetric microstructure, and a biased alternating-current electric field. This counterintuitive phenomenon could be used for bioanalytical purposes, for example in the separation and fractionation of colloids, biological molecules and cells.

  11. Arbitrary segments of absolute negative mobility

    NASA Astrophysics Data System (ADS)

    Chen, Ruyin; Nie, Linru; Chen, Chongyang; Wang, Chaojie

    2017-01-01

    In previous research work, investigators have reported only one or two segments of absolute negative mobility (ANM) in a periodic potential. In fact, many segments of ANM also occur in the system considered here. We investigate transport of an inertial particle in a gating ratchet periodic potential subjected to a constant bias force. Our numerical results show that its mean velocity can decrease with the bias force increasing, i.e. ANM phenomenon. Furthermore, the ANM can take place arbitrary segments, even up to more than thirty. Intrinsic physical mechanism and conditions for arbitrary segments of ANM to occur are discussed in detail.

  12. Absolute quantification of myocardial blood flow.

    PubMed

    Yoshinaga, Keiichiro; Manabe, Osamu; Tamaki, Nagara

    2016-07-21

    With the increasing availability of positron emission tomography (PET) myocardial perfusion imaging, the absolute quantification of myocardial blood flow (MBF) has become popular in clinical settings. Quantitative MBF provides an important additional diagnostic or prognostic information over conventional visual assessment. The success of MBF quantification using PET/computed tomography (CT) has increased the demand for this quantitative diagnostic approach to be more accessible. In this regard, MBF quantification approaches have been developed using several other diagnostic imaging modalities including single-photon emission computed tomography, CT, and cardiac magnetic resonance. This review will address the clinical aspects of PET MBF quantification and the new approaches to MBF quantification.

  13. An absolute radius scale for Saturn's rings

    NASA Technical Reports Server (NTRS)

    Nicholson, Philip D.; Cooke, Maren L.; Pelton, Emily

    1990-01-01

    Radio and stellar occultation observations of Saturn's rings made by the Voyager spacecraft are discussed. The data reveal systematic discrepancies of almost 10 km in some parts of the rings, limiting some of the investigations. A revised solution for Saturn's rotation pole has been proposed which removes the discrepancies between the stellar and radio occultation profiles. Corrections to previously published radii vary from -2 to -10 km for the radio occultation, and +5 to -6 km for the stellar occultation. An examination of spiral density waves in the outer A Ring supports that the revised absolute radii are in error by no more than 2 km.

  14. Absolute Rate Theories of Epigenetic Stability

    NASA Astrophysics Data System (ADS)

    Walczak, Aleksandra M.; Onuchic, Jose N.; Wolynes, Peter G.

    2006-03-01

    Spontaneous switching events in most characterized genetic switches are rare, resulting in extremely stable epigenetic properties. We show how simple arguments lead to theories of the rate of such events much like the absolute rate theory of chemical reactions corrected by a transmission factor. Both the probability of the rare cellular states that allow epigenetic escape, and the transmission factor, depend on the rates of DNA binding and unbinding events and on the rates of protein synthesis and degradation. Different mechanisms of escape from the stable attractors occur in the nonadiabatic, weakly adiabatic and strictly adiabatic regimes, characterized by the relative values of those input rates.

  15. Absolute rate theories of epigenetic stability

    NASA Astrophysics Data System (ADS)

    Walczak, Aleksandra M.; Onuchic, José N.; Wolynes, Peter G.

    2005-12-01

    Spontaneous switching events in most characterized genetic switches are rare, resulting in extremely stable epigenetic properties. We show how simple arguments lead to theories of the rate of such events much like the absolute rate theory of chemical reactions corrected by a transmission factor. Both the probability of the rare cellular states that allow epigenetic escape and the transmission factor depend on the rates of DNA binding and unbinding events and on the rates of protein synthesis and degradation. Different mechanisms of escape from the stable attractors occur in the nonadiabatic, weakly adiabatic, and strictly adiabatic regimes, characterized by the relative values of those input rates. rate theory | stochastic gene expression | gene switches

  16. Absolute method of measuring magnetic susceptibility

    USGS Publications Warehouse

    Thorpe, A.; Senftle, F.E.

    1959-01-01

    An absolute method of standardization and measurement of the magnetic susceptibility of small samples is presented which can be applied to most techniques based on the Faraday method. The fact that the susceptibility is a function of the area under the curve of sample displacement versus distance of the magnet from the sample, offers a simple method of measuring the susceptibility without recourse to a standard sample. Typical results on a few substances are compared with reported values, and an error of less than 2% can be achieved. ?? 1959 The American Institute of Physics.

  17. Absolute Priority for a Vehicle in VANET

    NASA Astrophysics Data System (ADS)

    Shirani, Rostam; Hendessi, Faramarz; Montazeri, Mohammad Ali; Sheikh Zefreh, Mohammad

    In today's world, traffic jams waste hundreds of hours of our life. This causes many researchers try to resolve the problem with the idea of Intelligent Transportation System. For some applications like a travelling ambulance, it is important to reduce delay even for a second. In this paper, we propose a completely infrastructure-less approach for finding shortest path and controlling traffic light to provide absolute priority for an emergency vehicle. We use the idea of vehicular ad-hoc networking to reduce the imposed travelling time. Then, we simulate our proposed protocol and compare it with a centrally controlled traffic light system.

  18. Compositional modeling of enhanced coalbed methane recovery

    NASA Astrophysics Data System (ADS)

    Manik, Julio

    A development and validation of a three-dimensional, two-phase, dual porosity, fully implicit, compositional coalbed simulator is presented. A multicomponent sorption equilibria using a thermodynamically consistent ideal adsorbed solution theory and Peng-Robinson equation of state is implemented to the simulator using a non-equilibrium sorption formulation. The simulator is used to model the nitrogen and carbon dioxide injections in the enhanced coalbed methane recovery which involves gas component and fluid phase appearances and disappearances. The effects of absolute permeability, vertical heterogeneity, lateral heterogeneity, and sorption time constant to the methane recovery performance are studied. The performances of nitrogen and carbon dioxide injections in the enhanced coalbed methane recovery are compared. The roles of the injected gas composition, delayed injection, well spacing, cyclic injection/production, and intermittent gas injection to the methane recovery performance are studied.

  19. Absolute counting of neutrophils in whole blood using flow cytometry.

    PubMed

    Brunck, Marion E G; Andersen, Stacey B; Timmins, Nicholas E; Osborne, Geoffrey W; Nielsen, Lars K

    2014-12-01

    Absolute neutrophil count (ANC) is used clinically to monitor physiological dysfunctions such as myelosuppression or infection. In the research laboratory, ANC is a valuable measure to monitor the evolution of a wide range of disease states in disease models. Flow cytometry (FCM) is a fast, widely used approach to confidently identify thousands of cells within minutes. FCM can be optimised for absolute counting using spiked-in beads or by measuring the sample volume analysed. Here we combine the 1A8 antibody, specific for the mouse granulocyte protein Ly6G, with flow cytometric counting in straightforward FCM assays for mouse ANC, easily implementable in the research laboratory. Volumetric and Trucount™ bead assays were optimized for mouse neutrophils, and ANC values obtained with these protocols were compared to ANC measured by a dual-platform assay using the Orphee Mythic 18 veterinary haematology analyser. The single platform assays were more precise with decreased intra-assay variability compared with ANC obtained using the dual protocol. Defining ANC based on Ly6G expression produces a 15% higher estimate than the dual protocol. Allowing for this difference in ANC definition, the flow cytometry counting assays using Ly6G can be used reliably in the research laboratory to quantify mouse ANC from a small volume of blood. We demonstrate the utility of the volumetric protocol in a time-course study of chemotherapy induced neutropenia using four drug regimens.

  20. Selected Reaction Monitoring Mass Spectrometry for Absolute Protein Quantification.

    PubMed

    Manes, Nathan P; Mann, Jessica M; Nita-Lazar, Aleksandra

    2015-08-17

    Absolute quantification of target proteins within complex biological samples is critical to a wide range of research and clinical applications. This protocol provides step-by-step instructions for the development and application of quantitative assays using selected reaction monitoring (SRM) mass spectrometry (MS). First, likely quantotypic target peptides are identified based on numerous criteria. This includes identifying proteotypic peptides, avoiding sites of posttranslational modification, and analyzing the uniqueness of the target peptide to the target protein. Next, crude external peptide standards are synthesized and used to develop SRM assays, and the resulting assays are used to perform qualitative analyses of the biological samples. Finally, purified, quantified, heavy isotope labeled internal peptide standards are prepared and used to perform isotope dilution series SRM assays. Analysis of all of the resulting MS data is presented. This protocol was used to accurately assay the absolute abundance of proteins of the chemotaxis signaling pathway within RAW 264.7 cells (a mouse monocyte/macrophage cell line). The quantification of Gi2 (a heterotrimeric G-protein α-subunit) is described in detail.

  1. Simulation of absolute amplitudes of ultrasound signals using equivalent circuits.

    PubMed

    Johansson, Jonny; Martinsson, Pär-Erik; Delsing, Jerker

    2007-10-01

    Equivalent circuits for piezoelectric devices and ultrasonic transmission media can be used to cosimulate electronics and ultrasound parts in simulators originally intended for electronics. To achieve efficient system-level optimization, it is important to simulate correct, absolute amplitude of the ultrasound signal in the system, as this determines the requirements on the electronics regarding dynamic range, circuit noise, and power consumption. This paper presents methods to achieve correct, absolute amplitude of an ultrasound signal in a simulation of a pulse-echo system using equivalent circuits. This is achieved by taking into consideration loss due to diffraction and the effect of the cable that connects the electronics and the piezoelectric transducer. The conductive loss in the transmission line that models the propagation media of the ultrasound pulse is used to model the loss due to diffraction. Results show that the simulated amplitude of the echo follows measured values well in both near and far fields, with an offset of about 10%. The use of a coaxial cable introduces inductance and capacitance that affect the amplitude of a received echo. Amplitude variations of 60% were observed when the cable length was varied between 0.07 m and 2.3 m, with simulations predicting similar variations. The high precision in the achieved results show that electronic design and system optimization can rely on system simulations alone. This will simplify the development of integrated electronics aimed at ultrasound systems.

  2. Linear ultrasonic motor for absolute gravimeter.

    PubMed

    Jian, Yue; Yao, Zhiyuan; Silberschmidt, Vadim V

    2017-02-01

    Thanks to their compactness and suitability for vacuum applications, linear ultrasonic motors are considered as substitutes for classical electromagnetic motors as driving elements in absolute gravimeters. Still, their application is prevented by relatively low power output. To overcome this limitation and provide better stability, a V-type linear ultrasonic motor with a new clamping method is proposed for a gravimeter. In this paper, a mechanical model of stators with flexible clamping components is suggested, according to a design criterion for clamps of linear ultrasonic motors. After that, an effect of tangential and normal rigidity of the clamping components on mechanical output is studied. It is followed by discussion of a new clamping method with sufficient tangential rigidity and a capability to facilitate pre-load. Additionally, a prototype of the motor with the proposed clamping method was fabricated and the performance tests in vertical direction were implemented. Experimental results show that the suggested motor has structural stability and high dynamic performance, such as no-load speed of 1.4m/s and maximal thrust of 43N, meeting the requirements for absolute gravimeters.

  3. Why to compare absolute numbers of mitochondria.

    PubMed

    Schmitt, Sabine; Schulz, Sabine; Schropp, Eva-Maria; Eberhagen, Carola; Simmons, Alisha; Beisker, Wolfgang; Aichler, Michaela; Zischka, Hans

    2014-11-01

    Prompted by pronounced structural differences between rat liver and rat hepatocellular carcinoma mitochondria, we suspected these mitochondrial populations to differ massively in their molecular composition. Aiming to reveal these mitochondrial differences, we came across the issue on how to normalize such comparisons and decided to focus on the absolute number of mitochondria. To this end, fluorescently stained mitochondria were quantified by flow cytometry. For rat liver mitochondria, this approach resulted in mitochondrial protein contents comparable to earlier reports using alternative methods. We determined similar protein contents for rat liver, heart and kidney mitochondria. In contrast, however, lower protein contents were determined for rat brain mitochondria and for mitochondria from the rat hepatocellular carcinoma cell line McA 7777. This result challenges mitochondrial comparisons that rely on equal protein amounts as a typical normalization method. Exemplarily, we therefore compared the activity and susceptibility toward inhibition of complex II of rat liver and hepatocellular carcinoma mitochondria and obtained significant discrepancies by either normalizing to protein amount or to absolute mitochondrial number. Importantly, the latter normalization, in contrast to the former, demonstrated a lower complex II activity and higher susceptibility toward inhibition in hepatocellular carcinoma mitochondria compared to liver mitochondria. These findings demonstrate that solely normalizing to protein amount may obscure essential molecular differences between mitochondrial populations.

  4. The absolute threshold of cone vision

    PubMed Central

    Koeing, Darran; Hofer, Heidi

    2013-01-01

    We report measurements of the absolute threshold of cone vision, which has been previously underestimated due to sub-optimal conditions or overly strict subjective response criteria. We avoided these limitations by using optimized stimuli and experimental conditions while having subjects respond within a rating scale framework. Small (1′ fwhm), brief (34 msec), monochromatic (550 nm) stimuli were foveally presented at multiple intensities in dark-adapted retina for 5 subjects. For comparison, 4 subjects underwent similar testing with rod-optimized stimuli. Cone absolute threshold, that is, the minimum light energy for which subjects were just able to detect a visual stimulus with any response criterion, was 203 ± 38 photons at the cornea, ∼0.47 log units lower than previously reported. Two-alternative forced-choice measurements in a subset of subjects yielded consistent results. Cone thresholds were less responsive to criterion changes than rod thresholds, suggesting a limit to the stimulus information recoverable from the cone mosaic in addition to the limit imposed by Poisson noise. Results were consistent with expectations for detection in the face of stimulus uncertainty. We discuss implications of these findings for modeling the first stages of human cone vision and interpreting psychophysical data acquired with adaptive optics at the spatial scale of the receptor mosaic. PMID:21270115

  5. [Estimation of absolute risk for fracture].

    PubMed

    Fujiwara, Saeko

    2009-03-01

    Osteoporosis treatment aims to prevent fractures and maintain the QOL of the elderly. However, persons at high risk of future fracture cannot be effectively identified on the basis of bone density (BMD) alone, although BMD is used as an diagnostic criterion. Therefore, the WHO recommended that absolute risk for fracture (10-year probability of fracture) for each individual be evaluated and used as an index for intervention threshold. The 10-year probability of fracture is calculated based on age, sex, BMD at the femoral neck (body mass index if BMD is not available), history of previous fractures, parental hip fracture history, smoking, steroid use, rheumatoid arthritis, secondary osteoporosis and alcohol consumption. The WHO has just announced the development of a calculation tool (FRAX: WHO Fracture Risk Assessment Tool) in February this year. Fractures could be prevented more effectively if, based on each country's medical circumstances, an absolute risk value for fracture to determine when to start medical treatment is established and persons at high risk of fracture are identified and treated accordingly.

  6. Absolute stereochemistry of altersolanol A and alterporriols.

    PubMed

    Kanamaru, Saki; Honma, Miho; Murakami, Takanori; Tsushima, Taro; Kudo, Shinji; Tanaka, Kazuaki; Nihei, Ken-Ichi; Nehira, Tatsuo; Hashimoto, Masaru

    2012-02-01

    The absolute stereochemistry of altersolanol A (1) was established by observing a positive exciton couplet in the circular dichroism (CD) spectrum of the C3,C4-O-bis(2-naphthoyl) derivative 10 and by chemical correlations with known compound 8. Before the discussion, the relative stereochemistry of 1 was confirmed by X-ray crystallographic analysis. The shielding effect at C7'-OMe group by C1-O-benzoylation established the relative stereochemical relationship between the C8-C8' axial bonding and the C1-C4/C1'-C4' polyol moieties of alterporriols E (3), an atropisomer of the C8-C8' dimer of 1. As 3 could be obtained by dimerization of 1 in vitro, the absolute configuration of its central chirality elements (C1-C4) must be identical to those of 1. Spectral comparison between the experimental and theoretical CD spectra supported the above conclusion. Axial stereochemistry of novel C4-O-deoxy dimeric derivatives, alterporriols F (4) and G (5), were also revealed by comparison of their CD spectra to those of 2 and 3.

  7. Absolute Electron Extraction Efficiency of Liquid Xenon

    NASA Astrophysics Data System (ADS)

    Kamdin, Katayun; Mizrachi, Eli; Morad, James; Sorensen, Peter

    2016-03-01

    Dual phase liquid/gas xenon time projection chambers (TPCs) currently set the world's most sensitive limits on weakly interacting massive particles (WIMPs), a favored dark matter candidate. These detectors rely on extracting electrons from liquid xenon into gaseous xenon, where they produce proportional scintillation. The proportional scintillation from the extracted electrons serves to internally amplify the WIMP signal; even a single extracted electron is detectable. Credible dark matter searches can proceed with electron extraction efficiency (EEE) lower than 100%. However, electrons systematically left at the liquid/gas boundary are a concern. Possible effects include spontaneous single or multi-electron proportional scintillation signals in the gas, or charging of the liquid/gas interface or detector materials. Understanding EEE is consequently a serious concern for this class of rare event search detectors. Previous EEE measurements have mostly been relative, not absolute, assuming efficiency plateaus at 100%. I will present an absolute EEE measurement with a small liquid/gas xenon TPC test bed located at Lawrence Berkeley National Laboratory.

  8. Standardization of the cumulative absolute velocity

    SciTech Connect

    O'Hara, T.F.; Jacobson, J.P. )

    1991-12-01

    EPRI NP-5930, A Criterion for Determining Exceedance of the Operating Basis Earthquake,'' was published in July 1988. As defined in that report, the Operating Basis Earthquake (OBE) is exceeded when both a response spectrum parameter and a second damage parameter, referred to as the Cumulative Absolute Velocity (CAV), are exceeded. In the review process of the above report, it was noted that the calculation of CAV could be confounded by time history records of long duration containing low (nondamaging) acceleration. Therefore, it is necessary to standardize the method of calculating CAV to account for record length. This standardized methodology allows consistent comparisons between future CAV calculations and the adjusted CAV threshold value based upon applying the standardized methodology to the data set presented in EPRI NP-5930. The recommended method to standardize the CAV calculation is to window its calculation on a second-by-second basis for a given time history. If the absolute acceleration exceeds 0.025g at any time during each one second interval, the earthquake records used in EPRI NP-5930 have been reanalyzed and the adjusted threshold of damage for CAV was found to be 0.16g-set.

  9. Swarm's Absolute Scalar Magnetometers Burst Mode Results

    NASA Astrophysics Data System (ADS)

    Coisson, P.; Vigneron, P.; Hulot, G.; Crespo Grau, R.; Brocco, L.; Lalanne, X.; Sirol, O.; Leger, J. M.; Jager, T.; Bertrand, F.; Boness, A.; Fratter, I.

    2014-12-01

    Each of the three Swarm satellites embarks an Absolute Scalar Magnetometer (ASM) to provide absolute scalar measurements of the magnetic field with high accuracy and stability. Nominal data acquisition of these ASMs is 1 Hz. But they can also run in a so-called "burst mode" and provide data at 250 Hz. During the commissioning phase of the mission, seven burst mode acquisition campaigns have been run simultaneously for all satellites, obtaining a total of ten days of burs-mode data. These campaigns allowed the identification of issues related to the operations of the piezo-electric motor and the heaters connected to the ASM, that do not impact the nominal 1 Hz scalar data. We analyze the burst mode data to identify high frequency geomagnetic signals, focusing the analysis in two regions: the low latitudes, where we seek signatures of ionospheric irregularities, and the high latitudes, to identify high frequency signals related to polar region currents. Since these campaigns have been conducted during the initial months of the mission, the three satellites where still close to each other, allowing to analyze the spatial coherency of the signals. Wavelet analysis have revealed 31 Hz signals appearing in the night-side in the equatorial region.

  10. Extracting infrared absolute reflectance from relative reflectance measurements.

    PubMed

    Berets, Susan L; Milosevic, Milan

    2012-06-01

    Absolute reflectance measurements are valuable to the optics industry for development of new materials and optical coatings. Yet, absolute reflectance measurements are notoriously difficult to make. In this paper, we investigate the feasibility of extracting the absolute reflectance from a relative reflectance measurement using a reference material with known refractive index.

  11. A Conceptual Approach to Absolute Value Equations and Inequalities

    ERIC Educational Resources Information Center

    Ellis, Mark W.; Bryson, Janet L.

    2011-01-01

    The absolute value learning objective in high school mathematics requires students to solve far more complex absolute value equations and inequalities. When absolute value problems become more complex, students often do not have sufficient conceptual understanding to make any sense of what is happening mathematically. The authors suggest that the…

  12. High-precision absolute distance and vibration measurement with frequency scanned interferometry

    SciTech Connect

    Yang, H.-J.; Deibel, Jason; Nyberg, Sven; Riles, Keith

    2005-07-01

    We report high-precision absolute distance and vibration measurements performed with frequency scanned interferometry using a pair of single-mode optical fibers. Absolute distance was determined by counting the interference fringes produced while scanning the laser frequency. A high-finesse Fabry-Perot interferometer was used to determine frequency changes during scanning. Two multiple-distance-measurement analysis techniques were developed to improve distance precision and to extract the amplitude and frequency of vibrations. Under laboratory conditions, measurement precision of {approx}50 nm was achieved for absolute distances ranging from 0.1 to 0.7 m by use of the first multiple-distance-measurement technique. The second analysis technique has the capability to measure vibration frequencies ranging from 0.1 to 100 Hz with an amplitude as small as a few nanometers without a priori knowledge.

  13. High-precision absolute distance and vibration measurement with frequency scanned interferometry.

    PubMed

    Yang, Hai-Jun; Deibel, Jason; Nyberg, Sven; Riles, Keith

    2005-07-01

    We report high-precision absolute distance and vibration measurements performed with frequency scanned interferometry using a pair of single-mode optical fibers. Absolute distance was determined by counting the interference fringes produced while scanning the laser frequency. A high-finesse Fabry-Perot interferometer was used to determine frequency changes during scanning. Two multiple-distance-measurement analysis techniques were developed to improve distance precision and to extract the amplitude and frequency of vibrations. Under laboratory conditions, measurement precision of approximately 50 nm was achieved for absolute distances ranging from 0.1 to 0.7 m by use of the first multiple-distance-measurement technique. The second analysis technique has the capability to measure vibration frequencies ranging from 0.1 to 100 Hz with an amplitude as small as a few nanometers without a priori knowledge.

  14. Use of Absolute and Comparative Performance Feedback in Absolute and Comparative Judgments and Decisions

    ERIC Educational Resources Information Center

    Moore, Don A.; Klein, William M. P.

    2008-01-01

    Which matters more--beliefs about absolute ability or ability relative to others? This study set out to compare the effects of such beliefs on satisfaction with performance, self-evaluations, and bets on future performance. In Experiment 1, undergraduate participants were told they had answered 20% correct, 80% correct, or were not given their…

  15. Yeast AMP-activated Protein Kinase Monitors Glucose Concentration Changes and Absolute Glucose Levels*

    PubMed Central

    Bendrioua, Loubna; Smedh, Maria; Almquist, Joachim; Cvijovic, Marija; Jirstrand, Mats; Goksör, Mattias; Adiels, Caroline B.; Hohmann, Stefan

    2014-01-01

    Analysis of the time-dependent behavior of a signaling system can provide insight into its dynamic properties. We employed the nucleocytoplasmic shuttling of the transcriptional repressor Mig1 as readout to characterize Snf1-Mig1 dynamics in single yeast cells. Mig1 binds to promoters of target genes and mediates glucose repression. Mig1 is predominantly located in the nucleus when glucose is abundant. Upon glucose depletion, Mig1 is phosphorylated by the yeast AMP-activated kinase Snf1 and exported into the cytoplasm. We used a three-channel microfluidic device to establish a high degree of control over the glucose concentration exposed to cells. Following regimes of glucose up- and downshifts, we observed a very rapid response reaching a new steady state within less than 1 min, different glucose threshold concentrations depending on glucose up- or downshifts, a graded profile with increased cell-to-cell variation at threshold glucose concentrations, and biphasic behavior with a transient translocation of Mig1 upon the shift from high to intermediate glucose concentrations. Fluorescence loss in photobleaching and fluorescence recovery after photobleaching data demonstrate that Mig1 shuttles constantly between the nucleus and cytoplasm, although with different rates, depending on the presence of glucose. Taken together, our data suggest that the Snf1-Mig1 system has the ability to monitor glucose concentration changes as well as absolute glucose levels. The sensitivity over a wide range of glucose levels and different glucose concentration-dependent response profiles are likely determined by the close integration of signaling with the metabolism and may provide for a highly flexible and fast adaptation to an altered nutritional status. PMID:24627493

  16. Full field imaging based instantaneous hyperspectral absolute refractive index measurement

    SciTech Connect

    Baba, Justin S; Boudreaux, Philip R

    2012-01-01

    Multispectral refractometers typically measure refractive index (RI) at discrete monochromatic wavelengths via a serial process. We report on the demonstration of a white light full field imaging based refractometer capable of instantaneous multispectral measurement of absolute RI of clear liquid/gel samples across the entire visible light spectrum. The broad optical bandwidth refractometer is capable of hyperspectral measurement of RI in the range 1.30 1.70 between 400nm 700nm with a maximum error of 0.0036 units (0.24% of actual) at 414nm for a = 1.50 sample. We present system design and calibration method details as well as results from a system validation sample.

  17. Absolute nonlocality via distributed computing without communication

    NASA Astrophysics Data System (ADS)

    Czekaj, Ł.; Pawłowski, M.; Vértesi, T.; Grudka, A.; Horodecki, M.; Horodecki, R.

    2015-09-01

    Understanding the role that quantum entanglement plays as a resource in various information processing tasks is one of the crucial goals of quantum information theory. Here we propose an alternative perspective for studying quantum entanglement: distributed computation of functions without communication between nodes. To formalize this approach, we propose identity games. Surprisingly, despite no signaling, we obtain that nonlocal quantum strategies beat classical ones in terms of winning probability for identity games originating from certain bipartite and multipartite functions. Moreover we show that, for a majority of functions, access to general nonsignaling resources boosts success probability two times in comparison to classical ones for a number of large enough outputs. Because there are no constraints on the inputs and no processing of the outputs in the identity games, they detect very strong types of correlations: absolute nonlocality.

  18. In vivo absorption spectroscopy for absolute measurement.

    PubMed

    Furukawa, Hiromitsu; Fukuda, Takashi

    2012-10-01

    In in vivo spectroscopy, there are differences between individual subjects in parameters such as tissue scattering and sample concentration. We propose a method that can provide the absolute value of a particular substance concentration, independent of these individual differences. Thus, it is not necessary to use the typical statistical calibration curve, which assumes an average level of scattering and an averaged concentration over individual subjects. This method is expected to greatly reduce the difficulties encountered during in vivo measurements. As an example, for in vivo absorption spectroscopy, the method was applied to the reflectance measurement in retinal vessels to monitor their oxygen saturation levels. This method was then validated by applying it to the tissue phantom under a variety of absorbance values and scattering efficiencies.

  19. Determining Absolute Zero Using a Tuning Fork

    NASA Astrophysics Data System (ADS)

    Goldader, Jeffrey D.

    2008-04-01

    The Celsius and Kelvin temperature scales, we tell our students, are related. We explain that a change in temperature of 1°C corresponds to a change of 1 Kelvin and that atoms and molecules have zero kinetic energy at zero Kelvin, -273°C. In this paper, we will show how students can derive the relationship between the Celsius and Kelvin temperature scales using a simple, well-known physics experiment. By making multiple measurements of the speed of sound at different temperatures, using the classic physics experiment of determining the speed of sound with a tuning fork and variable-length tube, they can determine the temperature at which the speed of sound is zero—absolute zero.

  20. MAGSAT: Vector magnetometer absolute sensor alignment determination

    NASA Technical Reports Server (NTRS)

    Acuna, M. H.

    1981-01-01

    A procedure is described for accurately determining the absolute alignment of the magnetic axes of a triaxial magnetometer sensor with respect to an external, fixed, reference coordinate system. The method does not require that the magnetic field vector orientation, as generated by a triaxial calibration coil system, be known to better than a few degrees from its true position, and minimizes the number of positions through which a sensor assembly must be rotated to obtain a solution. Computer simulations show that accuracies of better than 0.4 seconds of arc can be achieved under typical test conditions associated with existing magnetic test facilities. The basic approach is similar in nature to that presented by McPherron and Snare (1978) except that only three sensor positions are required and the system of equations to be solved is considerably simplified. Applications of the method to the case of the MAGSAT Vector Magnetometer are presented and the problems encountered discussed.

  1. An estimate of global absolute dynamic topography

    NASA Technical Reports Server (NTRS)

    Tai, C.-K.; Wunsch, C.

    1984-01-01

    The absolute dynamic topography of the world ocean is estimated from the largest scales to a short-wavelength cutoff of about 6700 km for the period July through September, 1978. The data base consisted of the time-averaged sea-surface topography determined by Seasat and geoid estimates made at the Goddard Space Flight Center. The issues are those of accuracy and resolution. Use of the altimetric surface as a geoid estimate beyond the short-wavelength cutoff reduces the spectral leakage in the estimated dynamic topography from erroneous small-scale geoid estimates without contaminating the low wavenumbers. Comparison of the result with a similarly filtered version of Levitus' (1982) historical average dynamic topography shows good qualitative agreement. There is quantitative disagreement, but it is within the estimated errors of both methods of calculation.

  2. Absolute measurements of fast neutrons using yttrium.

    PubMed

    Roshan, M V; Springham, S V; Rawat, R S; Lee, P; Krishnan, M

    2010-08-01

    Yttrium is presented as an absolute neutron detector for pulsed neutron sources. It has high sensitivity for detecting fast neutrons. Yttrium has the property of generating a monoenergetic secondary radiation in the form of a 909 keV gamma-ray caused by inelastic neutron interaction. It was calibrated numerically using MCNPX and does not need periodic recalibration. The total yttrium efficiency for detecting 2.45 MeV neutrons was determined to be f(n) approximately 4.1x10(-4) with an uncertainty of about 0.27%. The yttrium detector was employed in the NX2 plasma focus experiments and showed the neutron yield of the order of 10(8) neutrons per discharge.

  3. Absolute sensitivity calibration of an extreme ultraviolet spectrometer for tokamak measurements

    NASA Astrophysics Data System (ADS)

    Guirlet, R.; Schwob, J. L.; Meyer, O.; Vartanian, S.

    2017-01-01

    An extreme ultraviolet spectrometer installed on the Tore Supra tokamak has been calibrated in absolute units of brightness in the range 10-340 Å. This has been performed by means of a combination of techniques. The range 10-113 Å was absolutely calibrated by using an ultrasoft-X ray source emitting six spectral lines in this range. The calibration transfer to the range 113-182 Å was performed using the spectral line intensity branching ratio method. The range 182-340 Å was calibrated thanks to radiative-collisional modelling of spectral line intensity ratios. The maximum sensitivity of the spectrometer was found to lie around 100 Å. Around this wavelength, the sensitivity is fairly flat in a 80 Å wide interval. The spatial variations of sensitivity along the detector assembly were also measured. The observed trend is related to the quantum efficiency decrease as the angle of the incoming photon trajectories becomes more grazing.

  4. Measured and modelled absolute gravity in Greenland

    NASA Astrophysics Data System (ADS)

    Nielsen, E.; Forsberg, R.; Strykowski, G.

    2012-12-01

    Present day changes in the ice volume in glaciated areas like Greenland will change the load on the Earth and to this change the lithosphere will respond elastically. The Earth also responds to changes in the ice volume over a millennial time scale. This response is due to the viscous properties of the mantle and is known as Glaical Isostatic Adjustment (GIA). Both signals are present in GPS and absolute gravity (AG) measurements and they will give an uncertainty in mass balance estimates calculated from these data types. It is possible to separate the two signals if both gravity and Global Positioning System (GPS) time series are available. DTU Space acquired an A10 absolute gravimeter in 2008. One purpose of this instrument is to establish AG time series in Greenland and the first measurements were conducted in 2009. Since then are 18 different Greenland GPS Network (GNET) stations visited and six of these are visited more then once. The gravity signal consists of three signals; the elastic signal, the viscous signal and the direct attraction from the ice masses. All of these signals can be modelled using various techniques. The viscous signal is modelled by solving the Sea Level Equation with an appropriate ice history and Earth model. The free code SELEN is used for this. The elastic signal is modelled as a convolution of the elastic Greens function for gravity and a model of present day ice mass changes. The direct attraction is the same as the Newtonian attraction and is calculated as this. Here we will present the preliminary results of the AG measurements in Greenland. We will also present modelled estimates of the direct attraction, the elastic and the viscous signals.

  5. Absolute bioavailability of quinine formulations in Nigeria.

    PubMed

    Babalola, C P; Bolaji, O O; Ogunbona, F A; Ezeomah, E

    2004-09-01

    This study compared the absolute bioavailability of quinine sulphate as capsule and as tablet against the intravenous (i.v.) infusion of the drug in twelve male volunteers. Six of the volunteers received intravenous infusion over 4 h as well as the capsule formulation of the drug in a cross-over manner, while the other six received the tablet formulation. Blood samples were taken at predetermined time intervals and plasma analysed for quinine (QN) using reversed-phase HPLC method. QN was rapidly absorbed after the two oral formulations with average t(max) of 2.67 h for both capsule and tablet. The mean elimination half-life of QN from the i.v. and oral dosage forms varied between 10 and 13.5 hr and were not statistically different (P > 0.05). On the contrary, the maximum plasma concentration (C(max)) and area under the curve (AUC) from capsule were comparable to those from i.v. (P > 0.05), while these values were markedly higher than values from tablet formulation (P < 0.05). The therapeutic QN plasma levels were not achieved with the tablet formulation. The absolute bioavailability (F) were 73% (C.l., 53.3 - 92.4%) and 39 % (C.I., 21.7 - 56.6%) for the capsule and tablet respectively and the difference was significant (P < 0.05). The subtherapeutic levels obtained from the tablet form used in this study may cause treatment failure during malaria and caution should be taken when predictions are made from results obtained from different formulations of QN.

  6. The CEOS Recovery Observatory Pilot

    NASA Astrophysics Data System (ADS)

    Hosford, S.; Proy, C.; Giros, A.; Eddy, A.; Petiteville, I.; Ishida, C.; Gaetani, F.; Frye, S.; Zoffoli, S.; Danzeglocke, J.

    2015-04-01

    Over the course of the last decade, large populations living in vulnerable areas have led to record damages and substantial loss of life in mega-disasters ranging from the deadly Indian Ocean tsunami of 2004 and Haiti earthquake of 2010; the catastrophic flood damages of Hurricane Katrina in 2005 and the Tohoku tsunami of 2011, and the astonishing extent of the environmental impact of the Deepwater Horizon explosion in 2009. These major catastrophes have widespread and long-lasting impacts with subsequent recovery and reconstruction costing billions of euros and lasting years. While satellite imagery is used on an ad hoc basis after many disasters to support damage assessment, there is currently no standard practice or system to coordinate acquisition of data and facilitate access for early recovery planning and recovery tracking and monitoring. CEOS led the creation of a Recovery Observatory Oversight Team, which brings together major recovery stakeholders such as the UNDP and the World Bank/Global Facility for Disaster Reduction and Recovery, value-adding providers and leading space agencies. The principal aims of the Observatory are to: 1. Demonstrate the utility of a wide range of earth observation data to facilitate the recovery and reconstruction phase following a major catastrophic event; 2. Provide a concrete case to focus efforts in identifying and resolving technical and organizational obstacles to facilitating the visibility and access to a relevant set of EO data; and 3. Develop dialogue and establish institutional relationships with the Recovery phase user community to best target data and information requirements; The paper presented here will describe the work conducted in preparing for the triggering of a Recovery Observatory including support to rapid assessments and Post Disaster Needs Assessments by the EO community.

  7. Fast, Computer Supported Experimental Determination of Absolute Zero Temperature at School

    ERIC Educational Resources Information Center

    Bogacz, Bogdan F.; Pedziwiatr, Antoni T.

    2014-01-01

    A simple and fast experimental method of determining absolute zero temperature is presented. Air gas thermometer coupled with pressure sensor and data acquisition system COACH is applied in a wide range of temperature. By constructing a pressure vs temperature plot for air under constant volume it is possible to obtain--by extrapolation to zero…

  8. Passive Ranging

    DTIC Science & Technology

    1988-08-01

    1981). 5. R. Courant and D. Hilbert, Methods of Mathematical Physics , Vol. I, English ed., * Interscience, New York, 1953. 32 32 APPENDIX A CALCULATION...K Courant and D. Hilbert, Methods of Mathematical Physics , Vol. I, English ed., * Interscience, New York, 1953. A-8 APPENDIX B * RANGING ACCURACY IN

  9. Superharp: A wire scanner with absolute position readout for beam energy measurement at CEBAF

    SciTech Connect

    Yan, C.

    1994-09-07

    Superharp is an upgrade CEBAF wire scanner with absolute position readout from shaft encoder. As high precision absolute beam position probe ({Delta}x {approximately} 10{mu}m), three pairs of superharps are installed at the entrance, the mid-point, and the exit of Hall C arc beamline in beam switch yard, which will be tuned in dispersive mode as energy spectrometer performing 10{sup {minus}3} beam energy measurement. With dual sensor system: the direct current pickup and the bremsstrahlung detection electronics, beam profile can be obtained by superharp at wide beam current range from 1 {mu}A to 100 {mu}A.

  10. Manned Spacecraft Landing and Recovery

    NASA Technical Reports Server (NTRS)

    Hammel, Don

    2004-01-01

    As recent history has tragically demonstrated, a successful space mission is not complete until the crew has safely returned to earth and has been successfully recovered. It is noted that a safe return to earth does not guarantee a successful recovery. The focus of this presentation will be a discussion of the ground operation assets involved in a successful recovery. The author's experience in land and water-based recovery of crewed vehicles and flight hardware at Kennedy Space Center (KSC), Edwards Air Force Base, international landing sites, and the Atlantic Ocean provides for some unique insight into this topic. He has participated in many aspects of Space Shuttle landing and recovery operations including activation of Transatlantic Abort Landing (TAL) sites and Emergency Landing Sites (ELS) as an Operations Test Director, execution of post landing convoy operations as an Orbiter Move Director, Operations Test Director, and Landing and Recovery Director, and recovery of solid rocket boosters, frustum and their parachutes 140 miles offshore in a wide range of sea states as a Retrieval Diver/Engineer. The recovery operations for the Mercury, Gemini, and Apollo were similar from a landing and recovery perspective in th t they all were capsules with limited "flying" capability and had a planned End of Mission (EOM) in an ocean with a descent slowed by parachutes. The general process was to deploy swim teams via helicopters to prepare the capsule for recovery and assist with crew extraction when required. The capsule was then hoisted onto the deck of a naval vessel. This approach required the extensive use and deployment of military assets to support the primary landing zone as well as alternate and contingency locations. The Russian Soyuz capsule also has limited "flying" capability; however, the planned EOM is terrestrial. In addition to use of parachutes to slow the reentry descent, soft-landing rockets on the bottom of the vehicle are employed to cushion the

  11. Measuring U-Series Isotopes in Polar Ice: Toward an Absolute Ice Chronometer

    NASA Astrophysics Data System (ADS)

    Aciego, S. M.; Bourdon, B.; Schwander, J.; Stocker, T.

    2007-12-01

    Comparison of ice records between ice sheets, alpine glaciers, and marine records currently rely on a combination of ice layer counting, matching relative time scales, and interpolation. U-series recoil from mineral aerosols (dust) into the ice matrix is one possible technique for determining the absolute age of ice, independent of any other parameters. However, the low concentrations of the U-series parents and daughters have made previous measurements difficult and the results ambiguous. We present here the first results of work we have undertaken for determining U-series recoil ages in ice cores. The primary difficulty of this technique is the extremely low concentrations of dust in polar ice samples, and therefore, of the recoil daughter products in the ice. Previous work on dust provenance indicates 0.01 to 1 mg of dust concentration per kilogram of ice from the ice cores of Greenland and Antarctica. Given these conditions, U and Th dissolved in the water fraction of the aerosol-ice system may overwhelm the total U-series budget. Constraining the possible "initial" U and Th is the first step in determining the feasibility of this dating method for ice cores. We have implemented new geochemical techniques: ultra-clean ice processing, multiple ion counter ICP-MS measurements of U and Th, and quantification of total recoveries of the aerosol and water fractions using both established USGS standards, an internal lab loess standard that best approximates the dust fraction found in ice cores, and [U]-[Th] standards SRM960 and Th105. Dissolution experiments using U and Th spikes with these standards indicate recovery of the dust and dissolved fractions are better than 99%. We present here the first concentration measurements of U from the water fraction (<0.2 microns) of freshly deposited South Pole snow (20pg/kg), as well as a series of measurements from the upper section (~128m) of the Dye 3 ice core in Greenland which thus far range from 410pg/kg to 520fg/kg U

  12. Absolute distance measurement by dual-comb nonlinear asynchronous optical sampling.

    PubMed

    Zhang, Hongyuan; Wei, Haoyun; Wu, Xuejian; Yang, Honglei; Li, Yan

    2014-03-24

    A dual-comb nonlinear asynchronous optical sampling method is proposed to simplify determination of the time interval and extend the non-ambiguity range in absolute length measurements. Type II second harmonic generation facilitates curve fitting in determining the time interval between adjacent pulses. Meanwhile, the non-ambiguity range is extended by adjusting the repetition rate of the signal laser. The performance of the proposed method is compared with a heterodyne interferometer. Results show that the system achieves a maximum residual of 100.6 nm and an uncertainty of 1.48 μm in a 0.5 ms acquisition time. With longer acquisition time, the uncertainty can be reduced to 166.6 nm for 50 ms and 82.9 nm for 500 ms. Moreover, the extension of the non-ambiguity range is demonstrated by measuring an absolute distance beyond the inherent range determined by the fixed repetition rate.

  13. Recovery position - series (image)

    MedlinePlus

    ... CPR, the victim should be placed in the recovery position. The recovery position helps keep the victim's airway open. To put the victim in the recovery position grab the victim's leg and shoulder and ...

  14. Heart Attack Recovery FAQs

    MedlinePlus

    ... Peripheral Artery Disease Venous Thromboembolism Aortic Aneurysm More Heart Attack Recovery FAQs Updated:Sep 19,2016 Most people ... recovery. View an animation of a heart attack . Heart Attack Recovery Questions and Answers What treatments will I ...

  15. Optimal Threshold and Time of Absolute Lymphocyte Count Assessment for Outcome Prediction after Bone Marrow Transplantation.

    PubMed

    Bayraktar, Ulas D; Milton, Denái R; Guindani, Michele; Rondon, Gabriela; Chen, Julianne; Al-Atrash, Gheath; Rezvani, Katayoun; Champlin, Richard; Ciurea, Stefan O

    2016-03-01

    The recovery pace of absolute lymphocyte count (ALC) is prognostic after hematopoietic stem cell transplantation. Previous studies have evaluated a wide range of ALC cutoffs and time points for predicting outcomes. We aimed to determine the optimal ALC value for outcome prediction after bone marrow transplantation (BMT). A total of 518 patients who underwent BMT for acute leukemia or myelodysplastic syndrome between 1999 and 2010 were divided into a training set and a test set to assess the prognostic value of ALC on days 30, 60, 90, 120, 180, as well as the first post-transplantation day of an ALC of 100, 200, 300, 400, 500, and 1000/μL. In the training set, the best predictor of overall survival (OS), relapse-free survival (RFS), and nonrelapse mortality (NRM) was ALC on day 60. In the entire patient cohort, multivariable analyses demonstrated significantly better OS, RFS, and NRM and lower incidence of graft-versus-host disease (GVHD) in patients with an ALC >300/μL on day 60 post-BMT, both including and excluding patients who developed GVHD before day 60. Among the patient-, disease-, and transplant-related factors assessed, only busulfan-based conditioning was significantly associated with higher ALC values on day 60 in both cohorts. The optimal ALC cutoff for predicting outcomes after BMT is 300/μL on day 60 post-transplantation.

  16. STANDARDIZING TYPE Ia SUPERNOVA ABSOLUTE MAGNITUDES USING GAUSSIAN PROCESS DATA REGRESSION

    SciTech Connect

    Kim, A. G.; Aldering, G.; Aragon, C.; Bailey, S.; Childress, M.; Fakhouri, H. K.; Nordin, J.; Thomas, R. C.; Antilogus, P.; Bongard, S.; Canto, A.; Cellier-Holzem, F.; Guy, J.; Baltay, C.; Buton, C.; Kerschhaggl, M.; Kowalski, M.; Chotard, N.; Copin, Y.; Gangler, E.; and others

    2013-04-01

    We present a novel class of models for Type Ia supernova time-evolving spectral energy distributions (SEDs) and absolute magnitudes: they are each modeled as stochastic functions described by Gaussian processes. The values of the SED and absolute magnitudes are defined through well-defined regression prescriptions, so that data directly inform the models. As a proof of concept, we implement a model for synthetic photometry built from the spectrophotometric time series from the Nearby Supernova Factory. Absolute magnitudes at peak B brightness are calibrated to 0.13 mag in the g band and to as low as 0.09 mag in the z = 0.25 blueshifted i band, where the dispersion includes contributions from measurement uncertainties and peculiar velocities. The methodology can be applied to spectrophotometric time series of supernovae that span a range of redshifts to simultaneously standardize supernovae together with fitting cosmological parameters.

  17. Optical phase step method for absolute ranging interferometry using computer-generated holograms

    NASA Astrophysics Data System (ADS)

    Deininger, Martin; Wang, Lingli; Gerstner, Klaus; Tschudi, Theo

    1995-09-01

    One main problem of an interferometric measurement is to evaluate the object distance from the interference function. One of the known methods that delivers the object phase is the phase step method. Here we introduce computer-generated holograms to realize parallel phase steps without phase modulation of the reference path.

  18. Close-range photogrammetry with light field camera: from disparity map to absolute distance.

    PubMed

    Yang, Peng; Wang, Zhaomin; Yan, Yizhen; Qu, Weijuan; Zhao, Hongying; Asundi, Anand; Yan, Lei

    2016-09-20

    A new approach to measure the 3D profile of a texture object is proposed utilizing light field imaging, in which three key steps are required: a disparity map is first obtained by detecting the slopes in the epipolar plane image with the multilabel technique; the intrinsic parameters of the light field camera are then extracted by camera calibration; at last, the relationship between disparity values and real distances is built up by depth calibration. In the last step, a linear calibration method is proposed to achieve accurate results. Furthermore, the depth error is also investigated and compensated for by reusing the checkerboard pattern. The experimental results are in good agreement with the 3D models, and also indicate that the light field imaging is a promising 3D measurement technique.

  19. Elevation correction factor for absolute pressure measurements

    NASA Technical Reports Server (NTRS)

    Panek, Joseph W.; Sorrells, Mark R.

    1996-01-01

    With the arrival of highly accurate multi-port pressure measurement systems, conditions that previously did not affect overall system accuracy must now be scrutinized closely. Errors caused by elevation differences between pressure sensing elements and model pressure taps can be quantified and corrected. With multi-port pressure measurement systems, the sensing elements are connected to pressure taps that may be many feet away. The measurement system may be at a different elevation than the pressure taps due to laboratory space or test article constraints. This difference produces a pressure gradient that is inversely proportional to height within the interface tube. The pressure at the bottom of the tube will be higher than the pressure at the top due to the weight of the tube's column of air. Tubes with higher pressures will exhibit larger absolute errors due to the higher air density. The above effect is well documented but has generally been taken into account with large elevations only. With error analysis techniques, the loss in accuracy from elevation can be easily quantified. Correction factors can be applied to maintain the high accuracies of new pressure measurement systems.

  20. What is Needed for Absolute Paleointensity?

    NASA Astrophysics Data System (ADS)

    Valet, J. P.

    2015-12-01

    Many alternative approaches to the Thellier and Thellier technique for absolute paleointensity have been proposed during the past twenty years. One reason is the time consuming aspect of the experiments. Another reason is to avoid uncertainties in determinations of the paleofield which are mostly linked to the presence of multidomain grains. Despite great care taken by these new techniques, there is no indication that they always provide the right answer and in fact sometimes fail. We are convinced that the most valid approach remains the original double heating Thellier protocol provided that natural remanence is controlled by pure magnetite with a narrow distribution of small grain sizes, mostly single domains. The presence of titanium, even in small amount generates biases which yield incorrect field values. Single domain grains frequently dominate the magnetization of glass samples, which explains the success of this selective approach. They are also present in volcanic lava flows but much less frequently, and therefore contribute to the low success rate of most experiments. However the loss of at least 70% of the magnetization at very high temperatures prior to the Curie point appears to be an essential prerequisite that increases the success rate to almost 100% and has been validated from historical flows and from recent studies. This requirement can easily be tested by thermal demagnetization while low temperature experiments can document the detection of single domain magnetite using the δFC/δZFC parameter as suggested (Moskowitz et al, 1993) for biogenic magnetite.

  1. Gyrokinetic Statistical Absolute Equilibrium and Turbulence

    SciTech Connect

    Jian-Zhou Zhu and Gregory W. Hammett

    2011-01-10

    A paradigm based on the absolute equilibrium of Galerkin-truncated inviscid systems to aid in understanding turbulence [T.-D. Lee, "On some statistical properties of hydrodynamical and magnetohydrodynamical fields," Q. Appl. Math. 10, 69 (1952)] is taken to study gyrokinetic plasma turbulence: A finite set of Fourier modes of the collisionless gyrokinetic equations are kept and the statistical equilibria are calculated; possible implications for plasma turbulence in various situations are discussed. For the case of two spatial and one velocity dimension, in the calculation with discretization also of velocity v with N grid points (where N + 1 quantities are conserved, corresponding to an energy invariant and N entropy-related invariants), the negative temperature states, corresponding to the condensation of the generalized energy into the lowest modes, are found. This indicates a generic feature of inverse energy cascade. Comparisons are made with some classical results, such as those of Charney-Hasegawa-Mima in the cold-ion limit. There is a universal shape for statistical equilibrium of gyrokinetics in three spatial and two velocity dimensions with just one conserved quantity. Possible physical relevance to turbulence, such as ITG zonal flows, and to a critical balance hypothesis are also discussed.

  2. Climate Absolute Radiance and Refractivity Observatory (CLARREO)

    NASA Technical Reports Server (NTRS)

    Leckey, John P.

    2015-01-01

    The Climate Absolute Radiance and Refractivity Observatory (CLARREO) is a mission, led and developed by NASA, that will measure a variety of climate variables with an unprecedented accuracy to quantify and attribute climate change. CLARREO consists of three separate instruments: an infrared (IR) spectrometer, a reflected solar (RS) spectrometer, and a radio occultation (RO) instrument. The mission will contain orbiting radiometers with sufficient accuracy, including on orbit verification, to calibrate other space-based instrumentation, increasing their respective accuracy by as much as an order of magnitude. The IR spectrometer is a Fourier Transform spectrometer (FTS) working in the 5 to 50 microns wavelength region with a goal of 0.1 K (k = 3) accuracy. The FTS will achieve this accuracy using phase change cells to verify thermistor accuracy and heated halos to verify blackbody emissivity, both on orbit. The RS spectrometer will measure the reflectance of the atmosphere in the 0.32 to 2.3 microns wavelength region with an accuracy of 0.3% (k = 2). The status of the instrumentation packages and potential mission options will be presented.

  3. Absolute flux measurements for swift atoms

    NASA Technical Reports Server (NTRS)

    Fink, M.; Kohl, D. A.; Keto, J. W.; Antoniewicz, P.

    1987-01-01

    While a torsion balance in vacuum can easily measure the momentum transfer from a gas beam impinging on a surface attached to the balance, this measurement depends on the accommodation coefficients of the atoms with the surface and the distribution of the recoil. A torsion balance is described for making absolute flux measurements independent of recoil effects. The torsion balance is a conventional taut suspension wire design and the Young modulus of the wire determines the relationship between the displacement and the applied torque. A compensating magnetic field is applied to maintain zero displacement and provide critical damping. The unique feature is to couple the impinging gas beam to the torsion balance via a Wood's horn, i.e., a thin wall tube with a gradual 90 deg bend. Just as light is trapped in a Wood's horn by specular reflection from the curved surfaces, the gas beam diffuses through the tube. Instead of trapping the beam, the end of the tube is open so that the atoms exit the tube at 90 deg to their original direction. Therefore, all of the forward momentum of the gas beam is transferred to the torsion balance independent of the angle of reflection from the surfaces inside the tube.

  4. Recovery High Schools

    PubMed Central

    Moberg, D. Paul; Finch, Andrew J.

    2009-01-01

    High schools specifically designed for students recovering from a substance use disorder (substance abuse or dependence) have been emerging as a continuing care resource since 1987. This study of 17 schools provides the first systematic description of recovery school programs and their students. The most common school model is that of a program or affiliated school, embedded organizationally and physically with another school or set of alternative school programs. Although embedded, there are serious efforts to maintain physical separation of recovery school students from other students, using scheduling and physical barriers. Affiliation with public school systems is the case for most recovery schools, and seems to be a major factor in assuring fiscal and organizational feasibility. The students in the recovery high schools studied were predominantly white (78%), with about one-half from two parent homes. Overall parent educational levels suggest a higher mean SES than in the general population. Most students (78%) had prior formal treatment for substance use disorders, often concomitantly with treatment for mental health concerns, and were often referred by treatment providers. Students came with a broad and complex range of mental health issues, traumatic experiences, drug use patterns, criminal justice involvement, and educational backgrounds. The complexity of these problems clearly limits the enrollment capacity of the schools. Retrospective pretest to post-test analysis suggests significant reduction in substance use as well as in mental health symptoms among the students. Students were very positive in their assessment of the therapeutic value of the schools, but less enthusiastic regarding the educational programs. The school programs appear to successfully function as continuing care to reinforce and sustain the therapeutic benefits students gained from their treatment experiences. PMID:19165348

  5. Pixel-by-pixel absolute phase retrieval using three phase-shifted fringe patterns without markers

    NASA Astrophysics Data System (ADS)

    Jiang, Chufan; Li, Beiwen; Zhang, Song

    2017-04-01

    This paper presents a method that can recover absolute phase pixel by pixel without embedding markers on three phase-shifted fringe patterns, acquiring additional images, or introducing additional hardware component(s). The proposed three-dimensional (3D) absolute shape measurement technique includes the following major steps: (1) segment the measured object into different regions using rough priori knowledge of surface geometry; (2) artificially create phase maps at different z planes using geometric constraints of structured light system; (3) unwrap the phase pixel by pixel for each region by properly referring to the artificially created phase map; and (4) merge unwrapped phases from all regions into a complete absolute phase map for 3D reconstruction. We demonstrate that conventional three-step phase-shifted fringe patterns can be used to create absolute phase map pixel by pixel even for large depth range objects. We have successfully implemented our proposed computational framework to achieve absolute 3D shape measurement at 40 Hz.

  6. Absolute nuclear material assay using count distribution (LAMBDA) space

    DOEpatents

    Prasad, Mano K.; Snyderman, Neal J.; Rowland, Mark S.

    2015-12-01

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  7. Absolute nuclear material assay using count distribution (LAMBDA) space

    DOEpatents

    Prasad, Manoj K [Pleasanton, CA; Snyderman, Neal J [Berkeley, CA; Rowland, Mark S [Alamo, CA

    2012-06-05

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  8. Positioning, alignment and absolute pointing of the ANTARES neutrino telescope

    NASA Astrophysics Data System (ADS)

    Fehr, F.; Distefano, C.; Antares Collaboration

    2010-01-01

    A precise detector alignment and absolute pointing is crucial for point-source searches. The ANTARES neutrino telescope utilises an array of hydrophones, tiltmeters and compasses for the relative positioning of the optical sensors. The absolute calibration is accomplished by long-baseline low-frequency triangulation of the acoustic reference devices in the deep-sea with a differential GPS system at the sea surface. The absolute pointing can be independently verified by detecting the shadow of the Moon in cosmic rays.

  9. Absolute and Convective Instability of a Liquid Jet

    NASA Technical Reports Server (NTRS)

    Lin, S. P.; Hudman, M.; Chen, J. N.

    1999-01-01

    The existence of absolute instability in a liquid jet has been predicted for some time. The disturbance grows in time and propagates both upstream and downstream in an absolutely unstable liquid jet. The image of absolute instability is captured in the NASA 2.2 sec drop tower and reported here. The transition from convective to absolute instability is observed experimentally. The experimental results are compared with the theoretical predictions on the transition Weber number as functions of the Reynolds number. The role of interfacial shear relative to all other relevant forces which cause the onset of jet breakup is explained.

  10. Effects of stratospheric ozone recovery on photochemistry and ozone air quality in the troposphere

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Wu, S.; Huang, Y.; Wang, Y.

    2014-04-01

    There has been significant stratospheric ozone depletion since the late 1970s due to ozone-depleting substances (ODSs). With the implementation of the Montreal Protocol and its amendments and adjustments, stratospheric ozone is expected to recover towards its pre-1980 level in the coming decades. In this study, we examine the implications of stratospheric ozone recovery for the tropospheric chemistry and ozone air quality with a global chemical transport model (GEOS-Chem). With a full recovery of the stratospheric ozone, the projected increases in ozone column range from 1% over the low latitudes to more than 10% over the polar regions. The sensitivity factor of troposphere ozone photolysis rate, defined as the percentage changes in surface ozone photolysis rate for 1% increase in stratospheric ozone column, shows significant seasonal variation but is always negative with absolute value larger than one. The expected stratospheric ozone recovery is found to affect the tropospheric ozone destruction rates much more than the ozone production rates. Significant decreases in surface ozone photolysis rates due to stratospheric ozone recovery are simulated. The global average tropospheric OH decreases by 1.7%, and the global average lifetime of tropospheric ozone increases by 1.5%. The perturbations to tropospheric ozone and surface ozone show large seasonal and spatial variations. General increases in surface ozone are calculated for each season, with increases by up to 0.8 ppbv in the remote areas. Increases in ozone lifetime by up to 13% are found in the troposphere. The increased lifetimes of tropospheric ozone in response to stratospheric ozone recovery enhance the intercontinental transport of ozone and global pollution, in particular for the summertime. The global background ozone attributable to Asian emissions is calculated to increase by up to 15% or 0.3 ppbv in the Northern Hemisphere in response to the projected stratospheric ozone recovery.

  11. Absolute Plate Velocities from Seismic Anisotropy

    NASA Astrophysics Data System (ADS)

    Kreemer, Corné; Zheng, Lin; Gordon, Richard

    2015-04-01

    The orientation of seismic anisotropy inferred beneath plate interiors may provide a means to estimate the motions of the plate relative to the sub-asthenospheric mantle. Here we analyze two global sets of shear-wave splitting data, that of Kreemer [2009] and an updated and expanded data set, to estimate plate motions and to better understand the dispersion of the data, correlations in the errors, and their relation to plate speed. We also explore the effect of using geologically current plate velocities (i.e., the MORVEL set of angular velocities [DeMets et al. 2010]) compared with geodetically current plate velocities (i.e., the GSRM v1.2 angular velocities [Kreemer et al. 2014]). We demonstrate that the errors in plate motion azimuths inferred from shear-wave splitting beneath any one tectonic plate are correlated with the errors of other azimuths from the same plate. To account for these correlations, we adopt a two-tier analysis: First, find the pole of rotation and confidence limits for each plate individually. Second, solve for the best fit to these poles while constraining relative plate angular velocities to consistency with the MORVEL relative plate angular velocities. The SKS-MORVEL absolute plate angular velocities (based on the Kreemer [2009] data set) are determined from the poles from eight plates weighted proportionally to the root-mean-square velocity of each plate. SKS-MORVEL indicates that eight plates (Amur, Antarctica, Caribbean, Eurasia, Lwandle, Somalia, Sundaland, and Yangtze) have angular velocities that differ insignificantly from zero. The net rotation of the lithosphere is 0.25±0.11° Ma-1 (95% confidence limits) right-handed about 57.1°S, 68.6°E. The within-plate dispersion of seismic anisotropy for oceanic lithosphere (σ=19.2° ) differs insignificantly from that for continental lithosphere (σ=21.6° ). The between-plate dispersion, however, is significantly smaller for oceanic lithosphere (σ=7.4° ) than for continental

  12. Absolute determination of local tropospheric OH concentrations

    NASA Technical Reports Server (NTRS)

    Armerding, Wolfgang; Comes, Franz-Josef

    1994-01-01

    Long path absorption (LPA) according to Lambert Beer's law is a method to determine absolute concentrations of trace gases such as tropospheric OH. We have developed a LPA instrument which is based on a rapid tuning of the light source which is a frequency doubled dye laser. The laser is tuned across two or three OH absorption features around 308 nm with a scanning speed of 0.07 cm(exp -1)/microsecond and a repetition rate of 1.3 kHz. This high scanning speed greatly reduces the fluctuation of the light intensity caused by the atmosphere. To obtain the required high sensitivity the laser output power is additionally made constant and stabilized by an electro-optical modulator. The present sensitivity is of the order of a few times 10(exp 5) OH per cm(exp 3) for an acquisition time of a minute and an absorption path length of only 1200 meters so that a folding of the optical path in a multireflection cell was possible leading to a lateral dimension of the cell of a few meters. This allows local measurements to be made. Tropospheric measurements have been carried out in 1991 resulting in the determination of OH diurnal variation at specific days in late summer. Comparison with model calculations have been made. Interferences are mainly due to SO2 absorption. The problem of OH self generation in the multireflection cell is of minor extent. This could be shown by using different experimental methods. The minimum-maximum signal to noise ratio is about 8 x 10(exp -4) for a single scan. Due to the small size of the absorption cell the realization of an open air laboratory is possible in which by use of an additional UV light source or by additional fluxes of trace gases the chemistry can be changed under controlled conditions allowing kinetic studies of tropospheric photochemistry to be made in open air.

  13. Absolute Radiometric Calibration of KOMPSAT-3A

    NASA Astrophysics Data System (ADS)

    Ahn, H. Y.; Shin, D. Y.; Kim, J. S.; Seo, D. C.; Choi, C. U.

    2016-06-01

    This paper presents a vicarious radiometric calibration of the Korea Multi-Purpose Satellite-3A (KOMPSAT-3A) performed by the Korea Aerospace Research Institute (KARI) and the Pukyong National University Remote Sensing Group (PKNU RSG) in 2015.The primary stages of this study are summarized as follows: (1) A field campaign to determine radiometric calibrated target fields was undertaken in Mongolia and South Korea. Surface reflectance data obtained in the campaign were input to a radiative transfer code that predicted at-sensor radiance. Through this process, equations and parameters were derived for the KOMPSAT-3A sensor to enable the conversion of calibrated DN to physical units, such as at-sensor radiance or TOA reflectance. (2) To validate the absolute calibration coefficients for the KOMPSAT-3A sensor, we performed a radiometric validation with a comparison of KOMPSAT-3A and Landsat-8 TOA reflectance using one of the six PICS (Libya 4). Correlations between top-of-atmosphere (TOA) radiances and the spectral band responses of the KOMPSAT-3A sensors at the Zuunmod, Mongolia and Goheung, South Korea sites were significant for multispectral bands. The average difference in TOA reflectance between KOMPSAT-3A and Landsat-8 image over the Libya 4, Libya site in the red-green-blue (RGB) region was under 3%, whereas in the NIR band, the TOA reflectance of KOMPSAT-3A was lower than the that of Landsat-8 due to the difference in the band passes of two sensors. The KOMPSAT-3Aensor includes a band pass near 940 nm that can be strongly absorbed by water vapor and therefore displayed low reflectance. Toovercome this, we need to undertake a detailed analysis using rescale methods, such as the spectral bandwidth adjustment factor.

  14. Analysis of absolute flatness testing in sub-stitching interferometer

    NASA Astrophysics Data System (ADS)

    Jia, Xin; Xu, Fuchao; Xie, Weimin; Xing, Tingwen

    2016-09-01

    Sub-aperture stitching is an effective way to extend the lateral and vertical dynamic range of a conventional interferometer. The test accuracy can be achieved by removing the error of reference surface by the absolute testing method. When the testing accuracy (repeatability and reproducibility) is close to 1nm, in addition to the reference surface, other factors will also affect the measuring accuracy such as environment, zoom magnification, stitching precision, tooling and fixture, the characteristics of optical materials and so on. In the thousand level cleanroom, we establish a good environment system. Long time stability, temperature controlled at 22°+/-0.02°.The humidity and noise are controlled in a certain range. We establish a stitching system in the clean room. The vibration testing system is used to test the vibration. The air pressure testing system is also used. In the motion system, we control the tilt error no more than 4 second to reduce the error. The angle error can be tested by the autocollimator and double grating reading head.

  15. Robust absolute magnetometry with organic thin-film devices

    PubMed Central

    Baker, W.J.; Ambal, K.; Waters, D.P.; Baarda, R.; Morishita, H.; van Schooten, K.; McCamey, D.R.; Lupton, J.M.; Boehme, C.

    2012-01-01

    Magnetic field sensors based on organic thin-film materials have attracted considerable interest in recent years as they can be manufactured at very low cost and on flexible substrates. However, the technological relevance of such magnetoresistive sensors is limited owing to their narrow magnetic field ranges (∼30 mT) and the continuous calibration required to compensate temperature fluctuations and material degradation. Conversely, magnetic resonance (MR)-based sensors, which utilize fundamental physical relationships for extremely precise measurements of fields, are usually large and expensive. Here we demonstrate an organic magnetic resonance-based magnetometer, employing spin-dependent electronic transitions in an organic diode, which combines the low-cost thin-film fabrication and integration properties of organic electronics with the precision of a MR-based sensor. We show that the device never requires calibration, operates over large temperature and magnetic field ranges, is robust against materials degradation and allows for absolute sensitivities of <50 nT Hz−1/2. PMID:22692541

  16. Recovery in Scotland: beyond service development.

    PubMed

    Bradstreet, Simon; McBrierty, Rona

    2012-02-01

    Over the last ten years there has been significant activity related to the promotion and support of recovery in Scotland, much of it linked to the work of the Scottish Recovery Network. A range of government policies have consistently identified recovery as a guiding principle of both service design and mental health improvement efforts. New learning has been developed and shared, workforce competencies reviewed and training developed, and a range of national initiatives put in place. In Scotland, as elsewhere, these efforts have tended to focus primarily on ensuring that mental health services offer environments and practices that support personal recovery. While service improvement is crucial, a wider challenge is ensuring that opportunities and support for self-directed recovery are enhanced outside statutory services. Providing examples, this paper will look at the development of recovery in Scotland - including the work of the Scottish Recovery Network - and consider the potential for building on progress made by rebalancing efforts to support personal recovery, highlighting the importance of public attitudes and community-based learning approaches. We will also touch on the role of identity in personal recovery and consider cultural issues related to the promotion of recovery in Scotland.

  17. Retinal vessel oximetry: toward absolute calibration

    NASA Astrophysics Data System (ADS)

    Smith, Matthew H.; Denninghoff, Kurt R.; Lompado, Arthur; Hillman, Lloyd W.

    2000-06-01

    Accurately measuring the oxygen saturation of blood within retinal arteries and veins has proven to be a deceptively difficult task. Despite the excellent optical accessibility of the vessels and a wide range of reported instrumentation, we are unaware of any measurement technique that has proven to be calibrated across wide ranges of vessel diameter and fundus pigmentation. We present an overview of our retinal oximetry technique, present the results of an in vitro calibration experiment, and present preliminary human data.

  18. Biosurfactant and enhanced oil recovery

    DOEpatents

    McInerney, Michael J.; Jenneman, Gary E.; Knapp, Roy M.; Menzie, Donald E.

    1985-06-11

    A pure culture of Bacillus licheniformis strain JF-2 (ATCC No. 39307) and a process for using said culture and the surfactant lichenysin produced thereby for the enhancement of oil recovery from subterranean formations. Lichenysin is an effective surfactant over a wide range of temperatures, pH's, salt and calcium concentrations.

  19. Total Value of Phosphorus Recovery.

    PubMed

    Mayer, Brooke K; Baker, Lawrence A; Boyer, Treavor H; Drechsel, Pay; Gifford, Mac; Hanjra, Munir A; Parameswaran, Prathap; Stoltzfus, Jared; Westerhoff, Paul; Rittmann, Bruce E

    2016-07-05

    Phosphorus (P) is a critical, geographically concentrated, nonrenewable resource necessary to support global food production. In excess (e.g., due to runoff or wastewater discharges), P is also a primary cause of eutrophication. To reconcile the simultaneous shortage and overabundance of P, lost P flows must be recovered and reused, alongside improvements in P-use efficiency. While this motivation is increasingly being recognized, little P recovery is practiced today, as recovered P generally cannot compete with the relatively low cost of mined P. Therefore, P is often captured to prevent its release into the environment without beneficial recovery and reuse. However, additional incentives for P recovery emerge when accounting for the total value of P recovery. This article provides a comprehensive overview of the range of benefits of recovering P from waste streams, i.e., the total value of recovering P. This approach accounts for P products, as well as other assets that are associated with P and can be recovered in parallel, such as energy, nitrogen, metals and minerals, and water. Additionally, P recovery provides valuable services to society and the environment by protecting and improving environmental quality, enhancing efficiency of waste treatment facilities, and improving food security and social equity. The needs to make P recovery a reality are also discussed, including business models, bottlenecks, and policy and education strategies.

  20. Developing a Regional Recovery Framework

    SciTech Connect

    Lesperance, Ann M.; Olson, Jarrod; Stein, Steven L.; Clark, Rebecca; Kelly, Heather; Sheline, Jim; Tietje, Grant; Williamson, Mark; Woodcock, Jody

    2011-09-01

    Abstract A biological attack would present an unprecedented challenge for local, state, and federal agencies; the military; the private sector; and individuals on many fronts ranging from vaccination and treatment to prioritization of cleanup actions to waste disposal. To prepare the Seattle region to recover from a biological attack, the Seattle Urban Area Security Initiative (UASI) partners collaborated with military and federal agencies to develop a Regional Recovery Framework for a Biological Attack in the Seattle Urban Area. The goal was to reduce the time and resources required to recover and restore wide urban areas, military installations, and other critical infrastructure following a biological incident by providing a coordinated systems approach. Based on discussions in small workshops, tabletop exercises, and interviews with emergency response agency staff, the partners identified concepts of operation for various areas to address critical issues the region will face as recovery progresses. Key to this recovery is the recovery of the economy. Although the Framework is specific to a catastrophic, wide-area biological attack using anthrax, it was designed to be flexible and scalable so it could also serve as the recovery framework for an all-hazards approach. The Framework also served to coalesce policy questions that must be addressed for long-term recovery. These questions cover such areas as safety and health, security, financial management, waste management, legal issues, and economic development.

  1. Prelaunch absolute radiometric calibration of the reflective bands on the LANDSAT-4 protoflight Thematic Mapper

    NASA Technical Reports Server (NTRS)

    Barker, J. L.; Ball, D. L.; Leung, K. C.; Walker, J. A.

    1984-01-01

    The results of the absolute radiometric calibration of the LANDSAT 4 thematic mapper, as determined during pre-launch tests with a 122 cm integrating sphere, are presented. Detailed results for the best calibration of the protoflight TM are given, as well as summaries of other tests performed on the sensor. The dynamic range of the TM is within a few per cent of that required in all bands, except bands 1 and 3. Three detectors failed to pass the minimum SNR specified for their respective bands: band 5, channel 3 (dead), band 2, and channels 2 and 4 (noisy or slow response). Estimates of the absolute calibration accuracy for the TM show that the detectors are typically calibrated to 5% absolute error for the reflective bands; 10% full-scale accuracy was specified. Ten tests performed to transfer the detector absolute calibration to the internal calibrator show a 5% range at full scale in the transfer calibration; however, in two cases band 5 showed a 10% and a 7% difference.

  2. Absolute peptide quantification by lutetium labeling and nanoHPLC-ICPMS with isotope dilution analysis.

    PubMed

    Rappel, Christina; Schaumlöffel, Dirk

    2009-01-01

    The need of analytical methods for absolute quantitative protein analysis spurred research on new developments in recent years. In this work, a novel approach was developed for accurate absolute peptide quantification based on metal labeling with lutetium diethylenetriamine pentaacetic acid (Lu-DTPA) and nanoflow high-performance liquid chromatography-inductively coupled plasma isotope dilution mass spectrometry (nanoHPLC-ICP-IDMS). In a two-step procedure peptides were derivatized at amino groups with diethylenetriamine pentaacetic anhydride (DTPAA) followed by chelation of lutetium. Electrospray ionization mass spectrometry (ESI MS) of the reaction product demonstrated highly specific peptide labeling. Under optimized nanoHPLC conditions the labeled peptides were baseline-separated, and the excess labeling reagent did not interfere. A 176Lu-labeled spike was continuously added to the column effluent for quantification by ICP-IDMS. The recovery of a Lu-DTPA-labeled standard peptide was close to 100% indicating high labeling efficiency and accurate absolute quantification. The precision of the entire method was 4.9%. The detection limit for Lu-DTPA-tagged peptides was 179 amol demonstrating that lutetium-specific peptide quantification was by 4 orders of magnitude more sensitive than detection by natural sulfur atoms present in cysteine or methionine residues. Furthermore, the application to peptides in insulin tryptic digest allowed the identification of interfering reagents decreasing the labeling efficiency. An additional advantage of this novel approach is the analysis of peptides, which do not naturally feature ICPMS-detectable elements.

  3. Absolute protein quantification of the yeast chaperome under conditions of heat shock

    PubMed Central

    Mackenzie, Rebecca J.; Lawless, Craig; Holman, Stephen W.; Lanthaler, Karin; Beynon, Robert J.; Grant, Chris M.; Hubbard, Simon J.

    2016-01-01

    Chaperones are fundamental to regulating the heat shock response, mediating protein recovery from thermal‐induced misfolding and aggregation. Using the QconCAT strategy and selected reaction monitoring (SRM) for absolute protein quantification, we have determined copy per cell values for 49 key chaperones in Saccharomyces cerevisiae under conditions of normal growth and heat shock. This work extends a previous chemostat quantification study by including up to five Q‐peptides per protein to improve confidence in protein quantification. In contrast to the global proteome profile of S. cerevisiae in response to heat shock, which remains largely unchanged as determined by label‐free quantification, many of the chaperones are upregulated with an average two‐fold increase in protein abundance. Interestingly, eight of the significantly upregulated chaperones are direct gene targets of heat shock transcription factor‐1. By performing absolute quantification of chaperones under heat stress for the first time, we were able to evaluate the individual protein‐level response. Furthermore, this SRM data was used to calibrate label‐free quantification values for the proteome in absolute terms, thus improving relative quantification between the two conditions. This study significantly enhances the largely transcriptomic data available in the field and illustrates a more nuanced response at the protein level. PMID:27252046

  4. Determination of Absolute Zero Using a Computer-Based Laboratory

    ERIC Educational Resources Information Center

    Amrani, D.

    2007-01-01

    We present a simple computer-based laboratory experiment for evaluating absolute zero in degrees Celsius, which can be performed in college and undergraduate physical sciences laboratory courses. With a computer, absolute zero apparatus can help demonstrators or students to observe the relationship between temperature and pressure and use…

  5. A Global Forecast of Absolute Poverty and Employment.

    ERIC Educational Resources Information Center

    Hopkins, M. J. D.

    1980-01-01

    Estimates are made of absolute poverty and employment under the hypothesis that existing trends continue. Concludes that while the number of people in absolute poverty is not likely to decline by 2000, the proportion will fall. Jobs will have to grow 3.9% per year in developing countries to achieve full employment. (JOW)

  6. Absolute Humidity and the Seasonality of Influenza (Invited)

    NASA Astrophysics Data System (ADS)

    Shaman, J. L.; Pitzer, V.; Viboud, C.; Grenfell, B.; Goldstein, E.; Lipsitch, M.

    2010-12-01

    Much of the observed wintertime increase of mortality in temperate regions is attributed to seasonal influenza. A recent re-analysis of laboratory experiments indicates that absolute humidity strongly modulates the airborne survival and transmission of the influenza virus. Here we show that the onset of increased wintertime influenza-related mortality in the United States is associated with anomalously low absolute humidity levels during the prior weeks. We then use an epidemiological model, in which observed absolute humidity conditions temper influenza transmission rates, to successfully simulate the seasonal cycle of observed influenza-related mortality. The model results indicate that direct modulation of influenza transmissibility by absolute humidity alone is sufficient to produce this observed seasonality. These findings provide epidemiological support for the hypothesis that absolute humidity drives seasonal variations of influenza transmission in temperate regions. In addition, we show that variations of the basic and effective reproductive numbers for influenza, caused by seasonal changes in absolute humidity, are consistent with the general timing of pandemic influenza outbreaks observed for 2009 A/H1N1 in temperate regions. Indeed, absolute humidity conditions correctly identify the region of the United States vulnerable to a third, wintertime wave of pandemic influenza. These findings suggest that the timing of pandemic influenza outbreaks is controlled by a combination of absolute humidity conditions, levels of susceptibility and changes in population mixing and contact rates.

  7. Novalis' Poetic Uncertainty: A "Bildung" with the Absolute

    ERIC Educational Resources Information Center

    Mika, Carl

    2016-01-01

    Novalis, the Early German Romantic poet and philosopher, had at the core of his work a mysterious depiction of the "absolute." The absolute is Novalis' name for a substance that defies precise knowledge yet calls for a tentative and sensitive speculation. How one asserts a truth, represents an object, and sets about encountering things…

  8. Absolute radiometric calibration of advanced remote sensing systems

    NASA Technical Reports Server (NTRS)

    Slater, P. N.

    1982-01-01

    The distinction between the uses of relative and absolute spectroradiometric calibration of remote sensing systems is discussed. The advantages of detector-based absolute calibration are described, and the categories of relative and absolute system calibrations are listed. The limitations and problems associated with three common methods used for the absolute calibration of remote sensing systems are addressed. Two methods are proposed for the in-flight absolute calibration of advanced multispectral linear array systems. One makes use of a sun-illuminated panel in front of the sensor, the radiance of which is monitored by a spectrally flat pyroelectric radiometer. The other uses a large, uniform, high-radiance reference ground surface. The ground and atmospheric measurements required as input to a radiative transfer program to predict the radiance level at the entrance pupil of the orbital sensor are discussed, and the ground instrumentation is described.

  9. A developmental study of latent absolute pitch memory.

    PubMed

    Jakubowski, Kelly; Müllensiefen, Daniel; Stewart, Lauren

    2017-03-01

    The ability to recall the absolute pitch level of familiar music (latent absolute pitch memory) is widespread in adults, in contrast to the rare ability to label single pitches without a reference tone (overt absolute pitch memory). The present research investigated the developmental profile of latent absolute pitch (AP) memory and explored individual differences related to this ability. In two experiments, 288 children from 4 to12 years of age performed significantly above chance at recognizing the absolute pitch level of familiar melodies. No age-related improvement or decline, nor effects of musical training, gender, or familiarity with the stimuli were found in regard to latent AP task performance. These findings suggest that latent AP memory is a stable ability that is developed from as early as age 4 and persists into adulthood.

  10. Physics-Based Constitutive Model to Predict Dynamic Recovery Behavior of BFe10-1-2 Cupronickel Alloy during Hot Working

    NASA Astrophysics Data System (ADS)

    Cai, Jun; Zhang, Xiaolu; Wang, Kuaishe; Miao, Chengpeng

    2016-11-01

    The hot deformation behavior of BFe10-1-2 cupronickel alloy was investigated over wide ranges of deformation temperature and strain rate. The physics-based constitutive model was developed to predict the dynamic recovery (DRV) behavior of BFe10-1-2 cupronickel alloy at elevated temperatures. In order to verify the validity of the developed constitutive equation, the correlation coefficient (R) and average absolute relative error (AARE) were introduced to make statistics. The results indicated that the developed constitutive equation lead a good agreement between the calculated and experimental data and can accurately characterize the hot DRV behaviors for the BFe10-1-2 cupronickel alloy.

  11. Argentine plant increases capacity, improves NGL recoveries

    SciTech Connect

    Lynch, J.T.; Fernandez, C.L.

    1997-10-06

    Total cryogenic processing capacity at Transportadora de Gas del Sur S.A.`s (TGS) Cerri complex in Bahia Blanca, Argentina, is being increased from 22 MMcmd to 40 MMcmd (776 to 1,410 MMcfd) with a future ethane-recovery capacity of 1,900 metric tons/day (mtd; 33,600 b/d) using Ortloff technology. Very high propane recovery can be maintained as the ethane recovery is controlled over a range of 1,000--1,900 mtd as needed to meet local ethane demand. Total NGL recovery can be increased from 2,600 mtd to 4,500 mtd without additional compression. The paper describes current operations, inlet-residue compression, train retrofit, C{sub 3} recovery, C{sub 2} rejection, C{sub 2} recovery, and the final dual-mode design.

  12. Absolute activity measurement of radon gas at IRA-METAS

    NASA Astrophysics Data System (ADS)

    Spring, Philippe; Nedjadi, Youcef; Bailat, Claude; Triscone, Gilles; Bochud, François

    2006-12-01

    This paper describes the system of the Swiss national metrological institute (IRA-METAS) for the absolute standardisation of radon gas. This method relies on condensing radon under vacuum conditions within a specified cold area using a cryogenerator, and detecting its alpha particles with an ion-implanted silicon detector, through a very accurately defined solid angle. The accuracy of this defined solid angle standardisation technique was corroborated by another primary measurement method involving 4 πγ NaI(Tl) integral counting and Monte Carlo efficiency calculations. The 222Rn standard submitted by IRA-METAS to the Système International de Référence (SIR) at the Bureau International des Poids et Mesures (BIPM) has also been found to be consistent with an analogous standard submitted by the German national metrological institute (PTB). IRA-METAS is able to deliver radon standards, with activities ranging from a few kBq to 350 kBq, in NIST-Type ampoules, and glass or steel containers usable for calibrating radon-measuring instruments.

  13. Monochromator-Based Absolute Calibration of a Standard Radiation Thermometer

    NASA Astrophysics Data System (ADS)

    Mantilla, J. M.; Hernanz, M. L.; Campos, J.; Martín, M. J.; Pons, A.; del Campo, D.

    2014-04-01

    Centro Español de Metrología (CEM) is disseminating the International Temperature Scale (ITS-90), at high temperatures, by using the fixed points of Ag and Cu and a standard radiation thermometer. However, the future mise-en-pratique for the definition of the kelvin ( MeP-K) will include the dissemination of the kelvin by primary methods and by indirect approximations capable of exceptionally low uncertainties or increased reliability. Primary radiometry is, at present, able to achieve uncertainties competitive with the ITS-90 above the silver point with one of the possible techniques the calibration for radiance responsivity of an imaging radiometer (radiance method). In order to carry out this calibration, IO-CSIC (Spanish Designated Institute for luminous intensity and luminous flux) has collaborated with CEM, allowing traceability to its cryogenic radiometer. A monochromator integrating sphere-based spectral comparator facility has been used to calibrate one of the CEM standard radiation thermometers. The absolute calibrated standard radiation thermometer has been used to determine the temperatures of the fixed points of Cu, Co-C, Pt-C, and Re-C. The results obtained are 1357.80 K, 1597.10 K, 2011.66 K, and 2747.64 K, respectively, with uncertainties ranging from 0.4 K to 1.1 K.

  14. Cosmic backgrounds of relic gravitons and their absolute normalization

    NASA Astrophysics Data System (ADS)

    Giovannini, Massimo

    2014-11-01

    Provided the consistency relations are not violated, the recent BICEP2 observations pin down the absolute normalization, the spectral slope and the maximal frequency of the cosmic graviton background produced during inflation. The properly normalized spectra are hereby computed from the lowest frequencies (of the order of the present Hubble rate) up to the highest frequency range in the GHz region. Deviations from the conventional paradigm cannot be excluded and are examined by allowing for different physical possibilities including, in particular, a running of the tensor spectral index, an explicit breaking of the consistency relations and a spike in the high-frequency tail of the spectrum coming either from a post-inflationary phase dominated by a stiff fluid or from the contribution of waterfall fields in a hybrid inflationary context. The direct determinations of the tensor to scalar ratio at low frequencies, if confirmed by the forthcoming observations, will also affect and constrain the high-frequency uncertainties. The limits on the cosmic graviton backgrounds coming from wide-band interferometers (such as LIGO/Virgo, LISA and BBO/DECIGO) together with a more accurate scrutiny of the tensor B-mode polarization at low frequencies will set direct bounds on the post-inflationary evolution and on other unconventional completions of the standard lore.

  15. Near-infrared absolute magnitudes of Type Ia Supernovae

    NASA Astrophysics Data System (ADS)

    Avelino, Arturo; Friedman, Andrew S.; Mandel, Kaisey; Kirshner, Robert; Challis, Peter

    2017-01-01

    Type Ia Supernovae light curves (SN Ia) in the near infrared (NIR) exhibit low dispersion in their peak luminosities and are less vulnerable to extinction by interstellar dust in their host galaxies. The increasing number of high quality NIR SNe Ia light curves, including the recent CfAIR2 sample obtained with PAIRITEL, provides updated evidence for their utility as standard candles for cosmology. Using NIR YJHKs light curves of ~150 nearby SNe Ia from the CfAIR2 and CSP samples, and from the literature, we determine the mean value and dispersion of the absolute magnitude in the range between -10 to 50 rest-frame days after the maximum luminosity in B band. We present the mean light-curve templates and Hubble diagram for YJHKs bands. This work contributes to a firm local anchor for supernova cosmology studies in the NIR which will help to reduce the systematic uncertainties due to host galaxy dust present in optical-only studies. This research is supported by NSF grants AST-156854, AST-1211196, Fundacion Mexico en Harvard, and CONACyT.

  16. Absolute measures of the completeness of the fossil record

    NASA Technical Reports Server (NTRS)

    Foote, M.; Sepkoski, J. J. Jr; Sepkoski JJ, J. r. (Principal Investigator)

    1999-01-01

    Measuring the completeness of the fossil record is essential to understanding evolution over long timescales, particularly when comparing evolutionary patterns among biological groups with different preservational properties. Completeness measures have been presented for various groups based on gaps in the stratigraphic ranges of fossil taxa and on hypothetical lineages implied by estimated evolutionary trees. Here we present and compare quantitative, widely applicable absolute measures of completeness at two taxonomic levels for a broader sample of higher taxa of marine animals than has previously been available. We provide an estimate of the probability of genus preservation per stratigraphic interval, and determine the proportion of living families with some fossil record. The two completeness measures use very different data and calculations. The probability of genus preservation depends almost entirely on the Palaeozoic and Mesozoic records, whereas the proportion of living families with a fossil record is influenced largely by Cenozoic data. These measurements are nonetheless highly correlated, with outliers quite explicable, and we find that completeness is rather high for many animal groups.

  17. On the calculation of absolute macromolecular binding free energies

    PubMed Central

    Luo, Hengbin; Sharp, Kim

    2002-01-01

    The standard framework for calculating the absolute binding free energy of a macromolecular association reaction A + B → AB with an association constant KAB is to equate chemical potentials of the species on the left- and right-hand sides of this reaction and evaluate the chemical potentials from theory. This theory involves (usually hidden) assumptions about what constitutes the bound species, AB, and where the contribution of the solvent appears. We present here an alternative derivation that can be traced back to Bjerrum, in which the expectation value of KAB is obtained directly through the statistical mechanical method of evaluating its ensemble (Boltzmann-weighted) average. The generalized Bjerrum approach more clearly delineates: (i) the different contributions to binding; (ii) the origin of the much-discussed and somewhat controversial association entropy term; and (iii) where the solvent contribution appears. This approach also allows approximations required for practical evaluation of the binding constant in complex macromolecular systems, to be introduced in a well defined way. We provide an example, with application to test cases that illustrate a range of binding behavior. PMID:12149474

  18. Experimental absolute cross section for photoionization of Xe^7+

    NASA Astrophysics Data System (ADS)

    Schippers, S.; Müller, A.; Esteves, D.; Habibi, M.; Aguilar, A.; Kilcoyne, A. L. D.

    2010-03-01

    Collision processes with highly charged xenon ions are of interest for UV-radiation generation in plasma discharges, for fusion research and for space craft propulsion. Here we report results for the photoionization of Xe^7+ ionsootnotetextS. Schippers et al., J. Phys.: Conf. Ser. (in print) which were measured at the photon-ion end station of ALS beamline 10.0.1. As compared with the only previous experimental studyootnotetextJ. M. Bizau et al., Phys. Rev. Lett. 84, 435 (2000) of this reaction, the present cross sections were obtained at higher energy resolution (50--80 meV vs. 200--500 meV) and on an absolute cross section scale. In the experimental photon energy range of 95--145 eV the cross section is dominated by resonances associated with 4d->5f excitation and subsequent autoionization. The most prominent feature in the measured spectrum is the 4d^9,s,f, resonance at 121.14±0.02 eV which reaches a peak cross section of 1.2 Gb at 50 meV photon energy spread. The experimental resonance strength of 160 Mb eV (corresponding to an absorption oscillator strength of 1.46) is in fair agreement with the theoretical result^2.

  19. A highly accurate absolute gravimetric network for Albania, Kosovo and Montenegro

    NASA Astrophysics Data System (ADS)

    Ullrich, Christian; Ruess, Diethard; Butta, Hubert; Qirko, Kristaq; Pavicevic, Bozidar; Murat, Meha

    2016-04-01

    The objective of this project is to establish a basic gravity network in Albania, Kosovo and Montenegro to enable further investigations in geodetic and geophysical issues. Therefore the first time in history absolute gravity measurements were performed in these countries. The Norwegian mapping authority Kartverket is assisting the national mapping authorities in Kosovo (KCA) (Kosovo Cadastral Agency - Agjencia Kadastrale e Kosovës), Albania (ASIG) (Autoriteti Shtetëror i Informacionit Gjeohapësinor) and in Montenegro (REA) (Real Estate Administration of Montenegro - Uprava za nekretnine Crne Gore) in improving the geodetic frameworks. The gravity measurements are funded by Kartverket. The absolute gravimetric measurements were performed from BEV (Federal Office of Metrology and Surveying) with the absolute gravimeter FG5-242. As a national metrology institute (NMI) the Metrology Service of the BEV maintains the national standards for the realisation of the legal units of measurement and ensures their international equivalence and recognition. Laser and clock of the absolute gravimeter were calibrated before and after the measurements. The absolute gravimetric survey was carried out from September to October 2015. Finally all 8 scheduled stations were successfully measured: there are three stations located in Montenegro, two stations in Kosovo and three stations in Albania. The stations are distributed over the countries to establish a gravity network for each country. The vertical gradients were measured at all 8 stations with the relative gravimeter Scintrex CG5. The high class quality of some absolute gravity stations can be used for gravity monitoring activities in future. The measurement uncertainties of the absolute gravity measurements range around 2.5 micro Gal at all stations (1 microgal = 10-8 m/s2). In Montenegro the large gravity difference of 200 MilliGal between station Zabljak and Podgorica can be even used for calibration of relative gravimeters

  20. High Accuracy, Absolute, Cryogenic Refractive Index Measurements of Infrared Lens Materials for JWST NIRCam using CHARMS

    NASA Technical Reports Server (NTRS)

    Leviton, Douglas; Frey, Bradley

    2005-01-01

    The current refractive optical design of the James Webb Space Telescope (JWST) Near Infrared Camera (NIRCam) uses three infrared materials in its lenses: LiF, BaF2, and ZnSe. In order to provide the instrument s optical designers with accurate, heretofore unavailable data for absolute refractive index based on actual cryogenic measurements, two prismatic samples of each material were measured using the cryogenic, high accuracy, refraction measuring system (CHARMS) at NASA GSFC, densely covering the temperature range from 15 to 320 K and wavelength range from 0.4 to 5.6 microns. Measurement methods are discussed and graphical and tabulated data for absolute refractive index, dispersion, and thermo-optic coefficient for these three materials are presented along with estimates of uncertainty. Coefficients for second order polynomial fits of measured index to temperature are provided for many wavelengths to allow accurate interpolation of index to other wavelengths and temperatures.

  1. The importance of calculating absolute rather than relative fracture risk.

    PubMed

    Tucker, Graeme; Metcalfe, Andrew; Pearce, Charles; Need, Allan G; Dick, Ian M; Prince, Richard L; Nordin, B E Christopher

    2007-12-01

    The relation between fracture risk and bone mineral density (BMD) is commonly expressed as a multiplicative factor which is said to represent the increase in risk for each standard deviation fall in BMD. This practice assumes that risk increases multiplicatively with each unit fall in bone density, which is not correct. Although odds increase multiplicatively, absolute risk, which lies between 0 and 1, cannot do so though it can be derived from odds by the term Odds/(1+Odds). This concept is illustrated in a prospective study of 1098 women over age 69 followed for 6 years in a calcium trial in which hip BMD was measured in the second year. 304 Women (27.6%) had prevalent fractures and 198 (18.1%) incident fractures with a significant association between them (P 0.005). Age-adjusted hip BMD and T-score were significantly lower in those with prevalent fractures than in those without (P 0.003) and significantly lower in those with incident fractures than in those without (P 0.001). When the data were analysed by univariate logistic regression, the fracture odds at zero T-score were 0.130 and the rise in odds for each unit fall in hip T-score was 1.55. When these odds were converted to risks, there was a progressive divergence between odds and risk at T-scores below zero. Multiple logistic regression yielded significant odds ratios of 1.47 for each 5-year increase in age, 1.47 for prevalent fracture and 1.49 for each unit fall in hip T-score. Calcium therapy was not significant. Poisson regression, logistic regression and Cox's proportional hazards yielded very similar outcomes when converted into absolute risks. A nomogram was constructed to enable clinicians to estimate the approximate 6-year fracture risk from hip T-score, age and prevalent fracture which can probably be applied (with appropriate correction) to men as well as to women. We conclude that multiplicative factors can be applied to odds but not to risk and that multipliers of risk tend to overstate the

  2. Mini-implants and miniplates generate sub-absolute and absolute anchorage.

    PubMed

    Consolaro, Alberto

    2014-01-01

    The functional demand imposed on bone promotes changes in the spatial properties of osteocytes as well as in their extensions uniformly distributed throughout the mineralized surface. Once spatial deformation is established, osteocytes create the need for structural adaptations that result in bone formation and resorption that happen to meet the functional demands. The endosteum and the periosteum are the effectors responsible for stimulating adaptive osteocytes in the inner and outer surfaces. Changes in shape, volume and position of the jaws as a result of skeletal correction of the maxilla and mandible require anchorage to allow bone remodeling to redefine morphology, esthetics and function as a result of spatial deformation conducted by orthodontic appliances. Examining the degree of changes in shape, volume and structural relationship of areas where mini-implants and miniplates are placed allows us to classify mini-implants as devices of subabsolute anchorage and miniplates as devices of absolute anchorage.

  3. Absolute dose verifications in small photon fields using BANGTM gel

    NASA Astrophysics Data System (ADS)

    Scheib, S. G.; Schenkel, Y.; Gianolini, S.

    2004-01-01

    Polymer gel dosimeters change their magnetic resonance (MR) and optical properties with the absorbed dose when irradiated and are suitable for narrow photon beam dosimetry in radiosurgery. Such dosimeters enable relative and absolute 3D dose verifications in order to check the entire treatment chain from imaging to dose application during commissioning and quality assurance. For absolute 3D dose verifications in radiosurgery using Gamma Knife B, commercially available BANGTM Gels (BANG 25 Gy and BANG 3 Gy) together with dedicated phantoms were chosen in order to determine the potential of absolute gel dosimetry in radiosurgery.

  4. Measuring the absolute magnetic field using high-Tc SQUID

    NASA Astrophysics Data System (ADS)

    He, D. F.; Itozaki, H.

    2006-06-01

    SQUID normally can only measure the change of magnetic field instead of the absolute value of magnetic field. Using a compensation method, a mobile SQUID, which could keep locked when moving in the earth's magnetic field, was developed. Using the mobile SQUID, it was possible to measure the absolute magnetic field. The absolute value of magnetic field could be calculated from the change of the compensation output when changing the direction of the SQUID in a magnetic field. Using this method and the mobile SQUID, we successfully measured the earth's magnetic field in our laboratory.

  5. Absolute Antenna Calibration at the US National Geodetic Survey

    NASA Astrophysics Data System (ADS)

    Mader, G. L.; Bilich, A. L.

    2012-12-01

    Geodetic GNSS applications routinely demand millimeter precision and extremely high levels of accuracy. To achieve these accuracies, measurement and instrument biases at the centimeter to millimeter level must be understood. One of these biases is the antenna phase center, the apparent point of signal reception for a GNSS antenna. It has been well established that phase center patterns differ between antenna models and manufacturers; additional research suggests that the addition of a radome or the choice of antenna mount can significantly alter those a priori phase center patterns. For the more demanding GNSS positioning applications and especially in cases of mixed-antenna networks, it is all the more important to know antenna phase center variations as a function of both elevation and azimuth in the antenna reference frame and incorporate these models into analysis software. Determination of antenna phase center behavior is known as "antenna calibration". Since 1994, NGS has computed relative antenna calibrations for more than 350 antennas. In recent years, the geodetic community has moved to absolute calibrations - the IGS adopted absolute antenna phase center calibrations in 2006 for use in their orbit and clock products, and NGS's CORS group began using absolute antenna calibration upon the release of the new CORS coordinates in IGS08 epoch 2005.00 and NAD 83(2011,MA11,PA11) epoch 2010.00. Although NGS relative calibrations can be and have been converted to absolute, it is considered best practice to independently measure phase center characteristics in an absolute sense. Consequently, NGS has developed and operates an absolute calibration system. These absolute antenna calibrations accommodate the demand for greater accuracy and for 2-dimensional (elevation and azimuth) parameterization. NGS will continue to provide calibration values via the NGS web site www.ngs.noaa.gov/ANTCAL, and will publish calibrations in the ANTEX format as well as the legacy ANTINFO

  6. First Absolutely Calibrated Localized Measurements of Ion Velocity in the MST in Locked and Rotating Plasmas

    NASA Astrophysics Data System (ADS)

    Baltzer, M.; Craig, D.; den Hartog, D. J.; Nornberg, M. D.; Munaretto, S.

    2015-11-01

    An Ion Doppler Spectrometer (IDS) is used on MST for high time-resolution passive and active measurements of impurity ion emission. Absolutely calibrated measurements of flow are difficult because the spectrometer records data within 0.3 nm of the C+5 line of interest, and commercial calibration lamps do not produce lines in this narrow range . A novel optical system was designed to absolutely calibrate the IDS. The device uses an UV LED to produce a broad emission curve in the desired region. A Fabry-Perot etalon filters this light, cutting transmittance peaks into the pattern of the LED emission. An optical train of fused silica lenses focuses the light into the IDS with f/4. A holographic diffuser blurs the light cone to increase homogeneity. Using this light source, the absolute Doppler shift of ion emissions can be measured in MST plasmas. In combination with charge exchange recombination spectroscopy, localized ion velocities can now be measured. Previously, a time-averaged measurement along the chord bisecting the poloidal plane was used to calibrate the IDS; the quality of these central chord calibrations can be characterized with our absolute calibration. Calibration errors may also be quantified and minimized by optimizing the curve-fitting process. Preliminary measurements of toroidal velocity in locked and rotating plasmas will be shown. This work has been supported by the US DOE.

  7. Absolute rate of the reaction of hydrogen atoms with ozone from 219-360 K

    NASA Technical Reports Server (NTRS)

    Lee, J. H.; Michael, J. V.; Payne, W. A.; Stief, L. J.

    1978-01-01

    Absolute rate constants for the reaction of atomic hydrogen with ozone were obtained over the temperature range 219-360 K by the flash photolysis-resonance fluorescence technique. The results can be expressed in Arrhenius form by K = (1.33 plus or minus 0.32)x10 to the minus 10 power exp (-449 plus or minus 58/T) cu cm/molecule/s (two standard deviations). The present work is compared to two previous determinations and is discussed theoretically.

  8. Absolute distance measurement by chirped pulse interferometry using a femtosecond pulse laser.

    PubMed

    Wu, Hanzhong; Zhang, Fumin; Liu, Tingyang; Meng, Fei; Li, Jianshuang; Qu, Xinghua

    2015-11-30

    We propose here a method for absolute distance measurement by chirped pulse interferometry using frequency comb. The principle is introduced, and the distance can be measured via the shift of the widest fringe. The experimental results show an agreement within 26 μm in a range up to 65 m, corresponding to a relative precision of 4 × 10-7, compared with a reference distance meter.

  9. Absolute determination of cross sections for resonant Raman scattering on silicon

    NASA Astrophysics Data System (ADS)

    Müller, Matthias; Beckhoff, Burkhard; Ulm, Gerhard; Kanngießer, Birgit

    2006-07-01

    We studied the resonant Raman scattering of x rays in the vicinity of the K absorption edge of silicon. The investigation was carried out at the plane grating monochromator beamline for undulator radiation of the PTB laboratory at BESSY II in Berlin. Cross sections were determined absolutely for a wide energy range of incident photons with small relative uncertainties employing calibrated instrumentation avoiding any reference samples. The experimentally determined values differ clearly from the theoretical ones found in the literature.

  10. Energy dispersive X-ray analysis on an absolute scale in scanning transmission electron microscopy.

    PubMed

    Chen, Z; D'Alfonso, A J; Weyland, M; Taplin, D J; Allen, L J; Findlay, S D

    2015-10-01

    We demonstrate absolute scale agreement between the number of X-ray counts in energy dispersive X-ray spectroscopy using an atomic-scale coherent electron probe and first-principles simulations. Scan-averaged spectra were collected across a range of thicknesses with precisely determined and controlled microscope parameters. Ionization cross-sections were calculated using the quantum excitation of phonons model, incorporating dynamical (multiple) electron scattering, which is seen to be important even for very thin specimens.

  11. Plant hydrocarbon recovery process

    SciTech Connect

    Dzadzic, P.M.; Price, M.C.; Shih, C.J.; Weil, T.A.

    1982-01-26

    A process for production and recovery of hydrocarbons from hydrocarbon-containing whole plants in a form suitable for use as chemical feedstocks or as hydrocarbon energy sources which process comprises: (A) pulverizing by grinding or chopping hydrocarbon-containing whole plants selected from the group consisting of euphorbiaceae, apocynaceae, asclepiadaceae, compositae, cactaceae and pinaceae families to a suitable particle size, (B) drying and preheating said particles in a reducing atmosphere under positive pressure (C) passing said particles through a thermal conversion zone containing a reducing atmosphere and with a residence time of 1 second to about 30 minutes at a temperature within the range of from about 200* C. To about 1000* C., (D) separately recovering the condensable vapors as liquids and the noncondensable gases in a condition suitable for use as chemical feedstocks or as hydrocarbon fuels.

  12. Absolute Geodetic Rotation Measurement Using Atom Interferometry

    SciTech Connect

    Stockton, J. K.; Takase, K.; Kasevich, M. A.

    2011-09-23

    We demonstrate a cold-atom interferometer gyroscope which overcomes accuracy and dynamic range limitations of previous atom interferometer gyroscopes. We show how the instrument can be used for precise determination of latitude, azimuth (true north), and Earth's rotation rate. Spurious noise terms related to multiple-path interferences are suppressed by employing a novel time-skewed pulse sequence. Extended versions of this instrument appear capable of meeting the stringent requirements for inertial navigation, geodetic applications of Earth's rotation rate determination, and tests of general relativity.

  13. Preliminary OARE absolute acceleration measurements on STS-50

    NASA Technical Reports Server (NTRS)

    Blanchard, Robert C.; Nicholson, John Y.; Ritter, James

    1993-01-01

    On-orbit Orbital Acceleration Research Experiment (OARE) data on STS-50 was examined in detail during a 2-day time period. Absolute acceleration levels were derived at the OARE location, the orbiter center-of-gravity, and at the STS-50 spacelab Crystal Growth Facility. The tri-axial OARE raw acceleration measurements (i.e., telemetered data) during the interval were filtered using a sliding trimmed mean filter in order to remove large acceleration spikes (e.g., thrusters) and reduce the noise. Twelve OARE measured biases in each acceleration channel during the 2-day interval were analyzed and applied to the filtered data. Similarly, the in situ measured x-axis scale factors in the sensor's most sensitive range were also analyzed and applied to the data. Due to equipment problem(s) on this flight, both y- and z- axis sensitive range scale factors were determined in a separate process (using the OARE maneuver data) and subsequently applied to the data. All known significant low-frequency corrections at the OARE location (i.e., both vertical and horizontal gravity-gradient, and rotational effects) were removed from the filtered data in order to produce the acceleration components at the orbiter's center-of-gravity, which are the aerodynamic signals along each body axes. Results indicate that there is a force of unknown origin being applied to the Orbiter in addition to the aerodynamic forces. The OARE instrument and all known gravitational and electromagnetic forces were reexamined, but none produce the observed effect. Thus, it is tentatively concluded that the Orbiter is creating the environment observed.

  14. Subnanometer absolute displacement measurement using a frequency comb referenced dual resonance tracking Fabry-Perot interferometer.

    PubMed

    Zhu, Minhao; Wei, Haoyun; Zhao, Shijie; Wu, Xuejian; Li, Yan

    2015-05-10

    Fabry-Perot (F-P) interferometry is a traceable high-resolution method for displacement metrology that has no nonlinearity. Compared with the single resonance tracking F-P interferometry, the dual resonance tracking (DRT) F-P interferometer system is able to realize tens of millimeters measurement range while maintaining the intrinsic high resolution. A DRT F-P system is thus developed for absolute displacement measurement in metrology applications. Two external cavity diode lasers (ECDLs) are simultaneously locked to two resonances of a high-finesse F-P cavity using the Pound-Drever-Hall locking scheme. The absolute optical frequencies of the locked ECDLs are measured using a reference diode laser, with the frequency stabilized and controlled by an optical frequency comb. The absolute cavity resonance order numbers are investigated. The measurement range is experimentally tested to achieve 20 mm, while the resolution reaches ~10 pm level, mainly limited by the mechanical stability of the F-P cavity. Compared with the measurement results from a self-developed displacement-angle heterodyne interferometer, the displacement residuals are within 10 nm in the range of 20 mm. This high-resolution interferometer may become a candidate for length metrology such as in Watt balance or Joule balance projects.

  15. Recovery Act Milestones

    ScienceCinema

    Rogers, Matt

    2016-07-12

    Every 100 days, the Department of Energy is held accountable for a progress report on the American Recovery and Reinvestment Act. Update at 200 days, hosted by Matt Rogers, Senior Advisor to Secretary Steven Chu for Recovery Act Implementation.

  16. Recovery Act Milestones

    SciTech Connect

    Rogers, Matt

    2009-01-01

    Every 100 days, the Department of Energy is held accountable for a progress report on the American Recovery and Reinvestment Act. Update at 200 days, hosted by Matt Rogers, Senior Advisor to Secretary Steven Chu for Recovery Act Implementation.

  17. Monochromator-Based Absolute Calibration of Radiation Thermometers

    NASA Astrophysics Data System (ADS)

    Keawprasert, T.; Anhalt, K.; Taubert, D. R.; Hartmann, J.

    2011-08-01

    A monochromator integrating-sphere-based spectral comparator facility has been developed to calibrate standard radiation thermometers in terms of the absolute spectral radiance responsivity, traceable to the PTB cryogenic radiometer. The absolute responsivity calibration has been improved using a 75 W xenon lamp with a reflective mirror and imaging optics to a relative standard uncertainty at the peak wavelength of approximately 0.17 % ( k = 1). Via a relative measurement of the out-of-band responsivity, the spectral responsivity of radiation thermometers can be fully characterized. To verify the calibration accuracy, the absolutely calibrated radiation thermometer is used to measure Au and Cu freezing-point temperatures and then to compare the obtained results with the values obtained by absolute methods, resulting in T - T 90 values of +52 mK and -50 mK for the gold and copper fixed points, respectively.

  18. Gibbs Paradox Revisited from the Fluctuation Theorem with Absolute Irreversibility

    NASA Astrophysics Data System (ADS)

    Murashita, Yûto; Ueda, Masahito

    2017-02-01

    The inclusion of the factor ln (1 /N !) in the thermodynamic entropy proposed by Gibbs is shown to be equivalent to the validity of the fluctuation theorem with absolute irreversibility for gas mixing.

  19. Absolute Value Boundedness, Operator Decomposition, and Stochastic Media and Equations

    NASA Technical Reports Server (NTRS)

    Adomian, G.; Miao, C. C.

    1973-01-01

    The research accomplished during this period is reported. Published abstracts and technical reports are listed. Articles presented include: boundedness of absolute values of generalized Fourier coefficients, propagation in stochastic media, and stationary conditions for stochastic differential equations.

  20. Carbon Nanotube Bolometer for Absolute FTIR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Woods, Solomon; Neira, Jorge; Tomlin, Nathan; Lehman, John

    We have developed and calibrated planar electrical-substitution bolometers which employ absorbers made from vertically-aligned carbon nanotube arrays. The nearly complete absorption of light by the carbon nanotubes from the visible range to the far-infrared can be exploited to enable a device with read-out in native units equivalent to optical power. Operated at cryogenic temperatures near 4 K, these infrared detectors are designed to have time constant near 10 ms and a noise floor of about 10 pW. Built upon a micro-machined silicon platform, each device has an integrated heater and thermometer, either a carbon nanotube thermistor or superconducting transition edge sensor, for temperature control. We are optimizing temperature-controlled measurement techniques to enable high resolution spectral calibrations using these devices with a Fourier-transform spectrometer.

  1. Absolute flux calibration of optical spectrophotometric standard stars

    NASA Technical Reports Server (NTRS)

    Colina, Luis; Bohlin, Ralph C.

    1994-01-01

    A method based on Landolt photometry in B and V is developed to correct for a wavelength independent offset of the absolute flux level of optical spectrophotometric standards. The method is based on synthetic photometry techniques in B and V and is accurate to approximately 1%. The correction method is verified by Hubble Space Telescope Faint Object Spectrograph absolute fluxes for five calibration stars, which agree with Landolt photometry to 0.5% in B and V.

  2. Youth in Recovery

    ERIC Educational Resources Information Center

    de Miranda, John; Williams, Greg

    2011-01-01

    Young people are entering long-term recovery probably in greater numbers than ever before. A key word here is "probably" because we know precious little about the phenomenon of young people who recover from alcohol and drug addition. This article is a preliminary exploration of youth in recovery. It reviews several types of recovery support…

  3. What Is "No Recovery?"

    ERIC Educational Resources Information Center

    Kauffman, Jeffrey

    2008-01-01

    Thanatologists, as Balk recently commented (Balk, 2004), have been saying that there is no recovery from bereavement, or that we should not speak of bereavement as leading to a recovery. The term recovery has a high level of plasticity and can be shaped to fit diverse meanings, including contradictory meanings. We will sort our way through some of…

  4. Enhanced oil recovery update

    SciTech Connect

    Smith, R.V

    1989-03-01

    Technology continues to grow in the realm of enhanced oil recovery. Since 1950 several processes have proven economic for oil recovery. Others are still in their infancy and must be custom designed for each reservoir. This paper gives a general overview of these processes. The author focuses on the latest technology and the outlook for enhanced oil recovery operations.

  5. Recovery in the 21st Century: From Shame to Strength.

    PubMed

    Gumbley, Stephen J

    2016-01-01

    Through the "war on drugs," the just-say-no campaign, and into the early years of this century, the overarching approach to substance use disorders (SUDs) called for a single outcome (abstinence) and a single methodology (spiritual connection with a higher power) as the remedy for SUDs. Those who did not become permanently abstinent or rejected the spiritual approach were seen as "not ready" or "in denial."A seismic shift in thinking about "addiction" and "recovery" began in earnest in the 1990s. In 2005, the Substance Abuse and Mental Health Services Administration brought together leaders of the treatment and recovery field for the historic National Summit on Recovery to develop broad-based consensus on guiding principles for recovery and elements of recovery-oriented systems of care.Major changes associated with the recovery-oriented approach include viewing SUDs as chronic, rather than acute, problems that require long-term support and focusing on recovery management rather than disease management. Complete abstinence is not an absolute requirement for wellness for all persons with SUDs. There are "many pathways to recovery," not only the 12-Step approach (White & Kurtz, 2006). Sustained recovery is self-directed and requires personal choices, the support of peers and allies, and community reinforcement as well as a strength-based approach and the use of research-based interventions. This Perspectives column addresses the historical context for the transformation toward a recovery-oriented system of care, highlights federal efforts to promote recovery-oriented approaches, and describes recovery-oriented terminology to reduce misconceptions, labeling, and stigmatization and promote recovery for individuals, families, and communities.

  6. Absolute quantum yield measurement of powder samples.

    PubMed

    Moreno, Luis A

    2012-05-12

    Measurement of fluorescence quantum yield has become an important tool in the search for new solutions in the development, evaluation, quality control and research of illumination, AV equipment, organic EL material, films, filters and fluorescent probes for bio-industry. Quantum yield is calculated as the ratio of the number of photons absorbed, to the number of photons emitted by a material. The higher the quantum yield, the better the efficiency of the fluorescent material. For the measurements featured in this video, we will use the Hitachi F-7000 fluorescence spectrophotometer equipped with the Quantum Yield measuring accessory and Report Generator program. All the information provided applies to this system. Measurement of quantum yield in powder samples is performed following these steps: 1. Generation of instrument correction factors for the excitation and emission monochromators. This is an important requirement for the correct measurement of quantum yield. It has been performed in advance for the full measurement range of the instrument and will not be shown in this video due to time limitations. 2. Measurement of integrating sphere correction factors. The purpose of this step is to take into consideration reflectivity characteristics of the integrating sphere used for the measurements. 3. Reference and Sample measurement using direct excitation and indirect excitation. 4. Quantum Yield calculation using Direct and Indirect excitation. Direct excitation is when the sample is facing directly the excitation beam, which would be the normal measurement setup. However, because we use an integrating sphere, a portion of the emitted photons resulting from the sample fluorescence are reflected by the integrating sphere and will re-excite the sample, so we need to take into consideration indirect excitation. This is accomplished by measuring the sample placed in the port facing the emission monochromator, calculating indirect quantum yield and correcting the direct

  7. Prospects for the Moon as an SI-Traceable Absolute Spectroradiometric Standard for Satellite Remote Sensing

    NASA Astrophysics Data System (ADS)

    Cramer, C. E.; Stone, T. C.; Lykke, K.; Woodward, J. T.

    2015-12-01

    The Earth's Moon has many physical properties that make it suitable for use as a reference light source for radiometric calibration of remote sensing satellite instruments. Lunar calibration has been successfully applied to many imagers in orbit, including both MODIS instruments and NPP-VIIRS, using the USGS ROLO model to predict the reference exoatmospheric lunar irradiance. Sensor response trending was developed for SeaWIFS with a relative accuracy better than 0.1 % per year with lunar calibration techniques. However, the Moon rarely is used as an absolute reference for on-orbit calibration, primarily due to uncertainties in the ROLO model absolute scale of 5%-10%. But this limitation lies only with the models - the Moon itself is radiometrically stable, and development of a high-accuracy absolute lunar reference is inherently feasible. A program has been undertaken by NIST to collect absolute measurements of the lunar spectral irradiance with absolute accuracy <1 % (k=2), traceable to SI radiometric units. Initial Moon observations were acquired from the Whipple Observatory on Mt. Hopkins, Arizona, elevation 2367 meters, with continuous spectral coverage from 380 nm to 1040 nm at ~3 nm resolution. The lunar spectrometer acquired calibration measurements several times each observing night by pointing to a calibrated integrating sphere source. The lunar spectral irradiance at the top of the atmosphere was derived from a time series of ground-based measurements by a Langley analysis that incorporated measured atmospheric conditions and ROLO model predictions for the change in irradiance resulting from the changing Sun-Moon-Observer geometry throughout each night. Two nights were selected for further study. An extensive error analysis, which includes instrument calibration and atmospheric correction terms, shows a combined standard uncertainty under 1 % over most of the spectral range. Comparison of these two nights' spectral irradiance measurements with predictions

  8. Absolute versus convective helical magnetorotational instability in a Taylor-Couette flow.

    PubMed

    Priede, Jānis; Gerbeth, Gunter

    2009-04-01

    We analyze numerically the magnetorotational instability of a Taylor-Couette flow in a helical magnetic field [helical magnetorotational instability (HMRI)] using the inductionless approximation defined by a zero magnetic Prandtl number (Pr_{m}=0) . The Chebyshev collocation method is used to calculate the eigenvalue spectrum for small-amplitude perturbations. First, we carry out a detailed conventional linear stability analysis with respect to perturbations in the form of Fourier modes that corresponds to the convective instability which is not in general self-sustained. The helical magnetic field is found to extend the instability to a relatively narrow range beyond its purely hydrodynamic limit defined by the Rayleigh line. There is not only a lower critical threshold at which HMRI appears but also an upper one at which it disappears again. The latter distinguishes the HMRI from a magnetically modified Taylor vortex flow. Second, we find an absolute instability threshold as well. In the hydrodynamically unstable regime before the Rayleigh line, the threshold of absolute instability is just slightly above the convective one although the critical wavelength of the former is noticeably shorter than that of the latter. Beyond the Rayleigh line the lower threshold of absolute instability rises significantly above the corresponding convective one while the upper one descends significantly below its convective counterpart. As a result, the extension of the absolute HMRI beyond the Rayleigh line is considerably shorter than that of the convective instability. The absolute HMRI is supposed to be self-sustained and, thus, experimentally observable without any external excitation in a system of sufficiently large axial extension.

  9. Absolute density measurements in the middle atmosphere

    NASA Astrophysics Data System (ADS)

    Rapp, M.; Gumbel, J.; Lübken, F.-J.

    2001-05-01

    In the last ten years a total of 25 sounding rockets employing ionization gauges have been launched at high latitudes ( ~ 70° N) to measure total atmospheric density and its small scale fluctuations in an altitude range between 70 and 110 km. While the determination of small scale fluctuations is unambiguous, the total density analysis has been complicated in the past by aerodynamical disturbances leading to densities inside the sensor which are enhanced compared to atmospheric values. Here, we present the results of both Monte Carlo simulations and wind tunnel measurements to quantify this aerodynamical effect. The comparison of the resulting ‘ram-factor’ profiles with empirically determined density ratios of ionization gauge measurements and falling sphere measurements provides excellent agreement. This demonstrates both the need, but also the possibility, to correct aerodynamical influences on measurements from sounding rockets. We have determined a total of 20 density profiles of the mesosphere-lower-thermosphere (MLT) region. Grouping these profiles according to season, a listing of mean density profiles is included in the paper. A comparison with density profiles taken from the reference atmospheres CIRA86 and MSIS90 results in differences of up to 40%. This reflects that current reference atmospheres are a significant potential error source for the determination of mixing ratios of, for example, trace gas constituents in the MLT region.

  10. Absolute Position Encoders With Vertical Image Binning

    NASA Technical Reports Server (NTRS)

    Leviton, Douglas B.

    2005-01-01

    Improved optoelectronic patternrecognition encoders that measure rotary and linear 1-dimensional positions at conversion rates (numbers of readings per unit time) exceeding 20 kHz have been invented. Heretofore, optoelectronic pattern-recognition absoluteposition encoders have been limited to conversion rates <15 Hz -- too low for emerging industrial applications in which conversion rates ranging from 1 kHz to as much as 100 kHz are required. The high conversion rates of the improved encoders are made possible, in part, by use of vertically compressible or binnable (as described below) scale patterns in combination with modified readout sequences of the image sensors [charge-coupled devices (CCDs)] used to read the scale patterns. The modified readout sequences and the processing of the images thus read out are amenable to implementation by use of modern, high-speed, ultra-compact microprocessors and digital signal processors or field-programmable gate arrays. This combination of improvements makes it possible to greatly increase conversion rates through substantial reductions in all three components of conversion time: exposure time, image-readout time, and image-processing time.

  11. Absolute Measurements of Methane on Mars

    NASA Astrophysics Data System (ADS)

    Mumma, M. J.; Villanueva, G. L.; Novak, R. E.

    2009-12-01

    On Mars, methane has been sought for nearly 40 years because of its potential biological significance, but it was detected only recently [1-5]. Its distribution on the planet is found to be patchy and to vary with time [1,2,4,5], suggesting that methane is released from the subsurface in localized areas, and is then rapidly destroyed [1,6]. To date, we have detected four spectral lines of the CH4 ν3 band near 3.3 µm, along with H2O and HDO [1,5,7]. Our observational campaign resumed in August 2009, now using CRIRES/VLT along with CSHELL/NASA-IRTF and NIRSPEC/Keck. Our study of methane on Mars now extends over four Mars years, sampling a wide range of seasons (Ls) with significant spatial coverage. For a typical observation, the spectrometer's long entrance slit is held to the central meridian of Mars while spectra are taken sequentially in time. For each snapshot in time, spectra are acquired simultaneously at contiguous positions along the entire slit length, sampling latitudinally resolved spatial footprints on the planet (35 footprints along the N-S meridian, when Mars is 7 arc-sec in diameter). Successive longitudes are presented as the planet rotates, and the combination then permits partial mapping of the planet. In Northern summer 2003, methane was notably enriched over several localized areas: A (East of Arabia Terra, where water vapor is also greatly enriched), B1 (Nili Fossae), and B2 (southeast quadrant of Syrtis Major) [1,5]. The combined plume contained ~19,000 metric tons of methane, and the estimated source strength (≥ 0.6 kilogram per second) was comparable to that of the massive hydrocarbon seep at Coal Oil Point in Santa Barbara, California. By vernal equinox about one-half the released methane had been lost. When averaged over latitude and season, spectral data from Mars Express also imply an enhancement in methane in this longitude range [4]. The most compelling results from these searches are: 1) the unambiguous detection of multiple

  12. Design of piezoresistive MEMS absolute pressure sensor

    NASA Astrophysics Data System (ADS)

    Kumar, S.; Pant, B. D.

    2012-10-01

    MEMS pressure sensors are one of the most widely commercialized microsensors in the MEMS industry. They have a plethora of applications in various fields including the automobile, space, biomedical, aviation and military sectors. One of the simplest and most efficient methods in MEMS pressure sensors for measuring pressure is to use the phenomenon of piezoresistance. The piezoresistive effect causes change in the resistance of certain doped materials when they are subjected to stress, as a result of energy band deformation. Piezoresistive pressure sensors consist of piezoresistors placed over a thin diaphragm which deflects under the action of the pressure to be measured. The result of this deflection causes the piezoresistors to change their resistance due to the stress experienced by them. The change is converted into electrical signals and measured in order to find the value of applied pressure. In this work, a high range (30 Bar) pressure sensor is designed based on the principle of piezoresistivity. The inaccuracies in the analytical models that are generally used to model the pressure sensor diaphragm have also been analysed. Thus, the Finite Element Method (FEM) is adopted to optimize the pressure sensor for parameters like sensitivity and linearity. This is achieved by choosing the proper shape of piezoresistor, thickness of diaphragm and the position of the piezoresistor on the pressure sensor diaphragm. For the square diaphragm, sensitivity of 5.18 mV/V/Bar and a linearity error of 0.02% are obtained. For the circular diaphragm, sensitivity of 3.69 mV/V/Bar and a linearity error of 0.011% are obtained.

  13. Micellar slug for oil recovery

    SciTech Connect

    Morita, H.; Kawada, Y.; Yamada, J. I.

    1985-07-30

    A micellar slug for use in the recovery of oil, the slug containing a hydrocarbon, an aqueous medium, a surfactant, and a cosurfactant. The surfactant contains as an essential component an internal olefin sulfonate. This micellar slug has an excellent capability for decreasing an interfacial tension between oil and water and an excellent salinity tolerance and hard-water resistance. Furthermore, the micro-emulsion can be formed from this micellar slug in a wide composition range.

  14. Battleground Energy Recovery Project

    SciTech Connect

    Bullock, Daniel

    2011-12-31

    In October 2009, the project partners began a 36-month effort to develop an innovative, commercial-scale demonstration project incorporating state-of-the-art waste heat recovery technology at Clean Harbors, Inc., a large hazardous waste incinerator site located in Deer Park, Texas. With financial support provided by the U.S. Department of Energy, the Battleground Energy Recovery Project was launched to advance waste heat recovery solutions into the hazardous waste incineration market, an area that has seen little adoption of heat recovery in the United States. The goal of the project was to accelerate the use of energy-efficient, waste heat recovery technology as an alternative means to produce steam for industrial processes. The project had three main engineering and business objectives: Prove Feasibility of Waste Heat Recovery Technology at a Hazardous Waste Incinerator Complex; Provide Low-cost Steam to a Major Polypropylene Plant Using Waste Heat; and Create a Showcase Waste Heat Recovery Demonstration Project.

  15. Absolute differential cross sections for electron capture and loss by kilo-electron-volt hydrogen atoms

    NASA Technical Reports Server (NTRS)

    Smith, G. J.; Johnson, L. K.; Gao, R. S.; Smith, K. A.; Stebbings, R. F.

    1991-01-01

    This paper reports measurements of absolute differential cross sections for electron capture and loss for fast hydrogen atoms incident on H2, N2, O2, Ar, and He. Cross sections have been determined in the 2.0- to 5.0-keV energy range over the laboratory angular range 0.02-2 deg, with an angular, resolution of 0.02 deg. The high angular resolution allows observation of the structure at small angles in some of the cross sections. Comparison of the present results with those of other authors generally shows very good agreement.

  16. Development of a graphite probe calorimeter for absolute clinical dosimetry

    SciTech Connect

    Renaud, James; Seuntjens, Jan; Sarfehnia, Arman; Marchington, David

    2013-02-15

    The aim of this work is to present the numerical design optimization, construction, and experimental proof of concept of a graphite probe calorimeter (GPC) conceived for dose measurement in the clinical environment (U.S. provisional patent 61/652,540). A finite element method (FEM) based numerical heat transfer study was conducted using a commercial software package to explore the feasibility of the GPC and to optimize the shape, dimensions, and materials used in its design. A functioning prototype was constructed inhouse and used to perform dose to water measurements under a 6 MV photon beam at 400 and 1000 MU/min, in a thermally insulated water phantom. Heat loss correction factors were determined using FEM analysis while the radiation field perturbation and the graphite to water absorbed dose conversion factors were calculated using Monte Carlo simulations. The difference in the average measured dose to water for the 400 and 1000 MU/min runs using the TG-51 protocol and the GPC was 0.2% and 1.2%, respectively. Heat loss correction factors ranged from 1.001 to 1.002, while the product of the perturbation and dose conversion factors was calculated to be 1.130. The combined relative uncertainty was estimated to be 1.4%, with the largest contributors being the specific heat capacity of the graphite (type B, 0.8%) and the reproducibility, defined as the standard deviation of the mean measured dose (type A, 0.6%). By establishing the feasibility of using the GPC as a practical clinical absolute photon dosimeter, this work lays the foundation for further device enhancements, including the development of an isothermal mode of operation and an overall miniaturization, making it potentially suitable for use in small and composite radiation fields. It is anticipated that, through the incorporation of isothermal stabilization provided by temperature controllers, a subpercent overall uncertainty will be achieved.

  17. The absolute magnitude distribution of cold classical Kuiper belt objects

    NASA Astrophysics Data System (ADS)

    Petit, Jean-Marc; Bannister, Michele T.; Alexandersen, Mike; Chen, Ying-Tung; Gladman, Brett; Gwyn, Stephen; Kavelaars, JJ; Volk, Kathryn

    2016-10-01

    We report measurements of the low inclination component of the main Kuiper Belt showing a size freqency distribution very steep for sizes larger than H_r ~ 6.5-7.0 and then a flattening to shallower slope that is still steeper than the collisional equilibrium slope.The Outer Solar System Origins Survey (OSSOS) is ongoing and is expected to detect over 500 TNOs in a precisely calibrated and characterized survey. Combining our current sample with CFEPS and the Alexandersen et al. (2015) survey, we analyse a sample of ~180 low inclination main classical (cold) TNOs, with absolute magnitude H_r (SDSS r' like flter) in the range 5 to 8.8. We confirm that the H_r distribution can be approximated by an exponential with a very steep slope (>1) at the bright end of the distribution, as has been recognized long ago. A transition to a shallower slope occurs around H_r ~ 6.5 - 7.0, an H_r mag identified by Fraster et al (2014). Faintward of this transition, we find a second exponential to be a good approximation at least until H_r ~ 8.5, but with a slope significantly steeper than the one proposed by Fraser et al. (2014) or even the collisional equilibrium value of 0.5.The transition in the cold TNO H_r distribution thus appears to occur at larger sizes than is observed in the high inclination main classical (hot) belt, an important indicator of a different cosmogony for these two sub-components of the main classical Kuiper belt. Given the largish slope faintward of the transition, the cold population with ~100 km diameter may dominate the mass of the Kuiper belt in the 40 AU < a < 47 au region.

  18. Absolute Measurements Of Methane On Mars: The Current Status.

    NASA Astrophysics Data System (ADS)

    Mumma, Michael J.; Villanueva, G. L.; Novak, R. E.; Hewagama, T.; Bonev, B. P.; DiSanti, M. A.; Smith, M. D.

    2008-09-01

    Our study of methane on Mars now extends over three Mars years, sampling a wide range of seasons with significant spatial coverage. Three spectrometer-telescope combinations were used. With the spectrometer slit oriented North-South on the planet, we obtain simultaneous spectra at latitudes along the central meridian. Successive longitudes are sampled as the planet rotates, and the combination then permits partial mapping of the planet. We earlier reported differential detections of methane and water on Mars. Here, we present absolute extractions of methane, based on improved analytical procedures developed since 2005. We now identify and correct instrumental effects such as variations in resolving power along the slit, second-order optical fringe removal, and correction of (minor) internal scattered light. We synthesize the fully-resolved terrestrial transmittance spectrum, convolve it to the instrumental resolution, and subtract it from the measured Mars-Earth spectrum. Fraunhofer lines are removed from the residual Mars spectra along with spectral lines of water and of (newly identified by us) carbon dioxide isotopomers. The residuals are then inspected for signatures of methane and other possible trace constituents such as HDO and H2O (Villanueva et al., this Conference). On certain dates, the residual spectra display spectral lines at the Doppler-shifted positions expected for methane on Mars. The positive indications favor certain seasons (e.g., Ls = 121° & 155°) and locations. Mixing ratios derived from those residuals (up to 60 ppb) greatly exceed upper limits obtained at other seasons (e.g., < 3ppb at Ls = 17°) these variations could be consistent with episodic release. The CH4 spatial extent requires transport over large distances (coupled with eddy diffusion), and destruction lifetimes of order one year. Details will be presented and implications will be discussed. This work was supported by NASA's Astrobiology, Planetary Astronomy, and Postdoctoral

  19. Characterizing flow in oil reservoir rock using SPH: absolute permeability

    NASA Astrophysics Data System (ADS)

    Holmes, David W.; Williams, John R.; Tilke, Peter; Leonardi, Christopher R.

    2016-04-01

    In this paper, a three-dimensional smooth particle hydrodynamics (SPH) simulator for modeling grain scale fluid flow in porous rock is presented. The versatility of the SPH method has driven its use in increasingly complex areas of flow analysis, including flows related to permeable rock for both groundwater and petroleum reservoir research. While previous approaches to such problems using SPH have involved the use of idealized pore geometries (cylinder/sphere packs etc), in this paper we detail the characterization of flow in models with geometries taken from 3D X-ray microtomographic imaging of actual porous rock; specifically 25.12 % porosity dolomite. This particular rock type has been well characterized experimentally and described in the literature, thus providing a practical `real world' means of verification of SPH that will be key to its acceptance by industry as a viable alternative to traditional reservoir modeling tools. The true advantages of SPH are realized when adding the complexity of multiple fluid phases, however, the accuracy of SPH for single phase flow is, as yet, under developed in the literature and will be the primary focus of this paper. Flow in reservoir rock will typically occur in the range of low Reynolds numbers, making the enforcement of no-slip boundary conditions an important factor in simulation. To this end, we detail the development of a new, robust, and numerically efficient method for implementing no-slip boundary conditions in SPH that can handle the degree of complexity of boundary surfaces, characteristic of an actual permeable rock sample. A study of the effect of particle density is carried out and simulation results for absolute permeability are presented and compared to those from experimentation showing good agreement and validating the method for such applications.

  20. a Portable Apparatus for Absolute Measurements of the Earth's Gravity.

    NASA Astrophysics Data System (ADS)

    Zumberge, Mark Andrew

    We have developed a new, portable apparatus for making absolute measurements of the acceleration due to the earth's gravity. We use the method of interferometrically determining the acceleration of a freely falling corner -cube prism. The falling object is surrounded by a chamber which is driven vertically inside a fixed vacuum chamber. This falling chamber is servoed to track the falling corner -cube to shield it from drag due to background gas. In addition, the drag-free falling chamber removes the need for a magnetic release, shields the falling object from electrostatic forces, and provides a means of both gently arresting the falling object and quickly returning it to its start position, to allow rapid acquisition of data. A synthesized long period isolation device reduces the noise due to seismic oscillations. A new type of Zeeman laser is used as the light source in the interferometer, and is compared with the wavelength of an iodine stabilized laser. The times of occurrence of 45 interference fringes are measured to within 0.2 nsec over a 20 cm drop and are fit to a quadratic by an on-line minicomputer. 150 drops can be made in ten minutes resulting in a value of g having a precision of 3 to 6 parts in 10('9). Systematic errors have been determined to be less than 5 parts in 10('9) through extensive tests. Three months of gravity data have been obtained with a reproducibility ranging from 5 to 10 parts in 10('9). The apparatus has been designed to be easily portable. Field measurements are planned for the immediate future. An accuracy of 6 parts in 10('9) corresponds to a height sensitivity of 2 cm. Vertical motions in the earth's crust and tectonic density changes that may precede earthquakes are to be investigated using this apparatus.

  1. Absolute Timing of the Crab Pulsar with RXTE

    NASA Technical Reports Server (NTRS)

    Rots, Arnold H.; Jahoda, Keith; Lyne, Andrew G.

    2004-01-01

    We have monitored the phase of the main X-ray pulse of the Crab pulsar with the Rossi X-ray Timing Explorer (RXTE) for almost eight years, since the start of the mission in January 1996. The absolute time of RXTE's clock is sufficiently accurate to allow this phase to be compared directly with the radio profile. Our monitoring observations of the pulsar took place bi-weekly (during the periods when it was at least 30 degrees from the Sun) and we correlated the data with radio timing ephemerides derived from observations made at Jodrell Bank. We have determined the phase of the X-ray main pulse for each observation with a typical error in the individual data points of 50 microseconds. The total ensemble is consistent with a phase that is constant over the monitoring period, with the X-ray pulse leading the radio pulse by 0.01025 plus or minus 0.00120 period in phase, or 344 plus or minus 40 microseconds in time. The error estimate is dominated by a systematic error of 40 microseconds, most likely constant, arising from uncertainties in the instrumental calibration of the radio data. The statistical error is 0.00015 period, or 5 microseconds. The separation of the main pulse and interpulse appears to be unchanging at time scales of a year or less, with an average value of 0.4001 plus or minus 0.0002 period. There is no apparent variation in these values with energy over the 2-30 keV range. The lag between the radio and X-ray pulses ma be constant in phase (i.e., rotational in nature) or constant in time (i.e., due to a pathlength difference). We are not (yet) able to distinguish between these two interpretations.

  2. A new method to calibrate the absolute sensitivity of a soft X-ray streak camera

    NASA Astrophysics Data System (ADS)

    Yu, Jian; Liu, Shenye; Li, Jin; Yang, Zhiwen; Chen, Ming; Guo, Luting; Yao, Li; Xiao, Shali

    2016-12-01

    In this paper, we introduce a new method to calibrate the absolute sensitivity of a soft X-ray streak camera (SXRSC). The calibrations are done in the static mode by using a small laser-produced X-ray source. A calibrated X-ray CCD is used as a secondary standard detector to monitor the X-ray source intensity. In addition, two sets of holographic flat-field grating spectrometers are chosen as the spectral discrimination systems of the SXRSC and the X-ray CCD. The absolute sensitivity of the SXRSC is obtained by comparing the signal counts of the SXRSC to the output counts of the X-ray CCD. Results show that the calibrated spectrum covers the range from 200 eV to 1040 eV. The change of the absolute sensitivity in the vicinity of the K-edge of the carbon can also be clearly seen. The experimental values agree with the calculated values to within 29% error. Compared with previous calibration methods, the proposed method has several advantages: a wide spectral range, high accuracy, and simple data processing. Our calibration results can be used to make quantitative X-ray flux measurements in laser fusion research.

  3. Absolute and comparative subcutaneous bioavailability of ardeparin sodium, a low molecular weight heparin.

    PubMed

    Troy, S; Fruncillo, R; Ozawa, T; Mammen, E; Holloway, S; Chiang, S

    1997-08-01

    Ardeparin sodium (Normiflo, Wyeth-Ayerst) is a low molecular weight heparin undergoing clinical evaluation as an antithrombotic agent. The objective of this study was to evaluate the absolute and comparative bioavailability of ardeparin following subcutaneous administration of three different formulations [two formulations of ardeparin at 10,000 anti-factor Xa (aXa) U/ml, but with different preservatives, and a 20,000 aXa U/ml formulation]. The study was conducted using a randomized 4-period crossover design (three subcutaneous treatments and one intravenous treatment) in 24 healthy subjects, and the pharmacokinetics of ardeparin were characterized by plasma anti-factor IIa (aIIa) and anti-factor Xa (aXa) activities. The mean absolute bioavailability of ardeparin based on aIIa activity ranged from 62% to 64% and the mean absolute bioavailability based on aXa activity ranged from 88% to 97%. Based on bioequivalence testing criteria, the three ardeparin formulations were bioequivalent.

  4. Absolute calibration of 10Be AMS standards

    NASA Astrophysics Data System (ADS)

    Nishiizumi, Kunihiko; Imamura, Mineo; Caffee, Marc W.; Southon, John R.; Finkel, Robert C.; McAninch, Jeffrey

    2007-05-01

    The increased detection sensitivity offered by AMS has dramatically expanded the utility of 10Be. As these applications become more sophisticated attention has focused on the accuracy of the 10Be standards used to calibrate the AMS measurements. In recent years it has become apparent that there is a discrepancy between two of the most widely used 10Be AMS standards, the ICN 10Be standard and the NIST 10Be standard. The ICN (ICN Chemical & Radioisotope Division) 10Be AMS standard was calibrated by radioactive decay counting. Dilutions, ranging from 5 × 10 -13 to 3 × 10 -1110Be/Be, have been prepared and are extensively used in many AMS laboratories. The NIST 10Be standard, prepared at the National Institute of Standards and Technology (NIST), is calibrated by mass spectrometric isotope ratio measurements. To provide an independent calibration of the 10Be standards we implanted a known number of 10Be atoms in both Si detectors and Be foil targets. The 10Be concentrations in these targets were measured by AMS. The results were compared with both the ICN and NIST AMS standards. Our 10Be measurements indicate that the 10Be/ 9Be isotopic ratio of the ICN AMS standard, which is based on a 10Be half-life of 1.5 × 10 6 yr, is 1.106 ± 0.012 times lower than the nominal value. Since the decay rate of the ICN standard is well determined, the decrease in 10Be/ 9Be ratio requires that the 10Be half-life be reduced to (1.36 ± 0.07) × 10 6 yr. The quoted uncertainty includes a ±5% uncertainty in the activity measurement carried out by ICN. In a similar fashion, we determined that the value of the NIST 10Be standard (SRM4325) is (2.79 ± 0.03) × 10 -1110Be/ 9Be, within error of the certified value of (2.68 ± 0.14) × 10 -11. The Lawrence Livermore National Laboratory (LLNL) internal standards were also included in this study. We conclude that the 9Be(n, γ) neutron cross section is 7.8 ± 0.23 mb, without taking into account the uncertainty in the neutron irradiation.

  5. Auditory working memory predicts individual differences in absolute pitch learning.

    PubMed

    Van Hedger, Stephen C; Heald, Shannon L M; Koch, Rachelle; Nusbaum, Howard C

    2015-07-01

    Absolute pitch (AP) is typically defined as the ability to label an isolated tone as a musical note in the absence of a reference tone. At first glance the acquisition of AP note categories seems like a perceptual learning task, since individuals must assign a category label to a stimulus based on a single perceptual dimension (pitch) while ignoring other perceptual dimensions (e.g., loudness, octave, instrument). AP, however, is rarely discussed in terms of domain-general perceptual learning mechanisms. This is because AP is typically assumed to depend on a critical period of development, in which early exposure to pitches and musical labels is thought to be necessary for the development of AP precluding the possibility of adult acquisition of AP. Despite this view of AP, several previous studies have found evidence that absolute pitch category learning is, to an extent, trainable in a post-critical period adult population, even if the performance typically achieved by this population is below the performance of a "true" AP possessor. The current studies attempt to understand the individual differences in learning to categorize notes using absolute pitch cues by testing a specific prediction regarding cognitive capacity related to categorization - to what extent does an individual's general auditory working memory capacity (WMC) predict the success of absolute pitch category acquisition. Since WMC has been shown to predict performance on a wide variety of other perceptual and category learning tasks, we predict that individuals with higher WMC should be better at learning absolute pitch note categories than individuals with lower WMC. Across two studies, we demonstrate that auditory WMC predicts the efficacy of learning absolute pitch note categories. These results suggest that a higher general auditory WMC might underlie the formation of absolute pitch categories for post-critical period adults. Implications for understanding the mechanisms that underlie the

  6. Experimental feasibility of the airborne measurement of absolute oil fluorescence spectral conversion efficiency

    NASA Technical Reports Server (NTRS)

    Hoge, F. E.; Swift, R. N.

    1983-01-01

    Airborne lidar oil spill experiments carried out to determine the practicability of the AOFSCE (absolute oil fluorescence spectral conversion efficiency) computational model are described. The results reveal that the model is suitable over a considerable range of oil film thicknesses provided the fluorescence efficiency of the oil does not approach the minimum detection sensitivity limitations of the lidar system. Separate airborne lidar experiments to demonstrate measurement of the water column Raman conversion efficiency are also conducted to ascertain the ultimate feasibility of converting such relative oil fluorescence to absolute values. Whereas the AOFSCE model is seen as highly promising, further airborne water column Raman conversion efficiency experiments with improved temporal or depth-resolved waveform calibration and software deconvolution techniques are thought necessary for a final determination of suitability.

  7. Absolute terahertz power measurement of a time-domain spectroscopy system.

    PubMed

    Globisch, Björn; Dietz, Roman J B; Göbel, Thorsten; Schell, Martin; Bohmeyer, Werner; Müller, Ralf; Steiger, Andreas

    2015-08-01

    We report on, to the best of our knowledge, the first absolute terahertz (THz) power measurement of a photoconductive emitter developed for time-domain spectroscopy (TDS). The broadband THz radiation emitted by a photoconductor optimized for the excitation with 1550-nm femtosecond pulses was measured by an ultrathin pyroelectric thin-film (UPTF) detector. We show that this detector has a spectrally flat transmission between 100 GHz and 5 THz due to special conductive electrodes on both sides of the UPTF. Its flat responsivity allows the calibration with a standard detector that is traceable to the International System of Units (SI) at the THz detector calibration facility of PTB. Absolute THz power in the range from below 1 μW to above 0.1 mW was measured.

  8. MARQUIS: A Multiplex Method for Absolute Quantification of Peptides and Post-Translational Modifications

    PubMed Central

    Curran, Timothy G; Zhang, Yi; Ma, Daniel J.; Sarkaria, Jann N.; White, Forest M

    2014-01-01

    Absolute quantification of protein expression and post-translational modifications by mass spectrometry has been challenging due to a variety of factors, including the potentially large dynamic range of phosphorylation response. To address these issues, we have developed MARQUIS — Multiplex Absolute Regressed Quantification with Internal Standards — a novel mass spectrometry-based approach using a combination of isobaric tags and heavy-labeled standard peptides to construct internal standard curves for peptides derived from key nodes in signal transduction networks. We applied MARQUIS to quantify phosphorylation dynamics within the EGFR network at multiple time points following stimulation with several ligands, enabling a quantitative comparison of EGFR phosphorylation sites and demonstrating that receptor phosphorylation is qualitatively similar but quantitatively distinct for each EGFR ligand tested. MARQUIS was also applied to quantify the effect of EGFR kinase inhibition on glioblastoma patient derived xenografts. MARQUIS is a versatile method, broadly applicable and extendable to multiple mass spectrometric platforms. PMID:25581283

  9. Absolute distance measurement using frequency-sweeping heterodyne interferometer calibrated by an optical frequency comb.

    PubMed

    Wu, Xuejian; Wei, Haoyun; Zhang, Hongyuan; Ren, Libing; Li, Yan; Zhang, Jitao

    2013-04-01

    We present a frequency-sweeping heterodyne interferometer to measure an absolute distance based on a frequency-tunable diode laser calibrated by an optical frequency comb (OFC) and an interferometric phase measurement system. The laser frequency-sweeping process is calibrated by the OFC within a range of 200 GHz and an accuracy of 1.3 kHz, which brings about a precise temporal synthetic wavelength of 1.499 mm. The interferometric phase measurement system consisting of the analog signal processing circuit and the digital phase meter achieves a phase difference resolution better than 0.1 deg. As the laser frequency is sweeping, the absolute distance can be determined by measuring the phase difference variation of the interference signals. In the laboratory condition, our experimental scheme realizes micrometer accuracy over meter distance.

  10. Spectrophotometry of Wolf-Rayet stars - Intrinsic colors and absolute magnitudes

    NASA Technical Reports Server (NTRS)

    Torres-Dodgen, Ana V.; Massey, Philip

    1988-01-01

    Absolute spectrophotometry of about 10-A resolution in the range 3400-7300 A have been obtained for southern Wolf-Rayet stars, and line-free magnitudes and colors have been constructed. The emission-line contamination in the narrow-band ubvr systems of Westerlund (1966) and Smith (1968) is shown to be small for most WN stars, but to be quite significant for WC stars. It is suggested that the more severe differences in intrinsic color from star to star of the same spectral subtype noted at shorter wavelengths are due to differences in atmospheric extent. True continuum absolute visual magnitudes and intrinsic colors are obtained for the LMC WR stars. The most visually luminous WN6-WN7 stars are found to be located in the core of the 30 Doradus region.

  11. Exact Theory of Optical Tweezers and Its Application to Absolute Calibration.

    PubMed

    Dutra, Rafael S; Viana, Nathan B; Neto, Paulo A Maia; Nussenzveig, H Moysés

    2017-01-01

    Optical tweezers have become a powerful tool for basic and applied research in cell biology. Here, we describe an experimentally verified theory for the trapping forces generated by optical tweezers based on first principles that allows absolute calibration. For pedagogical reasons, the steps that led to the development of the theory over the past 15 years are outlined. The results are applicable to a broad range of microsphere radii, from the Rayleigh regime to the ray optics one, for different polarizations and trapping heights, including all commonly employed parameter domains. Protocols for implementing absolute calibration are given, explaining how to measure all required experimental parameters, and including a link to an applet for stiffness calculations.

  12. A Liquid-Helium-Cooled Absolute Reference Cold Load forLong-Wavelength Radiometric Calibration

    SciTech Connect

    Bensadoun, M.; Witebsky, C.; Smoot, George F.; De Amici,Giovanni; Kogut, A.; Levin, S.

    1990-05-01

    We describe a large (78-cm) diameter liquid-helium-cooled black-body absolute reference cold load for the calibration of microwave radiometers. The load provides an absolute calibration near the liquid helium (LHe) boiling point, accurate to better than 30 mK for wavelengths from 2.5 to 25 cm (12-1.2 GHz). The emission (from non-LHe temperature parts of the cold load) and reflection are small and well determined. Total corrections to the LHe boiling point temperature are {le} 50 mK over the operating range. This cold load has been used at several wavelengths at the South Pole and at the White Mountain Research Station. In operation, the average LHe loss rate was {le} 4.4 l/hr. Design considerations, radiometric and thermal performance and operational aspects are discussed. A comparison with other LHe-cooled reference loads including the predecessor of this cold load is given.

  13. Calibration of the Reflected Solar Instrument for the Climate Absolute Radiance and Refractivity Observatory

    NASA Technical Reports Server (NTRS)

    Thome, Kurtis; Barnes, Robert; Baize, Rosemary; O'Connell, Joseph; Hair, Jason

    2010-01-01

    The Climate Absolute Radiance and Refractivity Observatory (CLARREO) plans to observe climate change trends over decadal time scales to determine the accuracy of climate projections. The project relies on spaceborne earth observations of SI-traceable variables sensitive to key decadal change parameters. The mission includes a reflected solar instrument retrieving at-sensor reflectance over the 320 to 2300 nm spectral range with 500-m spatial resolution and 100-km swath. Reflectance is obtained from the ratio of measurements of the earth s surface to those while viewing the sun relying on a calibration approach that retrieves reflectance with uncertainties less than 0.3%. The calibration is predicated on heritage hardware, reduction of sensor complexity, adherence to detector-based calibration standards, and an ability to simulate in the laboratory on-orbit sources in both size and brightness to provide the basis of a transfer to orbit of the laboratory calibration including a link to absolute solar irradiance measurements.

  14. Relative and absolute level populations in beam-foil-excited neutral helium

    NASA Technical Reports Server (NTRS)

    Davidson, J.

    1975-01-01

    Relative and absolute populations of 19 levels in beam-foil-excited neutral helium at 0.275 MeV have been measured. The singlet angular-momentum sequences show dependences on principal quantum number consistent with n to the -3rd power, but the triplet sequences do not. Singlet and triplet angular-momentum sequences show similar dependences on level excitation energy. Excitation functions for six representative levels were measured in the range from 0.160 to 0.500 MeV. The absolute level populations increase with energy, whereas the neutral fraction of the beam decreases with energy. Further, the P angular-momentum levels are found to be overpopulated with respect to the S and D levels. The overpopulation decreases with increasing principal quantum number.

  15. Veridical mapping in savant abilities, absolute pitch, and synesthesia: an autism case study.

    PubMed

    Bouvet, Lucie; Donnadieu, Sophie; Valdois, Sylviane; Caron, Chantal; Dawson, Michelle; Mottron, Laurent

    2014-01-01

    An enhanced role and autonomy of perception are prominent in autism. Furthermore, savant abilities, absolute pitch, and synesthesia are all more commonly found in autistic individuals than in the typical population. The mechanism of veridical mapping has been proposed to account for how enhanced perception in autism leads to the high prevalence of these three phenomena and their structural similarity. Veridical mapping entails functional rededication of perceptual brain regions to higher order cognitive operations, allowing the enhanced detection and memorization of isomorphisms between perceptual and non-perceptual structures across multiple scales. In this paper, we present FC, an autistic individual who possesses several savant abilities in addition to both absolute pitch and synesthesia-like associations. The co-occurrence in FC of abilities, some of them rare, which share the same structure, as well as FC's own accounts of their development, together suggest the importance of veridical mapping in the atypical range and nature of abilities displayed by autistic people.

  16. Three-dimensional convective and absolute instabilities in pressure-driven two-layer channel flow

    NASA Astrophysics Data System (ADS)

    Sahu, Kirti; Matar, Omar

    2011-11-01

    A generalized linear stability analysis of three-dimensional disturbance in a pressure-driven two-layer channel flow, focusing on the range of parameters for which Squire's theorem does not exist is considered. Three-dimensional linear stability equations, in which both the spatial wavenumber and temporal frequency are complex, are derived and solved using an efficient spectral collocation method. A Briggs-type analysis is then carried out to delineate the boundaries between convective and absolute instabilities in m-Re space. We find that although three-dimensional disturbances are temporally more unstable than the two-dimensional disturbances, absolute modes of instability are most unstable for two-dimensional disturbances. An energy ``budget'' analysis also shows that the most dangerous modes are ``interfacial'' ones.

  17. A liquid-helium-cooled absolute reference cold load for long-wavelength radiometric calibration

    NASA Technical Reports Server (NTRS)

    Bensadoun, Marc; Witebsky, Chris; Smoot, George; De Amici, Giovanni; Kogut, AL; Levin, Steve

    1992-01-01

    Design, radiometric and thermal performance, and operation of a large diameter (78 cm) liquid-helium-cooled blackbody absolute reference cold load (CL) for the calibration of microwave radiometers is described. CL provides an absolute calibration near the liquid-helium (LHe) boiling point, with total uncertainty in the radiometric temperature of less than 30 mK over the 2.5-23 cm wavelength operating range. CL was used at several wavelengths at the South Pole, Antarctica and the White Mountain Research Center, California. Results show that, for the instruments operated at 20-, 12-, 7.9-, and 4.0 cm wavelength at the South Pole, the total corrections to the LHe boiling-point temperature (about 3.8 K) were 48 +/-23, 18 +/-10, 10 +/-18, and 15 +/-mK.

  18. Pseudo-absolute quantitative analysis using gas chromatography - Vacuum ultraviolet spectroscopy - A tutorial.

    PubMed

    Bai, Ling; Smuts, Jonathan; Walsh, Phillip; Qiu, Changling; McNair, Harold M; Schug, Kevin A

    2017-02-08

    The vacuum ultraviolet detector (VUV) is a new non-destructive mass sensitive detector for gas chromatography that continuously and rapidly collects full wavelength range absorption between 120 and 240 nm. In addition to conventional methods of quantification (internal and external standard), gas chromatography - vacuum ultraviolet spectroscopy has the potential for pseudo-absolute quantification of analytes based on pre-recorded cross sections (well-defined absorptivity across the 120-240 nm wavelength range recorded by the detector) without the need for traditional calibration. The pseudo-absolute method was used in this research to experimentally evaluate the sources of sample loss and gain associated with sample introduction into a typical gas chromatograph. Standard samples of benzene and natural gas were used to assess precision and accuracy for the analysis of liquid and gaseous samples, respectively, based on the amount of analyte loaded on-column. Results indicate that injection volume, split ratio, and sampling times for splitless analysis can all contribute to inaccurate, yet precise sample introduction. For instance, an autosampler can very reproducibly inject a designated volume, but there are significant systematic errors (here, a consistently larger volume than that designated) in the actual volume introduced. The pseudo-absolute quantification capability of the vacuum ultraviolet detector provides a new means for carrying out system performance checks and potentially for solving challenging quantitative analytical problems. For practical purposes, an internal standardized approach to normalize systematic errors can be used to perform quantitative analysis with the pseudo-absolute method.

  19. Absolute and relative family affluence and psychosomatic symptoms in adolescents.

    PubMed

    Elgar, Frank J; De Clercq, Bart; Schnohr, Christina W; Bird, Phillippa; Pickett, Kate E; Torsheim, Torbjørn; Hofmann, Felix; Currie, Candace

    2013-08-01

    Previous research on the links between income inequality and health and socioeconomic differences in health suggests that relative differences in affluence impact health and well-being more than absolute affluence. This study explored whether self-reported psychosomatic symptoms in adolescents relate more closely to relative affluence (i.e., relative deprivation or rank affluence within regions or schools) than to absolute affluence. Data on family material assets and psychosomatic symptoms were collected from 48,523 adolescents in eight countries (Austria, Belgium, Canada, Norway, Scotland, Poland, Turkey, and Ukraine) as part of the 2009/10 Health Behaviour in School-aged Children study. Multilevel regression analyses of the data showed that relative deprivation (Yitzhaki Index, calculated in regions and in schools) and rank affluence (in regions) (1) related more closely to symptoms than absolute affluence, and (2) related to symptoms after differences in absolute affluence were held constant. However, differences in family material assets, whether they are measured in absolute or relative terms, account for a significant variation in adolescent psychosomatic symptoms. Conceptual and empirical issues relating to the use of material affluence indices to estimate socioeconomic position are discussed.

  20. High speed image acquisition system of absolute encoder

    NASA Astrophysics Data System (ADS)

    Liao, Jianxiang; Chen, Xin; Chen, Xindu; Zhang, Fangjian; Wang, Han

    2017-01-01

    Absolute optical encoder as a product of optical, mechanical and electronic integration has been widely used in displacement measuring fields. However, how to improve the measurement velocity and reduce the manufacturing cost of absolute optical encoder is the key problem to be solved. To improve the measurement speed, a novel absolute optical encoder image acquisition system is proposed. The proposed acquisition system includes a linear CCD sensor is applied for capturing coding pattern images, an optical magnifying system is used for enlarging the grating stripes, an analog-digital conversion(ADC) module is used for processing the CCD analogy signal, a field programmable gate array(FPGA) device and other peripherals perform driving task. An absolute position measurement experiment was set up to verify and evaluate the proposed image acquisition system. The experimental result indicates that the proposed absolute optical encoder image acquisition system has the image acquisition speed of more than 9500fp/s with well reliability and lower manufacture cost.

  1. Accurate absolute GPS positioning through satellite clock error estimation

    NASA Astrophysics Data System (ADS)

    Han, S.-C.; Kwon, J. H.; Jekeli, C.

    2001-05-01

    An algorithm for very accurate absolute positioning through Global Positioning System (GPS) satellite clock estimation has been developed. Using International GPS Service (IGS) precise orbits and measurements, GPS clock errors were estimated at 30-s intervals. Compared to values determined by the Jet Propulsion Laboratory, the agreement was at the level of about 0.1 ns (3 cm). The clock error estimates were then applied to an absolute positioning algorithm in both static and kinematic modes. For the static case, an IGS station was selected and the coordinates were estimated every 30 s. The estimated absolute position coordinates and the known values had a mean difference of up to 18 cm with standard deviation less than 2 cm. For the kinematic case, data obtained every second from a GPS buoy were tested and the result from the absolute positioning was compared to a differential GPS (DGPS) solution. The mean differences between the coordinates estimated by the two methods are less than 40 cm and the standard deviations are less than 25 cm. It was verified that this poorer standard deviation on 1-s position results is due to the clock error interpolation from 30-s estimates with Selective Availability (SA). After SA was turned off, higher-rate clock error estimates (such as 1 s) could be obtained by a simple interpolation with negligible corruption. Therefore, the proposed absolute positioning technique can be used to within a few centimeters' precision at any rate by estimating 30-s satellite clock errors and interpolating them.

  2. Absolute Instability in Swept Leading-Edge Boundary Layers

    NASA Astrophysics Data System (ADS)

    Lin, R.-S.; Li, F.; Malik, M. R.

    1997-11-01

    Absolute instabilities in the swept Hiemenz flow and flows over Poll's swept cylinder are studied. It is assumed that the span is infinite and the laminar flow field is subjected to a line impulsive excitation so that the spanwise wavenumber (β) is taken to be real, which is akin to the rotating disk study made by Lingwood.footnote Lingwood, R. J., J. Fluid Mech., 299, 17, 1995. We found that these flows can be absolutely unstable in the chordwise (x) direction. The pinch-point singularities formed by the coalescence of two distinct spatial branches can lie either below or above the real α-axis. The pinch points with a positive αi imply the existence of an unstable disturbance propagating against the mainstream, which has never been observed before. It is found that singularities of pinch type occur in a region very close to the leading edge, therefore the attachment-line Reynolds number is used to correlate the onset of absolute instability. The critical Reynolds number for absolute instability is found to be about R=540 compared to 583 for the attachment-line instability. Provided the non-linear behavior of this absolute instability is sufficient to trigger the laminar to turbulent transition, then it would cause a complete loss of laminar flow on a swept wing as does the attachment-line instability.

  3. Age Dependent Absolute Plate and Plume Motion Modeling

    NASA Astrophysics Data System (ADS)

    Heaton, D. E.; Koppers, A. A. P.

    2015-12-01

    Current absolute plate motion (APM) models from 80 - 0 Ma are constrained by the location of mantle plume related hotspot seamounts, in particular those of the Hawaiian-Emperor and Louisville seamount trails. Originally the 'fixed' hotspot hypothesis was developed to explain past plate motion based on linear age progressive intra-plate volcanism. However, now that 'moving' hotspots are accepted, it is becoming clear that APM models need to be corrected for individual plume motion vectors. For older seamount trails that were active between roughly 50 and 80 Ma the APM models that use 'fixed' hotspots overestimate the measured age progression in those trails, while APM models corrected for 'moving' hotspots underestimate those age progressions. These mismatches are due to both a lack of reliable ages in the older portions of both the Hawaii and Louisville seamount trails and insufficient APM modeling constraints from other seamount trails in the Pacific Basin. Seamounts are difficult to sample and analyze because many are hydrothermally altered and have low potassium concentrations. New 40Ar/39Ar Age results from International Ocean Drilling Project (IODP) Expedition 330 Sites U1372 (n=18), U1375 (n=3), U1376 (n=15) and U1377 (n=7) aid in constraining the oldest end of the Louisville Seamount trail. A significant observation in this study is that the age range recovered in the drill cores match the range of ages that were acquired on dredging cruises at the same seamounts (e.g. Koppers et al., 2011). This is important for determining the inception age of a seamount. The sections recovered from IODP EXP 330 are in-situ volcanoclastic breccia and lava flows. Comparing the seismic interpretations of Louisville guyots (Contreras-Reyes et al., 2010), Holes U1372, U1373 and U1374 penetrated the extrusive and volcanoclastic sections of the seamount. The ages obtained are consistent over stratigraphic intervals >100-450 m thick, providing evidence that these seamounts

  4. Near-Infrared Absolute Photometric Imaging of the Uranian System

    NASA Astrophysics Data System (ADS)

    Baines, Kevin H.; Yanamandra-Fisher, Padmavati A.; Lebofsky, Larry A.; Momary, Thomas W.; Golisch, William; Kaminski, Charles; Wild, Walter J.

    1998-04-01

    We report the first multifilter set of absolutely calibrated near-infrared images of Uranus, its rings, and three major satellites-Titania, Ariel, and Miranda. Along with imagery utilizing the canonical K filter bandpass (effective wavelength 2.20 μm), absolutely calibrated images of the uranian system are presented for the first time for three additional filter bandpasses: J (1.27 μm), H (1.62 μm), and in a narrow bandpass (0.1 μm full-width-at-half-maximum) centered at 1.73 μm (hereafter designated H‧) particularly diagnostic of C-H stretch vibrational absorptions common in hydrocarbons. Multifilter-derived spectra of the southern ring ansa including the bright apoapse of the dominant ɛ ring show no absorptions due to condensable volatiles, including water, ammonia, and light (high H:C) hydrocarbons. Plausible near-infrared spherical geometric and single-scattering particle albedos consistent with Voyager-derived phase functions range from 0.069 to 0.102 and from 0.030 to 0.037, respectively. These are approximately 50% greater than visible values, consistent with the optical properties of charcoal, carbonaceous chondrite material, and the darkside of Iapetus, and consistent with the hypothesis that a primary component of the ring particles is high stoichiometric ratio C:H organics produced by charged-particle and/or photochemical weathering of methane clathrate and/or hydrocarbon ice material originating from nearby moonlets. Additional components consistent with the ring spectrum include silicates such as pyroxene, but not olivine. Analytical modeling of the ring structure indicates ɛ-ring near-infrared opacities of 0.37 ± 0.05 and 1.8 ± 0.3 at apoapsis and periapsis, respectively. Ariel is more than 25% brighter than Miranda and 15% brighter than Titania at all near-infrared wavelengths. Comparisons with UV-visible spectra by Karkoschka (1997,Icarus125, 348-363) show consistency with the hypothesis that the water-ice surfaces of Titania and Ariel

  5. Absolute Paleointensity Techniques: Developments in the Last 10 Years (Invited)

    NASA Astrophysics Data System (ADS)

    Bowles, J. A.; Brown, M. C.

    2009-12-01

    The ability to determine variations in absolute intensity of the Earth’s paleomagnetic field has greatly enhanced our understanding of geodynamo processes, including secular variation and field reversals. Igneous rocks and baked clay artifacts that carry a thermal remanence (TRM) have allowed us to study field variations over timescales ranging from decades to billions of years. All absolute paleointensity techniques are fundamentally based on repeating the natural process by which the sample acquired its magnetization, i.e. a laboratory TRM is acquired in a controlled field, and the ratio of the natural TRM to that acquired in the laboratory is directly proportional to the ancient field. Techniques for recovering paleointensity have evolved since the 1930s from relatively unsophisticated (but revolutionary for their time) single step remagnetizations to the various complicated, multi-step procedures in use today. These procedures can be broadly grouped into two categories: 1) “Thellier-type” experiments that step-wise heat samples at a series of temperatures up to the maximum unblocking temperature of the sample, progressively removing the natural remanence (NRM) and acquiring a laboratory-induced TRM; and 2) “Shaw-type” experiments that combine alternating field demagnetization of the NRM and laboratory TRM with a single heating to a temperature above the sample’s Curie temperature, acquiring a total TRM in one step. Many modifications to these techniques have been developed over the years with the goal of identifying and/or accommodating non-ideal behavior, such as alteration and multi-domain (MD) remanence, which may lead to inaccurate paleofield estimates. From a technological standpoint, perhaps the most significant development in the last decade is the use of microwave (de)magnetization in both Thellier-type and Shaw-type experiments. By using microwaves to directly generate spin waves within the magnetic grains (rather than using phonons

  6. Muscle force recovery in relation to muscle oxygenation.

    PubMed

    Ufland, Pierre; Lapole, Thomas; Ahmaidi, Said; Buchheit, Martin

    2012-09-01

    The aim of this study was to investigate the relative contribution of human muscle reoxygenation on force recovery following a maximal voluntary contraction (MVC). Ten athletes (22·9 ± 4·0 years) executed a plantar-flexion sequence including two repeated MVCs [i.e. a 30-s MVC (MVC(30)) followed by a 10-s MVC (MVC(10))] separated by 10, 30, 60, 120 or 300 s of passive recovery. A 10-min passive recovery period was allowed between each MVC sequence. This procedure was randomly repeated with two different recovery conditions: without (CON) or with (OCC) arterial occlusion of the medial gastrocnemius. During OCC, the occlusion was maintained from the end of MVC(30) to the end of MVC(10). Muscle oxygenation (Near-infrared spectroscopy, NIRS, [Hb(diff) ]) was continuously measured during all MVC sequences and expressed as a percentage of the maximal changes in optical density observed during MVC(30). Maximal Torque was analysed at the start of each contraction. Torque during each MVC(10) was expressed as a percentage of the Torque during the previous MVC(30). Torque recovery was complete within 300 s after MVC(30) during CON (MVC(10) = 101·8 ± 5·0%); 88·6 ± 8·9% of the Torque was recovered during OCC (P = 0·005). There was also a moderate correlation between absolute level of muscle oxygenation and Torque (r = 0·32 (90% CI, 0·09;0·52), P = 0·02). Present findings confirm the role of human muscle oxygenation in muscular force recovery during repeated-maximal efforts. However, the correlation between absolute muscle oxygenation and force level during recovery is only moderate, suggesting that other mechanisms are likely involved in the force recovery process.

  7. System and method for calibrating a rotary absolute position sensor

    NASA Technical Reports Server (NTRS)

    Davis, Donald R. (Inventor); Permenter, Frank Noble (Inventor); Radford, Nicolaus A (Inventor)

    2012-01-01

    A system includes a rotary device, a rotary absolute position (RAP) sensor generating encoded pairs of voltage signals describing positional data of the rotary device, a host machine, and an algorithm. The algorithm calculates calibration parameters usable to determine an absolute position of the rotary device using the encoded pairs, and is adapted for linearly-mapping an ellipse defined by the encoded pairs to thereby calculate the calibration parameters. A method of calibrating the RAP sensor includes measuring the rotary position as encoded pairs of voltage signals, linearly-mapping an ellipse defined by the encoded pairs to thereby calculate the calibration parameters, and calculating an absolute position of the rotary device using the calibration parameters. The calibration parameters include a positive definite matrix (A) and a center point (q) of the ellipse. The voltage signals may include an encoded sine and cosine of a rotary angle of the rotary device.

  8. Method and apparatus for two-dimensional absolute optical encoding

    NASA Technical Reports Server (NTRS)

    Leviton, Douglas B. (Inventor)

    2004-01-01

    This invention presents a two-dimensional absolute optical encoder and a method for determining position of an object in accordance with information from the encoder. The encoder of the present invention comprises a scale having a pattern being predetermined to indicate an absolute location on the scale, means for illuminating the scale, means for forming an image of the pattern; and detector means for outputting signals derived from the portion of the image of the pattern which lies within a field of view of the detector means, the field of view defining an image reference coordinate system, and analyzing means, receiving the signals from the detector means, for determining the absolute location of the object. There are two types of scale patterns presented in this invention: grid type and starfield type.

  9. Recovery and Money Management

    PubMed Central

    Rowe, Michael; Serowik, Kristin L.; Ablondi, Karen; Wilbur, Charles; Rosen, Marc I.

    2014-01-01

    Objective Social recovery and external money management are important approaches in contemporary mental health care, but little research has been done on the relationship between the two or on application of recovery principles to money management for people at risk of being assigned a representative payee or conservator. Methods Twenty-five transcripts out of forty-nine total qualitative interviews with persons receiving SSI or SSDI who were at risk of being assigned a money manager were analyzed to assess the presence of recognized recovery themes. Results The recovery principles of self-direction and responsibility were strong themes in participant comments related to money management. Conclusions and Implications for Practice Money management interventions should incorporate peoples’ recovery-related motivations to acquire financial management skills as a means to direct and assume responsibility for one’s finances. Staff involved in money management should receive training to support client’s recovery-related goals. PMID:23750764

  10. The Absolute Gravimeter FG5 - Adjustment and Residual Data Evaluation

    NASA Astrophysics Data System (ADS)

    Orlob, M.; Braun, A.; Henton, J.; Courtier, N.; Liard, J.

    2009-05-01

    The most widely used method of direct terrestrial gravity determination is performed by using a ballistic absolute gravimeter. Today, the FG5 (Micro-g LaCoste; Lafayette, CO) is the most common free-fall absolute gravimeter. It uses the Michelson-type interferometer to determine the absolute gravity value with accuracies up to one part- per-billion of g. Furthermore, absolute gravimeter measurements can be used to assist in the validation and interpretation of temporal variations of the global gravity field, e.g. from the GRACE mission. In addition, absolute gravimetry allows for monitoring gravity changes which are caused by subsurface mass redistributions and/or vertical displacements. In this study,adjustment software was developed and applied to the raw data sets of FG5#106 and FG5#236, made available by Natural Resources Canada. Both data sets have been collected at the same time and place which leads to an intercomparison of the instruments performance. The adjustment software was validated against the official FG5 software package developed by Micro-g Lacoste. In order to identify potential environmental or instrument disturbances in the observed time series, a Lomb- Scargle periodogram analysis was employed. The absolute gravimeter FG5 is particularly sensitive to low frequencies between 0-3Hz. Hence, the focus of the analysis is to detect signals in the band of 0-100 Hz. An artificial signal was added to the measurements for demonstration purposes. Both the performance of the adjustment software and the Lomb-Scargle analysis will be discussed.

  11. Intermediate water recovery system

    NASA Technical Reports Server (NTRS)

    Deckman, G.; Anderson, A. R. (Editor)

    1973-01-01

    A water recovery system for collecting, storing, and processing urine, wash water, and humidity condensates from a crew of three aboard a spacecraft is described. The results of a 30-day test performed on a breadboard system are presented. The intermediate water recovery system produced clear, sterile, water with a 96.4 percent recovery rate from the processed urine. Recommendations for improving the system are included.

  12. Measurements of the reactor neutron power in absolute units

    SciTech Connect

    Lebedev, G. V.

    2015-12-15

    The neutron power of the reactor of the Yenisei space nuclear power plant is measured in absolute units using the modernized method of correlation analysis during the ground-based tests of the Yenisei prototypes. Results of the experiments are given. The desired result is obtained in a series of experiments carried out at the stage of the plant preparation for tests. The acceptability of experimental data is confirmed by the results of measuring the reactor neutron power in absolute units at the nominal level by the thermal balance during the life cycle tests of the ground prototypes.

  13. STS-9 Shuttle grow - Ram angle effect and absolute intensities

    NASA Technical Reports Server (NTRS)

    Swenson, G. R.; Mende, S. B.; Clifton, K. S.

    1986-01-01

    Visible imagery from Space Shuttle mission STS-9 (Spacelab 1) has been analyzed for the ram angle effect and the absolute intensity of glow. The data are compared with earlier measurements and the anomalous high intensities at large ram angles are confirmed. Absolute intensities of the ram glow on the shuttle tile, at 6563 A, are observed to be about 20 times more intense than those measured on the AE-E spacecraft. Implications of these observations for an existing theory of glow involving NO2 are presented.

  14. Absolute integrated intensity for the nu-1 sulfur dioxide band

    NASA Technical Reports Server (NTRS)

    Pilon, P. J.; Young, C.

    1976-01-01

    The absolute integrated intensity of the IR vibration-rotation nu-1 SO2 band was measured using the linear portion of the curve of growth. Infrared spectroscopic-absorption cell measurements were performed on sulfur dioxide at partial pressures less than 0.15 torr with nitrogen added to give a total pressure of 705 torr, the path length being 4 mm. The absolute integrated intensity was determined to be 112.0 plus or minus 2.6/cm/sq (atm cm) at 296 K at the 95% confidence level.

  15. Absolute configuration determination of angular dihydrocoumarins from Peucedanum praeruptorum.

    PubMed

    Lou, Hong-Xiang; Sun, Long-Ru; Yu, Wen-Tao; Fan, Pei-Hong; Cui, Lei; Gao, Yan-Hui; Ma, Bin; Ren, Dong-Mei; Ji, Mei

    2004-09-01

    From Peucedanum praeruptorum, one new khellactone ester (3'R)-O-acetyl-(4'S)-O-angeloylkhellactone (3), as well as four known angular dihydropyranocoumarins (1, 2, 4, 5) have been isolated. On the basis of NMR spectra and X-ray crystallography, their structures were determined. We have elucidated their absolute configuration by either chiral separation of their alkaline hydrolysis products with Rp-18 HPLC eluted with 5% hydroxypropyl-beta-cyclodextrin (beta-HCD) or by measurement of their CD spectra. A general rule relating the position and absolute streochemistry of the khellactone esters to the sign of their Cotton effects in CD curves is proposed.

  16. Absolute, Extreme-Ultraviolet, Solar Spectral Irradiance Monitor (AESSIM)

    NASA Technical Reports Server (NTRS)

    Huber, Martin C. E.; Smith, Peter L.; Parkinson, W. H.; Kuehne, M.; Kock, M.

    1988-01-01

    AESSIM, the Absolute, Extreme-Ultraviolet, Solar Spectral Irradiance Monitor, is designed to measure the absolute solar spectral irradiance at extreme-ultraviolet (EUV) wavelengths. The data are required for studies of the processes that occur in the earth's upper atmosphere and for predictions of atmospheric drag on space vehicles. AESSIM is comprised of sun-pointed spectrometers and newly-developed, secondary standards of spectral irradiance for the EUV. Use of the in-orbit standard sources will eliminate the uncertainties caused by changes in spectrometer efficiency that have plagued all previous measurements of the solar spectral EUV flux.

  17. Large-Scale Measurement of Absolute Protein Glycosylation Stoichiometry.

    PubMed

    Sun, Shisheng; Zhang, Hui

    2015-07-07

    Protein glycosylation is one of the most important protein modifications. Glycosylation site occupancy alteration has been implicated in human diseases and cancers. However, current glycoproteomic methods focus on the identification and quantification of glycosylated peptides and glycosylation sites but not glycosylation occupancy or glycoform stoichiometry. Here we describe a method for large-scale determination of the absolute glycosylation stoichiometry using three independent relative ratios. Using this method, we determined 117 absolute N-glycosylation occupancies in OVCAR-3 cells. Finally, we investigated the possible functions and the determinants for partial glycosylation.

  18. Non-Invasive Method of Determining Absolute Intracranial Pressure

    NASA Technical Reports Server (NTRS)

    Yost, William T. (Inventor); Cantrell, John H., Jr. (Inventor); Hargens, Alan E. (Inventor)

    2004-01-01

    A method is presented for determining absolute intracranial pressure (ICP) in a patient. Skull expansion is monitored while changes in ICP are induced. The patient's blood pressure is measured when skull expansion is approximately zero. The measured blood pressure is indicative of a reference ICP value. Subsequently, the method causes a known change in ICP and measured the change in skull expansion associated therewith. The absolute ICP is a function of the reference ICP value, the known change in ICP and its associated change in skull expansion; and a measured change in skull expansion.

  19. Absolute gain measurement by the image method under mismatched condition

    NASA Technical Reports Server (NTRS)

    Lee, Richard Q.; Baddour, Maurice F.

    1987-01-01

    Purcell's image method for measuring the absolute gain of an antenna is particularly attractive for small test antennas. The method is simple to use and utilizes only one antenna with a reflecting plane to provide an image for the receiving antenna. However, the method provides accurate results only if the antenna is matched to its waveguide. In this paper, a waveguide junction analysis is developed to determine the gain of an antenna under mismatched condition. Absolute gain measurements for two standard gain horn antennas have been carried out. Experimental results agree closely with published data.

  20. Absolute photon-flux measurements in the vacuum ultraviolet

    NASA Technical Reports Server (NTRS)

    Samson, J. A. R.; Haddad, G. N.

    1974-01-01

    Absolute photon-flux measurements in the vacuum ultraviolet have extended to short wavelengths by use of rare-gas ionization chambers. The technique involves the measurement of the ion current as a function of the gas pressure in the ion chamber. The true value of the ion current, and hence the absolute photon flux, is obtained by extrapolating the ion current to zero gas pressure. Examples are given at 162 and 266 A. The short-wavelength limit is determined only by the sensitivity of the current-measuring apparatus and by present knowledge of the photoionization processes that occur in the rate gases.

  1. Nonexistence of equilibrium states at absolute negative temperatures

    NASA Astrophysics Data System (ADS)

    Romero-Rochín, Víctor

    2013-08-01

    We show that states of macroscopic systems with purported absolute negative temperatures are not stable under small, yet arbitrary, perturbations. We prove the previous statement using the fact that, in equilibrium, the entropy takes its maximum value. We discuss that, while Ramsey theoretical reformulation of the second law for systems with negative temperatures is logically correct, it must be a priori assumed that those states are in thermodynamic equilibrium. Since we argue that those states cannot occur, reversible processes are impossible, and, thus, Ramsey identification of absolute negative temperatures is untenable.

  2. Absolute Stability Analysis of a Phase Plane Controlled Spacecraft

    NASA Technical Reports Server (NTRS)

    Jang, Jiann-Woei; Plummer, Michael; Bedrossian, Nazareth; Hall, Charles; Jackson, Mark; Spanos, Pol

    2010-01-01

    Many aerospace attitude control systems utilize phase plane control schemes that include nonlinear elements such as dead zone and ideal relay. To evaluate phase plane control robustness, stability margin prediction methods must be developed. Absolute stability is extended to predict stability margins and to define an abort condition. A constrained optimization approach is also used to design flex filters for roll control. The design goal is to optimize vehicle tracking performance while maintaining adequate stability margins. Absolute stability is shown to provide satisfactory stability constraints for the optimization.

  3. Hospital service recovery.

    PubMed

    Gutbezahl, Cary; Haan, Perry

    2006-01-01

    An organization's ability to correct service errors is an important factor in achieving success in today's service economy. This paper examines service recovery in hospitals in the U.S. First is a general review of service recovery theories. Next is a discussion of specific service issues related to the hospital environment. The literature on service recovery is used to make specific recommendations to hospitals for ways to improve their ability to remedy service errors when they occur. Suggestions for future research in the field of service recovery are also made.

  4. Apollo Recovery Operations

    NASA Technical Reports Server (NTRS)

    Interbartolo, Michael

    2009-01-01

    Objectives include: a) Describe the organization of recovery force command and control and landing areas; b) Describe the function and timeline use of the Earth Landing System (ELS); c) Describe Stable 1 vs Stable 2 landing configurations and the function of the Command Module Uprighting System; d) Explain the activities of the helicopter and swimmer teams in egress and recovery of the crew; e)Explain the activities of the swimmer teams and primary recovery ship in recovery of the Command Module; and f) Describe several landing incidents that occurred during Apollo.

  5. Resource Recovery Guide

    SciTech Connect

    Abert, J.G.

    1983-01-01

    Resource Recovery Guides is a collection of articles orignally published between 1975 and 1981. Many of these articles were not easily available to interested readers. Subjects discussed include newspaper recycling, aluminum recovery, codisposal of solid waste and dry sewage sludge, and the recovery of glass from urban refuse. Includes a combined author and subject index. Contents: National concerns for recycling and resource recovery of municipal waste: policy perspectives. Planning, procurement, marketing, economics, and finance. Waste as a source of raw materials. Waste as an energy source.

  6. Absolute cross-sections for DNA strand breaks and crosslinks induced by low energy electrons.

    PubMed

    Chen, Wenzhuang; Chen, Shiliang; Dong, Yanfang; Cloutier, Pierre; Zheng, Yi; Sanche, Léon

    2016-12-07

    Absolute cross sections (CSs) for the interaction of low energy electrons with condensed macromolecules are essential parameters to accurately model ionizing radiation induced reactions. To determine CSs for various conformational DNA damage induced by 2-20 eV electrons, we investigated the influence of the attenuation length (AL) and penetration factor (f) using a mathematical model. Solid films of supercoiled plasmid DNA with thicknesses of 10, 15 and 20 nm were irradiated with 4.6, 5.6, 9.6 and 14.6 eV electrons. DNA conformational changes were quantified by gel electrophoresis, and the respective yields were extrapolated from exposure-response curves. The absolute CS, AL and f values were generated by applying the model developed by Rezaee et al. The values of AL were found to lie between 11 and 16 nm with the maximum at 14.6 eV. The absolute CSs for the loss of the supercoiled (LS) configuration and production of crosslinks (CL), single strand breaks (SSB) and double strand breaks (DSB) induced by 4.6, 5.6, 9.6 and 14.6 eV electrons are obtained. The CSs for SSB are smaller, but similar to those for LS, indicating that SSB are the main conformational damage. The CSs for DSB and CL are about one order of magnitude smaller than those of LS and SSB. The value of f is found to be independent of electron energy, which allows extending the absolute CSs for these types of damage within the range 2-20 eV, from previous measurements of effective CSs. When comparison is possible, the absolute CSs are found to be in good agreement with those obtained from previous similar studies with double-stranded DNA. The high values of the absolute CSs of 4.6 and 9.6 eV provide quantitative evidence for the high efficiency of low energy electrons to induce DNA damage via the formation of transient anions.

  7. High-accuracy absolute distance measurement with a mode-resolved optical frequency comb

    NASA Astrophysics Data System (ADS)

    Voigt, Dirk; van den Berg, Steven A.; Lešundák, Adam; van Eldik, Sjoerd; Bhattacharya, Nandini

    2016-04-01

    Optical interferometry enables highly accurate non-contact displacement measurement. The optical phase ambiguity needs to be resolved for absolute distance ranging. In controlled laboratory conditions and for short distances it is possible to track a non-interrupted displacement from a reference position to a remote target. With large distances covered in field applications this may not be feasible, e.g. in structure monitoring, large scale industrial manufacturing or aerospace navigation and attitude control. We use an optical frequency comb source to explore absolute distance measurement by means of a combined spectral and multi-wavelength homodyne interferometry. This relaxes the absolute distance ambiguity to a few tens of centimeters, covered by simpler electronic distance meters, while maintaining highly accurate optical phase measuring capability. A virtually imaged phased array spectrometer records a spatially dispersed interferogram in a single exposure and allows for resolving the modes of our near infrared comb source with 1 GHz mode separation. This enables measurements with direct traceability of the atomic clock referenced comb source. We observed agreement within 500 nm in comparison with a commercial displacement interferometer for target distances up to 50 m. Furthermore, we report on current work toward applicability in less controlled conditions. A filter cavity decimates the comb source to an increased mode separation larger than 20 GHz. A simple grating spectrometer then allows to record mode-resolved interferograms.

  8. Using AIRS and IASI Data to Evaluate Absolute Radiometric Accuracy and Stability for Climate Applications

    NASA Technical Reports Server (NTRS)

    Aumann, Hartmut H.; Pagano, Thomas S.

    2008-01-01

    The creation of multi-decadal data sets for climate research requires better than 100 mK absolute calibration accuracy for the full range of spectral temperatures encountered under global conditions. Validation that this accuracy is achieved by the operational hyperspectral sounders from polar orbit is facilitated by comparing data from two instruments. Extreme radiometric calibration stability is critical to allow a long time series of noisy, but presumably long-term accurate truth measurements to be used for the validation of absolute accuracy at the 100 mK level. We use the RTGSST in the tropical oceans as ground truth. The difference between the AIRS derived sst2616 and the RTGSST based on six years of data shows a systematic cold bias of about 250 mK, but better than 4 mK/year stability. The double difference between AIRS and the RTGSST and IASI and the RTGSST with less than one year of data already allows statements at the 100 mK absolute level. It shows a 60 mK difference between the AIRS and the IASI calibration at 2616 cm-(sup 1) and 300 K, with a statistically insignificant 20 mK shift in six months.

  9. Absolute vs. relative machine strength as predictors of function in older adults.

    PubMed

    Knutzen, Kathleen M; Brilla, Lorraine; Caine, Dennis; Chalmers, Gordon; Gunter, Kathy; Schot, Philip

    2002-11-01

    This study examined the relationship between absolute and relative (1 repetition maximum/LBM) strength vs. 13 different functional measurements in 143 older adults (mean = 70.28, standard deviation = 7.90 years). Strength for 11 machine lifts was determined using a predicted 1-repetition maximal strength measurement. Zero-order correlation results between absolute and relative strength vs. function measures demonstrated very weak to moderate correlations in the range of 0.02-0.57 and 0.01-0.44, respectively, with the lowest correlations present between strength and balance measures and the highest correlations present between strength and the carrying task (p absolute and relative strength measures accounting for only 3-38% and 3-33% of the various functional measures, respectively. This study identified specific strength measurements that contribute to the variance in a functional task but also clearly indicated that strength alone cannot serve as a predictor of function in older adults.

  10. Electron cyclotron emission measurements on JET: Michelson interferometer, new absolute calibration, and determination of electron temperature.

    PubMed

    Schmuck, S; Fessey, J; Gerbaud, T; Alper, B; Beurskens, M N A; de la Luna, E; Sirinelli, A; Zerbini, M

    2012-12-01

    At the fusion experiment JET, a Michelson interferometer is used to measure the spectrum of the electron cyclotron emission in the spectral range 70-500 GHz. The interferometer is absolutely calibrated using the hot/cold technique and, in consequence, the spatial profile of the plasma electron temperature is determined from the measurements. The current state of the interferometer hardware, the calibration setup, and the analysis technique for calibration and plasma operation are described. A new, full-system, absolute calibration employing continuous data acquisition has been performed recently and the calibration method and results are presented. The noise level in the measurement is very low and as a result the electron cyclotron emission spectrum and thus the spatial profile of the electron temperature are determined to within ±5% and in the most relevant region to within ±2%. The new calibration shows that the absolute response of the system has decreased by about 15% compared to that measured previously and possible reasons for this change are presented. Temperature profiles measured with the Michelson interferometer are compared with profiles measured independently using Thomson scattering diagnostics, which have also been recently refurbished and recalibrated, and agreement within experimental uncertainties is obtained.

  11. Absolute pulse energy measurements of soft x-rays at the Linac Coherent Light Source.

    PubMed

    Tiedtke, K; Sorokin, A A; Jastrow, U; Juranić, P; Kreis, S; Gerken, N; Richter, M; Arp, U; Feng, Y; Nordlund, D; Soufli, R; Fernández-Perea, M; Juha, L; Heimann, P; Nagler, B; Lee, H J; Mack, S; Cammarata, M; Krupin, O; Messerschmidt, M; Holmes, M; Rowen, M; Schlotter, W; Moeller, S; Turner, J J

    2014-09-08

    This paper reports novel measurements of x-ray optical radiation on an absolute scale from the intense and ultra-short radiation generated in the soft x-ray regime of a free electron laser. We give a brief description of the detection principle for radiation measurements which was specifically adapted for this photon energy range. We present data characterizing the soft x-ray instrument at the Linac Coherent Light Source (LCLS) with respect to the radiant power output and transmission by using an absolute detector temporarily placed at the downstream end of the instrument. This provides an estimation of the reflectivity of all x-ray optical elements in the beamline and provides the absolute photon number per bandwidth per pulse. This parameter is important for many experiments that need to understand the trade-offs between high energy resolution and high flux, such as experiments focused on studying materials via resonant processes. Furthermore, the results are compared with the LCLS diagnostic gas detectors to test the limits of linearity, and observations are reported on radiation contamination from spontaneous undulator radiation and higher harmonic content.

  12. Sounding rocket measurement of the absolute solar EUV flux utilizing a silicon photodiode

    SciTech Connect

    Ogawa, H.S.; McMullin, D.; Judge, D.L. ); Canfield, L.R. )

    1990-04-01

    A newly developed stable and high quantum efficiency silicon photodiode was used to obtain an accurate measurement of the integrated absolute magnitude of the solar extreme ultraviolet photon flux in the spectral region between 50 and 800 {angstrom}. The detector was flown aboard a solar point sounding rocket launched from White Sands Missile Range in New Mexico on October 24, 1988. The adjusted daily 10.7-cm solar radio flux and sunspot number were 168.4 and 121, respectively. The unattenuated absolute value of the solar EUV flux at 1 AU in the specified wavelength region was 6.81 {times} 10{sup 10} photons cm{sup {minus}2} s{sup {minus}1}. Based on a nominal probable error of 7% for National Institute of Standards and Technology detector efficiency measurements in the 50- to 500-{angstrom} region (5% on longer wavelength measurements between 500 and 1216 {angstrom}), and based on experimental errors associated with their rocket instrumentation and analysis, a conservative total error estimate of {approximately}14% is assigned to the absolute integral solar flux obtained.

  13. Temperature-dependent Absolute Refractive Index Measurements of Synthetic Fused Silica

    NASA Technical Reports Server (NTRS)

    Leviton, Douglas B.; Frey, Bradley J.

    2006-01-01

    Using the Cryogenic, High-Accuracy Refraction Measuring System (CHARMS) at NASA's Goddard Space Flight Center, we have measured the absolute refractive index of five specimens taken from a very large boule of Corning 7980 fused silica from temperatures ranging from 30 to 310 K at wavelengths from 0.4 to 2.6 microns with an absolute uncertainty of plus or minus 1 x 10 (exp -5). Statistical variations in derived values of the thermo-optic coefficient (dn/dT) are at the plus or minus 2 x 10 (exp -8)/K level. Graphical and tabulated data for absolute refractive index, dispersion, and thermo-optic coefficient are presented for selected wavelengths and temperatures along with estimates of uncertainty in index. Coefficients for temperature-dependent Sellmeier fits of measured refractive index are also presented to allow accurate interpolation of index to other wavelengths and temperatures. We compare our results to those from an independent investigation (which used an interferometric technique for measuring index changes as a function of temperature) whose samples were prepared from the same slugs of material from which our prisms were prepared in support of the Kepler mission. We also compare our results with sparse cryogenic index data from measurements of this material from the literature.

  14. Wall Effect on the Convective-Absolute Boundary for the Compressible Shear Layer

    NASA Astrophysics Data System (ADS)

    Robinet, Jean-Christophe; Dussauge, Jean-Paul; Casalis, Grégoire

    The linear stability of inviscid compressible shear layers is studied. When the layer develops at the vicinity of a wall, the two parallel flows can have a velocity of the same sign or of opposite signs. This situation is examined in order to obtain first hints on the stability of separated flows in the compressible regime. The shear layer is described by a hyperbolic tangent profile for the velocity component and the Crocco relation for the temperature profile. Gravity effects and the superficial tension are neglected. By examining the temporal growth rate at the saddle point in the wave-number space, the flow is characterized as being either absolutely unstable or convectively unstable. This study principally shows the effect of the wall on the convective-absolute transition in compressible shear flow. Results are presented, showing the amount of the backflow necessary to have this type of transition for a range of primary flow Mach numbers M1 up to 3.0. The boundary of the convective-absolute transition is defined as a function of the velocity ratio, the temperature ratio and the Mach number. Unstable solutions are calculated for both streamwise and oblique disturbances in the shear layer.

  15. Absolutely nondestructive discrimination of Huoshan Dendrobium nobile species with miniature near-infrared (NIR) spectrometer engine.

    PubMed

    Hu, Tian; Yang, Hai-Long; Tang, Qing; Zhang, Hui; Nie, Lei; Li, Lian; Wang, Jin-Feng; Liu, Dong-Ming; Jiang, Wei; Wang, Fei; Zang, Heng-Chang

    2014-10-01

    As one very precious traditional Chinese medicine (TCM), Huoshan Dendrobium has not only high price, but also significant pharmaceutical efficacy. However, different species of Huoshan Dendrobium exhibit considerable difference in pharmaceutical efficacy, so rapid and absolutely non-destructive discrimination of Huoshan Dendrobium nobile according to different species is crucial to quality control and pharmaceutical effect. In this study, as one type of miniature near-infrared (NIR) spectrometer, MicroNIR 1700 was used for absolutely nondestructive determination of NIR spectra of 90 batches of Dendrobium from five species of differ- ent commodity grades. The samples were intact and not smashed. Soft independent modeling of class analogy (SIMCA) pattern recognition based on principal component analysis (PCA) was used to classify and recognize different species of Dendrobium samples. The results indicated that the SIMCA qualitative models established with pretreatment method of standard normal variate transformation (SNV) in the spectra range selected by Qs method had 100% recognition rates and 100% rejection rates. This study demonstrated that a rapid and absolutely non-destructive analytical technique based on MicroNIR 1700 spectrometer was developed for successful discrimination of five different species of Huoshan Dendrobium with acceptable accuracy.

  16. Absolute Binding Free Energy Calculations: On the Accuracy of Computational Scoring of Protein-ligand Interactions

    PubMed Central

    Singh, Nidhi; Warshel, Arieh

    2010-01-01

    Calculating the absolute binding free energies is a challenging task. Reliable estimates of binding free energies should provide a guide for rational drug design. It should also provide us with deeper understanding of the correlation between protein structure and its function. Further applications may include identifying novel molecular scaffolds and optimizing lead compounds in computer-aided drug design. Available options to evaluate the absolute binding free energies range from the rigorous but expensive free energy perturbation to the microscopic Linear Response Approximation (LRA/β version) and its variants including the Linear Interaction Energy (LIE) to the more approximated and considerably faster scaled Protein Dipoles Langevin Dipoles (PDLD/S-LRA version), as well as the less rigorous Molecular Mechanics Poisson–Boltzmann/Surface Area (MM/PBSA) and Generalized Born/Surface Area (MM/GBSA) to the less accurate scoring functions. There is a need for an assessment of the performance of different approaches in terms of computer time and reliability. We present a comparative study of the LRA/β, the LIE, the PDLD/S-LRA/β and the more widely used MM/PBSA and assess their abilities to estimate the absolute binding energies. The LRA and LIE methods perform reasonably well but require specialized parameterization for the non-electrostatic term. On the average, the PDLD/S-LRA/β performs effectively. Our assessment of the MM/PBSA is less optimistic. This approach appears to provide erroneous estimates of the absolute binding energies due to its incorrect entropies and the problematic treatment of electrostatic energies. Overall, the PDLD/S-LRA/β appears to offer an appealing option for the final stages of massive screening approaches. PMID:20186976

  17. Self-digitization microfluidic chip for absolute quantification of mRNA in single cells.

    PubMed

    Thompson, Alison M; Gansen, Alexander; Paguirigan, Amy L; Kreutz, Jason E; Radich, Jerald P; Chiu, Daniel T

    2014-12-16

    Quantification of mRNA in single cells provides direct insight into how intercellular heterogeneity plays a role in disease progression and outcomes. Quantitative polymerase chain reaction (qPCR), the current gold standard for evaluating gene expression, is insufficient for providing absolute measurement of single-cell mRNA transcript abundance. Challenges include difficulties in handling small sample volumes and the high variability in measurements. Microfluidic digital PCR provides far better sensitivity for minute quantities of genetic material, but the typical format of this assay does not allow for counting of the absolute number of mRNA transcripts samples taken from single cells. Furthermore, a large fraction of the sample is often lost during sample handling in microfluidic digital PCR. Here, we report the absolute quantification of single-cell mRNA transcripts by digital, one-step reverse transcription PCR in a simple microfluidic array device called the self-digitization (SD) chip. By performing the reverse transcription step in digitized volumes, we find that the assay exhibits a linear signal across a wide range of total RNA concentrations and agrees well with standard curve qPCR. The SD chip is found to digitize a high percentage (86.7%) of the sample for single-cell experiments. Moreover, quantification of transferrin receptor mRNA in single cells agrees well with single-molecule fluorescence in situ hybridization experiments. The SD platform for absolute quantification of single-cell mRNA can be optimized for other genes and may be useful as an independent control method for the validation of mRNA quantification techniques.

  18. Two methods for absolute calibration of dynamic pressure transducers

    NASA Astrophysics Data System (ADS)

    Swift, G. W.; Migliori, A.; Garrett, S. L.; Wheatley, J. C.

    1982-12-01

    Two techniques are described for absolute calibration of a dynamic pressure transducer from 0 to 400 Hz in 1-MPa helium gas. One technique is based on a comparison to a mercury manometer; the other is based on the principle of reciprocity. The two techniques agree within the instrumental uncertainties of 1%.

  19. Toward The Absolute Age of M92 With MIST

    NASA Astrophysics Data System (ADS)

    Choi, Jieun; Conroy, Charlie; Dotter, Aaron; Weisz, Daniel; Rosenfield, Philip; Dolphin, Andrew

    2016-08-01

    Globular clusters provide a fundamental link between stars and galaxies. For example, it has been suggested that ultra faint dwarf galaxies formed all of their stars prior to the epoch of reionization, but this conclusion hinges entirely on the striking similarity of their stellar populations to the ancient, metal-poor globular cluster M92. The accurate measurement of absolute ages of ancient globular clusters therefore has direct implications for the formation histories of the smallest galaxies in the Universe. However, a reliable determination of the absolute ages of globular clusters has proven to be a challenge due to uncertainties in stellar physics and complications in how the models are compared to observations. I will present preliminary results from a comprehensive study to measure the absolute age of M92 using high-quality HST archival imaging data. We pair our new MESA Isochrones and Stellar Tracks (MIST) models with a full CMD fitting framework to jointly fit multi-color CMDs, taking into account the uncertainties in abundances, distance, and stellar physics. The goal of this project is two-fold. First, we aim to provide the most secure absolute age of M92 to date with robustly estimated uncertainties. Second, we explore and quantify the degeneracies between uncertain physical quantities and model variables, such as the distance, mixing-length-alpha parameter, and helium abundance, with the ultimate goal of better constraining these unknowns with data from ongoing and future surveys such as K2, Gaia, TESS, JWST, and WFIRST.

  20. Individual Differences in Absolute and Relative Metacomprehension Accuracy

    ERIC Educational Resources Information Center

    Maki, Ruth H.; Shields, Micheal; Wheeler, Amanda Easton; Zacchilli, Tammy Lowery

    2005-01-01

    The authors investigated absolute and relative metacomprehension accuracy as a function of verbal ability in college students. Students read hard texts, revised texts, or a mixed set of texts. They then predicted their performance, took a multiple-choice test on the texts, and made posttest judgments about their performance. With hard texts,…

  1. Absolute Value Inequalities: High School Students' Solutions and Misconceptions

    ERIC Educational Resources Information Center

    Almog, Nava; Ilany, Bat-Sheva

    2012-01-01

    Inequalities are one of the foundational subjects in high school math curricula, but there is a lack of academic research into how students learn certain types of inequalities. This article fills part of the research gap by presenting the findings of a study that examined high school students' methods of approaching absolute value inequalities,…

  2. Is There a Rule of Absolute Neutralization in Nupe?

    ERIC Educational Resources Information Center

    Krohn, Robert

    1975-01-01

    A previously prosed rule of absolute neutralization (merging underlying low vowels) is eliminated in an alternative analysis including instead a rule that "breaks" the feature matrix of certain low vowels and redistributes the features of each vowel as a sequence of vowel-like transition plus (a). (Author/RM)

  3. A mathematical biologist's guide to absolute and convective instability.

    PubMed

    Sherratt, Jonathan A; Dagbovie, Ayawoa S; Hilker, Frank M

    2014-01-01

    Mathematical models have been highly successful at reproducing the complex spatiotemporal phenomena seen in many biological systems. However, the ability to numerically simulate such phenomena currently far outstrips detailed mathematical understanding. This paper reviews the theory of absolute and convective instability, which has the potential to redress this inbalance in some cases. In spatiotemporal systems, unstable steady states subdivide into two categories. Those that are absolutely unstable are not relevant in applications except as generators of spatial or spatiotemporal patterns, but convectively unstable steady states can occur as persistent features of solutions. The authors explain the concepts of absolute and convective instability, and also the related concepts of remnant and transient instability. They give examples of their use in explaining qualitative transitions in solution behaviour. They then describe how to distinguish different types of instability, focussing on the relatively new approach of the absolute spectrum. They also discuss the use of the theory for making quantitative predictions on how spatiotemporal solutions change with model parameters. The discussion is illustrated throughout by numerical simulations of a model for river-based predator-prey systems.

  4. Ophthalmoplegic migraine. Two patients with an absolute response to indomethacin.

    PubMed

    Pareja, J A; Churruca, J; de la Casa Fages, B; de Silanes, C López; Sánchez, C; Barriga, F J

    2010-06-01

    Two patients suffering from ophthalmoplegic migraine had a strictly unilateral headache absolutely responsive to indomethacin, but not to other non-steroidal anti-inflammatory drugs, analgesics or corticosteroids. Such observations raise a therapeutic alternative and suggest that ophthalmoplegic migraine may present with different headache phenotypes.

  5. Absolute Interrogative Intonation Patterns in Buenos Aires Spanish

    ERIC Educational Resources Information Center

    Lee, Su Ar

    2010-01-01

    In Spanish, each uttered phrase, depending on its use, has one of a variety of intonation patterns. For example, a phrase such as "Maria viene manana" "Mary is coming tomorrow" can be used as a declarative or as an absolute interrogative (a yes/no question) depending on the intonation pattern that a speaker produces. …

  6. Absolute configurations of zingiberenols isolated from ginger (Zingiber officinale) rhizomes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The sesquiterpene alcohol zingiberenol, or 1,10-bisaboladien-3-ol, was isolated some time ago from ginger, Zingiber officinale, rhizomes, but its absolute configuration had not been determined. With three chiral centers present in the molecule, zingiberenol can exist in eight stereoisomeric forms. ...

  7. Lyman alpha SMM/UVSP absolute calibration and geocoronal correction

    NASA Technical Reports Server (NTRS)

    Fontenla, Juan M.; Reichmann, Edwin J.

    1987-01-01

    Lyman alpha observations from the Ultraviolet Spectrometer Polarimeter (UVSP) instrument of the Solar Maximum Mission (SMM) spacecraft were analyzed and provide instrumental calibration details. Specific values of the instrument quantum efficiency, Lyman alpha absolute intensity, and correction for geocoronal absorption are presented.

  8. Urey: to measure the absolute age of Mars

    NASA Technical Reports Server (NTRS)

    Randolph, J. E.; Plescia, J.; Bar-Cohen, Y.; Bartlett, P.; Bickler, D.; Carlson, R.; Carr, G.; Fong, M.; Gronroos, H.; Guske, P. J.; Herring, M.; Javadi, H.; Johnson, D. W.; Larson, T.; Malaviarachchi, K.; Sherrit, S.; Stride, S.; Trebi-Ollennu, A.; Warwick, R.

    2003-01-01

    UREY, a proposed NASA Mars Scout mission will, for the first time, measure the absolute age of an identified igneous rock formation on Mars. By extension to relatively older and younger rock formations dated by remote sensing, these results will enable a new and better understanding of Martian geologic history.

  9. Relative versus Absolute Stimulus Control in the Temporal Bisection Task

    ERIC Educational Resources Information Center

    de Carvalho, Marilia Pinhiero; Machado, Armando

    2012-01-01

    When subjects learn to associate two sample durations with two comparison keys, do they learn to associate the keys with the short and long samples (relational hypothesis), or with the specific sample durations (absolute hypothesis)? We exposed 16 pigeons to an ABA design in which phases A and B corresponded to tasks using samples of 1 s and 4 s,…

  10. Mechanism for an absolute parametric instability of an inhomogeneous plasma

    NASA Astrophysics Data System (ADS)

    Arkhipenko, V. I.; Budnikov, V. N.; Gusakov, E. Z.; Romanchuk, I. A.; Simonchik, L. V.

    1984-05-01

    The structure of plasma oscillations in a region of parametric spatial amplification has been studied experimentally for the first time. A new mechanism for an absolute parametric instability has been observed. This mechanism operates when a pump wave with a spatial structure more complicated than a plane wave propagates through a plasma which is inhomogeneous along more than one dimension.

  11. Absolute calibration in the 1750 - 3350 A region

    NASA Technical Reports Server (NTRS)

    Strongylis, G. J.; Bohlin, R. C.

    1977-01-01

    The absolute flux measurements in the rocket ultraviolet made by Bohlin, Frimout, and Lillie (BFL) are revised using a more correct treatment of the air extinction that enters the air calibration of their instrument. The absorption by molecular oxygen and ozone, Rayleigh scattering, and extinction by aerosols is tabulated for general use in ultraviolet calibrations performed in air. The revised absolute flux of eta UMa and final fluxes for alpha Lyr and zeta Oph are presented in the 1750-3350 A region. The absolute flux of the star eta UMa is compared to four other independent determinations in the 1200-3400 A region and a maximum difference of 35% is found near 1500 A between the OAO-2 and Apollo 17 fluxes. The rocket measurements of BFL, the ANS and TD-1 satellite data, and the Apollo 17 data are compared to the ultraviolet fluxes from the OAO-2, demonstrating a photometric reproducibility of about + or - 3 percent. Therefore, all four sets of spectrophotometry can be reduced to a common absolute scale.

  12. Series that Converge Absolutely but Don't Converge

    ERIC Educational Resources Information Center

    Kantrowitz, Robert; Schramm, Michael

    2012-01-01

    If a series of real numbers converges absolutely, then it converges. The usual proof requires completeness in the form of the Cauchy criterion. Failing completeness, the result is false. We provide examples of rational series that illustrate this point. The Cantor set appears in connection with one of the examples.

  13. Analysis of standard reference materials by absolute INAA

    SciTech Connect

    Heft, R.E.; Koszykowski, R.F.

    1981-07-01

    Three standard reference materials, flyash, soil, and ASI 4340 steel, were analyzed by a method of absolute instrumental neutron activation analysis (INAA). Two different light water pool-type reactors were used to produce equivalent analytical results even though the epithermal to thermal flux ratio in one reactor was higher than that in the other by a factor of two.

  14. PHASES: A Project to Perform Absolute Spectrophotometry from Space

    NASA Astrophysics Data System (ADS)

    del Burgo, C.; Vather, D.; Allende Prieto, C.; Murphy, N.

    2013-04-01

    This paper presents the current status of the opto-mechanical design of PHASES (Planet Hunting and AsteroSeismology Explorer Spectrophotometer), which is a project to develop a space-borne telescope to obtain absolute flux calibrated spectra of bright stars. The science payload is intended to be housed in a micro-satellite launched into a low-earth Sun-synchronous orbit with an inclination to the equator of 98.7° and a local time ascending node LTAN of 6:00 AM. PHASES will be able to measure micromagnitude photometric variations due to stellar oscillations/activity and planet/moon transits. It consists of a 20 cm aperture modified Baker telescope feeding two detectors: the tracking detector provides the fine telescope guidance system with a required pointing stability of 0.2″, and the science detector performs spectrophotometry in the wavelength range 370-960 nm with a resolving power between 200 and 900. The spectrograph is designed to provide 1% RMS flux calibrated spectra with signal-to-noise ratios > 100 for stars with V < 10 in short integration times. Our strategy to calibrate the system using A type stars is explained. From comparison with model atmospheres it would be possible to determine the stellar angular diameters with an uncertainty of approximately 0.5%. In the case of a star hosting a transiting planet it would be possible to derive its light curve, and then the planet to stellar radius ratio. Bright stars have high precision Hipparcos parallaxes and the expected level of accuracy for their fluxes will be propagated to the stellar radii, and more significantly to the planetary radii. The scientific drivers for PHASES give rise to some design challenges, which are particularly related to the opto-mechanics for extreme environmental conditions. The optical design has been developed with the primary goal of avoiding stray light reaching the science detector. Three different proposals for the opto-mechanical design are under investigation.

  15. "Sizing Up" Codependency Recovery.

    ERIC Educational Resources Information Center

    Messner, Beth A.

    1996-01-01

    Analyzes codependency related, self-help literature with a dramatistic lens to explore M. Beattie's bibliotherapeutic portrayal of codependency and codependency recovery. Depicts Beattie's "stylistic medicine" for codependency recovery as a three-step, rebirth experience: (1) recognize the codependent pollution within; (2) engage in…

  16. Absolute and relative endocranial size in Neandertals and later Pleistocene Homo.

    PubMed

    Gallagher, Andrew

    2014-10-01

    Eurasian Neandertals encompass the entire observed range of recent and fossil Homo sapiens in absolute, but not relative endocranial volume, and Neandertals attest an average EQ significantly lower than their Upper Pleistocene successors. While the cognitive, social, and evolutionary implications of this phenomenon have been emphasised, the statistical basis of a mean inference of EQ in the Neandertal hypodigm has not been appropriately demonstrated. A demonstrable male bias in the available postcranial, not cranial, series has skewed perceptions of Neandertal brain-to-body size scaling towards a rejection of the null hypothesis. A simple resolution to this problem is a concise assessment of paired associated covariates against a suitable recent human comparator series. Permutations of Fisher's z and Student's t statistics are valid metrics in tests of significance in single datum hypotheses. Bootstrapped single observation tests determined significance in body size, absolute and relative endocranial volume in Pleistocene archaic, early modern, and late Pleistocene H. sapiens. With respect to absolute ECV, all current Middle-Upper Pleistocene crania fall within the substantial recent Homo range. Nevertheless, simple indices derived from raw and modified data in normal and logarithmic space reveal that Western European Neandertal males approach the lower extremes of our observed size range in relative ECV, yet none exceed statistical significance. Results confirm that relative ECV/brain size in Neandertals was not significantly depressed relative to recent and fossil H. sapiens and this is consistent with a substantial body of data from living humans dismissing any simple correspondence of relative brain size with intelligence and, by extension, evolutionary success.

  17. The EM-POGO: A simple, absolute velocity profiler

    NASA Astrophysics Data System (ADS)

    Terker, S. R.; Sanford, T. B.; Dunlap, J. H.; Girton, J. B.

    2013-01-01

    Electromagnetic current instrumentation has been added to the Bathy Systems, Inc. POGO transport sondes to produce a free-falling absolute velocity profiler called EM-POGO. The POGO is a free-fall profiler that measures a depth-averaged velocity using GPS fixes at the beginning and end of a round trip to the ocean floor (or a preset depth). The EM-POGO adds a velocity profile determined from measurements of motionally induced electric fields generated by the ocean current moving through the vertical component of the Earth's magnetic field. In addition to providing information about the vertical structure of the velocity, the depth-dependent measurements improve transport measurements by correcting for the non-constant fall-rate. Neglecting the variable fall rate results in errors O (1 cm s-1). The transition from POGO to EM-POGO included electrically isolating the POGO and electric-field-measuring circuits, installing a functional GPS receiver, finding a pressure case that provided an optimal balance among crush-depth, price and size, and incorporating the electrodes, electrode collar, and the circuitry required for the electric field measurement. The first EM-POGO sea-trial was in July 1999. In August 2006 a refurbished EM-POGO collected 15 absolute velocity profiles; relative and absolute velocity uncertainty was ˜1cms-1 and 0.5-5 cm s-1, respectively, at a vertical resolution of 25 m. Absolute velocity from the EM-POGO compared to shipboard ADCP measurements differed by ˜ 1-2 cm s-1, comparable to the uncertainty in absolute velocity from the ADCP. The EM-POGO is thus a low-cost, easy to deploy and recover, and accurate velocity profiler.

  18. Recovery of phosphonate surface contaminants from glass using a simple vacuum extractor with a solid-phase microextraction fiber

    SciTech Connect

    Gary S. Groenewold; Jill R. Scott; Cathy Rae

    2011-07-01

    Recovery of chemical contaminants from fixed surfaces for analysis can be challenging particularly if it is not possible to acquire a solid sample. A simple device is described that collects semivolatile organic compounds from fixed surfaces by creating an enclosed volume over the surface, then generating a modest vacuum. A solid-phase microextraction fiber is then inserted into the evacuated volume where it functions to sorb volatilized organic contaminants. The device is based on a syringe modified with a seal that is used to create the vacuum, with a perforable plunger through which the SPME fiber is inserted. The vacuum speeds partitioning of the semivolatile compounds into the gas phase, and reduces the boundary layer around the SPME fiber, which enables a fraction of the volatilized organics to partition into the SPME fiber. After sample collection the SPME fiber is analyzed using conventional gas chromatography/mass spectrometry. The methodology has been used to collect organophosphorus compounds from glass surfaces, to provide a simple test for the functionality of the devices. Thirty minute sampling times (deltaTvac) resulted in fractional recovery efficiencies ranged from 10(-3) to > 10(-1), and in absolute terms collection of low nanograms was demonstrated. Fractional recovery values were correlated to the vapor pressure of the compounds being sampled. Fractional recovery increased with increasing deltaTvac, and displayed a roughly logarithmic profile indicating that an operational equilibrium is being approached. Fractional recovery decreased with increasing time between exposure and sampling, however recordable quantities of the phosphonates could be collected three weeks after exposure.

  19. Absolute vacuum ultraviolet photoabsorption cross section studies of atomic and molecular species: Techniques and observational data

    NASA Technical Reports Server (NTRS)

    Judge, D. L.; Wu, C. Y. R.

    1990-01-01

    Absorption of a high energy photon (greater than 6 eV) by an isolated molecule results in the formation of highly excited quasi-discrete or continuum states which evolve through a wide range of direct and indirect photochemical processes. These are: photoionization and autoionization, photodissociation and predissociation, and fluorescence. The ultimate goal is to understand the dynamics of the excitation and decay processes and to quantitatively measure the absolute partial cross sections for all processes which occur in photoabsorption. Typical experimental techniques and the status of observational results of particular interest to solar system observations are presented.

  20. Absolute polarimeter for the proton-beam energy of 200 MeV

    SciTech Connect

    Zelenski, A. N.; Atoian, G.; Bogdanov, A. A.; Nurushev, S. B.; Pylaev, F. S.; Raparia, D.; Runtso, M. F.; Stephenson, E.

    2013-12-15

    A polarimeter is upgraded and tested in a 200-MeV polarized-proton beam at the accelerator-collider facility of the Brookhaven National Laboratory. The polarimeter is based on the elastic polarizedproton scattering on a carbon target at an angle of 16.2°, in which case the analyzing power is close to unity and was measured to a very high degree of precision. It is shown that, in the energy range of 190–205 MeV, the absolute polarization can be measured to a precision better than ±0.5%.

  1. Absolute Helmholtz free energy of highly anharmonic crystals: theory vs Monte Carlo.

    PubMed

    Yakub, Lydia; Yakub, Eugene

    2012-04-14

    We discuss the problem of the quantitative theoretical prediction of the absolute free energy for classical highly anharmonic solids. Helmholtz free energy of the Lennard-Jones (LJ) crystal is calculated accurately while accounting for both the anharmonicity of atomic vibrations and the pair and triple correlations in displacements of the atoms from their lattice sites. The comparison with most precise computer simulation data on sublimation and melting lines revealed that theoretical predictions are in excellent agreement with Monte Carlo simulation data in the whole range of temperatures and densities studied.

  2. Measurement of the absolute hohlraum wall albedo under ignition foot drive conditions

    SciTech Connect

    Suter, L J; Wallace, R J; Hammel, B A; Weber, F A; Landen, O L; Campbell, K M; DeWald, E L; Glenzer, S H; Rosen, M D; Jones, O S; Turner, R E; Kauffmann, R L; Hammer, J H

    2003-11-25

    We present the first measurements of the absolute albedos of hohlraums made from gold or from high-Z mixtures. The measurements are performed over the range of radiation temperatures (70-100 eV) expected during the foot of an indirect-drive temporally-shaped ignition laser pulse, where accurate knowledge of the wall albedo (i.e. soft x-ray wall re-emission) is most critical for determining capsule radiation symmetry. We find that the gold albedo agrees well with calculations using the super transition array opacity model, potentially providing additional margin for ICF ignition.

  3. Absolute differential cross sections for elastic electron scattering from small biomolecules

    NASA Astrophysics Data System (ADS)

    Maljković, Jelena

    2014-12-01

    The results of an experimental investigation of electrons colliding with a set of biomolecules that are assumed to be analogues of the building blocks of DNA (furan, 3- hydroxytetrahydrofuran and pyrimidine) and proteins (formamide, N-methylformamide) are presented. Absolute differential cross sections at medium incident electron energies 40 eV- 300 eV are presented and compared for these different targets. The experimental results are also compared with available calculations, based on the corrected form of independent atom model and show good agreement over the energy range studied.

  4. Image plate characterization and absolute calibration to low kilo-electron-volt electrons

    NASA Astrophysics Data System (ADS)

    Busold, S.; Philipp, K.; Otten, A.; Roth, M.

    2014-11-01

    We report on the characterization of an image plate and its absolute calibration to electrons in the low keV energy range (1-30 keV). In our case, an Agfa MD4.0 without protection layer was used in combination with a Fuji FLA7000 scanner. The calibration data are compared to other published data and a consistent picture of the sensitivity of image plates to electrons is obtained, which suggests a validity of the obtained calibration up to 100 keV.

  5. Image plate characterization and absolute calibration to low kilo-electron-volt electrons.

    PubMed

    Busold, S; Philipp, K; Otten, A; Roth, M

    2014-11-01

    We report on the characterization of an image plate and its absolute calibration to electrons in the low keV energy range (1-30 keV). In our case, an Agfa MD4.0 without protection layer was used in combination with a Fuji FLA7000 scanner. The calibration data are compared to other published data and a consistent picture of the sensitivity of image plates to electrons is obtained, which suggests a validity of the obtained calibration up to 100 keV.

  6. Image plate characterization and absolute calibration to low kilo-electron-volt electrons

    SciTech Connect

    Busold, S.; Philipp, K.; Otten, A.; Roth, M.

    2014-11-15

    We report on the characterization of an image plate and its absolute calibration to electrons in the low keV energy range (1–30 keV). In our case, an Agfa MD4.0 without protection layer was used in combination with a Fuji FLA7000 scanner. The calibration data are compared to other published data and a consistent picture of the sensitivity of image plates to electrons is obtained, which suggests a validity of the obtained calibration up to 100 keV.

  7. Many-wavelength interferometry with thousands of lasers for absolute distance measurement.

    PubMed

    van den Berg, S A; Persijn, S T; Kok, G J P; Zeitouny, M G; Bhattacharya, N

    2012-05-04

    We demonstrate a new technique for absolute distance measurement with a femtosecond frequency comb laser, based on unraveling the output of an interferometer to distinct comb modes with 1 GHz spacing. From the fringe patterns that are captured with a camera, a distance is derived by combining spectral and homodyne interferometry, exploiting about 9000 continuous wave lasers. This results in a measurement accuracy far within an optical fringe (λ/30), combined with a large range of nonambiguity (15 cm). Our technique merges multiwavelength interferometry and spectral interferometry, within a single scheme.

  8. Absolute spectrophotometry of Titan, Uranus, and Neptune 3500-10,500 A

    NASA Technical Reports Server (NTRS)

    Neff, J. S.; Humm, D. C.; Bergstralh, J. T.; Cochran, A. L.; Cochran, W. D.; Barker, E. S.; Tull, R. G.

    1984-01-01

    The present absolute measurements of Titan, Uranus and Neptune geometric albedo spectra in the 3500-10,500 A range have a resolution of about 7 A, together with high SNR, in virtue of the exceptional effeciency of the spectrograph and Reticon detector employed. The high precision and spectral resolution of the data, which are in excellent agreement with the Uranus albedo measurements of Lockwood et al. (1983), make possible quantitative measurements of the effects of Raman scattering by H2 in the Uranus and Neptune atmospheres.

  9. Establishing ion ratio thresholds based on absolute peak area for absolute protein quantification using protein cleavage isotope dilution mass spectrometry.

    PubMed

    Loziuk, Philip L; Sederoff, Ronald R; Chiang, Vincent L; Muddiman, David C

    2014-11-07

    Quantitative mass spectrometry has become central to the field of proteomics and metabolomics. Selected reaction monitoring is a widely used method for the absolute quantification of proteins and metabolites. This method renders high specificity using several product ions measured simultaneously. With growing interest in quantification of molecular species in complex biological samples, confident identification and quantitation has been of particular concern. A method to confirm purity or contamination of product ion spectra has become necessary for achieving accurate and precise quantification. Ion abundance ratio assessments were introduced to alleviate some of these issues. Ion abundance ratios are based on the consistent relative abundance (RA) of specific product ions with respect to the total abundance of all product ions. To date, no standardized method of implementing ion abundance ratios has been established. Thresholds by which product ion contamination is confirmed vary widely and are often arbitrary. This study sought to establish criteria by which the relative abundance of product ions can be evaluated in an absolute quantification experiment. These findings suggest that evaluation of the absolute ion abundance for any given transition is necessary in order to effectively implement RA thresholds. Overall, the variation of the RA value was observed to be relatively constant beyond an absolute threshold ion abundance. Finally, these RA values were observed to fluctuate significantly over a 3 year period, suggesting that these values should be assessed as close as possible to the time at which data is collected for quantification.

  10. Laser ranging and communications for LISA.

    PubMed

    Sutton, Andrew; McKenzie, Kirk; Ware, Brent; Shaddock, Daniel A

    2010-09-27

    The Laser Interferometer Space Antenna (LISA) will use Time Delay Interferometry (TDI) to suppress the otherwise dominant laser frequency noise. The technique uses sub-sample interpolation of the recorded optical phase measurements to form a family of interferometric combinations immune to frequency noise. This paper reports on the development of a Pseudo-Random Noise laser ranging system used to measure the sub-sample interpolation time shifts required for TDI operation. The system also includes an optical communication capability that meets the 20 kbps LISA requirement. An experimental demonstration of an integrated LISA phase measurement and ranging system achieved a ≈ 0.19 m rms absolute range error with a 0.5Hz signal bandwidth, surpassing the 1 m rms LISA specification. The range measurement is limited by mutual interference between the ranging signals exchanged between spacecraft and the interaction of the ranging code with the phase measurement.

  11. Greenhouse gases and recovery of the Earth’s ozone layer

    NASA Astrophysics Data System (ADS)

    Dyominov, Igor G.; Zadorozhny, Alexander M.

    A numerical 2-D zonally averaged dynamical radiative-photochemical model of the ozonosphere including aerosol physics is used to examine the role of the greenhouse gases CO 2, CH 4, and N 2O in the recovery of the Earth's ozone layer after reduction of anthropogenic discharges of chlorine and bromine compounds into the atmosphere. A weakness in efficiencies of all catalytic cycles of the ozone destruction due to cooling of the stratosphere caused by greenhouse gases is shown to be a dominant mechanism of the impact of the greenhouse gases on the ozone layer. Numerical experiments show that the total ozone changes caused by greenhouse gases will be comparable in absolute value with the changes due to chlorine and bromine species in the middle of the 21st century. Continuous anthropogenic growth of CO 2 will lead to a significantly faster recovery of the ozone layer. In this case, the global total ozone in the latitude range from 60°S to 60°N will reach its undisturbed level of 1980 by about 2040. If the CO 2 growth stops, the global total ozone will reach this level only by the end of the century.

  12. Reusable Reentry Satellite (RRS): Recovery tradeoff study

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The main objectives of the Recovery Tradeoff Study were as follows: (1) to determine whether a land or water recovery best suits RRS system requirements; (2) what type of terminal recovery system is best suited for the RRS; and (3) what are the recovery access timelines after system landing. Based on the trade parameters and evaluation criteria used in this study, the land-landing configuration has an advantage over the water-landing configuration. It is recommended that a land-landing configuration be developed assuming WSMR as the landing site. It is also recommended that natural orbits be used for low inclination missions and any orbit adjustments for landing site targeting be performed at the end of the mission. Near-integer orbits should be used for high inclination missions and allow orbital decay to precess the ground track over the landing site range.

  13. Solvent recycle/recovery

    SciTech Connect

    Paffhausen, M.W.; Smith, D.L.; Ugaki, S.N.

    1990-09-01

    This report describes Phase I of the Solvent Recycle/Recovery Task of the DOE Chlorinated Solvent Substitution Program for the US Air Force by the Idaho National Engineering Laboratory, EG G Idaho, Inc., through the US Department of Energy, Idaho Operations Office. The purpose of the task is to identify and test recovery and recycling technologies for proposed substitution solvents identified by the Biodegradable Solvent Substitution Program and the Alternative Solvents/Technologies for Paint Stripping Program with the overall objective of minimizing hazardous wastes. A literature search to identify recycle/recovery technologies and initial distillation studies has been conducted. 4 refs.

  14. Recovery After Stroke: Healthy Eating

    MedlinePlus

    Recovery After Stroke: Healthy Eating Eating well after stroke is key to your recovery. Choosing healthy foods can help you keep up ... get the nutrition you need for your stroke recovery.  Eat your biggest meal early in the day ...

  15. Preliminary error budget for the reflected solar instrument for the Climate Absolute Radiance and Refractivity Observatory

    NASA Astrophysics Data System (ADS)

    Thome, K.; Gubbels, T.; Barnes, R.

    2011-10-01

    The Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission addresses the need to observe highaccuracy, long-term climate change trends and to use decadal change observations as the most critical method to determine the accuracy of climate change. The CLARREO Project will implement a spaceborne earth observation mission designed to provide rigorous SI-traceable observations (i.e., radiance, reflectance, and refractivity) that are sensitive to a wide range of key decadal change variables. The instrument suite includes emitted infrared spectrometers, global navigation receivers for radio occultation, and reflected solar spectrometers. The measurements will be acquired for a period of five years and will enable follow-on missions to extend the climate record over the decades needed to understand climate change. This work describes a preliminary error budget for the RS sensor. The RS sensor will retrieve at-sensor reflectance over the spectral range from 320 to 2300 nm with 500-m GIFOV and a 100-km swath width. The current design is based on an Offner spectrometer with two separate focal planes each with its own entrance aperture and grating covering spectral ranges of 320-640, 600-2300 nm. Reflectance is obtained from the ratio of measurements of radiance while viewing the earth's surface to measurements of irradiance while viewing the sun. The requirement for the RS instrument is that the reflectance must be traceable to SI standards at an absolute uncertainty <0.3%. The calibration approach to achieve the ambitious 0.3% absolute calibration uncertainty is predicated on a reliance on heritage hardware, reduction of sensor complexity, and adherence to detector-based calibration standards. The design above has been used to develop a preliminary error budget that meets the 0.3% absolute requirement. Key components in the error budget are geometry differences between the solar and earth views, knowledge of attenuator behavior when viewing the sun, and

  16. Absolute surface profilometry of an object with large gaps by means of monochromatic laser interferometry

    NASA Astrophysics Data System (ADS)

    Liu, Zhiqiang; Uchikawa, Kiyoshi; Takeda, Mitsuo

    2011-05-01

    We propose a technique for monochromatic laser interferometry capable of absolute surface profilometry of an object with large height gaps exceeding a half wavelength. The technique does not use a broadband source, such as a low-coherence or multi-wavelength source, or a wavelength-tunable device, which causes a dispersion problem. Instead, we make use of the phase change of monochromatic light through the angular shift of illumination introduced by tilting the optical axis of the interferometer. For oblique illumination at angle θ, the phase difference between the test and reference surfaces separated by distance d is given by ΔΦ = 2kd cosθ , where k = 2π /λ is a wavenumber. In effect, the change of illumination angle θ functions as the change of wavelength λ . Therefore, while using a monochromatic laser light source, we can realize the same effect as a multi-wavelength source. From the relation between the illumination angle and the phase change, the absolute distance d between the test and reference surfaces can be determined without ambiguity of an integer multiple of a half wavelength associated with monochromatic interferometry. The large gap height can be determined also without ambiguity from the change of the absolute distance d across the boundary of the gap. Because the resolution of the absolute distance measurement by means of illumination angle change is not high enough by itself, we enhance the resolution by the following procedure. We first estimate the gap height to an integer multiple of a half wavelength by tilting the optical axis. Then the fractional portion of the phase is measured by setting the optical axis perpendicular to the test surface as in conventional interferometry. By combining the integer and the fractional portion, we can determine the absolute gap height with high accuracy and a large dynamic range exceeding a half wavelength. We present an experimental demonstration with a traditional Twyman-Green interferometer, in

  17. Consistent set of nuclear parameters values for absolute INAA

    SciTech Connect

    Heft, R.E.

    1980-01-01

    Gamma spectral analysis of irradiated material can be used to determine absolute disintegration rates for specific radionuclides. These data, together with measured values for the thermal and epithermal neutron fluxes, and irradiation, cooling and counting time values, are all the experimental information required to do absolute Instrumental Neutron Activation Analysis. The calculations required to go from product photon emission rate to target nuclide amount depend upon values used for the thermal neutron capture cross-section, the resonance absorption integral, the half-life and photon branching ratios. Values for these parameters were determined by irradiating and analyzing a series of elemental standards. The results of these measurements were combined with values reported by other workers to arrive at a set of recommended values for the constants. Values for 114 nuclides are listed.

  18. Enantiomers of a nonylphenol isomer: absolute configurations and estrogenic potencies.

    PubMed

    Zhang, Haifeng; Oppel, Iris M; Spiteller, Michael; Guenther, Klaus; Boehmler, Gabriele; Zuehlke, Sebastian

    2009-02-01

    Enantiomers of 4-(1,1,2-trimethylhexyl)phenol, a chiral isomer of the endocrine disrupting chemical nonylphenol, have been resolved and isolated by preparative chiral HPLC. The absolute configurations of the enantiomers were then determined by an X-ray crystallographic study of the (-)-camphanoyl derivative of the first eluted enantiomer NP(35)E1. The first enantiomer (NP(35)E1) and the second enantiomer (NP(35)E2) eluted were found to have the S and R absolute configurations, respectively. The estrogenic potencies of the S and R enantiomers were tested by the E-screen assay. A slight difference was observed in the relative proliferative effect between the S enantiomer and R enantiomer in the E-screen assay.

  19. The importance and attainment of accurate absolute radiometric calibration

    NASA Technical Reports Server (NTRS)

    Slater, P. N.

    1984-01-01

    The importance of accurate absolute radiometric calibration is discussed by reference to the needs of those wishing to validate or use models describing the interaction of electromagnetic radiation with the atmosphere and earth surface features. The in-flight calibration methods used for the Landsat Thematic Mapper (TM) and the Systeme Probatoire d'Observation de la Terre, Haute Resolution visible (SPOT/HRV) systems are described and their limitations discussed. The questionable stability of in-flight absolute calibration methods suggests the use of a radiative transfer program to predict the apparent radiance, at the entrance pupil of the sensor, of a ground site of measured reflectance imaged through a well characterized atmosphere. The uncertainties of such a method are discussed.

  20. System for controlling absolute humidity in a work area

    SciTech Connect

    Norris, P.K.; Oliver, P.S.

    1987-05-05

    A system is described for controlling absolute humidity of air which is removed from an area, passed through an air washer and returned through a duct to the area. The system comprises: a first sensor located within the area for generating a first signal representative of the absolute humidity of air within the area; a second sensor located in a discharge air plenum portion of the washer for generating a second signal representative of the dry bulb temperature of air discharged from the washer; and control means responsive to the first and second signals for producing a third signal which is applied to the washer to control the dry bulb temperature of air discharged from the washer.

  1. Absolute magnitude calibration using trigonometric parallax - Incomplete, spectroscopic samples

    NASA Technical Reports Server (NTRS)

    Ratnatunga, Kavan U.; Casertano, Stefano

    1991-01-01

    A new numerical algorithm is used to calibrate the absolute magnitude of spectroscopically selected stars from their observed trigonometric parallax. This procedure, based on maximum-likelihood estimation, can retrieve unbiased estimates of the intrinsic absolute magnitude and its dispersion even from incomplete samples suffering from selection biases in apparent magnitude and color. It can also make full use of low accuracy and negative parallaxes and incorporate censorship on reported parallax values. Accurate error estimates are derived for each of the fitted parameters. The algorithm allows an a posteriori check of whether the fitted model gives a good representation of the observations. The procedure is described in general and applied to both real and simulated data.

  2. Absolute concentration measurements inside a jet plume using video digitization

    NASA Astrophysics Data System (ADS)

    Vauquelin, O.

    An experimental system based on digitized video image analysis is used to measure the local value of the concentration inside a plume. Experiments are carried out in a wind-tunnel for a smoke-seeded turbulent jet plume illuminated with a laser beam. Each test is filmed, subsequently video images are digitized and analysed in order to determine the smoke absolute concentration corresponding to each pixel gray level. This non-intrusive measurement technique is first calibrated and different laws connecting gray level to concentration are established. As a first application, concentration measurements are made inside a turbulent jet plume and compared with measurements conducted using a classic gas analysis method. We finally present and discuss the possibilities offered for the measurements of absolute concentration fluctuations.

  3. Remote ultrasound palpation for robotic interventions using absolute elastography.

    PubMed

    Schneider, Caitlin; Baghani, Ali; Rohling, Robert; Salcudean, Septimiu

    2012-01-01

    Although robotic surgery has addressed many of the challenges presented by minimally invasive surgery, haptic feedback and the lack of knowledge of tissue stiffness is an unsolved problem. This paper presents a system for finding the absolute elastic properties of tissue using a freehand ultrasound scanning technique, which utilizes the da Vinci Surgical robot and a custom 2D ultrasound transducer for intraoperative use. An external exciter creates shear waves in the tissue, and a local frequency estimation method computes the shear modulus. Results are reported for both phantom and in vivo models. This system can be extended to any 6 degree-of-freedom tracking method and any 2D transducer to provide real-time absolute elastic properties of tissue.

  4. Absolute limit on rotation of gravitationally bound stars

    SciTech Connect

    Glendenning, N.K.

    1994-03-01

    The authors seek an absolute limit on the rotational period for a neutron star as a function of its mass, based on the minimal constraints imposed by Einstein`s theory of relativity, Le Chatelier`s principle, causality and a low-density equation of state, uncertainties which can be evaluated as to their effect on the result. This establishes a limiting curve in the mass-period plane below which no pulsar that is a neutron star can lie. For example, the minimum possible Kepler period, which is an absolute limit on rotation below which mass-shedding would occur, is 0.33 ms for a M = 1.442 M{circle_dot} neutron star (the mass of PSR1913+16). If the limit were found to be broken by any pulsar, it would signal that the confined hadronic phase of ordinary nucleons and nuclei is only metastable, an extraordinary conclusion.

  5. Absolute limit on rotation of gravitationally bound stars

    NASA Astrophysics Data System (ADS)

    Glendenning, N. K.

    1994-03-01

    The authors seek an absolute limit on the rotational period for a neutron star as a function of its mass, based on the minimal constraints imposed by Einstein's theory of relativity, Le Chatelier's principle, causality, and a low-density equation of state, uncertainties which can be evaluated as to their effect on the result. This establishes a limiting curve in the mass-period plane below which no pulsar that is a neutron star can lie. For example, the minimum possible Kepler period, which is an absolute limit on rotation below which mass-shedding would occur, is 0.33 ms for a M = 1.442 solar mass neutron star (the mass of PSR1913+16). If the limit were found to be broken by any pulsar, it would signal that the confined hadronic phase of ordinary nucleons and nuclei is only metastable.

  6. Absolute configuration of labdane diterpenoids from Physalis nicandroides.

    PubMed

    Maldonado, Emma; Pérez-Castorena, Ana L; Romero, Yunuen; Martínez, Mahinda

    2015-02-27

    A mixture of the new epimeric labdenetriols 1 and 2 was isolated from the aerial parts of Physalis nicandroides. The structures of 1 and 2, including their absolute configurations, were established by analyses of their spectroscopic data, together with the X-ray diffraction analysis of acetonide 3 and chemical correlation with (-)-(13E)-labd-13-ene-8α,15-diol (6), whose absolute configuration was also confirmed by X-ray analysis of its dibromo derivative 7. The epimeric labdenediols 8 and 9, the known labdanes 6 and 11, and the acylsucroses 12 and 13 were also isolated. Labdanes 6 and 11 showed moderate anti-inflammatory activities in the induced ear edema model.

  7. A direct way to observe absolute molecular handedness

    NASA Astrophysics Data System (ADS)

    Vager, Zeev

    2014-07-01

    We claim that the polarization of electrons tunneling through the molecular electric dipole direction uniquely determines the handedness of chiral centers. Unique labeling of chiral stereo-centers must include their handedness. The conventional method is formally known as the R, S nomenclature or the Ingold-Prelog priority (CIP) rules. It requires knowledge of the spatial absolute configuration of that center. Traditionally, experimental methods of extracting handedness go through the absolute configuration and only then would the CIP convention be applied. Here we show that a direct experimental method of determination of the natural molecular handedness by the polarization of tunneling electrons is almost always compatible with the CIP convention. By the sole use of symmetry arguments we show that the chiral molecular symmetry eliminates the need of fine structure splitting. As a consequence, the polarization of electrons tunneling through the molecular electric dipole direction uniquely determines their handedness.

  8. Age and forgetfulness: absolute versus comparison decisions about capability.

    PubMed

    Erber, J T; Prager, I G

    1997-01-01

    Perceivers were assigned to one of two decision conditions. In an absolute decision condition, perceivers rated how likely they would be to allow a young or old highly forgetful, slightly forgetful, or nonforgetful target to perform a challenging task. In a comparison decision condition, perceivers rated two targets, one young and one old, who had a similar level of forgetfulness. Separate Decision Type x Target Forgetfulness analyses of variance were conducted on ratings of the two target age groups. Young targets received higher ratings in the comparison than in the absolute condition, whereas old targets were rated the same in the two conditions. There was some preference for young targets in a comparison situation, but it was concluded that forgetfulness was a more important factor than age in perceivers' ratings.

  9. Oblique-incidence sounder measurements with absolute propagation delay timing

    SciTech Connect

    Daehler, M.

    1990-05-03

    Timing from the Global Position Satellite (GPS) system has been applied to HF oblique incidence sounder measurements to produce ionograms whose propagation delay time scale is absolutely calibrated. Such a calibration is useful for interpreting ionograms in terms of the electron density true-height profile for the ionosphere responsible for the propagation. Use of the time variations in the shape of the electron density profile, in conjunction with an HF propagation model, is expected to provide better near-term (1-24 hour) HF propagation forecasts than are available from current updating systems, which use only the MUF. Such a capability may provide the basis for HF frequency management techniques which are more efficient than current methods. Absolute timing and other techniques applicable to automatic extraction of the electron-density profile from an ionogram will be discussed.

  10. Comparisons of absolute gravimeters (COOMET.M.G-S1)

    NASA Astrophysics Data System (ADS)

    Vinnichenko, Mr Alexander; Germak, Alessandro, Dr

    2017-01-01

    This report describes the results of the RMO supplementary comparison COOMET.M.G-S1 (also known as bilateral comparison COOMET 634/UA/14). The comparison measurements between the two participants NSC 'IM' (pilot laboratory) and INRIM were started in December 2015 and finished in January 2016. Participants of comparisons were conducted at their national standards the measurements of the free fall acceleration in gravimetric point laboratory of absolute gravimetry of INRIM named INRiM.2. Absolute measurements of gravimetric acceleration were conducted by ballistic gravimeters. The agreement between the two participants is good. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  11. Determination of absolute internal conversion coefficients using the SAGE spectrometer

    NASA Astrophysics Data System (ADS)

    Sorri, J.; Greenlees, P. T.; Papadakis, P.; Konki, J.; Cox, D. M.; Auranen, K.; Partanen, J.; Sandzelius, M.; Pakarinen, J.; Rahkila, P.; Uusitalo, J.; Herzberg, R.-D.; Smallcombe, J.; Davies, P. J.; Barton, C. J.; Jenkins, D. G.

    2016-03-01

    A non-reference based method to determine internal conversion coefficients using the SAGE spectrometer is carried out for transitions in the nuclei of 154Sm, 152Sm and 166Yb. The Normalised-Peak-to-Gamma method is in general an efficient tool to extract internal conversion coefficients. However, in many cases the required well-known reference transitions are not available. The data analysis steps required to determine absolute internal conversion coefficients with the SAGE spectrometer are presented. In addition, several background suppression methods are introduced and an example of how ancillary detectors can be used to select specific reaction products is given. The results obtained for ground-state band E2 transitions show that the absolute internal conversion coefficients can be extracted using the methods described with a reasonable accuracy. In some cases of less intense transitions only an upper limit for the internal conversion coefficient could be given.

  12. Absolute measurement of the extreme UV solar flux

    NASA Technical Reports Server (NTRS)

    Carlson, R. W.; Ogawa, H. S.; Judge, D. L.; Phillips, E.

    1984-01-01

    A windowless rare-gas ionization chamber has been developed to measure the absolute value of the solar extreme UV flux in the 50-575-A region. Successful results were obtained on a solar-pointing sounding rocket. The ionization chamber, operated in total absorption, is an inherently stable absolute detector of ionizing UV radiation and was designed to be independent of effects from secondary ionization and gas effusion. The net error of the measurement is + or - 7.3 percent, which is primarily due to residual outgassing in the instrument, other errors such as multiple ionization, photoelectron collection, and extrapolation to the zero atmospheric optical depth being small in comparison. For the day of the flight, Aug. 10, 1982, the solar irradiance (50-575 A), normalized to unit solar distance, was found to be 5.71 + or - 0.42 x 10 to the 10th photons per sq cm sec.

  13. Diagnostic Application of Absolute Neutron Activation Analysis in Hematology

    SciTech Connect

    Zamboni, C.B.; Oliveira, L.C.; Dalaqua, L. Jr.

    2004-10-03

    The Absolute Neutron Activation Analysis (ANAA) technique was used to determine element concentrations of Cl and Na in blood of healthy group (male and female blood donators), select from Blood Banks at Sao Paulo city, to provide information which can help in diagnosis of patients. This study permitted to perform a discussion about the advantages and limitations of using this nuclear methodology in hematological examinations.

  14. Progress Report of CNES Activities Regarding the Absolute Calibration Method

    DTIC Science & Technology

    2010-11-01

    several receivers (Ashtech Z12-T, Septentrio PolaRx2, and Dicom GTR50) and a GNSS signal simulator (Spirent 4760) according to the temperature and...laboratories, Ashtech Z12- T, Septentrio PolaRx2, and Dicom GTR50, can be calibrated with the absolute method [6,8]. The last works concerned the...Ashtech, Septentrio, and Dicom receiver calibrations. Table 2. Uncertainty of the different receiver calibrations. Uncertainty Source

  15. On the Absolutely Continuous Spectrum of Stark Operators

    NASA Astrophysics Data System (ADS)

    Perelman, Galina

    The stability of the absolutely continuous spectrum of the one-dimensional Stark operator under perturbations of the potential is discussed. The focus is on proving this stability under minimal assumptions on smoothness of the perturbation. A general criterion is presented together with some applications. These include the case of periodic perturbations where we show that any perturbation vL1()∩H-1/2() preserves the a.c. spectrum.

  16. THE ABSOLUTE MAGNITUDES OF TYPE Ia SUPERNOVAE IN THE ULTRAVIOLET

    SciTech Connect

    Brown, Peter J.; Roming, Peter W. A.; Ciardullo, Robin; Gronwall, Caryl; Hoversten, Erik A.; Pritchard, Tyler; Milne, Peter; Bufano, Filomena; Mazzali, Paolo; Elias-Rosa, Nancy; Filippenko, Alexei V.; Li Weidong; Foley, Ryan J.; Hicken, Malcolm; Kirshner, Robert P.; Gehrels, Neil; Holland, Stephen T.; Immler, Stefan; Phillips, Mark M.; Still, Martin

    2010-10-01

    We examine the absolute magnitudes and light-curve shapes of 14 nearby (redshift z = 0.004-0.027) Type Ia supernovae (SNe Ia) observed in the ultraviolet (UV) with the Swift Ultraviolet/Optical Telescope. Colors and absolute magnitudes are calculated using both a standard Milky Way extinction law and one for the Large Magellanic Cloud that has been modified by circumstellar scattering. We find very different behavior in the near-UV filters (uvw1{sub rc} covering {approx}2600-3300 A after removing optical light, and u {approx} 3000-4000 A) compared to a mid-UV filter (uvm2 {approx}2000-2400 A). The uvw1{sub rc} - b colors show a scatter of {approx}0.3 mag while uvm2-b scatters by nearly 0.9 mag. Similarly, while the scatter in colors between neighboring filters is small in the optical and somewhat larger in the near-UV, the large scatter in the uvm2 - uvw1 colors implies significantly larger spectral variability below 2600 A. We find that in the near-UV the absolute magnitudes at peak brightness of normal SNe Ia in our sample are correlated with the optical decay rate with a scatter of 0.4 mag, comparable to that found for the optical in our sample. However, in the mid-UV the scatter is larger, {approx}1 mag, possibly indicating differences in metallicity. We find no strong correlation between either the UV light-curve shapes or the UV colors and the UV absolute magnitudes. With larger samples, the UV luminosity might be useful as an additional constraint to help determine distance, extinction, and metallicity in order to improve the utility of SNe Ia as standardized candles.

  17. Least absolute value state estimation with equality and inequality constraints

    SciTech Connect

    Abur, A. ); Celik, M.K. )

    1993-05-01

    A least absolute value (LAV) state estimator, which can handle both equality and inequality constraints on measurements, is developed. It is shown that, the use of equality constraints will actually reduce the number of Simplex iterations and thus the overall cpu time. The constraints can be used to enhance the reliability of the state estimator without affecting the computational efficiency of the estimator. The developed estimation program is tested using 14 through 1,000 bus power systems.

  18. Absolute configuration of novel bioactive flavonoids from Tephrosia purpurea.

    PubMed

    Chang, L C; Chávez, D; Song, L L; Farnsworth, N R; Pezzuto, J M; Kinghorn, A D

    2000-02-24

    [structure: see text] Three novel flavonoids, (+)-tephrorins A (1) and B (2) and (+)-tephrosone (3), were isolated from Tephrosia purpurea. Their structures were elucidated by NMR spectral analysis, and their absolute configurations were determined by Mosher ester methodology. Compounds 1 and 2 are flavanones containing an unusual tetrahydrofuran moiety. Compounds 1-3 were evaluated for their potential cancer chemopreventive properties using a cell-based quinone reductase induction assay.

  19. Absolute configuration determination using enantiomeric pairs of molecularly imprinted polymers.

    PubMed

    Meador, Danielle S; Spivak, David A

    2014-03-07

    A new method for determination of absolute configuration (AC) is demonstrated using an enantiomeric pair of molecularly imprinted polymers, referred to as "DuoMIPs". The ratio of HPLC capacity factors (k') for the analyte on each of the DuoMIPs is defined as the γ factor and can be used to determine AC when above 1.2. A mnemonic based on the complementary binding geometry of the DuoMIPs was used to aid in understanding and prediction of AC.

  20. Absolute calibration and beam background of the Squid Polarimeter

    SciTech Connect

    Blaskiewicz, M.M.; Cameron, P.R.; Shea, T.J.

    1996-12-31

    The problem of beam background in Squid Polarimetry is not without residual benefits. The authors may deliberately generate beam background by gently kicking the beam at the spin tune frequency. This signal may be used to accomplish a simple and accurate absolute calibration of the polarimeter. The authors present details of beam background calculations and their application to polarimeter calibration, and suggest a simple proof-of-principle accelerator experiment.

  1. The Electromotive Series and Other Non-Absolute Scales

    NASA Astrophysics Data System (ADS)

    Peckham, Gavin D.

    1998-01-01

    This article describes an analogy which may be used to illustrate the principles that underlie the establishment of non-absolute scales of measurements that are evaluated relative to a chosen reference point. The analogy is interwoven with the establishment of the electromotive series, but may be extended to other parameters such as the Celsius and Fahrenheit temperature scales, potential energies, formation and reaction enthalpies, etc.

  2. RECOVERY OF RUTHENIUM VALUES

    DOEpatents

    Grummitt, W.E.; Hardwick, W.H.

    1961-01-01

    A process is given for the recovery of ruthenium from its aqueous solutions by oxidizing the ruthenium to the octavalent state and subsequently extracting the ruthenium into a halogen-substituted liquid paraffin.

  3. Silver recovery system data

    SciTech Connect

    Boulineau, B.

    1991-08-26

    In August of 1990 the Savannah River Site Photography Group began testing on a different type of silver recovery system. This paper describes the baseline study and the different phases of installation and testing of the system.

  4. Overspecification of color, pattern, and size: salience, absoluteness, and consistency

    PubMed Central

    Tarenskeen, Sammie; Broersma, Mirjam; Geurts, Bart

    2015-01-01

    The rates of overspecification of color, pattern, and size are compared, to investigate how salience and absoluteness contribute to the production of overspecification. Color and pattern are absolute and salient attributes, whereas size is relative and less salient. Additionally, a tendency toward consistent responses is assessed. Using a within-participants design, we find similar rates of color and pattern overspecification, which are both higher than the rate of size overspecification. Using a between-participants design, however, we find similar rates of pattern and size overspecification, which are both lower than the rate of color overspecification. This indicates that although many speakers are more likely to include color than pattern (probably because color is more salient), they may also treat pattern like color due to a tendency toward consistency. We find no increase in size overspecification when the salience of size is increased, suggesting that speakers are more likely to include absolute than relative attributes. However, we do find an increase in size overspecification when mentioning the attributes is triggered, which again shows that speakers tend to refer in a consistent manner, and that there are circumstances in which even size overspecification is frequently produced. PMID:26594190

  5. Bio-Inspired Stretchable Absolute Pressure Sensor Network

    PubMed Central

    Guo, Yue; Li, Yu-Hung; Guo, Zhiqiang; Kim, Kyunglok; Chang, Fu-Kuo; Wang, Shan X.

    2016-01-01

    A bio-inspired absolute pressure sensor network has been developed. Absolute pressure sensors, distributed on multiple silicon islands, are connected as a network by stretchable polyimide wires. This sensor network, made on a 4’’ wafer, has 77 nodes and can be mounted on various curved surfaces to cover an area up to 0.64 m × 0.64 m, which is 100 times larger than its original size. Due to Micro Electro-Mechanical system (MEMS) surface micromachining technology, ultrathin sensing nodes can be realized with thicknesses of less than 100 µm. Additionally, good linearity and high sensitivity (~14 mV/V/bar) have been achieved. Since the MEMS sensor process has also been well integrated with a flexible polymer substrate process, the entire sensor network can be fabricated in a time-efficient and cost-effective manner. Moreover, an accurate pressure contour can be obtained from the sensor network. Therefore, this absolute pressure sensor network holds significant promise for smart vehicle applications, especially for unmanned aerial vehicles. PMID:26729134

  6. Absolute gravity acceleration measurement in atomic sensor laboratories

    NASA Astrophysics Data System (ADS)

    de Angelis, M.; Greco, F.; Pistorio, A.; Poli, N.; Prevedelli, M.; Saccorotti, G.; Sorrentino, F.; Tino, G. M.

    2012-03-01

    This paper reports the results from the accurate measurement of the acceleration of gravity g taken at two separate premises in the Polo Scientifico of the Florence University (Italy). In these laboratories, two separate experiments aiming at measuring the Newtonian constant and testing the measurement of forces with high spatial resolution are in progress. Both experiments require an independent knowledge on the local value of g. Gravity measurements were conducted using an FG5 absolute gravimeter, and accompanied by seismic recordings for evaluating the noise condition at the site. The absolute accelerations of gravity at the two laboratories are ( 980 492 160.6 ± 4.0) μGal and ( 980 492 048.3 ± 3.0) μGal for the European Laboratory for Non-Linear Spectroscopy (LENS) and Dipartimento di Fisica e Astronomia, respectively. Other than for the two referenced experiments, the data here presented will serve as a benchmark for any future study requiring an accurate knowledge of the absolute value of the acceleration of gravity in the study region.

  7. Bio-Inspired Stretchable Absolute Pressure Sensor Network.

    PubMed

    Guo, Yue; Li, Yu-Hung; Guo, Zhiqiang; Kim, Kyunglok; Chang, Fu-Kuo; Wang, Shan X

    2016-01-02

    A bio-inspired absolute pressure sensor network has been developed. Absolute pressure sensors, distributed on multiple silicon islands, are connected as a network by stretchable polyimide wires. This sensor network, made on a 4'' wafer, has 77 nodes and can be mounted on various curved surfaces to cover an area up to 0.64 m × 0.64 m, which is 100 times larger than its original size. Due to Micro Electro-Mechanical system (MEMS) surface micromachining technology, ultrathin sensing nodes can be realized with thicknesses of less than 100 µm. Additionally, good linearity and high sensitivity (~14 mV/V/bar) have been achieved. Since the MEMS sensor process has also been well integrated with a flexible polymer substrate process, the entire sensor network can be fabricated in a time-efficient and cost-effective manner. Moreover, an accurate pressure contour can be obtained from the sensor network. Therefore, this absolute pressure sensor network holds significant promise for smart vehicle applications, especially for unmanned aerial vehicles.

  8. Neon and Oxygen Absolute Abundances in the Solar Corona

    NASA Astrophysics Data System (ADS)

    Landi, E.; Feldman, U.; Doschek, G. A.

    2007-04-01

    In the present work we use the UV spectrum of a solar flare observed with SOHO SUMER to measure the absolute abundance of Ne in the solar atmosphere. The measurement is carried out using the intensity ratio between the allowed 1s2s3S1-1s2p3P2 Ne IX line at 1248.28 Å and the free-free continuum radiation observed close to the Ne IX line. We find a value of the absolute Ne abundance ANe=8.11+/-0.12, in agreement with previous estimates but substantially higher than the very recent estimate by Asplund et al. based on the oxygen photospheric abundance and the Ne/O relative abundance. Considering our measured ANe value, we argue that the absolute oxygen abundance of Asplund et al. is too low by a factor 1.9. This result has important consequences for models of the solar interior based on helioseismology measurements, as well as on the FIP bias determination of the solar upper atmosphere, solar wind, and solar energetic particles.

  9. Absolute length measurement using manually decided stereo correspondence for endoscopy

    NASA Astrophysics Data System (ADS)

    Sasaki, M.; Koishi, T.; Nakaguchi, T.; Tsumura, N.; Miyake, Y.

    2009-02-01

    In recent years, various kinds of endoscope have been developed and widely used to endoscopic biopsy, endoscopic operation and endoscopy. The size of the inflammatory part is important to determine a method of medical treatment. However, it is not easy to measure absolute size of inflammatory part such as ulcer, cancer and polyp from the endoscopic image. Therefore, it is required measuring the size of those part in endoscopy. In this paper, we propose a new method to measure the absolute length in a straight line between arbitrary two points based on the photogrammetry using endoscope with magnetic tracking sensor which gives camera position and angle. In this method, the stereo-corresponding points between two endoscopic images are determined by the endoscopist without any apparatus of projection and calculation to find the stereo correspondences, then the absolute length can be calculated on the basis of the photogrammetry. The evaluation experiment using a checkerboard showed that the errors of the measurements are less than 2% of the target length when the baseline is sufficiently-long.

  10. Neutron activation analysis of certified samples by the absolute method

    NASA Astrophysics Data System (ADS)

    Kadem, F.; Belouadah, N.; Idiri, Z.

    2015-07-01

    The nuclear reactions analysis technique is mainly based on the relative method or the use of activation cross sections. In order to validate nuclear data for the calculated cross section evaluated from systematic studies, we used the neutron activation analysis technique (NAA) to determine the various constituent concentrations of certified samples for animal blood, milk and hay. In this analysis, the absolute method is used. The neutron activation technique involves irradiating the sample and subsequently performing a measurement of the activity of the sample. The fundamental equation of the activation connects several physical parameters including the cross section that is essential for the quantitative determination of the different elements composing the sample without resorting to the use of standard sample. Called the absolute method, it allows a measurement as accurate as the relative method. The results obtained by the absolute method showed that the values are as precise as the relative method requiring the use of standard sample for each element to be quantified.

  11. An absolute photometric system at 10 and 20 microns

    NASA Technical Reports Server (NTRS)

    Rieke, G. H.; Lebofsky, M. J.; Low, F. J.

    1985-01-01

    Two new direct calibrations at 10 and 20 microns are presented in which terrestrial flux standards are referred to infrared standard stars. These measurements give both good agreement and higher accuracy when compared with previous direct calibrations. As a result, the absolute calibrations at 10 and 20 microns have now been determined with accuracies of 3 and 8 percent, respectively. A variety of absolute calibrations based on extrapolation of stellar spectra from the visible to 10 microns are reviewed. Current atmospheric models of A-type stars underestimate their fluxes by about 10 percent at 10 microns, whereas models of solar-type stars agree well with the direct calibrations. The calibration at 20 microns can probably be determined to about 5 percent by extrapolation from the more accurate result at 10 microns. The photometric system at 10 and 20 microns is updated to reflect the new absolute calibration, to base its zero point directly on the colors of A0 stars, and to improve the accuracy in the comparison of the standard stars.

  12. Refuse recycling and recovery

    SciTech Connect

    Holmes, J.R.

    1981-01-01

    Sanitary landfill of domestic, commercial, and industrial wastes is the predominant method of waste disposal in the United Kingdom. Although there was various waste disposal processes at various stages of design and test, landfill and incineration are still the only reliable methods of waste processing. Methods of recovery and use of refuse are examined in this book together with various separation processes, waste derived fuels, refuse composting, and glass and metal recovery. (Refs. 39).

  13. Apollo 8 Recovery

    NASA Technical Reports Server (NTRS)

    1968-01-01

    A team of U.S. Navy underwater demolition swimmers prepares the Apollo 8 command module for being hoisted aboard the carrier U.S.S. Yorktown, prime recovery vessel for the initial manned lunar orbital mission. The crew members - astronauts Frank Borman, James A. Lovell, Jr., and William A. Anders - had already egressed the spacecraft and were aboard the recovery ship at the time of this photo.

  14. Range optimization for a supersonic aircraft

    NASA Technical Reports Server (NTRS)

    Seywald, Hans; Cliff, Eugene M.; Well, Klaus H.

    1991-01-01

    Range optimal trajectories for an aircraft flying in the vertical plane are obtained from Pontryagin's Minimum Principle. Control variables are load factor n which appears nonlinearly in the equations of motion and throttle setting eta, which appears only linearly. Both controls are subject to fixed bounds, namely eta between values of 0 and 1 and absolute value of n not greater than n(max). Additionally, a dynamic pressure limit is imposed, which represents a first-order state-inequality constraint. For fixed flight time, fixed initial coordinates, and partially fixed final coordinates, the effect of the load factor limit absolute value of n not greater than n(max) is studied. Upon varying n(max), six different switching structures are obtained. All trajectories involve singular control along arcs with active dynamic pressure limit.

  15. Absolute measurements of the uranium concentration in thick samples using fission-track detectors

    NASA Astrophysics Data System (ADS)

    Enkelmann, Eva; Jonckheere, Raymond; Ratschbacher, Lothar

    2005-04-01

    We propose an improved equation for calculating the uranium concentration in thick samples based on induced fission-track counts in an external detector that takes into consideration (1) the fission-fragment ranges in the sample and external detector, (2) the etchable track length and (3) the track counting efficiency in the external detector. The values of these parameters have been determined by calculation and experiment and are shown to have a significant effect on the calculated uranium concentrations. The new equation was tested by calculating the uranium concentrations in standard uranium glasses (CN-5; IRMM-540R) and apatite samples (Durango; horse tooth) in which the uranium content was also determined with independent methods (INAA; ENAA; TIMS). The results show that: (1) accurate measurements with the fission-track method are feasible within a broad range of uranium concentrations and (2) uranium determinations based on standards are only accurate if the standard and sample are made of the same material. Because the absolute fission-tack dating method is also based on accurate thermal neutron fluence measurements and similar correction factors for the track registration and counting efficiencies, this study provides a strong endorsement for the fact that absolute fission-track ages are accurate.

  16. Absolute measurement of the 242Pu neutron-capture cross section

    DOE PAGES

    Buckner, M. Q.; Wu, C. Y.; Henderson, R. A.; ...

    2016-04-21

    Here, the absolute neutron-capture cross section of 242Pu was measured at the Los Alamos Neutron Science Center using the Detector for Advanced Neutron-Capture Experiments array along with a compact parallel-plate avalanche counter for fission-fragment detection. The first direct measurement of the 242Pu(n,γ) cross section was made over the incident neutron energy range from thermal to ≈ 6 keV, and the absolute scale of the (n,γ) cross section was set according to the known 239Pu(n,f) resonance at En,R = 7.83 eV. This was accomplished by adding a small quantity of 239Pu to the 242Pu sample. The relative scale of the crossmore » section, with a range of four orders of magnitude, was determined for incident neutron energies from thermal to ≈ 40 keV. Our data, in general, are in agreement with previous measurements and those reported in ENDF/B-VII.1; the 242Pu(n,γ) cross section at the En,R = 2.68 eV resonance is within 2.4% of the evaluated value. However, discrepancies exist at higher energies; our data are ≈30% lower than the evaluated data at En ≈ 1 keV and are approximately 2σ away from the previous measurement at En ≈ 20 keV.« less

  17. Absolute single-photoionization cross sections of Se2 +: Experiment and theory

    NASA Astrophysics Data System (ADS)

    Macaluso, D. A.; Aguilar, A.; Kilcoyne, A. L. D.; Red, E. C.; Bilodeau, R. C.; Phaneuf, R. A.; Sterling, N. C.; McLaughlin, B. M.

    2015-12-01

    Absolute single-photoionization cross-section measurements for Se2 + ions were performed at the Advanced Light Source at Lawrence Berkeley National Laboratory using the merged-beams photo-ion technique. Measurements were made at a photon energy resolution of 24 ±3 meV in the photon energy range 23.5-42.5 eV, spanning the ground state and low-lying metastable state ionization thresholds. To clearly resolve the resonant structure near the ground-state threshold, high-resolution measurements were made from 30.0 to 31.9 eV at a photon energy resolution of 6.7 ±0.7 meV. Numerous resonance features observed in the experimental spectra are assigned and their energies and quantum defects tabulated. The high-resolution cross-section measurements are compared with large-scale, state-of-the-art theoretical cross-section calculations obtained from the Dirac Coulomb R -matrix method. Suitable agreement is obtained over the entire photon energy range investigated. These results are an experimental determination of the absolute photoionization cross section of doubly ionized selenium and include a detailed analysis of the photoionization resonance spectrum of this ion.

  18. Reliability and validity of quantifying absolute muscle hardness using ultrasound elastography.

    PubMed

    Chino, Kentaro; Akagi, Ryota; Dohi, Michiko; Fukashiro, Senshi; Takahashi, Hideyuki

    2012-01-01

    Muscle hardness is a mechanical property that represents transverse muscle stiffness. A quantitative method that uses ultrasound elastography for quantifying absolute human muscle hardness has been previously devised; however, its reliability and validity have not been completely verified. This study aimed to verify the reliability and validity of this quantitative method. The Young's moduli of seven tissue-mimicking materials (in vitro; Young's modulus range, 20-80 kPa; increments of 10 kPa) and the human medial gastrocnemius muscle (in vivo) were quantified using ultrasound elastography. On the basis of the strain/Young's modulus ratio of two reference materials, one hard and one soft (Young's moduli of 7 and 30 kPa, respectively), the Young's moduli of the tissue-mimicking materials and medial gastrocnemius muscle were calculated. The intra- and inter-investigator reliability of the method was confirmed on the basis of acceptably low coefficient of variations (≤6.9%) and substantially high intraclass correlation coefficients (≥0.77) obtained from all measurements. The correlation coefficient between the Young's moduli of the tissue-mimicking materials obtained using a mechanical method and ultrasound elastography was 0.996, which was equivalent to values previously obtained using magnetic resonance elastography. The Young's moduli of the medial gastrocnemius muscle obtained using ultrasound elastography were within the range of values previously obtained using magnetic resonance elastography. The reliability and validity of the quantitative method for measuring absolute muscle hardness using ultrasound elastography were thus verified.

  19. The absolute systemic availability of a new oral formulation of co-dergocrine in healthy subjects.

    PubMed

    Dominiak, P; Grevel, J; Abisch, E; Grobecker, H; Dennler, H J; Welzel, D

    1988-01-01

    We have studied the absolute systemic availability (f) of an oral formulation (Hydergin spezial = Hydergine FASR 4 mg per tablet) of co-dergocrine by three different methods. Twelve healthy volunteers received single doses of 0.9 mg co-dergocrine intravenously and 8.0 mg orally in a randomized crossover design. The pharmacological effect of co-dergocrine was monitored as a reduction in plasma prolactin. Maximal plasma concentrations of co-dergocrine after oral dosing ranged between 0.181 and 1.307 ng.ml-1. Maximal urinary excretion ranged between 4.7 and 9.9 micrograms.h-1 and between 0.3 and 2.3 micrograms.h-1 after intravenous and oral doses respectively. Clearance was measured as 90 +/- 22 l.h-1 and the absolute systemic availability (f) as 2.25 +/- 0.65% by using the areas under the plasma concentration-time curves extrapolated to infinity. Calculation of f by comparing areas up to 32 h or the fractions of the dose excreted in urine led to identical results. The intravenous and oral doses produced similar pharmacological effects (reduction of plasma prolactin concentrations) despite the small value of f.

  20. Relative and absolute reliability of measures of linoleic acid-derived oxylipins in human plasma.

    PubMed

    Gouveia-Figueira, Sandra; Bosson, Jenny A; Unosson, Jon; Behndig, Annelie F; Nording, Malin L; Fowler, Christopher J

    2015-09-01

    Modern analytical techniques allow for the measurement of oxylipins derived from linoleic acid in biological samples. Most validatory work has concerned extraction techniques, repeated analysis of aliquots from the same biological sample, and the influence of external factors such as diet and heparin treatment upon their levels, whereas less is known about the relative and absolute reliability of measurements undertaken on different days. A cohort of nineteen healthy males were used, where samples were taken at the same time of day on two occasions, at least 7 days apart. Relative reliability was assessed using Lin's concordance correlation coefficients (CCC) and intraclass correlation coefficients (ICC). Absolute reliability was assessed by Bland-Altman analyses. Nine linoleic acid oxylipins were investigated. ICC and CCC values ranged from acceptable (0.56 [13-HODE]) to poor (near zero [9(10)- and 12(13)-EpOME]). Bland-Altman limits of agreement were in general quite wide, ranging from ±0.5 (12,13-DiHOME) to ±2 (9(10)-EpOME; log10 scale). It is concluded that relative reliability of linoleic acid-derived oxylipins varies between lipids with compounds such as the HODEs showing better relative reliability than compounds such as the EpOMEs. These differences should be kept in mind when designing and interpreting experiments correlating plasma levels of these lipids with factors such as age, body mass index, rating scales etc.

  1. Accurate determination of pyridine-poly(amidoamine) dendrimer absolute binding constants with the OPLS-AA force field and direct integration of radial distribution functions.

    PubMed

    Peng, Yong; Kaminski, George A

    2005-08-11

    OPLS-AA force field and direct integration of intermolecular radial distribution functions (RDF) were employed to calculate absolute binding constants of pyridine molecules to amino group (NH2) and amide group hydrogen atoms in and first generation poly(amidoamine) dendrimers in chloroform. The average errors in the absolute and relative association constants, as predicted with the calculations, are 14.1% and 10.8%, respectively, which translate into ca. 0.08 and 0.06 kcal/mol errors in the absolute and relative binding free energies. We believe that this level of accuracy proves the applicability of the OPLS-AA, force field, in combination with the direct RDF integration, to reproducing and predicting absolute intermolecular association constants of low magnitudes (ca. 0.2-2.0 range).

  2. Accurate Determination of Pyridine -- Poly (Amidoamine) Dendrimer Absolute Binding Constants with the OPLS-AA Force Field and Direct Integration of Radial Distribution Functions

    NASA Astrophysics Data System (ADS)

    Peng, Yong; Kaminski, George

    2006-03-01

    OPLS-AA force field and direct integration of intermolecular radial distribution functions (RDF) were employed to calculate absolute binding constants of pyridine molecules to NH2 and amide group hydrogen atoms in 0th and 1st generation poly (amidoamine) dendrimers in chloroform. The average errors in the absolute and relative association constants, as predicted with the calculations, are 14.1% and 10.8%, respectively, which translate into ca. 0.08 kcal/mol and 0.06 kcal/mol errors in the absolute and relative binding free energies. We believe that this level of accuracy proves the applicability of the OPLS-AA, force field, in combination with the direct RDF integration, to reproducing and predicting absolute intermolecular association constants of low magnitudes (ca. 0.2 -- 2.0 range).

  3. Socioeconomic Factors Affecting Local Support for Black Bear Recovery Strategies(AED)

    EPA Science Inventory

    There is global interest in recovering locally extirpated carnivore species. Successful efforts to recover Louisiana black bear in Louisiana have prompted interest in recovery throughout the species’ historical range. We evaluated support for three potential black bear recovery s...

  4. Resources and Long-Range Forecasts

    ERIC Educational Resources Information Center

    Smith, Waldo E.

    1973-01-01

    The author argues that forecasts of quick depletion of resources in the environment as a result of overpopulation and increased usage may not be free from error. Ignorance still exists in understanding the recovery mechanisms of nature. Long-range forecasts are likely to be wrong in such situations. (PS)

  5. Quantifying Cancer Absolute Risk and Cancer Mortality in the Presence of Competing Events after a Myotonic Dystrophy Diagnosis

    PubMed Central

    Gadalla, Shahinaz M.; Pfeiffer, Ruth M.; Kristinsson, Sigurdur Y.; Björkholm, Magnus; Hilbert, James E.; Moxley, Richard T.; Landgren, Ola; Greene, Mark H.

    2013-01-01

    Recent studies show that patients with myotonic dystrophy (DM) have an increased risk of specific malignancies, but estimates of absolute cancer risk accounting for competing events are lacking. Using the Swedish Patient Registry, we identified 1,081 patients with an inpatient and/or outpatient diagnosis of DM between 1987 and 2007. Date and cause of death and date of cancer diagnosis were extracted from the Swedish Cause of Death and Cancer Registries. We calculated non-parametric estimates of absolute cancer risk and cancer mortality accounting for the high non-cancer competing mortality associated with DM. Absolute cancer risk after DM diagnosis was 1.6% (95% CI=0.4-4%), 5% (95% CI=3-9%) and 9% (95% CI=6-13%) at ages 40, 50 and 60 years, respectively. Females had a higher absolute risk of all cancers combined than males: 9% (95% CI=4-14), and 13% (95% CI=9-20) vs. 2% (95%CI= 0.7-6) and 4% (95%CI=2-8) by ages 50 and 60 years, respectively) and developed cancer at younger ages (median age =51 years, range=22-74 vs. 57, range=43-84, respectively, p=0.02). Cancer deaths accounted for 10% of all deaths, with an absolute cancer mortality risk of 2% (95%CI=1-4.5%), 4% (95%CI=2-6%), and 6% (95%CI=4-9%) by ages 50, 60, and 70 years, respectively. No gender difference in cancer-specific mortality was observed (p=0.6). In conclusion, cancer significantly contributes to morbidity and mortality in DM patients, even after accounting for high competing DM mortality from non-neoplastic causes. It is important to apply population-appropriate, validated cancer screening strategies in DM patients. PMID:24236163

  6. Drugs to Enhance Motor Recovery After Stroke

    PubMed Central

    Cramer, Steven C.

    2015-01-01

    Among the therapeutic strategies under study to improve long-term outcome after stroke are drugs targeting events that underlie recovery. Drugs that enhance recovery are separate from those that promote neuroprotection or reperfusion in patients with stroke. Recovery-based drugs have distinct therapeutic targets that are related to plasticity and growth following stroke, and in general, improvements in behavioral outcome are not accompanied by a reduction in infarct volume. Interventions targeting recovery have a time window measured in days or sometimes weeks-months, suggesting potential utility for a large percentage of patients with stroke. Currently, among drugs that enhance motor recovery after stroke in humans, the strongest evidence exists for serotonergic and dopaminergic agents. Restorative therapies generally target the brain directly, in contrast to approved stroke therapeutics that target arteries, clots, platelets, glucose, or cholesterol. Targeting the brain has wide-ranging implications, for example, in relation to drug delivery. In addition, because restorative drugs aim to change brain structure and function, their effects are influenced by concomitant behavioral experience, a finding that informs selection of entry criteria, outcome measures, and biomarkers in a clinical trial setting. These points underscore the importance of a neural systems approach in studying stroke recovery. PMID:26265126

  7. Fabrication of capacitive absolute pressure sensors by thin film vacuum encapsulation on SOI substrates

    NASA Astrophysics Data System (ADS)

    Belsito, Luca; Mancarella, Fulvio; Roncaglia, Alberto

    2016-09-01

    The paper reports on the fabrication and characterization of absolute capacitive pressure sensors fabricated by polysilicon low-pressure chemical vapour deposition vacuum packaging on silicon-on-insulator substrates. The fabrication process proposed is carried out at wafer level and allows obtaining a large number of miniaturized sensors per substrate on 1  ×  2 mm2 chips with high yield. The sensors present average pressure sensitivity of 8.3 pF/bar and average pressure resolution limit of 0.24 mbar within the measurement range 200-1200 mbar. The temperature drift of the sensor prototypes was also measured in the temperature range 25-45 °C, yielding an average temperature sensitivity of 67 fF K-1 at ambient pressure.

  8. SAR image registration in absolute coordinates using GPS carrier phase position and velocity information

    SciTech Connect

    Burgett, S.; Meindl, M.

    1994-09-01

    It is useful in a variety of military and commercial application to accurately register the position of synthetic aperture radar (SAR) imagery in absolute coordinates. The two basic SAR measurements, range and doppler, can be used to solve for the position of the SAR image. Imprecise knowledge of the SAR collection platform`s position and velocity vectors introduce errors in the range and doppler measurements and can cause the apparent location of the SAR image on the ground to be in error by tens of meters. Recent advances in carrier phase GPS techniques can provide an accurate description of the collection vehicle`s trajectory during the image formation process. In this paper, highly accurate carrier phase GPS trajectory information is used in conjunction with SAR imagery to demonstrate a technique for accurate registration of SAR images in WGS-84 coordinates. Flight test data will be presented that demonstrates SAR image registration errors of less than 4 meters.

  9. Absolute ultrasonic displacement amplitude measurements with a submersible electrostatic acoustic transducer

    NASA Technical Reports Server (NTRS)

    Yost, William T.; Cantrell, John H.

    1992-01-01

    An experimental technique for absolute measurement of ultrasonic wave particle displacement amplitudes in liquids is reported. The technique is capable of measurements over a frequency range of two decades with a sensitivity less than one angstrom. The technique utilizes a previously reported submersible electrostatic acoustic transducer (ESAT) featuring a conductive membrane stretched over a recessed electrode. An uncertainty analysis shows that the displacement amplitude of an ultrasonic plane wave incident on the ESAT can be experimentally determined to better than 2.3-4 percent, depending on frequency, in the frequency range of 0.5-15 MHz. Membranes with lower and more uniform areal densities can improve the accuracy and extend the operation to higher frequencies.

  10. Intensity evaluation using a femtosecond pulse laser for absolute distance measurement.

    PubMed

    Wu, Hanzhong; Zhang, Fumin; Li, Jianshuang; Cao, Shiying; Meng, Xiangsong; Qu, Xinghua

    2015-06-10

    In this paper, we propose a method of intensity evaluation based on different pulse models using a femtosecond pulse laser, which enables long-range absolute distance measurement with nanometer precision and large non-ambiguity range. The pulse cross-correlation is analyzed based on different pulse models, including Gaussian, Sech(2), and Lorenz. The DC intensity and the amplitude of the cross-correlation patterns are also demonstrated theoretically. In the experiments, we develop a new combined system and perform the distance measurements on an underground granite rail system. The DC intensity and amplitude of the interference fringes are measured and show a good agreement with the theory, and the distance to be determined can be up to 25 m using intensity evaluation, within 64 nm deviation compared with a He-Ne incremental interferometer, and corresponds to a relative precision of 2.7×10(-9).

  11. Absolute Calibration of Image Plate for electrons at energy between 100 keV and 4 MeV

    SciTech Connect

    Chen, H; Back, N L; Eder, D C; Ping, Y; Song, P M; Throop, A

    2007-12-10

    The authors measured the absolute response of image plate (Fuji BAS SR2040) for electrons at energies between 100 keV to 4 MeV using an electron spectrometer. The electron source was produced from a short pulse laser irradiated on the solid density targets. This paper presents the calibration results of image plate Photon Stimulated Luminescence PSL per electrons at this energy range. The Monte Carlo radiation transport code MCNPX results are also presented for three representative incident angles onto the image plates and corresponding electron energies depositions at these angles. These provide a complete set of tools that allows extraction of the absolute calibration to other spectrometer setting at this electron energy range.

  12. Jasminum sambac flower absolutes from India and China--geographic variations.

    PubMed

    Braun, Norbert A; Sim, Sherina

    2012-05-01

    Seven Jasminum sambac flower absolutes from different locations in the southern Indian state of Tamil Nadu were analyzed using GC and GC-MS. Focus was placed on 41 key ingredients to investigate geographic variations in this species. These seven absolutes were compared with an Indian bud absolute and commercially available J. sambac flower absolutes from India and China. All absolutes showed broad variations for the 10 main ingredients between 8% and 96%. In addition, the odor of Indian and Chinese J. sambac flower absolutes were assessed.

  13. Absolute magnitudes of asteroids and a revision of asteroid albedo estimates from WISE thermal observations

    NASA Astrophysics Data System (ADS)

    Pravec, Petr; Harris, Alan W.; Kušnirák, Peter; Galád, Adrián; Hornoch, Kamil

    2012-09-01

    We obtained estimates of the Johnson V absolute magnitudes (H) and slope parameters (G) for 583 main-belt and near-Earth asteroids observed at Ondřejov and Table Mountain Observatory from 1978 to 2011. Uncertainties of the absolute magnitudes in our sample are <0.21 mag, with a median value of 0.10 mag. We compared the H data with absolute magnitude values given in the MPCORB, Pisa AstDyS and JPL Horizons orbit catalogs. We found that while the catalog absolute magnitudes for large asteroids are relatively good on average, showing only little biases smaller than 0.1 mag, there is a systematic offset of the catalog values for smaller asteroids that becomes prominent in a range of H greater than ∼10 and is particularly big above H ∼ 12. The mean (Hcatalog - H) value is negative, i.e., the catalog H values are systematically too bright. This systematic negative offset of the catalog values reaches a maximum around H = 14 where the mean (Hcatalog - H) is -0.4 to -0.5. We found also smaller correlations of the offset of the catalog H values with taxonomic types and with lightcurve amplitude, up to ∼0.1 mag or less. We discuss a few possible observational causes for the observed correlations, but the reason for the large bias of the catalog absolute magnitudes peaking around H = 14 is unknown; we suspect that the problem lies in the magnitude estimates reported by asteroid surveys. With our photometric H and G data, we revised the preliminary WISE albedo estimates made by Masiero et al. (Masired, J.R. et al. [2011]. Astrophys. J. 741, 68-89) and Mainzer et al. (Mainzer, A. et al. [2011b]. Astrophys. J. 743, 156-172) for asteroids in our sample. We found that the mean geometric albedo of Tholen/Bus/DeMeo C/G/B/F/P/D types with sizes of 25-300 km is pV = 0.057 with the standard deviation (dispersion) of the sample of 0.013 and the mean albedo of S/A/L types with sizes 0.6-200 km is 0.197 with the standard deviation of the sample of 0.051. The standard errors of the

  14. Recovery of Interdependent Networks

    NASA Astrophysics Data System (ADS)

    di Muro, M. A.; La Rocca, C. E.; Stanley, H. E.; Havlin, S.; Braunstein, L. A.

    2016-03-01

    Recent network research has focused on the cascading failures in a system of interdependent networks and the necessary preconditions for system collapse. An important question that has not been addressed is how to repair a failing system before it suffers total breakdown. Here we introduce a recovery strategy for nodes and develop an analytic and numerical framework for studying the concurrent failure and recovery of a system of interdependent networks based on an efficient and practically reasonable strategy. Our strategy consists of repairing a fraction of failed nodes, with probability of recovery γ, that are neighbors of the largest connected component of each constituent network. We find that, for a given initial failure of a fraction 1 ‑ p of nodes, there is a critical probability of recovery above which the cascade is halted and the system fully restores to its initial state and below which the system abruptly collapses. As a consequence we find in the plane γ ‑ p of the phase diagram three distinct phases. A phase in which the system never collapses without being restored, another phase in which the recovery strategy avoids the breakdown, and a phase in which even the repairing process cannot prevent system collapse.

  15. Recovery of Interdependent Networks.

    PubMed

    Di Muro, M A; La Rocca, C E; Stanley, H E; Havlin, S; Braunstein, L A

    2016-03-09

    Recent network research has focused on the cascading failures in a system of interdependent networks and the necessary preconditions for system collapse. An important question that has not been addressed is how to repair a failing system before it suffers total breakdown. Here we introduce a recovery strategy for nodes and develop an analytic and numerical framework for studying the concurrent failure and recovery of a system of interdependent networks based on an efficient and practically reasonable strategy. Our strategy consists of repairing a fraction of failed nodes, with probability of recovery γ, that are neighbors of the largest connected component of each constituent network. We find that, for a given initial failure of a fraction 1 - p of nodes, there is a critical probability of recovery above which the cascade is halted and the system fully restores to its initial state and below which the system abruptly collapses. As a consequence we find in the plane γ - p of the phase diagram three distinct phases. A phase in which the system never collapses without being restored, another phase in which the recovery strategy avoids the breakdown, and a phase in which even the repairing process cannot prevent system collapse.

  16. Recovery of Interdependent Networks

    PubMed Central

    Di Muro, M. A.; La Rocca, C. E.; Stanley, H. E.; Havlin, S.; Braunstein, L. A.

    2016-01-01

    Recent network research has focused on the cascading failures in a system of interdependent networks and the necessary preconditions for system collapse. An important question that has not been addressed is how to repair a failing system before it suffers total breakdown. Here we introduce a recovery strategy for nodes and develop an analytic and numerical framework for studying the concurrent failure and recovery of a system of interdependent networks based on an efficient and practically reasonable strategy. Our strategy consists of repairing a fraction of failed nodes, with probability of recovery γ, that are neighbors of the largest connected component of each constituent network. We find that, for a given initial failure of a fraction 1 − p of nodes, there is a critical probability of recovery above which the cascade is halted and the system fully restores to its initial state and below which the system abruptly collapses. As a consequence we find in the plane γ − p of the phase diagram three distinct phases. A phase in which the system never collapses without being restored, another phase in which the recovery strategy avoids the breakdown, and a phase in which even the repairing process cannot prevent system collapse. PMID:26956773

  17. Absolute Position of Targets Measured Through a Chamber Window Using Lidar Metrology Systems

    NASA Technical Reports Server (NTRS)

    Kubalak, David; Hadjimichael, Theodore; Ohl, Raymond; Slotwinski, Anthony; Telfer, Randal; Hayden, Joseph

    2012-01-01

    Lidar is a useful tool for taking metrology measurements without the need for physical contact with the parts under test. Lidar instruments are aimed at a target using azimuth and elevation stages, then focus a beam of coherent, frequency modulated laser energy onto the target, such as the surface of a mechanical structure. Energy from the reflected beam is mixed with an optical reference signal that travels in a fiber path internal to the instrument, and the range to the target is calculated based on the difference in the frequency of the returned and reference signals. In cases when the parts are in extreme environments, additional steps need to be taken to separate the operator and lidar from that environment. A model has been developed that accurately reduces the lidar data to an absolute position and accounts for the three media in the testbed air, fused silica, and vacuum but the approach can be adapted for any environment or material. The accuracy of laser metrology measurements depends upon knowing the parameters of the media through which the measurement beam travels. Under normal conditions, this means knowledge of the temperature, pressure, and humidity of the air in the measurement volume. In the past, chamber windows have been used to separate the measuring device from the extreme environment within the chamber and still permit optical measurement, but, so far, only relative changes have been diagnosed. The ability to make accurate measurements through a window presents a challenge as there are a number of factors to consider. In the case of the lidar, the window will increase the time-of-flight of the laser beam causing a ranging error, and refract the direction of the beam causing angular positioning errors. In addition, differences in pressure, temperature, and humidity on each side of the window will cause slight atmospheric index changes and induce deformation and a refractive index gradient within the window. Also, since the window is a

  18. AN ACCURATE NEW METHOD OF CALCULATING ABSOLUTE MAGNITUDES AND K-CORRECTIONS APPLIED TO THE SLOAN FILTER SET

    SciTech Connect

    Beare, Richard; Brown, Michael J. I.; Pimbblet, Kevin

    2014-12-20

    We describe an accurate new method for determining absolute magnitudes, and hence also K-corrections, that is simpler than most previous methods, being based on a quadratic function of just one suitably chosen observed color. The method relies on the extensive and accurate new set of 129 empirical galaxy template spectral energy distributions from Brown et al. A key advantage of our method is that we can reliably estimate random errors in computed absolute magnitudes due to galaxy diversity, photometric error and redshift error. We derive K-corrections for the five Sloan Digital Sky Survey filters and provide parameter tables for use by the astronomical community. Using the New York Value-Added Galaxy Catalog, we compare our K-corrections with those from kcorrect. Our K-corrections produce absolute magnitudes that are generally in good agreement with kcorrect. Absolute griz magnitudes differ by less than 0.02 mag and those in the u band by ∼0.04 mag. The evolution of rest-frame colors as a function of redshift is better behaved using our method, with relatively few galaxies being assigned anomalously red colors and a tight red sequence being observed across the whole 0.0 < z < 0.5 redshift range.

  19. Redefinition of the crater-density and absolute-age boundaries for the chronostratigraphic system of Mars

    USGS Publications Warehouse

    Werner, S.C.; Tanaka, K.L.

    2011-01-01

    For the boundaries of each chronostratigraphic epoch on Mars, we present systematically derived crater-size frequencies based on crater counts of geologic referent surfaces and three proposed " standard" crater size-frequency production distributions as defined by (a) a simple -2 power law, (b) Neukum and Ivanov, (c) Hartmann. In turn, these crater count values are converted to model-absolute ages based on the inferred cratering rate histories. We present a new boundary definition for the Late Hesperian-Early Amazonian transition. Our fitting of crater size-frequency distributions to the chronostratigraphic record of Mars permits the assignment of cumulative counts of craters down to 100. m, 1. km, 2. km, 5. km, and 16. km diameters to martian epochs. Due to differences in the " standard" crater size-frequency production distributions, a generalized crater-density-based definition to the chronostratigraphic system cannot be provided. For the diameter range used for the boundary definitions, the resulting model absolute age fits vary within 1.5% for a given set of production function and chronology model ages. Crater distributions translated to absolute ages utilizing different curve descriptions can result in absolute age differences exceeding 10%. ?? 2011 Elsevier Inc.

  20. Estimation of Absolute Protein Quantities of Unlabeled Samples by Selected Reaction Monitoring Mass Spectrometry*

    PubMed Central

    Ludwig, Christina; Claassen, Manfred; Schmidt, Alexander; Aebersold, Ruedi

    2012-01-01

    , such as high sensitivity, selectivity, reproducibility, and dynamic range, and estimates absolute protein concentrations of selected proteins at minimized costs. PMID:22101334

  1. Absolute plate motions since 130 Ma constrained by subduction zone kinematics

    NASA Astrophysics Data System (ADS)

    Williams, Simon; Flament, Nicolas; Dietmar Müller, R.; Butterworth, Nathaniel

    2015-05-01

    The absolute motions of the lithospheric plates relative to the Earth's deep interior are commonly constrained using observations from paleomagnetism and age-progressive seamount trails. In contrast, an absolute plate motion (APM) model linking surface plate motions to subducted slab remnants mapped from seismic tomography has recently been proposed. Absolute plate motion models (or "reference frames") derived using different methodologies, different subsets of hotspots, or differing assumptions of hotspot motion, have contrasting implications for parameters that describe the long term state of the plate-mantle system, such as the balance between advance and retreat of subduction zones, plate velocities, and net lithospheric rotation. Previous studies of contemporary plate motions have used subduction zone kinematics as a constraint on the most likely APM model. Here we use a relative plate motion model to compute these values for the last 130 Myr for a range of alternative reference frames, and quantitatively compare the results. We find that hotspot and tomographic slab-remnant reference frames yield similar results for the last 70 Myr. For the 130-70 Ma period, where hotspot reference frames are less well constrained, these models yield a much more dispersed distribution of slab advance and retreat velocities. By contrast, plate motions calculated using the slab-remnant reference frame, or using a reference frame designed to minimise net rotation, yield more consistent subduction zone kinematics for times older than 70 Ma. Introducing the global optimisation of trench migration characteristics as a key criterion in the construction of APM models forms the foundation of a new method of constraining APMs (and in particular paleolongitude) in deep geological time.

  2. Absolute Memory for Tempo in Musicians and Non-Musicians

    PubMed Central

    Brandimonte, Maria A.; Bruno, Nicola

    2016-01-01

    The ability to remember tempo (the perceived frequency of musical pulse) without external references may be defined, by analogy with the notion of absolute pitch, as absolute tempo (AT). Anecdotal reports and sparse empirical evidence suggest that at least some individuals possess AT. However, to our knowledge, no systematic assessments of AT have been performed using laboratory tasks comparable to those assessing absolute pitch. In the present study, we operationalize AT as the ability to identify and reproduce tempo in the absence of rhythmic or melodic frames of reference and assess these abilities in musically trained and untrained participants. We asked 15 musicians and 15 non-musicians to listen to a seven-step `tempo scale’ of metronome beats, each associated to a numerical label, and then to perform two memory tasks. In the first task, participants heard one of the tempi and attempted to report the correct label (identification task), in the second, they saw one label and attempted to tap the correct tempo (production task). A musical and visual excerpt was presented between successive trials as a distractor to prevent participants from using previous tempi as anchors. Thus, participants needed to encode tempo information with the corresponding label, store the information, and recall it to give the response. We found that more than half were able to perform above chance in at least one of the tasks, and that musical training differentiated between participants in identification, but not in production. These results suggest that AT is relatively wide-spread, relatively independent of musical training in tempo production, but further refined by training in tempo identification. We propose that at least in production, the underlying motor representations are related to tactus, a basic internal rhythmic period that may provide a body-based reference for encoding tempo. PMID:27760198

  3. Absolute Memory for Tempo in Musicians and Non-Musicians.

    PubMed

    Gratton, Irene; Brandimonte, Maria A; Bruno, Nicola

    2016-01-01

    The ability to remember tempo (the perceived frequency of musical pulse) without external references may be defined, by analogy with the notion of absolute pitch, as absolute tempo (AT). Anecdotal reports and sparse empirical evidence suggest that at least some individuals possess AT. However, to our knowledge, no systematic assessments of AT have been performed using laboratory tasks comparable to those assessing absolute pitch. In the present study, we operationalize AT as the ability to identify and reproduce tempo in the absence of rhythmic or melodic frames of reference and assess these abilities in musically trained and untrained participants. We asked 15 musicians and 15 non-musicians to listen to a seven-step `tempo scale' of metronome beats, each associated to a numerical label, and then to perform two memory tasks. In the first task, participants heard one of the tempi and attempted to report the correct label (identification task), in the second, they saw one label and attempted to tap the correct tempo (production task). A musical and visual excerpt was presented between successive trials as a distractor to prevent participants from using previous tempi as anchors. Thus, participants needed to encode tempo information with the corresponding label, store the information, and recall it to give the response. We found that more than half were able to perform above chance in at least one of the tasks, and that musical training differentiated between participants in identification, but not in production. These results suggest that AT is relatively wide-spread, relatively independent of musical training in tempo production, but further refined by training in tempo identification. We propose that at least in production, the underlying motor representations are related to tactus, a basic internal rhythmic period that may provide a body-based reference for encoding tempo.

  4. Unconventional gas recovery symposium

    SciTech Connect

    Not Available

    1980-01-01

    The objective of the SPE and DOE in organizing this symposium has been to bring together in a single annual meeting the best of the professional community engaged in unconventional gas recovery technology. The first venture will focus on discussions of the realities and potentials of unconventional gas sources and an exchange of technology developments. Unconventional gas sources are expected to have an important impact on new gas supplies as technological developments rapidly emerge and become mature technologies in the recovery of natural gas from coal, tight formations, Devonian shale geopressured reservoirs and other alternative high-cost gas sources. It is hoped that this symposium will provide a state-of-art perspective on geology, exploration and production research, recovery technology and field test results. Separate abstracts have been prepared for individual articles for inclusion in the Energy Data Base.

  5. Absolute sensitivity calibration of vacuum and extreme ultraviolet spectrometer systems and Z{sub eff} measurement based on bremsstrahlung continuum in HL-2A tokamak

    SciTech Connect

    Zhou Hangyu; Cui Zhengying; Fu Bingzhong; Sun Ping; Gao Yadong; Xu Yuan; Lu Ping; Yang Qingwei; Duan Xuru; Morita, Shigeru; Goto, Motoshi; Dong Chunfeng

    2012-10-15

    A grazing-incidence flat-field extreme ultraviolet (EUV) spectrometer has been newly developed in HL-2A tokamak. Typical spectral lines are observed from intrinsic impurities of carbon, oxygen, iron, and extrinsic impurity of helium in the wavelength range of 20 A-500 A. Bremsstrahlung continuum is measured at different electron densities of HL-2A discharges to calibrate absolute sensitivity of the EUV spectrometer system and to measure effective ionic charge, Z{sub eff}. The sensitivity of a vacuum ultraviolet (VUV) spectrometer system is also absolutely calibrated in overlapped wavelength range of 300 A-500 A by comparing the intensity between VUV and EUV line emissions.

  6. Measurement of the absolute solar UV irradiance and variability

    NASA Technical Reports Server (NTRS)

    Mentall, James E.

    1990-01-01

    Radiation in the wavelength interval 150-350 nm initiates chemical reactions in the lower mesosphere and the stratosphere through the photodissociation of ambient molecular species. This experiment measures the total solar irradiance, above the Earth's atmosphere, in this wavelength interval, using three spectrometers. Measurements are made from rockets on a once-a-year basis and are used with satellite observations to determine both the absolute irradiance and the long term variability of the sun in the UV. A fourth spectrometer is being added to the payload to measure the emission in the hydrogen Lyman-alpha emission at 121.67 nm.

  7. Absolute efficiency measurements with the 10B based Jalousie detector

    NASA Astrophysics Data System (ADS)

    Modzel, G.; Henske, M.; Houben, A.; Klein, M.; Köhli, M.; Lennert, P.; Meven, M.; Schmidt, C. J.; Schmidt, U.; Schweika, W.

    2014-04-01

    The 10B based Jalousie detector is a replacement for 3He counter tubes, which are nowadays less affordable for large area detectors due to the 3He crisis. In this paper we investigate and verify the performance of the new 10B based detector concept and its adoption for the POWTEX diffractometer, which is designed for the detection of thermal neutrons with predicted detection efficiencies of 75-50% for neutron energies of 10-100 meV, respectively. The predicted detection efficiency has been verified by absolute measurements using neutrons with a wavelength of 1.17 Å (59 meV).

  8. Absolute measurement of hadronic branching fractions of the Ds+ meson.

    PubMed

    Alexander, J P; Berkelman, K; Cassel, D G; Duboscq, J E; Ehrlich, R; Fields, L; Gibbons, L; Gray, R; Gray, S W; Hartill, D L; Heltsley, B K; Hertz, D; Jones, C D; Kandaswamy, J; Kreinick, D L; Kuznetsov, V E; Mahlke-Krüger, H; Mohapatra, D; Onyisi, P U E; Patterson, J R; Peterson, D; Riley, D; Ryd, A; Sadoff, A J; Shi, X; Stroiney, S; Sun, W M; Wilksen, T; Athar, S B; Patel, R; Yelton, J; Rubin, P; Eisenstein, B I; Karliner, I; Mehrabyan, S; Lowrey, N; Selen, M; White, E J; Wiss, J; Mitchell, R E; Shepherd, M R; Besson, D; Pedlar, T K; Cronin-Hennessy, D; Gao, K Y; Hietala, J; Kubota, Y; Klein, T; Lang, B W; Poling, R; Scott, A W; Zweber, P; Dobbs, S; Metreveli, Z; Seth, K K; Tomaradze, A; Libby, J; Powell, A; Wilkinson, G; Ecklund, K M; Love, W; Savinov, V; Lopez, A; Mendez, H; Ramirez, J; Ge, J Y; Miller, D H; Sanghi, B; Shipsey, I P J; Xin, B; Adams, G S; Anderson, M; Cummings, J P; Danko, I; Hu, D; Moziak, B; Napolitano, J; He, Q; Insler, J; Muramatsu, H; Park, C S; Thorndike, E H; Yang, F; Artuso, M; Blusk, S; Khalil, S; Li, J; Mountain, R; Nisar, S; Randrianarivony, K; Sultana, N; Skwarnicki, T; Stone, S; Wang, J C; Zhang, L M; Bonvicini, G; Cinabro, D; Dubrovin, M; Lincoln, A; Rademacker, J; Asner, D M; Edwards, K W; Naik, P; Briere, R A; Ferguson, T; Tatishvili, G; Vogel, H; Watkins, M E; Rosner, J L

    2008-04-25

    The branching fractions of D(s)(+/-) meson decays serve to normalize many measurements of processes involving charm quarks. Using 298 pb(-1) of e(+)e(-) collisions recorded at a center of mass energy of 4.17 GeV, we determine absolute branching fractions for eight D(s)(+/-) decays with a double tag technique. In particular we determine the branching fraction B(D(s)(+)-->K(-)K(+}pi(+))=(5.50+/-0.23+/-0.16)%, where the uncertainties are statistical and systematic, respectively. We also provide partial branching fractions for kinematic subsets of the K(-)K(+)pi(+) decay mode.

  9. On the convective-absolute nature of river bedform instabilities

    NASA Astrophysics Data System (ADS)

    Vesipa, Riccardo; Camporeale, Carlo; Ridolfi, Luca; Chomaz, Jean Marc

    2014-12-01

    River dunes and antidunes are induced by the morphological instability of stream-sediment boundary. Such bedforms raise a number of subtle theoretical questions and are crucial for many engineering and environmental problems. Despite their importance, the absolute/convective nature of the instability has never been addressed. The present work fills this gap as we demonstrate, by the cusp map method, that dune instability is convective for all values of the physical control parameters, while the antidune instability exhibits both behaviors. These theoretical predictions explain some previous experimental and numerical observations and are important to correctly plan flume experiments, numerical simulations, paleo-hydraulic reconstructions, and river works.

  10. Absolute Photoionization Cross Sections of Two Cyclic Ketones: Cyclopentanone & Cyclohexanone.

    PubMed

    Price, Chelsea; Fathi, Yasmin; Meloni, Giovanni

    2017-02-23

    Absolute photoionization cross sections for cyclopentanone and cyclohexanone, as well as partial ionization cross sections for the dissociative ionized fragments, are presented in this investigation. Experiments are performed via a multiplexed photoionization mass spectrometer utilizing VUV synchrotron radiation supplied by the Advanced Light Source of Lawrence Berkeley National Laboratory. These results allow the quantification of these species that is relevant to investigate the kinetics and combustion reactions of potential biofuels. The CBS-QB3 calculated values for the adiabatic ionization energies agree well with the experimental values and the identification of possible dissociative fragments is discussed for both systems.

  11. Optimized replica gas estimation of absolute integrals and partition functions

    NASA Astrophysics Data System (ADS)

    Minh, David D. L.

    2010-09-01

    In contrast with most Monte Carlo integration algorithms, which are used to estimate ratios, the replica gas identities recently introduced by Adib enable the estimation of absolute integrals and partition functions using multiple copies of a system and normalized transition functions. Here, an optimized form is presented. After generalizing a replica gas identity with an arbitrary weighting function, we obtain a functional form that has the minimal asymptotic variance for samples from two replicas and is provably good for a larger number. This equation is demonstrated to improve the convergence of partition function estimates in a two-dimensional Ising model.

  12. Optimized replica gas estimation of absolute integrals and partition functions.

    SciTech Connect

    Minh, D.

    2010-01-01

    In contrast with most Monte Carlo integration algorithms, which are used to estimate ratios, the replica gas identities recently introduced by Adib enable the estimation of absolute integrals and partition functions using multiple copies of a system and normalized transition functions. Here, an optimized form is presented. After generalizing a replica gas identity with an arbitrary weighting function, we obtain a functional form that has the minimal asymptotic variance for samples from two replicas and is provably good for a larger number. This equation is demonstrated to improve the convergence of partition function estimates in a two-dimensional Ising model.

  13. Absolute continuity on paths of spatial open discrete mappings

    NASA Astrophysics Data System (ADS)

    Golberg, Anatoly; Sevost'yanov, Evgeny

    2016-12-01

    We prove that open discrete mappings of Sobolev classes W_loc^{1, p}, p>n-1, with locally integrable inner dilatations admit ACP_p^{ -1} -property, which means that these mappings are absolutely continuous on almost all preimage paths with respect to p-module. In particular, our results extend the well-known Poletskiĭ lemma for quasiregular mappings. We also establish the upper bounds for p-module of such mappings in terms of integrals depending on the inner dilatations and arbitrary admissible functions.

  14. Faraday cup: absolute dosimetry for ELIMED beam line

    NASA Astrophysics Data System (ADS)

    Leanza, R.; Romano, F.; Scuderi, V.; Amico, A. G.; Cuttone, G.; Larosa, G.; Margarone, D.; Milluzzo, G.; Petringa, G.; Pipek, J.; Schillaci, F.; Cirrone, G. A. P.

    2017-03-01

    The scientific community has shown a growing interest towards multidisciplinary applications of laser-driven beams. In this framework, the ELIMED (ELI-Beamlines MEDical and multidisciplinary applications) beamline will be the first transport beamline dedicated to the medical and multidisciplinary studies with laser-accelerated ion beams. Detectors for dosimetry represent one of key-element of the ELIMED beamline, allowing a dose delivering with good result as required in the clinical applications. In this contribution, a Faraday Cup for absolute dosimetry, designed and realized at INFN-LNS, is described.

  15. 3D measurement of absolute radiation dose in grid therapy

    NASA Astrophysics Data System (ADS)

    Trapp, J. V.; Warrington, A. P.; Partridge, M.; Philps, A.; Leach, M. O.; Webb, S.

    2004-01-01

    Spatially fractionated radiotherapy through a grid is a concept which has a long history and was routinely used in orthovoltage radiation therapy in the middle of last century to minimize damage to the skin and subcutaneous tissue. With the advent of megavoltage radiotherapy and its skin sparing effects the use of grids in radiotherapy declined in the 1970s. However there has recently been a revival of the technique for use in palliative treatments with a single fraction of 10 to 20 Gy. In this work the absolute 3D dose distribution in a grid irradiation is measured for photons using a combination of film and gel dosimetry.

  16. Absolute spectrophotometry of Neptune - 3390 to 7800 A

    NASA Astrophysics Data System (ADS)

    Bergstralh, J. T.; Neff, J. S.

    1983-07-01

    Absolute spectrophotometry of Neptune from 3390 to 7800 Å, with spectral resolution of 10 Å in the interval 3390 - 6055 and 20 Å in the interval 6055 - 7800 Å, is reported. The results are compared with filter photometry (Appleby, 1973; Wamsteker, 1973; Savage et al., 1980) and with synthetic spectra computed on the basis of a parameterization proposed by Podolak and Danielson (1977) for aerosol scattering and absorption. A CH4/H2 ratio is derived for the convectively mixed part of Neptune's atmosphere, and constrains optical properties of hypothetical aerosol layers.

  17. Strategy for the absolute neutron emission measurement on ITER.

    PubMed

    Sasao, M; Bertalot, L; Ishikawa, M; Popovichev, S

    2010-10-01

    Accuracy of 10% is demanded to the absolute fusion measurement on ITER. To achieve this accuracy, a functional combination of several types of neutron measurement subsystem, cross calibration among them, and in situ calibration are needed. Neutron transport calculation shows the suitable calibration source is a DT/DD neutron generator of source strength higher than 10(10) n/s (neutron/second) for DT and 10(8) n/s for DD. It will take eight weeks at the minimum with this source to calibrate flux monitors, profile monitors, and the activation system.

  18. Lens transmission measurement for an absolute radiation thermometer

    SciTech Connect

    Hao, X.; Yuan, Z.; Lu, X.

    2013-09-11

    The lens transmission for the National Institute of Metrology of China absolute radiation thermometer is measured by a hybrid method. The results of the lens transmission measurements are 99.002% and 86.792% for filter radiometers with center wavelengths 633 nm and 900 nm, respectively. These results, after correcting for diffraction factors and the size-of-source effect when the lens is incorporated within the radiometer, can be used for measurement of thermodynamic temperature. The expanded uncertainty of the lens transmission measurement system has been evaluated. It is 1.3×10{sup −3} at 633 nm and 900 nm, respectively.

  19. Absolute magnetic helicity and the cylindrical magnetic field

    SciTech Connect

    Low, B. C.

    2011-05-15

    The different magnetic helicities conserved under conditions of perfect electrical conductivity are expressions of the fundamental property that every evolving fluid surface conserves its net magnetic flux. This basic hydromagnetic point unifies the well known Eulerian helicities with the Lagrangian helicity defined by the conserved fluxes frozen into a prescribed set of disjoint toroidal tubes of fluid flowing as a permanent partition of the entire fluid [B. C. Low, Astrophys. J. 649, 1064 (2006)]. This unifying theory is constructed from first principles, beginning with an analysis of the Eulerian and Lagrangian descriptions of fluids, separating the ideas of fluid and magnetic-flux tubes and removing the complication of the magnetic vector potential's free gauge from the concept of helicity. The analysis prepares for the construction of a conserved Eulerian helicity, without that gauge complication, to describe a 3D anchored flux in an upright cylindrical domain, this helicity called absolute to distinguish it from the well known relative helicity. In a version of the Chandrasekhar-Kendall representation, the evolving field at any instant is a unique superposition of a writhed, untwisted axial flux with a circulating flux of field lines all closed and unlinked within the cylindrical domain. The absolute helicity is then a flux-weighted sum of the writhe of that axial flux and its mutual linkage with the circulating flux. The absolute helicity is also conserved if the frozen-in field and its domain are continuously deformed by changing the separation between the rigid cylinder-ends with no change of cylinder radius. This hitherto intractable cylindrical construction closes a crucial conceptual gap for the fundamentals to be complete at last. The concluding discussion shows the impact of this development on our understanding of helicity, covering (i) the helicities of wholly contained and anchored fields; (ii) the Eulerian and Lagrangian descriptions of field

  20. The absolute energy flux envelopes of B type stars.

    NASA Technical Reports Server (NTRS)

    Underhill, A. B.

    1972-01-01

    Absolute energy flux envelopes covering the region of 1100 to 6000 A for main-sequence stars of types B3, B7 and A0 derived from published, ground-based observations and from spectrum scans with OAO-II are presented. These flux envelopes are compared with the predicted flux envelopes from lightly line-blanketed model atmospheres. The line blanketing at wavelengths shorter than 3000 A is severe, about one-half the predicted light being observed at 1600 A. These results demonstrate that a model which represents well the observed visible spectrum of a star may fail seriously for representing the ultraviolet spectrum.

  1. Precision Absolute Beam Current Measurement of Low Power Electron Beam

    SciTech Connect

    Ali, M. M.; Bevins, M. E.; Degtiarenko, P.; Freyberger, A.; Krafft, G. A.

    2012-11-01

    Precise measurements of low power CW electron beam current for the Jefferson Lab Nuclear Physics program have been performed using a Tungsten calorimeter. This paper describes the rationale for the choice of the calorimeter technique, as well as the design and calibration of the device. The calorimeter is in use presently to provide a 1% absolute current measurement of CW electron beam with 50 to 500 nA of average beam current and 1-3 GeV beam energy. Results from these recent measurements will also be presented.

  2. Absolute cross-section normalization of magnetic neutron scattering data.

    PubMed

    Xu, Guangyong; Xu, Zhijun; Tranquada, J M

    2013-08-01

    We discuss various methods to obtain the resolution volume for neutron scattering experiments, in order to perform absolute normalization on inelastic magnetic neutron scattering data. Examples from previous experiments are given. We also try to provide clear definitions of a number of physical quantities which are commonly used to describe neutron magnetic scattering results, including the dynamic spin correlation function and the imaginary part of the dynamic susceptibility. Formulas that can be used for general purposes are provided and the advantages of the different normalization processes are discussed.

  3. Absolute cross-section normalization of magnetic neutron scattering data

    NASA Astrophysics Data System (ADS)

    Xu, Guangyong; Xu, Zhijun; Tranquada, J. M.

    2013-08-01

    We discuss various methods to obtain the resolution volume for neutron scattering experiments, in order to perform absolute normalization on inelastic magnetic neutron scattering data. Examples from previous experiments are given. We also try to provide clear definitions of a number of physical quantities which are commonly used to describe neutron magnetic scattering results, including the dynamic spin correlation function and the imaginary part of the dynamic susceptibility. Formulas that can be used for general purposes are provided and the advantages of the different normalization processes are discussed.

  4. Absolute negative mobility in a one-dimensional overdamped system

    NASA Astrophysics Data System (ADS)

    Chen, Ru-Yin; Nie, Lin-Ru; Pan, Wan-Li; Zhang, Jian-Qiang

    2015-10-01

    A one-dimensional overdamped system consisting of a symmetric periodic potential, a constant bias force and a trichotomous noise was investigated. In the frame of master equations, we derived analytical expression of its current. By means of numerical calculations, the results indicate that the current first increases, then decreases and finally increases with the bias force increasing, i.e., an absolute negative mobility (ANM) phenomenon. Our further investigations presented dependence of the ANM phenomenon on parameters of the noise. Its intrinsic physical mechanism was also open up, and a minimal model with ANM phenomenon is demonstrated.

  5. Game theory and evolution: finite size and absolute fitness measures.

    PubMed

    Demetrius, L; Gundlach, V M

    2000-11-01

    This article is concerned with the characterization and existence of evolutionarily stable strategies (ESS) in Games against Nature, a class of models described by finite size populations and absolute fitness measures. We address these problems in terms of a new formalism which revolves around the concept evolutionary entropy, a measure of the diversity of options associated with a strategy pure - strategies have zero entropy, mixed strategies positive entropy. We invoke this formalism to show that ESS are characterized by extremal states of entropy. We illustrate this characterization of ESS by an analysis of the evolution of the sex ratio and the evolution of seed size.

  6. Quantum bath refrigeration towards absolute zero: challenging the unattainability principle.

    PubMed

    Kolář, M; Gelbwaser-Klimovsky, D; Alicki, R; Kurizki, G

    2012-08-31

    A minimal model of a quantum refrigerator, i.e., a periodically phase-flipped two-level system permanently coupled to a finite-capacity bath (cold bath) and an infinite heat dump (hot bath), is introduced and used to investigate the cooling of the cold bath towards absolute zero (T=0). Remarkably, the temperature scaling of the cold-bath cooling rate reveals that it does not vanish as T→0 for certain realistic quantized baths, e.g., phonons in strongly disordered media (fractons) or quantized spin waves in ferromagnets (magnons). This result challenges Nernst's third-law formulation known as the unattainability principle.

  7. Recovery from vestibular ototoxicity

    NASA Technical Reports Server (NTRS)

    Black, F. O.; Gianna-Poulin, C.; Pesznecker, S. C.

    2001-01-01

    OBJECTIVE: Determine whether subjects with documented vestibular ototoxicity recover vestibular function and, if so, investigate the recovery dynamics. STUDY DESIGN: Prospective and retrospective reviews and repeated measures. SETTING: Clinical research and technology center. SUBJECTS: Twenty-eight subjects who received vestibulotoxic medications were followed for at least 12 months after initial treatment. CONTROLS: Our subject sample was compared with a published database of normal individuals. INTERVENTIONS: All 28 subjects received systemically administered medications known to be ototoxic. The subjects' treating physicians controlled medication, dosage, and administration schedules. MAIN OUTCOME MEASURES: Tests of horizontal canal vestibulo-ocular function were performed. Subjects' auditory and vestibular symptoms were recorded. RESULTS: Eleven subjects (39%) showed changes in horizontal canal vestibulo-ocular gain constant (GC) and/or time constant (TC) consistent with vestibular ototoxicity. When tested 1 year after ototoxic drug administration, eight of the nine subjects who experienced ototoxic decrease in GC showed a recovery of GC to normal limits. Only one of the eight subjects who experienced ototoxic decrease in TC showed recovery of TC to within normal limits. Ototoxicity onset and recovery were independent of baseline vestibular function, and ototoxicity onset did not correlate with cumulative dose of ototoxic medication. There was no relationship between subjective symptoms and ototoxicity onset. CONCLUSIONS: Recovery of GC after vestibular ototoxicity is more commonly observed than recovery of TC. Because ototoxic changes developed and continued in an unpredictable time and manner in relation to ototoxic drug administration, we propose that once ototoxic changes in vestibulo-ocular reflex are detected, ototoxic medications should be discontinued as soon as possible.

  8. JLAB Hurricane recovery

    SciTech Connect

    A. Hutton; D. Arenius; J. Benesch; S. Chattopadhyay; E. F. Daly; O. Garza; R. Kazimi; R. Lauzi; L. Merminga; W. Merz; R. Nelson; W. Oren; M. Poelker; P. Powers; J. Preble; V. Ganni; C. R. Reece; R. Rimmer; M. Spata; S. Suhring

    2004-07-01

    Hurricane Isabel, originally a Category 5 storm, arrived at Jefferson Lab on September 18, 2003 with winds of only 75 mph, creating little direct damage to the infrastructure. However, electric power was lost for four days allowing the superconducting cryomodules to warm up and causing a total loss of the liquid helium. The subsequent recovery of the cryomodules and the impact of the considerable amount of opportunistic preventive maintenance provides important lessons for all accelerator complexes, not only those with superconducting elements. The details of how the recovery process was structured and the resulting improvement in accelerator availability will be discussed in detail.

  9. Rockets for spin recovery

    NASA Technical Reports Server (NTRS)

    Whipple, R. D.

    1980-01-01

    The potential effectiveness of rockets as an auxiliary means for an aircraft to effect recovery from spins was investigated. The advances in rocket technology produced by the space effort suggested that currently available systems might obviate many of the problems encountered in earlier rocket systems. A modern fighter configuration known to exhibit a flat spin mode was selected. An analytical study was made of the thrust requirements for a rocket spin recovery system for the subject configuration. These results were then applied to a preliminary systems study of rocket components appropriate to the problem. Subsequent spin tunnel tests were run to evaluate the analytical results.

  10. Wash water recovery system

    NASA Technical Reports Server (NTRS)

    Deckman, G.; Rousseau, J. (Editor)

    1973-01-01

    The Wash Water Recovery System (WWRS) is intended for use in processing shower bath water onboard a spacecraft. The WWRS utilizes flash evaporation, vapor compression, and pyrolytic reaction to process the wash water to allow recovery of potable water. Wash water flashing and foaming characteristics, are evaluated physical properties, of concentrated wash water are determined, and a long term feasibility study on the system is performed. In addition, a computer analysis of the system and a detail design of a 10 lb/hr vortex-type water vapor compressor were completed. The computer analysis also sized remaining system components on the basis of the new vortex compressor design.

  11. Epigenetics in Stroke Recovery

    PubMed Central

    Kassis, Haifa; Shehadah, Amjad; Chopp, Michael; Zhang, Zheng Gang

    2017-01-01

    Abstract: While the death rate from stroke has continually decreased due to interventions in the hyperacute stage of the disease, long-term disability and institutionalization have become common sequelae in the aftermath of stroke. Therefore, identification of new molecular pathways that could be targeted to improve neurological recovery among survivors of stroke is crucial. Epigenetic mechanisms such as post-translational modifications of histone proteins and microRNAs have recently emerged as key regulators of the enhanced plasticity observed during repair processes after stroke. In this review, we highlight the recent advancements in the evolving field of epigenetics in stroke recovery. PMID:28264471

  12. Characteristics of Incinerators with Heat Recovery Capability.

    DTIC Science & Technology

    1988-04-01

    p" R. Ducey U G. Schanche D A wide range of equipment is available for incinerating wastes and recovering the heat released as useful energy. These...With Heat Recovery Capability (Unclassified) 12 PERSONAL AUTHOR(S) K. Griggs; G. Chamberlin; R. Ducey ; C. Schanche-A 1aTPOFRPR13TIECOVERED 14DATE OF...for the plant site. 2 R. A. Ducey , et al., Heat Recovery Incineration: A Summary of Operational Ex- perience, Special Report E-85/06/ADA152236 (USA

  13. Speedy Recovery - Stream Macroinvertebrate Communities Show Extraordinary Recovery from Mining-Related Acidification

    NASA Astrophysics Data System (ADS)

    Jackson, D. A.

    2005-05-01

    An area in northern Ontario, Wawa, was severely damaged by a century of iron mining and smelting with exceptional acidification (pH 3-4) and the accumulation of arsenic and other toxins. No formal restoration occurred following cessation of operations in 1998, but natural recovery began. In May 2004 we sampled the benthic macroinvertebrate communities of 20 stream riffles within and around the former fume kill area with the goal of estimating the state of community recovery. Despite watercourse colonization routes being blocked by waterfalls and the short time available for recovery, the macroinvertebrate communities showed remarkable recovery with both taxon richness and abundances being well within the range found in nearby reference streams belonging to the same watershed. Even relatively slow colonizers such as Pisidium bivalve mollusks and Orconectes crayfish, were found in the fume kill area streams. The biological recovery has been matched only by the chemical recovery of the systems. We attribute the rapid recovery firstly to the underlying calcium-rich geology, which apparently led to a quick decrease of acidity, thus facilitating re-colonization of the streams. Secondly, stream orientation relative to the acidic deposition zone facilitated rapid re-colonization from upstream areas.

  14. Improved Strategies and Optimization of Calibration Models for Real-time PCR Absolute Quantification

    EPA Science Inventory

    Real-time PCR absolute quantification applications rely on the use of standard curves to make estimates of DNA target concentrations in unknown samples. Traditional absolute quantification approaches dictate that a standard curve must accompany each experimental run. However, t...

  15. Significant Impairment in Immune Recovery Following Cancer Treatment

    PubMed Central

    Kang, Duck-Hee; Weaver, Michael T.; Park, Na-Jin; Smith, Barbara; McArdle, Traci; Carpenter, John

    2009-01-01

    Background Although immunosuppression from cancer adjuvant therapy has been documented, how these suppressed immune responses recover to baseline values after completion of cancer adjuvant therapy has not been studied systematically. Objectives To examine the probability of immune recovery following cancer adjuvant therapy and the potential impact of cancer adjuvant therapy type and cancer stage on immune recovery in newly diagnosed breast cancer patients. Method In a repeated-measures design, immune responses were measured 4 times in 80 early stage breast cancer patients: prior to, and at 2, 6, and 12 months from the beginning of cancer adjuvant therapy. Natural killer cell activity (NKCA), lymphokine-activated killer cell activity, lymphocyte proliferation, CD subsets (CD4, CD8, and CD56), and cytokines (IFN-γ, IL-2, IL-4, IL-6, and IL-1α) were selected for their relevance to breast cancer. Immune recovery was defined by the level of immune response reaching to and above baseline levels. Data were analyzed using a multivariate generalized linear mixed model approach. Results Delayed immune recovery to pretreatment baseline levels continued to the 12-month time point in all parameters. The percentages of immune recovery ranged from 6% to 76% of the patients, varying among immune parameters. Overall, immune recovery was poorer for IFN-γ, IL-2, IL-4, lymphocyte proliferation and NKCA than for CD subsets and IL-6. The type of cancer adjuvant therapy, not cancer stage, showed selective influence on immune recovery. Chemotherapy or chemo- and radiotherapy combination significantly delayed IL-2 recovery, whereas radiotherapy significantly delayed IL-4 recovery. Discussion Immune recovery following breast cancer adjuvant therapy is delayed significantly for an extended time period in numerous immune parameters. The type of cancer adjuvant therapy has selective influence on immune recovery. Future investigations are warranted to elucidate the time course of immune

  16. Cardiovascular responses to exercise as functions of absolute and relative work load

    NASA Technical Reports Server (NTRS)

    Lewis, S. F.; Taylor, W. F.; Graham, R. M.; Pettinger, W. A.; Schutte, J. E.; Blomqvist, C. G.

    1983-01-01

    The roles of absolute and relative oxygen uptake (VO2 and percent of muscle group specific VO2-max) as determinants of the cardiovascular and ventilatory responses to exercise over a wide range of active muscle mass are investigated. Experiments were conducted using four types of dynamic exercise: one-arm curl, one-arm cranking, and one and two-leg cycling at four different relative work loads (25, 50, 75, and 100 percent of VO2-max) for the corresponding muscle group. Results show that VO2 during maximal one-arm curl, one-arm cranking, and one-leg cycling averaged 20, 50, and 75 percent, respectively, of that for maximal two-leg cycling. Cardiac output was determined to be linearly related to VO2 with a similar slope and intercept for each type of exercise, and the heart rate at a given percent VO2-max was higher with larger active muscle mass. It is concluded that the cardiovascular responses to exercise was determined to a large extent by the active muscle mass and the absolute oxygen uptake, with the principal feature appearing to be the tight linkage between systematic oxygen transport and utilization.

  17. Measurements Of Absolute Ca II H And K Flux In FGKM Stars

    NASA Astrophysics Data System (ADS)

    Marvin, Christopher; Reiners, A.; Anglada-Escudé, G.; Jeffers, S.; Boro-Saikia, S.

    2016-09-01

    M dwarfs are the most numerous stars in the universe, yet they still lack absolute chromospheric Ca II H and K (R'_HK) calibrations to effectively compare their activity with FGK stars. We scale high-S/N, high-resolution template spectra, obtained by co-adding multiple HARPS spectra of the same star, to PHOENIX stellar atmosphere models, and obtain chromospheric line measurements of Ca II H & K in physical units of 106 M dwarfs. We also derive new Mt. Wilson S-index to R'_HK conversions appropriate for cooler stars, ranging from 0.82 <= B-V <= 2.00. We establish a chromospheric activity database by combining archival data of FGK stars and using our technique to extend absolute chromospheric measurements to M dwarfs. Our results show that using model atmospheres provides a reliable way to scale uncalibrated spectra and also estimate photospheric flux for M dwarfs, but note that accurate stellar parameter determination is essential to compare chromospheric emission of different spectral types.

  18. Absolute and relative intrasession reliability of surface EMG variables for voluntary precise forearm movements.

    PubMed

    Carius, Daniel; Kugler, Patrick; Kuhwald, Hans-Marten; Wollny, Rainer

    2015-12-01

    The reliability of surface electromyography (EMG) derived parameters is of high importance, but there is distinct lack of studies concerning the reliability during dynamic contractions. Especially Amplitude, Fourier and Wavelet parameter in conjunction have not been tested so far. The interpretation of the EMG variables might be difficult because the movement itself introduces additional factors that affect its characteristics. The aim of this study was to determine the relative and absolute intrasession reliability of electromyographic (EMG) variables of selected arm muscles during concurrent precise elbow extension/flexion movements at different force levels and movement speed. Participants (all-male: n = 17, range 20-32 years) were asked to adapt to a gross-motor visuomotor tracking task (elbow extension/flexion movement) using a custom-built lever arm apparatus. After sufficient adaptation surface electromyography was used to record the electrical activity of mm. biceps brachii, brachioradialis and triceps brachii, and the signal amplitude (RMS [μV]) and the mean frequency of the power spectrum (MNF [Hz]) were computed. Additionally Wavelet analysis was used. Relative reproducibility (intraclass correlation) for signal amplitude, mean frequency of the power spectrum and Wavelet intensity during dynamic contractions was fair to good, independent of force level and movement speed (ICC = 0.71-0.98). The amount of absolute intrasession reliability (coefficient of variation) of EMG variables depends on muscle and force level.

  19. High-resolution measurement of absolute {alpha}-decay widths in {sup 16}O

    SciTech Connect

    Wheldon, C.; Ashwood, N. I.; Barr, M.; Curtis, N.; Freer, M.; Kokalova, Tz.; Malcolm, J. D.; Spencer, S. J.; Ziman, V. A.; Faestermann, Th.; Kruecken, R.; Wirth, H.-F.; Hertenberger, R.; Lutter, R.; Bergmaier, A.

    2011-06-15

    By using a large-acceptance position-sensitive silicon detector array in coincidence with the high-resolution Munich Q3D spectrograph, unambiguous measurements have been made of the absolute {alpha}-particle decay widths from excited states in {sup 16}O* in the energy range 13.85 to 15.87 MeV. Carbon targets have been bombarded with 42-MeV {sup 6}Li beams to induce {sub 6}{sup 12}C({sub 3}{sup 6}Li, d){sub 8}{sup 16}O* reactions. The deuteron ejectiles were measured in the Q3D and the results gated by {sup 4}He+{sup 12}C breakup products detected in the silicon array, the efficiency of which was modeled using Monte Carlo simulations. By comparing total population and breakup-gated spectra, the following absolute {alpha}-decay widths have been measured with high resolution: {Gamma}{sub {alpha}}0/{Gamma}{sub tot} = 0.87{+-}0.11 (13.980 MeV), 1.04{+-}0.15 (14.302 MeV), 0.92{+-}0.10 (14.399 MeV), 0.59{+-}0.04 (14.815 MeV), 0.88{+-}0.18 (15.785 MeV), and {Gamma}{sub {alpha}}1/{Gamma}{sub tot}=1.14{+-}0.08 (14.660 MeV), 0.46{+-}0.06 (14.815 MeV).

  20. Global absolute quantification reveals tight regulation of protein expression in single Xenopus eggs

    PubMed Central

    Smits, Arne H.; Lindeboom, Rik G.H.; Perino, Matteo; van Heeringen, Simon J.; Veenstra, Gert Jan C.; Vermeulen, Michiel

    2014-01-01

    While recent developments in genomic sequencing technology have enabled comprehensive transcriptome analyses of single cells, single cell proteomics has thus far been restricted to targeted studies. Here, we perform global absolute protein quantification of fertilized Xenopus laevis eggs using mass spectrometry-based proteomics, quantifying over 5800 proteins in the largest single cell proteome characterized to date. Absolute protein amounts in single eggs are highly consistent, thus indicating a tight regulation of global protein abundance. Protein copy numbers in single eggs range from tens of thousands to ten trillion copies per cell. Comparison between the single-cell proteome and transcriptome reveal poor expression correlation. Finally, we identify 439 proteins that significantly change in abundance during early embryogenesis. Downregulated proteins include ribosomal proteins and upregulated proteins include basal transcription factors, among others. Many of these proteins do not show regulation at the transcript level. Altogether, our data reveal that the transcriptome is a poor indicator of the proteome and that protein levels are tightly controlled in X. laevis eggs. PMID:25056316