Science.gov

Sample records for absolute relative error

  1. Relative errors can cue absolute visuomotor mappings.

    PubMed

    van Dam, Loes C J; Ernst, Marc O

    2015-12-01

    When repeatedly switching between two visuomotor mappings, e.g. in a reaching or pointing task, adaptation tends to speed up over time. That is, when the error in the feedback corresponds to a mapping switch, fast adaptation occurs. Yet, what is learned, the relative error or the absolute mappings? When switching between mappings, errors with a size corresponding to the relative difference between the mappings will occur more often than other large errors. Thus, we could learn to correct more for errors with this familiar size (Error Learning). On the other hand, it has been shown that the human visuomotor system can store several absolute visuomotor mappings (Mapping Learning) and can use associated contextual cues to retrieve them. Thus, when contextual information is present, no error feedback is needed to switch between mappings. Using a rapid pointing task, we investigated how these two types of learning may each contribute when repeatedly switching between mappings in the absence of task-irrelevant contextual cues. After training, we examined how participants changed their behaviour when a single error probe indicated either the often-experienced error (Error Learning) or one of the previously experienced absolute mappings (Mapping Learning). Results were consistent with Mapping Learning despite the relative nature of the error information in the feedback. This shows that errors in the feedback can have a double role in visuomotor behaviour: they drive the general adaptation process by making corrections possible on subsequent movements, as well as serve as contextual cues that can signal a learned absolute mapping. PMID:26280315

  2. Absolute vs. relative error characterization of electromagnetic tracking accuracy

    NASA Astrophysics Data System (ADS)

    Matinfar, Mohammad; Narayanasamy, Ganesh; Gutierrez, Luis; Chan, Raymond; Jain, Ameet

    2010-02-01

    Electromagnetic (EM) tracking systems are often used for real time navigation of medical tools in an Image Guided Therapy (IGT) system. They are specifically advantageous when the medical device requires tracking within the body of a patient where line of sight constraints prevent the use of conventional optical tracking. EM tracking systems are however very sensitive to electromagnetic field distortions. These distortions, arising from changes in the electromagnetic environment due to the presence of conductive ferromagnetic surgical tools or other medical equipment, limit the accuracy of EM tracking, in some cases potentially rendering tracking data unusable. We present a mapping method for the operating region over which EM tracking sensors are used, allowing for characterization of measurement errors, in turn providing physicians with visual feedback about measurement confidence or reliability of localization estimates. In this instance, we employ a calibration phantom to assess distortion within the operating field of the EM tracker and to display in real time the distribution of measurement errors, as well as the location and extent of the field associated with minimal spatial distortion. The accuracy is assessed relative to successive measurements. Error is computed for a reference point and consecutive measurement errors are displayed relative to the reference in order to characterize the accuracy in near-real-time. In an initial set-up phase, the phantom geometry is calibrated by registering the data from a multitude of EM sensors in a non-ferromagnetic ("clean") EM environment. The registration results in the locations of sensors with respect to each other and defines the geometry of the sensors in the phantom. In a measurement phase, the position and orientation data from all sensors are compared with the known geometry of the sensor spacing, and localization errors (displacement and orientation) are computed. Based on error thresholds provided by the

  3. Relative and Absolute Error Control in a Finite-Difference Method Solution of Poisson's Equation

    ERIC Educational Resources Information Center

    Prentice, J. S. C.

    2012-01-01

    An algorithm for error control (absolute and relative) in the five-point finite-difference method applied to Poisson's equation is described. The algorithm is based on discretization of the domain of the problem by means of three rectilinear grids, each of different resolution. We discuss some hardware limitations associated with the algorithm,…

  4. Absolute Identification by Relative Judgment

    ERIC Educational Resources Information Center

    Stewart, Neil; Brown, Gordon D. A.; Chater, Nick

    2005-01-01

    In unidimensional absolute identification tasks, participants identify stimuli that vary along a single dimension. Performance is surprisingly poor compared with discrimination of the same stimuli. Existing models assume that identification is achieved using long-term representations of absolute magnitudes. The authors propose an alternative…

  5. The Carina Project: Absolute and Relative Calibrations

    NASA Astrophysics Data System (ADS)

    Corsi, C. E.; Bono, G.; Walker, A. R.; Brocato, E.; Buonanno, R.; Caputo, F.; Castellani, M.; Castellani, V.; Dall'Ora, M.; Marconi, M.; Monelli, M.; Nonino, M.; Pulone, L.; Ripepi, V.; Smith, H. A.

    We discuss the reduction strategy adopted to perform the relative and the absolute calibration of the Wide Field Imager (WFI) available at the 2.2m ESO/MPI telescope and of the Mosaic Camera (MC) available at the 4m CTIO Blanco telescope. To properly constrain the occurrence of deceptive systematic errors in the relative calibration we observed with each chip the same set of stars. Current photometry seems to suggest that the WFI shows a positional effect when moving from the top to the bottom of individual chips. Preliminary results based on an independent data set collected with the MC suggest that this camera is only marginally affected by the same problem. To perform the absolute calibration we observed with each chip the same set of standard stars. The sample covers a wide color range and the accuracy both in the B and in the V-band appears to be of the order of a few hundredths of magnitude. Finally, we briefly outline the observing strategy to improve both relative and absolute calibrations of mosaic CCD cameras.

  6. Absolute Income, Relative Income, and Happiness

    ERIC Educational Resources Information Center

    Ball, Richard; Chernova, Kateryna

    2008-01-01

    This paper uses data from the World Values Survey to investigate how an individual's self-reported happiness is related to (i) the level of her income in absolute terms, and (ii) the level of her income relative to other people in her country. The main findings are that (i) both absolute and relative income are positively and significantly…

  7. Comparing Absolute Error with Squared Error for Evaluating Empirical Models of Continuous Variables: Compositions, Implications, and Consequences

    NASA Astrophysics Data System (ADS)

    Gao, J.

    2014-12-01

    Reducing modeling error is often a major concern of empirical geophysical models. However, modeling errors can be defined in different ways: When the response variable is continuous, the most commonly used metrics are squared (SQ) and absolute (ABS) errors. For most applications, ABS error is the more natural, but SQ error is mathematically more tractable, so is often used as a substitute with little scientific justification. Existing literature has not thoroughly investigated the implications of using SQ error in place of ABS error, especially not geospatially. This study compares the two metrics through the lens of bias-variance decomposition (BVD). BVD breaks down the expected modeling error of each model evaluation point into bias (systematic error), variance (model sensitivity), and noise (observation instability). It offers a way to probe the composition of various error metrics. I analytically derived the BVD of ABS error and compared it with the well-known SQ error BVD, and found that not only the two metrics measure the characteristics of the probability distributions of modeling errors differently, but also the effects of these characteristics on the overall expected error are different. Most notably, under SQ error all bias, variance, and noise increase expected error, while under ABS error certain parts of the error components reduce expected error. Since manipulating these subtractive terms is a legitimate way to reduce expected modeling error, SQ error can never capture the complete story embedded in ABS error. I then empirically compared the two metrics with a supervised remote sensing model for mapping surface imperviousness. Pair-wise spatially-explicit comparison for each error component showed that SQ error overstates all error components in comparison to ABS error, especially variance-related terms. Hence, substituting ABS error with SQ error makes model performance appear worse than it actually is, and the analyst would more likely accept a

  8. On the Error Sources in Absolute Individual Antenna Calibrations

    NASA Astrophysics Data System (ADS)

    Aerts, Wim; Baire, Quentin; Bilich, Andria; Bruyninx, Carine; Legrand, Juliette

    2013-04-01

    field) multi path errors, both during calibration and later on at the station, absolute sub-millimeter positioning with GPS is not (yet) possible. References [1] G. Wübbena, M. Schmitz, G. Boettcher, C. Schumann, "Absolute GNSS Antenna Calibration with a Robot: Repeatability of Phase Variations, Calibration of GLONASS and Determination of Carrier-to-Noise Pattern", International GNSS Service: Analysis Center workshop, 8-12 May 2006, Darmstadt, Germany. [2] P. Zeimetz, H. Kuhlmann, "On the Accuracy of Absolute GNSS Antenna Calibration and the Conception of a New Anechoic Chamber", FIG Working Week 2008, 14-19 June 2008, Stockholm, Sweden. [3] P. Zeimetz, H. Kuhlmann, L. Wanninger, V. Frevert, S. Schön and K. Strauch, "Ringversuch 2009", 7th GNSS-Antennen-Workshop, 19-20 March 2009, Dresden, Germany.

  9. IMPROVEMENT OF SMVGEAR II ON VECTOR AND SCALAR MACHINES THROUGH ABSOLUTE ERROR TOLERANCE CONTROL (R823186)

    EPA Science Inventory

    The computer speed of SMVGEAR II was improved markedly on scalar and vector machines with relatively little loss in accuracy. The improvement was due to a method of frequently recalculating the absolute error tolerance instead of keeping it constant for a given set of chemistry. ...

  10. On Relative and Absolute Conviction in Mathematics

    ERIC Educational Resources Information Center

    Weber, Keith; Mejia-Ramos, Juan Pablo

    2015-01-01

    Conviction is a central construct in mathematics education research on justification and proof. In this paper, we claim that it is important to distinguish between absolute conviction and relative conviction. We argue that researchers in mathematics education frequently have not done so and this has lead to researchers making unwarranted claims…

  11. Absolute Plate Velocities from Seismic Anisotropy: Importance of Correlated Errors

    NASA Astrophysics Data System (ADS)

    Gordon, R. G.; Zheng, L.; Kreemer, C.

    2014-12-01

    The orientation of seismic anisotropy inferred beneath the interiors of plates may provide a means to estimate the motions of the plate relative to the deeper mantle. Here we analyze a global set of shear-wave splitting data to estimate plate motions and to better understand the dispersion of the data, correlations in the errors, and their relation to plate speed. The errors in plate motion azimuths inferred from shear-wave splitting beneath any one tectonic plate are shown to be correlated with the errors of other azimuths from the same plate. To account for these correlations, we adopt a two-tier analysis: First, find the pole of rotation and confidence limits for each plate individually. Second, solve for the best fit to these poles while constraining relative plate angular velocities to consistency with the MORVEL relative plate angular velocities. Our preferred set of angular velocities, SKS-MORVEL, is determined from the poles from eight plates weighted proportionally to the root-mean-square velocity of each plate. SKS-MORVEL indicates that eight plates (Amur, Antarctica, Caribbean, Eurasia, Lwandle, Somalia, Sundaland, and Yangtze) have angular velocities that differ insignificantly from zero. The net rotation of the lithosphere is 0.25±0.11º Ma-1 (95% confidence limits) right-handed about 57.1ºS, 68.6ºE. The within-plate dispersion of seismic anisotropy for oceanic lithosphere (σ=19.2°) differs insignificantly from that for continental lithosphere (σ=21.6°). The between-plate dispersion, however, is significantly smaller for oceanic lithosphere (σ=7.4°) than for continental lithosphere (σ=14.7°). Two of the slowest-moving plates, Antarctica (vRMS=4 mm a-1, σ=29°) and Eurasia (vRMS=3 mm a-1, σ=33°), have two of the largest within-plate dispersions, which may indicate that a plate must move faster than ≈5 mm a-1 to result in seismic anisotropy useful for estimating plate motion.

  12. Absolute plate velocities from seismic anisotropy: Importance of correlated errors

    NASA Astrophysics Data System (ADS)

    Zheng, Lin; Gordon, Richard G.; Kreemer, Corné

    2014-09-01

    The errors in plate motion azimuths inferred from shear wave splitting beneath any one tectonic plate are shown to be correlated with the errors of other azimuths from the same plate. To account for these correlations, we adopt a two-tier analysis: First, find the pole of rotation and confidence limits for each plate individually. Second, solve for the best fit to these poles while constraining relative plate angular velocities to consistency with the MORVEL relative plate angular velocities. Our preferred set of angular velocities, SKS-MORVEL, is determined from the poles from eight plates weighted proportionally to the root-mean-square velocity of each plate. SKS-MORVEL indicates that eight plates (Amur, Antarctica, Caribbean, Eurasia, Lwandle, Somalia, Sundaland, and Yangtze) have angular velocities that differ insignificantly from zero. The net rotation of the lithosphere is 0.25 ± 0.11° Ma-1 (95% confidence limits) right handed about 57.1°S, 68.6°E. The within-plate dispersion of seismic anisotropy for oceanic lithosphere (σ = 19.2°) differs insignificantly from that for continental lithosphere (σ = 21.6°). The between-plate dispersion, however, is significantly smaller for oceanic lithosphere (σ = 7.4°) than for continental lithosphere (σ = 14.7°). Two of the slowest-moving plates, Antarctica (vRMS = 4 mm a-1, σ = 29°) and Eurasia (vRMS = 3 mm a-1, σ = 33°), have two of the largest within-plate dispersions, which may indicate that a plate must move faster than ≈ 5 mm a-1 to result in seismic anisotropy useful for estimating plate motion. The tendency of observed azimuths on the Arabia plate to be counterclockwise of plate motion may provide information about the direction and amplitude of superposed asthenospheric flow or about anisotropy in the lithospheric mantle.

  13. Absolute and relative dosimetry for ELIMED

    SciTech Connect

    Cirrone, G. A. P.; Schillaci, F.; Scuderi, V.; Cuttone, G.; Candiano, G.; Musumarra, A.; Pisciotta, P.; Romano, F.; Carpinelli, M.; Presti, D. Lo; Raffaele, L.; Tramontana, A.; Cirio, R.; Sacchi, R.; Monaco, V.; Marchetto, F.; Giordanengo, S.

    2013-07-26

    The definition of detectors, methods and procedures for the absolute and relative dosimetry of laser-driven proton beams is a crucial step toward the clinical use of this new kind of beams. Hence, one of the ELIMED task, will be the definition of procedures aiming to obtain an absolute dose measure at the end of the transport beamline with an accuracy as close as possible to the one required for clinical applications (i.e. of the order of 5% or less). Relative dosimetry procedures must be established, as well: they are necessary in order to determine and verify the beam dose distributions and to monitor the beam fluence and the energetic spectra during irradiations. Radiochromic films, CR39, Faraday Cup, Secondary Emission Monitor (SEM) and transmission ionization chamber will be considered, designed and studied in order to perform a fully dosimetric characterization of the ELIMED proton beam.

  14. Relational versus absolute representation in categorization.

    PubMed

    Edwards, Darren J; Pothos, Emmanuel M; Perlman, Amotz

    2012-01-01

    This study explores relational-like and absolute-like representations in categorization. Although there is much evidence that categorization processes can involve information about both the particular physical properties of studied instances and abstract (relational) properties, there has been little work on the factors that lead to one kind of representation as opposed to the other. We tested 370 participants in 6 experiments, in which participants had to classify new items into predefined artificial categories. In 4 experiments, we observed a predominantly relational-like mode of classification, and in 2 experiments we observed a shift toward an absolute-like mode of classification. These results suggest 3 factors that promote a relational-like mode of classification: fewer items per group, more training groups, and the presence of a time delay. Overall, we propose that less information about the distributional properties of a category or weaker memory traces for the category exemplars (induced, e.g., by having smaller categories or a time delay) can encourage relational-like categorization.

  15. Students' Mathematical Work on Absolute Value: Focusing on Conceptions, Errors and Obstacles

    ERIC Educational Resources Information Center

    Elia, Iliada; Özel, Serkan; Gagatsis, Athanasios; Panaoura, Areti; Özel, Zeynep Ebrar Yetkiner

    2016-01-01

    This study investigates students' conceptions of absolute value (AV), their performance in various items on AV, their errors in these items and the relationships between students' conceptions and their performance and errors. The Mathematical Working Space (MWS) is used as a framework for studying students' mathematical work on AV and the…

  16. Effective connectivity associated with auditory error detection in musicians with absolute pitch

    PubMed Central

    Parkinson, Amy L.; Behroozmand, Roozbeh; Ibrahim, Nadine; Korzyukov, Oleg; Larson, Charles R.; Robin, Donald A.

    2014-01-01

    It is advantageous to study a wide range of vocal abilities in order to fully understand how vocal control measures vary across the full spectrum. Individuals with absolute pitch (AP) are able to assign a verbal label to musical notes and have enhanced abilities in pitch identification without reliance on an external referent. In this study we used dynamic causal modeling (DCM) to model effective connectivity of ERP responses to pitch perturbation in voice auditory feedback in musicians with relative pitch (RP), AP, and non-musician controls. We identified a network compromising left and right hemisphere superior temporal gyrus (STG), primary motor cortex (M1), and premotor cortex (PM). We specified nine models and compared two main factors examining various combinations of STG involvement in feedback pitch error detection/correction process. Our results suggest that modulation of left to right STG connections are important in the identification of self-voice error and sensory motor integration in AP musicians. We also identify reduced connectivity of left hemisphere PM to STG connections in AP and RP groups during the error detection and corrections process relative to non-musicians. We suggest that this suppression may allow for enhanced connectivity relating to pitch identification in the right hemisphere in those with more precise pitch matching abilities. Musicians with enhanced pitch identification abilities likely have an improved auditory error detection and correction system involving connectivity of STG regions. Our findings here also suggest that individuals with AP are more adept at using feedback related to pitch from the right hemisphere. PMID:24634644

  17. Relative-Error-Covariance Algorithms

    NASA Technical Reports Server (NTRS)

    Bierman, Gerald J.; Wolff, Peter J.

    1991-01-01

    Two algorithms compute error covariance of difference between optimal estimates, based on data acquired during overlapping or disjoint intervals, of state of discrete linear system. Provides quantitative measure of mutual consistency or inconsistency of estimates of states. Relative-error-covariance concept applied, to determine degree of correlation between trajectories calculated from two overlapping sets of measurements and construct real-time test of consistency of state estimates based upon recently acquired data.

  18. Assessing Suturing Skills in a Self-Guided Learning Setting: Absolute Symmetry Error

    ERIC Educational Resources Information Center

    Brydges, Ryan; Carnahan, Heather; Dubrowski, Adam

    2009-01-01

    Directed self-guidance, whereby trainees independently practice a skill-set in a structured setting, may be an effective technique for novice training. Currently, however, most evaluation methods require an expert to be present during practice. The study aim was to determine if absolute symmetry error, a clinically important measure that can be…

  19. The absolute disparity anomaly and the mechanism of relative disparities.

    PubMed

    Chopin, Adrien; Levi, Dennis; Knill, David; Bavelier, Daphne

    2016-06-01

    There has been a long-standing debate about the mechanisms underlying the perception of stereoscopic depth and the computation of the relative disparities that it relies on. Relative disparities between visual objects could be computed in two ways: (a) using the difference in the object's absolute disparities (Hypothesis 1) or (b) using relative disparities based on the differences in the monocular separations between objects (Hypothesis 2). To differentiate between these hypotheses, we measured stereoscopic discrimination thresholds for lines with different absolute and relative disparities. Participants were asked to judge the depth of two lines presented at the same distance from the fixation plane (absolute disparity) or the depth between two lines presented at different distances (relative disparity). We used a single stimulus method involving a unique memory component for both conditions, and no extraneous references were available. We also measured vergence noise using Nonius lines. Stereo thresholds were substantially worse for absolute disparities than for relative disparities, and the difference could not be explained by vergence noise. We attribute this difference to an absence of conscious readout of absolute disparities, termed the absolute disparity anomaly. We further show that the pattern of correlations between vergence noise and absolute and relative disparity acuities can be explained jointly by the existence of the absolute disparity anomaly and by the assumption that relative disparity information is computed from absolute disparities (Hypothesis 1).

  20. The absolute disparity anomaly and the mechanism of relative disparities

    PubMed Central

    Chopin, Adrien; Levi, Dennis; Knill, David; Bavelier, Daphne

    2016-01-01

    There has been a long-standing debate about the mechanisms underlying the perception of stereoscopic depth and the computation of the relative disparities that it relies on. Relative disparities between visual objects could be computed in two ways: (a) using the difference in the object's absolute disparities (Hypothesis 1) or (b) using relative disparities based on the differences in the monocular separations between objects (Hypothesis 2). To differentiate between these hypotheses, we measured stereoscopic discrimination thresholds for lines with different absolute and relative disparities. Participants were asked to judge the depth of two lines presented at the same distance from the fixation plane (absolute disparity) or the depth between two lines presented at different distances (relative disparity). We used a single stimulus method involving a unique memory component for both conditions, and no extraneous references were available. We also measured vergence noise using Nonius lines. Stereo thresholds were substantially worse for absolute disparities than for relative disparities, and the difference could not be explained by vergence noise. We attribute this difference to an absence of conscious readout of absolute disparities, termed the absolute disparity anomaly. We further show that the pattern of correlations between vergence noise and absolute and relative disparity acuities can be explained jointly by the existence of the absolute disparity anomaly and by the assumption that relative disparity information is computed from absolute disparities (Hypothesis 1). PMID:27248566

  1. Demonstrating the Error Budget for the Climate Absolute Radiance and Refractivity Observatory Through Solar Irradiance Measurements

    NASA Technical Reports Server (NTRS)

    Thome, Kurtis; McCorkel, Joel; McAndrew, Brendan

    2016-01-01

    The Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission addresses the need to observe highaccuracy, long-term climate change trends and to use decadal change observations as a method to determine the accuracy of climate change. A CLARREO objective is to improve the accuracy of SI-traceable, absolute calibration at infrared and reflected solar wavelengths to reach on-orbit accuracies required to allow climate change observations to survive data gaps and observe climate change at the limit of natural variability. Such an effort will also demonstrate National Institute of Standards and Technology (NIST) approaches for use in future spaceborne instruments. The current work describes the results of laboratory and field measurements with the Solar, Lunar for Absolute Reflectance Imaging Spectroradiometer (SOLARIS) which is the calibration demonstration system (CDS) for the reflected solar portion of CLARREO. SOLARIS allows testing and evaluation of calibration approaches, alternate design and/or implementation approaches and components for the CLARREO mission. SOLARIS also provides a test-bed for detector technologies, non-linearity determination and uncertainties, and application of future technology developments and suggested spacecraft instrument design modifications. Results of laboratory calibration measurements are provided to demonstrate key assumptions about instrument behavior that are needed to achieve CLARREO's climate measurement requirements. Absolute radiometric response is determined using laser-based calibration sources and applied to direct solar views for comparison with accepted solar irradiance models to demonstrate accuracy values giving confidence in the error budget for the CLARREO reflectance retrieval.

  2. Demonstrating the error budget for the Climate Absolute Radiance and Refractivity Observatory through solar irradiance measurements

    NASA Astrophysics Data System (ADS)

    Thome, Kurtis; McCorkel, Joel; McAndrew, Brendan

    2015-09-01

    The Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission addresses the need to observe highaccuracy, long-term climate change trends and to use decadal change observations as a method to determine the accuracy of climate change. A CLARREO objective is to improve the accuracy of SI-traceable, absolute calibration at infrared and reflected solar wavelengths to reach on-orbit accuracies required to allow climate change observations to survive data gaps and observe climate change at the limit of natural variability. Such an effort will also demonstrate National Institute of Standards and Technology (NIST) approaches for use in future spaceborne instruments. The current work describes the results of laboratory and field measurements with the Solar, Lunar for Absolute Reflectance Imaging Spectroradiometer (SOLARIS) which is the calibration demonstration system (CDS) for the reflected solar portion of CLARREO. SOLARIS allows testing and evaluation of calibration approaches, alternate design and/or implementation approaches and components for the CLARREO mission. SOLARIS also provides a testbed for detector technologies, non-linearity determination and uncertainties, and application of future technology developments and suggested spacecraft instrument design modifications. Results of laboratory calibration measurements are provided to demonstrate key assumptions about instrument behavior that are needed to achieve CLARREO's climate measurement requirements. Absolute radiometric response is determined using laser-based calibration sources and applied to direct solar views for comparison with accepted solar irradiance models to demonstrate accuracy values giving confidence in the error budget for the CLARREO reflectance retrieval.

  3. Error-Related Psychophysiology and Negative Affect

    ERIC Educational Resources Information Center

    Hajcak, G.; McDonald, N.; Simons, R.F.

    2004-01-01

    The error-related negativity (ERN/Ne) and error positivity (Pe) have been associated with error detection and response monitoring. More recently, heart rate (HR) and skin conductance (SC) have also been shown to be sensitive to the internal detection of errors. An enhanced ERN has consistently been observed in anxious subjects and there is some…

  4. Generalized approach for using unbiased symmetric metrics with negative values: normalized mean bias factor and normalized mean absolute error factor

    EPA Science Inventory

    Unbiased symmetric metrics provide a useful measure to quickly compare two datasets, with similar interpretations for both under and overestimations. Two examples include the normalized mean bias factor and normalized mean absolute error factor. However, the original formulations...

  5. Relative error covariance analysis techniques and application

    NASA Technical Reports Server (NTRS)

    Wolff, Peter, J.; Williams, Bobby G.

    1988-01-01

    A technique for computing the error covariance of the difference between two estimators derived from different (possibly overlapping) data arcs is presented. The relative error covariance is useful for predicting the achievable consistency between Kalman-Bucy filtered estimates generated from two (not necessarily disjoint) data sets. The relative error covariance analysis technique is then applied to a Venus Orbiter simulation.

  6. Neural Sensitivity to Absolute and Relative Anticipated Reward in Adolescents

    PubMed Central

    Vaidya, Jatin G.; Knutson, Brian; O'Leary, Daniel S.; Block, Robert I.; Magnotta, Vincent

    2013-01-01

    Adolescence is associated with a dramatic increase in risky and impulsive behaviors that have been attributed to developmental differences in neural processing of rewards. In the present study, we sought to identify age differences in anticipation of absolute and relative rewards. To do so, we modified a commonly used monetary incentive delay (MID) task in order to examine brain activity to relative anticipated reward value (neural sensitivity to the value of a reward as a function of other available rewards). This design also made it possible to examine developmental differences in brain activation to absolute anticipated reward magnitude (the degree to which neural activity increases with increasing reward magnitude). While undergoing fMRI, 18 adolescents and 18 adult participants were presented with cues associated with different reward magnitudes. After the cue, participants responded to a target to win money on that trial. Presentation of cues was blocked such that two reward cues associated with $.20, $1.00, or $5.00 were in play on a given block. Thus, the relative value of the $1.00 reward varied depending on whether it was paired with a smaller or larger reward. Reflecting age differences in neural responses to relative anticipated reward (i.e., reference dependent processing), adults, but not adolescents, demonstrated greater activity to a $1 reward when it was the larger of the two available rewards. Adults also demonstrated a more linear increase in ventral striatal activity as a function of increasing absolute reward magnitude compared to adolescents. Additionally, reduced ventral striatal sensitivity to absolute anticipated reward (i.e., the difference in activity to medium versus small rewards) correlated with higher levels of trait Impulsivity. Thus, ventral striatal activity in anticipation of absolute and relative rewards develops with age. Absolute reward processing is also linked to individual differences in Impulsivity. PMID:23544046

  7. Neural sensitivity to absolute and relative anticipated reward in adolescents.

    PubMed

    Vaidya, Jatin G; Knutson, Brian; O'Leary, Daniel S; Block, Robert I; Magnotta, Vincent

    2013-01-01

    Adolescence is associated with a dramatic increase in risky and impulsive behaviors that have been attributed to developmental differences in neural processing of rewards. In the present study, we sought to identify age differences in anticipation of absolute and relative rewards. To do so, we modified a commonly used monetary incentive delay (MID) task in order to examine brain activity to relative anticipated reward value (neural sensitivity to the value of a reward as a function of other available rewards). This design also made it possible to examine developmental differences in brain activation to absolute anticipated reward magnitude (the degree to which neural activity increases with increasing reward magnitude). While undergoing fMRI, 18 adolescents and 18 adult participants were presented with cues associated with different reward magnitudes. After the cue, participants responded to a target to win money on that trial. Presentation of cues was blocked such that two reward cues associated with $.20, $1.00, or $5.00 were in play on a given block. Thus, the relative value of the $1.00 reward varied depending on whether it was paired with a smaller or larger reward. Reflecting age differences in neural responses to relative anticipated reward (i.e., reference dependent processing), adults, but not adolescents, demonstrated greater activity to a $1 reward when it was the larger of the two available rewards. Adults also demonstrated a more linear increase in ventral striatal activity as a function of increasing absolute reward magnitude compared to adolescents. Additionally, reduced ventral striatal sensitivity to absolute anticipated reward (i.e., the difference in activity to medium versus small rewards) correlated with higher levels of trait Impulsivity. Thus, ventral striatal activity in anticipation of absolute and relative rewards develops with age. Absolute reward processing is also linked to individual differences in Impulsivity. PMID:23544046

  8. Individual Differences in Absolute and Relative Metacomprehension Accuracy

    ERIC Educational Resources Information Center

    Maki, Ruth H.; Shields, Micheal; Wheeler, Amanda Easton; Zacchilli, Tammy Lowery

    2005-01-01

    The authors investigated absolute and relative metacomprehension accuracy as a function of verbal ability in college students. Students read hard texts, revised texts, or a mixed set of texts. They then predicted their performance, took a multiple-choice test on the texts, and made posttest judgments about their performance. With hard texts,…

  9. Relative versus Absolute Stimulus Control in the Temporal Bisection Task

    ERIC Educational Resources Information Center

    de Carvalho, Marilia Pinhiero; Machado, Armando

    2012-01-01

    When subjects learn to associate two sample durations with two comparison keys, do they learn to associate the keys with the short and long samples (relational hypothesis), or with the specific sample durations (absolute hypothesis)? We exposed 16 pigeons to an ABA design in which phases A and B corresponded to tasks using samples of 1 s and 4 s,…

  10. Son preference in Indian families: absolute versus relative wealth effects.

    PubMed

    Gaudin, Sylvestre

    2011-02-01

    The desire for male children is prevalent in India, where son preference has been shown to affect fertility behavior and intrahousehold allocation of resources. Economic theory predicts less gender discrimination in wealthier households, but demographers and sociologists have argued that wealth can exacerbate bias in the Indian context. I argue that these apparently conflicting theories can be reconciled and simultaneously tested if one considers that they are based on two different notions of wealth: one related to resource constraints (absolute wealth), and the other to notions of local status (relative wealth). Using cross-sectional data from the 1998-1999 and 2005-2006 National Family and Health Surveys, I construct measures of absolute and relative wealth by using principal components analysis. A series of statistical models of son preference is estimated by using multilevel methods. Results consistently show that higher absolute wealth is strongly associated with lower son preference, and the effect is 20%-40% stronger when the household's community-specific wealth score is included in the regression. Coefficients on relative wealth are positive and significant although lower in magnitude. Results are robust to using different samples, alternative groupings of households in local areas, different estimation methods, and alternative dependent variables.

  11. Comparison of Using Relative and Absolute PCV Corrections in Short Baseline GNSS Observation Processing

    NASA Astrophysics Data System (ADS)

    Dawidowicz, Karol

    2011-01-01

    GNSS antenna phase center variations (PCV) are defined as shifts in positions depending on the observed elevation angle and azimuth to the satellite. When identical antennae are used in relative measurement the phase center variations will cancel out, particularly over short baselines. When different antennae are used, even on short baselines, ignoring these phase center variations can lead to serious (up to 10 cm) vertical errors. The only way to avoid these errors, when mixing different antenna types, is by applying antenna phase center variation models in processing. Till the 6th November 2006, the International GNSS Service used relative phase center models for GNSS antenna receivers. Then absolute calibration models, developed by the company "Geo++", started to be used. These models involved significant differences on the scale of GNSS networks compared to the VLBI and SLR measurements. The differences were due to the lack of the GNSS satellite antenna calibration models. When this problem was sufficiently resolved, the IGS decided to switch from relative to absolute models for both satellites and receivers. This decision caused significant variations to the results of the GNSS network solutions. The aim of this paper is to study the height differences in short baseline GNSS observations processing when different calibration models are used. The analysis was done using GNSS data collected at short baselines moved with different receiver antennas. The results of calculations show, that switching from relative to absolute receiver antenna PCV models has a significant effect on GNSS network solutions, particularly in high accuracy applications.

  12. Absolute versus relative ascertainment of pedophilia in men.

    PubMed

    Blanchard, Ray; Kuban, Michael E; Blak, Thomas; Cantor, James M; Klassen, Philip E; Dickey, Robert

    2009-12-01

    There are at least two different criteria for assessing pedophilia in men: absolute ascertainment (their sexual interest in children is intense) and relative ascertainment (their sexual interest in children is greater than their interest in adults). The American Psychiatric Association's Diagnostic and Statistical Manual of Mental Disorders, 3rd edition (DSM-III) used relative ascertainment in its diagnostic criteria for pedophilia; this was abandoned and replaced by absolute ascertainment in the DSM-III-R and all subsequent editions. The present study was conducted to demonstrate the continuing need for relative ascertainment, particularly in the laboratory assessment of pedophilia. A total of 402 heterosexual men were selected from a database of patients referred to a specialty clinic. These had undergone phallometric testing, a psychophysiological procedure in which their penile blood volume was monitored while they were presented with a standardized set of laboratory stimuli depicting male and female children, pubescents, and adults.The 130 men selected for the Teleiophilic Profile group responded substantially to prepubescent girls but even more to adult women; the 272 men selected for the Pedophilic Profile group responded weakly to prepubescent girls but even less to adult women. In terms of absolute magnitude, every patient in the Pedophilic Profile group had a lesser penile response to prepubescent girls than every patient in the Teleiophilic Profile group. Nevertheless, the Pedophilic Profile group had a significantly greater number of known sexual offenses against prepubescent girls, indicating that they contained a higher proportion of true pedophiles. These results dramatically demonstrate the utility-or perhaps necessity-of relative ascertainment in the laboratory assessment of erotic age-preference.

  13. Absolute versus relative ascertainment of pedophilia in men.

    PubMed

    Blanchard, Ray; Kuban, Michael E; Blak, Thomas; Cantor, James M; Klassen, Philip E; Dickey, Robert

    2009-12-01

    There are at least two different criteria for assessing pedophilia in men: absolute ascertainment (their sexual interest in children is intense) and relative ascertainment (their sexual interest in children is greater than their interest in adults). The American Psychiatric Association's Diagnostic and Statistical Manual of Mental Disorders, 3rd edition (DSM-III) used relative ascertainment in its diagnostic criteria for pedophilia; this was abandoned and replaced by absolute ascertainment in the DSM-III-R and all subsequent editions. The present study was conducted to demonstrate the continuing need for relative ascertainment, particularly in the laboratory assessment of pedophilia. A total of 402 heterosexual men were selected from a database of patients referred to a specialty clinic. These had undergone phallometric testing, a psychophysiological procedure in which their penile blood volume was monitored while they were presented with a standardized set of laboratory stimuli depicting male and female children, pubescents, and adults.The 130 men selected for the Teleiophilic Profile group responded substantially to prepubescent girls but even more to adult women; the 272 men selected for the Pedophilic Profile group responded weakly to prepubescent girls but even less to adult women. In terms of absolute magnitude, every patient in the Pedophilic Profile group had a lesser penile response to prepubescent girls than every patient in the Teleiophilic Profile group. Nevertheless, the Pedophilic Profile group had a significantly greater number of known sexual offenses against prepubescent girls, indicating that they contained a higher proportion of true pedophiles. These results dramatically demonstrate the utility-or perhaps necessity-of relative ascertainment in the laboratory assessment of erotic age-preference. PMID:19901237

  14. Challenge and Error: Critical Events and Attention-Related Errors

    ERIC Educational Resources Information Center

    Cheyne, James Allan; Carriere, Jonathan S. A.; Solman, Grayden J. F.; Smilek, Daniel

    2011-01-01

    Attention lapses resulting from reactivity to task challenges and their consequences constitute a pervasive factor affecting everyday performance errors and accidents. A bidirectional model of attention lapses (error [image omitted] attention-lapse: Cheyne, Solman, Carriere, & Smilek, 2009) argues that errors beget errors by generating attention…

  15. Preliminary Error Budget for the Reflected Solar Instrument for the Climate Absolute Radiance and Refractivity Observatory

    NASA Technical Reports Server (NTRS)

    Thome, Kurtis; Gubbels, Timothy; Barnes, Robert

    2011-01-01

    The Climate Absolute Radiance and Refractivity Observatory (CLARREO) plans to observe climate change trends over decadal time scales to determine the accuracy of climate projections. The project relies on spaceborne earth observations of SI-traceable variables sensitive to key decadal change parameters. The mission includes a reflected solar instrument retrieving at-sensor reflectance over the 320 to 2300 nm spectral range with 500-m spatial resolution and 100-km swath. Reflectance is obtained from the ratio of measurements of the earth s surface to those while viewing the sun relying on a calibration approach that retrieves reflectance with uncertainties less than 0.3%. The calibration is predicated on heritage hardware, reduction of sensor complexity, adherence to detector-based calibration standards, and an ability to simulate in the laboratory on-orbit sources in both size and brightness to provide the basis of a transfer to orbit of the laboratory calibration including a link to absolute solar irradiance measurements. The Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission addresses the need to observe high-accuracy, long-term climate change trends and to use decadal change observations as the most critical method to determine the accuracy of climate change projections such as those in the IPCC Report. A rigorously known accuracy of both decadal change observations as well as climate projections is critical in order to enable sound policy decisions. The CLARREO Project will implement a spaceborne earth observation mission designed to provide rigorous SI traceable observations (i.e., radiance, reflectance, and refractivity) that are sensitive to a wide range of key decadal change variables, including: 1) Surface temperature and atmospheric temperature profile 2) Atmospheric water vapor profile 3) Far infrared water vapor greenhouse 4) Aerosol properties and anthropogenic aerosol direct radiative forcing 5) Total and spectral solar

  16. Error Budget for a Calibration Demonstration System for the Reflected Solar Instrument for the Climate Absolute Radiance and Refractivity Observatory

    NASA Technical Reports Server (NTRS)

    Thome, Kurtis; McCorkel, Joel; McAndrew, Brendan

    2013-01-01

    A goal of the Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission is to observe highaccuracy, long-term climate change trends over decadal time scales. The key to such a goal is to improving the accuracy of SI traceable absolute calibration across infrared and reflected solar wavelengths allowing climate change to be separated from the limit of natural variability. The advances required to reach on-orbit absolute accuracy to allow climate change observations to survive data gaps exist at NIST in the laboratory, but still need demonstration that the advances can move successfully from to NASA and/or instrument vendor capabilities for spaceborne instruments. The current work describes the radiometric calibration error budget for the Solar, Lunar for Absolute Reflectance Imaging Spectroradiometer (SOLARIS) which is the calibration demonstration system (CDS) for the reflected solar portion of CLARREO. The goal of the CDS is to allow the testing and evaluation of calibration approaches, alternate design and/or implementation approaches and components for the CLARREO mission. SOLARIS also provides a test-bed for detector technologies, non-linearity determination and uncertainties, and application of future technology developments and suggested spacecraft instrument design modifications. The resulting SI-traceable error budget for reflectance retrieval using solar irradiance as a reference and methods for laboratory-based, absolute calibration suitable for climatequality data collections is given. Key components in the error budget are geometry differences between the solar and earth views, knowledge of attenuator behavior when viewing the sun, and sensor behavior such as detector linearity and noise behavior. Methods for demonstrating this error budget are also presented.

  17. Choice deferral can arise from absolute evaluations or relative comparisons.

    PubMed

    White, Chris M; Hoffrage, Ulrich; Reisen, Nils

    2015-06-01

    When choosing among several options, people may defer choice for either of 2 reasons: because none of the options is good enough or because there is uncertainty regarding which is the best. These reasons form the basis of the 2-stage, 2-threshold (2S2T) framework, which posits that a different kind of processing corresponds to these 2 reasons for choice deferral: absolute evaluations and relative comparisons, respectively. Three experiments are reported in which each type of processing was triggered in different conditions either via different payoff structures or different degrees of attribute knowledge. The effects of the 3 main independent variables (the size of the choice set, the utility of the best option, and the number of competitive options) differed depending on the payoff structure or attribute knowledge conditions in ways predicted by the 2S2T framework. Implications for consumer decision making, marketing, and eyewitness identification are discussed. PMID:25938974

  18. Absolute and relative choreographies in rigid body dynamics

    NASA Astrophysics Data System (ADS)

    Borisov, A. V.; Kilin, A. A.; Mamaev, I. S.

    2008-06-01

    For the classical problem of motion of a rigid body about a fixed point with zero area integral, we present a family of solutions that are periodic in the absolute space. Such solutions are known as choreographies. The family includes the well-known Delone solutions (for the Kovalevskaya case), some particular solutions for the Goryachev-Chaplygin case, and the Steklov solution. The “genealogy” of solutions of the family naturally appearing from the energy continuation and their connection with the Staude rotations are considered. It is shown that if the integral of areas is zero, the solutions are periodic with respect to a coordinate frame that rotates uniformly about the vertical (relative choreographies).

  19. Challenge and error: critical events and attention-related errors.

    PubMed

    Cheyne, James Allan; Carriere, Jonathan S A; Solman, Grayden J F; Smilek, Daniel

    2011-12-01

    Attention lapses resulting from reactivity to task challenges and their consequences constitute a pervasive factor affecting everyday performance errors and accidents. A bidirectional model of attention lapses (error↔attention-lapse: Cheyne, Solman, Carriere, & Smilek, 2009) argues that errors beget errors by generating attention lapses; resource-depleting cognitions interfering with attention to subsequent task challenges. Attention lapses lead to errors, and errors themselves are a potent consequence often leading to further attention lapses potentially initiating a spiral into more serious errors. We investigated this challenge-induced error↔attention-lapse model using the Sustained Attention to Response Task (SART), a GO-NOGO task requiring continuous attention and response to a number series and withholding of responses to a rare NOGO digit. We found response speed and increased commission errors following task challenges to be a function of temporal distance from, and prior performance on, previous NOGO trials. We conclude by comparing and contrasting the present theory and findings to those based on choice paradigms and argue that the present findings have implications for the generality of conflict monitoring and control models.

  20. Absolute and relative diffusion in a turbulent compressibile system

    NASA Astrophysics Data System (ADS)

    Cressman, J. R.; Goldburg, W. I.

    2002-11-01

    Floating Particles that move on the surface of a tank of water driven into turbulent motion, move in a plane. Calling the coordinates of this plane x and y, with z=0 at the surface, the velocity of the floating particles obeys the equation partialx u_x(x,y,0,t) +partial_yu_y(x,y,0,t)= - partial_zu_z(x,y,0,t), assuring that their motion is compressible. From PIV measurements made at the surface, one can deduce the absolute and the relative motion of the floaters (Richardson diffusion). The relative diffusion measurements are compared with the Richardson result, t^3 and with computer simulations of Eckhardt and Schumacher [1]. The dimensionless compressibility l C is roughly 0.5 for the floaters, which is large enough to raise questions about the validity of the Kolmogorov paradigm, according to which energy is passed from large to small spatial scales [2]. References 1. G. Falkovich et al., Rev. Mod. Phys. 73 913 (2001). 2. J. Schumacher and B. Eckhardt, Phys. Rev. E 66, 017303 (2002).

  1. Generalized approach for using unbiased symmetric metrics with negative values: normalized mean bias factor and normalized mean absolute error factor

    SciTech Connect

    Gustafson, William I.; Yu, Shaocai

    2012-10-23

    Unbiased symmetric metrics provide a useful measure to quickly compare two datasets, with similar interpretations for both under and overestimations. Two examples include the normalized mean bias factor and normalized mean absolute error factor. However, the original formulations of these metrics are only valid for datasets with positive means. This paper presents a methodology to use and interpret the metrics with datasets that have negative means. The updated formulations give identical results compared to the original formulations for the case of positive means, so researchers are encouraged to use the updated formulations going forward without introducing ambiguity.

  2. Left-hemisphere activation is associated with enhanced vocal pitch error detection in musicians with absolute pitch

    PubMed Central

    Behroozmand, Roozbeh; Ibrahim, Nadine; Korzyukov, Oleg; Robin, Donald A.; Larson, Charles R.

    2014-01-01

    The ability to process auditory feedback for vocal pitch control is crucial during speaking and singing. Previous studies have suggested that musicians with absolute pitch (AP) develop specialized left-hemisphere mechanisms for pitch processing. The present study adopted an auditory feedback pitch perturbation paradigm combined with ERP recordings to test the hypothesis whether the neural mechanisms of the left-hemisphere enhance vocal pitch error detection and control in AP musicians compared with relative pitch (RP) musicians and non-musicians (NM). Results showed a stronger N1 response to pitch-shifted voice feedback in the right-hemisphere for both AP and RP musicians compared with the NM group. However, the left-hemisphere P2 component activation was greater in AP and RP musicians compared with NMs and also for the AP compared with RP musicians. The NM group was slower in generating compensatory vocal reactions to feedback pitch perturbation compared with musicians, and they failed to re-adjust their vocal pitch after the feedback perturbation was removed. These findings suggest that in the earlier stages of cortical neural processing, the right hemisphere is more active in musicians for detecting pitch changes in voice feedback. In the later stages, the left-hemisphere is more active during the processing of auditory feedback for vocal motor control and seems to involve specialized mechanisms that facilitate pitch processing in the AP compared with RP musicians. These findings indicate that the left hemisphere mechanisms of AP ability are associated with improved auditory feedback pitch processing during vocal pitch control in tasks such as speaking or singing. PMID:24355545

  3. Alterations in Error-Related Brain Activity and Post-Error Behavior over Time

    ERIC Educational Resources Information Center

    Themanson, Jason R.; Rosen, Peter J.; Pontifex, Matthew B.; Hillman, Charles H.; McAuley, Edward

    2012-01-01

    This study examines the relation between the error-related negativity (ERN) and post-error behavior over time in healthy young adults (N = 61). Event-related brain potentials were collected during two sessions of an identical flanker task. Results indicated changes in ERN and post-error accuracy were related across task sessions, with more…

  4. Online recognition of music is influenced by relative and absolute pitch information.

    PubMed

    Creel, Sarah C; Tumlin, Melanie A

    2012-03-01

    Three experiments explored online recognition in a nonspeech domain, using a novel experimental paradigm. Adults learned to associate abstract shapes with particular melodies, and at test they identified a played melody's associated shape. To implicitly measure recognition, visual fixations to the associated shape versus a distractor shape were measured as the melody played. Degree of similarity between associated melodies was varied to assess what types of pitch information adults use in recognition. Fixation and error data suggest that adults naturally recognize music, like language, incrementally, computing matches to representations before melody offset, despite the fact that music, unlike language, provides no pressure to execute recognition rapidly. Further, adults use both absolute and relative pitch information in recognition. The implicit nature of the dependent measure should permit use with a range of populations to evaluate postulated developmental and evolutionary changes in pitch encoding. PMID:22039917

  5. Online recognition of music is influenced by relative and absolute pitch information.

    PubMed

    Creel, Sarah C; Tumlin, Melanie A

    2012-03-01

    Three experiments explored online recognition in a nonspeech domain, using a novel experimental paradigm. Adults learned to associate abstract shapes with particular melodies, and at test they identified a played melody's associated shape. To implicitly measure recognition, visual fixations to the associated shape versus a distractor shape were measured as the melody played. Degree of similarity between associated melodies was varied to assess what types of pitch information adults use in recognition. Fixation and error data suggest that adults naturally recognize music, like language, incrementally, computing matches to representations before melody offset, despite the fact that music, unlike language, provides no pressure to execute recognition rapidly. Further, adults use both absolute and relative pitch information in recognition. The implicit nature of the dependent measure should permit use with a range of populations to evaluate postulated developmental and evolutionary changes in pitch encoding.

  6. Factoring Algebraic Error for Relative Pose Estimation

    SciTech Connect

    Lindstrom, P; Duchaineau, M

    2009-03-09

    We address the problem of estimating the relative pose, i.e. translation and rotation, of two calibrated cameras from image point correspondences. Our approach is to factor the nonlinear algebraic pose error functional into translational and rotational components, and to optimize translation and rotation independently. This factorization admits subproblems that can be solved using direct methods with practical guarantees on global optimality. That is, for a given translation, the corresponding optimal rotation can directly be determined, and vice versa. We show that these subproblems are equivalent to computing the least eigenvector of second- and fourth-order symmetric tensors. When neither translation or rotation is known, alternating translation and rotation optimization leads to a simple, efficient, and robust algorithm for pose estimation that improves on the well-known 5- and 8-point methods.

  7. Confidence-Accuracy Calibration in Absolute and Relative Face Recognition Judgments

    ERIC Educational Resources Information Center

    Weber, Nathan; Brewer, Neil

    2004-01-01

    Confidence-accuracy (CA) calibration was examined for absolute and relative face recognition judgments as well as for recognition judgments from groups of stimuli presented simultaneously or sequentially (i.e., simultaneous or sequential mini-lineups). When the effect of difficulty was controlled, absolute and relative judgments produced…

  8. Changing the Tune: The Structure of the Input Affects Infants' Use of Absolute and Relative Pitch

    ERIC Educational Resources Information Center

    Saffran, Jenny R.; Reeck, Karelyn; Niebuhr, Aimee; Wilson, Diana

    2005-01-01

    Sequences of notes contain several different types of pitch cues, including both absolute and relative pitch information. What factors determine which of these cues are used when learning about tone sequences? Previous research suggests that infants tend to preferentially process absolute pitch patterns in continuous tone sequences, while other…

  9. Recovery of absolute phases for the fringe patterns of three selected wavelengths with improved anti-error capability

    NASA Astrophysics Data System (ADS)

    Long, Jiale; Xi, Jiangtao; Zhang, Jianmin; Zhu, Ming; Cheng, Wenqing; Li, Zhongwei; Shi, Yusheng

    2016-09-01

    In a recent published work, we proposed a technique to recover the absolute phase maps of fringe patterns with two selected fringe wavelengths. To achieve higher anti-error capability, the proposed method requires employing the fringe patterns with longer wavelengths; however, longer wavelength may lead to the degradation of the signal-to-noise ratio (SNR) in the surface measurement. In this paper, we propose a new approach to unwrap the phase maps from their wrapped versions based on the use of fringes with three different wavelengths which is characterized by improved anti-error capability and SNR. Therefore, while the previous method works on the two-phase maps obtained from six-step phase-shifting profilometry (PSP) (thus 12 fringe patterns are needed), the proposed technique performs very well on three-phase maps from three steps PSP, requiring only nine fringe patterns and hence more efficient. Moreover, the advantages of the two-wavelength method in simple implementation and flexibility in the use of fringe patterns are also reserved. Theoretical analysis and experiment results are presented to confirm the effectiveness of the proposed method.

  10. Relative and absolute intensity calibrations of a modern broadband echelle spectrometer

    NASA Astrophysics Data System (ADS)

    Bibinov, N.; Halfmann, H.; Awakowicz, P.; Wiesemann, K.

    2007-05-01

    We report on relative and absolute intensity calibrations of a modern broadband echelle spectrometer (type ESA 3000® trademark of LLA Instruments GmbH, Berlin) for use in the diagnostics of low-temperature plasma. This type of device measures simultaneously complete emission spectra in the spectral range from 200 to 800 nm with a spectral resolution of several picometres by using more than 90 spectral orders, causing a strongly structured efficiency function. The assumptions and approximations entering the calibration procedure under these conditions are discussed in section 3. For coping with the strongly structured efficiency function a continuum light source is needed, which covers the entire spectral range. Furthermore, the variation of its intensity must be low enough to ensure that neither statistical errors perturb the calibration in regions with low photon flux and/or low efficiency, nor local memory overflow in regions with high photon flux or high efficiency. In our case this requires that during calibration over the whole spectral range of the spectrometer the counts per pixel in one measurement vary at highest by a factor 10 to 12. Usual broadband light sources do not meet this latter requirement. We, therefore, use an uncalibrated 'composite' source, an adjustable combination of a standard tungsten strip lamp and a deuterium lamp, and calibrate the spectrometer in a two-step process against the tungsten strip lamp and well-known rovibrational intensity distributions in the emission spectra of NO and N2. We adjust the composite source in a way to produce a perturbation-free first approximation of an (uncalibrated) efficiency function, which is then corrected and thus calibrated by comparison with the (secondary) standards mentioned above. For absolute calibration we use the tungsten strip lamp. The uncertainty attained in this way for the relative calibration depends on the wavelength and varies between 5% and 10%. For the absolute calibration we

  11. The Relative Frequency of Spanish Pronunciation Errors.

    ERIC Educational Resources Information Center

    Hammerly, Hector

    Types of hierarchies of pronunciation difficulty are discussed, and a hierarchy based on contrastive analysis plus informal observation is proposed. This hierarchy is less one of initial difficulty than of error persistence. One feature of this hierarchy is that, because of lesser learner awareness and very limited functional load, errors…

  12. Absolute relativity in classical electromagnetism: the quantisation of light

    NASA Astrophysics Data System (ADS)

    Williamson, J. G.; Leary, S. J.

    2015-09-01

    A rigorous introduction of the underlying nature of space and time, through a sharpening of the principle of relativity, forces qualitatively new kinds of solutions in the classical theory of electromagnetism. A class of relativistic wave-functions are derived which are solutions to the first-order, free-space Maxwell equation, These describe all photons from radio to gamma waves and are governed by a single parameter: the exchange frequency. Though the theory remains that of classical, continuous electromagnetism, allowed travelling-wave solutions are quantised in that they come in "lumps" and their characteristic energy is proportional to frequency.

  13. Explaining the Relative and Absolute LGRB Rate with Metallically

    NASA Astrophysics Data System (ADS)

    Graham, John

    2016-01-01

    There is now strong evidence that Long-duration Gamma-Ray Bursts (LGRBs) have an intrinsic preference for low-metallicity environments despite the existence of some exceptions to this trend (Graham & Fruchter 2013). Here I will present a pair of results expanding on this work. First, a detailed effort to quantize magnitude of this effect, and characterized its change as a function of metallicity. Thus we directly address a fundamental question of this subfield: how much more likely is an LGRB to form at one metallicity as compared with another? Then, employing these results, we relate the LGRB rate as a function of redshift to the cosmic star-formation rate and provide a detailed breakdown of the intervening steps and their rate of occurrence. This provides interesting implications for radio search efforts to detect off axis LGRB events which will be discussed.

  14. Absolute and relative reliability of lumbar interspinous process ultrasound imaging measurements

    PubMed Central

    Tozawa, Ryosuke; Katoh, Munenori; Aramaki, Hidefumi; Kawasaki, Tsubasa; Nishikawa, Yuichi; Kumamoto, Tsuneo; Fujinawa, Osamu

    2016-01-01

    [Purpose] The intra- and inter-examiner reliabilities of lumbar interspinous process distances measured by ultrasound imaging were examined. [Subjects and Methods] The subjects were 10 males who had no history of orthopedic diseases or dysfunctions. Ten lumbar interspinous images from 360 images captured from 10 subjects were selected. The 10 images were measured by nine examiners. The lumbar interspinous process distance measurements were performed five times by each examiner. In addition, four of the nine examiners measured the distances again after 4 days for test-retest analysis. In statistical analysis, the intraclass correlation coefficient was used to investigate relative reliability, and Bland-Altman analysis was used to investigate absolute reliability. [Results] The intraclass correlation coefficients (1, 1) for intra-examiner reliability ranged from 0.985 to 0.998. For inter-rater reliability, the intraclass correlation coefficient (2, 1) was 0.969. The intraclass correlation coefficients (1, 2) for test-retest reliability ranged from 0.991 to 0.999. The Bland-Altman analysis results indicated no systematic error. [Conclusion] The results indicate that ultrasound measurements of interspinous process distance are highly reliable even when measured only once by a single person.

  15. Absolute and relative reliability of lumbar interspinous process ultrasound imaging measurements.

    PubMed

    Tozawa, Ryosuke; Katoh, Munenori; Aramaki, Hidefumi; Kawasaki, Tsubasa; Nishikawa, Yuichi; Kumamoto, Tsuneo; Fujinawa, Osamu

    2016-08-01

    [Purpose] The intra- and inter-examiner reliabilities of lumbar interspinous process distances measured by ultrasound imaging were examined. [Subjects and Methods] The subjects were 10 males who had no history of orthopedic diseases or dysfunctions. Ten lumbar interspinous images from 360 images captured from 10 subjects were selected. The 10 images were measured by nine examiners. The lumbar interspinous process distance measurements were performed five times by each examiner. In addition, four of the nine examiners measured the distances again after 4 days for test-retest analysis. In statistical analysis, the intraclass correlation coefficient was used to investigate relative reliability, and Bland-Altman analysis was used to investigate absolute reliability. [Results] The intraclass correlation coefficients (1, 1) for intra-examiner reliability ranged from 0.985 to 0.998. For inter-rater reliability, the intraclass correlation coefficient (2, 1) was 0.969. The intraclass correlation coefficients (1, 2) for test-retest reliability ranged from 0.991 to 0.999. The Bland-Altman analysis results indicated no systematic error. [Conclusion] The results indicate that ultrasound measurements of interspinous process distance are highly reliable even when measured only once by a single person. PMID:27630399

  16. Absolute and relative reliability of lumbar interspinous process ultrasound imaging measurements

    PubMed Central

    Tozawa, Ryosuke; Katoh, Munenori; Aramaki, Hidefumi; Kawasaki, Tsubasa; Nishikawa, Yuichi; Kumamoto, Tsuneo; Fujinawa, Osamu

    2016-01-01

    [Purpose] The intra- and inter-examiner reliabilities of lumbar interspinous process distances measured by ultrasound imaging were examined. [Subjects and Methods] The subjects were 10 males who had no history of orthopedic diseases or dysfunctions. Ten lumbar interspinous images from 360 images captured from 10 subjects were selected. The 10 images were measured by nine examiners. The lumbar interspinous process distance measurements were performed five times by each examiner. In addition, four of the nine examiners measured the distances again after 4 days for test-retest analysis. In statistical analysis, the intraclass correlation coefficient was used to investigate relative reliability, and Bland-Altman analysis was used to investigate absolute reliability. [Results] The intraclass correlation coefficients (1, 1) for intra-examiner reliability ranged from 0.985 to 0.998. For inter-rater reliability, the intraclass correlation coefficient (2, 1) was 0.969. The intraclass correlation coefficients (1, 2) for test-retest reliability ranged from 0.991 to 0.999. The Bland-Altman analysis results indicated no systematic error. [Conclusion] The results indicate that ultrasound measurements of interspinous process distance are highly reliable even when measured only once by a single person. PMID:27630399

  17. Absolute and relative reliability of lumbar interspinous process ultrasound imaging measurements.

    PubMed

    Tozawa, Ryosuke; Katoh, Munenori; Aramaki, Hidefumi; Kawasaki, Tsubasa; Nishikawa, Yuichi; Kumamoto, Tsuneo; Fujinawa, Osamu

    2016-08-01

    [Purpose] The intra- and inter-examiner reliabilities of lumbar interspinous process distances measured by ultrasound imaging were examined. [Subjects and Methods] The subjects were 10 males who had no history of orthopedic diseases or dysfunctions. Ten lumbar interspinous images from 360 images captured from 10 subjects were selected. The 10 images were measured by nine examiners. The lumbar interspinous process distance measurements were performed five times by each examiner. In addition, four of the nine examiners measured the distances again after 4 days for test-retest analysis. In statistical analysis, the intraclass correlation coefficient was used to investigate relative reliability, and Bland-Altman analysis was used to investigate absolute reliability. [Results] The intraclass correlation coefficients (1, 1) for intra-examiner reliability ranged from 0.985 to 0.998. For inter-rater reliability, the intraclass correlation coefficient (2, 1) was 0.969. The intraclass correlation coefficients (1, 2) for test-retest reliability ranged from 0.991 to 0.999. The Bland-Altman analysis results indicated no systematic error. [Conclusion] The results indicate that ultrasound measurements of interspinous process distance are highly reliable even when measured only once by a single person.

  18. Dissociable correlates of response conflict and error awareness in error-related brain activity

    PubMed Central

    Hughes, Gethin; Yeung, Nick

    2010-01-01

    Errors in speeded decision tasks are associated with characteristic patterns of brain activity. In the scalp-recorded EEG, error processing is reflected in two components, the error-related negativity (ERN) and the error positivity (Pe). These components have been widely studied, but debate remains regarding the precise aspects of error processing they reflect. The present study investigated the relation between the ERN and Pe using a novel version of the flanker task to allow a comparison between errors reflecting different causes—response conflict versus stimulus masking. The conflict and mask conditions were matched for overall behavioural performance but differed in underlying response dynamics, as indexed by response time distributions and measures of lateralised motor activity. ERN amplitude varied in relation to these differing response dynamics, being significantly larger in the conflict condition compared to the mask condition. Furthermore, differences in response dynamics between participants were predictive of modulations in ERN amplitude. In contrast, Pe activity varied little between conditions, but varied across trials in relation to participants‘ awareness of their errors. Taken together, these findings suggest a dissociation between the ERN and Pe, with the former reflecting the dynamics of response selection and conflict, and the latter reflecting conscious recognition of an error. PMID:21130788

  19. Effects of knowledge of results (KR) frequency in the learning of a timing skill: absolute versus relative KR frequency.

    PubMed

    Vieira, Márcio M; Ugrinowitsch, Herbert; Oliveira, Fernanda S; Gallo, Lívia G; Benda, Rodolfo N

    2012-10-01

    The interaction between the amount of practice and frequency of Knowledge of Results (KR) was investigated in a timing skill. In the acquisition phase the task involved 90 trials of releasing a knob and transporting three tennis balls from three near recipients to three far ones in a specific sequence and target time. The retention test performed 24 hr. later had the same sequence of transport but a new target time was required. In both phases, absolute error and standard deviation plus constant error was measured. The five groups differed in relation to frequency of KR and amount of practice. The results showed that intermediate frequencies as well as higher frequencies of KR elicited better performance during the retention test. PMID:23265002

  20. Effects of knowledge of results (KR) frequency in the learning of a timing skill: absolute versus relative KR frequency.

    PubMed

    Vieira, Márcio M; Ugrinowitsch, Herbert; Oliveira, Fernanda S; Gallo, Lívia G; Benda, Rodolfo N

    2012-10-01

    The interaction between the amount of practice and frequency of Knowledge of Results (KR) was investigated in a timing skill. In the acquisition phase the task involved 90 trials of releasing a knob and transporting three tennis balls from three near recipients to three far ones in a specific sequence and target time. The retention test performed 24 hr. later had the same sequence of transport but a new target time was required. In both phases, absolute error and standard deviation plus constant error was measured. The five groups differed in relation to frequency of KR and amount of practice. The results showed that intermediate frequencies as well as higher frequencies of KR elicited better performance during the retention test.

  1. Scaling Relation for Occulter Manufacturing Errors

    NASA Technical Reports Server (NTRS)

    Sirbu, Dan; Shaklan, Stuart B.; Kasdin, N. Jeremy; Vanderbei, Robert J.

    2015-01-01

    An external occulter is a spacecraft own along the line-of-sight of a space telescope to suppress starlight and enable high-contrast direct imaging of exoplanets. The shape of an external occulter must be specially designed to optimally suppress starlight and deviations from the ideal shape due to manufacturing errors can result loss of suppression in the shadow. Due to the long separation distances and large dimensions involved for a space occulter, laboratory testing is conducted with scaled versions of occulters etched on silicon wafers. Using numerical simulations for a flight Fresnel occulter design, we show how the suppression performance of an occulter mask scales with the available propagation distance for expected random manufacturing defects along the edge of the occulter petal. We derive an analytical model for predicting performance due to such manufacturing defects across the petal edges of an occulter mask and compare this with the numerical simulations. We discuss the scaling of an extended occulter test-bed.

  2. On the measurement of relative and absolute income-related health inequality.

    PubMed

    Clarke, Philip M; Gerdtham, Ulf-G; Johannesson, Magnus; Bingefors, Kerstin; Smith, Len

    2002-12-01

    In recent work on international comparisons of income-related inequalities in health, the concentration index has been used as a measure of health inequality. A drawback of this measure is that it is sensitive to whether it is estimated with respect to health or morbidity. An alternative would be to use the generalized concentration index that is based on absolute rather than relative health differences. In this methodological paper, we explore the importance of the choice of health inequality measure by comparing the income-related inequality in health status and morbidity between Sweden and Australia. This involves estimating a concentration index and a generalized concentration index for the eight-scale health profile of the Short Form 36 (SF-36) health survey. We then transform the scores for each scale into a measure of morbidity and show that whether the concentration index is estimated with respect to health or morbidity has an impact on the results. The ranking between the two countries is reversed for two of the eight dimensions of SF-36 and within both countries the ranking across the eight SF-36 scales is also affected. However, this change in ranking does not occur when the generalized concentration index is compared and we conclude with the implications of these results for reporting comparisons of income-related health inequality in different populations.

  3. Abnormal error monitoring in math-anxious individuals: evidence from error-related brain potentials.

    PubMed

    Suárez-Pellicioni, Macarena; Núñez-Peña, María Isabel; Colomé, Angels

    2013-01-01

    This study used event-related brain potentials to investigate whether math anxiety is related to abnormal error monitoring processing. Seventeen high math-anxious (HMA) and seventeen low math-anxious (LMA) individuals were presented with a numerical and a classical Stroop task. Groups did not differ in terms of trait or state anxiety. We found enhanced error-related negativity (ERN) in the HMA group when subjects committed an error on the numerical Stroop task, but not on the classical Stroop task. Groups did not differ in terms of the correct-related negativity component (CRN), the error positivity component (Pe), classical behavioral measures or post-error measures. The amplitude of the ERN was negatively related to participants' math anxiety scores, showing a more negative amplitude as the score increased. Moreover, using standardized low resolution electromagnetic tomography (sLORETA) we found greater activation of the insula in errors on a numerical task as compared to errors in a non-numerical task only for the HMA group. The results were interpreted according to the motivational significance theory of the ERN.

  4. The feedback-related negativity signals salience prediction errors, not reward prediction errors.

    PubMed

    Talmi, Deborah; Atkinson, Ryan; El-Deredy, Wael

    2013-05-01

    Modulations of the feedback-related negativity (FRN) event-related potential (ERP) have been suggested as a potential biomarker in psychopathology. A dominant theory about this signal contends that it reflects the operation of the neural system underlying reinforcement learning in humans. The theory suggests that this frontocentral negative deflection in the ERP 230-270 ms after the delivery of a probabilistic reward expresses a prediction error signal derived from midbrain dopaminergic projections to the anterior cingulate cortex. We tested this theory by investigating whether FRN will also be observed for an inherently aversive outcome: physical pain. In another session, the outcome was monetary reward instead of pain. As predicted, unexpected reward omissions (a negative reward prediction error) yielded a more negative deflection relative to unexpected reward delivery. Surprisingly, unexpected pain omission (a positive reward prediction error) also yielded a negative deflection relative to unexpected pain delivery. Our data challenge the theory by showing that the FRN expresses aversive prediction errors with the same sign as reward prediction errors. Both FRNs were spatiotemporally and functionally equivalent. We suggest that FRN expresses salience prediction errors rather than reward prediction errors. PMID:23658166

  5. The feedback-related negativity signals salience prediction errors, not reward prediction errors.

    PubMed

    Talmi, Deborah; Atkinson, Ryan; El-Deredy, Wael

    2013-05-01

    Modulations of the feedback-related negativity (FRN) event-related potential (ERP) have been suggested as a potential biomarker in psychopathology. A dominant theory about this signal contends that it reflects the operation of the neural system underlying reinforcement learning in humans. The theory suggests that this frontocentral negative deflection in the ERP 230-270 ms after the delivery of a probabilistic reward expresses a prediction error signal derived from midbrain dopaminergic projections to the anterior cingulate cortex. We tested this theory by investigating whether FRN will also be observed for an inherently aversive outcome: physical pain. In another session, the outcome was monetary reward instead of pain. As predicted, unexpected reward omissions (a negative reward prediction error) yielded a more negative deflection relative to unexpected reward delivery. Surprisingly, unexpected pain omission (a positive reward prediction error) also yielded a negative deflection relative to unexpected pain delivery. Our data challenge the theory by showing that the FRN expresses aversive prediction errors with the same sign as reward prediction errors. Both FRNs were spatiotemporally and functionally equivalent. We suggest that FRN expresses salience prediction errors rather than reward prediction errors.

  6. Impacts of motivational valence on the error-related negativity elicited by full and partial errors.

    PubMed

    Maruo, Yuya; Schacht, Annekathrin; Sommer, Werner; Masaki, Hiroaki

    2016-02-01

    Affect and motivation influence the error-related negativity (ERN) elicited by full errors; however, it is unknown whether they also influence ERNs to correct responses accompanied by covert incorrect response activation (partial errors). Here we compared a neutral condition with conditions, where correct responses were rewarded or where incorrect responses were punished with gains and losses of small amounts of money, respectively. Data analysis distinguished ERNs elicited by full and partial errors. In the reward and punishment conditions, ERN amplitudes to both full and partial errors were larger than in the neutral condition, confirming participants' sensitivity to the significance of errors. We also investigated the relationships between ERN amplitudes and the behavioral inhibition and activation systems (BIS/BAS). Regardless of reward/punishment condition, participants scoring higher on BAS showed smaller ERN amplitudes in full error trials. These findings provide further evidence that the ERN is related to motivational valence and that similar relationships hold for both full and partial errors. PMID:26747414

  7. Absolute Identification Is Relative: A Reply to Brown, Marley, and Lacouture (2007)

    ERIC Educational Resources Information Center

    Stewart, Neil

    2007-01-01

    N. Stewart, G. D. A. Brown, and N. Chater presented a relative judgment model (RJM) of absolute identification, in which the current stimulus is judged relative to the preceding stimulus. S. Brown, A. A. J. Marley, and Y. Lacouture found that the RJM does not predict their finding of increased accuracy after large stimulus jumps, except at the…

  8. Misconceptions of High School Students Related to the Conceptions of Absolutism and Constitutionalism in History Courses

    ERIC Educational Resources Information Center

    Bal, Mehmet Suat

    2011-01-01

    The goal of this study is to analyze the 10th grade high school students' misconceptions related to the sense of ruling in the Ottoman State during the absolutist and constitutional periods and to investigate the causes of these misconceptions. The data were collected through eight open-ended questions related to the concepts of absolutism and…

  9. Absolute and relative ages: the Tr-J boundary and the CAMP volcanism

    NASA Astrophysics Data System (ADS)

    Neuwerth, R.; Allenbach, K.; Verati, C.; Martini, R.; Cirilli, S.; Youbi, N.; Bertrand, H.; Knight, K.; Rapaille, C.; Marzoli, A.

    2003-04-01

    A broad temporal correlation between major mass extinction events and continental flood basalt provinces has been widely recognized. In order to establish a causal link between flood volcanism and biotic turnovers, a very precise knowledge of the absolute ages is necessary. However, analytical errors (including those due to uncertainties of the decay constants) are generally too large (about 1%, i.e., about 1-2 My for the Mesozoic), when compared to biotic crises which may have a very short duration. Further complications are introduced by comparison of absolute ages obtained with different isotopic systems (e.g., U/Pb vs 40Ar/39Ar). For example, the peak activity of the Central Atlantic magmatic province (CAMP; peak activity at 40Ar/39Ar age = 199 n 2 Ma) is roughly contemporaneous with the TriassicJurassic (Tr/J) boundary. Despite this broad temporal coincidence, CAMP lava flows of eastern North-America (Fowell and Olsen, 1993) and Europe (our data) overlay sedimentary rocks with earliest Jurassic fossils or pollens. Therefore, it has been suggested that the entire CAMP volcanism postdates the extinction event by a few thousands of years, questioning a possible causal relation between the magmatic event and the biotic turnover. However, detailed geochemical stratigraphy indicates that the CAMP lava flows on the Moroccan High Atlas preceded extrusion of the CAMP lava flows of eastern N-America and Europe. Our new 40Ar/39Ar data indicate that CAMP volcanism in Morocco started at an age of 198.8 n 0.9 Ma (2 sigma; FCs monitor = 28.02 Ma), which is undistinguishable from the U/Pb age of the Tr/J boundary (199.6 n 0.3; Palfy et al., 2000). Considering that Mesozoic U/Pb ages appear to be systematically older (ca. 1%) than 40Ar/39Ar ages, it may well be possible that extrusion of the oldest CAMP basalts indeed preceded the Tr-J boundary. This is confirmed by our ongoing palynological studies, which indicate that the Moroccan CAMP flows were erupted onto latest Triassic

  10. Medical error and related factors during internship and residency.

    PubMed

    Ahmadipour, Habibeh; Nahid, Mortazavi

    2015-01-01

    It is difficult to determine the real incidence of medical errors due to the lack of a precise definition of errors, as well as the failure to report them under certain circumstances. We carried out a cross- sectional study in Kerman University of Medical Sciences, Iran in 2013. The participants were selected through the census method. The data were collected using a self-administered questionnaire, which consisted of questions on the participants' demographic data and questions on the medical errors committed. The data were analysed by SPSS 19. It was found that 270 participants had committed medical errors. There was no significant difference in the frequency of errors committed by interns and residents. In the case of residents, the most common error was misdiagnosis and in that of interns, errors related to history-taking and physical examination. Considering that medical errors are common in the clinical setting, the education system should train interns and residents to prevent the occurrence of errors. In addition, the system should develop a positive attitude among them so that they can deal better with medical errors.

  11. Error-related electrocorticographic activity in humans during continuous movements.

    PubMed

    Milekovic, Tomislav; Ball, Tonio; Schulze-Bonhage, Andreas; Aertsen, Ad; Mehring, Carsten

    2012-04-01

    Brain-machine interface (BMI) devices make errors in decoding. Detecting these errors online from neuronal activity can improve BMI performance by modifying the decoding algorithm and by correcting the errors made. Here, we study the neuronal correlates of two different types of errors which can both be employed in BMI: (i) the execution error, due to inaccurate decoding of the subjects' movement intention; (ii) the outcome error, due to not achieving the goal of the movement. We demonstrate that, in electrocorticographic (ECoG) recordings from the surface of the human brain, strong error-related neural responses (ERNRs) for both types of errors can be observed. ERNRs were present in the low and high frequency components of the ECoG signals, with both signal components carrying partially independent information. Moreover, the observed ERNRs can be used to discriminate between error types, with high accuracy (≥83%) obtained already from single electrode signals. We found ERNRs in multiple cortical areas, including motor and somatosensory cortex. As the motor cortex is the primary target area for recording control signals for a BMI, an adaptive motor BMI utilizing these error signals may not require additional electrode implants in other brain areas.

  12. Absolute and relative temporal order memory for performed activities following stroke.

    PubMed

    Schoo, Linda A; van Zandvoort, Martine J E; Reijmer, Yael D; Biessels, Geert Jan; Kappelle, L Jaap; Postma, Albert

    2014-01-01

    Reconstructing the temporal order of events is a crucial part of episodic memory. The temporal dimension, however, is often discarded in clinical settings, and measurements of true temporal aspects of episodic memory are scarce. The present study assessed temporal memory in stroke patients and in age- and education-matched healthy controls. Both groups underwent a standardized neuropsychological examination. We asked participants afterwards to reconstruct the order of tests they had performed, measured in absolute temporal order (event placed on correct moment in sequence) and relative temporal order (event placed correctly relative to directly preceding and following events). The aim of the study was to examine how serial-position curve effects (measuring absolute temporal order anchored in exact time) and how relative temporal order memory (anchored to other events) may differ in a group of cerebral stroke patients. Another aim was to link temporal order memory deficits with established neuropsychological measures of cognitive functioning. Although item identification was comparable in both groups, absolute temporal order memory was impaired in patients: A total of 43% of the patients lacked the expected primacy and recency effects (serial position effect). In addition, relative temporal order memory was affected in this group as well, F(1, 70) = 4.08, p < .05; 25% of the patients were impaired in reconstructing the relative temporal order (p = .019, Fisher's Exact Test). Both absolute and relative temporal order memory performance related to the domains of executive functioning and memory. Our results suggest that it is important to test both absolute and relative temporal order memory, especially because these types of memory depend on different anchors, either on time or on adjacent events.

  13. Effects of absolute and relative practice on n-2 repetition costs.

    PubMed

    Scheil, Juliane

    2016-02-01

    Recently, Grange and Juvina (2015) found decreasing n-2 repetition costs with increasing practice. However, in their experiment, no differentiation between absolute and relative strength of the three tasks was possible because all tasks were practiced to the same degree. To further elucidate this issue, two experiments were designed in which for one of the three tasks, aspects of the task set changed during the course of the experiment (Exp. I: Stimulus-response mapping, Exp. II: Cue-task mapping). Replicating Grange and Juvina (2015), decreasing n-2 repetition costs with increasing practice were observed, but the change of stimulus-response mappings in Exp. I did not affect n-2 repetition costs. In Exp. II, n-2 repetition costs were affected by the change of the cue-task-mapping, but no effect of absolute practice was visible. These results suggest that absolute practice influences n-2 repetition costs as long as no change in relative strength is introduced on the level of mapping cues to tasks. If, however, relative task strength is varied, its impact overrides the influence of absolute practice. In addition, the data pattern points towards cue-related instead of response-related inhibitory processes causing n-2 repetition costs.

  14. The uncertainty of errors: Intolerance of uncertainty is associated with error-related brain activity.

    PubMed

    Jackson, Felicia; Nelson, Brady D; Hajcak, Greg

    2016-01-01

    Errors are unpredictable events that have the potential to cause harm. The error-related negativity (ERN) is the electrophysiological index of errors and has been posited to reflect sensitivity to threat. Intolerance of uncertainty (IU) is the tendency to perceive uncertain events as threatening. In the present study, 61 participants completed a self-report measure of IU and a flanker task designed to elicit the ERN. Results indicated that IU subscales were associated with the ERN in opposite directions. Cognitive distress in the face of uncertainty (Prospective IU) was associated with a larger ERN and slower reaction time. Inhibition in response to uncertainty (Inhibitory IU) was associated with a smaller ERN and faster reaction time. This study suggests that sensitivity to the uncertainty of errors contributes to the magnitude of the ERN. Furthermore, these findings highlight the importance of considering the heterogeneity of anxiety phenotypes in relation to measures of threat sensitivity. PMID:26607441

  15. The uncertainty of errors: Intolerance of uncertainty is associated with error-related brain activity.

    PubMed

    Jackson, Felicia; Nelson, Brady D; Hajcak, Greg

    2016-01-01

    Errors are unpredictable events that have the potential to cause harm. The error-related negativity (ERN) is the electrophysiological index of errors and has been posited to reflect sensitivity to threat. Intolerance of uncertainty (IU) is the tendency to perceive uncertain events as threatening. In the present study, 61 participants completed a self-report measure of IU and a flanker task designed to elicit the ERN. Results indicated that IU subscales were associated with the ERN in opposite directions. Cognitive distress in the face of uncertainty (Prospective IU) was associated with a larger ERN and slower reaction time. Inhibition in response to uncertainty (Inhibitory IU) was associated with a smaller ERN and faster reaction time. This study suggests that sensitivity to the uncertainty of errors contributes to the magnitude of the ERN. Furthermore, these findings highlight the importance of considering the heterogeneity of anxiety phenotypes in relation to measures of threat sensitivity.

  16. Evaluation of clinical IMRT treatment planning using the GATE Monte Carlo simulation platform for absolute and relative dose calculations

    SciTech Connect

    Benhalouche, S.; Le Maitre, A.; Visvikis, D.; Pradier, O.; Boussion, N.

    2013-02-15

    Purpose: The objective of this study was to evaluate and validate the use of the Geant4 application for emission tomography (GATE) Monte Carlo simulation platform for clinical intensity modulated radiotherapy (IMRT) dosimetry studies. Methods: The first step consisted of modeling a 6 MV photon beam linear accelerator (LINAC), with its corresponding validation carried out using percent depth dose evaluation, transverse profiles, tissue phantom ratio, and output factor on water phantom. The IMRT evaluation was performed by comparing simulation and measurements in terms of absolute and relative doses using IMRT dedicated quality assurance phantoms considering seven different patient datasets. Results: Concerning the LINAC simulated model validation tissue phantom ratios at 20 and 10 cm in water TPR{sub 10}{sup 20} obtained from GATE and measurements were 0.672 {+-} 0.063 and 0.675, respectively. In terms of percent depth dose and transverse profiles, error ranges were, respectively: 1.472%{+-} 0.285% and 4.827%{+-} 1.323% for field size of 4 Multiplication-Sign 4, 5 Multiplication-Sign 5, 10 Multiplication-Sign 10, 15 Multiplication-Sign 15, 20 Multiplication-Sign 20, 25 Multiplication-Sign 25, 30 Multiplication-Sign 30, and 40 Multiplication-Sign 40 cm{sup 2}. Most errors were observed at the edge of radiation fields because of higher dose gradient in these areas. Output factors showed good agreement between simulation and measurements with a maximum error of 1.22%. Finally, for IMRT simulations considering seven patient datasets, GATE provided good results with a relative error of 0.43%{+-} 0.25% on absolute dose between simulated and measured beams (measurements at the isocenter, volume 0.125 cm{sup 3}). Planar dose comparisons were also performed using gamma-index analysis. For the whole set of beams considered the mean gamma-index value was 0.497 {+-} 0.152 and 90.8%{+-} 3.6% of the evaluated dose points satisfied the 5%/ 4 mm criterion. Conclusions: These

  17. Is Absolute Identification Always Relative? Comment on Stewart, Brown, and Chater (2005)

    ERIC Educational Resources Information Center

    Brown, Scott; Marley, A. A. J.; Lacouture, Yves

    2007-01-01

    N. Stewart, G. D. A. Brown, and N. Chater's relative judgment model includes three core assumptions that enable it to predict accurately the vast majority of "classical" phenomena in absolute identification choices, but not the time taken to make them, including sequential effects, such as assimilation and contrast. These core assumptions, coupled…

  18. Absolute and Relative Reliability of Percentage of Syllables Stuttered and Severity Rating Scales

    ERIC Educational Resources Information Center

    Karimi, Hamid; O'Brian, Sue; Onslow, Mark; Jones, Mark

    2014-01-01

    Purpose: Percentage of syllables stuttered (%SS) and severity rating (SR) scales are measures in common use to quantify stuttering severity and its changes during basic and clinical research conditions. However, their reliability has not been assessed with indices measuring both relative and absolute reliability. This study was designed to provide…

  19. Predicting AIDS-related events using CD4 percentage or CD4 absolute counts

    PubMed Central

    Pirzada, Yasmin; Khuder, Sadik; Donabedian, Haig

    2006-01-01

    Background The extent of immunosuppression and the probability of developing an AIDS-related complication in HIV-infected people is usually measured by the absolute number of CD4 positive T-cells. The percentage of CD4 positive cells is a more easily measured and less variable number. We analyzed sequential CD4 and CD8 numbers, percentages and ratios in 218 of our HIV infected patients to determine the most reliable predictor of an AIDS-related event. Results The CD4 percentage was an unsurpassed predictor of the occurrence of AIDS-related events when all subsets of patients are considered. The CD4 absolute count was the next most reliable, followed by the ratio of CD4/CD8 percentages. The value of CD4 percentage over the CD4 absolute count was seen even after the introduction of highly effective HIV therapy. Conclusion The CD4 percentage is unsurpassed as a parameter for predicting the onset of HIV-related diseases. The extra time and expense of measuring the CD4 absolute count may be unnecessary. PMID:16916461

  20. Effects of Three Resistance Training Programs on Muscular Strength and Absolute and Relative Endurance.

    ERIC Educational Resources Information Center

    Anderson, Tim; Kearney, Jay T.

    1982-01-01

    The effects of three resistance training programs on male college students' muscular strength and absolute and relative muscular endurance were investigated. Results show that human skeletal muscle makes both general and specific adaptations to a training stimulus, and that the balance of these adaptations is to some extent dependent upon the…

  1. The Effect of Using Relative and Absolute Criteria to Decide Students' Passing or Failing a Course

    ERIC Educational Resources Information Center

    Sayin, Ayfer

    2016-01-01

    In the formation education that is carried out within the scope of undergraduate and non-thesis graduate programs within the same university, different criteria are used to evaluate students' success. In this study, classification accuracy of letter grades that are generated to evaluate students' success using relative and absolute criteria and…

  2. Global-Scale Location and Distance Estimates: Common Representations and Strategies in Absolute and Relative Judgments

    ERIC Educational Resources Information Center

    Friedman, Alinda; Montello, Daniel R.

    2006-01-01

    The authors examined whether absolute and relative judgments about global-scale locations and distances were generated from common representations. At the end of a 10-week class on the regional geography of the United States, participants estimated the latitudes of 16 North American cities and all possible pairwise distances between them. Although…

  3. Absolute and relative emissions analysis in practical combustion systems—effect of water vapor condensation

    NASA Astrophysics Data System (ADS)

    Richter, J. P.; Mollendorf, J. C.; DesJardin, P. E.

    2016-11-01

    Accurate knowledge of the absolute combustion gas composition is necessary in the automotive, aircraft, processing, heating and air conditioning industries where emissions reduction is a major concern. Those industries use a variety of sensor technologies. Many of these sensors are used to analyze the gas by pumping a sample through a system of tubes to reach a remote sensor location. An inherent characteristic with this type of sampling strategy is that the mixture state changes as the sample is drawn towards the sensor. Specifically, temperature and humidity changes can be significant, resulting in a very different gas mixture at the sensor interface compared with the in situ location (water vapor dilution effect). Consequently, the gas concentrations obtained from remotely sampled gas analyzers can be significantly different than in situ values. In this study, inherent errors associated with sampled combustion gas concentration measurements are explored, and a correction methodology is presented to determine the absolute gas composition from remotely measured gas species concentrations. For in situ (wet) measurements a heated zirconium dioxide (ZrO2) oxygen sensor (Bosch LSU 4.9) is used to measure the absolute oxygen concentration. This is used to correct the remotely sampled (dry) measurements taken with an electrochemical sensor within the remote analyzer (Testo 330-2LL). In this study, such a correction is experimentally validated for a specified concentration of carbon monoxide (5020 ppmv).

  4. Error-disturbance uncertainty relations studied in neutron optics

    NASA Astrophysics Data System (ADS)

    Sponar, Stephan; Sulyok, Georg; Demirel, Bulent; Hasegawa, Yuji

    2016-09-01

    Heisenberg's uncertainty principle is probably the most famous statement of quantum physics and its essential aspects are well described by a formulations in terms of standard deviations. However, a naive Heisenberg-type error-disturbance relation is not valid. An alternative universally valid relation was derived by Ozawa in 2003. Though universally valid Ozawa's relation is not optimal. Recently, Branciard has derived a tight error-disturbance uncertainty relation (EDUR), describing the optimal trade-off between error and disturbance. Here, we report a neutron-optical experiment that records the error of a spin-component measurement, as well as the disturbance caused on another spin-component to test EDURs. We demonstrate that Heisenberg's original EDUR is violated, and the Ozawa's and Branciard's EDURs are valid in a wide range of experimental parameters, applying a new measurement procedure referred to as two-state method.

  5. System-related factors contributing to diagnostic errors.

    PubMed

    Thammasitboon, Satid; Thammasitboon, Supat; Singhal, Geeta

    2013-10-01

    Several studies in primary care, internal medicine, and emergency departments show that rates of errors in test requests and result interpretations are unacceptably high and translate into missed, delayed, or erroneous diagnoses. Ineffective follow-up of diagnostic test results could lead to patient harm if appropriate therapeutic interventions are not delivered in a timely manner. The frequency of system-related factors that contribute directly to diagnostic errors depends on the types and sources of errors involved. Recent studies reveal that the errors and patient harm in the diagnostic testing loop have occurred mainly at the pre- and post-analytic phases, which are directed primarily by clinicians who may have limited expertise in the rapidly expanding field of clinical pathology. These errors may include inappropriate test requests, failure/delay in receiving results, and erroneous interpretation and application of test results to patient care. Efforts to address system-related factors often focus on technical errors in laboratory testing or failures in delivery of intended treatment. System-improvement strategies related to diagnostic errors tend to focus on technical aspects of laboratory medicine or delivery of treatment after completion of the diagnostic process. System failures and cognitive errors, more often than not, coexist and together contribute to the incidents of errors in diagnostic process and in laboratory testing. The use of highly structured hand-off procedures and pre-planned follow-up for any diagnostic test could improve efficiency and reliability of the follow-up process. Many feedback pathways should be established so that providers can learn if or when a diagnosis is changed. Patients can participate in the effort to reduce diagnostic errors. Providers should educate their patients about diagnostic probabilities and uncertainties. The patient-safety strategies focusing on the interface between diagnostic system and therapeutic

  6. Refractive Error, Axial Length, and Relative Peripheral Refractive Error before and after the Onset of Myopia

    PubMed Central

    Mutti, Donald O.; Hayes, John R.; Mitchell, G. Lynn; Jones, Lisa A.; Moeschberger, Melvin L.; Cotter, Susan A.; Kleinstein, Robert N.; Manny, Ruth E.; Twelker, J. Daniel; Zadnik, Karla

    2009-01-01

    Purpose To evaluate refractive error, axial length, and relative peripheral refractive error before, during the year of, and after the onset of myopia in children who became myopic compared with emmetropes. Methods Subjects were 605 children 6 to 14 years of age who became myopic (at least −0.75 D in each meridian) and 374 emmetropic (between −0.25 D and + 1.00 D in each meridian at all visits) children participating between 1995 and 2003 in the Collaborative Longitudinal Evaluation of Ethnicity and Refractive Error (CLEERE) Study. Axial length was measured annually by A-scan ultrasonography. Relative peripheral refractive error (the difference between the spherical equivalent cycloplegic autorefraction 30° in the nasal visual field and in primary gaze) was measured using either of two autorefractors (R-1; Canon, Lake Success, NY [no longer manufactured] or WR 5100-K; Grand Seiko, Hiroshima, Japan). Refractive error was measured with the same autorefractor with the subjects under cycloplegia. Each variable in children who became myopic was compared to age-, gender-, and ethnicity-matched model estimates of emmetrope values for each annual visit from 5 years before through 5 years after the onset of myopia. Results In the sample as a whole, children who became myopic had less hyperopia and longer axial lengths than did emmetropes before and after the onset of myopia (4 years before through 5 years after for refractive error and 3 years before through 5 years after for axial length; P < 0.0001 for each year). Children who became myopic had more hyperopic relative peripheral refractive errors than did emmetropes from 2 years before onset through 5 years after onset of myopia (P < 0.002 for each year). The fastest rate of change in refractive error, axial length, and relative peripheral refractive error occurred during the year before onset rather than in any year after onset. Relative peripheral refractive error remained at a consistent level of hyperopia each

  7. Absolute magnitude estimation and relative judgement approaches to subjective workload assessment

    NASA Technical Reports Server (NTRS)

    Vidulich, Michael A.; Tsang, Pamela S.

    1987-01-01

    Two rating scale techniques employing an absolute magnitude estimation method, were compared to a relative judgment method for assessing subjective workload. One of the absolute estimation techniques used was an unidimensional overall workload scale and the other was the multidimensional NASA-Task Load Index technique. Thomas Saaty's Analytic Hierarchy Process was the unidimensional relative judgment method used. These techniques were used to assess the subjective workload of various single- and dual-tracking conditions. The validity of the techniques was defined as their ability to detect the same phenomena observed in the tracking performance. Reliability was assessed by calculating test-retest correlations. Within the context of the experiment, the Saaty Analytic Hierarchy Process was found to be superior in validity and reliability. These findings suggest that the relative judgment method would be an effective addition to the currently available subjective workload assessment techniques.

  8. Relative and Absolute Availability of Healthier Food and Beverage Alternatives Across Communities in the United States

    PubMed Central

    Powell, Lisa M.; Rimkus, Leah; Isgor, Zeynep; Barker, Dianne C.; Ohri-Vachaspati, Punam; Chaloupka, Frank

    2014-01-01

    Objectives. We examined associations between the relative and absolute availability of healthier food and beverage alternatives at food stores and community racial/ethnic, socioeconomic, and urban–rural characteristics. Methods. We analyzed pooled, annual cross-sectional data collected in 2010 to 2012 from 8462 food stores in 468 communities spanning 46 US states. Relative availability was the ratio of 7 healthier products (e.g., whole-wheat bread) to less healthy counterparts (e.g., white bread); we based absolute availability on the 7 healthier products. Results. The mean healthier food and beverage ratio was 0.71, indicating that stores averaged 29% fewer healthier than less healthy products. Lower relative availability of healthier alternatives was associated with low-income, Black, and Hispanic communities. Small stores had the largest differences: relative availability of healthier alternatives was 0.61 and 0.60, respectively, for very low-income Black and very low-income Hispanic communities, and 0.74 for very high-income White communities. We found fewer associations between absolute availability of healthier products and community characteristics. Conclusions. Policies to improve the relative availability of healthier alternatives may be needed to improve population health and reduce disparities. PMID:25211721

  9. Short-latency ocular following in humans is dependent on absolute (rather than relative) binocular disparity.

    PubMed

    Yang, D-S; Miles, F A

    2003-06-01

    A previous study showed that the initial ocular following responses elicited by sudden motion of a large random-dot pattern were only modestly attenuated when that whole pattern was shifted out of the plane of fixation by altering its horizontal binocular disparity, but the same disparity applied to a restricted region of the dots had a much more powerful effect [Vision Research 41 (2001) 3371]. Thus, if the dots were partitioned into horizontal bands, for example, and alternate bands were moved in opposite directions to the left or right then ocular following was very weak, but if the (conditioning) dots moving in one direction were all shifted out of the plane of fixation (by applying horizontal disparity to them) then strong ocular following was now seen in the direction of motion of the (test) dots in the plane of fixation, i.e., moving images became much less effective when they were given binocular disparity. We sought to determine if the greater impact of disparity with the partitioned images was because there were additional relative disparity cues. We used a similar partitioned display and found that the dependence of ocular following on the absolute disparity of the conditioning stimulus had a Gaussian form with an x-offset that was close to zero disparity and, importantly, this offset was almost unaffected by changing the absolute disparity of the test stimulus. We conclude from this that it is the absolute--rather than the relative--disparity that is important, and that ocular following has a strong preference for moving images whose absolute disparities are close to zero. This is consistent with the idea that ocular following selectively stabilizes the retinal images of objects in and around the plane of fixation and works in harmony with disparity vergence, which uses absolute disparity to bring objects of interest into the plane of fixation [Archives of Ophthalmology 55 (1956) 848].

  10. Three Sesquiterpenoid Dimers from Chloranthus japonicus: Absolute Configuration of Chlorahololide A and Related Compounds.

    PubMed

    Shi, Xin-Wei; Lu, Qiang-Qiang; Pescitelli, Gennaro; Ivšić, Trpimir; Zhou, Jun-Hui; Gao, Jin-Ming

    2016-02-01

    A novel sesquiterpenoid dimer, named multistalide C (1), together with two known congeners, shizukaols C (2) and D (3), was isolated from the whole plant of Chloranthus japonicus Sieb. The structures of compounds 1-3 were elucidated by extensive HR-ESI-MS, 1D, and 2D NMR spectroscopic analysis. Compounds 1-3 exhibited significant toxic effects on brine shrimp larvae (Artemia salina). The absolute configuration of 1 was established by CD/TDDFT calculations. The related compound chlorahololide A was also reinvestigated. The previous assignment of the absolute configuration of chlorahololide A and several related sesquiterpenoid dimers, based on an incorrect application of the exciton chirality method, is criticized. PMID:26708509

  11. Quantifying discipline practices using absolute versus relative frequencies: clinical and research implications for child welfare.

    PubMed

    Lindhiem, Oliver; Shaffer, Anne; Kolko, David J

    2014-01-01

    In the parent intervention outcome literatures, discipline practices are generally quantified as absolute frequencies or, less commonly, as relative frequencies. These differences in methodology warrant direct comparison as they have critical implications for study results and conclusions among treatments targeted at reducing parental aggression and harsh discipline. In this study, we directly compared the absolute frequency method and the relative frequency method for quantifying physically aggressive, psychologically aggressive, and nonaggressive discipline practices. Longitudinal data over a 3-year period came from an existing data set of a clinical trial examining the effectiveness of a psychosocial treatment in reducing parental physical and psychological aggression and improving child behavior (N = 139). Discipline practices (aggressive and nonaggressive) were assessed using the Conflict Tactics Scale. The two methods yielded different patterns of results, particularly for nonaggressive discipline strategies. We suggest that each method makes its own unique contribution to a more complete understanding of the association between parental aggression and intervention effects.

  12. Error-tradeoff and error-disturbance relations for incompatible quantum measurements.

    PubMed

    Branciard, Cyril

    2013-04-23

    Heisenberg's uncertainty principle is one of the main tenets of quantum theory. Nevertheless, and despite its fundamental importance for our understanding of quantum foundations, there has been some confusion in its interpretation: Although Heisenberg's first argument was that the measurement of one observable on a quantum state necessarily disturbs another incompatible observable, standard uncertainty relations typically bound the indeterminacy of the outcomes when either one or the other observable is measured. In this paper, we quantify precisely Heisenberg's intuition. Even if two incompatible observables cannot be measured together, one can still approximate their joint measurement, at the price of introducing some errors with respect to the ideal measurement of each of them. We present a tight relation characterizing the optimal tradeoff between the error on one observable vs. the error on the other. As a particular case, our approach allows us to characterize the disturbance of an observable induced by the approximate measurement of another one; we also derive a stronger error-disturbance relation for this scenario. PMID:23564344

  13. Relative and absolute level populations in beam-foil-excited neutral helium

    NASA Technical Reports Server (NTRS)

    Davidson, J.

    1975-01-01

    Relative and absolute populations of 19 levels in beam-foil-excited neutral helium at 0.275 MeV have been measured. The singlet angular-momentum sequences show dependences on principal quantum number consistent with n to the -3rd power, but the triplet sequences do not. Singlet and triplet angular-momentum sequences show similar dependences on level excitation energy. Excitation functions for six representative levels were measured in the range from 0.160 to 0.500 MeV. The absolute level populations increase with energy, whereas the neutral fraction of the beam decreases with energy. Further, the P angular-momentum levels are found to be overpopulated with respect to the S and D levels. The overpopulation decreases with increasing principal quantum number.

  14. Design, performance, and calculated error of a Faraday cup for absolute beam current measurements of 600-MeV protons

    NASA Technical Reports Server (NTRS)

    Beck, S. M.

    1975-01-01

    A mobile self-contained Faraday cup system for beam current measurments of nominal 600 MeV protons was designed, constructed, and used at the NASA Space Radiation Effects Laboratory. The cup is of reentrant design with a length of 106.7 cm and an outside diameter of 20.32 cm. The inner diameter is 15.24 cm and the base thickness is 30.48 cm. The primary absorber is commercially available lead hermetically sealed in a 0.32-cm-thick copper jacket. Several possible systematic errors in using the cup are evaluated. The largest source of error arises from high-energy electrons which are ejected from the entrance window and enter the cup. A total systematic error of -0.83 percent is calculated to be the decrease from the true current value. From data obtained in calibrating helium-filled ion chambers with the Faraday cup, the mean energy required to produce one ion pair in helium is found to be 30.76 + or - 0.95 eV for nominal 600 MeV protons. This value agrees well, within experimental error, with reported values of 29.9 eV and 30.2 eV.

  15. Long-Period Ground Motion Prediction Equations for Relative, Pseudo-Relative and Absolute Velocity Response Spectra in Japan

    NASA Astrophysics Data System (ADS)

    Dhakal, Y. P.; Kunugi, T.; Suzuki, W.; Aoi, S.

    2014-12-01

    Many of the empirical ground motion prediction equations (GMPE) also known as attenuation relations have been developed for absolute acceleration or pseudo relative velocity response spectra. For a small damping, pseudo and absolute acceleration response spectra are nearly identical and hence interchangeable. It is generally known that the relative and pseudo relative velocity response spectra differ considerably at very short or very long periods, and the two are often considered similar at intermediate periods. However, observations show that the period range at which the two spectra become comparable is different from site to site. Also, the relationship of the above two types of velocity response spectra with absolute velocity response spectra are not discussed well in literature. The absolute velocity response spectra are the peak values of time histories obtained by adding the ground velocities to relative velocity response time histories at individual natural periods. There exists many tall buildings on huge and deep sedimentary basins such as the Kanto basin, and the number of such buildings is growing. Recently, Japan Meteorological Agency (JMA) has proposed four classes of long-period ground motion intensity (http://www.data.jma.go.jp/svd/eew/data/ltpgm/) based on absolute velocity response spectra, which correlate to the difficulty of movement of people in tall buildings. As the researchers are using various types of response spectra for long-period ground motions, it is important to understand the relationships between them to take appropriate measures for disaster prevention applications. In this paper, we, therefore, obtain and discuss the empirical attenuation relationships using the same functional forms for the three types of velocity response spectra computed from observed strong motion records from moderate to large earthquakes in relation to JMA magnitude, hypocentral distance, sediment depths, and AVS30 as predictor variables at periods between

  16. Relative and absolute quantification of postsynaptic density proteome isolated from rat forebrain and cerebellum.

    PubMed

    Cheng, Dongmei; Hoogenraad, Casper C; Rush, John; Ramm, Elizabeth; Schlager, Max A; Duong, Duc M; Xu, Ping; Wijayawardana, Sameera R; Hanfelt, John; Nakagawa, Terunaga; Sheng, Morgan; Peng, Junmin

    2006-06-01

    The postsynaptic density (PSD) of central excitatory synapses is essential for postsynaptic signaling, and its components are heterogeneous among different neuronal subtypes and brain structures. Here we report large scale relative and absolute quantification of proteins in PSDs purified from adult rat forebrain and cerebellum. PSD protein profiles were determined using the cleavable ICAT strategy and LC-MS/MS. A total of 296 proteins were identified and quantified with 43 proteins exhibiting statistically significant abundance change between forebrain and cerebellum, indicating marked molecular heterogeneity of PSDs between different brain regions. Moreover we utilized absolute quantification strategy, in which synthetic isotope-labeled peptides were used as internal standards, to measure the molar abundance of 32 key PSD proteins in forebrain and cerebellum. These data confirm the abundance of calcium/calmodulin-dependent protein kinase II and PSD-95 and reveal unexpected stoichiometric ratios between glutamate receptors, scaffold proteins, and signaling molecules in the PSD. Our data also demonstrate that the absolute quantification method is well suited for targeted quantitative proteomic analysis. Overall this study delineates a crucial molecular difference between forebrain and cerebellar PSDs and provides a quantitative framework for measuring the molecular stoichiometry of the PSD. PMID:16507876

  17. Evaluating Equating Results: Percent Relative Error for Chained Kernel Equating

    ERIC Educational Resources Information Center

    Jiang, Yanlin; von Davier, Alina A.; Chen, Haiwen

    2012-01-01

    This article presents a method for evaluating equating results. Within the kernel equating framework, the percent relative error (PRE) for chained equipercentile equating was computed under the nonequivalent groups with anchor test (NEAT) design. The method was applied to two data sets to obtain the PRE, which can be used to measure equating…

  18. Implicationally Related Error Patterns and the Selection of Treatment Targets.

    ERIC Educational Resources Information Center

    Dinnsen, Daniel A.; O'Connor, Kathleen M.

    2001-01-01

    This article compares different claims that have been made concerning acquisition by transitional rule-based derivation theories and by optimality theory. Case studies of children with phonological delays are examined. Error patterns are argued to be implicationally related and optimality theory is shown to offer a principled explanation.…

  19. The visual surface brightness relation and the absolute magnitudes of RR Lyrae stars. I - Theory

    NASA Technical Reports Server (NTRS)

    Manduca, A.; Bell, R. A.

    1981-01-01

    A theoretical relation analogous to the Barnes-Evans relation between stellar surface brightness and V-R color is derived which is applicable to the temperatures and gravities appropriate to RR Lyrae stars. Values of the visual surface brightness and V-R colors are calculated for model stellar atmospheres with effective temperatures between 6000 and 8000 K, log surface gravities from 2.2 to 3.5, and A/H anbundance ratios from -0.5 to -3.0. The resulting relation is found to be in reasonable agreement with the empirical relation of Barnes, Evans and Moffet (1978), with, however, small sensitivities to gravity and metal abundance. The relation may be used to derive stellar angular diameters from (V,R) photometry and to derive radii, distances, and absolute magnitudes for variable stars when combined with a radial velocity curve. The accuracies of the radii and distances (within 10%) and absolute magnitudes (within 0.25 magnitudes) compare favorably with those of the Baade-Wesselink method currently in use.

  20. Ultrahigh enhancement in absolute and relative rotation sensing using fast and slow light

    SciTech Connect

    Shahriar, M. S.; Pati, G. S.; Tripathi, R.; Gopal, V.; Messall, M.; Salit, K.

    2007-05-15

    We describe a resonator-based optical gyroscope whose sensitivity for measuring absolute rotation is enhanced via use of the anomalous dispersion characteristic of superluminal light propagation. The enhancement is given by the inverse of the group index, saturating to a bound determined by the group velocity dispersion. We also show how the offsetting effect of the concomitant broadening of the resonator linewidth may be circumvented by using an active cavity. For realistic conditions, the enhancement factor is as high as 10{sup 6}. We also show how normal dispersion used for slow light can enhance relative rotation sensing in a specially designed Sagnac interferometer, with the enhancement given by the slowing factor.

  1. Cardiovascular responses to exercise as functions of absolute and relative work load

    NASA Technical Reports Server (NTRS)

    Lewis, S. F.; Taylor, W. F.; Graham, R. M.; Pettinger, W. A.; Schutte, J. E.; Blomqvist, C. G.

    1983-01-01

    The roles of absolute and relative oxygen uptake (VO2 and percent of muscle group specific VO2-max) as determinants of the cardiovascular and ventilatory responses to exercise over a wide range of active muscle mass are investigated. Experiments were conducted using four types of dynamic exercise: one-arm curl, one-arm cranking, and one and two-leg cycling at four different relative work loads (25, 50, 75, and 100 percent of VO2-max) for the corresponding muscle group. Results show that VO2 during maximal one-arm curl, one-arm cranking, and one-leg cycling averaged 20, 50, and 75 percent, respectively, of that for maximal two-leg cycling. Cardiac output was determined to be linearly related to VO2 with a similar slope and intercept for each type of exercise, and the heart rate at a given percent VO2-max was higher with larger active muscle mass. It is concluded that the cardiovascular responses to exercise was determined to a large extent by the active muscle mass and the absolute oxygen uptake, with the principal feature appearing to be the tight linkage between systematic oxygen transport and utilization.

  2. An ERP Investigation of Orthographic Priming with Relative-Position and Absolute-Position Primes

    PubMed Central

    Grainger, Jonathan; Holcomb, Phillip J.

    2009-01-01

    The present study used event-related potentials to examine the time-course of relative-position and absolute-position orthographic priming. Relative-position priming was examined using primes formed by a concatenated subset of the target word’s letters (e.g., cllet/COLLECT vs. dlema/COLLECT), and absolute-position priming was investigated using hyphenated versions of these primes (c-lle-t/COLLECT vs. d-lem-a/COLLECT). Both manipulations modulated the ERP waveform starting at around 100 ms post-target onset and extending into the N400 component. The first clear manifestation of priming was found in the N250 component, where hyphenated primes were found to have an earlier, more robust and more widely distributed effect than the concatenated primes. On the other hand, both prime types had similar effects on N400 amplitude. These results provide important information about the time-course of activation of location-specific and location-invariant (word-centered) orthographic representations during visual word recognition. PMID:19285966

  3. No relation between the vertical velocity component and the absolute magnitude among globular clusters

    NASA Astrophysics Data System (ADS)

    De Souza-Rossetto, E. A.; Rocha-Pinto, H. J.

    2010-01-01

    The globular cluster luminosity function distribution shows a peak at MV ≈ -7.5 mag. There are some indications that the kinematic parameters are correlated with luminosity. In particular, Alfaro et al. (2001) have studied the properties of the Galactic globular cluster system and they found a correlation between spatial-velocity component and globular cluster absolute magnitude. The authors assumed that the globular clusters can be separated into two groups. The first is composed of globular clusters with MV < -7.5 mag and moving preferentially towards the north Galactic pole, while the faintest globular clusters, composing the second group, move towards the Galactic disk. We have selected a sample of globular clusters using the same criteria as Alfaro et al. (2001) and have checked that this apparent relation indeed exists. Nevertheless, we decided to investigate whether it could be a fortuitous relation or an intrinsic property by checking its validity for eight different epochs at past and future times. The orbital parameters for the globular clusters at these eight epochs were found by orbital integration using a typical Galactic potential. We show that this relation between the vertical velocity component and the absolute magnitude among globular clusters is not coherent with time and the velocity distribution does not support the hypothesis of Alfaro et al. for the existence of two dynamical groups of globular clusters.

  4. Parametric Modulation of Error-Related ERP Components by the Magnitude of Visuo-Motor Mismatch

    ERIC Educational Resources Information Center

    Vocat, Roland; Pourtois, Gilles; Vuilleumier, Patrik

    2011-01-01

    Errors generate typical brain responses, characterized by two successive event-related potentials (ERP) following incorrect action: the error-related negativity (ERN) and the positivity error (Pe). However, it is unclear whether these error-related responses are sensitive to the magnitude of the error, or instead show all-or-none effects. We…

  5. Approximating relational observables by absolute quantities: a quantum accuracy-size trade-off

    NASA Astrophysics Data System (ADS)

    Miyadera, Takayuki; Loveridge, Leon; Busch, Paul

    2016-05-01

    The notion that any physical quantity is defined and measured relative to a reference frame is traditionally not explicitly reflected in the theoretical description of physical experiments where, instead, the relevant observables are typically represented as ‘absolute’ quantities. However, the emergence of the resource theory of quantum reference frames as a new branch of quantum information science in recent years has highlighted the need to identify the physical conditions under which a quantum system can serve as a good reference. Here we investigate the conditions under which, in quantum theory, an account in terms of absolute quantities can provide a good approximation of relative quantities. We find that this requires the reference system to be large in a suitable sense.

  6. Misconceptions in recent papers on special relativity and absolute space theories

    NASA Technical Reports Server (NTRS)

    Torr, D. G.; Kolen, P.

    1982-01-01

    Several recent papers which purport to substantiate or negate arguments in favor of certain theories of absolute space have been based on fallacious principles. This paper discusses three related instances, indicating where misconceptions have arisen. It is established, contrary to popular belief, that the classical Lorentz ether theory accounts for all the experimental evidence which supports the special theory of relativity. It is demonstrated that the ether theory predicts the null results obtained from pulsar timing and Moessbauer experiments. It is concluded that a measurement of the one-way velocity of light has physical meaning within the context of the Lorentz theory, and it is argued that an adequately designed experiment to measure the one-way velocity of light should be attempted.

  7. Circumventing rain-related errors in scatterometer wind observations

    NASA Astrophysics Data System (ADS)

    Kilpatrick, Thomas J.; Xie, Shang-Ping

    2016-08-01

    Satellite scatterometer observations of surface winds over the global oceans are critical for climate research and applications like weather forecasting. However, rain-related errors remain an important limitation, largely precluding satellite study of winds in rainy areas. Here we utilize a novel technique to compute divergence and curl from satellite observations of surface winds and surface wind stress in rainy areas. This technique circumvents rain-related errors by computing line integrals around rainy patches, using valid wind vector observations that border the rainy patches. The area-averaged divergence and wind stress curl inside each rainy patch are recovered via the divergence and curl theorems. We process the 10 year Quick Scatterometer (QuikSCAT) data set and show that the line-integral method brings the QuikSCAT winds into better agreement with an atmospheric reanalysis, largely removing both the "divergence bias" and "anticyclonic curl bias" in rainy areas noted in previous studies. The corrected QuikSCAT wind stress curl reduces the North Pacific midlatitude Sverdrup transport by 20-30%. We test several methods of computing divergence and curl on winds from an atmospheric model simulation and show that the line-integral method has the smallest errors. We anticipate that scatterometer winds processed with the line-integral method will improve ocean model simulations and help illuminate the coupling between atmospheric convection and circulation.

  8. An analysis of pilot error-related aircraft accidents

    NASA Technical Reports Server (NTRS)

    Kowalsky, N. B.; Masters, R. L.; Stone, R. B.; Babcock, G. L.; Rypka, E. W.

    1974-01-01

    A multidisciplinary team approach to pilot error-related U.S. air carrier jet aircraft accident investigation records successfully reclaimed hidden human error information not shown in statistical studies. New analytic techniques were developed and applied to the data to discover and identify multiple elements of commonality and shared characteristics within this group of accidents. Three techniques of analysis were used: Critical element analysis, which demonstrated the importance of a subjective qualitative approach to raw accident data and surfaced information heretofore unavailable. Cluster analysis, which was an exploratory research tool that will lead to increased understanding and improved organization of facts, the discovery of new meaning in large data sets, and the generation of explanatory hypotheses. Pattern recognition, by which accidents can be categorized by pattern conformity after critical element identification by cluster analysis.

  9. Computerised physician order entry-related medication errors: analysis of reported errors and vulnerability testing of current systems

    PubMed Central

    Schiff, G D; Amato, M G; Eguale, T; Boehne, J J; Wright, A; Koppel, R; Rashidee, A H; Elson, R B; Whitney, D L; Thach, T-T; Bates, D W; Seger, A C

    2015-01-01

    Importance Medication computerised provider order entry (CPOE) has been shown to decrease errors and is being widely adopted. However, CPOE also has potential for introducing or contributing to errors. Objectives The objectives of this study are to (a) analyse medication error reports where CPOE was reported as a ‘contributing cause’ and (b) develop ‘use cases’ based on these reports to test vulnerability of current CPOE systems to these errors. Methods A review of medication errors reported to United States Pharmacopeia MEDMARX reporting system was made, and a taxonomy was developed for CPOE-related errors. For each error we evaluated what went wrong and why and identified potential prevention strategies and recurring error scenarios. These scenarios were then used to test vulnerability of leading CPOE systems, asking typical users to enter these erroneous orders to assess the degree to which these problematic orders could be entered. Results Between 2003 and 2010, 1.04 million medication errors were reported to MEDMARX, of which 63 040 were reported as CPOE related. A review of 10 060 CPOE-related cases was used to derive 101 codes describing what went wrong, 67 codes describing reasons why errors occurred, 73 codes describing potential prevention strategies and 21 codes describing recurring error scenarios. Ability to enter these erroneous order scenarios was tested on 13 CPOE systems at 16 sites. Overall, 298 (79.5%) of the erroneous orders were able to be entered including 100 (28.0%) being ‘easily’ placed, another 101 (28.3%) with only minor workarounds and no warnings. Conclusions and relevance Medication error reports provide valuable information for understanding CPOE-related errors. Reports were useful for developing taxonomy and identifying recurring errors to which current CPOE systems are vulnerable. Enhanced monitoring, reporting and testing of CPOE systems are important to improve CPOE safety. PMID:25595599

  10. [ABSOLUTE AND RELATIVE BIOAVAILABILITY OF GLUTARON--A NEW DERIVATIVE OF GLUTAMIC ACID].

    PubMed

    Smirnova, L A; Ryabukha, A F; Kuznetsov, K A; Suchkov, E A; Perfilova, V N; Tyurenkov, I N

    2015-01-01

    The pharmacokinetics of studies of 3-phenylglutamic acid hydrochloride (glutaron) has been studied in rats. The main pharmacokinetic parameters show low values of the half-life (T1/2 = 3.75 h), mean retention time in the body (MRT = 5.77 h). The medium rate of drug concentration decrease in the blood plasma leads to a low value of the area under pharmacokinetic curve (AUC = 41.18 mg · h/mL). The general volume of distribution (Vd = 3.42 L/kg) is 3.5 times greater than the volume of extracellular fluid in the rat body. These data indicate a high ability of the glutaron to be distributed and accumulated in animal tissues. The value of absolute bioavailability is 84%, and the relative bioavailabity is 100%.

  11. The Question of Absolute Space and Time Directions in Relation to Molecular Chirality, Parity Violation, and Biomolecular Homochirality

    SciTech Connect

    Quack, Martin

    2001-03-21

    The questions of the absolute directions of space and time or the “observability” of absolute time direction as well as absolute handedness-left or right- are related to the fundamental symmetries of physics C, P, T as well as their combinations, in particular CPT, and their violations, such as parity violation. At the same time there is a relation to certain still open questions in chemistry concerning the fundamental physical- chemical principles of molecular chirality and in biochemistry concerning the selection of homochirality in evolution. In the lecture we shall introduce the concepts and then report new theoretical results from our work on parity violation in chiral molecules, showing order of magnitude increases with respect to previously accepted values. We discus as well our current experimental efforts. We shall briefly mention the construction of an absolute molecular clock.

  12. The Question of Absolute Space and Time Directions in Relation to Molecular Chirality, Parity Violation, and Biomolecular Homochirality

    SciTech Connect

    Quack, Martin

    2001-03-21

    The questions of the absolute directions of space and time or the 'observability' of absolute time direction as well as absolute handedness - left or right - are related to the fundamental symmetries of physics C, P, T as well as their combinations, in particular CPT, and their violations, such as parity violation. At the same time there is a relation to certain still open questions in chemistry concerning the fundamental physical-chemical principles of molecular chirality and in biochemistry concerning the selection of homochirality in evolution. In the lecture we shall introduce the concepts and then report new theoretical results from our work on parity violation in chiral molecules, showing order of magnitude increases with respect to previously accepted values. We discuss as well our current experimental efforts. We shall briefly mention the construction of an absolute molecular clock.

  13. Relative - not absolute - judgments of credibility affect susceptibility to misinformation conveyed during discussion.

    PubMed

    French, Lauren; Garry, Maryanne; Mori, Kazuo

    2011-01-01

    People remember different details about the same events, and when they discuss events they exchange new - and misleading - information. Discussion can change memory, especially when the source of new information is highly credible. But we do not know whether the effects of credibility are based on absolute judgments - judging a source's credibility independently from our own credibility - or relative judgments - judging a source's credibility only in relation to our own credibility. We addressed this question by manipulating subjects' expectations, leading them to believe that they either had the same, higher or lower "visual acuity" than their partner while they watched a movie together. To create ample opportunities for the pairs to mention misleading details to one another, each member unknowingly saw a different version of the movie. The pairs then discussed some of the critical differences, but not others. Later, everyone took an independent recognition test. Subjects' susceptibility to misinformation depended on their own credibility relative to their partner's, supporting the idea that susceptibility to misinformation depends on relative differences in credibility. PMID:21112042

  14. TRAINING ERRORS AND RUNNING RELATED INJURIES: A SYSTEMATIC REVIEW

    PubMed Central

    Buist, Ida; Sørensen, Henrik; Lind, Martin; Rasmussen, Sten

    2012-01-01

    Purpose: The purpose of this systematic review was to examine the link between training characteristics (volume, duration, frequency, and intensity) and running related injuries. Methods: A systematic search was performed in PubMed, Web of Science, Embase, and SportDiscus. Studies were included if they examined novice, recreational, or elite runners between the ages of 18 and 65. Exposure variables were training characteristics defined as volume, distance or mileage, time or duration, frequency, intensity, speed or pace, or similar terms. The outcome of interest was Running Related Injuries (RRI) in general or specific RRI in the lower extremity or lower back. Methodological quality was evaluated using quality assessment tools of 11 to 16 items. Results: After examining 4561 titles and abstracts, 63 articles were identified as potentially relevant. Finally, nine retrospective cohort studies, 13 prospective cohort studies, six case-control studies, and three randomized controlled trials were included. The mean quality score was 44.1%. Conflicting results were reported on the relationships between volume, duration, intensity, and frequency and RRI. Conclusion: It was not possible to identify which training errors were related to running related injuries. Still, well supported data on which training errors relate to or cause running related injuries is highly important for determining proper prevention strategies. If methodological limitations in measuring training variables can be resolved, more work can be conducted to define training and the interactions between different training variables, create several hypotheses, test the hypotheses in a large scale prospective study, and explore cause and effect relationships in randomized controlled trials. Level of evidence: 2a PMID:22389869

  15. The Relation between the Absolute Level of Parenting and Differential Parental Treatment with Adolescent Siblings' Adjustment

    ERIC Educational Resources Information Center

    Tamrouti-Makkink, Ilse D.; Dubas, Judith Semon; Gerris, Jan R. M.; van Aken, Marcel A. G.

    2004-01-01

    Background: The present study extends existing studies on the role of differential parental treatment in explaining individual differences in adolescent problem behaviors above the absolute level of parenting and clarifies the function of gender of the child, birth rank and gender constellation of the sibling dyads. Method: The absolute level of…

  16. Easy Absolute Values? Absolutely

    ERIC Educational Resources Information Center

    Taylor, Sharon E.; Mittag, Kathleen Cage

    2015-01-01

    The authors teach a problem-solving course for preservice middle-grades education majors that includes concepts dealing with absolute-value computations, equations, and inequalities. Many of these students like mathematics and plan to teach it, so they are adept at symbolic manipulations. Getting them to think differently about a concept that they…

  17. Global-scale location and distance estimates: common representations and strategies in absolute and relative judgments.

    PubMed

    Friedman, Alinda; Montello, Daniel R

    2006-03-01

    The authors examined whether absolute and relative judgments about global-scale locations and distances were generated from common representations. At the end of a 10-week class on the regional geography of the United States, participants estimated the latitudes of 16 North American cities and all possible pairwise distances between them. Although participants were relative experts, their latitude estimates revealed the presence of psychologically based regions with large gaps between them and a tendency to stretch North America southward toward the equator. The distance estimates revealed the same properties in the representation recovered via multidimensional scaling. Though the aggregated within- and between-regions distance estimates were fitted by Stevens's law (S. S. Stevens, 1957), this was an averaging artifact: The appropriateness of a power function to describe distance estimates depended on the regional membership of the cities. The authors conclude that plausible reasoning strategies, combined with regionalized representations and beliefs about the location of these relative to global landmarks, underlie global-scale latitude and distance judgments.

  18. Desert Varnish: Relative and Absolute Dating Using Portable X-Ray Fluorescence

    NASA Astrophysics Data System (ADS)

    Pingitore, N. E.; Lytle, F. W.

    2003-12-01

    Levels of manganese and iron measured in situ with a portable x-ray fluorescence instrument permit relative and absolute dating of desert varnish. This novel technique may have wide potential application to dating Pleistocene and Holocene events and geomorphic surfaces in dry climate settings. Desert varnish is a thin biogenic coating, enriched in Mn and Fe, found on rock surfaces in arid and semi-arid regions. The accumulation of varnish marks the passage of time since a fresh rock surface was created or exposed. Thus the varnish thickness reflects the age of the event that created the fresh surface, whatever the agent was, e.g., a rock fall, a fault movement, or an aboriginal artist. Past attempts to date rock varnish have been marked more by ambiguity or outright failure than by success. Our recent research suggests a practical and rapid method for dating varnish using a portable x-ray fluorescence instrument (PXRF). Varnish thickness encodes two distinct signals, metal and clay. The biogenic Mn and Fe record the passage of time, whereas the accumulation of clay particles is a more time-random process. X-ray fluorescence (XRF) can measure just the "metal thickness" of Mn and Fe in varnish. Earlier tedious microscope techniques focused on physical thickness that includes the noise associated with the clay component. XRF integrates the metal thickness of a broad area of varnish, which is seen to vary significantly in a thin-section traverse. Thus XRF provides a meaningful average thickness over a surface. A portable x-ray fluorescence unit provides rapid, non-destructive, in situ measurements. On outcrop a single analysis takes about 2 minutes and the varnish is not consumed or even disturbed. The hand-held PXRF instrument is simple to operate and relatively inexpensive (\\$ 30,000). PXRF analysis of varnish on independently dated materials yielded a substantive correlation between age and metal (Mn + Fe) thickness. This provided an initial validation of the

  19. Absolute quantification of lung cancer related microRNA by droplet digital PCR.

    PubMed

    Wang, Ping; Jing, Fengxiang; Li, Gang; Wu, Zhenhua; Cheng, Zule; Zhang, Jishen; Zhang, Honglian; Jia, Chunping; Jin, Qinghui; Mao, Hongju; Zhao, Jianlong

    2015-12-15

    Digital polymerase chain reaction (digital PCR) enables the absolute quantification of nucleic acids through the counting of single molecules, thus eliminating the need for standard curves or endogenous controls. In this study, we developed a droplet digital PCR (ddPCR) system based on an oil saturated PDMS (OSP) microfluidic chip platform for quantification of lung cancer related microRNA (miRNA). The OSP chip was made with PDMS and was oil saturated to constrain oil swallow and maintain the stability of droplets. Two inlets were designed for oil and sample injection with a syringe pump at the outlet. Highly uniform monodisperse water-in-oil emulsion droplets to be used for subsequent detection and analysis were generated at the cross section of the channel. We compared miRNA quantification by the ddPCR system and quantitative real-time PCR (qPCR) to demonstrate that the ddPCR system was superior to qPCR both in its detection limit and smaller fold changes measurement. This droplet PCR system provides new possibilities for highly sensitive and efficient detection of cancer-related genes. PMID:26232679

  20. Error-Related Negativities During Spelling Judgments Expose Orthographic Knowledge

    PubMed Central

    Harris, Lindsay N.; Perfetti, Charles A.; Rickles, Benjamin

    2014-01-01

    In two experiments, we demonstrate that error-related negativities (ERNs) recorded during spelling decisions can expose individual differences in lexical knowledge. The first experiment found that the ERN was elicited during spelling decisions and that its magnitude was correlated with independent measures of subjects’ spelling knowledge. In the second experiment, we manipulated the phonology of misspelled stimuli and observed that ERN magnitudes were larger when misspelled words altered the phonology of their correctly spelled counterparts than when they preserved it. Thus, when an error is made in a decision about spelling, the brain processes indexed by the ERN reflect both phonological and orthographic input to the decision process. In both experiments, ERN effect sizes were correlated with assessments of lexical knowledge and reading, including offline spelling ability and spelling-mediated vocabulary knowledge. These results affirm the interdependent nature of orthographic, semantic, and phonological knowledge components while showing that spelling knowledge uniquely influences the ERN during spelling decisions. Finally, the study demonstrates the value of ERNs in exposing individual differences in lexical knowledge. PMID:24389506

  1. Statistical evaluation of design-error related accidents

    SciTech Connect

    Ott, K.O.; Marchaterre, J.F.

    1980-01-01

    In a recently published paper (Campbell and Ott, 1979), a general methodology was proposed for the statistical evaluation of design-error related accidents. The evaluation aims at an estimate of the combined residual frequency of yet unknown types of accidents lurking in a certain technological system. Here, the original methodology is extended, as to apply to a variety of systems that evolves during the development of large-scale technologies. A special categorization of incidents and accidents is introduced to define the events that should be jointly analyzed. The resulting formalism is applied to the development of the nuclear power reactor technology, considering serious accidents that involve in the accident-progression a particular design inadequacy.

  2. Forecasting the absolute and relative shortage of physicians in Japan using a system dynamics model approach

    PubMed Central

    2013-01-01

    Background In Japan, a shortage of physicians, who serve a key role in healthcare provision, has been pointed out as a major medical issue. The healthcare workforce policy planner should consider future dynamic changes in physician numbers. The purpose of this study was to propose a physician supply forecasting methodology by applying system dynamics modeling to estimate future absolute and relative numbers of physicians. Method We constructed a forecasting model using a system dynamics approach. Forecasting the number of physician was performed for all clinical physician and OB/GYN specialists. Moreover, we conducted evaluation of sufficiency for the number of physicians and sensitivity analysis. Result & conclusion As a result, it was forecast that the number of physicians would increase during 2008–2030 and the shortage would resolve at 2026 for all clinical physicians. However, the shortage would not resolve for the period covered. This suggests a need for measures for reconsidering the allocation system of new entry physicians to resolve maldistribution between medical departments, in addition, for increasing the overall number of clinical physicians. PMID:23981198

  3. (99m)Tc-DMSA absolute and relative renal uptake in cats: procedure and normal values.

    PubMed

    Vandermeulen, Eva; Ham, Hamphrey R; Dobbeleir, André A; De Sadeleer, Carlos; Piepsz, Amy; Waelbers, Tim; Vermeire, Simon T; Slegers, Guido; Peremans, Kathelijne Y

    2011-06-01

    In this study we investigated the influence of technical factors (positioning, background (BG) correction and attenuation correction) on qualitative and quantitative (absolute (AU) and relative (RU) uptake) assessment of feline kidneys with (99m)technetium labelled dimercaptosuccinic acid ((99m)Tc-DMSA). Eleven healthy adult cats were included. Influence of BG and depth correction on quantitative assessment was evaluated. Depth correction was based on the geometric mean method (using dorsal and ventral images) and the use of two standards placed over each individual kidney. Visual evaluation showed superiority of dorsal and ventral over lateral positioning due to increased separation of the kidneys permitting region of interest (ROI) placement without overlap. No apparent influence of BG correction was found for RU. However, AU was systematically overestimated without BG correction. Depth correction did not seem to affect RU in most cases, however, in some cats the differences were not negligible. The values for AU without depth correction were lower compared to depth corrected values.

  4. Acute Aortic Dissection Biomarkers Identified Using Isobaric Tags for Relative and Absolute Quantitation.

    PubMed

    Xiao, Ziya; Xue, Yuan; Yao, Chenling; Gu, Guorong; Zhang, Yaping; Zhang, Jin; Fan, Fan; Luan, Xiao; Deng, Zhi; Tao, Zhengang; Song, Zhen-Ju; Tong, Chaoyang; Wang, Haojun

    2016-01-01

    The purpose of this study was to evaluate the utility of potential serum biomarkers for acute aortic dissection (AAD) that were identified by isobaric Tags for Relative and Absolute Quantitation (iTRAQ) approaches. Serum samples from 20 AAD patients and 20 healthy volunteers were analyzed using iTRAQ technology. Protein validation was performed using samples from 120 patients with chest pain. A total of 355 proteins were identified with the iTRAQ approach; 164 proteins reached the strict quantitative standard, and 125 proteins were increased or decreased more than 1.2-fold (64 and 61 proteins were up- and downregulated, resp.). Lumican, C-reactive protein (CRP), thrombospondin-1 (TSP-1), and D-dimer were selected as candidate biomarkers for the validation tests. Receiver operating characteristic (ROC) curves show that Lumican and D-dimer have diagnostic value (area under the curves [AUCs] 0.895 and 0.891, P < 0.05). For Lumican, the diagnostic sensitivity and specificity were 73.33% and 98.33%, while the corresponding values for D-dimer were 93.33% and 68.33%. For Lumican and D-dimer AAD combined diagnosis, the sensitivity and specificity were 88.33% and 95%, respectively. In conclusion, Lumican has good specificity and D-dimer has good sensitivity for the diagnosis of AAD, while the combined detection of D-dimer and Lumican has better diagnostic value. PMID:27403433

  5. Characterization of an atmospheric helium plasma jet by relative and absolute optical emission spectroscopy

    NASA Astrophysics Data System (ADS)

    Xiong, Qing; Nikiforov, Anton Yu; González, Manuel Á.; Leys, Christophe; Pei Lu, Xin

    2013-02-01

    The characteristics of plasma temperatures (gas temperature and electron excitation temperature) and electron density in a pulsed-dc excited atmospheric helium plasma jet are studied by relative and absolute optical emission spectroscopy (OES). High-resolution OES is performed for the helium and hydrogen lines for the determination of electron density through the Stark broadening mechanism. A superposition fitting method composed of two component profiles corresponding to two different electron densities is developed to fit the investigated lines. Electron densities of the orders of magnitude of 1021 and 1020 m-3 are characterized for the center and edge regions in the jet discharge when the applied voltage is higher than 13.0 kV. The atomic state distribution function (ASDF) of helium demonstrates that the discharge deviates from the Boltzmann-Saha equilibrium state, especially for the helium lower levels, which are significantly overpopulated. Local electron excitation temperatures T13 and Tspec corresponding to the lower and upper parts of the helium ASDF are defined and found to range from 1.2 eV to 1.4 eV and 0.2 eV to 0.3 eV, respectively. A comparative analysis shows that the Saha balance is valid in the discharge for helium atoms at high excited states.

  6. Acute Aortic Dissection Biomarkers Identified Using Isobaric Tags for Relative and Absolute Quantitation

    PubMed Central

    Xiao, Ziya; Xue, Yuan; Gu, Guorong; Zhang, Yaping; Zhang, Jin; Fan, Fan; Luan, Xiao; Deng, Zhi; Tao, Zhengang; Song, Zhen-ju; Tong, Chaoyang; Wang, Haojun

    2016-01-01

    The purpose of this study was to evaluate the utility of potential serum biomarkers for acute aortic dissection (AAD) that were identified by isobaric Tags for Relative and Absolute Quantitation (iTRAQ) approaches. Serum samples from 20 AAD patients and 20 healthy volunteers were analyzed using iTRAQ technology. Protein validation was performed using samples from 120 patients with chest pain. A total of 355 proteins were identified with the iTRAQ approach; 164 proteins reached the strict quantitative standard, and 125 proteins were increased or decreased more than 1.2-fold (64 and 61 proteins were up- and downregulated, resp.). Lumican, C-reactive protein (CRP), thrombospondin-1 (TSP-1), and D-dimer were selected as candidate biomarkers for the validation tests. Receiver operating characteristic (ROC) curves show that Lumican and D-dimer have diagnostic value (area under the curves [AUCs] 0.895 and 0.891, P < 0.05). For Lumican, the diagnostic sensitivity and specificity were 73.33% and 98.33%, while the corresponding values for D-dimer were 93.33% and 68.33%. For Lumican and D-dimer AAD combined diagnosis, the sensitivity and specificity were 88.33% and 95%, respectively. In conclusion, Lumican has good specificity and D-dimer has good sensitivity for the diagnosis of AAD, while the combined detection of D-dimer and Lumican has better diagnostic value. PMID:27403433

  7. Deciding Optimal Noise Monitoring Sites with Matrix Gray Absolute Relation Degree Theory

    NASA Astrophysics Data System (ADS)

    Gao, Zhihua; Li, Yadan; Zhao, Limin; Wang, Shuangwei

    2015-08-01

    Noise maps are applied to assess noise level in cities all around the world. There are mainly two ways of producing noise maps: one way is producing noise maps through theoretical simulations with the surrounding conditions, such as traffic flow, building distribution, etc.; the other one is calculating noise level with actual measurement data from noise monitors. Currently literature mainly focuses on considering more factors that affect sound traveling during theoretical simulations and interpolation methods in producing noise maps based on measurements of noise. Although many factors were considered during simulation, noise maps have to be calibrated by actual noise measurements. Therefore, the way of obtaining noise data is significant to both producing and calibrating a noise map. However, there is little literature mentioned about rules of deciding the right monitoring sites when placed the specified number of noise sensors and given the deviation of a noise map produced with data from them. In this work, by utilizing matrix Gray Absolute Relation Degree Theory, we calculated the relation degrees between the most precise noise surface and those interpolated with different combinations of noise data with specified number. We found that surfaces plotted with different combinations of noise data produced different relation degrees with the most precise one. Then we decided the least significant one among the total and calculated the corresponding deviation when it was excluded in making a noise surface. Processing the left noise data in the same way, we found out the least significant datum among the left data one by one. With this method, we optimized the noise sensor’s distribution in an area about 2km2. And we also calculated the bias of surfaces with the least significant data removed. Our practice provides an optimistic solution to the situation faced by most governments that there is limited financial budget available for noise monitoring, especially in

  8. Kelvin Absolute Temperature Scale Identified as Length Scale and Related to de Broglie Thermal Wavelength

    NASA Astrophysics Data System (ADS)

    Sohrab, Siavash

    Thermodynamic equilibrium between matter and radiation leads to de Broglie wavelength λdβ = h /mβvrβ and frequency νdβ = k /mβvrβ of matter waves and stochastic definitions of Planck h =hk =mk <λrk > c and Boltzmann k =kk =mk <νrk > c constants, λrkνrk = c , that respectively relate to spatial (λ) and temporal (ν) aspects of vacuum fluctuations. Photon massmk =√{ hk /c3 } , amu =√{ hkc } = 1 /No , and universal gas constant Ro =No k =√{ k / hc } result in internal Uk = Nhνrk = Nmkc2 = 3 Nmkvmpk2 = 3 NkT and potential pV = uN\\vcirc / 3 = N\\ucirc / 3 = NkT energy of photon gas in Casimir vacuum such that H = TS = 4 NkT . Therefore, Kelvin absolute thermodynamic temperature scale [degree K] is identified as length scale [meter] and related to most probable wavelength and de Broglie thermal wavelength as Tβ =λmpβ =λdβ / 3 . Parallel to Wien displacement law obtained from Planck distribution, the displacement law λwS T =c2 /√{ 3} is obtained from Maxwell -Boltzmann distribution of speed of ``photon clusters''. The propagation speeds of sound waves in ideal gas versus light waves in photon gas are described in terms of vrβ in harmony with perceptions of Huygens. Newton formula for speed of long waves in canals √{ p / ρ } is modified to √{ gh } =√{ γp / ρ } in accordance with adiabatic theory of Laplace.

  9. The influence of music-elicited emotions and relative pitch on absolute pitch memory for familiar melodies.

    PubMed

    Jakubowski, Kelly; Müllensiefen, Daniel

    2013-01-01

    Levitin's findings that nonmusicians could produce from memory the absolute pitches of self-selected pop songs have been widely cited in the music psychology literature. These findings suggest that latent absolute pitch (AP) memory may be a more widespread trait within the population than traditional AP labelling ability. However, it has been left unclear what factors may facilitate absolute pitch retention for familiar pieces of music. The aim of the present paper was to investigate factors that may contribute to latent AP memory using Levitin's sung production paradigm for AP memory and comparing results to the outcomes of a pitch labelling task, a relative pitch memory test, measures of music-induced emotions, and various measures of participants' musical backgrounds. Our results suggest that relative pitch memory and the quality and degree of music-elicited emotions impact on latent AP memory. PMID:23758506

  10. The influence of music-elicited emotions and relative pitch on absolute pitch memory for familiar melodies.

    PubMed

    Jakubowski, Kelly; Müllensiefen, Daniel

    2013-01-01

    Levitin's findings that nonmusicians could produce from memory the absolute pitches of self-selected pop songs have been widely cited in the music psychology literature. These findings suggest that latent absolute pitch (AP) memory may be a more widespread trait within the population than traditional AP labelling ability. However, it has been left unclear what factors may facilitate absolute pitch retention for familiar pieces of music. The aim of the present paper was to investigate factors that may contribute to latent AP memory using Levitin's sung production paradigm for AP memory and comparing results to the outcomes of a pitch labelling task, a relative pitch memory test, measures of music-induced emotions, and various measures of participants' musical backgrounds. Our results suggest that relative pitch memory and the quality and degree of music-elicited emotions impact on latent AP memory.

  11. Punishing an error improves learning: the influence of punishment magnitude on error-related neural activity and subsequent learning.

    PubMed

    Hester, Robert; Murphy, Kevin; Brown, Felicity L; Skilleter, Ashley J

    2010-11-17

    Punishing an error to shape subsequent performance is a major tenet of individual and societal level behavioral interventions. Recent work examining error-related neural activity has identified that the magnitude of activity in the posterior medial frontal cortex (pMFC) is predictive of learning from an error, whereby greater activity in this region predicts adaptive changes in future cognitive performance. It remains unclear how punishment influences error-related neural mechanisms to effect behavior change, particularly in key regions such as pMFC, which previous work has demonstrated to be insensitive to punishment. Using an associative learning task that provided monetary reward and punishment for recall performance, we observed that when recall errors were categorized by subsequent performance--whether the failure to accurately recall a number-location association was corrected at the next presentation of the same trial--the magnitude of error-related pMFC activity predicted future correction. However, the pMFC region was insensitive to the magnitude of punishment an error received and it was the left insula cortex that predicted learning from the most aversive outcomes. These findings add further evidence to the hypothesis that error-related pMFC activity may reflect more than a prediction error in representing the value of an outcome. The novel role identified here for the insular cortex in learning from punishment appears particularly compelling for our understanding of psychiatric and neurologic conditions that feature both insular cortex dysfunction and a diminished capacity for learning from negative feedback or punishment.

  12. Muscle Activation During Exercise in Severe Acute Hypoxia: Role of Absolute and Relative Intensity

    PubMed Central

    Torres-Peralta, Rafael; Losa-Reyna, José; González-Izal, Miriam; Perez-Suarez, Ismael; Calle-Herrero, Jaime; Izquierdo, Mikel

    2014-01-01

    Abstract Torres-Peralta, Rafael, José Losa-Reyna, Miriam González-Izal, Ismael Perez-Suarez, Jaime Calle-Herrero, Mikel Izquierdo, and José A.L. Calbet. Muscle activation during exercise in severe acute hypoxia: Role of absolute and relative intensity. High Alt Med Biol 15:472–482, 2014.—The aim of this study was to determine the influence of severe acute hypoxia on muscle activation during whole body dynamic exercise. Eleven young men performed four incremental cycle ergometer tests to exhaustion breathing normoxic (FIo2=0.21, two tests) or hypoxic gas (FIo2=0.108, two tests). Surface electromyography (EMG) activities of rectus femoris (RF), vastus medialis (VL), vastus lateralis (VL), and biceps femoris (BF) were recorded. The two normoxic and the two hypoxic tests were averaged to reduce EMG variability. Peak Vo2 was 34% lower in hypoxia than in normoxia (p<0.05). The EMG root mean square (RMS) increased with exercise intensity in all muscles (p<0.05), with greater effect in hypoxia than in normoxia in the RF and VM (p<0.05), and a similar trend in VL (p=0.10). At the same relative intensity, the RMS was greater in normoxia than in hypoxia in RF, VL, and BF (p<0.05), with a similar trend in VM (p=0.08). Median frequency increased with exercise intensity (p<0.05), and was higher in hypoxia than in normoxia in VL (p<0.05). Muscle contraction burst duration increased with exercise intensity in VM and VL (p<0.05), without clear effects of FIo2. No significant FIo2 effects on frequency domain indices were observed when compared at the same relative intensity. In conclusion, muscle activation during whole body exercise increases almost linearly with exercise intensity, following a muscle-specific pattern, which is adjusted depending on the FIo2 and the relative intensity of exercise. Both VL and VM are increasingly involved in power output generation with the increase of intensity and the reduction in FIo2. PMID:25225839

  13. Simultaneous relative and absolute orientation of point clouds with "TLS radomes"

    NASA Astrophysics Data System (ADS)

    Glira, Philipp; Briese, Christian; Kamp, Nicole; Pfeifer, Norbert

    2013-04-01

    For the georeferencing of point clouds acquired by a terrestrial laser scanner (TLS) targets with known coordinates (control points) can be used. The determination of the target positions in a global coordinate frame with a total station and/or with GNSS can be very time-consuming. For multi-temporal comparison of TLS data these targets can be permanently installed on the measurement site. In permanent changing environments (e.g. high-moutain proglacial environments) this is not possible due to the movement of the targets. Furthermore, the integration of the TLS data with other data sources (e.g. airborne laser scanning data) has to be considered. For that aim the georeferencing of TLS measurements in a global coordinate frame has to be established. This work describes a new method for the simultaneous relative orientiation (registration) and absolute orientation (georeferencing) of point clouds by using spheres with a GNSS antenna inside. These spheres are thus used as GNSS antenna radomes. Consequently they are called within this work "TLS radomes". The simultaneous measurement with at least three GNSS antennas during the TLS data acquisition leads to long measurement times, i.e. high position accuracy and subsequently a very accurate realization of the datum. The presented TLS radomes consist of two hemispheres of polyethene enclosing the GNSS antenna. The GNSS antenna is mounted on an antenna rod, which can be enhanced by a prism and/or a reflective cylinder. For a modified optical reflectivity several coatings were tested. The one causing the smallest deformations, the smallest noise, and with the highest reflectivity was chosen. The whole construction can be mounted on a tripod. The TLS radomes are suitable for a wide range of different TLS sensors (i.e. independent of the ranging principle and the manufacturers). For the simultaneous relative and absolute orientation of the point clouds the centers of the radomes are used as identical points. With TLS these

  14. Relative vs Absolute Antenna Calibrations: How, when, and why do they differ? A Comparison of Antenna Calibration Catalogs

    NASA Astrophysics Data System (ADS)

    Mader, G. L.; Bilich, A. L.

    2013-12-01

    Since 1994, NGS has computed relative antenna calibrations for more than 350 antenna models used by NGS customers and geodetic networks worldwide. In a 'relative' calibration, the antenna under test is calibrated relative to a standard reference antenna, the AOA D/M_T chokering. The majority of NGS calibrations have been made publicly available at the web site www.ngs.noaa.gov/ANTCAL as well as via the NGS master calibrations file ant_info.003. In the mid-2000's, institutions in Germany began distributing 'absolute' antenna calibrations, where the antenna under test is calibrated independent of any reference antenna. These calibration methods also overcame some limitations of relative calibrations by going to lower elevation angles and capturing azimuthal variations. Soon thereafter (2008), the International GNSS Service (IGS) initiated a geodetic community movement away from relative calibrations and toward absolute calibrations as the defacto standard. The IGS now distributes a catalog of absolute calibrations taken from several institutions, distributed as the IGS master calibrations file igs08.atx. The competing methods and files have raised many questions about when it is or is not valid to process a geodetic network using a combination of relative and absolute calibrations, and if/when it is valid to combine the NGS and IGS catalogs. Therefore, in this study, we compare the NGS catalog of relative calibrations against the IGS catalog of absolute calibrations. As of the writing of this abstract, there are 77 antenna+radome combinations which are common to both the NGS relative and IGS absolute catalogs, spanning 16 years of testing (1997 to present). 50 different antenna models and 8 manufacturers are represented in the study sample. We apply the widely-accepted standard method for converting relative to absolute, then difference the calibrations. Various statistics describe the observed differences between phase center offset (PCO), phase center variation

  15. Native Speakers' Perceptions of Nonnative Speakers: Related to Phonetic Errors and Spoken Grammatical Errors.

    ERIC Educational Resources Information Center

    Johnson, Ruth; Jenks, Frederick L.

    A study investigated the perceptions of native English-speakers concerning the spoken grammatical and phonetic (accent) errors of non-native speakers. Speech samples were collected from three non-native speakers of English of varied linguistic backgrounds (German, Spanish, and Arabic) and one speaker of North American English. Each of the four…

  16. Life Satisfaction among Turkish and Moroccan Immigrants in the Netherlands: The Role of Absolute and Relative Income

    ERIC Educational Resources Information Center

    Gokdemir, Ozge; Dumludag, Devrim

    2012-01-01

    In this paper we investigate the role of several socio-economic and non-economic factors such as absolute and relative income, education and religion to explain the differences of happiness levels of Turkish and Moroccan Immigrants in the Netherlands by using ordered logit model. We focus on members of the Moroccan and Turkish communities, as…

  17. U.S. internal migration and occupational attainment: Assessing absolute and relative outcomes by region and race

    PubMed Central

    Flippen, Chenoa

    2015-01-01

    This paper investigates the occupational implications of contemporary migration flows by region and race. Even though the expectation of a positive link between geographic and social mobility is a central tenet in the stratification literature, empirical assessments are rare and have produced inconsistent results. Our analysis departs from traditional frameworks by integrating both absolute and relative notions of occupational standing for evaluating migration outcomes, comparing migrants against non-migrant peers both at origin and destination. Results document that for whites migration is associated with higher occupational attainment both in absolute and relative terms, irrespective of the regional direction of the move. For blacks, on the other hand, absolute occupational gains are markedly absent for migration to the South, which is instead characterized by significant improvement in relative terms. The differences in absolute and relative gains by race and direction of the move helps contextualize the considerable black over representation in north-south migration and highlights the implications of current internal mobility for racial stratification. PMID:25914432

  18. Exploring the Relationship between Absolute and Relative Position and Late-Life Depression: Evidence from 10 European Countries

    ERIC Educational Resources Information Center

    Ladin, Keren; Daniels, Norman; Kawachi, Ichiro

    2010-01-01

    Purpose: Socioeconomic inequality has been associated with higher levels of morbidity and mortality. This study explores the role of absolute and relative deprivation in predicting late-life depression on both individual and country levels. Design and Methods: Country- and individual-level inequality indicators were used in multivariate logistic…

  19. Fine structure of the age-chromospheric activity relation in solar-type stars. I. The Ca II infrared triplet: Absolute flux calibration

    NASA Astrophysics Data System (ADS)

    Lorenzo-Oliveira, D.; Porto de Mello, G. F.; Dutra-Ferreira, L.; Ribas, I.

    2016-10-01

    Context. Strong spectral lines are useful indicators of stellar chromospheric activity. They are physically linked to the convection efficiency, differential rotation, and angular momentum evolution and are a potential indicator of age. However, for ages > 2 Gyr, the age-activity relationship remains poorly constrained thus hampering its full application. Aims: The Ca II infrared triplet (IRT lines, λλ 8498, 8542, and 8662) has been poorly studied compared to classical chromospheric indicators. We report in this paper absolute chromospheric fluxes in the three Ca II IRT lines, based on a new calibration tied to up-to-date model atmospheres. Methods: We obtain the Ca II IRT absolute fluxes for 113 FGK stars from high signal-to-noise ratio (S/N) and high-resolution spectra covering an extensive domain of chromospheric activity levels. We perform an absolute continuum flux calibration for the Ca II IRT lines anchored in atmospheric models calculated as an explicit function of effective temperatures (Teff), metallicity ([Fe/H]), and gravities (log g) avoiding the degeneracy usually present in photometric continuum calibrations based solely on color indices. Results: The internal uncertainties achieved for continuum absolute flux calculations are ≈2% of the solar chromospheric flux, one order of magnitude lower than for photometric calibrations. Using Monte Carlo simulations, we gauge the impact of observational errors on the final chromospheric fluxes due to the absolute continuum flux calibration and find that Teffuncertainties are properly mitigated by the photospheric correction leaving [Fe/H] as the dominating factor in the chromospheric flux uncertainty. Conclusions: Across the FGK spectral types, the Ca II IRT lines are sensitive to chromospheric activity. The reduced internal uncertainties reported here enable us to build a new chromospheric absolute flux scale and explore the age-activity relation from the active regime down to very low activity levels and

  20. Period-luminosity-metallicity relations, pulsation modes, absolute magnitudes, and distances for population 2 variable stars

    NASA Astrophysics Data System (ADS)

    Nemec, James M.; Nemec, Amanda F. Linnell; Lutz, Thomas E.

    1994-07-01

    Period-luminosity-metallicity (P-L-(Fe/H) relations are presented for RR Lyrae stars, Pop. II Cepheids, anomalous Cepheids and SX Phe stars pulsating in the fundamental (F) and first-overtone (H) modes. The relations were derived by fitting regression lines to the observed pulsation periods and mean B, V, and K magnitudes of over 1200 stars in approximately 40 stellar systems. Analysis of covariance methods, which allow the simultaneous computation of more than one P-L-(Fe/H) relation, were used to estimate the slopes and intercepts. Of the 24 possible P-L-(Fe/H) relations for the four kinds of stars, two pulsation modes, and three passbands considered here, 18 relations have been derived-the others could not be derived because of a lack of photometry in one or more of the three passbands. The slopes for the F and H pulsators were tested for departures from equality for all types of stars and passbands; the results suggest that the observations are consistent with the assumption that, for each kind of star (except possibly the Pop. II Cepheids), the P-L-(Fe/h) relations for the F and H pulsation modes are parallel but vertically offset, with a family of lines corresponding to a range of metallicities. Pulsation modes and absolute magnitudes are presented for the non-RR Lyrae variable stars considered in the analysis, and distances are estimated for the program clusters. It is well established from previous studies that the P-L relations for RR Lyrae stars are approximately flat for the B passband, and have a slope delta mk/ delta log P approximately 2.4 for the K passband. We recover these slopes and find that the P-L-(Fe/H) relation in V has an intermediate slope, delta mv/delta log P = -0.52 plus or minus 0.11. A similar dependence of slope on passband is seen for classical Cepheids (see Madore & Freedman, PASP, 103, 933 (1991). The available B, V photometry for approximately 40 of the known globular cluster Cepheids are found to be consistent with Arp's AJ, 60

  1. Involvement of human internal globus pallidus in the early modulation of cortical error-related activity.

    PubMed

    Herrojo Ruiz, María; Huebl, Julius; Schönecker, Thomas; Kupsch, Andreas; Yarrow, Kielan; Krauss, Joachim K; Schneider, Gerd-Helge; Kühn, Andrea A

    2014-06-01

    The detection and assessment of errors are a prerequisite to adapt behavior and improve future performance. Error monitoring is afforded by the interplay between cortical and subcortical neural systems. Ample evidence has pointed to a specific cortical error-related evoked potential, the error-related negativity (ERN), during the detection and evaluation of response errors. Recent models of reinforcement learning implicate the basal ganglia (BG) in early error detection following the learning of stimulus-response associations and in the modulation of the cortical ERN. To investigate the influence of the human BG motor output activity on the cortical ERN during response errors, we recorded local field potentials from the sensorimotor area of the internal globus pallidus and scalp electroencephalogram representing activity from the posterior medial frontal cortex in patients with idiopathic dystonia (hands not affected) during a flanker task. In error trials, a specific pallidal error-related potential arose 60 ms prior to the cortical ERN. The error-related changes in pallidal activity-characterized by theta oscillations-were predictive of the cortical error-related activity as assessed by Granger causality analysis. Our findings show an early modulation of error-related activity in the human pallidum, suggesting that pallidal output influences the cortex at an early stage of error detection.

  2. Relative and Absolute Stereochemistry of Diacarperoxides: Antimalarial Norditerpene Endoperoxides from Marine Sponge Diacarnus megaspinorhabdosa

    PubMed Central

    Yang, Fan; Zou, Yike; Wang, Ru-Ping; Hamann, Mark T.; Zhang, Hong-Jun; Jiao, Wei-Hua; Han, Bing-Nan; Song, Shao-Jiang; Lin, Hou-Wen

    2014-01-01

    Five new norditerpene endoperoxides, named diacarperoxides H–L (1–5), and a new norditerpene diol, called diacardiol B (6), were isolated from the South China Sea sponge, Diacarnus megaspinorhabdosa. Their structures, including conformations and absolute configurations, were determined by using spectroscopic analyses, computational approaches and chemical degradation. Diacarperoxides H–J (1–3) showed some interesting stereochemical issues, as well as antimalarial activity. PMID:25110917

  3. Relative and absolute stereochemistry of diacarperoxides: antimalarial norditerpene endoperoxides from marine sponge Diacarnus megaspinorhabdosa.

    PubMed

    Yang, Fan; Zou, Yike; Wang, Ru-Ping; Hamann, Mark T; Zhang, Hong-Jun; Jiao, Wei-Hua; Han, Bing-Nan; Song, Shao-Jiang; Lin, Hou-Wen

    2014-08-01

    Five new norditerpene endoperoxides, named diacarperoxides H-L (1-5), and a new norditerpene diol, called diacardiol B (6), were isolated from the South China Sea sponge, Diacarnus megaspinorhabdosa. Their structures, including conformations and absolute configurations, were determined by using spectroscopic analyses, computational approaches and chemical degradation. Diacarperoxides H-J (1-3) showed some interesting stereochemical issues, as well as antimalarial activity.

  4. Error-Related Functional Connectivity of the Habenula in Humans

    PubMed Central

    Ide, Jaime S.; Li, Chiang-Shan R.

    2011-01-01

    Error detection is critical to the shaping of goal-oriented behavior. Recent studies in non-human primates delineated a circuit involving the lateral habenula (LH) and ventral tegmental area (VTA) in error detection. Neurons in the LH increased activity, preceding decreased activity in the VTA, to a missing reward, indicating a feedforward signal from the LH to VTA. In the current study we used connectivity analyses to reveal this pathway in humans. In 59 adults performing a stop signal task during functional magnetic resonance imaging, we identified brain regions showing greater psychophysiological interaction with the habenula during stop error as compared to stop success trials. These regions included a cluster in the VTA/substantia nigra (SN), internal segment of globus pallidus, bilateral amygdala, and insula. Furthermore, using Granger causality and mediation analyses, we showed that the habenula Granger caused the VTA/SN, establishing the direction of this interaction, and that the habenula mediated the functional connectivity between the amygdala and VTA/SN during error processing. To our knowledge, these findings are the first to demonstrate a feedforward influence of the habenula on the VTA/SN during error detection in humans. PMID:21441989

  5. Second Language Learning: Contrastive Analysis, Error Analysis, and Related Aspects.

    ERIC Educational Resources Information Center

    Robinett, Betty Wallace, Ed.; Schachter, Jacquelyn, Ed.

    This graduate level text on second language learning is divided into three sections. The first two sections provide a survey of the historical underpinnings of second language research in contrastive analysis and error analysis. The third section includes discussions of recent developments in the field. The first section contains articles on the…

  6. [Event-related potentials and performance errors during falling asleep].

    PubMed

    Dorokhov, V B; Verbitskaia, Iu S; Lavrova, T P

    2009-01-01

    Sound is the most adequate external stimulus for studying information processes in the brain during falling asleep and at different sleep stages. Common procedure of analysis of the event-related potentials (ERPs) averaged for a group of subjects has some drawbacks because of the ERP interindividual variability. Therefore in our work, we determined parameters of the auditory ERP components selectively summed up for individual subjects in different series of a psychomotor test with their subsequent group analysis. Search for the ERP parameters which would allow us to quantitatively estimate brain functional states during performance errors associated with a decrease in the level of wakefulness and falling asleep was the aim of our work. The ERPs were recorded in healthy volunteers (n = 41) in the evening from eight EEG derivations (F3, F4, C3, C4, P3, P4, O1, O2) in reference to a linked mastoid electrode. The analysis was performed in 14 subjects with a sufficient number of falling asleep episodes. A monotonous psychomotor test was performed in a supine position with the eyes closed. The test consisted of two alternating series: calculation of sound stimuli from 1 up to 10 with simultaneous pressing the button and calculation from 1 up to 5 without pressing the button and so on. Computer-generated sound stimuli (50-ms pulses with the frequency of 1000 Hz, 60 dB HL) were presented binaurally through earphones with interstimulus intervals in 2.4-2.7 s. Comparison of the ERP parameters (latency and amplitude of components N1, P2, N, and P3) during correct and erroneous performance of the psychomotor test showed that a decrease in the level of wakefulness caused a statistically significant increase in the amplitude of components of vertex complex N1-P2-N2 in series without pressing the button. The greatest changes in the ERPs in different series of the psychomotor test were observed for component N2 (latency 330-360 ms), which has the common origin with the EEG theta

  7. Activation of the human sensorimotor cortex during error-related processing: a magnetoencephalography study.

    PubMed

    Stemmer, Brigitte; Vihla, Minna; Salmelin, Riitta

    2004-05-13

    We studied error-related processing using magnetoencephalography (MEG). Previous event-related potential studies have documented error negativity or error-related negativity after incorrect responses, with a suggested source in the anterior cingulate cortex or supplementary motor area. We compared activation elicited by correct and incorrect trials using auditory and visual choice-reaction time tasks. Source areas showing different activation patterns in correct and error conditions were mainly located in sensorimotor areas, both ipsi- and contralateral to the response, suggesting that activation of sensorimotor circuits accompanies error processing. Additional activation at various other locations suggests a distributed network of brain regions active during error-related processing. Activation specific to incorrect trials tended to occur later in MEG than EEG data, possibly indicating that EEG and MEG detect different neural networks involved in error-related processes.

  8. Absolute Summ

    NASA Astrophysics Data System (ADS)

    Phillips, Alfred, Jr.

    Summ means the entirety of the multiverse. It seems clear, from the inflation theories of A. Guth and others, that the creation of many universes is plausible. We argue that Absolute cosmological ideas, not unlike those of I. Newton, may be consistent with dynamic multiverse creations. As suggested in W. Heisenberg's uncertainty principle, and with the Anthropic Principle defended by S. Hawking, et al., human consciousness, buttressed by findings of neuroscience, may have to be considered in our models. Predictability, as A. Einstein realized with Invariants and General Relativity, may be required for new ideas to be part of physics. We present here a two postulate model geared to an Absolute Summ. The seedbed of this work is part of Akhnaton's philosophy (see S. Freud, Moses and Monotheism). Most important, however, is that the structure of human consciousness, manifest in Kenya's Rift Valley 200,000 years ago as Homo sapiens, who were the culmination of the six million year co-creation process of Hominins and Nature in Africa, allows us to do the physics that we do. .

  9. Relative and absolute sea level rise in western Canada and northwestern United States from a combined tide gauge-GPS analysis

    NASA Astrophysics Data System (ADS)

    Mazzotti, Stephane; Jones, Casey; Thomson, Richard E.

    2008-11-01

    Empirical studies and climate models suggest large variations of absolute sea level (ASL) changes between oceanic basins. Such potential variations raise concern on the applicability of global mean ASL predictions to specific regions and on estimates of relative sea level (RSL) hazards. We address this issue for the western Canada and northwestern United States coastline by estimating the 20th century ASL rate using a combination of 34 colocated tide gauge and Global Positioning System (GPS) stations. The tide gauge data are quality controlled and corrected for spatially and temporally correlated sea level transients in order to derive robust RSL trends and standard errors. Reference frame and other GPS-specific issues are considered as part of the error budget in absolute GPS vertical velocities. Our combined tide gauge-GPS analysis, aligned to the International Terrestrial Reference Frame 2000, indicates a northeast Pacific ASL rise of 1.8 ± 0.2 mm/a through the 20th century, which is similar to accepted rates for the global eustatic mean. For the period 1993-2003, we find a regional ASL rate of -4.4 ± 0.5 mm/a consistent with satellite altimetry. On the basis of the Intergovernment Panel on Climate Change Assessment Report 4 mean scenario and our assessment of coastal motions from GPS and tide gauge data, we derive a map of predicted 21st century RSL rise in western Canada and the northwestern United States. Variations in coastal uplift strongly affect spatial RSL patterns. Subsidence of southern Puget Sound may significantly increase RSL rise in the Seattle-Tacoma metropolitan area. Conversely, tectonic uplift along parts of the outer west coast may reduce future RSL rise by up to 50-100%.

  10. CREME96 and Related Error Rate Prediction Methods

    NASA Technical Reports Server (NTRS)

    Adams, James H., Jr.

    2012-01-01

    Predicting the rate of occurrence of single event effects (SEEs) in space requires knowledge of the radiation environment and the response of electronic devices to that environment. Several analytical models have been developed over the past 36 years to predict SEE rates. The first error rate calculations were performed by Binder, Smith and Holman. Bradford and Pickel and Blandford, in their CRIER (Cosmic-Ray-Induced-Error-Rate) analysis code introduced the basic Rectangular ParallelePiped (RPP) method for error rate calculations. For the radiation environment at the part, both made use of the Cosmic Ray LET (Linear Energy Transfer) spectra calculated by Heinrich for various absorber Depths. A more detailed model for the space radiation environment within spacecraft was developed by Adams and co-workers. This model, together with a reformulation of the RPP method published by Pickel and Blandford, was used to create the CR ME (Cosmic Ray Effects on Micro-Electronics) code. About the same time Shapiro wrote the CRUP (Cosmic Ray Upset Program) based on the RPP method published by Bradford. It was the first code to specifically take into account charge collection from outside the depletion region due to deformation of the electric field caused by the incident cosmic ray. Other early rate prediction methods and codes include the Single Event Figure of Merit, NOVICE, the Space Radiation code and the effective flux method of Binder which is the basis of the SEFA (Scott Effective Flux Approximation) model. By the early 1990s it was becoming clear that CREME and the other early models needed Revision. This revision, CREME96, was completed and released as a WWW-based tool, one of the first of its kind. The revisions in CREME96 included improved environmental models and improved models for calculating single event effects. The need for a revision of CREME also stimulated the development of the CHIME (CRRES/SPACERAD Heavy Ion Model of the Environment) and MACREE (Modeling and

  11. Relation between minimum-error discrimination and optimum unambiguous discrimination

    SciTech Connect

    Qiu Daowen; Li Lvjun

    2010-09-15

    In this paper, we investigate the relationship between the minimum-error probability Q{sub E} of ambiguous discrimination and the optimal inconclusive probability Q{sub U} of unambiguous discrimination. It is known that for discriminating two states, the inequality Q{sub U{>=}}2Q{sub E} has been proved in the literature. The main technical results are as follows: (1) We show that, for discriminating more than two states, Q{sub U{>=}}2Q{sub E} may not hold again, but the infimum of Q{sub U}/Q{sub E} is 1, and there is no supremum of Q{sub U}/Q{sub E}, which implies that the failure probabilities of the two schemes for discriminating some states may be narrowly or widely gapped. (2) We derive two concrete formulas of the minimum-error probability Q{sub E} and the optimal inconclusive probability Q{sub U}, respectively, for ambiguous discrimination and unambiguous discrimination among arbitrary m simultaneously diagonalizable mixed quantum states with given prior probabilities. In addition, we show that Q{sub E} and Q{sub U} satisfy the relationship that Q{sub U{>=}}(m/m-1)Q{sub E}.

  12. Determining the importance of model calibration for forecasting absolute/relative changes in streamflow from LULC and climate changes

    USGS Publications Warehouse

    Niraula, Rewati; Meixner, Thomas; Norman, Laura M.

    2015-01-01

    Land use/land cover (LULC) and climate changes are important drivers of change in streamflow. Assessing the impact of LULC and climate changes on streamflow is typically done with a calibrated and validated watershed model. However, there is a debate on the degree of calibration required. The objective of this study was to quantify the variation in estimated relative and absolute changes in streamflow associated with LULC and climate changes with different calibration approaches. The Soil and Water Assessment Tool (SWAT) was applied in an uncalibrated (UC), single outlet calibrated (OC), and spatially-calibrated (SC) mode to compare the relative and absolute changes in streamflow at 14 gaging stations within the Santa Cruz River Watershed in southern Arizona, USA. For this purpose, the effect of 3 LULC, 3 precipitation (P), and 3 temperature (T) scenarios were tested individually. For the validation period, Percent Bias (PBIAS) values were >100% with the UC model for all gages, the values were between 0% and 100% with the OC model and within 20% with the SC model. Changes in streamflow predicted with the UC and OC models were compared with those of the SC model. This approach implicitly assumes that the SC model is “ideal”. Results indicated that the magnitude of both absolute and relative changes in streamflow due to LULC predicted with the UC and OC results were different than those of the SC model. The magnitude of absolute changes predicted with the UC and SC models due to climate change (both P and T) were also significantly different, but were not different for OC and SC models. Results clearly indicated that relative changes due to climate change predicted with the UC and OC were not significantly different than that predicted with the SC models. This result suggests that it is important to calibrate the model spatially to analyze the effect of LULC change but not as important for analyzing the relative change in streamflow due to climate change. This

  13. Visual recovery after monocular deprivation is driven by absolute, rather than relative, visually evoked activity levels.

    PubMed

    Mitchell, D E; Gingras, G

    1998-10-22

    It is now well established that the anatomical and functional development of the central visual pathways of a number of higher mammalian species is activity-dependent [1-3]. This dependence was revealed by the functional effects of an early period of monocular deprivation, where one eye of a young animal was deprived for a time of patterned visual input. Subsequently, most cells in the visual cortex (area 17) could be excited only by visual stimuli delivered to the non deprived eye [4-6] and the animal appeared blind through the deprived eye [7,8]. These effects have been attributed to a competitive activity-dependent mechanism in development, whereby the two eyes compete for control of cortical cells [9,10]. There are, however, suggestions that the substantial recovery that can occur after monocular deprivation may be mediated by a different mechanism. Here, insight into the nature of this mechanism has been provided by monitoring the speed of changes in the vision of the deprived eye of a kitten after 6 days of monocular deprivation. Although both eyes were open during the recovery period, the kitten was able to see with its deprived eye only 2 hours after visual input was restored to this eye. The visual acuity of this eye improved rapidly in the first 24 hours and continued in an orderly way for 6 weeks. In contrast to the effects during monocular deprivation, which depend upon a competitive activity-dependent process, we propose that the events that follow deprivation rely on a mechanism driven by the absolute level of visually evoked activity through the formerly deprived eye. PMID:9799738

  14. 47 CFR 1.1167 - Error claims related to regulatory fees.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 1 2011-10-01 2011-10-01 false Error claims related to regulatory fees. 1.1167... of Statutory Charges and Procedures for Payment § 1.1167 Error claims related to regulatory fees. (a.... (1) Failure to submit the fee by the date required will result in the assessment of a 25...

  15. 47 CFR 1.1167 - Error claims related to regulatory fees.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Error claims related to regulatory fees. 1.1167... of Statutory Charges and Procedures for Payment § 1.1167 Error claims related to regulatory fees. (a.... (1) Failure to submit the fee by the date required will result in the assessment of a 25...

  16. Differences in absolute and relative growth between two shell forms of Pinna nobilis (Mollusca: Bivalvia) along the Tunisian coastline

    NASA Astrophysics Data System (ADS)

    Rabaoui, Lotfi; Tlig-Zouari, Sabiha; Katsanevakis, Stelios; Belgacem, Walid; Hassine, Oum Kalthoum Ben

    2011-08-01

    This study investigated the absolute and relative growth patterns of the fan mussel Pinna nobilis along the Tunisian coastline, taking into consideration both the variability among different areas and between the two shell forms "combed" and "straight and wide". Five subpopulations of the species were sampled, one from northern, two from eastern and two from southern Tunisia. Various assumptions on the growth patterns were tested based on an information theory approach and multi-model inference. For absolute growth, the assumption of different growth patterns between the two shell forms of P. nobilis and no difference among subpopulations was the most supported by the data. For the same age, "straight and wide" individuals gained on average greater lengths than the "combed" individuals. The absolute growth of the species was found to be asymptotic and the logistic model was the one most supported by the data. As for the relative growth, apart from the classical allometric model Y = aXb, more complicated models of the form ln Y = f(ln X) that either assumed non-linearities or breakpoints were tested in combination with assumptions for possible differences between the two forms and among subpopulations. Among the eight studied relationships between morphometric characters, the classical allometric model was supported in only two cases, while in all other cases more complicated models were supported. Moreover, the assumption of different growth patterns between the two forms was supported in three cases and the assumption of different growth patterns among subpopulations in four cases. Although precise relationships between the morphometric plasticity of the fan mussel and environmental factors have not been proven in this paper, local small scale constraints might be responsible of the different growth patterns observed in the same locality. A possible co-action of genetic factors should be evaluated in the future.

  17. The Relation of Spelling Errors to Cognitive Variables and Word Type

    ERIC Educational Resources Information Center

    Goyen, J. D.; Martin, M.

    1977-01-01

    Attempts to relate the spelling errors of secondary school students to visual and auditory sequential memory, intelligence, reading, and writing speed. The relation of spelling ability to the frequency and regularity of words is also examined. (Author/RK)

  18. Is your error my concern? An event-related potential study on own and observed error detection in cooperation and competition.

    PubMed

    de Bruijn, Ellen R A; von Rhein, Daniel T

    2012-01-01

    Electroencephalogram studies have identified an error-related event-related potential (ERP) component known as the error-related negativity or ERN, thought to result from the detection of a loss of reward during performance monitoring. However, as own errors are always associated with a loss of reward, disentangling whether the ERN is error- or reward-dependent has proven to be a difficult endeavor. Recently, an ERN has also been demonstrated following the observation of other's errors. Importantly, other people's errors can be associated with loss or gain depending on the cooperative or competitive context in which they are made. The aim of the current ERP study was to disentangle the error- or reward-dependency of performance monitoring. Twelve pairs (N = 24) of participants performed and observed a speeded-choice-reaction task in two contexts. Own errors were always associated with a loss of reward. Observed errors in the cooperative context also yielded a loss of reward, but observed errors in the competitive context resulted in a gain. The results showed that the ERN was present following all types of errors independent of who made the error and the outcome of the action. Consequently, the current study demonstrates that performance monitoring as reflected by the ERN is error-specific and not directly dependent on reward.

  19. [Learning from errors after a care-related adverse event].

    PubMed

    Richard, Christian; Pibarot, Marie-Laure; Zantman, Françoise

    2016-04-01

    The mobilisation of all health professionals with regard to the detection and analysis of care-related adverse events is an essential element in the improvement of the safety of care. This approach is required by the authorities and justifiably expected by users. PMID:27085926

  20. Reward value enhances post-decision error-related activity in the cingulate cortex.

    PubMed

    Taylor, Jessica E; Ogawa, Akitoshi; Sakagami, Masamichi

    2016-06-01

    By saying "Anyone who has never made a mistake has never tried anything new", Albert Einstein himself allegedly implied that the making and processing of errors are essential for behavioral adaption to a new or changing environment. These essential error-related cognitive and neural processes are likely influenced by reward value. However, previous studies have not dissociated accuracy and value and so the distinct effect of reward on error processing in the brain remained unknown. Therefore, we set out to investigate this at various points in decision-making. We used functional magnetic resonance imaging to scan participants while they completed a random dot motion discrimination task where reward and non-reward were associated with stimuli via classical conditioning. Pre-error activity was found in the medial frontal cortex prior to response but this was not related to reward value. At response time, error-related activity was found to be significantly greater in reward than non-reward trials in the midcingulate cortex. Finally at outcome time, error-related activity was found in the anterior cingulate cortex in non-reward trials. These results show that reward value enhances post-decision but not pre-decision error-related activities and these results therefore have implications for theories of error correction and confidence.

  1. Reward value enhances post-decision error-related activity in the cingulate cortex.

    PubMed

    Taylor, Jessica E; Ogawa, Akitoshi; Sakagami, Masamichi

    2016-06-01

    By saying "Anyone who has never made a mistake has never tried anything new", Albert Einstein himself allegedly implied that the making and processing of errors are essential for behavioral adaption to a new or changing environment. These essential error-related cognitive and neural processes are likely influenced by reward value. However, previous studies have not dissociated accuracy and value and so the distinct effect of reward on error processing in the brain remained unknown. Therefore, we set out to investigate this at various points in decision-making. We used functional magnetic resonance imaging to scan participants while they completed a random dot motion discrimination task where reward and non-reward were associated with stimuli via classical conditioning. Pre-error activity was found in the medial frontal cortex prior to response but this was not related to reward value. At response time, error-related activity was found to be significantly greater in reward than non-reward trials in the midcingulate cortex. Finally at outcome time, error-related activity was found in the anterior cingulate cortex in non-reward trials. These results show that reward value enhances post-decision but not pre-decision error-related activities and these results therefore have implications for theories of error correction and confidence. PMID:26739226

  2. Error-Related Activity and Correlates of Grammatical Plasticity

    PubMed Central

    Davidson, Doug J.; Indefrey, Peter

    2011-01-01

    Cognitive control involves not only the ability to manage competing task demands, but also the ability to adapt task performance during learning. This study investigated how violation-, response-, and feedback-related electrophysiological (EEG) activity changes over time during language learning. Twenty-two Dutch learners of German classified short prepositional phrases presented serially as text. The phrases were initially presented without feedback during a pre-test phase, and then with feedback in a training phase on two separate days spaced 1 week apart. The stimuli included grammatically correct phrases, as well as grammatical violations of gender and declension. Without feedback, participants’ classification was near chance and did not improve over trials. During training with feedback, behavioral classification improved and violation responses appeared to both types of violation in the form of a P600. Feedback-related negative and positive components were also present from the first day of training. The results show changes in the electrophysiological responses in concert with improving behavioral discrimination, suggesting that the activity is related to grammar learning. PMID:21960979

  3. Bivalent separation into univalents precedes age-related meiosis I errors in oocytes

    PubMed Central

    Sakakibara, Yogo; Hashimoto, Shu; Nakaoka, Yoshiharu; Kouznetsova, Anna; Höög, Christer; Kitajima, Tomoya S.

    2015-01-01

    The frequency of chromosome segregation errors during meiosis I (MI) in oocytes increases with age. The two-hit model suggests that errors are caused by the combination of a first hit that creates susceptible crossover configurations and a second hit comprising an age-related reduction in chromosome cohesion. This model predicts an age-related increase in univalents, but direct evidence of this phenomenon as a major cause of segregation errors has been lacking. Here, we provide the first live analysis of single chromosomes undergoing segregation errors during MI in the oocytes of naturally aged mice. Chromosome tracking reveals that 80% of the errors are preceded by bivalent separation into univalents. The set of the univalents is biased towards balanced and unbalanced predivision of sister chromatids during MI. Moreover, we find univalents predisposed to predivision in human oocytes. This study defines premature bivalent separation into univalents as the primary defect responsible for age-related aneuploidy. PMID:26130582

  4. [The absolute and relative abundance of imagoes of the taiga tick (Ixodidae) in the dark coniferous-deciduous valley forests of the northwestern spurs of the eastern Sayan].

    PubMed

    Korotkov, Iu S; Kislenko, G S

    1994-01-01

    Additions to the method of estimating the absolute and relative numbers of the pasture ticks in test areas are proposed. Additions take in attention the influence of ticks immigrating to the test area in dependence upon the isolation rate of that area. It has been stated that in the period 1987-1991 the mean relative number of I. persulcatus (mean tick number per 1 flag-kilometer of three decades) was 48, 27, 57, 29 and 38; the absolute tick number on test area (tick number per 1 hectare)--1590, 691, 1194, 641 and 668; the absolute tick number near the field station--1402, 647, 1496, 668 and 1108 respectively.

  5. Effect of geocoding errors on traffic-related air pollutant exposure and concentration estimates

    EPA Science Inventory

    Exposure to traffic-related air pollutants is highest very near roads, and thus exposure estimates are sensitive to positional errors. This study evaluates positional and PM2.5 concentration errors that result from the use of automated geocoding methods and from linearized approx...

  6. 47 CFR 1.1167 - Error claims related to regulatory fees.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 1 2014-10-01 2014-10-01 false Error claims related to regulatory fees. 1.1167 Section 1.1167 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL PRACTICE AND PROCEDURE Grants by Random Selection Schedule of Statutory Charges and Procedures for Payment § 1.1167 Error...

  7. 47 CFR 1.1167 - Error claims related to regulatory fees.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 1 2013-10-01 2013-10-01 false Error claims related to regulatory fees. 1.1167 Section 1.1167 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL PRACTICE AND PROCEDURE Grants by Random Selection Schedule of Statutory Charges and Procedures for Payment § 1.1167 Error...

  8. Developmental Changes in Error Monitoring: An Event-Related Potential Study

    ERIC Educational Resources Information Center

    Wiersema, Jan R.; van der Meere, Jacob J.; Roeyers, Herbert

    2007-01-01

    The aim of the study was to investigate the developmental trajectory of error monitoring. For this purpose, children (age 7-8), young adolescents (age 13-14) and adults (age 23-24) performed a Go/No-Go task and were compared on overt reaction time (RT) performance and on event-related potentials (ERPs), thought to reflect error detection…

  9. Comparison of absolute and relative air humidity sensors fabricated with inkjet printing technology

    NASA Astrophysics Data System (ADS)

    Selma, R.; Tarapata, G.; Marzecki, M.

    2015-09-01

    This paper describes design, manufacturing and testing of novelty humidity sensors manufactured in inkjet printing technology. Two types of sensors were produced - sensor for dew point hygrometer, along with heater and thermistor, and a relative humidity sensor. Both were tested and proven to be functional, with both advantages and disadvantages described further in the article.

  10. Aircraft noise-induced awakenings are more reasonably predicted from relative than from absolute sound exposure levels.

    PubMed

    Fidell, Sanford; Tabachnick, Barbara; Mestre, Vincent; Fidell, Linda

    2013-11-01

    Assessment of aircraft noise-induced sleep disturbance is problematic for several reasons. Current assessment methods are based on sparse evidence and limited understandings; predictions of awakening prevalence rates based on indoor absolute sound exposure levels (SELs) fail to account for appreciable amounts of variance in dosage-response relationships and are not freely generalizable from airport to airport; and predicted awakening rates do not differ significantly from zero over a wide range of SELs. Even in conjunction with additional predictors, such as time of night and assumed individual differences in "sensitivity to awakening," nominally SEL-based predictions of awakening rates remain of limited utility and are easily misapplied and misinterpreted. Probabilities of awakening are more closely related to SELs scaled in units of standard deviates of local distributions of aircraft SELs, than to absolute sound levels. Self-selection of residential populations for tolerance of nighttime noise and habituation to airport noise environments offer more parsimonious and useful explanations for differences in awakening rates at disparate airports than assumed individual differences in sensitivity to awakening.

  11. Relative and Absolute Plate Motions, Mantle Plumes and Volcanism in the Arctic region

    NASA Astrophysics Data System (ADS)

    Gaina, C.; Torsvik, T. H.

    2012-04-01

    Seafloor spreading in the North Atlantic ocean from Mesozoic until present day involved relative motion between three major tectonic plates: North America, Greenland and Eurasia and a number of microplates. Relative motions between these tectonic plates and movement of northern Pacific terranes since the Jurassic led to the development of the Arctic region as we know it today. Studying the connection between the two realms involve good knowledge of the development of the North Atlantic and Arctic margins and oceanic basins and ideally, model uncertainties. Here we review the kinematics of North Atlantic and asses the implications of different models for locating the plate boundaries in the Arctic. One set of models implies extension before opening of the Eurasia basin and we postulate that this was accommodated in the proximity of Alpha- Mendeleev Ridge. The origin of (mainly) Cretaceous large igneous activity in the central Arctic (the Alpha Mendeleev Ridge) and in the proximity of rifted margins, the so-called HALIP, is still debated. New models of global plate circuits and the connection with deep mantle are used to re-evaluate a possible link between the Arctic volcanism and mantle plumes.

  12. Evaluation of Absolute and Relative Reinforcer Value Using Progressive-Ratio Schedules

    PubMed Central

    Francisco, Monica T; Borrero, John C; Sy, Jolene R

    2008-01-01

    We evaluated behavior exhibited by individuals with developmental disabilities using progressive-ratio (PR) schedules. High- and low-preference stimuli were determined based on the results of a paired-stimulus preference assessment and were evaluated in subsequent reinforcer and PR assessments using concurrent and single schedules of presentation. In Experiment 1, results showed that for 2 of 3 participants, stimuli determined to be low-preference functioned as reinforcers when evaluated independent of high-preference stimuli. Further, the results from Experiment 2 showed that low-preference stimuli also functioned as reinforcers under gradually increasing PR requirements. Results suggest that for cases in which a high-preference stimulus is unavailable or impractical, the contingent delivery of relatively less preferred stimuli may maintain appropriate behavior, even as schedule requirements increase. PMID:18595283

  13. The error-related negativity (ERN) and psychopathology: Toward an Endophenotype

    PubMed Central

    Olvet, Doreen M.; Hajcak, Greg

    2008-01-01

    The ERN is a negative deflection in the event-related potential that peaks approximately 50 ms after the commission of an error. The ERN is thought to reflect early error-processing activity of the anterior cingulate cortex (ACC). First, we review current functional, neurobiological, and developmental data on the ERN. Next, the ERN is discussed in terms of three psychiatric disorders characterized by abnormal response monitoring: anxiety disorders, depression, and substance abuse. These data indicate that increased and decreased error-related brain activity is associated with the internalizing and externalizing dimensions of psychopathology, respectively. Recent data further suggest that abnormal error-processing indexed by the ERN indexes trait- but not state-related symptoms, especially related to anxiety. Overall, these data point to utility of ERN in studying risk for psychiatric disorders, and are discussed in terms of the endophenotype construct. PMID:18694617

  14. Absolute frequency list of the ν3-band transitions of methane at a relative uncertainty level of 10(-11).

    PubMed

    Okubo, Sho; Nakayama, Hirotaka; Iwakuni, Kana; Inaba, Hajime; Sasada, Hiroyuki

    2011-11-21

    We determine the absolute frequencies of 56 rotation-vibration transitions of the ν(3) band of CH(4) from 88.2 to 90.5 THz with a typical uncertainty of 2 kHz corresponding to a relative uncertainty of 2.2 × 10(-11) over an average time of a few hundred seconds. Saturated absorption lines are observed using a difference-frequency-generation source and a cavity-enhanced absorption cell, and the transition frequencies are measured with a fiber-laser-based optical frequency comb referenced to a rubidium atomic clock linked to the international atomic time. The determined value of the P(7) F(2)((2)) line is consistent with the International Committee for Weights and Measures recommendation within the uncertainty.

  15. Alignment of absolute and relative molecular size specifications for a polyvalent pneumococcal polysaccharide vaccine (PNEUMOVAX 23).

    PubMed

    MacNair, John E; Desai, Tejal; Teyral, Jennifer; Abeygunawardana, Chitrananda; Hennessey, John P

    2005-03-01

    An approach was developed to align release and end-expiry specifications for molecular size for the polyvalent pneumococcal polysaccharide vaccine (PNEUMOVAX 23). Each of the 23 polysaccharide components of the vaccine was separately subjected to ultrasonication to produce a series of preparations of decreasing weight-average molecular mass (Mw). These size-reduced polysaccharides were analysed as monovalent solutions by high-performance size exclusion chromatography (HPSEC) with multi-angle laser light scattering (MALLS) and refractive index (RI) detection to measure their Mw. These samples were also analysed by HPSEC with rate nephelometry (RN) detection to measure their relative molecular size (r-MS). The data from the two molecular size measurements established a correlation between Mw and r-MS. For each polysaccharide component of the vaccine, this correlation permits the direct alignment of the r-MS specification in the final formulated product with the Mw specification for the monovalent polysaccharide preparation. The alignment of specifications provides a high level of assurance that the quality control of the final vaccine product is consistent with that of the polysaccharide starting materials.

  16. Identification of atranorin and related potential allergens in oakmoss absolute by high-performance liquid chromatography-tandem mass spectrometry using negative ion atmospheric pressure chemical ionization.

    PubMed

    Hiserodt, R D; Swijter, D F; Mussinan, C J

    2000-08-01

    This paper describes the first high-performance liquid chromatographic-tandem mass spectrometric method for the identification of atranorin and related potential allergens in oakmoss absolute. Oakmoss absolute is ubiquitous in the fragrance industry and is a key component in many fine perfumes. However, oakmoss absolute causes an allergic response in some individuals. Research is focused toward establishing the identity of the compounds causing the allergic response so a quality controlled oakmoss with reduced allergenic potential can be prepared. Consequently a highly selective and specific analytical method is necessary to support this effort. This is not available with the existing HPLC methods using UV detection. PMID:10949477

  17. Effect of geocoding errors on traffic-related air pollutant exposure and concentration estimates.

    PubMed

    Ganguly, Rajiv; Batterman, Stuart; Isakov, Vlad; Snyder, Michelle; Breen, Michael; Brakefield-Caldwell, Wilma

    2015-01-01

    Exposure to traffic-related air pollutants is highest very near roads, and thus exposure estimates are sensitive to positional errors. This study evaluates positional and PM2.5 concentration errors that result from the use of automated geocoding methods and from linearized approximations of roads in link-based emission inventories. Two automated geocoders (Bing Map and ArcGIS) along with handheld GPS instruments were used to geocode 160 home locations of children enrolled in an air pollution study investigating effects of traffic-related pollutants in Detroit, Michigan. The average and maximum positional errors using the automated geocoders were 35 and 196 m, respectively. Comparing road edge and road centerline, differences in house-to-highway distances averaged 23 m and reached 82 m. These differences were attributable to road curvature, road width and the presence of ramps, factors that should be considered in proximity measures used either directly as an exposure metric or as inputs to dispersion or other models. Effects of positional errors for the 160 homes on PM2.5 concentrations resulting from traffic-related emissions were predicted using a detailed road network and the RLINE dispersion model. Concentration errors averaged only 9%, but maximum errors reached 54% for annual averages and 87% for maximum 24-h averages. Whereas most geocoding errors appear modest in magnitude, 5% to 20% of residences are expected to have positional errors exceeding 100 m. Such errors can substantially alter exposure estimates near roads because of the dramatic spatial gradients of traffic-related pollutant concentrations. To ensure the accuracy of exposure estimates for traffic-related air pollutants, especially near roads, confirmation of geocoordinates is recommended.

  18. Effect of geocoding errors on traffic-related air pollutant exposure and concentration estimates

    PubMed Central

    Ganguly, Rajiv; Batterman, Stuart; Isakov, Vlad; Snyder, Michelle; Breen, Michael; Brakefield-Caldwell, Wilma

    2015-01-01

    Exposure to traffic-related air pollutants is highest very near roads, and thus exposure estimates are sensitive to positional errors. This study evaluates positional and PM2.5 concentration errors that result from the use of automated geocoding methods and from linearized approximations of roads in link-based emission inventories. Two automated geocoders (Bing Map and ArcGIS) along with handheld GPS instruments were used to geocode 160 home locations of children enrolled in an air pollution study investigating effects of traffic-related pollutants in Detroit, Michigan. The average and maximum positional errors using the automated geocoders were 35 and 196 m, respectively. Comparing road edge and road centerline, differences in house-to-highway distances averaged 23 m and reached 82 m. These differences were attributable to road curvature, road width and the presence of ramps, factors that should be considered in proximity measures used either directly as an exposure metric or as inputs to dispersion or other models. Effects of positional errors for the 160 homes on PM2.5 concentrations resulting from traffic-related emissions were predicted using a detailed road network and the RLINE dispersion model. Concentration errors averaged only 9%, but maximum errors reached 54% for annual averages and 87% for maximum 24-h averages. Whereas most geocoding errors appear modest in magnitude, 5% to 20% of residences are expected to have positional errors exceeding 100 m. Such errors can substantially alter exposure estimates near roads because of the dramatic spatial gradients of traffic-related pollutant concentrations. To ensure the accuracy of exposure estimates for traffic-related air pollutants, especially near roads, confirmation of geocoordinates is recommended. PMID:25670023

  19. Punishment has a lasting impact on error-related brain activity.

    PubMed

    Riesel, Anja; Weinberg, Anna; Endrass, Tanja; Kathmann, Norbert; Hajcak, Greg

    2012-02-01

    The current study examined whether punishment has direct and lasting effects on error-related brain activity, and whether this effect is larger with increasing trait anxiety. Participants were told that errors on a flanker task would be punished in some blocks but not others. Punishment was applied following 50% of errors in punished blocks during the first half of the experiment (i.e., acquisition), but never in the second half (i.e., extinction). The ERN was enhanced in the punished blocks in both experimental phases--this enhancement remained stable throughout the extinction phase. More anxious individuals were characterized by larger punishment-related modulations in the ERN. The study reveals evidence for lasting, punishment-based modulations of the ERN that increase with anxiety. These data suggest avenues for research to examine more specific learning-related mechanisms that link anxiety to overactive error monitoring. PMID:22092041

  20. Error-Related Negativity and Tic History in Pediatric Obsessive-Compulsive Disorder

    ERIC Educational Resources Information Center

    Hanna, Gregory L.; Carrasco, Melisa; Harbin, Shannon M.; Nienhuis, Jenna K.; LaRosa, Christina E.; Chen, Poyu; Fitzgerald, Kate D.; Gehring, William J.

    2012-01-01

    Objective: The error-related negativity (ERN) is a negative deflection in the event-related potential after an incorrect response, which is often increased in patients with obsessive-compulsive disorder (OCD). However, the relation of the ERN to comorbid tic disorders has not been examined in patients with OCD. This study compared ERN amplitudes…

  1. SYSTEMATIC CONTINUUM ERRORS IN THE Ly{alpha} FOREST AND THE MEASURED TEMPERATURE-DENSITY RELATION

    SciTech Connect

    Lee, Khee-Gan

    2012-07-10

    Continuum fitting uncertainties are a major source of error in estimates of the temperature-density relation (usually parameterized as a power-law, T {proportional_to} {Delta}{sup {gamma}-1}) of the intergalactic medium through the flux probability distribution function (PDF) of the Ly{alpha} forest. Using a simple order-of-magnitude calculation, we show that few percent-level systematic errors in the placement of the quasar continuum due to, e.g., a uniform low-absorption Gunn-Peterson component could lead to errors in {gamma} of the order of unity. This is quantified further using a simple semi-analytic model of the Ly{alpha} forest flux PDF. We find that under(over)estimates in the continuum level can lead to a lower (higher) measured value of {gamma}. By fitting models to mock data realizations generated with current observational errors, we find that continuum errors can cause a systematic bias in the estimated temperature-density relation of ({delta}({gamma})) Almost-Equal-To -0.1, while the error is increased to {sigma}{sub {gamma}} Almost-Equal-To 0.2 compared to {sigma}{sub {gamma}} Almost-Equal-To 0.1 in the absence of continuum errors.

  2. Precision error in dual-photon absorptiometry related to source age

    SciTech Connect

    Ross, P.D.; Wasnich, R.D.; Vogel, J.M.

    1988-02-01

    An average, variable precision error of up to 6% related to source age was observed for dual-photon absorptiometry of the spine in a longitudinal study of bone mineral content involving 393 women. Application of a software correction for source decay compensated for only a portion of this error. The authors conclude that measurement of bone-loss rates using serial dual-photon bone mineral measurements must be interpreted with caution.

  3. Combined Use of Absolute and Differential Seismic Arrival Time Data to Improve Absolute Event Location

    NASA Astrophysics Data System (ADS)

    Myers, S.; Johannesson, G.

    2012-12-01

    Arrival time measurements based on waveform cross correlation are becoming more common as advanced signal processing methods are applied to seismic data archives and real-time data streams. Waveform correlation can precisely measure the time difference between the arrival of two phases, and differential time data can be used to constrain relative location of events. Absolute locations are needed for many applications, which generally requires the use of absolute time data. Current methods for measuring absolute time data are approximately two orders of magnitude less precise than differential time measurements. To exploit the strengths of both absolute and differential time data, we extend our multiple-event location method Bayesloc, which previously used absolute time data only, to include the use of differential time measurements that are based on waveform cross correlation. Fundamentally, Bayesloc is a formulation of the joint probability over all parameters comprising the multiple event location system. The Markov-Chain Monte Carlo method is used to sample from the joint probability distribution given arrival data sets. The differential time component of Bayesloc includes scaling a stochastic estimate of differential time measurement precision based the waveform correlation coefficient for each datum. For a regional-distance synthetic data set with absolute and differential time measurement error of 0.25 seconds and 0.01 second, respectively, epicenter location accuracy is improved from and average of 1.05 km when solely absolute time data are used to 0.28 km when absolute and differential time data are used jointly (73% improvement). The improvement in absolute location accuracy is the result of conditionally limiting absolute location probability regions based on the precise relative position with respect to neighboring events. Bayesloc estimates of data precision are found to be accurate for the synthetic test, with absolute and differential time measurement

  4. Isobaric tags for relative and absolute quantitation (iTRAQ)-based proteomic analysis of Cryptococcus humicola response to aluminum stress.

    PubMed

    Zhang, Jingjing; Zhang, Lei; Qiu, Jinkui; Nian, Hongjuan

    2015-10-01

    Cryptococcus humicola is a highly aluminum (Al) tolerant yeast strain isolated from a tea field. Here the relative changes of protein expression in C. humicola undergoing aluminum stress were analyzed to understand the genetic basis of aluminum tolerance. In this work, iTRAQ-based (isobaric tags for relative and absolute quantification) quantitative proteomic technology was used to detect statistically significant proteins associated with the response to aluminum stress. A total of 625 proteins were identified and were mainly involved in translation/ribosomal structure and biogenesis, posttranslational modification/protein turnover/chaperones, energy production and conversion, and amino acid transport and metabolism. Of these proteins, 59 exhibited differential expression during aluminum stress. Twenty-nine proteins up-regulated by aluminum were mainly involved in translation/ribosomal structure and biogenesis, posttranslational modification/protein turnover and chaperones, and lipid transport and metabolism. Thirty proteins down-regulated by aluminum were mainly associated with energy transport and metabolism, translation/ribosomal structure and biogenesis, posttranslational modification/protein turnover/chaperones, and lipid transport and metabolism. The potential functions of some proteins in aluminum tolerance are discussed. These functional changes may be beneficial for cells to protect themselves from aluminum toxic conditions.

  5. Spatial and temporal characteristics of error-related activity in the human brain.

    PubMed

    Neta, Maital; Miezin, Francis M; Nelson, Steven M; Dubis, Joseph W; Dosenbach, Nico U F; Schlaggar, Bradley L; Petersen, Steven E

    2015-01-01

    A number of studies have focused on the role of specific brain regions, such as the dorsal anterior cingulate cortex during trials on which participants make errors, whereas others have implicated a host of more widely distributed regions in the human brain. Previous work has proposed that there are multiple cognitive control networks, raising the question of whether error-related activity can be found in each of these networks. Thus, to examine error-related activity broadly, we conducted a meta-analysis consisting of 12 tasks that included both error and correct trials. These tasks varied by stimulus input (visual, auditory), response output (button press, speech), stimulus category (words, pictures), and task type (e.g., recognition memory, mental rotation). We identified 41 brain regions that showed a differential fMRI BOLD response to error and correct trials across a majority of tasks. These regions displayed three unique response profiles: (1) fast, (2) prolonged, and (3) a delayed response to errors, as well as a more canonical response to correct trials. These regions were found mostly in several control networks, each network predominantly displaying one response profile. The one exception to this "one network, one response profile" observation is the frontoparietal network, which showed prolonged response profiles (all in the right hemisphere), and fast profiles (all but one in the left hemisphere). We suggest that, in the place of a single localized error mechanism, these findings point to a large-scale set of error-related regions across multiple systems that likely subserve different functions.

  6. Spatial and Temporal Characteristics of Error-Related Activity in the Human Brain

    PubMed Central

    Miezin, Francis M.; Nelson, Steven M.; Dubis, Joseph W.; Dosenbach, Nico U.F.; Schlaggar, Bradley L.; Petersen, Steven E.

    2015-01-01

    A number of studies have focused on the role of specific brain regions, such as the dorsal anterior cingulate cortex during trials on which participants make errors, whereas others have implicated a host of more widely distributed regions in the human brain. Previous work has proposed that there are multiple cognitive control networks, raising the question of whether error-related activity can be found in each of these networks. Thus, to examine error-related activity broadly, we conducted a meta-analysis consisting of 12 tasks that included both error and correct trials. These tasks varied by stimulus input (visual, auditory), response output (button press, speech), stimulus category (words, pictures), and task type (e.g., recognition memory, mental rotation). We identified 41 brain regions that showed a differential fMRI BOLD response to error and correct trials across a majority of tasks. These regions displayed three unique response profiles: (1) fast, (2) prolonged, and (3) a delayed response to errors, as well as a more canonical response to correct trials. These regions were found mostly in several control networks, each network predominantly displaying one response profile. The one exception to this “one network, one response profile” observation is the frontoparietal network, which showed prolonged response profiles (all in the right hemisphere), and fast profiles (all but one in the left hemisphere). We suggest that, in the place of a single localized error mechanism, these findings point to a large-scale set of error-related regions across multiple systems that likely subserve different functions. PMID:25568119

  7. Error-Related Brain Activity in Young Children: Associations with Parental Anxiety and Child Temperamental Negative Emotionality

    ERIC Educational Resources Information Center

    Torpey, Dana C.; Hajcak, Greg; Kim, Jiyon; Kujawa, Autumn J.; Dyson, Margaret W.; Olino, Thomas M.; Klein, Daniel N.

    2013-01-01

    Background: There is increasing interest in error-related brain activity in anxiety disorders. The error-related negativity (ERN) is a negative deflection in the event-related potential approximately 50 [milliseconds] after errors compared to correct responses. Recent studies suggest that the ERN may be a biomarker for anxiety, as it is positively…

  8. Relation between regional myocardial uptake of /sup 82/Rb and perfusion: absolute reduction of cation uptake in ischemia

    SciTech Connect

    Selwyn, A.P.; Allan, R.M.; L'Abbate, A.; Horlock, P.; Camici, P.; Clark, J.; O'Brien, H.A.; Grant, P.M.

    1982-07-01

    Experiments were undertaken using /sup 82/Rb and position tomography to examine the relation between myocardial perfusion and cation uptake during acute ischemia. /sup 82/Rb was repeatedly eluted from a /sup 82/Sr-/sup 82/Rb generator. In six dogs emission tomograms were used to measure the delivered arterial and myocardial concentrations at rest and after coronary stenosis, stress and ischemia. There was a poor overall relation between regional myocardial uptake and flow measured by microspheres and a large individual variability. Extraction of /sup 82/Rb was inversely related to flow. Significant regional reduction of cation uptake was detected in the tomograms when regional flow decreased by more than 35 percent. This reduction was significantly greater when ischemia was present. A small but significantly greater when ischemia was present. A small but significant decrease (33.0 +/- 9.1 percent, mean +/- standard deviation) in the myocardial uptake of /sup 82/Rb was detected only when flow was increased by more than 120 percent in relation to a control area after administration of dypiridamole. The technique using /sup 82/Rb and tomography was applied in five volunteers and five patients with angina pectoris and coronary artery disease. Myocardial tomograms recorded at rest and after exercise in the volunteers showed homogeneous uptake of cation in reproducible and repeatable scans. In contrast, the patients with coronary artery disease showed an absolute mean decrease of 36 +/- 14 percent in regional myocardial uptake of /sup 82/Rb after exercise. These abnormalities persisted in serial tomograms for more than 20 minutes after the symptoms and electrocardiographic signs of ischemia.

  9. Senior High School Students' Errors on the Use of Relative Words

    ERIC Educational Resources Information Center

    Bao, Xiaoli

    2015-01-01

    Relative clause is one of the most important language points in College English Examination. Teachers have been attaching great importance to the teaching of relative clause, but the outcomes are not satisfactory. Based on Error Analysis theory, this article aims to explore the reasons why senior high school students find it difficult to choose…

  10. A cerebellar thalamic cortical circuit for error-related cognitive control

    PubMed Central

    Ide, Jaime S.; Li, Chiang-shan Ray

    2010-01-01

    Error detection and behavioral adjustment are core components of cognitive control. Numerous studies have focused on the anterior cingulate cortex (ACC) as a critical locus of this executive function. Our previous work showed greater activation in the dorsal ACC and subcortical structures during error detection, and activation in the ventrolateral prefrontal cortex (VLPFC) during post-error slowing (PES) in a stop signal task (SST). However, the extent of error-related cortical or subcortical activation across subjects was not correlated with VLPFC activity during PES. So then, what causes VLPFC activation during PES? To address this question, we employed Granger causality mapping (GCM) and identified regions that Granger caused VLPFC activation in 54 adults performing the SST during fMRI. These brain regions, including the supplementary motor area (SMA), cerebellum, a pontine region, and medial thalamus, represent potential targets responding to errors in a way that could influence VLPFC activation. In confirmation of this hypothesis, the error-related activity of these regions correlated with VLPFC activation during PES, with the cerebellum showing the strongest association. The finding that cerebellar activation Granger causes prefrontal activity during behavioral adjustment supports a cerebellar function in cognitive control. Furthermore, multivariate GCA described the “flow of information” across these brain regions. Through connectivity with the thalamus and SMA, the cerebellum mediates error and post-error processing in accord with known anatomical projections. Taken together, these new findings highlight the role of the cerebello-thalamo-cortical pathway in an executive function that has heretofore largely been ascribed to the anterior cingulate-prefrontal cortical circuit. PMID:20656038

  11. Instrument uncertainty effect on calculation of absolute humidity using dewpoint, wet-bulb, and relative humidity sensors

    SciTech Connect

    Slayzak, S.J.; Ryan, J.P.

    1998-04-01

    As part of the US Department of Energy`s Advanced Desiccant Technology Program, the National Renewable Energy Laboratory (NREL) is characterizing the state-of-the-art in desiccant dehumidifiers, the key component of desiccant cooling systems. The experimental data will provide industry and end users with independent performance evaluation and help researchers assess the energy savings potential of the technology. Accurate determination of humidity ratio is critical to this work and an understanding of the capabilities of the available instrumentation is central to its proper application. This paper compares the minimum theoretical random error in humidity ratio calculation for three common measurement methods to give a sense of the relative maximum accuracy possible for each method assuming systematic errors can be made negligible. A series of experiments conducted also illustrate the capabilities of relative humidity sensors as compared to dewpoint sensors in measuring the grain depression of desiccant dehumidifiers. These tests support the results of the uncertainty analysis. At generally available instrument accuracies, uncertainty in calculated humidity ratio for dewpoint sensors is determined to be constant at approximately 2%. Wet-bulb sensors range between 2% and 6% above 10 g/kg (4%--15% below), and relative humidity sensors vary between 4% above 90% rh and 15% at 20% rh. Below 20% rh, uncertainty for rh sensors increases dramatically. Highest currently attainable accuracies bring dewpoint instruments down to 1% uncertainty, wet bulb to a range of 1%--3% above 10 g/kg (1.5%--8% below), and rh sensors between 1% and 5%.

  12. Dysfunctional error-related processing in incarcerated youth with elevated psychopathic traits

    PubMed Central

    Maurer, J. Michael; Steele, Vaughn R.; Cope, Lora M.; Vincent, Gina M.; Stephen, Julia M.; Calhoun, Vince D.; Kiehl, Kent A.

    2016-01-01

    Adult psychopathic offenders show an increased propensity towards violence, impulsivity, and recidivism. A subsample of youth with elevated psychopathic traits represent a particularly severe subgroup characterized by extreme behavioral problems and comparable neurocognitive deficits as their adult counterparts, including perseveration deficits. Here, we investigate response-locked event-related potential (ERP) components (the error-related negativity [ERN/Ne] related to early error-monitoring processing and the error-related positivity [Pe] involved in later error-related processing) in a sample of incarcerated juvenile male offenders (n = 100) who performed a response inhibition Go/NoGo task. Psychopathic traits were assessed using the Hare Psychopathy Checklist: Youth Version (PCL:YV). The ERN/Ne and Pe were analyzed with classic windowed ERP components and principal component analysis (PCA). Using linear regression analyses, PCL:YV scores were unrelated to the ERN/Ne, but were negatively related to Pe mean amplitude. Specifically, the PCL:YV Facet 4 subscale reflecting antisocial traits emerged as a significant predictor of reduced amplitude of a subcomponent underlying the Pe identified with PCA. This is the first evidence to suggest a negative relationship between adolescent psychopathy scores and Pe mean amplitude. PMID:26930170

  13. Dysfunctional error-related processing in incarcerated youth with elevated psychopathic traits.

    PubMed

    Maurer, J Michael; Steele, Vaughn R; Cope, Lora M; Vincent, Gina M; Stephen, Julia M; Calhoun, Vince D; Kiehl, Kent A

    2016-06-01

    Adult psychopathic offenders show an increased propensity towards violence, impulsivity, and recidivism. A subsample of youth with elevated psychopathic traits represent a particularly severe subgroup characterized by extreme behavioral problems and comparable neurocognitive deficits as their adult counterparts, including perseveration deficits. Here, we investigate response-locked event-related potential (ERP) components (the error-related negativity [ERN/Ne] related to early error-monitoring processing and the error-related positivity [Pe] involved in later error-related processing) in a sample of incarcerated juvenile male offenders (n=100) who performed a response inhibition Go/NoGo task. Psychopathic traits were assessed using the Hare Psychopathy Checklist: Youth Version (PCL:YV). The ERN/Ne and Pe were analyzed with classic windowed ERP components and principal component analysis (PCA). Using linear regression analyses, PCL:YV scores were unrelated to the ERN/Ne, but were negatively related to Pe mean amplitude. Specifically, the PCL:YV Facet 4 subscale reflecting antisocial traits emerged as a significant predictor of reduced amplitude of a subcomponent underlying the Pe identified with PCA. This is the first evidence to suggest a negative relationship between adolescent psychopathy scores and Pe mean amplitude. PMID:26930170

  14. Impact of Uncertainties and Errors in Converting NWS Radiosonde Hygristor Resistances to Relative Humidity

    NASA Technical Reports Server (NTRS)

    Westphal, Douglas L.; Russell, Philip B. (Technical Monitor)

    1994-01-01

    A set of 2,600 6-second, National Weather Service soundings from NASA's FIRE-II Cirrus field experiment are used to illustrate previously known errors and new potential errors in the VIZ and SDD ) brand relative humidity (RH) sensors and the MicroART processing software. The entire spectrum of RH is potentially affected by at least one of these errors. (These errors occur before being converted to dew point temperature.) Corrections to the errors are discussed. Examples are given of the effect that these errors and biases may have on numerical weather prediction and radiative transfer. The figure shows the OLR calculated for the corrected and uncorrected soundings using an 18-band radiative transfer code. The OLR differences are sufficiently large to warrant consideration when validating line-by-line radiation calculations that use radiosonde data to specify the atmospheric state, or when validating satellite retrievals. in addition, a comparison of observations of RH during FIRE-II derived from GOES satellite, raman lidar, MAPS analyses, NCAR CLASS sondes, and the NWS sondes reveals disagreement in the RH distribution and underlines our lack of an understanding of the climatology of water vapor.

  15. Impact of Uncertainties and Errors in Converting NWS Radiosonde Hygristor Resistances to Relative Humidity

    NASA Technical Reports Server (NTRS)

    Westphal, Douglas L.; Russell, Philip (Technical Monitor)

    1994-01-01

    A set of 2,600 6-second, National Weather Service soundings from NASA's FIRE-II Cirrus field experiment are used to illustrate previously known errors and new potential errors in the VIZ and SDD brand relative humidity (RH) sensors and the MicroART processing software. The entire spectrum of RH is potentially affected by at least one of these errors. (These errors occur before being converted to dew point temperature.) Corrections to the errors are discussed. Examples are given of the effect that these errors and biases may have on numerical weather prediction and radiative transfer. The figure shows the OLR calculated for the corrected and uncorrected soundings using an 18-band radiative transfer code. The OLR differences are sufficiently large to warrant consideration when validating line-by-line radiation calculations that use radiosonde data to specify the atmospheric state, or when validating satellite retrievals. In addition, a comparison of observations of RE during FIRE-II derived from GOES satellite, raman lidar, MAPS analyses, NCAR CLASS sondes, and the NWS sondes reveals disagreement in the RH distribution and underlines our lack of an understanding of the climatology of water vapor.

  16. Errors in reward prediction are reflected in the event-related brain potential.

    PubMed

    Holroyd, Clay B; Nieuwenhuis, Sander; Yeung, Nick; Cohen, Jonathan D

    2003-12-19

    The error-related negativity (ERN) is a negative deflection in the event-related brain potential associated with error processing. A recent theory holds that the ERN is elicited by the impact of a reward prediction error signal carried by the mesencephalic dopamine system on anterior cingulate cortex. The theory predicts that larger ERNs should be elicited by unexpected unfavorable outcomes than by expected unfavorable outcomes. We tested the theory in an experiment in which the frequency of occurrence of reward was varied by condition, reasoning that the system that produces the ERN would come to expect non-reward when rewards were infrequent. Consistent with the theory, we found that larger ERNs were elicited by unexpected absences of reward.

  17. Investigation of technology needs for avoiding helicopter pilot error related accidents

    NASA Technical Reports Server (NTRS)

    Chais, R. I.; Simpson, W. E.

    1985-01-01

    Pilot error which is cited as a cause or related factor in most rotorcraft accidents was examined. Pilot error related accidents in helicopters to identify areas in which new technology could reduce or eliminate the underlying causes of these human errors were investigated. The aircraft accident data base at the U.S. Army Safety Center was studied as the source of data on helicopter accidents. A randomly selected sample of 110 aircraft records were analyzed on a case-by-case basis to assess the nature of problems which need to be resolved and applicable technology implications. Six technology areas in which there appears to be a need for new or increased emphasis are identified.

  18. Experimental violation and reformulation of the Heisenberg's error-disturbance uncertainty relation

    PubMed Central

    Baek, So-Young; Kaneda, Fumihiro; Ozawa, Masanao; Edamatsu, Keiichi

    2013-01-01

    The uncertainty principle formulated by Heisenberg in 1927 describes a trade-off between the error of a measurement of one observable and the disturbance caused on another complementary observable such that their product should be no less than the limit set by Planck's constant. However, Ozawa in 1988 showed a model of position measurement that breaks Heisenberg's relation and in 2003 revealed an alternative relation for error and disturbance to be proven universally valid. Here, we report an experimental test of Ozawa's relation for a single-photon polarization qubit, exploiting a more general class of quantum measurements than the class of projective measurements. The test is carried out by linear optical devices and realizes an indirect measurement model that breaks Heisenberg's relation throughout the range of our experimental parameter and yet validates Ozawa's relation. PMID:23860715

  19. Candidate genes in quantitative trait loci associated with absolute and relative kidney weight in rats with Inherited Stress Induced Arterial Hypertension

    PubMed Central

    2015-01-01

    Background The kidney mass is significantly increased in hypertensive ISIAH rats with Inherited Stress Induced Arterial Hypertension as compared with normotensive WAG rats. The QTL/microarray approach was carried out to determine the positional candidate genes in the QTL for absolute and relative kidney weight. Results Several known and predicted genes differentially expressed in ISIAH and WAG kidney were mapped to genetic loci associated with the absolute and relative kidney weight in 6-month old F2 hybrid (ISIAHxWAG) males. The knowledge-driven filtering of the list of candidates helped to suggest several positional candidate genes, which may be related to the structural and mass changes in hypertensive ISIAH kidney. In the current study, we showed that all loci found for absolute and relative kidney weight didn't overlap with significant or suggestive loci for arterial blood pressure level. So, the genes differentially expressed in ISIAH and WAG kidneys and located in these QTL regions associated with absolute and relative kidney weight shouldn't substantially influence the BP level in the 6 month-old ISIAH rats. However, in some cases, small effects may be suggested. Conclusions The further experimental validation of causative genes and detection of polymorphisms will provide opportunities to advance our understanding of the underlying nature of structural and mass changes in hypertensive ISIAH kidney. PMID:25707311

  20. Effect of various methods for rectum delineation on relative and absolute dose-volume histograms for prostate IMRT treatment planning.

    PubMed

    Kusumoto, Chiaki; Ohira, Shingo; Miyazaki, Masayoshi; Ueda, Yoshihiro; Isono, Masaru; Teshima, Teruki

    2016-01-01

    Several reports have dealt with correlations of late rectal toxicity with rectal dose-volume histograms (DVHs) for high dose levels. There are 2 techniques to assess rectal volume for reception of a specific dose: relative-DVH (R-DVH, %) that indicates relative volume for a vertical axis, and absolute-DVH (A-DVH, cc) with its vertical axis showing absolute volume of the rectum. The parameters of DVH vary depending on the rectum delineation method, but the literature does not present any standardization of such methods. The aim of the present study was to evaluate the effects of different delineation methods on rectal DVHs. The enrollment for this study comprised 28 patients with high-risk localized prostate cancer, who had undergone intensity-modulated radiation therapy (IMRT) with the prescription dose of 78Gy. The rectum was contoured with 4 different methods using 2 lengths, short (Sh) and long (Lg), and 2 cross sections, rectum (Rec) and rectal wall (Rw). Sh means the length from 1cm above the seminal vesicles to 1cm below the prostate and Lg the length from the rectosigmoid junction to the anus. Rec represents the entire rectal volume including the rectal contents and Rw the rectal volume of the area with a wall thickness of 4mm. We compared dose-volume parameters by using 4 rectal contour methods for the same plan with the R-DVHs as well as the A-DVHs. For the high dose levels, the R-DVH parameters varied widely. The mean of V70 for Sh-Rw was the highest (19.4%) and nearly twice as high as that for Lg-Rec (10.4%). On the contrary, only small variations were observed in the A-DVH parameters (4.3, 4.3, 5.5, and 5.5cc for Sh-Rw, Lg-Rw, Sh-Rec, and Lg-Rec, respectively). As for R-DVHs, the parameters of V70 varied depending on the rectal lengths (Sh-Rec vs Lg-Rec: R = 0.76; Sh-Rw vs Lg-Rw: R = 0.85) and cross sections (Sh-Rec vs Sh-Rw: R = 0.49; Lg-Rec vs Lg-Rw: R = 0.65). For A-DVHs, however, the parameters of Sh rectal A-DVHs hardly changed regardless of

  1. Tracing Error-Related Knowledge in Interview Data: Negative Knowledge in Elder Care Nursing

    ERIC Educational Resources Information Center

    Gartmeier, Martin; Gruber, Hans; Heid, Helmut

    2010-01-01

    This paper empirically investigates elder care nurses' negative knowledge. This form of experiential knowledge is defined as the outcome of error-related learning processes, focused on how something is not, on what not to do in certain situations or on deficits in one's knowledge or skills. Besides this definition, we presume the existence of…

  2. Effects of Temperature, Relative Humidity, Absolute Humidity, and Evaporation Potential on Survival of Airborne Gumboro Vaccine Virus

    PubMed Central

    Zhao, Yang; Dijkman, Remco; Fabri, Teun; de Jong, Mart C. M.; Groot Koerkamp, Peter W. G.

    2012-01-01

    Survival of airborne virus influences the extent of disease transmission via air. How environmental factors affect viral survival is not fully understood. We investigated the survival of a vaccine strain of Gumboro virus which was aerosolized at three temperatures (10°C, 20°C, and 30°C) and two relative humidities (RHs) (40% and 70%). The response of viral survival to four metrics (temperature, RH, absolute humidity [AH], and evaporation potential [EP]) was examined. The results show a biphasic viral survival at 10°C and 20°C, i.e., a rapid initial inactivation in a short period (2.3 min) during and after aerosolization, followed by a slow secondary inactivation during a 20-min period after aerosolization. The initial decays of aerosolized virus at 10°C (1.68 to 3.03 ln % min−1) and 20°C (3.05 to 3.62 ln % min−1) were significantly lower than those at 30°C (5.67 to 5.96 ln % min−1). The secondary decays at 10°C (0.03 to 0.09 ln % min−1) tended to be higher than those at 20°C (−0.01 to 0.01 ln % min−1). The initial viral survival responded to temperature and RH and potentially to EP; the secondary viral survival responded to temperature and potentially to RH. In both phases, survival of the virus was not significantly affected by AH. These findings suggest that long-distance transmission of airborne virus is more likely to occur at 20°C than at 10°C or 30°C and that current Gumboro vaccination by wet aerosolization in poultry industry is not very effective due to the fast initial decay. PMID:22156417

  3. On the road to invariant object recognition: how cortical area V2 transforms absolute to relative disparity during 3D vision.

    PubMed

    Grossberg, Stephen; Srinivasan, Karthik; Yazdanbakhsh, Arash

    2011-09-01

    Invariant recognition of objects depends on a hierarchy of cortical stages that build invariance gradually. Binocular disparity computations are a key part of this transformation. Cortical area V1 computes absolute disparity, which is the horizontal difference in retinal location of an image in the left and right foveas. Many cells in cortical area V2 compute relative disparity, which is the difference in absolute disparity of two visible features. Relative, but not absolute, disparity is invariant under both a disparity change across a scene and vergence eye movements. A neural network model is introduced which predicts that shunting lateral inhibition of disparity-sensitive layer 4 cells in V2 causes a peak shift in cell responses that transforms absolute disparity from V1 into relative disparity in V2. This inhibitory circuit has previously been implicated in contrast gain control, divisive normalization, selection of perceptual groupings, and attentional focusing. The model hereby links relative disparity to other visual functions and thereby suggests new ways to test its mechanistic basis. Other brain circuits are reviewed wherein lateral inhibition causes a peak shift that influences behavioral responses.

  4. Spatial reconstruction by patients with hippocampal damage is dominated by relational memory errors

    PubMed Central

    Watson, Patrick D.; Voss, Joel L.; Warren, David E.; Tranel, Daniel; Cohen, Neal J.

    2013-01-01

    Hippocampal damage causes profound yet circumscribed memory impairment across diverse stimulus types and testing formats. Here, within a single test format involving a single class of stimuli, we identified different performance errors to better characterize the specifics of the underlying deficit. The task involved study and reconstruction of object arrays across brief retention intervals. The most striking feature of patients’ with hippocampal damage performance was that they tended to reverse the relative positions of item pairs within arrays of any size, effectively “swapping” pairs of objects. These “swap errors” were the primary error type in amnesia, almost never occurred in healthy comparison participants, and actually contributed to poor performance on more traditional metrics (such as distance between studied and reconstructed location). Patients made swap errors even in trials involving only a single pair of objects. The selectivity and severity of this particular deficit creates serious challenges for theories of memory and hippocampus. PMID:23418096

  5. Error-related ERP components and individual differences in punishment and reward sensitivity.

    PubMed

    Boksem, Maarten A S; Tops, Mattie; Wester, Anne E; Meijman, Theo F; Lorist, Monicque M

    2006-07-26

    Although the focus of the discussion regarding the significance of the error related negatively (ERN/Ne) has been on the cognitive factors reflected in this component, there is now a growing body of research that describes influences of motivation, affective style and other factors of personality on ERN/Ne amplitude. The present study was conducted to further evaluate the relationship between affective style, error related ERP components and their neural basis. Therefore, we had our subjects fill out the Behavioral Activation System/Behavioral Inhibition System (BIS/BAS) scales, which are based on Gray's (1987, 1989) biopsychological theory of personality. We found that subjects scoring high on the BIS scale displayed larger ERN/Ne amplitudes, while subjects scoring high on the BAS scale displayed larger error positivity (Pe) amplitudes. No correlations were found between BIS and Pe amplitude or between BAS and ERN/Ne amplitude. Results are discussed in terms of individual differences in reward and punishment sensitivity that are reflected in error related ERP components.

  6. Error-related ERP components and individual differences in punishment and reward sensitivity.

    PubMed

    Boksem, Maarten A S; Tops, Mattie; Wester, Anne E; Meijman, Theo F; Lorist, Monicque M

    2006-07-26

    Although the focus of the discussion regarding the significance of the error related negatively (ERN/Ne) has been on the cognitive factors reflected in this component, there is now a growing body of research that describes influences of motivation, affective style and other factors of personality on ERN/Ne amplitude. The present study was conducted to further evaluate the relationship between affective style, error related ERP components and their neural basis. Therefore, we had our subjects fill out the Behavioral Activation System/Behavioral Inhibition System (BIS/BAS) scales, which are based on Gray's (1987, 1989) biopsychological theory of personality. We found that subjects scoring high on the BIS scale displayed larger ERN/Ne amplitudes, while subjects scoring high on the BAS scale displayed larger error positivity (Pe) amplitudes. No correlations were found between BIS and Pe amplitude or between BAS and ERN/Ne amplitude. Results are discussed in terms of individual differences in reward and punishment sensitivity that are reflected in error related ERP components. PMID:16784728

  7. Error-Related Brain Activity in Extraverts: Evidence for Altered Response Monitoring in Social Context

    PubMed Central

    Fishman, Inna; Ng, Rowena

    2013-01-01

    While the personality trait of extraversion has been linked to enhanced reward sensitivity and its putative neural correlates, little is known about whether extraverts’ neural circuits are particularly sensitive to social rewards, given their preference for social engagement and social interactions. Using event-related potentials (ERPs), this study examined the relationship between the variation on the extraversion spectrum and a feedback-related ERP component (the error-related negativity or ERN) known to be sensitive to the value placed on errors and reward. Participants completed a forced-choice task, in which either rewarding or punitive feedback regarding their performance was provided, through either social (facial expressions) or non-social (verbal written) mode. The ERNs elicited by error trials in the social – but not in non-social – blocks were found to be associated with the extent of one’s extraversion. However, the directionality of the effect was in contrast with the original prediction: namely, extraverts exhibited smaller ERNs than introverts during social blocks, whereas all participants produced similar ERNs in the non-social, verbal feedback condition. This finding suggests that extraverts exhibit diminished engagement in response monitoring – or find errors to be less salient – in the context of social feedback, perhaps because they find social contexts more predictable and thus more pleasant and less anxiety provoking. PMID:23454520

  8. The NIMH Research Domain Criteria initiative and error-related brain activity.

    PubMed

    Hanna, Gregory L; Gehring, William J

    2016-03-01

    Research on the neural response to errors has an important role in the Research Domain Criteria (RDoC) project, since it is likely to link psychopathology to the dysfunction of neural systems underlying basic behavioral functions, with the error-related negativity (ERN) appearing as a unit of measurement in three RDoC domains. A recent report builds on previous research by examining the ERN as a measure of the sustained threat construct and providing evidence that the ERN may reflect sensitivity more specifically to endogenous threat. Data from 515 adolescent females indicate that the ERN was enlarged primarily in older adolescents with self-reported checking behaviors, although it was blunted in adolescents with depressive symptoms regardless of age. Potential future studies for replicating and extending the research on the ERN and obsessive-compulsive (OC) behaviors are discussed, including studies that more fully characterize OC symptom dimensions, studies that integrate other measures of error-related brain activity and use computational modeling, studies that combine longitudinal, family, and molecular genetic measures, and interventional studies that specifically modulate error-related brain activity in individuals with OC behaviors. PMID:26877130

  9. Increasing the saliency of behavior-consequence relations for children with autism who exhibit persistent errors.

    PubMed

    Fisher, Wayne W; Pawich, Tamara L; Dickes, Nitasha; Paden, Amber R; Toussaint, Karen

    2014-01-01

    Some children with autism spectrum disorders (ASD) display persistent errors that are not responsive to commonly used prompting or error-correction strategies; one possible reason for this is that the behavior-consequence relations are not readily discriminable (Davison & Nevin, 1999). In this study, we increased the discriminability of the behavior-consequence relations in conditional-discrimination acquisition tasks for 3 children with ASD using schedule manipulations in concert with a unique visual display designed to increase the saliency of the differences between consequences in effect for correct responding and for errors. A multiple baseline design across participants was used to show that correct responding increased for all participants, and, after 1 or more exposures to the intervention, correct responding persisted to varying degrees across participants when the differential reinforcement baseline was reintroduced to assess maintenance. These findings suggest that increasing the saliency of behavior-consequence relations may help to increase correct responding in children with ASD who exhibit persistent errors.

  10. Absolute pitch among American and Chinese conservatory students: prevalence differences, and evidence for a speech-related critical period.

    PubMed

    Deutsch, Diana; Henthorn, Trevor; Marvin, Elizabeth; Xu, HongShuai

    2006-02-01

    Absolute pitch is extremely rare in the U.S. and Europe; this rarity has so far been unexplained. This paper reports a substantial difference in the prevalence of absolute pitch in two normal populations, in a large-scale study employing an on-site test, without self-selection from within the target populations. Music conservatory students in the U.S. and China were tested. The Chinese subjects spoke the tone language Mandarin, in which pitch is involved in conveying the meaning of words. The American subjects were nontone language speakers. The earlier the age of onset of musical training, the greater the prevalence of absolute pitch; however, its prevalence was far greater among the Chinese than the U.S. students for each level of age of onset of musical training. The findings suggest that the potential for acquiring absolute pitch may be universal, and may be realized by enabling infants to associate pitches with verbal labels during the critical period for acquisition of features of their native language.

  11. Laparoscopic cholecystectomy: device-related errors revealed through a national database.

    PubMed

    Panesar, Sukhmeet S; Salvilla, Sarah A; Patel, Bhavesh; Donaldson, Sir Liam

    2011-09-01

    Laparoscopic techniques represent a key milestone in the development of modern surgery, offering a step change in quality of care, patient satisfaction and efficiency in use of health service resources. Laparoscopy is most widely used for gall bladder surgery. As would be expected with the introduction of any new technology, the early phase of development was accompanied by complications in its use. Arguably some of these should have been anticipated, but nevertheless standards and training programs were subsequently put in place to secure a more consistent standard of care across the UK. Now that this early learning curve has largely been negotiated, we wanted to examine the nature of the errors associated with laparoscopic gall bladder surgery, particularly in relation to equipment. We used data from the largest error-reporting system in the world to examine the problem of equipment-related incidents amongst patients who had laparoscopic cholecystectomy. Over the 6-year period 2004-2010, the number of such reports increased 15-fold, whilst the growth in use of the procedure itself increased 1.3-fold. The majority of the increase was in device-related errors. User-related errors constituted a smaller proportion of errors. Whilst most surgeons appear to carry out laparoscopic surgery with a low level of harm to their patients, problems with their equipment remains a risk for many procedures. In some ways, this is an easier problem to address than one associated with competency. A risk associated with faulty, substandard or misused equipment is one that should be minimized in a 21st Century surgical service. PMID:22026620

  12. Mediofrontal event-related potentials in response to positive, negative and unsigned prediction errors.

    PubMed

    Sambrook, Thomas D; Goslin, Jeremy

    2014-08-01

    Reinforcement learning models make use of reward prediction errors (RPEs), the difference between an expected and obtained reward. There is evidence that the brain computes RPEs, but an outstanding question is whether positive RPEs ("better than expected") and negative RPEs ("worse than expected") are represented in a single integrated system. An electrophysiological component, feedback related negativity, has been claimed to encode an RPE but its relative sensitivity to the utility of positive and negative RPEs remains unclear. This study explored the question by varying the utility of positive and negative RPEs in a design that controlled for other closely related properties of feedback and could distinguish utility from salience. It revealed a mediofrontal sensitivity to utility, for positive RPEs at 275-310ms and for negative RPEs at 310-390ms. These effects were preceded and succeeded by a response consistent with an unsigned prediction error, or "salience" coding.

  13. Distinguishing the influence of task difficulty on error-related ERPs using surface Laplacian transformation.

    PubMed

    Van der Borght, Liesbet; Houtman, Femke; Burle, Boris; Notebaert, Wim

    2016-03-01

    Electrophysiologically, errors are characterized by a negative deflection, the error related negativity (ERN), which is followed by the error positivity (Pe). However, it has been suggested that this latter component consists of two subcomponents, with an early frontocentral Pe reflecting a continuation of the ERN, and a centro-parietal Pe reflecting error awareness. Using Laplacian transformed averages, a correct-related negativity (CRN; similar to the ERN), can be found on correct trials. As this technique allows for the decomposition of the recorded scalp potentials resulting in a better dissociation of the underlying brain activities, Laplacian transformation was used in the present study to differentiate between both the ERN/CRN and both Pe components. Additionally, task difficulty was manipulated. Our results show a clearly distinguishable early and late Pe. Both the ERN/CRN and the early Pe varied with task difficulty, showing decreased ERN/early Pe in the difficult condition. However, the late Pe was not influenced by our difficulty manipulation. This suggests that the early and the late Pe reflect qualitatively different processes.

  14. Error processing and response inhibition in excessive computer game players: an event-related potential study.

    PubMed

    Littel, Marianne; van den Berg, Ivo; Luijten, Maartje; van Rooij, Antonius J; Keemink, Lianne; Franken, Ingmar H A

    2012-09-01

    Excessive computer gaming has recently been proposed as a possible pathological illness. However, research on this topic is still in its infancy and underlying neurobiological mechanisms have not yet been identified. The determination of underlying mechanisms of excessive gaming might be useful for the identification of those at risk, a better understanding of the behavior and the development of interventions. Excessive gaming has been often compared with pathological gambling and substance use disorder. Both disorders are characterized by high levels of impulsivity, which incorporates deficits in error processing and response inhibition. The present study aimed to investigate error processing and response inhibition in excessive gamers and controls using a Go/NoGo paradigm combined with event-related potential recordings. Results indicated that excessive gamers show reduced error-related negativity amplitudes in response to incorrect trials relative to correct trials, implying poor error processing in this population. Furthermore, excessive gamers display higher levels of self-reported impulsivity as well as more impulsive responding as reflected by less behavioral inhibition on the Go/NoGo task. The present study indicates that excessive gaming partly parallels impulse control and substance use disorders regarding impulsivity measured on the self-reported, behavioral and electrophysiological level. Although the present study does not allow drawing firm conclusions on causality, it might be that trait impulsivity, poor error processing and diminished behavioral response inhibition underlie the excessive gaming patterns observed in certain individuals. They might be less sensitive to negative consequences of gaming and therefore continue their behavior despite adverse consequences.

  15. Anatomy of an error: a bidirectional state model of task engagement/disengagement and attention-related errors.

    PubMed

    Allan Cheyne, J; Solman, Grayden J F; Carriere, Jonathan S A; Smilek, Daniel

    2009-04-01

    We present arguments and evidence for a three-state attentional model of task engagement/disengagement. The model postulates three states of mind-wandering: occurrent task inattention, generic task inattention, and response disengagement. We hypothesize that all three states are both causes and consequences of task performance outcomes and apply across a variety of experimental and real-world tasks. We apply this model to the analysis of a widely used GO/NOGO task, the Sustained Attention to Response Task (SART). We identify three performance characteristics of the SART that map onto the three states of the model: RT variability, anticipations, and omissions. Predictions based on the model are tested, and largely corroborated, via regression and lag-sequential analyses of both successful and unsuccessful withholding on NOGO trials as well as self-reported mind-wandering and everyday cognitive errors. The results revealed theoretically consistent temporal associations among the state indicators and between these and SART errors as well as with self-report measures. Lag analysis was consistent with the hypotheses that temporal transitions among states are often extremely abrupt and that the association between mind-wandering and performance is bidirectional. The bidirectional effects suggest that errors constitute important occasions for reactive mind-wandering. The model also enables concrete phenomenological, behavioral, and physiological predictions for future research.

  16. Neurophysiology of Reward-Guided Behavior: Correlates Related to Predictions, Value, Motivation, Errors, Attention, and Action.

    PubMed

    Bissonette, Gregory B; Roesch, Matthew R

    2016-01-01

    Many brain areas are activated by the possibility and receipt of reward. Are all of these brain areas reporting the same information about reward? Or are these signals related to other functions that accompany reward-guided learning and decision-making? Through carefully controlled behavioral studies, it has been shown that reward-related activity can represent reward expectations related to future outcomes, errors in those expectations, motivation, and signals related to goal- and habit-driven behaviors. These dissociations have been accomplished by manipulating the predictability of positively and negatively valued events. Here, we review single neuron recordings in behaving animals that have addressed this issue. We describe data showing that several brain areas, including orbitofrontal cortex, anterior cingulate, and basolateral amygdala signal reward prediction. In addition, anterior cingulate, basolateral amygdala, and dopamine neurons also signal errors in reward prediction, but in different ways. For these areas, we will describe how unexpected manipulations of positive and negative value can dissociate signed from unsigned reward prediction errors. All of these signals feed into striatum to modify signals that motivate behavior in ventral striatum and guide responding via associative encoding in dorsolateral striatum. PMID:26276036

  17. Neurophysiology of Reward-Guided Behavior: Correlates Related to Predictions, Value, Motivation, Errors, Attention, and Action.

    PubMed

    Bissonette, Gregory B; Roesch, Matthew R

    2016-01-01

    Many brain areas are activated by the possibility and receipt of reward. Are all of these brain areas reporting the same information about reward? Or are these signals related to other functions that accompany reward-guided learning and decision-making? Through carefully controlled behavioral studies, it has been shown that reward-related activity can represent reward expectations related to future outcomes, errors in those expectations, motivation, and signals related to goal- and habit-driven behaviors. These dissociations have been accomplished by manipulating the predictability of positively and negatively valued events. Here, we review single neuron recordings in behaving animals that have addressed this issue. We describe data showing that several brain areas, including orbitofrontal cortex, anterior cingulate, and basolateral amygdala signal reward prediction. In addition, anterior cingulate, basolateral amygdala, and dopamine neurons also signal errors in reward prediction, but in different ways. For these areas, we will describe how unexpected manipulations of positive and negative value can dissociate signed from unsigned reward prediction errors. All of these signals feed into striatum to modify signals that motivate behavior in ventral striatum and guide responding via associative encoding in dorsolateral striatum.

  18. Absolute calibration of optical flats

    DOEpatents

    Sommargren, Gary E.

    2005-04-05

    The invention uses the phase shifting diffraction interferometer (PSDI) to provide a true point-by-point measurement of absolute flatness over the surface of optical flats. Beams exiting the fiber optics in a PSDI have perfect spherical wavefronts. The measurement beam is reflected from the optical flat and passed through an auxiliary optic to then be combined with the reference beam on a CCD. The combined beams include phase errors due to both the optic under test and the auxiliary optic. Standard phase extraction algorithms are used to calculate this combined phase error. The optical flat is then removed from the system and the measurement fiber is moved to recombine the two beams. The newly combined beams include only the phase errors due to the auxiliary optic. When the second phase measurement is subtracted from the first phase measurement, the absolute phase error of the optical flat is obtained.

  19. Experimental Test of Residual Error-Disturbance Uncertainty Relations for Mixed Spin-1/2 States

    NASA Astrophysics Data System (ADS)

    Demirel, Bülent; Sponar, Stephan; Sulyok, Georg; Ozawa, Masanao; Hasegawa, Yuji

    2016-09-01

    The indeterminacy inherent in quantum measurements is an outstanding character of quantum theory, which manifests itself typically in the uncertainty principle. In the last decade, several universally valid forms of error-disturbance uncertainty relations were derived for completely general quantum measurements for arbitrary states. Subsequently, Branciard established a form that is optimal for spin measurements for some pure states. However, the bound in his inequality is not stringent for mixed states. One of the present authors recently derived a new bound tight in the corresponding mixed state case. Here, a neutron-optical experiment is carried out to investigate this new relation: it is tested whether error and disturbance of quantum measurements disappear or persist in mixing up the measured ensemble. The attainability of the new bound is experimentally observed, falsifying the tightness of Branciard's bound for mixed spin states.

  20. Writing errors in ALS related to loss of neuronal integrity in the anterior cingulate gyrus.

    PubMed

    Yabe, Ichiro; Tsuji-Akimoto, Sachiko; Shiga, Tohru; Hamada, Shinsuke; Hirata, Kenji; Otsuki, Mika; Kuge, Yuji; Tamaki, Nagara; Sasaki, Hidenao

    2012-04-15

    Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder characterized by loss of motor neuron and various cognitive deficits including writing errors. (11)C-flumazenil (FMZ), the positron emission tomography (PET) GABA(A) receptor ligand, is a marker of cortical dysfunction. The objective of this study was to investigate the relationship between cognitive deficits and loss of neuronal integrity in ALS patients using (11)C-FMZ PET. Ten patients with ALS underwent both neuropsychological tests and (11)C-FMZ-PET. The binding potential (BP) of FMZ was calculated from (11)C-FMZ PET images. There were no significant correlations between the BP and most test scores except for the writing error index (WEI), which was measured by the modified Western Aphasia Battery - VB (WAB-IVB) test. The severity of writing error was associated with loss of neuronal integrity in the bilateral anterior cingulate gyrus with mild right predominance (n=9; x=4 mm, y=36 mm, z=4 mm, Z=5.1). The results showed that writing errors in our patients with ALS were related to dysfunction in the anterior cingulate gyrus.

  1. Rectification of General Relativity, Experimental Verifications, and Errors of the Wheeler School

    NASA Astrophysics Data System (ADS)

    Lo, C. Y.

    2013-09-01

    General relativity is not yet consistent. Pauli has misinterpreted Einstein's 1916 equivalence principle that can derive a valid field equation. The Wheeler School has distorted Einstein's 1916 principle to be his 1911 assumption of equivalence, and created new errors. Moreover, errors on dynamic solutions have allowed the implicit assumption of a unique coupling sign that violates the principle of causality. This leads to the space-time singularity theorems of Hawking and Penrose who "refute" applications for microscopic phenomena, and obstruct efforts to obtain a valid equation for the dynamic case. These errors also explain the mistakes in the press release of the 1993 Nobel Committee, who was unaware of the non-existence of dynamic solutions. To illustrate the damages to education, the MIT Open Course Phys. 8.033 is chosen. Rectification of errors confirms that E = mc2 is only conditionally valid, and leads to the discovery of the charge-mass interaction that is experimentally confirmed and subsequently the unification of gravitation and electromagnetism. The charge-mass interaction together with the unification predicts the weight reduction (instead of increment) of charged capacitors and heated metals, and helps to explain NASA's Pioneer anomaly and potentially other anomalies as well.

  2. Error-related EEG potentials generated during simulated brain-computer interaction.

    PubMed

    Ferrez, Pierre W; del R Millan, José

    2008-03-01

    Brain-computer interfaces (BCIs) are prone to errors in the recognition of subject's intent. An elegant approach to improve the accuracy of BCIs consists in a verification procedure directly based on the presence of error-related potentials (ErrP) in the electroencephalogram (EEG) recorded right after the occurrence of an error. Several studies show the presence of ErrP in typical choice reaction tasks. However, in the context of a BCI, the central question is: "Are ErrP also elicited when the error is made by the interface during the recognition of the subject's intent?"; We have thus explored whether ErrP also follow a feedback indicating incorrect responses of the simulated BCI interface. Five healthy volunteer subjects participated in a new human-robot interaction experiment, which seem to confirm the previously reported presence of a new kind of ErrP. However, in order to exploit these ErrP, we need to detect them in each single trial using a short window following the feedback associated to the response of the BCI. We have achieved an average recognition rate of correct and erroneous single trials of 83.5% and 79.2%, respectively, using a classifier built with data recorded up to three months earlier.

  3. Errare machinale est: the use of error-related potentials in brain-machine interfaces

    PubMed Central

    Chavarriaga, Ricardo; Sobolewski, Aleksander; Millán, José del R.

    2014-01-01

    The ability to recognize errors is crucial for efficient behavior. Numerous studies have identified electrophysiological correlates of error recognition in the human brain (error-related potentials, ErrPs). Consequently, it has been proposed to use these signals to improve human-computer interaction (HCI) or brain-machine interfacing (BMI). Here, we present a review of over a decade of developments toward this goal. This body of work provides consistent evidence that ErrPs can be successfully detected on a single-trial basis, and that they can be effectively used in both HCI and BMI applications. We first describe the ErrP phenomenon and follow up with an analysis of different strategies to increase the robustness of a system by incorporating single-trial ErrP recognition, either by correcting the machine's actions or by providing means for its error-based adaptation. These approaches can be applied both when the user employs traditional HCI input devices or in combination with another BMI channel. Finally, we discuss the current challenges that have to be overcome in order to fully integrate ErrPs into practical applications. This includes, in particular, the characterization of such signals during real(istic) applications, as well as the possibility of extracting richer information from them, going beyond the time-locked decoding that dominates current approaches. PMID:25100937

  4. Software platform for managing the classification of error- related potentials of observers

    NASA Astrophysics Data System (ADS)

    Asvestas, P.; Ventouras, E.-C.; Kostopoulos, S.; Sidiropoulos, K.; Korfiatis, V.; Korda, A.; Uzunolglu, A.; Karanasiou, I.; Kalatzis, I.; Matsopoulos, G.

    2015-09-01

    Human learning is partly based on observation. Electroencephalographic recordings of subjects who perform acts (actors) or observe actors (observers), contain a negative waveform in the Evoked Potentials (EPs) of the actors that commit errors and of observers who observe the error-committing actors. This waveform is called the Error-Related Negativity (ERN). Its detection has applications in the context of Brain-Computer Interfaces. The present work describes a software system developed for managing EPs of observers, with the aim of classifying them into observations of either correct or incorrect actions. It consists of an integrated platform for the storage, management, processing and classification of EPs recorded during error-observation experiments. The system was developed using C# and the following development tools and frameworks: MySQL, .NET Framework, Entity Framework and Emgu CV, for interfacing with the machine learning library of OpenCV. Up to six features can be computed per EP recording per electrode. The user can select among various feature selection algorithms and then proceed to train one of three types of classifiers: Artificial Neural Networks, Support Vector Machines, k-nearest neighbour. Next the classifier can be used for classifying any EP curve that has been inputted to the database.

  5. The absolute path command

    2012-05-11

    The ap command traveres all symlinks in a given file, directory, or executable name to identify the final absolute path. It can print just the final path, each intermediate link along with the symlink chan, and the permissions and ownership of each directory component in the final path. It has functionality similar to "which", except that it shows the final path instead of the first path. It is also similar to "pwd", but it canmore » provide the absolute path to a relative directory from the current working directory.« less

  6. The absolute path command

    SciTech Connect

    Moody, A.

    2012-05-11

    The ap command traveres all symlinks in a given file, directory, or executable name to identify the final absolute path. It can print just the final path, each intermediate link along with the symlink chan, and the permissions and ownership of each directory component in the final path. It has functionality similar to "which", except that it shows the final path instead of the first path. It is also similar to "pwd", but it can provide the absolute path to a relative directory from the current working directory.

  7. Using Mean Absolute Relative Phase, Deviation Phase and Point-Estimation Relative Phase to Measure Postural Coordination in a Serial Reaching Task.

    PubMed

    Galgon, Anne K; Shewokis, Patricia A

    2016-03-01

    The objectives of this communication are to present the methods used to calculate mean absolute relative phase (MARP), deviation phase (DP) and point estimate relative phase (PRP) and compare their utility in measuring postural coordination during the performance of a serial reaching task. MARP and DP are derived from continuous relative phase time series representing the relationship between two body segments or joints during movements. MARP is a single measure used to quantify the coordination pattern and DP measures the stability of the coordination pattern. PRP also quantifies coordination patterns by measuring the relationship between the timing of maximal or minimal angular displacements of two segments within cycles of movement. Seven young adults practiced a bilateral serial reaching task 300 times over 3 days. Relative phase measures were used to evaluate inter-joint relationships for shoulder-hip (proximal) and hip-ankle (distal) postural coordination at early and late learning. MARP, PRP and DP distinguished between proximal and distal postural coordination. There was no effect of practice on any of the relative phase measures for the group, but individual differences were seen over practice. Combined, MARP and DP estimated stability of in-phase and anti-phase postural coordination patterns, however additional qualitative movement analyses may be needed to interpret findings in a serial task. We discuss the strengths and limitations of using MARP and DP and compare MARP and DP to PRP measures in assessing coordination patterns in the context of various types of skillful tasks. Key pointsMARP, DP and PRP measures coordination between segments or joint anglesAdvantages and disadvantages of each measure should be considered in relationship to the performance taskMARP and DP may capture coordination patterns and stability of the patterns during discrete tasks or phases of movements within a taskPRP and SD or PRP may capture coordination patterns and

  8. Using Simulation to Address Hierarchy-Related Errors in Medical Practice

    PubMed Central

    Calhoun, Aaron William; Boone, Megan C; Porter, Melissa B; Miller, Karen H

    2014-01-01

    Objective: Hierarchy, the unavoidable authority gradients that exist within and between clinical disciplines, can lead to significant patient harm in high-risk situations if not mitigated. High-fidelity simulation is a powerful means of addressing this issue in a reproducible manner, but participant psychological safety must be assured. Our institution experienced a hierarchy-related medication error that we subsequently addressed using simulation. The purpose of this article is to discuss the implementation and outcome of these simulations. Methods: Script and simulation flowcharts were developed to replicate the case. Each session included the use of faculty misdirection to precipitate the error. Care was taken to assure psychological safety via carefully conducted briefing and debriefing periods. Case outcomes were assessed using the validated Team Performance During Simulated Crises Instrument. Gap analysis was used to quantify team self-insight. Session content was analyzed via video review. Results: Five sessions were conducted (3 in the pediatric intensive care unit and 2 in the Pediatric Emergency Department). The team was unsuccessful at addressing the error in 4 (80%) of 5 cases. Trends toward lower communication scores (3.4/5 vs 2.3/5), as well as poor team self-assessment of communicative ability, were noted in unsuccessful sessions. Learners had a positive impression of the case. Conclusions: Simulation is a useful means to replicate hierarchy error in an educational environment. This methodology was viewed positively by learner teams, suggesting that psychological safety was maintained. Teams that did not address the error successfully may have impaired self-assessment ability in the communication skill domain. PMID:24867545

  9. Evaluation of measurement errors of temperature and relative humidity from HOBO data logger under different conditions of exposure to solar radiation.

    PubMed

    da Cunha, Antonio Ribeiro

    2015-05-01

    This study aimed to assess measurements of temperature and relative humidity obtained with HOBO a data logger, under various conditions of exposure to solar radiation, comparing them with those obtained through the use of a temperature/relative humidity probe and a copper-constantan thermocouple psychrometer, which are considered the standards for obtaining such measurements. Data were collected over a 6-day period (from 25 March to 1 April, 2010), during which the equipment was monitored continuously and simultaneously. We employed the following combinations of equipment and conditions: a HOBO data logger in full sunlight; a HOBO data logger shielded within a white plastic cup with windows for air circulation; a HOBO data logger shielded within a gill-type shelter (multi-plate prototype plastic); a copper-constantan thermocouple psychrometer exposed to natural ventilation and protected from sunlight; and a temperature/relative humidity probe under a commercial, multi-plate radiation shield. Comparisons between the measurements obtained with the various devices were made on the basis of statistical indicators: linear regression, with coefficient of determination; index of agreement; maximum absolute error; and mean absolute error. The prototype multi-plate shelter (gill-type) used in order to protect the HOBO data logger was found to provide the best protection against the effects of solar radiation on measurements of temperature and relative humidity. The precision and accuracy of a device that measures temperature and relative humidity depend on an efficient shelter that minimizes the interference caused by solar radiation, thereby avoiding erroneous analysis of the data obtained.

  10. Absolute vs. Weight-Related Maximum Oxygen Uptake in Firefighters: Fitness Evaluation with and without Protective Clothing and Self-Contained Breathing Apparatus among Age Group

    PubMed Central

    Perroni, Fabrizio; Guidetti, Laura; Cignitti, Lamberto; Baldari, Carlo

    2015-01-01

    During fire emergencies, firefighters wear personal protective devices (PC) and a self-contained breathing apparatus (S.C.B.A.) to be protected from injuries. The purpose of this study was to investigate the differences of aerobic level in 197 firefighters (age: 34±7 yr; BMI: 24.4±2.3 kg.m-2), evaluated by a Queen’s College Step field Test (QCST), performed with and without fire protective garments, and to analyze the differences among age groups (<25 yr; 26-30 yr, 31-35 yr, 36-40 yr and >40 yr). Variance analysis was applied to assess differences (p < 0.05) between tests and age groups observed in absolute and weight-related values, while a correlation was examined between QCST with and without PC+S.C.B.A. The results have shown that a 13% of firefighters failed to complete the test with PC+S.C.B.A. and significant differences between QCST performed with and without PC+S.C.B.A. in absolute (F(1,169) = 42.6, p < 0.0001) and weight-related (F(1,169) = 339.9, p < 0.0001) terms. A better correlation has been found in L•min-1 (r=0.67) than in ml•kg-1•min-1 (r=0.54). Moreover, we found significant differences among age groups both in absolute and weight-related values. The assessment of maximum oxygen uptake of firefighters in absolute term can be a useful tool to evaluate the firefighters' cardiovascular strain. PMID:25764201

  11. Absolute vs. weight-related maximum oxygen uptake in firefighters: fitness evaluation with and without protective clothing and self-contained breathing apparatus among age group.

    PubMed

    Perroni, Fabrizio; Guidetti, Laura; Cignitti, Lamberto; Baldari, Carlo

    2015-01-01

    During fire emergencies, firefighters wear personal protective devices (PC) and a self-contained breathing apparatus (S.C.B.A.) to be protected from injuries. The purpose of this study was to investigate the differences of aerobic level in 197 firefighters (age: 34±7 yr; BMI: 24.4±2.3 kg.m-2), evaluated by a Queen's College Step field Test (QCST), performed with and without fire protective garments, and to analyze the differences among age groups (<25 yr; 26-30 yr, 31-35 yr, 36-40 yr and >40 yr). Variance analysis was applied to assess differences (p < 0.05) between tests and age groups observed in absolute and weight-related values, while a correlation was examined between QCST with and without PC+S.C.B.A. The results have shown that a 13% of firefighters failed to complete the test with PC+S.C.B.A. and significant differences between QCST performed with and without PC+S.C.B.A. in absolute (F(1,169) = 42.6, p < 0.0001) and weight-related (F(1,169) = 339.9, p < 0.0001) terms. A better correlation has been found in L•min-1 (r=0.67) than in ml•kg-1•min-1 (r=0.54). Moreover, we found significant differences among age groups both in absolute and weight-related values. The assessment of maximum oxygen uptake of firefighters in absolute term can be a useful tool to evaluate the firefighters' cardiovascular strain. PMID:25764201

  12. Moving Away From Error-Related Potentials to Achieve Spelling Correction in P300 Spellers

    PubMed Central

    Mainsah, Boyla O.; Morton, Kenneth D.; Collins, Leslie M.; Sellers, Eric W.; Throckmorton, Chandra S.

    2016-01-01

    P300 spellers can provide a means of communication for individuals with severe neuromuscular limitations. However, its use as an effective communication tool is reliant on high P300 classification accuracies (>70%) to account for error revisions. Error-related potentials (ErrP), which are changes in EEG potentials when a person is aware of or perceives erroneous behavior or feedback, have been proposed as inputs to drive corrective mechanisms that veto erroneous actions by BCI systems. The goal of this study is to demonstrate that training an additional ErrP classifier for a P300 speller is not necessary, as we hypothesize that error information is encoded in the P300 classifier responses used for character selection. We perform offline simulations of P300 spelling to compare ErrP and non-ErrP based corrective algorithms. A simple dictionary correction based on string matching and word frequency significantly improved accuracy (35–185%), in contrast to an ErrP-based method that flagged, deleted and replaced erroneous characters (−47 – 0%). Providing additional information about the likelihood of characters to a dictionary-based correction further improves accuracy. Our Bayesian dictionary-based correction algorithm that utilizes P300 classifier confidences performed comparably (44–416%) to an oracle ErrP dictionary-based method that assumed perfect ErrP classification (43–433%). PMID:25438320

  13. Errors can be related to pre-stimulus differences in ERP topography and their concomitant sources.

    PubMed

    Britz, Juliane; Michel, Christoph M

    2010-02-01

    Much of the variation in both neuronal and behavioral responses to stimuli can be explained by pre-stimulus fluctuations in brain activity. We hypothesized that also errors are the result of stochastic fluctuations in pre-stimulus activity and investigated the temporal dynamics of the scalp topography and their concomitant intracranial generators of stimulus- and response-locked high-density event-related potentials (ERPs) to errors and correct trials in a Stroop task. We found significant differences in ERP map topography and intracranial sources before the onset of the stimulus and after the initiation of the response but not as a function of stimulus-induced conflict. Before the stimulus, topographic differences were accompanied by differential activity in lateral frontal, parietal and temporal areas known to be involved in voluntary reorientation of attention and cognitive control. Differential post-response activity propagated both medially and laterally on a rostral-caudal axis of a network typically involved in performance monitoring. Analysis of the statistical properties of error occurrences revealed their stochasticity. PMID:19850140

  14. Errors Related to Medication Reconciliation: A Prospective Study in Patients Admitted to the Post CCU

    PubMed Central

    Haji Aghajani, Mohammad; Ghazaeian, Monireh; Mehrazin, Hamid Reza; Sistanizad, Mohammad; Miri, Mirmohammad

    2016-01-01

    Medication errors are one of the important factors that increase fatal injuries to the patients and burden significant economic costs to the health care. An appropriate medical history could reduce errors related to omission of the previous drugs at the time of hospitalization. The aim of this study, as first one in Iran, was evaluating the discrepancies between medication histories obtained by pharmacists and physicians/nurses and first order of physician. From September 2012 until March 2013, patients admitted to the post CCU of a 550 bed university hospital, were recruited in the study. As a part of medication reconciliation on admission, the physicians/nurses obtained medication history from all admitted patients. For patients included in the study, medication history was obtained by both physician/nurse and a pharmacy student (after training by a faculty clinical pharmacist) during the first 24 h of admission. 250 patients met inclusion criteria. The mean age of patients was 61.19 ± 14.41 years. Comparing pharmacy student drug history with medication lists obtained by nurses/physicians revealed 3036 discrepancies. On average, 12.14 discrepancies, ranged from 0 to 68, were identified per patient. Only in 20 patients (8%) there was 100 % agreement among medication lists obtained by pharmacist and physician/nurse. Comparing the medications by list of drugs ordered by physician at first visit showed 12.1 discrepancies on average ranging 0 to 72. According to the results, omission errors in our setting are higher than other countries. Pharmacy-based medication reconciliation could be recommended to decrease this type of error. PMID:27642331

  15. Abnormal error-related antisaccade activation in premanifest and early manifest Huntington disease

    PubMed Central

    Rupp, J.; Dzemidzic, M.; Blekher, T.; Bragulat, V.; West, J.; Jackson, J.; Hui, S.; Wojcieszek, J.; Saykin, A.J.; Kareken, D.; Foroud, T.

    2010-01-01

    Objective Individuals with the trinucleotide CAG expansion (CAG+) that causes Huntington disease (HD) have impaired performance on antisaccade (AS) tasks that require directing gaze in the mirror opposite direction of visual targets. This study aimed to identify the neural substrates underlying altered antisaccadic performance. Method Three groups of participants were recruited: 1) Imminent and early manifest HD (early HD, n=8); 2) premanifest (presymptomatic) CAG+ (preHD, n=10); and 3) CAG unexpanded (CAG−) controls (n=12). All participants completed a uniform study visit that included a neurological evaluation, neuropsychological battery, molecular testing, and functional magnetic resonance imaging during an AS task. The blood oxygenation level dependent (BOLD) response was obtained during saccade preparation and saccade execution for both correct and incorrect responses using regression analysis. Results Significant group differences in BOLD response were observed when comparing incorrect AS to correct AS execution. Specifically, as the percentage of incorrect AS increased, BOLD responses in the CAG− group decreased progressively in a well-documented reward detection network that includes the pre-supplementary motor area and dorsal anterior cingulate cortex. In contrast, AS errors in the preHD and early HD groups lacked this relationship with BOLD signal in the error detection network, and BOLD responses to AS errors were smaller in the two CAG+ groups as compared with the CAG− group. Conclusions These results are the first to suggest that abnormalities in an error-related response network may underlie early changes in AS eye movements in premanifest and early manifest HD. PMID:21401260

  16. Errors Related to Medication Reconciliation: A Prospective Study in Patients Admitted to the Post CCU.

    PubMed

    Haji Aghajani, Mohammad; Ghazaeian, Monireh; Mehrazin, Hamid Reza; Sistanizad, Mohammad; Miri, Mirmohammad

    2016-01-01

    Medication errors are one of the important factors that increase fatal injuries to the patients and burden significant economic costs to the health care. An appropriate medical history could reduce errors related to omission of the previous drugs at the time of hospitalization. The aim of this study, as first one in Iran, was evaluating the discrepancies between medication histories obtained by pharmacists and physicians/nurses and first order of physician. From September 2012 until March 2013, patients admitted to the post CCU of a 550 bed university hospital, were recruited in the study. As a part of medication reconciliation on admission, the physicians/nurses obtained medication history from all admitted patients. For patients included in the study, medication history was obtained by both physician/nurse and a pharmacy student (after training by a faculty clinical pharmacist) during the first 24 h of admission. 250 patients met inclusion criteria. The mean age of patients was 61.19 ± 14.41 years. Comparing pharmacy student drug history with medication lists obtained by nurses/physicians revealed 3036 discrepancies. On average, 12.14 discrepancies, ranged from 0 to 68, were identified per patient. Only in 20 patients (8%) there was 100 % agreement among medication lists obtained by pharmacist and physician/nurse. Comparing the medications by list of drugs ordered by physician at first visit showed 12.1 discrepancies on average ranging 0 to 72. According to the results, omission errors in our setting are higher than other countries. Pharmacy-based medication reconciliation could be recommended to decrease this type of error. PMID:27642331

  17. Error-Related Negativity and the Misattribution of State-Anxiety Following Errors: On the Reproducibility of Inzlicht and Al-Khindi (2012)

    PubMed Central

    Cano Rodilla, Carmen; Beauducel, André; Leue, Anja

    2016-01-01

    In their innovative study, Inzlicht and Al-Khindi (2012) demonstrated that participants who were allowed to misattribute their arousal and negative affect induced by errors to a placebo beverage had a reduced error-related negativity (ERN/Ne) compared to controls not being allowed to misattribute their arousal following errors. These results contribute to the ongoing debate that affect and motivation are interwoven with the cognitive processing of errors. Evidence that the misattribution of negative affect modulates the ERN/Ne is essential for understanding the mechanisms behind ERN/Ne. Therefore, and because of the growing debate on reproducibility of empirical findings, we aimed at replicating the misattribution effects on the ERN/Ne in a go/nogo task. Students were randomly assigned to a misattribution group (n = 48) or a control group (n = 51). Participants of the misattribution group consumed a beverage said to have side effects that would increase their physiological arousal, so that they could misattribute the negative affect induced by errors to the beverage. Participants of the control group correctly believed that the beverage had no side effects. As Inzlicht and Al-Khindi (2012), we did not observe performance differences between both groups. However, ERN/Ne differences between misattribution and control group could not be replicated, although the statistical power of the replication study was high. Evidence regarding the replication of performance and the non-replication of ERN/Ne findings was confirmed by Bayesian statistics. PMID:27708571

  18. Task-dependent signal variations in EEG error-related potentials for brain-computer interfaces

    NASA Astrophysics Data System (ADS)

    Iturrate, I.; Montesano, L.; Minguez, J.

    2013-04-01

    Objective. A major difficulty of brain-computer interface (BCI) technology is dealing with the noise of EEG and its signal variations. Previous works studied time-dependent non-stationarities for BCIs in which the user’s mental task was independent of the device operation (e.g., the mental task was motor imagery and the operational task was a speller). However, there are some BCIs, such as those based on error-related potentials, where the mental and operational tasks are dependent (e.g., the mental task is to assess the device action and the operational task is the device action itself). The dependence between the mental task and the device operation could introduce a new source of signal variations when the operational task changes, which has not been studied yet. The aim of this study is to analyse task-dependent signal variations and their effect on EEG error-related potentials.Approach. The work analyses the EEG variations on the three design steps of BCIs: an electrophysiology study to characterize the existence of these variations, a feature distribution analysis and a single-trial classification analysis to measure the impact on the final BCI performance.Results and significance. The results demonstrate that a change in the operational task produces variations in the potentials, even when EEG activity exclusively originated in brain areas related to error processing is considered. Consequently, the extracted features from the signals vary, and a classifier trained with one operational task presents a significant loss of performance for other tasks, requiring calibration or adaptation for each new task. In addition, a new calibration for each of the studied tasks rapidly outperforms adaptive techniques designed in the literature to mitigate the EEG time-dependent non-stationarities.

  19. Skeletal mechanism generation for surrogate fuels using directed relation graph with error propagation and sensitivity analysis

    SciTech Connect

    Niemeyer, Kyle E.; Sung, Chih-Jen; Raju, Mandhapati P.

    2010-09-15

    A novel implementation for the skeletal reduction of large detailed reaction mechanisms using the directed relation graph with error propagation and sensitivity analysis (DRGEPSA) is developed and presented with examples for three hydrocarbon components, n-heptane, iso-octane, and n-decane, relevant to surrogate fuel development. DRGEPSA integrates two previously developed methods, directed relation graph-aided sensitivity analysis (DRGASA) and directed relation graph with error propagation (DRGEP), by first applying DRGEP to efficiently remove many unimportant species prior to sensitivity analysis to further remove unimportant species, producing an optimally small skeletal mechanism for a given error limit. It is illustrated that the combination of the DRGEP and DRGASA methods allows the DRGEPSA approach to overcome the weaknesses of each, specifically that DRGEP cannot identify all unimportant species and that DRGASA shields unimportant species from removal. Skeletal mechanisms for n-heptane and iso-octane generated using the DRGEP, DRGASA, and DRGEPSA methods are presented and compared to illustrate the improvement of DRGEPSA. From a detailed reaction mechanism for n-alkanes covering n-octane to n-hexadecane with 2115 species and 8157 reactions, two skeletal mechanisms for n-decane generated using DRGEPSA, one covering a comprehensive range of temperature, pressure, and equivalence ratio conditions for autoignition and the other limited to high temperatures, are presented and validated. The comprehensive skeletal mechanism consists of 202 species and 846 reactions and the high-temperature skeletal mechanism consists of 51 species and 256 reactions. Both mechanisms are further demonstrated to well reproduce the results of the detailed mechanism in perfectly-stirred reactor and laminar flame simulations over a wide range of conditions. The comprehensive and high-temperature n-decane skeletal mechanisms are included as supplementary material with this article

  20. Neuroimaging measures of error-processing: Extracting reliable signals from event-related potentials and functional magnetic resonance imaging.

    PubMed

    Steele, Vaughn R; Anderson, Nathaniel E; Claus, Eric D; Bernat, Edward M; Rao, Vikram; Assaf, Michal; Pearlson, Godfrey D; Calhoun, Vince D; Kiehl, Kent A

    2016-05-15

    Error-related brain activity has become an increasingly important focus of cognitive neuroscience research utilizing both event-related potentials (ERPs) and functional magnetic resonance imaging (fMRI). Given the significant time and resources required to collect these data, it is important for researchers to plan their experiments such that stable estimates of error-related processes can be achieved efficiently. Reliability of error-related brain measures will vary as a function of the number of error trials and the number of participants included in the averages. Unfortunately, systematic investigations of the number of events and participants required to achieve stability in error-related processing are sparse, and none have addressed variability in sample size. Our goal here is to provide data compiled from a large sample of healthy participants (n=180) performing a Go/NoGo task, resampled iteratively to demonstrate the relative stability of measures of error-related brain activity given a range of sample sizes and event numbers included in the averages. We examine ERP measures of error-related negativity (ERN/Ne) and error positivity (Pe), as well as event-related fMRI measures locked to False Alarms. We find that achieving stable estimates of ERP measures required four to six error trials and approximately 30 participants; fMRI measures required six to eight trials and approximately 40 participants. Fewer trials and participants were required for measures where additional data reduction techniques (i.e., principal component analysis and independent component analysis) were implemented. Ranges of reliability statistics for various sample sizes and numbers of trials are provided. We intend this to be a useful resource for those planning or evaluating ERP or fMRI investigations with tasks designed to measure error-processing.

  1. Investigating the epidemiology of medication errors and error-related adverse drug events (ADEs) in primary care, ambulatory care and home settings: a systematic review protocol

    PubMed Central

    Assiri, Ghadah Asaad; Grant, Liz; Aljadhey, Hisham; Sheikh, Aziz

    2016-01-01

    Introduction There is a need to better understand the epidemiology of medication errors and error-related adverse events in community care contexts. Methods and analysis We will systematically search the following databases: Cumulative Index to Nursing and Allied Health Literature (CINAHL), EMBASE, Eastern Mediterranean Regional Office of the WHO (EMRO), MEDLINE, PsycINFO and Web of Science. In addition, we will search Google Scholar and contact an international panel of experts to search for unpublished and in progress work. The searches will cover the time period January 1990–December 2015 and will yield data on the incidence or prevalence of and risk factors for medication errors and error-related adverse drug events in adults living in community settings (ie, primary care, ambulatory and home). Study quality will be assessed using the Critical Appraisal Skills Program quality assessment tool for cohort and case–control studies, and cross-sectional studies will be assessed using the Joanna Briggs Institute Critical Appraisal Checklist for Descriptive Studies. Meta-analyses will be undertaken using random-effects modelling using STATA (V.14) statistical software. Ethics and dissemination This protocol will be registered with PROSPERO, an international prospective register of systematic reviews, and the systematic review will be reported in the peer-reviewed literature using Preferred Reporting Items for Systematic Reviews and Meta-Analyses. PMID:27580826

  2. System performance and performance enhancement relative to element position location errors for distributed linear antenna arrays

    NASA Astrophysics Data System (ADS)

    Adrian, Andrew

    For the most part, antenna phased arrays have traditionally been comprised of antenna elements that are very carefully and precisely placed in very periodic grid structures. Additionally, the relative positions of the elements to each other are typically mechanically fixed as best as possible. There is never an assumption the relative positions of the elements are a function of time or some random behavior. In fact, every array design is typically analyzed for necessary element position tolerances in order to meet necessary performance requirements such as directivity, beamwidth, sidelobe level, and beam scanning capability. Consider an antenna array that is composed of several radiating elements, but the position of each of the elements is not rigidly, mechanically fixed like a traditional array. This is not to say that the element placement structure is ignored or irrelevant, but each element is not always in its relative, desired location. Relative element positioning would be analogous to a flock of birds in flight or a swarm of insects. They tend to maintain a near fixed position with the group, but not always. In the antenna array analog, it would be desirable to maintain a fixed formation, but due to other random processes, it is not always possible to maintain perfect formation. This type of antenna array is referred to as a distributed antenna array. A distributed antenna array's inability to maintain perfect formation causes degradations in the antenna factor pattern of the array. Directivity, beamwidth, sidelobe level and beam pointing error are all adversely affected by element relative position error. This impact is studied as a function of element relative position error for linear antenna arrays. The study is performed over several nominal array element spacings, from lambda to lambda, several sidelobe levels (20 to 50 dB) and across multiple array illumination tapers. Knowing the variation in performance, work is also performed to utilize a minimum

  3. Effects of simulated interpersonal touch and trait intrinsic motivation on the error-related negativity.

    PubMed

    Tjew-A-Sin, Mandy; Tops, Mattie; Heslenfeld, Dirk J; Koole, Sander L

    2016-03-23

    The error-related negativity (ERN or Ne) is a negative event-related brain potential that peaks about 20-100 ms after people perform an incorrect response in choice reaction time tasks. Prior research has shown that the ERN may be enhanced by situational and dispositional factors that promote intrinsic motivation. Building on and extending this work the authors hypothesized that simulated interpersonal touch may increase task engagement and thereby increase ERN amplitude. To test this notion, 20 participants performed a Go/No-Go task while holding a teddy bear or a same-sized cardboard box. As expected, the ERN was significantly larger when participants held a teddy bear rather than a cardboard box. This effect was most pronounced for people high (rather than low) in trait intrinsic motivation, who may depend more on intrinsically motivating task cues to maintain task engagement. These findings highlight the potential benefits of simulated interpersonal touch in stimulating attention to errors, especially among people who are intrinsically motivated.

  4. Effects of simulated interpersonal touch and trait intrinsic motivation on the error-related negativity.

    PubMed

    Tjew-A-Sin, Mandy; Tops, Mattie; Heslenfeld, Dirk J; Koole, Sander L

    2016-03-23

    The error-related negativity (ERN or Ne) is a negative event-related brain potential that peaks about 20-100 ms after people perform an incorrect response in choice reaction time tasks. Prior research has shown that the ERN may be enhanced by situational and dispositional factors that promote intrinsic motivation. Building on and extending this work the authors hypothesized that simulated interpersonal touch may increase task engagement and thereby increase ERN amplitude. To test this notion, 20 participants performed a Go/No-Go task while holding a teddy bear or a same-sized cardboard box. As expected, the ERN was significantly larger when participants held a teddy bear rather than a cardboard box. This effect was most pronounced for people high (rather than low) in trait intrinsic motivation, who may depend more on intrinsically motivating task cues to maintain task engagement. These findings highlight the potential benefits of simulated interpersonal touch in stimulating attention to errors, especially among people who are intrinsically motivated. PMID:26876476

  5. Absolute radiometric calibration of the CCRS SAR

    NASA Astrophysics Data System (ADS)

    Ulander, Lars M. H.; Hawkins, Robert K.; Livingstone, Charles E.; Lukowski, Tom I.

    1991-11-01

    Determining the radar scattering coefficients from SAR (synthetic aperture radar) image data requires absolute radiometric calibration of the SAR system. The authors describe an internal calibration methodology for the airborne Canada Centre for Remote Sensing (CCRS) SAR system, based on radar theory, a detailed model of the radar system, and measurements of system parameters. The methodology is verified by analyzing external calibration data acquired over a 6-month period in 1988 by the C-band radar using HH polarization. The results indicate that the overall error is +/- 0.8 dB (1-sigma) for incidence angles +/- 20 deg from antenna boresight. The dominant error contributions are due to the antenna radome and uncertainties in the elevation angle relative to the antenna boresight.

  6. Neighbourhood socioeconomic inequalities in incidence of acute myocardial infarction: a cohort study quantifying age- and gender-specific differences in relative and absolute terms

    PubMed Central

    2012-01-01

    Background Socioeconomic status has a profound effect on the risk of having a first acute myocardial infarction (AMI). Information on socioeconomic inequalities in AMI incidence across age- gender-groups is lacking. Our objective was to examine socioeconomic inequalities in the incidence of AMI considering both relative and absolute measures of risk differences, with a particular focus on age and gender. Methods We identified all patients with a first AMI from 1997 to 2007 through linked hospital discharge and death records covering the Dutch population. Relative risks (RR) of AMI incidence were estimated by mean equivalent household income at neighbourhood-level for strata of age and gender using Poisson regression models. Socioeconomic inequalities were also shown within the stratified age-gender groups by calculating the total number of events attributable to socioeconomic disadvantage. Results Between 1997 and 2007, 317,564 people had a first AMI. When comparing the most deprived socioeconomic quintile with the most affluent quintile, the overall RR for AMI was 1.34 (95 % confidence interval (CI): 1.32 – 1.36) in men and 1.44 (95 % CI: 1.42 – 1.47) in women. The socioeconomic gradient decreased with age. Relative socioeconomic inequalities were most apparent in men under 35 years and in women under 65 years. The largest number of events attributable to socioeconomic inequalities was found in men aged 45–74 years and in women aged 65–84 years. The total proportion of AMIs that was attributable to socioeconomic inequalities in the Dutch population of 1997 to 2007 was 14 % in men and 18 % in women. Conclusions Neighbourhood socioeconomic inequalities were observed in AMI incidence in the Netherlands, but the magnitude across age-gender groups depended on whether inequality was expressed in relative or absolute terms. Relative socioeconomic inequalities were high in young persons and women, where the absolute burden of AMI was low. Absolute

  7. The impact of income inequality on individual and societal health: absolute income, relative income and statistical artefacts.

    PubMed

    Wildman, J

    2001-06-01

    The relative income hypothesis, that relative income has a direct effect on individual health, has become an important part of the literature on health inequalities. This paper presents a four-quadrant diagram, which shows the effect of income, relative income and aggregation bias on individual and societal health. The model predicts that increased income inequality reduces average health regardless of whether relative income affects individual health. If relative income does have a direct effect then societal health will decrease further.

  8. Parametric scaling from species relative abundances to absolute abundances in the computation of biological diversity: a first proposal using Shannon's entropy.

    PubMed

    Ricotta, Carlo

    2003-01-01

    Traditional diversity measures such as the Shannon entropy are generally computed from the species' relative abundance vector of a given community to the exclusion of species' absolute abundances. In this paper, I first mention some examples where the total information content associated with a given community may be more adequate than Shannon's average information content for a better understanding of ecosystem functioning. Next, I propose a parametric measure of statistical information that contains both Shannon's entropy and total information content as special cases of this more general function.

  9. Teaching Absolute Value Meaningfully

    ERIC Educational Resources Information Center

    Wade, Angela

    2012-01-01

    What is the meaning of absolute value? And why do teachers teach students how to solve absolute value equations? Absolute value is a concept introduced in first-year algebra and then reinforced in later courses. Various authors have suggested instructional methods for teaching absolute value to high school students (Wei 2005; Stallings-Roberts…

  10. A detailed analysis of next generation sequencing reads of microRNA expression in Barrett’s Esophagus: absolute versus relative quantification

    PubMed Central

    2014-01-01

    Background Next generation sequencing (NGS) is a state of the art technology for microRNA (miRNA) analysis. The quantitative interpretation of the primary output of NGS i.e. the read counts for a miRNA sequence that can vary by several orders of magnitude (1 to 107) remains incompletely understood. Findings NGS (SOLiD 3 technology) was performed on biopsies from 6 Barrett’s esophagus (BE) and 5 Gastroesophageal Reflux Disease (GERD) patients. Read sequences were aligned to miRBase 18.0. Differential expression analysis was adjusted for false discovery rate of 5%. Quantitative real-time polymerase chain reaction (qRT-PCR) was performed for 36 miRNA in a validation cohort of 47 patients (27 BE and 20 GERD). Correlation coefficients, accuracy, precision and recall of NGS compared to qRT-PCR were calculated. Increase in NGS reads was associated with progressively lower Cq values, p < 0.05. Although absolute quantification between NGS reads and Cq values correlated modestly: -0.38, p = 0.01 for BE and -0.32, p = 0.05 for GERD, relative quantification (fold changes) of miRNA expression between BE &GERD by NGS correlated highly with qRT-PCR 0.86, p = 2.45E-11. Fold change correlations were unaffected when different thresholds of NGS read counts were compared (>1000 vs. <1000, >500 vs. <500 and >100 vs. <100). The accuracy, precision and recall of NGS to label a miRNA as differentially expressed were 0.71, 0.88 and 0.74 respectively. Conclusion Absolute NGS reads correlated modestly with qRT-PCR but fold changes correlated highly. NGS is robust at relative but not absolute quantification of miRNA levels and accurate for high-throughput identification of differentially expressed miRNA. PMID:24708854

  11. Using brain potentials to understand prism adaptation: the error-related negativity and the P300.

    PubMed

    MacLean, Stephane J; Hassall, Cameron D; Ishigami, Yoko; Krigolson, Olav E; Eskes, Gail A

    2015-01-01

    Prism adaptation (PA) is both a perceptual-motor learning task as well as a promising rehabilitation tool for visuo-spatial neglect (VSN)-a spatial attention disorder often experienced after stroke resulting in slowed and/or inaccurate motor responses to contralesional targets. During PA, individuals are exposed to prism-induced shifts of the visual-field while performing a visuo-guided reaching task. After adaptation, with goggles removed, visuomotor responding is shifted to the opposite direction of that initially induced by the prisms. This visuomotor aftereffect has been used to study visuomotor learning and adaptation and has been applied clinically to reduce VSN severity by improving motor responding to stimuli in contralesional (usually left-sided) space. In order to optimize PA's use for VSN patients, it is important to elucidate the neural and cognitive processes that alter visuomotor function during PA. In the present study, healthy young adults underwent PA while event-related potentials (ERPs) were recorded at the termination of each reach (screen-touch), then binned according to accuracy (hit vs. miss) and phase of exposure block (early, middle, late). Results show that two ERP components were evoked by screen-touch: an error-related negativity (ERN), and a P300. The ERN was consistently evoked on miss trials during adaptation, while the P300 amplitude was largest during the early phase of adaptation for both hit and miss trials. This study provides evidence of two neural signals sensitive to visual feedback during PA that may sub-serve changes in visuomotor responding. Prior ERP research suggests that the ERN reflects an error processing system in medial-frontal cortex, while the P300 is suggested to reflect a system for context updating and learning. Future research is needed to elucidate the role of these ERP components in improving visuomotor responses among individuals with VSN. PMID:26124715

  12. Using brain potentials to understand prism adaptation: the error-related negativity and the P300

    PubMed Central

    MacLean, Stephane J.; Hassall, Cameron D.; Ishigami, Yoko; Krigolson, Olav E.; Eskes, Gail A.

    2015-01-01

    Prism adaptation (PA) is both a perceptual-motor learning task as well as a promising rehabilitation tool for visuo-spatial neglect (VSN)—a spatial attention disorder often experienced after stroke resulting in slowed and/or inaccurate motor responses to contralesional targets. During PA, individuals are exposed to prism-induced shifts of the visual-field while performing a visuo-guided reaching task. After adaptation, with goggles removed, visuomotor responding is shifted to the opposite direction of that initially induced by the prisms. This visuomotor aftereffect has been used to study visuomotor learning and adaptation and has been applied clinically to reduce VSN severity by improving motor responding to stimuli in contralesional (usually left-sided) space. In order to optimize PA's use for VSN patients, it is important to elucidate the neural and cognitive processes that alter visuomotor function during PA. In the present study, healthy young adults underwent PA while event-related potentials (ERPs) were recorded at the termination of each reach (screen-touch), then binned according to accuracy (hit vs. miss) and phase of exposure block (early, middle, late). Results show that two ERP components were evoked by screen-touch: an error-related negativity (ERN), and a P300. The ERN was consistently evoked on miss trials during adaptation, while the P300 amplitude was largest during the early phase of adaptation for both hit and miss trials. This study provides evidence of two neural signals sensitive to visual feedback during PA that may sub-serve changes in visuomotor responding. Prior ERP research suggests that the ERN reflects an error processing system in medial-frontal cortex, while the P300 is suggested to reflect a system for context updating and learning. Future research is needed to elucidate the role of these ERP components in improving visuomotor responses among individuals with VSN. PMID:26124715

  13. Lunch-time food choices in preschoolers: Relationships between absolute and relative intakes of different food categories, and appetitive characteristics and weight.

    PubMed

    Carnell, S; Pryor, K; Mais, L A; Warkentin, S; Benson, L; Cheng, R

    2016-08-01

    Children's appetitive characteristics measured by parent-report questionnaires are reliably associated with body weight, as well as behavioral tests of appetite, but relatively little is known about relationships with food choice. As part of a larger preloading study, we served 4-5year olds from primary school classes five school lunches at which they were presented with the same standardized multi-item meal. Parents completed Child Eating Behavior Questionnaire (CEBQ) sub-scales assessing satiety responsiveness (CEBQ-SR), food responsiveness (CEBQ-FR) and enjoyment of food (CEBQ-EF), and children were weighed and measured. Despite differing preload conditions, children showed remarkable consistency of intake patterns across all five meals with day-to-day intra-class correlations in absolute and percentage intake of each food category ranging from 0.78 to 0.91. Higher CEBQ-SR was associated with lower mean intake of all food categories across all five meals, with the weakest association apparent for snack foods. Higher CEBQ-FR was associated with higher intake of white bread and fruits and vegetables, and higher CEBQ-EF was associated with greater intake of all categories, with the strongest association apparent for white bread. Analyses of intake of each food group as a percentage of total intake, treated here as an index of the child's choice to consume relatively more or relatively less of each different food category when composing their total lunch-time meal, further suggested that children who were higher in CEBQ-SR ate relatively more snack foods and relatively less fruits and vegetables, while children with higher CEBQ-EF ate relatively less snack foods and relatively more white bread. Higher absolute intakes of white bread and snack foods were associated with higher BMI z score. CEBQ sub-scale associations with food intake variables were largely unchanged by controlling for daily metabolic needs. However, descriptive comparisons of lunch intakes with

  14. Evaluations of the Absolute and Relative Free Energies for Antidepressant Binding to the Amino Acid Membrane Transporter LeuT with Free Energy Simulations.

    PubMed

    Zhao, Chunfeng; Caplan, David A; Noskov, Sergei Yu

    2010-06-01

    The binding of ligands to protein receptors with high affinity and specificity is central to many cellular processes. The quest for the development of computational models capable of accurately evaluating binding affinity remains one of the main goals of modern computational biophysics. In this work, free energy perturbation/molecular dynamics simulations were used to evaluate absolute and relative binding affinity for three different antidepressants to a sodium-dependent membrane transporter, LeuT, a bacterial homologue of human serotonin and dopamine transporters. Dysfunction of these membrane transporters in mammals has been implicated in multiple diseases of the nervous system, including bipolar disorder and depression. Furthermore, these proteins are key targets for antidepressants including fluoxetine (aka Prozac) and tricyclic antidepressants known to block transport activity. In addition to being clinically relevant, this system, where multiple crystal structures are readily available, represents an ideal testing ground for methods used to study the molecular mechanisms of ligand binding to membrane proteins. We discuss possible pitfalls and different levels of approximation required to evaluate binding affinity, such as the dependence of the computed affinities on the strength of constraints and the sensitivity of the computed affinities to the particular partial charges derived from restrained electrostatic potential fitting of quantum mechanics electrostatic potential. Finally, we compare the effects of different constraint schemes on the absolute and relative binding affinities obtained from free energy simulations.

  15. Harsh Parenting and Fearfulness in Toddlerhood Interact to Predict Amplitudes of Preschool Error-Related Negativity

    PubMed Central

    Brooker, Rebecca J.; Buss, Kristin A.

    2014-01-01

    Temperamentally fearful children are at increased risk for the development of anxiety problems relative to less-fearful children. This risk is even greater when early environments include high levels of harsh parenting behaviors. However, the mechanisms by which harsh parenting may impact fearful children’s risk for anxiety problems are largely unknown. Recent neuroscience work has suggested that punishment is associated with exaggerated error-related negativity (ERN), an event-related potential linked to performance monitoring, even after the threat of punishment is removed. In the current study, we examined the possibility that harsh parenting interacts with fearfulness, impacting anxiety risk via neural processes of performance monitoring. We found that greater fearfulness and harsher parenting at 2 years of age predicted greater fearfulness and greater ERN amplitudes at age 4. Supporting the role of cognitive processes in this association, greater fearfulness and harsher parenting also predicted less efficient neural processing during preschool. This study provides initial evidence that performance monitoring may be a candidate process by which early parenting interacts with fearfulness to predict risk for anxiety problems. PMID:24721466

  16. Harsh parenting and fearfulness in toddlerhood interact to predict amplitudes of preschool error-related negativity.

    PubMed

    Brooker, Rebecca J; Buss, Kristin A

    2014-07-01

    Temperamentally fearful children are at increased risk for the development of anxiety problems relative to less-fearful children. This risk is even greater when early environments include high levels of harsh parenting behaviors. However, the mechanisms by which harsh parenting may impact fearful children's risk for anxiety problems are largely unknown. Recent neuroscience work has suggested that punishment is associated with exaggerated error-related negativity (ERN), an event-related potential linked to performance monitoring, even after the threat of punishment is removed. In the current study, we examined the possibility that harsh parenting interacts with fearfulness, impacting anxiety risk via neural processes of performance monitoring. We found that greater fearfulness and harsher parenting at 2 years of age predicted greater fearfulness and greater ERN amplitudes at age 4. Supporting the role of cognitive processes in this association, greater fearfulness and harsher parenting also predicted less efficient neural processing during preschool. This study provides initial evidence that performance monitoring may be a candidate process by which early parenting interacts with fearfulness to predict risk for anxiety problems.

  17. Motivation and semantic context affect brain error-monitoring activity: an event-related brain potentials study.

    PubMed

    Ganushchak, Lesya Y; Schiller, Niels O

    2008-01-01

    During speech production, we continuously monitor what we say. In situations in which speech errors potentially have more severe consequences, e.g. during a public presentation, our verbal self-monitoring system may pay special attention to prevent errors than in situations in which speech errors are more acceptable, such as a casual conversation. In an event-related potential study, we investigated whether or not motivation affected participants' performance using a picture naming task in a semantic blocking paradigm. Semantic context of to-be-named pictures was manipulated; blocks were semantically related (e.g., cat, dog, horse, etc.) or semantically unrelated (e.g., cat, table, flute, etc.). Motivation was manipulated independently by monetary reward. The motivation manipulation did not affect error rate during picture naming. However, the high-motivation condition yielded increased amplitude and latency values of the error-related negativity (ERN) compared to the low-motivation condition, presumably indicating higher monitoring activity. Furthermore, participants showed semantic interference effects in reaction times and error rates. The ERN amplitude was also larger during semantically related than unrelated blocks, presumably indicating that semantic relatedness induces more conflict between possible verbal responses. PMID:17920932

  18. Frequency-domain analysis of absolute gravimeters

    NASA Astrophysics Data System (ADS)

    Svitlov, S.

    2012-12-01

    An absolute gravimeter is analysed as a linear time-invariant system in the frequency domain. Frequency responses of absolute gravimeters are derived analytically based on the propagation of the complex exponential signal through their linear measurement functions. Depending on the model of motion and the number of time-distance coordinates, an absolute gravimeter is considered as a second-order (three-level scheme) or third-order (multiple-level scheme) low-pass filter. It is shown that the behaviour of an atom absolute gravimeter in the frequency domain corresponds to that of the three-level corner-cube absolute gravimeter. Theoretical results are applied for evaluation of random and systematic measurement errors and optimization of an experiment. The developed theory agrees with known results of an absolute gravimeter analysis in the time and frequency domains and can be used for measurement uncertainty analyses, building of vibration-isolation systems and synthesis of digital filtering algorithms.

  19. The Relative and Absolute Risks of Disadvantaged Family Background and Low Levels of School Resources on Student Literacy

    ERIC Educational Resources Information Center

    Nonoyama-Tarumi, Yuko; Willms, J. Douglas

    2010-01-01

    There has been a long-lasting debate of whether the effects of family background are larger than those of school resources, and whether these effects are a function of national income level. In this study, we bring a new perspective to the debate by using the concepts of relative risk and population attributable risk in estimating family and…

  20. Isobaric Tags for Relative and Absolute Quantitation (iTRAQ)-Based Comparative Proteome Analysis of the Response of Ramie under Drought Stress

    PubMed Central

    An, Xia; Zhang, Jingyu; Dai, Lunjin; Deng, Gang; Liao, Yiwen; Liu, Lijun; Wang, Bo; Peng, Dingxiang

    2016-01-01

    In this study, we conducted the first isobaric tags for relative and absolute quantitation (isobaric tags for relative and absolute quantitation (iTRAQ))-based comparative proteomic analysis of ramie plantlets after 0 (minor drought stress), 24 (moderate drought stress), and 72 h (severe drought stress) of treatment with 15% (w/v) poly (ethylene glycol)6000 (PEG6000) to simulate drought stress. In our study, the association analysis of proteins and transcript expression revealed 1244 and 968 associated proteins identified in leaves and roots, respectively. L1, L2, and L3 are leaf samples which were harvested at 0, 24, and 72 h after being treated with 15% PEG6000, respectively. Among those treatment groups, a total of 118, 216, and 433 unique proteins were identified as differentially expressed during L1 vs. L2, L2 vs. L3, and L1 vs. L3, respectively. R1, R2, and R3 are root samples which were harvested at 0, 24, and 72 h after being treated with 15% PEG6000, respectively. Among those treatment groups,a total of 124, 27, and 240 unique proteins were identified as differentially expressed during R1 vs. R2, R2 vs. R3, and R1 vs. R3, respectively. Bioinformatics analysis indicated that glycolysis/gluconeogenesis was significantly upregulated in roots in response to drought stress. This enhancement may result in more glycolytically generated adenosine triphosphate (ATP) in roots to adapt to adverse environmental conditions. To obtain complementary information related to iTRAQ data, the mRNA levels of 12 proteins related to glycolysis/gluconeogenesis in leaves and 7 in roots were further analyzed by qPCR. Most of their expression levels were higher in R3 than R1 and R2, suggesting that these compounds may promote drought tolerance by modulating the production of available energy. PMID:27689998

  1. Theta and Alpha Band Modulations Reflect Error-Related Adjustments in the Auditory Condensation Task

    PubMed Central

    Novikov, Nikita A.; Bryzgalov, Dmitri V.; Chernyshev, Boris V.

    2015-01-01

    Error commission leads to adaptive adjustments in a number of brain networks that subserve goal-directed behavior, resulting in either enhanced stimulus processing or increased motor threshold depending on the nature of errors committed. Here, we studied these adjustments by analyzing post-error modulations of alpha and theta band activity in the auditory version of the two-choice condensation task, which is highly demanding for sustained attention while involves no inhibition of prepotent responses. Errors were followed by increased frontal midline theta (FMT) activity, as well as by enhanced alpha band suppression in the parietal and the left central regions; parietal alpha suppression correlated with the task performance, left central alpha suppression correlated with the post-error slowing, and FMT increase correlated with both behavioral measures. On post-error correct trials, left-central alpha band suppression started earlier before the response, and the response was followed by weaker FMT activity, as well as by enhanced alpha band suppression distributed over the entire scalp. These findings indicate that several separate neuronal networks are involved in post-error adjustments, including the midfrontal performance monitoring network, the parietal attentional network, and the sensorimotor network. Supposedly, activity within these networks is rapidly modulated after errors, resulting in optimization of their functional state on the subsequent trials, with corresponding changes in behavioral measures. PMID:26733266

  2. Reduced Error-Related Activation in Two Anterior Cingulate Circuits Is Related to Impaired Performance in Schizophrenia

    ERIC Educational Resources Information Center

    Polli, Frida E.; Barton, Jason J. S.; Thakkar, Katharine N.; Greve, Douglas N.; Goff, Donald C.; Rauch, Scott L.; Manoach, Dara S.

    2008-01-01

    To perform well on any challenging task, it is necessary to evaluate your performance so that you can learn from errors. Recent theoretical and experimental work suggests that the neural sequellae of error commission in a dorsal anterior cingulate circuit index a type of contingency- or reinforcement-based learning, while activation in a rostral…

  3. Relatively poor, absolutely ill? A study of regional income inequality in Russia and its possible health consequences

    PubMed Central

    Carlson, P.

    2005-01-01

    Study objective: To investigate whether the income distribution in a Russian region has a "contextual" effect on individuals' self rated health, and whether the regional income distributions are related to regional health differences. Methods: The Russia longitudinal monitoring survey (RLMS) is a survey (n = 7696) that is representative of the Russian population. With multilevel regressions both individual as well as contextual effects on self rated health were estimated. Main results: The effect of income inequality is not negative on men's self rated health as long as the level of inequality is not very great. When inequality levels are high, however, there is a tendency for men's health to be negatively affected. Regional health differences among men are in part explained by regional income differences. On the other hand, women do not seem to be affected in the same way, and individual characteristics like age and educational level seem to be more important. Conclusions: It seems that a rise in income inequality has no negative effect on men's self rated health as long as the level of inequality is not very great. On the other hand, when inequality levels are higher a rise tends to affect men's health negatively. A curvilinear relation between self rated health and income distribution is an interesting hypothesis. It could help to explain the confusing results that arise when you look at countries with a high degree of income inequality (USA) and those with lower income inequality (for example, Japan and New Zealand). PMID:15831688

  4. Eosinophil count - absolute

    MedlinePlus

    Eosinophils; Absolute eosinophil count ... the white blood cell count to give the absolute eosinophil count. ... than 500 cells per microliter (cells/mcL). Normal value ranges may vary slightly among different laboratories. Talk ...

  5. Correcting a fundamental error in greenhouse gas accounting related to bioenergy

    PubMed Central

    Haberl, Helmut; Sprinz, Detlef; Bonazountas, Marc; Cocco, Pierluigi; Desaubies, Yves; Henze, Mogens; Hertel, Ole; Johnson, Richard K.; Kastrup, Ulrike; Laconte, Pierre; Lange, Eckart; Novak, Peter; Paavola, Jouni; Reenberg, Anette; van den Hove, Sybille; Vermeire, Theo; Wadhams, Peter; Searchinger, Timothy

    2012-01-01

    Many international policies encourage a switch from fossil fuels to bioenergy based on the premise that its use would not result in carbon accumulation in the atmosphere. Frequently cited bioenergy goals would at least double the present global human use of plant material, the production of which already requires the dedication of roughly 75% of vegetated lands and more than 70% of water withdrawals. However, burning biomass for energy provision increases the amount of carbon in the air just like burning coal, oil or gas if harvesting the biomass decreases the amount of carbon stored in plants and soils, or reduces carbon sequestration. Neglecting this fact results in an accounting error that could be corrected by considering that only the use of ‘additional biomass’ – biomass from additional plant growth or biomass that would decompose rapidly if not used for bioenergy – can reduce carbon emissions. Failure to correct this accounting flaw will likely have substantial adverse consequences. The article presents recommendations for correcting greenhouse gas accounts related to bioenergy. PMID:23576835

  6. Correcting a fundamental error in greenhouse gas accounting related to bioenergy.

    PubMed

    Haberl, Helmut; Sprinz, Detlef; Bonazountas, Marc; Cocco, Pierluigi; Desaubies, Yves; Henze, Mogens; Hertel, Ole; Johnson, Richard K; Kastrup, Ulrike; Laconte, Pierre; Lange, Eckart; Novak, Peter; Paavola, Jouni; Reenberg, Anette; van den Hove, Sybille; Vermeire, Theo; Wadhams, Peter; Searchinger, Timothy

    2012-06-01

    Many international policies encourage a switch from fossil fuels to bioenergy based on the premise that its use would not result in carbon accumulation in the atmosphere. Frequently cited bioenergy goals would at least double the present global human use of plant material, the production of which already requires the dedication of roughly 75% of vegetated lands and more than 70% of water withdrawals. However, burning biomass for energy provision increases the amount of carbon in the air just like burning coal, oil or gas if harvesting the biomass decreases the amount of carbon stored in plants and soils, or reduces carbon sequestration. Neglecting this fact results in an accounting error that could be corrected by considering that only the use of 'additional biomass' - biomass from additional plant growth or biomass that would decompose rapidly if not used for bioenergy - can reduce carbon emissions. Failure to correct this accounting flaw will likely have substantial adverse consequences. The article presents recommendations for correcting greenhouse gas accounts related to bioenergy. PMID:23576835

  7. Uncertainty forecasts improve weather-related decisions and attenuate the effects of forecast error.

    PubMed

    Joslyn, Susan L; LeClerc, Jared E

    2012-03-01

    Although uncertainty is inherent in weather forecasts, explicit numeric uncertainty estimates are rarely included in public forecasts for fear that they will be misunderstood. Of particular concern are situations in which precautionary action is required at low probabilities, often the case with severe events. At present, a categorical weather warning system is used. The work reported here tested the relative benefits of several forecast formats, comparing decisions made with and without uncertainty forecasts. In three experiments, participants assumed the role of a manager of a road maintenance company in charge of deciding whether to pay to salt the roads and avoid a potential penalty associated with icy conditions. Participants used overnight low temperature forecasts accompanied in some conditions by uncertainty estimates and in others by decision advice comparable to categorical warnings. Results suggested that uncertainty information improved decision quality overall and increased trust in the forecast. Participants with uncertainty forecasts took appropriate precautionary action and withheld unnecessary action more often than did participants using deterministic forecasts. When error in the forecast increased, participants with conventional forecasts were reluctant to act. However, this effect was attenuated by uncertainty forecasts. Providing categorical decision advice alone did not improve decisions. However, combining decision advice with uncertainty estimates resulted in the best performance overall. The results reported here have important implications for the development of forecast formats to increase compliance with severe weather warnings as well as other domains in which one must act in the face of uncertainty.

  8. Uncertainty forecasts improve weather-related decisions and attenuate the effects of forecast error.

    PubMed

    Joslyn, Susan L; LeClerc, Jared E

    2012-03-01

    Although uncertainty is inherent in weather forecasts, explicit numeric uncertainty estimates are rarely included in public forecasts for fear that they will be misunderstood. Of particular concern are situations in which precautionary action is required at low probabilities, often the case with severe events. At present, a categorical weather warning system is used. The work reported here tested the relative benefits of several forecast formats, comparing decisions made with and without uncertainty forecasts. In three experiments, participants assumed the role of a manager of a road maintenance company in charge of deciding whether to pay to salt the roads and avoid a potential penalty associated with icy conditions. Participants used overnight low temperature forecasts accompanied in some conditions by uncertainty estimates and in others by decision advice comparable to categorical warnings. Results suggested that uncertainty information improved decision quality overall and increased trust in the forecast. Participants with uncertainty forecasts took appropriate precautionary action and withheld unnecessary action more often than did participants using deterministic forecasts. When error in the forecast increased, participants with conventional forecasts were reluctant to act. However, this effect was attenuated by uncertainty forecasts. Providing categorical decision advice alone did not improve decisions. However, combining decision advice with uncertainty estimates resulted in the best performance overall. The results reported here have important implications for the development of forecast formats to increase compliance with severe weather warnings as well as other domains in which one must act in the face of uncertainty. PMID:21875244

  9. Data on simulated interpersonal touch, individual differences and the error-related negativity

    PubMed Central

    Tjew-A-Sin, Mandy; Tops, Mattie; Heslenfeld, Dirk J.; Koole, Sander L.

    2016-01-01

    The dataset includes data from the electroencephalogram study reported in our paper: ‘Effects of simulated interpersonal touch and trait intrinsic motivation on the error-related negativity’ (doi:10.1016/j.neulet.2016.01.044) (Tjew-A-Sin et al., 2016) [1]. The data was collected at the psychology laboratories at the Vrije Universiteit Amsterdam in 2012 among a Dutch-speaking student sample. The dataset consists of the measures described in the paper, as well as additional (exploratory) measures including the Five-Factor Personality Inventory, the Connectedness to Nature Scale, the Rosenberg Self-esteem Scale and a scale measuring life stress. The data can be used for replication purposes, meta-analyses, and exploratory analyses, as well as cross-cultural comparisons of touch and/or ERN effects. The authors also welcome collaborative research based on re-analyses of the data. The data described is available at a data repository called the DANS archive: http://persistent-identifier.nl/?identifier=urn:nbn:nl:ui:13-tzbk-gg. PMID:27158644

  10. Hysteresis and Related Error Mechanisms in the NIST Watt Balance Experiment

    PubMed Central

    Schwarz, Joshua P.; Liu, Ruimin; Newell, David B.; Steiner, Richard L.; Williams, Edwin R.; Smith, Douglas; Erdemir, Ali; Woodford, John

    2001-01-01

    The NIST watt balance experiment is being completely rebuilt after its 1998 determination of the Planck constant. That measurement yielded a result with an approximately 1×10−7 relative standard uncertainty. Because the goal of the new incarnation of the experiment is a ten-fold decrease in uncertainty, it has been necessary to reexamine many sources of systematic error. Hysteresis effects account for a substantial portion of the projected uncertainty budget. They arise from mechanical, magnetic, and thermal sources. The new experiment incorporates several improvements in the apparatus to address these issues, including stiffer components for transferring the mass standard on and off the balance, better servo control of the balance, better pivot materials, and the incorporation of erasing techniques into the mass transfer servo system. We have carried out a series of tests of hysteresis sources on a separate system, and apply their results to the watt apparatus. The studies presented here suggest that our improvements can be expected to reduce hysteresis signals by at least a factor of 10—perhaps as much as a factor of 50—over the 1998 experiment. PMID:27500039

  11. Adaptation of hybrid human-computer interaction systems using EEG error-related potentials.

    PubMed

    Chavarriaga, Ricardo; Biasiucci, Andrea; Forster, Killian; Roggen, Daniel; Troster, Gerhard; Millan, Jose Del R

    2010-01-01

    Performance improvement in both humans and artificial systems strongly relies in the ability of recognizing erroneous behavior or decisions. This paper, that builds upon previous studies on EEG error-related signals, presents a hybrid approach for human computer interaction that uses human gestures to send commands to a computer and exploits brain activity to provide implicit feedback about the recognition of such commands. Using a simple computer game as a case study, we show that EEG activity evoked by erroneous gesture recognition can be classified in single trials above random levels. Automatic artifact rejection techniques are used, taking into account that subjects are allowed to move during the experiment. Moreover, we present a simple adaptation mechanism that uses the EEG signal to label newly acquired samples and can be used to re-calibrate the gesture recognition system in a supervised manner. Offline analysis show that, although the achieved EEG decoding accuracy is far from being perfect, these signals convey sufficient information to significantly improve the overall system performance.

  12. Soil maps as data input for soil erosion models: errors related to map scales

    NASA Astrophysics Data System (ADS)

    van Dijk, Paul; Sauter, Joëlle; Hofstetter, Elodie

    2010-05-01

    Soil erosion rates depend in many ways on soil and soil surface characteristics which vary in space and in time. To account for spatial variations of soil features, most distributed soil erosion models require data input derived from soil maps. Ideally, the level of spatial detail contained in the applied soil map should correspond to the objective of the modelling study. However, often the model user has only one soil map available which is then applied without questioning its suitability. The present study seeks to determine in how far soil map scale can be a source of error in erosion model output. The study was conducted on two different spatial scales, with for each of them a convenient soil erosion model: a) the catchment scale using the physically-based Limbourg Soil Erosion Model (LISEM), and b) the regional scale using the decision-tree expert model MESALES. The suitability of the applied soil map was evaluated with respect to an imaginary though realistic study objective for both models: the definition of erosion control measures at strategic locations at the catchment scale; the identification of target areas for the definition of control measures strategies at the regional scale. Two catchments were selected to test the sensitivity of LISEM to the spatial detail contained in soil maps: one catchment with relatively little contrast in soil texture, dominated by loess-derived soil (south of the Alsace), and one catchment with strongly contrasted soils at the limit between the Alsatian piedmont and the loess-covered hills of the Kochersberg. LISEM was run for both catchments using different soil maps ranging in scale from 1/25 000 to 1/100 000 to derive soil related input parameters. The comparison of the output differences was used to quantify the map scale impact on the quality of the model output. The sensitivity of MESALES was tested on the Haut-Rhin county for which two soil maps are available for comparison: 1/50 000 and 1/100 000. The order of

  13. Error-related brain activity in the age of RDoC: A review of the literature.

    PubMed

    Weinberg, Anna; Dieterich, Raoul; Riesel, Anja

    2015-11-01

    The ability to detect and respond to errors is critical to successful adaptation to a changing environment. The error-related negativity (ERN), an event-related potential (ERP) component, is a well-validated neural response to errors and reflects the error monitoring activity of the anterior cingulate cortex (ACC). Additionally, the ERN is implicated in several processes key to adaptive functioning. Abnormalities in error-related brain activity have been linked to multiple forms of psychopathology and individual differences. As such, the component is likely to be useful in NIMH's Research Domain Criteria (RDoC) initiative to establish biologically-meaningful dimensions of psychological dysfunction, and currently appears as a unit of measurement in three RDoC domains: Positive Valence Systems, Negative Valence Systems, and Cognitive Systems. In this review paper, we introduce the ERN and discuss evidence related to its psychometric properties, as well as important task differences. Following this, we discuss evidence linking the ERN to clinically diverse forms of psychopathology, as well as the implications of one unit of measurement appearing in multiple RDoC dimensions. And finally, we discuss important future directions, as well as research pathways by which the ERN might be leveraged to track the ways in which dysfunctions in multiple neural systems interact to influence psychological well-being.

  14. Smaller Absolute Quantities but Greater Relative Densities of Microvessels Are Associated with Cerebellar Degeneration in Lurcher Mice

    PubMed Central

    Kolinko, Yaroslav; Cendelin, Jan; Kralickova, Milena; Tonar, Zbynek

    2016-01-01

    Degenerative affections of nerve tissues are often accompanied by changes of vascularization. In this regard, not much is known about hereditary cerebellar degeneration. In this study, we compared the vascularity of the individual cerebellar components and the mesencephalon of 3-month-old wild type mice (n = 5) and Lurcher mutant mice, which represent a model of hereditary olivocerebellar degeneration (n = 5). Paraformaldehyde-fixed brains were processed into 18-μm thick serial sections with random orientation. Microvessels were visualized using polyclonal rabbit anti-laminin antibodies. Then, the stacks comprised of three 5-μm thick optical sections were recorded using systematic uniform random sampling. Stereological assessment was conducted based on photo-documentation. We found that each of the cerebellar components has its own features of vascularity. The greatest number and length of vessels were found in the granular layer; the number of vessels was lower in the molecular layer, and the lowest number of vessels was observed in the cerebellar nuclei corresponding with their low volume. Nevertheless, the nuclei had the greatest density of blood vessels. The reduction of cerebellum volume in the Lurcher mice was accompanied by a reduction in vascularization in the individual cerebellar components, mainly in the cortex. Moreover, despite the lower density of microvessels in the Lurcher mice compared with the wild type mice, the relative density of microvessels in the cerebellar cortex and nuclei was greater in Lurcher mice. The complete primary morphometric data, in the form of continuous variables, is included as a supplement. Mapping of the cerebellar and midbrain microvessels has explanatory potential for studies using mouse models of neurodegeneration. PMID:27147979

  15. Immunosuppressive Effects of Streptozotocin-Induced Diabetes Result in Absolute Lymphopenia and a Relative Increase of T Regulatory Cells

    PubMed Central

    Muller, Yannick D.; Golshayan, Déla; Ehirchiou, Driss; Wyss, Jean Christophe; Giovannoni, Laurianne; Meier, Raphael; Serre-Beinier, Véronique; Puga Yung, Gisella; Morel, Philippe; Bühler, Leo H.; Seebach, Jörg D.

    2011-01-01

    OBJECTIVE Streptozotocin (STZ) is the most widely used diabetogenic agent in animal models of islet transplantation. However, the immunomodifying effects of STZ and the ensuing hyperglycemia on lymphocyte subsets, particularly on T regulatory cells (Tregs), remain poorly understood. RESEARCH DESIGN AND METHODS This study evaluated how STZ-induced diabetes affects adaptive immunity and the consequences thereof on allograft rejection in murine models of islet and skin transplantation. The respective toxicity of STZ and hyperglycemia on lymphocyte subsets was tested in vitro. The effect of hyperglycemia was assessed independently of STZ in vivo by the removal of transplanted syngeneic islets, using an insulin pump, and with rat insulin promoter diphtheria toxin receptor transgenic mice. RESULTS Early lymphopenia in both blood and spleen was demonstrated after STZ administration. Direct toxicity of STZ on lymphocytes, particularly on CD8+ cells and B cells, was shown in vitro. Hyperglycemia also correlated with blood and spleen lymphopenia in vivo but was not lymphotoxic in vitro. Independently of hyperglycemia, STZ led to a relative increase of Tregs in vivo, with the latter retaining their suppressive capacity in vitro. The higher frequency of Tregs was associated with Treg proliferation in the blood, but not in the spleen, and higher blood levels of transforming growth factor-β. Finally, STZ administration delayed islet and skin allograft rejection compared with naive mice. CONCLUSIONS These data highlight the direct and indirect immunosuppressive effects of STZ and acute hyperglycemia, respectively. Thus, these results have important implications for the future development of tolerance-based protocols and their translation from the laboratory to the clinic. PMID:21752956

  16. Increased error-related thalamic activity during early compared to late cocaine abstinence

    PubMed Central

    Li, Chiang-shan R.; Luo, Xi; Sinha, Rajita; Rounsaville, Bruce J.; Carroll, Kathleen M.; Malison, Robert T.; Ding, Yu-Shin; Zhang, Sheng; Ide, Jaime S.

    2010-01-01

    Altered cognitive control is implicated in the shaping of cocaine dependence. One of the key component processes of cognitive control is error monitoring. Our previous imaging work highlighted greater activity in distinct cortical and subcortical regions including the dorsal anterior cingulate cortex (dACC), thalamus and insula when participants committed an error during the stop signal task (Li et al., 2008b). Importantly, dACC, thalamic and insular activity has been associated with drug craving. One hypothesis is that the intense interoceptive activity during craving prevents these cerebral structures from adequately registering error and/or monitoring performance. Alternatively, the dACC, thalamus and insula show abnormally heightened responses to performance errors, suggesting that excessive responses to salient stimuli such as drug cues could precipitate craving. The two hypotheses would each predict decreased and increased activity during stop error (SE) as compared to stop success (SS) trials in the SST. Here we showed that cocaine dependent patients (PCD) experienced greater subjective feeling of loss of control and cocaine craving during early (average of day 6) compared to late (average of day 18) abstinence. Furthermore, compared to PCD during late abstinence, PCD scanned during early abstinence showed increased thalamic as well as insular but not dACC responses to errors (SE>SS). These findings support the hypothesis that heightened thalamic reactivity to salient stimuli co-occur with cocaine craving and loss of self control. PMID:20163923

  17. Motoneuron axon pathfinding errors in zebrafish: Differential effects related to concentration and timing of nicotine exposure

    SciTech Connect

    Menelaou, Evdokia; Paul, Latoya T.; Perera, Surangi N.; Svoboda, Kurt R.

    2015-04-01

    Nicotine exposure during embryonic stages of development can affect many neurodevelopmental processes. In the developing zebrafish, exposure to nicotine was reported to cause axonal pathfinding errors in the later born secondary motoneurons (SMNs). These alterations in SMN axon morphology coincided with muscle degeneration at high nicotine concentrations (15–30 μM). Previous work showed that the paralytic mutant zebrafish known as sofa potato exhibited nicotine-induced effects onto SMN axons at these high concentrations but in the absence of any muscle deficits, indicating that pathfinding errors could occur independent of muscle effects. In this study, we used varying concentrations of nicotine at different developmental windows of exposure to specifically isolate its effects onto subpopulations of motoneuron axons. We found that nicotine exposure can affect SMN axon morphology in a dose-dependent manner. At low concentrations of nicotine, SMN axons exhibited pathfinding errors, in the absence of any nicotine-induced muscle abnormalities. Moreover, the nicotine exposure paradigms used affected the 3 subpopulations of SMN axons differently, but the dorsal projecting SMN axons were primarily affected. We then identified morphologically distinct pathfinding errors that best described the nicotine-induced effects on dorsal projecting SMN axons. To test whether SMN pathfinding was potentially influenced by alterations in the early born primary motoneuron (PMN), we performed dual labeling studies, where both PMN and SMN axons were simultaneously labeled with antibodies. We show that only a subset of the SMN axon pathfinding errors coincided with abnormal PMN axonal targeting in nicotine-exposed zebrafish. We conclude that nicotine exposure can exert differential effects depending on the levels of nicotine and developmental exposure window. - Highlights: • Embryonic nicotine exposure can specifically affect secondary motoneuron axons in a dose-dependent manner.

  18. [Diagnostic Errors in Medicine].

    PubMed

    Buser, Claudia; Bankova, Andriyana

    2015-12-01

    The recognition of diagnostic errors in everyday practice can help improve patient safety. The most common diagnostic errors are the cognitive errors, followed by system-related errors and no fault errors. The cognitive errors often result from mental shortcuts, known as heuristics. The rate of cognitive errors can be reduced by a better understanding of heuristics and the use of checklists. The autopsy as a retrospective quality assessment of clinical diagnosis has a crucial role in learning from diagnostic errors. Diagnostic errors occur more often in primary care in comparison to hospital settings. On the other hand, the inpatient errors are more severe than the outpatient errors.

  19. [Diagnostic Errors in Medicine].

    PubMed

    Buser, Claudia; Bankova, Andriyana

    2015-12-01

    The recognition of diagnostic errors in everyday practice can help improve patient safety. The most common diagnostic errors are the cognitive errors, followed by system-related errors and no fault errors. The cognitive errors often result from mental shortcuts, known as heuristics. The rate of cognitive errors can be reduced by a better understanding of heuristics and the use of checklists. The autopsy as a retrospective quality assessment of clinical diagnosis has a crucial role in learning from diagnostic errors. Diagnostic errors occur more often in primary care in comparison to hospital settings. On the other hand, the inpatient errors are more severe than the outpatient errors. PMID:26649954

  20. Matching post-Newtonian and numerical relativity waveforms: Systematic errors and a new phenomenological model for nonprecessing black hole binaries

    SciTech Connect

    Santamaria, L.; Ohme, F.; Dorband, N.; Moesta, P.; Robinson, E. L.; Krishnan, B.; Ajith, P.; Bruegmann, B.; Hannam, M.; Husa, S.; Pollney, D.; Reisswig, C.; Seiler, J.

    2010-09-15

    We present a new phenomenological gravitational waveform model for the inspiral and coalescence of nonprecessing spinning black hole binaries. Our approach is based on a frequency-domain matching of post-Newtonian inspiral waveforms with numerical relativity based binary black hole coalescence waveforms. We quantify the various possible sources of systematic errors that arise in matching post-Newtonian and numerical relativity waveforms, and we use a matching criteria based on minimizing these errors; we find that the dominant source of errors are those in the post-Newtonian waveforms near the merger. An analytical formula for the dominant mode of the gravitational radiation of nonprecessing black hole binaries is presented that captures the phenomenology of the hybrid waveforms. Its implementation in the current searches for gravitational waves should allow cross-checks of other inspiral-merger-ringdown waveform families and improve the reach of gravitational-wave searches.

  1. ERN and the Placebo: A Misattribution Approach to Studying the Arousal Properties of the Error-Related Negativity

    ERIC Educational Resources Information Center

    Inzlicht, Michael; Al-Khindi, Timour

    2012-01-01

    Performance monitoring in the anterior cingulate cortex (ACC) has largely been viewed as a cognitive, computational process devoid of emotion. A growing body of research, however, suggests that performance is moderated by motivational engagement and that a signal generated by the ACC, the error-related negativity (ERN), may partially reflect a…

  2. The Relation between Content and Structure in Language Production: An Analysis of Speech Errors in Semantic Dementia

    ERIC Educational Resources Information Center

    Meteyard, Lotte; Patterson, Karalyn

    2009-01-01

    In order to explore the impact of a degraded semantic system on the structure of language production, we analysed transcripts from autobiographical memory interviews to identify naturally-occurring speech errors by eight patients with semantic dementia (SD) and eight age-matched normal speakers. Relative to controls, patients were significantly…

  3. Decreasing Errors in Reading-Related Matching to Sample Using a Delayed-Sample Procedure

    ERIC Educational Resources Information Center

    Doughty, Adam H.; Saunders, Kathryn J.

    2009-01-01

    Two men with intellectual disabilities initially demonstrated intermediate accuracy in two-choice matching-to-sample (MTS) procedures. A printed-letter identity MTS procedure was used with 1 participant, and a spoken-to-printed-word MTS procedure was used with the other participant. Errors decreased substantially under a delayed-sample procedure,…

  4. Individual Differences in Working Memory Capacity Predict Action Monitoring and the Error-Related Negativity

    ERIC Educational Resources Information Center

    Miller, A. Eve; Watson, Jason M.; Strayer, David L.

    2012-01-01

    Neuroscience suggests that the anterior cingulate cortex (ACC) is responsible for conflict monitoring and the detection of errors in cognitive tasks, thereby contributing to the implementation of attentional control. Though individual differences in frontally mediated goal maintenance have clearly been shown to influence outward behavior in…

  5. SCIAMACHY WFM-DOAS XCO2: reduction of scattering related errors

    NASA Astrophysics Data System (ADS)

    Heymann, J.; Bovensmann, H.; Buchwitz, M.; Burrows, J. P.; Deutscher, N. M.; Notholt, J.; Rettinger, M.; Reuter, M.; Schneising, O.; Sussmann, R.; Warneke, T.

    2012-10-01

    Global observations of column-averaged dry air mole fractions of carbon dioxide (CO2), denoted by XCO2 , retrieved from SCIAMACHY on-board ENVISAT can provide important and missing global information on the distribution and magnitude of regional CO2 surface fluxes. This application has challenging precision and accuracy requirements. In a previous publication (Heymann et al., 2012), it has been shown by analysing seven years of SCIAMACHY WFM-DOAS XCO2 (WFMDv2.1) that unaccounted thin cirrus clouds can result in significant errors. In order to enhance the quality of the SCIAMACHY XCO2 data product, we have developed a new version of the retrieval algorithm (WFMDv2.2), which is described in this manuscript. It is based on an improved cloud filtering and correction method using the 1.4 μm strong water vapour absorption and 0.76 μm O2-A bands. The new algorithm has been used to generate a SCIAMACHY XCO2 data set covering the years 2003-2009. The new XCO2 data set has been validated using ground-based observations from the Total Carbon Column Observing Network (TCCON). The validation shows a significant improvement of the new product (v2.2) in comparison to the previous product (v2.1). For example, the standard deviation of the difference to TCCON at Darwin, Australia, has been reduced from 4 ppm to 2 ppm. The monthly regional-scale scatter of the data (defined as the mean intra-monthly standard deviation of all quality filtered XCO2 retrievals within a radius of 350 km around various locations) has also been reduced, typically by a factor of about 1.5. Overall, the validation of the new WFMDv2.2 XCO2 data product can be summarised by a single measurement precision of 3.8 ppm, an estimated regional-scale (radius of 500 km) precision of monthly averages of 1.6 ppm and an estimated regional-scale relative accuracy of 0.8 ppm. In addition to the comparison with the limited number of TCCON sites, we also present a comparison with NOAA's global CO2 modelling and

  6. SCIAMACHY WFM-DOAS XCO2: reduction of scattering related errors

    NASA Astrophysics Data System (ADS)

    Heymann, J.; Bovensmann, H.; Buchwitz, M.; Burrows, J. P.; Deutscher, N. M.; Notholt, J.; Rettinger, M.; Reuter, M.; Schneising, O.; Sussmann, R.; Warneke, T.

    2012-06-01

    Global observations of column-averaged dry air mole fractions of carbon dioxide (CO2), denoted by XCO2, retrieved from passive remote sensing instruments on Earth orbiting satellites can provide important and missing global information on the distribution and magnitude of regional CO2 surface fluxes. This application has challenging precision and accuracy requirements. SCIAMACHY on-board ENVISAT is the first satellite instrument, which measures the upwelling electromagnetic radiation in the near and short wave infrared at an adequate spectral and spatial resolution to yield near-surface sensitive XCO2. In a previous publication (Heymann et al., 2012), it has been shown by analysing seven years of SCIAMACHY WFM-DOAS XCO2 (WFMDv2.1) that unaccounted thin cirrus clouds can result in significant errors. In order to enhance the quality of the SCIAMACHY XCO2 data product, we have developed a new version of the retrieval algorithm (WFMDv2.2), which is described in this manuscript. It is based on an improved cloud filtering and correction method using the 1.4 μm strong water vapour absorption and 0.76 μm O2-A bands. The new algorithm has been used to generate a SCIAMACHY XCO2 data set covering the years 2003-2009. The new XCO2 data set has been validated using ground-based observations from the Total Carbon Column Observing Network (TCCON). The validation shows a significant improvement of the new product (v2.2) in comparison to the previous product (v2.1). For example, the standard deviation of the difference to TCCON at Darwin, Australia, has been reduced from 4 ppm to 2 ppm. The monthly regional-scale scatter of the data (defined as the mean inner monthly standard deviation of all quality filtered XCO2 retrievals within a radius of 350 km around various locations) has also been reduced, typically by a factor of about 1.5. Overall, the validation of the new WFMDv2.2 XCO2 data product can be summarised by a single measurement precision of 3.8 ppm, an estimated regional

  7. Absolute nuclear material assay

    DOEpatents

    Prasad, Manoj K.; Snyderman, Neal J.; Rowland, Mark S.

    2012-05-15

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  8. Absolute nuclear material assay

    DOEpatents

    Prasad, Manoj K.; Snyderman, Neal J.; Rowland, Mark S.

    2010-07-13

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  9. Quantitative Proteomic Analysis of Serum from Pregnant Women Carrying a Fetus with Conotruncal Heart Defect Using Isobaric Tags for Relative and Absolute Quantitation (iTRAQ) Labeling

    PubMed Central

    Zhang, Ying; Kang, Yuan; Zhou, Qiongjie; Zhou, Jizi; Wang, Huijun; Jin, Hong; Liu, Xiaohui; Ma, Duan; Li, Xiaotian

    2014-01-01

    Objective To identify differentially expressed proteins from serum of pregnant women carrying a conotruncal heart defects (CTD) fetus, using proteomic analysis. Methods The study was conducted using a nested case-control design. The 5473 maternal serum samples were collected at 14–18 weeks of gestation. The serum from 9 pregnant women carrying a CTD fetus, 10 with another CHD (ACHD) fetus, and 11 with a normal fetus were selected from the above samples, and analyzed by using isobaric tags for relative and absolute quantitation (iTRAQ) coupled with two-dimensional liquid chromatography-tandem mass spectrometry(2D LC-MS/MS). The differentially expressed proteins identified by iTRAQ were further validated with Western blot. Results A total of 105 unique proteins present in the three groups were identified, and relative expression data were obtained for 92 of them with high confidence by employing the iTRAQ-based experiments. The downregulation of gelsolin in maternal serum of fetus with CTD was further verified by Western blot. Conclusions The identification of differentially expressed protein gelsolin in the serum of the pregnant women carrying a CTD fetus by using proteomic technology may be able to serve as a foundation to further explore the biomarker for detection of CTD fetus from the maternal serum. PMID:25393621

  10. Error-related brain activity in youth and young adults before and after treatment for generalized or social anxiety disorder.

    PubMed

    Kujawa, Autumn; Weinberg, Anna; Bunford, Nora; Fitzgerald, Kate D; Hanna, Gregory L; Monk, Christopher S; Kennedy, Amy E; Klumpp, Heide; Hajcak, Greg; Phan, K Luan

    2016-11-01

    Increased error monitoring, as measured by the error-related negativity (ERN), has been shown to persist after treatment for obsessive-compulsive disorder in youth and adults; however, no previous studies have examined the ERN following treatment for related anxiety disorders. We used a flanker task to elicit the ERN in 28 youth and young adults (8-26years old) with primary diagnoses of generalized anxiety disorder (GAD) or social anxiety disorder (SAD) and 35 healthy controls. Patients were assessed before and after treatment with cognitive-behavioral therapy (CBT) or selective serotonin reuptake inhibitors (SSRI), and healthy controls were assessed at a comparable interval. The ERN increased across assessments in the combined sample. Patients with SAD exhibited an enhanced ERN relative to healthy controls prior to and following treatment, even when analyses were limited to SAD patients who responded to treatment. Patients with GAD did not significantly differ from healthy controls at either assessment. Results provide preliminary evidence that enhanced error monitoring persists following treatment for SAD in youth and young adults, and support conceptualizations of increased error monitoring as a trait-like vulnerability that may contribute to risk for recurrence and impaired functioning later in life. Future work is needed to further evaluate the ERN in GAD across development, including whether an enhanced ERN develops in adulthood or is most apparent when worries focus on internal sources of threat.

  11. Error-related brain activity in youth and young adults before and after treatment for generalized or social anxiety disorder.

    PubMed

    Kujawa, Autumn; Weinberg, Anna; Bunford, Nora; Fitzgerald, Kate D; Hanna, Gregory L; Monk, Christopher S; Kennedy, Amy E; Klumpp, Heide; Hajcak, Greg; Phan, K Luan

    2016-11-01

    Increased error monitoring, as measured by the error-related negativity (ERN), has been shown to persist after treatment for obsessive-compulsive disorder in youth and adults; however, no previous studies have examined the ERN following treatment for related anxiety disorders. We used a flanker task to elicit the ERN in 28 youth and young adults (8-26years old) with primary diagnoses of generalized anxiety disorder (GAD) or social anxiety disorder (SAD) and 35 healthy controls. Patients were assessed before and after treatment with cognitive-behavioral therapy (CBT) or selective serotonin reuptake inhibitors (SSRI), and healthy controls were assessed at a comparable interval. The ERN increased across assessments in the combined sample. Patients with SAD exhibited an enhanced ERN relative to healthy controls prior to and following treatment, even when analyses were limited to SAD patients who responded to treatment. Patients with GAD did not significantly differ from healthy controls at either assessment. Results provide preliminary evidence that enhanced error monitoring persists following treatment for SAD in youth and young adults, and support conceptualizations of increased error monitoring as a trait-like vulnerability that may contribute to risk for recurrence and impaired functioning later in life. Future work is needed to further evaluate the ERN in GAD across development, including whether an enhanced ERN develops in adulthood or is most apparent when worries focus on internal sources of threat. PMID:27495356

  12. An Error-Related Negativity Potential Investigation of Response Monitoring Function in Individuals with Internet Addiction Disorder

    PubMed Central

    Zhou, Zhenhe; Li, Cui; Zhu, Hongmei

    2013-01-01

    Internet addiction disorder (IAD) is an impulse disorder or at least related to impulse control disorder. Deficits in executive functioning, including response monitoring, have been proposed as a hallmark feature of impulse control disorders. The error-related negativity (ERN) reflects individual’s ability to monitor behavior. Since IAD belongs to a compulsive-impulsive spectrum disorder, theoretically, it should present response monitoring functional deficit characteristics of some disorders, such as substance dependence, ADHD, or alcohol abuse, testing with an Erikson flanker task. Up to now, no studies on response monitoring functional deficit in IAD were reported. The purpose of the present study was to examine whether IAD displays response monitoring functional deficit characteristics in a modified Erikson flanker task. Twenty-three subjects were recruited as IAD group. Twenty-three matched age, gender, and education healthy persons were recruited as control group. All participants completed the modified Erikson flanker task while measured with event-related potentials. IAD group made more total error rates than did controls (p < 0.01); Reactive times for total error responses in IAD group were shorter than did controls (p < 0.01). The mean ERN amplitudes of total error response conditions at frontal electrode sites and at central electrode sites of IAD group were reduced compared with control group (all p < 0.01). These results revealed that IAD displays response monitoring functional deficit characteristics and shares ERN characteristics of compulsive-impulsive spectrum disorder. PMID:24093009

  13. Determination of parameters and research autoreflection scheme to measurement errors relative position of the optical elements of the Space Telescope

    NASA Astrophysics Data System (ADS)

    Molev, Fedor; Konyakhin, Igor; Ezhova, Kseniia

    2014-05-01

    The main advantages and disadvantages of using autoreflection and autocollimation schemes for constructing the measuring channel, which is designed to control the relative position of the elements of the optical system Space Telescope are described in this paper. Results of modeling in the Zemax software complex are given. Methods of determining the autocollimation images coordinates for calculate the error relative position of the optical system are described.

  14. Low relative error in consumer-grade GPS units make them ideal for measuring small-scale animal movement patterns

    PubMed Central

    Severns, Paul M.

    2015-01-01

    Consumer-grade GPS units are a staple of modern field ecology, but the relatively large error radii reported by manufacturers (up to 10 m) ostensibly precludes their utility in measuring fine-scale movement of small animals such as insects. Here we demonstrate that for data collected at fine spatio-temporal scales, these devices can produce exceptionally accurate data on step-length and movement patterns of small animals. With an understanding of the properties of GPS error and how it arises, it is possible, using a simple field protocol, to use consumer grade GPS units to collect step-length data for the movement of small animals that introduces a median error as small as 11 cm. These small error rates were measured in controlled observations of real butterfly movement. Similar conclusions were reached using a ground-truth test track prepared with a field tape and compass and subsequently measured 20 times using the same methodology as the butterfly tracking. Median error in the ground-truth track was slightly higher than the field data, mostly between 20 and 30 cm, but even for the smallest ground-truth step (70 cm), this is still a signal-to-noise ratio of 3:1, and for steps of 3 m or more, the ratio is greater than 10:1. Such small errors relative to the movements being measured make these inexpensive units useful for measuring insect and other small animal movements on small to intermediate scales with budgets orders of magnitude lower than survey-grade units used in past studies. As an additional advantage, these units are simpler to operate, and insect or other small animal trackways can be collected more quickly than either survey-grade units or more traditional ruler/gird approaches. PMID:26312190

  15. Absolute Proper Motions of Southern Globular Clusters

    NASA Astrophysics Data System (ADS)

    Dinescu, D. I.; Girard, T. M.; van Altena, W. F.

    1996-05-01

    Our program involves the determination of absolute proper motions with respect to galaxies for a sample of globular clusters situated in the southern sky. The plates cover a 6(deg) x 6(deg) area and are taken with the 51-cm double astrograph at Cesco Observatory in El Leoncito, Argentina. We have developed special methods to deal with the modelling error of the plate transformation and we correct for magnitude equation using the cluster stars. This careful astrometric treatment leads to accuracies of from 0.5 to 1.0 mas/yr for the absolute proper motion of each cluster, depending primarily on the number of measurable cluster stars which in turn is related to the cluster's distance. Space velocities are then derived which, in association with metallicities, provide key information for the formation scenario of the Galaxy, i.e. accretion and/or dissipational collapse. Here we present results for NGC 1851, NGC 6752, NGC 6584, NGC 6362 and NGC 288.

  16. Investigation of Reversal Errors in Reading in Normal and Poor Readers as Related to Critical Factors in Reading Materials. Final Report.

    ERIC Educational Resources Information Center

    Liberman, Isabelle Y.; Shankweiler, Donald

    Reversals in poor and normal second-grade readers were studied in relation to their whole phonological error pattern in reading real words and nonsense syllables. Error categories included sequence and orientation reversals, other consonants, vowels, and total error. Reversals occurred in quantity only in poor readers, with large individual…

  17. Isobaric Tags for Relative and Absolute Quantitation-Based Proteomic Analysis of Patent and Constricted Ductus Arteriosus Tissues Confirms the Systemic Regulation of Ductus Arteriosus Closure.

    PubMed

    Hong, Haifa; Ye, Lincai; Chen, Huiwen; Xia, Yu; Liu, Yue; Liu, Jinfen; Lu, Yanan; Zhang, Haibo

    2015-08-01

    We aimed to evaluate global changes in protein expression associated with patency by undertaking proteomic analysis of human constricted and patent ductus arteriosus (DA). Ten constricted and 10 patent human DAs were excised from infants with ductal-dependent heart disease during surgery. Using isobaric tags for relative and absolute quantitation-based quantitative proteomics, 132 differentially expressed proteins were identified. Of 132 proteins, voltage-gated sodium channel 1.3 (SCN3A), myosin 1d (Myo1d), Rho GTPase activating protein 26 (ARHGAP26), and retinitis pigmentosa 1 (RP1) were selected for validation by Western blot and quantitative real-time polymerase chain reaction analyses. Significant upregulation of SCN3A, Myo1d, and RP1 messenger RNA, and protein levels was observed in the patent DA group (all P ≤ 0.048). ARHGAP26 messenger RNA and protein levels were decreased in patent DA tissue (both P ≤ 0.018). Immunohistochemistry analysis revealed that Myo1d, ARHGAP26, and RP1 were specifically expressed in the subendothelial region of constricted DAs; however, diffuse expression of these proteins was noted in the patent group. Proteomic analysis revealed global changes in the expression of proteins that regulate oxygen sensing, ion channels, smooth muscle cell migration, nervous system, immune system, and metabolism, suggesting a basis for the systemic regulation of DA patency by diverse signaling pathways, which will be confirmed in further studies.

  18. [New potentials for monitoring the temperature and the relative and absolute humidity of the air-oxygen mixture during the prolonged artificial ventilation of newborn infants].

    PubMed

    Milenin, O B; Efimov, M S

    1998-01-01

    A new HTM-902 monitor (UCCP, Germany/Serviceinstrument, Russia) was used for continuous measurements of the temperature and relative and absolute humidity of inspired gas during prolonged mechanical ventilation in 86 neonates with respiratory failure caused by the respiratory distress syndrome (n = 42), meconium aspiration syndrome (n = 28), and congenital pneumonia (n = 16). All measurements were performed with a special probe connected to the inspiratory contour through a standard adapter close to the patient's T-piece. The monitor helped maintain the optimal values of the inspired gas conditioning during assisted ventilation of the neonates. The optimal relationships between gas temperature and humidity can be attained only with humidifiers with a servocontrol of temperature and heated wire inside the inspiratory circle tube. For maintaining adequate humidity of inspired gas after any changes in the ventilator flow rate or in the temperature inside the incubator, the heating power of the humidifier had to be corrected. However, even with servocontrolled humidifiers and humidity regulation, an increase of temperature inside the incubator over 35 degrees C made impossible the maintenance of the inspired gas humidity at the level of 96-100% with its temperature at the level of the patient's T-piece no higher than 37 degrees C.

  19. Clock time is absolute and universal

    NASA Astrophysics Data System (ADS)

    Shen, Xinhang

    2015-09-01

    A critical error is found in the Special Theory of Relativity (STR): mixing up the concepts of the STR abstract time of a reference frame and the displayed time of a physical clock, which leads to use the properties of the abstract time to predict time dilation on physical clocks and all other physical processes. Actually, a clock can never directly measure the abstract time, but can only record the result of a physical process during a period of the abstract time such as the number of cycles of oscillation which is the multiplication of the abstract time and the frequency of oscillation. After Lorentz Transformation, the abstract time of a reference frame expands by a factor gamma, but the frequency of a clock decreases by the same factor gamma, and the resulting multiplication i.e. the displayed time of a moving clock remains unchanged. That is, the displayed time of any physical clock is an invariant of Lorentz Transformation. The Lorentz invariance of the displayed times of clocks can further prove within the framework of STR our earth based standard physical time is absolute, universal and independent of inertial reference frames as confirmed by both the physical fact of the universal synchronization of clocks on the GPS satellites and clocks on the earth, and the theoretical existence of the absolute and universal Galilean time in STR which has proved that time dilation and space contraction are pure illusions of STR. The existence of the absolute and universal time in STR has directly denied that the reference frame dependent abstract time of STR is the physical time, and therefore, STR is wrong and all its predictions can never happen in the physical world.

  20. Absolute flux scale for radioastronomy

    SciTech Connect

    Ivanov, V.P.; Stankevich, K.S.

    1986-07-01

    The authors propose and provide support for a new absolute flux scale for radio astronomy, which is not encumbered with the inadequacies of the previous scales. In constructing it the method of relative spectra was used (a powerful tool for choosing reference spectra). A review is given of previous flux scales. The authors compare the AIS scale with the scale they propose. Both scales are based on absolute measurements by the ''artificial moon'' method, and they are practically coincident in the range from 0.96 to 6 GHz. At frequencies above 6 GHz, 0.96 GHz, the AIS scale is overestimated because of incorrect extrapolation of the spectra of the primary and secondary standards. The major results which have emerged from this review of absolute scales in radio astronomy are summarized.

  1. Error-related processing following severe traumatic brain injury: An event-related functional magnetic resonance imaging (fMRI) study

    PubMed Central

    Sozda, Christopher N.; Larson, Michael J.; Kaufman, David A.S.; Schmalfuss, Ilona M.; Perlstein, William M.

    2011-01-01

    Continuous monitoring of one’s performance is invaluable for guiding behavior towards successful goal attainment by identifying deficits and strategically adjusting responses when performance is inadequate. In the present study, we exploited the advantages of event-related functional magnetic resonance imaging (fMRI) to examine brain activity associated with error-related processing after severe traumatic brain injury (sTBI). fMRI and behavioral data were acquired while 10 sTBI participants and 12 neurologically-healthy controls performed a task-switching cued-Stroop task. fMRI data were analyzed using a random-effects whole-brain voxel-wise general linear model and planned linear contrasts. Behaviorally, sTBI patients showed greater error-rate interference than neurologically-normal controls. fMRI data revealed that, compared to controls, sTBI patients showed greater magnitude error-related activation in the anterior cingulate cortex (ACC) and an increase in the overall spatial extent of error-related activation across cortical and subcortical regions. Implications for future research and potential limitations in conducting fMRI research in neurologically-impaired populations are discussed, as well as some potential benefits of employing multimodal imaging (e.g., fMRI and event-related potentials) of cognitive control processes in TBI. PMID:21756946

  2. Sources of resonance-related errors in capacitance versus voltage measurement systems

    NASA Astrophysics Data System (ADS)

    Polishchuk, Igor; Brown, George; Huff, Howard

    2000-10-01

    A frequency dependence of the capacitance of metal-oxide-semiconductor devices is often observed in wafer-level probe station measurements for frequencies exceeding 100 kHz. It is well established, however, that the true capacitance value in the SiO2 devices biased into accumulation should remain frequency-independent well into the gigahertz range. Consequently, the apparent frequency dependence of the capacitance versus voltage characteristic may be the result of a resonance present in the measurement setup. We present a quantitative analysis, which can be used to identify the sources of error, characterize a measurement system, and improve the precision of the collected data.

  3. Medicolegal errors in the ED related to the involuntary confinement of psychiatric patients.

    PubMed

    Reeves, R R; Pinkofsky, H B; Stevens, L

    1998-11-01

    To determine the effectiveness of emergency department (ED) physicians properly and correctly completing documents required for emergency confinement of psychiatric patients, 1,000 Physician Emergency Certificates filed by ED physicians in the Shreveport, Louisiana, region were reviewed for appropriateness and for correctness of completion based on the applicable state law. Of the Physician Emergency Certificates reviewed 4.2% were incomplete or inappropriate. The most significant sources of error involved incomplete documentation of the mental status examination and not documenting the specific reason (dangerous to self, dangerous to others, or gravely disabled) for the patient meeting requirements for involuntary confinement. Other errors included confinement for reasons not appropriate for a psychiatric unit. This study suggests that ED physicians should be more cautious and thorough in completing the documents required for emergency confinement of psychiatric patients, so that the physician is less likely to be sued for malpractice or charged with the false imprisonment of such patients, and the patient's civil liberties are protected.

  4. Nonlinear Advection Algorithms Applied to Inter-related Tracers: Errors and Implications for Modeling Aerosol-Cloud Interactions

    SciTech Connect

    Ovtchinnikov, Mikhail; Easter, Richard C.

    2009-02-01

    Monotonicity constraints and gradient preserving flux corrections employed by many advection algorithms used in atmospheric models make these algorithms non-linear. Consequently, any relations among model variables transported separately are not necessarily preserved in such models. These errors cannot be revealed by traditional algorithm testing based on advection of a single tracer. New type of tests are developed and conducted to evaluate the preservation of a sum of several number mixing ratios advected independently of each other, as is the case, for example, in models using bin or sectional representation of aerosol or cloud particle size distribution. The tests show that when three tracers are advected in 1D uniform constant velocity flow, local errors in the sum can be on the order of 10%. When cloud-like interactions are allowed among the tracers, errors in total sum of three mixing ratios can reach up to 30%. Several approaches to eliminate the error are suggested, all based on advecting the sum as a separate variable and then normalizing mixing ratios for individual tracers to match the total sum. A simple scalar normalization preserves the total number mixing ratio and positive definiteness of the variables but the monotonicity constraint for individual tracers is no longer maintained. More involved flux normalization procedures are developed for the flux based advection algorithms to maintain the monotonicity for individual scalars and their sum.

  5. Motor imagery, P300 and error-related EEG-based robot arm movement control for rehabilitation purpose.

    PubMed

    Bhattacharyya, Saugat; Konar, Amit; Tibarewala, D N

    2014-12-01

    The paper proposes a novel approach toward EEG-driven position control of a robot arm by utilizing motor imagery, P300 and error-related potentials (ErRP) to align the robot arm with desired target position. In the proposed scheme, the users generate motor imagery signals to control the motion of the robot arm. The P300 waveforms are detected when the user intends to stop the motion of the robot on reaching the goal position. The error potentials are employed as feedback response by the user. On detection of error the control system performs the necessary corrections on the robot arm. Here, an AdaBoost-Support Vector Machine (SVM) classifier is used to decode the 4-class motor imagery and an SVM is used to decode the presence of P300 and ErRP waveforms. The average steady-state error, peak overshoot and settling time obtained for our proposed approach is 0.045, 2.8% and 44 s, respectively, and the average rate of reaching the target is 95%. The results obtained for the proposed control scheme make it suitable for designs of prosthetics in rehabilitative applications.

  6. A method for determining weights for excess relative risk and excess absolute risk when applied in the calculation of lifetime risk of cancer from radiation exposure.

    PubMed

    Walsh, Linda; Schneider, Uwe

    2013-03-01

    Radiation-related risks of cancer can be transported from one population to another population at risk, for the purpose of calculating lifetime risks from radiation exposure. Transfer via excess relative risks (ERR) or excess absolute risks (EAR) or a mixture of both (i.e., from the life span study (LSS) of Japanese atomic bomb survivors) has been done in the past based on qualitative weighting. Consequently, the values of the weights applied and the method of application of the weights (i.e., as additive or geometric weighted means) have varied both between reports produced at different times by the same regulatory body and also between reports produced at similar times by different regulatory bodies. Since the gender and age patterns are often markedly different between EAR and ERR models, it is useful to have an evidence-based method for determining the relative goodness of fit of such models to the data. This paper identifies a method, using Akaike model weights, which could aid expert judgment and be applied to help to achieve consistency of approach and quantitative evidence-based results in future health risk assessments. The results of applying this method to recent LSS cancer incidence models are that the relative EAR weighting by cancer solid cancer site, on a scale of 0-1, is zero for breast and colon, 0.02 for all solid, 0.03 for lung, 0.08 for liver, 0.15 for thyroid, 0.18 for bladder and 0.93 for stomach. The EAR weighting for female breast cancer increases from 0 to 0.3, if a generally observed change in the trend between female age-specific breast cancer incidence rates and attained age, associated with menopause, is accounted for in the EAR model. Application of this method to preferred models from a study of multi-model inference from many models fitted to the LSS leukemia mortality data, results in an EAR weighting of 0. From these results it can be seen that lifetime risk transfer is most highly weighted by EAR only for stomach cancer. However

  7. Heat production and error probability relation in Landauer reset at effective temperature

    PubMed Central

    Neri, Igor; López-Suárez, Miquel

    2016-01-01

    The erasure of a classical bit of information is a dissipative process. The minimum heat produced during this operation has been theorized by Rolf Landauer in 1961 to be equal to kBT ln2 and takes the name of Landauer limit, Landauer reset or Landauer principle. Despite its fundamental importance, the Landauer limit remained untested experimentally for more than fifty years until recently when it has been tested using colloidal particles and magnetic dots. Experimental measurements on different devices, like micro-mechanical systems or nano-electronic devices are still missing. Here we show the results obtained in performing the Landauer reset operation in a micro-mechanical system, operated at an effective temperature. The measured heat exchange is in accordance with the theory reaching values close to the expected limit. The data obtained for the heat production is then correlated to the probability of error in accomplishing the reset operation. PMID:27669898

  8. Heat production and error probability relation in Landauer reset at effective temperature

    NASA Astrophysics Data System (ADS)

    Neri, Igor; López-Suárez, Miquel

    2016-09-01

    The erasure of a classical bit of information is a dissipative process. The minimum heat produced during this operation has been theorized by Rolf Landauer in 1961 to be equal to kBT ln2 and takes the name of Landauer limit, Landauer reset or Landauer principle. Despite its fundamental importance, the Landauer limit remained untested experimentally for more than fifty years until recently when it has been tested using colloidal particles and magnetic dots. Experimental measurements on different devices, like micro-mechanical systems or nano-electronic devices are still missing. Here we show the results obtained in performing the Landauer reset operation in a micro-mechanical system, operated at an effective temperature. The measured heat exchange is in accordance with the theory reaching values close to the expected limit. The data obtained for the heat production is then correlated to the probability of error in accomplishing the reset operation.

  9. A Novel Function for Arabidopsis CYCLASE1 in Programmed Cell Death Revealed by Isobaric Tags for Relative and Absolute Quantitation (iTRAQ) Analysis of Extracellular Matrix Proteins.

    PubMed

    Smith, Sarah J; Kroon, Johan T M; Simon, William J; Slabas, Antoni R; Chivasa, Stephen

    2015-06-01

    Programmed cell death is essential for plant development and stress adaptation. A detailed understanding of the signal transduction pathways that regulate plant programmed cell death requires identification of the underpinning protein networks. Here, we have used a protagonist and antagonist of programmed cell death triggered by fumonisin B1 as probes to identify key cell death regulatory proteins in Arabidopsis. Our hypothesis was that changes in the abundance of cell death-regulatory proteins induced by the protagonist should be blocked or attenuated by concurrent treatment with the antagonist. We focused on proteins present in the mobile phase of the extracellular matrix on the basis that they are important for cell-cell communications during growth and stress-adaptive responses. Salicylic acid, a plant hormone that promotes programmed cell death, and exogenous ATP, which can block fumonisin B1-induced cell death, were used to treat Arabidopsis cell suspension cultures prior to isobaric-tagged relative and absolute quantitation analysis of secreted proteins. A total of 33 proteins, whose response to salicylic acid was suppressed by ATP, were identified as putative cell death-regulatory proteins. Among these was CYCLASE1, which was selected for further analysis using reverse genetics. Plants in which CYCLASE1 gene expression was knocked out by insertion of a transfer-DNA sequence manifested dramatically increased cell death when exposed to fumonisin B1 or a bacterial pathogen that triggers the defensive hypersensitive cell death. Although pathogen inoculation altered CYCLASE1 gene expression, multiplication of bacterial pathogens was indistinguishable between wild type and CYCLASE1 knockout plants. However, remarkably severe chlorosis symptoms developed on gene knockout plants in response to inoculation with either a virulent bacterial pathogen or a disabled mutant that is incapable of causing disease in wild type plants. These results show that CYCLASE1, which

  10. Reducing Individual Variation for fMRI Studies in Children by Minimizing Template Related Errors.

    PubMed

    Weng, Jian; Dong, Shanshan; He, Hongjian; Chen, Feiyan; Peng, Xiaogang

    2015-01-01

    Spatial normalization is an essential process for group comparisons in functional MRI studies. In practice, there is a risk of normalization errors particularly in studies involving children, seniors or diseased populations and in regions with high individual variation. One way to minimize normalization errors is to create a study-specific template based on a large sample size. However, studies with a large sample size are not always feasible, particularly for children studies. The performance of templates with a small sample size has not been evaluated in fMRI studies in children. In the current study, this issue was encountered in a working memory task with 29 children in two groups. We compared the performance of different templates: a study-specific template created by the experimental population, a Chinese children template and the widely used adult MNI template. We observed distinct differences in the right orbitofrontal region among the three templates in between-group comparisons. The study-specific template and the Chinese children template were more sensitive for the detection of between-group differences in the orbitofrontal cortex than the MNI template. Proper templates could effectively reduce individual variation. Further analysis revealed a correlation between the BOLD contrast size and the norm index of the affine transformation matrix, i.e., the SFN, which characterizes the difference between a template and a native image and differs significantly across subjects. Thereby, we proposed and tested another method to reduce individual variation that included the SFN as a covariate in group-wise statistics. This correction exhibits outstanding performance in enhancing detection power in group-level tests. A training effect of abacus-based mental calculation was also demonstrated, with significantly elevated activation in the right orbitofrontal region that correlated with behavioral response time across subjects in the trained group. PMID:26207985

  11. Reducing Individual Variation for fMRI Studies in Children by Minimizing Template Related Errors.

    PubMed

    Weng, Jian; Dong, Shanshan; He, Hongjian; Chen, Feiyan; Peng, Xiaogang

    2015-01-01

    Spatial normalization is an essential process for group comparisons in functional MRI studies. In practice, there is a risk of normalization errors particularly in studies involving children, seniors or diseased populations and in regions with high individual variation. One way to minimize normalization errors is to create a study-specific template based on a large sample size. However, studies with a large sample size are not always feasible, particularly for children studies. The performance of templates with a small sample size has not been evaluated in fMRI studies in children. In the current study, this issue was encountered in a working memory task with 29 children in two groups. We compared the performance of different templates: a study-specific template created by the experimental population, a Chinese children template and the widely used adult MNI template. We observed distinct differences in the right orbitofrontal region among the three templates in between-group comparisons. The study-specific template and the Chinese children template were more sensitive for the detection of between-group differences in the orbitofrontal cortex than the MNI template. Proper templates could effectively reduce individual variation. Further analysis revealed a correlation between the BOLD contrast size and the norm index of the affine transformation matrix, i.e., the SFN, which characterizes the difference between a template and a native image and differs significantly across subjects. Thereby, we proposed and tested another method to reduce individual variation that included the SFN as a covariate in group-wise statistics. This correction exhibits outstanding performance in enhancing detection power in group-level tests. A training effect of abacus-based mental calculation was also demonstrated, with significantly elevated activation in the right orbitofrontal region that correlated with behavioral response time across subjects in the trained group.

  12. The oscillation model of hydrothermal dynamics beneath Aso volcano, southwest Japan after small eruption on May 2011: A new understanding model using repeated absolute and relative gravity measurement

    NASA Astrophysics Data System (ADS)

    Sofyan, Yayan; Nishijima, Jun; Fujimitsu, Yasuhiro; Yoshikawa, Shin; Kagiyama, Tsuneomi; Ohkura, Takahiro

    2016-01-01

    At the end of 2010, the seismic activity in Aso volcano intensely increased and water level in the Nakadake crater decreased until early in 2011, then was followed by a small eruption in May 2011. After the eruption and heavy rain, the volcanic activity subsided to calm period, crater bottom was refilled with water, and water level increased in the Nakadake crater. The next tremor reappeared in 2014 and tracked to eruption in November 2014. This eruptive pattern and water level variation in the crater repeatedly appeared on the surface, and it should be related to the hydrothermal dynamics beneath Aso volcano. We initiated the gravity measurements in relation to hydrothermal dynamics in the subsurface of Aso volcano using Scintrex CG-5 (549) and LaCoste Romberg type G-1016 relative gravimeter at 28 benchmarks in April 2011, one month before the eruption. The repeated gravity measurements continue to monitor Aso volcano with a series of the measurement after the eruption in every three months to a half year. We analyze the gravity variation from 2011 to 2014 between the time of the phreatic and strombolian eruption. The measurements covered the area more than 60 km2 in the west side of Aso caldera. A new gravity network was also installed in May 2010 at seven benchmarks using A10-017 absolute gravimeter, which re-occupied in October 2010, June 2011 and two benchmarks in June 2014. As a result, the gravity changes distinguish hydrothermal dynamic in the subsurface, which has a direct correlation to water level fluctuation in the crater, after the first eruption and before the second discharge. The monitoring data notice large gravity changes between the surveys at benchmarks around Nakadake crater and Kusasenri area. The simple 3D inversion models of the 4-D gravity data deduce the density contrast distribution beneath Aso volcano. The inversion and mass change result generate the oscillation typical as a new understanding model. The variation of the mass shows a

  13. Absolute biological needs.

    PubMed

    McLeod, Stephen

    2014-07-01

    Absolute needs (as against instrumental needs) are independent of the ends, goals and purposes of personal agents. Against the view that the only needs are instrumental needs, David Wiggins and Garrett Thomson have defended absolute needs on the grounds that the verb 'need' has instrumental and absolute senses. While remaining neutral about it, this article does not adopt that approach. Instead, it suggests that there are absolute biological needs. The absolute nature of these needs is defended by appeal to: their objectivity (as against mind-dependence); the universality of the phenomenon of needing across the plant and animal kingdoms; the impossibility that biological needs depend wholly upon the exercise of the abilities characteristic of personal agency; the contention that the possession of biological needs is prior to the possession of the abilities characteristic of personal agency. Finally, three philosophical usages of 'normative' are distinguished. On two of these, to describe a phenomenon or claim as 'normative' is to describe it as value-dependent. A description of a phenomenon or claim as 'normative' in the third sense does not entail such value-dependency, though it leaves open the possibility that value depends upon the phenomenon or upon the truth of the claim. It is argued that while survival needs (or claims about them) may well be normative in this third sense, they are normative in neither of the first two. Thus, the idea of absolute need is not inherently normative in either of the first two senses. PMID:23586876

  14. Absolute biological needs.

    PubMed

    McLeod, Stephen

    2014-07-01

    Absolute needs (as against instrumental needs) are independent of the ends, goals and purposes of personal agents. Against the view that the only needs are instrumental needs, David Wiggins and Garrett Thomson have defended absolute needs on the grounds that the verb 'need' has instrumental and absolute senses. While remaining neutral about it, this article does not adopt that approach. Instead, it suggests that there are absolute biological needs. The absolute nature of these needs is defended by appeal to: their objectivity (as against mind-dependence); the universality of the phenomenon of needing across the plant and animal kingdoms; the impossibility that biological needs depend wholly upon the exercise of the abilities characteristic of personal agency; the contention that the possession of biological needs is prior to the possession of the abilities characteristic of personal agency. Finally, three philosophical usages of 'normative' are distinguished. On two of these, to describe a phenomenon or claim as 'normative' is to describe it as value-dependent. A description of a phenomenon or claim as 'normative' in the third sense does not entail such value-dependency, though it leaves open the possibility that value depends upon the phenomenon or upon the truth of the claim. It is argued that while survival needs (or claims about them) may well be normative in this third sense, they are normative in neither of the first two. Thus, the idea of absolute need is not inherently normative in either of the first two senses.

  15. Preschoolers' Success at Coding Absolute Size Values.

    ERIC Educational Resources Information Center

    Russell, James

    1980-01-01

    Forty-five 2-year-old and forty-five 3-year-old children coded relative and absolute sizes using 1.5-inch, 6-inch, and 18-inch cardboard squares. Results indicate that absolute coding is possible for children of this age. (Author/RH)

  16. Introducing the Mean Absolute Deviation "Effect" Size

    ERIC Educational Resources Information Center

    Gorard, Stephen

    2015-01-01

    This paper revisits the use of effect sizes in the analysis of experimental and similar results, and reminds readers of the relative advantages of the mean absolute deviation as a measure of variation, as opposed to the more complex standard deviation. The mean absolute deviation is easier to use and understand, and more tolerant of extreme…

  17. Issues in Absolute Spectral Radiometric Calibration: Intercomparison of Eight Sources

    NASA Technical Reports Server (NTRS)

    Goetz, Alexander F. H.; Kindel, Bruce; Pilewskie, Peter

    1998-01-01

    The application of atmospheric models to AVIRIS and other spectral imaging data to derive surface reflectance requires that the sensor output be calibrated to absolute radiance. Uncertainties in absolute calibration are to be expected, and claims of 92% accuracy have been published. Measurements of accurate surface albedos and cloud absorption to be used in radiative balance calculations depend critically on knowing the absolute spectral-radiometric response of the sensor. The Earth Observing System project is implementing a rigorous program of absolute radiometric calibration for all optical sensors. Since a number of imaging instruments that provide output in terms of absolute radiance are calibrated at different sites, it is important to determine the errors that can be expected among calibration sites. Another question exists about the errors in the absolute knowledge of the exoatmospheric spectral solar irradiance.

  18. The Influence of Relatives on the Efficiency and Error Rate of Familial Searching

    PubMed Central

    Rohlfs, Rori V.; Murphy, Erin; Song, Yun S.; Slatkin, Montgomery

    2013-01-01

    We investigate the consequences of adopting the criteria used by the state of California, as described by Myers et al. (2011), for conducting familial searches. We carried out a simulation study of randomly generated profiles of related and unrelated individuals with 13-locus CODIS genotypes and YFiler® Y-chromosome haplotypes, on which the Myers protocol for relative identification was carried out. For Y-chromosome sharing first degree relatives, the Myers protocol has a high probability () of identifying their relationship. For unrelated individuals, there is a low probability that an unrelated person in the database will be identified as a first-degree relative. For more distant Y-haplotype sharing relatives (half-siblings, first cousins, half-first cousins or second cousins) there is a substantial probability that the more distant relative will be incorrectly identified as a first-degree relative. For example, there is a probability that a first cousin will be identified as a full sibling, with the probability depending on the population background. Although the California familial search policy is likely to identify a first degree relative if his profile is in the database, and it poses little risk of falsely identifying an unrelated individual in a database as a first-degree relative, there is a substantial risk of falsely identifying a more distant Y-haplotype sharing relative in the database as a first-degree relative, with the consequence that their immediate family may become the target for further investigation. This risk falls disproportionately on those ethnic groups that are currently overrepresented in state and federal databases. PMID:23967076

  19. Characterization and mitigation of relative edge placement errors (rEPE) in full-chip computational lithography

    NASA Astrophysics Data System (ADS)

    Sturtevant, John; Gupta, Rachit; Shang, Shumay; Liubich, Vlad; Word, James

    2015-10-01

    Edge placement error (EPE) was a term initially introduced to describe the difference between predicted pattern contour edge and the design target. Strictly speaking this quantity is not directly measurable in the fab, and furthermore it is not ultimately the most important metric for chip yield. What is of vital importance is the relative EPE (rEPE) between different design layers, and in the era of multi-patterning, the different constituent mask sublayers for a single design layer. There has always been a strong emphasis on measurement and control of misalignment between design layers, and the progress in this realm has been remarkable, spurned in part at least by the proliferation of multi-patterning which reduces the available overlay budget by introducing a coupling of alignment and CD errors for the target layer. In-line CD and overlay metrology specifications are typically established by starting with design rules and making certain assumptions about error distributions which might be encountered in manufacturing. Lot disposition criteria in photo metrology (rework or pass to etch) are set assuming worst case assumptions for CD and overlay respectively. For example poly to active overlay specs start with poly endcap design rules and make assumptions about active and poly lot average and across lot CDs, and incorporate general knowledge about poly line end rounding to ensure that leakage current is maintained within specification. This worst case guard banding does not consider specific chip designs, however and as we have previously shown full-chip simulation can elucidate the most critical "hot spots" for interlayer process variability comprehending the two-layer CD and misalignment process window. It was shown that there can be differences in X versus Y misalignment process windows as well as positive versus negative directional misalignment process windows and that such design specific information might be leveraged for manufacturing disposition and

  20. Fatigue-proofing: a new approach to reducing fatigue-related risk using the principles of error management.

    PubMed

    Dawson, Drew; Chapman, Janine; Thomas, Matthew J W

    2012-04-01

    In this review we introduce the idea of a novel group of strategies for further reducing fatigue-related risk in the workplace. In contrast to the risk-reduction achieved by reducing the likelihood an individual will be working while fatigued (e.g., by restricting hours of work), fatigue-proofing strategies are adaptive and protective risk-reduction behaviours that improve the resilience of a system of work. That is, they increase the likelihood that a fatigue-related error will be detected and not translate into accident or injury, thus reducing vulnerability to fatigue-related error. The first part of the review outlines the theoretical underpinnings of this approach and gives a series of ethnographically derived examples of informal fatigue-proofing strategies used in a variety of industries. A preliminary conceptual and methodological framework for the systematic identification, development and evaluation of fatigue-proofing strategies is then presented for integration into the wider organisational safety system. The review clearly identifies fatigue-proofing as a potentially valuable strategy to significantly lower fatigue-related risk independent of changes to working hours. This is of particular relevance to organisations where fatigue is difficult to manage using reductions in working hours due to operational circumstances, or the paradoxical consequences for overall safety associated with reduced working hours.

  1. Space density distribution of galaxies in the absolute magnitude - rotation velocity plane: a volume-complete Tully-Fisher relation from CALIFA stellar kinematics

    NASA Astrophysics Data System (ADS)

    Bekeraité, S.; Walcher, C. J.; Falcón-Barroso, J.; Garcia Lorenzo, B.; Lyubenova, M.; Sánchez, S. F.; Spekkens, K.; van de Ven, G.; Wisotzki, L.; Ziegler, B.; Aguerri, J. A. L.; Barrera-Ballesteros, J.; Bland-Hawthorn, J.; Catalán-Torrecilla, C.; García-Benito, R.

    2016-10-01

    We measured the distribution in absolute magnitude - circular velocity space for a well-defined sample of 199 rotating galaxies of the Calar Alto Legacy Integral Field Area Survey (CALIFA) using their stellar kinematics. Our aim in this analysis is to avoid subjective selection criteria and to take volume and large-scale structure factors into account. Using stellar velocity fields instead of gas emission line kinematics allows including rapidly rotating early-type galaxies. Our initial sample contains 277 galaxies with available stellar velocity fields and growth curve r-band photometry. After rejecting 51 velocity fields that could not be modelled because of the low number of bins, foreground contamination, or significant interaction, we performed Markov chain Monte Carlo modelling of the velocity fields, from which we obtained the rotation curve and kinematic parameters and their realistic uncertainties. We performed an extinction correction and calculated the circular velocity vcirc accounting for the pressure support of a given galaxy. The resulting galaxy distribution on the Mr-vcirc plane was then modelled as a mixture of two distinct populations, allowing robust and reproducible rejection of outliers, a significant fraction of which are slow rotators. The selection effects are understood well enough that we were able to correct for the incompleteness of the sample. The 199 galaxies were weighted by volume and large-scale structure factors, which enabled us to fit a volume-corrected Tully-Fisher relation (TFR). More importantly, we also provide the volume-corrected distribution of galaxies in the Mr-vcirc plane, which can be compared with cosmological simulations. The joint distribution of the luminosity and circular velocity space densities, representative over the range of -20 > Mr > -22 mag, can place more stringent constraints on the galaxy formation and evolution scenarios than linear TFR fit parameters or the luminosity function alone. Galaxies main

  2. EEG-based decoding of error-related brain activity in a real-world driving task

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Chavarriaga, R.; Khaliliardali, Z.; Gheorghe, L.; Iturrate, I.; Millán, J. d. R.

    2015-12-01

    Objectives. Recent studies have started to explore the implementation of brain-computer interfaces (BCI) as part of driving assistant systems. The current study presents an EEG-based BCI that decodes error-related brain activity. Such information can be used, e.g., to predict driver’s intended turning direction before reaching road intersections. Approach. We executed experiments in a car simulator (N = 22) and a real car (N = 8). While subject was driving, a directional cue was shown before reaching an intersection, and we classified the presence or not of an error-related potentials from EEG to infer whether the cued direction coincided with the subject’s intention. In this protocol, the directional cue can correspond to an estimation of the driving direction provided by a driving assistance system. We analyzed ERPs elicited during normal driving and evaluated the classification performance in both offline and online tests. Results. An average classification accuracy of 0.698 ± 0.065 was obtained in offline experiments in the car simulator, while tests in the real car yielded a performance of 0.682 ± 0.059. The results were significantly higher than chance level for all cases. Online experiments led to equivalent performances in both simulated and real car driving experiments. These results support the feasibility of decoding these signals to help estimating whether the driver’s intention coincides with the advice provided by the driving assistant in a real car. Significance. The study demonstrates a BCI system in real-world driving, extending the work from previous simulated studies. As far as we know, this is the first online study in real car decoding driver’s error-related brain activity. Given the encouraging results, the paradigm could be further improved by using more sophisticated machine learning approaches and possibly be combined with applications in intelligent vehicles.

  3. Most Frequent Errors in Judo Uki Goshi Technique and the Existing Relations among Them Analysed through T-Patterns

    PubMed Central

    Gutiérrez, Alfonso; Prieto, Iván; Cancela, José M.

    2009-01-01

    The purpose of this study is to provide a tool, based on the knowledge of technical errors, which helps to improve the teaching and learning process of the Uki Goshi technique. With this aim, we set out to determine the most frequent errors made by 44 students when performing this technique and how these mistakes relate. In order to do so, an observational analysis was carried out using the OSJUDO-UKG instrument and the data were registered using Match Vision Studio (Castellano, Perea, Alday and Hernández, 2008). The results, analyzed through descriptive statistics, show that the absence of a correct initial unbalancing movement (45,5%), the lack of proper right-arm pull (56,8%), not blocking the faller’s body (Uke) against the thrower’s hip -Tori- (54,5%) and throwing the Uke through the Tori’s side are the most usual mistakes (72,7%). Through the sequencial analysis of T-Patterns obtained with the THÈME program (Magnusson, 1996, 2000) we have concluded that not blocking the body with the Tori’s hip provokes the Uke’s throw through the Tori’s side during the final phase of the technique (95,8%), and positioning the right arm on the dorsal region of the Uke’s back during the Tsukuri entails the absence of a subsequent pull of the Uke’s body (73,3%). Key Points In this study, the most frequent errors in the performance of the Uki Goshi technique have been determined and the existing relations among these mistakes have been shown through T-Patterns. The SOBJUDO-UKG is an observation instrument for detecting mistakes in the aforementioned technique. The results show that those mistakes related to the initial imbalancing movement and the main driving action of the technique are the most frequent. The use of T-Patterns turns out to be effective in order to obtain the most important relations among the observed errors. PMID:24474885

  4. A method for reducing the largest relative errors in Monte Carlo iterated-fission-source calculations

    SciTech Connect

    Hunter, J. L.; Sutton, T. M.

    2013-07-01

    In Monte Carlo iterated-fission-source calculations relative uncertainties on local tallies tend to be larger in lower-power regions and smaller in higher-power regions. Reducing the largest uncertainties to an acceptable level simply by running a larger number of neutron histories is often prohibitively expensive. The uniform fission site method has been developed to yield a more spatially-uniform distribution of relative uncertainties. This is accomplished by biasing the density of fission neutron source sites while not biasing the solution. The method is integrated into the source iteration process, and does not require any auxiliary forward or adjoint calculations. For a given amount of computational effort, the use of the method results in a reduction of the largest uncertainties relative to the standard algorithm. Two variants of the method have been implemented and tested. Both have been shown to be effective. (authors)

  5. Estimating the absolute wealth of households

    PubMed Central

    Gerkey, Drew; Hadley, Craig

    2015-01-01

    Abstract Objective To estimate the absolute wealth of households using data from demographic and health surveys. Methods We developed a new metric, the absolute wealth estimate, based on the rank of each surveyed household according to its material assets and the assumed shape of the distribution of wealth among surveyed households. Using data from 156 demographic and health surveys in 66 countries, we calculated absolute wealth estimates for households. We validated the method by comparing the proportion of households defined as poor using our estimates with published World Bank poverty headcounts. We also compared the accuracy of absolute versus relative wealth estimates for the prediction of anthropometric measures. Findings The median absolute wealth estimates of 1 403 186 households were 2056 international dollars per capita (interquartile range: 723–6103). The proportion of poor households based on absolute wealth estimates were strongly correlated with World Bank estimates of populations living on less than 2.00 United States dollars per capita per day (R2 = 0.84). Absolute wealth estimates were better predictors of anthropometric measures than relative wealth indexes. Conclusion Absolute wealth estimates provide new opportunities for comparative research to assess the effects of economic resources on health and human capital, as well as the long-term health consequences of economic change and inequality. PMID:26170506

  6. An Event-Related Potential Study on Changes of Violation and Error Responses during Morphosyntactic Learning

    ERIC Educational Resources Information Center

    Davidson, Douglas J.; Indefrey, Peter

    2009-01-01

    Based on recent findings showing electrophysiological changes in adult language learners after relatively short periods of training, we hypothesized that adult Dutch learners of German would show responses to German gender and adjective declension violations after brief instruction. Adjective declension in German differs from previously studied…

  7. Developmental Differences in Error-Related ERPs in Middle- to Late-Adolescent Males

    ERIC Educational Resources Information Center

    Santesso, Diane L.; Segalowitz, Sidney J.

    2008-01-01

    Although there are some studies documenting structural brain changes during late adolescence, there are few showing functional brain changes over this period in humans. Of special interest would be functional changes in the medial frontal cortex that reflect response monitoring. In order to examine such age-related differences, the authors…

  8. Negative Cognitive Errors and Positive Illusions: Moderators of Relations between Divorce Events and Children's Psychological Adjustment.

    ERIC Educational Resources Information Center

    Mazur, Elizabeth; Wolchik, Sharlene

    Building on prior literature on adults' and children's appraisals of stressors, this study investigated relations among negative and positive appraisal biases, negative divorce events, and children's post-divorce adjustment. Subjects were 79 custodial nonremarried mothers and their children ages 9 to 13 who had experienced parental divorce within…

  9. A Neuroeconomics Analysis of Investment Process with Money Flow Information: The Error-Related Negativity.

    PubMed

    Wang, Cuicui; Vieito, João Paulo; Ma, Qingguo

    2015-01-01

    This investigation is among the first ones to analyze the neural basis of an investment process with money flow information of financial market, using a simplified task where volunteers had to choose to buy or not to buy stocks based on the display of positive or negative money flow information. After choosing "to buy" or "not to buy," participants were presented with feedback. At the same time, event-related potentials (ERPs) were used to record investor's brain activity and capture the event-related negativity (ERN) and feedback-related negativity (FRN) components. The results of ERN suggested that there might be a higher risk and more conflict when buying stocks with negative net money flow information than positive net money flow information, and the inverse was also true for the "not to buy" stocks option. The FRN component evoked by the bad outcome of a decision was more negative than that by the good outcome, which reflected the difference between the values of the actual and expected outcome. From the research, we could further understand how investors perceived money flow information of financial market and the neural cognitive effect in investment process. PMID:26557139

  10. A Neuroeconomics Analysis of Investment Process with Money Flow Information: The Error-Related Negativity

    PubMed Central

    Wang, Cuicui; Vieito, João Paulo; Ma, Qingguo

    2015-01-01

    This investigation is among the first ones to analyze the neural basis of an investment process with money flow information of financial market, using a simplified task where volunteers had to choose to buy or not to buy stocks based on the display of positive or negative money flow information. After choosing “to buy” or “not to buy,” participants were presented with feedback. At the same time, event-related potentials (ERPs) were used to record investor's brain activity and capture the event-related negativity (ERN) and feedback-related negativity (FRN) components. The results of ERN suggested that there might be a higher risk and more conflict when buying stocks with negative net money flow information than positive net money flow information, and the inverse was also true for the “not to buy” stocks option. The FRN component evoked by the bad outcome of a decision was more negative than that by the good outcome, which reflected the difference between the values of the actual and expected outcome. From the research, we could further understand how investors perceived money flow information of financial market and the neural cognitive effect in investment process. PMID:26557139

  11. A Neuroeconomics Analysis of Investment Process with Money Flow Information: The Error-Related Negativity.

    PubMed

    Wang, Cuicui; Vieito, João Paulo; Ma, Qingguo

    2015-01-01

    This investigation is among the first ones to analyze the neural basis of an investment process with money flow information of financial market, using a simplified task where volunteers had to choose to buy or not to buy stocks based on the display of positive or negative money flow information. After choosing "to buy" or "not to buy," participants were presented with feedback. At the same time, event-related potentials (ERPs) were used to record investor's brain activity and capture the event-related negativity (ERN) and feedback-related negativity (FRN) components. The results of ERN suggested that there might be a higher risk and more conflict when buying stocks with negative net money flow information than positive net money flow information, and the inverse was also true for the "not to buy" stocks option. The FRN component evoked by the bad outcome of a decision was more negative than that by the good outcome, which reflected the difference between the values of the actual and expected outcome. From the research, we could further understand how investors perceived money flow information of financial market and the neural cognitive effect in investment process.

  12. Operator- and software-related post-experimental variability and source of error in 2-DE analysis.

    PubMed

    Millioni, Renato; Puricelli, Lucia; Sbrignadello, Stefano; Iori, Elisabetta; Murphy, Ellen; Tessari, Paolo

    2012-05-01

    In the field of proteomics, several approaches have been developed for separating proteins and analyzing their differential relative abundance. One of the oldest, yet still widely used, is 2-DE. Despite the continuous advance of new methods, which are less demanding from a technical standpoint, 2-DE is still compelling and has a lot of potential for improvement. The overall variability which affects 2-DE includes biological, experimental, and post-experimental (software-related) variance. It is important to highlight how much of the total variability of this technique is due to post-experimental variability, which, so far, has been largely neglected. In this short review, we have focused on this topic and explained that post-experimental variability and source of error can be further divided into those which are software-dependent and those which are operator-dependent. We discuss these issues in detail, offering suggestions for reducing errors that may affect the quality of results, summarizing the advantages and drawbacks of each approach. PMID:21394601

  13. Absolute instability of the Gaussian wake profile

    NASA Technical Reports Server (NTRS)

    Hultgren, Lennart S.; Aggarwal, Arun K.

    1987-01-01

    Linear parallel-flow stability theory has been used to investigate the effect of viscosity on the local absolute instability of a family of wake profiles with a Gaussian velocity distribution. The type of local instability, i.e., convective or absolute, is determined by the location of a branch-point singularity with zero group velocity of the complex dispersion relation for the instability waves. The effects of viscosity were found to be weak for values of the wake Reynolds number, based on the center-line velocity defect and the wake half-width, larger than about 400. Absolute instability occurs only for sufficiently large values of the center-line wake defect. The critical value of this parameter increases with decreasing wake Reynolds number, thereby indicating a shrinking region of absolute instability with decreasing wake Reynolds number. If backflow is not allowed, absolute instability does not occur for wake Reynolds numbers smaller than about 38.

  14. Information systems and human error in the lab.

    PubMed

    Bissell, Michael G

    2004-01-01

    Health system costs in clinical laboratories are incurred daily due to human error. Indeed, a major impetus for automating clinical laboratories has always been the opportunity it presents to simultaneously reduce cost and improve quality of operations by decreasing human error. But merely automating these processes is not enough. To the extent that introduction of these systems results in operators having less practice in dealing with unexpected events or becoming deskilled in problemsolving, however new kinds of error will likely appear. Clinical laboratories could potentially benefit by integrating findings on human error from modern behavioral science into their operations. Fully understanding human error requires a deep understanding of human information processing and cognition. Predicting and preventing negative consequences requires application of this understanding to laboratory operations. Although the occurrence of a particular error at a particular instant cannot be absolutely prevented, human error rates can be reduced. The following principles are key: an understanding of the process of learning in relation to error; understanding the origin of errors since this knowledge can be used to reduce their occurrence; optimal systems should be forgiving to the operator by absorbing errors, at least for a time; although much is known by industrial psychologists about how to write operating procedures and instructions in ways that reduce the probability of error, this expertise is hardly ever put to use in the laboratory; and a feedback mechanism must be designed into the system that enables the operator to recognize in real time that an error has occurred.

  15. On the validity of 3D polymer gel dosimetry: III. MRI-related error sources

    NASA Astrophysics Data System (ADS)

    Vandecasteele, Jan; De Deene, Yves

    2013-01-01

    In MRI (PAGAT) polymer gel dosimetry, there exists some controversy on the validity of 3D dose verifications of clinical treatments. The relative contribution of important sources of uncertainty in MR scanning to the overall accuracy and precision of 3D MRI polymer gel dosimetry is quantified in this study. The performance in terms of signal-to-noise and imaging artefacts was evaluated on three different MR scanners (two 1.5 T and a 3 T scanner). These include: (1) B0-field inhomogeneity, (2) B1-field inhomogeneity, (3) dielectric effects (losses and standing waves) and (4) temperature inhomogeneity during scanning. B0-field inhomogeneities that amount to maximum 5 ppm result in dose deviations of up to 4.3% and deformations of up to 5 pixels. Compensation methods are proposed. B1-field inhomogeneities were found to induce R2 variations in large anthropomorphic phantoms both at 1.5 and 3 T. At 1.5 T these effects are mainly caused by the coil geometry resulting in dose deviations of up to 25%. After the correction of the R2 maps using a heuristic flip angle-R2 relation, these dose deviations are reduced to 2.4%. At 3 T, the dielectric properties of the gel phantoms are shown to strongly influence B1-field homogeneity, hence R2 homogeneity, especially of large anthropomorphic phantoms. The low electrical conductivity of polymer gel dosimeters induces standing wave patterns resulting in dose deviations up to 50%. Increasing the conductivity of the gel by adding NaCl reduces the dose deviation to 25% after which the post-processing is successful in reducing the remaining inhomogeneities caused by the coil geometry to within 2.4%. The measurements are supported by computational modelling of the B1-field. Finally, temperature fluctuations of 1 °C frequently encountered in clinical MRI scanners result in dose deviations up to 15%. It is illustrated that with adequate temperature stabilization, the dose uncertainty is reduced to within 2.58%. Both authors contributed

  16. Effects of Exposure Measurement Error in the Analysis of Health Effects from Traffic-Related Air Pollution

    PubMed Central

    Baxter, Lisa K.; Wright, Rosalind J.; Paciorek, Christopher J.; Laden, Francine; Suh, Helen H.; Levy, Jonathan I.

    2011-01-01

    In large epidemiological studies, many researchers use surrogates of air pollution exposure such as geographic information system (GIS)-based characterizations of traffic or simple housing characteristics. It is important to evaluate quantitatively these surrogates against measured pollutant concentrations to determine how their use affects the interpretation of epidemiological study results. In this study, we quantified the implications of using exposure models derived from validation studies, and other alternative surrogate models with varying amounts of measurement error, on epidemiological study findings. We compared previously developed multiple regression models characterizing residential indoor nitrogen dioxide (NO2), fine particulate matter (PM2.5), and elemental carbon (EC) concentrations to models with less explanatory power that may be applied in the absence of validation studies. We constructed a hypothetical epidemiological study, under a range of odds ratios, and determined the bias and uncertainty caused by the use of various exposure models predicting residential indoor exposure levels. Our simulations illustrated that exposure models with fairly modest R2 (0.3 to 0.4 for the previously developed multiple regression models for PM2.5 and NO2) yielded substantial improvements in epidemiological study performance, relative to the application of regression models created in the absence of validation studies or poorer-performing validation study models (e.g. EC). In many studies, models based on validation data may not be possible, so it may be necessary to use a surrogate model with more measurement error. This analysis provides a technique to quantify the implications of applying various exposure models with different degrees of measurement error in epidemiological research. PMID:19223939

  17. The Argos-CLS Kalman Filter: Error Structures and State-Space Modelling Relative to Fastloc GPS Data.

    PubMed

    Lowther, Andrew D; Lydersen, Christian; Fedak, Mike A; Lovell, Phil; Kovacs, Kit M

    2015-01-01

    Understanding how an animal utilises its surroundings requires its movements through space to be described accurately. Satellite telemetry is the only means of acquiring movement data for many species however data are prone to varying amounts of spatial error; the recent application of state-space models (SSMs) to the location estimation problem have provided a means to incorporate spatial errors when characterising animal movements. The predominant platform for collecting satellite telemetry data on free-ranging animals, Service Argos, recently provided an alternative Doppler location estimation algorithm that is purported to be more accurate and generate a greater number of locations that its predecessor. We provide a comprehensive assessment of this new estimation process performance on data from free-ranging animals relative to concurrently collected Fastloc GPS data. Additionally, we test the efficacy of three readily-available SSM in predicting the movement of two focal animals. Raw Argos location estimates generated by the new algorithm were greatly improved compared to the old system. Approximately twice as many Argos locations were derived compared to GPS on the devices used. Root Mean Square Errors (RMSE) for each optimal SSM were less than 4.25 km with some producing RMSE of less than 2.50 km. Differences in the biological plausibility of the tracks between the two focal animals used to investigate the utility of SSM highlights the importance of considering animal behaviour in movement studies. The ability to reprocess Argos data collected since 2008 with the new algorithm should permit questions of animal movement to be revisited at a finer resolution.

  18. Absolute and relative locations of earthquakes at Mount St. Helens, Washington, using continuous data: implications for magmatic processes: Chapter 4 in A volcano rekindled: the renewed eruption of Mount St. Helens, 2004-2006

    USGS Publications Warehouse

    Thelen, Weston A.; Crosson, Robert S.; Creager, Kenneth C.; Sherrod, David R.; Scott, William E.; Stauffer, Peter H.

    2008-01-01

    This study uses a combination of absolute and relative locations from earthquake multiplets to investigate the seismicity associated with the eruptive sequence at Mount St. Helens between September 23, 2004, and November 20, 2004. Multiplets, a prominent feature of seismicity during this time period, occurred as volcano-tectonic, hybrid, and low-frequency earthquakes spanning a large range of magnitudes and lifespans. Absolute locations were improved through the use of a new one-dimensional velocity model with excellent shallow constraints on P-wave velocities. We used jackknife tests to minimize possible biases in absolute and relative locations resulting from station outages and changing station configurations. In this paper, we show that earthquake hypocenters shallowed before the October 1 explosion along a north-dipping structure under the 1980-86 dome. Relative relocations of multiplets during the initial seismic unrest and ensuing eruption showed rather small source volumes before the October 1 explosion and larger tabular source volumes after October 5. All multiplets possess absolute locations very close to each other. However, the highly dissimilar waveforms displayed by each of the multiplets analyzed suggest that different sources and mechanisms were present within a very small source volume. We suggest that multiplets were related to pressurization of the conduit system that produced a stationary source that was highly stable over long time periods. On the basis of their response to explosions occurring in October 2004, earthquakes not associated with multiplets also appeared to be pressure dependent. The pressure source for these earthquakes appeared, however, to be different from the pressure source of the multiplets.

  19. Refractive Error and Risk of Early or Late Age-Related Macular Degeneration: A Systematic Review and Meta-Analysis

    PubMed Central

    Li, Ying; Wang, JiWen; Zhong, XiaoJing; Tian, Zhen; Wu, Peipei; Zhao, Wenbo; Jin, Chenjin

    2014-01-01

    Objective To summarize relevant evidence investigating the associations between refractive error and age-related macular degeneration (AMD). Design Systematic review and meta-analysis. Methods We searched Medline, Web of Science, and Cochrane databases as well as the reference lists of retrieved articles to identify studies that met the inclusion criteria. Extracted data were combined using a random-effects meta-analysis. Studies that were pertinent to our topic but did not meet the criteria for quantitative analysis were reported in a systematic review instead. Main outcome measures Pooled odds ratios (ORs) and 95% confidence intervals (CIs) for the associations between refractive error (hyperopia, myopia, per-diopter increase in spherical equivalent [SE] toward hyperopia, per-millimeter increase in axial length [AL]) and AMD (early and late, prevalent and incident). Results Fourteen studies comprising over 5800 patients were eligible. Significant associations were found between hyperopia, myopia, per-diopter increase in SE, per-millimeter increase in AL, and prevalent early AMD. The pooled ORs and 95% CIs were 1.13 (1.06–1.20), 0.75 (0.56–0.94), 1.10 (1.07–1.14), and 0.79 (0.73–0.85), respectively. The per-diopter increase in SE was also significantly associated with early AMD incidence (OR, 1.06; 95% CI, 1.02–1.10). However, no significant association was found between hyperopia or myopia and early AMD incidence. Furthermore, neither prevalent nor incident late AMD was associated with refractive error. Considerable heterogeneity was found among studies investigating the association between myopia and prevalent early AMD (P = 0.001, I2 = 72.2%). Geographic location might play a role; the heterogeneity became non-significant after stratifying these studies into Asian and non-Asian subgroups. Conclusion Refractive error is associated with early AMD but not with late AMD. More large-scale longitudinal studies are needed to further investigate such

  20. Automated measurement of centering errors and relative surface distances for the optimized assembly of micro-optics

    NASA Astrophysics Data System (ADS)

    Langehanenberg, Patrik; Dumitrescu, Eugen; Heinisch, Josef; Krey, Stefan; Ruprecht, Aiko K.

    2011-03-01

    For any kind of optical compound systems the precise geometric alignment of every single element according to the optical design is essential to obtain the desired imaging properties. In this contribution we present a measurement system for the determination of the complete set of geometric alignment parameters in assembled systems. The deviation of each center or curvature with respect to a reference axis is measured with an autocollimator system. These data are further processed in order to provide the shift and tilt of an individual lens or group of lenses with respect to a defined reference axis. Previously it was shown that such an instrument can measure the centering errors of up to 40 surfaces within a system under test with accuracies in the range of an arc second. In addition, the relative distances of the optical surfaces (center thicknesses of lens elements, air gaps in between) are optically determined in the same measurement system by means of low coherent interferometry. Subsequently, the acquired results can be applied for the compensation of the detected geometric alignment errors before the assembly is finally bonded (e.g., glued). The presented applications mainly include measurements of miniaturized lens systems like mobile phone optics. However, any type of objective lens from endoscope imaging systems up to very complex objective lenses used in microlithography can be analyzed with the presented measurement system.

  1. [Determination of relative error of pressure-broadening linewidth for the experimentally indistinguishable overlapped spectral lines with Voigt profile].

    PubMed

    Lin, Jie-Li; Huang, Yi-Qing; Lu, Hong

    2005-01-01

    The simulation and fitting of the overlapped spectral lines with Voigt profile were presented in this paper. The relative errors epsilon of the fitted pressure-broadening linewidth when taking the overlapped spectral line as one spectrum were discussed in detail. The relationship between such error and the two spectral lines center distance deltav0, and theoretical pressure-broadening linewidth deltav(L)0 were analyzed. Epsilon is found to be very large and the relationship between epsilon and deltav0, deltav(L)0 is very complicated when the value of pressure-broadening linewidth is considerably less than that of Dopplerian one deltavD. When deltav(L)0 is comparative to deltaVD the relationship between epsilon and deltav0 is close to the smooth two-order polynomial curve. However, the slop of this curve is negative while deltav(L)0 is smaller than deltavD and is positive when larger. Generally, epsilon decreases with the increase of proportion of deltav(l)0 to the whole spectral linewidth. All the above conclusion and corresponding data are the significant reference to determine the precise pressure-broadening coefficient from the experimentally indistinguishable overlapped spectrum, as well as to correct the fitted pressure-broadening linewidth. PMID:15852837

  2. Action errors, error management, and learning in organizations.

    PubMed

    Frese, Michael; Keith, Nina

    2015-01-01

    Every organization is confronted with errors. Most errors are corrected easily, but some may lead to negative consequences. Organizations often focus on error prevention as a single strategy for dealing with errors. Our review suggests that error prevention needs to be supplemented by error management--an approach directed at effectively dealing with errors after they have occurred, with the goal of minimizing negative and maximizing positive error consequences (examples of the latter are learning and innovations). After defining errors and related concepts, we review research on error-related processes affected by error management (error detection, damage control). Empirical evidence on positive effects of error management in individuals and organizations is then discussed, along with emotional, motivational, cognitive, and behavioral pathways of these effects. Learning from errors is central, but like other positive consequences, learning occurs under certain circumstances--one being the development of a mind-set of acceptance of human error.

  3. Updated Absolute Flux Calibration of the COS FUV Modes

    NASA Astrophysics Data System (ADS)

    Massa, D.; Ely, J.; Osten, R.; Penton, S.; Aloisi, A.; Bostroem, A.; Roman-Duval, J.; Proffitt, C.

    2014-03-01

    We present newly derived point source absolute flux calibrations for the COS FUV modes at both the original and second lifetime positions. The analysis includes observa- tions through the Primary Science Aperture (PSA) of the standard stars WD0308-565, GD71, WD1057+729 and WD0947+857 obtained as part of two calibration programs. Data were were obtained for all of the gratings at all of the original CENWAVE settings at both the original and second lifetime positions and for the G130M CENWAVE = 1222 at the second lifetime position. Data were also obtained with the FUVB segment for the G130M CENWAVE = 1055 and 1096 setting at the second lifetime position. We also present the derivation of L-flats that were used in processing the data and show that the internal consistency of the primary standards is 1%. The accuracy of the absolute flux calibrations over the UV are estimated to be 1-2% for the medium resolution gratings, and 2-3% over most of the wavelength range of the G140L grating, although the uncertainty can be as large as 5% or more at some G140L wavelengths. We note that these errors are all relative to the optical flux near the V band and small additional errors may be present due to inaccuracies in the V band calibration. In addition, these error estimates are for the time at which the flux calibration data were obtained; the accuracy of the flux calibration at other times can be affected by errors in the time dependent sensitivity (TDS) correction.

  4. Absolute Plate Velocities from Seismic Anisotropy

    NASA Astrophysics Data System (ADS)

    Kreemer, Corné; Zheng, Lin; Gordon, Richard

    2015-04-01

    The orientation of seismic anisotropy inferred beneath plate interiors may provide a means to estimate the motions of the plate relative to the sub-asthenospheric mantle. Here we analyze two global sets of shear-wave splitting data, that of Kreemer [2009] and an updated and expanded data set, to estimate plate motions and to better understand the dispersion of the data, correlations in the errors, and their relation to plate speed. We also explore the effect of using geologically current plate velocities (i.e., the MORVEL set of angular velocities [DeMets et al. 2010]) compared with geodetically current plate velocities (i.e., the GSRM v1.2 angular velocities [Kreemer et al. 2014]). We demonstrate that the errors in plate motion azimuths inferred from shear-wave splitting beneath any one tectonic plate are correlated with the errors of other azimuths from the same plate. To account for these correlations, we adopt a two-tier analysis: First, find the pole of rotation and confidence limits for each plate individually. Second, solve for the best fit to these poles while constraining relative plate angular velocities to consistency with the MORVEL relative plate angular velocities. The SKS-MORVEL absolute plate angular velocities (based on the Kreemer [2009] data set) are determined from the poles from eight plates weighted proportionally to the root-mean-square velocity of each plate. SKS-MORVEL indicates that eight plates (Amur, Antarctica, Caribbean, Eurasia, Lwandle, Somalia, Sundaland, and Yangtze) have angular velocities that differ insignificantly from zero. The net rotation of the lithosphere is 0.25±0.11° Ma-1 (95% confidence limits) right-handed about 57.1°S, 68.6°E. The within-plate dispersion of seismic anisotropy for oceanic lithosphere (σ=19.2° ) differs insignificantly from that for continental lithosphere (σ=21.6° ). The between-plate dispersion, however, is significantly smaller for oceanic lithosphere (σ=7.4° ) than for continental

  5. [Longer working hours of pharmacists in the ward resulted in lower medication-related errors--survey of national university hospitals in Japan].

    PubMed

    Matsubara, Kazuo; Toyama, Akira; Satoh, Hiroshi; Suzuki, Hiroshi; Awaya, Toshio; Tasaki, Yoshikazu; Yasuoka, Toshiaki; Horiuchi, Ryuya

    2011-04-01

    It is obvious that pharmacists play a critical role as risk managers in the healthcare system, especially in medication treatment. Hitherto, there is not a single multicenter-survey report describing the effectiveness of clinical pharmacists in preventing medical errors from occurring in the wards in Japan. Thus, we conducted a 1-month survey to elucidate the relationship between the number of errors and working hours of pharmacists in the ward, and verified whether the assignment of clinical pharmacists to the ward would prevent medical errors between October 1-31, 2009. Questionnaire items for the pharmacists at 42 national university hospitals and a medical institute included the total and the respective numbers of medication-related errors, beds and working hours of pharmacist in 2 internal medicine and 2 surgical departments in each hospital. Regardless of severity, errors were consecutively reported to the Medical Security and Safety Management Section in each hospital. The analysis of errors revealed that longer working hours of pharmacists in the ward resulted in less medication-related errors; this was especially significant in the internal medicine ward (where a variety of drugs were used) compared with the surgical ward. However, the nurse assignment mode (nurse/inpatients ratio: 1 : 7-10) did not influence the error frequency. The results of this survey strongly indicate that assignment of clinical pharmacists to the ward is critically essential in promoting medication safety and efficacy. PMID:21467804

  6. Exploiting Task Constraints for Self-Calibrated Brain-Machine Interface Control Using Error-Related Potentials

    PubMed Central

    Iturrate, Iñaki; Grizou, Jonathan; Omedes, Jason; Oudeyer, Pierre-Yves; Lopes, Manuel; Montesano, Luis

    2015-01-01

    This paper presents a new approach for self-calibration BCI for reaching tasks using error-related potentials. The proposed method exploits task constraints to simultaneously calibrate the decoder and control the device, by using a robust likelihood function and an ad-hoc planner to cope with the large uncertainty resulting from the unknown task and decoder. The method has been evaluated in closed-loop online experiments with 8 users using a previously proposed BCI protocol for reaching tasks over a grid. The results show that it is possible to have a usable BCI control from the beginning of the experiment without any prior calibration. Furthermore, comparisons with simulations and previous results obtained using standard calibration hint that both the quality of recorded signals and the performance of the system were comparable to those obtained with a standard calibration approach. PMID:26131890

  7. Exploiting Task Constraints for Self-Calibrated Brain-Machine Interface Control Using Error-Related Potentials.

    PubMed

    Iturrate, Iñaki; Grizou, Jonathan; Omedes, Jason; Oudeyer, Pierre-Yves; Lopes, Manuel; Montesano, Luis

    2015-01-01

    This paper presents a new approach for self-calibration BCI for reaching tasks using error-related potentials. The proposed method exploits task constraints to simultaneously calibrate the decoder and control the device, by using a robust likelihood function and an ad-hoc planner to cope with the large uncertainty resulting from the unknown task and decoder. The method has been evaluated in closed-loop online experiments with 8 users using a previously proposed BCI protocol for reaching tasks over a grid. The results show that it is possible to have a usable BCI control from the beginning of the experiment without any prior calibration. Furthermore, comparisons with simulations and previous results obtained using standard calibration hint that both the quality of recorded signals and the performance of the system were comparable to those obtained with a standard calibration approach. PMID:26131890

  8. Task engagement and the relationships between the error-related negativity, agreeableness, behavioral shame proneness and cortisol.

    PubMed

    Tops, Mattie; Boksem, Maarten A S; Wester, Anne E; Lorist, Monicque M; Meijman, Theo F

    2006-08-01

    Previous results suggest that both cortisol mobilization and the error-related negativity (ERN/Ne) reflect goal engagement, i.e. the mobilization and allocation of attentional and physiological resources. Personality measures of negative affectivity have been associated both to high cortisol levels and large ERN/Ne amplitudes. However, measures of positive social adaptation and agreeableness have also been related to high cortisol levels and large ERN/Ne amplitudes. We hypothesized that, as long as they relate to concerns over social evaluation and mistakes, both personality measures reflecting positive affectivity (e.g. agreeableness) and those reflecting negative affectivity (e.g. behavioral shame proneness) would be associated with an increased likelihood of high task engagement, and hence to increased cortisol mobilization and ERN/Ne amplitudes. We had female subjects perform a flanker task while EEG was recorded. Additionally, the subjects filled out questionnaires measuring mood and personality, and salivary cortisol immediately before and after task performance was measured. The overall pattern of relationships between our measures supports the hypothesis that cortisol mobilization and ERN/Ne amplitude reflect task engagement, and both relate positively to each other and to the personality traits agreeableness and behavioral shame proneness. We discuss the potential importance of engagement-disengagement and of concerns over social evaluation for research on psychopathology, stress and the ERN/Ne.

  9. The AFGL absolute gravity program

    NASA Technical Reports Server (NTRS)

    Hammond, J. A.; Iliff, R. L.

    1978-01-01

    A brief discussion of the AFGL's (Air Force Geophysics Laboratory) program in absolute gravity is presented. Support of outside work and in-house studies relating to gravity instrumentation are discussed. A description of the current transportable system is included and the latest results are presented. These results show good agreement with measurements at the AFGL site by an Italian system. The accuracy obtained by the transportable apparatus is better than 0.1 microns sq sec 10 microgal and agreement with previous measurements is within the combined uncertainties of the measurements.

  10. Processing of action- but not stimulus-related prediction errors differs between active and observational feedback learning.

    PubMed

    Kobza, Stefan; Bellebaum, Christian

    2015-01-01

    Learning of stimulus-response-outcome associations is driven by outcome prediction errors (PEs). Previous studies have shown larger PE-dependent activity in the striatum for learning from own as compared to observed actions and the following outcomes despite comparable learning rates. We hypothesised that this finding relates primarily to a stronger integration of action and outcome information in active learners. Using functional magnetic resonance imaging, we investigated brain activations related to action-dependent PEs, reflecting the deviation between action values and obtained outcomes, and action-independent PEs, reflecting the deviation between subjective values of response-preceding cues and obtained outcomes. To this end, 16 active and 15 observational learners engaged in a probabilistic learning card-guessing paradigm. On each trial, active learners saw one out of five cues and pressed either a left or right response button to receive feedback (monetary win or loss). Each observational learner observed exactly those cues, responses and outcomes of one active learner. Learning performance was assessed in active test trials without feedback and did not differ between groups. For both types of PEs, activations were found in the globus pallidus, putamen, cerebellum, and insula in active learners. However, only for action-dependent PEs, activations in these structures and the anterior cingulate were increased in active relative to observational learners. Thus, PE-related activity in the reward system is not generally enhanced in active relative to observational learning but only for action-dependent PEs. For the cerebellum, additional activations were found across groups for cue-related uncertainty, thereby emphasising the cerebellum's role in stimulus-outcome learning.

  11. Teaching Picture-to-Object Relations in Picture-Based Requesting by Children with Autism: A Comparison between Error Prevention and Error Correction Teaching Procedures

    ERIC Educational Resources Information Center

    Carr, D.; Felce, J.

    2008-01-01

    Background: Children who have a combination of language and developmental disabilities with autism often experience major difficulties in learning relations between objects and their graphic representations. Therefore, they would benefit from teaching procedures that minimize their difficulties in acquiring these relations. This study compared two…

  12. Cognitive control adjustments in healthy older and younger adults: Conflict adaptation, the error-related negativity (ERN), and evidence of generalized decline with age.

    PubMed

    Larson, Michael J; Clayson, Peter E; Keith, Cierra M; Hunt, Isaac J; Hedges, Dawson W; Nielsen, Brent L; Call, Vaughn R A

    2016-03-01

    Older adults display alterations in neural reflections of conflict-related processing. We examined response times (RTs), error rates, and event-related potential (ERP; N2 and P3 components) indices of conflict adaptation (i.e., congruency sequence effects) a cognitive control process wherein previous-trial congruency influences current-trial performance, along with post-error slowing, correct-related negativity (CRN), error-related negativity (ERN) and error positivity (Pe) amplitudes in 65 healthy older adults and 94 healthy younger adults. Older adults showed generalized slowing, had decreased post-error slowing, and committed more errors than younger adults. Both older and younger adults showed conflict adaptation effects; magnitude of conflict adaptation did not differ by age. N2 amplitudes were similar between groups; younger, but not older, adults showed conflict adaptation effects for P3 component amplitudes. CRN and Pe, but not ERN, amplitudes differed between groups. Data support generalized declines in cognitive control processes in older adults without specific deficits in conflict adaptation.

  13. ABSOLUTE POLARIMETRY AT RHIC.

    SciTech Connect

    OKADA; BRAVAR, A.; BUNCE, G.; GILL, R.; HUANG, H.; MAKDISI, Y.; NASS, A.; WOOD, J.; ZELENSKI, Z.; ET AL.

    2007-09-10

    Precise and absolute beam polarization measurements are critical for the RHIC spin physics program. Because all experimental spin-dependent results are normalized by beam polarization, the normalization uncertainty contributes directly to final physics uncertainties. We aimed to perform the beam polarization measurement to an accuracy Of {Delta}P{sub beam}/P{sub beam} < 5%. The absolute polarimeter consists of Polarized Atomic Hydrogen Gas Jet Target and left-right pairs of silicon strip detectors and was installed in the RHIC-ring in 2004. This system features proton-proton elastic scattering in the Coulomb nuclear interference (CNI) region. Precise measurements of the analyzing power A{sub N} of this process has allowed us to achieve {Delta}P{sub beam}/P{sub beam} = 4.2% in 2005 for the first long spin-physics run. In this report, we describe the entire set up and performance of the system. The procedure of beam polarization measurement and analysis results from 2004-2005 are described. Physics topics of AN in the CNI region (four-momentum transfer squared 0.001 < -t < 0.032 (GeV/c){sup 2}) are also discussed. We point out the current issues and expected optimum accuracy in 2006 and the future.

  14. Absolute and relative emission spectroscopy study of 3 cm wide planar radio frequency atmospheric pressure bio-plasma source

    SciTech Connect

    Deng, Xiaolong; Nikiforov, Anton Yu Leys, Christophe; Ionita, Eusebiu-Rosini; Dinescu, Gheorghe

    2015-08-03

    The dynamics of low power atmospheric pressure radio frequency discharge generated in Ar gas in long gap of 3 cm is investigated. This plasma source is characterized and analyzed for possible large scale biomedical applications where low gas temperature and potential-less effluent are required. The discharge forms a homogenous glow-like afterglow in ambient air at input power of 30 W with low gas temperature of 330 K, which is desirable in biomedical applications. With absolute calibrated spectroscopy of the discharge, electron density of 0.4 × 10{sup 18} m{sup −3} and electron temperature of 1.5 eV are obtained from continuum Bremsstrahlung radiation of the source. Time and spatial resolved emission spectroscopy is used to analyze discharge generation mechanism and active species formation. It is found that discharge dynamics strongly correlates with the discharge current waveform. Strong Ar(2p) excited states emission is observed nearby the electrodes surface on a distance up to 200 μm in the plasma sheath region at 10 ns after the current peak, whereas OH(A) emission is uniform along of the interelectrode gap.

  15. An Analysis of Factors Related to Choral Teachers' Ability to Detect Pitch Errors While Reading the Score.

    ERIC Educational Resources Information Center

    Gonzo, Carroll Lee

    In order to determine whether differences exist between undergraduate music majors preparing for teaching careers in music and experienced secondary-level choral teachers in regard to their ability to detect pitch errors, a Pitch Error Detection (PED) test was developed, and a questionnaire designed to retrieve information about the subjects'…

  16. Error detection and response adjustment in youth with mild spastic cerebral palsy: an event-related brain potential study.

    PubMed

    Hakkarainen, Elina; Pirilä, Silja; Kaartinen, Jukka; van der Meere, Jaap J

    2013-06-01

    This study evaluated the brain activation state during error making in youth with mild spastic cerebral palsy and a peer control group while carrying out a stimulus recognition task. The key question was whether patients were detecting their own errors and subsequently improving their performance in a future trial. Findings indicated that error responses of the group with cerebral palsy were associated with weak motor preparation, as indexed by the amplitude of the late contingent negative variation. However, patients were detecting their errors as indexed by the amplitude of the response-locked negativity and thus improved their performance in a future trial. Findings suggest that the consequence of error making on future performance is intact in a sample of youth with mild spastic cerebral palsy. Because the study group is small, the present findings need replication using a larger sample.

  17. Field error lottery

    NASA Astrophysics Data System (ADS)

    James Elliott, C.; McVey, Brian D.; Quimby, David C.

    1991-07-01

    The level of field errors in a free electron laser (FEL) is an important determinant of its performance. We have computed 3D performance of a large laser subsystem subjected to field errors of various types. These calculations have been guided by simple models such as SWOOP. The technique of choice is use of the FELEX free electron laser code that now possesses extensive engineering capabilities. Modeling includes the ability to establish tolerances of various types: fast and slow scale field bowing, field error level, beam position monitor error level, gap errors, defocusing errors, energy slew, displacement and pointing errors. Many effects of these errors on relative gain and relative power extraction are displayed and are the essential elements of determining an error budget. The random errors also depend on the particular random number seed used in the calculation. The simultaneous display of the performance versus error level of cases with multiple seeds illustrates the variations attributable to stochasticity of this model. All these errors are evaluated numerically for comprehensive engineering of the system. In particular, gap errors are found to place requirements beyond convenient mechanical tolerances of ± 25 μm, and amelioration of these may occur by a procedure using direct measurement of the magnetic fields at assembly time.

  18. Field error lottery

    NASA Astrophysics Data System (ADS)

    Elliott, C. James; McVey, Brian D.; Quimby, David C.

    1990-11-01

    The level of field errors in an FEL is an important determinant of its performance. We have computed 3D performance of a large laser subsystem subjected to field errors of various types. These calculations have been guided by simple models such as SWOOP. The technique of choice is utilization of the FELEX free electron laser code that now possesses extensive engineering capabilities. Modeling includes the ability to establish tolerances of various types: fast and slow scale field bowing, field error level, beam position monitor error level, gap errors, defocusing errors, energy slew, displacement, and pointing errors. Many effects of these errors on relative gain and relative power extraction are displayed and are the essential elements of determining an error budget. The random errors also depend on the particular random number seed used in the calculation. The simultaneous display of the performance versus error level of cases with multiple seeds illustrates the variations attributable to stochasticity of this model. All these errors are evaluated numerically for comprehensive engineering of the system. In particular, gap errors are found to place requirements beyond mechanical tolerances of (plus minus)25(mu)m, and amelioration of these may occur by a procedure utilizing direct measurement of the magnetic fields at assembly time.

  19. Field error lottery

    SciTech Connect

    Elliott, C.J.; McVey, B. ); Quimby, D.C. )

    1990-01-01

    The level of field errors in an FEL is an important determinant of its performance. We have computed 3D performance of a large laser subsystem subjected to field errors of various types. These calculations have been guided by simple models such as SWOOP. The technique of choice is utilization of the FELEX free electron laser code that now possesses extensive engineering capabilities. Modeling includes the ability to establish tolerances of various types: fast and slow scale field bowing, field error level, beam position monitor error level, gap errors, defocusing errors, energy slew, displacement and pointing errors. Many effects of these errors on relative gain and relative power extraction are displayed and are the essential elements of determining an error budget. The random errors also depend on the particular random number seed used in the calculation. The simultaneous display of the performance versus error level of cases with multiple seeds illustrates the variations attributable to stochasticity of this model. All these errors are evaluated numerically for comprehensive engineering of the system. In particular, gap errors are found to place requirements beyond mechanical tolerances of {plus minus}25{mu}m, and amelioration of these may occur by a procedure utilizing direct measurement of the magnetic fields at assembly time. 4 refs., 12 figs.

  20. Errata: Papers in Error Analysis.

    ERIC Educational Resources Information Center

    Svartvik, Jan, Ed.

    Papers presented at the symposium of error analysis in Lund, Sweden, in September 1972, approach error analysis specifically in its relation to foreign language teaching and second language learning. Error analysis is defined as having three major aspects: (1) the description of the errors, (2) the explanation of errors by means of contrastive…

  1. Self-Reported and Observed Punitive Parenting Prospectively Predicts Increased Error-Related Brain Activity in Six-Year-Old Children.

    PubMed

    Meyer, Alexandria; Proudfit, Greg Hajcak; Bufferd, Sara J; Kujawa, Autumn J; Laptook, Rebecca S; Torpey, Dana C; Klein, Daniel N

    2015-07-01

    The error-related negativity (ERN) is a negative deflection in the event-related potential (ERP) occurring approximately 50 ms after error commission at fronto-central electrode sites and is thought to reflect the activation of a generic error monitoring system. Several studies have reported an increased ERN in clinically anxious children, and suggest that anxious children are more sensitive to error commission--although the mechanisms underlying this association are not clear. We have previously found that punishing errors results in a larger ERN, an effect that persists after punishment ends. It is possible that learning-related experiences that impact sensitivity to errors may lead to an increased ERN. In particular, punitive parenting might sensitize children to errors and increase their ERN. We tested this possibility in the current study by prospectively examining the relationship between parenting style during early childhood and children's ERN approximately 3 years later. Initially, 295 parents and children (approximately 3 years old) participated in a structured observational measure of parenting behavior, and parents completed a self-report measure of parenting style. At a follow-up assessment approximately 3 years later, the ERN was elicited during a Go/No-Go task, and diagnostic interviews were completed with parents to assess child psychopathology. Results suggested that both observational measures of hostile parenting and self-report measures of authoritarian parenting style uniquely predicted a larger ERN in children 3 years later. We previously reported that children in this sample with anxiety disorders were characterized by an increased ERN. A mediation analysis indicated that ERN magnitude mediated the relationship between harsh parenting and child anxiety disorder. Results suggest that parenting may shape children's error processing through environmental conditioning and thereby risk for anxiety, although future work is needed to confirm this

  2. Self-Reported and Observed Punitive Parenting Prospectively Predicts Increased Error-Related Brain Activity in Six-Year-Old Children.

    PubMed

    Meyer, Alexandria; Proudfit, Greg Hajcak; Bufferd, Sara J; Kujawa, Autumn J; Laptook, Rebecca S; Torpey, Dana C; Klein, Daniel N

    2015-07-01

    The error-related negativity (ERN) is a negative deflection in the event-related potential (ERP) occurring approximately 50 ms after error commission at fronto-central electrode sites and is thought to reflect the activation of a generic error monitoring system. Several studies have reported an increased ERN in clinically anxious children, and suggest that anxious children are more sensitive to error commission--although the mechanisms underlying this association are not clear. We have previously found that punishing errors results in a larger ERN, an effect that persists after punishment ends. It is possible that learning-related experiences that impact sensitivity to errors may lead to an increased ERN. In particular, punitive parenting might sensitize children to errors and increase their ERN. We tested this possibility in the current study by prospectively examining the relationship between parenting style during early childhood and children's ERN approximately 3 years later. Initially, 295 parents and children (approximately 3 years old) participated in a structured observational measure of parenting behavior, and parents completed a self-report measure of parenting style. At a follow-up assessment approximately 3 years later, the ERN was elicited during a Go/No-Go task, and diagnostic interviews were completed with parents to assess child psychopathology. Results suggested that both observational measures of hostile parenting and self-report measures of authoritarian parenting style uniquely predicted a larger ERN in children 3 years later. We previously reported that children in this sample with anxiety disorders were characterized by an increased ERN. A mediation analysis indicated that ERN magnitude mediated the relationship between harsh parenting and child anxiety disorder. Results suggest that parenting may shape children's error processing through environmental conditioning and thereby risk for anxiety, although future work is needed to confirm this

  3. Absolute Equilibrium Entropy

    NASA Technical Reports Server (NTRS)

    Shebalin, John V.

    1997-01-01

    The entropy associated with absolute equilibrium ensemble theories of ideal, homogeneous, fluid and magneto-fluid turbulence is discussed and the three-dimensional fluid case is examined in detail. A sigma-function is defined, whose minimum value with respect to global parameters is the entropy. A comparison is made between the use of global functions sigma and phase functions H (associated with the development of various H-theorems of ideal turbulence). It is shown that the two approaches are complimentary though conceptually different: H-theorems show that an isolated system tends to equilibrium while sigma-functions allow the demonstration that entropy never decreases when two previously isolated systems are combined. This provides a more complete picture of entropy in the statistical mechanics of ideal fluids.

  4. The Relative Importance of Random Error and Observation Frequency in Detecting Trends in Upper Tropospheric Water Vapor

    NASA Technical Reports Server (NTRS)

    Whiteman, David N.; Vermeesch, Kevin C.; Oman, Luke D.; Weatherhead, Elizabeth C.

    2011-01-01

    Recent published work assessed the amount of time to detect trends in atmospheric water vapor over the coming century. We address the same question and conclude that under the most optimistic scenarios and assuming perfect data (i.e., observations with no measurement uncertainty) the time to detect trends will be at least 12 years at approximately 200 hPa in the upper troposphere. Our times to detect trends are therefore shorter than those recently reported and this difference is affected by data sources used, method of processing the data, geographic location and pressure level in the atmosphere where the analyses were performed. We then consider the question of how instrumental uncertainty plays into the assessment of time to detect trends. We conclude that due to the high natural variability in atmospheric water vapor, the amount of time to detect trends in the upper troposphere is relatively insensitive to instrumental random uncertainty and that it is much more important to increase the frequency of measurement than to decrease the random error in the measurement. This is put in the context of international networks such as the Global Climate Observing System (GCOS) Reference Upper-Air Network (GRUAN) and the Network for the Detection of Atmospheric Composition Change (NDACC) that are tasked with developing time series of climate quality water vapor data.

  5. The relative importance of random error and observation frequency in detecting trends in upper tropospheric water vapor

    NASA Astrophysics Data System (ADS)

    Whiteman, David N.; Vermeesch, Kevin C.; Oman, Luke D.; Weatherhead, Elizabeth C.

    2011-11-01

    Recent published work assessed the amount of time to detect trends in atmospheric water vapor over the coming century. We address the same question and conclude that under the most optimistic scenarios and assuming perfect data (i.e., observations with no measurement uncertainty) the time to detect trends will be at least 12 years at approximately 200 hPa in the upper troposphere. Our times to detect trends are therefore shorter than those recently reported and this difference is affected by data sources used, method of processing the data, geographic location and pressure level in the atmosphere where the analyses were performed. We then consider the question of how instrumental uncertainty plays into the assessment of time to detect trends. We conclude that due to the high natural variability in atmospheric water vapor, the amount of time to detect trends in the upper troposphere is relatively insensitive to instrumental random uncertainty and that it is much more important to increase the frequency of measurement than to decrease the random error in the measurement. This is put in the context of international networks such as the Global Climate Observing System (GCOS) Reference Upper-Air Network (GRUAN) and the Network for the Detection of Atmospheric Composition Change (NDACC) that are tasked with developing time series of climate quality water vapor data.

  6. Correcting for bias in relative risk estimates due to exposure measurement error: a case study of occupational exposure to antineoplastics in pharmacists.

    PubMed Central

    Spiegelman, D; Valanis, B

    1998-01-01

    OBJECTIVES: This paper describes 2 statistical methods designed to correct for bias from exposure measurement error in point and interval estimates of relative risk. METHODS: The first method takes the usual point and interval estimates of the log relative risk obtained from logistic regression and corrects them for nondifferential measurement error using an exposure measurement error model estimated from validation data. The second, likelihood-based method fits an arbitrary measurement error model suitable for the data at hand and then derives the model for the outcome of interest. RESULTS: Data from Valanis and colleagues' study of the health effects of antineoplastics exposure among hospital pharmacists were used to estimate the prevalence ratio of fever in the previous 3 months from this exposure. For an interdecile increase in weekly number of drugs mixed, the prevalence ratio, adjusted for confounding, changed from 1.06 to 1.17 (95% confidence interval [CI] = 1.04, 1.26) after correction for exposure measurement error. CONCLUSIONS: Exposure measurement error is often an important source of bias in public health research. Methods are available to correct such biases. PMID:9518972

  7. Individual differences in reward prediction error: contrasting relations between feedback-related negativity and trait measures of reward sensitivity, impulsivity and extraversion

    PubMed Central

    Cooper, Andrew J.; Duke, Éilish; Pickering, Alan D.; Smillie, Luke D.

    2014-01-01

    Medial-frontal negativity occurring ∼200–300 ms post-stimulus in response to motivationally salient stimuli, usually referred to as feedback-related negativity (FRN), appears to be at least partly modulated by dopaminergic-based reward prediction error (RPE) signaling. Previous research (e.g., Smillie et al., 2011) has shown that higher scores on a putatively dopaminergic-based personality trait, extraversion, were associated with a more pronounced difference wave contrasting unpredicted non-reward and unpredicted reward trials on an associative learning task. In the current study, we sought to extend this research by comparing how trait measures of reward sensitivity, impulsivity and extraversion related to the FRN using the same associative learning task. A sample of healthy adults (N = 38) completed a battery of personality questionnaires, before completing the associative learning task while EEG was recorded. As expected, FRN was most negative following unpredicted non-reward. A difference wave contrasting unpredicted non-reward and unpredicted reward trials was calculated. Extraversion, but not measures of impulsivity, had a significant association with this difference wave. Further, the difference wave was significantly related to a measure of anticipatory pleasure, but not consummatory pleasure. These findings provide support for the existing evidence suggesting that variation in dopaminergic functioning in brain “reward” pathways may partially underpin associations between the FRN and trait measures of extraversion and anticipatory pleasure. PMID:24808845

  8. Refractive Errors

    MedlinePlus

    ... and lens of your eye helps you focus. Refractive errors are vision problems that happen when the shape ... cornea, or aging of the lens. Four common refractive errors are Myopia, or nearsightedness - clear vision close up ...

  9. Single-plane versus three-plane methods for relative range error evaluation of medium-range 3D imaging systems

    NASA Astrophysics Data System (ADS)

    MacKinnon, David K.; Cournoyer, Luc; Beraldin, J.-Angelo

    2015-05-01

    Within the context of the ASTM E57 working group WK12373, we compare the two methods that had been initially proposed for calculating the relative range error of medium-range (2 m to 150 m) optical non-contact 3D imaging systems: the first is based on a single plane (single-plane assembly) and the second on an assembly of three mutually non-orthogonal planes (three-plane assembly). Both methods are evaluated for their utility in generating a metric to quantify the relative range error of medium-range optical non-contact 3D imaging systems. We conclude that the three-plane assembly is comparable to the single-plane assembly with regard to quantification of relative range error while eliminating the requirement to isolate the edges of the target plate face.

  10. Reconsideration of measurement of error in human motor learning.

    PubMed

    Crabtree, D A; Antrim, L R

    1988-10-01

    Human motor learning is often measured by error scores. The convention of using mean absolute error, mean constant error, and variable error shows lack of desirable parsimony and interpretability. This paper provides the background of error measurement and states criticisms of conventional methodology. A parsimonious model of error analysis is provided, along with operationalized interpretations and implications for motor learning. Teaching, interpreting, and using error scores in research may be simplified and facilitated with the model.

  11. The dynamics of error growth in a quasigeostrophic channel model

    NASA Technical Reports Server (NTRS)

    Straus, David M.

    1988-01-01

    The objective of the paper is to determine the extent to which baroclinic instability contributes to the growth of errors in simple, yet realistic models of atmospheric flow. The model used here is a two-level quasi-geostrophic channel model. Results of two predictability experiments are reported. In one experiment, the initial condition perturbation was confined to the highest wavenumbers and had an energy of 1 percent of the climatological energy of the model for these scales. In the other experiment, perturbations were put only in the planetary wave and had the same strength relative to climatology as in the first experiment, leading to much larger absolute errors.

  12. Absolute neutrino mass measurements

    SciTech Connect

    Wolf, Joachim

    2011-10-06

    The neutrino mass plays an important role in particle physics, astrophysics and cosmology. In recent years the detection of neutrino flavour oscillations proved that neutrinos carry mass. However, oscillation experiments are only sensitive to the mass-squared difference of the mass eigenvalues. In contrast to cosmological observations and neutrino-less double beta decay (0v2{beta}) searches, single {beta}-decay experiments provide a direct, model-independent way to determine the absolute neutrino mass by measuring the energy spectrum of decay electrons at the endpoint region with high accuracy.Currently the best kinematic upper limits on the neutrino mass of 2.2eV have been set by two experiments in Mainz and Troitsk, using tritium as beta emitter. The next generation tritium {beta}-experiment KATRIN is currently under construction in Karlsruhe/Germany by an international collaboration. KATRIN intends to improve the sensitivity by one order of magnitude to 0.2eV. The investigation of a second isotope ({sup 137}Rh) is being pursued by the international MARE collaboration using micro-calorimeters to measure the beta spectrum. The technology needed to reach 0.2eV sensitivity is still in the R and D phase. This paper reviews the present status of neutrino-mass measurements with cosmological data, 0v2{beta} decay and single {beta}-decay.

  13. AN ACCURATE NEW METHOD OF CALCULATING ABSOLUTE MAGNITUDES AND K-CORRECTIONS APPLIED TO THE SLOAN FILTER SET

    SciTech Connect

    Beare, Richard; Brown, Michael J. I.; Pimbblet, Kevin

    2014-12-20

    We describe an accurate new method for determining absolute magnitudes, and hence also K-corrections, that is simpler than most previous methods, being based on a quadratic function of just one suitably chosen observed color. The method relies on the extensive and accurate new set of 129 empirical galaxy template spectral energy distributions from Brown et al. A key advantage of our method is that we can reliably estimate random errors in computed absolute magnitudes due to galaxy diversity, photometric error and redshift error. We derive K-corrections for the five Sloan Digital Sky Survey filters and provide parameter tables for use by the astronomical community. Using the New York Value-Added Galaxy Catalog, we compare our K-corrections with those from kcorrect. Our K-corrections produce absolute magnitudes that are generally in good agreement with kcorrect. Absolute griz magnitudes differ by less than 0.02 mag and those in the u band by ∼0.04 mag. The evolution of rest-frame colors as a function of redshift is better behaved using our method, with relatively few galaxies being assigned anomalously red colors and a tight red sequence being observed across the whole 0.0 < z < 0.5 redshift range.

  14. Absolute method of measuring magnetic susceptibility

    USGS Publications Warehouse

    Thorpe, A.; Senftle, F.E.

    1959-01-01

    An absolute method of standardization and measurement of the magnetic susceptibility of small samples is presented which can be applied to most techniques based on the Faraday method. The fact that the susceptibility is a function of the area under the curve of sample displacement versus distance of the magnet from the sample, offers a simple method of measuring the susceptibility without recourse to a standard sample. Typical results on a few substances are compared with reported values, and an error of less than 2% can be achieved. ?? 1959 The American Institute of Physics.

  15. Characteristics of patients making serious inhaler errors with a dry powder inhaler and association with asthma-related events in a primary care setting

    PubMed Central

    Westerik, Janine A. M.; Carter, Victoria; Chrystyn, Henry; Burden, Anne; Thompson, Samantha L.; Ryan, Dermot; Gruffydd-Jones, Kevin; Haughney, John; Roche, Nicolas; Lavorini, Federico; Papi, Alberto; Infantino, Antonio; Roman-Rodriguez, Miguel; Bosnic-Anticevich, Sinthia; Lisspers, Karin; Ställberg, Björn; Henrichsen, Svein Høegh; van der Molen, Thys; Hutton, Catherine; Price, David B.

    2016-01-01

    Abstract Objective: Correct inhaler technique is central to effective delivery of asthma therapy. The study aim was to identify factors associated with serious inhaler technique errors and their prevalence among primary care patients with asthma using the Diskus dry powder inhaler (DPI). Methods: This was a historical, multinational, cross-sectional study (2011–2013) using the iHARP database, an international initiative that includes patient- and healthcare provider-reported questionnaires from eight countries. Patients with asthma were observed for serious inhaler errors by trained healthcare providers as predefined by the iHARP steering committee. Multivariable logistic regression, stepwise reduced, was used to identify clinical characteristics and asthma-related outcomes associated with ≥1 serious errors. Results: Of 3681 patients with asthma, 623 (17%) were using a Diskus (mean [SD] age, 51 [14]; 61% women). A total of 341 (55%) patients made ≥1 serious errors. The most common errors were the failure to exhale before inhalation, insufficient breath-hold at the end of inhalation, and inhalation that was not forceful from the start. Factors significantly associated with ≥1 serious errors included asthma-related hospitalization the previous year (odds ratio [OR] 2.07; 95% confidence interval [CI], 1.26–3.40); obesity (OR 1.75; 1.17–2.63); poor asthma control the previous 4 weeks (OR 1.57; 1.04–2.36); female sex (OR 1.51; 1.08–2.10); and no inhaler technique review during the previous year (OR 1.45; 1.04–2.02). Conclusions: Patients with evidence of poor asthma control should be targeted for a review of their inhaler technique even when using a device thought to have a low error rate. PMID:26810934

  16. Integrated Navigation System Design for Micro Planetary Rovers: Comparison of Absolute Heading Estimation Algorithms and Nonlinear Filtering.

    PubMed

    Ilyas, Muhammad; Hong, Beomjin; Cho, Kuk; Baeg, Seung-Ho; Park, Sangdeok

    2016-05-23

    This paper provides algorithms to fuse relative and absolute microelectromechanical systems (MEMS) navigation sensors, suitable for micro planetary rovers, to provide a more accurate estimation of navigation information, specifically, attitude and position. Planetary rovers have extremely slow speed (~1 cm/s) and lack conventional navigation sensors/systems, hence the general methods of terrestrial navigation may not be applicable to these applications. While relative attitude and position can be tracked in a way similar to those for ground robots, absolute navigation information is hard to achieve on a remote celestial body, like Moon or Mars, in contrast to terrestrial applications. In this study, two absolute attitude estimation algorithms were developed and compared for accuracy and robustness. The estimated absolute attitude was fused with the relative attitude sensors in a framework of nonlinear filters. The nonlinear Extended Kalman filter (EKF) and Unscented Kalman filter (UKF) were compared in pursuit of better accuracy and reliability in this nonlinear estimation problem, using only on-board low cost MEMS sensors. Experimental results confirmed the viability of the proposed algorithms and the sensor suite, for low cost and low weight micro planetary rovers. It is demonstrated that integrating the relative and absolute navigation MEMS sensors reduces the navigation errors to the desired level.

  17. Integrated Navigation System Design for Micro Planetary Rovers: Comparison of Absolute Heading Estimation Algorithms and Nonlinear Filtering

    PubMed Central

    Ilyas, Muhammad; Hong, Beomjin; Cho, Kuk; Baeg, Seung-Ho; Park, Sangdeok

    2016-01-01

    This paper provides algorithms to fuse relative and absolute microelectromechanical systems (MEMS) navigation sensors, suitable for micro planetary rovers, to provide a more accurate estimation of navigation information, specifically, attitude and position. Planetary rovers have extremely slow speed (~1 cm/s) and lack conventional navigation sensors/systems, hence the general methods of terrestrial navigation may not be applicable to these applications. While relative attitude and position can be tracked in a way similar to those for ground robots, absolute navigation information is hard to achieve on a remote celestial body, like Moon or Mars, in contrast to terrestrial applications. In this study, two absolute attitude estimation algorithms were developed and compared for accuracy and robustness. The estimated absolute attitude was fused with the relative attitude sensors in a framework of nonlinear filters. The nonlinear Extended Kalman filter (EKF) and Unscented Kalman filter (UKF) were compared in pursuit of better accuracy and reliability in this nonlinear estimation problem, using only on-board low cost MEMS sensors. Experimental results confirmed the viability of the proposed algorithms and the sensor suite, for low cost and low weight micro planetary rovers. It is demonstrated that integrating the relative and absolute navigation MEMS sensors reduces the navigation errors to the desired level. PMID:27223293

  18. Integrated Navigation System Design for Micro Planetary Rovers: Comparison of Absolute Heading Estimation Algorithms and Nonlinear Filtering.

    PubMed

    Ilyas, Muhammad; Hong, Beomjin; Cho, Kuk; Baeg, Seung-Ho; Park, Sangdeok

    2016-01-01

    This paper provides algorithms to fuse relative and absolute microelectromechanical systems (MEMS) navigation sensors, suitable for micro planetary rovers, to provide a more accurate estimation of navigation information, specifically, attitude and position. Planetary rovers have extremely slow speed (~1 cm/s) and lack conventional navigation sensors/systems, hence the general methods of terrestrial navigation may not be applicable to these applications. While relative attitude and position can be tracked in a way similar to those for ground robots, absolute navigation information is hard to achieve on a remote celestial body, like Moon or Mars, in contrast to terrestrial applications. In this study, two absolute attitude estimation algorithms were developed and compared for accuracy and robustness. The estimated absolute attitude was fused with the relative attitude sensors in a framework of nonlinear filters. The nonlinear Extended Kalman filter (EKF) and Unscented Kalman filter (UKF) were compared in pursuit of better accuracy and reliability in this nonlinear estimation problem, using only on-board low cost MEMS sensors. Experimental results confirmed the viability of the proposed algorithms and the sensor suite, for low cost and low weight micro planetary rovers. It is demonstrated that integrating the relative and absolute navigation MEMS sensors reduces the navigation errors to the desired level. PMID:27223293

  19. Negotiation Moves and Recasts in Relation to Error Types and Learner Repair in the Foreign Language Classroom.

    ERIC Educational Resources Information Center

    Morris, Frank A.

    2002-01-01

    Assessed the provision and use of implicit negative feedback in the interactional context of adult beginning learners of Spanish working in dyads in the foreign language classroom. Relationships among error types, feedback types, and immediate learner repair were also examined. Findings indicate learners did not provide explicit negative feedback…

  20. Be Resolute about Absolute Value

    ERIC Educational Resources Information Center

    Kidd, Margaret L.

    2007-01-01

    This article explores how conceptualization of absolute value can start long before it is introduced. The manner in which absolute value is introduced to students in middle school has far-reaching consequences for their future mathematical understanding. It begins to lay the foundation for students' understanding of algebra, which can change…

  1. Stimulus probability effects in absolute identification.

    PubMed

    Kent, Christopher; Lamberts, Koen

    2016-05-01

    This study investigated the effect of stimulus presentation probability on accuracy and response times in an absolute identification task. Three schedules of presentation were used to investigate the interaction between presentation probability and stimulus position within the set. Data from individual participants indicated strong effects of presentation probability on both proportion correct and response times. The effects were moderated by the ubiquitous stimulus position effect. The accuracy and response time data were predicted by an exemplar-based model of perceptual cognition (Kent & Lamberts, 2005). The bow in discriminability was also attenuated when presentation probability for middle items was relatively high, an effect that will constrain future model development. The study provides evidence for item-specific learning in absolute identification. Implications for other theories of absolute identification are discussed. (PsycINFO Database Record

  2. Absolute and relative quantification and calibration for sectioning fluorescence microscopy using standardized uniform fluorescent layers and SIPchart-based correction procedures

    NASA Astrophysics Data System (ADS)

    Zwier, J. M.; Oomen, L.; Brocks, L.; Jalink, K.; Brakenhoff, G. J.

    2007-02-01

    The total or integrated fluorescence intensity of a through-focus series of a thin standardized uniform fluorescent or calibration layer is shown to be suitable for image intensity correction and calibration in sectioning microscopy. This integrated intensity can be derived from the earlier introduced SectionedImagingProperty or SIPcharts, derived from the 3D layer datasets. By correcting the 3D image of an object with the 3D image of the standardized uniform fluorescent layer obtained under identical conditions one is able to express the object fluorescence in units fluorescence of the calibration layer. With object fluorescence intensities in fluorescence layer unit's or FLU's the object image intensities becomes independent of microscope system and imaging conditions. A direct result is that the often-appreciable lateral intensity variations present in confocal microscopy are eliminated (shading correction). Of more general value is that images obtained with different objectives, magnifications or from different microscope systems can be quantitatively related to each other. The effectiveness of shading correction and relating images obtained under various microscope conditions is demonstrated on images of standard fluorocent beads. Expressing the object fluorescence in FLU units seems to be a promising approach for general quantification of sectioning imaging enabling cross-correlation of imaging results over time and between imaging systems.

  3. Absolute Pitch in Infant Auditory Learning: Evidence for Developmental Reorganization.

    ERIC Educational Resources Information Center

    Saffran, Jenny R.; Griepentrog, Gregory J.

    2001-01-01

    Two experiments examined 8-month-olds' use of absolute and relative pitch cues in a tone-sequence statistical learning task. Results suggest that, given unsegmented stimuli that do not conform to rules of musical composition, infants are more likely to track patterns of absolute pitches than of relative pitches. A third experiment found that adult…

  4. Experimental results for absolute cylindrical wavefront testing

    NASA Astrophysics Data System (ADS)

    Reardon, Patrick J.; Alatawi, Ayshah

    2014-09-01

    Applications for Cylindrical and near-cylindrical surfaces are ever-increasing. However, fabrication of high quality cylindrical surfaces is limited by the difficulty of accurate and affordable metrology. Absolute testing of such surfaces represents a challenge to the optical testing community as cylindrical reference wavefronts are difficult to produce. In this paper, preliminary results for a new method of absolute testing of cylindrical wavefronts are presented. The method is based on the merging of the random ball test method with the fiber optic reference test. The random ball test assumes a large number of interferograms of a good quality sphere with errors that are statistically distributed such that the average of the errors goes to zero. The fiber optic reference test utilizes a specially processed optical fiber to provide a clean high quality reference wave from an incident line focus from the cylindrical wave under test. By taking measurements at different rotation and translations of the fiber, an analogous procedure can be employed to determine the quality of the converging cylindrical wavefront with high accuracy. This paper presents and discusses the results of recent tests of this method using a null optic formed by a COTS cylindrical lens and a free-form polished corrector element.

  5. Error Analysis

    NASA Astrophysics Data System (ADS)

    Scherer, Philipp O. J.

    Input data as well as the results of elementary operations have to be represented by machine numbers, the subset of real numbers which is used by the arithmetic unit of today's computers. Generally this generates rounding errors. This kind of numerical error can be avoided in principle by using arbitrary precision arithmetics or symbolic algebra programs. But this is unpractical in many cases due to the increase in computing time and memory requirements. Results from more complex operations like square roots or trigonometric functions can have even larger errors since series expansions have to be truncated and iterations accumulate the errors of the individual steps. In addition, the precision of input data from an experiment is limited. In this chapter we study the influence of numerical errors on the uncertainties of the calculated results and the stability of simple algorithms.

  6. Psychological masquerade embedded in a cluster of related clinical errors: Real practice, real solutions, and their scientific underpinnings.

    PubMed

    Spengler, Paul M; Miller, Deborah J; Spengler, Elliot S

    2016-09-01

    In this paper, we discuss the need for medical rule outs in over 50% of diagnoses and the risk for mental health practitioners to engage in a clinical judgment error called psychological masquerade (Taylor, 2007). We use the specific example of thyroid dysfunction as a relevant rule out when a client presents with symptoms consistent with an affective disorder. A real clinical example is provided and discussed to illustrate how the first author invoked psychological masquerade resulting in clinical decision-making errors during the treatment of a mother participating in family therapy. Solutions for this specific case and more generally for psychological masquerade are provided and discussed in the context of theory and research on mental health clinical decision-making. (PsycINFO Database Record PMID:27631863

  7. A SEASAT SASS simulation experiment to quantify the errors related to a + or - 3 hour intermittent assimilation technique

    NASA Technical Reports Server (NTRS)

    Sylvester, W. B.

    1984-01-01

    A series of SEASAT repeat orbits over a sequence of best Low center positions is simulated by using the Seatrak satellite calculator. These Low centers are, upon appropriate interpolation to hourly positions, Located at various times during the + or - 3 hour assimilation cycle. Error analysis for a sample of best cyclone center positions taken from the Atlantic and Pacific oceans reveals a minimum average error of 1.1 deg of Longitude and a standard deviation of 0.9 deg of Longitude. The magnitude of the average error seems to suggest that by utilizing the + or - 3 hour window in the assimilation cycle, the quality of the SASS data is degraded to the Level of the background. A further consequence of this assimilation scheme is the effect which is manifested as a result of the blending of two or more more juxtaposed vector winds, generally possessing different properties (vector quantity and time). The outcome of this is to reduce gradients in the wind field and to deform isobaric and frontal patterns of the intial field.

  8. Absolute magnitudes and kinematics of barium stars.

    NASA Astrophysics Data System (ADS)

    Gomez, A. E.; Luri, X.; Grenier, S.; Prevot, L.; Mennessier, M. O.; Figueras, F.; Torra, J.

    1997-03-01

    The absolute magnitude of barium stars has been obtained from kinematical data using a new algorithm based on the maximum-likelihood principle. The method allows to separate a sample into groups characterized by different mean absolute magnitudes, kinematics and z-scale heights. It also takes into account, simultaneously, the censorship in the sample and the errors on the observables. The method has been applied to a sample of 318 barium stars. Four groups have been detected. Three of them show a kinematical behaviour corresponding to disk population stars. The fourth group contains stars with halo kinematics. The luminosities of the disk population groups spread a large range. The intrinsically brightest one (M_v_=-1.5mag, σ_M_=0.5mag) seems to be an inhomogeneous group containing barium binaries as well as AGB single stars. The most numerous group (about 150 stars) has a mean absolute magnitude corresponding to stars in the red giant branch (M_v_=0.9mag, σ_M_=0.8mag). The third group contains barium dwarfs, the obtained mean absolute magnitude is characteristic of stars on the main sequence or on the subgiant branch (M_v_=3.3mag, σ_M_=0.5mag). The obtained mean luminosities as well as the kinematical results are compatible with an evolutionary link between barium dwarfs and classical barium giants. The highly luminous group is not linked with these last two groups. More high-resolution spectroscopic data will be necessary in order to better discriminate between barium and non-barium stars.

  9. Absolute brightness temperature measurements at 3.5-mm wavelength. [of sun, Venus, Jupiter and Saturn

    NASA Technical Reports Server (NTRS)

    Ulich, B. L.; Rhodes, P. J.; Davis, J. H.; Hollis, J. M.

    1980-01-01

    Careful observations have been made at 86.1 GHz to derive the absolute brightness temperatures of the sun (7914 + or - 192 K), Venus (357.5 + or - 13.1 K), Jupiter (179.4 + or - 4.7 K), and Saturn (153.4 + or - 4.8 K) with a standard error of about three percent. This is a significant improvement in accuracy over previous results at millimeter wavelengths. A stable transmitter and novel superheterodyne receiver were constructed and used to determine the effective collecting area of the Millimeter Wave Observatory (MWO) 4.9-m antenna relative to a previously calibrated standard gain horn. The thermal scale was set by calibrating the radiometer with carefully constructed and tested hot and cold loads. The brightness temperatures may be used to establish an absolute calibration scale and to determine the antenna aperture and beam efficiencies of other radio telescopes at 3.5-mm wavelength.

  10. Medication Errors

    MedlinePlus

    ... to reduce the risk of medication errors to industry and others at FDA. Additionally, DMEPA prospectively reviews ... List of Abbreviations Regulations and Guidances Guidance for Industry: Safety Considerations for Product Design to Minimize Medication ...

  11. Medication Errors

    MedlinePlus

    Medicines cure infectious diseases, prevent problems from chronic diseases, and ease pain. But medicines can also cause harmful reactions if not used ... You can help prevent errors by Knowing your medicines. Keep a list of the names of your ...

  12. TU-C-BRE-07: Quantifying the Clinical Impact of VMAT Delivery Errors Relative to Prior Patients’ Plans and Adjusted for Anatomical Differences

    SciTech Connect

    Stanhope, C; Wu, Q; Yuan, L; Liu, J; Hood, R; Yin, F; Adamson, J

    2014-06-15

    -arc VMAT plans for low-risk prostate are relatively insensitive to many potential delivery errors.

  13. Singular perturbation of absolute stability.

    NASA Technical Reports Server (NTRS)

    Siljak, D. D.

    1972-01-01

    It was previously shown (author, 1969) that the regions of absolute stability in the parameter space can be determined when the parameters appear on the right-hand side of the system equations, i.e., the regular case. Here, the effect on absolute stability of a small parameter attached to higher derivatives in the equations (the singular case) is studied. The Lur'e-Postnikov class of nonlinear systems is considered.

  14. Contextual freedom: absoluteness versus relativity of freedom.

    PubMed

    Pahlavan, Farzaneh; Amirrezvani, Ali

    2013-10-01

    Our commentary is focused on the idea that "freedom" takes on its full significance whenever its relativistic nature, in the short- and long terms, is taken into account. Given the transformations brought about by "globalization," application of a general model of freedom based on ecological-economic factors clearly seems to be rather untimely. We examine this idea through egocentric and ethnocentric views of the social and environmental analyses of "freedom."

  15. Contextual freedom: absoluteness versus relativity of freedom.

    PubMed

    Pahlavan, Farzaneh; Amirrezvani, Ali

    2013-10-01

    Our commentary is focused on the idea that "freedom" takes on its full significance whenever its relativistic nature, in the short- and long terms, is taken into account. Given the transformations brought about by "globalization," application of a general model of freedom based on ecological-economic factors clearly seems to be rather untimely. We examine this idea through egocentric and ethnocentric views of the social and environmental analyses of "freedom." PMID:23985124

  16. Dissociated roles of the anterior cingulate cortex in reward and conflict processing as revealed by the feedback error-related negativity and N200.

    PubMed

    Baker, Travis E; Holroyd, Clay B

    2011-04-01

    The reinforcement learning theory of the error-related negativity (ERN) holds that the impact of reward signals carried by the midbrain dopamine system modulates activity of the anterior cingulate cortex (ACC), alternatively disinhibiting and inhibiting the ACC following unpredicted error and reward events, respectively. According to a recent formulation of the theory, activity that is intrinsic to the ACC produces a component of the event-related brain potential (ERP) called the N200, and following unpredicted rewards, the N200 is suppressed by extrinsically applied positive dopamine reward signals, resulting in an ERP component called the feedback-ERN (fERN). Here we demonstrate that, despite extensive spatial and temporal overlap between the two ERP components, the functional processes indexed by the N200 (conflict) and the fERN (reward) are dissociable. These results point toward avenues for future investigation.

  17. Dissociated roles of the anterior cingulate cortex in reward and conflict processing as revealed by the feedback error-related negativity and N200.

    PubMed

    Baker, Travis E; Holroyd, Clay B

    2011-04-01

    The reinforcement learning theory of the error-related negativity (ERN) holds that the impact of reward signals carried by the midbrain dopamine system modulates activity of the anterior cingulate cortex (ACC), alternatively disinhibiting and inhibiting the ACC following unpredicted error and reward events, respectively. According to a recent formulation of the theory, activity that is intrinsic to the ACC produces a component of the event-related brain potential (ERP) called the N200, and following unpredicted rewards, the N200 is suppressed by extrinsically applied positive dopamine reward signals, resulting in an ERP component called the feedback-ERN (fERN). Here we demonstrate that, despite extensive spatial and temporal overlap between the two ERP components, the functional processes indexed by the N200 (conflict) and the fERN (reward) are dissociable. These results point toward avenues for future investigation. PMID:21295109

  18. Estimation of an unexpected-overlooking error by means of the single eye fixation related potential analysis with wavelet transform filter.

    PubMed

    Matsuo, N; Ohkita, Y; Tomita, Y; Honda, S; Matsunaga, K

    2001-04-01

    An unexpected-overlooking error that caused failure to notice near the peripheral vision is one of the accident factors in driving behavior. We estimated how the unexpected-overlooking error affected the amplitude of the lambda wave in the eye fixation related potential (EFRP). Four subjects participated in the experiment. Each subject was required press the right or left switch according to the given task, which was that he/she pressed the right switch when the blue dot appeared in the right detected area or he/she pressed the left switch when the red dot appeared in the right. The single trial data from Pz, which referred to both earlobes, were analyzed by means of a wavelet transform (WT) filter. The difference of the lambda amplitude between the corrected data was applied for analysis of variance. Three subjects showed a significant effect (P<0.01 or P<0.05), and the remaining one subject did not show a significant consequence of only two errors. The unexpected-overlooking errors had a low amplitude compared to the mean of amplitude throughout the task. It was concluded that the amplitude of the lambda wave might reflect the attention level of a subject.

  19. Neural response to errors in combat-exposed returning veterans with and without post-traumatic stress disorder: a preliminary event-related potential study.

    PubMed

    Rabinak, Christine A; Holman, Alexis; Angstadt, Mike; Kennedy, Amy E; Hajcak, Greg; Phan, Kinh Luan

    2013-07-30

    Post-traumatic stress disorder (PTSD) is characterized by sustained anxiety, hypervigilance for potential threat, and hyperarousal. These symptoms may enhance self-perception of one's actions, particularly the detection of errors, which may threaten safety. The error-related negativity (ERN) is an electrocortical response to the commission of errors, and previous studies have shown that other anxiety disorders associated with exaggerated anxiety and enhanced action monitoring exhibit an enhanced ERN. However, little is known about how traumatic experience and PTSD would affect the ERN. To address this gap, we measured the ERN in returning Operation Enduring Freedom/Operation Iraqi Freedom (OEF/OIF) veterans with combat-related PTSD (PTSD group), combat-exposed OEF/OIF veterans without PTSD [combat-exposed control (CEC) group], and non-traumatized healthy participants [healthy control (HC) group]. Event-related potential and behavioral measures were recorded while 16 PTSD patients, 18 CEC, and 16 HC participants completed an arrow version of the flanker task. No difference in the magnitude of the ERN was observed between the PTSD and HC groups; however, in comparison with the PTSD and HC groups, the CEC group displayed a blunted ERN response. These findings suggest that (1) combat trauma itself does not affect the ERN response; (2) PTSD is not associated with an abnormal ERN response; and (3) an attenuated ERN in those previously exposed to combat trauma but who have not developed PTSD may reflect resilience to the disorder, less motivation to do the task, or a decrease in the significance or meaningfulness of 'errors,' which could be related to combat experience.

  20. Moderation of the Relationship Between Reward Expectancy and Prediction Error-Related Ventral Striatal Reactivity by Anhedonia in Unmedicated Major Depressive Disorder: Findings From the EMBARC Study

    PubMed Central

    Greenberg, Tsafrir; Chase, Henry W.; Almeida, Jorge R.; Stiffler, Richelle; Zevallos, Carlos R.; Aslam, Haris A.; Deckersbach, Thilo; Weyandt, Sarah; Cooper, Crystal; Toups, Marisa; Carmody, Thomas; Kurian, Benji; Peltier, Scott; Adams, Phillip; McInnis, Melvin G.; Oquendo, Maria A.; McGrath, Patrick J.; Fava, Maurizio; Weissman, Myrna; Parsey, Ramin; Trivedi, Madhukar H.; Phillips, Mary L.

    2016-01-01

    Objective Anhedonia, disrupted reward processing, is a core symptom of major depressive disorder. Recent findings demonstrate altered reward-related ventral striatal reactivity in depressed individuals, but the extent to which this is specific to anhedonia remains poorly understood. The authors examined the effect of anhedonia on reward expectancy (expected outcome value) and prediction error-(discrepancy between expected and actual outcome) related ventral striatal reactivity, as well as the relationship between these measures. Method A total of 148 unmedicated individuals with major depressive disorder and 31 healthy comparison individuals recruited for the multisite EMBARC (Establishing Moderators and Biosignatures of Antidepressant Response in Clinical Care) study underwent functional MRI during a well-validated reward task. Region of interest and whole-brain data were examined in the first- (N=78) and second- (N=70) recruited cohorts, as well as the total sample, of depressed individuals, and in healthy individuals. Results Healthy, but not depressed, individuals showed a significant inverse relationship between reward expectancy and prediction error-related right ventral striatal reactivity. Across all participants, and in depressed individuals only, greater anhedonia severity was associated with a reduced reward expectancy-prediction error inverse relationship, even after controlling for other symptoms. Conclusions The normal reward expectancy and prediction error-related ventral striatal reactivity inverse relationship concords with conditioning models, predicting a shift in ventral striatal responding from reward outcomes to reward cues. This study shows, for the first time, an absence of this relationship in two cohorts of unmedicated depressed individuals and a moderation of this relationship by anhedonia, suggesting reduced reward-contingency learning with greater anhedonia. These findings help elucidate neural mechanisms of anhedonia, as a step toward

  1. Modelling non-Gaussianity of background and observational errors by the Maximum Entropy method

    NASA Astrophysics Data System (ADS)

    Pires, Carlos; Talagrand, Olivier; Bocquet, Marc

    2010-05-01

    The Best Linear Unbiased Estimator (BLUE) has widely been used in atmospheric-oceanic data assimilation. However, when data errors have non-Gaussian pdfs, the BLUE differs from the absolute Minimum Variance Unbiased Estimator (MVUE), minimizing the mean square analysis error. The non-Gaussianity of errors can be due to the statistical skewness and positiveness of some physical observables (e.g. moisture, chemical species) or due to the nonlinearity of the data assimilation models and observation operators acting on Gaussian errors. Non-Gaussianity of assimilated data errors can be justified from a priori hypotheses or inferred from statistical diagnostics of innovations (observation minus background). Following this rationale, we compute measures of innovation non-Gaussianity, namely its skewness and kurtosis, relating it to: a) the non-Gaussianity of the individual error themselves, b) the correlation between nonlinear functions of errors, and c) the heteroscedasticity of errors within diagnostic samples. Those relationships impose bounds for skewness and kurtosis of errors which are critically dependent on the error variances, thus leading to a necessary tuning of error variances in order to accomplish consistency with innovations. We evaluate the sub-optimality of the BLUE as compared to the MVUE, in terms of excess of error variance, under the presence of non-Gaussian errors. The error pdfs are obtained by the maximum entropy method constrained by error moments up to fourth order, from which the Bayesian probability density function and the MVUE are computed. The impact is higher for skewed extreme innovations and grows in average with the skewness of data errors, especially if those skewnesses have the same sign. Application has been performed to the quality-accepted ECMWF innovations of brightness temperatures of a set of High Resolution Infrared Sounder channels. In this context, the MVUE has led in some extreme cases to a potential reduction of 20-60% error

  2. Compensation of modelling errors due to unknown domain boundary in electrical impedance tomography.

    PubMed

    Nissinen, Antti; Kolehmainen, Ville Petteri; Kaipio, Jari P

    2011-02-01

    Electrical impedance tomography is a highly unstable problem with respect to measurement and modeling errors. This instability is especially severe when absolute imaging is considered. With clinical measurements, accurate knowledge about the body shape is usually not available, and therefore an approximate model domain has to be used in the computational model. It has earlier been shown that large reconstruction artefacts result if the geometry of the model domain is incorrect. In this paper, we adapt the so-called approximation error approach to compensate for the modeling errors caused by inaccurately known body shape. This approach has previously been shown to be applicable to a variety of modeling errors, such as coarse discretization in the numerical approximation of the forward model and domain truncation. We evaluate the approach with a simulated example of thorax imaging, and also with experimental data from a laboratory setting, with absolute imaging considered in both cases. We show that the related modeling errors can be efficiently compensated for by the approximation error approach. We also show that recovery from simultaneous discretization related errors is feasible, allowing the use of computationally efficient reduced order models.

  3. Redetermining CEBAF's Absolute Energy

    NASA Astrophysics Data System (ADS)

    Su, Tong; Jlab Marathon Collaboration

    2015-04-01

    With the upgrade of the Jefferson Lab accelerator (CEBAF) from 6 GeV max energy to 12 GeV, all the dipole magnets in the machine were refurbished. Most of them were switched from open c-shaped to closed h-shaped by adding extra iron. With these upgraded magnets, the energy calibration of the accelerator needed to be redetermined. We will show how an extra external dipole, which is run in series with those in the machine, helps us cross check the current in the magnets as well as precisely map out the integral field for any machine setting. Using knowledge of the relative performance of the dipoles as well as the bend angle into the Hall, has allowed us to already determine a 4th pass 7 GeV beam to better than 7 MeV. In the future, we will use g-2 spin precession as a second independent energy determination. This work is supported by Kent State University, NSF Grant PHY-1405814, and DOE Contract DE-AC05-06OR23177 (JLab).

  4. Absolute Radiometer for Reproducing the Solar Irradiance Unit

    NASA Astrophysics Data System (ADS)

    Sapritskii, V. I.; Pavlovich, M. N.

    1989-01-01

    A high-precision absolute radiometer with a thermally stabilized cavity as receiving element has been designed for use in solar irradiance measurements. The State Special Standard of the Solar Irradiance Unit has been built on the basis of the developed absolute radiometer. The Standard also includes the sun tracking system and the system for automatic thermal stabilization and information processing, comprising a built-in microcalculator which calculates the irradiance according to the input program. During metrological certification of the Standard, main error sources have been analysed and the non-excluded systematic and accidental errors of the irradiance-unit realization have been determined. The total error of the Standard does not exceed 0.3%. Beginning in 1984 the Standard has been taking part in a comparison with the Å 212 pyrheliometer and other Soviet and foreign standards. In 1986 it took part in the international comparison of absolute radiometers and standard pyrheliometers of socialist countries. The results of the comparisons proved the high metrological quality of this Standard based on an absolute radiometer.

  5. The Impact of Short-Term Science Teacher Professional Development on the Evaluation of Student Understanding and Errors Related to Natural Selection

    NASA Astrophysics Data System (ADS)

    Buschang, Rebecca Ellen

    This study evaluated the effects of a short-term professional development session. Forty volunteer high school biology teachers were randomly assigned to one of two professional development conditions: (a) developing deep content knowledge (i.e., control condition) or (b) evaluating student errors and understanding in writing samples (i.e., experimental condition). A pretest of content knowledge was administered, and then the participants in both conditions watched two hours of online videos about natural selection and attended different types of professional development sessions lasting four hours. The dependent variable measured teacher knowledge and skill related to evaluating student errors and understanding of natural selection. Significant differences between conditions in favor of the experimental condition were found on participant identification of critical elements of student understanding of natural selection and content knowledge related to natural selection. Results suggest that short-term professional development sessions focused on evaluating student errors and understanding can be effective at focusing a participant's evaluation of student work on particularly important elements of student understanding. Results have implications for understanding the types of knowledge necessary to effectively evaluate student work and for the design of professional development.

  6. Absolute radiometric calibration of advanced remote sensing systems

    NASA Technical Reports Server (NTRS)

    Slater, P. N.

    1982-01-01

    The distinction between the uses of relative and absolute spectroradiometric calibration of remote sensing systems is discussed. The advantages of detector-based absolute calibration are described, and the categories of relative and absolute system calibrations are listed. The limitations and problems associated with three common methods used for the absolute calibration of remote sensing systems are addressed. Two methods are proposed for the in-flight absolute calibration of advanced multispectral linear array systems. One makes use of a sun-illuminated panel in front of the sensor, the radiance of which is monitored by a spectrally flat pyroelectric radiometer. The other uses a large, uniform, high-radiance reference ground surface. The ground and atmospheric measurements required as input to a radiative transfer program to predict the radiance level at the entrance pupil of the orbital sensor are discussed, and the ground instrumentation is described.

  7. Neural Correlates of Reach Errors

    PubMed Central

    Hashambhoy, Yasmin; Rane, Tushar; Shadmehr, Reza

    2005-01-01

    Reach errors may be broadly classified into errors arising from unpredictable changes in target location, called target errors, and errors arising from miscalibration of internal models, called execution errors. Execution errors may be caused by miscalibration of dynamics (e.g.. when a force field alters limb dynamics) or by miscalibration of kinematics (e.g., when prisms alter visual feedback). While all types of errors lead to similar online corrections, we found that the motor system showed strong trial-by-trial adaptation in response to random execution errors but not in response to random target errors. We used fMRI and a compatible robot to study brain regions involved in processing each kind of error. Both kinematic and dynamic execution errors activated regions along the central and the post-central sulci and in lobules V, VI, and VIII of the cerebellum, making these areas possible sites of plastic changes in internal models for reaching. Only activity related to kinematic errors extended into parietal area 5. These results are inconsistent with the idea that kinematics and dynamics of reaching are computed in separate neural entities. In contrast, only target errors caused increased activity in the striatum and the posterior superior parietal lobule. The cerebellum and motor cortex were as strongly activated as with execution errors. These findings indicate a neural and behavioral dissociation between errors that lead to switching of behavioral goals, and errors that lead to adaptation of internal models of limb dynamics and kinematics. PMID:16251440

  8. Absolute Radiometric Calibration of EUNIS-06

    NASA Technical Reports Server (NTRS)

    Thomas, R. J.; Rabin, D. M.; Kent, B. J.; Paustian, W.

    2007-01-01

    The Extreme-Ultraviolet Normal-Incidence Spectrometer (EUNIS) is a soundingrocket payload that obtains imaged high-resolution spectra of individual solar features, providing information about the Sun's corona and upper transition region. Shortly after its successful initial flight last year, a complete end-to-end calibration was carried out to determine the instrument's absolute radiometric response over its Longwave bandpass of 300 - 370A. The measurements were done at the Rutherford-Appleton Laboratory (RAL) in England, using the same vacuum facility and EUV radiation source used in the pre-flight calibrations of both SOHO/CDS and Hinode/EIS, as well as in three post-flight calibrations of our SERTS sounding rocket payload, the precursor to EUNIS. The unique radiation source provided by the Physikalisch-Technische Bundesanstalt (PTB) had been calibrated to an absolute accuracy of 7% (l-sigma) at 12 wavelengths covering our bandpass directly against the Berlin electron storage ring BESSY, which is itself a primary radiometric source standard. Scans of the EUNIS aperture were made to determine the instrument's absolute spectral sensitivity to +- 25%, considering all sources of error, and demonstrate that EUNIS-06 was the most sensitive solar E W spectrometer yet flown. The results will be matched against prior calibrations which relied on combining measurements of individual optical components, and on comparisons with theoretically predicted 'insensitive' line ratios. Coordinated observations were made during the EUNIS-06 flight by SOHO/CDS and EIT that will allow re-calibrations of those instruments as well. In addition, future EUNIS flights will provide similar calibration updates for TRACE, Hinode/EIS, and STEREO/SECCHI/EUVI.

  9. Absolute geostrophic currents in global tropical oceans

    NASA Astrophysics Data System (ADS)

    Yang, Lina; Yuan, Dongliang

    2016-11-01

    A set of absolute geostrophic current (AGC) data for the period January 2004 to December 2012 are calculated using the P-vector method based on monthly gridded Argo profiles in the world tropical oceans. The AGCs agree well with altimeter geostrophic currents, Ocean Surface Current Analysis-Real time currents, and moored current-meter measurements at 10-m depth, based on which the classical Sverdrup circulation theory is evaluated. Calculations have shown that errors of wind stress calculation, AGC transport, and depth ranges of vertical integration cannot explain non-Sverdrup transport, which is mainly in the subtropical western ocean basins and equatorial currents near the Equator in each ocean basin (except the North Indian Ocean, where the circulation is dominated by monsoons). The identified non-Sverdrup transport is thereby robust and attributed to the joint effect of baroclinicity and relief of the bottom (JEBAR) and mesoscale eddy nonlinearity.

  10. Proofreading for word errors.

    PubMed

    Pilotti, Maura; Chodorow, Martin; Agpawa, Ian; Krajniak, Marta; Mahamane, Salif

    2012-04-01

    Proofreading (i.e., reading text for the purpose of detecting and correcting typographical errors) is viewed as a component of the activity of revising text and thus is a necessary (albeit not sufficient) procedural step for enhancing the quality of a written product. The purpose of the present research was to test competing accounts of word-error detection which predict factors that may influence reading and proofreading differently. Word errors, which change a word into another word (e.g., from --> form), were selected for examination because they are unlikely to be detected by automatic spell-checking functions. Consequently, their detection still rests mostly in the hands of the human proofreader. Findings highlighted the weaknesses of existing accounts of proofreading and identified factors, such as length and frequency of the error in the English language relative to frequency of the correct word, which might play a key role in detection of word errors.

  11. Absolute Humidity and the Seasonality of Influenza (Invited)

    NASA Astrophysics Data System (ADS)

    Shaman, J. L.; Pitzer, V.; Viboud, C.; Grenfell, B.; Goldstein, E.; Lipsitch, M.

    2010-12-01

    Much of the observed wintertime increase of mortality in temperate regions is attributed to seasonal influenza. A recent re-analysis of laboratory experiments indicates that absolute humidity strongly modulates the airborne survival and transmission of the influenza virus. Here we show that the onset of increased wintertime influenza-related mortality in the United States is associated with anomalously low absolute humidity levels during the prior weeks. We then use an epidemiological model, in which observed absolute humidity conditions temper influenza transmission rates, to successfully simulate the seasonal cycle of observed influenza-related mortality. The model results indicate that direct modulation of influenza transmissibility by absolute humidity alone is sufficient to produce this observed seasonality. These findings provide epidemiological support for the hypothesis that absolute humidity drives seasonal variations of influenza transmission in temperate regions. In addition, we show that variations of the basic and effective reproductive numbers for influenza, caused by seasonal changes in absolute humidity, are consistent with the general timing of pandemic influenza outbreaks observed for 2009 A/H1N1 in temperate regions. Indeed, absolute humidity conditions correctly identify the region of the United States vulnerable to a third, wintertime wave of pandemic influenza. These findings suggest that the timing of pandemic influenza outbreaks is controlled by a combination of absolute humidity conditions, levels of susceptibility and changes in population mixing and contact rates.

  12. Use of Absolute and Comparative Performance Feedback in Absolute and Comparative Judgments and Decisions

    ERIC Educational Resources Information Center

    Moore, Don A.; Klein, William M. P.

    2008-01-01

    Which matters more--beliefs about absolute ability or ability relative to others? This study set out to compare the effects of such beliefs on satisfaction with performance, self-evaluations, and bets on future performance. In Experiment 1, undergraduate participants were told they had answered 20% correct, 80% correct, or were not given their…

  13. Use Of Absolute Function And Its Associates In Formation And `Redevelopment' Of Mathematical Models In Some Plant-Related Quantitative Physiology: Salinity Effects On Leaf Development Of Schefflera arboricola And Harvest Index In Rice

    NASA Astrophysics Data System (ADS)

    Selamat, Ahmad; Awang, Yahya; Mohamed, Mahmud T. M.; Wahab, Zakaria; Osman, Mohammad

    2008-01-01

    The roles of quantitative physiology are becoming more apparent and crucial in the era of ICT recently. As based on the rate-related variables, most of the mathematical models are in the form of `non-linear' function in describing the responses or the observed within-plant processes outcomes versus time. Even though if some responses change in a drastic manner at certain response point within a biological unit or space of a plant system, the response curve `should' be dependent on a continuous independent variable range in a specified period of determination where biologically `should not' functioned by independent variable range having `IF' statement(s). Subjected to nutrient concentration of high salinity (6.0 mS cm-1), the leaf turgidity (measured as leaf surface area) of S. arboricola which initially was described by one form of the logistic growth functions [(y = 1/(a+be-cx)] abruptly reduced as explained by a model having terms of Absolute function (ABS) containing tan-1(x) and its parameter of leaf life expectancy as affected by high salinity growing medium at a certain point of days after planting. This yielded an overall function of y = 1/(a+be-cx)-A[tan-1{(x-B)/D}+ABS(tan-1{(x-B)/D})]E, where a, b, c, A, B, D, and E are constants that most of them can be `biologically' interpreted. The constant B is the point similar to `IF statement' as normally used in other mathematical functions. Plants subjected to lower salinity status (<3.0 mS cm-1) were only having function of y = 1/(a+be-cx). In the harvest index or HI (economic yield/above ground biomass) study of 20 rice varieties grown over two planting seasons, the long flattened tails at both sides of a peak in the middle of function of y = R+B(T+ABS(B-x))e-k(T+ABS(B-x)) had indicated that those varieties maturing at 123 to 133 days after transplanting were having high HI values. In our observation, Absolute (ABS) function coupled with some terms could be used in the formation of some mathematical functions

  14. Comparison of cerebral tissue oxygenation values in full term and preterm newborns by the simultaneous use of two near-infrared spectroscopy devices: an absolute and a relative trending oximeter

    NASA Astrophysics Data System (ADS)

    Szczapa, Tomasz; Karpiński, Łukasz; Moczko, Jerzy; Weindling, Michael; Kornacka, Alicja; Wróblewska, Katarzyna; Adamczak, Aleksandra; Jopek, Aleksandra; Chojnacka, Karolina; Gadzinowski, Janusz

    2013-08-01

    The aim of this study is to compare a two-wavelength light emitting diode-based tissue oximeter (INVOS), which is designed to show trends in tissue oxygenation, with a four-wavelength laser-based oximeter (FORE-SIGHT), designed to deliver absolute values of tissue oxygenation. Simultaneous values of cerebral tissue oxygenation (StO2) are measured using both devices in 15 term and 15 preterm clinically stable newborns on the first and third day of life. Values are recorded simultaneously in two periods between which oximeter sensor positions are switched to the contralateral side. Agreement between StO2 values before and after the change of sensor position is analyzed. We find that mean cerebral StO2 values are similar between devices for term and preterm babies, but INVOS shows StO2 values spread over a wider range, with wider standard deviations than shown by the FORE-SIGHT. There is relatively good agreement with a bias up to 3.5% and limits of agreement up to 11.8%. Measurements from each side of the forehead show better repeatability for the FORE-SIGHT monitor. We conclude that performance of the two devices is probably acceptable for clinical purposes. Both performed sufficiently well, but the use of FORE-SIGHT may be associated with tighter range and better repeatability of data.

  15. Prospects for the Moon as an SI-Traceable Absolute Spectroradiometric Standard for Satellite Remote Sensing

    NASA Astrophysics Data System (ADS)

    Cramer, C. E.; Stone, T. C.; Lykke, K.; Woodward, J. T.

    2015-12-01

    The Earth's Moon has many physical properties that make it suitable for use as a reference light source for radiometric calibration of remote sensing satellite instruments. Lunar calibration has been successfully applied to many imagers in orbit, including both MODIS instruments and NPP-VIIRS, using the USGS ROLO model to predict the reference exoatmospheric lunar irradiance. Sensor response trending was developed for SeaWIFS with a relative accuracy better than 0.1 % per year with lunar calibration techniques. However, the Moon rarely is used as an absolute reference for on-orbit calibration, primarily due to uncertainties in the ROLO model absolute scale of 5%-10%. But this limitation lies only with the models - the Moon itself is radiometrically stable, and development of a high-accuracy absolute lunar reference is inherently feasible. A program has been undertaken by NIST to collect absolute measurements of the lunar spectral irradiance with absolute accuracy <1 % (k=2), traceable to SI radiometric units. Initial Moon observations were acquired from the Whipple Observatory on Mt. Hopkins, Arizona, elevation 2367 meters, with continuous spectral coverage from 380 nm to 1040 nm at ~3 nm resolution. The lunar spectrometer acquired calibration measurements several times each observing night by pointing to a calibrated integrating sphere source. The lunar spectral irradiance at the top of the atmosphere was derived from a time series of ground-based measurements by a Langley analysis that incorporated measured atmospheric conditions and ROLO model predictions for the change in irradiance resulting from the changing Sun-Moon-Observer geometry throughout each night. Two nights were selected for further study. An extensive error analysis, which includes instrument calibration and atmospheric correction terms, shows a combined standard uncertainty under 1 % over most of the spectral range. Comparison of these two nights' spectral irradiance measurements with predictions

  16. An absolute measure for a key currency

    NASA Astrophysics Data System (ADS)

    Oya, Shunsuke; Aihara, Kazuyuki; Hirata, Yoshito

    It is generally considered that the US dollar and the euro are the key currencies in the world and in Europe, respectively. However, there is no absolute general measure for a key currency. Here, we investigate the 24-hour periodicity of foreign exchange markets using a recurrence plot, and define an absolute measure for a key currency based on the strength of the periodicity. Moreover, we analyze the time evolution of this measure. The results show that the credibility of the US dollar has not decreased significantly since the Lehman shock, when the Lehman Brothers bankrupted and influenced the economic markets, and has increased even relatively better than that of the euro and that of the Japanese yen.

  17. Relativistic Absolutism in Moral Education.

    ERIC Educational Resources Information Center

    Vogt, W. Paul

    1982-01-01

    Discusses Emile Durkheim's "Moral Education: A Study in the Theory and Application of the Sociology of Education," which holds that morally healthy societies may vary in culture and organization but must possess absolute rules of moral behavior. Compares this moral theory with current theory and practice of American educators. (MJL)

  18. Absolute transition probabilities of phosphorus.

    NASA Technical Reports Server (NTRS)

    Miller, M. H.; Roig, R. A.; Bengtson, R. D.

    1971-01-01

    Use of a gas-driven shock tube to measure the absolute strengths of 21 P I lines and 126 P II lines (from 3300 to 6900 A). Accuracy for prominent, isolated neutral and ionic lines is estimated to be 28 to 40% and 18 to 30%, respectively. The data and the corresponding theoretical predictions are examined for conformity with the sum rules.-

  19. Measurement of absolute T cell receptor rearrangement diversity.

    PubMed

    Baum, Paul D; Young, Jennifer J; McCune, Joseph M

    2011-05-31

    T cell receptor (TCR) diversity is critical for adaptive immunity. Existing methods for measuring such diversity are qualitative, expensive, and/or of uncertain accuracy. Here, we describe a method and associated reagents for estimating the absolute number of unique TCR Vβ rearrangements present in a given number of cells or volume of blood. Compared to next generation sequencing, this method is rapid, reproducible, and affordable. Diversity of a sample is calculated based on three independent measurements of one Vβ-Jβ family of TCR rearrangements at a time. The percentage of receptors using the given Vβ gene is determined by flow cytometric analysis of T cells stained with anti-Vβ family antibodies. The percentage of receptors using the Vβ gene in combination with the chosen Jβ gene is determined by quantitative PCR. Finally, the absolute clonal diversity of the Vβ-Jβ family is determined with the AmpliCot method of DNA hybridization kinetics, by interpolation relative to PCR standards of known sequence diversity. These three component measurements are reproducible and linear. Using titrations of known numbers of input cells, we show that the TCR diversity estimates obtained by this approach approximate expected values within a two-fold error, have a coefficient of variation of 20%, and yield similar results when different Vβ-Jβ pairs are chosen. The ability to obtain accurate measurements of the total number of different TCR gene rearrangements in a cell sample should be useful for basic studies of the adaptive immune system as well as in clinical studies of conditions such as HIV disease, transplantation, aging, and congenital immunodeficiencies. PMID:21385585

  20. Absolute pitch in infant auditory learning: evidence for developmental reorganization.

    PubMed

    Saffran, J R; Griepentrog, G J

    2001-01-01

    To what extent do infants represent the absolute pitches of complex auditory stimuli? Two experiments with 8-month-old infants examined the use of absolute and relative pitch cues in a tone-sequence statistical learning task. The results suggest that, given unsegmented stimuli that do not conform to the rules of musical composition, infants are more likely to track patterns of absolute pitches than of relative pitches. A 3rd experiment tested adults with or without musical training on the same statistical learning tasks used in the infant experiments. Unlike the infants, adult listeners relied primarily on relative pitch cues. These results suggest a shift from an initial focus on absolute pitch to the eventual dominance of relative pitch, which, it is argued, is more useful for both music and speech processing.

  1. Alcohol and error processing.

    PubMed

    Holroyd, Clay B; Yeung, Nick

    2003-08-01

    A recent study indicates that alcohol consumption reduces the amplitude of the error-related negativity (ERN), a negative deflection in the electroencephalogram associated with error commission. Here, we explore possible mechanisms underlying this result in the context of two recent theories about the neural system that produces the ERN - one based on principles of reinforcement learning and the other based on response conflict monitoring.

  2. Integrated Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC) and Isobaric Tags for Relative and Absolute Quantitation (iTRAQ) Quantitative Proteomic Analysis Identifies Galectin-1 as a Potential Biomarker for Predicting Sorafenib Resistance in Liver Cancer.

    PubMed

    Yeh, Chao-Chi; Hsu, Chih-Hung; Shao, Yu-Yun; Ho, Wen-Ching; Tsai, Mong-Hsun; Feng, Wen-Chi; Chow, Lu-Ping

    2015-06-01

    Sorafenib has become the standard therapy for patients with advanced hepatocellular carcinoma (HCC). Unfortunately, most patients eventually develop acquired resistance. Therefore, it is important to identify potential biomarkers that could predict the efficacy of sorafenib. To identify target proteins associated with the development of sorafenib resistance, we applied stable isotope labelling with amino acids in cell culture (SILAC)-based quantitative proteomic approach to analyze differences in protein expression levels between parental HuH-7 and sorafenib-acquired resistance HuH-7 (HuH-7(R)) cells in vitro, combined with an isobaric tags for relative and absolute quantitation (iTRAQ) quantitative analysis of HuH-7 and HuH-7(R) tumors in vivo. In total, 2,450 quantified proteins were identified in common in SILAC and iTRAQ experiments, with 81 showing increased expression (>2.0-fold) with sorafenib resistance and 75 showing decreased expression (<0.5-fold). In silico analyses of these differentially expressed proteins predicted that 10 proteins were related to cancer with involvements in cell adhesion, migration, and invasion. Knockdown of one of these candidate proteins, galectin-1, decreased cell proliferation and metastasis in HuH-7(R) cells and restored sensitivity to sorafenib. We verified galectin-1 as a predictive marker of sorafenib resistance and a downstream target of the AKT/mTOR/HIF-1α signaling pathway. In addition, increased galectin-1 expression in HCC patients' serum was associated with poor tumor control and low response rate. We also found that a high serum galectin-1 level was an independent factor associated with poor progression-free survival and overall survival. In conclusion, these results suggest that galectin-1 is a possible biomarker for predicting the response of HCC patients to treatment with sorafenib. As such, it may assist in the stratification of HCC and help direct personalized therapy.

  3. Integrated Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC) and Isobaric Tags for Relative and Absolute Quantitation (iTRAQ) Quantitative Proteomic Analysis Identifies Galectin-1 as a Potential Biomarker for Predicting Sorafenib Resistance in Liver Cancer*

    PubMed Central

    Yeh, Chao-Chi; Hsu, Chih-Hung; Shao, Yu-Yun; Ho, Wen-Ching; Tsai, Mong-Hsun; Feng, Wen-Chi; Chow, Lu-Ping

    2015-01-01

    Sorafenib has become the standard therapy for patients with advanced hepatocellular carcinoma (HCC). Unfortunately, most patients eventually develop acquired resistance. Therefore, it is important to identify potential biomarkers that could predict the efficacy of sorafenib. To identify target proteins associated with the development of sorafenib resistance, we applied stable isotope labelling with amino acids in cell culture (SILAC)-based quantitative proteomic approach to analyze differences in protein expression levels between parental HuH-7 and sorafenib-acquired resistance HuH-7 (HuH-7R) cells in vitro, combined with an isobaric tags for relative and absolute quantitation (iTRAQ) quantitative analysis of HuH-7 and HuH-7R tumors in vivo. In total, 2,450 quantified proteins were identified in common in SILAC and iTRAQ experiments, with 81 showing increased expression (>2.0-fold) with sorafenib resistance and 75 showing decreased expression (<0.5-fold). In silico analyses of these differentially expressed proteins predicted that 10 proteins were related to cancer with involvements in cell adhesion, migration, and invasion. Knockdown of one of these candidate proteins, galectin-1, decreased cell proliferation and metastasis in HuH-7R cells and restored sensitivity to sorafenib. We verified galectin-1 as a predictive marker of sorafenib resistance and a downstream target of the AKT/mTOR/HIF-1α signaling pathway. In addition, increased galectin-1 expression in HCC patients' serum was associated with poor tumor control and low response rate. We also found that a high serum galectin-1 level was an independent factor associated with poor progression-free survival and overall survival. In conclusion, these results suggest that galectin-1 is a possible biomarker for predicting the response of HCC patients to treatment with sorafenib. As such, it may assist in the stratification of HCC and help direct personalized therapy. PMID:25850433

  4. A Probabilistic Model for Students' Errors and Misconceptions on the Structure of Matter in Relation to Three Cognitive Variables

    ERIC Educational Resources Information Center

    Tsitsipis, Georgios; Stamovlasis, Dimitrios; Papageorgiou, George

    2012-01-01

    In this study, the effect of 3 cognitive variables such as logical thinking, field dependence/field independence, and convergent/divergent thinking on some specific students' answers related to the particulate nature of matter was investigated by means of probabilistic models. Besides recording and tabulating the students' responses, a combination…

  5. Absolute measurement of the extreme UV solar flux

    NASA Technical Reports Server (NTRS)

    Carlson, R. W.; Ogawa, H. S.; Judge, D. L.; Phillips, E.

    1984-01-01

    A windowless rare-gas ionization chamber has been developed to measure the absolute value of the solar extreme UV flux in the 50-575-A region. Successful results were obtained on a solar-pointing sounding rocket. The ionization chamber, operated in total absorption, is an inherently stable absolute detector of ionizing UV radiation and was designed to be independent of effects from secondary ionization and gas effusion. The net error of the measurement is + or - 7.3 percent, which is primarily due to residual outgassing in the instrument, other errors such as multiple ionization, photoelectron collection, and extrapolation to the zero atmospheric optical depth being small in comparison. For the day of the flight, Aug. 10, 1982, the solar irradiance (50-575 A), normalized to unit solar distance, was found to be 5.71 + or - 0.42 x 10 to the 10th photons per sq cm sec.

  6. A highly efficient error analysis program for the evaluation of spacecraft tests of general relativity with application to solar probes

    NASA Technical Reports Server (NTRS)

    Anderson, J. D.; Lau, E. K.; Georgevic, R. M.

    1973-01-01

    A computer program is described which can be used to study the feasibility of conducting relativity experiments on a wide range of hypothetical space missions, and a few applications are presented for solar probes which approach the Sun within 0.25 to 0.35 AU. It is assumed that radio ranging data are available from these spacecraft, and that accuracies on the order of 15 meters can be achieved. This is compatible with current accuracies of ranging to Mariner spacecraft. At this level of accuracy, the range data are sensitive to a number of effects, and for this reason it has been necessary to include a total of up to 23 parameters in the feasibility studies, even though there are only two parameters of real interest in the relativity experiments.

  7. Regional absolute conductivity reconstruction using projected current density in MREIT

    NASA Astrophysics Data System (ADS)

    Sajib, Saurav Z. K.; Kim, Hyung Joong; In Kwon, Oh; Woo, Eung Je

    2012-09-01

    the reconstructed regional projected current density, we propose a direct non-iterative algorithm to reconstruct the absolute conductivity in the ROI. The numerical simulations in the presence of various degrees of noise, as well as a phantom MRI imaging experiment showed that the proposed method reconstructs the regional absolute conductivity in a ROI within a subject including the defective regions. In the simulation experiment, the relative L2-mode errors of the reconstructed regional and global conductivities were 0.79 and 0.43, respectively, using a noise level of 50 db in the defective region.

  8. Mathematical Model for Absolute Magnetic Measuring Systems in Industrial Applications

    NASA Astrophysics Data System (ADS)

    Fügenschuh, Armin; Fügenschuh, Marzena; Ludszuweit, Marina; Mojsic, Aleksandar; Sokół, Joanna

    2015-09-01

    Scales for measuring systems are either based on incremental or absolute measuring methods. Incremental scales need to initialize a measurement cycle at a reference point. From there, the position is computed by counting increments of a periodic graduation. Absolute methods do not need reference points, since the position can be read directly from the scale. The positions on the complete scales are encoded using two incremental tracks with different graduation. We present a new method for absolute measuring using only one track for position encoding up to micrometre range. Instead of the common perpendicular magnetic areas, we use a pattern of trapezoidal magnetic areas, to store more complex information. For positioning, we use the magnetic field where every position is characterized by a set of values measured by a hall sensor array. We implement a method for reconstruction of absolute positions from the set of unique measured values. We compare two patterns with respect to uniqueness, accuracy, stability and robustness of positioning. We discuss how stability and robustness are influenced by different errors during the measurement in real applications and how those errors can be compensated.

  9. Research of the use of autoreflection scheme to measure the error of the optical elements in space telescope's relative position

    NASA Astrophysics Data System (ADS)

    Ezhova, Kseniia; Molev, Fedor; Konyakhin, Igor

    2015-06-01

    Autoreflection scheme is based on the scheme of measuring angles by autoreflection method, according to which the radiant stamp that was registered in the plane of the analysis is at a finite distance from the front of the lens. The main advantages and disadvantages of using autoreflection and autocollimation schemes for constructing the measuring channel, which is designed to control the relative position of the elements of the optical system Space Telescope are described in this paper. Results of modeling in the Zemax software complex are given.

  10. Current Absolute Plate Velocities Inferred from Hotspot Tracks, Comparison with Absolute Velocities Inferred from Seismic Anisotropy, and Bounds on Rates of Motion Between Groups of Hotspots

    NASA Astrophysics Data System (ADS)

    Wang, C.; Gordon, R. G.; Zheng, L.

    2015-12-01

    Hotspot tracks have been widely used to estimate the velocities of the plate relative to the lower mantle. Here we analyze the hotspot azimuth data set of Morgan and Phipps Morgan [2007] and show that the errors in plate velocity azimuths inferred from hotspot tracks in any one plate are correlated with the errors of other azimuths in the same plate. We use a two-tier analysis to account for this correlated error. First, we determine an individual best-fitting pole for each plate. Second, we determine the absolute plate velocity by minimizing the misfit while constrained by the MORVEL relative plate velocities [DeMets et al. 2010]. Our preferred model, HS4-MORVEL, uses azimuths from 9 major plates, which are weighted equally. We find that the Pacific plate rotates 0.860.016°Ma-1 right handed about 63.3°S, 96.1°E. Angular velocities of four plates (Amur, Eurasia, Yangtze and Antarctic) differ insignificantly from zero. The net rotation of the lithosphere is 0.24°±0.014° Ma-1 right handed about 52.3S, 56.9E. The angular velocities differ insignificantly from the absolute angular velocities inferred from the orientation of seismic anisotropy [Zheng et al. 2014]. The within-plate dispersion of hotspot track azimuths is 14°, which is comparable to the within-plate dispersion found from orientations of seismic anisotropy. The between-plate dispersion is 6.9±2.4° (95% confidence limits), which is smaller than that found from seismic anisotropy. The between-plate dispersion of 4.5° to 9.3° can be used to place bounds on how fast hotspots under one plate move relative to hotspots under another plate. For an average plate absolute speed of ≈50 mm/yr, the between-plate dispersion indicates a rate of motion of 4 mm/yr to 8 mm/yr for the component of hotspot motion perpendicular to plate motion. This upper bound is consistent with prior work that indicated upper bounds on motion between Pacific hotspots and Indo-Atlantic hotspots over the past 48 Ma of 8-13 mm

  11. Error bounds for MEG and EEG source localization

    SciTech Connect

    Mosher, J.C. |; Spencer, M.E. |; Leahy, R.M.; Lewis, P.S.

    1992-12-01

    Localization error bounds are presented for both EEG and MEG as graphical error contours for a 37 sensor arrangement. Both one and two dipole cases were examined for all possible dipole orientations and locations within a head quadrant. The results show a strong dependence on absolute dipole location and orientation. The results also show that fusion of the EEG and MEG measurements into a combined model reduces the lower bound. A Monte-Carlo simulation was performed to check the tightness of the bounds for a selected case. The simple head model, the white and relatively low power noise, and the few relatively strong dipoles were all selected in this study as optimistic conditions to establish possibly fundamental resolution limits for any localization effort.

  12. Error bounds for MEG and EEG source localization

    SciTech Connect

    Mosher, J.C. . Signal and Image Processing Inst. Los Alamos National Lab., NM ); Spencer, M.E. . Signal and Image Processing Inst. TRW Space and Defense, One Space Park, Redondo Beach, CA ); Leahy, R.M. (University of Southern Californ

    1992-01-01

    Localization error bounds are presented for both EEG and MEG as graphical error contours for a 37 sensor arrangement. Both one and two dipole cases were examined for all possible dipole orientations and locations within a head quadrant. The results show a strong dependence on absolute dipole location and orientation. The results also show that fusion of the EEG and MEG measurements into a combined model reduces the lower bound. A Monte-Carlo simulation was performed to check the tightness of the bounds for a selected case. The simple head model, the white and relatively low power noise, and the few relatively strong dipoles were all selected in this study as optimistic conditions to establish possibly fundamental resolution limits for any localization effort.

  13. Optomechanics for absolute rotation detection

    NASA Astrophysics Data System (ADS)

    Davuluri, Sankar

    2016-07-01

    In this article, we present an application of optomechanical cavity for the absolute rotation detection. The optomechanical cavity is arranged in a Michelson interferometer in such a way that the classical centrifugal force due to rotation changes the length of the optomechanical cavity. The change in the cavity length induces a shift in the frequency of the cavity mode. The phase shift corresponding to the frequency shift in the cavity mode is measured at the interferometer output to estimate the angular velocity of absolute rotation. We derived an analytic expression to estimate the minimum detectable rotation rate in our scheme for a given optomechanical cavity. Temperature dependence of the rotation detection sensitivity is studied.

  14. Moral absolutism and ectopic pregnancy.

    PubMed

    Kaczor, C

    2001-02-01

    If one accepts a version of absolutism that excludes the intentional killing of any innocent human person from conception to natural death, ectopic pregnancy poses vexing difficulties. Given that the embryonic life almost certainly will die anyway, how can one retain one's moral principle and yet adequately respond to a situation that gravely threatens the life of the mother and her future fertility? The four options of treatment most often discussed in the literature are non-intervention, salpingectomy (removal of tube with embryo), salpingostomy (removal of embryo alone), and use of methotrexate (MXT). In this essay, I review these four options and introduce a fifth (the milking technique). In order to assess these options in terms of the absolutism mentioned, it will also be necessary to discuss various accounts of the intention/foresight distinction. I conclude that salpingectomy, salpingostomy, and the milking technique are compatible with absolutist presuppositions, but not the use of methotrexate.

  15. Moral absolutism and ectopic pregnancy.

    PubMed

    Kaczor, C

    2001-02-01

    If one accepts a version of absolutism that excludes the intentional killing of any innocent human person from conception to natural death, ectopic pregnancy poses vexing difficulties. Given that the embryonic life almost certainly will die anyway, how can one retain one's moral principle and yet adequately respond to a situation that gravely threatens the life of the mother and her future fertility? The four options of treatment most often discussed in the literature are non-intervention, salpingectomy (removal of tube with embryo), salpingostomy (removal of embryo alone), and use of methotrexate (MXT). In this essay, I review these four options and introduce a fifth (the milking technique). In order to assess these options in terms of the absolutism mentioned, it will also be necessary to discuss various accounts of the intention/foresight distinction. I conclude that salpingectomy, salpingostomy, and the milking technique are compatible with absolutist presuppositions, but not the use of methotrexate. PMID:11262641

  16. The Absolute Spectrum Polarimeter (ASP)

    NASA Technical Reports Server (NTRS)

    Kogut, A. J.

    2010-01-01

    The Absolute Spectrum Polarimeter (ASP) is an Explorer-class mission to map the absolute intensity and linear polarization of the cosmic microwave background and diffuse astrophysical foregrounds over the full sky from 30 GHz to 5 THz. The principal science goal is the detection and characterization of linear polarization from an inflationary epoch in the early universe, with tensor-to-scalar ratio r much greater than 1O(raised to the power of { -3}) and Compton distortion y < 10 (raised to the power of{-6}). We describe the ASP instrument and mission architecture needed to detect the signature of an inflationary epoch in the early universe using only 4 semiconductor bolometers.

  17. Classification images predict absolute efficiency.

    PubMed

    Murray, Richard F; Bennett, Patrick J; Sekuler, Allison B

    2005-02-24

    How well do classification images characterize human observers' strategies in perceptual tasks? We show mathematically that from the classification image of a noisy linear observer, it is possible to recover the observer's absolute efficiency. If we could similarly predict human observers' performance from their classification images, this would suggest that the linear model that underlies use of the classification image method is adequate over the small range of stimuli typically encountered in a classification image experiment, and that a classification image captures most important aspects of human observers' performance over this range. In a contrast discrimination task and in a shape discrimination task, we found that observers' absolute efficiencies were generally well predicted by their classification images, although consistently slightly (approximately 13%) higher than predicted. We consider whether a number of plausible nonlinearities can account for the slight under prediction, and of these we find that only a form of phase uncertainty can account for the discrepancy.

  18. On the relation between orbital-localization and self-interaction errors in the density functional theory treatment of organic semiconductors.

    PubMed

    Körzdörfer, T

    2011-03-01

    It is commonly argued that the self-interaction error (SIE) inherent in semilocal density functionals is related to the degree of the electronic localization. Yet at the same time there exists a latent ambiguity in the definitions of the terms "localization" and "self-interaction," which ultimately prevents a clear and readily accessible quantification of this relationship. This problem is particularly pressing for organic semiconductor molecules, in which delocalized molecular orbitals typically alternate with localized ones, thus leading to major distortions in the eigenvalue spectra. This paper discusses the relation between localization and SIEs in organic semiconductors in detail. Its findings provide further insights into the SIE in the orbital energies and yield a new perspective on the failure of self-interaction corrections that identify delocalized orbital densities with electrons.

  19. Elimination of 'ghost'-effect-related systematic error in metrology of X-ray optics with a long trace profiler

    SciTech Connect

    Yashchuk, Valeriy V.; Irick, Steve C.; MacDowell, Alastair A.

    2005-04-28

    A data acquisition technique and relevant program for suppression of one of the systematic effects, namely the ''ghost'' effect, of a second generation long trace profiler (LTP) is described. The ''ghost'' effect arises when there is an unavoidable cross-contamination of the LTP sample and reference signals into one another, leading to a systematic perturbation in the recorded interference patterns and, therefore, a systematic variation of the measured slope trace. Perturbations of about 1-2 {micro}rad have been observed with a cylindrically shaped X-ray mirror. Even stronger ''ghost'' effects show up in an LTP measurement with a mirror having a toroidal surface figure. The developed technique employs separate measurement of the ''ghost''-effect-related interference patterns in the sample and the reference arms and then subtraction of the ''ghost'' patterns from the sample and the reference interference patterns. The procedure preserves the advantage of simultaneously measuring the sample and reference signals. The effectiveness of the technique is illustrated with LTP metrology of a variety of X-ray mirrors.

  20. Accuracy of devices for self-monitoring of blood glucose: A stochastic error model.

    PubMed

    Vettoretti, M; Facchinetti, A; Sparacino, G; Cobelli, C

    2015-01-01

    Self-monitoring of blood glucose (SMBG) devices are portable systems that allow measuring glucose concentration in a small drop of blood obtained via finger-prick. SMBG measurements are key in type 1 diabetes (T1D) management, e.g. for tuning insulin dosing. A reliable model of SMBG accuracy would be important in several applications, e.g. in in silico design and optimization of insulin therapy. In the literature, the most used model to describe SMBG error is the Gaussian distribution, which however is simplistic to properly account for the observed variability. Here, a methodology to derive a stochastic model of SMBG accuracy is presented. The method consists in dividing the glucose range into zones in which absolute/relative error presents constant standard deviation (SD) and, then, fitting by maximum-likelihood a skew-normal distribution model to absolute/relative error distribution in each zone. The method was tested on a database of SMBG measurements collected by the One Touch Ultra 2 (Lifescan Inc., Milpitas, CA). In particular, two zones were identified: zone 1 (BG≤75 mg/dl) with constant-SD absolute error and zone 2 (BG>75mg/dl) with constant-SD relative error. Mean and SD of the identified skew-normal distributions are, respectively, 2.03 and 6.51 in zone 1, 4.78% and 10.09% in zone 2. Visual predictive check validation showed that the derived two-zone model accurately reproduces SMBG measurement error distribution, performing significantly better than the single-zone Gaussian model used previously in the literature. This stochastic model allows a more realistic SMBG scenario for in silico design and optimization of T1D insulin therapy.

  1. Absolute position total internal reflection microscopy with an optical tweezer

    PubMed Central

    Liu, Lulu; Woolf, Alexander; Rodriguez, Alejandro W.; Capasso, Federico

    2014-01-01

    A noninvasive, in situ calibration method for total internal reflection microscopy (TIRM) based on optical tweezing is presented, which greatly expands the capabilities of this technique. We show that by making only simple modifications to the basic TIRM sensing setup and procedure, a probe particle’s absolute position relative to a dielectric interface may be known with better than 10 nm precision out to a distance greater than 1 μm from the surface. This represents an approximate 10× improvement in error and 3× improvement in measurement range over conventional TIRM methods. The technique’s advantage is in the direct measurement of the probe particle’s scattering intensity vs. height profile in situ, rather than relying on assumptions, inexact system analogs, or detailed knowledge of system parameters for calibration. To demonstrate the improved versatility of the TIRM method in terms of tunability, precision, and range, we show our results for the hindered near-wall diffusion coefficient for a spherical dielectric particle. PMID:25512542

  2. Absolute calibration of the Auger fluorescence detectors

    SciTech Connect

    Bauleo, P.; Brack, J.; Garrard, L.; Harton, J.; Knapik, R.; Meyhandan, R.; Rovero, A.C.; Tamashiro, A.; Warner, D.

    2005-07-01

    Absolute calibration of the Pierre Auger Observatory fluorescence detectors uses a light source at the telescope aperture. The technique accounts for the combined effects of all detector components in a single measurement. The calibrated 2.5 m diameter light source fills the aperture, providing uniform illumination to each pixel. The known flux from the light source and the response of the acquisition system give the required calibration for each pixel. In the lab, light source uniformity is studied using CCD images and the intensity is measured relative to NIST-calibrated photodiodes. Overall uncertainties are presently 12%, and are dominated by systematics.

  3. Absolute rate theories of epigenetic stability

    NASA Astrophysics Data System (ADS)

    Walczak, Aleksandra M.; Onuchic, José N.; Wolynes, Peter G.

    2005-12-01

    Spontaneous switching events in most characterized genetic switches are rare, resulting in extremely stable epigenetic properties. We show how simple arguments lead to theories of the rate of such events much like the absolute rate theory of chemical reactions corrected by a transmission factor. Both the probability of the rare cellular states that allow epigenetic escape and the transmission factor depend on the rates of DNA binding and unbinding events and on the rates of protein synthesis and degradation. Different mechanisms of escape from the stable attractors occur in the nonadiabatic, weakly adiabatic, and strictly adiabatic regimes, characterized by the relative values of those input rates. rate theory | stochastic gene expression | gene switches

  4. Rapid mapping of volumetric errors

    SciTech Connect

    Krulewich, D.; Hale, L.; Yordy, D.

    1995-09-13

    This paper describes a relatively inexpensive, fast, and easy to execute approach to mapping the volumetric errors of a machine tool, coordinate measuring machine, or robot. An error map is used to characterize a machine or to improve its accuracy by compensating for the systematic errors. The method consists of three steps: (1) modeling the relationship between the volumetric error and the current state of the machine; (2) acquiring error data based on length measurements throughout the work volume; and (3) optimizing the model to the particular machine.

  5. Absolute Antenna Calibration at the US National Geodetic Survey

    NASA Astrophysics Data System (ADS)

    Mader, G. L.; Bilich, A. L.

    2012-12-01

    Geodetic GNSS applications routinely demand millimeter precision and extremely high levels of accuracy. To achieve these accuracies, measurement and instrument biases at the centimeter to millimeter level must be understood. One of these biases is the antenna phase center, the apparent point of signal reception for a GNSS antenna. It has been well established that phase center patterns differ between antenna models and manufacturers; additional research suggests that the addition of a radome or the choice of antenna mount can significantly alter those a priori phase center patterns. For the more demanding GNSS positioning applications and especially in cases of mixed-antenna networks, it is all the more important to know antenna phase center variations as a function of both elevation and azimuth in the antenna reference frame and incorporate these models into analysis software. Determination of antenna phase center behavior is known as "antenna calibration". Since 1994, NGS has computed relative antenna calibrations for more than 350 antennas. In recent years, the geodetic community has moved to absolute calibrations - the IGS adopted absolute antenna phase center calibrations in 2006 for use in their orbit and clock products, and NGS's CORS group began using absolute antenna calibration upon the release of the new CORS coordinates in IGS08 epoch 2005.00 and NAD 83(2011,MA11,PA11) epoch 2010.00. Although NGS relative calibrations can be and have been converted to absolute, it is considered best practice to independently measure phase center characteristics in an absolute sense. Consequently, NGS has developed and operates an absolute calibration system. These absolute antenna calibrations accommodate the demand for greater accuracy and for 2-dimensional (elevation and azimuth) parameterization. NGS will continue to provide calibration values via the NGS web site www.ngs.noaa.gov/ANTCAL, and will publish calibrations in the ANTEX format as well as the legacy ANTINFO

  6. Optimal Design of the Absolute Positioning Sensor for a High-Speed Maglev Train and Research on Its Fault Diagnosis

    PubMed Central

    Zhang, Dapeng; Long, Zhiqiang; Xue, Song; Zhang, Junge

    2012-01-01

    This paper studies an absolute positioning sensor for a high-speed maglev train and its fault diagnosis method. The absolute positioning sensor is an important sensor for the high-speed maglev train to accomplish its synchronous traction. It is used to calibrate the error of the relative positioning sensor which is used to provide the magnetic phase signal. On the basis of the analysis for the principle of the absolute positioning sensor, the paper describes the design of the sending and receiving coils and realizes the hardware and the software for the sensor. In order to enhance the reliability of the sensor, a support vector machine is used to recognize the fault characters, and the signal flow method is used to locate the faulty parts. The diagnosis information not only can be sent to an upper center control computer to evaluate the reliability of the sensors, but also can realize on-line diagnosis for debugging and the quick detection when the maglev train is off-line. The absolute positioning sensor we study has been used in the actual project. PMID:23112619

  7. Optimal design of the absolute positioning sensor for a high-speed maglev train and research on its fault diagnosis.

    PubMed

    Zhang, Dapeng; Long, Zhiqiang; Xue, Song; Zhang, Junge

    2012-01-01

    This paper studies an absolute positioning sensor for a high-speed maglev train and its fault diagnosis method. The absolute positioning sensor is an important sensor for the high-speed maglev train to accomplish its synchronous traction. It is used to calibrate the error of the relative positioning sensor which is used to provide the magnetic phase signal. On the basis of the analysis for the principle of the absolute positioning sensor, the paper describes the design of the sending and receiving coils and realizes the hardware and the software for the sensor. In order to enhance the reliability of the sensor, a support vector machine is used to recognize the fault characters, and the signal flow method is used to locate the faulty parts. The diagnosis information not only can be sent to an upper center control computer to evaluate the reliability of the sensors, but also can realize on-line diagnosis for debugging and the quick detection when the maglev train is off-line. The absolute positioning sensor we study has been used in the actual project.

  8. Familial Aggregation of Absolute Pitch

    PubMed Central

    Baharloo, Siamak; Service, Susan K.; Risch, Neil; Gitschier, Jane; Freimer, Nelson B.

    2000-01-01

    Absolute pitch (AP) is a behavioral trait that is defined as the ability to identify the pitch of tones in the absence of a reference pitch. AP is an ideal phenotype for investigation of gene and environment interactions in the development of complex human behaviors. Individuals who score exceptionally well on formalized auditory tests of pitch perception are designated as “AP-1.” As described in this report, auditory testing of siblings of AP-1 probands and of a control sample indicates that AP-1 aggregates in families. The implications of this finding for the mapping of loci for AP-1 predisposition are discussed. PMID:10924408

  9. Equilibrating errors: reliable estimation of information transmission rates in biological systems with spectral analysis-based methods.

    PubMed

    Ignatova, Irina; French, Andrew S; Immonen, Esa-Ville; Frolov, Roman; Weckström, Matti

    2014-06-01

    Shannon's seminal approach to estimating information capacity is widely used to quantify information processing by biological systems. However, the Shannon information theory, which is based on power spectrum estimation, necessarily contains two sources of error: time delay bias error and random error. These errors are particularly important for systems with relatively large time delay values and for responses of limited duration, as is often the case in experimental work. The window function type and size chosen, as well as the values of inherent delays cause changes in both the delay bias and random errors, with possibly strong effect on the estimates of system properties. Here, we investigated the properties of these errors using white-noise simulations and analysis of experimental photoreceptor responses to naturalistic and white-noise light contrasts. Photoreceptors were used from several insect species, each characterized by different visual performance, behavior, and ecology. We show that the effect of random error on the spectral estimates of photoreceptor performance (gain, coherence, signal-to-noise ratio, Shannon information rate) is opposite to that of the time delay bias error: the former overestimates information rate, while the latter underestimates it. We propose a new algorithm for reducing the impact of time delay bias error and random error, based on discovering, and then using that size of window, at which the absolute values of these errors are equal and opposite, thus cancelling each other, allowing minimally biased measurement of neural coding.

  10. An error criterion for determining sampling rates in closed-loop control systems

    NASA Technical Reports Server (NTRS)

    Brecher, S. M.

    1972-01-01

    The determination of an error criterion which will give a sampling rate for adequate performance of linear, time-invariant closed-loop, discrete-data control systems was studied. The proper modelling of the closed-loop control system for characterization of the error behavior, and the determination of an absolute error definition for performance of the two commonly used holding devices are discussed. The definition of an adequate relative error criterion as a function of the sampling rate and the parameters characterizing the system is established along with the determination of sampling rates. The validity of the expressions for the sampling interval was confirmed by computer simulations. Their application solves the problem of making a first choice in the selection of sampling rates.

  11. The use of neural networks in identifying error sources in satellite-derived tropical SST estimates.

    PubMed

    Lee, Yung-Hsiang; Ho, Chung-Ru; Su, Feng-Chun; Kuo, Nan-Jung; Cheng, Yu-Hsin

    2011-01-01

    An neural network model of data mining is used to identify error sources in satellite-derived tropical sea surface temperature (SST) estimates from thermal infrared sensors onboard the Geostationary Operational Environmental Satellite (GOES). By using the Back Propagation Network (BPN) algorithm, it is found that air temperature, relative humidity, and wind speed variation are the major factors causing the errors of GOES SST products in the tropical Pacific. The accuracy of SST estimates is also improved by the model. The root mean square error (RMSE) for the daily SST estimate is reduced from 0.58 K to 0.38 K and mean absolute percentage error (MAPE) is 1.03%. For the hourly mean SST estimate, its RMSE is also reduced from 0.66 K to 0.44 K and the MAPE is 1.3%.

  12. Temporal Dynamics of Microbial Rhodopsin Fluorescence Reports Absolute Membrane Voltage

    PubMed Central

    Hou, Jennifer H.; Venkatachalam, Veena; Cohen, Adam E.

    2014-01-01

    Plasma membrane voltage is a fundamentally important property of a living cell; its value is tightly coupled to membrane transport, the dynamics of transmembrane proteins, and to intercellular communication. Accurate measurement of the membrane voltage could elucidate subtle changes in cellular physiology, but existing genetically encoded fluorescent voltage reporters are better at reporting relative changes than absolute numbers. We developed an Archaerhodopsin-based fluorescent voltage sensor whose time-domain response to a stepwise change in illumination encodes the absolute membrane voltage. We validated this sensor in human embryonic kidney cells. Measurements were robust to variation in imaging parameters and in gene expression levels, and reported voltage with an absolute accuracy of 10 mV. With further improvements in membrane trafficking and signal amplitude, time-domain encoding of absolute voltage could be applied to investigate many important and previously intractable bioelectric phenomena. PMID:24507604

  13. Help prevent hospital errors

    MedlinePlus

    ... A.D.A.M. Editorial team. Related MedlinePlus Health Topics Medication Errors Patient Safety Browse the Encyclopedia A.D.A.M., Inc. is accredited by URAC, also known as the American Accreditation HealthCare Commission ... for online health information and services. Learn more about A.D. ...

  14. Racial/Ethnic Difference in HIV-related Knowledge among Young Men who have Sex with Men and their Association with Condom Errors

    PubMed Central

    Garofalo, Robert; Gayles, Travis; Bottone, Paul Devine; Ryan, Dan; Kuhns, Lisa M; Mustanski, Brian

    2014-01-01

    Objective HIV disproportionately affects young men who have sex with men, and knowledge about HIV transmission is one factor that may play a role in high rate of infections for this population. This study examined racial/ethnic differences in HIV knowledge among young men who have sex with men in the USA and its correlation to condom usage errors. Design Participants included an ethnically diverse sample of 344 young men who have sex with men screened from an ongoing longitudinal cohort study. Eligible participants were between the ages of 16 and 20 years, born male, and had previously had at least one sexual encounter with a man and/or identify as gay or bisexual. This analysis is based on cross-sectional data collected at the baseline interview using computer assisted self-interviewing (CASI) software. Setting Chicago, IL, USA Method We utilised descriptive and inferential statistics, including ANOVA and Tukey’s Post hoc analysis to assess differences in HIV knowledge by level of education and race/ethnicity, and negative binomial regression to determine if HIV knowledge was associated with condom errors while controlling for age, education and race/ethnicity. Results The study found that Black men who have sex with men scored significantly lower (average score=67%; p<.05) than their White counterparts (average score=83%) on a measure of HIV knowledge (mean difference=16.1%, p<.001). Participants with less than a high school diploma and those with a high school diploma/GED only had lower knowledge scores, on average (66.4%, 69.9%, respectively) than participants who had obtained post-high school education (78.1%; mean difference=11.7%, 8.2% respectively, ps<.05). In addition, controlling for age, race and level of education, higher HIV knowledge scores were associated with fewer condom errors (Exp B =.995, CI 0.992-0.999, p<0.05). Conclusion These findings stress the need to for increased attention to HIV transmission-related educational activities targeting

  15. Error monitoring in musicians.

    PubMed

    Maidhof, Clemens

    2013-01-01

    To err is human, and hence even professional musicians make errors occasionally during their performances. This paper summarizes recent work investigating error monitoring in musicians, i.e., the processes and their neural correlates associated with the monitoring of ongoing actions and the detection of deviations from intended sounds. Electroencephalography (EEG) studies reported an early component of the event-related potential (ERP) occurring before the onsets of pitch errors. This component, which can be altered in musicians with focal dystonia, likely reflects processes of error detection and/or error compensation, i.e., attempts to cancel the undesired sensory consequence (a wrong tone) a musician is about to perceive. Thus, auditory feedback seems not to be a prerequisite for error detection, consistent with previous behavioral results. In contrast, when auditory feedback is externally manipulated and thus unexpected, motor performance can be severely distorted, although not all feedback alterations result in performance impairments. Recent studies investigating the neural correlates of feedback processing showed that unexpected feedback elicits an ERP component after note onsets, which shows larger amplitudes during music performance than during mere perception of the same musical sequences. Hence, these results stress the role of motor actions for the processing of auditory information. Furthermore, recent methodological advances like the combination of 3D motion capture techniques with EEG will be discussed. Such combinations of different measures can potentially help to disentangle the roles of different feedback types such as proprioceptive and auditory feedback, and in general to derive at a better understanding of the complex interactions between the motor and auditory domain during error monitoring. Finally, outstanding questions and future directions in this context will be discussed. PMID:23898255

  16. THE ABSOLUTE MAGNITUDE OF RRc VARIABLES FROM STATISTICAL PARALLAX

    SciTech Connect

    Kollmeier, Juna A.; Burns, Christopher R.; Thompson, Ian B.; Preston, George W.; Crane, Jeffrey D.; Madore, Barry F.; Morrell, Nidia; Prieto, José L.; Shectman, Stephen; Simon, Joshua D.; Villanueva, Edward; Szczygieł, Dorota M.; Gould, Andrew; Sneden, Christopher; Dong, Subo

    2013-09-20

    We present the first definitive measurement of the absolute magnitude of RR Lyrae c-type variable stars (RRc) determined purely from statistical parallax. We use a sample of 242 RRc variables selected from the All Sky Automated Survey for which high-quality light curves, photometry, and proper motions are available. We obtain high-resolution echelle spectra for these objects to determine radial velocities and abundances as part of the Carnegie RR Lyrae Survey. We find that M{sub V,RRc} = 0.59 ± 0.10 at a mean metallicity of [Fe/H] = –1.59. This is to be compared with previous estimates for RRab stars (M{sub V,RRab} = 0.76 ± 0.12) and the only direct measurement of an RRc absolute magnitude (RZ Cephei, M{sub V,RRc} = 0.27 ± 0.17). We find the bulk velocity of the halo relative to the Sun to be (W{sub π}, W{sub θ}, W{sub z} ) = (12.0, –209.9, 3.0) km s{sup –1} in the radial, rotational, and vertical directions with dispersions (σ{sub W{sub π}},σ{sub W{sub θ}},σ{sub W{sub z}}) = (150.4, 106.1, 96.0) km s{sup -1}. For the disk, we find (W{sub π}, W{sub θ}, W{sub z} ) = (13.0, –42.0, –27.3) km s{sup –1} relative to the Sun with dispersions (σ{sub W{sub π}},σ{sub W{sub θ}},σ{sub W{sub z}}) = (67.7,59.2,54.9) km s{sup -1}. Finally, as a byproduct of our statistical framework, we are able to demonstrate that UCAC2 proper-motion errors are significantly overestimated as verified by UCAC4.

  17. Cosmology with negative absolute temperatures

    NASA Astrophysics Data System (ADS)

    Vieira, J. P. P.; Byrnes, Christian T.; Lewis, Antony

    2016-08-01

    Negative absolute temperatures (NAT) are an exotic thermodynamical consequence of quantum physics which has been known since the 1950's (having been achieved in the lab on a number of occasions). Recently, the work of Braun et al. [1] has rekindled interest in negative temperatures and hinted at a possibility of using NAT systems in the lab as dark energy analogues. This paper goes one step further, looking into the cosmological consequences of the existence of a NAT component in the Universe. NAT-dominated expanding Universes experience a borderline phantom expansion (w < ‑1) with no Big Rip, and their contracting counterparts are forced to bounce after the energy density becomes sufficiently large. Both scenarios might be used to solve horizon and flatness problems analogously to standard inflation and bouncing cosmologies. We discuss the difficulties in obtaining and ending a NAT-dominated epoch, and possible ways of obtaining density perturbations with an acceptable spectrum.

  18. Apparatus for absolute pressure measurement

    NASA Technical Reports Server (NTRS)

    Hecht, R. (Inventor)

    1969-01-01

    An absolute pressure sensor (e.g., the diaphragm of a capacitance manometer) was subjected to a superimposed potential to effectively reduce the mechanical stiffness of the sensor. This substantially increases the sensitivity of the sensor and is particularly useful in vacuum gauges. An oscillating component of the superimposed potential induced vibrations of the sensor. The phase of these vibrations with respect to that of the oscillating component was monitored, and served to initiate an automatic adjustment of the static component of the superimposed potential, so as to bring the sensor into resonance at the frequency of the oscillating component. This establishes a selected sensitivity for the sensor, since a definite relationship exists between resonant frequency and sensitivity.

  19. Cosmology with negative absolute temperatures

    NASA Astrophysics Data System (ADS)

    Vieira, J. P. P.; Byrnes, Christian T.; Lewis, Antony

    2016-08-01

    Negative absolute temperatures (NAT) are an exotic thermodynamical consequence of quantum physics which has been known since the 1950's (having been achieved in the lab on a number of occasions). Recently, the work of Braun et al. [1] has rekindled interest in negative temperatures and hinted at a possibility of using NAT systems in the lab as dark energy analogues. This paper goes one step further, looking into the cosmological consequences of the existence of a NAT component in the Universe. NAT-dominated expanding Universes experience a borderline phantom expansion (w < -1) with no Big Rip, and their contracting counterparts are forced to bounce after the energy density becomes sufficiently large. Both scenarios might be used to solve horizon and flatness problems analogously to standard inflation and bouncing cosmologies. We discuss the difficulties in obtaining and ending a NAT-dominated epoch, and possible ways of obtaining density perturbations with an acceptable spectrum.

  20. Hemispheric Asymmetries in Striatal Reward Responses Relate to Approach-Avoidance Learning and Encoding of Positive-Negative Prediction Errors in Dopaminergic Midbrain Regions.

    PubMed

    Aberg, Kristoffer Carl; Doell, Kimberly C; Schwartz, Sophie

    2015-10-28

    Some individuals are better at learning about rewarding situations, whereas others are inclined to avoid punishments (i.e., enhanced approach or avoidance learning, respectively). In reinforcement learning, action values are increased when outcomes are better than predicted (positive prediction errors [PEs]) and decreased for worse than predicted outcomes (negative PEs). Because actions with high and low values are approached and avoided, respectively, individual differences in the neural encoding of PEs may influence the balance between approach-avoidance learning. Recent correlational approaches also indicate that biases in approach-avoidance learning involve hemispheric asymmetries in dopamine function. However, the computational and neural mechanisms underpinning such learning biases remain unknown. Here we assessed hemispheric reward asymmetry in striatal activity in 34 human participants who performed a task involving rewards and punishments. We show that the relative difference in reward response between hemispheres relates to individual biases in approach-avoidance learning. Moreover, using a computational modeling approach, we demonstrate that better encoding of positive (vs negative) PEs in dopaminergic midbrain regions is associated with better approach (vs avoidance) learning, specifically in participants with larger reward responses in the left (vs right) ventral striatum. Thus, individual dispositions or traits may be determined by neural processes acting to constrain learning about specific aspects of the world.

  1. Hemispheric Asymmetries in Striatal Reward Responses Relate to Approach-Avoidance Learning and Encoding of Positive-Negative Prediction Errors in Dopaminergic Midbrain Regions.

    PubMed

    Aberg, Kristoffer Carl; Doell, Kimberly C; Schwartz, Sophie

    2015-10-28

    Some individuals are better at learning about rewarding situations, whereas others are inclined to avoid punishments (i.e., enhanced approach or avoidance learning, respectively). In reinforcement learning, action values are increased when outcomes are better than predicted (positive prediction errors [PEs]) and decreased for worse than predicted outcomes (negative PEs). Because actions with high and low values are approached and avoided, respectively, individual differences in the neural encoding of PEs may influence the balance between approach-avoidance learning. Recent correlational approaches also indicate that biases in approach-avoidance learning involve hemispheric asymmetries in dopamine function. However, the computational and neural mechanisms underpinning such learning biases remain unknown. Here we assessed hemispheric reward asymmetry in striatal activity in 34 human participants who performed a task involving rewards and punishments. We show that the relative difference in reward response between hemispheres relates to individual biases in approach-avoidance learning. Moreover, using a computational modeling approach, we demonstrate that better encoding of positive (vs negative) PEs in dopaminergic midbrain regions is associated with better approach (vs avoidance) learning, specifically in participants with larger reward responses in the left (vs right) ventral striatum. Thus, individual dispositions or traits may be determined by neural processes acting to constrain learning about specific aspects of the world. PMID:26511241

  2. Absolute Electron Extraction Efficiency of Liquid Xenon

    NASA Astrophysics Data System (ADS)

    Kamdin, Katayun; Mizrachi, Eli; Morad, James; Sorensen, Peter

    2016-03-01

    Dual phase liquid/gas xenon time projection chambers (TPCs) currently set the world's most sensitive limits on weakly interacting massive particles (WIMPs), a favored dark matter candidate. These detectors rely on extracting electrons from liquid xenon into gaseous xenon, where they produce proportional scintillation. The proportional scintillation from the extracted electrons serves to internally amplify the WIMP signal; even a single extracted electron is detectable. Credible dark matter searches can proceed with electron extraction efficiency (EEE) lower than 100%. However, electrons systematically left at the liquid/gas boundary are a concern. Possible effects include spontaneous single or multi-electron proportional scintillation signals in the gas, or charging of the liquid/gas interface or detector materials. Understanding EEE is consequently a serious concern for this class of rare event search detectors. Previous EEE measurements have mostly been relative, not absolute, assuming efficiency plateaus at 100%. I will present an absolute EEE measurement with a small liquid/gas xenon TPC test bed located at Lawrence Berkeley National Laboratory.

  3. Effects of affective arousal on choice behavior, reward prediction errors, and feedback-related negativities in human reward-based decision making.

    PubMed

    Liu, Hong-Hsiang; Hsieh, Ming H; Hsu, Yung-Fong; Lai, Wen-Sung

    2015-01-01

    Emotional experience has a pervasive impact on choice behavior, yet the underlying mechanism remains unclear. Introducing facial-expression primes into a probabilistic learning task, we investigated how affective arousal regulates reward-related choice based on behavioral, model fitting, and feedback-related negativity (FRN) data. Sixty-six paid subjects were randomly assigned to the Neutral-Neutral (NN), Angry-Neutral (AN), and Happy-Neutral (HN) groups. A total of 960 trials were conducted. Subjects in each group were randomly exposed to half trials of the pre-determined emotional faces and another half of the neutral faces before choosing between two cards drawn from two decks with different assigned reward probabilities. Trial-by-trial data were fit with a standard reinforcement learning model using the Bayesian estimation approach. The temporal dynamics of brain activity were simultaneously recorded and analyzed using event-related potentials. Our analyses revealed that subjects in the NN group gained more reward values than those in the other two groups; they also exhibited comparatively differential estimated model-parameter values for reward prediction errors. Computing the difference wave of FRNs in reward vs. non-reward trials, we found that, compared to the NN group, subjects in the AN and HN groups had larger "General" FRNs (i.e., FRNs in no-reward trials minus FRNs in reward trials) and "Expected" FRNs (i.e., FRNs in expected reward-omission trials minus FRNs in expected reward-delivery trials), indicating an interruption in predicting reward. Further, both AN and HN groups appeared to be more sensitive to negative outcomes than the NN group. Collectively, our study suggests that affective arousal negatively regulates reward-related choice, probably through overweighting with negative feedback.

  4. Effects of affective arousal on choice behavior, reward prediction errors, and feedback-related negativities in human reward-based decision making

    PubMed Central

    Liu, Hong-Hsiang; Hsieh, Ming H.; Hsu, Yung-Fong; Lai, Wen-Sung

    2015-01-01

    Emotional experience has a pervasive impact on choice behavior, yet the underlying mechanism remains unclear. Introducing facial-expression primes into a probabilistic learning task, we investigated how affective arousal regulates reward-related choice based on behavioral, model fitting, and feedback-related negativity (FRN) data. Sixty-six paid subjects were randomly assigned to the Neutral-Neutral (NN), Angry-Neutral (AN), and Happy-Neutral (HN) groups. A total of 960 trials were conducted. Subjects in each group were randomly exposed to half trials of the pre-determined emotional faces and another half of the neutral faces before choosing between two cards drawn from two decks with different assigned reward probabilities. Trial-by-trial data were fit with a standard reinforcement learning model using the Bayesian estimation approach. The temporal dynamics of brain activity were simultaneously recorded and analyzed using event-related potentials. Our analyses revealed that subjects in the NN group gained more reward values than those in the other two groups; they also exhibited comparatively differential estimated model-parameter values for reward prediction errors. Computing the difference wave of FRNs in reward vs. non-reward trials, we found that, compared to the NN group, subjects in the AN and HN groups had larger “General” FRNs (i.e., FRNs in no-reward trials minus FRNs in reward trials) and “Expected” FRNs (i.e., FRNs in expected reward-omission trials minus FRNs in expected reward-delivery trials), indicating an interruption in predicting reward. Further, both AN and HN groups appeared to be more sensitive to negative outcomes than the NN group. Collectively, our study suggests that affective arousal negatively regulates reward-related choice, probably through overweighting with negative feedback. PMID:26042057

  5. Self-identification and empathy modulate error-related brain activity during the observation of penalty shots between friend and foe

    PubMed Central

    Ganesh, Shanti; van Schie, Hein T.; De Bruijn, Ellen R. A.; Bekkering, Harold

    2009-01-01

    The ability to detect and process errors made by others plays an important role is many social contexts. The capacity to process errors is typically found to rely on sites in the medial frontal cortex. However, it remains to be determined whether responses at these sites are driven primarily by action errors themselves or by the affective consequences normally associated with their commission. Using an experimental paradigm that disentangles action errors and the valence of their affective consequences, we demonstrate that sites in the medial frontal cortex (MFC), including the ventral anterior cingulate cortex (vACC) and pre-supplementary motor area (pre-SMA), respond to action errors independent of the valence of their consequences. The strength of this response was negatively correlated with the empathic concern subscale of the Interpersonal Reactivity Index. We also demonstrate a main effect of self-identification by showing that errors committed by friends and foes elicited significantly different BOLD responses in a separate region of the middle anterior cingulate cortex (mACC). These results suggest that the way we look at others plays a critical role in determining patterns of brain activation during error observation. These findings may have important implications for general theories of error processing. PMID:19015079

  6. Anxiety and Error Monitoring: Increased Error Sensitivity or Altered Expectations?

    ERIC Educational Resources Information Center

    Compton, Rebecca J.; Carp, Joshua; Chaddock, Laura; Fineman, Stephanie L.; Quandt, Lorna C.; Ratliff, Jeffrey B.

    2007-01-01

    This study tested the prediction that the error-related negativity (ERN), a physiological measure of error monitoring, would be enhanced in anxious individuals, particularly in conditions with threatening cues. Participants made gender judgments about faces whose expressions were either happy, angry, or neutral. Replicating prior studies, midline…

  7. Sounding rocket measurement of the absolute solar EUV flux utilizing a silicon photodiode

    NASA Technical Reports Server (NTRS)

    Ogawa, H. S.; Mcmullin, D.; Judge, D. L.; Canfield, L. R.

    1990-01-01

    A newly developed stable and high quantum efficiency silicon photodiode was used to obtain an accurate measurement of the integrated absolute magnitude of the solar extreme UV photon flux in the spectral region between 50 and 800 A. The adjusted daily 10.7-cm solar radio flux and sunspot number were 168.4 and 121, respectively. The unattenuated absolute value of the solar EUV flux at 1 AU in the specified wavelength region was 6.81 x 10 to the 10th photons/sq cm per s. Based on a nominal probable error of 7 percent for National Institute of Standards and Technology detector efficiency measurements in the 50- to 500-A region (5 percent on longer wavelength measurements between 500 and 1216 A), and based on experimental errors associated with the present rocket instrumentation and analysis, a conservative total error estimate of about 14 percent is assigned to the absolute integral solar flux obtained.

  8. Precision goniometer equipped with a 22-bit absolute rotary encoder.

    PubMed

    Xiaowei, Z; Ando, M; Jidong, W

    1998-05-01

    The calibration of a compact precision goniometer equipped with a 22-bit absolute rotary encoder is presented. The goniometer is a modified Huber 410 goniometer: the diffraction angles can be coarsely generated by a stepping-motor-driven worm gear and precisely interpolated by a piezoactuator-driven tangent arm. The angular accuracy of the precision rotary stage was evaluated with an autocollimator. It was shown that the deviation from circularity of the rolling bearing utilized in the precision rotary stage restricts the angular positioning accuracy of the goniometer, and results in an angular accuracy ten times larger than the angular resolution of 0.01 arcsec. The 22-bit encoder was calibrated by an incremental rotary encoder. It became evident that the accuracy of the absolute encoder is approximately 18 bit due to systematic errors.

  9. Flow rate calibration for absolute cell counting rationale and design.

    PubMed

    Walker, Clare; Barnett, David

    2006-05-01

    There is a need for absolute leukocyte enumeration in the clinical setting, and accurate, reliable (and affordable) technology to determine absolute leukocyte counts has been developed. Such technology includes single platform and dual platform approaches. Derivations of these counts commonly incorporate the addition of a known number of latex microsphere beads to a blood sample, although it has been suggested that the addition of beads to a sample may only be required to act as an internal quality control procedure for assessing the pipetting error. This unit provides the technical details for undertaking flow rate calibration that obviates the need to add reference beads to each sample. It is envisaged that this report will provide the basis for subsequent clinical evaluations of this novel approach. PMID:18770842

  10. Absolute magnitude calibration using trigonometric parallax - Incomplete, spectroscopic samples

    NASA Technical Reports Server (NTRS)

    Ratnatunga, Kavan U.; Casertano, Stefano

    1991-01-01

    A new numerical algorithm is used to calibrate the absolute magnitude of spectroscopically selected stars from their observed trigonometric parallax. This procedure, based on maximum-likelihood estimation, can retrieve unbiased estimates of the intrinsic absolute magnitude and its dispersion even from incomplete samples suffering from selection biases in apparent magnitude and color. It can also make full use of low accuracy and negative parallaxes and incorporate censorship on reported parallax values. Accurate error estimates are derived for each of the fitted parameters. The algorithm allows an a posteriori check of whether the fitted model gives a good representation of the observations. The procedure is described in general and applied to both real and simulated data.

  11. [Medical device use errors].

    PubMed

    Friesdorf, Wolfgang; Marsolek, Ingo

    2008-01-01

    Medical devices define our everyday patient treatment processes. But despite the beneficial effect, every use can also lead to damages. Use errors are thus often explained by human failure. But human errors can never be completely extinct, especially in such complex work processes like those in medicine that often involve time pressure. Therefore we need error-tolerant work systems in which potential problems are identified and solved as early as possible. In this context human engineering uses the TOP principle: technological before organisational and then person-related solutions. But especially in everyday medical work we realise that error-prone usability concepts can often only be counterbalanced by organisational or person-related measures. Thus human failure is pre-programmed. In addition, many medical work places represent a somewhat chaotic accumulation of individual devices with totally different user interaction concepts. There is not only a lack of holistic work place concepts, but of holistic process and system concepts as well. However, this can only be achieved through the co-operation of producers, healthcare providers and clinical users, by systematically analyzing and iteratively optimizing the underlying treatment processes from both a technological and organizational perspective. What we need is a joint platform like medilab V of the TU Berlin, in which the entire medical treatment chain can be simulated in order to discuss, experiment and model--a key to a safe and efficient healthcare system of the future. PMID:19213452

  12. Absolute magnitudes of asteroids and a revision of asteroid albedo estimates from WISE thermal observations

    NASA Astrophysics Data System (ADS)

    Pravec, Petr; Harris, Alan W.; Kušnirák, Peter; Galád, Adrián; Hornoch, Kamil

    2012-09-01

    We obtained estimates of the Johnson V absolute magnitudes (H) and slope parameters (G) for 583 main-belt and near-Earth asteroids observed at Ondřejov and Table Mountain Observatory from 1978 to 2011. Uncertainties of the absolute magnitudes in our sample are <0.21 mag, with a median value of 0.10 mag. We compared the H data with absolute magnitude values given in the MPCORB, Pisa AstDyS and JPL Horizons orbit catalogs. We found that while the catalog absolute magnitudes for large asteroids are relatively good on average, showing only little biases smaller than 0.1 mag, there is a systematic offset of the catalog values for smaller asteroids that becomes prominent in a range of H greater than ∼10 and is particularly big above H ∼ 12. The mean (Hcatalog - H) value is negative, i.e., the catalog H values are systematically too bright. This systematic negative offset of the catalog values reaches a maximum around H = 14 where the mean (Hcatalog - H) is -0.4 to -0.5. We found also smaller correlations of the offset of the catalog H values with taxonomic types and with lightcurve amplitude, up to ∼0.1 mag or less. We discuss a few possible observational causes for the observed correlations, but the reason for the large bias of the catalog absolute magnitudes peaking around H = 14 is unknown; we suspect that the problem lies in the magnitude estimates reported by asteroid surveys. With our photometric H and G data, we revised the preliminary WISE albedo estimates made by Masiero et al. (Masired, J.R. et al. [2011]. Astrophys. J. 741, 68-89) and Mainzer et al. (Mainzer, A. et al. [2011b]. Astrophys. J. 743, 156-172) for asteroids in our sample. We found that the mean geometric albedo of Tholen/Bus/DeMeo C/G/B/F/P/D types with sizes of 25-300 km is pV = 0.057 with the standard deviation (dispersion) of the sample of 0.013 and the mean albedo of S/A/L types with sizes 0.6-200 km is 0.197 with the standard deviation of the sample of 0.051. The standard errors of the

  13. Absolutely maximally entangled states, combinatorial designs, and multiunitary matrices

    NASA Astrophysics Data System (ADS)

    Goyeneche, Dardo; Alsina, Daniel; Latorre, José I.; Riera, Arnau; Życzkowski, Karol

    2015-09-01

    Absolutely maximally entangled (AME) states are those multipartite quantum states that carry absolute maximum entanglement in all possible bipartitions. AME states are known to play a relevant role in multipartite teleportation, in quantum secret sharing, and they provide the basis novel tensor networks related to holography. We present alternative constructions of AME states and show their link with combinatorial designs. We also analyze a key property of AME states, namely, their relation to tensors, which can be understood as unitary transformations in all of their bipartitions. We call this property multiunitarity.

  14. On the correct representation of bending and axial deformation in the absolute nodal coordinate formulation with an elastic line approach

    NASA Astrophysics Data System (ADS)

    Gerstmayr, Johannes; Irschik, Hans

    2008-12-01

    In finite element methods that are based on position and slope coordinates, a representation of axial and bending deformation by means of an elastic line approach has become popular. Such beam and plate formulations based on the so-called absolute nodal coordinate formulation have not yet been verified sufficiently enough with respect to analytical results or classical nonlinear rod theories. Examining the existing planar absolute nodal coordinate element, which uses a curvature proportional bending strain expression, it turns out that the deformation does not fully agree with the solution of the geometrically exact theory and, even more serious, the normal force is incorrect. A correction based on the classical ideas of the extensible elastica and geometrically exact theories is applied and a consistent strain energy and bending moment relations are derived. The strain energy of the solid finite element formulation of the absolute nodal coordinate beam is based on the St. Venant-Kirchhoff material: therefore, the strain energy is derived for the latter case and compared to classical nonlinear rod theories. The error in the original absolute nodal coordinate formulation is documented by numerical examples. The numerical example of a large deformation cantilever beam shows that the normal force is incorrect when using the previous approach, while a perfect agreement between the absolute nodal coordinate formulation and the extensible elastica can be gained when applying the proposed modifications. The numerical examples show a very good agreement of reference analytical and numerical solutions with the solutions of the proposed beam formulation for the case of large deformation pre-curved static and dynamic problems, including buckling and eigenvalue analysis. The resulting beam formulation does not employ rotational degrees of freedom and therefore has advantages compared to classical beam elements regarding energy-momentum conservation.

  15. Estimating Climatological Bias Errors for the Global Precipitation Climatology Project (GPCP)

    NASA Technical Reports Server (NTRS)

    Adler, Robert; Gu, Guojun; Huffman, George

    2012-01-01

    A procedure is described to estimate bias errors for mean precipitation by using multiple estimates from different algorithms, satellite sources, and merged products. The Global Precipitation Climatology Project (GPCP) monthly product is used as a base precipitation estimate, with other input products included when they are within +/- 50% of the GPCP estimates on a zonal-mean basis (ocean and land separately). The standard deviation s of the included products is then taken to be the estimated systematic, or bias, error. The results allow one to examine monthly climatologies and the annual climatology, producing maps of estimated bias errors, zonal-mean errors, and estimated errors over large areas such as ocean and land for both the tropics and the globe. For ocean areas, where there is the largest question as to absolute magnitude of precipitation, the analysis shows spatial variations in the estimated bias errors, indicating areas where one should have more or less confidence in the mean precipitation estimates. In the tropics, relative bias error estimates (s/m, where m is the mean precipitation) over the eastern Pacific Ocean are as large as 20%, as compared with 10%-15% in the western Pacific part of the ITCZ. An examination of latitudinal differences over ocean clearly shows an increase in estimated bias error at higher latitudes, reaching up to 50%. Over land, the error estimates also locate regions of potential problems in the tropics and larger cold-season errors at high latitudes that are due to snow. An empirical technique to area average the gridded errors (s) is described that allows one to make error estimates for arbitrary areas and for the tropics and the globe (land and ocean separately, and combined). Over the tropics this calculation leads to a relative error estimate for tropical land and ocean combined of 7%, which is considered to be an upper bound because of the lack of sign-of-the-error canceling when integrating over different areas with a

  16. Absolute configuration of isovouacapenol C

    PubMed Central

    Fun, Hoong-Kun; Yodsaoue, Orapun; Karalai, Chatchanok; Chantrapromma, Suchada

    2010-01-01

    The title compound, C27H34O5 {systematic name: (4aR,5R,6R,6aS,7R,11aS,11bR)-4a,6-dihy­droxy-4,4,7,11b-tetra­methyl-1,2,3,4,4a,5,6,6a,7,11,11a,11b-dodeca­hydro­phenanthro[3,2-b]furan-5-yl benzoate}, is a cassane furan­oditerpene, which was isolated from the roots of Caesalpinia pulcherrima. The three cyclo­hexane rings are trans fused: two of these are in chair conformations with the third in a twisted half-chair conformation, whereas the furan ring is almost planar (r.m.s. deviation = 0.003 Å). An intra­molecular C—H⋯O inter­action generates an S(6) ring. The absolute configurations of the stereogenic centres at positions 4a, 5, 6, 6a, 7, 11a and 11b are R, R, R, S, R, S and R, respectively. In the crystal, mol­ecules are linked into infinite chains along [010] by O—H⋯O hydrogen bonds. C⋯O [3.306 (2)–3.347 (2) Å] short contacts and C—H⋯π inter­actions also occur. PMID:21588364

  17. Absolute Density Calibration Cell for Laser Induced Fluorescence Erosion Rate Measurements

    NASA Technical Reports Server (NTRS)

    Domonkos, Matthew T.; Stevens, Richard E.

    2001-01-01

    Flight qualification of ion thrusters typically requires testing on the order of 10,000 hours. Extensive knowledge of wear mechanisms and rates is necessary to establish design confidence prior to long duration tests. Consequently, real-time erosion rate measurements offer the potential both to reduce development costs and to enhance knowledge of the dependency of component wear on operating conditions. Several previous studies have used laser-induced fluorescence (LIF) to measure real-time, in situ erosion rates of ion thruster accelerator grids. Those studies provided only relative measurements of the erosion rate. In the present investigation, a molybdenum tube was resistively heated such that the evaporation rate yielded densities within the tube on the order of those expected from accelerator grid erosion. This work examines the suitability of the density cell as an absolute calibration source for LIF measurements, and the intrinsic error was evaluated.

  18. Absolute reliability of isokinetic knee flexion and extension measurements adopting a prone position.

    PubMed

    Ayala, F; De Ste Croix, M; Sainz de Baranda, P; Santonja, F

    2013-01-01

    The main purpose of this study was to determine the absolute and relative reliability of isokinetic peak torque (PT), angle of peak torque (APT), average power (PW) and total work (TW) for knee flexion and extension during concentric and eccentric actions measured in a prone position at 60, 180 and 240° s(-1). A total of 50 recreational athletes completed the study. PT, APT, PW and TW for concentric and eccentric knee extension and flexion were recorded at three different angular velocities (60, 180 and 240° s(-1)) on three different occasions with a 72- to 96-h rest interval between consecutive testing sessions. Absolute reliability was examined through typical percentage error (CV(TE)), percentage change in the mean (ChM) and relative reliability with intraclass correlations (ICC(3,1)). For both the knee extensor and flexor muscle groups, all strength data (except APT during knee flexion movements) demonstrated moderate absolute reliability (ChM < 3%; ICCs > 0·70; and CV(TE) < 20%) independent of the knee movement (flexion and extension), type of muscle action (concentric and eccentric) and angular velocity (60, 180 and 240° s(-1)). Therefore, the current study suggests that the CV(TE) values reported for PT (8-20%), APT (8-18%) (only during knee extension movements), PW (14-20%) and TW (12-28%) may be acceptable to detect the large changes usually observed after rehabilitation programmes, but not acceptable to examine the effect of preventative training programmes in healthy individuals.

  19. Magnetospheric Multiscale (MMS) Mission Commissioning Phase Orbit Determination Error Analysis

    NASA Technical Reports Server (NTRS)

    Chung, Lauren R.; Novak, Stefan; Long, Anne; Gramling, Cheryl

    2009-01-01

    The Magnetospheric MultiScale (MMS) mission commissioning phase starts in a 185 km altitude x 12 Earth radii (RE) injection orbit and lasts until the Phase 1 mission orbits and orientation to the Earth-Sun li ne are achieved. During a limited time period in the early part of co mmissioning, five maneuvers are performed to raise the perigee radius to 1.2 R E, with a maneuver every other apogee. The current baseline is for the Goddard Space Flight Center Flight Dynamics Facility to p rovide MMS orbit determination support during the early commissioning phase using all available two-way range and Doppler tracking from bo th the Deep Space Network and Space Network. This paper summarizes th e results from a linear covariance analysis to determine the type and amount of tracking data required to accurately estimate the spacecraf t state, plan each perigee raising maneuver, and support thruster cal ibration during this phase. The primary focus of this study is the na vigation accuracy required to plan the first and the final perigee ra ising maneuvers. Absolute and relative position and velocity error hi stories are generated for all cases and summarized in terms of the ma ximum root-sum-square consider and measurement noise error contributi ons over the definitive and predictive arcs and at discrete times inc luding the maneuver planning and execution times. Details of the meth odology, orbital characteristics, maneuver timeline, error models, and error sensitivities are provided.

  20. The Application of Optimisation Methods to Constrain Absolute Plate Motions

    NASA Astrophysics Data System (ADS)

    Tetley, M. G.; Williams, S.; Hardy, S.; Müller, D.

    2015-12-01

    Plate tectonic reconstructions are an excellent tool for understanding the configuration and behaviour of continents through time on both global and regional scales, and are relatively well understood back to ~200 Ma. However, many of these models represent only relative motions between continents, providing little information of absolute tectonic motions and their relationship with the deep Earth. Significant issues exist in solving this problem, including how to combine constraints from multiple, diverse data into a unified model of absolute plate motions; and how to address uncertainties both in the available data, and in the assumptions involved in this process (e.g. hotspot motion, true polar wander). In deep time (pre-Pangea breakup), plate reconstructions rely more heavily on paleomagnetism, but these data often imply plate velocities much larger than those observed since the breakup of the supercontinent Pangea where plate velocities are constrained by the seafloor spreading record. Here we present two complementary techniques to address these issues, applying parallelized numerical methods to quantitatively investigate absolute plate motions through time. Firstly, we develop a data-fit optimized global absolute reference frame constrained by kinematic reconstruction data, hotspot-trail observations, and trench migration statistics. Secondly we calculate optimized paleomagnetic data-derived apparent polar wander paths (APWPs) for both the Phanerozoic and Precambrian. Paths are generated from raw pole data with optimal spatial and temporal pole configurations calculated using all known uncertainties and quality criteria to produce velocity-optimized absolute motion paths through deep time.

  1. Measuring Postglacial Rebound with GPS and Absolute Gravity

    NASA Technical Reports Server (NTRS)

    Larson, Kristine M.; vanDam, Tonie

    2000-01-01

    We compare vertical rates of deformation derived from continuous Global Positioning System (GPS) observations and episodic measurements of absolute gravity. We concentrate on four sites in a region of North America experiencing postglacial rebound. The rates of uplift from gravity and GPS agree within one standard deviation for all sites. The GPS vertical deformation rates are significantly more precise than the gravity rates, primarily because of the denser temporal spacing provided by continuous GPS tracking. We conclude that continuous GPS observations are more cost efficient and provide more precise estimates of vertical deformation rates than campaign style gravity observations where systematic errors are difficult to quantify.

  2. Sun compass error model

    NASA Technical Reports Server (NTRS)

    Blucker, T. J.; Ferry, W. W.

    1971-01-01

    An error model is described for the Apollo 15 sun compass, a contingency navigational device. Field test data are presented along with significant results of the test. The errors reported include a random error resulting from tilt in leveling the sun compass, a random error because of observer sighting inaccuracies, a bias error because of mean tilt in compass leveling, a bias error in the sun compass itself, and a bias error because the device is leveled to the local terrain slope.

  3. Errors in clinical laboratories or errors in laboratory medicine?

    PubMed

    Plebani, Mario

    2006-01-01

    Laboratory testing is a highly complex process and, although laboratory services are relatively safe, they are not as safe as they could or should be. Clinical laboratories have long focused their attention on quality control methods and quality assessment programs dealing with analytical aspects of testing. However, a growing body of evidence accumulated in recent decades demonstrates that quality in clinical laboratories cannot be assured by merely focusing on purely analytical aspects. The more recent surveys on errors in laboratory medicine conclude that in the delivery of laboratory testing, mistakes occur more frequently before (pre-analytical) and after (post-analytical) the test has been performed. Most errors are due to pre-analytical factors (46-68.2% of total errors), while a high error rate (18.5-47% of total errors) has also been found in the post-analytical phase. Errors due to analytical problems have been significantly reduced over time, but there is evidence that, particularly for immunoassays, interference may have a serious impact on patients. A description of the most frequent and risky pre-, intra- and post-analytical errors and advice on practical steps for measuring and reducing the risk of errors is therefore given in the present paper. Many mistakes in the Total Testing Process are called "laboratory errors", although these may be due to poor communication, action taken by others involved in the testing process (e.g., physicians, nurses and phlebotomists), or poorly designed processes, all of which are beyond the laboratory's control. Likewise, there is evidence that laboratory information is only partially utilized. A recent document from the International Organization for Standardization (ISO) recommends a new, broader definition of the term "laboratory error" and a classification of errors according to different criteria. In a modern approach to total quality, centered on patients' needs and satisfaction, the risk of errors and mistakes

  4. Unforced errors and error reduction in tennis

    PubMed Central

    Brody, H

    2006-01-01

    Only at the highest level of tennis is the number of winners comparable to the number of unforced errors. As the average player loses many more points due to unforced errors than due to winners by an opponent, if the rate of unforced errors can be reduced, it should lead to an increase in points won. This article shows how players can improve their game by understanding and applying the laws of physics to reduce the number of unforced errors. PMID:16632568

  5. ERROR ANALYSIS OF COMPOSITE SHOCK INTERACTION PROBLEMS.

    SciTech Connect

    LEE,T.MU,Y.ZHAO,M.GLIMM,J.LI,X.YE,K.

    2004-07-26

    We propose statistical models of uncertainty and error in numerical solutions. To represent errors efficiently in shock physics simulations we propose a composition law. The law allows us to estimate errors in the solutions of composite problems in terms of the errors from simpler ones as discussed in a previous paper. In this paper, we conduct a detailed analysis of the errors. One of our goals is to understand the relative magnitude of the input uncertainty vs. the errors created within the numerical solution. In more detail, we wish to understand the contribution of each wave interaction to the errors observed at the end of the simulation.

  6. Error in radiology.

    PubMed

    Goddard, P; Leslie, A; Jones, A; Wakeley, C; Kabala, J

    2001-10-01

    The level of error in radiology has been tabulated from articles on error and on "double reporting" or "double reading". The level of error varies depending on the radiological investigation, but the range is 2-20% for clinically significant or major error. The greatest reduction in error rates will come from changes in systems.

  7. Partially supervised P300 speller adaptation for eventual stimulus timing optimization: target confidence is superior to error-related potential score as an uncertain label

    NASA Astrophysics Data System (ADS)

    Zeyl, Timothy; Yin, Erwei; Keightley, Michelle; Chau, Tom

    2016-04-01

    Objective. Error-related potentials (ErrPs) have the potential to guide classifier adaptation in BCI spellers, for addressing non-stationary performance as well as for online optimization of system parameters, by providing imperfect or partial labels. However, the usefulness of ErrP-based labels for BCI adaptation has not been established in comparison to other partially supervised methods. Our objective is to make this comparison by retraining a two-step P300 speller on a subset of confident online trials using naïve labels taken from speller output, where confidence is determined either by (i) ErrP scores, (ii) posterior target scores derived from the P300 potential, or (iii) a hybrid of these scores. We further wish to evaluate the ability of partially supervised adaptation and retraining methods to adjust to a new stimulus-onset asynchrony (SOA), a necessary step towards online SOA optimization. Approach. Eleven consenting able-bodied adults attended three online spelling sessions on separate days with feedback in which SOAs were set at 160 ms (sessions 1 and 2) and 80 ms (session 3). A post hoc offline analysis and a simulated online analysis were performed on sessions two and three to compare multiple adaptation methods. Area under the curve (AUC) and symbols spelled per minute (SPM) were the primary outcome measures. Main results. Retraining using supervised labels confirmed improvements of 0.9 percentage points (session 2, p < 0.01) and 1.9 percentage points (session 3, p < 0.05) in AUC using same-day training data over using data from a previous day, which supports classifier adaptation in general. Significance. Using posterior target score alone as a confidence measure resulted in the highest SPM of the partially supervised methods, indicating that ErrPs are not necessary to boost the performance of partially supervised adaptive classification. Partial supervision significantly improved SPM at a novel SOA, showing promise for eventual online SOA

  8. Absolute intensity and polarization of rotational Raman scattering from N2, O2, and CO2

    NASA Technical Reports Server (NTRS)

    Penney, C. M.; St.peters, R. L.; Lapp, M.

    1973-01-01

    An experimental examination of the absolute intensity, polarization, and relative line intensities of rotational Raman scattering (RRS) from N2, O2, and CO2 is reported. The absolute scattering intensity for N2 is characterized by its differential cross section for backscattering of incident light at 647.1 nm, which is calculated from basic measured values. The ratio of the corresponding cross section for O2 to that for N2 is 2.50 plus or minus 5 percent. The intensity recent for N2, O2, and CO2 are shown to compare favorably to values calculated from recent measurements of the depolarization of Rayleigh scattering plus RRS. Measured depolarizations of various RRS lines agree to within a few percent with the theoretical value of 3/4. Detailed error analyses are presented for intensity and depolarization measurements. Finally, extensive RRS spectra at nominal gas temperatures of 23 C, 75 C, and 125 C are presented and shown to compare favorably to theoretical predictions.

  9. Self-attraction effect and correction on the T-1 absolute gravimeter

    NASA Astrophysics Data System (ADS)

    Li, Z.; Hu, H.; Wu, K.; Li, G.; Wang, G.; Wang, L. J.

    2015-12-01

    The self-attraction effect (SAE) in an absolute gravimeter is a kind of systematic error due to the gravitation of the instrument to the falling object. This effect depends on the mass distribution of the gravimeter, and is estimated to be a few microgals (1 μGal  =  10-8 m s-2) for the FG5 gravimeter. In this paper, the SAE of a home-made T-1 absolute gravimeter is analyzed and calculated. Most of the stationary components, including the dropping chamber, the laser interferometer, the vibration isolation device and two tripods, are finely modelled, and the related SAEs are computed. In addition, the SAE of the co-falling carriage inside the dropping chamber is carefully calculated because the distance between the falling object and the co-falling carriage varies during the measurement. In order to get the correction of the SAE, two different methods are compared. One is to linearize the SAE curve, the other one is to calculate the perturbed trajectory. The results from these two methods agree with each other within 0.01 μGal. With an uncertainty analysis, the correction of the SAE of the T-1 gravimeter is estimated to be (-1.9  ±  0.1) μGal.

  10. Operational Interventions to Maintenance Error

    NASA Technical Reports Server (NTRS)

    Kanki, Barbara G.; Walter, Diane; Dulchinos, VIcki

    1997-01-01

    A significant proportion of aviation accidents and incidents are known to be tied to human error. However, research of flight operational errors has shown that so-called pilot error often involves a variety of human factors issues and not a simple lack of individual technical skills. In aircraft maintenance operations, there is similar concern that maintenance errors which may lead to incidents and accidents are related to a large variety of human factors issues. Although maintenance error data and research are limited, industry initiatives involving human factors training in maintenance have become increasingly accepted as one type of maintenance error intervention. Conscientious efforts have been made in re-inventing the team7 concept for maintenance operations and in tailoring programs to fit the needs of technical opeRAtions. Nevertheless, there remains a dual challenge: 1) to develop human factors interventions which are directly supported by reliable human error data, and 2) to integrate human factors concepts into the procedures and practices of everyday technical tasks. In this paper, we describe several varieties of human factors interventions and focus on two specific alternatives which target problems related to procedures and practices; namely, 1) structured on-the-job training and 2) procedure re-design. We hope to demonstrate that the key to leveraging the impact of these solutions comes from focused interventions; that is, interventions which are derived from a clear understanding of specific maintenance errors, their operational context and human factors components.

  11. Absolute irradiance of the Moon for on-orbit calibration

    USGS Publications Warehouse

    Stone, T.C.; Kieffer, H.H.; ,

    2002-01-01

    The recognized need for on-orbit calibration of remote sensing imaging instruments drives the ROLO project effort to characterize the Moon for use as an absolute radiance source. For over 5 years the ground-based ROLO telescopes have acquired spatially-resolved lunar images in 23 VNIR (Moon diameter ???500 pixels) and 9 SWIR (???250 pixels) passbands at phase angles within ??90 degrees. A numerical model for lunar irradiance has been developed which fits hundreds of ROLO images in each band, corrected for atmospheric extinction and calibrated to absolute radiance, then integrated to irradiance. The band-coupled extinction algorithm uses absorption spectra of several gases and aerosols derived from MODTRAN to fit time-dependent component abundances to nightly observations of standard stars. The absolute radiance scale is based upon independent telescopic measurements of the star Vega. The fitting process yields uncertainties in lunar relative irradiance over small ranges of phase angle and the full range of lunar libration well under 0.5%. A larger source of uncertainty enters in the absolute solar spectral irradiance, especially in the SWIR, where solar models disagree by up to 6%. Results of ROLO model direct comparisons to spacecraft observations demonstrate the ability of the technique to track sensor responsivity drifts to sub-percent precision. Intercomparisons among instruments provide key insights into both calibration issues and the absolute scale for lunar irradiance.

  12. A general relativistic model for free-fall absolute gravimeters

    NASA Astrophysics Data System (ADS)

    Tan, Yu-Jie; Shao, Cheng-Gang; Li, Jia; Hu, Zhong-Kun

    2016-04-01

    Although the relativistic manifestations of gravitational fields in gravimetry were first studied 40 years ago, the relativistic effects combined with free-fall absolute gravimeters have rarely been considered. In light of this, we present a general relativistic model for free-fall absolute gravimeters in a local-Fermi coordinates system, where we focus on effects related to the measuring devices: relativistic transverse Doppler effects, gravitational redshift effects and Earth’s rotation effects. Based on this model, a general relativistic expression of the measured gravity acceleration is obtained.

  13. Investigating Absolute Value: A Real World Application

    ERIC Educational Resources Information Center

    Kidd, Margaret; Pagni, David

    2009-01-01

    Making connections between various representations is important in mathematics. In this article, the authors discuss the numeric, algebraic, and graphical representations of sums of absolute values of linear functions. The initial explanations are accessible to all students who have experience graphing and who understand that absolute value simply…

  14. Monolithically integrated absolute frequency comb laser system

    DOEpatents

    Wanke, Michael C.

    2016-07-12

    Rather than down-convert optical frequencies, a QCL laser system directly generates a THz frequency comb in a compact monolithically integrated chip that can be locked to an absolute frequency without the need of a frequency-comb synthesizer. The monolithic, absolute frequency comb can provide a THz frequency reference and tool for high-resolution broad band spectroscopy.

  15. Absolute optical metrology : nanometers to kilometers

    NASA Technical Reports Server (NTRS)

    Dubovitsky, Serge; Lay, O. P.; Peters, R. D.; Liebe, C. C.

    2005-01-01

    We provide and overview of the developments in the field of high-accuracy absolute optical metrology with emphasis on space-based applications. Specific work on the Modulation Sideband Technology for Absolute Ranging (MSTAR) sensor is described along with novel applications of the sensor.

  16. Estimation of absolute protein quantities of unlabeled samples by selected reaction monitoring mass spectrometry.

    PubMed

    Ludwig, Christina; Claassen, Manfred; Schmidt, Alexander; Aebersold, Ruedi

    2012-03-01

    For many research questions in modern molecular and systems biology, information about absolute protein quantities is imperative. This information includes, for example, kinetic modeling of processes, protein turnover determinations, stoichiometric investigations of protein complexes, or quantitative comparisons of different proteins within one sample or across samples. To date, the vast majority of proteomic studies are limited to providing relative quantitative comparisons of protein levels between limited numbers of samples. Here we describe and demonstrate the utility of a targeting MS technique for the estimation of absolute protein abundance in unlabeled and nonfractionated cell lysates. The method is based on selected reaction monitoring (SRM) mass spectrometry and the "best flyer" hypothesis, which assumes that the specific MS signal intensity of the most intense tryptic peptides per protein is approximately constant throughout a whole proteome. SRM-targeted best flyer peptides were selected for each protein from the peptide precursor ion signal intensities from directed MS data. The most intense transitions per peptide were selected from full MS/MS scans of crude synthetic analogs. We used Monte Carlo cross-validation to systematically investigate the accuracy of the technique as a function of the number of measured best flyer peptides and the number of SRM transitions per peptide. We found that a linear model based on the two most intense transitions of the three best flying peptides per proteins (TopPep3/TopTra2) generated optimal results with a cross-correlated mean fold error of 1.8 and a squared Pearson coefficient R(2) of 0.88. Applying the optimized model to lysates of the microbe Leptospira interrogans, we detected significant protein abundance changes of 39 target proteins upon antibiotic treatment, which correlate well with literature values. The described method is generally applicable and exploits the inherent performance advantages of SRM

  17. Europe's Other Poverty Measures: Absolute Thresholds Underlying Social Assistance

    ERIC Educational Resources Information Center

    Bavier, Richard

    2009-01-01

    The first thing many learn about international poverty measurement is that European nations apply a "relative" poverty threshold and that they also do a better job of reducing poverty. Unlike the European model, the "absolute" U.S. poverty threshold does not increase in real value when the nation's standard of living rises, even though it is…

  18. Urey: to measure the absolute age of Mars

    NASA Technical Reports Server (NTRS)

    Randolph, J. E.; Plescia, J.; Bar-Cohen, Y.; Bartlett, P.; Bickler, D.; Carlson, R.; Carr, G.; Fong, M.; Gronroos, H.; Guske, P. J.; Herring, M.; Javadi, H.; Johnson, D. W.; Larson, T.; Malaviarachchi, K.; Sherrit, S.; Stride, S.; Trebi-Ollennu, A.; Warwick, R.

    2003-01-01

    UREY, a proposed NASA Mars Scout mission will, for the first time, measure the absolute age of an identified igneous rock formation on Mars. By extension to relatively older and younger rock formations dated by remote sensing, these results will enable a new and better understanding of Martian geologic history.

  19. Manson's triple error.

    PubMed

    F, Delaporte

    2008-09-01

    The author discusses the significance, implications and limitations of Manson's work. How did Patrick Manson resolve some of the major problems raised by the filarial worm life cycle? The Amoy physician showed that circulating embryos could only leave the blood via the percutaneous route, thereby requiring a bloodsucking insect. The discovery of a new autonomous, airborne, active host undoubtedly had a considerable impact on the history of parasitology, but the way in which Manson formulated and solved the problem of the transfer of filarial worms from the body of the mosquito to man resulted in failure. This article shows how the epistemological transformation operated by Manson was indissociably related to a series of errors and how a major breakthrough can be the result of a series of false proposals and, consequently, that the history of truth often involves a history of error. PMID:18814729

  20. Error correction for rotationally asymmetric surface deviation testing based on rotational shears.

    PubMed

    Wang, Weibo; Liu, Pengfei; Xing, Yaolong; Tan, Jiubin; Liu, Jian

    2016-09-10

    We present a practical method for absolute testing of rotationally asymmetric surface deviation based on rotation averaging, additional compensation, and azimuthal errors correction. The errors of angular orders kNθ neglected in the traditional multiangle averaging method can be reconstructed and compensated with the help of least-squares fitting of Zernike polynomials by an additional rotation measurement with a suitable selection of rotation angles. The estimation algorithm adopts the least-squares technique to eliminate azimuthal errors caused by rotation inaccuracy. The unknown relative alignment of the measurements also can be estimated through the differences in measurement results at overlapping areas. The method proposed combines the advantages of the single-rotation and multiangle averaging methods and realizes a balance between the efficiency and accuracy of the measurements. Experimental results show that the method proposed can obtain high accuracy even with fewer rotation measurements. PMID:27661385