Science.gov

Sample records for absolute temperature scale

  1. Kelvin Absolute Temperature Scale Identified as Length Scale and Related to de Broglie Thermal Wavelength

    NASA Astrophysics Data System (ADS)

    Sohrab, Siavash

    Thermodynamic equilibrium between matter and radiation leads to de Broglie wavelength λdβ = h /mβvrβ and frequency νdβ = k /mβvrβ of matter waves and stochastic definitions of Planck h =hk =mk <λrk > c and Boltzmann k =kk =mk <νrk > c constants, λrkνrk = c , that respectively relate to spatial (λ) and temporal (ν) aspects of vacuum fluctuations. Photon massmk =√{ hk /c3 } , amu =√{ hkc } = 1 /No , and universal gas constant Ro =No k =√{ k / hc } result in internal Uk = Nhνrk = Nmkc2 = 3 Nmkvmpk2 = 3 NkT and potential pV = uN\\vcirc / 3 = N\\ucirc / 3 = NkT energy of photon gas in Casimir vacuum such that H = TS = 4 NkT . Therefore, Kelvin absolute thermodynamic temperature scale [degree K] is identified as length scale [meter] and related to most probable wavelength and de Broglie thermal wavelength as Tβ =λmpβ =λdβ / 3 . Parallel to Wien displacement law obtained from Planck distribution, the displacement law λwS T =c2 /√{ 3} is obtained from Maxwell -Boltzmann distribution of speed of ``photon clusters''. The propagation speeds of sound waves in ideal gas versus light waves in photon gas are described in terms of vrβ in harmony with perceptions of Huygens. Newton formula for speed of long waves in canals √{ p / ρ } is modified to √{ gh } =√{ γp / ρ } in accordance with adiabatic theory of Laplace.

  2. Absolute flux scale for radioastronomy

    SciTech Connect

    Ivanov, V.P.; Stankevich, K.S.

    1986-07-01

    The authors propose and provide support for a new absolute flux scale for radio astronomy, which is not encumbered with the inadequacies of the previous scales. In constructing it the method of relative spectra was used (a powerful tool for choosing reference spectra). A review is given of previous flux scales. The authors compare the AIS scale with the scale they propose. Both scales are based on absolute measurements by the ''artificial moon'' method, and they are practically coincident in the range from 0.96 to 6 GHz. At frequencies above 6 GHz, 0.96 GHz, the AIS scale is overestimated because of incorrect extrapolation of the spectra of the primary and secondary standards. The major results which have emerged from this review of absolute scales in radio astronomy are summarized.

  3. Cosmology with negative absolute temperatures

    NASA Astrophysics Data System (ADS)

    Vieira, J. P. P.; Byrnes, Christian T.; Lewis, Antony

    2016-08-01

    Negative absolute temperatures (NAT) are an exotic thermodynamical consequence of quantum physics which has been known since the 1950's (having been achieved in the lab on a number of occasions). Recently, the work of Braun et al. [1] has rekindled interest in negative temperatures and hinted at a possibility of using NAT systems in the lab as dark energy analogues. This paper goes one step further, looking into the cosmological consequences of the existence of a NAT component in the Universe. NAT-dominated expanding Universes experience a borderline phantom expansion (w < ‑1) with no Big Rip, and their contracting counterparts are forced to bounce after the energy density becomes sufficiently large. Both scenarios might be used to solve horizon and flatness problems analogously to standard inflation and bouncing cosmologies. We discuss the difficulties in obtaining and ending a NAT-dominated epoch, and possible ways of obtaining density perturbations with an acceptable spectrum.

  4. Cosmology with negative absolute temperatures

    NASA Astrophysics Data System (ADS)

    Vieira, J. P. P.; Byrnes, Christian T.; Lewis, Antony

    2016-08-01

    Negative absolute temperatures (NAT) are an exotic thermodynamical consequence of quantum physics which has been known since the 1950's (having been achieved in the lab on a number of occasions). Recently, the work of Braun et al. [1] has rekindled interest in negative temperatures and hinted at a possibility of using NAT systems in the lab as dark energy analogues. This paper goes one step further, looking into the cosmological consequences of the existence of a NAT component in the Universe. NAT-dominated expanding Universes experience a borderline phantom expansion (w < -1) with no Big Rip, and their contracting counterparts are forced to bounce after the energy density becomes sufficiently large. Both scenarios might be used to solve horizon and flatness problems analogously to standard inflation and bouncing cosmologies. We discuss the difficulties in obtaining and ending a NAT-dominated epoch, and possible ways of obtaining density perturbations with an acceptable spectrum.

  5. Evaluation of the Absolute Regional Temperature Potential

    NASA Technical Reports Server (NTRS)

    Shindell, D. T.

    2012-01-01

    The Absolute Regional Temperature Potential (ARTP) is one of the few climate metrics that provides estimates of impacts at a sub-global scale. The ARTP presented here gives the time-dependent temperature response in four latitude bands (90-28degS, 28degS-28degN, 28-60degN and 60-90degN) as a function of emissions based on the forcing in those bands caused by the emissions. It is based on a large set of simulations performed with a single atmosphere-ocean climate model to derive regional forcing/response relationships. Here I evaluate the robustness of those relationships using the forcing/response portion of the ARTP to estimate regional temperature responses to the historic aerosol forcing in three independent climate models. These ARTP results are in good accord with the actual responses in those models. Nearly all ARTP estimates fall within +/-20%of the actual responses, though there are some exceptions for 90-28degS and the Arctic, and in the latter the ARTP may vary with forcing agent. However, for the tropics and the Northern Hemisphere mid-latitudes in particular, the +/-20% range appears to be roughly consistent with the 95% confidence interval. Land areas within these two bands respond 39-45% and 9-39% more than the latitude band as a whole. The ARTP, presented here in a slightly revised form, thus appears to provide a relatively robust estimate for the responses of large-scale latitude bands and land areas within those bands to inhomogeneous radiative forcing and thus potentially to emissions as well. Hence this metric could allow rapid evaluation of the effects of emissions policies at a finer scale than global metrics without requiring use of a full climate model.

  6. An All Fiber White Light Interferometric Absolute Temperature Measurement System

    PubMed Central

    Kim, Jeonggon Harrison

    2008-01-01

    Recently the author of this article proposed a new signal processing algorithm for an all fiber white light interferometer. In this article, an all fiber white light interferometric absolute temperature measurement system is presented using the previously proposed signal processing algorithm. Stability and absolute temperature measurement were demonstrated. These two tests demonstrated the feasibility of absolute temperature measurement with an accuracy of 0.015 fringe and 0.0005 fringe, respectively. A hysteresis test from 373K to 873K was also presented. Finally, robustness of the sensor system towards laser diode temperature drift, AFMZI temperature drift and PZT non-linearity was demonstrated.

  7. Communication: The absolute shielding scales of oxygen and sulfur revisited

    SciTech Connect

    Komorovsky, Stanislav; Repisky, Michal; Malkin, Elena; Ruud, Kenneth; Gauss, Jürgen

    2015-03-07

    We present an updated semi-experimental absolute shielding scale for the {sup 17}O and {sup 33}S nuclei. These new shielding scales are based on accurate rotational microwave data for the spin–rotation constants of H{sub 2}{sup 17}O [Puzzarini et al., J. Chem. Phys. 131, 234304 (2009)], C{sup 17}O [Cazzoli et al., Phys. Chem. Chem. Phys. 4, 3575 (2002)], and H{sub 2}{sup 33}S [Helgaker et al., J. Chem. Phys. 139, 244308 (2013)] corrected both for vibrational and temperature effects estimated at the CCSD(T) level of theory as well as for the relativistic corrections to the relation between the spin–rotation constant and the absolute shielding constant. Our best estimate for the oxygen shielding constants of H{sub 2}{sup 17}O is 328.4(3) ppm and for C{sup 17}O −59.05(59) ppm. The relativistic correction for the sulfur shielding of H{sub 2}{sup 33}S amounts to 3.3%, and the new sulfur shielding constant for this molecule is 742.9(4.6) ppm.

  8. Articulated Multimedia Physics, Lesson 14, Gases, The Gas Laws, and Absolute Temperature.

    ERIC Educational Resources Information Center

    New York Inst. of Tech., Old Westbury.

    As the fourteenth lesson of the Articulated Multimedia Physics Course, instructional materials are presented in this study guide with relation to gases, gas laws, and absolute temperature. The topics are concerned with the kinetic theory of gases, thermometric scales, Charles' law, ideal gases, Boyle's law, absolute zero, and gas pressures. The…

  9. Passive absolute age and temperature history sensor

    SciTech Connect

    Robinson, Alex; Vianco, Paul T.

    2015-11-10

    A passive sensor for historic age and temperature sensing, including a first member formed of a first material, the first material being either a metal or a semiconductor material and a second member formed of a second material, the second material being either a metal or a semiconductor material. A surface of the second member is in contact with a surface of the first member such that, over time, the second material of the second member diffuses into the first material of the first member. The rate of diffusion for the second material to diffuse into the first material depends on a temperature of the passive sensor. One of the electrical conductance, the electrical capacitance, the electrical inductance, the optical transmission, the optical reflectance, or the crystalline structure of the passive sensor depends on the amount of the second material that has diffused into the first member.

  10. Mid-infrared absolute spectral responsivity scale based on an absolute cryogenic radiometer and an optical parametric oscillator laser

    NASA Astrophysics Data System (ADS)

    Zhao, Kun; Shi, Xueshun; Chen, Haidong; Liu, Yulong; Liu, Changming; Chen, Kunfeng; Li, Ligong; Gan, Haiyong; Ma, Chong

    2016-06-01

    We are reporting on a laser-based absolute spectral responsivity scale in the mid-infrared spectral range. By using a mid-infrared tunable optical parametric oscillator as the laser source, the absolute responsivity scale has been established by calibrating thin-film thermopile detectors against an absolute cryogenic radiometer. The thin-film thermopile detectors can be then used as transfer standard detectors. The extended uncertainty of the absolute spectral responsivity measurement has been analyzed to be 0.58%–0.68% (k  =  2).

  11. Mid-infrared absolute spectral responsivity scale based on an absolute cryogenic radiometer and an optical parametric oscillator laser

    NASA Astrophysics Data System (ADS)

    Zhao, Kun; Shi, Xueshun; Chen, Haidong; Liu, Yulong; Liu, Changming; Chen, Kunfeng; Li, Ligong; Gan, Haiyong; Ma, Chong

    2016-06-01

    We are reporting on a laser-based absolute spectral responsivity scale in the mid-infrared spectral range. By using a mid-infrared tunable optical parametric oscillator as the laser source, the absolute responsivity scale has been established by calibrating thin-film thermopile detectors against an absolute cryogenic radiometer. The thin-film thermopile detectors can be then used as transfer standard detectors. The extended uncertainty of the absolute spectral responsivity measurement has been analyzed to be 0.58%-0.68% (k  =  2).

  12. Absolute Temperature Monitoring Using RF Radiometry in the MRI Scanner.

    PubMed

    El-Sharkawy, Abdel-Monem M; Sotiriadis, Paul P; Bottomley, Paul A; Atalar, Ergin

    2006-11-01

    Temperature detection using microwave radiometry has proven value for noninvasively measuring the absolute temperature of tissues inside the body. However, current clinical radiometers operate in the gigahertz range, which limits their depth of penetration. We have designed and built a noninvasive radiometer which operates at radio frequencies (64 MHz) with ∼100-kHz bandwidth, using an external RF loop coil as a thermal detector. The core of the radiometer is an accurate impedance measurement and automatic matching circuit of 0.05 Ω accuracy to compensate for any load variations. The radiometer permits temperature measurements with accuracy of ±0.1°K, over a tested physiological range of 28° C-40° C in saline phantoms whose electric properties match those of tissue. Because 1.5 T magnetic resonance imaging (MRI) scanners also operate at 64 MHz, we demonstrate the feasibility of integrating our radiometer with an MRI scanner to monitor RF power deposition and temperature dosimetry, obtaining coarse, spatially resolved, absolute thermal maps in the physiological range. We conclude that RF radiometry offers promise as a direct, noninvasive method of monitoring tissue heating during MRI studies and thereby providing an independent means of verifying patient-safe operation. Other potential applications include titration of hyper- and hypo-therapies. PMID:18026562

  13. An absolute scale for measuring the utility of money

    NASA Astrophysics Data System (ADS)

    Thomas, P. J.

    2010-07-01

    Measurement of the utility of money is essential in the insurance industry, for prioritising public spending schemes and for the evaluation of decisions on protection systems in high-hazard industries. Up to this time, however, there has been no universally agreed measure for the utility of money, with many utility functions being in common use. In this paper, we shall derive a single family of utility functions, which have risk-aversion as the only free parameter. The fact that they return a utility of zero at their low, reference datum, either the utility of no money or of one unit of money, irrespective of the value of risk-aversion used, qualifies them to be regarded as absolute scales for the utility of money. Evidence of validation for the concept will be offered based on inferential measurements of risk-aversion, using diverse measurement data.

  14. An absolute interval scale of order for point patterns

    PubMed Central

    Protonotarios, Emmanouil D.; Baum, Buzz; Johnston, Alan; Hunter, Ginger L.; Griffin, Lewis D.

    2014-01-01

    Human observers readily make judgements about the degree of order in planar arrangements of points (point patterns). Here, based on pairwise ranking of 20 point patterns by degree of order, we have been able to show that judgements of order are highly consistent across individuals and the dimension of order has an interval scale structure spanning roughly 10 just-notable-differences (jnd) between disorder and order. We describe a geometric algorithm that estimates order to an accuracy of half a jnd by quantifying the variability of the size and shape of spaces between points. The algorithm is 70% more accurate than the best available measures. By anchoring the output of the algorithm so that Poisson point processes score on average 0, perfect lattices score 10 and unit steps correspond closely to jnds, we construct an absolute interval scale of order. We demonstrate its utility in biology by using this scale to quantify order during the development of the pattern of bristles on the dorsal thorax of the fruit fly. PMID:25079866

  15. Absolute brightness temperature measurements at 3.5-mm wavelength. [of sun, Venus, Jupiter and Saturn

    NASA Technical Reports Server (NTRS)

    Ulich, B. L.; Rhodes, P. J.; Davis, J. H.; Hollis, J. M.

    1980-01-01

    Careful observations have been made at 86.1 GHz to derive the absolute brightness temperatures of the sun (7914 + or - 192 K), Venus (357.5 + or - 13.1 K), Jupiter (179.4 + or - 4.7 K), and Saturn (153.4 + or - 4.8 K) with a standard error of about three percent. This is a significant improvement in accuracy over previous results at millimeter wavelengths. A stable transmitter and novel superheterodyne receiver were constructed and used to determine the effective collecting area of the Millimeter Wave Observatory (MWO) 4.9-m antenna relative to a previously calibrated standard gain horn. The thermal scale was set by calibrating the radiometer with carefully constructed and tested hot and cold loads. The brightness temperatures may be used to establish an absolute calibration scale and to determine the antenna aperture and beam efficiencies of other radio telescopes at 3.5-mm wavelength.

  16. Strong thermal leptogenesis and the absolute neutrino mass scale

    SciTech Connect

    Bari, Pasquale Di; King, Sophie E.; Fiorentin, Michele Re E-mail: sk1806@soton.ac.uk

    2014-03-01

    We show that successful strong thermal leptogenesis, where the final asymmetry is independent of the initial conditions and in particular a large pre-existing asymmetry is efficiently washed-out, favours values of the lightest neutrino mass m{sub 1}∼>10 meV for normal ordering (NO) and m{sub 1}∼>3 meV for inverted ordering (IO) for models with orthogonal matrix entries respecting |Ω{sub ij}{sup 2}|∼<2. We show analytically why lower values of m{sub 1} require a higher level of fine tuning in the seesaw formula and/or in the flavoured decay parameters (in the electronic for NO, in the muonic for IO). We also show how this constraint exists thanks to the measured values of the neutrino mixing angles and could be tightened by a future determination of the Dirac phase. Our analysis also allows us to place a more stringent constraint for a specific model or class of models, such as SO(10)-inspired models, and shows that some models cannot realise strong thermal leptogenesis for any value of m{sub 1}. A scatter plot analysis fully supports the analytical results. We also briefly discuss the interplay with absolute neutrino mass scale experiments concluding that they will be able in the coming years to either corner strong thermal leptogenesis or find positive signals pointing to a non-vanishing m{sub 1}. Since the constraint is much stronger for NO than for IO, it is very important that new data from planned neutrino oscillation experiments will be able to solve the ambiguity.

  17. Equilibration Rates and Negative Absolute Temperatures for Ultracold Atoms in Optical Lattices

    NASA Astrophysics Data System (ADS)

    Rapp, Akos; Mandt, Stephan; Rosch, Achim

    2010-11-01

    As highly tunable interacting systems, cold atoms in optical lattices are ideal to realize and observe negative absolute temperatures, T<0. We show theoretically that, by reversing the confining potential, stable superfluid condensates at finite momentum and T<0 can be created with low entropy production for attractive bosons. They may serve as “smoking gun” signatures of equilibrated T<0. For fermions, we analyze the time scales needed to equilibrate to T<0. For moderate interactions, the equilibration time is proportional to the square of the radius of the cloud and grows with increasing interaction strengths as atoms and energy are transported by diffusive processes.

  18. Absolute Calibration of the Radio Astronomy Flux Density Scale at 22 to 43 GHz Using Planck

    NASA Astrophysics Data System (ADS)

    Partridge, B.; López-Caniego, M.; Perley, R. A.; Stevens, J.; Butler, B. J.; Rocha, G.; Walter, B.; Zacchei, A.

    2016-04-01

    The Planck mission detected thousands of extragalactic radio sources at frequencies from 28 to 857 GHz. Planck's calibration is absolute (in the sense that it is based on the satellite’s annual motion around the Sun and the temperature of the cosmic microwave background), and its beams are well characterized at sub-percent levels. Thus, Planck's flux density measurements of compact sources are absolute in the same sense. We have made coordinated Very Large Array (VLA) and Australia Telescope Compact Array (ATCA) observations of 65 strong, unresolved Planck sources in order to transfer Planck's calibration to ground-based instruments at 22, 28, and 43 GHz. The results are compared to microwave flux density scales currently based on planetary observations. Despite the scatter introduced by the variability of many of the sources, the flux density scales are determined to 1%-2% accuracy. At 28 GHz, the flux density scale used by the VLA runs 2%-3% ± 1.0% below Planck values with an uncertainty of +/- 1.0%; at 43 GHz, the discrepancy increases to 5%-6% ± 1.4% for both ATCA and the VLA.

  19. Extension of the absolute flux density scale to 22.285 GHz. [radio astronomy

    NASA Technical Reports Server (NTRS)

    Janssen, M. A.; Golden, L. M.; Welch, W. J.

    1974-01-01

    Extending the absolute flux density scale at microwave wavelengths, the absolute flux densities at 22.285 GHz of several standard sources were determined using the absolute calibrations of the 6.1 meter antenna of the Hat Creek Observatory. Interpolation formulas for each nonthermal standard source have been derived by combining these data with those determined at lower frequencies. The suitability of employing the standard sources for calibrating other antennas is discussed.

  20. Fast, Computer Supported Experimental Determination of Absolute Zero Temperature at School

    ERIC Educational Resources Information Center

    Bogacz, Bogdan F.; Pedziwiatr, Antoni T.

    2014-01-01

    A simple and fast experimental method of determining absolute zero temperature is presented. Air gas thermometer coupled with pressure sensor and data acquisition system COACH is applied in a wide range of temperature. By constructing a pressure vs temperature plot for air under constant volume it is possible to obtain--by extrapolation to zero…

  1. Electrical Noise and the Measurement of Absolute Temperature, Boltzmann's Constant and Avogadro's Number.

    ERIC Educational Resources Information Center

    Ericson, T. J.

    1988-01-01

    Describes an apparatus capable of measuring absolute temperatures of a tungsten filament bulb up to normal running temperature and measuring Botzmann's constant to an accuracy of a few percent. Shows that electrical noise techniques are convenient to demonstrate how the concept of temperature is related to the micro- and macroscopic world. (CW)

  2. Absolute and Relative Reliability of Percentage of Syllables Stuttered and Severity Rating Scales

    ERIC Educational Resources Information Center

    Karimi, Hamid; O'Brian, Sue; Onslow, Mark; Jones, Mark

    2014-01-01

    Purpose: Percentage of syllables stuttered (%SS) and severity rating (SR) scales are measures in common use to quantify stuttering severity and its changes during basic and clinical research conditions. However, their reliability has not been assessed with indices measuring both relative and absolute reliability. This study was designed to provide…

  3. Global-Scale Location and Distance Estimates: Common Representations and Strategies in Absolute and Relative Judgments

    ERIC Educational Resources Information Center

    Friedman, Alinda; Montello, Daniel R.

    2006-01-01

    The authors examined whether absolute and relative judgments about global-scale locations and distances were generated from common representations. At the end of a 10-week class on the regional geography of the United States, participants estimated the latitudes of 16 North American cities and all possible pairwise distances between them. Although…

  4. Effects of confining pressure, pore pressure and temperature on absolute permeability. SUPRI TR-27

    SciTech Connect

    Gobran, B.D.; Ramey, H.J. Jr.; Brigham, W.E.

    1981-10-01

    This study investigates absolute permeability of consolidated sandstone and unconsolidated sand cores to distilled water as a function of the confining pressure on the core, the pore pressure of the flowing fluid and the temperature of the system. Since permeability measurements are usually made in the laboratory under conditions very different from those in the reservoir, it is important to know the effect of various parameters on the measured value of permeability. All studies on the effect of confining pressure on absolute permeability have found that when the confining pressure is increased, the permeability is reduced. The studies on the effect of temperature have shown much less consistency. This work contradicts the past Stanford studies by finding no effect of temperature on the absolute permeability of unconsolidated sand or sandstones to distilled water. The probable causes of the past errors are discussed. It has been found that inaccurate measurement of temperature at ambient conditions and non-equilibrium of temperature in the core can lead to a fictitious permeability reduction with temperature increase. The results of this study on the effect of confining pressure and pore pressure support the theory that as confining pressure is increased or pore pressure decreased, the permeability is reduced. The effects of confining pressure and pore pressure changes on absolute permeability are given explicitly so that measurements made under one set of confining pressure/pore pressure conditions in the laboratory can be extrapolated to conditions more representative of the reservoir.

  5. Energy dispersive X-ray analysis on an absolute scale in scanning transmission electron microscopy.

    PubMed

    Chen, Z; D'Alfonso, A J; Weyland, M; Taplin, D J; Allen, L J; Findlay, S D

    2015-10-01

    We demonstrate absolute scale agreement between the number of X-ray counts in energy dispersive X-ray spectroscopy using an atomic-scale coherent electron probe and first-principles simulations. Scan-averaged spectra were collected across a range of thicknesses with precisely determined and controlled microscope parameters. Ionization cross-sections were calculated using the quantum excitation of phonons model, incorporating dynamical (multiple) electron scattering, which is seen to be important even for very thin specimens.

  6. Absolute shielding scale for 31P from gas-phase NMR studies

    NASA Astrophysics Data System (ADS)

    Jameson, Cynthia J.; De Dios, Angel; Keith Jameson, A.

    1990-04-01

    Differences in the 31P nuclear shielding in the zero-pressure limit have been measured in seven compounds. An absolute 31P shielding scale based on the PH 3 molecular beam data is established and the absolute shielding of the standard liquid reference (85% aqueous H 3PO 4) is found to be 328.35 ppm, based on PH 3 being 594.45 ± 0.63 ppm. Comparisons with ab initio calculations show that calculations using local origins (the IGLO method) are in good agreement with experiment.

  7. Introducing Temperature Scales.

    ERIC Educational Resources Information Center

    McIldowie, Eric

    1998-01-01

    Ignoring the interpretive problems of temperature measurement deprives students of a beneficial, positive educational experience. Suggests experimenting with different thermometers including a copper resistance thermometer, a thermistor, a thermocouple, and a constant-volume air thermometer. Provides guidance for the classroom discussion of…

  8. The possibility of constructing the hydrogen scale of the absolute atomic masses of the elements

    NASA Astrophysics Data System (ADS)

    Kuz'min, I. I.

    2009-12-01

    The paper presents a scheme for the experimental-empirical construction of the existing chemical, physical, and carbon scales of the relative nonintegral atomic masses of the elements. The quantitative interrelation between the nonintegral relative atomic masses, their minimized fractional positive and negative natural deviations from integral numbers, and their integral parts are reproduced mathematically. Nonisotopic fractional deviations are shown to be a consequence of methodological side effects of the scheme for theoretical processing of the data of thorough physical and chemical measurements performed by Stas and Aston in constructing scales of relative atomic masses. In conformity with the Prout hypothesis, the absolute atomic mass unit and the corresponding Avogadro’s number value are suggested for the construction of the hydrogen scale of absolute atomic masses of nonisotopic elements, individual isotopes, and isotope-containing elements.

  9. Temperature-dependent Absolute Refractive Index Measurements of Synthetic Fused Silica

    NASA Technical Reports Server (NTRS)

    Leviton, Douglas B.; Frey, Bradley J.

    2006-01-01

    Using the Cryogenic, High-Accuracy Refraction Measuring System (CHARMS) at NASA's Goddard Space Flight Center, we have measured the absolute refractive index of five specimens taken from a very large boule of Corning 7980 fused silica from temperatures ranging from 30 to 310 K at wavelengths from 0.4 to 2.6 microns with an absolute uncertainty of plus or minus 1 x 10 (exp -5). Statistical variations in derived values of the thermo-optic coefficient (dn/dT) are at the plus or minus 2 x 10 (exp -8)/K level. Graphical and tabulated data for absolute refractive index, dispersion, and thermo-optic coefficient are presented for selected wavelengths and temperatures along with estimates of uncertainty in index. Coefficients for temperature-dependent Sellmeier fits of measured refractive index are also presented to allow accurate interpolation of index to other wavelengths and temperatures. We compare our results to those from an independent investigation (which used an interferometric technique for measuring index changes as a function of temperature) whose samples were prepared from the same slugs of material from which our prisms were prepared in support of the Kepler mission. We also compare our results with sparse cryogenic index data from measurements of this material from the literature.

  10. Study of absolute detection technique with the rotational Raman lidar for atmospheric temperature

    NASA Astrophysics Data System (ADS)

    Li, Shichun; Wei, Pengpeng; Gong, Xin; Hua, Dengxin

    2015-10-01

    The rotational Raman lidar is a valid tool to profile atmospheric temperature. But the fact that its proper operation generally needs a certain collocated device for calibration seriously restricts application in the meteorology and environment fields. We propose an absolute detection technique of atmospheric temperature with the rotational Raman lidar, which is based on the dependence of rotational Raman spectral envelope on temperature. To retrieve atmospheric temperature without calibration, six rotational Raman spectra of nitrogen molecule are chosen from the anti-Strokes branch. A temperature retrieval algorithm is presented and analyzed based on the least square principle. A two-cascade Raman spectroscopic filter is constructed by one first-order diffraction grating, one convex lens, one linear fiber array and 6 groups of fiber Bragg gratings. This lidar is configured with a 300-mJ pulse energy laser and a 250-mm clear aperture telescope. Simulation results show that it can extract the nitrogen molecules rotational Raman spectral lines, and that atmospheric temperature profile obtained through absolute retrieval algorithm can be up to 3.5 km with less than 0.5-K deviation within 17 minutes interval.

  11. Time-series modeling and prediction of global monthly absolute temperature for environmental decision making

    NASA Astrophysics Data System (ADS)

    Ye, Liming; Yang, Guixia; Van Ranst, Eric; Tang, Huajun

    2013-03-01

    A generalized, structural, time series modeling framework was developed to analyze the monthly records of absolute surface temperature, one of the most important environmental parameters, using a deterministicstochastic combined (DSC) approach. Although the development of the framework was based on the characterization of the variation patterns of a global dataset, the methodology could be applied to any monthly absolute temperature record. Deterministic processes were used to characterize the variation patterns of the global trend and the cyclic oscillations of the temperature signal, involving polynomial functions and the Fourier method, respectively, while stochastic processes were employed to account for any remaining patterns in the temperature signal, involving seasonal autoregressive integrated moving average (SARIMA) models. A prediction of the monthly global surface temperature during the second decade of the 21st century using the DSC model shows that the global temperature will likely continue to rise at twice the average rate of the past 150 years. The evaluation of prediction accuracy shows that DSC models perform systematically well against selected models of other authors, suggesting that DSC models, when coupled with other ecoenvironmental models, can be used as a supplemental tool for short-term (˜10-year) environmental planning and decision making.

  12. Review of deformation behavior of tungsten at temperature less than 0.2 absolute melting temperature

    NASA Technical Reports Server (NTRS)

    Stephens, J. R.

    1972-01-01

    The deformation behavior of tungsten at temperatures 0.2 T sub m is reviewed, with primary emphasis on the temperature dependence of the yield stress and the ductile-brittle transition temperature. It appears that a model based on the high Peierls stress of tungsten best accounts for the observed mechanical behavior at low temperatures. Recent research is discussed which suggests an important role of electron concentration and bonding on the mechanical behavior of tungsten. It is concluded that future research on tungsten should include studies to define more clearly the correlation between electron concentration and mechanical behavior of tungsten alloys and other transition metal alloys.

  13. Measurements of absolute absorption cross sections of ozone in the 185- to 254-nm wavelength region and the temperature dependence

    NASA Technical Reports Server (NTRS)

    Yoshino, K.; Esmond, J. R.; Freeman, D. E.; Parkinson, W. H.

    1993-01-01

    Laboratory measurements of the relative absorption cross sections of ozone at temperatures 195, 228, and 295 K have been made throughout the 185 to 254 nm wavelength region. The absolute absorption cross sections at the same temperatures have been measured at several discrete wavelengths in the 185 to 250 nm region. The absolute cross sections of ozone have been used to put the relative cross sections on a firm absolute basis throughout the 185 to 255 nm region. These recalibrated cross sections are slightly lower than those of Molina and Molina (1986), but the differences are within a few percent and would not be significant in atmospheric applications.

  14. The impact of water temperature on the measurement of absolute dose

    NASA Astrophysics Data System (ADS)

    Islam, Naveed Mehdi

    To standardize reference dosimetry in radiation therapy, Task Group 51 (TG 51) of American Association of Physicist's in Medicine (AAPM) recommends that dose calibration measurements be made in a water tank at a depth of 10 cm and at a reference geometry. Methodologies are provided for calculating various correction factors to be applied in calculating the absolute dose. However the protocol does not specify the water temperature to be used. In practice, the temperature of water during dosimetry may vary considerably between independent sessions and different centers. In this work the effect of water temperature on absolute dosimetry has been investigated. Density of water varies with temperature, which in turn may impact the beam attenuation and scatter properties. Furthermore, due to thermal expansion or contraction air volume inside the chamber may change. All of these effects can result in a change in the measurement. Dosimetric measurements were made using a Farmer type ion chamber on a Varian Linear Accelerator for 6 MV and 23 MV photon energies for temperatures ranging from 10 to 40 °C. A thermal insulation was designed for the water tank in order to maintain relatively stable temperature over the duration of the experiment. Dose measured at higher temperatures were found to be consistently higher by a very small magnitude. Although the differences in dose were less than the uncertainty in each measurement, a linear regression of the data suggests that the trend is statistically significant with p-values of 0.002 and 0.013 for 6 and 23 MV beams respectively. For a 10 degree difference in water phantom temperatures, which is a realistic deviation across clinics, the final calculated reference dose can differ by 0.24% or more. To address this effect, first a reference temperature (e.g.22 °C) can be set as the standard; subsequently a correction factor can be implemented for deviations from this reference. Such a correction factor is expected to be of similar

  15. A self-consistent, absolute isochronal age scale for young moving groups in the solar neighbourhood

    NASA Astrophysics Data System (ADS)

    Bell, Cameron P. M.; Mamajek, Eric E.; Naylor, Tim

    2015-11-01

    We present a self-consistent, absolute isochronal age scale for young ( ≲ 200 Myr), nearby ( ≲ 100 pc) moving groups in the solar neighbourhood based on homogeneous fitting of semi-empirical pre-main-sequence model isochrones using the τ2 maximum-likelihood fitting statistic of Naylor & Jeffries in the MV, V - J colour-magnitude diagram. The final adopted ages for the groups are as follows: 149^{+51}_{-19} {Myr} for the AB Dor moving group, 24 ± 3 Myr for the β Pic moving group (BPMG), 45^{+11}_{-7} {Myr} for the Carina association, 42^{+6}_{-4} {Myr} for the Columba association, 11 ± 3 Myr for the η Cha cluster, 45 ± 4 Myr for the Tucana-Horologium moving group (Tuc-Hor), 10 ± 3 Myr for the TW Hya association and 22^{+4}_{-3} {Myr} for the 32 Ori group. At this stage we are uncomfortable assigning a final, unambiguous age to the Argus association as our membership list for the association appears to suffer from a high level of contamination, and therefore it remains unclear whether these stars represent a single population of coeval stars. Our isochronal ages for both the BPMG and Tuc-Hor are consistent with recent lithium depletion boundary (LDB) ages, which unlike isochronal ages, are relatively insensitive to the choice of low-mass evolutionary models. This consistency between the isochronal and LDB ages instils confidence that our self-consistent, absolute age scale for young, nearby moving groups is robust, and hence we suggest that these ages be adopted for future studies of these groups. Software implementing the methods described in this study is available from http://www.astro.ex.ac.uk/people/timn/tau-squared/.

  16. Global-scale location and distance estimates: common representations and strategies in absolute and relative judgments.

    PubMed

    Friedman, Alinda; Montello, Daniel R

    2006-03-01

    The authors examined whether absolute and relative judgments about global-scale locations and distances were generated from common representations. At the end of a 10-week class on the regional geography of the United States, participants estimated the latitudes of 16 North American cities and all possible pairwise distances between them. Although participants were relative experts, their latitude estimates revealed the presence of psychologically based regions with large gaps between them and a tendency to stretch North America southward toward the equator. The distance estimates revealed the same properties in the representation recovered via multidimensional scaling. Though the aggregated within- and between-regions distance estimates were fitted by Stevens's law (S. S. Stevens, 1957), this was an averaging artifact: The appropriateness of a power function to describe distance estimates depended on the regional membership of the cities. The authors conclude that plausible reasoning strategies, combined with regionalized representations and beliefs about the location of these relative to global landmarks, underlie global-scale latitude and distance judgments.

  17. A Concurrent Mixed Methods Approach to Examining the Quantitative and Qualitative Meaningfulness of Absolute Magnitude Estimation Scales in Survey Research

    ERIC Educational Resources Information Center

    Koskey, Kristin L. K.; Stewart, Victoria C.

    2014-01-01

    This small "n" observational study used a concurrent mixed methods approach to address a void in the literature with regard to the qualitative meaningfulness of the data yielded by absolute magnitude estimation scaling (MES) used to rate subjective stimuli. We investigated whether respondents' scales progressed from less to more and…

  18. The Measurement of Temperature; Part i: Temperature Scales

    ERIC Educational Resources Information Center

    Forrest, A. M.

    1974-01-01

    Discusses the inter-relationships between some important temperature scales such as the Celsius scale, the Kelvin Thermodynamic scale, and the International Practical Temperature Scale (IPTS). Included is a description of the 1968 IPTS with emphasis on innovations introduced in the range below 273.15 k. (CC)

  19. Absolute absorption cross-section measurements of ozone in the wavelength region 238-335 nm and the temperature dependence

    NASA Technical Reports Server (NTRS)

    Yoshino, K.; Freeman, D. E.; Esmond, J. R.; Parkinson, W. H.

    1988-01-01

    The absolute absorption cross-section of ozone has been experimentally determined at the temperatures 195, 228, and 295 K at several discrete wavelengths in the 238-335-nm region. The present results for ozone at 295 K are found to be in agreement with those of Hearn (1961). Absolute cross-section measurements of ozone at 195 K have confirmed previous (Freeman et al., 1984) relative cross-section measurements throughout the 240-335-nm region.

  20. In-Flight Measurement of the Absolute Energy Scale of the Fermi Large Area Telescope

    SciTech Connect

    Ackermann, M.; Ajello, M.; Allafort, A.; Atwood, W.B.; Axelsson, M.; Baldini, L.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Berenji, B.; Bloom, E.D.; Bonamente, E.; Borgland, A.W.; Bouvier, A.; Bregeon, J.; Brez, A.; Brigida, M.; Bruel, P.; Buehler, R.; Buson, S.; /more authors..

    2012-09-20

    The Large Area Telescope (LAT) on-board the Fermi Gamma-ray Space Telescope is a pair-conversion telescope designed to survey the gamma-ray sky from 20 MeV to several hundreds of GeV. In this energy band there are no astronomical sources with sufficiently well known and sharp spectral features to allow an absolute calibration of the LAT energy scale. However, the geomagnetic cutoff in the cosmic ray electron-plus-positron (CRE) spectrum in low Earth orbit does provide such a spectral feature. The energy and spectral shape of this cutoff can be calculated with the aid of a numerical code tracing charged particles in the Earth's magnetic field. By comparing the cutoff value with that measured by the LAT in different geomagnetic positions, we have obtained several calibration points between {approx}6 and {approx}13 GeV with an estimated uncertainty of {approx}2%. An energy calibration with such high accuracy reduces the systematic uncertainty in LAT measurements of, for example, the spectral cutoff in the emission from gamma ray pulsars.

  1. NMR absolute shielding scale and nuclear magnetic dipole moment of (207)Pb.

    PubMed

    Adrjan, Bożena; Makulski, Włodzimierz; Jackowski, Karol; Demissie, Taye B; Ruud, Kenneth; Antušek, Andrej; Jaszuński, Michał

    2016-06-28

    An absolute shielding scale is proposed for (207)Pb nuclear magnetic resonance (NMR) spectroscopy. It is based on ab initio calculations performed on an isolated tetramethyllead Pb(CH3)4 molecule and the assignment of the experimental resonance frequency from the gas-phase NMR spectra of Pb(CH3)4, extrapolated to zero density of the buffer gas to obtain the result for an isolated molecule. The computed (207)Pb shielding constant is 10 790 ppm for the isolated molecule, leading to a shielding of 10799.7 ppm for liquid Pb(CH3)4 which is the accepted reference standard for (207)Pb NMR spectra. The new experimental and theoretical data are used to determine μ((207)Pb), the nuclear magnetic dipole moment of (207)Pb, by applying the standard relationship between NMR frequencies, shielding constants and nuclear moments of two nuclei in the same external magnetic field. Using the gas-phase (207)Pb and (reference) proton results and the theoretical value of the Pb shielding in Pb(CH3)4, we find μ((207)Pb) = 0.59064 μN. The analysis of new experimental and theoretical data obtained for the Pb(2+) ion in water solutions provides similar values of μ((207)Pb), in the range of 0.59000-0.59131 μN. PMID:27265668

  2. In-Flight Measurement of the Absolute Energy Scale of the Fermi Large Area Telescope

    NASA Technical Reports Server (NTRS)

    Ackermann, M.; Ajello, M.; Allafort, A.; Atwood, W. B.; Axelsson, M.; Baldini, L.; Barbielini, G; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Berenji, B,; Bloom, E. D.; Bonamente, E.; Borgland, A. W.; Bouvier, A.; Bregeon, J.; Brez, A.; Brigida, M.; Bruel, P.; Buehler, R.; Gehrels, N.; Hays, E.; McEnery, J. E.; Thompson, D. J.; Troja, E. J.

    2012-01-01

    The Large Area Telescope (LAT) on-board the Fermi Gamma-ray Space Telescope is a pair-conversion telescope designed to survey the gamma-ray sky from 20 MeV to several hundreds of GeV. In this energy band there are no astronomical sources with sufficiently well known and sharp spectral features to allow an absolute calibration of the LAT energy scale. However, the geomagnetic cutoff in the cosmic ray electron- plus-positron (CRE) spectrum in low Earth orbit does provide such a spectral feature. The energy and spectral shape of this cutoff can be calculated with the aid of a numerical code tracing charged particles in the Earth's magnetic field. By comparing the cutoff value with that measured by the LAT in different geomagnetic positions, we have obtained several calibration points between approx. 6 and approx. 13 GeV with an estimated uncertainty of approx. 2%. An energy calibration with such high accuracy reduces the systematic uncertainty in LAT measurements of, for example, the spectral cutoff in the emission from gamma ray pulsars.

  3. Retinal origins of the temperature effect on absolute visual sensitivity in frogs.

    PubMed

    Aho, A C; Donner, K; Reuter, T

    1993-04-01

    1. The absolute sensitivity of vision was studied as a function of temperature in two species of frog (Rana temporaria, 9-21 degrees C, and Rana pipiens, 13-28 degrees C). 2. Log behavioural threshold (measured as the lowest light intensity by which frogs trying to escape from a dark box were able to direct their jumping) rose near-linearly with warming with a regression coefficient of 1.26 +/- 0.03 log units per 10 degrees C (Q10 = 18). Threshold retinal illumination corresponded to 0.011 photoisomerizations per rod per second (Rh* s-1) at 16.5 degrees C. 3. The effect of dim backgrounds on jumping thresholds suggested 'dark lights' of 0.011 Rh* s-1 at 16.5 degrees C and 0.080 Rh* s-1 at 23.5 degrees C, corresponding to Q10 = 17. 4. Response thresholds of retinal ganglion cells were extracellularly recorded in the isolated eyecup of R. temporaria. The thresholds of the most sensitive cells when stimulated with large-field steps of light were similar to the behavioural threshold and changed with temperature in a similar manner. 5. The decrease in ganglion cell 'step' sensitivity with warming consisted of a decrease in summation time (by a factor of 2-3 between 10 and 20 degrees C) and an increase in the threshold number of photoisomerizations (a decrease in 'flash' sensitivity, by a factor of 2-5 over the same interval). No effect of temperature changes on spatial summation was found. 6. Frequency-of-response functions of ganglion cells indicated an 11-fold increase in noise-equivalent dark light between 10 and 20 degrees C (mean values in four cells 0.009 vs. 0.10 Rh* s-1). 7. The temperature dependence of ganglion cell flash sensitivity could be strongly decreased with dim background illumination. 8. It is concluded that the desensitization of dark-adapted vision with rising temperature is a retinal effect composed of shortened summation time and lowered flash sensitivity (increased numbers of photons required for a threshold response) in ganglion cells. The

  4. Estimation of absolute water surface temperature based on atmospherically corrected thermal infrared multispectral scanner digital data

    NASA Technical Reports Server (NTRS)

    Anderson, James E.

    1986-01-01

    Airborne remote sensing systems, as well as those on board Earth orbiting satellites, sample electromagnetic energy in discrete wavelength regions and convert the total energy sampled into data suitable for processing by digital computers. In general, however, the total amount of energy reaching a sensor system located at some distance from the target is composed not only of target related energy, but, in addition, contains a contribution originating from the atmosphere itself. Thus, some method must be devised for removing or at least minimizing the effects of the atmosphere. The LOWTRAN-6 Program was designed to estimate atmospheric transmittance and radiance for a given atmospheric path at moderate spectral resolution over an operational wavelength region from 0.25 to 28.5 microns. In order to compute the Thermal Infrared Multispectral Scanner (TIMS) digital values which were recorded in the absence of the atmosphere, the parameters derived from LOWTRAN-6 are used in a correction equation. The TIMS data were collected at 1:00 a.m. local time on November 21, 1983, over a recirculating cooling pond for a power plant in southeastern Mississippi. The TIMS data were analyzed before and after atmospheric corrections were applied using a band ratioing model to compute the absolute surface temperature of various points on the power plant cooling pond. The summarized results clearly demonstrate the desirability of applying atmospheric corrections.

  5. Investigation of Absolute and Relative Scaling Conceptions of Students in Introductory College Chemistry Courses

    ERIC Educational Resources Information Center

    Gerlach, Karrie; Trate, Jaclyn; Blecking, Anja; Geissinger, Peter; Murphy, Kristen

    2014-01-01

    Scale as a theme in science instruction is not a new idea. As early as the mid-1980s, scale was identified as an important component of a student's overall science literacy. However, the study of scale and the scale literacy of students in varying levels of education have received less attention than other science-literacy components.…

  6. Easy Absolute Values? Absolutely

    ERIC Educational Resources Information Center

    Taylor, Sharon E.; Mittag, Kathleen Cage

    2015-01-01

    The authors teach a problem-solving course for preservice middle-grades education majors that includes concepts dealing with absolute-value computations, equations, and inequalities. Many of these students like mathematics and plan to teach it, so they are adept at symbolic manipulations. Getting them to think differently about a concept that they…

  7. Symbolic Formulation of Large-scale Open-loop Multibody Systems for Vibration Analysis Using Absolute Joint Coordinates

    NASA Astrophysics Data System (ADS)

    Jiang, Wei; Chen, Xuedong; Luo, Xin; Huang, Qingjiu

    A novel symbolic formulation is presented to model dynamics of large-scale open-loop holonomic multibody systems, by using absolute joint coordinates and via matrix transformation, instead of solving constraint equations. The resulting minimal set of second-order linear ordinary differential equations (ODEs) can be used for linear vibration analysis and control directly. The ODEs are generated in three steps. Firstly, a set of linearized ODEs are formulated in terms of absolute coordinates without considering any constraint. Secondly, an overall transform matrix representing constraint topology for the entire constrained system is generated. Finally, matrices for a minimal set of ODEs for the open-loop holonomic multibody system are obtained via matrix transformation. The correctness and efficiency of the presented algorithm are verified by numerical experiments on various cases of holonomic multibody systems with different open-loop topologies, including chain topology and tree topology. It is indicated that the proposed method can significantly improve efficiency without losing computational accuracy.

  8. New experimental methodology, setup and LabView program for accurate absolute thermoelectric power and electrical resistivity measurements between 25 and 1600 K: Application to pure copper, platinum, tungsten, and nickel at very high temperatures

    SciTech Connect

    Abadlia, L.; Mayoufi, M.; Gasser, F.; Khalouk, K.; Gasser, J. G.

    2014-09-15

    In this paper we describe an experimental setup designed to measure simultaneously and very accurately the resistivity and the absolute thermoelectric power, also called absolute thermopower or absolute Seebeck coefficient, of solid and liquid conductors/semiconductors over a wide range of temperatures (room temperature to 1600 K in present work). A careful analysis of the existing experimental data allowed us to extend the absolute thermoelectric power scale of platinum to the range 0-1800 K with two new polynomial expressions. The experimental device is controlled by a LabView program. A detailed description of the accurate dynamic measurement methodology is given in this paper. We measure the absolute thermoelectric power and the electrical resistivity and deduce with a good accuracy the thermal conductivity using the relations between the three electronic transport coefficients, going beyond the classical Wiedemann-Franz law. We use this experimental setup and methodology to give new very accurate results for pure copper, platinum, and nickel especially at very high temperatures. But resistivity and absolute thermopower measurement can be more than an objective in itself. Resistivity characterizes the bulk of a material while absolute thermoelectric power characterizes the material at the point where the electrical contact is established with a couple of metallic elements (forming a thermocouple). In a forthcoming paper we will show that the measurement of resistivity and absolute thermoelectric power characterizes advantageously the (change of) phase, probably as well as DSC (if not better), since the change of phases can be easily followed during several hours/days at constant temperature.

  9. New experimental methodology, setup and LabView program for accurate absolute thermoelectric power and electrical resistivity measurements between 25 and 1600 K: application to pure copper, platinum, tungsten, and nickel at very high temperatures.

    PubMed

    Abadlia, L; Gasser, F; Khalouk, K; Mayoufi, M; Gasser, J G

    2014-09-01

    In this paper we describe an experimental setup designed to measure simultaneously and very accurately the resistivity and the absolute thermoelectric power, also called absolute thermopower or absolute Seebeck coefficient, of solid and liquid conductors/semiconductors over a wide range of temperatures (room temperature to 1600 K in present work). A careful analysis of the existing experimental data allowed us to extend the absolute thermoelectric power scale of platinum to the range 0-1800 K with two new polynomial expressions. The experimental device is controlled by a LabView program. A detailed description of the accurate dynamic measurement methodology is given in this paper. We measure the absolute thermoelectric power and the electrical resistivity and deduce with a good accuracy the thermal conductivity using the relations between the three electronic transport coefficients, going beyond the classical Wiedemann-Franz law. We use this experimental setup and methodology to give new very accurate results for pure copper, platinum, and nickel especially at very high temperatures. But resistivity and absolute thermopower measurement can be more than an objective in itself. Resistivity characterizes the bulk of a material while absolute thermoelectric power characterizes the material at the point where the electrical contact is established with a couple of metallic elements (forming a thermocouple). In a forthcoming paper we will show that the measurement of resistivity and absolute thermoelectric power characterizes advantageously the (change of) phase, probably as well as DSC (if not better), since the change of phases can be easily followed during several hours/days at constant temperature.

  10. White-light scanning interferometer for absolute nano-scale gap thickness measurement.

    PubMed

    Xu, Zhiguang; Shilpiekandula, Vijay; Youcef-toumi, Kamal; Yoon, Soon Fatt

    2009-08-17

    A special configuration of white-light scanning interferometer is described for measuring the absolute air gap thickness between two planar plates brought into close proximity. The measured gap is not located in any interference arm of the interferometer, but acts as an amplitude-and-phase modulator of the light source. Compared with the common white-light interferometer our approach avoids the influence of the chromatic dispersion of the planar plates on the gap thickness quantification. It covers a large measurement range of from approximate contact to tens of microns with a high resolution of 0.1 nm. Detailed analytical models are presented and signal-processing algorithms based on convolution and correlation techniques are developed. Practical measurements are carried out and the experimental results match well with the analysis and simulation. Short-time and long-time repeatabilities are both tested to prove the high performance of our method.

  11. Gas-phase NMR measurements, absolute shielding scales, and magnetic dipole moments of 29Si and 73Ge nuclei.

    PubMed

    Makulski, W; Jackowski, K; Antusek, A; Jaszuński, M

    2006-10-12

    New gas-phase NMR measurements of the shielding constants of 29Si, 73Ge, and 1H nuclei in SiH4 and GeH4 are reported. The results, extrapolated to zero density, provide accurate isolated molecule values, best suited for comparison with theoretical calculations. Using the recent ab initio results for these molecules and the measured chemical shifts, we determine the absolute shielding scales for 29Si and 73Ge. This allows us to provide new values of the nuclear magnetic dipole moments for these two nuclei; in addition, we examine the dipole moments of 13C and 119Sn.

  12. Music Proficiency and Quantification of Absolute Pitch: A Large-Scale Study among Brazilian Musicians

    PubMed Central

    Leite, Raphael B. C.; Mota-Rolim, Sergio A.; Queiroz, Claudio M. T.

    2016-01-01

    Absolute pitch (AP) is the ability to identify and name the pitch of a sound without external reference. Often, accuracy and speed at naming isolated musical pitches are correlated with demographic, biological, and acoustical parameters to gain insight into the genesis and evolution of this ability in specific cohorts. However, the majority of those studies were conducted in North America, Europe, or Asia. To fill this gap, here we investigated the pitch-naming performance in a large population of Brazilian conservatory musicians (N = 200). As previously shown, we found that the population performance was rather a continuum than an “all-or-none” ability. By comparing the observed distribution of correct responses to a theoretical binomial distribution, we estimated the prevalence of AP as being 18% amongst regular music students. High accuracy thresholds (e.g., 85% of correct responses) yielded a prevalence of 4%, suggesting that AP might have been underestimated in previous reports. Irrespective of the threshold used, AP prevalence was higher in musicians who started their musical practice and formal musical education early in life. Finally, we compared the performance of those music students (average proficiency group) with another group of students selected to take part in the conservatory orchestra (high proficiency group, N = 30). Interestingly, the prevalence of AP was higher in the latter in comparison to the former group. In addition, even when the response was incorrect, the mean absolute deviation from the correct response was smaller in the high proficiency group compared to the average proficiency group (Glass's Δ: 0.5). Taken together, our results show that the prevalence of AP in Brazilian students is similar to other non-tonal language populations, although this measure is highly dependent on the scoring threshold used. Despite corroborating that early involvement with musical practice and formal education can foster AP ability, the present data

  13. Toward an absolute NMR shielding scale using the spin-rotation tensor within a relativistic framework.

    PubMed

    Aucar, I Agustín; Gomez, Sergio S; Giribet, Claudia G; Aucar, Gustavo A

    2016-08-24

    One of the most influential articles showing the best way to get the absolute values of NMR magnetic shieldings, σ (non-measurables) from both accurate measurements and theoretical calculations, was published a long time ago by Flygare. His model was shown to break down when heavy atoms are involved. This fact motivated the development of new theories of nuclear spin-rotation (SR) tensors, which consider electronic relativistic effects. One was published recently by some of us. In this article we take another step further and propose three different models that generalize Flygare's model. All of them are written using four-component relativistic expressions, though the two-component relativistic SO-S term also appears in one. The first clues for these developments were built from the relationship among σ and the SR tensors within the two-component relativistic LRESC model. Besides, we had to introduce a few other well defined assumptions: (i) relativistic corrections must be included in a way to best reproduce the relationship among the (e-e) term (called "paramagnetic" within the non-relativistic domain) of σ and its equivalent part of the SR tensor, (ii) as happens in Flygare's rule, the shielding of free atoms shall be included to improve accuracy. In the highest accurate model, a new term known as Spin-orbit due to spin, SO-S (in this mechanism the spin-Zeeman Hamiltonian replaces the orbital-Zeeman Hamiltonian), is included. We show the results of the application of those models to halogen containing linear molecules. PMID:27506822

  14. Toward an absolute NMR shielding scale using the spin-rotation tensor within a relativistic framework.

    PubMed

    Aucar, I Agustín; Gomez, Sergio S; Giribet, Claudia G; Aucar, Gustavo A

    2016-08-24

    One of the most influential articles showing the best way to get the absolute values of NMR magnetic shieldings, σ (non-measurables) from both accurate measurements and theoretical calculations, was published a long time ago by Flygare. His model was shown to break down when heavy atoms are involved. This fact motivated the development of new theories of nuclear spin-rotation (SR) tensors, which consider electronic relativistic effects. One was published recently by some of us. In this article we take another step further and propose three different models that generalize Flygare's model. All of them are written using four-component relativistic expressions, though the two-component relativistic SO-S term also appears in one. The first clues for these developments were built from the relationship among σ and the SR tensors within the two-component relativistic LRESC model. Besides, we had to introduce a few other well defined assumptions: (i) relativistic corrections must be included in a way to best reproduce the relationship among the (e-e) term (called "paramagnetic" within the non-relativistic domain) of σ and its equivalent part of the SR tensor, (ii) as happens in Flygare's rule, the shielding of free atoms shall be included to improve accuracy. In the highest accurate model, a new term known as Spin-orbit due to spin, SO-S (in this mechanism the spin-Zeeman Hamiltonian replaces the orbital-Zeeman Hamiltonian), is included. We show the results of the application of those models to halogen containing linear molecules.

  15. The Dynamics of Scaling: A Memory-Based Anchor Model of Category Rating and Absolute Identification

    ERIC Educational Resources Information Center

    Petrov, Alexander A.; Anderson, John R.

    2005-01-01

    A memory-based scaling model--ANCHOR--is proposed and tested. The perceived magnitude of the target stimulus is compared with a set of anchors in memory. Anchor selection is probabilistic and sensitive to similarity, base-level strength, and recency. The winning anchor provides a reference point near the target and thereby converts the global…

  16. The NBS scale of radiance temperature

    NASA Technical Reports Server (NTRS)

    Waters, William R.; Walker, James H.; Hattenburg, Albert T.

    1988-01-01

    The measurement methods and instrumentation used in the realization and transfer of the International Practical Temperature Scale (IPTS-68) above the temperature of freezing gold are described. The determination of the ratios of spectral radiance of tungsten-strip lamps to a gold-point blackbody at a wavelength of 654.6 nm is detailed. The response linearity, spectral responsivity, scattering error, and polarization properties of the instrumentation are described. The analysis of the sources of error and estimates of uncertainty are presented. The assigned uncertainties (three standard deviations) in radiance temperature range from + or - 2 K at 2573 K to + or - 0.5 K at 1073 K.

  17. Research on temperature measurement technology for graphite-cone-absorption-cavity absolute calorimeter

    NASA Astrophysics Data System (ADS)

    Wei, Ji Feng; Lu, Fei; Sun, Li Qun; Zhang, Kai; Hu, Xiao Yang; Zhou, Shan; Xu, De

    2015-02-01

    The nonlinear effect of materials and sensors in high-energy laser calorimeters is especially obvious—due to the steep temperature gradients of their absorbers. Significant measurement errors occur when traditional integral temperature sensors and methods are utilized. In an effort to remedy this, a method is proposed in this paper in which an absorption cavity is divided into many parts and multiple discrete thermocouple sensors are used to measure the temperature rise of the absorbers. The temperature distribution in the absorbers is theoretically analyzed, numerically simulated, and verified through experimentation. Energy measurement results are compared according to the temperature distribution for different layouts of thermocouples. A high-accuracy calorimeter is developed by setting and optimizing thermocouple layout, as well as correcting various elements such as the specific heat of graphite and responsivity of thermocouples. The calorimeter employing this measurement method is calibrated against a standard energy meter, resulting in correction coefficient of 1.027 and relative standard deviation of the correction coefficient of only 0.8%. Theoretical analysis, numerical simulation, and experimental verification all prove that the proposed method successfully improves measurement accuracy.

  18. Research on temperature measurement technology for graphite-cone-absorption-cavity absolute calorimeter.

    PubMed

    Wei, Ji Feng; Lu, Fei; Sun, Li Qun; Zhang, Kai; Hu, Xiao Yang; Zhou, Shan; Xu, De

    2015-02-01

    The nonlinear effect of materials and sensors in high-energy laser calorimeters is especially obvious-due to the steep temperature gradients of their absorbers. Significant measurement errors occur when traditional integral temperature sensors and methods are utilized. In an effort to remedy this, a method is proposed in this paper in which an absorption cavity is divided into many parts and multiple discrete thermocouple sensors are used to measure the temperature rise of the absorbers. The temperature distribution in the absorbers is theoretically analyzed, numerically simulated, and verified through experimentation. Energy measurement results are compared according to the temperature distribution for different layouts of thermocouples. A high-accuracy calorimeter is developed by setting and optimizing thermocouple layout, as well as correcting various elements such as the specific heat of graphite and responsivity of thermocouples. The calorimeter employing this measurement method is calibrated against a standard energy meter, resulting in correction coefficient of 1.027 and relative standard deviation of the correction coefficient of only 0.8%. Theoretical analysis, numerical simulation, and experimental verification all prove that the proposed method successfully improves measurement accuracy. PMID:25725875

  19. Temperature and pressure dependence of the absolute rate constant for the reactions of NH2 radicals with acetylene and ethylene

    NASA Technical Reports Server (NTRS)

    Bosco, S. R.; Nava, D. F.; Brobst, W. D.; Stief, L. J.

    1984-01-01

    The absolute rate constants for the reaction between the NH2 free radical and acetylene and ethylene is measured experimentally using a flash photolysis technique. The constant is considered to be a function of temperature and pressure. At each temperature level of the experiment, the observed pseudo-first-order rate constants were assumed to be independent of flash intensity. The results of the experiment indicate that the bimolecular rate constant for the NH2 + C2H2 reaction increases with pressure at 373 K and 459 K but not at lower temperatures. Results near the pressure limit conform to an Arrhenius expression of 1.11 (+ or -) 0.36 x 10 to the -13th over the temperature range from 241 to 459 K. For the reaction NH2 + C2H4, a smaller rate of increase in the bimolecular rate constant was observed over the temperature range 250-465 K. The implications of these results for current theoretical models of NH2 + C2H2 (or H4) reactions in the atmospheres of Jupiter and Saturn are discussed.

  20. Energy Decomposition Analysis Based on Absolutely Localized Molecular Orbitals for Large-Scale Density Functional Theory Calculations in Drug Design.

    PubMed

    Phipps, M J S; Fox, T; Tautermann, C S; Skylaris, C-K

    2016-07-12

    We report the development and implementation of an energy decomposition analysis (EDA) scheme in the ONETEP linear-scaling electronic structure package. Our approach is hybrid as it combines the localized molecular orbital EDA (Su, P.; Li, H. J. Chem. Phys., 2009, 131, 014102) and the absolutely localized molecular orbital EDA (Khaliullin, R. Z.; et al. J. Phys. Chem. A, 2007, 111, 8753-8765) to partition the intermolecular interaction energy into chemically distinct components (electrostatic, exchange, correlation, Pauli repulsion, polarization, and charge transfer). Limitations shared in EDA approaches such as the issue of basis set dependence in polarization and charge transfer are discussed, and a remedy to this problem is proposed that exploits the strictly localized property of the ONETEP orbitals. Our method is validated on a range of complexes with interactions relevant to drug design. We demonstrate the capabilities for large-scale calculations with our approach on complexes of thrombin with an inhibitor comprised of up to 4975 atoms. Given the capability of ONETEP for large-scale calculations, such as on entire proteins, we expect that our EDA scheme can be applied in a large range of biomolecular problems, especially in the context of drug design.

  1. Length scales in alloy dissolution and measurement of absolute interfacial free energy.

    PubMed

    Rugolo, J; Erlebacher, J; Sieradzki, K

    2006-12-01

    De-alloying is the selective dissolution of one or more of the elemental components of an alloy. In binary alloys that exhibit complete solid solubility, de-alloying of the less noble component results in the formation of nanoporous metals, a materials class that has attracted attention for applications such as catalysis, sensing and actuation. In addition, the occurrence of de-alloying in metallic alloy systems under stress is known to result in stress-corrosion cracking, a key failure mechanism in fossil fuel and nuclear plants, ageing aircraft, and also an important concern in the design of nuclear-waste storage containers. Central to the design of corrosion-resistant alloys is the identification of a composition-dependent electrochemical critical potential, Vcrit, above which the current rises dramatically with potential, signalling the onset of bulk de-alloying. Below Vcrit, the surface is passivated by the accumulation of up to several monolayers of the more noble component. The current understanding of the processes that control Vcrit is incomplete. Here, we report on de-alloying results of Ag/Au superlattices that clarify the role of pre-existing length scales in alloy dissolution. Our data motivated us to re-analyse existing data on critical potentials of Ag-Au alloys and develop a simple unifying picture that accounts for the compositional dependence of solid-solution alloy critical potentials.

  2. Absolute dominance of hydrogenotrophic methanogens in full-scale anaerobic sewage sludge digesters.

    PubMed

    Kim, Jaai; Kim, Woong; Lee, Changsoo

    2013-11-01

    Anaerobic digestion (AD) is gaining increasing attention due to the ability to covert organic pollutants into energy-rich biogas and, accordingly, growing interest is paid to the microbial ecology of AD systems. Despite extensive efforts, AD microbial ecology is still limitedly understood, especially due to the lack of quantitative information on the structures and dynamics of AD microbial communities. Such knowledge gap is particularly pronounced in sewage sludge AD processes although treating sewage sludge is among the major practical applications of AD. Therefore, we examined the microbial communities in three full-scale sewage sludge digesters using qualitative and quantitative molecular techniques in combination: denaturing gradient gel electrophoresis (DGGE) and real-time polymerase chain reaction (PCR). Eight out of eleven bacterial sequences retrieved from the DGGE analysis were not affiliated to any known species while all eleven archaeal sequences were assigned to known methanogen species. Quantitative real-time PCR analysis revealed that, based on the 16S rRNA gene abundance, the hydrogenotrophic order Methanomicrobiales is the most dominant methanogen group (> 94% of the total methanogen population) in all digesters. This corresponds well to the prevailing occurrence of the DGGE bands related to Methanolinea and Methanospirillum, both belonging to the order Methanomicrobiales, in all sludge samples. It is therefore suggested that hydrogenotrophic methanogens, especially Methanomicrobiales strains, are likely the major players responsible for biogas production in the digesters studied. Our observation is contrary to the conventional understanding that aceticlastic methanogens generally dominate methanogen communities in stable AD environments, suggesting the need for further studies on the dominance relationship in various AD systems.

  3. Surface Air Temperature - Long-Term Anomaly Series and Absolute Values (Invited)

    NASA Astrophysics Data System (ADS)

    Jones, P. D.

    2013-12-01

    Of all the possible domains of the Earth's surface, surface air temperature has the longest records extending back at some European locations to the late-17th century. Since that time coverage has expanded to encompass most of the world since the 1950s onwards. It is this domain that provides our long-term record of change providing the yardstick against which we define both cooler and warmer and cooling and warming periods during the last 300 years. Assembling all the recorded data is beset with an array of problems: the reasons for collecting the data during this long period have been many and varied and instruments, exposures, observation times and methods of calculating averages have regularly changed. Even today, there is not a WMO-defined method of calculating the daily and monthly average with countries allowed to use whatever method they deem appropriate. The talk will discuss the history, the problems and the methods that have been used to overcome them. As we move to more automated measurements and dynamical approaches to interpolation (Reanalyses) the talk will conclude with a number of recommendations.

  4. Role of absolute humidity in the inactivation of influenza viruses on stainless steel surfaces at elevated temperatures.

    PubMed

    McDevitt, James; Rudnick, Stephen; First, Melvin; Spengler, John

    2010-06-01

    Influenza virus has been found to persist in the environment for hours to days, allowing for secondary transmission of influenza via inanimate objects known as fomites. We evaluated the efficacy of heat and moisture for the decontamination of surfaces for the purpose of preventing of the spread of influenza. Aqueous suspensions of influenza A virus were deposited onto stainless steel coupons, allowed to dry under ambient conditions, and exposed to temperatures of 55 degrees C, 60 degrees C, or 65 degrees C and relative humidity (RH) of 25%, 50%, or 75% for up to 1 h. Quantitative virus assays were performed on the solution used to wash the viruses from these coupons, and results were compared with the solution used to wash coupons treated similarly but left under ambient conditions. Inactivation of influenza virus on surfaces increased with increasing temperature, RH, and exposure time. Reductions of greater than 5 logs of influenza virus on surfaces were achieved at temperatures of 60 and 65 degrees C, exposure times of 30 and 60 min, and RH of 50 and 75%. Our data also suggest that absolute humidity is a better predictor of surface inactivation than RH and allows the prediction of survival using two parameters rather than three. Modest amounts of heat and adequate moisture can provide effective disinfection of surfaces while not harming surfaces, electrical systems, or mechanical components, leaving no harmful residues behind after treatment and requiring a relatively short amount of time. PMID:20435770

  5. Temperature Scale of Central Stars Planetary Nebulae

    NASA Technical Reports Server (NTRS)

    Kruk, Jeffry

    2005-01-01

    The goal of this project was to gain new insight into both the true temperatures of the central stars of planetary nebulae and their evolutionary histories. The temperature scale of the hottest central stars of planetary nebulae is poorly known. The temperature diagnostics available at visible wavelengths are not useful for these very hot stars, or suffer from as-yet unresolved systematic uncertainties. However, the combination of FUSE FUV spectra and HST NUV spectra allows precise temperature determinations by utilizing ionization balances of C III, C IV and O V, O VI lines. The sample comprises hot hydrogen-rich central stars covering the hottest phase of post-AGB evolution (T_eff greater than 70,000K). The spectra were analyzed with fully metal line blanketed NLTE model atmospheres in order to determine T_eff, surface gravity, and chemical composition. In addition to the temperature scale, the spectra help address the question of metal abundances at the surface of these stars. Depending on the particular star, the metal abundances are either dominated by ongoing diffusion processes or they originate from dredge-up phases during previous AGB evolution. The sample was selected so as to include objects that were expected to exhibit both processes, in order to assess their relative importance and to gain insight into the evolutionary history of the stars. The objects that show qualitatively a metal abundance pattern which points at dredge-up phases, can be used to quantitatively check against abundance predictions of stellar evolution theory. The other objects, where gravitational diffusion and radiative acceleration determine the photospheric metal abundances, will be used to check our NLTE models which for the first time include diffusion processes self-consistently.

  6. Effects of Temperature, Relative Humidity, Absolute Humidity, and Evaporation Potential on Survival of Airborne Gumboro Vaccine Virus

    PubMed Central

    Zhao, Yang; Dijkman, Remco; Fabri, Teun; de Jong, Mart C. M.; Groot Koerkamp, Peter W. G.

    2012-01-01

    Survival of airborne virus influences the extent of disease transmission via air. How environmental factors affect viral survival is not fully understood. We investigated the survival of a vaccine strain of Gumboro virus which was aerosolized at three temperatures (10°C, 20°C, and 30°C) and two relative humidities (RHs) (40% and 70%). The response of viral survival to four metrics (temperature, RH, absolute humidity [AH], and evaporation potential [EP]) was examined. The results show a biphasic viral survival at 10°C and 20°C, i.e., a rapid initial inactivation in a short period (2.3 min) during and after aerosolization, followed by a slow secondary inactivation during a 20-min period after aerosolization. The initial decays of aerosolized virus at 10°C (1.68 to 3.03 ln % min−1) and 20°C (3.05 to 3.62 ln % min−1) were significantly lower than those at 30°C (5.67 to 5.96 ln % min−1). The secondary decays at 10°C (0.03 to 0.09 ln % min−1) tended to be higher than those at 20°C (−0.01 to 0.01 ln % min−1). The initial viral survival responded to temperature and RH and potentially to EP; the secondary viral survival responded to temperature and potentially to RH. In both phases, survival of the virus was not significantly affected by AH. These findings suggest that long-distance transmission of airborne virus is more likely to occur at 20°C than at 10°C or 30°C and that current Gumboro vaccination by wet aerosolization in poultry industry is not very effective due to the fast initial decay. PMID:22156417

  7. DAQ Software Contributions, Absolute Scale Energy Calibration and Background Evaluation for the NOvA Experiment at Fermilab

    SciTech Connect

    Flumerfelt, Eric Lewis

    2015-08-01

    The NOvA (NuMI Off-axis ve [nu_e] Appearance) Experiment is a long-baseline accelerator neutrino experiment currently in its second year of operations. NOvA uses the Neutrinos from the Main Injector (NuMI) beam at Fermilab, and there are two main off-axis detectors: a Near Detector at Fermilab and a Far Detector 810 km away at Ash River, MN. The work reported herein is in support of the NOvA Experiment, through contributions to the development of data acquisition software, providing an accurate, absolute-scale energy calibration for electromagnetic showers in NOvA detector elements, crucial to the primary electron neutrino search, and through an initial evaluation of the cosmic background rate in the NOvA Far Detector, which is situated on the surface without significant overburden. Additional support work for the NOvA Experiment is also detailed, including DAQ Server Administration duties and a study of NOvA’s sensitivity to neutrino oscillations into a “sterile” state.

  8. Absolute pitch among students at the Shanghai Conservatory of Music: a large-scale direct-test study.

    PubMed

    Deutsch, Diana; Li, Xiaonuo; Shen, Jing

    2013-11-01

    This paper reports a large-scale direct-test study of absolute pitch (AP) in students at the Shanghai Conservatory of Music. Overall note-naming scores were very high, with high scores correlating positively with early onset of musical training. Students who had begun training at age ≤5 yr scored 83% correct not allowing for semitone errors and 90% correct allowing for semitone errors. Performance levels were higher for white key pitches than for black key pitches. This effect was greater for orchestral performers than for pianists, indicating that it cannot be attributed to early training on the piano. Rather, accuracy in identifying notes of different names (C, C#, D, etc.) correlated with their frequency of occurrence in a large sample of music taken from the Western tonal repertoire. There was also an effect of pitch range, so that performance on tones in the two-octave range beginning on Middle C was higher than on tones in the octave below Middle C. In addition, semitone errors tended to be on the sharp side. The evidence also ran counter to the hypothesis, previously advanced by others, that the note A plays a special role in pitch identification judgments.

  9. The effective temperature scale of M dwarfs

    NASA Astrophysics Data System (ADS)

    Rajpurohit, A. S.; Reylé, C.; Allard, F.; Homeier, D.; Schultheis, M.; Bessell, M. S.; Robin, A. C.

    2013-08-01

    Context. Despite their large number in the Galaxy, M dwarfs remain elusive objects and the modeling of their photosphere has long remained a challenge (molecular opacities, dust cloud formation). Aims: Our objectives are to validate the BT-Settl model atmospheres, update the M dwarf Teff-spectral type relation, and find the atmospheric parameters of the stars in our sample. Methods: We compare two samples of optical spectra covering the whole M dwarf sequence with the most recent BT-Settl synthetic spectra and use a χ2 minimization technique to determine Teff. The first sample consists of 97 low-resolution spectra obtained with New Technology Telescope (NTT) at La Silla Observatory. The second sample contains 55 medium-resolution spectra obtained at the Siding Spring Observatory (SSO). The spectral typing is realized by comparison with already classified M dwarfs. Results: We show that the BT-Settl synthetic spectra reproduce the slope of the spectral energy distribution and most of its features. Only the CaOH band at 5570 Å and AlH and NaH hydrides in the blue part of the spectra are still missing in the models. The Teff scale obtained with the higher resolved SSO 2.3 m spectra is consistent with that obtained with the NTT spectra. We compare our Teff scale with those of other authors and with published isochrones using the BT-Settl colors. We also present relations between effective temperature, spectral type, and colors of the M dwarfs. Tables 1 and 2 are available in electronic form at http://www.aanda.org

  10. A novel method to determine the electron temperature and density from the absolute intensity of line and continuum emission: application to atmospheric microwave induced Ar plasmas

    NASA Astrophysics Data System (ADS)

    Iordanova, E.; Palomares, J. M.; Gamero, A.; Sola, A.; van der Mullen, J. J. A. M.

    2009-08-01

    An absolute intensity measurement (AIM) technique is presented that combines the absolute measurements of the line and the continuum emitted by strongly ionizing argon plasmas. AIM is an iterative combination of the absolute line intensity-collisional radiative model (ALI-CRM) and the absolute continuum intensity (ACI) method. The basis of ALI-CRM is that the excitation temperature T13 determined by the method of ALI is transformed into the electron temperature Te using a CRM. This gives Te as a weak function of electron density ne. The ACI method is based on the absolute value of the continuum radiation and determines the electron density in a way that depends on Te. The iterative combination gives ne and Te. As a case study the AIM method is applied to plasmas created by torche à injection axiale (TIA) at atmospheric pressure and fixed frequency at 2.45 GHz. The standard operating settings are a gas flow of 1 slm and a power of 800 W; the measurements have been performed at a position of 1 mm above the nozzle. With AIM we found an electron temperature of 1.2 eV and electron density values around 1021 m-3. There is not much dependence of these values on the plasma control parameters (power and gas flow). From the error analysis we can conclude that the determination of Te is within 7% and thus rather accurate but comparison with other studies shows strong deviations. The ne determination comes with an error of 40% but is in reasonable agreement with other experimental results.

  11. Toward Oxide Scale Behavior Management At High Temperature

    SciTech Connect

    Deltombe, R.; Dubar, M.; Dubois, A.; Dubar, L.

    2011-01-17

    Oxide scales grow freely on bare metallic surface under environmental conditions such as high temperature and oxygen. These act as thermal and mechanical shields, especially during high hot forming processes (>1000 deg. C). But product quality can be impacted by these oxide scales due to scale remaining on product or sticking on tools. Thus the TEMPO laboratory has created an original methodology in order to characterize oxide scale under high temperature, pressure and strain gradients. An experimental device has been developed. The final purpose of this work is to understand the scale behavior as a function of temperature, reduction ratio and steel composition.

  12. Absolute measurement of subnanometer scale vibration of cochlear partition of an excised guinea pig cochlea using spectral-domain phase-sensitive optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Subhash, Hrebesh M.; Choudhury, Niloy; Jacques, Steven L.; Wang, Ruikang K.; Chen, Fangyi; Zha, Dingjun; Nuttall, Alfred L.

    2012-01-01

    Direct measurement of absolute vibration parameters from different locations within the mammalian organ of Corti is crucial for understanding the hearing mechanics such as how sound propagates through the cochlea and how sound stimulates the vibration of various structures of the cochlea, namely, basilar membrane (BM), recticular lamina, outer hair cells and tectorial membrane (TM). In this study we demonstrate the feasibility a modified phase-sensitive spectral domain optical coherence tomography system to provide subnanometer scale vibration information from multiple angles within the imaging beam. The system has the potential to provide depth resolved absolute vibration measurement of tissue microstructures from each of the delay-encoded vibration images with a noise floor of ~0.3nm at 200Hz.

  13. Temperature sensing and real-time two-dimensional mapping at the micro-scale

    NASA Astrophysics Data System (ADS)

    Huo, Xiaoye; Li, Gang; Wang, Zhenhai; Mao, Xinyu; Xu, Shengyong

    To sense temperature at micro/nano scales and obtain its detailed distribution in space and in time remains a technical challenge in many cases. We observed an unexpected thermoelectric size effect, where the absolute Seebeck coefficient of metallic thin film stripes (e.g. Ni, Cr, Pd, W, Bi, Sc, etc.) decreased with the stripe width from 100 μm down to 100nm. This phenomenon was utilized in micro/nano-stripe-based thin film temperature sensors. By using an array of such sensors, two-dimensional temperature distribution at the micro-scale could be precisely mapped. Small temperature sensors with a total width less than 1 μm and a sensitivity of 0.5-2.2 μV/K were fabricated, showing a potential for monitoring temperatures at submicro-scales. By using a special multiplexer and software, nearly real-time 2D temperature mapping was performed, demonstrating 2D thermal history of target surface with a delay of less than one minute. These thin film sensors were also fabricated on flexible Parylene-C substrates for application in flexible electronic devices, temperature monitoring of cell culturing, and heat transfer between Au nanoparticles and metallic stripes due to plasmonic excitation under laser radiation.

  14. Investigation of 10-Stage Axial-Flow X24C-2 Compressor. 1; Performance at Inlet Pressure of 21 Inches Mercury Absolute and Inlet Temperature of 538 R

    NASA Technical Reports Server (NTRS)

    Schum, Harold J.; Buckner, Howard A., Jr.

    1947-01-01

    The performance at inlet pressure of 21 inches mercury absolute and inlet temperature of 538 R for the 10-stage axial-flow X24C-2 compressor from the X24C-2 turbojet engine was investigated. the peak adiabatic temperature-rise efficiency for a given speed generally occurred at values of pressure coefficient fairly close to 0.35.For this compressor, the efficiency data at various speeds could be correlated on two converging curves by the use of a polytropic loss factor derived.

  15. Performance Demonstration of Miniature Phase Transition Cells in Microgravity as a Validation for their use in the Absolute Calibration of Temperature Sensors On-Orbit

    NASA Astrophysics Data System (ADS)

    Pettersen, C.; Best, F. A.; Adler, D. P.; Aguilar, D. M.; Perepezko, J. H.

    2012-12-01

    The next generation of infrared remote sensing missions, including the climate benchmark missions, will require better absolute measurement accuracy than now available, and will most certainly rely on the emerging capability to fly SI traceable standards that provide irrefutable absolute measurement accuracy. As an example, instrumentation designed to measure spectrally resolved infrared radiances with an absolute brightness temperature error of better than 0.1 K will require high-emissivity (>0.999) calibration blackbodies requiring absolute temperature uncertainties of better than 0.045K (k=3). Key elements of an On-Orbit Absolute Radiance Standard (OARS) meeting these stringent requirements have been demonstrated in the laboratory at the University of Wisconsin and were further refined under the NASA Instrument Incubator Program (IIP). In particular, the OARS has imbedded thermistors that can be periodically calibrated on-orbit using the melt signatures of small quantities (<0.5g) of three reference materials - mercury, water, and gallium, providing calibration from 233K to 303K. One of the many tests to determine the readiness of this technology for on-orbit application is a demonstration of performance in microgravity to be conducted on the International Space Station (ISS). This demonstration will make use of an Experiment Support Package developed by Utah State Space Dynamics Laboratory to continuously run melt cycles on miniature phase change cells containing gallium, a gallium-tin eutectic, and water. The phase change cells will be mounted in a small aluminum block along with a thermistor temperature sensor. A thermoelectric cooler will be used to change the temperature of the block. The demonstration will use the configuration of the phase transition cells developed under our NASA IIP that has been tested extensively in the laboratory under simulated mission life cycle scenarios - these included vibration, thermal soaks, and deep cycling. Melt signatures

  16. Absolute Summ

    NASA Astrophysics Data System (ADS)

    Phillips, Alfred, Jr.

    Summ means the entirety of the multiverse. It seems clear, from the inflation theories of A. Guth and others, that the creation of many universes is plausible. We argue that Absolute cosmological ideas, not unlike those of I. Newton, may be consistent with dynamic multiverse creations. As suggested in W. Heisenberg's uncertainty principle, and with the Anthropic Principle defended by S. Hawking, et al., human consciousness, buttressed by findings of neuroscience, may have to be considered in our models. Predictability, as A. Einstein realized with Invariants and General Relativity, may be required for new ideas to be part of physics. We present here a two postulate model geared to an Absolute Summ. The seedbed of this work is part of Akhnaton's philosophy (see S. Freud, Moses and Monotheism). Most important, however, is that the structure of human consciousness, manifest in Kenya's Rift Valley 200,000 years ago as Homo sapiens, who were the culmination of the six million year co-creation process of Hominins and Nature in Africa, allows us to do the physics that we do. .

  17. Critical role of nitrogen during high temperature scaling of zirconium

    NASA Technical Reports Server (NTRS)

    Evans, E. B.; Tsangarakis, N.; Probst, H. B.; Garibotti, N. J.

    1973-01-01

    The mechanisms of scale cracking, scale color changes, and scale growth, and their interrelations, were studied in zirconium specimens at elevated temperatures in air, oxygen and nitrogen. Nitrogen was found to be responsible for monoclinic-to-cubic ZrO2 conversion, for scale cracking and breakaway on zirconium nitride, and for the formation of ZrN on the metal interface underneath an outer oxide layer.

  18. A REVISED EFFECTIVE TEMPERATURE SCALE FOR THE KEPLER INPUT CATALOG

    SciTech Connect

    Pinsonneault, Marc H.; An, Deokkeun; Molenda-Zakowicz, Joanna; Chaplin, William J.; Metcalfe, Travis S.; Bruntt, Hans

    2012-04-01

    We present a catalog of revised effective temperatures for stars observed in long-cadence mode in the Kepler Input Catalog (KIC). We use Sloan Digital Sky Survey (SDSS) griz filters tied to the fundamental temperature scale. Polynomials for griz color-temperature relations are presented, along with correction terms for surface gravity effects, metallicity, and statistical corrections for binary companions or blending. We compare our temperature scale to the published infrared flux method (IRFM) scale for V{sub T}JK{sub s} in both open clusters and the Kepler fields. We find good agreement overall, with some deviations between (J - K{sub s} )-based temperatures from the IRFM and both SDSS filter and other diagnostic IRFM color-temperature relationships above 6000 K. For field dwarfs, we find a mean shift toward hotter temperatures relative to the KIC, of order 215 K, in the regime where the IRFM scale is well defined (4000 K to 6500 K). This change is of comparable magnitude in both color systems and in spectroscopy for stars with T{sub eff} below 6000 K. Systematic differences between temperature estimators appear for hotter stars, and we define corrections to put the SDSS temperatures on the IRFM scale for them. When the theoretical dependence on gravity is accounted for, we find a similar temperature scale offset between the fundamental and KIC scales for giants. We demonstrate that statistical corrections to color-based temperatures from binaries are significant. Typical errors, mostly from uncertainties in extinction, are of order 100 K. Implications for other applications of the KIC are discussed.

  19. Two-probe optical encoder for absolute positioning of precision stages by using an improved scale grating.

    PubMed

    Li, Xinghui; Wang, Huanhuan; Ni, Kai; Zhou, Qian; Mao, Xinyu; Zeng, Lijiang; Wang, Xiaohao; Xiao, Xiang

    2016-09-19

    In this paper, a novel optical encoder enabling the simultaneous measurement of displacement and the position of precision stages is presented. The encoder is composed of an improved single-track scale grating and a compact two-probe reading head. In the scale grating, multiple reference codes are physically superimposed onto the incremental grooves, in contrast to conventional designs, where an additional track is necessary. The distribution of the reference codes follows a specific mathematical algorithm. For the reading head, a two-probe structure is designed to identify the discrete reference codes by means of the superimposition of the codes with a stationary mask and to read the continuous incremental grooves by means of a grating interferometry, respectively. A prototype encoder was designed, constructed and evaluated, and experimental results show that the distance code precision achieved is 0.5 μm, while the linearity error of the linear displacement measurement is less than 0.06%. PMID:27661879

  20. Effective Temperature and Universal Conductivity Scaling in Organic Semiconductors

    PubMed Central

    Abdalla, Hassan; van de Ruit, Kevin; Kemerink, Martijn

    2015-01-01

    We investigate the scalability of the temperature- and electric field-dependence of the conductivity of disordered organic semiconductors to ‘universal’ curves by two different but commonly employed methods; by so-called universal scaling and by using the effective temperature concept. Experimentally both scaling methods were found to be equally applicable to the out-of-plane charge transport in PEDOT:PSS thin films of various compositions. Both methods are shown to be equivalent in terms of functional dependence and to have identical limiting behavior. The experimentally observed scaling behavior can be reproduced by a numerical nearest-neighbor hopping model, accounting for the Coulomb interaction, the high charge carrier concentration and the energetic disorder. The underlying physics can be captured in a simple empirical model, describing the effective temperature of the charge carrier distribution as the outcome of a heat balance between Joule heating and (effective) temperature-dependent energy loss to the lattice. PMID:26581975

  1. [New potentials for monitoring the temperature and the relative and absolute humidity of the air-oxygen mixture during the prolonged artificial ventilation of newborn infants].

    PubMed

    Milenin, O B; Efimov, M S

    1998-01-01

    A new HTM-902 monitor (UCCP, Germany/Serviceinstrument, Russia) was used for continuous measurements of the temperature and relative and absolute humidity of inspired gas during prolonged mechanical ventilation in 86 neonates with respiratory failure caused by the respiratory distress syndrome (n = 42), meconium aspiration syndrome (n = 28), and congenital pneumonia (n = 16). All measurements were performed with a special probe connected to the inspiratory contour through a standard adapter close to the patient's T-piece. The monitor helped maintain the optimal values of the inspired gas conditioning during assisted ventilation of the neonates. The optimal relationships between gas temperature and humidity can be attained only with humidifiers with a servocontrol of temperature and heated wire inside the inspiratory circle tube. For maintaining adequate humidity of inspired gas after any changes in the ventilator flow rate or in the temperature inside the incubator, the heating power of the humidifier had to be corrected. However, even with servocontrolled humidifiers and humidity regulation, an increase of temperature inside the incubator over 35 degrees C made impossible the maintenance of the inspired gas humidity at the level of 96-100% with its temperature at the level of the patient's T-piece no higher than 37 degrees C.

  2. Elasticity of MgO to 11 GPa with an independent absolute pressure scale: Implications for pressure calibration

    SciTech Connect

    Li, B.; Woody, K; Kung, J

    2006-01-01

    P and S wave velocities and unit cell parameters (density) of MgO are measured simultaneously up to 11 GPa using combined ultrasonic interferometry and in situ X-ray diffraction techniques. The elastic bulk and shear moduli as well as their pressure derivatives are obtained by fitting the measured velocity and density data to the third-order finite strain equations, yielding K0S = 163.5(11) GPa, K'0S = 4.20(10), G0 = 129.8(6) GPa, and G'0 = 2.42(6), independent of pressure. These properties are subsequently used in a Birch-Murnaghan equation of state to determine the sample pressures at the observed strains. Comparison of the 300K isothermal compression of MgO indicates that current pressure scales from recent studies are in better than 1.5% agreement. We find that pressures derived from secondary pressure standards (NaCl, ruby fluorescence) at 300K are lower than those from current MgO scales by 5-8% ({approx}6% on average) in the entire pressure range of the current experiment. If this is taken into account, discrepancy in previous static compression studies on MgO at 300K can be reconciled, and a better agreement with the present study can be achieved.

  3. Two-photon LIF on the HIT-SI3 experiment: Absolute density and temperature measurements of deuterium neutrals

    NASA Astrophysics Data System (ADS)

    Elliott, Drew; Sutherland, Derek; Siddiqui, Umair; Scime, Earl; Everson, Chris; Morgan, Kyle; Hossack, Aaron; Nelson, Brian; Jarboe, Tom

    2016-11-01

    Two-photon laser-induced fluorescence measurements were performed on the helicity injected torus (HIT-SI3) device to determine the density and temperature of the background neutral deuterium population. Measurements were taken in 2 ms long pulsed plasmas after the inductive helicity injectors were turned off. Attempts to measure neutrals during the main phase of the plasma were unsuccessful, likely due to the density of neutrals being below the detection threshold of the diagnostic. An unexpectedly low density of atomic deuterium was measured in the afterglow; roughly 100 times lower than the theoretical prediction of 1017 m-3. The neutral temperatures measured were on the order of 1 eV. Temporally and spatially resolved neutral density and temperature data are presented.

  4. Absolute fragmentation cross sections in atom-molecule collisions: Scaling laws for non-statistical fragmentation of polycyclic aromatic hydrocarbon molecules

    SciTech Connect

    Chen, T.; Gatchell, M.; Stockett, M. H.; Alexander, J. D.; Schmidt, H. T.; Cederquist, H.; Zettergren, H.; Zhang, Y.; Rousseau, P.; Maclot, S.; Delaunay, R.; Adoui, L.; Domaracka, A.; Huber, B. A.

    2014-06-14

    We present scaling laws for absolute cross sections for non-statistical fragmentation in collisions between Polycyclic Aromatic Hydrocarbons (PAH/PAH{sup +}) and hydrogen or helium atoms with kinetic energies ranging from 50 eV to 10 keV. Further, we calculate the total fragmentation cross sections (including statistical fragmentation) for 110 eV PAH/PAH{sup +} + He collisions, and show that they compare well with experimental results. We demonstrate that non-statistical fragmentation becomes dominant for large PAHs and that it yields highly reactive fragments forming strong covalent bonds with atoms (H and N) and molecules (C{sub 6}H{sub 5}). Thus nonstatistical fragmentation may be an effective initial step in the formation of, e.g., Polycyclic Aromatic Nitrogen Heterocycles (PANHs). This relates to recent discussions on the evolution of PAHNs in space and the reactivities of defect graphene structures.

  5. Does temperature affect the accuracy of vented pressure transducer in fine-scale water level measurement?

    NASA Astrophysics Data System (ADS)

    Liu, Z.; Higgins, C. W.

    2015-03-01

    Submersible pressure transducers have been utilized for collecting water level data since the early 1960s. Together with a digital data logger, it is a convenient way to record water level fluctuations for long-term monitoring. Despite the wide use of pressure transducers for water level monitoring, little has been reported regarding their accuracy and performance under field conditions. The effects of temperature fluctuations on the output of vented pressure transducers were considered in this study. The pressure transducers were tested under both laboratory and field conditions. The results of this study indicate that temperature fluctuation has a strong effect on the transducer output. Rapid changes in temperature introduce noise and fluctuations in the water level readings under a constant hydraulic head while the absolute temperature is also related to sensor errors. The former is attributed to venting and the latter is attributed to temperature compensation effects in the strain gauges. Individual pressure transducers responded differently to the thermal fluctuations in the same testing environment. In the field of surface hydrology, especially when monitoring fine-scale water level fluctuations, ignoring or failing to compensate for the temperature effect can introduce considerable error into pressure transducer readings. It is recommended that a performance test for the pressure transducer is conducted before field deployment.

  6. Calibration of Gyros with Temperature Dependent Scale Factors

    NASA Technical Reports Server (NTRS)

    Belur, Sheela V.; Harman, Richard

    2001-01-01

    The general problem of gyro calibration can be stated as the estimation of the scale factors, misalignments, and drift-rate biases of the gyro using the on-orbit sensor measurements. These gyro parameters have been traditionally treated as temperature-independent in the operational flight dynamics ground systems at NASA Goddard Space Flight Center (GSFC), a scenario which has been successfully applied in the gyro calibration of a large number of missions. A significant departure from this is the Microwave Anisotropy Probe (MAP) mission where, due to the high thermal variations expected during the mission phase, it is necessary to model the scale factors as functions of temperature. This paper addresses the issue of gyro calibration for the MAP gyro model using a manufacturer-supplied model of the variation of scale factors with temperature. The problem is formulated as a least squares problem and solved using the Levenberg-Marquardt algorithm in the MATLAB(R) library function NLSQ. The algorithm was tested on simulated data with Gaussian noise for the quaternions as well as the gyro rates and was found to consistently converge close to the true values. Significant improvement in accuracy was noticed due to the estimation of the temperature-dependent scale factors as against constant scale factors.

  7. Scaling law for electrocaloric temperature change in antiferroelectrics

    PubMed Central

    Lisenkov, S.; Mani, B. K.; Glazkova, E.; Miller, C. W.; Ponomareva, I.

    2016-01-01

    A combination of theoretical and first-principles computational methods, along with experimental evidence from the literature, were used to predict the existence of a scaling law for the electrocaloric temperature change in antiferroelectric materials. We show that the temperature change scales quadratically with electric field, allowing a simple transformation to collapse the set of ΔT(E) onto a single curve. This offers a unique method that can be used to predict electrocaloric behavior beyond the limits of present measurement ranges or in regions where data are not yet available. PMID:26796343

  8. A density-functional study of the phase diagram of cementite-type (Fe,Mn)3C at absolute zero temperature.

    PubMed

    Von Appen, Jörg; Eck, Bernhard; Dronskowski, Richard

    2010-11-15

    The phase diagram of (Fe(1-x) Mn(x))(3)C has been investigated by means of density-functional theory (DFT) calculations at absolute zero temperature. The atomic distributions of the metal atoms are not random-like as previously proposed but we find three different, ordered regions within the phase range. The key role is played by the 8d metal site which forms, as a function of the composition, differing magnetic layers, and these dominate the physical properties. We calculated the magnetic moments, the volumes, the enthalpies of mixing and formation of 13 different compositions and explain the changes of the macroscopic properties with changes in the electronic and magnetic structures by means of bonding analyses using the Crystal Orbital Hamilton Population (COHP) technique.

  9. Absolute rate of the reaction of O/3-P/ with hydrogen sulfide over the temperature range 263 to 495 K

    NASA Technical Reports Server (NTRS)

    Whytock, D. A.; Timmons, R. B.; Lee, J. H.; Michael, J. V.; Payne, W. A.; Stief, L. J.

    1976-01-01

    The technique of flash photolysis coupled with time resolved detection of O via resonance fluorescence has been used to obtain rate constants for the reaction of O(3-P) with H2S at temperatures from 263 to 495 K and at pressures in the range 10-400 torr. Under conditions where secondary reactions are avoided, the measured rate constants for the primary step obey the Arrhenius equation k = (7.24 plus or minus 1.07) x 10 to the -12th exp(-3300 plus or minus 100/1.987 T) cu cm/molecules/s. Experiments with D2S show that the reaction exhibits a primary isotope effect, in support of a hydrogen abstraction mechanism.

  10. Cluster-continuum quasichemical theory calculation of the lithium ion solvation in water, acetonitrile and dimethyl sulfoxide: an absolute single-ion solvation free energy scale.

    PubMed

    Carvalho, Nathalia F; Pliego, Josefredo R

    2015-10-28

    Absolute single-ion solvation free energy is a very useful property for understanding solution phase chemistry. The real solvation free energy of an ion depends on its interaction with the solvent molecules and on the net potential inside the solute cavity. The tetraphenyl arsonium-tetraphenyl borate (TATB) assumption as well as the cluster-continuum quasichemical theory (CC-QCT) approach for Li(+) solvation allows access to a solvation scale excluding the net potential. We have determined this free energy scale investigating the solvation of the lithium ion in water (H2O), acetonitrile (CH3CN) and dimethyl sulfoxide (DMSO) solvents via the CC-QCT approach. Our calculations at the MP2 and MP4 levels with basis sets up to the QZVPP+diff quality, and including solvation of the clusters and solvent molecules by the dielectric continuum SMD method, predict the solvation free energy of Li(+) as -116.1, -120.6 and -123.6 kcal mol(-1) in H2O, CH3CN and DMSO solvents, respectively (1 mol L(-1) standard state). These values are compatible with the solvation free energy of the proton of -253.4, -253.2 and -261.1 kcal mol(-1) in H2O, CH3CN and DMSO solvents, respectively. Deviations from the experimental TATB scale are only 1.3 kcal mol(-1) in H2O and 1.8 kcal mol(-1) in DMSO solvents. However, in the case of CH3CN, the deviation reaches a value of 9.2 kcal mol(-1). The present study suggests that the experimental TATB scale is inconsistent for CH3CN. A total of 125 values of the solvation free energy of ions in these three solvents were obtained. These new data should be useful for the development of theoretical solvation models.

  11. Temperature Scales: Celsius, Fahrenheit, Kelvin, Reamur, and Romer.

    ERIC Educational Resources Information Center

    Romer, Robert H.

    1982-01-01

    Traces the history and development of temperature scales which began with the 17th-century invention of the liquid-in-glass thermometer. Focuses on the work of Olaf Romer, Daniel Fahrenheit, Rene-Antoine de Reamur, Anders Celsius, and William Thomson (Lord Kelvin). Includes experimental work and consideration of high/low fixed points on the…

  12. Temperature Dependence of the Flare Fluence Scaling Exponent

    NASA Astrophysics Data System (ADS)

    Kretzschmar, M.

    2015-12-01

    Solar flares result in an increase of the solar irradiance at all wavelengths. While the distribution of the flare fluence observed in coronal emission has been widely studied and found to scale as f(E)˜ E^{-α}, with α slightly below 2, the distribution of the flare fluence in chromospheric lines is poorly known. We used the solar irradiance measurements observed by the SDO/EVE instrument at a 10 s cadence to investigate the dependency of the scaling exponent on the formation region of the lines (or temperature). We analyzed all flares above the C1 level since the start of the EVE observations (May 2010) to determine the flare fluence distribution in 16 lines covering a wide range of temperatures, several of which were not studied before. Our results show a weak downward trend with temperature of the scaling exponent of the PDF that reaches from above 2 at lower temperature (a few 104 K) to {˜ }1.8 for hot coronal emission (several 106 K). However, because colder lines also have fainter contrast, we cannot exclude that this behavior is caused by including more noise for smaller flares for these lines. We discuss the method and its limitations and tentatively associate this possible trend with the different mechanisms responsible for the heating of the chromosphere and corona during flares.

  13. Large-scale superfluid vortex rings at nonzero temperatures

    NASA Astrophysics Data System (ADS)

    Wacks, D. H.; Baggaley, A. W.; Barenghi, C. F.

    2014-12-01

    We numerically model experiments in which large-scale vortex rings—bundles of quantized vortex loops—are created in superfluid helium by a piston-cylinder arrangement. We show that the presence of a normal-fluid vortex ring together with the quantized vortices is essential to explain the coherence of these large-scale vortex structures at nonzero temperatures, as observed experimentally. Finally we argue that the interaction of superfluid and normal-fluid vortex bundles is relevant to recent investigations of superfluid turbulence.

  14. Small angle neutron scattering on an absolute intensity scale and the internal surface of diatom frustules from three species of differing morphologies.

    PubMed

    Garvey, C J; Strobl, M; Percot, A; Saroun, J; Haug, J; Vyverman, W; Chepurnov, V A; Ferris, J M

    2013-05-01

    The internal nanostructure of the diatoms Cyclotella meneghiniana, Seminavis robusta and Achnanthes subsessilis was investigated using small angle neutron scattering (SANS) to examine thin biosilica samples, consisting of isotropic (powder) from their isolated cell walls. The interpretation of SANS data was assisted by several other measurements. The N2 adsorption, interpreted within the Branuer-Emmet-Teller isotherm, yielded the specific surface area of the material. Fourier transform infrared (FTIR) and Raman spectroscopy indicates that the isolated material is amorphous silica with small amounts of organic cell wall materials acting as a filling material between the silica particles. A two-phase (air and amorphous silica) model was used to interpret small angle neutron scattering data. After correction for instrumental resolution, the measurements on two SANS instruments covered an extended range of scattering vectors 0.0011 nm(-1) < q < 5.6 nm(-1), giving an almost continuous SANS curve over a range of scattering vectors, q, on an absolute scale of intensity for each sample. Each of the samples gave a characteristic scattering curve where log (intensity) versus log (q) has a -4 dependence, with other features superimposed. In the high-q regime, departure from this behaviour was observed at a length-scales equivalent to the proposed unitary silica particle. The limiting Porod scattering law was used to determine the specific area per unit of volume of each sample illuminated by the neutron beam. The Porod behaviour, and divergence from this behaviour, is discussed in terms of various structural features and the proposed mechanisms for the bio-assembly of unitary silica particles in frustules.

  15. Anomalous scaling of temperature structure functions in turbulent thermal convection

    NASA Astrophysics Data System (ADS)

    Tong, Penger; He, Xiaozhou; Shang, Xiaodong

    2014-11-01

    The scaling properties of the temperature structure function (SF) are investigated in turbulent Rayleigh-Benard convection. The measured SFs are found to exhibit good scaling in space and time and the resulting SF exponent is obtained both at the center of the convection cell and near the sidewall. It is found that the difference in the functional form of the measured SF exponents at the two locations in the cell is caused by the change of the geometry of the most dissipative structures in the (inhomogeneous) temperature field from being sheet-like at the cell center to filament-like near the sidewall. The experiment thus provides direct evidence showing that the universality features of turbulent cascade are linked to the degree of anisotropy and inhomogeneity of turbulent statistics. This work was supported by the Research Grants Council of Hong Kong SAR.

  16. Optical investigation of oxide scales on high-temperature alloys

    NASA Astrophysics Data System (ADS)

    Uran, Serif

    Non-destructive optical techniques have been used to study the oxidation of low-index crystal faces of single crystal β-NiAl as a function of temperature. With these techniques residual stress, phase composition and thickness of the scales were determined after various oxidation temperatures. The oxidation of the three low- index surfaces, (001), (110) and (111) exhibit differences in residual stress and phase composition. All surfaces exhibit a stress anomaly between 1200 and 1250°C. Using micro-fluorescence and optical microscopy we have investigated the deformation and stresses that develop in the vicinity of edges (i.e. the intersection of two crystallographic faces) in single crystal β-NiAl as it is thermally oxidized at temperatures in the range 1100-1450°C. We find that the edges, initially with a radius of curvature of ~2 microns, develop a significant rounding. The radius of curvature of this rounding appears to be constant at temperatures above 1250°C, suggesting that the rounding takes place below this temperature. Stresses in the oxide scale show a very large decrease close to the edges and the distances over which this decrease occurs is comparable to the rounding discussed above. Data for both the deformation and stress are presented for the following pair of orientations: (001) and (011), (110) and (11¯0), (111) and (11¯0). The effects of reactive element (i.e., Zr) doping on oxidation of single crystal β-NiAl is studied as a function of temperature. The results are compared with the results obtained from an undoped counterpart. Interesting differences in scale stress, thickness and phase composition have been observed. Initial lower stress levels in the doped crystal convert to higher stresses at higher oxidation temperatures. The orientation dependence and the stress anomaly observed with the undoped single crystal β-NiAl are still present on the doped sample. Fluorescence and Raman results indicate a higher concentration of θ- Al2O3 on

  17. Contributed Review: Absolute spectral radiance calibration of fiber-optic shock-temperature pyrometers using a coiled-coil irradiance standard lamp.

    PubMed

    Fat'yanov, O V; Asimow, P D

    2015-10-01

    We describe an accurate and precise calibration procedure for multichannel optical pyrometers such as the 6-channel, 3-ns temporal resolution instrument used in the Caltech experimental geophysics laboratory. We begin with a review of calibration sources for shock temperatures in the 3000-30,000 K range. High-power, coiled tungsten halogen standards of spectral irradiance appear to be the only practical alternative to NIST-traceable tungsten ribbon lamps, which are no longer available with large enough calibrated area. However, non-uniform radiance complicates the use of such coiled lamps for reliable and reproducible calibration of pyrometers that employ imaging or relay optics. Careful analysis of documented methods of shock pyrometer calibration to coiled irradiance standard lamps shows that only one technique, not directly applicable in our case, is free of major radiometric errors. We provide a detailed description of the modified Caltech pyrometer instrument and a procedure for its absolute spectral radiance calibration, accurate to ±5%. We employ a designated central area of a 0.7× demagnified image of a coiled-coil tungsten halogen lamp filament, cross-calibrated against a NIST-traceable tungsten ribbon lamp. We give the results of the cross-calibration along with descriptions of the optical arrangement, data acquisition, and processing. We describe a procedure to characterize the difference between the static and dynamic response of amplified photodetectors, allowing time-dependent photodiode correction factors for spectral radiance histories from shock experiments. We validate correct operation of the modified Caltech pyrometer with actual shock temperature experiments on single-crystal NaCl and MgO and obtain very good agreement with the literature data for these substances. We conclude with a summary of the most essential requirements for error-free calibration of a fiber-optic shock-temperature pyrometer using a high-power coiled tungsten halogen

  18. Contributed Review: Absolute spectral radiance calibration of fiber-optic shock-temperature pyrometers using a coiled-coil irradiance standard lamp

    SciTech Connect

    Fat’yanov, O. V. Asimow, P. D.

    2015-10-15

    We describe an accurate and precise calibration procedure for multichannel optical pyrometers such as the 6-channel, 3-ns temporal resolution instrument used in the Caltech experimental geophysics laboratory. We begin with a review of calibration sources for shock temperatures in the 3000-30 000 K range. High-power, coiled tungsten halogen standards of spectral irradiance appear to be the only practical alternative to NIST-traceable tungsten ribbon lamps, which are no longer available with large enough calibrated area. However, non-uniform radiance complicates the use of such coiled lamps for reliable and reproducible calibration of pyrometers that employ imaging or relay optics. Careful analysis of documented methods of shock pyrometer calibration to coiled irradiance standard lamps shows that only one technique, not directly applicable in our case, is free of major radiometric errors. We provide a detailed description of the modified Caltech pyrometer instrument and a procedure for its absolute spectral radiance calibration, accurate to ±5%. We employ a designated central area of a 0.7× demagnified image of a coiled-coil tungsten halogen lamp filament, cross-calibrated against a NIST-traceable tungsten ribbon lamp. We give the results of the cross-calibration along with descriptions of the optical arrangement, data acquisition, and processing. We describe a procedure to characterize the difference between the static and dynamic response of amplified photodetectors, allowing time-dependent photodiode correction factors for spectral radiance histories from shock experiments. We validate correct operation of the modified Caltech pyrometer with actual shock temperature experiments on single-crystal NaCl and MgO and obtain very good agreement with the literature data for these substances. We conclude with a summary of the most essential requirements for error-free calibration of a fiber-optic shock-temperature pyrometer using a high-power coiled tungsten halogen

  19. Contributed Review: Absolute spectral radiance calibration of fiber-optic shock-temperature pyrometers using a coiled-coil irradiance standard lamp.

    PubMed

    Fat'yanov, O V; Asimow, P D

    2015-10-01

    We describe an accurate and precise calibration procedure for multichannel optical pyrometers such as the 6-channel, 3-ns temporal resolution instrument used in the Caltech experimental geophysics laboratory. We begin with a review of calibration sources for shock temperatures in the 3000-30,000 K range. High-power, coiled tungsten halogen standards of spectral irradiance appear to be the only practical alternative to NIST-traceable tungsten ribbon lamps, which are no longer available with large enough calibrated area. However, non-uniform radiance complicates the use of such coiled lamps for reliable and reproducible calibration of pyrometers that employ imaging or relay optics. Careful analysis of documented methods of shock pyrometer calibration to coiled irradiance standard lamps shows that only one technique, not directly applicable in our case, is free of major radiometric errors. We provide a detailed description of the modified Caltech pyrometer instrument and a procedure for its absolute spectral radiance calibration, accurate to ±5%. We employ a designated central area of a 0.7× demagnified image of a coiled-coil tungsten halogen lamp filament, cross-calibrated against a NIST-traceable tungsten ribbon lamp. We give the results of the cross-calibration along with descriptions of the optical arrangement, data acquisition, and processing. We describe a procedure to characterize the difference between the static and dynamic response of amplified photodetectors, allowing time-dependent photodiode correction factors for spectral radiance histories from shock experiments. We validate correct operation of the modified Caltech pyrometer with actual shock temperature experiments on single-crystal NaCl and MgO and obtain very good agreement with the literature data for these substances. We conclude with a summary of the most essential requirements for error-free calibration of a fiber-optic shock-temperature pyrometer using a high-power coiled tungsten halogen

  20. Contributed Review: Absolute spectral radiance calibration of fiber-optic shock-temperature pyrometers using a coiled-coil irradiance standard lamp

    NASA Astrophysics Data System (ADS)

    Fat'yanov, O. V.; Asimow, P. D.

    2015-10-01

    We describe an accurate and precise calibration procedure for multichannel optical pyrometers such as the 6-channel, 3-ns temporal resolution instrument used in the Caltech experimental geophysics laboratory. We begin with a review of calibration sources for shock temperatures in the 3000-30 000 K range. High-power, coiled tungsten halogen standards of spectral irradiance appear to be the only practical alternative to NIST-traceable tungsten ribbon lamps, which are no longer available with large enough calibrated area. However, non-uniform radiance complicates the use of such coiled lamps for reliable and reproducible calibration of pyrometers that employ imaging or relay optics. Careful analysis of documented methods of shock pyrometer calibration to coiled irradiance standard lamps shows that only one technique, not directly applicable in our case, is free of major radiometric errors. We provide a detailed description of the modified Caltech pyrometer instrument and a procedure for its absolute spectral radiance calibration, accurate to ±5%. We employ a designated central area of a 0.7× demagnified image of a coiled-coil tungsten halogen lamp filament, cross-calibrated against a NIST-traceable tungsten ribbon lamp. We give the results of the cross-calibration along with descriptions of the optical arrangement, data acquisition, and processing. We describe a procedure to characterize the difference between the static and dynamic response of amplified photodetectors, allowing time-dependent photodiode correction factors for spectral radiance histories from shock experiments. We validate correct operation of the modified Caltech pyrometer with actual shock temperature experiments on single-crystal NaCl and MgO and obtain very good agreement with the literature data for these substances. We conclude with a summary of the most essential requirements for error-free calibration of a fiber-optic shock-temperature pyrometer using a high-power coiled tungsten halogen

  1. Absolute rate constant and O(3P) yield for the O(1D)+N2O reaction in the temperature range 227 K to 719 K

    NASA Astrophysics Data System (ADS)

    Vranckx, S.; Peeters, J.; Carl, S. A.

    2008-10-01

    The absolute rate constant for the reaction that is the major source of stratospheric NOx, O(1D)+N2O → products, has been determined in the temperature range 227 K to 719 K, and, in the temperature range 248 K to 600 K, the fraction of the reaction that yields O(3P). Both the rate constants and product yields were determined using a recently-developed chemiluminescence technique for monitoring O(1D) that allows for higher precision determinations for both rate constants, and, particularly, O(3P) yields, than do other methods. We found the rate constant, kR1, to be essentially independent of temperature between 400 K and 227 K, having a value of (1.37±0.11)×10-10 cm3 s-1, and for temperatures greater than 450 K a marked decrease in rate constant was observed, with a rate constant of only (0.94±0.11)×10-10 cm3 s-1 at 719 K. The rate constants determined over the 227 K 400 K range show very low scatter and are significantly greater, by 20% at room temperature and 15% at 227 K, than the current recommended values. The fraction of O(3P) produced in this reaction was determined to be 0.002±0.002 at 250 K rising steadily to 0.010±0.004 at 600 K, thus the channel producing O(3P) can be entirely neglected in atmospheric kinetic modeling calculations. A further result of this study is an expression of the relative quantum yields as a function of temperature for the chemiluminescence reactions (kCL1)C2H + O(1D) → CH(A) + CO and (kCL2)C2H + O(3P) → CH(A) + CO, both followed by CH(A) → CH(X) + hν, as kCL1(T)/kCL2(T)=(32.8T-3050)/(6.29T+398).

  2. Absolute rate constant and O(3P) yield for the O(1D)+N2O reaction in the temperature range 227 K to 719 K

    NASA Astrophysics Data System (ADS)

    Vranckx, S.; Peeters, J.; Carl, S. A.

    2008-05-01

    We have determined, in the temperature range 227 K to 719 K, the absolute rate constant for the reaction O(1D)+N2O → products and, in the temperature range 248 K to 600 K, the fraction of the reaction that yields O(3P). Both the rate constants and product yields were determined using a recently-developed chemiluminescence technique for monitoring O(1D) that allows for higher precision determinations for both rate constants, and, particularly, O(3P) yields, than do other methods. We found the rate constant, kR1, to be essentially independent of temperature between 400 K and 227 K, having a value of (1.37±0.09)×10-10 cm3 s-1. For temperatures greater than 450 K a marked decrease in value was observed, with a rate constant of only (0.94±0.11)×10-10 cm3 s-1 at 719 K. The rate constants determined over the 227 K-400 K range show very low scatter and are significantly greater, by 20% at room temperature and by 15% at 227 K, than the current recommended values. The fraction of O(3P) produced in this reaction was determined to be 0.002±0.002 at 250 K rising steadily to 0.010±0.004 at 600 K, thus the channel producing O(3P) can be entirely neglected in atmospheric kinetic modeling calculations. A further result of this study is an expression of the relative quantum yields as a function of temperature for the chemiluminescence reactions (kCL1) C2H+O(1D) → CH(A)+CO and (kCL2) C2H+O(3P) → CH(A)+CO, both followed by CH(A) → CH(X)+hν, as kCL1(T)/kCL2(T)=(32.8T-3050)/(6.29T+398).

  3. Teaching Absolute Value Meaningfully

    ERIC Educational Resources Information Center

    Wade, Angela

    2012-01-01

    What is the meaning of absolute value? And why do teachers teach students how to solve absolute value equations? Absolute value is a concept introduced in first-year algebra and then reinforced in later courses. Various authors have suggested instructional methods for teaching absolute value to high school students (Wei 2005; Stallings-Roberts…

  4. A full-dimensional model of ozone forming reaction: the absolute value of the recombination rate coefficient, its pressure and temperature dependencies.

    PubMed

    Teplukhin, Alexander; Babikov, Dmitri

    2016-07-28

    Rigorous calculations of scattering resonances in ozone are carried out for a broad range of rotational excitations. The accurate potential energy surface of Dawes is adopted, and a new efficient method for calculations of ro-vibrational energies, wave functions and resonance lifetimes is employed (which uses hyper-spherical coordinates, the sequential diagonalization/truncation approach, grid optimization and complex absorbing potential). A detailed analysis is carried out to characterize distributions of resonance energies and lifetimes, their rotational/vibrational content and their positions with respect to the centrifugal barrier. Emphasis is on the contribution of these resonances to the recombination process that forms ozone. It is found that major contributions come from localized resonances at energies near the top of the barrier. Delocalized resonances at higher energies should also be taken into account, while very narrow resonances at low energies (trapped far behind the centrifugal barrier) should be treated as bound states. The absolute value of the recombination rate coefficient, its pressure and temperature dependencies are obtained using the energy-transfer model developed in the earlier work. Good agreement with experimental data is obtained if one follows the suggestion of Troe, who argued that the energy transfer mechanism of recombination is responsible only for 55% of the recombination rate (with the remaining 45% coming from the competing chaperon mechanism). PMID:27364351

  5. A full-dimensional model of ozone forming reaction: the absolute value of the recombination rate coefficient, its pressure and temperature dependencies.

    PubMed

    Teplukhin, Alexander; Babikov, Dmitri

    2016-07-28

    Rigorous calculations of scattering resonances in ozone are carried out for a broad range of rotational excitations. The accurate potential energy surface of Dawes is adopted, and a new efficient method for calculations of ro-vibrational energies, wave functions and resonance lifetimes is employed (which uses hyper-spherical coordinates, the sequential diagonalization/truncation approach, grid optimization and complex absorbing potential). A detailed analysis is carried out to characterize distributions of resonance energies and lifetimes, their rotational/vibrational content and their positions with respect to the centrifugal barrier. Emphasis is on the contribution of these resonances to the recombination process that forms ozone. It is found that major contributions come from localized resonances at energies near the top of the barrier. Delocalized resonances at higher energies should also be taken into account, while very narrow resonances at low energies (trapped far behind the centrifugal barrier) should be treated as bound states. The absolute value of the recombination rate coefficient, its pressure and temperature dependencies are obtained using the energy-transfer model developed in the earlier work. Good agreement with experimental data is obtained if one follows the suggestion of Troe, who argued that the energy transfer mechanism of recombination is responsible only for 55% of the recombination rate (with the remaining 45% coming from the competing chaperon mechanism).

  6. Universal scaling relation in high-temperature superconductors

    NASA Astrophysics Data System (ADS)

    Homes, Christopher

    2005-03-01

    Superconductivity at elevated temperatures in the copper-oxide materials has proven to be one of the great challenges in condensed matter physics. Despite 18 years of intensive study, the nature of the superconductivity in these systems is still not agreed upon. Scaling laws express a systematic and universal simplicity among complex systems in nature. We have recently observed a scaling relation in the high-temperature superconductorsootnotetextC.C. Homes et al., Nature 430, 539 (2004) between the strength of the superconducting condensate ρs (a measure of the number of carriers in the superconducting state ns), the critical temperature Tc, and the dc conductivity σdc just above the critical temperature: ρs˜35,dc,c. This scaling relation does not depend on the crystal structure, type of dopant, nature of the disorder, or direction. Interestingly, values for the elemental superconductors Nb and Pb also fall close to this line. However, it may be shown from spectral weight arguments that these points correspond to systems in the BCS “dirty” limit (the scattering rate 1/τ is larger than the isotropic energy gap 2δ); in the extreme dirty limit, the scaling relation ρs˜65,dc,c is recovered. The implications of the clean and dirty-limit approaches within the copper-oxygen planes are discussed. The superconductivity perpendicular to the planes is often described within a BCS framework by the Josephson effect, which interestingly also yields ρs˜65,dc,c, where the superfluid density and the dc conductivity are now taken along the c axis. Despite the fact that the BCS model considers an isotropic energy gap, and the cuprates are considered to be d-wave in nature with nodes, the scaling behavior of the dirty-limit and the Josephson effect is in agreement with experimental observations. This suggests that electronic inhomogeneities may play a crucial role in the nature of superconductivity in these materials.

  7. Absolute rate coefficients over extended temperature ranges and mechanisms of the CF(X(2)Pi) reactions with F(2), Cl(2) and O(2).

    PubMed

    Vetters, B; Dils, B; Nguyen, T L; Vereecken, L; Carl, S A; Peeters, J

    2009-06-01

    The absolute rate coefficients of the reactions of the carbyne-radical CF(X(2)Pi, nu = 0) with O(2), F(2) and Cl(2) have been measured over extended temperature ranges, using pulsed-laser photodissociation-laser-induced fluorescence (PLP-LIF) techniques. The CF(X(2)Pi) radicals were generated by KrF excimer laser 2-photon photolysis of CF(2)Br(2) at 248 nm and the real-time exponential decays of CF(X(2)Pi, nu = 0) at varying coreactant concentrations, in large excess, were monitored by LIF (A(2)Sigma(+), nu' = 1 <-- X(2)Pi, nu'' = 0 transition). The experimental bimolecular rate coefficients of the CF(X(2)Pi) reactions with F(2) and Cl(2) can be described by simple Arrhenius expressions: k(F2)(295-408 K) = (1.5 +/- 0.2) x 10(-11) exp[-(370 +/- 40)K/T] cm(3) molecule(-1) s(-1); and k(Cl2)(295-392 K) = (6.1 +/- 2.1) x 10(-12) exp[+(280 +/- 120)K/T]. The k(F2)(T) and k(Cl2)(T) results can be rationalized in terms of direct halogen-atom abstraction reactions in which the radical character of CF dominates; a quantum chemical CBS-Q//BHandHLYP/6-311G(d,p) study confirms that the ground state reactants CF(X(2)Pi) + F(2)(X(1)Sigma) connect directly with the ground-state products CF(2)(X(1)A(1)) + F((2)P) via a nearly barrierless F-atom abstraction route. The rate coefficient of CF(X(2)Pi) + O(2) can be represented by a two-term Arrhenius expression: k(O2)(258-780 K) = 1.1 x 10(-11) exp(-850 K/T) + 2.3 x 10(-13) exp(500 K/T), with a standard deviation of 5%. The first term dominates at higher temperatures T and the second at lower T where a negative temperature dependence is observed (<290 K). Quantum chemical computations at the CBS-QB3 and CCSD(T)/aug-cc-pVDZ levels of theory show that the k(O2)(T) behaviour is consistent with a change of the dominant rate-determining mechanism from a carbyne-type insertion into the O-O bond at high T to a radical-radical combination at low T.

  8. New solar twins and the metallicity and temperature scales of the Geneva-Copenhagen Survey

    NASA Astrophysics Data System (ADS)

    Datson, Juliet; Flynn, Chris; Portinari, Laura

    2012-10-01

    We search for 'solar twins' in the Geneva-Copenhagen Survey (GCS) using high-resolution optical spectroscopy. We initially select Sun-like stars from the GCS by absolute magnitude, (b - y) colour and metallicity close to the solar values. Our aim is to find the stars which are spectroscopically very close to the Sun using line depth ratios and the median equivalent widths and depths of selected lines with a range of excitation potentials. We present the 10 best stars fulfilling combined photometric and spectroscopic criteria, of which six are new twins. We use our full sample of Sun-like stars to examine the calibration of the metallicity and temperature scale in the GCS. Our results give rise to the conclusion that the GCS may be offset from the solar temperature and metallicity for Sun-like stars by 100 K and 0.1 dex, respectively. Based on observations made with ESO Telescopes at the La Silla Observatory under programme ID 077.D-0525 and from the ESO Science Archive Facility under request number JDATSHCCCA119545 and following.

  9. The cooling law and the search for a good temperature scale, from Newton to Dalton

    NASA Astrophysics Data System (ADS)

    Besson, Ugo

    2011-03-01

    The research on the cooling law began with an article by Newton published in 1701. Later, many studies were performed by other scientists confirming or confuting Newton's law. This paper presents a description and an interpretation of Newton's article, provides a short overview of the research conducted on the topic during the 18th century, and discusses the relationships between the research on cooling laws and the definition of a temperature scale, as it was treated in Newton's article and in the work of Dalton, including Dalton's search for the absolute zero of temperature. It is shown that these scientists considered the exponential cooling law as a fundamental principle rather than a conjecture to be tested by means of experiments. The faith in the simplicity of natural laws and the spontaneous idea of proportionality between cause and effect seem to have strongly influenced Newton and Dalton. The topic is developed in a way that can be suitable for both undergraduate students and general physicists.

  10. Eosinophil count - absolute

    MedlinePlus

    Eosinophils; Absolute eosinophil count ... the white blood cell count to give the absolute eosinophil count. ... than 500 cells per microliter (cells/mcL). Normal value ranges may vary slightly among different laboratories. Talk ...

  11. Is Current CMBR Temperature: The Scale Independent Quantum Gravitational Result of Black Hole Cosmology?

    NASA Astrophysics Data System (ADS)

    Seshavatharam, U. V. S.; Lakshminarayana, S.

    If one is willing to consider the current cosmic microwave back ground temperature as a quantum gravitational effect of the evolving primordial cosmic black hole (universe that constitutes dynamic space-time and exhibits quantum behavior) automatically general theory of relativity and quantum mechanics can be combined into a `scale independent' true unified model of quantum gravity. By considering the `Planck mass' as the initial mass of the baby Hubble volume, past and current physical and thermal parameters of the cosmic black hole can be understood. Current rate of cosmic black hole expansion is being stopped by the microscopic quantum mechanical lengths. In this new direction authors observed 5 important quantum mechanical methods for understanding the current cosmic deceleration. To understand the ground reality of current cosmic rate of expansion, sensitivity and accuracy of current methods of estimating the magnitudes of current CMBR temperature and current Hubble constant must be improved and alternative methods must be developed. If it is true that galaxy constitutes so many stars, each star constitutes so many hydrogen atoms and light is coming from the excited electron of galactic hydrogen atom, then considering redshift as an index of `whole galaxy' receding may not be reasonable. During cosmic evolution, at any time in the past, in hydrogen atom emitted photon energy was always inversely proportional to the CMBR temperature. Thus past light emitted from older galaxy's excited hydrogen atom will show redshift with reference to the current laboratory data. As cosmic time passes, in future, the absolute rate of cosmic expansion can be understood by observing the rate of increase in the magnitude of photon energy emitted from laboratory hydrogen atom. Aged super novae dimming may be due to the effect of high cosmic back ground temperature. Need of new mathematical methods & techniques, computer simulations, advanced engineering skills seem to be essential

  12. Low temperature scale for a 1 to 20 degree Kelvin region

    NASA Technical Reports Server (NTRS)

    Cetas, T. C.; Swenson, C. A.

    1972-01-01

    New temperature scale, accurate to better than plus or minus 0.001 Kelvin over low temperature region, is based on National Bureau of Standards 1955 platinum resistance thermometer scale and utilizes precise susceptibility measurements on two paramagnetic salts.

  13. Interpreting Temperature Strain Data from Meso-Scale Clathrate Experiments

    SciTech Connect

    Leeman, John R; Rawn, Claudia J; Ulrich, Shannon M; Elwood Madden, Megan; Phelps, Tommy Joe

    2012-01-01

    Gas hydrates are important in global climate change, carbon sequestra- tion, and seafloor stability. Currently, formation and dissociation pathways are poorly defined. We present a new approach for processing large amounts of data from meso-scale experiments, such as the LUNA distributed sensing system (DSS) in the seafloor process simulator (SPS) at Oak Ridge National Laboratory. The DSS provides a proxy for temperature measurement with a high spatial resolution allowing the heat of reaction during gas hydrate formation/dissociation to aid in locating clathrates in the vessel. The DSS fibers are placed in the sediment following an Archimedean spiral design and then the position of each sensor is solved by iterating over the arc length formula with Newtons method. The data is then gridded with 1 a natural neighbor interpolation algorithm to allow contouring of the data. The solution of the sensor locations is verified with hot and cold stimulus in known locations. An experiment was preformed with a vertically split column of sand and silt. The DSS system clearly showed hydrate forming in the sand first, then slowly creeping into the silt. Similar systems and data processing techniques could be used for monitoring of hydrates in natural environments or in any situation where a hybrid temperature/strain index is useful. Further ad- vances in fiber technology allow the fiber to be applied in any configuration and the position of each sensor to be precisely determined making practical applications easier.

  14. Ion scale nonlinear interaction triggered by disparate scale electron temperature gradient mode

    NASA Astrophysics Data System (ADS)

    Moon, Chanho; Kobayashi, Tatsuya; Itoh, Kimitaka; Hatakeyama, Rikizo; Kaneko, Toshiro

    2015-05-01

    We have observed that the disparate scale nonlinear interactions between the high-frequency (˜0.4 MHz) electron temperature gradient (ETG) mode and the ion-scale low-frequency fluctuations (˜kHz) were enhanced when the amplitude of the ETG mode exceeded a certain threshold. The dynamics of nonlinear coupling between the ETG mode and the drift wave (DW) mode has already been reported [C. Moon, T. Kaneko, and R. Hatakeyama, Phys. Rev. Lett. (2013)]. Here, we have newly observed that another low-frequency fluctuation with f ≃ 3.6 kHz, i.e., the flute mode, was enhanced, corresponding to the saturation of the DW mode growth. Specifically, the bicoherence between the flute mode and the DW mode reaches a significant level when the ∇Te/Te strength exceeded 0.54 cm-1. Thus, it is shown that the ETG mode energy was transferred to the DW mode, and then the energy was ultimately transferred to the flute mode, which was triggered by the disparate scale nonlinear interactions between the ETG and ion-scale low-frequency modes.

  15. Ion scale nonlinear interaction triggered by disparate scale electron temperature gradient mode

    SciTech Connect

    Moon, Chanho; Kobayashi, Tatsuya; Itoh, Kimitaka; Hatakeyama, Rikizo; Kaneko, Toshiro

    2015-05-15

    We have observed that the disparate scale nonlinear interactions between the high-frequency (∼0.4 MHz) electron temperature gradient (ETG) mode and the ion-scale low-frequency fluctuations (∼kHz) were enhanced when the amplitude of the ETG mode exceeded a certain threshold. The dynamics of nonlinear coupling between the ETG mode and the drift wave (DW) mode has already been reported [C. Moon, T. Kaneko, and R. Hatakeyama, Phys. Rev. Lett. (2013)]. Here, we have newly observed that another low-frequency fluctuation with f ≃ 3.6 kHz, i.e., the flute mode, was enhanced, corresponding to the saturation of the DW mode growth. Specifically, the bicoherence between the flute mode and the DW mode reaches a significant level when the ∇T{sub e}/T{sub e} strength exceeded 0.54 cm{sup −1}. Thus, it is shown that the ETG mode energy was transferred to the DW mode, and then the energy was ultimately transferred to the flute mode, which was triggered by the disparate scale nonlinear interactions between the ETG and ion-scale low-frequency modes.

  16. A hybrid downscaling procedure for estimating the vertical distribution of ambient temperature in local scale

    NASA Astrophysics Data System (ADS)

    Yiannikopoulou, I.; Philippopoulos, K.; Deligiorgi, D.

    2012-04-01

    The vertical thermal structure of the atmosphere is defined by a combination of dynamic and radiation transfer processes and plays an important role in describing the meteorological conditions at local scales. The scope of this work is to develop and quantify the predictive ability of a hybrid dynamic-statistical downscaling procedure to estimate the vertical profile of ambient temperature at finer spatial scales. The study focuses on the warm period of the year (June - August) and the method is applied to an urban coastal site (Hellinikon), located in eastern Mediterranean. The two-step methodology initially involves the dynamic downscaling of coarse resolution climate data via the RegCM4.0 regional climate model and subsequently the statistical downscaling of the modeled outputs by developing and training site-specific artificial neural networks (ANN). The 2.5ox2.5o gridded NCEP-DOE Reanalysis 2 dataset is used as initial and boundary conditions for the dynamic downscaling element of the methodology, which enhances the regional representivity of the dataset to 20km and provides modeled fields in 18 vertical levels. The regional climate modeling results are compared versus the upper-air Hellinikon radiosonde observations and the mean absolute error (MAE) is calculated between the four grid point values nearest to the station and the ambient temperature at the standard and significant pressure levels. The statistical downscaling element of the methodology consists of an ensemble of ANN models, one for each pressure level, which are trained separately and employ the regional scale RegCM4.0 output. The ANN models are theoretically capable of estimating any measurable input-output function to any desired degree of accuracy. In this study they are used as non-linear function approximators for identifying the relationship between a number of predictor variables and the ambient temperature at the various vertical levels. An insight of the statistically derived input

  17. Absolute nuclear material assay

    DOEpatents

    Prasad, Manoj K.; Snyderman, Neal J.; Rowland, Mark S.

    2012-05-15

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  18. Absolute nuclear material assay

    DOEpatents

    Prasad, Manoj K.; Snyderman, Neal J.; Rowland, Mark S.

    2010-07-13

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  19. Large-scale behaviour of local and entanglement entropy of the free Fermi gas at any temperature

    NASA Astrophysics Data System (ADS)

    Leschke, Hajo; Sobolev, Alexander V.; Spitzer, Wolfgang

    2016-07-01

    The leading asymptotic large-scale behaviour of the spatially bipartite entanglement entropy (EE) of the free Fermi gas infinitely extended in multidimensional Euclidean space at zero absolute temperature, T = 0, is by now well understood. Here, we present and discuss the first rigorous results for the corresponding EE of thermal equilibrium states at T\\gt 0. The leading large-scale term of this thermal EE turns out to be twice the first-order finite-size correction to the infinite-volume thermal entropy (density). Not surprisingly, this correction is just the thermal entropy on the interface of the bipartition. However, it is given by a rather complicated integral derived from a semiclassical trace formula for a certain operator on the underlying one-particle Hilbert space. But in the zero-temperature limit T\\downarrow 0, the leading large-scale term of the thermal EE considerably simplifies and displays a {ln}(1/T)-singularity which one may identify with the known logarithmic enhancement at T = 0 of the so-called area-law scaling. birthday of the ideal Fermi gas.

  20. The hyperfine structure in the rotational spectra of D2(17)O and HD(17)O: Confirmation of the absolute nuclear magnetic shielding scale for oxygen.

    PubMed

    Puzzarini, Cristina; Cazzoli, Gabriele; Harding, Michael E; Vázquez, Juana; Gauss, Jürgen

    2015-03-28

    Guided by theoretical predictions, the hyperfine structures of the rotational spectra of mono- and bideuterated-water containing (17)O have been experimentally investigated. To reach sub-Doppler resolution, required to resolve the hyperfine structure due to deuterium quadrupole coupling as well as to spin-rotation (SR) and dipolar spin-spin couplings, the Lamb-dip technique has been employed. The experimental investigation and in particular, the spectral analysis have been supported by high-level quantum-chemical computations employing coupled-cluster techniques and, for the first time, a complete experimental determination of the hyperfine parameters involved was possible. The experimentally determined (17)O spin-rotation constants of D2 (17)O and HD(17)O were used to derive the paramagnetic part of the corresponding nuclear magnetic shielding constants. Together with the computed diamagnetic contributions as well as the vibrational and temperature corrections, the latter constants have been employed to confirm the oxygen nuclear magnetic shielding scale, recently established on the basis of spin-rotation data for H2 (17)O [Puzzarini et al., J. Chem. Phys. 131, 234304 (2009)].

  1. Absolute shielding scales for Al, Ga, and In and revised nuclear magnetic dipole moments of {sup 27}Al, {sup 69}Ga, {sup 71}Ga, {sup 113}In, and {sup 115}In nuclei

    SciTech Connect

    Antušek, A. Holka, F.

    2015-08-21

    We present coupled cluster calculations of NMR shielding constants of aluminum, gallium, and indium in water-ion clusters. In addition, relativistic and dynamical corrections and the influence of the second solvation shell are evaluated. The final NMR shielding constants define new absolute shielding scales, 600.0 ± 4.1 ppm, 2044.4 ± 31.4 ppm, and 4507.7 ± 63.7 ppm for aluminum, gallium, and indium, respectively. The nuclear magnetic dipole moments for {sup 27}Al, {sup 69}Ga, {sup 71}Ga, {sup 113}In, and {sup 115}In isotopes are corrected by combining the computed shielding constants with experimental NMR frequencies. The absolute magnitude of the correction increases along the series and for indium isotopes it reaches approximately −8.0 × 10{sup −3} of the nuclear magneton.

  2. Absolute photoacoustic thermometry in deep tissue.

    PubMed

    Yao, Junjie; Ke, Haixin; Tai, Stephen; Zhou, Yong; Wang, Lihong V

    2013-12-15

    Photoacoustic thermography is a promising tool for temperature measurement in deep tissue. Here we propose an absolute temperature measurement method based on the dual temperature dependences of the Grüneisen parameter and the speed of sound in tissue. By taking ratiometric measurements at two adjacent temperatures, we can eliminate the factors that are temperature irrelevant but difficult to correct for in deep tissue. To validate our method, absolute temperatures of blood-filled tubes embedded ~9 mm deep in chicken tissue were measured in a biologically relevant range from 28°C to 46°C. The temperature measurement accuracy was ~0.6°C. The results suggest that our method can be potentially used for absolute temperature monitoring in deep tissue during thermotherapy.

  3. Multi-fractal scaling comparison of the Air Temperature and the Surface Temperature over China

    NASA Astrophysics Data System (ADS)

    Jiang, Lei; Zhang, Jiping; Liu, Xinwei; Li, Fei

    2016-11-01

    The spatial and temporal multi-scaling behaviors between the daily Air Temperature (AT) and the Surface Temperature (ST) over China are compared in about 60-yr observations by Multi-fractal Detrended Fluctuation Analysis (MF-DFA) method. The different fractal phenomena and diversity features in the geographic distribution are found for the AT and ST series using MF-DFA. There are more multi-fractal features for the AT records but less for ST. The respective geographic sites show important scaling differences when compared to the multi-fractal signatures of AT with ST. An interval threshold for 95% confidence level is obtained by shuffling the AT records and the ST records. For the AT records, 93% of all observed stations shows the strong multi-fractal behaviors. In addition, the multi-fractal characteristics decrease with increasing latitude in South China and are obviously strong along the coast. The multi-fractal behaviors of the AT records between the Yangtze River and Yellow River basin and in most regions of Northwest China seem to be weak and not significant, even single mono-fractal features. However, for the ST records, the geographical distributions of multi-fractal phenomenon seem to be in disorder which account for 81% of the stations. The weak multi-fractal behaviors of the ST records are concentrated in North China, most regions of Northeast China.

  4. Parametric scaling from species relative abundances to absolute abundances in the computation of biological diversity: a first proposal using Shannon's entropy.

    PubMed

    Ricotta, Carlo

    2003-01-01

    Traditional diversity measures such as the Shannon entropy are generally computed from the species' relative abundance vector of a given community to the exclusion of species' absolute abundances. In this paper, I first mention some examples where the total information content associated with a given community may be more adequate than Shannon's average information content for a better understanding of ecosystem functioning. Next, I propose a parametric measure of statistical information that contains both Shannon's entropy and total information content as special cases of this more general function.

  5. Electron cyclotron emission spectra in X- and O-mode polarisation at JET: Martin-Puplett interferometer, absolute calibration, revised uncertainties, inboard/outboard temperature profile, and wall properties

    NASA Astrophysics Data System (ADS)

    Schmuck, S.; Fessey, J.; Boom, J. E.; Meneses, L.; Abreu, P.; Belonohy, E.; Lupelli, I.

    2016-09-01

    At the tokamak Joint European Torus (JET), the electron cyclotron emission spectra in O-mode and X-mode polarisations are diagnosed simultaneous in absolute terms for several harmonics with two Martin-Puplett interferometers. From the second harmonic range in X-mode polarisation, the electron temperature profile can be deduced for the outboard side (low magnetic field strength) of JET but only for some parts of the inboard side (high magnetic field strength). This spatial restriction can be bypassed, if a cutoff is not present inside the plasma for O-mode waves in the first harmonic range. Then, from this spectral domain, the profile on the entire inboard side is accessible. The profile determination relies on the new absolute and independent calibration for both interferometers. During the calibration procedure, the antenna pattern was investigated as well, and, potentially, an increase in the diagnostic responsivity of about 5% was found for the domain 100-300 GHz. This increase and other uncertainty sources are taken into account in the thorough revision of the uncertainty for the diagnostic absolute calibration. The uncertainty deduced and the convolution inherent for Fourier spectroscopy diagnostics have implications for the temperature profile inferred. Having probed the electron cyclotron emission spectra in orthogonal polarisation directions for the first harmonic range, a condition is derived for the reflection and polarisation-scrambling coefficients of the first wall on the outboard side of JET.

  6. Diel Surface Temperature Range Scales with Lake Size.

    PubMed

    Woolway, R Iestyn; Jones, Ian D; Maberly, Stephen C; French, Jon R; Livingstone, David M; Monteith, Donald T; Simpson, Gavin L; Thackeray, Stephen J; Andersen, Mikkel R; Battarbee, Richard W; DeGasperi, Curtis L; Evans, Christopher D; de Eyto, Elvira; Feuchtmayr, Heidrun; Hamilton, David P; Kernan, Martin; Krokowski, Jan; Rimmer, Alon; Rose, Kevin C; Rusak, James A; Ryves, David B; Scott, Daniel R; Shilland, Ewan M; Smyth, Robyn L; Staehr, Peter A; Thomas, Rhian; Waldron, Susan; Weyhenmeyer, Gesa A

    2016-01-01

    Ecological and biogeochemical processes in lakes are strongly dependent upon water temperature. Long-term surface warming of many lakes is unequivocal, but little is known about the comparative magnitude of temperature variation at diel timescales, due to a lack of appropriately resolved data. Here we quantify the pattern and magnitude of diel temperature variability of surface waters using high-frequency data from 100 lakes. We show that the near-surface diel temperature range can be substantial in summer relative to long-term change and, for lakes smaller than 3 km2, increases sharply and predictably with decreasing lake area. Most small lakes included in this study experience average summer diel ranges in their near-surface temperatures of between 4 and 7°C. Large diel temperature fluctuations in the majority of lakes undoubtedly influence their structure, function and role in biogeochemical cycles, but the full implications remain largely unexplored. PMID:27023200

  7. Diel Surface Temperature Range Scales with Lake Size

    PubMed Central

    Woolway, R. Iestyn; Jones, Ian D.; Maberly, Stephen C.; French, Jon R.; Livingstone, David M.; Monteith, Donald T.; Simpson, Gavin L.; Thackeray, Stephen J.; Andersen, Mikkel R.; Battarbee, Richard W.; DeGasperi, Curtis L.; Evans, Christopher D.; de Eyto, Elvira; Feuchtmayr, Heidrun; Hamilton, David P.; Kernan, Martin; Krokowski, Jan; Rimmer, Alon; Rose, Kevin C.; Rusak, James A.; Ryves, David B.; Scott, Daniel R.; Shilland, Ewan M.; Smyth, Robyn L.; Staehr, Peter A.; Thomas, Rhian; Waldron, Susan; Weyhenmeyer, Gesa A.

    2016-01-01

    Ecological and biogeochemical processes in lakes are strongly dependent upon water temperature. Long-term surface warming of many lakes is unequivocal, but little is known about the comparative magnitude of temperature variation at diel timescales, due to a lack of appropriately resolved data. Here we quantify the pattern and magnitude of diel temperature variability of surface waters using high-frequency data from 100 lakes. We show that the near-surface diel temperature range can be substantial in summer relative to long-term change and, for lakes smaller than 3 km2, increases sharply and predictably with decreasing lake area. Most small lakes included in this study experience average summer diel ranges in their near-surface temperatures of between 4 and 7°C. Large diel temperature fluctuations in the majority of lakes undoubtedly influence their structure, function and role in biogeochemical cycles, but the full implications remain largely unexplored. PMID:27023200

  8. Absolute biological needs.

    PubMed

    McLeod, Stephen

    2014-07-01

    Absolute needs (as against instrumental needs) are independent of the ends, goals and purposes of personal agents. Against the view that the only needs are instrumental needs, David Wiggins and Garrett Thomson have defended absolute needs on the grounds that the verb 'need' has instrumental and absolute senses. While remaining neutral about it, this article does not adopt that approach. Instead, it suggests that there are absolute biological needs. The absolute nature of these needs is defended by appeal to: their objectivity (as against mind-dependence); the universality of the phenomenon of needing across the plant and animal kingdoms; the impossibility that biological needs depend wholly upon the exercise of the abilities characteristic of personal agency; the contention that the possession of biological needs is prior to the possession of the abilities characteristic of personal agency. Finally, three philosophical usages of 'normative' are distinguished. On two of these, to describe a phenomenon or claim as 'normative' is to describe it as value-dependent. A description of a phenomenon or claim as 'normative' in the third sense does not entail such value-dependency, though it leaves open the possibility that value depends upon the phenomenon or upon the truth of the claim. It is argued that while survival needs (or claims about them) may well be normative in this third sense, they are normative in neither of the first two. Thus, the idea of absolute need is not inherently normative in either of the first two senses. PMID:23586876

  9. Absolute biological needs.

    PubMed

    McLeod, Stephen

    2014-07-01

    Absolute needs (as against instrumental needs) are independent of the ends, goals and purposes of personal agents. Against the view that the only needs are instrumental needs, David Wiggins and Garrett Thomson have defended absolute needs on the grounds that the verb 'need' has instrumental and absolute senses. While remaining neutral about it, this article does not adopt that approach. Instead, it suggests that there are absolute biological needs. The absolute nature of these needs is defended by appeal to: their objectivity (as against mind-dependence); the universality of the phenomenon of needing across the plant and animal kingdoms; the impossibility that biological needs depend wholly upon the exercise of the abilities characteristic of personal agency; the contention that the possession of biological needs is prior to the possession of the abilities characteristic of personal agency. Finally, three philosophical usages of 'normative' are distinguished. On two of these, to describe a phenomenon or claim as 'normative' is to describe it as value-dependent. A description of a phenomenon or claim as 'normative' in the third sense does not entail such value-dependency, though it leaves open the possibility that value depends upon the phenomenon or upon the truth of the claim. It is argued that while survival needs (or claims about them) may well be normative in this third sense, they are normative in neither of the first two. Thus, the idea of absolute need is not inherently normative in either of the first two senses.

  10. Integrated flow and temperature modeling at the catchment scale

    NASA Astrophysics Data System (ADS)

    Loinaz, Maria C.; Davidsen, Hasse Kampp; Butts, Michael; Bauer-Gottwein, Peter

    2013-07-01

    Changes in natural stream temperature levels can be detrimental to the health of aquatic ecosystems. Water use and land management directly affect the distribution of diffuse heat sources and thermal loads to streams, while riparian vegetation and geomorphology play a critical role in how thermal loads are buffered. In many areas, groundwater flow is a significant contribution to river flow, particularly during low flows and therefore has a strong influence on stream temperature levels and dynamics. However, previous stream temperature models do not properly simulate how surface water-groundwater dynamics affect stream temperature. A coupled surface water-groundwater and temperature model has therefore been developed to quantify the impacts of land management and water use on stream flow and temperatures. The model is applied to the simulation of stream temperature levels in a spring-fed stream, the Silver Creek Basin in Idaho, where stream temperature affects the populations of fish and other aquatic organisms. The model calibration highlights the importance of spatially distributed flow dynamics in the catchment to accurately predict stream temperatures. The results also show the value of including temperature data in an integrated flow model calibration because temperature data provide additional constraints on the flow sources and volumes. Simulations show that a reduction of 10% in the groundwater flow to the Silver Creek Basin can cause average and maximum temperature increases in Silver Creek over 0.3 °C and 1.5 °C, respectively. In spring-fed systems like Silver Creek, it is clearly not feasible to separate river habitat restoration from upstream catchment and groundwater management.

  11. Optomechanics for absolute rotation detection

    NASA Astrophysics Data System (ADS)

    Davuluri, Sankar

    2016-07-01

    In this article, we present an application of optomechanical cavity for the absolute rotation detection. The optomechanical cavity is arranged in a Michelson interferometer in such a way that the classical centrifugal force due to rotation changes the length of the optomechanical cavity. The change in the cavity length induces a shift in the frequency of the cavity mode. The phase shift corresponding to the frequency shift in the cavity mode is measured at the interferometer output to estimate the angular velocity of absolute rotation. We derived an analytic expression to estimate the minimum detectable rotation rate in our scheme for a given optomechanical cavity. Temperature dependence of the rotation detection sensitivity is studied.

  12. Drosophila Embryogenesis Scales Uniformly across Temperature in Developmentally Diverse Species

    PubMed Central

    Kuntz, Steven G.; Eisen, Michael B.

    2014-01-01

    Temperature affects both the timing and outcome of animal development, but the detailed effects of temperature on the progress of early development have been poorly characterized. To determine the impact of temperature on the order and timing of events during Drosophila melanogaster embryogenesis, we used time-lapse imaging to track the progress of embryos from shortly after egg laying through hatching at seven precisely maintained temperatures between 17.5°C and 32.5°C. We employed a combination of automated and manual annotation to determine when 36 milestones occurred in each embryo. D. melanogaster embryogenesis takes 33 hours at 17.5°C, and accelerates with increasing temperature to a low of 16 hours at 27.5°C, above which embryogenesis slows slightly. Remarkably, while the total time of embryogenesis varies over two fold, the relative timing of events from cellularization through hatching is constant across temperatures. To further explore the relationship between temperature and embryogenesis, we expanded our analysis to cover ten additional Drosophila species of varying climatic origins. Six of these species, like D. melanogaster, are of tropical origin, and embryogenesis time at different temperatures was similar for them all. D. mojavensis, a sub-tropical fly, develops slower than the tropical species at lower temperatures, while D. virilis, a temperate fly, exhibits slower development at all temperatures. The alpine sister species D. persimilis and D. pseudoobscura develop as rapidly as tropical flies at cooler temperatures, but exhibit diminished acceleration above 22.5°C and have drastically slowed development by 30°C. Despite ranging from 13 hours for D. erecta at 30°C to 46 hours for D. virilis at 17.5°C, the relative timing of events from cellularization through hatching is constant across all species and temperatures examined here, suggesting the existence of a previously unrecognized timer controlling the progress of embryogenesis that has

  13. Pressing Temperature and Enzyme Treatment Effects on Small Scale Blueberry Juice Recovery

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Making blueberry juice has multiple steps, and to evaluate how these steps influence juice recovery, bench top and pilot scale experiments were performed. In lab scale trials, southern highbush and rabbiteye blueberries were pressed at varying temperatures. Temperatures included fresh, frozen then ...

  14. Determination of gas temperature and C2 absolute density in Ar/H2/CH4 microwave discharges used for nanocrystalline diamond deposition from the C2 Mulliken system

    NASA Astrophysics Data System (ADS)

    Lombardi, G.; Bénédic, F.; Mohasseb, F.; Hassouni, K.; Gicquel, A.

    2004-08-01

    The spectroscopic characterization of Ar/H2/CH4 discharges suitable for the synthesis of nanocrystalline diamond using the microwave plasma assisted chemical vapour deposition process is reported. The experiments are realized in a moderate-pressure bell jar reactor, where discharges are ignited using a microwave cavity coupling system. The concentration of CH4 is maintained at 1% and the coupled set of hydrogen concentration/microwave power (MWP) ranges from 2%/500 W to 7%/800 W at a pressure of 200 mbar. Emission spectroscopy and broadband absorption spectroscopy studies are carried out on the \\C_{2}(D\\,^{1\\!}\\Sigma_u^{+}\\mbox{--}X\\,^{1\\!}\\Sigma_g^{+}) Mulliken system and the C2(d 3Pgrg-a 3Pgru) Swan system in order to determine the gas temperature and the C2 absolute density within the plasma. For this purpose, and since the Swan system is quite well-known, much importance is devoted to the achievement of a detailed simulation of the Mulliken system, which allows the determination of both the rotational temperature and the density of the \\smash{X\\,^{1\\!}\\Sigma_g^{+}} ground state, as well as the rotational temperature of the \\smash{D\\,^{1\\!}\\Sigma_u^{+}} state, from experimental data. All the experimental values are compared to those predicted by a thermochemical model developed to describe Ar/H2/CH4 microwave discharges under quasi-homogeneous plasma assumption. This comparison shows a reasonable agreement between the values measured from the C2 Mulliken system, those measured from the C2 Swan system and that calculated from plasma modelling, especially at low hydrogen concentration/MWP. These consistent results show that the use of the Mulliken system leads to fairly good estimates of the gas temperature and of the C2 absolute density. The relatively high gas temperatures found for the conditions investigated, typically between 3000 K and 4000 K, are attributed to the low thermal conductivity of argon that may limit thermal losses to the

  15. The absolute path command

    2012-05-11

    The ap command traveres all symlinks in a given file, directory, or executable name to identify the final absolute path. It can print just the final path, each intermediate link along with the symlink chan, and the permissions and ownership of each directory component in the final path. It has functionality similar to "which", except that it shows the final path instead of the first path. It is also similar to "pwd", but it canmore » provide the absolute path to a relative directory from the current working directory.« less

  16. The absolute path command

    SciTech Connect

    Moody, A.

    2012-05-11

    The ap command traveres all symlinks in a given file, directory, or executable name to identify the final absolute path. It can print just the final path, each intermediate link along with the symlink chan, and the permissions and ownership of each directory component in the final path. It has functionality similar to "which", except that it shows the final path instead of the first path. It is also similar to "pwd", but it can provide the absolute path to a relative directory from the current working directory.

  17. Absolute CF{sub 2} density and gas temperature measurements by absorption spectroscopy in dual-frequency capacitively coupled CF{sub 4}/Ar plasmas

    SciTech Connect

    Liu, Wen-Yao; Xu, Yong Peng, Fei; Gong, Fa-Ping; Li, Xiao-Song; Zhu, Ai-Min; Liu, Yong-Xin; Wang, You-Nian

    2014-10-15

    Broadband ultraviolet absorption spectroscopy has been used to determine the CF{sub 2} radical density in dual-frequency capacitively coupled CF{sub 4}/Ar plasmas, using the CF{sub 2} A{sup ~1}B{sub 1}←X{sup ~1}A{sub 1} system of absorption spectrum. The rotational temperature of ground state CF{sub 2} and excited state CF was also estimated by using A{sup ~1}B{sub 1}←X{sup ~1}A{sub 1} system and B{sup 2}Δ−X{sup 2}Π system, respectively. The translational gas temperature was deduced from the Doppler width of the Ar{sup *}({sup 3}P{sub 2}) and Ar{sup *}({sup 3}P{sub 0}) metastable atoms absorption line by using the tunable diode laser absorption spectroscopy. The rotational temperatures of the excited state CF are about 100 K higher than those of ground state CF{sub 2}, and about 200 K higher than the translational gas temperatures. The dependences of the radical CF{sub 2} density, electron density, electron temperature, rotational temperature, and gas temperature on the high frequency power and pressure have been analyzed. Furthermore, the production and loss mechanisms of CF{sub 2} radical and the gas heating mechanisms have also been discussed.

  18. Large-scale multiplex absolute protein quantification of drug-metabolizing enzymes and transporters in human intestine, liver, and kidney microsomes by SWATH-MS: Comparison with MRM/SRM and HR-MRM/PRM.

    PubMed

    Nakamura, Kenji; Hirayama-Kurogi, Mio; Ito, Shingo; Kuno, Takuya; Yoneyama, Toshihiro; Obuchi, Wataru; Terasaki, Tetsuya; Ohtsuki, Sumio

    2016-08-01

    The purpose of the present study was to examine simultaneously the absolute protein amounts of 152 membrane and membrane-associated proteins, including 30 metabolizing enzymes and 107 transporters, in pooled microsomal fractions of human liver, kidney, and intestine by means of SWATH-MS with stable isotope-labeled internal standard peptides, and to compare the results with those obtained by MRM/SRM and high resolution (HR)-MRM/PRM. The protein expression levels of 27 metabolizing enzymes, 54 transporters, and six other membrane proteins were quantitated by SWATH-MS; other targets were below the lower limits of quantitation. Most of the values determined by SWATH-MS differed by less than 50% from those obtained by MRM/SRM or HR-MRM/PRM. Various metabolizing enzymes were expressed in liver microsomes more abundantly than in other microsomes. Ten, 13, and eight transporters listed as important for drugs by International Transporter Consortium were quantified in liver, kidney, and intestinal microsomes, respectively. Our results indicate that SWATH-MS enables large-scale multiplex absolute protein quantification while retaining similar quantitative capability to MRM/SRM or HR-MRM/PRM. SWATH-MS is expected to be useful methodology in the context of drug development for elucidating the molecular mechanisms of drug absorption, metabolism, and excretion in the human body based on protein profile information.

  19. Scaled down glass transition temperature in confined polymer nanofibers.

    PubMed

    Wang, Hongxia; Chang, Tongxin; Li, Xiaohui; Zhang, Weidong; Hu, Zhijun; Jonas, Alain M

    2016-08-11

    Arrays of polymer nanostructures have been widely used in many novel devices and nanofabrication methods. The glass transition temperature, which is a key parameter influencing the long-term stability of polymer nanostructures, has not yet been systematically studied and well understood. Here we study this technological and fundamental issue with polymers of different values of molar mass M confined in nanocylinders of a varying diameter D. The glass transition temperature Tg loses its dependence on the molar mass for D ≲ 100 nm, a range in which the relative depression of Tg varies as D(-0.44). For higher cylinder diameters, Tg progressively recovers its dependence on the molar mass. This is quantitatively reproduced by a model based on an equilibrium interfacial excess of free volume, which needs to be created unless provided by the chain ends. Our findings suggest that the structural perturbations during nanofabrication may strongly affect the long-term stability of arrays of polymer nanostructures. PMID:27476991

  20. RR Lyrae: the zero point of temperature and magnitude scales.

    NASA Astrophysics Data System (ADS)

    de Santis, R.

    1996-02-01

    We find that the position in the HR diagram of the RR Lyrae variables of type ab is strictly related to properties defined in the period-amplitude plane: that is, both temperature and V magnitude of the static star are tightly correlated with blue amplitude and period. Using this pulsational approach, we show that the equilibrium temperature derived by the Baade-Wesselink (BW) method, using V and K bands, connects observational data with both pulsational and evolutionary theories in a self consistent scenario for an original helium of Y=0.23 . In contrast, we wholly confirm the inconsistency between temperature and luminosity level as derived by the BW procedure with the luminosity being wrong. We use the pulsational properties to compare the distance modulus derived by RRab variables with that obtained by the isochrone fitting procedure for a sample of galactic globular clusters (GGCs). We find a convergence to within about 0.1mag of uncertainty: in turn, this means that ages derived by both the {DELTA}V(ZAHB-TO) and the {DELTA}(B-V) methods agree to within approximately 2Gyr. Finally, we point out the following: a) the metal poor GGCs M92, M68 and M15 appear coeval (20Gyr old); b) an age spread of =~6Gyr is found in our sample of clusters.

  1. Understanding the complexity of temperature dynamics in Xinjiang, China, from multitemporal scale and spatial perspectives.

    PubMed

    Xu, Jianhua; Chen, Yaning; Li, Weihong; Liu, Zuhan; Wei, Chunmeng; Tang, Jie

    2013-01-01

    Based on the observed data from 51 meteorological stations during the period from 1958 to 2012 in Xinjiang, China, we investigated the complexity of temperature dynamics from the temporal and spatial perspectives by using a comprehensive approach including the correlation dimension (CD), classical statistics, and geostatistics. The main conclusions are as follows (1) The integer CD values indicate that the temperature dynamics are a complex and chaotic system, which is sensitive to the initial conditions. (2) The complexity of temperature dynamics decreases along with the increase of temporal scale. To describe the temperature dynamics, at least 3 independent variables are needed at daily scale, whereas at least 2 independent variables are needed at monthly, seasonal, and annual scales. (3) The spatial patterns of CD values at different temporal scales indicate that the complex temperature dynamics are derived from the complex landform.

  2. Scaling and optimization of the radiation temperature in dynamic hohlraums

    SciTech Connect

    SLUTZ,STEPHEN A.; DOUGLAS,MELISSA R.; LASH,JOEL S.; VESEY,ROGER A.; CHANDLER,GORDON A.; NASH,THOMAS J.; DERZON,MARK S.

    2000-04-13

    The authors have constructed a quasi-analytic model of the dynamic hohlraum. Solutions only require a numerical root solve, which can be done very quickly. Results of the model are compared to both experiments and full numerical simulations with good agreement. The computational simplicity of the model allows one to find the behavior of the hohlraum temperature as a function the various parameters of the system and thus find optimum parameters as a function of the driving current. The model is used to investigate the benefits of ablative standoff and axial convergence.

  3. The Effective Temperature Scale of M Dwarfs from Spectral Synthesis

    NASA Astrophysics Data System (ADS)

    Reylé, C.; Rajpurohit, A. S.; Schultheis, M.; Allard, F.

    2011-12-01

    We present a comparison of low-resolution spectra of 60 stars covering the whole M-dwarf sequence. Using the most recent PHOENIX BT-Settl stellar model atmospheres (see paper by F. Allard, in this book) we do a first quantitative comparison to our observed spectra in the wavelength range 550-950 nm. We perform a first confrontation between models and observations and we assign an effective temperatures to the observed M-dwarfs. Teff-spectral type relations are then compared with the published ones. This comparison also aims at improving the models' opacities.

  4. Studies relating to temperature control of a large scale telescope

    NASA Technical Reports Server (NTRS)

    Katzoff, S.

    1973-01-01

    Analytical methods are developed for estimating the circumferential and longitudinal temperature distributions in a large space telescope, idealized as a simple insulated tube with a flat mirror across one end. The effects of wall conduction, multilayer insulation, thermal coatings, heat pipes, and heated collars are analyzed, with numerical examples. For most of the study, the only thermal input to the tube was assumed to be from steady solar irradiation from one side, as in a geosynchronous orbit. Unsteady heat flow through the insulation, as in alternating sunlight and shadow of a low orbit, is briefly discussed.

  5. CMB all-scale blackbody distortions induced by linearizing temperature

    NASA Astrophysics Data System (ADS)

    Notari, Alessio; Quartin, Miguel

    2016-08-01

    Cosmic microwave background (CMB) experiments, such as WMAP and Planck, measure intensity anisotropies and build maps using a linearized formula for relating them to the temperature blackbody fluctuations. However, this procedure also generates a signal in the maps in the form of y -type distortions which is degenerate with the thermal Sunyaev Zel'dovich (tSZ) effect. These are small effects that arise at second order in the temperature fluctuations not from primordial physics but from such a limitation of the map-making procedure. They constitute a contaminant for measurements of our peculiar velocity, the tSZ and primordial y -distortions. They can nevertheless be well modeled and accounted for. We show that the distortions arise from a leakage of the CMB dipole into the y -channel which couples to all multipoles, mostly affecting the range ℓ≲400 . This should be visible in Planck's y -maps with an estimated signal-to-noise ratio of about 12. We note however that such frequency-dependent terms carry no new information on the nature of the CMB dipole. This implies that the real significance of Planck's Doppler coupling measurements is actually lower than reported by the collaboration. Finally, we quantify the level of contamination in tSZ and primordial y -type distortions and show that it is above the sensitivity of proposed next-generation CMB experiments.

  6. Temperature scaling in a dense vibrofluidized granular material.

    PubMed

    Sunthar, P; Kumaran, V

    1999-08-01

    The leading order "temperature" of a dense two-dimensional granular material fluidized by external vibrations is determined. The grain interactions are characterized by inelastic collisions, but the coefficient of restitution is considered to be close to 1, so that the dissipation of energy during a collision is small compared to the average energy of a particle. An asymptotic solution is obtained where the particles are considered to be elastic in the leading approximation. The velocity distribution is a Maxwell-Boltzmann distribution in the leading approximation. The density profile is determined by solving the momentum balance equation in the vertical direction, where the relation between the pressure and density is provided by the virial equation of state. The temperature is determined by relating the source of energy due to the vibrating surface and the energy dissipation due to inelastic collisions. The predictions of the present analysis show good agreement with simulation results at higher densities where theories for a dilute vibrated granular material, with the pressure-density relation provided by the ideal gas law, are in error. PMID:11969987

  7. Plasma size and power scaling of ion temperature gradient driven turbulence

    SciTech Connect

    Idomura, Yasuhiro; Nakata, Motoki

    2014-02-15

    The transport scaling with respect to plasma size and heating power is studied for ion temperature gradient driven turbulence using a fixed-flux full-f gyrokinetic Eulerian code. It is found that when heating power is scaled with plasma size, the ion heat diffusivity increases with plasma size in a local limit regime, where fixed-gradient δf simulations predict a gyro-Bohm scaling. In the local limit regime, the transport scaling is strongly affected by the stiffness of ion temperature profiles, which is related to the power degradation of confinement.

  8. Absolute OH and O radical densities in effluent of a He/H2O micro-scaled atmospheric pressure plasma jet

    NASA Astrophysics Data System (ADS)

    Benedikt, J.; Schröder, D.; Schneider, S.; Willems, G.; Pajdarová, A.; Vlček, J.; Schulz-von der Gathen, V.

    2016-08-01

    The effluent of a micro-scaled atmospheric pressure plasma jet (μ-APPJ) operated in helium with admixtures of water vapor (≲ {{10}4} ppm) has been analyzed by means of cavity ring-down laser absorption spectroscopy and molecular beam mass spectrometry to measure hydroxyl (OH) radical densities, and by two-photon absorption laser-induced fluorescence spectroscopy to measure atomic oxygen (O) densities. Additionally, the performance of the bubbler as a source of water vapor in the helium feed gas has been carefully characterized and calibrated. The largest OH and O densities in the effluent of 2× {{10}14}~\\text{c}{{\\text{m}}-3} and 3.2× {{10}13}~\\text{c}{{\\text{m}}-3} , respectively, have been measured at around 6000 ppm. The highest selectivity is reached around 1500 ppm, where the OH density is at  ∼63% of its maximum value and is 14 times larger than the O density. The measured density profiles and distance variations are compared to the results of a 2D axially symmetric fluid model of species transport and reaction kinetics in the plasma effluent. It is shown that the main loss of OH radicals in the effluent is their mutual reaction. In the case of O, reactions with other species than OH also have to be considered to explain the density decay in the effluent. The results presented here provide additional information for understanding the plasma-chemical processes in non-equilibrium atmospheric pressure plasmas. They also open the way to applying μ-APPJ with He/H2O as a selective source of OH radicals.

  9. Cubic boron nitride as a primary calibrant for a high temperature pressure scale

    SciTech Connect

    Goncharov, A.F.; Singeikin, S.; Crowhurst, J.C.; Ahart, M.; Lakshtanov, D.; Prakapenka, V.; Bass, J.; Beck, P.; Tkachev, S.N.; Zaug, J.M.; Fei, Y.

    2008-06-16

    We present results establishing a new high pressure scale at high temperature based on the thermal equation of state and elastic properties of cubic boron nitride (cBN). This scale is derived from simultaneous measurements of density and sound velocities at high pressure and temperature independent of any previous pressure scale. The present results obtained at room temperature to 27 GPa suggest the validity of the current ruby scale (within {+-}4% at 100 GPa). At high temperature, data obtained at 16 GPa to 723 K are in fair agreement with the thermal equation of state of cBN reported in our previous work. We have also shown that cBN can serve as a convenient pressure gauge in X-ray and optical studies using the laser heated diamond anvil cell.

  10. Process assessment of small scale low temperature methanol synthesis

    SciTech Connect

    Hendriyana; Susanto, Herri Subagjo

    2015-12-29

    Biomass is a renewable energy resource and has the potential to make a significant impact on domestic fuel supplies. Biomass can be converted to fuel like methanol via several step process. The process can be split into following main steps: biomass preparation, gasification, gas cooling and cleaning, gas shift and methanol synthesis. Untill now these configuration still has a problem like high production cost, catalyst deactivation, economy of scale and a huge energy requirements. These problems become the leading inhibition for biomass conversion to methanol, which should be resolved to move towards the economical. To address these issues, we developed various process and new configurations for methanol synthesis via methyl formate. This configuration combining two reactors: the one reactor for the carbonylation of methanol and CO to form methyl formate, and the second for the hydrogenolysis of methyl formate and H{sub 2} to form two molecule of methanol. Four plant process configurations were compared with the biomass basis is 300 ton/day. The first configuration (A) is equipped with a steam reforming process for converting methane to CO and H{sub 2} for increasing H{sub 2}/CO ratio. CO{sub 2} removal is necessary to avoid poisoning the catalyst. COSORB process used for the purpose of increasing the partial pressure of CO in the feed gas. The steam reforming process in B configuration is not used with the aim of reducing the number of process equipment, so expect lower investment costs. For C configuration, the steam reforming process and COSORB are not used with the aim of reducing the number of process equipment, so expect lower investment costs. D configuration is almost similar to the configuration A. This configuration difference is in the synthesis of methanol which was held in a single reactor. Carbonylation and hydrogenolysis reactions carried out in the same reactor one. These processes were analyzed in term of technical process, material and energy

  11. Process assessment of small scale low temperature methanol synthesis

    NASA Astrophysics Data System (ADS)

    Hendriyana, Susanto, Herri; Subagjo

    2015-12-01

    Biomass is a renewable energy resource and has the potential to make a significant impact on domestic fuel supplies. Biomass can be converted to fuel like methanol via several step process. The process can be split into following main steps: biomass preparation, gasification, gas cooling and cleaning, gas shift and methanol synthesis. Untill now these configuration still has a problem like high production cost, catalyst deactivation, economy of scale and a huge energy requirements. These problems become the leading inhibition for biomass conversion to methanol, which should be resolved to move towards the economical. To address these issues, we developed various process and new configurations for methanol synthesis via methyl formate. This configuration combining two reactors: the one reactor for the carbonylation of methanol and CO to form methyl formate, and the second for the hydrogenolysis of methyl formate and H2 to form two molecule of methanol. Four plant process configurations were compared with the biomass basis is 300 ton/day. The first configuration (A) is equipped with a steam reforming process for converting methane to CO and H2 for increasing H2/CO ratio. CO2 removal is necessary to avoid poisoning the catalyst. COSORB process used for the purpose of increasing the partial pressure of CO in the feed gas. The steam reforming process in B configuration is not used with the aim of reducing the number of process equipment, so expect lower investment costs. For C configuration, the steam reforming process and COSORB are not used with the aim of reducing the number of process equipment, so expect lower investment costs. D configuration is almost similar to the configuration A. This configuration difference is in the synthesis of methanol which was held in a single reactor. Carbonylation and hydrogenolysis reactions carried out in the same reactor one. These processes were analyzed in term of technical process, material and energy balance and economic

  12. Absolute rate constant for the reaction of atomic chlorine with hydrogen peroxide vapor over the temperature range 265-400 K

    NASA Technical Reports Server (NTRS)

    Michael, J. V.; Whytock, D. A.; Lee, J. H.; Payne, W. A.; Stief, L. J.

    1977-01-01

    Rate constants for the reaction of atomic chlorine with hydrogen peroxide were measured from 265-400 K using the flash photolysis-resonance fluorescence technique. Analytical techniques were developed to measure H2O2 under reaction conditions. Due to ambiguity in the interpretation of the analytical results, the data combine to give two equally acceptable representations of the temperature dependence. The results are compared to previous work at 298 K and are theoretically discussed in terms of the mechanism of the reaction. Additional experiments on the H + H2O2 reaction at 298 and 359 K are compared with earlier results from this laboratory and give a slightly revised bimolecular rate constant.

  13. Absolute rate constants of Mo 2 (X 1Σg+) and Mo (a 7S 3) with O 2 at room temperature

    NASA Astrophysics Data System (ADS)

    Wakabayashi, Tomohiro; Ishikawa, Yo-ichi; Arai, Shigeyoshi

    1996-07-01

    The gas phase reactivities of ground-state molybdenum dimers and atoms for oxygen molecule have been investigated in a mass-flow controlled cell. Transient concentration of Mo 2 (X 1Σg+, ν = 0) or Mo (a 7S 3) produced by 355 nm multiphoton dissociation (MPD) of Mo(CO) 6 was monitored by a laser-induced fluorescence (LIF). The predictable disturbance caused by free electrons inevitably produced in the MPD of metal carbonyls was examined by an appropriate addition of SF 6 as an electron scavenger. The pseudo-first order decay rates of these molybdenum species were found to depend linearly on O 2 pressure both in the absence and in the presence of SF 6, giving the bimolecular rate constants of (1.1 ± 0.1) × 10 -11 for Mo 2 (X 1Σg+, ν = 0) + O 2 and (1.2 ± 0.1) × 10 -10 cm 3 molecule -1 s -1 for Mo (a 7S 3) + O 2 under the 6.5 Torr total pressure with balance Ar at room temperature.

  14. Century-Scale of Standard Deviation in Europe Historical Temperature Records

    NASA Astrophysics Data System (ADS)

    Xie, F.

    2015-12-01

    The standard deviation (STD) variability in long historical temperature records in Europe is analyzed. It is found that STD is changeable with time, and a century-scale variation is revealed, which further indicates a century-scale intensity modulation of the large-scale temperature variability. The Atlantic multidecadal oscillation (AMO) can cause significant impacts in standard deviation. During the periods of 1870-1910 and 1950-80, increasing standard deviation corresponds to increasing AMO index, while the periods of 1920-50 and 1980-2000 decreasing standard deviation corresponds to decreasing AMO index. The findings herein suggest a new perspective on the understanding of climatic change

  15. Long-Term Formaldehyde Emissions from Medium-Density Fiberboard in a Full-Scale Experimental Room: Emission Characteristics and the Effects of Temperature and Humidity.

    PubMed

    Liang, Weihui; Yang, Shen; Yang, Xudong

    2015-09-01

    We studied formaldehyde emissions from the medium-density fiberboard (MDF) in a full-scale experimental room to approximate emissions in actual buildings. Detailed indoor formaldehyde concentrations and temperature and humidity data were obtained for about 29 months. Temperature, relative humidity (RH), and absolute humidity (AH) ranged over -10.9-31.4 °C, 46.5-83.6%, and 1.1-23.1 g/kgair, respectively. Annual cyclical seasonal variations were observed for indoor formaldehyde concentrations and emission rates, exhibiting entirely different characteristics than those in an environmental chamber under constant environmental conditions. The maximum concentration occurred in summer rather than at initial introduction of the material. The concentrations in summer could be a few up to 20 times higher than that in winter, depending on the indoor temperature and humidity conditions. Concentrations decreased by 20-65% in corresponding months of the second year. Indoor formaldehyde concentrations were positively correlated with temperature and AH but were poorly correlated with RH. The combined effects of temperature and AH on formaldehyde emissions from MDF in actual buildings were verified. These detailed long-term experimental results could be used with environmental chamber measurement data to scale up and validate emission models from chambers held at constant conditions to actual buildings.

  16. ABSOLUTE POLARIMETRY AT RHIC.

    SciTech Connect

    OKADA; BRAVAR, A.; BUNCE, G.; GILL, R.; HUANG, H.; MAKDISI, Y.; NASS, A.; WOOD, J.; ZELENSKI, Z.; ET AL.

    2007-09-10

    Precise and absolute beam polarization measurements are critical for the RHIC spin physics program. Because all experimental spin-dependent results are normalized by beam polarization, the normalization uncertainty contributes directly to final physics uncertainties. We aimed to perform the beam polarization measurement to an accuracy Of {Delta}P{sub beam}/P{sub beam} < 5%. The absolute polarimeter consists of Polarized Atomic Hydrogen Gas Jet Target and left-right pairs of silicon strip detectors and was installed in the RHIC-ring in 2004. This system features proton-proton elastic scattering in the Coulomb nuclear interference (CNI) region. Precise measurements of the analyzing power A{sub N} of this process has allowed us to achieve {Delta}P{sub beam}/P{sub beam} = 4.2% in 2005 for the first long spin-physics run. In this report, we describe the entire set up and performance of the system. The procedure of beam polarization measurement and analysis results from 2004-2005 are described. Physics topics of AN in the CNI region (four-momentum transfer squared 0.001 < -t < 0.032 (GeV/c){sup 2}) are also discussed. We point out the current issues and expected optimum accuracy in 2006 and the future.

  17. Probing the Absolute Mass Scale of Neutrinos

    SciTech Connect

    Prof. Joseph A. Formaggio

    2011-10-12

    The experimental efforts of the Neutrino Physics Group at MIT center primarily around the exploration of neutrino mass and its significance within the context of nuclear physics, particle physics, and cosmology. The group has played a prominent role in the Sudbury Neutrino Observatory, a neutrino experiment dedicated to measure neutrino oscillations from 8B neutrinos created in the sun. The group is now focusing its efforts in the measurement of the neutrino mass directly via the use of tritium beta decay. The MIT group has primary responsibilities in the Karlsruhe Tritium Neutrino mass experiment, expected to begin data taking by 2013. Specifically, the MIT group is responsible for the design and development of the global Monte Carlo framework to be used by the KATRIN collaboration, as well as responsibilities directly associated with the construction of the focal plane detector. In addition, the MIT group is sponsoring a new research endeavor for neutrino mass measurements, known as Project 8, to push beyond the limitations of current neutrino mass experiments.

  18. The influence of global sea surface temperature variability on the large-scale land surface temperature

    NASA Astrophysics Data System (ADS)

    Tyrrell, Nicholas L.; Dommenget, Dietmar; Frauen, Claudia; Wales, Scott; Rezny, Mike

    2015-04-01

    In global warming scenarios, global land surface temperatures () warm with greater amplitude than sea surface temperatures (SSTs), leading to a land/sea warming contrast even in equilibrium. Similarly, the interannual variability of is larger than the covariant interannual SST variability, leading to a land/sea contrast in natural variability. This work investigates the land/sea contrast in natural variability based on global observations, coupled general circulation model simulations and idealised atmospheric general circulation model simulations with different SST forcings. The land/sea temperature contrast in interannual variability is found to exist in observations and models to a varying extent in global, tropical and extra-tropical bands. There is agreement between models and observations in the tropics but not the extra-tropics. Causality in the land-sea relationship is explored with modelling experiments forced with prescribed SSTs, where an amplification of the imposed SST variability is seen over land. The amplification of to tropical SST anomalies is due to the enhanced upper level atmospheric warming that corresponds with tropical moist convection over oceans leading to upper level temperature variations that are larger in amplitude than the source SST anomalies. This mechanism is similar to that proposed for explaining the equilibrium global warming land/sea warming contrast. The link of the to the dominant mode of tropical and global interannual climate variability, the El Niño Southern Oscillation (ENSO), is found to be an indirect and delayed connection. ENSO SST variability affects the oceans outside the tropical Pacific, which in turn leads to a further, amplified and delayed response of.

  19. Absolute Equilibrium Entropy

    NASA Technical Reports Server (NTRS)

    Shebalin, John V.

    1997-01-01

    The entropy associated with absolute equilibrium ensemble theories of ideal, homogeneous, fluid and magneto-fluid turbulence is discussed and the three-dimensional fluid case is examined in detail. A sigma-function is defined, whose minimum value with respect to global parameters is the entropy. A comparison is made between the use of global functions sigma and phase functions H (associated with the development of various H-theorems of ideal turbulence). It is shown that the two approaches are complimentary though conceptually different: H-theorems show that an isolated system tends to equilibrium while sigma-functions allow the demonstration that entropy never decreases when two previously isolated systems are combined. This provides a more complete picture of entropy in the statistical mechanics of ideal fluids.

  20. On the '-1' scaling of air temperature spectra in atmospheric surface layer flows

    NASA Astrophysics Data System (ADS)

    Li, D.; Katul, G. G.; Gentine, P.

    2015-12-01

    The spectral properties of scalar turbulence at high wavenumbers have been extensively studied in turbulent flows, and existing theories explaining the k-5/3 scaling within the inertial subrange appear satisfactory at high Reynolds numbers. Equivalent theories for the low wavenumber range have been comparatively lacking because boundary conditions prohibit attainment of such universal behavior. A number of atmospheric surface layer (ASL) experiments reported a k-1 scaling in air temperature spectra ETT(k) at low wavenumbers but other experiments did not. Here, the occurrence of a k-1 scaling in ETT(k) in an idealized ASL flow across a wide range of atmospheric stability regimes is investigated theoretically and experimentally. Experiments reveal a k-1 scaling persisted across different atmospheric stability parameter values (ζ) ranging from mildly unstable to mildly stable conditions (-0.1< ζ < 0.2). As instability increases, the k-1 scaling vanishes. Based on a combined spectral and co-spectral budget models and upon using a Heisenberg eddy viscosity as a closure to the spectral flux transfer term, conditions promoting a k-1 scaling are identified. Existence of a k-1 scaling is shown to be primarily linked to an imbalance between the production and dissipation rates of half the temperature variance. The role of the imbalance between the production and dissipation rates of half the temperature variance in controlling the existence of a '-1' scaling suggests that the '-1' scaling in ETT(k) does not necessarily concur with the '-1' scaling in the spectra of longitudinal velocity Euu(k). This finding explains why some ASL experiments reported k-1 in Euu(k) but not ETT(k). It also differs from prior arguments derived from directional-dimensional analysis that lead to simultaneous k-1 scaling in Euu(k) and ETT(k) at low wavenumbers in a neutral ASL.

  1. Large-Scale Wireless Temperature Monitoring System for Liquefied Petroleum Gas Storage Tanks

    PubMed Central

    Fan, Guangwen; Shen, Yu; Hao, Xiaowei; Yuan, Zongming; Zhou, Zhi

    2015-01-01

    Temperature distribution is a critical indicator of the health condition for Liquefied Petroleum Gas (LPG) storage tanks. In this paper, we present a large-scale wireless temperature monitoring system to evaluate the safety of LPG storage tanks. The system includes wireless sensors networks, high temperature fiber-optic sensors, and monitoring software. Finally, a case study on real-world LPG storage tanks proves the feasibility of the system. The unique features of wireless transmission, automatic data acquisition and management, local and remote access make the developed system a good alternative for temperature monitoring of LPG storage tanks in practical applications. PMID:26393596

  2. Large-Scale Wireless Temperature Monitoring System for Liquefied Petroleum Gas Storage Tanks.

    PubMed

    Fan, Guangwen; Shen, Yu; Hao, Xiaowei; Yuan, Zongming; Zhou, Zhi

    2015-09-18

    Temperature distribution is a critical indicator of the health condition for Liquefied Petroleum Gas (LPG) storage tanks. In this paper, we present a large-scale wireless temperature monitoring system to evaluate the safety of LPG storage tanks. The system includes wireless sensors networks, high temperature fiber-optic sensors, and monitoring software. Finally, a case study on real-world LPG storage tanks proves the feasibility of the system. The unique features of wireless transmission, automatic data acquisition and management, local and remote access make the developed system a good alternative for temperature monitoring of LPG storage tanks in practical applications.

  3. Scaling Studies for High Temperature Test Facility and Modular High Temperature Gas-Cooled Reactor

    SciTech Connect

    Richard R. Schult; Paul D. Bayless; Richard W. Johnson; James R. Wolf; Brian Woods

    2012-02-01

    The Oregon State University (OSU) High Temperature Test Facility (HTTF) is an integral experimental facility that will be constructed on the OSU campus in Corvallis, Oregon. The HTTF project was initiated, by the U.S. Nuclear Regulatory Commission (NRC), on September 5, 2008 as Task 4 of the 5-year High Temperature Gas Reactor Cooperative Agreement via NRC Contract 04-08-138. Until August, 2010, when a DOE contract was initiated to fund additional capabilities for the HTTF project, all of the funding support for the HTTF was provided by the NRC via their cooperative agreement. The U.S. Department of Energy (DOE) began their involvement with the HTTF project in late 2009 via the Next Generation Nuclear Plant (NGNP) project. Because the NRC's interests in HTTF experiments were only centered on the depressurized conduction cooldown (DCC) scenario, NGNP involvement focused on expanding the experimental envelope of the HTTF to include steady-state operations and also the pressurized conduction cooldown (PCC).

  4. SCALE Code Validation for Prismatic High-Temperature Gas-Cooled Reactors

    SciTech Connect

    Ilas, Dan

    2013-01-01

    Using experimental data published in the International Handbook of Evaluated Reactor Physics Benchmark Experiments for the fresh cold core of the High Temperature Engineering Test Reactor, a comprehensive validation study has been carried out to assess the performance of the SCALE code system for analysis of high-temperature gas-cooled reactor configurations. This paper describes part of the results of that effort. The studies performed included criticality evaluations for the full core and for the annular cores realized during the fuel loading, as well as calculations and comparisons for excess reactivity, shutdown margin, control rod worths, temperature coefficient of reactivity, and reaction rate distributions. Comparisons of the SCALE results with both experimental values and MCNP-calculated values are presented. The comparisons show that the SCALE calculated results, obtained with both multigroup and continuous energy cross sections, are in reasonable agreement with the experimental data and the MCNP predictions.

  5. The intraspecific scaling of metabolic rate with body mass in fishes depends on lifestyle and temperature.

    PubMed

    Killen, Shaun S; Atkinson, David; Glazier, Douglas S

    2010-02-01

    Metabolic energy fuels all biological processes, and therefore theories that explain the scaling of metabolic rate with body mass potentially have great predictive power in ecology. A new model, that could improve this predictive power, postulates that the metabolic scaling exponent (b) varies between 2/3 and 1, and is inversely related to the elevation of the intraspecific scaling relationship (metabolic level, L), which in turn varies systematically among species in response to various ecological factors. We test these predictions by examining the effects of lifestyle, swimming mode and temperature on intraspecific scaling of resting metabolic rate among 89 species of teleost fish. As predicted, b decreased as L increased with temperature, and with shifts in lifestyle from bathyal and benthic to benthopelagic to pelagic. This effect of lifestyle on b may be related to varying amounts of energetically expensive tissues associated with different capacities for swimming during predator-prey interactions.

  6. Scaling of precipitation extremes with temperature in the French Mediterranean region: What explains the hook shape?

    NASA Astrophysics Data System (ADS)

    Drobinski, P.; Alonzo, B.; Bastin, S.; Silva, N. Da; Muller, C.

    2016-04-01

    Expected changes to future extreme precipitation remain a key uncertainty associated with anthropogenic climate change. Extreme precipitation has been proposed to scale with the precipitable water content in the atmosphere. Assuming constant relative humidity, this implies an increase of precipitation extremes at a rate of about 7% °C-1 globally as indicated by the Clausius-Clapeyron relationship. Increases faster and slower than Clausius-Clapeyron have also been reported. In this work, we examine the scaling between precipitation extremes and temperature in the present climate using simulations and measurements from surface weather stations collected in the frame of the HyMeX and MED-CORDEX programs in Southern France. Of particular interest are departures from the Clausius-Clapeyron thermodynamic expectation, their spatial and temporal distribution, and their origin. Looking at the scaling of precipitation extreme with temperature, two regimes emerge which form a hook shape: one at low temperatures (cooler than around 15°C) with rates of increase close to the Clausius-Clapeyron rate and one at high temperatures (warmer than about 15°C) with sub-Clausius-Clapeyron rates and most often negative rates. On average, the region of focus does not seem to exhibit super Clausius-Clapeyron behavior except at some stations, in contrast to earlier studies. Many factors can contribute to departure from Clausius-Clapeyron scaling: time and spatial averaging, choice of scaling temperature (surface versus condensation level), and precipitation efficiency and vertical velocity in updrafts that are not necessarily constant with temperature. But most importantly, the dynamical contribution of orography to precipitation in the fall over this area during the so-called "Cevenoles" events, explains the hook shape of the scaling of precipitation extremes.

  7. Increasing temperature forcing reduces the Greenland Ice Sheet's response time scale

    NASA Astrophysics Data System (ADS)

    Applegate, Patrick J.; Parizek, Byron R.; Nicholas, Robert E.; Alley, Richard B.; Keller, Klaus

    2015-10-01

    Damages from sea level rise, as well as strategies to manage the associated risk, hinge critically on the time scale and eventual magnitude of sea level rise. Satellite observations and paleo-data suggest that the Greenland Ice Sheet (GIS) loses mass in response to increased temperatures, and may thus contribute substantially to sea level rise as anthropogenic climate change progresses. The time scale of GIS mass loss and sea level rise are deeply uncertain, and are often assumed to be constant. However, previous ice sheet modeling studies have shown that the time scale of GIS response likely decreases strongly with increasing temperature anomaly. Here, we map the relationship between temperature anomaly and the time scale of GIS response, by perturbing a calibrated, three-dimensional model of GIS behavior. Additional simulations with a profile, higher-order, ice sheet model yield time scales that are broadly consistent with those obtained using the three-dimensional model, and shed light on the feedbacks in the ice sheet system that cause the time scale shortening. Semi-empirical modeling studies that assume a constant time scale of sea level adjustment, and are calibrated to small preanthropogenic temperature and sea level changes, may underestimate future sea level rise. Our analysis suggests that the benefits of reducing greenhouse gas emissions, in terms of avoided sea level rise from the GIS, may be greatest if emissions reductions begin before large temperature increases have been realized. Reducing anthropogenic climate change may also allow more time for design and deployment of risk management strategies by slowing sea level contributions from the GIS.

  8. Finite-temperature scaling of quantum coherence near criticality in a spin chain

    NASA Astrophysics Data System (ADS)

    Cheng, Weiwen; Zhang, Zhijun; Gong, Longyan; Zhao, Shengmei

    2016-06-01

    We explore quantum coherence, inherited from Wigner-Yanase skew information, to analyze quantum criticality in the anisotropic XY chain model at finite temperature. Based on the exact solutions of the Hamiltonian, the quantum coherence contained in a nearest-neighbor spin pairs reduced density matrix ρ is obtained. The first-order derivative of the quantum coherence is non-analytic around the critical point at sufficient low temperature. The finite-temperature scaling behavior and the universality are verified numerically. In particular, the quantum coherence can also detect the factorization transition in such a model at sufficient low temperature. We also show that quantum coherence contained in distant spin pairs can characterize quantum criticality and factorization phenomena at finite temperature. Our results imply that quantum coherence can serve as an efficient indicator of quantum criticality in such a model and shed considerable light on the relationships between quantum phase transitions and quantum information theory at finite temperature.

  9. High Temperature In Situ Compression of Thermoplastically Formed Nano-scale Metallic Glass

    NASA Astrophysics Data System (ADS)

    Mridha, Sanghita; Arora, Harpreet Singh; Lefebvre, Joseph; Bhowmick, Sanjit; Mukherjee, Sundeep

    2016-05-01

    The mechanical behavior of nano-scale metallic glasses was investigated by in situ compression tests in a scanning electron microscope. Platinum-based metallic glass nano-pillars were fabricated by thermoplastic forming. The nano-pillars and corresponding bulk substrate were tested in compression over the range of room temperature to glass transition. Stress-strain curves of the nano-pillars were obtained along with in situ observation of their deformation behavior. The bulk substrate as well as nano-pillars showed an increase in elastic modulus with temperature which is explained by diffusive rearrangement of atomic-scale viscoelastic units.

  10. Temperature dynamics and velocity scaling laws for interchange driven, warm ion plasma filaments

    NASA Astrophysics Data System (ADS)

    Olsen, Jeppe; Madsen, Jens; Nielsen, Anders Henry; Rasmussen, Jens Juul; Naulin, Volker

    2016-04-01

    The influence of electron and ion temperature dynamics on the radial convection of isolated structures in magnetically confined plasmas is investigated by means of numerical simulations. It is demonstrated that the maximum radial velocity of these plasma blobs roughly follows the inertial velocity scaling, which is proportional to the ion acoustic speed times the square root of the filament particle density times the sum of the electron and ion temperature perturbations. Only for small blobs the cross field convection does not follow this scaling. The influence of finite Larmor radius effects on the cross-field blob convection is shown not to depend strongly on the dynamical ion temperature field. The blob dynamics of constant finite and dynamical ion temperature blobs is similar. When the blob size is on the order of 10 times the ion Larmor radius the blobs stay coherent and decelerate slowly compared to larger blobs which dissipate faster due to fragmentation and turbulent mixing.

  11. Alexandrite as a high-temperature pressure calibrant, and implications for the ruby-fluorescence scale

    NASA Technical Reports Server (NTRS)

    Jahren, A. H.; Kruger, M. B.; Jeanloz, Raymond

    1992-01-01

    The wavelength shifts of the R1 and R2 fluorescence lines of alexandrite (BeAl2O4:Cr(+3)) have been experimentally calibrated against the ruby-fluorescence scale as a function of both hydrostatic and nonhydrostatic pressures between 0 and 50 GPa, and simultaneously as a function of temperatures between 290 and 550 K. It is found that the pressure-temperature cross derivative of the fluorescence wavelength shifts are negligible for both ruby and alexandrite.

  12. Absolute neutrino mass measurements

    SciTech Connect

    Wolf, Joachim

    2011-10-06

    The neutrino mass plays an important role in particle physics, astrophysics and cosmology. In recent years the detection of neutrino flavour oscillations proved that neutrinos carry mass. However, oscillation experiments are only sensitive to the mass-squared difference of the mass eigenvalues. In contrast to cosmological observations and neutrino-less double beta decay (0v2{beta}) searches, single {beta}-decay experiments provide a direct, model-independent way to determine the absolute neutrino mass by measuring the energy spectrum of decay electrons at the endpoint region with high accuracy.Currently the best kinematic upper limits on the neutrino mass of 2.2eV have been set by two experiments in Mainz and Troitsk, using tritium as beta emitter. The next generation tritium {beta}-experiment KATRIN is currently under construction in Karlsruhe/Germany by an international collaboration. KATRIN intends to improve the sensitivity by one order of magnitude to 0.2eV. The investigation of a second isotope ({sup 137}Rh) is being pursued by the international MARE collaboration using micro-calorimeters to measure the beta spectrum. The technology needed to reach 0.2eV sensitivity is still in the R and D phase. This paper reviews the present status of neutrino-mass measurements with cosmological data, 0v2{beta} decay and single {beta}-decay.

  13. Room temperature stretch forming of scale space shuttle external tank dome gores. Volume 1: Technical

    NASA Technical Reports Server (NTRS)

    Blunck, R. D.; Krantz, D. E.

    1974-01-01

    An account of activities and data gathered in the Room Temperature Stretch Forming of One-third Scale External Tank Bulkhead Gores for space shuttle study, and a tooling design and production cost study are reported. The following study phases are described: (1) the stretch forming of three approximately one-third scale external tank dome gores from single sheets of 2219-T37 aluminum alloy; (2) the designing of a full scale production die, including a determination of tooling requirements; and (3) the determination of cost per gore at the required production rates, including manufacturing, packaging, and shipping.

  14. Comparison of Ellison and Thorpe scales from Eulerian ocean temperature observations.

    NASA Astrophysics Data System (ADS)

    Cimatoribus, Andrea; van Haren, Hans; Gostiaux, Louis

    2014-05-01

    The geographical distribution of turbulent dissipation rate in the ocean is poorly understood at best. Turbulent dissipation rate is measured either by means of microstructure shear measurements, seldom performed in the open and deep ocean, or by means of adiabatically reordering vertical profiles of density. The latter technique leads to the estimation of the typical overturn size, the Thorpe scale, which can used to estimate average turbulent dissipation rate by using empirical relations linking the Thorpe scale to the Ozmidov scale of turbulence (Dillon, 1982). However, estimation of the Thorpe scale from temperature measurements can be difficult if a reliable determination of the vertical density profile is hindered by lack of resolution, salinity intrusions or low signal to noise ratio. We present here a method to estimate the typical overturn size by measuring the Ellison length scale using frequency spectra of temperature. We apply the method to high resolution temperature data from three moorings deployed at different locations around the Josephine sea mount (North Eastern Atlantic Ocean). It is shown that the variance of the temperature time series at the higher end of the internal wave frequency band and above is well correlated with the overturn size. The method is based on a time frequency decomposition using the 'maximum overlap discrete wavelet transform'. This method can be a viable alternative for indirectly estimating turbulent dissipation rate in the ocean when limited vertical information is available but time resolution is sufficiently high. A major result is the indication that fine structure contaminated temperature measurements can in fact provide reliable information on turbulence intensity. This method could thus contribute to extending our knowledge of the turbulent dissipation rate distribution, enabling the estimation of the latter from datasets where Thorpe scales cannot be reliably determined.

  15. The effects of temperature and activity on intraspecific scaling of metabolic rates in a lungless salamander.

    PubMed

    Gifford, Matthew E; Clay, Timothy A; Peterman, William E

    2013-04-01

    The scaling of metabolic rate with body mass holds substantial predictive power as many biological processes depend on energy. A significant body of theory has been developed based on the assumption that metabolic rate scales with body mass as a power function with an exponent of 0.75, and that this scaling relationship is independent of temperature. Here we test this hypothesis at the intraspecific level in a lungless salamander using data on both standard and maximal metabolic rates (SMR and MMR, respectively). We also address a recently proposed alternative explanation that predicts systematic variation in this mass-scaling exponent, the metabolic level boundaries hypothesis (MLB). Consistent with predictions of the metabolic theory of ecology the mass scaling of SMR and MMR were independent of temperature, however, we find evidence that the mass-scaling exponent for SMR and MMR differ significantly from 0.75. Further, our data do not provide strong support for MLB. Mass-scaling exponents for MMR generally exceed those for SMR, although these differences are rarely statistically significant.

  16. Pilot-scale studies on biological treatment of hypersaline wastewater at low temperature.

    PubMed

    Peng, Y Z; Zhu, G B; Wang, S Y; Yu, D S; Cui, Y W; Meng, X S

    2005-01-01

    In order to investigate the feasibility of biological treatment of hypersaline wastewater produced from toilet flushing with seawater at low temperature, pilot-scale studies were established with plug-flow activated sludge process at low temperature (5-9 degrees C) based on bench-scale experiments. The critical salinity concentration of 30 g/L, which resulted from the cooperation results of the non-halophilic bacteria and the halophilic bacteria, was drawn in bench-scale experiments. Pilot-scale studies showed that high COD removal efficiency, higher than 80%, was obtained at low temperature when 30 percent seawater was introduced. The salinity improved the settleability of activated sludge, and average sludge value dropped down from 38% to 22.5% after adding seawater. Seawater salinity had a strong negative effect on notronomonas and nitrobacter growth, but much more on the nitrobacter. The nitrification action was mainly accomplished by nitrosomonas. Bench-scale experiments using two SBRs were carried out for further investigation under different conditions of salinities, ammonia loadings and temperatures. Biological nitrogen removal via nitrite pathway from wastewater containing 30 percent seawater was achieved, but the ammonia removal efficiency was strongly related not only to the influent ammonia loading at different salinities but also to temperature. When the ratio of seawater to wastewater was 30 percent, and the ammonia loading was below the critical value of 0.15 kgNH4+-N/(kgMLSS.d), the ammonia removal efficiency via nitrite pathway was above 90%. The critical level of ammonia loading was 0.15, 0.08 and 0.03 kgNH4+-N/(kgMLSS.d) respectively at the different temperature 30 degrees C, 25 degrees C and 20 degrees C when the influent ammonia concentration was 60-80 mg/L and pH was 7.5-8.0. PMID:16459784

  17. Determination of Absolute Zero Using a Computer-Based Laboratory

    ERIC Educational Resources Information Center

    Amrani, D.

    2007-01-01

    We present a simple computer-based laboratory experiment for evaluating absolute zero in degrees Celsius, which can be performed in college and undergraduate physical sciences laboratory courses. With a computer, absolute zero apparatus can help demonstrators or students to observe the relationship between temperature and pressure and use…

  18. Combined Use of Absolute and Differential Seismic Arrival Time Data to Improve Absolute Event Location

    NASA Astrophysics Data System (ADS)

    Myers, S.; Johannesson, G.

    2012-12-01

    Arrival time measurements based on waveform cross correlation are becoming more common as advanced signal processing methods are applied to seismic data archives and real-time data streams. Waveform correlation can precisely measure the time difference between the arrival of two phases, and differential time data can be used to constrain relative location of events. Absolute locations are needed for many applications, which generally requires the use of absolute time data. Current methods for measuring absolute time data are approximately two orders of magnitude less precise than differential time measurements. To exploit the strengths of both absolute and differential time data, we extend our multiple-event location method Bayesloc, which previously used absolute time data only, to include the use of differential time measurements that are based on waveform cross correlation. Fundamentally, Bayesloc is a formulation of the joint probability over all parameters comprising the multiple event location system. The Markov-Chain Monte Carlo method is used to sample from the joint probability distribution given arrival data sets. The differential time component of Bayesloc includes scaling a stochastic estimate of differential time measurement precision based the waveform correlation coefficient for each datum. For a regional-distance synthetic data set with absolute and differential time measurement error of 0.25 seconds and 0.01 second, respectively, epicenter location accuracy is improved from and average of 1.05 km when solely absolute time data are used to 0.28 km when absolute and differential time data are used jointly (73% improvement). The improvement in absolute location accuracy is the result of conditionally limiting absolute location probability regions based on the precise relative position with respect to neighboring events. Bayesloc estimates of data precision are found to be accurate for the synthetic test, with absolute and differential time measurement

  19. Thermal equation of state of cubic boron nitride: Implications for a high-temperature pressure scale

    SciTech Connect

    Goncharov, Alexander F.; Crowhurst, Jonathan C.; Dewhurst, John K.; Sharma, Sangeeta; Sanloup, Chrystele; Gregoryanz, Eugene; Guignot, Nicolas; Mezouar, Mohamed

    2007-06-01

    The equation of state of cubic boron nitride (cBN) has been determined to a maximum temperature of 3300 K at a simultaneous static pressure of up to more than 70 GPa. Ab initio calculations to 80 GPa and 2000 K have also been performed. Our experimental data can be reconciled with theoretical results and with the known thermal expansion at 1 bar if we assume a small increase in pressure during heating relative to that measured at ambient temperature. The present data combined with the Raman measurements we presented earlier form the basis of a high-temperature pressure scale that is good to at least 3300 K.

  20. CORONAL ELECTRON TEMPERATURE FROM THE SOLAR WIND SCALING LAW THROUGHOUT THE SPACE AGE

    SciTech Connect

    Schwadron, N. A.; Smith, C. W.; Spence, H. E.; Kasper, J. C.; Korreck, K.; Stevens, M. L.; Maruca, B. A.; Kiefer, K. K.; Lepri, S. T.; McComas, D.

    2011-09-20

    Recent in situ observations of the solar wind show that charge states (e.g., the O{sup 7+}/O{sup 6+} and C{sup 6+}/C{sup 5+} abundance ratios) and {alpha}-particle composition evolved through the extended, deep solar minimum between solar cycles 23 and 24 (i.e., from 2006 to 2009). Prior investigations have found that both particle flux and magnetic field strength gradually decreased over this period of time. In this study, we find that (for a given solar wind speed) the coronal electron temperature (as derived from O{sup 7+}/O{sup 6+} and C{sup 6+}/C{sup 5+} measurements from ACE) likewise decreased during this minimum. We use the Schwadron and McComas solar wind scaling law to show that cooler coronal electron temperatures are naturally associated with lower particle fluxes because downward heat conduction must be reduced to keep the average energy loss per particle fixed. The results of the scaling law should apply to all solar wind models and suggest that the evolution of the solar wind is linked to the solar dynamo, which caused the coronal magnetic field strength to decrease in the deep, extended minimum. We utilize the scaling law to project coronal electron temperatures backward in time throughout the space age and find that these temperatures have been decreasing in successive temperature maxima since 1987 but were increasing in successive temperature maxima from 1969 to 1987. Thus, we show how the solar wind scaling law relates solar wind properties observed at 1 AU back to coronal electron temperatures throughout the space age.

  1. Strain rate, temperature and representative length scale influence on plasticity and yield stress in copper

    SciTech Connect

    Dupont, Virginie; Germann, Timothy C

    2011-01-18

    Shock compression of materials constitutes a complex process involving high strain rates, elevated temperatures and compression of the lattice. Materials properties are greatly affected by temperature, the representative length scale and the strain rate of the deformation. Experimentally, it is difficult to study the dynamic microscopic mechanisms that affect materials properties following high intensity shock loading, but they can be investigated using molecular dynamics (MD) simulations. Moreover, MD allows a better control over some parameters. We are using MD simulations to study the effect of the strain rate, representative length scale and temperature on the properties of metals during compression. A half-million-atom Cu sample is subjected to strain rates ranging from 10{sup 7} s{sup -1} to 10{sup 12} s{sup -1} at different temperatures ranging from 50K to 1500K. Single crystals as well as polycrystals are investigated. Plasticity mechanisms as well as the evolution of the micro- and macro-yield stress are observed. Our results show that the yield stress increases with increasing strain rate and decreasing temperature. We also show that the strain rate at which the transition between constant and increasing yield stress as a function of the temperature occurs increases with increasing temperature. Calculations at different grain sizes will give an insight into the grain size effect on the plasticity mechanisms and the yield stress.

  2. Spatial scaling and Multi-Scale analysis of remote sensing reflectance, Chlorophyll-a and Sea Surface Temperature

    NASA Astrophysics Data System (ADS)

    Schmitt, F. G.; Pannimpullath Remanan, R.; Loisel, H.

    2014-12-01

    Satellite remote sensing is a powerful tool for understanding many of oceanic processes synoptically. The images provided by the ocean colour satellites are widely used in physical, biological and ecological aspects of oceanography, but the scaling properties of satellite images are too rarely studied. In the present work we aim to understand the scaling properties of the satellite ocean colour products obtained from the MODIS-Aqua using tools from turbulence. We identify some regions which experience high spatial heterogeneity in Chlorophyll-a (Chl-a) and Sea Surface Temperature (SST). We also study the remote sensing reflectance at two wavelengths (Rrs443 and Rrs555 nm) which has direct link to the phytoplankton biomass. We have selected four regions of various water types for the present methodology study. Here we use 1D and 2D Fourier power spectra to understand the spatial scaling of Rrs, Chl-a and SST. The 2D power specrum is derived from the radially averaged power spectrum of Rrs, Chl-a and SST. The power spectra derived for 1D and 2D follow power law behaviour with specific slope values, and it varies with region.The multi-scaling properties of these images are also studied using the Structure Function (SF) and Coarse graining (CG) method. SF is analysed from the Rrs, Chl-a and SST maps and the CG is done using their gradient modulus. The moment scaling functions (ζ(q) for SF and K(q) for CG) are also derived for these images. Using simulations of 2D fBm, 2D beta model and lognormal cascades, we test both methods and show that, for nonstationary cascades (when the Hurst value is not zero) the CG method applied to the small scale laplacian field, is not adequate to characterize fully the image scaling statistics. The advantage of using the SF method is also that it can be applied to an instantaneous image with missing pixels, due to cloud coverage. Keywords: Power spectra, Scaling; Structure Function, Coarse graining, Multifractalilty, Beta model

  3. STREAM TEMPERATURE SIMULATION OF FORESTED RIPARIAN AREAS: I. WATERSHED-SCALE MODEL DEVELOPMENT

    EPA Science Inventory

    To simulate stream temperatures on a watershed scale, shading dynamics of topography and riparian vegetation must be computed for estimating the amount of solar radiation that is actually absorbed by water for each stream reach. A series of computational procedures identifying th...

  4. Exploring the role of temperature in the ocean through metabolic scaling.

    PubMed

    Bruno, John F; Carr, Lindsey A; O'Connor, Mary I

    2015-12-01

    Temperature imposes a constraint on the rates and outcomes of ecological processes that determine community- and ecosystem-level patterns. The application of metabolic scaling theory has advanced our understanding of the influence of temperature on pattern and process in marine communities. Metabolic scaling theory uses the fundamental and ubiquitous patterns of temperature-dependent metabolism to predict how environmental temperature influences patterns and processes at higher levels of biological organization. Here, we outline some of these predictions to review recent advances and illustrate how scaling theory might be applied to new challenges. For example, warming can alter species interactions and food-web structure and can also reduce total animal biomass supportable by a given amount of primary production by increasing animal metabolism and energetic demand. Additionally, within a species, larval development is faster in warmer water, potentially influencing dispersal and other demographic processes like population connectivity and gene flow. These predictions can be extended further to address major questions in marine ecology, and present an opportunity for conceptual unification of marine ecological research across levels of biological organization. Drawing on work by ecologists and oceanographers over the last century, a metabolic scaling approach represents a promising way forward for applying ecological understanding to basic questions as well as conservation challenges. PMID:26909420

  5. Exploring the role of temperature in the ocean through metabolic scaling.

    PubMed

    Bruno, John F; Carr, Lindsey A; O'Connor, Mary I

    2015-12-01

    Temperature imposes a constraint on the rates and outcomes of ecological processes that determine community- and ecosystem-level patterns. The application of metabolic scaling theory has advanced our understanding of the influence of temperature on pattern and process in marine communities. Metabolic scaling theory uses the fundamental and ubiquitous patterns of temperature-dependent metabolism to predict how environmental temperature influences patterns and processes at higher levels of biological organization. Here, we outline some of these predictions to review recent advances and illustrate how scaling theory might be applied to new challenges. For example, warming can alter species interactions and food-web structure and can also reduce total animal biomass supportable by a given amount of primary production by increasing animal metabolism and energetic demand. Additionally, within a species, larval development is faster in warmer water, potentially influencing dispersal and other demographic processes like population connectivity and gene flow. These predictions can be extended further to address major questions in marine ecology, and present an opportunity for conceptual unification of marine ecological research across levels of biological organization. Drawing on work by ecologists and oceanographers over the last century, a metabolic scaling approach represents a promising way forward for applying ecological understanding to basic questions as well as conservation challenges.

  6. Ruby pressure scale in a low-temperature diamond anvil cell

    NASA Astrophysics Data System (ADS)

    Yamaoka, Hitoshi; Zekko, Yumiko; Jarrige, Ignace; Lin, Jung-Fu; Hiraoka, Nozomu; Ishii, Hirofumi; Tsuei, Ku-Ding; Mizuki, Jun'ichiro

    2012-12-01

    Laser-excited N and R fluorescence lines of heavily doped ruby have been studied up to 26 GPa at low temperatures. While the intensity of the R lines at ambient pressure significantly decreases with decreasing temperature, the intensity of N lines originating from exchange-coupled Cr ion pairs is enhanced at low temperatures. The pressure induced wavelength shift of the N lines at 19 K is well fitted with an empirical formula similar to the equation for the R1 line, showing that the intense N line could be used as an alternative pressure scale at low temperatures. We also observe continuous increase in non-hydrostaticity with increasing pressure at low temperatures when silicone oil and 4:1 mixture of methanol and ethanol are used as pressure media.

  7. Temperature effects on the fracture resistance of scales from Cyprinus carpio.

    PubMed

    Murcia, Sandra; McConville, Mikaela; Li, Guihua; Ossa, Alex; Arola, D

    2015-03-01

    In this investigation the fracture resistance of scales from Cyprinus carpio was evaluated as a function of environmental temperature. Tear specimens were prepared from scales obtained from three characteristic regions (i.e. head, mid-length and tail) of multiple fish. The fracture resistance was characterized in Mode III loading and over temperatures ranging from -150°C to 21°C. Results showed that there was a significant reduction in tear resistance with decreasing temperature and the lowest resistance to fracture was obtained at -150°C. There was a significant difference in the relative tear toughness between scales from the three locations at ambient conditions (21°C), but not below freezing. Scales obtained near the head exhibited the largest resistance to fracture (energy ≈ 150 ± 25 kJm(-2)) overall. The fracture resistance was found to be primarily dependent on the thickness of the external mineralized layer and the number of external elasmodine plies, indicating that both the anatomical position and the corresponding microstructure are important to the mechanical behavior of elasmoid fish scales. These variables may be exploited in the design of bioinspired armors and should be considered in future studies concerning the mechanical behavior of these interesting natural materials. PMID:25481741

  8. The Scaling of Broadband Shock-Associated Noise with Increasing Temperature

    NASA Technical Reports Server (NTRS)

    Miller, Steven A.

    2012-01-01

    A physical explanation for the saturation of broadband shock-associated noise (BBSAN) intensity with increasing jet stagnation temperature has eluded investigators. An explanation is proposed for this phenomenon with the use of an acoustic analogy. For this purpose the acoustic analogy of Morris and Miller is examined. To isolate the relevant physics, the scaling of BBSAN at the peak intensity level at the sideline ( = 90 degrees) observer location is examined. Scaling terms are isolated from the acoustic analogy and the result is compared using a convergent nozzle with the experiments of Bridges and Brown and using a convergent-divergent nozzle with the experiments of Kuo, McLaughlin, and Morris at four nozzle pressure ratios in increments of total temperature ratios from one to four. The equivalent source within the framework of the acoustic analogy for BBSAN is based on local field quantities at shock wave shear layer interactions. The equivalent source combined with accurate calculations of the propagation of sound through the jet shear layer, using an adjoint vector Green s function solver of the linearized Euler equations, allows for predictions that retain the scaling with respect to stagnation pressure and allows for the accurate saturation of BBSAN with increasing stagnation temperature. This is a minor change to the source model relative to the previously developed models. The full development of the scaling term is shown. The sources and vector Green s function solver are informed by steady Reynolds-Averaged Navier-Stokes solutions. These solutions are examined as a function of stagnation temperature at the first shock wave shear layer interaction. It is discovered that saturation of BBSAN with increasing jet stagnation temperature occurs due to a balance between the amplification of the sound propagation through the shear layer and the source term scaling.A physical explanation for the saturation of broadband shock-associated noise (BBSAN) intensity

  9. Initial Operation of the High Temperature Electrolysis Integrated Laboratory Scale Experiment at INL

    SciTech Connect

    C. M. Stoots; J. E. O'Brien; K. G. Condie; J. S. Herring; J. J. Hartvigsen

    2008-06-01

    An integrated laboratory scale, 15 kW high-temperature electrolysis facility has been developed at the Idaho National Laboratory under the U.S. Department of Energy Nuclear Hydrogen Initiative. Initial operation of this facility resulted in over 400 hours of operation with an average hydrogen production rate of approximately 0.9 Nm3/hr. The integrated laboratory scale facility is designed to address larger-scale issues such as thermal management (feed-stock heating, high-temperature gas handling), multiple-stack hot-zone design, multiple-stack electrical configurations, and other “integral” issues. This paper documents the initial operation of the ILS, with experimental details about heat-up, initial stack performance, as well as long-term operation and stack degradation.

  10. Absolute cavity pyrgeometer

    DOEpatents

    Reda, Ibrahim

    2013-10-29

    Implementations of the present disclosure involve an apparatus and method to measure the long-wave irradiance of the atmosphere or long-wave source. The apparatus may involve a thermopile, a concentrator and temperature controller. The incoming long-wave irradiance may be reflected from the concentrator to a thermopile receiver located at the bottom of the concentrator to receive the reflected long-wave irradiance. In addition, the thermopile may be thermally connected to a temperature controller to control the device temperature. Through use of the apparatus, the long-wave irradiance of the atmosphere may be calculated from several measurements provided by the apparatus. In addition, the apparatus may provide an international standard of pyrgeometers' calibration that is traceable back to the International System of Units (SI) rather than to a blackbody atmospheric simulator.

  11. Auroral origin of medium scale gravity waves in neutral composition and temperature

    NASA Technical Reports Server (NTRS)

    Chandra, S.; Spencer, N. W.; Krankowsky, D.; Laemmerzahl, P.

    1979-01-01

    The kinetic temperature and neutral composition data obtained from the Aeros B neutral atmosphere temperature experiment and the neutral and ion mass spectrometer show spatial structures characteristic of medium scale gravity waves with a wavelength in the range of several hundred kilometers. These waves are associated with auroral activity, and their spatial structure reflects the time history of the auroral electrojet. The medium scale gravity waves tend to propagate to mid-latitudes on the nightside. On the dayside their range is limited to high latitudes. Gravity waves are carriers of auroral energy to middle and low latitudes where they may cause irreversible changes in temperature via viscous dissipation. Since auroral activity occurs frequently, it is suggested that this energy reaches the mid-latitude region of the thermosphere much more frequently than is indicated by planetary magnetic indices.

  12. Extending temperature sum models to simulate onset of birch flowering on the regional scale

    NASA Astrophysics Data System (ADS)

    Klein, Christian; Biernath, Christian; Priesack, Eckart

    2015-04-01

    For human health issues a reliable forecast of the onset of flowering of different plants which produce allergenic pollen is important. Yet, there are numerous phenological models available with different degrees of model complexity. All models consider the effect of the air temperatures on plant development; but only few models also include other environmental factors and/or plant internal water and nutrient status. However, the more complex models often use empirical relations without physiological meaning and are often tested against small datasets derived from a limited amount of sites. Most models which are used to simulate plant phenology are based on the temporal integration of temperatures above a defined base temperature. A critical temperature sum then defines the onset of a new phenological stage. The use of models that base on temperatures only, is efficient as temperatures are the most frequently documented and available weather component on global, regional and local scales. These models score by their robustness over a wide range of environmental conditions. However, the simulations sometimes fail by more than 20 days compared to measurements, and thus are not adequate for their use in pollen forecast. We tested the ability of temperature sum models to simulate onset of flowering of wild (e.g. birch) and domestic plants in Bavaria. In a first step we therefore determined both, a regional averaged optimum base temperature and temperature sum for the examined plant species in Bavaria. In the second step, the base temperatures were optimized to each site for the simulation period 2001-2010. Our hypothesis is that domestic plants depend much less on the regional weather conditions than wild plants do, due to low and high genetic variability, respectively. If so, the observed base temperatures of wild plants are smaller for low annual average temperatures and higher for high annual average temperatures. In the cases of domestic plants the optimized base

  13. Absolute Identification by Relative Judgment

    ERIC Educational Resources Information Center

    Stewart, Neil; Brown, Gordon D. A.; Chater, Nick

    2005-01-01

    In unidimensional absolute identification tasks, participants identify stimuli that vary along a single dimension. Performance is surprisingly poor compared with discrimination of the same stimuli. Existing models assume that identification is achieved using long-term representations of absolute magnitudes. The authors propose an alternative…

  14. Be Resolute about Absolute Value

    ERIC Educational Resources Information Center

    Kidd, Margaret L.

    2007-01-01

    This article explores how conceptualization of absolute value can start long before it is introduced. The manner in which absolute value is introduced to students in middle school has far-reaching consequences for their future mathematical understanding. It begins to lay the foundation for students' understanding of algebra, which can change…

  15. Impact of the Dominant Large-scale Teleconnections on Winter Temperature Variability over East Asia

    NASA Technical Reports Server (NTRS)

    Lim, Young-Kwon; Kim, Hae-Dong

    2013-01-01

    Monthly mean geopotential height for the past 33 DJF seasons archived in Modern Era Retrospective analysis for Research and Applications reanalysis is decomposed into the large-scale teleconnection patterns to explain their impacts on winter temperature variability over East Asia. Following Arctic Oscillation (AO) that explains the largest variance, East Atlantic/West Russia (EA/WR), West Pacific (WP) and El Nino-Southern Oscillation (ENSO) are identified as the first four leading modes that significantly explain East Asian winter temperature variation. While the northern part of East Asia north of 50N is prevailed by AO and EA/WR impacts, temperature in the midlatitudes (30N-50N), which include Mongolia, northeastern China, Shandong area, Korea, and Japan, is influenced by combined effect of the four leading teleconnections. ENSO impact on average over 33 winters is relatively weaker than the impact of the other three teleconnections. WP impact, which has received less attention than ENSO in earlier studies, characterizes winter temperatures over Korea, Japan, and central to southern China region south of 30N mainly by advective process from the Pacific. Upper level wave activity fluxes reveal that, for the AO case, the height and circulation anomalies affecting midlatitude East Asian winter temperature is mainly located at higher latitudes north of East Asia. Distribution of the fluxes also explains that the stationary wave train associated with EA/WR propagates southeastward from the western Russia, affecting the East Asian winter temperature. Investigation on the impact of each teleconnection for the selected years reveals that the most dominant teleconnection over East Asia is not the same at all years, indicating a great deal of interannual variability. Comparison in temperature anomaly distributions between observation and temperature anomaly constructed using the combined effect of four leading teleconnections clearly show a reasonable consistency between

  16. LARGE-SCALE HYDROGEN PRODUCTION FROM NUCLEAR ENERGY USING HIGH TEMPERATURE ELECTROLYSIS

    SciTech Connect

    James E. O'Brien

    2010-08-01

    Hydrogen can be produced from water splitting with relatively high efficiency using high-temperature electrolysis. This technology makes use of solid-oxide cells, running in the electrolysis mode to produce hydrogen from steam, while consuming electricity and high-temperature process heat. When coupled to an advanced high temperature nuclear reactor, the overall thermal-to-hydrogen efficiency for high-temperature electrolysis can be as high as 50%, which is about double the overall efficiency of conventional low-temperature electrolysis. Current large-scale hydrogen production is based almost exclusively on steam reforming of methane, a method that consumes a precious fossil fuel while emitting carbon dioxide to the atmosphere. Demand for hydrogen is increasing rapidly for refining of increasingly low-grade petroleum resources, such as the Athabasca oil sands and for ammonia-based fertilizer production. Large quantities of hydrogen are also required for carbon-efficient conversion of biomass to liquid fuels. With supplemental nuclear hydrogen, almost all of the carbon in the biomass can be converted to liquid fuels in a nearly carbon-neutral fashion. Ultimately, hydrogen may be employed as a direct transportation fuel in a “hydrogen economy.” The large quantity of hydrogen that would be required for this concept should be produced without consuming fossil fuels or emitting greenhouse gases. An overview of the high-temperature electrolysis technology will be presented, including basic theory, modeling, and experimental activities. Modeling activities include both computational fluid dynamics and large-scale systems analysis. We have also demonstrated high-temperature electrolysis in our laboratory at the 15 kW scale, achieving a hydrogen production rate in excess of 5500 L/hr.

  17. Temperature Measurement in PV Facilities on a Per-Panel Scale

    PubMed Central

    Martínez, Miguel A.; Andújar, José M.; Enrique, Juan M.

    2014-01-01

    This paper presents the design, construction and testing of an instrumentation system for temperature measurement in PV facilities on a per-panel scale (i.e., one or more temperature measurements per panel). Its main characteristics are: precision, ease of connection, immunity to noise, remote operation, easy scaling; and all of this at a very low cost. The paper discusses the advantages of temperature measurements in PV facilities on a per-panel scale. The paper presents the whole development to implementation of a real system that is being tested in an actual facility. This has enabled the authors to provide the readers with practical guidelines, which would be very difficult to achieve if the developments were implemented by just simulation or in a theoretical way. The instrumentation system is fully developed, from the temperature sensing to its presentation in a virtual instrument. The developed instrumentation system is able to work both locally and remotely connected to both wired and wireless network. PMID:25061834

  18. Mixing of Proton and Electron Scales - Effects of Proton Temperature Anisotropy on the Electron Firehose Instability

    NASA Astrophysics Data System (ADS)

    Maneva, Y. G.; Lazar, M.; Vinas, A. F.; Poedts, D. S.

    2015-12-01

    We perform kinetic linear theory instability analysis in a non-drifting anisotropic electron-proton plasma to study the effects of proton temperature anisotropies on the electron firehose instability in the collisionless solar wind. We solve the Vlasov linear theory dispersion relation for hot highly anisotropic electron-proton plasma in high-beta regime to study the behavior of the solar wind plasma close to the instability thresholds as observed by different spacecraft at 1 AU. We consider temperature and anisotropy regimes for which the electrons and the protons can interact via the excited electromagnetic fluctuations. For the selected parameters simultaneous electron and proton firehose instabilities can be observed with the growth rate of the electron firehose instability extending towards the proton scales. The co-existance of the proton and the electron firehose and the mixing of scales for the electromagnetic fluctuations excited by the two instabilities depends on the initial temperatures, anisotropies and angle of propagation. In the case of parallel wave propagation both left and right-hand polarized waves are simultaneously excited. As we increase the angle of propagation the electron firehose starts to dominate with excitation of large-amplitude aperiodic fluctuations over a large range of wave-numbers, starting at the protons scales and extending up to the smaller electron scales. We calculate the maximum growth rate of the oblique electron firehose as a function of the proton temperature anisotropy and discuss the implications of the electron-proton scale mixing for the observed plasma properties and instability thresholds in the undisturbed solar wind.

  19. {sup 3}He melting pressure temperature scale below 25 mK

    SciTech Connect

    Adams, E.D.; Ni, W.; Xia, J.S.

    1995-04-01

    Using {sup 60}Co {gamma} ray anisotropy radiation as a primary thermometer, with a Pt NMR susceptibility secondary thermometer, the authors have made high precision measurements of the {sup 3}He melting pressure versus temperature from 500 {mu}K to 25 mK. Temperatures obtained for the fixed points on the melting curve are: the superfluid A transition T{sub A} = 2.505 mK, the A-B transition T{sub AB} = 1.948 mK, and the solid ordering temperature T{sub N} = 0.934 mK. The authors provide a functional form for P(T), which, with the fixed points, constitutes a convenient temperature scale, based on a primary thermometer, usable to well below 1 mK.

  20. Subgrid-scale mixing of temperature perturbations from flamelet in turbulent partially premixed flames

    NASA Astrophysics Data System (ADS)

    Liu, Shuaishuai; Tong, Chenning

    2013-11-01

    Recent studies have shown that the subgrid-scale (SGS) mixture fraction and temperature in turbulent partially premixed flames have different structures for different SGS scalar variance. For large SGS variance the molecular transport and chemical reaction are tightly coupled while mixing models are greatly based on non-reactive scalars. To account for this coupling effect we use a method proposed by Bilger and Pope to decompose the temperature (a reactive scalar) into a flamelet part and the perturbations from it. The molecular transport of the former is in close form while the latter in unclosed. The diffusion and dissipation of the temperature perturbations are analyzed using high-resolution line images obtained in turbulent partially premixed (Sandia) flames. The results show that for flame regions that are nearly fully burning, the SGS mixing of the temperature perturbations is similar to that of a non-reactive scalar.

  1. Exploring the saturation levels of stimulated Raman scattering in the absolute regime.

    PubMed

    Michel, D T; Depierreux, S; Stenz, C; Tassin, V; Labaune, C

    2010-06-25

    This Letter reports new experimental results that evidence the transition between the absolute and convective growth of stimulated Raman scattering (SRS). Significant reflectivities were observed only when the instability grows in the absolute regime. In this case, saturation processes efficiently limit the SRS reflectivity that is shown to scale linearly with the laser intensity, and the electron density and temperature. Such a scaling agrees with the one established by T. Kolber et al. [Phys. Fluids B 5, 138 (1993)10.1063/1.860861] and B Bezzerides et al. [Phys. Rev. Lett. 70, 2569 (1993)10.1103/PhysRevLett.70.2569], from numerical simulations where the Raman saturation is due to the coupling of electron plasma waves with ion waves dynamics. PMID:20867387

  2. Metabolic response to air temperature and wind in day-old mallards and a standard operative temperature scale

    USGS Publications Warehouse

    Bakken, G.S.; Reynolds, P.S.; Kenow, K.P.; Korschgen, C.E.; Boysen, A.F.

    1999-01-01

    Most duckling mortality occurs during the week following hatching and is often associated with cold, windy, wet weather and scattering of the brood. We estimated the thermoregulatory demands imposed by cold, windy weather on isolated 1-d-old mallard (Anas platyrhynchos) ducklings resting in cover. We measured O-2 consumption and evaporative water loss at air temperatures from 5 degrees to 25 degrees C and wind speeds of 0.1, 0.2, 0.5, and 1.0 mis. Metabolic heat production increased as wind increased or temperature decreased but was less sensitive to wind than that of either adult passerines or small mammals. Evaporative heat loss ranged from 5% to 17% of heat production. Evaporative heal loss and the ratio of evaporative heat loss to metabolic heat production was significantly lower in rest phase. These data were used to define a standard operative temperature (T-es) scale for night or heavy overcast conditions. An increase of wind speed from 0.1 to 1 mis decreased T-es by 3 degrees-5 degrees C.

  3. On the Stress-Temperature Scaling for Steady-State Flow in Metallic Glasses

    SciTech Connect

    Guan, Pengfei; Chen, Mingwei; Egami, T.

    2010-01-01

    Through computer simulation of steady-state flow in a Zr50Cu40Al10 metallic glass using a set of realistic potentials we found a simple scaling relationship between temperature and stress as they affect viscosity. The scaling relationship provides new insights for the microscopic mechanism of shear flow in the glassy state, in terms of the elastic energy of the applied stress modifying the local energy landscape. The results suggest that the plastic flow and mechanical failure in metallic glasses are consequences of stress-induced glass transition.

  4. Temperature and zooplankton size structure: climate control and basin-scale comparison in the North Pacific.

    PubMed

    Chiba, Sanae; Batten, Sonia D; Yoshiki, Tomoko; Sasaki, Yuka; Sasaoka, Kosei; Sugisaki, Hiroya; Ichikawa, Tadafumi

    2015-02-01

    The global distribution of zooplankton community structure is known to follow latitudinal temperature gradients: larger species in cooler, higher latitudinal regions. However, interspecific relationships between temperature and size in zooplankton communities have not been fully examined in terms of temporal variation. To re-examine the relationship on a temporal scale and the effects of climate control thereon, we investigated the variation in copepod size structure in the eastern and western subarctic North Pacific in 2000-2011. This report presents the first basin-scale comparison of zooplankton community changes in the North Pacific based on a fully standardized data set obtained from the Continuous Plankton Recorder (CPR) survey. We found an increase in copepod community size (CCS) after 2006-2007 in the both regions because of the increased dominance of large cold-water species. Sea surface temperature varied in an east-west dipole manner, showing the typical Pacific Decadal Oscillation pattern: cooling in the east and warming in the west after 2006-2007. The observed positive correlation between CCS and sea surface temperature in the western North Pacific was inconsistent with the conventional interspecific temperature-size relationship. We explained this discrepancy by the geographical shift of the upper boundary of the thermal niche, the 9°C isotherm, of large cold-water species. In the eastern North Pacific, the boundary stretched northeast, to cover a large part of the sampling area after 2006-2007. In contrast, in the western North Pacific, the isotherm location hardly changed and the sampling area remained within its thermal niche throughout the study period, despite the warming that occurred. Our study suggests that while a climate-induced basin-scale cool-warm cycle can alter copepod community size and might subsequently impact the functions of the marine ecosystem in the North Pacific, the interspecific temperature-size relationship is not

  5. Temperature and zooplankton size structure: climate control and basin-scale comparison in the North Pacific.

    PubMed

    Chiba, Sanae; Batten, Sonia D; Yoshiki, Tomoko; Sasaki, Yuka; Sasaoka, Kosei; Sugisaki, Hiroya; Ichikawa, Tadafumi

    2015-02-01

    The global distribution of zooplankton community structure is known to follow latitudinal temperature gradients: larger species in cooler, higher latitudinal regions. However, interspecific relationships between temperature and size in zooplankton communities have not been fully examined in terms of temporal variation. To re-examine the relationship on a temporal scale and the effects of climate control thereon, we investigated the variation in copepod size structure in the eastern and western subarctic North Pacific in 2000-2011. This report presents the first basin-scale comparison of zooplankton community changes in the North Pacific based on a fully standardized data set obtained from the Continuous Plankton Recorder (CPR) survey. We found an increase in copepod community size (CCS) after 2006-2007 in the both regions because of the increased dominance of large cold-water species. Sea surface temperature varied in an east-west dipole manner, showing the typical Pacific Decadal Oscillation pattern: cooling in the east and warming in the west after 2006-2007. The observed positive correlation between CCS and sea surface temperature in the western North Pacific was inconsistent with the conventional interspecific temperature-size relationship. We explained this discrepancy by the geographical shift of the upper boundary of the thermal niche, the 9°C isotherm, of large cold-water species. In the eastern North Pacific, the boundary stretched northeast, to cover a large part of the sampling area after 2006-2007. In contrast, in the western North Pacific, the isotherm location hardly changed and the sampling area remained within its thermal niche throughout the study period, despite the warming that occurred. Our study suggests that while a climate-induced basin-scale cool-warm cycle can alter copepod community size and might subsequently impact the functions of the marine ecosystem in the North Pacific, the interspecific temperature-size relationship is not

  6. Temperature dependence, spatial scale, and tree species diversity in eastern Asia and North America

    PubMed Central

    Wang, Zhiheng; Brown, James H.; Tang, Zhiyao; Fang, Jingyun

    2009-01-01

    The increase of biodiversity from poles to equator is one of the most pervasive features of nature. For 2 centuries since von Humboldt, Wallace, and Darwin, biogeographers and ecologists have investigated the environmental and historical factors that determine the latitudinal gradient of species diversity, but the underlying mechanisms remain poorly understood. The recently proposed metabolic theory of ecology (MTE) aims to explain ecological patterns and processes, including geographical patterns of species richness, in terms of the effects of temperature and body size on the metabolism of organisms. Here we use 2 comparable databases of tree distributions in eastern Asia and North America to investigate the roles of environmental temperature and spatial scale in shaping geographical patterns of species diversity. We find that number of species increases exponentially with environmental temperature as predicted by the MTE, and so does the rate of spatial turnover in species composition (slope of the species-area relationship). The magnitude of temperature dependence of species richness increases with spatial scale. Moreover, the relationship between species richness and temperature is much steeper in eastern Asia than in North America: in cold climates at high latitudes there are more tree species in North America, but the reverse is true in warmer climates at lower latitudes. These patterns provide evidence that the kinetics of ecological and evolutionary processes play a major role in the latitudinal pattern of biodiversity. PMID:19628692

  7. Temperature dependence, spatial scale, and tree species diversity in eastern Asia and North America.

    PubMed

    Wang, Zhiheng; Brown, James H; Tang, Zhiyao; Fang, Jingyun

    2009-08-11

    The increase of biodiversity from poles to equator is one of the most pervasive features of nature. For 2 centuries since von Humboldt, Wallace, and Darwin, biogeographers and ecologists have investigated the environmental and historical factors that determine the latitudinal gradient of species diversity, but the underlying mechanisms remain poorly understood. The recently proposed metabolic theory of ecology (MTE) aims to explain ecological patterns and processes, including geographical patterns of species richness, in terms of the effects of temperature and body size on the metabolism of organisms. Here we use 2 comparable databases of tree distributions in eastern Asia and North America to investigate the roles of environmental temperature and spatial scale in shaping geographical patterns of species diversity. We find that number of species increases exponentially with environmental temperature as predicted by the MTE, and so does the rate of spatial turnover in species composition (slope of the species-area relationship). The magnitude of temperature dependence of species richness increases with spatial scale. Moreover, the relationship between species richness and temperature is much steeper in eastern Asia than in North America: in cold climates at high latitudes there are more tree species in North America, but the reverse is true in warmer climates at lower latitudes. These patterns provide evidence that the kinetics of ecological and evolutionary processes play a major role in the latitudinal pattern of biodiversity.

  8. Design of an Integrated Laboratory Scale Test for Hydrogen Production via High Temperature Electrolysis

    SciTech Connect

    G.K. Housley; K.G. Condie; J.E. O'Brien; C. M. Stoots

    2007-06-01

    The Idaho National Laboratory (INL) is researching the feasibility of high-temperature steam electrolysis for high-efficiency carbon-free hydrogen production using nuclear energy. Typical temperatures for high-temperature electrolysis (HTE) are between 800º-900ºC, consistent with anticipated coolant outlet temperatures of advanced high-temperature nuclear reactors. An Integrated Laboratory Scale (ILS) test is underway to study issues such as thermal management, multiple-stack electrical configuration, pre-heating of process gases, and heat recuperation that will be crucial in any large-scale implementation of HTE. The current ILS design includes three electrolysis modules in a single hot zone. Of special design significance is preheating of the inlet streams by superheaters to 830°C before entering the hot zone. The ILS system is assembled on a 10’ x 16’ skid that includes electronics, power supplies, air compressor, pumps, superheaters, , hot zone, condensers, and dew-point sensor vessels. The ILS support system consists of three independent, parallel supplies of electrical power, sweep gas streams, and feedstock gas mixtures of hydrogen and steam to the electrolysis modules. Each electrolysis module has its own support and instrumentation system, allowing for independent testing under different operating conditions. The hot zone is an insulated enclosure utilizing electrical heating panels to maintain operating conditions. The target hydrogen production rate for the ILS is 5000 Nl/hr.

  9. Scaling of temperature dependence of charge mobility in molecular Holstein chains.

    PubMed

    Tikhonov, D A; Fialko, N S; Sobolev, E V; Lakhno, V D

    2014-03-01

    The temperature dependence of a charge mobility in a model DNA based on a Holstein Hamiltonian is calculated for four types of homogeneous sequences It has turned out that upon rescaling all four types are quite similar. Two types of rescaling, i.e., those for low and intermediate temperatures, are found. The curves obtained are approximated on a logarithmic scale by cubic polynomials. We believe that for model homogeneous biopolymers with parameters close to the designed ones, one can assess the value of the charge mobility without carrying out resource-intensive direct simulation, just by using a suitable approximating function.

  10. Temperature gradient scale length measurement: A high accuracy application of electron cyclotron emission without calibration

    NASA Astrophysics Data System (ADS)

    Houshmandyar, S.; Yang, Z. J.; Phillips, P. E.; Rowan, W. L.; Hubbard, A. E.; Rice, J. E.; Hughes, J. W.; Wolfe, S. M.

    2016-11-01

    Calibration is a crucial procedure in electron temperature (Te) inference from a typical electron cyclotron emission (ECE) diagnostic on tokamaks. Although the calibration provides an important multiplying factor for an individual ECE channel, the parameter ΔTe/Te is independent of any calibration. Since an ECE channel measures the cyclotron emission for a particular flux surface, a non-perturbing change in toroidal magnetic field changes the view of that channel. Hence the calibration-free parameter is a measure of Te gradient. BT-jog technique is presented here which employs the parameter and the raw ECE signals for direct measurement of electron temperature gradient scale length.

  11. CFD study of temperature distribution in full scale boiler adopting in-furnace coal blending

    NASA Astrophysics Data System (ADS)

    Fadhil, S. S. A.; Hasini, H.; Shuaib, N. H.

    2013-06-01

    This paper describes the investigation of temperature characteristics of an in-furnace combustion using different coals in a 700 MW full scale boiler. Single mixture fraction approach is adopted for combustion model of both primary and secondary coals. The primary coal was based on the properties of Adaro which has been used as the design coal for the boiler under investigation. The secondary blend coal was selected based on sub-bituminous coal with higher calorific value. Both coals are simultaneously injected into the furnace at alternate coal burner elevations. The general prediction of the temperature contours at primary combustion zone shows identical pattern compared with conventional single coal combustion in similar furnace. Reasonable agreement was achieved by the prediction of the average temperature at furnace exit. The temperature distribution is at different furnace elevation is non-uniform with higher temperature predicted at circumferential "ring-like" region at lower burner levels for both cases. The maximum flame temperature is higher at the elevation where coal of higher calorific value is injected. The temperature magnitude is within the accepTable limit and the variations does not differ much compared to the conventional single coal combustion.

  12. Effect of six kinds of scale inhibitors on calcium carbonate precipitation in high salinity wastewater at high temperatures.

    PubMed

    Li, Xiaochen; Gao, Baoyu; Yue, Qinyan; Ma, Defang; Rong, Hongyan; Zhao, Pin; Teng, Pengyou

    2015-03-01

    Precipitation of calcium carbonate (CaCO3) scale on heat transfer surfaces is a serious and expensive problem widely occurring in numerous industrial processes. In this study, we compared the scale inhibition effect of six kinds of commercial scale inhibitors and screened out the best one (scale inhibitor SQ-1211) to investigate its scale inhibition performance in highly saline conditions at high temperature through static scale inhibition tests. The influences of scale inhibitor dosage, temperature, heating time and pH on the inhibition efficiency of the optimal scale inhibitor were investigated. The morphologies and crystal structures of the precipitates were characterized by Scanning Electron Microscopy and X-ray Diffraction analysis. Results showed that the scale inhibition efficiency of the optimal scale inhibitor decreased with the increase of the reaction temperature. When the concentration of Ca2+ was 1600 mg/L, the scale inhibition rate could reach 90.7% at 80°C at pH8. The optimal scale inhibitor could effectively retard scaling at high temperature. In the presence of the optimal scale inhibitor, the main crystal structure of CaCO3 changed from calcite to aragonite. PMID:25766020

  13. Effect of six kinds of scale inhibitors on calcium carbonate precipitation in high salinity wastewater at high temperatures.

    PubMed

    Li, Xiaochen; Gao, Baoyu; Yue, Qinyan; Ma, Defang; Rong, Hongyan; Zhao, Pin; Teng, Pengyou

    2015-03-01

    Precipitation of calcium carbonate (CaCO3) scale on heat transfer surfaces is a serious and expensive problem widely occurring in numerous industrial processes. In this study, we compared the scale inhibition effect of six kinds of commercial scale inhibitors and screened out the best one (scale inhibitor SQ-1211) to investigate its scale inhibition performance in highly saline conditions at high temperature through static scale inhibition tests. The influences of scale inhibitor dosage, temperature, heating time and pH on the inhibition efficiency of the optimal scale inhibitor were investigated. The morphologies and crystal structures of the precipitates were characterized by Scanning Electron Microscopy and X-ray Diffraction analysis. Results showed that the scale inhibition efficiency of the optimal scale inhibitor decreased with the increase of the reaction temperature. When the concentration of Ca2+ was 1600 mg/L, the scale inhibition rate could reach 90.7% at 80°C at pH8. The optimal scale inhibitor could effectively retard scaling at high temperature. In the presence of the optimal scale inhibitor, the main crystal structure of CaCO3 changed from calcite to aragonite.

  14. Temperature effects on wastewater nitrate removal in laboratory-scale constructed wetlands

    SciTech Connect

    Wood, S.L.; Wheeler, E.F.; Berghage, R.D.; Graves, R.E.

    1999-02-01

    Constructed wetlands may be used for removal of high nutrient loads in greenhouse wastewater prior to discharge into the environment. Temperature affects both the physical and biological activities in wetland systems. Since nitrification and denitrification are temperature-dependent processes, effluent nitrate concentrations will fluctuate due to changes in air and wetland temperature. In a cold climate, constructed wetlands can function in a temperature-controlled, greenhouse environment year-round. This work evaluates four temperature treatments on nitrate removal rates in five planted and five unplanted laboratory-scale wetlands. Wetlands were supplied with a nutrient solution similar to the fertigation runoff solution (100 PPM nitrate-N) used in greenhouse crop production. A first-order kinetic model was used to describe experimental nitrate depletion data and to predict nitrate removal rate constants (k) in the wetlands planted with Iris pseudocoras. The negligible removal in unplanted wetlands was thought to be due to lack of carbon source in the fertigation solution. Between 19 and 23 C is planted systems, k increased from 0.062 to 0.077 h{sup {minus}1}, appeared to peak around 30 C (k = 0.184 h{sup {minus}1}), but decreased at 38 C (k = 0.099h{sup {minus}1}). Based on the Arrhenius equation, k was a first-order exponential function of temperature between 18 and 30 C in planted systems. Quantification of temperature effects on planted and unplanted laboratory-scale constructed wetlands can be sued to enhance the design and management of wastewater treatment wetlands.

  15. Regional and local scale modeling of stream temperatures and spatio-temporal variation in thermal sensitivities.

    PubMed

    Hilderbrand, Robert H; Kashiwagi, Michael T; Prochaska, Anthony P

    2014-07-01

    Understanding variation in stream thermal regimes becomes increasingly important as the climate changes and aquatic biota approach their thermal limits. We used data from paired air and water temperature loggers to develop region-scale and stream-specific models of average daily water temperature and to explore thermal sensitivities, the slopes of air-water temperature regressions, of mostly forested streams across Maryland, USA. The region-scale stream temperature model explained nearly 90 % of the variation (root mean square error = 0.957 °C), with the mostly flat coastal plain streams having significantly higher thermal sensitivities than the steeper highlands streams with piedmont streams intermediate. Model R (2) for stream-specific models was positively related to a stream's thermal sensitivity. Both the regional and the stream-specific air-water temperature regression models benefited from including mean daily discharge from regional gaging stations, but the degree of improvement declined as a stream's thermal sensitivity increased. Although catchment size had no relationship to thermal sensitivity, steeper streams or those with greater amounts of forest in their upstream watershed were less thermally sensitive. The subset of streams with three or more summers of temperature data exhibited a wide range of annual variation in thermal sensitivity at a site, with the variation not attributable to discharge, precipitation patterns, or physical attributes of streams or their watersheds. Our findings are a useful starting point to better understand patterns in stream thermal regimes. However, a more spatially and temporally comprehensive monitoring network should increase understanding of stream temperature variation and its controls as climatic patterns change.

  16. On the Multi-scale Variability of High-frequency Surface Air Temperature

    NASA Astrophysics Data System (ADS)

    Cavanaugh, N. R.; Shen, S. S. P.

    2014-12-01

    We demonstrate that the first four statistical moments of sub-daily surface air temperature (SAT) anomalies exhibit large spatial patterns, globally, which differ from moment-to-moment and that many regions have statistically significant trends in moments from 1950-2010; these results imply that high-frequency SAT anomaly distributions are nearly identically distributed over very large spatial scales and that these distributions are undergoing characteristic changes in shape due to either decadal variability or climate change. Further, we examine the spatial scaling structure of higher-order and non-linear spatial correlations up to fourth-order which determine the variability distributions of SAT at larger spatial scales. Higher-order moment statistics suggest that SAT scales as an approximately locally homogeneous and isotropic quasi-Gaussian random field whose higher-order moments can be determined by functions of pair correlations, which in turn are related to regionally varying decorrelation length scales. These results have implications for the study of multi-scale atmospheric variability, extremes, and climate change involving geographically smooth variables and helps to define the theory which underlies the success of statistical downscaling techniques.

  17. Esimation of field-scale thermal conductivities of unsaturatedrocks from in-situ temperature data

    SciTech Connect

    Mukhopadhyay, Sumit; Tsang, Yvonne W.; Birkholzer, Jens T.

    2006-06-26

    A general approach is presented here which allows estimationof field-scale thermal properties of unsaturated rock using temperaturedata collected from in situ heater tests. The approach developed here isused to determine the thermal conductivities of the unsaturated host rockof the Drift Scale Test (DST) at Yucca Mountain, Nevada. The DST wasdesigned to obtain thermal, hydrological, mechanical, and chemical (THMC)data in the unsaturated fractured rock of Yucca Mountain. Sophisticatednumerical models have been developed to analyze these THMC data. However,though the objective of those models was to analyze "field-scale" (of theorder of tens-of-meters) THMC data, thermal conductivities measured from"laboratory-scale" core samples have been used as input parameters.While, in the absence of a better alternative, using laboratory-scalethermal conductivity values in field-scale models can be justified, suchapplications introduce uncertainties in the outcome of the models. Thetemperature data collected from the DST provides a unique opportunity toresolve some of these uncertainties. These temperature data can be usedto estimate the thermal conductivity of the DST host rock and, given thelarge volume of rock affected by heating at the DST, such an estimatewill be a more reliable effective thermal conductivity value for fieldscale application. In this paper, thus, temperature data from the DST areused to develop an estimate of the field-scale thermal conductivityvalues of the unsaturated host rock of the DST. An analytical solution isdeveloped for the temperature rise in the host rock of the DST; and usinga nonlinear fitting routine, a best-fit estimate of field-scale thermalconductivity for the DST host rock is obtained. Temperature data from theDST show evidence of two distinct thermal regimes: a zone below boiling(wet) and a zone above boiling (dry). Estimates of thermal conductivityfor both the wet and dry zones are obtained in this paper. Sensitivity ofthese estimates

  18. Parameter Measurement and Estimation at Variable Scales: Example of Soil Temperature in Complex Terrain

    NASA Astrophysics Data System (ADS)

    Seyfried, M. S.

    2015-12-01

    The issue of matching measurement scale to application scale is long standing and frequently revisited with advances in instrumentation and computing power. In the past we have emphasized the importance of understanding the dominant processes and amount and nature of parameter variability when addressing these issues. Landscape-scale distribution of carbon and carbon fluxes is a primary focus of the Reynolds Creek Critical Zone Observatory (RC CZO). Soil temperature (Ts) is a critical parameter of generally unknown variability. Estimates of Ts are often based on air temperature (Ta), but it is understood that other factors control Ts, especially in complex terrain, where solar radiation may be a major driver. Data were collected at the Reynolds Creek Experimental Watershed (RCEW), which is 240 km2 in extent and covers a 1000 m elevation range. We used spatially extensive Ts data to evaluate correlations with Ta (915 m elevation gradient) on aspect neutral sites with similar vegetative cover. Effects of complex terrain were evaluated using a combination of fixed point measurements, fiber optic distributed temperature sensing and periodic, spatially distributed point measurements. We found that Ts over the elevation gradient followed Ta closely. However, within small subwatersheds with uniform Ta, Ts may be extremely variable, with a standard deviation of 8° C. This was strongly related to topographically associated land surface units (LSU's) and highly seasonal. Within LSU variability was generally low while there were seasonally significant differences between LSU's. The mean annual soil temperature difference between LSU's was greater than that associated with the 915 m elevation gradient. The seasonality of Ts variability was not directly related to solar radiation effects but rather to variations in cover. Scaling Ts requires high resolution accounting of topography in this environment. Spatial patterns of soil carbon at the RCEW are consistent with this.

  19. Superimpose signal processing method for micro-scale thermal imaging of solar salts at high temperature

    NASA Astrophysics Data System (ADS)

    Morikawa, Junko; Zamengo, Massimiliano; Kato, Yukitaka

    2016-05-01

    The global interest in energy applications activates the advanced study about the molten salts in the usage of fluids in the power cycle, such as for transport and heat storage in solar power facilities. However, the basic properties of molten salts show a general scattering in characterization especially in thermal properties. It is suggested that new studies are required on the measurement of thermal properties of solar salts using recent technologies. In this study, micro-scale heat transfer and phase change in molten salts are presented using our originally developed device: the micro-bolometer Infrared focal plane arrays (IR FPA) measuring system is a portable type instrument, which is re-designed to measure the thermal phenomena in high temperature up to 700 °C or higher. The superimpose system is newly setup adjusted to the signal processing in high temperature to realize the quantitative thermal imaging, simultaneously. The portable type apparatus for a quantitative micro-scale thermography using a micro-bolometer has been proposed based on an achromatic lens design to capture a micro-scale image in the long-wave infrared, a video signal superimposing for the real time emissivity correction, and a pseudo acceleration of a timeframe. Combined with the superimpose technique, the micro-scale thermal imaging in high temperature is achieved and the molten flows of the solar salts, sodium nitrate, and potassium nitrate are successfully observed. The solar salt, the mixture of sodium nitrate and potassium nitrate, shows a different shape of exothermic heat front morphology in the lower phase transition (solidification) temperature than the nitrates on cooling. The proposed measuring technique will be utilized to accelerate the screening step to determine the phase diagram and the eutectics of the multiple mixtures of candidate molten salts, which may be used as heat transport medium from the concentrated solar power to a processing plant for thermal energy

  20. Patterns of species richness in relation to temperature, taxonomy and spatial scale in eastern China

    NASA Astrophysics Data System (ADS)

    Zhang, Qiang; Wang, Zhiqiang; Ji, Mingfei; Fan, Zhexuan; Deng, Jianming

    2011-07-01

    The species richness increases with area is well known in ecology. However, the Metabolic Theory of Biodiversity (MTB) is used to predict diversity patterns without taking account of the area covered by the community addressed. In this study, we developed a new model to integrate the temperature and community area based on the MTB. We collected plant species distribution information from 270 natural reserves and 11 floristic regions in eastern China, including that of three main plant divisions: pteridophytes, gymnosperms and angiosperms, and five broadly distributed angiosperm families, to explore the patterns of species richness in relation to temperature and community area size at two spatial scales (floristic region and nature reserve). Our results show that at the floristic region scale, the species richness is independent of the area size of the community and the regression slopes of the natural logarithm of richness vs. the inverse transformed temperature are close to the theoretical value of -0.65 for the three main plant divisions as well as the five angiosperm families. However, at the nature reserve scale, the number of species depends significantly upon the area size of nature reserves, and the regression slopes deviate strongly from the expected slope for all the taxonomic groups, except the pteridophyte division. Therefore, the MTB would be fairly robust only under a presumption that the area size of the community addressed has no significant effect on species richness (e.g. at the floristic region scale). Otherwise, the predictions of diversity patterns by MTB tend to be inaccurate (e.g. at the nature reserve scale).

  1. Continental-Scale Temperature Reconstructions from the PAGES 2k Network

    NASA Astrophysics Data System (ADS)

    Kaufman, D. S.

    2012-12-01

    We present a major new synthesis of seven regional temperature reconstructions to elucidate the global pattern of variations and their association with climate-forcing mechanisms over the past two millennia. To coordinate the integration of new and existing data of all proxy types, the Past Global Changes (PAGES) project developed the 2k Network. It comprises nine working groups representing eight continental-scale regions and the oceans. The PAGES 2k Consortium, authoring this paper, presently includes 79 representatives from 25 countries. For this synthesis, each of the PAGES 2k working groups identified the proxy climate records for reconstructing past temperature and associated uncertainty using the data and methodologies that they deemed most appropriate for their region. The datasets are from 973 sites where tree rings, pollen, corals, lake and marine sediment, glacier ice, speleothems, and historical documents record changes in biologically and physically mediated processes that are sensitive to temperature change, among other climatic factors. The proxy records used for this synthesis are available through the NOAA World Data Center for Paleoclimatology. On long time scales, the temperature reconstructions display similarities among regions, and a large part of this common behavior can be explained by known climate forcings. Reconstructed temperatures in all regions show an overall long-term cooling trend until around 1900 C.E., followed by strong warming during the 20th century. On the multi-decadal time scale, we assessed the variability among the temperature reconstructions using principal component (PC) analysis of the standardized decadal mean temperatures over the period of overlap among the reconstructions (1200 to 1980 C.E.). PC1 explains 35% of the total variability and is strongly correlated with temperature reconstructions from the four Northern Hemisphere regions, and with the sum of external forcings including solar, volcanic, and greenhouse

  2. The Scaling of Broadband Shock-Associated Noise with Increasing Temperature

    NASA Technical Reports Server (NTRS)

    Miller, Steven A. E.

    2013-01-01

    A physical explanation for the saturation of broadband shock-associated noise (BBSAN) intensity with increasing jet stagnation temperature has eluded investigators. An explanation is proposed for this phenomenon with the use of an acoustic analogy. To isolate the relevant physics, the scaling of BBSAN peak intensity level at the sideline observer location is examined. The equivalent source within the framework of an acoustic analogy for BBSAN is based on local field quantities at shock wave shear layer interactions. The equivalent source combined with accurate calculations of the propagation of sound through the jet shear layer, using an adjoint vector Green's function solver of the linearized Euler equations, allows for predictions that retain the scaling with respect to stagnation pressure and allows for saturation of BBSAN with increasing stagnation temperature. The sources and vector Green's function have arguments involving the steady Reynolds- Averaged Navier-Stokes solution of the jet. It is proposed that saturation of BBSAN with increasing jet temperature occurs due to a balance between the amplication of the sound propagation through the shear layer and the source term scaling.

  3. Reconnection and electron temperature anisotropy in sub-proton scale plasma turbulence

    SciTech Connect

    Haynes, C. T.; Burgess, D.; Camporeale, E.

    2014-03-01

    Knowledge of turbulent behavior at sub-proton scales in magnetized plasmas is important for a full understanding of the energetics of astrophysical flows such as the solar wind. We study the formation of electron temperature anisotropy due to reconnection in the turbulent decay of sub-proton scale fluctuations using two-dimensional, particle-in-cell plasma simulations with a realistic electron-proton mass ratio and a guide field perpendicular to the simulation plane. A power spectrum fluctuation with approximately power-law form is created down to scales of the order of the electron gyroradius. We identify the signatures of collisionless reconnection at sites of X-point field geometry in the dynamic magnetic field topology, which gradually relaxes in complexity. The reconnection sites are generally associated with regions of strong parallel electron temperature anisotropy. The evolving topology of magnetic field lines connected to a reconnection site allows for the spatial mixing of electrons accelerated at multiple, spatially separated reconnection regions. This leads to the formation of multi-peaked velocity distribution functions with strong parallel temperature anisotropy. In a three-dimensional system that can support the appropriate wave vectors, the multi-peaked distribution functions would be expected to be unstable to kinetic instabilities, contributing to dissipation. The proposed mechanism of anisotropy formation is also relevant to space and astrophysical systems where the evolution of the plasma is constrained by linear temperature anisotropy instability thresholds. The presence of reconnection sites leads to electron energy gain, nonlocal velocity space mixing, and the formation of strong temperature anisotropy; this is evidence of an important role for reconnection in the dissipation of turbulent fluctuations.

  4. Scaling of basal metabolic rate with body mass and temperature in mammals.

    PubMed

    Clarke, Andrew; Rothery, Peter; Isaac, Nick J B

    2010-05-01

    1. We present a statistical analysis of the scaling of resting (basal) metabolic rate, BMR, with body mass, B(m) and body temperature, T(b), in mammals. 2. Whilst the majority of the variance in ln BMR is explained by ln B(m), the T(b) term is statistically significant. The best fit model was quadratic, indicating that the scaling of ln BMR with ln B(m) varies with body size; the value of any scaling exponent estimated for a sample of mammals will therefore depend on the size distribution of species in the study. This effect can account for much of the variation in scaling exponents reported in the literature for mammals. 3. In all models, inclusion of T(b) reduced the strength of scaling with ln B(m). The model including T(b) suggests that birds and mammals have a similar underlying thermal dependence of BMR, equivalent to a Q(10) of 2.9 across the range of T(b) values 32-42 degrees C. 4. There was significant heterogeneity in both the mass scaling exponent and mean BMR across mammalian orders, with a tendency for orders dominated by larger taxa to have steeper scaling exponents. This heterogeneity was particularly marked across orders with smaller mean B(m) and the taxonomic composition of the sample will thus also affect the observed scaling exponent. After correcting for the effects of ln B(m) and T(b), Soricomorpha, Didelphimorphia and Artiodactyla had the highest BMR of those orders represented by more than 10 species in the data set. 5. Inclusion of T(b) in the model removed the effect of diet category evident from a model in ln B(m) alone and widely reported in the literature; this was caused by a strong interaction between diet category and T(b) in mammals. 6. Inclusion of mean ambient temperature, T(a), in the model indicated a significant inverse relationship between ln BMR and T(a), complicated by an interaction between T(a) and T(b). All other things being equal, a polar mammal living at -10 degrees C has a body temperature approximately 2.7 degrees C

  5. Scaling of basal metabolic rate with body mass and temperature in mammals.

    PubMed

    Clarke, Andrew; Rothery, Peter; Isaac, Nick J B

    2010-05-01

    1. We present a statistical analysis of the scaling of resting (basal) metabolic rate, BMR, with body mass, B(m) and body temperature, T(b), in mammals. 2. Whilst the majority of the variance in ln BMR is explained by ln B(m), the T(b) term is statistically significant. The best fit model was quadratic, indicating that the scaling of ln BMR with ln B(m) varies with body size; the value of any scaling exponent estimated for a sample of mammals will therefore depend on the size distribution of species in the study. This effect can account for much of the variation in scaling exponents reported in the literature for mammals. 3. In all models, inclusion of T(b) reduced the strength of scaling with ln B(m). The model including T(b) suggests that birds and mammals have a similar underlying thermal dependence of BMR, equivalent to a Q(10) of 2.9 across the range of T(b) values 32-42 degrees C. 4. There was significant heterogeneity in both the mass scaling exponent and mean BMR across mammalian orders, with a tendency for orders dominated by larger taxa to have steeper scaling exponents. This heterogeneity was particularly marked across orders with smaller mean B(m) and the taxonomic composition of the sample will thus also affect the observed scaling exponent. After correcting for the effects of ln B(m) and T(b), Soricomorpha, Didelphimorphia and Artiodactyla had the highest BMR of those orders represented by more than 10 species in the data set. 5. Inclusion of T(b) in the model removed the effect of diet category evident from a model in ln B(m) alone and widely reported in the literature; this was caused by a strong interaction between diet category and T(b) in mammals. 6. Inclusion of mean ambient temperature, T(a), in the model indicated a significant inverse relationship between ln BMR and T(a), complicated by an interaction between T(a) and T(b). All other things being equal, a polar mammal living at -10 degrees C has a body temperature approximately 2.7 degrees C

  6. Phase determination and microstructure of oxide scales formed on steel at high temperature.

    PubMed

    West, G D; Birosca, S; Higginson, R L

    2005-02-01

    Even in simple low-alloy steels the oxide scales that form during hot working processes are often a complex mixture of three iron oxide phases: haematite, magnetite and wustite. The mechanical properties, and hence descalability, are intimately linked with phase distribution and microstructure, which in turn are sensitive to both steel composition and oxidation conditions. In this study electron backscatter diffraction in the SEM has been used to characterize the microstructures of oxide scales formed on two compositions of low-alloy steel. The technique can unambiguously differentiate between the candidate phases to provide the phase distribution within the scale. This is used to investigate grain orientation relationships both within and between phase layers. It has been found that the strength of the orientational relationship between the magnetite and wustite layers is dependent on steel composition, and in particular Si content. In a low-Si (0.01 wt%) alloy only a very weak relationship was found to exist for a range of oxidation temperatures (800-1000 degrees C), whereas for the higher Si (0.37 wt%) alloy a strong relationship was observed under the same oxidation conditions. These orientational relationships are particularly important because, in this temperature range, the majority of oxide scale growth occurs at the magnetite/wustite interphase boundary.

  7. Probing absolute spin polarization at the nanoscale.

    PubMed

    Eltschka, Matthias; Jäck, Berthold; Assig, Maximilian; Kondrashov, Oleg V; Skvortsov, Mikhail A; Etzkorn, Markus; Ast, Christian R; Kern, Klaus

    2014-12-10

    Probing absolute values of spin polarization at the nanoscale offers insight into the fundamental mechanisms of spin-dependent transport. Employing the Zeeman splitting in superconducting tips (Meservey-Tedrow-Fulde effect), we introduce a novel spin-polarized scanning tunneling microscopy that combines the probing capability of the absolute values of spin polarization with precise control at the atomic scale. We utilize our novel approach to measure the locally resolved spin polarization of magnetic Co nanoislands on Cu(111). We find that the spin polarization is enhanced by 65% when increasing the width of the tunnel barrier by only 2.3 Å due to the different decay of the electron orbitals into vacuum. PMID:25423049

  8. A space and time scale-dependent nonlinear geostatistical approach for downscaling daily precipitation and temperature

    NASA Astrophysics Data System (ADS)

    Jha, Sanjeev Kumar; Mariethoz, Gregoire; Evans, Jason; McCabe, Matthew F.; Sharma, Ashish

    2015-08-01

    A geostatistical framework is proposed to downscale daily precipitation and temperature. The methodology is based on multiple-point geostatistics (MPS), where a multivariate training image is used to represent the spatial relationship between daily precipitation and daily temperature over several years. Here the training image consists of daily rainfall and temperature outputs from the Weather Research and Forecasting (WRF) model at 50 and 10 km resolution for a 20 year period ranging from 1985 to 2004. The data are used to predict downscaled climate variables for the year 2005. The result, for each downscaled pixel, is daily time series of precipitation and temperature that are spatially dependent. Comparison of predicted precipitation and temperature against a reference data set indicates that both the seasonal average climate response together with the temporal variability are well reproduced. The explicit inclusion of time dependence is explored by considering the climate properties of the previous day as an additional variable. Comparison of simulations with and without inclusion of time dependence shows that the temporal dependence only slightly improves the daily prediction because the temporal variability is already well represented in the conditioning data. Overall, the study shows that the multiple-point geostatistics approach is an efficient tool to be used for statistical downscaling to obtain local-scale estimates of precipitation and temperature from General Circulation Models.

  9. Singular perturbation of absolute stability.

    NASA Technical Reports Server (NTRS)

    Siljak, D. D.

    1972-01-01

    It was previously shown (author, 1969) that the regions of absolute stability in the parameter space can be determined when the parameters appear on the right-hand side of the system equations, i.e., the regular case. Here, the effect on absolute stability of a small parameter attached to higher derivatives in the equations (the singular case) is studied. The Lur'e-Postnikov class of nonlinear systems is considered.

  10. Controls of CO2 sources and sinks in the earth scale surface ocean - Temperature and nutrients

    NASA Technical Reports Server (NTRS)

    Volk, Tyler; Liu, Zhongze

    1988-01-01

    Several regions in the ocean in which disequilibrium persists on an annual avarage between CO2 in the surface water and the overlying atmosphere were examined using various models in which CO2 does cycle in a steady state at which sources (ocean outgassing) and sinks (ingassing) are in balance. The relative values of the surface temperature and surface nutrients, the two major contributors to the CO2 source and/or sink properties, are determined. Results from models with two ocean surfaces indicate that the sink in the north Atlantic and the sources in the equatorial Atlantic and Pacific are all dominated by the global temperature patterns. Results from ocean models with three surface zones show that, in the equatorial Pacific, the temperature control is responsible for over 50 percent (and, possibly, for almost 70 percent) of the CO2 outgassing, with the balance coming from the earth scale surface nutrient structure.

  11. Millennial-scale temperature change velocity in the continental northern Neotropics.

    PubMed

    Correa-Metrio, Alexander; Bush, Mark; Lozano-García, Socorro; Sosa-Nájera, Susana

    2013-01-01

    Climate has been inherently linked to global diversity patterns, and yet no empirical data are available to put modern climate change into a millennial-scale context. High tropical species diversity has been linked to slow rates of climate change during the Quaternary, an assumption that lacks an empirical foundation. Thus, there is the need for quantifying the velocity at which the bioclimatic space changed during the Quaternary in the tropics. Here we present rates of climate change for the late Pleistocene and Holocene from Mexico and Guatemala. An extensive modern pollen survey and fossil pollen data from two long sedimentary records (30,000 and 86,000 years for highlands and lowlands, respectively) were used to estimate past temperatures. Derived temperature profiles show a parallel long-term trend and a similar cooling during the Last Glacial Maximum in the Guatemalan lowlands and the Mexican highlands. Temperature estimates and digital elevation models were used to calculate the velocity of isotherm displacement (temperature change velocity) for the time period contained in each record. Our analyses showed that temperature change velocities in Mesoamerica during the late Quaternary were at least four times slower than values reported for the last 50 years, but also at least twice as fast as those obtained from recent models. Our data demonstrate that, given extremely high temperature change velocities, species survival must have relied on either microrefugial populations or persistence of suppressed individuals. Contrary to the usual expectation of stable climates being associated with high diversity, our results suggest that Quaternary tropical diversity was probably maintained by centennial-scale oscillatory climatic variability that forestalled competitive exclusion. As humans have simplified modern landscapes, thereby removing potential microrefugia, and climate change is occurring monotonically at a very high velocity, extinction risk for tropical

  12. Millennial-Scale Temperature Change Velocity in the Continental Northern Neotropics

    PubMed Central

    Correa-Metrio, Alexander; Bush, Mark; Lozano-García, Socorro; Sosa-Nájera, Susana

    2013-01-01

    Climate has been inherently linked to global diversity patterns, and yet no empirical data are available to put modern climate change into a millennial-scale context. High tropical species diversity has been linked to slow rates of climate change during the Quaternary, an assumption that lacks an empirical foundation. Thus, there is the need for quantifying the velocity at which the bioclimatic space changed during the Quaternary in the tropics. Here we present rates of climate change for the late Pleistocene and Holocene from Mexico and Guatemala. An extensive modern pollen survey and fossil pollen data from two long sedimentary records (30,000 and 86,000 years for highlands and lowlands, respectively) were used to estimate past temperatures. Derived temperature profiles show a parallel long-term trend and a similar cooling during the Last Glacial Maximum in the Guatemalan lowlands and the Mexican highlands. Temperature estimates and digital elevation models were used to calculate the velocity of isotherm displacement (temperature change velocity) for the time period contained in each record. Our analyses showed that temperature change velocities in Mesoamerica during the late Quaternary were at least four times slower than values reported for the last 50 years, but also at least twice as fast as those obtained from recent models. Our data demonstrate that, given extremely high temperature change velocities, species survival must have relied on either microrefugial populations or persistence of suppressed individuals. Contrary to the usual expectation of stable climates being associated with high diversity, our results suggest that Quaternary tropical diversity was probably maintained by centennial-scale oscillatory climatic variability that forestalled competitive exclusion. As humans have simplified modern landscapes, thereby removing potential microrefugia, and climate change is occurring monotonically at a very high velocity, extinction risk for tropical

  13. Millennial-scale temperature change velocity in the continental northern Neotropics.

    PubMed

    Correa-Metrio, Alexander; Bush, Mark; Lozano-García, Socorro; Sosa-Nájera, Susana

    2013-01-01

    Climate has been inherently linked to global diversity patterns, and yet no empirical data are available to put modern climate change into a millennial-scale context. High tropical species diversity has been linked to slow rates of climate change during the Quaternary, an assumption that lacks an empirical foundation. Thus, there is the need for quantifying the velocity at which the bioclimatic space changed during the Quaternary in the tropics. Here we present rates of climate change for the late Pleistocene and Holocene from Mexico and Guatemala. An extensive modern pollen survey and fossil pollen data from two long sedimentary records (30,000 and 86,000 years for highlands and lowlands, respectively) were used to estimate past temperatures. Derived temperature profiles show a parallel long-term trend and a similar cooling during the Last Glacial Maximum in the Guatemalan lowlands and the Mexican highlands. Temperature estimates and digital elevation models were used to calculate the velocity of isotherm displacement (temperature change velocity) for the time period contained in each record. Our analyses showed that temperature change velocities in Mesoamerica during the late Quaternary were at least four times slower than values reported for the last 50 years, but also at least twice as fast as those obtained from recent models. Our data demonstrate that, given extremely high temperature change velocities, species survival must have relied on either microrefugial populations or persistence of suppressed individuals. Contrary to the usual expectation of stable climates being associated with high diversity, our results suggest that Quaternary tropical diversity was probably maintained by centennial-scale oscillatory climatic variability that forestalled competitive exclusion. As humans have simplified modern landscapes, thereby removing potential microrefugia, and climate change is occurring monotonically at a very high velocity, extinction risk for tropical

  14. Scale Resistant Heat Exchanger for Low Temperature Geothermal Binary Cycle Power Plant

    SciTech Connect

    Hays, Lance G.

    2014-11-18

    Phase 1 of the investigation of improvements to low temperature geothermal power systems was completed. The improvements considered were reduction of scaling in heat exchangers and a hermetic turbine generator (eliminating seals, seal system, gearbox, and lube oil system). A scaling test system with several experiments was designed and operated at Coso geothermal resource with brine having a high scaling potential. Several methods were investigated at the brine temperature of 235 ºF. One method, circulation of abradable balls through the brine passages, was found to substantially reduce scale deposits. The test heat exchanger was operated with brine outlet temperatures as low as 125 ºF, which enables increased heat input available to power conversion systems. For advanced low temperature cycles, such as the Variable Phase Cycle (VPC) or Kalina Cycle, the lower brine temperature will result in a 20-30% increase in power production from low temperature resources. A preliminary design of an abradable ball system (ABS) was done for the heat exchanger of the 1 megawatt VPC system at Coso resource. The ABS will be installed and demonstrated in Phase 2 of this project, increasing the power production above that possible with the present 175 ºF brine outlet limit. A hermetic turbine generator (TGH) was designed and manufacturing drawings produced. This unit will use the working fluid (R134a) to lubricate the bearings and cool the generator. The 200 kW turbine directly drives the generator, eliminating a gearbox and lube oil system. Elimination of external seals eliminates the potential of leakage of the refrigerant or hydrocarbon working fluids, resulting in environmental improvement. A similar design has been demonstrated by Energent in an ORC waste heat recovery system. The existing VPC power plant at Coso was modified to enable the “piggyback” demonstration of the TGH. The existing heat exchanger, pumps, and condenser will be operated to provide the required

  15. From Hubble's NGSL to Absolute Fluxes

    NASA Technical Reports Server (NTRS)

    Heap, Sara R.; Lindler, Don

    2012-01-01

    Hubble's Next Generation Spectral Library (NGSL) consists of R-l000 spectra of 374 stars of assorted temperature, gravity, and metallicity. Each spectrum covers the wavelength range, 0.18-1.00 microns. The library can be viewed and/or downloaded from the website, http://archive.stsci.edu/prepds/stisngsll. Stars in the NGSL are now being used as absolute flux standards at ground-based observatories. However, the uncertainty in the absolute flux is about 2%, which does not meet the requirements of dark-energy surveys. We are therefore developing an observing procedure that should yield fluxes with uncertainties less than 1 % and will take part in an HST proposal to observe up to 15 stars using this new procedure.

  16. Temperature and zooplankton size structure: climate control and basin-scale comparison in the North Pacific

    PubMed Central

    Chiba, Sanae; Batten, Sonia D; Yoshiki, Tomoko; Sasaki, Yuka; Sasaoka, Kosei; Sugisaki, Hiroya; Ichikawa, Tadafumi

    2015-01-01

    The global distribution of zooplankton community structure is known to follow latitudinal temperature gradients: larger species in cooler, higher latitudinal regions. However, interspecific relationships between temperature and size in zooplankton communities have not been fully examined in terms of temporal variation. To re-examine the relationship on a temporal scale and the effects of climate control thereon, we investigated the variation in copepod size structure in the eastern and western subarctic North Pacific in 2000–2011. This report presents the first basin-scale comparison of zooplankton community changes in the North Pacific based on a fully standardized data set obtained from the Continuous Plankton Recorder (CPR) survey. We found an increase in copepod community size (CCS) after 2006–2007 in the both regions because of the increased dominance of large cold-water species. Sea surface temperature varied in an east–west dipole manner, showing the typical Pacific Decadal Oscillation pattern: cooling in the east and warming in the west after 2006–2007. The observed positive correlation between CCS and sea surface temperature in the western North Pacific was inconsistent with the conventional interspecific temperature–size relationship. We explained this discrepancy by the geographical shift of the upper boundary of the thermal niche, the 9°C isotherm, of large cold-water species. In the eastern North Pacific, the boundary stretched northeast, to cover a large part of the sampling area after 2006–2007. In contrast, in the western North Pacific, the isotherm location hardly changed and the sampling area remained within its thermal niche throughout the study period, despite the warming that occurred. Our study suggests that while a climate-induced basin-scale cool–warm cycle can alter copepod community size and might subsequently impact the functions of the marine ecosystem in the North Pacific, the interspecific temperature–size relationship

  17. Small-Scale High Temperature Melter-1 (SSHTM-1) Data Package. Appendix B

    SciTech Connect

    1996-03-01

    This appendix provides the data for Alternate HTM Flowsheet 2 (Glycolic Acid) melter feed preparation activities in both the laboratory- and small-scale testing. The first section provides an outline of this appendix. The melter feed preparation data are presented in the next two main sections, laboratory melter feed preparation data and small-scale melter feed preparation data. Section 3.0 provides the laboratory data which is discussed in the main body of the Small-Scale High Temperature-1 (SSHTM-1) Data Package, milestone C95-02.02Y. Section 3.1 gives the flowsheet in outline form as used in the laboratory-scale tests. This section also includes the ``Laboratory Melter Feed Preparation Activity Log`` which gives A chronological account of the test in terms of time, temperature, slurry pH, and specific observations about slurry appearance, acid addition rates, and samples taken. The ``Laboratory Melter Feed Preparation Activity Log`` provides a road map to the reader by which all the activity and data from the laboratory can be easily accessed. A summary of analytical data is presented next, section 3.2, which covers starting materials and progresses to the analysis of the melter feed. The next section, 3.3, characterizes the off-gas generation that occurs during the slurry processing. The following section, 3.4, provides the rheology data gathered including gram waste oxide loading information for the various slurries tested. The final section, 3.5, includes data from standard crucible redox testing. Section 4.0 provides the small-scale data in parallel form to section 3.0. Section 5.0 concludes with the references for this appendix.

  18. Wafer-scale synthesis of multi-layer graphene by high-temperature carbon ion implantation

    SciTech Connect

    Kim, Janghyuk; Lee, Geonyeop; Kim, Jihyun

    2015-07-20

    We report on the synthesis of wafer-scale (4 in. in diameter) high-quality multi-layer graphene using high-temperature carbon ion implantation on thin Ni films on a substrate of SiO{sub 2}/Si. Carbon ions were bombarded at 20 keV and a dose of 1 × 10{sup 15 }cm{sup −2} onto the surface of the Ni/SiO{sub 2}/Si substrate at a temperature of 500 °C. This was followed by high-temperature activation annealing (600–900 °C) to form a sp{sup 2}-bonded honeycomb structure. The effects of post-implantation activation annealing conditions were systematically investigated by micro-Raman spectroscopy and transmission electron microscopy. Carbon ion implantation at elevated temperatures allowed a lower activation annealing temperature for fabricating large-area graphene. Our results indicate that carbon-ion implantation provides a facile and direct route for integrating graphene with Si microelectronics.

  19. Low temperature high bias enhanced noise in atomic-scale Au junctions

    NASA Astrophysics Data System (ADS)

    Stevens, Loah; Zolotavin, Pavlo; Chen, Ruoyu; Natelson, Douglas

    2015-03-01

    We report measurements on STM-style Au break junctions, investigating the bias dependence of current noise at room temperature, 77K, and 4K. Previous experiments at room temperature observed that low bias noise (<150mV) agrees well with predictions for shot noise at fixed electronic temperature, but at high biases, noise was found to have a nonlinear dependence on the scaled bias. Possible sources of this deviation are nonequilibrium electron-phonon effects or local heating of the electronic distribution. In order to expand upon the understanding of the enhanced noise at high bias, we have measured current noise for a range of biases as a function of environmental temperature. This allows for distinction between electron-electron and electron-vibrational contributions to the shot noise. We will discuss differences in the bias dependence of the noise between cryogenic and room temperature conditions. D.N., P.Z., R.C. and L.S. acknowledge support from NSF award DMR-1305879.

  20. Effects of a temperature-dependent rheology on large scale continental extension

    NASA Technical Reports Server (NTRS)

    Sonder, Leslie J.; England, Philip C.

    1988-01-01

    The effects of a temperature-dependent rheology on large-scale continental extension are investigated using a thin viscous sheet model. A vertically-averaged rheology is used that is consistent with laboratory experiments on power-law creep of olivine and that depends exponentially on temperature. Results of the calculations depend principally on two parameters: the Peclet number, which describes the relative rates of advection and diffusion of heat, and a dimensionless activation energy, which controls the temperature dependence of the rheology. At short times following the beginning of extension, deformation occurs with negligible change in temperature, so that only small changes in lithospheric strength occur due to attenuation of the lithosphere. However, after a certain critical time interval, thermal diffusion lowers temperatures in the lithosphere, strongly increasing lithospheric strength and slowing the rate of extension. This critical time depends principally on the Peclet number and is short compared with the thermal time constant of the lithosphere. The strength changes cause the locus of high extensional strain rates to shift with time from regions of high strain to regions of low strain. Results of the calculations are compared with observations from the Aegean, where maximum extensional strains are found in the south, near Crete, but maximum present-day strain rates are largest about 300 km further north.

  1. Effects of a temperature-dependent rheology on large-scale continental extension

    NASA Technical Reports Server (NTRS)

    Sonder, Leslie J.; England, Philip C.

    1989-01-01

    The effects of a temperature-dependent rheology on large-scale continental extension are investigated using a thin viscous sheet model. A vertically-averaged rheology is used that is consistent with laboratory experiments on power-law creep of olivine and that depends exponentially on temperature. Results of the calculations depend principally on two parameters: the Peclet number, which describes the relative rates of advection and diffusion of heat, and a dimensionless activation energy, which controls the temperature dependence of the rheology. At short times following the beginning of extension, deformation occurs with negligible change in temperature, so that only small changes in lithospheric strength occur due to attenuation of the lithosphere. However, after a certain critical time interval, thermal diffusion lowers temperatures in the lithosphere, strongly increasing lithospheric strength and slowing the rate of extension. This critical time depends principally on the Peclet number and is short compared with the thermal time constant of the lithosphere. The strength changes cause the locus of high extensional strain rates to shift with time from regions of high strain to regions of low strain. Results of the calculations are compared with observations from the Aegean, where maximum extensional strains are found in the south, near Crete, but maximum present-day strain rates are largest about 300 km further north.

  2. Integrating resource utilization and temperature in metabolic scaling of riverine bacterial production.

    PubMed

    Sinsabaugh, Robert L; Shah, Jennifer J Follstad

    2010-05-01

    The study of metabolic scaling in stream ecosystems is complicated by their openness to external resource inputs. For heterotrophic bacteria, which are a large component of stream metabolism, it may be possible to integrate the effects of resource availability and temperature on production using metabolic scaling theory and the kinetics of extracellular enzyme activity (EEA) associated with the degradation of major nutrient pools. With this goal, we analyzed previously published data on EEA and bacterial production for two rivers in northwestern Ohio, USA. The EEA data included estimates of apparent Vmax, a measure of catalytic capacity, and apparent Km, a measure of available substrate concentration, for six extracellular enzymes (alpha-glucosidase, beta-glucosidase, aminopeptidase, protease, phosphatase, and acetyl esterase). Sampling was done over an annual cycle with a temperature range of 4 31 degrees C, while EEA assays were conducted at 20 degrees C. The EEA kinetic measures were scaled to ambient stream temperature using an activation energy (Ea) of 0.5 eV (8.01 x 10(-20) J) and converted to estimates of the turnover rate (St) of their associated substrate pools. The St values associated with protein utilization, the largest substrate pool, had the strongest relationship to bacterial production (r2 = 0.49-0.52); those for carbohydrate utilization, the smallest substrate pool, had the weakest (r2= 0.09-0.15). Comparisons of apparent Ea over the annual cycle showed that the trophic basis of bacterial production switched from relatively high carbohydrate consumption in autumn and winter to relatively high protein consumption in spring and summer, corresponding to seasonal dynamics in plant litter inputs and algal production, respectively. Over the annual cycle, the summed substrate generation rate of the six enzymes was similar in magnitude and strongly correlated with bacterial production (r2 = 0.56). This approach combines effects of substrate pool size

  3. Modeling the impacts of climate change on stream water temperature across scales

    NASA Astrophysics Data System (ADS)

    Segura, C.; Caldwell, P. V.; Cohen, E.; Sun, G.; McNulty, S. G.

    2015-12-01

    Water temperature is a critical variable to aquatic ecosystems because it controls metabolic rates and the distribution of aquatic organisms. Therefore, understanding the impacts of future climate on stream water temperature is relevant to sustainable management of water resources. Empirical models based on the statistical relation between air and steam water temperature offer a powerful tool for prediction at large scales. We will demonstrate how simple linear regression models based on short-term historical stream temperature (ts) observations and readily available interpolated air temperature (ta) estimates can be used for rapid assessment of historical and future changes in ts. This methodology was applied to 61 sites in the Southeast region of the US. We found that between 2011 and 2060, all sites were projected to experience increases in ts under the three evaluated climate projections (mean of +0.41 °C per decade). We also developed continental scale models to predict mean and maximum ts in ungauged locations across the US. The models linearly describe site relationships between monthly mean and maximum ta and ts as a function of climatic, hydrologic, and land cover variables. The empirical models were derived using data from 171 reference sites. These sites drain areas spanning four orders of magnitude and are located in 32 states and 16 hydrologic regions. Model performances yielded average Nash-Sutcliffe efficiency coefficients between 0.78 and 0.85. These models were incorporated into the Water Supply Stress Index (WaSSI) Ecosystem Services Model developed by the U.S. Forest Service to predict mean and maximum ts under different climatic projections and land cover changes at the USGS 8 digit hydrologic unit code watershed resolution across the US. The results identify regions in the country where significant increases in ts may occur, potentially causing stress to aquatic ecosystems as climate change progresses.

  4. Field and temperature scaling of the critical current density in commercial REBCO coated conductors

    NASA Astrophysics Data System (ADS)

    Senatore, Carmine; Barth, Christian; Bonura, Marco; Kulich, Miloslav; Mondonico, Giorgio

    2016-01-01

    Scaling relations describing the electromagnetic behaviour of coated conductors (CCs) greatly simplify the design of REBCO-based devices. The performance of REBCO CCs is strongly influenced by fabrication route, conductor architecture and materials, and these parameters vary from one manufacturer another. In the present work we have examined the critical surface for the current density, J c(T, B, θ), of coated conductors from six different manufacturers: American Superconductor Co. (US), Bruker HTS GmbH (Germany), Fujikura Ltd (Japan), SuNAM Co. Ltd (Korea), SuperOx ZAO (Russia) and SuperPower Inc. (US). Electrical transport and magnetic measurements were performed at temperatures between 4.2 K and 77 K and in magnetic fields of up to 19 T. Experiments were conducted at three different orientations of the field with respect to the crystallographic c-axis of the REBCO layer, θ = 0°, 45° and 90°, in order to probe the angular anisotropy of J c. In spite of the large variability of the CCs’ performance, we show here that field and temperature dependences of J c at a given angle can be reproduced over wide ranges using a scaling relation based only on three parameters. Furthermore, we present and validate a new approach combining magnetic and transport measurements for the determination of the scaling parameters with minimal experimental effort.

  5. Extreme Temperature Regimes during the Cool Season and their Associated Large-Scale Circulations

    NASA Astrophysics Data System (ADS)

    Xie, Z.

    2015-12-01

    In the cool season (November-March), extreme temperature events (ETEs) always hit the continental United States (US) and provide significant societal impacts. According to the anomalous amplitudes of the surface air temperature (SAT), there are two typical types of ETEs, e.g. cold waves (CWs) and warm waves (WWs). This study used cluster analysis to categorize both CWs and WWs into four distinct regimes respectively and investigated their associated large-scale circulations on intra-seasonal time scale. Most of the CW regimes have large areal impact over the continental US. However, the distribution of cold SAT anomalies varies apparently in four regimes. In the sea level, the four CW regimes are characterized by anomalous high pressure over North America (near and to west of cold anomaly) with different extension and orientation. As a result, anomalous northerlies along east flank of anomalous high pressure convey cold air into the continental US. To the middle troposphere, the leading two groups feature large-scale and zonally-elongated circulation anomaly pattern, while the other two regimes exhibit synoptic wavetrain pattern with meridionally elongated features. As for the WW regimes, there are some patterns symmetry and anti-symmetry with respect to CW regimes. The WW regimes are characterized by anomalous low pressure and southerlies wind over North America. The first and fourth groups are affected by remote forcing emanating from North Pacific, while the others appear mainly locally forced.

  6. Well integrity assessment under temperature and pressure stresses by a 1:1 scale wellbore experiment

    NASA Astrophysics Data System (ADS)

    Manceau, J. C.; Tremosa, J.; Audigane, P.; Lerouge, C.; Claret, F.; Lettry, Y.; Fierz, T.; Nussbaum, C.

    2015-08-01

    A new in situ experiment is proposed for observing and understanding well integrity evolution, potentially due to changes that could occur during a well lifetime. The focus is put on temperature and pressure stresses. A small section of a well is reproduced at scale 1:1 in the Opalinus Clay formation, representative of a low permeable caprock formation (in Mont Terri Underground Rock Laboratory, Switzerland). The well-system behavior is characterized over time both by performing hydro-tests to quantify the hydraulic properties of the well and their evolution, and sampling the fluids to monitor the chemical composition and its changes. This paper presents the well integrity assessment under different imposed temperature (17-52°C) and pressure (10-28 bar) conditions. The results obtained in this study confirm the ability of the chosen design and observation scale to estimate the evolution of the well integrity over time, the characteristics of the flow along the well-system and the reasons of the observed evolution. In particular, the estimated effective well permeability is higher than cement or caprock intrinsic permeability, which suggest preferential flow pathways at interfaces especially at the very beginning of the experiment; the significant variations of the effective well permeability observed after setting pressure and temperature stresses indicate that operations could influence well integrity in similar proportions than the cementing process.

  7. Variation at range margins across multiple spatial scales: environmental temperature, population genetics and metabolomic phenotype

    PubMed Central

    Kunin, William E.; Vergeer, Philippine; Kenta, Tanaka; Davey, Matthew P.; Burke, Terry; Ian Woodward, F.; Quick, Paul; Mannarelli, Maria-Elena; Watson-Haigh, Nathan S.; Butlin, Roger

    2009-01-01

    Range margins are spatially complex, with environmental, genetic and phenotypic variations occurring across a range of spatial scales. We examine variation in temperature, genes and metabolomic profiles within and between populations of the subalpine perennial plant Arabidopsis lyrata ssp. petraea from across its northwest European range. Our surveys cover a gradient of fragmentation from largely continuous populations in Iceland, through more fragmented Scandinavian populations, to increasingly widely scattered populations at the range margin in Scotland, Wales and Ireland. Temperature regimes vary substantially within some populations, but within-population variation represents a larger fraction of genetic and especially metabolomic variances. Both physical distance and temperature differences between sites are found to be associated with genetic profiles, but not metabolomic profiles, and no relationship was found between genetic and metabolomic population structures in any region. Genetic similarity between plants within populations is the highest in the fragmented populations at the range margin, but differentiation across space is the highest there as well, suggesting that regional patterns of genetic diversity may be scale dependent. PMID:19324821

  8. Wafer scale integration of reduced graphene oxide by novel laser processing at room temperature in air

    NASA Astrophysics Data System (ADS)

    Bhaumik, Anagh; Narayan, Jagdish

    2016-09-01

    Physical properties of reduced graphene oxide (rGO) strongly depend on the ratio of sp2 to sp3 hybridized carbon atoms, the presence of different functional groups, and the characteristics of the substrates. This research for the very first time illustrates successful wafer scale integration of 2D rGO with Cu/TiN/Si, employing pulsed laser deposition followed by laser annealing of carbon-doped copper layers using nanosecond excimer lasers. The XRD, SEM, and Raman spectroscopy measurements indicate the presence of large area rGO onto Si having Raman active vibrational modes: D, G, and 2D. A high resolution SEM depicts the morphology and formation of rGO from zone-refined carbon formed after nanosecond laser annealing. Temperature-dependent resistance data of rGO thin films follow the Efros-Shklovskii variable range hopping (VRH) model in the low-temperature region and Arrhenius conduction in the high-temperature regime. The photoluminescence spectra also reveal a less intense and broader blue fluorescence spectra, indicating the presence of miniature sized sp2 domains in the near vicinity of π* electronic states which favor the VRH transport phenomena. This wafer scale integration of rGO with Si employing a laser annealing technique will be useful for multifunctional integrated electronic devices and will open a new frontier for further extensive research in these functionalized 2D materials.

  9. Method and apparatus for two-dimensional absolute optical encoding

    NASA Technical Reports Server (NTRS)

    Leviton, Douglas B. (Inventor)

    2004-01-01

    This invention presents a two-dimensional absolute optical encoder and a method for determining position of an object in accordance with information from the encoder. The encoder of the present invention comprises a scale having a pattern being predetermined to indicate an absolute location on the scale, means for illuminating the scale, means for forming an image of the pattern; and detector means for outputting signals derived from the portion of the image of the pattern which lies within a field of view of the detector means, the field of view defining an image reference coordinate system, and analyzing means, receiving the signals from the detector means, for determining the absolute location of the object. There are two types of scale patterns presented in this invention: grid type and starfield type.

  10. Validation of SCALE for High Temperature Gas-Cooled Reactors Analysis

    SciTech Connect

    Ilas, Germina; Ilas, Dan; Kelly, Ryan P; Sunny, Eva E

    2012-08-01

    This report documents verification and validation studies carried out to assess the performance of the SCALE code system methods and nuclear data for modeling and analysis of High Temperature Gas-Cooled Reactor (HTGR) configurations. Validation data were available from the International Handbook of Evaluated Reactor Physics Benchmark Experiments (IRPhE Handbook), prepared by the International Reactor Physics Experiment Evaluation Project, for two different HTGR designs: prismatic and pebble bed. SCALE models have been developed for HTTR, a prismatic fuel design reactor operated in Japan and HTR-10, a pebble bed reactor operated in China. The models were based on benchmark specifications included in the 2009, 2010, and 2011 releases of the IRPhE Handbook. SCALE models for the HTR-PROTEUS pebble bed configuration at the PROTEUS critical facility in Switzerland have also been developed, based on benchmark specifications included in a 2009 IRPhE draft benchmark. The development of the SCALE models has involved a series of investigations to identify particular issues associated with modeling the physics of HTGRs and to understand and quantify the effect of particular modeling assumptions on calculation-to-experiment comparisons.

  11. Natural variability of atmospheric temperatures and geomagnetic intensity over a wide range of time scales

    PubMed Central

    Pelletier, Jon D.

    2002-01-01

    The majority of numerical models in climatology and geomagnetism rely on deterministic finite-difference techniques and attempt to include as many empirical constraints on the many processes and boundary conditions applicable to their very complex systems. Despite their sophistication, many of these models are unable to reproduce basic aspects of climatic or geomagnetic dynamics. We show that a simple stochastic model, which treats the flux of heat energy in the atmosphere by convective instabilities with random advection and diffusive mixing, does a remarkable job at matching the observed power spectrum of historical and proxy records for atmospheric temperatures from time scales of one day to one million years (Myr). With this approach distinct changes in the power-spectral form can be associated with characteristic time scales of ocean mixing and radiative damping. Similarly, a simple model of the diffusion of magnetic intensity in Earth's core coupled with amplification and destruction of the local intensity can reproduce the observed 1/f noise behavior of Earth's geomagnetic intensity from time scales of 1 (Myr) to 100 yr. In addition, the statistics of the fluctuations in the polarity reversal rate from time scales of 1 Myr to 100 Myr are consistent with the hypothesis that reversals are the result of variations in 1/f noise geomagnetic intensity above a certain threshold, suggesting that reversals may be associated with internal fluctuations rather than changes in mantle thermal or magnetic boundary conditions. PMID:11875208

  12. Cuprous Oxide Scale up: Gram Production via Bulk Synthesis using Classic Solvents at Low Temperatures

    SciTech Connect

    Hall, A.; Han, T. Y.

    2015-05-07

    Cuprous oxide is a p-type semiconducting material that has been highly researched for its interesting properties. Many small-scale syntheses have exhibited excellent control over size and morphology. As the demand for cuprous oxide grows, the synthesis method need to evolve to facilitate large-scale production. This paper supplies a facile bulk synthesis method for Cu₂O on average, 1-liter reaction volume can produce 1 gram of particles. In order to study the shape and size control mechanisms on such a scale, the reaction volume was diminished to 250 mL producing on average 0.3 grams of nanoparticles per batch. Well-shaped nanoparticles have been synthesized using an aqueous solution of CuCl₂, NaOH, SDS surfactant, and NH₂OH-HCl at mild temperatures. The time allotted between the addition of NaOH and NH₂OH-HCl was determined to be critical for Cu(OH)2 production, an important precursor to the final produce The effects of stirring rates on a large scale was also analyzed during reagent addition and post reagent addition. A morphological change from rhombic dodecahedra to spheres occurred as the stirring speed was increased. The effects of NH₂OH-HCl concentration were also studied to control the etching effects of the final product.

  13. Natural variability of atmospheric temperatures and geomagnetic intensity over a wide range of time scales.

    PubMed

    Pelletier, Jon D

    2002-02-19

    The majority of numerical models in climatology and geomagnetism rely on deterministic finite-difference techniques and attempt to include as many empirical constraints on the many processes and boundary conditions applicable to their very complex systems. Despite their sophistication, many of these models are unable to reproduce basic aspects of climatic or geomagnetic dynamics. We show that a simple stochastic model, which treats the flux of heat energy in the atmosphere by convective instabilities with random advection and diffusive mixing, does a remarkable job at matching the observed power spectrum of historical and proxy records for atmospheric temperatures from time scales of one day to one million years (Myr). With this approach distinct changes in the power-spectral form can be associated with characteristic time scales of ocean mixing and radiative damping. Similarly, a simple model of the diffusion of magnetic intensity in Earth's core coupled with amplification and destruction of the local intensity can reproduce the observed 1/f noise behavior of Earth's geomagnetic intensity from time scales of 1 (Myr) to 100 yr. In addition, the statistics of the fluctuations in the polarity reversal rate from time scales of 1 Myr to 100 Myr are consistent with the hypothesis that reversals are the result of variations in 1/f noise geomagnetic intensity above a certain threshold, suggesting that reversals may be associated with internal fluctuations rather than changes in mantle thermal or magnetic boundary conditions. PMID:11875208

  14. Synthesis of nano-scale silicon wires by excimer laser ablation at high temperature

    NASA Astrophysics Data System (ADS)

    Yu, D. P.; Lee, C. S.; Bello, I.; Sun, X. S.; Tang, Y. H.; Zhou, G. W.; Bai, Z. G.; Zhang, Z.; Feng, S. Q.

    1998-02-01

    We report below synthesis of nano-scale silicon wires by using laser ablation at high temperature. By this approach we have been able to produce silicon nano wires (SiNW's) with a very high yield, a uniform diameter distribution and a high purity. The structure, morphology and chemical composition of the SiNWs have been characterized by using high resolution X-ray diffraction (XRD), high resolution electron microscopy (HREM), as well as spectroscopy of energy dispersive X-ray fluorescence (EDAX). Our results should be of great interest to researchers working on mesoscopic physical phenomena, such as quantum confinement effects related to materials of reduced dimensions and should lead to the development of new applications for nano-scale devices, together with providing a powerful method for synthesis of similar one-dimensional conducting and semi-conducting wire.

  15. Scaling behavior of temperature-dependent thermopower in CeAu2Si2 under pressure

    NASA Astrophysics Data System (ADS)

    Ren, Z.; Scheerer, G. W.; Lapertot, G.; Jaccard, D.

    2016-07-01

    We report a combined study of in-plane resistivity and thermopower of the pressure-induced heavy-fermion superconductor CeAu2Si2 up to 27.8 GPa. It is found that thermopower follows a scaling behavior in T /T* almost up to the magnetic critical pressure pc˜22 GPa. By comparing with resistivity results, we show that the magnitude and characteristic temperature dependence of thermopower in this pressure range are governed by the Kondo coupling and crystal-field splitting, respectively. Below pc, the superconducting transition is preceded by a large negative thermopower minimum, suggesting a close relationship between the two phenomena. Furthermore, thermopower of a variety of Ce-based Kondo lattices with different crystal structures follows the same scaling relation up to T /T*˜2 .

  16. Temperature Dependent Dislocation Mobility in MgSiO3 Perovskite: An Atomic Scale Study

    NASA Astrophysics Data System (ADS)

    Kraych, A.; Hirel, P.; Carrez, P.; Cordier, P.

    2014-12-01

    Heat transfer through the mantle is carried by convection, which involves plastic flow of the mantle constituents. Among these constituents, (Mg,Fe,Al)(Si,Al)O3 perovskite is known to be the most abundant. This material is deformed at very low strain rate (from 10-12 to 10-16 s-1), and under extreme pressure and temperature conditions (from 30 to 140GPa, 1500 to 4000°C). Its plastic behaviour is challenging to reproduce experimentally, but crucial for a better understanding of the Earth's dynamic. The recent progress in modelling the behaviours of materials, which until now have been mostly used on metals, are applied here on MgSiO3 perovskite (Mg-Pv). We characterize dislocations at the atomic scale, as the first step of a multi-scale modelling approach on Mg-Pv plastic deformation. We model dislocations with [100] and [010] Burgers vectors (described within the Pbnm space group), which are the shortest lattice parameters in the orthorhombic structure. Dislocation cores are determined to be described at various pressures. The resistance to glide of the dislocations is quantified indicating that [100](010) and [010](100) are the easiest slip systems in Mg-Pv over the full pressure range of the lower mantle. The effect of temperature is introduced by assimilating the thermal activation on dislocation lines to vibrations of a string lying into a potential valley. These vibrations allow the dislocation to overcome locally the energy barrier that represents the lattice friction, and then propagates under the effect of stress. With this model, by combining elastic theory of dislocations and calculations at the atomic scale, a first expression of the strain rate produced by dislocation glide is provided.Left figure : Thermally activated propagation of dislocation over the energy barrierRight figure : Shape of the crossing dislocation obtained from atomic scale modelling

  17. Ising spin glasses: Corrections to finite size scaling, freezing temperatures, and critical exponents

    NASA Astrophysics Data System (ADS)

    Mari, P. O.; Campbell, I. A.

    1999-03-01

    We compare simulation data from different sources on two canonical three-dimensional Ising spin glasses (ISGs): the binomial +/-J near-neighbor interaction ISG and the Gaussian interaction ISG. We allow for the possibility of corrections to finite size scaling and estimate the correction exponent w. Consistent estimates for the critical temperatures Tg and for the critical exponents for each system are obtained. The data strongly indicate that critical exponents in the two systems are significantly different from each other. These results thus confirm a breakdown of standard universality rules in Ising spin glasses.

  18. Controllable large scaled nanotwin formation in Cu film at lower temperatures

    NASA Astrophysics Data System (ADS)

    Cheng, Gong; Li, Heng; Zhang, Weibo; Xu, Gaowei; Luo, Le

    2016-10-01

    By means of low temperature rapid annealing, it is found that an abrupt thermal stress relaxation occurs in Cu film at the beginning of cooling, which greatly increases the driving force for twin nucleation and growth. Consequently, high-density nanotwins (nt) are successfully produced in as-plated Cu film at wafer-level under temperatures as low as 300 °C, which is much lower than conventional processes (above 550 °C), making it fully compatible with the semiconductor industry. This enhanced annealing processing provides not only a cost-effective approach for large scaled void-free nt-Cu synthesis together with half-quantitatively controllable twin spacing, but demonstrates the prospect and significance of inconspicuous annealed nanotwins on the application of microelectronics.

  19. Overfishing and nutrient pollution interact with temperature to disrupt coral reefs down to microbial scales.

    PubMed

    Zaneveld, Jesse R; Burkepile, Deron E; Shantz, Andrew A; Pritchard, Catharine E; McMinds, Ryan; Payet, Jérôme P; Welsh, Rory; Correa, Adrienne M S; Lemoine, Nathan P; Rosales, Stephanie; Fuchs, Corinne; Maynard, Jeffrey A; Thurber, Rebecca Vega

    2016-01-01

    Losses of corals worldwide emphasize the need to understand what drives reef decline. Stressors such as overfishing and nutrient pollution may reduce resilience of coral reefs by increasing coral-algal competition and reducing coral recruitment, growth and survivorship. Such effects may themselves develop via several mechanisms, including disruption of coral microbiomes. Here we report the results of a 3-year field experiment simulating overfishing and nutrient pollution. These stressors increase turf and macroalgal cover, destabilizing microbiomes, elevating putative pathogen loads, increasing disease more than twofold and increasing mortality up to eightfold. Above-average temperatures exacerbate these effects, further disrupting microbiomes of unhealthy corals and concentrating 80% of mortality in the warmest seasons. Surprisingly, nutrients also increase bacterial opportunism and mortality in corals bitten by parrotfish, turning normal trophic interactions deadly for corals. Thus, overfishing and nutrient pollution impact reefs down to microbial scales, killing corals by sensitizing them to predation, above-average temperatures and bacterial opportunism. PMID:27270557

  20. Overfishing and nutrient pollution interact with temperature to disrupt coral reefs down to microbial scales

    PubMed Central

    Zaneveld, Jesse R.; Burkepile, Deron E.; Shantz, Andrew A.; Pritchard, Catharine E.; McMinds, Ryan; Payet, Jérôme P.; Welsh, Rory; Correa, Adrienne M. S.; Lemoine, Nathan P.; Rosales, Stephanie; Fuchs, Corinne; Maynard, Jeffrey A.; Thurber, Rebecca Vega

    2016-01-01

    Losses of corals worldwide emphasize the need to understand what drives reef decline. Stressors such as overfishing and nutrient pollution may reduce resilience of coral reefs by increasing coral–algal competition and reducing coral recruitment, growth and survivorship. Such effects may themselves develop via several mechanisms, including disruption of coral microbiomes. Here we report the results of a 3-year field experiment simulating overfishing and nutrient pollution. These stressors increase turf and macroalgal cover, destabilizing microbiomes, elevating putative pathogen loads, increasing disease more than twofold and increasing mortality up to eightfold. Above-average temperatures exacerbate these effects, further disrupting microbiomes of unhealthy corals and concentrating 80% of mortality in the warmest seasons. Surprisingly, nutrients also increase bacterial opportunism and mortality in corals bitten by parrotfish, turning normal trophic interactions deadly for corals. Thus, overfishing and nutrient pollution impact reefs down to microbial scales, killing corals by sensitizing them to predation, above-average temperatures and bacterial opportunism. PMID:27270557

  1. Temporally controlled modulation of antihydrogen production and the temperature scaling of antiproton-positron recombination.

    PubMed

    Fujiwara, M C; Amoretti, M; Amsler, C; Bonomi, G; Bouchta, A; Bowe, P D; Canali, C; Carraro, C; Cesar, C L; Charlton, M; Doser, M; Fontana, A; Funakoshi, R; Genova, P; Hangst, J S; Hayano, R S; Jørgensen, L V; Kellerbauer, A; Lagomarsino, V; Landua, R; Lodi-Rizzini, E; Macri, M; Madsen, N; Manuzio, G; Mitchard, D; Montagna, P; Pruys, H; Regenfus, C; Rotondi, A; Testera, G; Variola, A; Venturelli, L; van der Werf, D P; Yamazaki, Y; Zurlo, N

    2008-08-01

    We demonstrate temporally controlled modulation of cold antihydrogen production by periodic RF heating of a positron plasma during antiproton-positron mixing in a Penning trap. Our observations have established a pulsed source of atomic antimatter, with a rise time of about 1 s, and a pulse length ranging from 3 to 100 s. Time-sensitive antihydrogen detection and positron plasma diagnostics, both capabilities of the ATHENA apparatus, allowed detailed studies of the pulsing behavior, which in turn gave information on the dependence of the antihydrogen production process on the positron temperature T. Our data are consistent with power law scaling T (-1.1+/-0.5) for the production rate in the high temperature regime from approximately 100 meV up to 1.5 eV. This is not in accord with the behavior accepted for conventional three-body recombination.

  2. Magnetic field and temperature sensing with atomic-scale spin defects in silicon carbide

    NASA Astrophysics Data System (ADS)

    Kraus, H.; Soltamov, V. A.; Fuchs, F.; Simin, D.; Sperlich, A.; Baranov, P. G.; Astakhov, G. V.; Dyakonov, V.

    2014-07-01

    Quantum systems can provide outstanding performance in various sensing applications, ranging from bioscience to nanotechnology. Atomic-scale defects in silicon carbide are very attractive in this respect because of the technological advantages of this material and favorable optical and radio frequency spectral ranges to control these defects. We identified several, separately addressable spin-3/2 centers in the same silicon carbide crystal, which are immune to nonaxial strain fluctuations. Some of them are characterized by nearly temperature independent axial crystal fields, making these centers very attractive for vector magnetometry. Contrarily, the zero-field splitting of another center exhibits a giant thermal shift of -1.1 MHz/K at room temperature, which can be used for thermometry applications. We also discuss a synchronized composite clock exploiting spin centers with different thermal response.

  3. Overfishing and nutrient pollution interact with temperature to disrupt coral reefs down to microbial scales.

    PubMed

    Zaneveld, Jesse R; Burkepile, Deron E; Shantz, Andrew A; Pritchard, Catharine E; McMinds, Ryan; Payet, Jérôme P; Welsh, Rory; Correa, Adrienne M S; Lemoine, Nathan P; Rosales, Stephanie; Fuchs, Corinne; Maynard, Jeffrey A; Thurber, Rebecca Vega

    2016-06-07

    Losses of corals worldwide emphasize the need to understand what drives reef decline. Stressors such as overfishing and nutrient pollution may reduce resilience of coral reefs by increasing coral-algal competition and reducing coral recruitment, growth and survivorship. Such effects may themselves develop via several mechanisms, including disruption of coral microbiomes. Here we report the results of a 3-year field experiment simulating overfishing and nutrient pollution. These stressors increase turf and macroalgal cover, destabilizing microbiomes, elevating putative pathogen loads, increasing disease more than twofold and increasing mortality up to eightfold. Above-average temperatures exacerbate these effects, further disrupting microbiomes of unhealthy corals and concentrating 80% of mortality in the warmest seasons. Surprisingly, nutrients also increase bacterial opportunism and mortality in corals bitten by parrotfish, turning normal trophic interactions deadly for corals. Thus, overfishing and nutrient pollution impact reefs down to microbial scales, killing corals by sensitizing them to predation, above-average temperatures and bacterial opportunism.

  4. Absolute NMR shielding scales and nuclear spin–rotation constants in {sup 175}LuX and {sup 197}AuX (X = {sup 19}F, {sup 35}Cl, {sup 79}Br and {sup 127}I)

    SciTech Connect

    Demissie, Taye B. Komorovsky, Stanislav; Repisky, Michal; Ruud, Kenneth; Jaszuński, Michał

    2015-10-28

    We present nuclear spin–rotation constants, absolute nuclear magnetic resonance (NMR) shielding constants, and shielding spans of all the nuclei in {sup 175}LuX and {sup 197}AuX (X = {sup 19}F, {sup 35}Cl, {sup 79}Br, {sup 127}I), calculated using coupled-cluster singles-and-doubles with a perturbative triples (CCSD(T)) correction theory, four-component relativistic density functional theory (relativistic DFT), and non-relativistic DFT. The total nuclear spin–rotation constants determined by adding the relativistic corrections obtained from DFT calculations to the CCSD(T) values are in general in agreement with available experimental data, indicating that the computational approach followed in this study allows us to predict reliable results for the unknown spin–rotation constants in these molecules. The total NMR absolute shielding constants are determined for all the nuclei following the same approach as that applied for the nuclear spin–rotation constants. In most of the molecules, relativistic effects significantly change the computed shielding constants, demonstrating that straightforward application of the non-relativistic formula relating the electronic contribution to the nuclear spin–rotation constants and the paramagnetic contribution to the shielding constants does not yield correct results. We also analyze the origin of the unusually large absolute shielding constant and its relativistic correction of gold in AuF compared to the other gold monohalides.

  5. Absolute NMR shielding scales and nuclear spin-rotation constants in 175LuX and 197AuX (X = 19F, 35Cl, 79Br and 127I)

    NASA Astrophysics Data System (ADS)

    Demissie, Taye B.; Jaszuński, Michał; Komorovsky, Stanislav; Repisky, Michal; Ruud, Kenneth

    2015-10-01

    We present nuclear spin-rotation constants, absolute nuclear magnetic resonance (NMR) shielding constants, and shielding spans of all the nuclei in 175LuX and 197AuX (X = 19F, 35Cl, 79Br, 127I), calculated using coupled-cluster singles-and-doubles with a perturbative triples (CCSD(T)) correction theory, four-component relativistic density functional theory (relativistic DFT), and non-relativistic DFT. The total nuclear spin-rotation constants determined by adding the relativistic corrections obtained from DFT calculations to the CCSD(T) values are in general in agreement with available experimental data, indicating that the computational approach followed in this study allows us to predict reliable results for the unknown spin-rotation constants in these molecules. The total NMR absolute shielding constants are determined for all the nuclei following the same approach as that applied for the nuclear spin-rotation constants. In most of the molecules, relativistic effects significantly change the computed shielding constants, demonstrating that straightforward application of the non-relativistic formula relating the electronic contribution to the nuclear spin-rotation constants and the paramagnetic contribution to the shielding constants does not yield correct results. We also analyze the origin of the unusually large absolute shielding constant and its relativistic correction of gold in AuF compared to the other gold monohalides.

  6. Absolute magnitudes and kinematics of barium stars.

    NASA Astrophysics Data System (ADS)

    Gomez, A. E.; Luri, X.; Grenier, S.; Prevot, L.; Mennessier, M. O.; Figueras, F.; Torra, J.

    1997-03-01

    The absolute magnitude of barium stars has been obtained from kinematical data using a new algorithm based on the maximum-likelihood principle. The method allows to separate a sample into groups characterized by different mean absolute magnitudes, kinematics and z-scale heights. It also takes into account, simultaneously, the censorship in the sample and the errors on the observables. The method has been applied to a sample of 318 barium stars. Four groups have been detected. Three of them show a kinematical behaviour corresponding to disk population stars. The fourth group contains stars with halo kinematics. The luminosities of the disk population groups spread a large range. The intrinsically brightest one (M_v_=-1.5mag, σ_M_=0.5mag) seems to be an inhomogeneous group containing barium binaries as well as AGB single stars. The most numerous group (about 150 stars) has a mean absolute magnitude corresponding to stars in the red giant branch (M_v_=0.9mag, σ_M_=0.8mag). The third group contains barium dwarfs, the obtained mean absolute magnitude is characteristic of stars on the main sequence or on the subgiant branch (M_v_=3.3mag, σ_M_=0.5mag). The obtained mean luminosities as well as the kinematical results are compatible with an evolutionary link between barium dwarfs and classical barium giants. The highly luminous group is not linked with these last two groups. More high-resolution spectroscopic data will be necessary in order to better discriminate between barium and non-barium stars.

  7. Implications of atmospheric conditions for analysis of surface temperature variability derived from landscape-scale thermography

    NASA Astrophysics Data System (ADS)

    Hammerle, Albin; Meier, Fred; Heinl, Michael; Egger, Angelika; Leitinger, Georg

    2016-08-01

    Thermal infrared (TIR) cameras perfectly bridge the gap between (i) on-site measurements of land surface temperature (LST) providing high temporal resolution at the cost of low spatial coverage and (ii) remotely sensed data from satellites that provide high spatial coverage at relatively low spatio-temporal resolution. While LST data from satellite (LSTsat) and airborne platforms are routinely corrected for atmospheric effects, such corrections are barely applied for LST from ground-based TIR imagery (using TIR cameras; LSTcam). We show the consequences of neglecting atmospheric effects on LSTcam of different vegetated surfaces at landscape scale. We compare LST measured from different platforms, focusing on the comparison of LST data from on-site radiometry (LSTosr) and LSTcam using a commercially available TIR camera in the region of Bozen/Bolzano (Italy). Given a digital elevation model and measured vertical air temperature profiles, we developed a multiple linear regression model to correct LSTcam data for atmospheric influences. We could show the distinct effect of atmospheric conditions and related radiative processes along the measurement path on LSTcam, proving the necessity to correct LSTcam data on landscape scale, despite their relatively low measurement distances compared to remotely sensed data. Corrected LSTcam data revealed the dampening effect of the atmosphere, especially at high temperature differences between the atmosphere and the vegetated surface. Not correcting for these effects leads to erroneous LST estimates, in particular to an underestimation of the heterogeneity in LST, both in time and space. In the most pronounced case, we found a temperature range extension of almost 10 K.

  8. Fine-Scale Temperature Fluctuations in the Orion Nebula and the t2 Problem

    NASA Astrophysics Data System (ADS)

    O'Dell, C. R.; Peimbert, Manuel; Peimbert, Antonio

    2003-05-01

    We present a high spatial resolution map of the columnar electron temperature (Tc) of a region to the southwest of the Trapezium in the Orion Nebula. This map was derived from Hubble Space Telescope images that isolated the primary lines of H I for determination of the local extinction and of the [O III] lines for determination of Tc. Although there is no statistically significant variation of Tc with distance from the dominant ionizing star, θ1 Ori C, we find small-scale variations in the plane of the sky down to a few arcseconds, which are compatible with the variations inferred from comparing the value of Te derived from forbidden and recombination lines, commonly known as the t2 problem. We present other evidence for fine-scale variations in conditions in the nebula, these being variations in the surface brightness of the nebula, fluctuations in radial velocities, and ionization changes. From our Tc map and other considerations we estimate that t2 =0.028+/-0.006 for the Orion Nebula. Shadowed regions behind clumps close to the ionization front can make a significant contribution to the observed temperature fluctuations, but they cannot account for the t2 values inferred from several methods of temperature determination. It is shown that an anomalous broadening of nebular emission lines appears to have the same sense of correlation as the temperature anomalies, although a causal link is not obvious. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555.

  9. A two-time-scale, two-temperature scenario for nonlinear rheology

    PubMed

    Berthier; Barrat; Kurchan

    2000-05-01

    We investigate a general scenario for "glassy" or "jammed" systems driven by an external, nonconservative force, analogous to a shear force in a fluid. In this scenario, the drive results in the suppression of the usual aging process, and the correlation and response functions become time translation invariant. The relaxation time and the response functions are then dependent on the intensity of the drive and on temperature. We investigate this dependence within the framework of a dynamical closure approximation that becomes exact for disordered, fully connected models. The relaxation time is shown to be a decreasing function of the drive ("shear thinning" effect). The correlation functions below the glass transition temperature (Tc) display a two-time-scale relaxation pattern, similar to that observed at equilibrium slightly above Tc. We also study the violation of the fluctuation-dissipation relationship in the driven system. This violation is very reminiscent of the one that takes place in a system aging below Tc at zero drive. It involves, in particular the appearance of a two-temperature regime, in the sense of an effective fluctuation-dissipation temperature [L. F. Cugliandolo, J. Kurchan, and L. Peliti, Phys. Rev. E 55, 3898 (1997)]. Although our results are, in principle, limited to the closure relations that hold for mean-field models, we argue that a number of the salient features are not inherent to the approximation scheme, and may be tested in experiments and simulations. PMID:11031599

  10. Effect of temperature on methane production from field-scale anaerobic digesters treating dairy manure.

    PubMed

    Arikan, Osman A; Mulbry, Walter; Lansing, Stephanie

    2015-09-01

    Temperature is a critical factor affecting anaerobic digestion because it influences both system heating requirements and methane production. Temperatures of 35-37°C are typically suggested for manure digestion. In temperate climates, digesters require a considerable amount of additional heat energy to maintain temperatures at these levels. In this study, the effects of lower digestion temperatures (22 and 28°C), on the methane production from dairy digesters were evaluated and compared with 35°C using duplicate replicates of field-scale (FS) digesters with a 17-day hydraulic retention time. After acclimation, the FS digesters were operated for 12weeks using solids-separated manure at an organic loading rate (OLR) of 1.4kgVSm(-3)d(-1) and then for 8weeks using separated manure amended with manure solids at an OLR of 2.6kgVSm(-3)d(-1). Methane production values of the FS digesters at 22 and 28°C were about 70% and 87%, respectively, of the values from FS digesters at 35°C. The results suggest that anaerobic digesters treating dairy manure at 28°C were nearly as efficient as digesters operated at 35°C, with 70% of total methane achievable at 22°C. These results are relevant to small farms interested in anaerobic digestion for methane reduction without heat recovery from generators or for methane recovery from covered lagoon digesters. PMID:26101200

  11. Temperature and deactivation of microbial faecal indicators during small scale co-composting of faecal matter.

    PubMed

    Germer, Jörn; Boh, Michael Yongha; Schoeffler, Marie; Amoah, Philip

    2010-02-01

    Small scale co-composting of faecal matter from dry toilet systems with shredded plant material and food waste was investigated in respect to heat development and deactivation of faecal indicators under tropical semiarid conditions. Open (uncovered) co-composting of faecal matter with shredded plant material alone did not generate temperatures high enough (<55 degrees C) to reduce the indicators sufficiently. The addition of food waste and confinement in chambers, built of concrete bricks and wooden boards, improved the composting process significantly. Under these conditions peak temperatures of up to 70 degrees C were achieved and temperatures above 55 degrees C were maintained over 2 weeks. This temperature and time is sufficient to comply with international composting regulations. The reduction of Escherichia coli, Enterococcus faecalis and Salmonella senftenberg in test containment systems placed in the core of the compost piles was very efficient, exceeding 5log10-units in all cases, but recolonisation from the cooler outer layers appeared to interfere with the sanitisation efficiency of the substrate itself. The addition of a stabilisation period by extending the composting process to over 4 months ensured that the load of E. coli was reduced to less than 10(3)cfu(-g) and salmonella were undetectable.

  12. Global-scale modes of surface temperature variability on interannual to century timescales

    NASA Technical Reports Server (NTRS)

    Mann, Michael E.; Park, Jeffrey

    1994-01-01

    Using 100 years of global temperature anomaly data, we have performed a singluar value decomposition of temperature variations in narrow frequency bands to isolate coherent spatio-temporal modes of global climate variability. Statistical significance is determined from confidence limits obtained by Monte Carlo simulations. Secular variance is dominated by a globally coherent trend; with nearly all grid points warming in phase at varying amplitude. A smaller, but significant, share of the secular variance corresponds to a pattern dominated by warming and subsequent cooling in the high latitude North Atlantic with a roughly centennial timescale. Spatial patterns associated with significant peaks in variance within a broad period range from 2.8 to 5.7 years exhibit characteristic El Nino-Southern Oscillation (ENSO) patterns. A recent transition to a regime of higher ENSO frequency is suggested by our analysis. An interdecadal mode in the 15-to-18 years period and a mode centered at 7-to-8 years period both exhibit predominantly a North Atlantic Oscillation (NAO) temperature pattern. A potentially significant decadal mode centered on 11-to-12 years period also exhibits an NAO temperature pattern and may be modulated by the century-scale North Atlantic variability.

  13. Temperature and deactivation of microbial faecal indicators during small scale co-composting of faecal matter.

    PubMed

    Germer, Jörn; Boh, Michael Yongha; Schoeffler, Marie; Amoah, Philip

    2010-02-01

    Small scale co-composting of faecal matter from dry toilet systems with shredded plant material and food waste was investigated in respect to heat development and deactivation of faecal indicators under tropical semiarid conditions. Open (uncovered) co-composting of faecal matter with shredded plant material alone did not generate temperatures high enough (<55 degrees C) to reduce the indicators sufficiently. The addition of food waste and confinement in chambers, built of concrete bricks and wooden boards, improved the composting process significantly. Under these conditions peak temperatures of up to 70 degrees C were achieved and temperatures above 55 degrees C were maintained over 2 weeks. This temperature and time is sufficient to comply with international composting regulations. The reduction of Escherichia coli, Enterococcus faecalis and Salmonella senftenberg in test containment systems placed in the core of the compost piles was very efficient, exceeding 5log10-units in all cases, but recolonisation from the cooler outer layers appeared to interfere with the sanitisation efficiency of the substrate itself. The addition of a stabilisation period by extending the composting process to over 4 months ensured that the load of E. coli was reduced to less than 10(3)cfu(-g) and salmonella were undetectable. PMID:19889525

  14. The effect of low temperatures on ammonia removal in a laboratory-scale constructed wetland

    SciTech Connect

    Lee, M.A.; Stansbury, J.S.; Zhang, T.C.

    1999-05-01

    The effect of low temperatures on ammonia removal in constructed wetlands was studied by running a synthetic wastewater through a model, laboratory-scale gravel-filled constructed wetland (in which no plants were grown). The wetland was operated at temperatures of 5, 11.5, 15, and 23 C in an environmentally controlled chamber. An influent ammonia concentration of 45 mg/L as nitrogen was used to simulate typical domestic wastewater. For temperatures of 5, 11.5, 15, and 23 C, the wetland model achieved ammonia removal and nitrification of 45, 44, 56, and 65%, respectively. Thus, over the 18 C temperature range ammonia-nitrogen removal and nitrification rates varied only 20%. There was a net decrease in nitrogen as water passed through the wetland; this could be the result of cell growth or denitrification. Measurements were taken at the inlet, outlet, and four additional locations along the length of the reactor. Measurements were also taken at three different depths. Along the length of the reactor, nearly all nitrification was achieved in the first half of the reactor, then stopped because of low dissolved oxygen concentrations. Nitrification occurred slightly faster at the top of the reactor than at the bottom.

  15. Bremsstrahlung Temperature Scaling in Ultra-Intense Laser-Plasma Interactions

    NASA Astrophysics Data System (ADS)

    Zulick, C.; Hou, B.; Nees, J.; Thomas, A. G. R.; Krushelnick, K.

    2011-10-01

    The absorption of laser energy during ultra-intense (I > 1018 W/cm2) laser-plasma interactions results in the production of a hot electron current, which can subsequently generate energetic protons, ions, and photons. The energetic photons are of particular interest in isomer excitation, positron production, and homeland security applications. Experiments were performed on the high repetition rate (500 Hz) Lambda Cubed laser (I ~ 5 .1018 , duration 30 fs) allowing high resolution (λ/ Δλ = 300) spectroscopy of X-ray and γ-ray bremsstrahlung photons in the 20 keV to 3 MeV energy range. The effective bremsstrahlung temperature was measured over a range of laser energies, target materials, and detection angles. Additionally, simulations (MCNPX and GEANT4) were used to correlate experimental bremsstrahlung temperatures with hot electron temperatures, which were compared to existing electron temperature scaling laws. This work was supported by the National Science Foundation (NSF) through the FOCUS Physics Frontier Center PHY-0114336, and by the Department of Homeland Security and NSF through grant EECS-0833499.

  16. Effect of temperature on methane production from field-scale anaerobic digesters treating dairy manure.

    PubMed

    Arikan, Osman A; Mulbry, Walter; Lansing, Stephanie

    2015-09-01

    Temperature is a critical factor affecting anaerobic digestion because it influences both system heating requirements and methane production. Temperatures of 35-37°C are typically suggested for manure digestion. In temperate climates, digesters require a considerable amount of additional heat energy to maintain temperatures at these levels. In this study, the effects of lower digestion temperatures (22 and 28°C), on the methane production from dairy digesters were evaluated and compared with 35°C using duplicate replicates of field-scale (FS) digesters with a 17-day hydraulic retention time. After acclimation, the FS digesters were operated for 12weeks using solids-separated manure at an organic loading rate (OLR) of 1.4kgVSm(-3)d(-1) and then for 8weeks using separated manure amended with manure solids at an OLR of 2.6kgVSm(-3)d(-1). Methane production values of the FS digesters at 22 and 28°C were about 70% and 87%, respectively, of the values from FS digesters at 35°C. The results suggest that anaerobic digesters treating dairy manure at 28°C were nearly as efficient as digesters operated at 35°C, with 70% of total methane achievable at 22°C. These results are relevant to small farms interested in anaerobic digestion for methane reduction without heat recovery from generators or for methane recovery from covered lagoon digesters.

  17. Heat capacity and absolute entropy of iron phosphides

    SciTech Connect

    Dobrokhotova, Z.V.; Zaitsev, A.I.; Litvina, A.D.

    1994-09-01

    There is little or no data on the thermodynamic properties of iron phosphides despite their importance for several areas of science and technology. The information available is of a qualitative character and is based on assessments of the heat capacity and absolute entropy. In the present work, we measured the heat capacity over the temperature range of 113-873 K using a differential scanning calorimeter (DSC) and calculated the absolute entropy.

  18. Boiling temperature as a scaling parameter for the microscopic relaxation dynamics in molecular liquids.

    PubMed

    Mamontov, Eugene

    2013-08-15

    At sufficiently high temperatures, the center-of-mass microscopic diffusion dynamics of liquids is characterized by a single component, often with weak temperature dependence. In this regime, the effective cage made by the neighbor particles cannot be sustained and readily breaks down, enabling long-range diffusion. As the temperature is decreased, the cage relaxation becomes impeded, leading to a higher viscosity with more pronounced temperature dependence. On the microscopic scale, the sustained caging effect leads to a separation between a faster in-cage relaxation component and a slower cage-breaking relaxation component. The evidence for the separate dynamic components, as opposed to a single stretched component, is provided by quasielastic neutron scattering experiments. We use a simple method to evaluate the extent of the dynamic components separation as a function of temperature in a group of related aromatic molecular liquids. We find that, regardless of the glass-forming capabilities or lack thereof, progressively more pronounced separation between the in-cage and cage-breaking dynamic components develops on cooling down as the ratio of T(b)/T, where T(b) is the boiling temperature, increases. This reflects the microscopic mechanism behind the empirical rule for the glass forming capability based on the ratio of boiling and melting temperatures, T(b)/T(m). When a liquid's T(b)/T(m) happens to be high, the liquid can readily be supercooled below its T(m) because the liquid's microscopic relaxation dynamics is already impeded at T(m), as evidenced by a sustained caging effect manifested through the separation of the in-cage and cage-breaking dynamic components. Our findings suggest certain universality in the temperature dependence of the microscopic diffusion dynamics in molecular liquids, regardless of their glass-forming capabilities. Unless the insufficiently low (with respect to T(b)) melting temperature, T(m), intervenes and makes crystallization

  19. Ensemble reconstruction of small-scale variability in Atlantic sea surface temperatures from 1870 - 2001

    NASA Astrophysics Data System (ADS)

    Karspeck, A. R.; Sain, S.; Kaplan, A.

    2008-12-01

    Existing historical records of sea surface temperature extending back to the mid 1800's are a valuable source of information for understanding climate variability at interannual and decadal time-scales. However, the temporal and spatial irregularity of these data make them difficult to use in scientific climate research, where gridded data fields are preferred for both direct analysis and forcing of numerical models of the atmosphere. Infilling methods based on constraining the leading eigenvectors of the global-scale covariance have proven very successful in creating gridded estimates of sea surface temperature. These methods are especially useful for infilling within the vast regions of unobserved ocean that characterize the earliest segments of the data record. Regional variability, on the other hand, is not well represented by these methods. This is especially true in data-poor regions. Here we present a method for augmenting the existing large-scale reconstruction methods with a statistical model of the regional scale variability. Using high quality sea surface temperature data from the last 25 years, including satellite-derived records, we specify a spatially non-stationary covariance model for the regional scale marine surface temperature variability. The use of a non-stationary, non-isotropic correlation function in the covariance model is a novel aspect in this work. With the covariance model estimated from the modern record, historical observations are used to condition posterior distributions on the regional scales back to the mid 1800's It is common in the geosciences for the expected value of the distribution to be offered as the data reconstruction. If uncertainty information is provided, it often takes the form of a point-wise estimate that neglects the covariability inherent in the full distribution. In contrast to this common practice, we generate multiple realizations from the full posterior distribution. These samples will be made available to

  20. Madden-Julian oscillation and sea surface temperature interactions in a multi-scale framework

    NASA Astrophysics Data System (ADS)

    Zhou, Lei

    2009-12-01

    The ocean-atmosphere coupling can play a role in initiating and sustaining the Madden-Julian Oscillations (MJOs), which are the major intraseasonal oscillations in the atmosphere. In this thesis, the oceanic influence on MJOs is studied with reanalysis products, numerical models, and idealized theoretical models. The energy sources for MJOs are calculated with NCEP reanalysis. The perturbed potential energy is found to be the most important energy source for most MJO events. In some MJO events, the sea surface is warmed due to the reduced latent heat flux during the suppressed phase of MJOs. As a result, warm sea surface temperature anomalies (SSTAs) occur, which appear to prolong the life time of these MJO events. In a minority of the MJO events, warm SSTAs can drive the atmosphere actively and trigger MJO events. In these events, the warm SSTAs are attributable to the internal oceanic processes influenced by the warm Indonesian Throughflow (ITF), which spreads from the southeastern Indian Ocean to the western Indian Ocean and modifies the subtle balance between stratification and mixing in the western Indian Ocean. In addition, during the transit period between monsoon seasons, a few MJO events are sustained by the energy obtained from the mean kinetic energy. Since the MJO events have different energy sources, their mechanisms should be considered in the context of these energy sources. While the spatial scale of the SSTAs in the Indian Ocean is only of order 100 km, the scale of MJOs is of order 1000 km, raising the potential for interactions between the oceanic and the atmospheric oscillations with different scales and this is demonstrated to be possible with analytical solutions to idealized linear governing equations. With a reasonable choice of parameters, the meso-scale oceanic and the large-scale atmospheric oscillations can interact with each other and lead to unstable waves in the intraseasonal band in this linear coupled model. The coupling and

  1. Using Combined Temperature, Flow and Level Data to Investigate River-Aquifer Interaction Scaling Issue

    NASA Astrophysics Data System (ADS)

    McCallum, A. M.; Andersen, M. S.; Rau, G. C.; Acworth, I.

    2011-12-01

    Interactions between surface water and groundwater need to be understood for the water resource to be managed appropriately (Winter et al., 1998). However, these can vary at different spatial and temporal scales making quantification of them difficult. Using heat as a natural tracer of water movement has increasingly become popular. The method utilises the natural daily temperature fluctuations within a surface water body which, by the processes of conduction and convention, leads to a temperature response at depth. However, how such point measurements relate to larger scales remains uncertain. In this paper a combination of temperature, flow and level data, collected in a semi-arid region of Australia, are used to investigate this issue. The studied river reach has two flow gauges separated by 34 km which makes computing differential flows (i.e. losses or gains from river) possible. A field site next to the river has a weather station (recording solar radiation and atmospheric pressure and temperature) and a groundwater piezometer in the riverbank. Six arrays with temperature loggers at four depths to 1 m depth were installed vertically into the riverbed between the two gauges. The top and bottom levels also had pressure transducers. A series of dam-release and storm-induced flow events occurred within the eight-month deployment period. The riverbed and bank responded to the flow events in the river, thereby providing times series of potentially gaining and losing periods. The temperature records in the river and riverbed were filtered to retain the daily signal for computing seepage velocities using the method of Hatch et al. (2006). The seepage velocities obtained ranged from approximately -0.8 to 0.1 m/day. The temporal pattern of seepage velocity was similar between all six sites: the velocities increased during high-flows and reached a near-constant value at low-flows; before and after the main flow event the near-constant value changed, reflecting scouring

  2. Monochromator-Based Absolute Calibration of a Standard Radiation Thermometer

    NASA Astrophysics Data System (ADS)

    Mantilla, J. M.; Hernanz, M. L.; Campos, J.; Martín, M. J.; Pons, A.; del Campo, D.

    2014-04-01

    Centro Español de Metrología (CEM) is disseminating the International Temperature Scale (ITS-90), at high temperatures, by using the fixed points of Ag and Cu and a standard radiation thermometer. However, the future mise-en-pratique for the definition of the kelvin ( MeP-K) will include the dissemination of the kelvin by primary methods and by indirect approximations capable of exceptionally low uncertainties or increased reliability. Primary radiometry is, at present, able to achieve uncertainties competitive with the ITS-90 above the silver point with one of the possible techniques the calibration for radiance responsivity of an imaging radiometer (radiance method). In order to carry out this calibration, IO-CSIC (Spanish Designated Institute for luminous intensity and luminous flux) has collaborated with CEM, allowing traceability to its cryogenic radiometer. A monochromator integrating sphere-based spectral comparator facility has been used to calibrate one of the CEM standard radiation thermometers. The absolute calibrated standard radiation thermometer has been used to determine the temperatures of the fixed points of Cu, Co-C, Pt-C, and Re-C. The results obtained are 1357.80 K, 1597.10 K, 2011.66 K, and 2747.64 K, respectively, with uncertainties ranging from 0.4 K to 1.1 K.

  3. Small-scale features of temperature and salinity surface fields in the Coral Sea

    NASA Astrophysics Data System (ADS)

    Maes, Christophe; Dewitte, Boris; Sudre, Joël.; Garçon, Véronique; Varillon, David

    2013-10-01

    The small-scale features in sea surface temperature and salinity fields (SST and SSS) of the Coral Sea are examined using high horizontal spatial and short-term temporal in situ measurements. These features are extracted from thermosalinographs (TSGs) gathered onboard commercial and research vessels and at one long-term fixed station. The analyses are performed along the vessel tracks and the structures of small-scale features are extracted by high-pass spatial filtering the original TSG data. For SSS, it is shown that the features at the scale of mesoscale eddies (˜100 km) vary from about -1.1 to +0.6 psu in the Coral Sea region. Processes sustaining such range include rainfall events, stirring by mesoscale eddies, and the latitudinal displacement of the sharp front associated with the edge of the Western Pacific Warm Pool at the seasonal time scales. The TSG data have revealed the presence of a sharp front (0.4-0.6 psu) between the subtropical and equatorial waters instead of a smooth gradient in the standard SSS climatologies. Within the context of recent remotely sensed observations of salinity, this could represent an important limitation for the validation and calibration of satellite products. In addition to these spatial considerations, temporal variations at one long-term station near Vanuatu show that the coupled air-sea responses to intraseasonal tropical variability, such as the Madden-Julian Oscillation, may have a signature in both SST and SSS fields. However, this response is found to be complex and not necessarily in phase. In the Coral Sea region, our results suggest that MJO-induced variability on SST and SSS exhibit little coherency at the seasonal time scales.

  4. CFD Modeling of Flow, Temperature, and Concentration Fields in a Pilot-Scale Rotary Hearth Furnace

    NASA Astrophysics Data System (ADS)

    Liu, Ying; Su, Fu-Yong; Wen, Zhi; Li, Zhi; Yong, Hai-Quan; Feng, Xiao-Hong

    2014-01-01

    A three-dimensional mathematical model for simulation of flow, temperature, and concentration fields in a pilot-scale rotary hearth furnace (RHF) has been developed using a commercial computational fluid dynamics software, FLUENT. The layer of composite pellets under the hearth is assumed to be a porous media layer with CO source and energy sink calculated by an independent mathematical model. User-defined functions are developed and linked to FLUENT to process the reduction process of the layer of composite pellets. The standard k-ɛ turbulence model in combination with standard wall functions is used for modeling of gas flow. Turbulence-chemistry interaction is taken into account through the eddy-dissipation model. The discrete ordinates model is used for modeling of radiative heat transfer. A comparison is made between the predictions of the present model and the data from a test of the pilot-scale RHF, and a reasonable agreement is found. Finally, flow field, temperature, and CO concentration fields in the furnace are investigated by the model.

  5. SCALING, MULTIPLICITY AND TEMPERATURE OF e{sup +}e{sup -} {yields} HADRONS

    SciTech Connect

    Hoang, T. F.; Cork, Bruce

    1980-11-01

    Properties of meson production by e{sup +}e{sup -} annihilations for E{sub c.m.} = 3,0 to 31.2 GeV have been analyzed using the Bose-Einstein distribution modified for the Feynman-Yang scaling, Validity tests have been made with the P{sub T} and P{sub L} distributions measured with respect to the jet axis, The average charged multiplicity is found to follow an empirical power law E{sub c.m.}{sup 1/2}. The temperatures deduced from < P{sub T} > increase slowly with E{sub c,m,} . The scaling behavior is investigated in terms of the parameter {lambda} = 2/{pi} used to modify the Bose-Einstein distribution. An anomaly resembling a phase transition of the specific heat of the hadronic matter is found at a temperature near 127 MeV corresponding to the threshold for {Upsilon}(9.5) production.

  6. Toward high-energy-density, high-efficiency, and moderate-temperature chip-scale thermophotovoltaics

    PubMed Central

    Chan, Walker R.; Bermel, Peter; Pilawa-Podgurski, Robert C. N.; Marton, Christopher H.; Jensen, Klavs F.; Senkevich, Jay J.; Joannopoulos, John D.; Soljačić, Marin; Celanovic, Ivan

    2013-01-01

    The challenging problem of ultra-high-energy-density, high-efficiency, and small-scale portable power generation is addressed here using a distinctive thermophotovoltaic energy conversion mechanism and chip-based system design, which we name the microthermophotovoltaic (μTPV) generator. The approach is predicted to be capable of up to 32% efficient heat-to-electricity conversion within a millimeter-scale form factor. Although considerable technological barriers need to be overcome to reach full performance, we have performed a robust experimental demonstration that validates the theoretical framework and the key system components. Even with a much-simplified μTPV system design with theoretical efficiency prediction of 2.7%, we experimentally demonstrate 2.5% efficiency. The μTPV experimental system that was built and tested comprises a silicon propane microcombustor, an integrated high-temperature photonic crystal selective thermal emitter, four 0.55-eV GaInAsSb thermophotovoltaic diodes, and an ultra-high-efficiency maximum power-point tracking power electronics converter. The system was demonstrated to operate up to 800 °C (silicon microcombustor temperature) with an input thermal power of 13.7 W, generating 344 mW of electric power over a 1-cm2 area. PMID:23440220

  7. Toward high-energy-density, high-efficiency, and moderate-temperature chip-scale thermophotovoltaics.

    PubMed

    Chan, Walker R; Bermel, Peter; Pilawa-Podgurski, Robert C N; Marton, Christopher H; Jensen, Klavs F; Senkevich, Jay J; Joannopoulos, John D; Soljacic, Marin; Celanovic, Ivan

    2013-04-01

    The challenging problem of ultra-high-energy-density, high-efficiency, and small-scale portable power generation is addressed here using a distinctive thermophotovoltaic energy conversion mechanism and chip-based system design, which we name the microthermophotovoltaic (μTPV) generator. The approach is predicted to be capable of up to 32% efficient heat-to-electricity conversion within a millimeter-scale form factor. Although considerable technological barriers need to be overcome to reach full performance, we have performed a robust experimental demonstration that validates the theoretical framework and the key system components. Even with a much-simplified μTPV system design with theoretical efficiency prediction of 2.7%, we experimentally demonstrate 2.5% efficiency. The μTPV experimental system that was built and tested comprises a silicon propane microcombustor, an integrated high-temperature photonic crystal selective thermal emitter, four 0.55-eV GaInAsSb thermophotovoltaic diodes, and an ultra-high-efficiency maximum power-point tracking power electronics converter. The system was demonstrated to operate up to 800 °C (silicon microcombustor temperature) with an input thermal power of 13.7 W, generating 344 mW of electric power over a 1-cm(2) area. PMID:23440220

  8. The hyperfine structure in the rotational spectra of D{sub 2}{sup 17}O and HD{sup 17}O: Confirmation of the absolute nuclear magnetic shielding scale for oxygen

    SciTech Connect

    Puzzarini, Cristina Cazzoli, Gabriele; Harding, Michael E.; Vázquez, Juana; Gauss, Jürgen

    2015-03-28

    Guided by theoretical predictions, the hyperfine structures of the rotational spectra of mono- and bideuterated-water containing {sup 17}O have been experimentally investigated. To reach sub-Doppler resolution, required to resolve the hyperfine structure due to deuterium quadrupole coupling as well as to spin-rotation (SR) and dipolar spin-spin couplings, the Lamb-dip technique has been employed. The experimental investigation and in particular, the spectral analysis have been supported by high-level quantum-chemical computations employing coupled-cluster techniques and, for the first time, a complete experimental determination of the hyperfine parameters involved was possible. The experimentally determined {sup 17}O spin-rotation constants of D{sub 2}{sup 17}O and HD{sup 17}O were used to derive the paramagnetic part of the corresponding nuclear magnetic shielding constants. Together with the computed diamagnetic contributions as well as the vibrational and temperature corrections, the latter constants have been employed to confirm the oxygen nuclear magnetic shielding scale, recently established on the basis of spin-rotation data for H{sub 2}{sup 17}O [Puzzarini et al., J. Chem. Phys. 131, 234304 (2009)].

  9. Relativistic Absolutism in Moral Education.

    ERIC Educational Resources Information Center

    Vogt, W. Paul

    1982-01-01

    Discusses Emile Durkheim's "Moral Education: A Study in the Theory and Application of the Sociology of Education," which holds that morally healthy societies may vary in culture and organization but must possess absolute rules of moral behavior. Compares this moral theory with current theory and practice of American educators. (MJL)

  10. Absolute transition probabilities of phosphorus.

    NASA Technical Reports Server (NTRS)

    Miller, M. H.; Roig, R. A.; Bengtson, R. D.

    1971-01-01

    Use of a gas-driven shock tube to measure the absolute strengths of 21 P I lines and 126 P II lines (from 3300 to 6900 A). Accuracy for prominent, isolated neutral and ionic lines is estimated to be 28 to 40% and 18 to 30%, respectively. The data and the corresponding theoretical predictions are examined for conformity with the sum rules.-

  11. Modeling the Temperature Responses to Spectral Solar Variability on Decadal and Centennial Time Scales

    NASA Astrophysics Data System (ADS)

    Cahalan, R. F.; Wen, G.; Pilewskie, P.; Harder, J. W.

    2010-12-01

    Atmospheric temperature responses to decadal solar variations are computed for two scenarios of solar spectral irradiance (SSI), SIM-based out-of-phase and proxy-based in-phase variations, using a time-dependent radiative-convective model (RCM), and also GISS modelE (GCM.) For both scenarios and both models, maximum responses occur in upper stratosphere, decreasing downward to the surface. Upper stratospheric temperature peak-to-peak responses to out-of-phase forcing are ~0.6 K in RCM and ~0.9 K over tropics in GCM, ~5x as large as responses to in-phase forcing. Stratospheric responses are in-phase with TSI (Total Solar Irradiance). Modeled upper stratospheric temperature responses to SIM-based forcing are similar to 11-year temperature variations observed with HALOE (Halogen Occultation Experiment). For both RCM and GCM, surface responses to the two scenarios are significantly smaller than stratospheric responses. On centennial timescales, SSI variations are poorly known. However, two scenarios of reconstructed TSI, one based on 11-year cycle with background [Lean 2000] and the other on flux transport with much less background [Wang, Lean, and Sheeley, 2005], provide a potential range of TSI variations. We apply phase relations among different SSI bands both from SIM observations and proxy reconstructions to the two scenarios of historical TSI to derive associated historical SSI, which then drives the RCM. The updated atmosphere and ocean mixed coupled RCM including diffusion to deep-ocean provide a first order estimate of temperature responses to SSI variations on centennial time scales. We discuss potential mechanisms for atmosphere-ocean and stratosphere-troposphere couplings responsible for the climate responses to spectral solar variations.

  12. Multi-scale mechanism based life prediction of polymer matrix composites for high temperature airframe applications

    NASA Astrophysics Data System (ADS)

    Upadhyaya, Priyank

    A multi-scale mechanism-based life prediction model is developed for high-temperature polymer matrix composites (HTPMC) for high temperature airframe applications. In the first part of this dissertation the effect of Cloisite 20A (C20A) nano-clay compounding on the thermo-oxidative weight loss and the residual stresses due to thermal oxidation for a thermoset polymer bismaleimide (BMI) are investigated. A three-dimensional (3-D) micro-mechanics based finite element analysis (FEA) was conducted to investigate the residual stresses due to thermal oxidation using an in-house FEA code (NOVA-3D). In the second part of this dissertation, a novel numerical-experimental methodology is outlined to determine cohesive stress and damage evolution parameters for pristine as well as isothermally aged (in air) polymer matrix composites. A rate-dependent viscoelastic cohesive layer model was implemented in an in-house FEA code to simulate the delamination initiation and propagation in unidirectional polymer composites before and after aging. Double cantilever beam (DCB) experiments were conducted (at UT-Dallas) on both pristine and isothermally aged IM-7/BMI composite specimens to determine the model parameters. The J-Integral based approach was adapted to extract cohesive stresses near the crack tip. Once the damage parameters had been characterized, the test-bed FEA code employed a micromechanics based viscoelastic cohesive layer model to numerically simulate the DCB experiment. FEA simulation accurately captures the macro-scale behavior (load-displacement history) simultaneously with the micro-scale behavior (crack-growth history).

  13. Modelling the Baltic Sea ocean climate on centennial time scale: temperature and sea ice

    NASA Astrophysics Data System (ADS)

    Hansson, Daniel; Omstedt, Anders

    2008-06-01

    This study considers the possible use of different kinds of forcing datasets in Baltic Sea ocean climate modelling on centennial time scales, in particular for the past half millennium. We demonstrate that high-quality station data of the past century and gridded multi-proxy reconstructions for the past 500 years can be used with great success but with various levels of detail. We also demonstrate that output data from the state-of-the-art global climate model EcHo-G are not suitable for modelling the Baltic Sea ocean climate. Two climate properties were studied: the annual maximum ice extent (MIB) and the vertically and horizontally integrated annual water temperature. Centennial time scale results indicate that the seventeenth and nineteenth centuries were the coldest centuries, while the 1690s were the coldest decade and 1695 the coldest year in the last 500 years. The results also indicate that the twentieth century was the warmest century with the least MIB of the last 500 years. On a decadal time scale, the 1990s, 1930s and 1730s were the warmest decades and comparable in terms of both water temperature and MIB. The year 1989 had the minimum observed MIB of only 52,000 km2, implying that the Baltic Sea has been partly ice covered in all winters of the past half millennium. Even though different climate forcing mechanisms may operate on the climate system today compared to over the last half millennium, this study cannot clearly state that the region is experiencing climate change outside the natural limits of the past 500 years.

  14. Bioinspired large-scale aligned porous materials assembled with dual temperature gradients

    PubMed Central

    Bai, Hao; Chen, Yuan; Delattre, Benjamin; Tomsia, Antoni P.; Ritchie, Robert O.

    2015-01-01

    Natural materials, such as bone, teeth, shells, and wood, exhibit outstanding properties despite being porous and made of weak constituents. Frequently, they represent a source of inspiration to design strong, tough, and lightweight materials. Although many techniques have been introduced to create such structures, a long-range order of the porosity as well as a precise control of the final architecture remain difficult to achieve. These limitations severely hinder the scale-up fabrication of layered structures aimed for larger applications. We report on a bidirectional freezing technique to successfully assemble ceramic particles into scaffolds with large-scale aligned, lamellar, porous, nacre-like structure and long-range order at the centimeter scale. This is achieved by modifying the cold finger with a polydimethylsiloxane (PDMS) wedge to control the nucleation and growth of ice crystals under dual temperature gradients. Our approach could provide an effective way of manufacturing novel bioinspired structural materials, in particular advanced materials such as composites, where a higher level of control over the structure is required. PMID:26824062

  15. What spatial scales are believable for climate model projections of sea surface temperature?

    NASA Astrophysics Data System (ADS)

    Kwiatkowski, Lester; Halloran, Paul R.; Mumby, Peter J.; Stephenson, David B.

    2014-09-01

    Earth system models (ESMs) provide high resolution simulations of variables such as sea surface temperature (SST) that are often used in off-line biological impact models. Coral reef modellers have used such model outputs extensively to project both regional and global changes to coral growth and bleaching frequency. We assess model skill at capturing sub-regional climatologies and patterns of historical warming. This study uses an established wavelet-based spatial comparison technique to assess the skill of the coupled model intercomparison project phase 5 models to capture spatial SST patterns in coral regions. We show that models typically have medium to high skill at capturing climatological spatial patterns of SSTs within key coral regions, with model skill typically improving at larger spatial scales (≥4°). However models have much lower skill at modelling historical warming patters and are shown to often perform no better than chance at regional scales (e.g. Southeast Asian) and worse than chance at finer scales (<8°). Our findings suggest that output from current generation ESMs is not yet suitable for making sub-regional projections of change in coral bleaching frequency and other marine processes linked to SST warming.

  16. Biome-specific scaling of ocean productivity, temperature, and carbon export efficiency

    NASA Astrophysics Data System (ADS)

    Britten, Gregory L.; Primeau, François W.

    2016-05-01

    Mass conservation and metabolic theory place constraints on how marine export production (EP) scales with net primary productivity (NPP) and sea surface temperature (SST); however, little is empirically known about how these relationships vary across ecologically distinct ocean biomes. Here we compiled in situ observations of EP, NPP, and SST and used statistical model selection theory to demonstrate significant biome-specific scaling relationships among these variables. Multiple statistically similar models yield a threefold variation in the globally integrated carbon flux (~4-12 Pg C yr-1) when applied to climatological satellite-derived NPP and SST. Simulated NPP and SST input variables from a 4×CO2 climate model experiment further show that biome-specific scaling alters the predicted response of EP to simulated increases of atmospheric CO2. These results highlight the need to better understand distinct pathways of carbon export across unique ecological biomes and may help guide proposed efforts for in situ observations of the ocean carbon cycle.

  17. Bioinspired large-scale aligned porous materials assembled with dual temperature gradients.

    PubMed

    Bai, Hao; Chen, Yuan; Delattre, Benjamin; Tomsia, Antoni P; Ritchie, Robert O

    2015-12-01

    Natural materials, such as bone, teeth, shells, and wood, exhibit outstanding properties despite being porous and made of weak constituents. Frequently, they represent a source of inspiration to design strong, tough, and lightweight materials. Although many techniques have been introduced to create such structures, a long-range order of the porosity as well as a precise control of the final architecture remain difficult to achieve. These limitations severely hinder the scale-up fabrication of layered structures aimed for larger applications. We report on a bidirectional freezing technique to successfully assemble ceramic particles into scaffolds with large-scale aligned, lamellar, porous, nacre-like structure and long-range order at the centimeter scale. This is achieved by modifying the cold finger with a polydimethylsiloxane (PDMS) wedge to control the nucleation and growth of ice crystals under dual temperature gradients. Our approach could provide an effective way of manufacturing novel bioinspired structural materials, in particular advanced materials such as composites, where a higher level of control over the structure is required. PMID:26824062

  18. Current-Temperature Scaling for a Schottky Interface with Nonparabolic Energy Dispersion

    NASA Astrophysics Data System (ADS)

    Ang, Y. S.; Ang, L. K.

    2016-09-01

    In this paper, we study the Schottky transport in a narrow-gap semiconductor and few-layer graphene in which the energy dispersions are highly nonparabolic. We propose that the contrasting current-temperature scaling relation of J ∝T2 in the conventional Schottky interface and J ∝T3 in graphene-based Schottky interface can be reconciled under Kane's k .p nonparabolic band model for narrow-gap semiconductors. Our model suggests a more general form of J ∝(T2+γ kBT3) , where the nonparabolicty parameter γ provides a smooth transition from T2 to T3 scaling. For few-layer graphene, we find that N -layer graphene with A B C stacking follows J ∝T2 /N +1 , while A B A stacking follows a universal form of J ∝T3 regardless of the number of layers. Intriguingly, the Richardson constant extracted from the Arrhenius plot using an incorrect scaling relation disagrees with the actual value by 2 orders of magnitude, suggesting that correct models must be used in order to extract important properties for many Schottky devices.

  19. Kinetic analysis of high-temperature oxidation of metals accompanied by scale volatilization

    SciTech Connect

    Taimatsu, Hitoshi

    1999-10-01

    An equation suitable for analyzing the high-temperature oxidation kinetics of metals in the case where scale volatilization is inevitable is presented. The equation derived {Delta}m = k'{sub p}{sup 1/2}t{sup 1/2} - (2/3 + f{sub Me}/3) k{prime}{sub v}t, where k{prime}{sub p} is the parabolic rate constant, f{sub Me} the mass fraction of the metal Me in the scale oxide Me{sub {nu}}O, and k'{sub v} the volatilization rate constant of the oxide, has such a simple form as to be used for easily separating the mass gain into the scale growth due to diffusion and its volatilization by curve-fitting the equation for mass gain data. The limitations of the application of this equation are discussed, and its validity is verified by its application to experimental data reported for Cr{sub 2}O{sub 3}-forming alloys.

  20. Temperature Responses to Spectral Solar Variability on Decadal and Centennial Time Scales

    NASA Astrophysics Data System (ADS)

    Cahalan, Robert; Wen, Guoyong; Pilewskie, Peter; Harder, Jerald

    2010-05-01

    We apply two scenarios of 11-year solar spectral forcing, namely SIM-based out-of-phase variations and proxy-based in-phase variations, as input to a time-dependent radiative-convective model (RCM), and also to the GISS modelE GCM. For both scenarios, and both models, we find that the maximum temperature response occurs in the upper stratosphere, and temperature responses decrease downward to the surface. The upper stratospheric temperature peak-to-peak responses to out-of-phase solar forcing are ~0.6 K in RCM and ~0.9 K over the tropical region in GCM simulations, a factor of ~5 times as large as responses to in-phase solar forcing. Stratospheric responses are in-phase with TSI (Total Solar Irradiance) variations. The modeled upper stratospheric temperature response to the SORCE SIM observed SSI (Spectral Solar Irradiance) forcing resembles 11-year temperature variations observed with HALOE (Halogen Occultation Experiment). Surface responses to the two SSI scenarios are small for both RCM and GCM studies, as compared to stratospheric responses. Though solar irradiance variations on centennial time scale are not well known, the two scenarios of reconstructed TSI time series (i.e., one based on 11-year cycles with background [Lean 2000] and the second from flux transport that has much less background change [Wang, Lean, and Sheeley, 2005]) provide a range of variations of TSI on centennial time scales. We apply phase relations among different spectral irradiance bands both from SIM observation and proxy reconstructions to the two scenarios of historical TSI. The spectral solar forcing is used to drive the RCM. The updated atmosphere and ocean mixed coupled RCM including diffusion to deep-ocean provides a first-order estimate of climate response. We report the different responses of stratosphere, troposphere, and ocean surface to these 4 scenarios of centennial spectral solar forcing. We further discuss the mechanisms for atmosphere-ocean and stratosphere

  1. Kinetic study on the effect of temperature on biogas production using a lab scale batch reactor.

    PubMed

    Deepanraj, B; Sivasubramanian, V; Jayaraj, S

    2015-11-01

    In the present study, biogas production from food waste through anaerobic digestion was carried out in a 2l laboratory-scale batch reactor operating at different temperatures with a hydraulic retention time of 30 days. The reactors were operated with a solid concentration of 7.5% of total solids and pH 7. The food wastes used in this experiment were subjected to characterization studies before and after digestion. Modified Gompertz model and Logistic model were used for kinetic study of biogas production. The kinetic parameters, biogas yield potential of the substrate (B), the maximum biogas production rate (Rb) and the duration of lag phase (λ), coefficient of determination (R(2)) and root mean square error (RMSE) were estimated in each case. The effect of temperature on biogas production was evaluated experimentally and compared with the results of kinetic study. The results demonstrated that the reactor with operating temperature of 50°C achieved maximum cumulative biogas production of 7556ml with better biodegradation efficiency.

  2. Temperature and saturation dependence in the vapor sensing of butterfly wing scales.

    PubMed

    Kertész, K; Piszter, G; Jakab, E; Bálint, Zs; Vértesy, Z; Biró, L P

    2014-06-01

    The sensing of gasses/vapors in the ambient air is the focus of attention due to the need to monitor our everyday environment. Photonic crystals are sensing materials of the future because of their strong light-manipulating properties. Natural photonic structures are well-suited materials for testing detection principles because they are significantly cheaper than artificial photonic structures and are available in larger sizes. Additionally, natural photonic structures may provide new ideas for developing novel artificial photonic nanoarchitectures with improved properties. In the present paper, we discuss the effects arising from the sensor temperature and the vapor concentration in air during measurements with a photonic crystal-type optical gas sensor. Our results shed light on the sources of discrepancy between simulated and experimental sensing behaviors of photonic crystal-type structures. Through capillary condensation, the vapors will condensate to a liquid state inside the nanocavities. Due to the temperature and radius of curvature dependence of capillary condensation, the measured signals are affected by the sensor temperature as well as by the presence of a nanocavity size distribution. The sensing materials used are natural photonic nanoarchitectures present in the wing scales of blue butterflies. PMID:24863219

  3. Temperature and saturation dependence in the vapor sensing of butterfly wing scales.

    PubMed

    Kertész, K; Piszter, G; Jakab, E; Bálint, Zs; Vértesy, Z; Biró, L P

    2014-06-01

    The sensing of gasses/vapors in the ambient air is the focus of attention due to the need to monitor our everyday environment. Photonic crystals are sensing materials of the future because of their strong light-manipulating properties. Natural photonic structures are well-suited materials for testing detection principles because they are significantly cheaper than artificial photonic structures and are available in larger sizes. Additionally, natural photonic structures may provide new ideas for developing novel artificial photonic nanoarchitectures with improved properties. In the present paper, we discuss the effects arising from the sensor temperature and the vapor concentration in air during measurements with a photonic crystal-type optical gas sensor. Our results shed light on the sources of discrepancy between simulated and experimental sensing behaviors of photonic crystal-type structures. Through capillary condensation, the vapors will condensate to a liquid state inside the nanocavities. Due to the temperature and radius of curvature dependence of capillary condensation, the measured signals are affected by the sensor temperature as well as by the presence of a nanocavity size distribution. The sensing materials used are natural photonic nanoarchitectures present in the wing scales of blue butterflies.

  4. Promoting Climate Literacy through Collaborative Temperature Investigations at Local, Regional, and Global Scales

    NASA Astrophysics Data System (ADS)

    Geary, E. E.; Charlevoix, D.; Hoffman, M.

    2009-12-01

    One of the fundamental challenges in promoting student and citizen climate literacy is developing awareness and understanding of the time and spatial scales on which climate changes occur. Students and citizens living in polar regions are now able to observe changes in sea ice extent, permafrost depth, and local ecosystems that have occurred in their lifetimes. In other parts of the world, environmental changes related to climate tend to be more subtle making it more challenging for students and citizens to recognize how changes in climate are affecting their communities. The GLOBE program, an international science and education program operating in 110 countries, implements field-based research and education programs that directly involve students and citizens in observations of their local environment as well as online collaboration using Web 2.0 communication tools to share and discuss how their research findings compare to other environments around the world. In fall 2009, secondary students from several GLOBE schools from around the world will use the GLOBE Minimum-Maximum Temperature protocol to determine daily and monthly average mean air temperatures. Students will collect data in a manner identical to that used by scientists who contributed to the International Panel on Climate Change reports. Students will then use historic weather and climate data from nearby global weather stations to create baseline weather and climate profiles for their communities. Students will use FieldScope, an online GIS tool created by the National Geographic Society to compare their data to temperature trends in their regions for the past 30 to 50 years. Students will share the results of their local temperature investigations with other participating schools via a live Webinar and through asynchronous Web-based conversations held in conjunction with the annual meeting of the Group on Earth Observations. Students participating in this “Great Global Investigation of

  5. Fundamental studies of stress distributions and stress relaxation in oxide scales on high temperature alloys. [Final progress report

    SciTech Connect

    Shores, D.A.; Stout, J.H.; Gerberich, W.W.

    1993-06-01

    This report summarizes a three-year study of stresses arising in the oxide scale and underlying metal during high temperature oxidation and of scale cracking. In-situ XRD was developed to measure strains during oxidation over 1000{degrees}C on pure metals. Acoustic emission was used to observe scale fracture during isothermal oxidation and cooling, and statistical analysis was used to infer mechanical aspects of cracking. A microscratch technique was used to measure the fracture toughness of scale/metal interface. A theoretical model was evaluated for the development and relaxation of stresses in scale and metal substrate during oxidation.

  6. Scale-dependency of the global mean surface temperature trend and its implication for the recent hiatus of global warming.

    PubMed

    Lin, Yong; Franzke, Christian L E

    2015-08-11

    Studies of the global mean surface temperature trend are typically conducted at a single (usually annual or decadal) time scale. The used scale does not necessarily correspond to the intrinsic scales of the natural temperature variability. This scale mismatch complicates the separation of externally forced temperature trends from natural temperature fluctuations. The hiatus of global warming since 1999 has been claimed to show that human activities play only a minor role in global warming. Most likely this claim is wrong due to the inadequate consideration of the scale-dependency in the global surface temperature (GST) evolution. Here we show that the variability and trend of the global mean surface temperature anomalies (GSTA) from January 1850 to December 2013, which incorporate both land and sea surface data, is scale-dependent and that the recent hiatus of global warming is mainly related to natural long-term oscillations. These results provide a possible explanation of the recent hiatus of global warming and suggest that the hiatus is only temporary.

  7. Scale-dependency of the global mean surface temperature trend and its implication for the recent hiatus of global warming

    PubMed Central

    Lin, Yong; Franzke, Christian L. E.

    2015-01-01

    Studies of the global mean surface temperature trend are typically conducted at a single (usually annual or decadal) time scale. The used scale does not necessarily correspond to the intrinsic scales of the natural temperature variability. This scale mismatch complicates the separation of externally forced temperature trends from natural temperature fluctuations. The hiatus of global warming since 1999 has been claimed to show that human activities play only a minor role in global warming. Most likely this claim is wrong due to the inadequate consideration of the scale-dependency in the global surface temperature (GST) evolution. Here we show that the variability and trend of the global mean surface temperature anomalies (GSTA) from January 1850 to December 2013, which incorporate both land and sea surface data, is scale-dependent and that the recent hiatus of global warming is mainly related to natural long-term oscillations. These results provide a possible explanation of the recent hiatus of global warming and suggest that the hiatus is only temporary. PMID:26259555

  8. A passive Distributed Temperature Sensing approach to large-scale soil moisture validation

    NASA Astrophysics Data System (ADS)

    Steele-Dunne, S. C.; Rutten, M. M.; Krzeminksa, D.; van de Giesen, N. C.; Bogaard, T. A.; Selker, J.; Sailhac, P.

    2009-04-01

    Global monitoring of soil moisture is key to quantifying and understanding the exchanges of water and energy between the land surface and the atmosphere. ESA's Soil Moisture and Ocean Salinity (SMOS) Mission represents the first dedicated space-borne mission to observe soil moisture. To validate the observations from SMOS, in-situ measurements must be made over a wide variety of soil and land cover types. In recent years, Distributed Temperature Sensing (DTS) has been used in a wide variety of applications including estimating the seepage in polders, to measuring flow into streams. Active DTS, in which the cables observe the response to a heat pulse, has been successfully used to measure soil moisture in several studies. The objective of this study was to investigate the potential of passive Distributed Temperature Sensing as a relatively portable, and inexpensive alternative approach to measuring soil moisture on a large-scale. From June to September 2008, fibre-optic cables were used to monitor temperature at 5cm and 10cm depth at a field site at Monster in the Netherlands. Meteorological data, as well as independent soil temperature and soil moisture profile data were also recorded. Through its impact on diffusivity, soil moisture influences heat transport between the cables. Here, we demonstrate how solving for the optimum parameters of the advection-diffusion equation can yield a time-series of 3-hourly soil moisture. We will also discuss the lessons learned from this experiment, and a new protocol for using this technique in future planned field experiments.

  9. MuSTAR MD: multi-scale sampling using temperature accelerated and replica exchange molecular dynamics.

    PubMed

    Yamamori, Yu; Kitao, Akio

    2013-10-14

    A new and efficient conformational sampling method, MuSTAR MD (Multi-scale Sampling using Temperature Accelerated and Replica exchange Molecular Dynamics), is proposed to calculate the free energy landscape on a space spanned by a set of collective variables. This method is an extension of temperature accelerated molecular dynamics and can also be considered as a variation of replica-exchange umbrella sampling. In the MuSTAR MD, each replica contains an all-atom fine-grained model, at least one coarse-grained model, and a model defined by the collective variables that interacts with the other models in the same replica through coupling energy terms. The coarse-grained model is introduced to drive efficient sampling of large conformational space and the fine-grained model can serve to conduct more accurate conformational sampling. The collective variable model serves not only to mediate the coarse- and fine-grained models, but also to enhance sampling efficiency by temperature acceleration. We have applied this method to Ala-dipeptide and examined the sampling efficiency of MuSTAR MD in the free energy landscape calculation compared to that for replica exchange molecular dynamics, replica exchange umbrella sampling, temperature accelerated molecular dynamics, and conventional MD. The results clearly indicate the advantage of sampling a relatively high energy conformational space, which is not sufficiently sampled with other methods. This feature is important in the investigation of transition pathways that go across energy barriers. MuSTAR MD was also applied to Met-enkephalin as a test case in which two Gō-like models were employed as the coarse-grained model.

  10. Probing the Dynamics of a Planetary Atmosphere by Analyzing Small Scale Temperature Variations

    NASA Astrophysics Data System (ADS)

    Matcheva, K.; Drossart, P.; Raynaud, E.; Sicardy, B.

    2002-09-01

    The vertical temperature profile of a planetary atmosphere obtained via in situ or remote sensing techniques typically exhibits small scale fluctuations, which are usually interpreted as signatures of propagating atmospheric waves. By studying the observed wave amplitude and phase behavior, and the altitude variations of the vertical wavelength of individual wave modes one can acquire valuable information about the dominant dissipative processes in the atmosphere as well as detect the presence of vertical gradients in the background horizontal wind. The method is based on the use of the Continuous Wavelet Transform of the temperature profile for identifying and subsequently reconstructing the dominant wave modes present in the atmosphere. Model generated waves are then used to fit the observations by varying the strength of the background wind shear and the eddy diffusion coefficient. Molecular and eddy dissipative processes can only limit the wave amplitude growth, whereas presence of vertical wind shear can result both in increase and decrease of the wave temperature amplitude, which is also accompanied by corresponding variations in the vertical wavenumber. This effect could be very large for waves with a horizontal phase speed comparable to the background horizontal wind. We demonstrate the developed technique in a study of Jupiter's stratosphere and lower thermosphere using the temperature profiles retrieved from the 1999 HIP 9396 stellar occultation by the northern polar region of the Jovian atmosphere (Raynaud et al. submitted to Icarus). The quality of the data allows us to successfully identify and reconstruct three dominant wave modes, which peak at different altitudes and compare them to model results. This work is supported by the Marie Curie Fellowship Program of the European Community under contract HPMF-CT-2000-01005.

  11. Introducing an Absolute Cavity Pyrgeometer (ACP) for Improving the Atmospheric Longwave Irradiance Measurement (Poster)

    SciTech Connect

    Reda, I.; Stoffel, T.

    2012-03-01

    Advancing climate change research requires accurate and traceable measurement of the atmospheric longwave irradiance. Current measurement capabilities are limited to an estimated uncertainty of larger than +/- 4 W/m2 using the interim World Infrared Standard Group (WISG). WISG is traceable to the Systeme international d'unites (SI) through blackbody calibrations. An Absolute Cavity Pyrgeometer (ACP) is being developed to measure absolute outdoor longwave irradiance with traceability to SI using the temperature scale (ITS-90) and the sky as the reference source, instead of a blackbody. The ACP was designed by NREL and optically characterized by the National Institute of Standards and Technology (NIST). Under clear-sky and stable conditions, the responsivity of the ACP is determined by lowering the temperature of the cavity and calculating the rate of change of the thermopile output voltage versus the changing net irradiance. The absolute atmospheric longwave irradiance is then calculated with an uncertainty of +/- 3.96 W/m2 with traceability to SI. The measured irradiance by the ACP was compared with the irradiance measured by two pyrgeometers calibrated by the World Radiation Center with traceability to the WISG.

  12. Introducing an Absolute Cavity Pyrgeometer for Improving the Atmospheric Longwave Irradiance Measurement (Presentation)

    SciTech Connect

    Reda, I.; Hansen, L.; Zeng, J.

    2012-08-01

    Advancing climate change research requires accurate and traceable measurement of the atmospheric longwave irradiance. Current measurement capabilities are limited to an estimated uncertainty of larger than +/- 4 W/m2 using the interim World Infrared Standard Group (WISG). WISG is traceable to the Systeme international d'unites (SI) through blackbody calibrations. An Absolute Cavity Pyrgeometer (ACP) is being developed to measure absolute outdoor longwave irradiance with traceability to SI using the temperature scale (ITS-90) and the sky as the reference source, instead of a blackbody. The ACP was designed by NREL and optically characterized by the National Institute of Standards and Technology (NIST). Under clear-sky and stable conditions, the responsivity of the ACP is determined by lowering the temperature of the cavity and calculating the rate of change of the thermopile output voltage versus the changing net irradiance. The absolute atmospheric longwave irradiance is then calculated with an uncertainty of +/- 3.96 W/m2 with traceability to SI. The measured irradiance by the ACP was compared with the irradiance measured by two pyrgeometers calibrated by the World Radiation Center with traceability to the WISG. A total of 408 readings was collected over three different clear nights. The calculated irradiance measured by the ACP was 1.5 W/m2 lower than that measured by the two pyrgeometers that are traceable to WISG. Further development and characterization of the ACP might contribute to the effort of improving the uncertainty and traceability of WISG to SI.

  13. Relationship between North American winter temperature and large-scale atmospheric circulation anomalies and its decadal variation

    NASA Astrophysics Data System (ADS)

    Yu, B.; Lin, H.; Wu, Z. W.; Merryfield, W. J.

    2016-07-01

    The interannual relationship between North American (NA) winter temperature and large-scale atmospheric circulation anomalies and its decadal variation are analyzed. NA temperature anomalies are dominated by two leading maximum covariance analysis (MCA) modes of NA surface temperature and Northern Hemisphere 500 hPa geopotential anomalies. A new teleconnection index, termed the Asian-Bering-North American (ABNA) pattern, is constructed from the normalized geopotential field after linearly removing the contribution of the Pacific-North American (PNA) pattern. The ABNA pattern is sustained by synoptic eddy forcing. The first MCA mode of NA surface temperature is highly correlated with the PNA and ABNA teleconnections, and the second mode with the North Atlantic Oscillation (NAO). This indicates that NA temperature is largely controlled by these three large-scale atmospheric patterns, i.e., the PNA, ABNA and NAO. These temperature-circulation relationships appear stationary in the 20th century.

  14. Moral absolutism and ectopic pregnancy.

    PubMed

    Kaczor, C

    2001-02-01

    If one accepts a version of absolutism that excludes the intentional killing of any innocent human person from conception to natural death, ectopic pregnancy poses vexing difficulties. Given that the embryonic life almost certainly will die anyway, how can one retain one's moral principle and yet adequately respond to a situation that gravely threatens the life of the mother and her future fertility? The four options of treatment most often discussed in the literature are non-intervention, salpingectomy (removal of tube with embryo), salpingostomy (removal of embryo alone), and use of methotrexate (MXT). In this essay, I review these four options and introduce a fifth (the milking technique). In order to assess these options in terms of the absolutism mentioned, it will also be necessary to discuss various accounts of the intention/foresight distinction. I conclude that salpingectomy, salpingostomy, and the milking technique are compatible with absolutist presuppositions, but not the use of methotrexate.

  15. Moral absolutism and ectopic pregnancy.

    PubMed

    Kaczor, C

    2001-02-01

    If one accepts a version of absolutism that excludes the intentional killing of any innocent human person from conception to natural death, ectopic pregnancy poses vexing difficulties. Given that the embryonic life almost certainly will die anyway, how can one retain one's moral principle and yet adequately respond to a situation that gravely threatens the life of the mother and her future fertility? The four options of treatment most often discussed in the literature are non-intervention, salpingectomy (removal of tube with embryo), salpingostomy (removal of embryo alone), and use of methotrexate (MXT). In this essay, I review these four options and introduce a fifth (the milking technique). In order to assess these options in terms of the absolutism mentioned, it will also be necessary to discuss various accounts of the intention/foresight distinction. I conclude that salpingectomy, salpingostomy, and the milking technique are compatible with absolutist presuppositions, but not the use of methotrexate. PMID:11262641

  16. The Absolute Spectrum Polarimeter (ASP)

    NASA Technical Reports Server (NTRS)

    Kogut, A. J.

    2010-01-01

    The Absolute Spectrum Polarimeter (ASP) is an Explorer-class mission to map the absolute intensity and linear polarization of the cosmic microwave background and diffuse astrophysical foregrounds over the full sky from 30 GHz to 5 THz. The principal science goal is the detection and characterization of linear polarization from an inflationary epoch in the early universe, with tensor-to-scalar ratio r much greater than 1O(raised to the power of { -3}) and Compton distortion y < 10 (raised to the power of{-6}). We describe the ASP instrument and mission architecture needed to detect the signature of an inflationary epoch in the early universe using only 4 semiconductor bolometers.

  17. Classification images predict absolute efficiency.

    PubMed

    Murray, Richard F; Bennett, Patrick J; Sekuler, Allison B

    2005-02-24

    How well do classification images characterize human observers' strategies in perceptual tasks? We show mathematically that from the classification image of a noisy linear observer, it is possible to recover the observer's absolute efficiency. If we could similarly predict human observers' performance from their classification images, this would suggest that the linear model that underlies use of the classification image method is adequate over the small range of stimuli typically encountered in a classification image experiment, and that a classification image captures most important aspects of human observers' performance over this range. In a contrast discrimination task and in a shape discrimination task, we found that observers' absolute efficiencies were generally well predicted by their classification images, although consistently slightly (approximately 13%) higher than predicted. We consider whether a number of plausible nonlinearities can account for the slight under prediction, and of these we find that only a form of phase uncertainty can account for the discrepancy.

  18. Absolute calibration of optical flats

    DOEpatents

    Sommargren, Gary E.

    2005-04-05

    The invention uses the phase shifting diffraction interferometer (PSDI) to provide a true point-by-point measurement of absolute flatness over the surface of optical flats. Beams exiting the fiber optics in a PSDI have perfect spherical wavefronts. The measurement beam is reflected from the optical flat and passed through an auxiliary optic to then be combined with the reference beam on a CCD. The combined beams include phase errors due to both the optic under test and the auxiliary optic. Standard phase extraction algorithms are used to calculate this combined phase error. The optical flat is then removed from the system and the measurement fiber is moved to recombine the two beams. The newly combined beams include only the phase errors due to the auxiliary optic. When the second phase measurement is subtracted from the first phase measurement, the absolute phase error of the optical flat is obtained.

  19. Space-Time Dynamics of Soil Moisture and Temperature: Scale issues

    NASA Technical Reports Server (NTRS)

    Mohanty, Binayak P.; Miller, Douglas A.; Th.vanGenuchten, M.

    2003-01-01

    The goal of this project is to gain further understanding of soil moisture/temperature dynamics at different spatio-temporal scales and physical controls/parameters.We created a comprehensive GIS database, which has been accessed extensively by NASA Land Surface Hydrology investigators (and others), is located at the following URL: http://www.essc.psu.edu/nasalsh. For soil moisture field experiments such as SGP97, SGP99, SMEX02, and SMEX03, cartographic products were designed for multiple applications, both pre- and post-mission. Premission applications included flight line planning and field operations logistics, as well as general insight into the extent and distribution of soil, vegetation, and topographic properties for the study areas. The cartographic products were created from original spatial information resources that were imported into Adobe Illustrator, where the maps were created and PDF versions were made for distribution and download.

  20. Small-Scale High Temperature Melter-1 (SSHTM-1) Data Package

    SciTech Connect

    Smith, G.L.; Smith, H.D.; Tracy, E.M.; Myers, R.L.; sills, J.A.; Fisher, D.L.; Wiemers, K.D.

    1996-02-01

    This data package, milestone C95-02.02Y, provides a brief observation and operation report on available data for the Small-Scale High Temperature Melter-1 (SSHTM-1) feed preparation activities. The test was conducted in two melter feed batch segments prepared from two different feed preparation flowsheets. Testing primarily addressed feed preparation alternate flowsheet options tested in the laboratory to mitigate potential safety issues related to generation of hydrogen and ammonia, to produce acceptable melter feed rheological properties, to maximize total waste oxide loading in the glass, to simplify the vitrification flowsheet, and to increase vitrification flowsheet processing rate. The two flowsheets selected for testing were (1) no reductant addition and titration with HNO{sub 3} to provide an acceptable melter feed rheology near the target oxide loading (Alternate HTM Flowsheet 1), and (2) titration with glycolic acid, an alternate reductant to HCOOH (Alternate HTM Flowsheet 2).

  1. Radio Brightness Temperatures and Angular Dimensions of Recently Predicted Vl-Bi Small-Scale Structures

    NASA Astrophysics Data System (ADS)

    Opher, R.

    1990-11-01

    RESUMEN. Muestro que analisis recientes publicados de fuentes de radio galacticas y extragalacticas predicen estructuras en pequera escala en fuentes de radio extendidas, remanentes de supernova, vientos protoestelares, nubes moleculares, distorsiones del fondo de 3 K, enanas blancas magnetizadas, estrellas de tipo tardio y el Sol. Discuto las temperatu- ras de brillo de radio de estas estructuras y sus ditnensiones. Muestro que estas estructuras son detectables con las sensibilidades actuales de VLBI (o en el futuro cercano). ABSTRACT. I show that recently published analysis of galactic and extragalactic radio sources make predictions of small-scale structures in extended radio sources, supernovae remnants, protostellar winds, molecu- lar clouds, distortions of the 3 K background, magnetized white dwarf binaries, late-type stars and the sun. I discuss the radio brightness temperatures of these structures and their dimensions. I show that these structures are detectable with present (or near future) VLBI sensitivities. : RADIO SOURCES-EXTENDED

  2. A preliminary neutronic evaluation of high temperature engineering test reactor using the SCALE6 code

    NASA Astrophysics Data System (ADS)

    Tanure, L. P. A. R.; Sousa, R. V.; Costa, D. F.; Cardoso, F.; Veloso, M. A. F.; Pereira, C.

    2014-02-01

    Neutronic parameters of some fourth generation nuclear reactors have been investigated at the Departamento de Engenharia Nuclear/UFMG. Previous studies show the possibility to increase the transmutation capabilities of these fourth generation systems to achieve significant reduction concerning transuranic elements in spent fuel. To validate the studies, a benchmark on core physics analysis, related to initial testing of the High Temperature Engineering Test Reactor and provided by International Atomic Energy Agency (IAEA) was simulated using the Standardized Computer Analysis for Licensing Evaluation (SCALE). The CSAS6/KENO-VI control sequence and the 44-group ENDF/B-V 0 cross-section neutron library were used to evaluate the keff (effective multiplication factor) and the result presents good agreement with experimental value.

  3. Large-scale preparation of graphene by high temperature insertion of hydrogen into graphite.

    PubMed

    Kamali, Ali Reza; Fray, Derek J

    2015-07-14

    Experimental evidence for high temperature diffusion of hydrogen into the interlayer space of graphite is provided. This process is discussed as a possible method for the rapid production of high-quality, inexpensive graphene in large quantities, which could lead to the widespread application of graphene. It was found that hydrogen cations, dissolved in molten LiCl, can be discharged on cathodically polarized graphite rods, which then intercalate into the graphite structure, leading to the peeling of graphite to produce graphene. The graphene nanosheets produced displayed a single-crystalline structure with a lateral size of several hundred nanometers and a high degree of crystallinity and thermal stability. The method introduced could be scaled up to produce industrial quantities of high-quality graphene. PMID:26053881

  4. Large-scale preparation of graphene by high temperature insertion of hydrogen into graphite.

    PubMed

    Kamali, Ali Reza; Fray, Derek J

    2015-07-14

    Experimental evidence for high temperature diffusion of hydrogen into the interlayer space of graphite is provided. This process is discussed as a possible method for the rapid production of high-quality, inexpensive graphene in large quantities, which could lead to the widespread application of graphene. It was found that hydrogen cations, dissolved in molten LiCl, can be discharged on cathodically polarized graphite rods, which then intercalate into the graphite structure, leading to the peeling of graphite to produce graphene. The graphene nanosheets produced displayed a single-crystalline structure with a lateral size of several hundred nanometers and a high degree of crystallinity and thermal stability. The method introduced could be scaled up to produce industrial quantities of high-quality graphene.

  5. Low-temperature method of producing nano-scaled graphene platelets and their nanocomposites

    DOEpatents

    Zhamu, Aruna; Shi, Jinjun; Guo, Jiusheng; Jang, Bor Z.

    2012-03-13

    A method of exfoliating a layered material to produce separated nano-scaled platelets having a thickness smaller than 100 nm. The method comprises: (a) providing a graphite intercalation compound comprising a layered graphite containing expandable species residing in an interlayer space of the layered graphite; (b) exposing the graphite intercalation compound to an exfoliation temperature lower than 650.degree. C. for a duration of time sufficient to at least partially exfoliate the layered graphite without incurring a significant level of oxidation; and (c) subjecting the at least partially exfoliated graphite to a mechanical shearing treatment to produce separated platelets. The method can further include a step of dispersing the platelets in a polymer or monomer solution or suspension as a precursor step to nanocomposite fabrication.

  6. Temperature control of bench-scaled batch reactor equipped with a monofluid heating/cooling system

    NASA Astrophysics Data System (ADS)

    Teng, Hai-peng; Song, Yi-ming

    2014-04-01

    An advanced control concept, Predictive Functional Control (PFC), is applied for temperature control of a bench-scaled batch reactor equipped with monofluid heating/cooling system. First principles process models are developed. Based on achieved models, significant process variables, which are difficult or impossible to measure online, are estimated from easily measured variables, and cascade PFC control strategy has been projected and implemented in Matlab R14. The dynamics of individual subunits is explicitly taken into consideration by internal model in the control algorithms, and model uncertainty, various process disturbances are compensated by modification of internal model. The experimental results present an excellent capability of tracking the set point, and the success of PFC technique as a process control paradigm is illustratively demonstrated.

  7. Natural-Scale Lava Flow Experiments on Video: Variations with Temperature, Slope, and Effusion Rate

    NASA Astrophysics Data System (ADS)

    Karson, J. A.; Wysocki, R.; Edwards, B. R.; Lev, E.

    2013-12-01

    Investigations of active basaltic lava flows and analog materials show that flow dynamics and final flow morphology are strongly determined by the rapidly evolving rheology of the lava crust which constrains the downslope advance of the lava flow. The non-dimensional factor Ψ (ratio of the time scale of crust formation to advective heat loss) provides a useful means of comparing different flows. The key parameters that control Ψ include the melt viscosity, temperature, effusion rate, and slope. Experimental lava flows, up to several meters long created in the Syracuse University Lava Project permit these variables to be investigated independently and in combination in volume-limited flows (<450 kg, 0.5 m3). Video results show lava is very sensitive to relatively small variations in these variables under experimental conditions. For example, experiments 1.1 Ga Keewenan basalt from the Mid-Continent Rift and 200 Ma basalt from the Palisades Sill show very different flow rates and flow morphologies for meter-scale flows on dry sand slopes between 5° and 20°, with all other variables held constant. Similar differences result from varying the effusion rate (~10-4m3s-1) or temperature (1050°-1250°C) on a constant slope. In addition, videos document the development of a wide range of reproducible lava flow structures found in natural lava flows including folds, shear zones, lava tubes, inflated lobes, break-outs, and bubbles (limu o'Pele), that provide additional information on lava crust development. New, continuous flow (cooling-limited) experiments show downslope variations under constant flow conditions.

  8. The signatures of large-scale patterns of atmospheric variability in Antarctic surface temperatures

    NASA Astrophysics Data System (ADS)

    Marshall, Gareth J.; Thompson, David W. J.

    2016-04-01

    We investigate the impact that the four principal large-scale patterns of Southern Hemisphere (SH) atmospheric circulation variability have on Antarctic surface air temperature (SAT): (1) the southern baroclinic annular mode (BAM), which is associated with variations in extratropical storm amplitude; (2) the Southern Annular Mode (SAM), associated with latitudinal shifts in the midlatitude jet; and (3) the two Pacific-South American patterns (PSA1 and PSA2), which are characterized by wave trains originating in the tropical Pacific that extend across the SH extratropics. A key aspect is the use of 35 years of daily observations and reanalysis data, which affords a sufficiently large sample size to assess the signatures of the circulation patterns in both the mean and variability of daily mean SAT anomalies. The BAM exerts the weakest influence on Antarctic SAT, albeit it is still important over select regions. Consistent with previous studies, the SAM is shown to influence SAT across most of the continent throughout the year. The PSA1 also affects SAT across almost all of Antarctica. Regionally, both PSA patterns can exert a greater impact on SAT than the SAM but also have a significantly weaker influence during summer, reflecting the seasonality of the SH response to El Niño-Southern Oscillation. The SAM and PSA patterns have distinct signatures in daily SAT variance that are physically consistent with their signatures in extratropical dynamic variability. The broad-scale climate linkages identified here provide benchmarks for interpreting the Antarctic climate response to future changes in tropical sea surface temperatures, ozone recovery, and greenhouse gas increases.

  9. Determining Absolute Zero Using a Tuning Fork

    ERIC Educational Resources Information Center

    Goldader, Jeffrey D.

    2008-01-01

    The Celsius and Kelvin temperature scales, we tell our students, are related. We explain that a change in temperature of 1 degree C corresponds to a change of 1 Kelvin and that atoms and molecules have zero kinetic energy at zero Kelvin, -273 degrees C. In this paper, we will show how students can derive the relationship between the Celsius and…

  10. Development of Bench and Full-Scale Temperature and pH Responsive Functionalized PVDF Membranes with Tunable Properties

    PubMed Central

    Xiao, Li; Isner, Austin; Waldrop, Krysta; Saad, Anthony; Takigawa, Doreen; Bhattacharyya, Dibakar

    2014-01-01

    Temperature and pH responsive polymers (poly(N-isopropylacrylamide) (PNIPAAm), and polyacrylic acid, PAA) were synthesized in one common macrofiltration PVDF membrane platform by pore-filling method. The microstructure and morphology of the PNIPAAm-PVDF, and PNIPAAm-FPAA-PVDF membranes were studied by attenuated total reflectance Fourier transform infrared (ATR-FTIR), thermogravimetric analysis (TGA), scanning electron microscopy (SEM) and atomic force microscopy (AFM). The membrane pore size was controlled by the swelling and shrinking of the PNIPAAm at the temperature around lower critical solution temperature (LCST). The composite membrane demonstrated a rapid and reversible swelling and deswelling change within a small temperature range. The controllable flux makes it possible to utilize this temperature responsive membrane as a valve to regulate filtration properties by temperature change. Dextran solution (Mw=2,000,000g/mol, 26 nm diameter) was used to evaluate the separation performance of the temperature responsive membranes. The ranges of dextran rejection are from 4% to 95% depending on the temperature, monomer amount and pressure. The full-scale membrane was also developed to confirm the feasibility of our bench-scale experimental results. The full-scale membrane also exhibited both temperature and pH responsivity. This system was also used for controlled nanoparticles synthesis and for dechlorination reaction. PMID:24944434

  11. Development of Bench and Full-Scale Temperature and pH Responsive Functionalized PVDF Membranes with Tunable Properties.

    PubMed

    Xiao, Li; Isner, Austin; Waldrop, Krysta; Saad, Anthony; Takigawa, Doreen; Bhattacharyya, Dibakar

    2014-05-01

    Temperature and pH responsive polymers (poly(N-isopropylacrylamide) (PNIPAAm), and polyacrylic acid, PAA) were synthesized in one common macrofiltration PVDF membrane platform by pore-filling method. The microstructure and morphology of the PNIPAAm-PVDF, and PNIPAAm-FPAA-PVDF membranes were studied by attenuated total reflectance Fourier transform infrared (ATR-FTIR), thermogravimetric analysis (TGA), scanning electron microscopy (SEM) and atomic force microscopy (AFM). The membrane pore size was controlled by the swelling and shrinking of the PNIPAAm at the temperature around lower critical solution temperature (LCST). The composite membrane demonstrated a rapid and reversible swelling and deswelling change within a small temperature range. The controllable flux makes it possible to utilize this temperature responsive membrane as a valve to regulate filtration properties by temperature change. Dextran solution (Mw=2,000,000g/mol, 26 nm diameter) was used to evaluate the separation performance of the temperature responsive membranes. The ranges of dextran rejection are from 4% to 95% depending on the temperature, monomer amount and pressure. The full-scale membrane was also developed to confirm the feasibility of our bench-scale experimental results. The full-scale membrane also exhibited both temperature and pH responsivity. This system was also used for controlled nanoparticles synthesis and for dechlorination reaction.

  12. Verification of a Depletion Method in SCALE for the Advanced High Temperature Reactor

    SciTech Connect

    KELLY, RYAN; Ilas, Dan

    2013-01-01

    This study describes a new approach employing the Dancoff correction method to model the TRISO-based fuel form used by the Advanced High-Temperature Reactor (AHTR) reactor design concept. The Dancoff correction method is used to perform isotope depletion analysis using the TRITON sequence of SCALE and is verified by code-to-code comparisons. The current AHTR fuel design has TRISO particles concentrated along the edges of a slab fuel element. This geometry prevented the use of the DOUBLEHET treatment, previously developed in SCALE to model spherical and cylindrical fuel. The new method permits fuel depletion on complicated geometries that traditionally can be handled only by continuous energy based depletion code systems. The method was initially tested on a fuel configuration typical of the Next Generation Nuclear Plant (NGNP), where DOUBLEHET treatment is possible. A confirmatory study was performed on the AHTR reference core geometry using the VESTA code, which uses the continuous energy MCNP5 code as a transport solver and ORIGEN2.2 code for depletion calculations. Comparisons of the results indicate good agreement of whole core characteristics, such as the multiplication factor and the isotopics, including their spatial distribution. Key isotopes analyzed included 235U, 239Pu, 240Pu, and 241Pu. The results from this study indicate that the Dancoff factor method can generate estimates of core characteristics with reasonable precision for scoping studies of configurations where DOUBLEHET treatment cannot be performed.

  13. Scaling description of the yielding transition in soft amorphous solids at zero temperature

    PubMed Central

    Lin, Jie; Lerner, Edan; Rosso, Alberto; Wyart, Matthieu

    2014-01-01

    Yield stress materials flow if a sufficiently large shear stress is applied. Although such materials are ubiquitous and relevant for industry, there is no accepted microscopic description of how they yield, even in the simplest situations in which temperature is negligible and in which flow inhomogeneities such as shear bands or fractures are absent. Here we propose a scaling description of the yielding transition in amorphous solids made of soft particles at zero temperature. Our description makes a connection between the Herschel–Bulkley exponent characterizing the singularity of the flow curve near the yield stress Σc, the extension and duration of the avalanches of plasticity observed at threshold, and the density P(x) of soft spots, or shear transformation zones, as a function of the stress increment x beyond which they yield. We argue that the critical exponents of the yielding transition may be expressed in terms of three independent exponents, θ, df, and z, characterizing, respectively, the density of soft spots, the fractal dimension of the avalanches, and their duration. Our description shares some similarity with the depinning transition that occurs when an elastic manifold is driven through a random potential, but also presents some striking differences. We test our arguments in an elasto-plastic model, an automaton model similar to those used in depinning, but with a different interaction kernel, and find satisfying agreement with our predictions in both two and three dimensions. PMID:25246567

  14. Multi-scale predictions of massive conifer mortality due to chronic temperature rise

    NASA Astrophysics Data System (ADS)

    McDowell, N. G.; Williams, A. P.; Xu, C.; Pockman, W. T.; Dickman, L. T.; Sevanto, S.; Pangle, R.; Limousin, J.; Plaut, J.; Mackay, D. S.; Ogee, J.; Domec, J. C.; Allen, C. D.; Fisher, R. A.; Jiang, X.; Muss, J. D.; Breshears, D. D.; Rauscher, S. A.; Koven, C.

    2016-03-01

    Global temperature rise and extremes accompanying drought threaten forests and their associated climatic feedbacks. Our ability to accurately simulate drought-induced forest impacts remains highly uncertain in part owing to our failure to integrate physiological measurements, regional-scale models, and dynamic global vegetation models (DGVMs). Here we show consistent predictions of widespread mortality of needleleaf evergreen trees (NET) within Southwest USA by 2100 using state-of-the-art models evaluated against empirical data sets. Experimentally, dominant Southwest USA NET species died when they fell below predawn water potential (Ψpd) thresholds (April-August mean) beyond which photosynthesis, hydraulic and stomatal conductance, and carbohydrate availability approached zero. The evaluated regional models accurately predicted NET Ψpd, and 91% of predictions (10 out of 11) exceeded mortality thresholds within the twenty-first century due to temperature rise. The independent DGVMs predicted >=50% loss of Northern Hemisphere NET by 2100, consistent with the NET findings for Southwest USA. Notably, the global models underestimated future mortality within Southwest USA, highlighting that predictions of future mortality within global models may be underestimates. Taken together, the validated regional predictions and the global simulations predict widespread conifer loss in coming decades under projected global warming.

  15. Pilot scale studies on nitritation-anammox process for mainstream wastewater at low temperature.

    PubMed

    Trojanowicz, Karol; Plaza, Elzbieta; Trela, Jozef

    2016-01-01

    Process of partial nitritation-anammox for mainstream wastewater at low temperature was run in a pilot scale moving bed biofilm reactor (MBBR) system for about 300 days. The biofilm history in the reactor was about 3 years of growth at low temperature (down to 10 °C). The goal of the studies presented in this paper was to achieve effective partial nitritation-anammox process. Influence of nitrogen loading rate, hydraulic retention time, aeration strategy (continuous versus intermittent) and sludge recirculation (integrated fixed-film activated sludge (IFAS) mode) on deammonification process' efficiency and microbial activity in the examined system was tested. It was found that the sole intermittent aeration strategy is not a sufficient method for successful suppression of nitrite oxidizing bacteria in MBBR. The best performance of the process was achieved in IFAS mode. The highest recorded capacity of ammonia oxidizing bacteria and anammox bacteria in biofilm was 1.4 gN/m(2)d and 0.5 gN/m(2)d, respectively, reaching 51% in nitrogen removal efficiency. PMID:26901718

  16. Multi-scale predictions of massive conifer mortality due to chronic temperature rise

    USGS Publications Warehouse

    McDowell, Nathan G.; Williams, A.P.; Xu, C.; Pockman, W. T.; Dickman, L. T.; Sevanto, S.; Pangle, R.; Limousin, J.; Plaut, J.J.; Mackay, D.S.; Ogee, J.; Domec, Jean-Christophe; Allen, Craig D.; Fisher, Rosie A.; Jiang, X.; Muss, J.D.; Breshears, D.D.; Rauscher, Sara A.; Koven, C.

    2015-01-01

    Global temperature rise and extremes accompanying drought threaten forests and their associated climatic feedbacks. Our ability to accurately simulate drought-induced forest impacts remains highly uncertain in part owing to our failure to integrate physiological measurements, regional-scale models, and dynamic global vegetation models (DGVMs). Here we show consistent predictions of widespread mortality of needleleaf evergreen trees (NET) within Southwest USA by 2100 using state-of-the-art models evaluated against empirical data sets. Experimentally, dominant Southwest USA NET species died when they fell below predawn water potential (Ψpd) thresholds (April–August mean) beyond which photosynthesis, hydraulic and stomatal conductance, and carbohydrate availability approached zero. The evaluated regional models accurately predicted NET Ψpd, and 91% of predictions (10 out of 11) exceeded mortality thresholds within the twenty-first century due to temperature rise. The independent DGVMs predicted ≥50% loss of Northern Hemisphere NET by 2100, consistent with the NET findings for Southwest USA. Notably, the global models underestimated future mortality within Southwest USA, highlighting that predictions of future mortality within global models may be underestimates. Taken together, the validated regional predictions and the global simulations predict widespread conifer loss in coming decades under projected global warming.

  17. Full Scale Field Trial of the Low Temperature Mercury Capture Process

    SciTech Connect

    Locke, James; Winschel, Richard

    2012-05-21

    CONSOL Energy Inc., with partial funding from the Department of Energy (DOE) National Energy Technology Laboratory, designed a full-scale installation for a field trial of the Low-Temperature Mercury Control (LTMC) process, which has the ability to reduce mercury emissions from coal-fired power plants by over 90 percent, by cooling flue gas temperatures to approximately 230°F and absorbing the mercury on the native carbon in the fly ash, as was recently demonstrated by CONSOL R&D on a slip-stream pilot plant at the Allegheny Energy Mitchell Station with partial support by DOE. LTMC has the potential to remove over 90 percent of the flue gas mercury at a cost at least an order of magnitude lower (on a $/lb mercury removed basis) than activated carbon injection. The technology is suitable for retrofitting to existing and new plants, and, although it is best suited to bituminous coal-fired plants, it may have some applicability to the full range of coal types. Installation plans were altered and moved from the original project host site, PPL Martins Creek plant, to a second host site at Allegheny Energy's R. Paul Smith plant, before installation actually occurred at the Jamestown (New York) Board of Public Utilities (BPU) Samuel A. Carlson (Carlson) Municipal Generating Station Unit 12, where the LTMC system was operated on a limited basis. At Carlson, over 60% mercury removal was demonstrated by cooling the flue gas to 220-230°F at the ESP inlet via humidification. The host unit ESP operation was unaffected by the humidification and performed satisfactorily at low temperature conditions.

  18. Field tests to determine scaling tendency of some moderate-temperature geothermal brines

    SciTech Connect

    Robertus, R.J.; Sullivan, R.G.; Shannon, D.W.

    1986-09-01

    Several field tests were completed to determine the scaling tendency of moderate-temperature geothermal brines. Data were taken on the Heber as well as the East Mesa Known-Geothermal-Resources-Areas (KGRA's). The test results most directly benefit the Heber Geothermal Binary Demonstration Plant, but some have been generalized to be useful for other moderate-temperature (302 to 460/sup 0/F (150 to 239/sup 0/C)) geothermal reservoirs also. Field experiments determined conditions under which calcite, silica, and metal sulfides are likely to form. The calcite tests determined pressures which must be maintained to prevent gas-breakout and ensuing calcite deposition. Required pressures varied from one reservoir to the next and were strong functions of non-condensable gas content. The brine cooling tests tried to quantify the amount of silica which would drop out of the Heber brine by incrementally cooling it below a design set point of 150/sup 0/F (66/sup 0/C). The conclusion was that no detectable increase in silica occurred in times relevant to plant operations when the brine was cooled to 120/sup 0/F (49/sup 0/C). Although the cooling tests showed no detectable increase in silica formation, other materials did form in small amounts. The list includes magnetite (Fe/sub 3/O/sub 4/), calcite (CaCO/sub 3/), and mixtures of lead, zinc, and arsenic sulfides. Even for the lowest outlet temperature (120/sup 0/F) the particulate loading increased only about 50% over inlet conditions. Thus, for the Heber brines, the majority of material entering an injection well comes in the form of sand from the production wells. This same conclusion was supported by earlier work on the East Mesa KGRA.

  19. A flux-density scale for microwave frequencies.

    NASA Technical Reports Server (NTRS)

    Dent, W. A.

    1972-01-01

    Accurate flux-density measurements of the thermal radio source DR 21 have been made at centimeter wavelengths relative to the KPW absolute flux-density scale based on Cas A and at millimeter wavelengths relative to absolute brightness-temperature measurements of Jupiter and Saturn. The form of the absolute spectrum of DR 21 thus defined is given and used to relate two formerly independent flux-density scales. With an accuracy of about 3 percent, this spectrum of DR 21 defines a flux-density scale that can be used to calibrate antennas having beamwidths between 1 and 6 minutes of arc at microwave frequencies above 7 GHz where other methods of absolute calibration are much less accurate.

  20. Achieving Climate Change Absolute Accuracy in Orbit

    NASA Technical Reports Server (NTRS)

    Wielicki, Bruce A.; Young, D. F.; Mlynczak, M. G.; Thome, K. J; Leroy, S.; Corliss, J.; Anderson, J. G.; Ao, C. O.; Bantges, R.; Best, F.; Bowman, K.; Brindley, H.; Butler, J. J.; Collins, W.; Dykema, J. A.; Doelling, D. R.; Feldman, D. R.; Fox, N.; Huang, X.; Holz, R.; Huang, Y.; Jennings, D.; Jin, Z.; Johnson, D. G.; Jucks, K.; Kato, S.; Kratz, D. P.; Liu, X.; Lukashin, C.; Mannucci, A. J.; Phojanamongkolkij, N.; Roithmayr, C. M.; Sandford, S.; Taylor, P. C.; Xiong, X.

    2013-01-01

    The Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission will provide a calibration laboratory in orbit for the purpose of accurately measuring and attributing climate change. CLARREO measurements establish new climate change benchmarks with high absolute radiometric accuracy and high statistical confidence across a wide range of essential climate variables. CLARREO's inherently high absolute accuracy will be verified and traceable on orbit to Système Internationale (SI) units. The benchmarks established by CLARREO will be critical for assessing changes in the Earth system and climate model predictive capabilities for decades into the future as society works to meet the challenge of optimizing strategies for mitigating and adapting to climate change. The CLARREO benchmarks are derived from measurements of the Earth's thermal infrared spectrum (5-50 micron), the spectrum of solar radiation reflected by the Earth and its atmosphere (320-2300 nm), and radio occultation refractivity from which accurate temperature profiles are derived. The mission has the ability to provide new spectral fingerprints of climate change, as well as to provide the first orbiting radiometer with accuracy sufficient to serve as the reference transfer standard for other space sensors, in essence serving as a "NIST [National Institute of Standards and Technology] in orbit." CLARREO will greatly improve the accuracy and relevance of a wide range of space-borne instruments for decadal climate change. Finally, CLARREO has developed new metrics and methods for determining the accuracy requirements of climate observations for a wide range of climate variables and uncertainty sources. These methods should be useful for improving our understanding of observing requirements for most climate change observations.

  1. Influence of atmospheric static stability and meridional temperature gradient on the growth in amplitude of synoptic-scale unstable waves

    NASA Astrophysics Data System (ADS)

    Soldatenko, S. A.

    2014-11-01

    Observations and results of numerical experiments with climate models under different green-house-gas emission scenarios point to a reconstruction of the thermal and circulation atmospheric regime induced by global climate changes. In particular, an increase in atmospheric static stability, a poleward shift of midlatitude storm tracks, a decrease in the frequency of extratropical cyclones, and a change in their intensity are found at tropical and middle latitudes. This paper, using a simplified idealized model of baroclinic instability, investigates the influence of small variations in the basic atmospheric parameters governing the development of baroclinic instability, namely, static stability and the vertical quasi-zonal flow velocity shear induced by a meridional temperature gradient, on variations in the growth rate of the amplitude of synopticscale unstable waves. Analytical expressions are derived for absolute and relative sensitivity functions to estimate the absolute and relative contribution of variations in the static stability and the vertical flow velocity shear to a change in the growth rate of the amplitude of unstable modes.

  2. A basin-scale approach to estimating stream temperatures of tributaries to the lower Klamath River, California.

    PubMed

    Flint, Lorraine E; Flint, Alan L

    2008-01-01

    Stream temperature is an important component of salmonid habitat and is often above levels suitable for fish survival in the Lower Klamath River in northern California. The objective of this study was to provide boundary conditions for models that are assessing stream temperature on the main stem for the purpose of developing strategies to manage stream conditions using Total Maximum Daily Loads. For model input, hourly stream temperatures for 36 tributaries were estimated for 1 Jan. 2001 through 31 Oct. 2004. A basin-scale approach incorporating spatially distributed energy balance data was used to estimate the stream temperatures with measured air temperature and relative humidity data and simulated solar radiation, including topographic shading and corrections for cloudiness. Regression models were developed on the basis of available stream temperature data to predict temperatures for unmeasured periods of time and for unmeasured streams. The most significant factor in matching measured minimum and maximum stream temperatures was the seasonality of the estimate. Adding minimum and maximum air temperature to the regression model improved the estimate, and air temperature data over the region are available and easily distributed spatially. The addition of simulated solar radiation and vapor saturation deficit to the regression model significantly improved predictions of maximum stream temperature but was not required to predict minimum stream temperature. The average SE in estimated maximum daily stream temperature for the individual basins was 0.9 +/- 0.6 degrees C at the 95% confidence interval.

  3. Absolute Thermal SST Measurements over the Deepwater Horizon Oil Spill

    NASA Astrophysics Data System (ADS)

    Good, W. S.; Warden, R.; Kaptchen, P. F.; Finch, T.; Emery, W. J.

    2010-12-01

    Climate monitoring and natural disaster rapid assessment require baseline measurements that can be tracked over time to distinguish anthropogenic versus natural changes to the Earth system. Disasters like the Deepwater Horizon Oil Spill require constant monitoring to assess the potential environmental and economic impacts. Absolute calibration and validation of Earth-observing sensors is needed to allow for comparison of temporally separated data sets and provide accurate information to policy makers. The Ball Experimental Sea Surface Temperature (BESST) radiometer was designed and built by Ball Aerospace to provide a well calibrated measure of sea surface temperature (SST) from an unmanned aerial system (UAS). Currently, emissive skin SST observed by satellite infrared radiometers is validated by shipborne instruments that are expensive to deploy and can only take a few data samples along the ship track to overlap within a single satellite pixel. Implementation on a UAS will allow BESST to map the full footprint of a satellite pixel and perform averaging to remove any local variability due to the difference in footprint size of the instruments. It also enables the capability to study this sub-pixel variability to determine if smaller scale effects need to be accounted for in models to improve forecasting of ocean events. In addition to satellite sensor validation, BESST can distinguish meter scale variations in SST which could be used to remotely monitor and assess thermal pollution in rivers and coastal areas as well as study diurnal and seasonal changes to bodies of water that impact the ocean ecosystem. BESST was recently deployed on a conventional Twin Otter airplane for measurements over the Gulf of Mexico to access the thermal properties of the ocean surface being affected by the oil spill. Results of these measurements will be presented along with ancillary sensor data used to eliminate false signals including UV and Synthetic Aperture Radar (SAR

  4. Modelling basin-scale effects of shrub expansion on snow distribution, turbulent fluxes and soil temperature

    NASA Astrophysics Data System (ADS)

    Ménard, Cécile; Essery, Richard; Pomeroy, John

    2013-04-01

    The interactions between shrubs, snow and soil are at the core of feedback loops affecting the water, energy and carbon budget at high latitude. Many studies, providing evidence from plot scale measurements to pan-Arctic satellite observations, have shown that shrubs are colonizing higher grounds, both latitudinally and altitudinally, in all countries circling the Arctic. It is therefore critical to understand how these changes may affect snow distribution, water equivalent and soil temperature. Given that shrubs colonize bare ground through the expansion of existing shrub patches, the potential effect of shrub expansion was investigated by selecting a site where shrubs are already in the landscape. Modelled snow distribution, water equivalent, turbulent fluxes and soil temperature under the current vegetation cover was compared to those of runs where cover was modified by 1/ removing all vegetation ("no-shrub") 2/ increasing shrub cover and height as a function of their respective neighbouring cell values ("shrub+"). The study was performed in the Granger Basin, Yukon Territory, Canada, which is situated within a sub-alpine ecozone and characterised by a shrub-tundra landscape. A distributed land surface model which calculates the energy balance over three sources (snow - shrub - ground) within each gridbox was used to investigate these processes. Although much of the snow distribution in the basin is topographically driven, increasing shrub cover and height reduced the spatial variability of snow depth and increased the snow cover fraction. Despite the heat advection from shrubs to snow patches, the basin became snow-free earlier in the control run than in the shrub+ run because of the shading effect of denser canopies. Removing shrubs caused higher latent heat fluxes across the basin both on snow and snow-free tiles whereas adding shrubs homogenized latent heat fluxes and soil temperatures across the basin, following the homogenization of the snow depth. The

  5. Estimates of the difference between thermodynamic temperature and the International Temperature Scale of 1990 in the range 118 K to 303 K.

    PubMed

    Underwood, R; de Podesta, M; Sutton, G; Stanger, L; Rusby, R; Harris, P; Morantz, P; Machin, G

    2016-03-28

    Using exceptionally accurate measurements of the speed of sound in argon, we have made estimates of the difference between thermodynamic temperature, T, and the temperature estimated using the International Temperature Scale of 1990, T90, in the range 118 K to 303 K. Thermodynamic temperature was estimated using the technique of relative primary acoustic thermometry in the NPL-Cranfield combined microwave and acoustic resonator. Our values of (T-T90) agree well with most recent estimates, but because we have taken data at closely spaced temperature intervals, the data reveal previously unseen detail. Most strikingly, we see undulations in (T-T90) below 273.16 K, and the discontinuity in the slope of (T-T90) at 273.16 K appears to have the opposite sign to that previously reported. PMID:26903104

  6. Scales

    MedlinePlus

    Scales are a visible peeling or flaking of outer skin layers. These layers are called the stratum ... Scales may be caused by dry skin, certain inflammatory skin conditions, or infections. Eczema , ringworm , and psoriasis ...

  7. The AFGL absolute gravity program

    NASA Technical Reports Server (NTRS)

    Hammond, J. A.; Iliff, R. L.

    1978-01-01

    A brief discussion of the AFGL's (Air Force Geophysics Laboratory) program in absolute gravity is presented. Support of outside work and in-house studies relating to gravity instrumentation are discussed. A description of the current transportable system is included and the latest results are presented. These results show good agreement with measurements at the AFGL site by an Italian system. The accuracy obtained by the transportable apparatus is better than 0.1 microns sq sec 10 microgal and agreement with previous measurements is within the combined uncertainties of the measurements.

  8. Familial Aggregation of Absolute Pitch

    PubMed Central

    Baharloo, Siamak; Service, Susan K.; Risch, Neil; Gitschier, Jane; Freimer, Nelson B.

    2000-01-01

    Absolute pitch (AP) is a behavioral trait that is defined as the ability to identify the pitch of tones in the absence of a reference pitch. AP is an ideal phenotype for investigation of gene and environment interactions in the development of complex human behaviors. Individuals who score exceptionally well on formalized auditory tests of pitch perception are designated as “AP-1.” As described in this report, auditory testing of siblings of AP-1 probands and of a control sample indicates that AP-1 aggregates in families. The implications of this finding for the mapping of loci for AP-1 predisposition are discussed. PMID:10924408

  9. Mathematical Model for Absolute Magnetic Measuring Systems in Industrial Applications

    NASA Astrophysics Data System (ADS)

    Fügenschuh, Armin; Fügenschuh, Marzena; Ludszuweit, Marina; Mojsic, Aleksandar; Sokół, Joanna

    2015-09-01

    Scales for measuring systems are either based on incremental or absolute measuring methods. Incremental scales need to initialize a measurement cycle at a reference point. From there, the position is computed by counting increments of a periodic graduation. Absolute methods do not need reference points, since the position can be read directly from the scale. The positions on the complete scales are encoded using two incremental tracks with different graduation. We present a new method for absolute measuring using only one track for position encoding up to micrometre range. Instead of the common perpendicular magnetic areas, we use a pattern of trapezoidal magnetic areas, to store more complex information. For positioning, we use the magnetic field where every position is characterized by a set of values measured by a hall sensor array. We implement a method for reconstruction of absolute positions from the set of unique measured values. We compare two patterns with respect to uniqueness, accuracy, stability and robustness of positioning. We discuss how stability and robustness are influenced by different errors during the measurement in real applications and how those errors can be compensated.

  10. Absolute irradiance of the Moon for on-orbit calibration

    USGS Publications Warehouse

    Stone, T.C.; Kieffer, H.H.; ,

    2002-01-01

    The recognized need for on-orbit calibration of remote sensing imaging instruments drives the ROLO project effort to characterize the Moon for use as an absolute radiance source. For over 5 years the ground-based ROLO telescopes have acquired spatially-resolved lunar images in 23 VNIR (Moon diameter ???500 pixels) and 9 SWIR (???250 pixels) passbands at phase angles within ??90 degrees. A numerical model for lunar irradiance has been developed which fits hundreds of ROLO images in each band, corrected for atmospheric extinction and calibrated to absolute radiance, then integrated to irradiance. The band-coupled extinction algorithm uses absorption spectra of several gases and aerosols derived from MODTRAN to fit time-dependent component abundances to nightly observations of standard stars. The absolute radiance scale is based upon independent telescopic measurements of the star Vega. The fitting process yields uncertainties in lunar relative irradiance over small ranges of phase angle and the full range of lunar libration well under 0.5%. A larger source of uncertainty enters in the absolute solar spectral irradiance, especially in the SWIR, where solar models disagree by up to 6%. Results of ROLO model direct comparisons to spacecraft observations demonstrate the ability of the technique to track sensor responsivity drifts to sub-percent precision. Intercomparisons among instruments provide key insights into both calibration issues and the absolute scale for lunar irradiance.

  11. Large-scale tropical transients in aquaplanet simulations with zonally symmetric sea surface temperature distributions (Invited)

    NASA Astrophysics Data System (ADS)

    Kuang, Z.

    2010-12-01

    Spectral analyses of sub-seasonal variations of tropical convection revealed features such as convectively coupled equatorial waves (CCEW) and the Madden-Julian Oscillations (MJO) over a red noise background. In this work, the super-parameterized Community Atmosphere Model (SPCAM) is used in aquaplanet experiments forced with zonally symmetric sea surface temperature distributions to investigate the roles of various processes in shaping the tropical spectra. Control experiments with the SPCAM model were able to produce the red noise background spectrum, CCEWs, and in some Intertropical Convergence Zone (ITCZ) configurations, “MJO-like” disturbances. To unravel the roles of various processes, experiments with simplified dynamics/settings are performed. In experiments where the large-scale dynamics in the model is largely linearized and with no feedbacks from radiative heating or surface sensible/latent heat and momentum fluxes, the spectra of large-scale tropical convectively coupled transients are dominated by the CCEWs, in ways generally consistent with results from the simple model of Andersen and Kuang (2008), and there are no red noise background spectra. Additional experiments show that the red noise aspect of the spectrum is mostly due to eddy stirring of the moisture field across its meridional gradient at the edge of the ITCZ, in particular the deep dry intrusions from the subtropics to the tropics. We will also discuss the effects of surface friction and idealized moist static energy sources, and use a simple model to understand these behaviors. It is hoped that through these and additional idealized studies, the various mechanisms that shape the tropical spectra can be elucidated. Ref:Andersen, J. A., Z. Kuang, A toy model of the instability in the equatorially trapped convectively coupled waves on the equatorial beta plane, Journal of Atmospheric Sciences, 65, 3736-3757, (2008)

  12. Kinetically controlled synthesis of large-scale morphology-tailored silver nanostructures at low temperature

    NASA Astrophysics Data System (ADS)

    Zhang, Ling; Zhao, Yuda; Lin, Ziyuan; Gu, Fangyuan; Lau, Shu Ping; Li, Li; Chai, Yang

    2015-08-01

    Ag nanostructures are widely used in catalysis, energy conversion and chemical sensing. Morphology-tailored synthesis of Ag nanostructures is critical to tune physical and chemical properties. In this study, we develop a method for synthesizing the morphology-tailored Ag nanostructures in aqueous solution at a low temperature (45 °C). With the use of AgCl nanoparticles as the precursor, the growth kinetics of Ag nanostructures can be tuned with the pH value of solution and the concentration of Pd cubes which catalyze the reaction. Ascorbic acid and cetylpyridinium chloride are used as the mild reducing agent and capping agent in aqueous solution, respectively. High-yield Ag nanocubes, nanowires, right triangular bipyramids/cubes with twinned boundaries, and decahedra are successfully produced. Our method opens up a new environmentally-friendly and economical route to synthesize large-scale and morphology-tailored Ag nanostructures, which is significant to the controllable fabrication of Ag nanostructures and fundamental understanding of the growth kinetics.Ag nanostructures are widely used in catalysis, energy conversion and chemical sensing. Morphology-tailored synthesis of Ag nanostructures is critical to tune physical and chemical properties. In this study, we develop a method for synthesizing the morphology-tailored Ag nanostructures in aqueous solution at a low temperature (45 °C). With the use of AgCl nanoparticles as the precursor, the growth kinetics of Ag nanostructures can be tuned with the pH value of solution and the concentration of Pd cubes which catalyze the reaction. Ascorbic acid and cetylpyridinium chloride are used as the mild reducing agent and capping agent in aqueous solution, respectively. High-yield Ag nanocubes, nanowires, right triangular bipyramids/cubes with twinned boundaries, and decahedra are successfully produced. Our method opens up a new environmentally-friendly and economical route to synthesize large-scale and morphology

  13. Effects of bryophyte and lichen cover on permafrost soil temperature at large scale

    NASA Astrophysics Data System (ADS)

    Porada, Philipp; Ekici, Altug; Beer, Christian

    2016-09-01

    Bryophyte and lichen cover on the forest floor at high latitudes exerts an insulating effect on the ground. In this way, the cover decreases mean annual soil temperature and can protect permafrost soil. Climate change, however, may change bryophyte and lichen cover, with effects on the permafrost state and related carbon balance. It is, therefore, crucial to predict how the bryophyte and lichen cover will react to environmental change at the global scale. To date, current global land surface models contain only empirical representations of the bryophyte and lichen cover, which makes it impractical to predict the future state and function of bryophytes and lichens. For this reason, we integrate a process-based model of bryophyte and lichen growth into the global land surface model JSBACH (Jena Scheme for Biosphere-Atmosphere Coupling in Hamburg). The model simulates bryophyte and lichen cover on upland sites. Wetlands are not included. We take into account the dynamic nature of the thermal properties of the bryophyte and lichen cover and their relation to environmental factors. Subsequently, we compare simulations with and without bryophyte and lichen cover to quantify the insulating effect of the organisms on the soil. We find an average cooling effect of the bryophyte and lichen cover of 2.7 K on temperature in the topsoil for the region north of 50° N under the current climate. Locally, a cooling of up to 5.7 K may be reached. Moreover, we show that using a simple, empirical representation of the bryophyte and lichen cover without dynamic properties only results in an average cooling of around 0.5 K. This suggests that (a) bryophytes and lichens have a significant impact on soil temperature in high-latitude ecosystems and (b) a process-based description of their thermal properties is necessary for a realistic representation of the cooling effect. The advanced land surface scheme, including a dynamic bryophyte and lichen model, will be the basis for an improved

  14. Debris flow grain size scales with sea surface temperature over glacial-interglacial timescales

    NASA Astrophysics Data System (ADS)

    D'Arcy, Mitch; Roda Boluda, Duna C.; Whittaker, Alexander C.; Araújo, João Paulo C.

    2015-04-01

    Debris flows are common erosional processes responsible for a large volume of sediment transfer across a range of landscapes from arid settings to the tropics. They are also significant natural hazards in populated areas. However, we lack a clear set of debris flow transport laws, meaning that: (i) debris flows remain largely neglected by landscape evolution models; (ii) we do not understand the sensitivity of debris flow systems to past or future climate changes; and (iii) it remains unclear how to interpret debris flow stratigraphy and sedimentology, for example whether their deposits record information about past tectonics or palaeoclimate. Here, we take a grain size approach to characterising debris flow deposits from 35 well-dated alluvial fan surfaces in Owens Valley, California. We show that the average grain sizes of these granitic debris flow sediments precisely scales with sea surface temperature throughout the entire last glacial-interglacial cycle, increasing by ~ 7 % per 1 ° C of climate warming. We compare these data with similar debris flow systems in the Mediterranean (southern Italy) and the tropics (Rio de Janeiro, Brazil), and find equivalent signals over a total temperature range of ~ 14 ° C. In each area, debris flows are largely governed by rainfall intensity during triggering storms, which is known to increase exponentially with temperature. Therefore, we suggest that these debris flow systems are transporting predictably coarser-grained sediment in warmer, stormier conditions. This implies that debris flow sedimentology is governed by discharge thresholds and may be a sensitive proxy for past changes in rainfall intensity. Our findings show that debris flows are sensitive to climate changes over short timescales (≤ 104 years) and therefore highlight the importance of integrating hillslope processes into landscape evolution models, as well as providing new observational constraints to guide this. Finally, we comment on what grain size

  15. Bench-scale reactor tests of low temperature, catalytic gasification of wet industrial wastes

    SciTech Connect

    Elliot, D.C.; Baker, E.G.; Butner, R.S.; Sealock, L.J. Jr. )

    1993-02-01

    Bench-scale reactor tests are under way at Pacific Northwest Laboratory to develop a low temperature, catalytic gasification system. The system, licensed under the trade name Thermochemical Environmental Energy System (TEES[reg sign]), is designed for to a wide variety of feedstocks ranging from dilute organics in water to waste sludges from food processing. The current research program is focused on the use of a continuous feed, tubular reactor. The catalyst is nickel metal on an inert support. Typical results show that feedstocks such as solutions of 2 percent para-cresol or 5 percent and 10 percent lactose in water or cheese whey can be processed to [gt] 99 percent reduction of chemical oxygen demand (COD) at a rate of up to 2 L/hr. The estimated residence lime is less than 5 min at 360C and 3,000 psig, not including 1 to 2 min required in the preheating zone of the reactor. The liquid hourly space velocity has been varied from 1.8 to 2.9 L feedstock/L catalyst/hr depending on the feedstock. The product fuel gas contains 40 percent to 55 percent methane, 35 percent to 50 percent carbon dioxide, and 5 percent to 10 percent hydrogen with as much as 2 percent ethane, but less than 0.1 percent ethylene or carbon monoxide, and small amounts of higher hydrocarbons. The byproduct water stream carries residual organics amounting to less than 500 mg/L COD.

  16. Theory of isolated, small-scale magnetic islands in a high temperature tokamak plasma

    SciTech Connect

    Connor, J.W.; Wilson, H.R.

    1995-12-01

    A theory for the existence of noninteracting small-scale, ``drift`` magnetic islands in a high temperature tokamak plasma is presented. This situation contrasts with that discussed by Rebut and Hugon [Plasma Phys. Controlled Fusion {bold 33}, 1085 (1991)] which involves a background ``sea`` of magnetic turbulence caused by island overlap. The islands are driven by the effect of finite ion Larmor radius on the particle drifts and they propagate with a velocity comparable to the diamagnetic velocity. In contrast with the work of Smolyakov [Plasma Phys. Controlled Fusion {bold 35}, 657 (1993)] collisions are assumed to be rare. Although the saturated island size is independent of the collision frequency in the model discussed here, collisions play a crucial role in determining the frequency of the magnetic islands. An estimate is made of the anomalous heat transport which results from the fluctuations in the electrostatic potential associated with these magnetic islands. The predicted thermal diffusivity has several, but not all, of the characteristics of the Rebut--Lallia--Watkins transport model. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  17. Broad-scale adaptive genetic variation in alpine plants is driven by temperature and precipitation.

    PubMed

    Manel, Stéphanie; Gugerli, Felix; Thuiller, Wilfried; Alvarez, Nadir; Legendre, Pierre; Holderegger, Rolf; Gielly, Ludovic; Taberlet, Pierre

    2012-08-01

    Identifying adaptive genetic variation is a challenging task, in particular in non-model species for which genomic information is still limited or absent. Here, we studied distribution patterns of amplified fragment length polymorphisms (AFLPs) in response to environmental variation, in 13 alpine plant species consistently sampled across the entire European Alps. Multiple linear regressions were performed between AFLP allele frequencies per site as dependent variables and two categories of independent variables, namely Moran's eigenvector map MEM variables (to account for spatial and unaccounted environmental variation, and historical demographic processes) and environmental variables. These associations allowed the identification of 153 loci of ecological relevance. Univariate regressions between allele frequency and each environmental factor further showed that loci of ecological relevance were mainly correlated with MEM variables. We found that precipitation and temperature were the best environmental predictors, whereas topographic factors were rarely involved in environmental associations. Climatic factors, subject to rapid variation as a result of the current global warming, are known to strongly influence the fate of alpine plants. Our study shows, for the first time for a large number of species, that the same environmental variables are drivers of plant adaptation at the scale of a whole biome, here the European Alps.

  18. Bench-scale reactor tests of low-temperature, catalytic gasification of wet, industrial wastes

    SciTech Connect

    Elliott, D.C.; Neuenschwander, G.G.; Baker, E.G.; Butner, R.S.; Sealock, L.J.

    1990-04-01

    Bench-scale reactor tests are under way at Pacific Northwest Laboratory to develop a low-temperature, catalytic gasification system. The system, licensed under the trade name Thermochemical Environmental Energy System (TEES{reg sign}), is designed for to a wide variety of feedstocks ranging from dilute organics in water to waste sludges from food processing. The current research program is focused on the use of a continuous-feed, tubular reactor. The catalyst is nickel metal on an inert support. Typical results show that feedstocks such as solutions of 2% para-cresol or 5% and 10% lactose in water or cheese whey can be processed to >99% reduction of chemical oxygen demand (COD) at a rate of up to 2 L/hr. The estimated residence time is less than 5 min at 360{degree}C and 3000 psig, not including 1 to 2 min required in the preheating zone of the reactor. The liquid hourly space velocity has been varied from 1.8 to 2.9 L feedstock/L catalyst/hr depending on the feedstock. The product fuel gas contains 40% to 55% methane, 35% to 50% carbon dioxide, and 5% to 10% hydrogen with as much as 2% ethane, but less than 0.1% ethylene or carbon monoxide, and small amounts of higher hydrocarbons. The byproduct water stream carries residual organics amounting to less than 500 mg/L COD. 9 refs., 1 fig., 4 tabs.

  19. Broad-scale adaptive genetic variation in alpine plants is driven by temperature and precipitation

    PubMed Central

    MANEL, STÉPHANIE; GUGERLI, FELIX; THUILLER, WILFRIED; ALVAREZ, NADIR; LEGENDRE, PIERRE; HOLDEREGGER, ROLF; GIELLY, LUDOVIC; TABERLET, PIERRE

    2014-01-01

    Identifying adaptive genetic variation is a challenging task, in particular in non-model species for which genomic information is still limited or absent. Here, we studied distribution patterns of amplified fragment length polymorphisms (AFLPs) in response to environmental variation, in 13 alpine plant species consistently sampled across the entire European Alps. Multiple linear regressions were performed between AFLP allele frequencies per site as dependent variables and two categories of independent variables, namely Moran’s eigenvector map MEM variables (to account for spatial and unaccounted environmental variation, and historical demographic processes) and environmental variables. These associations allowed the identification of 153 loci of ecological relevance. Univariate regressions between allele frequency and each environmental factor further showed that loci of ecological relevance were mainly correlated with MEM variables. We found that precipitation and temperature were the best environmental predictors, whereas topographic factors were rarely involved in environmental associations. Climatic factors, subject to rapid variation as a result of the current global warming, are known to strongly influence the fate of alpine plants. Our study shows, for the first time for a large number of species, that the same environmental variables are drivers of plant adaptation at the scale of a whole biome, here the European Alps. PMID:22680783

  20. Length Scales of Local Glass Transition Temperature Gradients Near Soft and Hard Polymer-Polymer Interfaces

    NASA Astrophysics Data System (ADS)

    Baglay, Roman; Roth, Connie

    Polymer-polymer interfaces are ubiquitous in polymer blends and block copolymers, while opening up another avenue for the study of interfacial perturbations to the local glass transition temperature Tg(z). We have previously reported the full local Tg(z) profile across a glassy-rubbery polymer interface between polystyrene (PS) and poly(n-butyl methacrylate) (PnBMA), an 80 K difference in bulk Tg [Baglay & Roth, J Chem Phys 2015, 143, 111101]. By using local fluorescence measurements, we revealed how the Tg(z) profile extends hundreds of nanometers away from the interface showing an asymmetric behavior penetrating deeper into the glassy PS side relative to the composition profile. Here, we extend these measurements to investigate how the local Tg profile in PS varies when in contact with a variety of immiscible polymers whose Tgs vary between +90 K and -80 K relative to the bulk Tg of PS, so-called hard vs. soft confinement. The data reveal that the onset of local Tg deviation from bulk in PS occurs at two distinct length scales, which depend on whether PS is the low Tg component (hard confinement) or the high Tg component (soft confinement). In addition, we explore the influence of finite system size on the range of dynamics by the introduction of periodic boundary conditions, as is commonly encountered in computer simulations or block copolymer systems.

  1. North American extreme temperature events and related large scale meteorological patterns: A review of statistical methods, dynamics, modeling, and trends

    SciTech Connect

    Grotjahn, Richard; Black, Robert; Leung, Ruby; Wehner, Michael F.; Barlow, Mathew; Bosilovich, Michael; Gershunov, Alexander; Gutowski, Jr., William J.; Gyakum, John R.; Katz, Richard W.; Lee, Yun -Young; Lim, Young -Kwon; Prabhat, -

    2015-05-22

    This paper reviews research approaches and open questions regarding data, statistical analyses, dynamics, modeling efforts, and trends in relation to temperature extremes. Our specific focus is upon extreme events of short duration (roughly less than 5 days) that affect parts of North America. These events are associated with large scale meteorological patterns (LSMPs). Methods used to define extreme events statistics and to identify and connect LSMPs to extreme temperatures are presented. Recent advances in statistical techniques can connect LSMPs to extreme temperatures through appropriately defined covariates that supplements more straightforward analyses. A wide array of LSMPs, ranging from synoptic to planetary scale phenomena, have been implicated as contributors to extreme temperature events. Current knowledge about the physical nature of these contributions and the dynamical mechanisms leading to the implicated LSMPs is incomplete. There is a pressing need for (a) systematic study of the physics of LSMPs life cycles and (b) comprehensive model assessment of LSMP-extreme temperature event linkages and LSMP behavior. Generally, climate models capture the observed heat waves and cold air outbreaks with some fidelity. However they overestimate warm wave frequency and underestimate cold air outbreaks frequency, and underestimate the collective influence of low-frequency modes on temperature extremes. Climate models have been used to investigate past changes and project future trends in extreme temperatures. Overall, modeling studies have identified important mechanisms such as the effects of large-scale circulation anomalies and land-atmosphere interactions on changes in extreme temperatures. However, few studies have examined changes in LSMPs more specifically to understand the role of LSMPs on past and future extreme temperature changes. Even though LSMPs are resolvable by global and regional climate models, they are not necessarily well simulated so more

  2. North American extreme temperature events and related large scale meteorological patterns: A review of statistical methods, dynamics, modeling, and trends

    DOE PAGES

    Grotjahn, Richard; Black, Robert; Leung, Ruby; Wehner, Michael F.; Barlow, Mathew; Bosilovich, Michael; Gershunov, Alexander; Gutowski, Jr., William J.; Gyakum, John R.; Katz, Richard W.; et al

    2015-05-22

    This paper reviews research approaches and open questions regarding data, statistical analyses, dynamics, modeling efforts, and trends in relation to temperature extremes. Our specific focus is upon extreme events of short duration (roughly less than 5 days) that affect parts of North America. These events are associated with large scale meteorological patterns (LSMPs). Methods used to define extreme events statistics and to identify and connect LSMPs to extreme temperatures are presented. Recent advances in statistical techniques can connect LSMPs to extreme temperatures through appropriately defined covariates that supplements more straightforward analyses. A wide array of LSMPs, ranging from synoptic tomore » planetary scale phenomena, have been implicated as contributors to extreme temperature events. Current knowledge about the physical nature of these contributions and the dynamical mechanisms leading to the implicated LSMPs is incomplete. There is a pressing need for (a) systematic study of the physics of LSMPs life cycles and (b) comprehensive model assessment of LSMP-extreme temperature event linkages and LSMP behavior. Generally, climate models capture the observed heat waves and cold air outbreaks with some fidelity. However they overestimate warm wave frequency and underestimate cold air outbreaks frequency, and underestimate the collective influence of low-frequency modes on temperature extremes. Climate models have been used to investigate past changes and project future trends in extreme temperatures. Overall, modeling studies have identified important mechanisms such as the effects of large-scale circulation anomalies and land-atmosphere interactions on changes in extreme temperatures. However, few studies have examined changes in LSMPs more specifically to understand the role of LSMPs on past and future extreme temperature changes. Even though LSMPs are resolvable by global and regional climate models, they are not necessarily well simulated so

  3. Full-scale plant study on low temperature thermal dechlorination of PCDDs/PCDFs in fly ash.

    PubMed

    Ishida, M; Shiji, R; Nie, P; Nakamura, N; Sakai, S

    1998-01-01

    The low temperature thermal dechlorination process is an effective technology of dioxins decomposition in fly ash of municipal solid waste incinerators(MSWI). A full-scale dechlorination process was designed and constructed in Matsudo city, Japan. It was confirmed that PCDDs/PCDFs decomposition ratio was more than 99% with temperature of 350 degrees C and retention time of 1 hour, and thermal dechlorination moved on from PCDDs/PCDFs having more chlorine atoms to those of less chlorine atoms.

  4. Variability of OH rotational temperatures on time scales from hours to 15 years by kinetic temperature variations, emission layer changes, and non-LTE effects

    NASA Astrophysics Data System (ADS)

    Noll, Stefan

    2016-07-01

    Rotational temperatures derived from hydroxyl (OH) line emission are frequently used to study atmospheric temperatures at altitudes of about 87 km. While the measurement only requires intensities of a few bright lines of an OH band, the interpretation can be complicated. Ground-based temperatures are averages for the entire, typically 8 km wide emission layer. Variations in the rotational temperature are then caused by changes of the kinetic temperature and the OH emission profile. The latter can also be accompanied by differences in the layer-averaged efficiency of the thermalisation of the OH rotational level populations. Since this especially depends on the frequency of collisions with O_2, which is low at high altitudes, the non-local thermodynamic equilibrium (non-LTE) contribution to the measured temperatures can be significant and variable. In order to understand the impact of the different sources of OH rotational temperature variations from time scales of hours to a solar cycle, we have studied spectra from the astronomical echelle spectrographs X-shooter and UVES located at Cerro Paranal in Chile. While the X-shooter data spanning 3.5 years allowed us to measure temperatures for 25 OH and two O_2 bands, the UVES spectra cover no more than 10 OH bands simultaneously but a period of about 15 years. These data have been complemented by kinetic temperature and OH and O_2 emission profiles from the multi-channel radiometer SABER on the TIMED satellite. Taking the O_2 and SABER kinetic temperatures as reference and considering the different band-dependent emission profiles, we could evaluate the contribution of non-LTE effects to the measured OH rotational temperatures depending on line set, band, and time. Non-LTE contributions are significant for most bands and can exceed 10 K. The amplitudes of their average nocturnal and seasonal variation are of the order of 1 to 2 K.

  5. Apparatus for absolute pressure measurement

    NASA Technical Reports Server (NTRS)

    Hecht, R. (Inventor)

    1969-01-01

    An absolute pressure sensor (e.g., the diaphragm of a capacitance manometer) was subjected to a superimposed potential to effectively reduce the mechanical stiffness of the sensor. This substantially increases the sensitivity of the sensor and is particularly useful in vacuum gauges. An oscillating component of the superimposed potential induced vibrations of the sensor. The phase of these vibrations with respect to that of the oscillating component was monitored, and served to initiate an automatic adjustment of the static component of the superimposed potential, so as to bring the sensor into resonance at the frequency of the oscillating component. This establishes a selected sensitivity for the sensor, since a definite relationship exists between resonant frequency and sensitivity.

  6. Large scale crystallization of protein pharmaceuticals in microgravity via temperature change

    NASA Technical Reports Server (NTRS)

    Long, Marianna M.

    1992-01-01

    The major objective of this research effort is the temperature driven growth of protein crystals in large batches in the microgravity environment of space. Pharmaceutical houses are developing protein products for patient care, for example, human insulin, human growth hormone, interferons, and tissue plasminogen activator or TPA, the clot buster for heart attack victims. Except for insulin, these are very high value products; they are extremely potent in small quantities and have a great value per gram of material. It is feasible that microgravity crystallization can be a cost recoverable, economically sound final processing step in their manufacture. Large scale protein crystal growth in microgravity has significant advantages from the basic science and the applied science standpoints. Crystal growth can proceed unhindered due to lack of surface effects. Dynamic control is possible and relatively easy. The method has the potential to yield large quantities of pure crystalline product. Crystallization is a time honored procedure for purifying organic materials and microgravity crystallization could be the final step to remove trace impurities from high value protein pharmaceuticals. In addition, microgravity grown crystals could be the final formulation for those medicines that need to be administered in a timed release fashion. Long lasting insulin, insulin lente, is such a product. Also crystalline protein pharmaceuticals are more stable for long-term storage. Temperature, as the initiation step, has certain advantages. Again, dynamic control of the crystallization process is possible and easy. A temperature step is non-invasive and is the most subtle way to control protein solubility and therefore crystallization. Seeding is not necessary. Changes in protein and precipitant concentrations and pH are not necessary. Finally, this method represents a new way to crystallize proteins in space that takes advantage of the unique microgravity environment. The results

  7. Large-Scale Atmospheric Circulation Patterns Associated with Temperature Extremes as a Basis for Model Evaluation: Methodological Overview and Results

    NASA Astrophysics Data System (ADS)

    Loikith, P. C.; Broccoli, A. J.; Waliser, D. E.; Lintner, B. R.; Neelin, J. D.

    2015-12-01

    Anomalous large-scale circulation patterns often play a key role in the occurrence of temperature extremes. For example, large-scale circulation can drive horizontal temperature advection or influence local processes that lead to extreme temperatures, such as by inhibiting moderating sea breezes, promoting downslope adiabatic warming, and affecting the development of cloud cover. Additionally, large-scale circulation can influence the shape of temperature distribution tails, with important implications for the magnitude of future changes in extremes. As a result of the prominent role these patterns play in the occurrence and character of extremes, the way in which temperature extremes change in the future will be highly influenced by if and how these patterns change. It is therefore critical to identify and understand the key patterns associated with extremes at local to regional scales in the current climate and to use this foundation as a target for climate model validation. This presentation provides an overview of recent and ongoing work aimed at developing and applying novel approaches to identifying and describing the large-scale circulation patterns associated with temperature extremes in observations and using this foundation to evaluate state-of-the-art global and regional climate models. Emphasis is given to anomalies in sea level pressure and 500 hPa geopotential height over North America using several methods to identify circulation patterns, including self-organizing maps and composite analysis. Overall, evaluation results suggest that models are able to reproduce observed patterns associated with temperature extremes with reasonable fidelity in many cases. Model skill is often highest when and where synoptic-scale processes are the dominant mechanisms for extremes, and lower where sub-grid scale processes (such as those related to topography) are important. Where model skill in reproducing these patterns is high, it can be inferred that extremes are

  8. From Hubble's Next Generation Spectral Library (NGSL) to Absolute Fluxes

    NASA Astrophysics Data System (ADS)

    Heap, S. R.; Lindler, D.

    2016-05-01

    Hubble's Next Generation Spectral Library (NGSL) consists of R˜1000 spectra of 374 stars of assorted temperature, gravity, and metallicity. Each spectrum covers the wavelength range, 0.18-1.03 μ. The library can be viewed and/or downloaded from the website, http://archive.stsci.edu/prepds/stisngsl/. Stars in the NGSL are now being used as absolute flux standards at ground-based observatories. However, the uncertainty in the absolute flux is about 2%, which does not meet the requirements of dark-energy surveys. We have therefore developed an observing procedure, data-reduction procedure, and correction algorithms that should yield fluxes with uncertainties less than 1%.

  9. Scaling and design analyses of a scaled-down, high-temperature test facility for experimental investigation of the initial stages of a VHTR air-ingress accident

    SciTech Connect

    Arcilesi, David J.; Ham, Tae Kyu; Kim, In Hun; Sun, Xiaodong; Christensen, Richard N.; Oh, Chang H.

    2015-07-01

    A critical event in the safety analysis of the very high-temperature gas-cooled reactor (VHTR) is an air-ingress accident. This accident is initiated, in its worst case scenario, by a double-ended guillotine break of the coaxial cross vessel, which leads to a rapid reactor vessel depressurization. In a VHTR, the reactor vessel is located within a reactor cavity that is filled with air during normal operating conditions. Following the vessel depressurization, the dominant mode of ingress of an air–helium mixture into the reactor vessel will either be molecular diffusion or density-driven stratified flow. The mode of ingress is hypothesized to depend largely on the break conditions of the cross vessel. Since the time scales of these two ingress phenomena differ by orders of magnitude, it is imperative to understand under which conditions each of these mechanisms will dominate in the air ingress process. Computer models have been developed to analyze this type of accident scenario. There are, however, limited experimental data available to understand the phenomenology of the air-ingress accident and to validate these models. Therefore, there is a need to design and construct a scaled-down experimental test facility to simulate the air-ingress accident scenarios and to collect experimental data. The current paper focuses on the analyses performed for the design and operation of a 1/8th geometric scale (by height and diameter), high-temperature test facility. A geometric scaling analysis for the VHTR, a time scale analysis of the air-ingress phenomenon, a transient depressurization analysis of the reactor vessel, a hydraulic similarity analysis of the test facility, a heat transfer characterization of the hot plenum, a power scaling analysis for the reactor system, and a design analysis of the containment vessel are discussed.

  10. How much global burned area can be forecast on seasonal time scales using sea surface temperatures?

    NASA Astrophysics Data System (ADS)

    Chen, Yang; Morton, Douglas C.; Andela, Niels; Giglio, Louis; Randerson, James T.

    2016-04-01

    Large-scale sea surface temperature (SST) patterns influence the interannual variability of burned area in many regions by means of climate controls on fuel continuity, amount, and moisture content. Some of the variability in burned area is predictable on seasonal timescales because fuel characteristics respond to the cumulative effects of climate prior to the onset of the fire season. Here we systematically evaluated the degree to which annual burned area from the Global Fire Emissions Database version 4 with small fires (GFED4s) can be predicted using SSTs from 14 different ocean regions. We found that about 48% of global burned area can be forecast with a correlation coefficient that is significant at a p < 0.01 level using a single ocean climate index (OCI) 3 or more months prior to the month of peak burning. Continental regions where burned area had a higher degree of predictability included equatorial Asia, where 92% of the burned area exceeded the correlation threshold, and Central America, where 86% of the burned area exceeded this threshold. Pacific Ocean indices describing the El Niño-Southern Oscillation were more important than indices from other ocean basins, accounting for about 1/3 of the total predictable global burned area. A model that combined two indices from different oceans considerably improved model performance, suggesting that fires in many regions respond to forcing from more than one ocean basin. Using OCI—burned area relationships and a clustering algorithm, we identified 12 hotspot regions in which fires had a consistent response to SST patterns. Annual burned area in these regions can be predicted with moderate confidence levels, suggesting operational forecasts may be possible with the aim of improving ecosystem management.

  11. Early Holocene Centennial-Scale Sea Surface Temperature and Salinity Variability in the Florida Straits

    NASA Astrophysics Data System (ADS)

    Weinlein, W. A.; Schmidt, M. W.; Lynch-Stieglitz, J. M.

    2009-12-01

    Paleoproxy data and modeling studies suggest that Early Holocene (10.5 - 7 kyr BP) climate in the western tropical North Atlantic (TNA) was warmer and wetter than today. Perihelion occurred during boreal summer, resulting in an amplified Early Holocene seasonal cycle and a reorganization of the tropical climate system (Oppo et al., 2007). Trace metal records from the Cariaco Basin (Haug et al., 2001) and ostracod δ18O records from Haiti (Hodell, 1991) suggest a northward shift in the Intertropical Convergence Zone (ITCZ) resulted in decreased evaporation-precipitation values in the western TNA. In addition, the final drainage of large pro-glacial lakes into the North Atlantic at 8.2 kyr BP is thought to have resulted in a meltwater-induced reduction in Atlantic meridional overturning circulation that caused widespread cooling in the circum-Atlantic region (Barber et al., 1999; Clarke et al., 2004; Ellison et al., 2006). In order to reconstruct centennial-scale records of Early Holocene sea surface temperature (SST) and salinity (SSS) variability in the Florida Straits, we will measure δ18O values as well as Mg/Ca and Ba/Ca ratios in the planktonic foraminifera Globigerinoides ruber from two sediment cores recovered from the Florida Straits: KNR166-2 JPC-51 (24°24.70’N, 83°13.14’W, 198 m; ~60-100 cm/kyr sedimentation rate) and KNR166-2 GGC-7 (24°21.50’N, 83°20.90’N, 535 m; ~55 cm/kyr sedimentation rate). SSTs are calculated from Mg/Ca ratios based on a published sediment trap calibration (Anand et al., 2003). Initial measurements of Mg/Ca ratios suggest centennial-scale SST oscillations during the Early Holocene. Calculated SSTs vary from 26.3 to 29.8°C and are within the range of modern seasonal variability for our core locations (25-30°C). Calculated Mg/Ca-SSTs will be combined with G. ruber δ18O values to calculate past δ18Oseawater values (a proxy for SSS) using a laboratory calibrated relationship (Bemis et al., 1998). In addition, Ba

  12. The Application of Optimisation Methods to Constrain Absolute Plate Motions

    NASA Astrophysics Data System (ADS)

    Tetley, M. G.; Williams, S.; Hardy, S.; Müller, D.

    2015-12-01

    Plate tectonic reconstructions are an excellent tool for understanding the configuration and behaviour of continents through time on both global and regional scales, and are relatively well understood back to ~200 Ma. However, many of these models represent only relative motions between continents, providing little information of absolute tectonic motions and their relationship with the deep Earth. Significant issues exist in solving this problem, including how to combine constraints from multiple, diverse data into a unified model of absolute plate motions; and how to address uncertainties both in the available data, and in the assumptions involved in this process (e.g. hotspot motion, true polar wander). In deep time (pre-Pangea breakup), plate reconstructions rely more heavily on paleomagnetism, but these data often imply plate velocities much larger than those observed since the breakup of the supercontinent Pangea where plate velocities are constrained by the seafloor spreading record. Here we present two complementary techniques to address these issues, applying parallelized numerical methods to quantitatively investigate absolute plate motions through time. Firstly, we develop a data-fit optimized global absolute reference frame constrained by kinematic reconstruction data, hotspot-trail observations, and trench migration statistics. Secondly we calculate optimized paleomagnetic data-derived apparent polar wander paths (APWPs) for both the Phanerozoic and Precambrian. Paths are generated from raw pole data with optimal spatial and temporal pole configurations calculated using all known uncertainties and quality criteria to produce velocity-optimized absolute motion paths through deep time.

  13. Capturing medium scale heterogeneity in surface water-groundwater interactions: challenges and advantages of high resolution temperature data

    NASA Astrophysics Data System (ADS)

    Shanafield, M.; Cook, P. G.; McCallum, J.; Noorduijn, S.

    2013-12-01

    Although heat is now a commonly-used tracer for quantifying the movement of water between streams and streambed sediments, the measurements are commonly collected as vertical profiles. This results in point measurements that are often difficult to scale up. However, for understanding contaminant transport, nutrient cycling, and ecosystem use, it is important to capture streambed dynamics at a larger scale. In this study, over 1000 meters of fiber optic cable was installed at three depths in five parallel, longitudinal transects within the shallow subsurface of a large, intermittent channel in southeastern Australia. A fiber optic distributed temperature system was then used to collected time variable temperature measurements at each meter along the cable, giving high spatial resolution within the 20 meter by 20 meter by 0.5 meter deep study plot. At this resolution, the raw temperature data itself was useful for examining preferential flow pathways beneath the subsurface. While some areas responded to daily fluctuations in water temperature from the surface, other areas retained the initial temperature, allowing the observation of regions of increased and decreased flux, respectively. Complementing the temperature data, Guelph permeameter measurements for a range of depths at the study site also revealed a highly heterogeneous subsurface, with measured field saturation hydraulic conductivity values ranging from less than 0.006 to 3.1 meters per day. Given a limited amount of head information to parameterize the boundary conditions, the objective was to see how well the patterns observed in the raw data could be quantified using numerical models. Using inverse methods, we therefore used the temperature data to parameterize both one-dimensional and a three-dimensional heat and temperature transport models to quantify differences in flux rates within the study plot. Comparison of the advantages and limitations of these models provides insight into the challenges of

  14. North American extreme temperature events and related large scale meteorological patterns: a review of statistical methods, dynamics, modeling, and trends

    NASA Astrophysics Data System (ADS)

    Grotjahn, Richard; Black, Robert; Leung, Ruby; Wehner, Michael F.; Barlow, Mathew; Bosilovich, Mike; Gershunov, Alexander; Gutowski, William J.; Gyakum, John R.; Katz, Richard W.; Lee, Yun-Young; Lim, Young-Kwon; Prabhat

    2016-02-01

    The objective of this paper is to review statistical methods, dynamics, modeling efforts, and trends related to temperature extremes, with a focus upon extreme events of short duration that affect parts of North America. These events are associated with large scale meteorological patterns (LSMPs). The statistics, dynamics, and modeling sections of this paper are written to be autonomous and so can be read separately. Methods to define extreme events statistics and to identify and connect LSMPs to extreme temperature events are presented. Recent advances in statistical techniques connect LSMPs to extreme temperatures through appropriately defined covariates that supplement more straightforward analyses. Various LSMPs, ranging from synoptic to planetary scale structures, are associated with extreme temperature events. Current knowledge about the synoptics and the dynamical mechanisms leading to the associated LSMPs is incomplete. Systematic studies of: the physics of LSMP life cycles, comprehensive model assessment of LSMP-extreme temperature event linkages, and LSMP properties are needed. Generally, climate models capture observed properties of heat waves and cold air outbreaks with some fidelity. However they overestimate warm wave frequency and underestimate cold air outbreak frequency, and underestimate the collective influence of low-frequency modes on temperature extremes. Modeling studies have identified the impact of large-scale circulation anomalies and land-atmosphere interactions on changes in extreme temperatures. However, few studies have examined changes in LSMPs to more specifically understand the role of LSMPs on past and future extreme temperature changes. Even though LSMPs are resolvable by global and regional climate models, they are not necessarily well simulated. The paper concludes with unresolved issues and research questions.

  15. Nanometer-scale temperature imaging for independent observation of Joule and Peltier effects in phase change memory devices.

    PubMed

    Grosse, Kyle L; Pop, Eric; King, William P

    2014-09-01

    This paper reports a technique for independent observation of nanometer-scale Joule heating and thermoelectric effects, using atomic force microscopy (AFM) based measurements of nanometer-scale temperature fields. When electrical current flows through nanoscale devices and contacts the temperature distribution is governed by both Joule and thermoelectric effects. When the device is driven by an electrical current that is both periodic and bipolar, the temperature rise due to the Joule effect is at a different harmonic than the temperature rise due to the Peltier effect. An AFM tip scanning over the device can simultaneously measure all of the relevant harmonic responses, such that the Joule effect and the Peltier effect can be independently measured. Here we demonstrate the efficacy of the technique by measuring Joule and Peltier effects in phase change memory devices. By comparing the observed temperature responses of these working devices, we measure the device thermopower, which is in the range of 30 ± 3 to 250 ± 10 μV K(-1). This technique could facilitate improved measurements of thermoelectric phenomena and properties at the nanometer-scale. PMID:25273761

  16. Nanometer-scale temperature imaging for independent observation of Joule and Peltier effects in phase change memory devices

    SciTech Connect

    Grosse, Kyle L.; Pop, Eric; King, William P.

    2014-09-15

    This paper reports a technique for independent observation of nanometer-scale Joule heating and thermoelectric effects, using atomic force microscopy (AFM) based measurements of nanometer-scale temperature fields. When electrical current flows through nanoscale devices and contacts the temperature distribution is governed by both Joule and thermoelectric effects. When the device is driven by an electrical current that is both periodic and bipolar, the temperature rise due to the Joule effect is at a different harmonic than the temperature rise due to the Peltier effect. An AFM tip scanning over the device can simultaneously measure all of the relevant harmonic responses, such that the Joule effect and the Peltier effect can be independently measured. Here we demonstrate the efficacy of the technique by measuring Joule and Peltier effects in phase change memory devices. By comparing the observed temperature responses of these working devices, we measure the device thermopower, which is in the range of 30 ± 3 to 250 ± 10 μV K{sup −1}. This technique could facilitate improved measurements of thermoelectric phenomena and properties at the nanometer-scale.

  17. The effect of temperature on chromium vaporization and oxide scale growth on interconnect steels for Solid Oxide Fuel Cells

    NASA Astrophysics Data System (ADS)

    Falk-Windisch, Hannes; Svensson, Jan Erik; Froitzheim, Jan

    2015-08-01

    Chromium vaporization and oxide scale growth are probably the two most important degradation mechanisms associated with the interconnect in Solid Oxide Fuel Cells (SOFCs) when Cr2O3-forming alloys are used as the interconnect material. This study examines the influence of temperature on both mechanisms. Two commercially available steels; Crofer 22 H and Sanergy HT, were isothermally exposed at 650, 750 and 850 °C in an air-3% H2O atmosphere with a high flow rate. Volatile chromium species were collected using the denuder technique. The microstructure of thermally grown oxide scales was characterized using Scanning Electron Microscopy (SEM), Energy Dispersive X-Ray Analysis (EDX) and X-Ray Diffraction (XRD). The findings of this study show that although Cr evaporation is reduced with lower temperature, its relative importance compared to oxide scale growth is greater.

  18. /sup 3/He constant-volume gas thermometry: calculations for a temperature scale between 0. 8 and 25 K

    SciTech Connect

    Pavese, F.; Steur, P.P.M.

    1987-10-01

    A discussion is presented on the possibilities of a /sup 3/He gas thermometer for defining a temperature scale below 30 K, based on recent new measurements of the virial coefficient. The influence of all corrections of interest is given in comparison with /sup 4/He gas thermometry and with /sup 4/He and /sup 3/He vapor pressure thermometry. It is shown that a /sup 3/He gas thermometer can be operated down to temperatures < 1 K, with an estimated inaccuracy of less than +/- 0.5 mK, thereby obviating the explicit need of the /sup 3/He and /sup 4/He vapor pressure scales below 5K, and directly joining a possible scale based on the /sup 3/He melting curve.

  19. A basin-scale approach to estimating stream temperatures of tributaries to the lower Klamath River, California

    USGS Publications Warehouse

    Flint, L.E.; Flint, A.L.

    2008-01-01

    Stream temperature is an important component of salmonid habitat and is often above levels suitable for fish survival in the Lower Klamath River in northern California. The objective of this study was to provide boundary conditions for models that are assessing stream temperature on the main stem for the purpose of developing strategies to manage stream conditions using Total Maximum Daily Loads. For model input, hourly stream temperatures for 36 tributaries were estimated for 1 Jan. 2001 through 31 Oct. 2004. A basin-scale approach incorporating spatially distributed energy balance data was used to estimate the stream temperatures with measured air temperature and relative humidity data and simulated solar radiation, including topographic shading and corrections for cloudiness. Regression models were developed on the basis of available stream temperature data to predict temperatures for unmeasured periods of time and for unmeasured streams. The most significant factor in matching measured minimum and maximum stream temperatures was the seasonality of the estimate. Adding minimum and maximum air temperature to the regression model improved the estimate, and air temperature data over the region are available and easily distributed spatially. The addition of simulated solar radiation and vapor saturation deficit to the regression model significantly improved predictions of maximum stream temperature but was not required to predict minimum stream temperature. The average SE in estimated maximum daily stream temperature for the individual basins was 0.9 ?? 0.6??C at the 95% confidence interval. Copyright ?? 2008 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.

  20. Scaling between magnetic field and temperature in the high-temperature superconductor BaFe2(As1-xPx)2

    NASA Astrophysics Data System (ADS)

    Hayes, Ian M.; McDonald, Ross D.; Breznay, Nicholas P.; Helm, Toni; Moll, Philip J. W.; Wartenbe, Mark; Shekhter, Arkady; Analytis, James G.

    2016-10-01

    Many exotic metallic systems have a resistivity that varies linearly with temperature, and the physics behind this is thought to be connected to high-temperature superconductivity in the cuprates and iron pnictides. Although this phenomenon has attracted considerable attention, it is unclear how the relevant physics manifests in other transport properties, for example their response to an applied magnetic field. We report measurements of the high-field magnetoresistance of the iron pnictide superconductor BaFe2(As1-xPx)2 and find that it obeys an unusual scaling relationship between applied magnetic field and temperature, with a conversion factor given simply by the ratio of the Bohr magneton and the Boltzmann constant. This suggests that magnetic fields probe the same physics that gives rise to the T-linear resistivity, providing a new experimental clue to this long-standing puzzle.

  1. High-temperature hydrogen-air-steam detonation experiments in the BNL Small-Scale Development Apparatus

    SciTech Connect

    Ciccarelli, G.; Ginsberg, T.; Boccio, J.; Economos, C.; Finfrock, C.; Gerlach, L.; Sato, K.

    1993-12-31

    The Small-Scale Development Apparatus (SSDA) was constructed to provide a preliminary set of experimental data to characterize the effect of temperature on the ability of hydrogen-air-steam mixtures to undergo detonations and, equally important, to support design of the larger-scale High-Temperature Combustion Facility (HTCF) by providing a test bed for solution of a number of high-temperature design and operational problems. The SSDA, the central element of which is a lo-cm inside diameter, 6.1-m long tubular test vessel designed to permit detonation experiments at temperatures up to 700K, was employed to study self-sustained detonations in gaseous mixtures of hydrogen, air, and steam at temperatures between 300K and 650K at a fixed pressure of 0.1 MPa. Detonation cell size measurements provide clear evidence that the effect of hydrogen-air gas mixture temperature, in the range 300K to 650K, is to decrease cell size and, hence, to increase the sensitivity of the mixture to undergo detonations. The effect of steam content, at any given temperature, is to increase the cell size and, thereby, to decrease the sensitivity of stoichiometric hydrogen-air mixtures. The one-dimensional ZND model does a very good job at predicting the overall trends in the cell size data over the range of hydrogen-air-steam mixture compositions and temperature studied in the experiments. Experiments were conducted to measure the rate of hydrogen oxidation in the absence of ignition sources at temperatures of 500K and 650K, for hydrogen-air mixtures of 15 percent and 50 percent, and for a mixture of equimolar hydrogen-air and 30 percent steam at 650K. The rate of hydrogen oxidation was found to be significant at 650K. Reduction of hydrogen concentration by chemical reaction from 50 to 44 percent hydrogen, and from 15 to 11 percent hydrogen, were observed on a time frame of minutes.

  2. Absolute configuration of isovouacapenol C

    PubMed Central

    Fun, Hoong-Kun; Yodsaoue, Orapun; Karalai, Chatchanok; Chantrapromma, Suchada

    2010-01-01

    The title compound, C27H34O5 {systematic name: (4aR,5R,6R,6aS,7R,11aS,11bR)-4a,6-dihy­droxy-4,4,7,11b-tetra­methyl-1,2,3,4,4a,5,6,6a,7,11,11a,11b-dodeca­hydro­phenanthro[3,2-b]furan-5-yl benzoate}, is a cassane furan­oditerpene, which was isolated from the roots of Caesalpinia pulcherrima. The three cyclo­hexane rings are trans fused: two of these are in chair conformations with the third in a twisted half-chair conformation, whereas the furan ring is almost planar (r.m.s. deviation = 0.003 Å). An intra­molecular C—H⋯O inter­action generates an S(6) ring. The absolute configurations of the stereogenic centres at positions 4a, 5, 6, 6a, 7, 11a and 11b are R, R, R, S, R, S and R, respectively. In the crystal, mol­ecules are linked into infinite chains along [010] by O—H⋯O hydrogen bonds. C⋯O [3.306 (2)–3.347 (2) Å] short contacts and C—H⋯π inter­actions also occur. PMID:21588364

  3. Influence of Fog and Overcast on Stream Temperature across Several Scales

    NASA Astrophysics Data System (ADS)

    Madej, M. A.

    2012-12-01

    Elevated water temperatures have been implicated in fish kills and fish disease in salmon-bearing rivers in the western United States. In addition, fish behavior changes with increased temperature as salmon search for cooler water. Direct solar radiation is a major component of a river's energy balance. Consequently, summer fog and low clouds, by decreasing solar radiation received at the water surface, moderate water temperatures during summer low flow. Water temperature regimes from 1997 to 2012 in streams in Humboldt County, north coastal California, were examined to assess the influence of coastal fog and stratus on daily and seasonal water temperatures. Data loggers recorded water temperature at hourly intervals at 12 stream gaging sites. Fog and solar radiation data sets were compiled from Arcata Airport (KACV) and Humboldt State University records. Stream temperature was correlated with streamflow early in the summer, but flow decreased in importance as discharge receded later in the summer. Streams under closed canopy draining small watersheds (< 20 km^2) displayed only minor cooling response (1 to 1.5 degrees C) of daily maximum temperature to fog events (> 8 hours of daytime fog). In contrast, larger rivers without closed canopies (70 to 700 km^2) were more responsive to decreases in solar radiation and were 2 to 4 degrees cooler on foggy days. Minimum daily stream temperatures exhibited a more subdued response to fog, but streams were 1 to 2 degrees warmer on foggy nights than on clear nights. Consequently, the range of diurnal temperature fluctuation was narrower under foggy conditions. Seasonal temperature maxima were generally reached in late July, and maximum weekly average temperature, a common metric used to quantify stress on fish, was highest in years with the highest solar radiation values. Many rivers in this region already display summer temperatures at the higher end of tolerance by salmon. If fog frequency decreases under changing climatic

  4. Frequency-domain analysis of absolute gravimeters

    NASA Astrophysics Data System (ADS)

    Svitlov, S.

    2012-12-01

    An absolute gravimeter is analysed as a linear time-invariant system in the frequency domain. Frequency responses of absolute gravimeters are derived analytically based on the propagation of the complex exponential signal through their linear measurement functions. Depending on the model of motion and the number of time-distance coordinates, an absolute gravimeter is considered as a second-order (three-level scheme) or third-order (multiple-level scheme) low-pass filter. It is shown that the behaviour of an atom absolute gravimeter in the frequency domain corresponds to that of the three-level corner-cube absolute gravimeter. Theoretical results are applied for evaluation of random and systematic measurement errors and optimization of an experiment. The developed theory agrees with known results of an absolute gravimeter analysis in the time and frequency domains and can be used for measurement uncertainty analyses, building of vibration-isolation systems and synthesis of digital filtering algorithms.

  5. Method of differential-phase/absolute-amplitude QAM

    DOEpatents

    Dimsdle, Jeffrey William

    2007-07-03

    A method of quadrature amplitude modulation involving encoding phase differentially and amplitude absolutely, allowing for a high data rate and spectral efficiency in data transmission and other communication applications, and allowing for amplitude scaling to facilitate data recovery; amplitude scale tracking to track-out rapid and severe scale variations and facilitate successful demodulation and data retrieval; 2.sup.N power carrier recovery; incoherent demodulation where coherent carrier recovery is not possible or practical due to signal degradation; coherent demodulation; multipath equalization to equalize frequency dependent multipath; and demodulation filtering.

  6. Method of differential-phase/absolute-amplitude QAM

    DOEpatents

    Dimsdle, Jeffrey William

    2008-10-21

    A method of quadrature amplitude modulation involving encoding phase differentially and amplitude absolutely, allowing for a high data rate and spectral efficiency in data transmission and other communication applications, and allowing for amplitude scaling to facilitate data recovery; amplitude scale tracking to track-out rapid and severe scale variations and facilitate successful demodulation and data retrieval; 2.sup.N power carrier recovery; incoherent demodulation where coherent carrier recovery is not possible or practical due to signal degradation; coherent demodulation; multipath equalization to equalize frequency dependent multipath; and demodulation filtering.

  7. Method of differential-phase/absolute-amplitude QAM

    DOEpatents

    Dimsdle, Jeffrey William

    2007-07-17

    A method of quadrature amplitude modulation involving encoding phase differentially and amplitude absolutely, allowing for a high data rate and spectral efficiency in data transmission and other communication applications, and allowing for amplitude scaling to facilitate data recovery; amplitude scale tracking to track-out rapid and severe scale variations and facilitate successful demodulation and data retrieval; 2.sup.N power carrier recovery; incoherent demodulation where coherent carrier recovery is not possible or practical due to signal degradation; coherent demodulation; multipath equalization to equalize frequency dependent multipath; and demodulation filtering.

  8. Method of differential-phase/absolute-amplitude QAM

    DOEpatents

    Dimsdle, Jeffrey William

    2007-10-02

    A method of quadrature amplitude modulation involving encoding phase differentially and amplitude absolutely, allowing for a high data rate and spectral efficiency in data transmission and other communication applications, and allowing for amplitude scaling to facilitate data recovery; amplitude scale tracking to track-out rapid and severe scale variations and facilitate successful demodulation and data retrieval; 2.sup.N power carrier recovery; incoherent demodulation where coherent carrier recovery is not possible or practical due to signal degradation; coherent demodulation; multipath equalization to equalize frequency dependent multipath; and demodulation filtering.

  9. Method of differential-phase/absolute-amplitude QAM

    DOEpatents

    Dimsdle, Jeffrey William

    2009-09-01

    A method of quadrature amplitude modulation involving encoding phase differentially and amplitude absolutely, allowing for a high data rate and spectral efficiency in data transmission and other communication applications, and allowing for amplitude scaling to facilitate data recovery; amplitude scale tracking to track-out rapid and severe scale variations and facilitate successful demodulation and data retrieval; 2.sup.N power carrier recovery; incoherent demodulation where coherent carrier recovery is not possible or practical due to signal degradation; coherent demodulation; multipath equalization to equalize frequency dependent multipath; and demodulation filtering.

  10. From boiling point to glass transition temperature: Transport coefficients in molecular liquids follow three-parameter scaling

    NASA Astrophysics Data System (ADS)

    Schmidtke, B.; Petzold, N.; Kahlau, R.; Hofmann, M.; Rössler, E. A.

    2012-10-01

    The phenomenon of the glass transition is an unresolved problem in condensed matter physics. Its prominent feature, the super-Arrhenius temperature dependence of the transport coefficients, remains a challenge to be described over the full temperature range. For a series of molecular glass formers, we combined τ(T) collected from dielectric spectroscopy and dynamic light scattering covering a range 10-12 s < τ(T) < 102 s. Describing the dynamics in terms of an activation energy E(T), we distinguish a high-temperature regime characterized by an Arrhenius law with a constant activation energy E∞ and a low-temperature regime for which Ecoop(T) ≡ E(T)-E∞ increases exponentially while cooling. A scaling is introduced, specifically Ecoop(T)/E∞ ∝ exp[-λ(T/TA-1)], where λ is a fragility parameter and TA a reference temperature proportional to E∞. In order to describe τ(T) still the attempt time τ∞ has to be specified. Thus, a single interaction parameter E∞ describing the high-temperature regime together with λ controls the temperature dependence of low-temperature cooperative dynamics.

  11. From boiling point to glass transition temperature: transport coefficients in molecular liquids follow three-parameter scaling.

    PubMed

    Schmidtke, B; Petzold, N; Kahlau, R; Hofmann, M; Rössler, E A

    2012-10-01

    The phenomenon of the glass transition is an unresolved problem in condensed matter physics. Its prominent feature, the super-Arrhenius temperature dependence of the transport coefficients, remains a challenge to be described over the full temperature range. For a series of molecular glass formers, we combined τ(T) collected from dielectric spectroscopy and dynamic light scattering covering a range 10(-12) s < τ(T) < 10(2) s. Describing the dynamics in terms of an activation energy E(T), we distinguish a high-temperature regime characterized by an Arrhenius law with a constant activation energy E(∞) and a low-temperature regime for which E(coop)(T) ≡ E(T)-E(∞) increases exponentially while cooling. A scaling is introduced, specifically E(coop)(T)/E(∞) [proportionality] exp[-λ(T/T(A)-1)], where λ is a fragility parameter and T(A) a reference temperature proportional to E(∞). In order to describe τ(T) still the attempt time τ(∞) has to be specified. Thus, a single interaction parameter E(∞) describing the high-temperature regime together with λ controls the temperature dependence of low-temperature cooperative dynamics. PMID:23214591

  12. From boiling point to glass transition temperature: transport coefficients in molecular liquids follow three-parameter scaling.

    PubMed

    Schmidtke, B; Petzold, N; Kahlau, R; Hofmann, M; Rössler, E A

    2012-10-01

    The phenomenon of the glass transition is an unresolved problem in condensed matter physics. Its prominent feature, the super-Arrhenius temperature dependence of the transport coefficients, remains a challenge to be described over the full temperature range. For a series of molecular glass formers, we combined τ(T) collected from dielectric spectroscopy and dynamic light scattering covering a range 10(-12) s < τ(T) < 10(2) s. Describing the dynamics in terms of an activation energy E(T), we distinguish a high-temperature regime characterized by an Arrhenius law with a constant activation energy E(∞) and a low-temperature regime for which E(coop)(T) ≡ E(T)-E(∞) increases exponentially while cooling. A scaling is introduced, specifically E(coop)(T)/E(∞) [proportionality] exp[-λ(T/T(A)-1)], where λ is a fragility parameter and T(A) a reference temperature proportional to E(∞). In order to describe τ(T) still the attempt time τ(∞) has to be specified. Thus, a single interaction parameter E(∞) describing the high-temperature regime together with λ controls the temperature dependence of low-temperature cooperative dynamics.

  13. The lithosphere-scale density and temperature configuration beneath the Barents Sea and Kara Sea region

    NASA Astrophysics Data System (ADS)

    Klitzke, Peter; Faleide, Jan Inge; Sippel, Judith; Scheck-Wenderoth, Magdalena

    2014-05-01

    major controlling factors of the thermal field, the obtained 3D density model is used to calculate the lithosphere-scale 3D conductive thermal field of the Barents Sea and Kara Sea region. Therefore, the predicted thermal field is validated with measured borehole temperatures.

  14. Development of a High-Temperature Tensile Tester for Micromechanical Characterization of Materials Supporting Meso-Scale ICME Models

    NASA Astrophysics Data System (ADS)

    Alam, Zafir; Eastman, David; Jo, Minjea; Hemker, Kevin

    2016-09-01

    A high-temperature tensile tester (HTTT) has been established for the evaluation of micro-mechanical properties of materials at the meso-scale. Metals and ceramics can now be tested at temperatures and strain rates between room temperature and 1200°C and 10-5 s-1 to 10-1 s-1, respectively. The samples are heated in a compact clam shell furnace and strain is measured directly in the sample gage with digital image correlation. The HTTT extracts representative mechanical properties, as evidenced by the similarity in the evaluated micro-tensile properties of a solid solution-strengthened Ni-base superalloy Ni-625 with that of the bulk. The effectiveness of the HTTT has also been demonstrated in evaluating the tensile and stress relaxation/short-term creep properties of a polycrystalline Ni-base superalloy René 88DT. The versatility in carrying out tensile, short-term creep, bend tests, and fracture toughness measurements makes the HTTT a robust experimental tool for small-scale and scale-specific benchmarking of multi-scale ICME models.

  15. Time scales of the European surface air temperature variability: The role of the 7-8 year cycle

    NASA Astrophysics Data System (ADS)

    Jajcay, Nikola; Hlinka, Jaroslav; Kravtsov, Sergey; Tsonis, Anastasios A.; Paluš, Milan

    2016-01-01

    Air temperature variability on different time scales exhibits recurring patterns and quasi-oscillatory phenomena. Climate oscillations with the period about 7-8 years have been observed in many instrumental records in Europe. Although these oscillations are weak if considering their amplitude, they might have nonnegligible influence on temperature variability on shorter time scales due to cross-scale interactions recently observed by Paluš (2014). In order to quantify the cross-scale influence, we propose a simple conditional mean approach which estimates the effect of the cycle with the period close to 8 years on the amplitude of the annual cycle in surface air temperature (SAT) in the range 0.7-1.4°C and the effect on the overall variability of the SAT anomalies (SATA) leads to the changes 1.5-1.7°C in the annual SATA means. The strongest effect in the winter SATA means reaches 4-5°C in central European station and reanalysis data.

  16. Effects of Fine-Scale Landscape Variability on Satellite-Derived Land Surface Temperature Products Over Sparse Vegetation Canopies

    NASA Astrophysics Data System (ADS)

    Powell, R. L.; Goulden, M.; Peterson, S.; Roberts, D. A.; Still, C. J.

    2015-12-01

    Temperature is a primary environmental control on biological systems and processes at a range of spatial and temporal scales, from controlling biochemical processes such as photosynthesis to influencing continental-scale species distribution. The Landsat satellite series provides a long record (since the mid-1980s) of relatively high spatial resolution thermal infrared (TIR) imagery, from which we derive land surface temperature (LST) grids. Here, we investigate fine spatial resolution factors that influence Landsat-derived LST over a spectrally and spatially heterogeneous landscape. We focus on paired sites (inside/outside a 1994 fire scar) within a pinyon-juniper scrubland in Southern California. The sites have nearly identical micro-meteorology and vegetation species composition, but distinctly different vegetation abundance and structure. The tower at the unburned site includes a number of in-situ imaging tools to quantify vegetation properties, including a thermal camera on a pan-tilt mount, allowing hourly characterization of landscape component temperatures (e.g., sunlit canopy, bare soil, leaf litter). We use these in-situ measurements to assess the impact of fine-scale landscape heterogeneity on estimates of LST, including sensitivity to (i) the relative abundance of component materials, (ii) directional effects due to solar and viewing geometry, (iii) duration of sunlit exposure for each compositional type, and (iv) air temperature. To scale these properties to Landsat spatial resolution (~100-m), we characterize the sub-pixel composition of landscape components (in addition to shade) by applying spectral mixture analysis (SMA) to the Landsat Operational Land Imager (OLI) spectral bands and test the sensitivity of the relationships established with the in-situ data at this coarser scale. The effects of vegetation abundance and cover height versus other controls on satellite-derived estimates of LST will be assessed by comparing estimates at the burned vs

  17. Effects of urban impervious surfaces on land surface temperatures: Spatial scale dependence, temporal variations, and bioclimatic modulation

    NASA Astrophysics Data System (ADS)

    Ma, Qun; Wu, Jianguo; He, Chunyang

    2016-04-01

    Quantifying the relationship between urban impervious surfaces (UIS) and land surface temperatures (LST) is important for understanding and mitigating the environmental impacts of urban heat islands in human-dominated landscapes. The main goal of this study was to examine how the UIS-LST relationship changes with spatial scales, seasonal and diurnal variations, and bioclimatic context in mainland China. We took a hierarchical approach that explicitly considered three spatial scales: the ecoregion, urban cluster, and urban core. Remote sensing data and regression methods were used. Our results showed that, in general, UIS and LST were positively correlated in summer and winter nighttime, but negatively in winter daytime. The strength of correlation increased from broad to fine scales. For example, the mean R2 for winter nights was 3 times higher at the urban core scale than at the ecoregion scale. The relationship showed large seasonal and diurnal variations: generally stronger in summer than in winter and stronger in nighttime than in daytime. At the urban core scale, for instance, the mean R2 was 2.2 times higher in summer daytime than in winter daytime, and 3.1 times higher in winter nighttime than in winter daytime. Vegetation and climate modified the relationship during summer daytime on the ecoregion scale. In conclusion, UIS has substantial influences on LST, and these effects vary greatly with spatial scales, diurnal/seasonal cycles, and bioclimatic context. Our study reveals several trends on the scale multiplicity, temporal variations, and context dependence of the UIS-LST relationship, which deserve further examination. Importantly, high mean R2 values with large variations on the local urban scale suggest that a great potential exists for mitigating urban heat island effects via urban landscape planning.

  18. Experimental determination of the cooperative length scale of a glass-forming liquid near the glass transition temperature

    NASA Astrophysics Data System (ADS)

    Rizos, A. K.; Ngai, K. L.

    1999-01-01

    Photon correlation spectroscopy and dielectric relaxation are used to examine the molecular reorientation relaxation dynamics of a fragile glass-forming liquid Aroclor (a mixture of polychlorinated biphenyls), modified by the addition of low- and high-molecular-weight polyisoprene and polybutadiene as a function of temperature and polymer solute concentration. Concentration fluctuation contributes a temperature-dependent broadening of the relaxation spectrum of Aroclor. The rate of change of the Aroclor relaxation spectrum with temperature is more pronounced when the polymers added are of low molecular weight and exhibits a steplike decrease in the neighborhood of some characteristic molecular weight. The radius of gyration of the polymer with this characteristic molecular weight is about 15 Å, which determines the cooperative length scale L(T) of Aroclor to be approximately 30 Å near and above the glass transition temperature.

  19. Hydrogen atom temperature measured with wavelength-modulated laser absorption spectroscopy in large scale filament arc negative hydrogen ion source

    SciTech Connect

    Nakano, H. Goto, M.; Tsumori, K.; Kisaki, M.; Ikeda, K.; Nagaoka, K.; Osakabe, M.; Takeiri, Y.; Kaneko, O.; Nishiyama, S.; Sasaki, K.

    2015-04-08

    The velocity distribution function of hydrogen atoms is one of the useful parameters to understand particle dynamics from negative hydrogen production to extraction in a negative hydrogen ion source. Hydrogen atom temperature is one of the indicators of the velocity distribution function. To find a feasibility of hydrogen atom temperature measurement in large scale filament arc negative hydrogen ion source for fusion, a model calculation of wavelength-modulated laser absorption spectroscopy of the hydrogen Balmer alpha line was performed. By utilizing a wide range tunable diode laser, we successfully obtained the hydrogen atom temperature of ∼3000 K in the vicinity of the plasma grid electrode. The hydrogen atom temperature increases as well as the arc power, and becomes constant after decreasing with the filling of hydrogen gas pressure.

  20. Fine-scale temperature fluctuation and modulation of Dirofilaria immitis larval development in Aedes aegypti

    PubMed Central

    Ledesma, Nicholas; Harrington, Laura

    2015-01-01

    We evaluated degree-day predictions of Dirofilaria immitis development (HDU) under constant and fluctuating temperature treatments of equal average daily temperature. Aedes aegypti mosquitoes were infected with D. immitis microfilariae and parasite development was recorded at set time points in dissected mosquitoes. Time to L3 development in Malpighian tubules and detection in mosquito heads was shorter for larvae experiencing a daily regime of 19±9°C than larvae at constant 19°C; larval development rate in Malpighian tubules was slower in fluctuating regimes maintained above the 14°C developmental threshold than larvae under constant temperatures. We showed that hourly temperature modeling more accurately predicted D. immitis development to infective L3 stage. Development time differed between fluctuating and constant temperature treatments spanning the 14°C development threshold, implicating a physiological basis for these discrepancies. We conclude that average daily temperature models underestimate L3 development—and consequently dog heartworm transmission risk—at colder temperatures, and spatio-temporal models of D. immitis transmission risk should use hourly temperature data when analyzing high daily temperature ranges spanning 14°C. PMID:25747489

  1. Fine-scale temperature fluctuation and modulation of Dirofilaria immitis larval development in Aedes aegypti.

    PubMed

    Ledesma, Nicholas; Harrington, Laura

    2015-04-15

    We evaluated degree-day predictions of Dirofilaria immitis development (HDU) under constant and fluctuating temperature treatments of equal average daily temperature. Aedes aegypti mosquitoes were infected with D. immitis microfilariae and parasite development was recorded at set time points in dissected mosquitoes. Time to L3 development in Malpighian tubules and detection in mosquito heads was shorter for larvae experiencing a daily regime of 19±9°C than larvae at constant 19°C; larval development rate in Malpighian tubules was slower in fluctuating regimes maintained above the 14°C developmental threshold than larvae under constant temperatures. We showed that hourly temperature modeling more accurately predicted D. immitis development to infective L3 stage. Development time differed between fluctuating and constant temperature treatments spanning the 14°C development threshold, implicating a physiological basis for these discrepancies. We conclude that average daily temperature models underestimate L3 development-and consequently dog heartworm transmission risk-at colder temperatures, and spatiotemporal models of D. immitis transmission risk should use hourly temperature data when analyzing high daily temperature ranges spanning 14°C.

  2. Investigation of temperature increase associated with liquid deformations at the nanometer scale

    NASA Astrophysics Data System (ADS)

    Kono, Susumu; Kaneko, Toshihiro; Ueno, Ichiro

    2015-11-01

    The bursting of thin liquid films has been investigated for over a century. Recently, the velocity field and heat generation process in a rupturing film were clarified by numerical studies. In the present study, we discuss the temperature increase due to heat generation in a rupturing film on the basis of the molecular kinetic theory on a microcanonical ensemble, and we estimate the value of the temperature increase. We attempted to generalize the approach for calculating the temperature increase in polyatomic molecules. In addition, we applied the calculation to thread retraction and derived the value of the temperature increase due to heat generation in the system.

  3. Simultaneous Temperature and Velocity Measurements in a Large-Scale, Supersonic, Heated Jet

    NASA Technical Reports Server (NTRS)

    Danehy, P. M.; Magnotti, G.; Bivolaru, D.; Tedder, S.; Cutler, A. D.

    2008-01-01

    Two laser-based measurement techniques have been used to characterize an axisymmetric, combustion-heated supersonic jet issuing into static room air. The dual-pump coherent anti-Stokes Raman spectroscopy (CARS) measurement technique measured temperature and concentration while the interferometric Rayleigh scattering (IRS) method simultaneously measured two components of velocity. This paper reports a preliminary analysis of CARS-IRS temperature and velocity measurements from selected measurement locations. The temperature measurements show that the temperature along the jet axis remains constant while dropping off radially. The velocity measurements show that the nozzle exit velocity fluctuations are about 3% of the maximum velocity in the flow.

  4. Unifying the Thermodynamic and Colour Temperature Scales with Gall's Black Body Radiation Law

    NASA Astrophysics Data System (ADS)

    Gall, Clarence A.

    2008-05-01

    The determination of high temperatures (colour temperature) when it is not possible to apply Charles' Law (thermodynamic temperature) is a fundamental problem in scientific measurement. Wien's displacement law ( 1λm=Tb) has long suggested that the reciprocal wavelength at maximum emitted intensity is directly proportional to and hence is a measure of temperature. However Planck's and all previous distribution laws do not make direct use of the empirical constants ( σ,b) in their formulation. It has not thus been possible to directly relate the wavelength at maximum emitted intensity and the given temperature with the proportionality constant b. Gall's distribution law ( IG=σT^6b^2 λe^-Tbλ) (BAPS, March Meeting 2007, X21.4, Denver, CO) which treats emission as a decay process, employs these empirical constants directly in its formulation. It satisfies exactly the three empirical laws of black body radiation. It establishes a direct relationship between the wavelength at maximum emitted intensity and the given temperature with Wien's constant b. The distribution law can then be reformulated as ( IG=σGG^6 λe^-Gλ) where ( G=Tb =1λm) and ( σG=b^4 σ) . If the colour temperature is defined as 1λm, it becomes identical to the thermodynamic temperature over the entire temperature range.

  5. Demonstration and System Analysis of High Temperature Steam Electrolysis for Large-Scale Hydrogen Production Using SOFCs

    SciTech Connect

    Michael G. McKellar; James E. O'Brien; Carl M. Stoots; J. Stephen Herring

    2008-07-01

    At the Idaho National Engineering Laboratory, an integrated laboratory scale (ILS), 15 kW high-temperature electrolysis (HTE) facility has been developed under the U.S. Department of Energy Nuclear Hydrogen Initiative. Initial operation of this facility resulted in over 400 hours of operation with an average hydrogen production rate of approximately 0.9 Nm3/hr. The integrated laboratory scale facility is designed to address larger-scale issues such as thermal management (feed-stock heating, high-temperature gas handling), multiple-stack hot-zone design, multiple-stack electrical configurations, and other “integral” issues. Additionally, a reference process model of a commercial-scale high-temperature electrolysis plant for hydrogen production has been developed. The reference plant design is driven by a 600 megawatt thermal high-temperature helium-cooled reactor coupled to a direct Brayton power cycle. The electrolysis unit used to produce hydrogen consists of 4.01×106 cells with a per-cell active area of 225 cm2. A nominal cell area-specific resistance, ASR, value of 0.4 Ohm•cm2 with a current density of 0.25 A/cm2 was used, and isothermal boundary conditions were assumed. The overall system thermal-to-hydrogen production efficiency (based on the low heating value of the produced hydrogen) is 47.1% at a hydrogen production rate of 2.36 kg/s with the high-temperature helium-cooled reactor concept. This paper documents the initial operation of the ILS, with experimental details about heat-up, initial stack performance, as well as long-term operation and stack degradation. The paper will also present the optimized design for the reference nuclear-driven HTE hydrogen production plant which may be compared with other hydrogen production methods and power cycles to evaluate relative performance characteristics and plant economics.

  6. Millimeter Scale.

    ERIC Educational Resources Information Center

    Harvill, Leo M.

    This absolute scale contains nine times, each of which consists of a 100 millimeter vertical line with small division marks every 25 millimeters with the words "high" at the top and "low" at the bottom of the line. Above each of the vertical lines is a word or phrase. For the second grade scale these words are: arithmetic, counting, adding,…

  7. Scale

    ERIC Educational Resources Information Center

    Schaffhauser, Dian

    2009-01-01

    The common approach to scaling, according to Christopher Dede, a professor of learning technologies at the Harvard Graduate School of Education, is to jump in and say, "Let's go out and find more money, recruit more participants, hire more people. Let's just keep doing the same thing, bigger and bigger." That, he observes, "tends to fail, and fail…

  8. High-temperature hydrogen-air-steam detonation experiments in the BNL small-scale development apparatus

    SciTech Connect

    Ciccarelli, G.; Ginsburg, T.; Boccio, J.; Economos, C.; Finfrock, C.; Gerlach, L.; Sato, K.; Kinoshita, M.

    1994-08-01

    The Small-Scale Development Apparatus (SSDA) was constructed to provide a preliminary set of experimental data to characterize the effect of temperature on the ability of hydrogen-air-steam mixtures to undergo detonations and, equally important, to support design of the larger scale High-Temperature Combustion Facility (HTCF) by providing a test bed for solution of a number of high-temperature design and operational problems. The SSDA, the central element of which is a 10-cm inside diameter, 6.1-m long tubular test vessel designed to permit detonation experiments at temperatures up to 700K, was employed to study self-sustained detonations in gaseous mixtures of hydrogen, air, and steam at temperatures between 300K and 650K at a fixed initial pressure of 0.1 MPa. Hydrogen-air mixtures with hydrogen composition from 9 to 60 percent by volume and steam fractions up to 35 percent by volume were studied for stoichiometric hydrogen-air-steam mixtures. Detonation cell size measurements provide clear evidence that the effect of hydrogen-air gas mixture temperature, in the range 300K-650K, is to decrease cell size and, hence, to increase the sensitivity of the mixture to undergo detonations. The effect of steam content, at any given temperature, is to increase the cell size and, thereby, to decrease the sensitivity of stoichiometric hydrogen-air mixtures. The hydrogen-air detonability limits for the 10-cm inside diameter SSDA test vessel, based upon the onset of single-head spin, decreased from 15 percent hydrogen at 300K down to between 9 and 10 percent hydrogen at 650K. The one-dimensional ZND model does a very good job at predicting the overall trends in the cell size data over the range of hydrogen-air-steam mixture compositions and temperature studied in the experiments.

  9. Scaling analysis of the coupled heat transfer process in the high-temperature gas-cooled reactor core

    SciTech Connect

    Conklin, J.C.

    1986-08-01

    The differential equations representing the coupled heat transfer from the solid nuclear core components to the helium in the coolant channels are scaled in terms of representative quantities. This scaling process identifies the relative importance of the various terms of the coupled differential equations. The relative importance of these terms is then used to simplify the numerical solution of the coupled heat transfer for two bounding cases of full-power operation and depressurization from full-system operating pressure for the Fort St. Vrain High-Temperature Gas-Cooled Reactor. This analysis rigorously justifies the simplified system of equations used in the nuclear safety analysis effort at Oak Ridge National Laboratory.

  10. Scaling Theory of the Mott Transition and Breakdown of the Gr"uneisen Scaling Near a Finite-Temperature Critical End Point

    NASA Astrophysics Data System (ADS)

    Bartosch, Lorenz

    2012-02-01

    We discuss a scaling theory of the lattice response in the vicinity of a finite-temperature critical end point. The thermal expansivity is shown to be more singular than the specific heat such that the Gr"uneisen ratio diverges as the critical point is approached, except for its immediate vicinity. More generally, we express the thermal expansivity in terms of a scaling function which we explicitly evaluate for the two-dimensional Ising universality class. Recent thermal expansivity measurements on the layered organic conductor κ-(BEDT-TTF)2X close to the Mott transition are well described by our theory.[2mm] [1] Lorenz Bartosch, Mariano de Souza, and Michael Lang, Physical Review Letters 104, 245701 (2010).

  11. HIGH-TEMPERATURE ELECTROLYSIS FOR LARGE-SCALE HYDROGEN AND SYNGAS PRODUCTION FROM NUCLEAR ENERGY – SYSTEM SIMULATION AND ECONOMICS

    SciTech Connect

    J. E. O'Brien; M. G. McKellar; E. A. Harvego; C. M. Stoots

    2009-05-01

    A research and development program is under way at the Idaho National Laboratory (INL) to assess the technological and scale-up issues associated with the implementation of solid-oxide electrolysis cell technology for efficient high-temperature hydrogen production from steam. This work is supported by the US Department of Energy, Office of Nuclear Energy, under the Nuclear Hydrogen Initiative. This paper will provide an overview of large-scale system modeling results and economic analyses that have been completed to date. System analysis results have been obtained using the commercial code UniSim, augmented with a custom high-temperature electrolyzer module. Economic analysis results were based on the DOE H2A analysis methodology. The process flow diagrams for the system simulations include an advanced nuclear reactor as a source of high-temperature process heat, a power cycle and a coupled steam electrolysis loop. Several reactor types and power cycles have been considered, over a range of reactor outlet temperatures. Pure steam electrolysis for hydrogen production as well as coelectrolysis for syngas production from steam/carbon dioxide mixtures have both been considered. In addition, the feasibility of coupling the high-temperature electrolysis process to biomass and coal-based synthetic fuels production has been considered. These simulations demonstrate that the addition of supplementary nuclear hydrogen to synthetic fuels production from any carbon source minimizes emissions of carbon dioxide during the production process.

  12. Effect of temperature on methane production from field-scale anaerobic digesters treating dairy manure

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Temperature is a critical factor affecting anaerobic digestion because it influences both system heating requirements and methane production. Temperatures of 35-37°C are typically suggested for manure digestion, yet in temperate climate digesters, require a considerable amount of additional heat en...

  13. Extended temperature-accelerated dynamics: Enabling long-time full-scale modeling of large rare-event systems

    SciTech Connect

    Bochenkov, Vladimir; Suetin, Nikolay; Shankar, Sadasivan

    2014-09-07

    A new method, the Extended Temperature-Accelerated Dynamics (XTAD), is introduced for modeling long-timescale evolution of large rare-event systems. The method is based on the Temperature-Accelerated Dynamics approach [M. Sørensen and A. Voter, J. Chem. Phys. 112, 9599 (2000)], but uses full-scale parallel molecular dynamics simulations to probe a potential energy surface of an entire system, combined with the adaptive on-the-fly system decomposition for analyzing the energetics of rare events. The method removes limitations on a feasible system size and enables to handle simultaneous diffusion events, including both large-scale concerted and local transitions. Due to the intrinsically parallel algorithm, XTAD not only allows studies of various diffusion mechanisms in solid state physics, but also opens the avenue for atomistic simulations of a range of technologically relevant processes in material science, such as thin film growth on nano- and microstructured surfaces.

  14. The Joint Statistics of California Temperature and Precipitation as a Function of the Large-scale State of the Climate

    NASA Astrophysics Data System (ADS)

    OBrien, J. P.; O'Brien, T. A.

    2015-12-01

    Single climatic extremes have a strong and disproportionate effect on society and the natural environment. However, the joint occurrence of two or more concurrent extremes has the potential to negatively impact these areas of life in ways far greater than any single event could. California, USA, home to nearly 40 million people and the largest agricultural producer in the United States, is currently experiencing an extreme drought, which has persisted for several years. While drought is commonly thought of in terms of only precipitation deficits, above average temperatures co-occurring with precipitation deficits greatly exacerbate drought conditions. The 2014 calendar year in California was characterized both by extremely low precipitation and extremely high temperatures, which has significantly deepened the already extreme drought conditions leading to severe water shortages and wildfires. While many studies have shown the statistics of 2014 temperature and precipitation anomalies as outliers, none have demonstrated a connection with large-scale, long-term climate trends, which would provide useful relationships for predicting the future trajectory of California climate and water resources. We focus on understanding non-stationarity in the joint distribution of California temperature and precipitation anomalies in terms of large-scale, low-frequency trends in climate such as global mean temperature rise and oscillatory indices such as ENSO and the Pacific Decadal Oscillation among others. We consider temperature and precipitation data from the seven distinct climate divisions in California and employ a novel, high-fidelity kernel density estimation method to directly infer the multivariate distribution of temperature and precipitation anomalies conditioned on the large-scale state of the climate. We show that the joint distributions and associated statistics of temperature and precipitation are non-stationary and vary regionally in California. Further, we show

  15. Short-Scale Turbulent Fluctuations Driven by the Electron-Temperature Gradient in the National Spherical Torus Experiment

    SciTech Connect

    Mazzucato, E.; Smith, D. R.; Bell, R. E.; Kaye, S.; Davis, W.; Hosea, J.; LeBlanc, B; Wilson, J. R.; Ryan, Philip Michael; Domier, C. W.; Luhmann, N. C.; Yuh, H.; Lee, W.; Park, H.

    2008-01-01

    Measurements with coherent scattering of electromagnetic waves in plasmas of the National Spherical Torus Experiment indicate the existence of turbulent fluctuations in the range of wave numbers k?e 0:1 0:4, corresponding to a turbulence scale length nearly equal to the collisionless skin depth. Experimental observations and agreement with numerical results from a linear gyrokinetic stability code support the conjecture that the observed turbulence is driven by the electron-temperature gradient.

  16. Absolute Income, Relative Income, and Happiness

    ERIC Educational Resources Information Center

    Ball, Richard; Chernova, Kateryna

    2008-01-01

    This paper uses data from the World Values Survey to investigate how an individual's self-reported happiness is related to (i) the level of her income in absolute terms, and (ii) the level of her income relative to other people in her country. The main findings are that (i) both absolute and relative income are positively and significantly…

  17. Investigating Absolute Value: A Real World Application

    ERIC Educational Resources Information Center

    Kidd, Margaret; Pagni, David

    2009-01-01

    Making connections between various representations is important in mathematics. In this article, the authors discuss the numeric, algebraic, and graphical representations of sums of absolute values of linear functions. The initial explanations are accessible to all students who have experience graphing and who understand that absolute value simply…

  18. Preschoolers' Success at Coding Absolute Size Values.

    ERIC Educational Resources Information Center

    Russell, James

    1980-01-01

    Forty-five 2-year-old and forty-five 3-year-old children coded relative and absolute sizes using 1.5-inch, 6-inch, and 18-inch cardboard squares. Results indicate that absolute coding is possible for children of this age. (Author/RH)

  19. Introducing the Mean Absolute Deviation "Effect" Size

    ERIC Educational Resources Information Center

    Gorard, Stephen

    2015-01-01

    This paper revisits the use of effect sizes in the analysis of experimental and similar results, and reminds readers of the relative advantages of the mean absolute deviation as a measure of variation, as opposed to the more complex standard deviation. The mean absolute deviation is easier to use and understand, and more tolerant of extreme…

  20. Monolithically integrated absolute frequency comb laser system

    DOEpatents

    Wanke, Michael C.

    2016-07-12

    Rather than down-convert optical frequencies, a QCL laser system directly generates a THz frequency comb in a compact monolithically integrated chip that can be locked to an absolute frequency without the need of a frequency-comb synthesizer. The monolithic, absolute frequency comb can provide a THz frequency reference and tool for high-resolution broad band spectroscopy.

  1. Estimating the absolute wealth of households

    PubMed Central

    Gerkey, Drew; Hadley, Craig

    2015-01-01

    Abstract Objective To estimate the absolute wealth of households using data from demographic and health surveys. Methods We developed a new metric, the absolute wealth estimate, based on the rank of each surveyed household according to its material assets and the assumed shape of the distribution of wealth among surveyed households. Using data from 156 demographic and health surveys in 66 countries, we calculated absolute wealth estimates for households. We validated the method by comparing the proportion of households defined as poor using our estimates with published World Bank poverty headcounts. We also compared the accuracy of absolute versus relative wealth estimates for the prediction of anthropometric measures. Findings The median absolute wealth estimates of 1 403 186 households were 2056 international dollars per capita (interquartile range: 723–6103). The proportion of poor households based on absolute wealth estimates were strongly correlated with World Bank estimates of populations living on less than 2.00 United States dollars per capita per day (R2 = 0.84). Absolute wealth estimates were better predictors of anthropometric measures than relative wealth indexes. Conclusion Absolute wealth estimates provide new opportunities for comparative research to assess the effects of economic resources on health and human capital, as well as the long-term health consequences of economic change and inequality. PMID:26170506

  2. Absolute optical metrology : nanometers to kilometers

    NASA Technical Reports Server (NTRS)

    Dubovitsky, Serge; Lay, O. P.; Peters, R. D.; Liebe, C. C.

    2005-01-01

    We provide and overview of the developments in the field of high-accuracy absolute optical metrology with emphasis on space-based applications. Specific work on the Modulation Sideband Technology for Absolute Ranging (MSTAR) sensor is described along with novel applications of the sensor.

  3. Temperature-compensated strain measurement of full-scale small aircraft wing structure using low-cost FBG interrogator

    NASA Astrophysics Data System (ADS)

    Kim, J. H.; Lee, Y. G.; Park, Y.; Kim, C. G.

    2013-04-01

    Recently, health and usage monitoring systems (HUMS) are being studied to monitor the real-time condition of aircrafts during flight. HUMSs can prevent aircraft accidents and reduce inspection time and cost. Fiber Bragg grating (FBG) sensors are widely used for aircraft HUMSs with many advantages such as light weight, small size, easy-multiplexing, and EMI immunity. However, commercial FBG interrogators are too expensive to apply for small aircrafts. Generally the cost of conventional FBG interrogators is over 20,000. Therefore, cost-effective FBG interrogation systems need to be developed for small aircraft HUMSs. In this study, cost-effective low speed FBG interrogator was applied to full-scale small aircraft wing structure to examine the operational applicability of the low speed FBG interrogator to the monitoring of small aircrafts. The cost of the developed low speed FBG interrogator was about 10,000, which is an affordable price for a small aircraft. 10 FBG strain sensors and 1 FBG temperature sensor were installed on the surface of the full-scale wing structure. Load was applied to the tip of the wing structure, and the low speed interrogator detected the change in the center wavelength of the FBG sensors at the sampling rate of 10Hz. To assess the applicability of the low-cost FBG interrogator to full-scale small aircraft wing structure, a temperature-compensated strain measurement algorithm was verified experimentally under various loading conditions of the wing structure with temperature variations.

  4. Temperature mediates continental-scale diversity of microbes in forest soils

    PubMed Central

    Zhou, Jizhong; Deng, Ye; Shen, Lina; Wen, Chongqing; Yan, Qingyun; Ning, Daliang; Qin, Yujia; Xue, Kai; Wu, Liyou; He, Zhili; Voordeckers, James W.; Nostrand, Joy D. Van; Buzzard, Vanessa; Michaletz, Sean T.; Enquist, Brian J.; Weiser, Michael D.; Kaspari, Michael; Waide, Robert; Yang, Yunfeng; Brown, James H.

    2016-01-01

    Climate warming is increasingly leading to marked changes in plant and animal biodiversity, but it remains unclear how temperatures affect microbial biodiversity, particularly in terrestrial soils. Here we show that, in accordance with metabolic theory of ecology, taxonomic and phylogenetic diversity of soil bacteria, fungi and nitrogen fixers are all better predicted by variation in environmental temperature than pH. However, the rates of diversity turnover across the global temperature gradients are substantially lower than those recorded for trees and animals, suggesting that the diversity of plant, animal and soil microbial communities show differential responses to climate change. To the best of our knowledge, this is the first study demonstrating that the diversity of different microbial groups has significantly lower rates of turnover across temperature gradients than other major taxa, which has important implications for assessing the effects of human-caused changes in climate, land use and other factors. PMID:27377774

  5. Temperature sensing of micron scale polymer fibers using fiber Bragg gratings

    NASA Astrophysics Data System (ADS)

    Zhou, J.; Zhang, Y.; Mulle, M.; Lubineau, G.

    2015-08-01

    Highly conductive polymer fibers are key components in the design of multifunctional textiles. Measuring the voltage/temperature relationships of these fibers is very challenging due to their very small diameters, making it impossible to rely on classical temperature sensing techniques. These fibers are also so fragile that they cannot withstand any perturbation from external measurement systems. We propose here, a non-contact temperature measurement technique based on fiber Bragg gratings (FBGs). The heat exchange is carefully controlled between the probed fibers and the sensing FBG by promoting radiation and convective heat transfer rather than conduction, which is known to be poorly controlled. We demonstrate our technique on a highly conductive Poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) (PEDOT/PSS)-based fiber. A non-phenomenological model of the sensing system based on meaningful physical parameters is validated towards experimental observations. The technique reliably measures the temperature of the polymer fibers when subjected to electrical loading.

  6. Temperature mediates continental-scale diversity of microbes in forest soils.

    PubMed

    Zhou, Jizhong; Deng, Ye; Shen, Lina; Wen, Chongqing; Yan, Qingyun; Ning, Daliang; Qin, Yujia; Xue, Kai; Wu, Liyou; He, Zhili; Voordeckers, James W; Nostrand, Joy D Van; Buzzard, Vanessa; Michaletz, Sean T; Enquist, Brian J; Weiser, Michael D; Kaspari, Michael; Waide, Robert; Yang, Yunfeng; Brown, James H

    2016-01-01

    Climate warming is increasingly leading to marked changes in plant and animal biodiversity, but it remains unclear how temperatures affect microbial biodiversity, particularly in terrestrial soils. Here we show that, in accordance with metabolic theory of ecology, taxonomic and phylogenetic diversity of soil bacteria, fungi and nitrogen fixers are all better predicted by variation in environmental temperature than pH. However, the rates of diversity turnover across the global temperature gradients are substantially lower than those recorded for trees and animals, suggesting that the diversity of plant, animal and soil microbial communities show differential responses to climate change. To the best of our knowledge, this is the first study demonstrating that the diversity of different microbial groups has significantly lower rates of turnover across temperature gradients than other major taxa, which has important implications for assessing the effects of human-caused changes in climate, land use and other factors. PMID:27377774

  7. Engineering solutions for complex composite material behaviour spanning time and temperature scales

    NASA Astrophysics Data System (ADS)

    Scott, M. L.; Elder, D. J.; Feih, S.; Gunnion, A. J.; Liu, X. L.; Thomson, R. S.

    2010-11-01

    The issue of time and temperature dependencies is considered in the behaviour of advanced fibre-reinforced polymer composite materials. Currently, for the vast majority of analyses of composite structures, time and temperature are considered invariant. In an effort to further improve the design of composite structures, more advanced analyses are now being developed to accurately capture the behaviour under a range of conditions. Various events and load cases in which time and temperature are critical are described in general terms. The specific cases of viscoelastic distortion under mechanical and thermal loading, the behaviour of adhesive joints and the structural response of composites to fire are discussed in detail. The key material response, characterisation methods and analysis approaches developed are described. It is observed that key challenges in the development of improved predictive models are measurement of time- and temperature-dependent material properties and the implementation of efficient multidisciplinary analysis methods.

  8. Effect of temperature and disinfection strategies on ammonia-oxidizing bacteria in a bench-scale drinking water distribution system.

    PubMed

    Pintar, Katarina D M; Slawson, Robin M

    2003-04-01

    The establishment of ammonia-oxidizing bacteria (AOB), a group of autotrophic microorganisms responsible for nitrification in chloraminated distribution systems, was studied in a bench-scale distribution system. The potential significance of temperature and disinfectant residual associated with chloramination in full-scale drinking water distribution systems was assessed. Biofilm development was primarily monitored using AOB abundance and nitrite concentrations. The bench-scale system was initially operated under typical North American summer (22 degrees C) and fall (12 degrees C) temperatures, representing optimal and less optimal growth ranges for these microorganisms. Additional experimentation investigated AOB establishment at a suboptimal winter distribution system temperature of 6 degrees C. The effect of chloramine residual on AOB establishment was studied at higher (0.2-0.6mg/L) and lower (0.05-0.1mg/L) ranges, using a 3:1 (w/w) chlorine:ammonia dosing ratio. Conditions were selected to represent those typically found in a North American distribution system, in areas of low flow and longer retention times, respectively. Finally, the effect of a free chlorine residual on an established nitrifying biofilm was briefly examined. Results clearly indicate that AOB development occurs at all examined temperatures, as well as at selected monochloramine residuals. The maintenance of a disinfectant residual was difficult at times, but was more inhibitory to the nitrifying biofilm than the lower temperature. It can be concluded from the data that nitrification may not be adequately inhibited during the winter months, which may result in more advanced stages of nitrification the following season. Free chlorination can be effective in controlling AOB activity in the short term, but may not prevent reestablishment of a nitrifying biofilm upon return to chloramination.

  9. Absolute instability of the Gaussian wake profile

    NASA Technical Reports Server (NTRS)

    Hultgren, Lennart S.; Aggarwal, Arun K.

    1987-01-01

    Linear parallel-flow stability theory has been used to investigate the effect of viscosity on the local absolute instability of a family of wake profiles with a Gaussian velocity distribution. The type of local instability, i.e., convective or absolute, is determined by the location of a branch-point singularity with zero group velocity of the complex dispersion relation for the instability waves. The effects of viscosity were found to be weak for values of the wake Reynolds number, based on the center-line velocity defect and the wake half-width, larger than about 400. Absolute instability occurs only for sufficiently large values of the center-line wake defect. The critical value of this parameter increases with decreasing wake Reynolds number, thereby indicating a shrinking region of absolute instability with decreasing wake Reynolds number. If backflow is not allowed, absolute instability does not occur for wake Reynolds numbers smaller than about 38.

  10. Large-scale spatial variability of riverbed temperature gradients in Snake River fall Chinook salmon spawning areas

    SciTech Connect

    Hanrahan, Timothy P.

    2007-02-01

    In the Snake River basin of the Pacific northwestern United States, hydroelectric dam operations are often based on the predicted emergence timing of salmon fry from the riverbed. The spatial variability and complexity of surface water and riverbed temperature gradients results in emergence timing predictions that are likely to have large errors. The objectives of this study were to quantify the thermal heterogeneity between the river and riverbed in fall Chinook salmon spawning areas and to determine the effects of thermal heterogeneity on fall Chinook salmon emergence timing. This study quantified river and riverbed temperatures at 15 fall Chinook salmon spawning sites distributed in two reaches throughout 160 km of the Snake River in Hells Canyon, Idaho, USA, during three different water years. Temperatures were measured during the fall Chinook salmon incubation period with self-contained data loggers placed in the river and at three different depths below the riverbed surface. At all sites temperature increased with depth into the riverbed, including significant differences (p<0.05) in mean water temperature of up to 3.8°C between the river and the riverbed among all the sites. During each of the three water years studied, river and riverbed temperatures varied significantly among all the study sites, among the study sites within each reach, and between sites located in the two reaches. Considerable variability in riverbed temperatures among the sites resulted in fall Chinook salmon emergence timing estimates that varied by as much as 55 days, depending on the source of temperature data used for the estimate. Monitoring of riverbed temperature gradients at a range of spatial scales throughout the Snake River would provide better information for managing hydroelectric dam operations, and would aid in the design and interpretation of future empirical research into the ecological significance of physical riverine processes.

  11. Relations between large scale oscillation patterns and rising water temperatures at Lake Neusiedl

    NASA Astrophysics Data System (ADS)

    Soja, Anna-Maria; Soja, Gerhard

    2013-04-01

    Lake Neusiedl (Neusiedler See, Fertitó) is a very shallow steppe lake (area 320 km2, mean depth 1.2 m) at the border of Austria/Hungary. The low ratio of water depth to water volume accounts for dynamic, air temperature-dependent developments of water temperature with the potential of unusually warm waters that are a pillar of the touristic attractiveness of the lake. Likewise these conditions are a risk factor for water quality deterioration. In the frame of the EULAKES-project (European Lakes under Environmental Stressors, www.eulakes.eu), financed by the Central Europe Programme of the EU, data records of water temperature at 5 monitoring stations of Lake Neusiedl (eHYD) and the nearby air temperature monitoring station Eisenstadt - Sopron (HISTALP database and ZAMG) were used to investigate the period 1976-2009. Additionally the influences of 7 teleconnection patterns, i.e. the East Atlantic pattern (EAP), the East Atlantic/West Russia pattern (EA/WR), the Eastern Mediterranean Pattern (EMP), the Mediterranean Oscillation (MO) for Algiers and Cairo, and for Israel and Gibraltar, resp., the North Atlantic Oscillation (NAO) and the Scandinavia pattern (SCA) were assessed. The increase of temperature during the observation period was more pronounced for water than for air. Water temperatures increased significantly (p

  12. Scales

    SciTech Connect

    Murray Gibson

    2007-04-27

    Musical scales involve notes that, sounded simultaneously (chords), sound good together. The result is the left brain meeting the right brain — a Pythagorean interval of overlapping notes. This synergy would suggest less difference between the working of the right brain and the left brain than common wisdom would dictate. The pleasing sound of harmony comes when two notes share a common harmonic, meaning that their frequencies are in simple integer ratios, such as 3/2 (G/C) or 5/4 (E/C).

  13. Scales

    ScienceCinema

    Murray Gibson

    2016-07-12

    Musical scales involve notes that, sounded simultaneously (chords), sound good together. The result is the left brain meeting the right brain — a Pythagorean interval of overlapping notes. This synergy would suggest less difference between the working of the right brain and the left brain than common wisdom would dictate. The pleasing sound of harmony comes when two notes share a common harmonic, meaning that their frequencies are in simple integer ratios, such as 3/2 (G/C) or 5/4 (E/C).

  14. Gyrokinetic Statistical Absolute Equilibrium and Turbulence

    SciTech Connect

    Jian-Zhou Zhu and Gregory W. Hammett

    2011-01-10

    A paradigm based on the absolute equilibrium of Galerkin-truncated inviscid systems to aid in understanding turbulence [T.-D. Lee, "On some statistical properties of hydrodynamical and magnetohydrodynamical fields," Q. Appl. Math. 10, 69 (1952)] is taken to study gyrokinetic plasma turbulence: A finite set of Fourier modes of the collisionless gyrokinetic equations are kept and the statistical equilibria are calculated; possible implications for plasma turbulence in various situations are discussed. For the case of two spatial and one velocity dimension, in the calculation with discretization also of velocity v with N grid points (where N + 1 quantities are conserved, corresponding to an energy invariant and N entropy-related invariants), the negative temperature states, corresponding to the condensation of the generalized energy into the lowest modes, are found. This indicates a generic feature of inverse energy cascade. Comparisons are made with some classical results, such as those of Charney-Hasegawa-Mima in the cold-ion limit. There is a universal shape for statistical equilibrium of gyrokinetics in three spatial and two velocity dimensions with just one conserved quantity. Possible physical relevance to turbulence, such as ITG zonal flows, and to a critical balance hypothesis are also discussed.

  15. Additional Radiative Cooling of the Mesopause Region due to Small-Scale Temperature Fluctuations Associated with Gravity Waves

    NASA Astrophysics Data System (ADS)

    Kutepov, A.; Feofilov, A.; Medvedev, A.; Pauldrach, A.; Hartogh, P.

    2008-05-01

    We address a previously unknown effect of the radiative cooling of the mesosphere and lower thermosphere (MLT) produced by small-scale irregular temperature fluctuations (ITFs) associated with gravity waves. These disturbances are not resolved by present GCMs, but they alter the radiative transfer and the heating/cooling rates significantly. We apply a statistical model of gravity waves superimposed on large-scale temperature profiles, and perform direct calculations of the radiative cooling/heating in the MLT in the IR bands of CO2, O3 and H2O molecules taking into account the breakdown of the local thermodynamic equilibrium (non-LTE). We found that in the periods of strong wave activity the subgrid ITFs can cause an additional cooling up to 3 K/day near the mesopause. The effect is produced mainly by the fundamental 15 μm band of the main CO2 isotope. We derived a simple expression for the correction to mean (resolved by GCMs) temperature profiles using the variance of the temperature perturbations to account for the additional cooling effect. The suggested parameterization can be applied in GCMs in conjunction with existing gravity wave drag parameterizations.

  16. Engine performance and the determination of absolute ceiling

    NASA Technical Reports Server (NTRS)

    Diehl, Walter S

    1924-01-01

    This report contains a brief study of the variation of engine power with temperature and pressure. The variation of propeller efficiency in standard atmosphere is obtained from the general efficiency curve which is developed in NACA report no. 168. The variation of both power available and power required are then determined and curves plotted, so that the absolute ceiling may be read directly from any known sea-level value of the ratio of power available to power required.

  17. Preliminary scaling laws for plasma current, ion kinetic temperature, and plasma number density in the NASA Lewis bumpy torus plasma

    NASA Technical Reports Server (NTRS)

    Roth, J. R.

    1976-01-01

    Parametric variation of independent variables which may affect the characteristics of bumpy torus plasma have identified those which have a significant effect on the plasma current, ion kinetic temperature, and plasma number density, and those which do not. Empirical power law correlations of the plasma current, and the ion kinetic temperature and number density were obtained as functions of potential applied to the midplane electrode rings, the background neutral gas pressure, and the magnetic field strength. Additional parameters studied included the type of gas, the polarity of the midplane electrode rings, the mode of plasma operation, and the method of measuring the plasma number density. No significant departures from the scaling laws appear to occur at the highest ion kinetic temperatures or number densities obtained to date.

  18. Preliminary scaling laws for plasma current, ion kinetic temperature, and plasma number density in the NASA Lewis Bumpy Torus plasma

    NASA Technical Reports Server (NTRS)

    Roth, J. R.

    1976-01-01

    Parametric variation of independent variables which may affect the characteristics of the NASA Lewis Bumpy Torus plasma have identified those which have a significant effect on the plasma current, ion kinetic temperature, and plasma number density, and those which do not. Empirical power-law correlations of the plasma current, and the ion kinetic temperature and number density were obtained as functions of the potential applied to the midplane electrode rings, the background neutral gas pressure, and the magnetic field strength. Additional parameters studied include the type of gas, the polarity of the midplane electrode rings (and hence the direction of the radial electric field), the mode of plasma operation, and the method of measuring the plasma number density. No significant departures from the scaling laws appear to occur at the highest ion kinetic temperatures or number densities obtained to date.

  19. The hierarchy of multiple many-body interaction scales in high-temperature superconductors

    SciTech Connect

    Meevasana, W.

    2010-05-03

    To date, angle-resolved photoemission spectroscopy has been successful in identifying energy scales of the many-body interactions in correlated materials, focused on binding energies of up to a few hundred meV below the Fermi energy. Here, at higher energy scale, we present improved experimental data from four families of high-T{sub c} superconductors over a wide doping range that reveal a hierarchy of many-body interaction scales focused on: the low energy anomaly ('kink') of 0.03-0.09eV, a high energy anomaly of 0.3-0.5eV, and an anomalous enhancement of the width of the LDA-based CuO{sub 2} band extending to energies of {approx} 2 eV. Besides their universal behavior over the families, we find that all of these three dispersion anomalies also show clear doping dependence over the doping range presented.

  20. Hierarchy of multiple many-body interaction scales in high-temperature superconductors

    SciTech Connect

    Hussain, Zahid; Meevasana, W.; Zhou, X.J.; Sahrakorpi, S.; Lee, W.S.; Yang, W.L.; Tanaka, K.; Mannella, N.; Yoshida, T.; Lu, D.H.; Chen, Y.L.; He, R.H.; Lin, Hsin; Komiya, S.; Ando, Y.; Zhou, F.; Ti, W.X.; Xiong, J.W.; Zhao, Z.X.; Sasagawa, T.; Kakeshita, T.; Fujita, K.; Uchida, S.; Eisaki, H.; Fujimori, A.; Hussain, Z.; Markiewicz, R.S.; Bansil, A.; Nagaosa, N.; Zaanen, J.; Devereaux, T.P.; Shen, Z.X.

    2006-12-21

    To date, angle-resolved photoemission spectroscopy has been successful in identifying energy scales of the many-body interactions in correlated materials, focused on binding energies of up to a few hundred meV below the Fermi energy. Here, at higher energy scale, we present improved experimental data from four families of high-T{sub c} superconductors over a wide doping range that reveal a hierarchy of many-body interaction scales focused on: the low energy anomaly ('kink') of 0.03-0.09eV, a high energy anomaly of 0.3-0.5eV, and an anomalous enhancement of the width of the LDA-based CuO{sub 2} band extending to energies of {approx} 2 eV. Besides their universal behavior over the families, we find that all of these three dispersion anomalies also show clear doping dependence over the doping range presented.

  1. Absolute calibration in the 1750 - 3350 A region

    NASA Technical Reports Server (NTRS)

    Strongylis, G. J.; Bohlin, R. C.

    1977-01-01

    The absolute flux measurements in the rocket ultraviolet made by Bohlin, Frimout, and Lillie (BFL) are revised using a more correct treatment of the air extinction that enters the air calibration of their instrument. The absorption by molecular oxygen and ozone, Rayleigh scattering, and extinction by aerosols is tabulated for general use in ultraviolet calibrations performed in air. The revised absolute flux of eta UMa and final fluxes for alpha Lyr and zeta Oph are presented in the 1750-3350 A region. The absolute flux of the star eta UMa is compared to four other independent determinations in the 1200-3400 A region and a maximum difference of 35% is found near 1500 A between the OAO-2 and Apollo 17 fluxes. The rocket measurements of BFL, the ANS and TD-1 satellite data, and the Apollo 17 data are compared to the ultraviolet fluxes from the OAO-2, demonstrating a photometric reproducibility of about + or - 3 percent. Therefore, all four sets of spectrophotometry can be reduced to a common absolute scale.

  2. Are the scaling properties of instrumental and long-term proxy temperature records consistent with a simple energy balance model?

    NASA Astrophysics Data System (ADS)

    Rypdal, Martin; Rypdal, Kristoffer

    2015-04-01

    In an editorial comment, M. E. Mann, Climatic Change (2011), 107:267-276, makes the assertion: "…the behaviour of the Hurst exponent H in instrumental and long-term proxy temperature reconstructions appears consistent with the results of a simple climate model (EBM) forced by estimated natural and anthropogenic radiative forcing changes, and subject to white noise stochastic weather forcing. Nothing more exotic than the physics of such a simple model is necessary to explain the apparent scaling behaviour in observed surface temperatures." This conclusion is drawn from application of a number of standard estimation techniques for H to realizations of the purely stochastically forced, and stochastic + radiatively forced, EBM. These estimates are compared to results from the same techniques applied to observation data. Such comparisons show overlap of the distributions of H-estimates for the model realizations and the observation records, which leads the author to conclude that the scaling properties of the observation data are consistent with this simple model. In this contribution we point out the flaws that arise from uncritical application of estimation techniques for the scaling exponent H to time series that do not exhibit scaling. For instance, the stochastically forced model signal is an AR(1) process, which scales like a Wiener process (H=3/2) on scales shorter than the autocorrelation time, and as a white noise (H=1/2) on longer time scales. There is no unique Hurst exponent for this process, but the author estimates it for each realization of the process, producing a distribution with 95% confidence interval (0.60,0.76). Careful examination of power spectra or fluctuation functions for model data and observation data, in particular of the residual resulting from subtracting the (deterministic) radiatively forced response from the observations, demonstrates very clearly that the scaling properties of the model data are different from those of the

  3. Hot in Baltimore: linking urban form to fine-scale temperature differences

    NASA Astrophysics Data System (ADS)

    Scott, A.; Waugh, D.; Zaitchik, B. F.; Guikema, S.

    2015-12-01

    Better understanding how urban morphology creates microclimates can help policymakers and planners mitigate the effects of heatwaves and other negative urban heat island effects. In Baltimore, where the observed downtown-rural temperature difference (as measured by NOAA stations) can reach 5°C, low-income neighborhoods are almost entirely covered by impervious surfaces like concrete but lack trees and parks. Their urban-rural temperature difference is then expected to exceed the reported one. However, that difference is not well quantified because these areas lack weather station coverage. Additionally, high resolution satellite imagery shows only land surface temperatures (inadequate for policy and health interventions) and may miss severe heat events. To remedy this, a low-cost monitoring network was installed in East Baltimore over summer 2015 aiming to characterize spatial and temporal variability and examine how heat excess varies during heat events. Results confirm that E. Baltimore exceeds downtown temperatures and show that a dense network of low cost sensors can help attribute temperature anomalies to local features such as land cover, building density and tree canopy.

  4. EFFECT OF CORONAL TEMPERATURE ON THE SCALE OF SOLAR CHROMOSPHERIC JETS

    SciTech Connect

    Iijima; Yokoyama, T.H.

    2015-10-20

    We investigate the effect of coronal temperature on the formation process of solar chromospheric jets using two-dimensional magnetohydrodynamic simulations of the region from the upper convection zone to the lower corona. We develop a new radiative magnetohydrodynamic code for the dynamic modeling of the solar atmosphere, employing an LTE equation of state, optically thick radiative loss in the photosphere, optically thin radiative loss in the chromosphere and the corona, and thermal conduction along the magnetic field lines. Many chromospheric jets are produced in the simulations by shock waves passing through the transition region. We find that these jets are projected farther outward when the coronal temperature is lower (similar to that in coronal holes) and shorter when the coronal temperature is higher (similar to that in active regions). When the coronal temperature is high, the deceleration of the chromospheric jets is consistent with the model in which deceleration is determined by the periodic chromospheric shock waves. However, when the coronal temperature is low, the gravitational deceleration becomes more important and the chromospheric jets approach ballistic motion.

  5. Nano-scale nitride-particle-strengthened high-temperature wrought ferritic and martensitic steels

    SciTech Connect

    Klueh, Ronald L; Hashimoto, Naoyuki; Maziasz, Philip J

    2009-04-21

    A method of making a steel composition includes the steps of: a. providing a steel composition that includes up to 15% Cr, up to 3% Mo, up to 4% W, 0.05-1% V, up to 2% Si, up to 3% Mn, up to 10% Co, up to 3% Cu, up to 5% Ni, up to 0.3% C, 0.02-0.3% N, balance iron, wherein the percentages are by total weight of the composition; b. austenitizing the composition at a temperature in the range of 1000.degree. C. to 1400.degree. C.; c. cooling the composition of steel to a selected hot-working temperature in the range 500.degree. C. to 1000.degree. C.; d. hot-working the composition at the selected hot-working temperature; e. annealing the composition for a time period of up to 10 hours at a temperature in the range of 500.degree. C. to 1000.degree. C.; and f. cooling the composition to ambient temperature to transform the steel composition to martensite, bainite, ferrite, or a combination of those microstructures.

  6. Temperature-dependent nucleation and capture-zone scaling of C 60 on silicon oxide

    NASA Astrophysics Data System (ADS)

    Groce, M. A.; Conrad, B. R.; Cullen, W. G.; Pimpinelli, A.; Williams, E. D.; Einstein, T. L.

    2012-01-01

    Submonolayer films of C 60 have been deposited on ultrathin SiO 2 films for the purpose of characterizing the initial stages of nucleation and growth as a function of temperature. Capture zones extracted from the initial film morphology were analyzed using both the gamma and generalized Wigner distributions. The calculated critical nucleus size i of the C 60 islands was observed to change over the temperature range 298 K to 483 K. All fitted values of i were found to be between 0 and 1, representing stable monomers and stable dimers, respectively. With increasing temperature of film preparation, we observed i first increasing through this range and then decreasing. We discuss possible explanations of this reentrant-like behavior.

  7. Local-scale spatial modelling for interpolating climatic temperature variables to predict agricultural plant suitability

    NASA Astrophysics Data System (ADS)

    Webb, Mathew A.; Hall, Andrew; Kidd, Darren; Minansy, Budiman

    2016-05-01

    Assessment of local spatial climatic variability is important in the planning of planting locations for horticultural crops. This study investigated three regression-based calibration methods (i.e. traditional versus two optimized methods) to relate short-term 12-month data series from 170 temperature loggers and 4 weather station sites with data series from nearby long-term Australian Bureau of Meteorology climate stations. The techniques trialled to interpolate climatic temperature variables, such as frost risk, growing degree days (GDDs) and chill hours, were regression kriging (RK), regression trees (RTs) and random forests (RFs). All three calibration methods produced accurate results, with the RK-based calibration method delivering the most accurate validation measures: coefficients of determination ( R 2) of 0.92, 0.97 and 0.95 and root-mean-square errors of 1.30, 0.80 and 1.31 °C, for daily minimum, daily maximum and hourly temperatures, respectively. Compared with the traditional method of calibration using direct linear regression between short-term and long-term stations, the RK-based calibration method improved R 2 and reduced root-mean-square error (RMSE) by at least 5 % and 0.47 °C for daily minimum temperature, 1 % and 0.23 °C for daily maximum temperature and 3 % and 0.33 °C for hourly temperature. Spatial modelling indicated insignificant differences between the interpolation methods, with the RK technique tending to be the slightly better method due to the high degree of spatial autocorrelation between logger sites.

  8. The evolution of titanium oxidation at elevated temperature and its oxide scale morphology

    NASA Astrophysics Data System (ADS)

    Imbrie, Peter Kenneth

    The purpose of this study was to experimentally quantify the multi-dimensional growth characteristics of the oxide scale formed on commercially pure titanium at 700°C in a flowing air environment. The geometries considered herein had characteristic dimensions that were appropriately sized to match the thickness of the oxide scale and were fabricated into shapes of solid and hollow cylinders and external and internal wedges. Scanning electron microscopy (SEM) image analysis was used to measure the oxide layer thickness and the Pilling-Bedworth ratio (PBR) as a function of time. An effective diffusion coefficient was determined from one-dimensional planar oxide thickness data and experimentally obtained PBR values served as the necessary input to a solid state diffusion model, which was modified to account for the volumetric expansion of the oxide. Oxidation of the solid cylinder and external wedge geometries were shown to develop a scale morphology similar to that observed on a flat specimen. The oxide had two notable features: (1) at the air-oxide interface, the oxide appeared to be compact and its thickness grew with time and (2) from the metal-oxide interface up to the compact scale, the oxide was found to have a porous-layered arrangement with the pore size being a function of distance from the metal-oxide interface. Conversely, the oxide scale growth on the hollow cylinders and external wedges, while still layered, appeared to be much less porous and had considerably less cracking and spalling damage. The modified solid-state diffusion model and experimentally obtained values of the diffusion coefficient and PBR were used to demonstrate the competing influences of oxide expansion and curvature effects. In addition, the predictive capability of the model, for the case of a solid cylinder, was shown to under predict experimental results, whereas scale growth on the inner surface of a hollow cylinder was over predicted. The differences are primarily attributed to

  9. Ion microprobe study of the scale formed during high temperature oxidation of high silicon EN-1.4301 stainless steel

    NASA Astrophysics Data System (ADS)

    Paúl, A.; Elmrabet, S.; Alves, L. C.; da Silva, M. F.; Soares, J. C.; Odriozola, J. A.

    2001-07-01

    A study of the oxide layer formed on the surface of high silicon (0.8%) EN-1.4301 (AISI-304) stainless steel after 125 h oxidation in air at 1273 K has been performed by means of scanning electron microscopy (SEM), X-ray diffraction (XRD), RBS and proton microprobe. Oxidation experiments in synthetic air were performed in a thermobalance and the kinetic curve is compared to that of a standard EN-1.4301 austenitic stainless steel. These results show that the high silicon steel presents an enhanced oxidation resistance. XRD experiments show that the only crystalline species present in the scale is Cr 2O 3. Nevertheless, transversal section studies of the scale using proton microprobe show the development of a multilayered scale formed by an amorphous silicon rich layer in the scale to alloy interface and a Cr 2O 3 oxide layer in the external scale. Those results are confirmed by SEM experiments. The formation of the silica layer can be the responsible of the increase in the resistance to high temperature oxidation in this steel.

  10. Room-temperature wafer scale bonding using smoothed Au seal ring surfaces for hermetic sealing

    NASA Astrophysics Data System (ADS)

    Kurashima, Yuichi; Maeda, Atsuhiko; Takagi, Hideki

    2016-01-01

    We evaluated room-temperature bonding characteristics of electroplated Au surfaces smoothed by the lift-off and imprint methods. As a result, we found that smoothed surfaces enable strong bonding; on the other hand, electroplated rough surfaces result in very weak bonding. In transmission electron microscopy observations, no delamination was observed at the bonding interface bonded at room temperature using a smooth surface prepared by the lift-off method. Moreover, the hermeticity of the bonding interface prepared using smoothed surfaces was evaluated using diaphragm structures. As a result, we confirmed that good hermetic sealing was achieved using the electroplated Au surface smoothed by the lift-off method.

  11. Large Scale Variability of Phytoplankton Blooms in the Arctic and Peripheral Seas: Relationships with Sea Ice, Temperature, Clouds, and Wind

    NASA Technical Reports Server (NTRS)

    Comiso, Josefino C.; Cota, Glenn F.

    2004-01-01

    Spatially detailed satellite data of mean color, sea ice concentration, surface temperature, clouds, and wind have been analyzed to quantify and study the large scale regional and temporal variability of phytoplankton blooms in the Arctic and peripheral seas from 1998 to 2002. In the Arctic basin, phytoplankton chlorophyll displays a large symmetry with the Eastern Arctic having about fivefold higher concentrations than those of the Western Arctic. Large monthly and yearly variability is also observed in the peripheral seas with the largest blooms occurring in the Bering Sea, Sea of Okhotsk, and the Barents Sea during spring. There is large interannual and seasonal variability in biomass with average chlorophyll concentrations in 2002 and 2001 being higher than earlier years in spring and summer. The seasonality in the latitudinal distribution of blooms is also very different such that the North Atlantic is usually most expansive in spring while the North Pacific is more extensive in autumn. Environmental factors that influence phytoplankton growth were examined, and results show relatively high negative correlation with sea ice retreat and strong positive correlation with temperature in early spring. Plankton growth, as indicated by biomass accumulation, in the Arctic and subarctic increases up to a threshold surface temperature of about 276-277 degree K (3-4 degree C) beyond which the concentrations start to decrease suggesting an optimal temperature or nutrient depletion. The correlation with clouds is significant in some areas but negligible in other areas, while the correlations with wind speed and its components are generally weak. The effects of clouds and winds are less predictable with weekly climatologies because of unknown effects of averaging variable and intermittent physical forcing (e.g. over storm event scales with mixing and upwelling of nutrients) and the time scales of acclimation by the phytoplankton.

  12. The impact of component performance on the overall cycle performance of small-scale low temperature organic Rankine cycles

    NASA Astrophysics Data System (ADS)

    White, M.; Sayma, A. I.

    2015-08-01

    Low temperature organic Rankine cycles offer a promising technology for the generation of power from low temperature heat sources. Small-scale systems (∼10kW) are of significant interest, however there is a current lack of commercially viable expanders. For a potential expander to be economically viable for small-scale applications it is reasonable to assume that the same expander must have the ability to be implemented within a number of different ORC applications. It is therefore important to design and optimise the cycle considering the component performance, most notably the expander, both at different thermodynamic conditions, and using alternative organic fluids. This paper demonstrates a novel modelling methodology that combines a previously generated turbine performance map with cycle analysis to establish at what heat source conditions optimal system performance can be achieved using an existing turbine design. The results obtained show that the same turbine can be effectively utilised within a number of different ORC applications by changing the working fluid. By selecting suitable working fluids, this turbine can be used to convert pressurised hot water at temperatures between 360K and 400K, and mass flow rates between 0.45kg/s and 2.7kg/s, into useful power with outputs between 1.5kW and 27kW. This is a significant result since it allows the same turbine to be implemented into a variety of applications, improving the economy of scale. This work has also confirmed the suitability of the candidate turbine for a range of low temperature ORC applications.

  13. Significant increase of Curie temperature in nano-scale BaTiO3

    NASA Astrophysics Data System (ADS)

    Li, Yueliang; Liao, Zhenyu; Fang, Fang; Wang, Xiaohui; Li, Longtu; Zhu, Jing

    2014-11-01

    The low Curie temperature (Tc = 130 °C) of bulk BaTiO3 greatly limits its applications. In this work, the phase structures of BaTiO3 nanoparticles with sizes ranging from 2.5 nm to 10 nm were studied at various temperatures by using aberration-corrected transmission electron microscopy (TEM) equipped with an in-situ heating holder. The results implied that each BaTiO3 nanoparticle was composed of different phases, and the ferroelectric ones were observed in the shells due to the complicated surface structure. The ferroelectric phases in BaTiO3 nanoparticles remained at 600 °C, suggesting a significant increase of Tc. Based on the in-situ TEM results and the data reported by others, temperature-size phase diagrams for BaTiO3 particles and ceramics were proposed, showing that the phase transition became diffused and the Tc obviously increased with decreasing size. The present work sheds light on the design and fabrication of advanced devices for high temperature applications.

  14. Significant increase of Curie temperature in nano-scale BaTiO{sub 3}

    SciTech Connect

    Li, Yueliang; Liao, Zhenyu; Fang, Fang; Zhu, Jing; Wang, Xiaohui; Li, Longtu

    2014-11-03

    The low Curie temperature (T{sub c} = 130 °C) of bulk BaTiO{sub 3} greatly limits its applications. In this work, the phase structures of BaTiO{sub 3} nanoparticles with sizes ranging from 2.5 nm to 10 nm were studied at various temperatures by using aberration-corrected transmission electron microscopy (TEM) equipped with an in-situ heating holder. The results implied that each BaTiO{sub 3} nanoparticle was composed of different phases, and the ferroelectric ones were observed in the shells due to the complicated surface structure. The ferroelectric phases in BaTiO{sub 3} nanoparticles remained at 600 °C, suggesting a significant increase of T{sub c}. Based on the in-situ TEM results and the data reported by others, temperature-size phase diagrams for BaTiO{sub 3} particles and ceramics were proposed, showing that the phase transition became diffused and the T{sub c} obviously increased with decreasing size. The present work sheds light on the design and fabrication of advanced devices for high temperature applications.

  15. Internal and Forced Low-Frequency Surface Temperature Variability at Global and Regional Scales

    NASA Astrophysics Data System (ADS)

    Mann, M. E.; Steinman, B. A.; Miller, S. K.

    2014-12-01

    There is evidence for internal models of decadal and multidecadal surface temperature variability that possess relatively narrowband spectral signatures. Among these are the so-called Atlantic Multidecadal Oscillation ("AMO") and Pacific Decadal Oscillation ("PDO"). Separating these internal variability components from long-term forced temperature changes, however, is a non-trivial task. We apply a semi-empirical approach that combines climate observations and model-simulations to estimate Atlantic- and Pacific-based internal multidecadal variability (termed 'AMO' and 'PMO', respectively). Using analyses of coupled global climate model simulations, we show that our approach correctly identifies the internal variability components, while several alternative approaches overestimate and misidentify these components and their contribution to hemispheric mean temperatures. Using our method, the AMO and PMO are found to project in nearly equal proportion onto internal multidecadal variability in Northern Hemisphere mean temperature (termed 'NMO'). A recent NMO cooling trend which contributes to the slowdown or "false pause" in warming of the past decade is seen to reflect a competition between a modest positive peak in the AMO and a substantially negative-trending PMO.

  16. Methane fluxes show consistent temperature dependence across microbial to ecosystem scales.

    PubMed

    Yvon-Durocher, Gabriel; Allen, Andrew P; Bastviken, David; Conrad, Ralf; Gudasz, Cristian; St-Pierre, Annick; Thanh-Duc, Nguyen; del Giorgio, Paul A

    2014-03-27

    Methane (CH4) is an important greenhouse gas because it has 25 times the global warming potential of carbon dioxide (CO2) by mass over a century. Recent calculations suggest that atmospheric CH4 emissions have been responsible for approximately 20% of Earth's warming since pre-industrial times. Understanding how CH4 emissions from ecosystems will respond to expected increases in global temperature is therefore fundamental to predicting whether the carbon cycle will mitigate or accelerate climate change. Methanogenesis is the terminal step in the remineralization of organic matter and is carried out by strictly anaerobic Archaea. Like most other forms of metabolism, methanogenesis is temperature-dependent. However, it is not yet known how this physiological response combines with other biotic processes (for example, methanotrophy, substrate supply, microbial community composition) and abiotic processes (for example, water-table depth) to determine the temperature dependence of ecosystem-level CH4 emissions. It is also not known whether CH4 emissions at the ecosystem level have a fundamentally different temperature dependence than other key fluxes in the carbon cycle, such as photosynthesis and respiration. Here we use meta-analyses to show that seasonal variations in CH4 emissions from a wide range of ecosystems exhibit an average temperature dependence similar to that of CH4 production derived from pure cultures of methanogens and anaerobic microbial communities. This average temperature dependence (0.96 electron volts (eV)), which corresponds to a 57-fold increase between 0 and 30°C, is considerably higher than previously observed for respiration (approximately 0.65 eV) and photosynthesis (approximately 0.3 eV). As a result, we show that both the emission of CH4 and the ratio of CH4 to CO2 emissions increase markedly with seasonal increases in temperature. Our findings suggest that global warming may have a large impact on the relative contributions of CO2 and CH

  17. Methane fluxes show consistent temperature dependence across microbial to ecosystem scales.

    PubMed

    Yvon-Durocher, Gabriel; Allen, Andrew P; Bastviken, David; Conrad, Ralf; Gudasz, Cristian; St-Pierre, Annick; Thanh-Duc, Nguyen; del Giorgio, Paul A

    2014-03-27

    Methane (CH4) is an important greenhouse gas because it has 25 times the global warming potential of carbon dioxide (CO2) by mass over a century. Recent calculations suggest that atmospheric CH4 emissions have been responsible for approximately 20% of Earth's warming since pre-industrial times. Understanding how CH4 emissions from ecosystems will respond to expected increases in global temperature is therefore fundamental to predicting whether the carbon cycle will mitigate or accelerate climate change. Methanogenesis is the terminal step in the remineralization of organic matter and is carried out by strictly anaerobic Archaea. Like most other forms of metabolism, methanogenesis is temperature-dependent. However, it is not yet known how this physiological response combines with other biotic processes (for example, methanotrophy, substrate supply, microbial community composition) and abiotic processes (for example, water-table depth) to determine the temperature dependence of ecosystem-level CH4 emissions. It is also not known whether CH4 emissions at the ecosystem level have a fundamentally different temperature dependence than other key fluxes in the carbon cycle, such as photosynthesis and respiration. Here we use meta-analyses to show that seasonal variations in CH4 emissions from a wide range of ecosystems exhibit an average temperature dependence similar to that of CH4 production derived from pure cultures of methanogens and anaerobic microbial communities. This average temperature dependence (0.96 electron volts (eV)), which corresponds to a 57-fold increase between 0 and 30°C, is considerably higher than previously observed for respiration (approximately 0.65 eV) and photosynthesis (approximately 0.3 eV). As a result, we show that both the emission of CH4 and the ratio of CH4 to CO2 emissions increase markedly with seasonal increases in temperature. Our findings suggest that global warming may have a large impact on the relative contributions of CO2 and CH

  18. Finding Blackbody Temperature and Emissivity on a Sub-Pixel Scale

    NASA Astrophysics Data System (ADS)

    Bernstein, D. J.; Bausell, J.; Grigsby, S.; Kudela, R. M.

    2015-12-01

    Surface temperature and emissivity provide important insight into the ecosystem being remotely sensed. Dozier (1981) proposed a an algorithm to solve for percent coverage and temperatures of two different surface types (e.g. sea surface, cloud cover, etc.) within a given pixel, with a constant value for emissivity assumed. Here we build on Dozier (1981) by proposing an algorithm that solves for both temperature and emissivity of a water body within a satellite pixel by assuming known percent coverage of surface types within the pixel. Our algorithm generates thermal infrared (TIR) and emissivity end-member spectra for the two surface types. Our algorithm then superposes these end-member spectra on emissivity and TIR spectra emitted from four pixels with varying percent coverage of different surface types. The algorithm was tested preliminarily (48 iterations) using simulated pixels containing more than one surface type, with temperature and emissivity percent errors of ranging from 0 to 1.071% and 2.516 to 15.311% respectively[1]. We then tested the algorithm using a MASTER image from MASTER collected as part of the NASA Student Airborne Research Program (NASA SARP). Here the temperature of water was calculated to be within 0.22 K of in situ data. The algorithm calculated emissivity of water with an accuracy of 0.13 to 1.53% error for Salton Sea pixels collected with MASTER, also collected as part of NASA SARP. This method could improve retrievals for the HyspIRI sensor. [1] Percent error for emissivity was generated by averaging percent error across all selected bands widths.

  19. Disentangling the confounding effects of PAR and air temperature on net ecosystem exchange in time and scale

    NASA Astrophysics Data System (ADS)

    yang, Z.; Chen, J.; Becker, R.; Chu, H.; Xie, J.; Shao, C.

    2013-12-01

    Net ecosystem exchange of CO2 (NEE) in temperate forests is modulated by microclimatic factors. The effects of those factors differ at different time scales and during different time periods. Some of them are correlated across a number of time scales, so their effects on NEE are confounded by each other. PAR and air temperature (Ta) are among the two most important drivers of NEE in temperate forests, and among the two most correlated microclimatic factors. PAR and Ta have similar daily, seasonal, and annual cycles. Their influence on NEE is confounded by each other and entangled together especially at those scales. In this study, we tried to disentangle the confounding effects of them on NEE at different time scales and during different time periods. To accomplish this objective, we applied the innovative spectral analysis techniques including Continuous Wavelet Transformation (CWT), Cross Wavelet Transformation (XWT), Wavelet Coherent (WTC), and Partial Wavelet Coherence (PWC) on seven years time series (2004-2010) of PAR, Ta and NEE from the Ohio Oak Openings site (N 41.5545°, W 83.8438°), USA for spectral analysis. We found that PAR is the major driver at short time scales (e.g. semidiurnal and daily) and Ta is the major driver at long time scales (e.g. seasonal and annual). At daily scale during growing seasons, PAR is anti-phase with NEE with no time delay while Ta lagged PAR about 2-3 hours, which could be explained by the strong dependence of photosynthesis on PAR and a 2-3 hours lags of the daily course of Ta to PAR. At daily scale during non-growing season, NEE has little variation and thus neither Ta nor PAR has high common wavelet power and significant coherence with NEE. At annual scale, Ta is anti-phase with NEE and PAR leads NEE about 34 days, which could be explained by the strong dependence of LAI dynamics on Ta and the lag between the LAI/biomass development and the progress of sunlight. We also found that NEE distributes most of its variation

  20. Quantifying the relevance of local blockings for temperature extremes on sub-daily to daily time scales

    NASA Astrophysics Data System (ADS)

    Pfahl, S.

    2012-04-01

    Atmospheric blockings can influence near-surface temperature, on the one hand by inducing circulation anomalies, on the other hand since they are associated with clear-sky conditions, which can lead to anomalies in the surface radiation budget. The latter is due to subsiding motions and the deflection of low pressure systems. In this study, it is quantified how relevant these effects are locally (at the location of the blocking) for the occurrence of sub-daily and daily temperature extremes, based on ERA-Interim reanalysis data in the Northern Hemisphere for the period 1989-2009. Blockings are identified from the reanalysis dataset as negative anomalies of the vertically integrated potential vorticity (PV) between 150 hPa and 500 hPa with a lifetime longer than 5 days. The threshold for the identification of the PV anomalies is varied between -1.3 PVU and -0.7 PVU in order to distinguish between strong and weaker blocking systems. Temperature extremes are identified at each grid point if the six-hourly maximum (minimum) temperature exceeds (falls below) its local 99% (1%) percentile. For investigating extremes on longer time scales, the temperature time series are smoothed with a 1- or 3-day running mean before identifying the extremes. Finally, a blocking is assumed to be locally related to a temperature extreme if both occur simultaneously at the same grid point. The percentage of temperature extremes coinciding with a blocking is then quantified at every grid point. The percentage of hot temperature extremes associated with a strong blocking reaches maxima of more than 50% over southern Greenland and Quebec and around 30% over Northern Europe and Asia, exceeding the climatological blocking frequency by about a factor of 5. The spatial patterns of this percentage are similar if the smoothed time series are used, but the maxima are increased up to 70%. If also weaker blockings are considered, in the order of 80% of the six-hourly hot extremes coincide with such

  1. Maximum Temperature Detection System for Integrated Circuits

    NASA Astrophysics Data System (ADS)

    Frankiewicz, Maciej; Kos, Andrzej

    2015-03-01

    The paper describes structure and measurement results of the system detecting present maximum temperature on the surface of an integrated circuit. The system consists of the set of proportional to absolute temperature sensors, temperature processing path and a digital part designed in VHDL. Analogue parts of the circuit where designed with full-custom technique. The system is a part of temperature-controlled oscillator circuit - a power management system based on dynamic frequency scaling method. The oscillator cooperates with microprocessor dedicated for thermal experiments. The whole system is implemented in UMC CMOS 0.18 μm (1.8 V) technology.

  2. Summary Report on FY12 Small-Scale Test Activities High Temperature Electrolysis Program

    SciTech Connect

    James O'Brien

    2012-09-01

    This report provides a description of the apparatus and the single cell testing results performed at Idaho National Laboratory during January–August 2012. It is an addendum to the Small-Scale Test Report issued in January 2012. The primary program objectives during this time period were associated with design, assembly, and operation of two large experiments: a pressurized test, and a 4 kW test. Consequently, the activities described in this report represent a much smaller effort.

  3. Criticality calculations of the Very High Temperature reactor Critical Assembly benchmark with Serpent and SCALE/KENO-VI

    SciTech Connect

    Bostelmann, Friederike; Hammer, Hans R.; Ortensi, Javier; Strydom, Gerhard; Velkov, Kiril; Zwermann, Winfried

    2015-12-30

    Within the framework of the IAEA Coordinated Research Project on HTGR Uncertainty Analysis in Modeling, criticality calculations of the Very High Temperature Critical Assembly experiment were performed as the validation reference to the prismatic MHTGR-350 lattice calculations. Criticality measurements performed at several temperature points at this Japanese graphite-moderated facility were recently included in the International Handbook of Evaluated Reactor Physics Benchmark Experiments, and represent one of the few data sets available for the validation of HTGR lattice physics. Here, this work compares VHTRC criticality simulations utilizing the Monte Carlo codes Serpent and SCALE/KENO-VI. Reasonable agreement was found between Serpent and KENO-VI, but only the use of the latest ENDF cross section library release, namely the ENDF/B-VII.1 library, led to an improved match with the measured data. Furthermore, the fourth beta release of SCALE 6.2/KENO-VI showed significant improvements from the current SCALE 6.1.2 version, compared to the experimental values and Serpent.

  4. Criticality calculations of the Very High Temperature reactor Critical Assembly benchmark with Serpent and SCALE/KENO-VI

    DOE PAGES

    Bostelmann, Friederike; Hammer, Hans R.; Ortensi, Javier; Strydom, Gerhard; Velkov, Kiril; Zwermann, Winfried

    2015-12-30

    Within the framework of the IAEA Coordinated Research Project on HTGR Uncertainty Analysis in Modeling, criticality calculations of the Very High Temperature Critical Assembly experiment were performed as the validation reference to the prismatic MHTGR-350 lattice calculations. Criticality measurements performed at several temperature points at this Japanese graphite-moderated facility were recently included in the International Handbook of Evaluated Reactor Physics Benchmark Experiments, and represent one of the few data sets available for the validation of HTGR lattice physics. Here, this work compares VHTRC criticality simulations utilizing the Monte Carlo codes Serpent and SCALE/KENO-VI. Reasonable agreement was found between Serpent andmore » KENO-VI, but only the use of the latest ENDF cross section library release, namely the ENDF/B-VII.1 library, led to an improved match with the measured data. Furthermore, the fourth beta release of SCALE 6.2/KENO-VI showed significant improvements from the current SCALE 6.1.2 version, compared to the experimental values and Serpent.« less

  5. Temperature, gravity, and bolometric correction scales for non-supergiant OB stars

    NASA Astrophysics Data System (ADS)

    Nieva, M.-F.

    2013-02-01

    Context. Precise and accurate determinations of the atmospheric parameters effective temperature and surface gravity are mandatory to derive reliable chemical abundances in OB stars. Furthermore, fundamental parameters like distances, masses, radii, luminosities can also be derived from the temperature and gravity of the stars. Aims: Atmospheric parameters recently determined at high precision with several independent spectroscopic indicators in non-local thermodynamic equilibrium, with typical uncertainties of ~300 K for temperature and of ~0.05 dex for gravity, are employed to calibrate photometric relationships. This is in order to investigate whether a faster tool to estimate atmospheric parameters can be provided. Methods: Temperatures and gravities of 30 calibrators, i.e. well-studied OB main sequence to giant stars in the solar neighbourhood, are compared to reddening-independent quantities of the Johnson and Strömgren photometric systems, assuming normal reddening. In addition, we examine the spectral and luminosity classification of the star sample and compute bolometric corrections. Results: Calibrations of temperatures and gravities are proposed for various photometric indices and spectral types. Once the luminosity of the stars is well known, effective temperatures can be determined at a precision of ~400 K for luminosity classes III/IV and ~800 K for luminosity class V. Furthermore, surface gravities can reach internal uncertainties as low as ~0.08 dex when using our calibration to the Johnson Q-parameter. Similar precision is achieved for gravities derived from the β-index and the precision is lower for both atmospheric parameters when using the Strömgren indices [c1] and [u - b] . In contrast, external uncertainties are larger for the Johnson than for the Strömgren calibrations. Our uncertainties are smaller than typical differences among other methods in the literature, reaching values up to ± 2000 K for temperature and ± 0.25 dex for gravity

  6. Beam displacement as a function of temperature and turbulence length scale at two different laser radiation wavelengths.

    PubMed

    Isterling, William M; Dally, Bassam B; Alwahabi, Zeyad T; Dubovinsky, Miro; Wright, Daniel

    2012-01-01

    Narrow laser beams directed from aircraft may at times pass through the exhaust plume of the engines and potentially degrade some of the laser beam characteristics. This paper reports on controlled studies of laser beam deviation arising from propagation through turbulent hot gases, in a well-characterized laboratory burner, with conditions of relevance to aircraft engine exhaust plumes. The impact of the temperature, laser wavelength, and turbulence length scale on the beam deviation has been investigated. It was found that the laser beam displacement increases with the turbulent integral length scale. The effect of temperature on the laser beam angular deviation, σ, using two different laser wavelengths, namely 4.67 μm and 632.8 nm, was recorded. It was found that the beam deviation for both wavelengths may be semiempirically modeled using a single function of the form, σ=a(b+(1/T)(2))(-1), with two parameters only, a and b, where σ is in microradians and T is the temperature in °C.

  7. Finite-size scaling of the critical temperatures of magnetic thin films with variable range of interactions.

    NASA Astrophysics Data System (ADS)

    Bramfeld, Timothy; Willis, Roy F.

    2006-03-01

    Finite-size scaling in magnetic (spin) systems with an arbitrary range of spin interactions was first discussed by Domb and Dalton [1]. These authors explored the effect on the various critical exponents of the thermodynamic quantities of a generalized Ising model in which each spin interacts equally strongly with neighbors within some finite interaction distance beyond which the interaction goes to zero. Such a model was used by Zhang & Willis [2] to explain the thickness dependence of the Curie temperatures of ferromagnetic nickel films. Specifically, they showed that Tc followed a power law, reduced temperature t ˜ L^-λdown to a critical thickness Lo = Ro, at which point the critical temperature reduced linearly with further decreasing thickness L. In this talk, we show that the demarcation point Lo = Ro scales with the range of spin interactions in alloy films. This parameter Ro is a function of the changing dimensions of the Fermi surface i.e. related to the period of RKKY oscillations in these itinerant ferromagnets. We examine the ramifications of an increasing range of spin interactions Ro on the finite-size critical behavior of a magnetic system. [1] C. Domb & N.W. Dalton, Proc. Phys. Soc. 89, 859 (1966). [2] R. Zhang & R.F. Willis, Phys. Rev. Lett. 86, 2665 (2001).

  8. The coupled effects of environmental composition, temperature and contact size-scale on the tribology of molybdenum disulfide

    NASA Astrophysics Data System (ADS)

    Khare, Harmandeep S.

    Liquid lubricants are precluded in an exceedingly large number of consumer as well as extreme applications as a means to reduce friction and wear at the sliding interface of two bodies. The extraterrestrial environment is one such example of an extreme environment which has motivated the development of advanced solid lubricant materials. Mechanical systems for space require fabrication, assembly, transportation and testing on earth before launch and deployment. Solid lubricants for space are expected to not only operate efficiently in the hard vacuum of space but also withstand interactions with moisture or oxygen during the terrestrial storage, transportation and assembly prior to deployment and launch. Molybdenum disulfide (MoS2) is considered the gold standard in solid lubricants for space due to its excellent tribological properties in ultra-high vacuum. However in the presence of environmental species such as water and oxygen or at elevated temperatures, the lubricity and endurance of MoS2 is severely limited. Past studies have offered several hypotheses for the breakdown of lubrication of MoS2 under the influence of water and oxygen, although exact mechanisms remain unknown. Furthermore, it is unclear if temperature acts as a driver solely for oxidation or for thermally activated slip and thermally activated desorption as well. The answers to these questions are of fundamental importance to improving the reliability of existing MoS2-based solid lubricants for space, as well as for guiding the design of advanced lamellar solid lubricant coatings. This dissertation aims to elucidate: (1) the role of water on MoS2 oxidation, (2) the role of water on MoS2 friction, (3) the role of oxygen on MoS2 friction, (4) the contribution of thermal activation to ambient-temperature friction, and (5) effects of length-scale. The results of this study showed that water does not cause oxidation of MoS2. Water increases ambient-temperature friction of MoS2 directly through a

  9. Studies Related to the Oregon State University High Temperature Test Facility: Scaling, the Validation Matrix, and Similarities to the Modular High Temperature Gas-Cooled Reactor

    SciTech Connect

    Richard R. Schultz; Paul D. Bayless; Richard W. Johnson; William T. Taitano; James R. Wolf; Glenn E. McCreery

    2010-09-01

    The Oregon State University (OSU) High Temperature Test Facility (HTTF) is an integral experimental facility that will be constructed on the OSU campus in Corvallis, Oregon. The HTTF project was initiated, by the U.S. Nuclear Regulatory Commission (NRC), on September 5, 2008 as Task 4 of the 5 year High Temperature Gas Reactor Cooperative Agreement via NRC Contract 04-08-138. Until August, 2010, when a DOE contract was initiated to fund additional capabilities for the HTTF project, all of the funding support for the HTTF was provided by the NRC via their cooperative agreement. The U.S. Department of Energy (DOE) began their involvement with the HTTF project in late 2009 via the Next Generation Nuclear Plant project. Because the NRC interests in HTTF experiments were only centered on the depressurized conduction cooldown (DCC) scenario, NGNP involvement focused on expanding the experimental envelope of the HTTF to include steady-state operations and also the pressurized conduction cooldown (PCC). Since DOE has incorporated the HTTF as an ingredient in the NGNP thermal-fluids validation program, several important outcomes should be noted: 1. The reference prismatic reactor design, that serves as the basis for scaling the HTTF, became the modular high temperature gas-cooled reactor (MHTGR). The MHTGR has also been chosen as the reference design for all of the other NGNP thermal-fluid experiments. 2. The NGNP validation matrix is being planned using the same scaling strategy that has been implemented to design the HTTF, i.e., the hierarchical two-tiered scaling methodology developed by Zuber in 1991. Using this approach a preliminary validation matrix has been designed that integrates the HTTF experiments with the other experiments planned for the NGNP thermal-fluids verification and validation project. 3. Initial analyses showed that the inherent power capability of the OSU infrastructure, which only allowed a total operational facility power capability of 0.6 MW, is

  10. Large-scale sea surface temperature variability from satellite and shipboard measurements

    NASA Technical Reports Server (NTRS)

    Bernstein, R. L.; Chelton, D. B.

    1985-01-01

    A series of satellite sea surface temperature intercomparison workshops were conducted under NASA sponsorship at the Jet Propulsion Laboratory. Three different satellite data sets were compared with each other, with routinely collected ship data, and with climatology, for the months of November 1979, December 1981, March 1982, and July 1982. The satellite and ship data were differenced against an accepted climatology to produce anomalies, which in turn were spatially and temporally averaged into two-degree latitude-longitude, one-month bins. Monthly statistics on the satellite and ship bin average temperatures yielded rms differences ranging from 0.58 to 1.37 C, and mean differences ranging from -0.48 to 0.72 C, varying substantially from month to month, and sensor to sensor.

  11. Density and temperature scaling of disorder-induced heating in ultracold plasmas

    SciTech Connect

    Bergeson, S. D.; Denning, A.; Lyon, M.; Robicheaux, F.

    2011-02-15

    We report measurements and simulations of disorder-induced heating in ultracold neutral plasmas. Fluorescence from plasma ions is excited using a detuned probe laser beam while the plasma relaxes from its initially disordered nonequilibrium state. This method probes the wings of the ion velocity distribution. The simulations yield information on time-evolving plasma parameters that are difficult to measure directly and make it possible to connect the fluorescence signal to the rms velocity distribution. The disorder-induced heating signal can be used to estimate the electron and ion temperatures {approx}100 ns after the plasma is created. This is particularly interesting for plasmas in which the electron and ion temperatures are not known.

  12. The effect of water contamination on the dew-point temperature scale realization with humidity generators

    NASA Astrophysics Data System (ADS)

    Vilbaste, M.; Heinonen, M.; Saks, O.; Leito, I.

    2013-08-01

    The purpose of this paper is to study the effect of contaminated water in the context of humidity generators. Investigation of different methods to determine the drop in dew-point temperature due to contamination and experiments on actual contamination rates are reported. Different methods for calculating the dew-point temperature effect from electrical conductivity and density measurements are studied with high-purity water and aqueous solutions of NaCl and LiCl. The outcomes of the calculation methods are compared with the results of direct humidity measurements. The results show that the often applied Raoult's law based calculation method is in good agreement with other methods. For studying actual contamination, water samples were kept in glass, plastic, copper and stainless-steel vessels for up to 13 months to investigate natural ionic and organic contamination in vessels with different wall materials. The amount of ionic contamination was found to be higher in copper and glass vessels than in stainless-steel and plastic vessels. The amount of organic contamination was found to be highest in the plastic vessel. In all the cases, however, the corresponding drop in dew-point temperature due to natural contamination was found to be below 0.1 mK. The largest rate of change of dew-point temperature was 26 µK/month. Thus, if proper cleanness is maintained in a humidity generator the effect of contamination of water in the saturator is insignificant compared with the major uncertainty components even in the most accurate generators today.

  13. Bench-scale testing of novel high-temperature desulfurization sorbents: Final report

    SciTech Connect

    Gangwal, S.K.; Harkins, S.M.; Stogner, J.M.; Woods, M.C.; Rogers, T.N.

    1988-12-01

    Extrudates of regenerable mixed-metal oxide sorbents including zinc ferrite, copper-modified zinc ferrite, zinc titanate, copper aluminate, copper-iron aluminate, and copper manganate were prepared and tested for their potential to remove hydrogen sulfide (H/sub 2/S) from coal gasifier gas in a high-temperature high-pressure (HTHP) fixed-bed reactor. The zinc containing sorbents were found to be more promising than those containing combinations of copper, aluminum, iron, and manganese. Reductions in H/sub 2/S concentration were achieved depending on sorbent, reactor temperature, and steam concentration. The copper-modified zinc ferrite sorbent reduced the H/sub 2/S concentration to less than 1 ppmv at up to 1100/degree/F with 20 volume % steam in the gas. The zinc ferrite sorbent showed no apparent loss in capacity over 15 sulfidation-regeneration cycles but underwent significant strength reduction in a coal-derived gas with 15% or less steam due to soot formation. Zinc titanate exhibited excellent strength and capacity retention at steam levels as low as 5% and temperatures as high as 1350/degree/F. 13 refs., 64 figs., 75 tabs.

  14. Room Temperature Ion-Beam-Induced Recrystallization and Large Scale Nanopatterning.

    PubMed

    Satpati, Biswarup; Ghosh, Tanmay

    2015-02-01

    We have studied ion-induced effects in the near-surface region of two eutectic systems. Gold and Silver nanodots on Silicon (100) substrate were prepared by thermal evaporation under high vacuum condition at room temperature (RT) and irradiated with 1.5 MeV Au2+ ions at flux ~1.25 x 10(11) ions cm-2 s-1 also at RT. These samples were characterized using cross-sectional transmission electron microscopy (XTEM) and associated techniques. We have observed that gold act as catalysis in the recrystallization process of ion-beam-induced amorphous Si at room temperature and also large mass transport up to a distance of about 60 nm into the substrate. Mass transport is much beyond the size (~ 6-20 nm) of these Au nanodots. Ag nanoparticles with diameter 15-45 nm are half-way embedded into the Si substrate and does not stimulate in recrystallization. In case of Au nanoparticles upon ion irradiation, mixed phase formed only when the local composition and transient temperature during irradiation is sufficient to cause mixing in accordance with the Au-Si stable phase diagram. Spectroscopic imaging in the scanning TEM using spatially resolved electron energy loss spectroscopy provides one of the few ways to measure the real-space nanoscale mixing.

  15. Absolute magnitudes of trans-neptunian objects

    NASA Astrophysics Data System (ADS)

    Duffard, R.; Alvarez-candal, A.; Pinilla-Alonso, N.; Ortiz, J. L.; Morales, N.; Santos-Sanz, P.; Thirouin, A.

    2015-10-01

    Accurate measurements of diameters of trans- Neptunian objects are extremely complicated to obtain. Radiomatric techniques applied to thermal measurements can provide good results, but precise absolute magnitudes are needed to constrain diameters and albedos. Our objective is to measure accurate absolute magnitudes for a sample of trans- Neptunian objects, many of which have been observed, and modelled, by the "TNOs are cool" team, one of Herschel Space Observatory key projects grantes with ~ 400 hours of observing time. We observed 56 objects in filters V and R, if possible. These data, along with data available in the literature, was used to obtain phase curves and to measure absolute magnitudes by assuming a linear trend of the phase curves and considering magnitude variability due to rotational light-curve. In total we obtained 234 new magnitudes for the 56 objects, 6 of them with no reported previous measurements. Including the data from the literature we report a total of 109 absolute magnitudes.

  16. A New Gimmick for Assigning Absolute Configuration.

    ERIC Educational Resources Information Center

    Ayorinde, F. O.

    1983-01-01

    A five-step procedure is provided to help students in making the assignment absolute configuration less bothersome. Examples for both single (2-butanol) and multi-chiral carbon (3-chloro-2-butanol) molecules are included. (JN)

  17. The Simplicity Argument and Absolute Morality

    ERIC Educational Resources Information Center

    Mijuskovic, Ben

    1975-01-01

    In this paper the author has maintained that there is a similarity of thought to be found in the writings of Cudworth, Emerson, and Husserl in his investigation of an absolute system of morality. (Author/RK)

  18. Exploiting the atmosphere's memory for monthly, seasonal and interannual temperature forecasting using Scaling LInear Macroweather Model (SLIMM)

    NASA Astrophysics Data System (ADS)

    Del Rio Amador, Lenin; Lovejoy, Shaun

    2016-04-01

    Traditionally, most of the models for prediction of the atmosphere behavior in the macroweather and climate regimes follow a deterministic approach. However, modern ensemble forecasting systems using stochastic parameterizations are in fact deterministic/ stochastic hybrids that combine both elements to yield a statistical distribution of future atmospheric states. Nevertheless, the result is both highly complex (both numerically and theoretically) as well as being theoretically eclectic. In principle, it should be advantageous to exploit higher level turbulence type scaling laws. Concretely, in the case for the Global Circulation Models (GCM's), due to sensitive dependence on initial conditions, there is a deterministic predictability limit of the order of 10 days. When these models are coupled with ocean, cryosphere and other process models to make long range, climate forecasts, the high frequency "weather" is treated as a driving noise in the integration of the modelling equations. Following Hasselman, 1976, this has led to stochastic models that directly generate the noise, and model the low frequencies using systems of integer ordered linear ordinary differential equations, the most well-known are the Linear Inverse Models (LIM). For annual global scale forecasts, they are somewhat superior to the GCM's and have been presented as a benchmark for surface temperature forecasts with horizons up to decades. A key limitation for the LIM approach is that it assumes that the temperature has only short range (exponential) decorrelations. In contrast, an increasing body of evidence shows that - as with the models - the atmosphere respects a scale invariance symmetry leading to power laws with potentially enormous memories so that LIM greatly underestimates the memory of the system. In this talk we show that, due to the relatively low macroweather intermittency, the simplest scaling models - fractional Gaussian noise - can be used for making greatly improved forecasts

  19. Deconstructing European Poverty Measures: What Relative and Absolute Scales Measure

    ERIC Educational Resources Information Center

    Burkhauser, Richard V.

    2009-01-01

    Forster and d'Ercole (2009) outline the dominant method of conceptualization and operationalization of European poverty measures that informed the EU in its development of the questionnaire for the European Union--Survey of Income and Living Conditions (EU-SILC). They do so in the context of their explanation of how the Organization for Economic…

  20. An InGaAs detector based radiation thermometer and fixed-point blackbodies for temperature scale realization at NIM

    SciTech Connect

    Hao, X.; Yuan, Z.; Wang, J.; Lu, X.

    2013-09-11

    In this paper, we describe an InGaAs detector based radiation thermometer (IRT) and new design of fixed-point blackbodies, including Sn, Zn, Al and Cu, for the establishment of a temperature scale from 200 °C to 1085 °C at the National Institute of Metrology of China. The construction and calibration of the IRT with the four fixed-point blackbodies are described. Characteristics of the IRT, such as the size-of-source effect, the amplifier performance and its stability are determined. The design of the four fixed-points, with 10 mm diameter of aperture and 0.9999 emissivity, is described. The uncertainty of the scale realization is elaborated.

  1. An InGaAs detector based radiation thermometer and fixed-point blackbodies for temperature scale realization at NIM

    NASA Astrophysics Data System (ADS)

    Hao, X.; Yuan, Z.; Wang, J.; Lu, X.

    2013-09-01

    In this paper, we describe an InGaAs detector based radiation thermometer (IRT) and new design of fixed-point blackbodies, including Sn, Zn, Al and Cu, for the establishment of a temperature scale from 200 °C to 1085 °C at the National Institute of Metrology of China. The construction and calibration of the IRT with the four fixed-point blackbodies are described. Characteristics of the IRT, such as the size-of-source effect, the amplifier performance and its stability are determined. The design of the four fixed-points, with 10 mm diameter of aperture and 0.9999 emissivity, is described. The uncertainty of the scale realization is elaborated.

  2. Development of high-emittance scales on thoriated nickel-chromium-aluminum-base alloys. [produced by high temperature oxidation

    NASA Technical Reports Server (NTRS)

    Seltzer, M. S.; Wright, I. G.; Wilcox, B. A.

    1973-01-01

    The surface regions of a DSNiCrAl alloy have been doped, by a pack diffusion process, with small amounts of Mn, Fe, or Co, and the effect of these dopants on the total normal emissivity of the scales produced by subsequent high temperature oxidation has been measured. While all three elements lead to a modest increase in emissivity, (up to 23% greater than the undoped alloy) only the change caused by manganese is thermally stable. However, this increased emissivity is within 85 percent of that of TDNiCr oxidized to form a chromia scale. The maganese-doped alloy is some 50 percent weaker than undoped DSNiCrAl after the doping treatment, and approximately 30 percent weaker after oxidation.

  3. AMiBA: Scaling Relations Between the Integrated Compton-y and X-ray-derived Temperature, Mass, and Luminosity

    NASA Astrophysics Data System (ADS)

    Huang, Chih-Wei Locutus; Wu, Jiun-Huei Proty; Ho, Paul T. P.; Koch, Patrick M.; Liao, Yu-Wei; Lin, Kai-Yang; Liu, Guo-Chin; Molnar, Sandor M.; Nishioka, Hiroaki; Umetsu, Keiichi; Wang, Fu-Cheng; Altamirano, Pablo; Birkinshaw, Mark; Chang, Chia-Hao; Chang, Shu-Hao; Chang, Su-Wei; Chen, Ming-Tang; Chiueh, Tzihong; Han, Chih-Chiang; Huang, Yau-De; Hwang, Yuh-Jing; Jiang, Homin; Kesteven, Michael; Kubo, Derek; Li, Chao-Te; Martin-Cocher, Pierre; Oshiro, Peter; Raffin, Philippe; Wei, Tashun; Wilson, Warwick

    2010-06-01

    We investigate the scaling relations between the X-ray and the thermal Sunyaev-Zel'dovich effect properties of clusters of galaxies, using data taken during 2007 by the Y. T. Lee Array for Microwave Background Anisotropy (AMiBA) at 94 GHz for the six clusters A1689, A1995, A2142, A2163, A2261, and A2390. The scaling relations relate the integrated Compton-y parameter Y 2500 to the X-ray-derived gas temperature T e, total mass M 2500, and bolometric luminosity LX within r 2500. Our results for the power-law index and normalization are both consistent with the self-similar model and other studies in the literature except for the Y 2500-LX relation, for which a physical explanation is given though further investigation may be still needed. Our results not only provide confidence for the AMiBA project but also support our understanding of galaxy clusters.

  4. Finite-temperature scaling at the quantum critical point of the Ising chain in a transverse field

    NASA Astrophysics Data System (ADS)

    Haelg, Manuel; Huvonen, Dan; Guidi, Tatiana; Quintero-Castro, Diana Lucia; Boehm, Martin; Regnault, Louis-Pierre; Zheludev, Andrey

    2015-03-01

    Inelastic neutron scattering is used to study the finite-temperature scaling behavior of spin correlations at the quantum critical point in an experimental realization of the one-dimensional Ising model in a transverse field. The target compound is the well-characterized, anisotropic and bond-alternating Heisenberg spin-1 chain material NTENP. The validity and the limitations of the dynamic structure factor scaling are tested, discussed and compared to theoretical predictions. For this purpose neutron data have been collected on the three-axes spectrometers IN14 at ILL and FLEXX at HZB as well as on the time of flight multi-chopper spectrometer LET at ISIS. In addition to the general statement about quantum criticality and universality, present study also reveals new insight into the properties of the spin chain compound NTENP in particular.

  5. Vegetation types alter soil respiration and its temperature sensitivity at the field scale in an estuary wetland.

    PubMed

    Han, Guangxuan; Xing, Qinghui; Luo, Yiqi; Rafique, Rashad; Yu, Junbao; Mikle, Nate

    2014-01-01

    Vegetation type plays an important role in regulating the temporal and spatial variation of soil respiration. Therefore, vegetation patchiness may cause high uncertainties in the estimates of soil respiration for scaling field measurements to ecosystem level. Few studies provide insights regarding the influence of vegetation types on soil respiration and its temperature sensitivity in an estuary wetland. In order to enhance the understanding of this issue, we focused on the growing season and investigated how the soil respiration and its temperature sensitivity are affected by the different vegetation (Phragmites australis, Suaeda salsa and bare soil) in the Yellow River Estuary. During the growing season, there were significant linear relationships between soil respiration rates and shoot and root biomass, respectively. On the diurnal timescale, daytime soil respiration was more dependent on net photosynthesis. A positive correlation between soil respiration and net photosynthesis at the Phragmites australis site was found. There were exponential correlations between soil respiration and soil temperature, and the fitted Q10 values varied among different vegetation types (1.81, 2.15 and 3.43 for Phragmites australis, Suaeda salsa and bare soil sites, respectively). During the growing season, the mean soil respiration was consistently higher at the Phragmites australis site (1.11 µmol CO2 m(-2) s(-1)), followed by the Suaeda salsa site (0.77 µmol CO2 m(-2) s(-1)) and the bare soil site (0.41 µmol CO2 m(-2) s(-1)). The mean monthly soil respiration was positively correlated with shoot and root biomass, total C, and total N among the three vegetation patches. Our results suggest that vegetation patchiness at a field scale might have a large impact on ecosystem-scale soil respiration. Therefore, it is necessary to consider the differences in vegetation types when using models to evaluate soil respiration in an estuary wetland.

  6. Orion Absolute Navigation System Progress and Challenge

    NASA Technical Reports Server (NTRS)

    Holt, Greg N.; D'Souza, Christopher

    2012-01-01

    The absolute navigation design of NASA's Orion vehicle is described. It has undergone several iterations and modifications since its inception, and continues as a work-in-progress. This paper seeks to benchmark the current state of the design and some of the rationale and analysis behind it. There are specific challenges to address when preparing a timely and effective design for the Exploration Flight Test (EFT-1), while still looking ahead and providing software extensibility for future exploration missions. The primary onboard measurements in a Near-Earth or Mid-Earth environment consist of GPS pseudo-range and delta-range, but for future explorations missions the use of star-tracker and optical navigation sources need to be considered. Discussions are presented for state size and composition, processing techniques, and consider states. A presentation is given for the processing technique using the computationally stable and robust UDU formulation with an Agee-Turner Rank-One update. This allows for computational savings when dealing with many parameters which are modeled as slowly varying Gauss-Markov processes. Preliminary analysis shows up to a 50% reduction in computation versus a more traditional formulation. Several state elements are discussed and evaluated, including position, velocity, attitude, clock bias/drift, and GPS measurement biases in addition to bias, scale factor, misalignment, and non-orthogonalities of the accelerometers and gyroscopes. Another consideration is the initialization of the EKF in various scenarios. Scenarios such as single-event upset, ground command, and cold start are discussed as are strategies for whole and partial state updates as well as covariance considerations. Strategies are given for dealing with latent measurements and high-rate propagation using multi-rate architecture. The details of the rate groups and the data ow between the elements is discussed and evaluated.

  7. Effects of the International Temperature Scale of 1990 (ITS-90) on CIE documentary standards for radiometry, photometry, and colorimetry

    SciTech Connect

    Mielenz, K.D.; Hsia, J.J.

    1990-01-01

    The differences between ITS-90 and IPTS-68 (International Practical Temperature Scale of 1968) above 1235 K are described. It is shown that none of the following CIE (Commission Internationale de l'Eclairage or International Commission on Illumination) definitions or recommendations require revision because of the introduction of the ITS-90: International Lighting Vocabulary definitions; CIE Standard Illuminants A, D(65), other illuminants; and sources for realizing CIE Illuminants. The effect of the ITS-90 on previously calibrated sources for realizing CIE illuminants is negligibly small.

  8. Luminescent Paints Used for Rotating Temperature and Pressure Measurements on Scale-Model High-Bypass-Ratio Fans

    NASA Technical Reports Server (NTRS)

    Bencic, Timothy J.

    1998-01-01

    NASA Lewis Research Center is a leader in the application of temperature- and pressuresensitive paints (TSP and PSP) in rotating environments. Tests were recently completed on several scale model, high-bypass-ratio turbofans in Lewis' 9- by 15-Foot Low-Speed Wind Tunnel. Two of the test objectives were to determine the aerodynamic and acoustic performance of the fan designs. Using TSP and PSP, researchers successfully achieved fullfield aerodynamic loading profiles. The visualized loading profiles may help researchers identify factors contributing to the fans' performance and to the acoustic characteristics associated with the flow physics on the surface of the blades.

  9. Scaling between superconducting critical temperature and structural coherence length in YBa2Cu3O6.9 films

    NASA Astrophysics Data System (ADS)

    Gauzzi, A.; Jönsson-Åkerman, B. Johan; Clerc-Dubois, A.; Pavuna, D.

    2000-09-01

    Measurements of critical temperature Tc in superconducting YBa2Cu3O6.9 films with reduced long-range structural order show the validity of the empirical scaling relation ΔTc propto rc-2 between disorder-induced reduction of Tc and structural coherence length rc in the ab-plane. This result is quantitatively explained by the disorder-induced confinement of the charge carriers within each ordered domain of size rc. Our analysis of the data based on this picture enables us to precisely determine the Ginzburg-Landau superconducting coherence length in the ab-plane, ξab = 1.41 ± 0.04 nm.

  10. System overview and characterization of a high-temperature, high-pressure, entrained-flow, laboratory-scale gasifier.

    PubMed

    Kelley, Madison A; Jakulewicz, Micah S; Dreyer, Christopher B; Parker, Terence E; Porter, Jason M

    2015-05-01

    The high-temperature, high-pressure, entrained-flow, laboratory-scale gasifier at the Colorado School of Mines, including the primary systems and the supporting subsystems, is presented. The gasifier is capable of operating at temperatures and pressures up to 1650 °C and 40 bar. The heated section of the reactor column has an inner diameter of 50 mm and is 1 m long. Solid organic feedstock (e.g., coal, biomass, and solid waste) is ground into batches with particle sizes ranging from 25 to 90 μm and is delivered to the reactor at feed rates of 2-20 g/min. The maximum useful power output of the syngas is 10 kW, with a nominal power output of 1.2 kW. The initial characterization and demonstration results of the gasifier system with a coal feedstock are also reported.

  11. Effects of geographic area, feedstock, temperature, and operating time on microbial communities of six full-scale biogas plants.

    PubMed

    Fontana, Alessandra; Patrone, Vania; Puglisi, Edoardo; Morelli, Lorenzo; Bassi, Daniela; Garuti, Mirco; Rossi, Lorella; Cappa, Fabrizio

    2016-10-01

    The objective of this study was to investigate the effect of different animal feedings operated in two distinct PDO (protected designation of origin) cheese production areas (Parmigiano Reggiano and Grana Padano) on the microbiome of six full-scale biogas plants, by means of Illumina sequencing and qPCR techniques. The effects of feedstock (cattle slurry manure, energy crops, agro-industrial by-products), temperature (mesophilic/thermophilic), and operating time were also examined, as were the relationships between the predominant bacterial and archaeal taxa and process parameters. The different feedstocks and temperatures strongly affected the microbiomes. A more biodiverse archaeal population was highlighted in Parmigiano Reggiano area plants, suggesting an influence of the different animal feedings. Methanosarcina and Methanosaeta showed an opposite distribution among anaerobic plants, with the former found to be related to ammonium concentration. The Methanoculleus genus was more abundant in the thermophilic digester whereas representation of the Thermotogales order correlated with hydraulic retention time. PMID:27450128

  12. Assimilation of humidity and temperature observations retrieved from ground-based microwave radiometers into a convective-scale NWP model

    NASA Astrophysics Data System (ADS)

    Caumont, Olivier; Vincendon, Béatrice; Cimini, Domenico; Löhnert, Ulrich; Alados-Arboledas, Lucas; Bleisch, René; Buffa, Franco; Enrico Ferrario, Massimo; Haefele, Alexander; Huet, Thierry; Madonna, Fabio; Pace, Giandomenico

    2016-04-01

    Temperature and humidity retrievals from an international network of ground-based microwave radiometers (MWR) have been collected to assess the potential of their assimilation into a convective-scale Numerical Weather Prediction (NWP) system. Thirteen stations over a domain encompassing the western Mediterranean basin were considered for a time period of forty-one days in autumn, when heavy-precipitation events most often plague this area. Prior to their assimilation, MWR data were compared to very-short-term forecasts. Observation-minus-background statistics revealed some biases, but standard deviations were comparable to that obtained with radiosondes. The MWR data were then assimilated in a three-dimensional variational (3DVar) data assimilation system through the use of a rapid update cycle. A set of sensitivity experiments allowed assessing extensively the impact of the assimilation of temperature and humidity profiles, both separately and jointly. The respective benefit of MWR data and radiosonde data on analyses and forecasts was also investigated.

  13. System overview and characterization of a high-temperature, high-pressure, entrained-flow, laboratory-scale gasifier

    SciTech Connect

    Kelley, Madison A.; Dreyer, Christopher B.; Parker, Terence E.; Porter, Jason M.; Jakulewicz, Micah S.

    2015-05-15

    The high-temperature, high-pressure, entrained-flow, laboratory-scale gasifier at the Colorado School of Mines, including the primary systems and the supporting subsystems, is presented. The gasifier is capable of operating at temperatures and pressures up to 1650 °C and 40 bar. The heated section of the reactor column has an inner diameter of 50 mm and is 1 m long. Solid organic feedstock (e.g., coal, biomass, and solid waste) is ground into batches with particle sizes ranging from 25 to 90 μm and is delivered to the reactor at feed rates of 2–20 g/min. The maximum useful power output of the syngas is 10 kW, with a nominal power output of 1.2 kW. The initial characterization and demonstration results of the gasifier system with a coal feedstock are also reported.

  14. Verification of a Depletion Method in SCALE for the Advanced High Temperature Reactor

    SciTech Connect

    KELLY, RYAN; Ilas, Dan

    2012-01-01

    This study describes a new method utilizing the Dancoff factor to model a non-standard TRISO fuel form characteristic of the AHTR reactor design concept for depletion analysis using the TRITON sequence of SCALE and the validation of this method by code-to-code comparisons. The fuel used in AHTR has the TRISO particles concentrated along the edges of a slab fuel element. This particular geometry prevented the use of a standard DOUBLEHET treatment, previously developed in SCALE to handle NGNP-designed fuel. The new method permits fuel depletion on complicated geometries that traditionally can be handled only by continuous energy based depletion code systems. The method was initially tested on a fuel design typical of the NGNP, where the DOUBLEHET treatment is available. A more comprehensive study was performed using the VESTA code that uses the continuous energy MCNP5 code as a transport solver and ORIGEN2.2 code for depletion calculations. Comparisons of the results indicate good agreement of whole core characteristics, such as the multiplication factor, and the isotopics, including their spatial distribution. Key isotopes analyzed included 235U, 239Pu, 240Pu and 241Pu. The results from this study indicate that the Dancoff factor method can generate estimates of core characteristics with reasonable precision for scoping studies of configurations where the DOUBLEHET treatment is unavailable.

  15. Scale-up of a high temperature polymer electrolyte membrane fuel cell based on polybenzimidazole

    NASA Astrophysics Data System (ADS)

    Pinar, F. Javier; Cañizares, Pablo; Rodrigo, Manuel A.; Úbeda, Diego; Lobato, Justo

    A high temperature PEM fuel cell stack with a total active area 150 cm 2 has been studied. The PEM technology is based on a polybenzimidazole (PBI) membrane. Cast from a PBI polymer synthesised in our lab, the performance of a three-cell stack was analysed in static and dynamic modes. In static mode, operating at high constant oxygen flow rate (QO2 > 1105 ml O2 / min) produces a small decrease on the stack performance. High constant oxygen stoichiometry (λO2 > 3) does not produce a decrease on the performance of the stack. There are not differences between operating at constant flow rate of oxygen and constant stoichiometry of oxygen in the stack performance. The effect of operating at high temperature with a pressurization system and operating at higher temperatures are beneficial since the performance of the fuel cell is enhanced. A large shut-down stage produces important performance losses due to the loss of catalyst activity and the loss of membrane conductivity. After 150 h of operation at 0.2 A cm -2, it is observed a very high voltage drop. The phosphoric acid leached from the stack was also evaluated and did not exceed 2% (w/w). This fact suggests that the main degradation mechanism of a fuel cell stack based on polybenzimidazole is not the electrolyte loss. In dynamic test mode, it was observed a rapid response of power and current output even at the lower step-time (10 s). In the static mode at 125 °C and 1 atm, the stack reached a power density peak of 0.29 W cm -2 (43.5 W) at 1 V.

  16. Regional-scale directional changes in abundance of tree species along a temperature gradient in Japan.

    PubMed

    Suzuki, Satoshi N; Ishihara, Masae I; Hidaka, Amane

    2015-09-01

    Climate changes are assumed to shift the ranges of tree species and forest biomes. Such range shifts result from changes in abundances of tree species or functional types. Owing to global warming, the abundance of a tree species or functional type is expected to increase near the colder edge of its range and decrease near the warmer edge. This study examined directional changes in abundance and demographic parameters of forest trees along a temperature gradient, as well as a successional gradient, in Japan. Changes in the relative abundance of each of four functional types (evergreen broad-leaved, deciduous broad-leaved, evergreen temperate conifer, and evergreen boreal conifer) and the demography of each species (recruitment rate, mortality, and population growth rate) were analyzed in 39 permanent forest plots across the Japanese archipelago. Directional changes in the relative abundance of functional types were detected along the temperature gradient. Relative abundance of evergreen broad-leaved trees increased near their colder range boundaries, especially in secondary forests, coinciding with the decrease in deciduous broad-leaved trees. Similarly, relative abundance of deciduous broad-leaved trees increased near their colder range boundaries, coinciding with the decrease in boreal conifers. These functional-type-level changes were mainly due to higher recruitment rates and partly to the lower mortality of individual species at colder sites. This is the first report to show that tree species abundances in temperate forests are changing directionally along a temperature gradient, which might be due to current or past climate changes as well as recovery from past disturbances.

  17. Regional-scale directional changes in abundance of tree species along a temperature gradient in Japan.

    PubMed

    Suzuki, Satoshi N; Ishihara, Masae I; Hidaka, Amane

    2015-09-01

    Climate changes are assumed to shift the ranges of tree species and forest biomes. Such range shifts result from changes in abundances of tree species or functional types. Owing to global warming, the abundance of a tree species or functional type is expected to increase near the colder edge of its range and decrease near the warmer edge. This study examined directional changes in abundance and demographic parameters of forest trees along a temperature gradient, as well as a successional gradient, in Japan. Changes in the relative abundance of each of four functional types (evergreen broad-leaved, deciduous broad-leaved, evergreen temperate conifer, and evergreen boreal conifer) and the demography of each species (recruitment rate, mortality, and population growth rate) were analyzed in 39 permanent forest plots across the Japanese archipelago. Directional changes in the relative abundance of functional types were detected along the temperature gradient. Relative abundance of evergreen broad-leaved trees increased near their colder range boundaries, especially in secondary forests, coinciding with the decrease in deciduous broad-leaved trees. Similarly, relative abundance of deciduous broad-leaved trees increased near their colder range boundaries, coinciding with the decrease in boreal conifers. These functional-type-level changes were mainly due to higher recruitment rates and partly to the lower mortality of individual species at colder sites. This is the first report to show that tree species abundances in temperate forests are changing directionally along a temperature gradient, which might be due to current or past climate changes as well as recovery from past disturbances. PMID:25712048

  18. Space-time integrity of improved stratospheric and mesospheric sounder and microwave limb sounder temperature fields at Kelvin wave scales

    NASA Astrophysics Data System (ADS)

    Stone, E. M.; Stanford, J. L.; Ziemke, J. R.; Allen, D. R.; Taylor, F. W.; Rodgers, C. D.; Lawrence, B. N.; Fishbein, E. F.; Elson, L. S.; Waters, J. W.

    1995-07-01

    Space-time analyses, which are sensitive to details of retrieval and gridding processes not seen in zonal and time means, are used to investigate the integrity of version 8 gridded retrieved temperatures from the improved stratospheric and mesospheric sounder (ISAMS) on the upper atmosphere research satellite (UARS). This note presents results of such analyses applied to ISAMS tropical data. Comparisons are made with microwave limb sounder (MLS), also on UARS, temperatures. Prominent zonal wave number 1 features are observed with characteristics similar to those expected for Kelvin waves. Time versus longitude plots reveal quasi-regular eastward phase progression from November 1991 to mid-January 1992. The perturbations extend throughout the upper stratosphere and lower mesosphere (altitudes of 32-64 km), exhibiting peak-to-peak amplitudes of up to 2°-3° K and periods from ˜ 2 weeks in midstratosphere to ˜ 1 week at higher altitudes. Faster Kelvin waves with periods of 3-5 days are also found in the lower mesosphere. Height versus time plots reveal downward phase and upward group velocities, consistent with forcing from below. Vertical wavelengths are ˜ 20 km for the slower mode and about twice this scale for the faster 3 to 5-day mode. The features are trapped within ±10°-15° of the equator. Kelvin wave signatures in ISAMS and MLS temperatures are compared at 10 and 1 hPa. Good agreement is found, illustrating the internal consistency and ability of both ISAMS and MLS temperature grids to capture relatively small amplitude features with space-time scales of fast, zonally asymmetric equatorial modes.

  19. Easy peak tracking in CE-UV and CE-UV-ESI-MS by incorporating temperature-correlated mobility scaling.

    PubMed

    Li, Bin; Petersen, Nickolaj J; Andersen, Line H; Hansen, Steen H

    2013-06-01

    A simple data reconstruction technique in CE-UV-ESI-MS (where UV stands for ultraviolet) is presented to overcome the drift in mobilities caused by various factors compromising the reproducibility of such data, for example Joule heating effects and the variation in thermostatic control along the capillary, drift in EOF and the suction effect caused by the nebulizing gas in coaxial CE-MS interfaces. We present here a method to transform the traditional time-based electropherogram into the corresponding temperature-correlated mobility scale allowing tracking of analytes independent from capillary dimensions, electric field strengths, temperature control, and distance between the detectors. The main principle of this alignment is based on including the current in the mobility calculations and relating this to the initial electrical resistance of the buffer-filled capillary. The temperature-correlated mobility calculation eliminates the peak shifts due to the viscosity changes, improves the precision of peak identification using the observed temperature-correlated mobilities, and allows a direct comparison of signals from different detection combinations. The method allows peaks from normal CE-UV separations to be correlated with the corresponding peak obtained by MS detection in CE-MS even for differences in capillary dimensions and thermostatic control. PMID:23576063

  20. Commercial-Scale Performance Predictions for High-Temperature Electrolysis Plants Coupled to Three Advanced Reactor Types

    SciTech Connect

    M. G. McKellar; J. E. O'Brien; J. S. Herring

    2007-09-01

    This report presents results of system analyses that have been developed to assess the hydrogen production performance of commercial-scale high-temperature electrolysis (HTE) plants driven by three different advanced reactor – power-cycle combinations: a high-temperature helium cooled reactor coupled to a direct Brayton power cycle, a supercritical CO2-cooled reactor coupled to a direct recompression cycle, and a sodium-cooled fast reactor coupled to a Rankine cycle. The system analyses were performed using UniSim software. The work described in this report represents a refinement of previous analyses in that the process flow diagrams include realistic representations of the three advanced reactors directly coupled to the power cycles and integrated with the high-temperature electrolysis process loops. In addition, this report includes parametric studies in which the performance of each HTE concept is determined over a wide range of operating conditions. Results of the study indicate that overall thermal-to- hydrogen production efficiencies (based on the low heating value of the produced hydrogen) in the 45 - 50% range can be achieved at reasonable production rates with the high-temperature helium cooled reactor concept, 42 - 44% with the supercritical CO2-cooled reactor and about 33 - 34% with the sodium-cooled reactor.