Science.gov

Sample records for absorb concentrated sunlight

  1. Concentrated and piped sunlight for indoor illumination.

    PubMed

    Fraas, L M; Pyle, W R; Ryason, P R

    1983-02-15

    A concept for indoor illumination of buildings using sunlight is described. For this system, a tracking concentrator on the building roof follows the sun and focuses sunlight into a lightguide. A system of transparent lightguides distributes the sunlight to interior rooms. Recent advances in the transparency of acrylic plastic optical fibers suggest that acrylic lightguides could be successfully used for piping sunlight. The proposed system displaces electricity currently used for indoor lighting. It is argued that using sunlight directly for indoor illumination would be about twenty-five times more cost-effective than using sunlight to generate electricity with solar cells for powering electric lamps for indoor lighting.

  2. Carbon nanohorns-based nanofluids as direct sunlight absorbers.

    PubMed

    Sani, E; Barison, S; Pagura, C; Mercatelli, L; Sansoni, P; Fontani, D; Jafrancesco, D; Francini, F

    2010-03-01

    The optimization of the poor heat transfer characteristics of fluids conventionally employed in solar devices are at present one of the main topics for system efficiency and compactness. In the present work we investigated the optical and thermal properties of nanofluids consisting in aqueous suspensions of single wall carbon nanohorns. The characteristics of these nanofluids were evaluated in view of their use as sunlight absorber fluids in a solar device. The observed nanoparticle-induced differences in optical properties appeared promising, leading to a considerably higher sunlight absorption. We found that the thermal conductivity of the nanofluids was higher than pure water. Both these effects, together with the possible chemical functionalization of carbon nanohorns, make this new kind of nanofluids very interesting for increasing the overall efficiency of the sunlight exploiting device.

  3. Lighting with sunlight using sun tracking concentrators.

    PubMed

    Duguay, M A; Edgar, R M

    1977-05-01

    The use of controlled beams of sunlight for lighting interior parts of a building is proposed as an economically attractive and practical option in a solar energy context. Sun tracking concentrators introduce beams of sunlight through holes in the roof. Inside, the beams can be relayed throughout the building by means of mirrors and lenses. Ideally cool lighting is obtained by using dielectric mirrors to separate the visible and ir parts of the solar spectrum. The ir can be used to generate electricity and usable heat in solar cells. Results of a preliminary experiment are given.

  4. Solar concentrator/absorber

    NASA Technical Reports Server (NTRS)

    Von Tiesenhausen, G. F.

    1976-01-01

    Collector/energy converter, consisting of dual-slope optical concentrator and counterflow thermal energy absorber, is attached to multiaxis support structure. Efficient over wide range of illumination levels, device may be used to generate high temperature steam, serve as solar powered dryer, or power absorption cycle cooler.

  5. Novel materials and devices for sunlight concentrating systems

    NASA Astrophysics Data System (ADS)

    Hovel, H. J.

    1980-09-01

    An economic analysis of photovoltaic conversion under concentrated sunlight has been performed which demonstrates that solar cell efficiency, concentrator efficiency, and concentrator cost are the most important parameters in a concentrating photovoltaic system; solar cell cost is only of secondary importance. Six novel structures are described, including modified conventional Si cells Ga(1-x)Al(x)As/GaAs, interdigitated cells, vertical and horizontal multijunction cells and 'multicolor' devices.

  6. Absorption and scattering properties of carbon nanohorn-based nanofluids for direct sunlight absorbers

    PubMed Central

    2011-01-01

    In the present work, we investigated the scattering and spectrally resolved absorption properties of nanofluids consisting in aqueous and glycol suspensions of single-wall carbon nanohorns. The characteristics of these nanofluids were evaluated in view of their use as sunlight absorber fluids in a solar device. The observed nanoparticle-induced differences in optical properties appeared promising, leading to a considerably higher sunlight absorption with respect to the pure base fluids. Scattered light was found to be not more than about 5% with respect to the total attenuation of light. Both these effects, together with the possible chemical functionalization of carbon nanohorns, make this new kind of nanofluids very interesting for increasing the overall efficiency of the sunlight exploiting device. PACS 78.40.Ri, 78.35.+c, 78.67.Bf, 88.40.fh, 88.40.fr, 81.05.U. PMID:21711795

  7. Efficient Solar Concentrators: Affordable Energy from Water and Sunlight

    SciTech Connect

    2010-01-01

    Broad Funding Opportunity Announcement Project: Teledyne is developing a liquid prism panel that tracks the position of the sun to help efficiently concentrate its light onto a solar cell to produce power. Typically, solar tracking devices have bulky and expensive mechanical moving parts that require a lot of power and are often unreliable. Teledyne’s liquid prism panel has no bulky and heavy supporting parts—instead it relies on electrowetting. Electrowetting is a process where an electric field is applied to the liquid to control the angle at which it meets the sunlight above and to control the angle of the sunlight to the focusing lensthe more direct the angle to the focusing lens, the more efficiently the light can be concentrated to solar panels and converted into electricity. This allows the prism to be tuned like a radio to track the sun across the sky and steer sunlight into the solar cell without any moving mechanical parts. This process uses very little power and requires no expensive supporting hardware or moving parts, enabling efficient and quiet rooftop operation for integration into buildings.

  8. [Maximilian Mehl and the treatment with concentrated sunlight].

    PubMed

    Heyll, U

    2006-12-22

    In 1889, a chance observation made by Maximilian Mehl, an officer of the Berlin police force, lead him to develop a new method of treating Lupus Vulgaris with concentrated sunlight. Although first therapies proved the efficacy of this method, scientific medicine showed little interest. But Mehl found recognition among supporters of natural healing methods who saw their principles confirmed by his discovery. Mehl's tentative therapy was superseded by technological methods of sunlight treatment, as developed by the Danish doctor Niels Ryberg Finsen. In 1903 Finsen was awarded the Nobel Prize for his work while Mehl's discovery remained practically unknown. This episode in the history of medicine demonstrates how the recognition of a new method not only depends on criteria of its efficacy, but equally so on the degree of its conformity with preconceived notions and accepted standards.

  9. Effect of stratospheric aerosols on direct sunlight and implications for concentrating solar power.

    PubMed

    Murphy, Daniel M

    2009-04-15

    Light scattering calculations and data show that stratospheric aerosols reduce direct sunlight by about 4 W for every watt reflected to outer space. The balance becomes diffuse sunlight. One consequence of deliberate enhancement of the stratospheric aerosol layer would be a significant reduction in the efficiency of solar power generation systems using parabolic or other concentrating optics. There also would be a reduction in the effectiveness of passive solar design.

  10. Modelling acceptance of sunlight in high and low photovoltaic concentration

    SciTech Connect

    Leutz, Ralf

    2014-09-26

    A simple model incorporating linear radiation characteristics, along with the optical trains and geometrical concentration ratios of solar concentrators is presented with performance examples for optical trains of HCPV, LCPV and benchmark flat-plate PV.

  11. Erbium concentration dependent absorbance in tellurite glass

    SciTech Connect

    Sazali, E. S. Rohani, M. S. Sahar, M. R. Arifin, R. Ghoshal, S. K. Hamzah, K.

    2014-09-25

    Enhancing the optical absorption cross-section in topically important rare earth doped tellurite glasses is challenging for photonic devices. Controlled synthesis and detailed characterizations of the optical properties of these glasses are important for the optimization. The influence of varying concentration of Er{sup 3+} ions on the absorbance characteristics of lead tellurite glasses synthesized via melt-quenching technique are investigated. The UV-Vis absorption spectra exhibits six prominent peaks centered at 490, 526, 652, 800, 982 and 1520 nm ascribed to the transitions in erbium ion from the ground state to the excited states {sup 4}F{sub 7/2}, {sup 2}H{sub 11/2}, {sup 4}F{sub 9/2}, {sup 4}I{sub 9/2}, {sup 2}H{sub 11/2} and {sup 4}I{sub 13/2}, respectively. The results are analyzed by means of optical band gap E{sub g} and Urbach energy E{sub u}. The values of the energy band gap are found decreased from 2.82 to 2.51 eV and the Urbach energy increased from 0.15 to 0.24 eV with the increase of the Er{sub 2}O{sub 3} concentration from 0 to 1.5 mol%. The excellent absorbance of the prepared tellurite glasses makes them suitable for fabricating solid state lasers.

  12. The influence of sunlight and oxidative treatment on measured PAH concentrations in biochar.

    PubMed

    Khalid, Fathima N M; Klarup, Doug

    2015-09-01

    The concentration changes of 18 different polycyclic aromatic hydrocarbons (PAHs) in two different biochars were assessed after (1) chemical oxidative treatment with a solution of H2O2 and Na2S2O8, (2) exposure to sunlight with intermittent wetting, and (3) exposure to sunlight with intermittent wetting after mixing in ZnO and Na2S2O8. Chemical oxidative treatment of biochars derived from gasified wood biochar and a gasified wood/Arundo donax mixture led to decreases in six-ring PAHs, but overall significant increases in measured PAH concentration sums for both biochars (from 225 ± 7 to 312 ± 18 μg g(-1) for wood-derived and 165 ± 3 to 244 ± 7 μg g(-1) for mixture-derived). Sunlight exposure of the mixture-derived biochar led to increases in some three- and four-ring PAHs, but overall decreases in summed PAH concentrations (165 ± 3 to 60 ± 1 μg g(-1) with wetting only and 165 ± 3 to 41 ± 4 μg g(-1) when Na2S2O8 and ZnO were included). The mass losses in the sunlight-exposed samples primarily were due to losses of low molar mass (two-ring) PAHs, though high molar mass (five- and six-ring) PAH concentrations also decreased. This result implies sun and rain exposure to biochar, prior to agricultural application, will help reduce potential PAH soil contamination from the biochar.

  13. Type II GaSb quantum ring solar cells under concentrated sunlight.

    PubMed

    Tsai, Che-Pin; Hsu, Shun-Chieh; Lin, Shih-Yen; Chang, Ching-Wen; Tu, Li-Wei; Chen, Kun-Cheng; Lay, Tsong-Sheng; Lin, Chien-Chung

    2014-03-10

    A type II GaSb quantum ring solar cell is fabricated and measured under the concentrated sunlight. The external quantum efficiency confirms the extended absorption from the quantum rings at long wavelength coinciding with the photoluminescence results. The short-circuit current of the quantum ring devices is 5.1% to 9.9% more than the GaAs reference's under various concentrations. While the quantum ring solar cell does not exceed its GaAs counterpart in efficiency under one-sun, the recovery of the open-circuit voltages at higher concentration helps to reverse the situation. A slightly higher efficiency (10.31% vs. 10.29%) is reported for the quantum ring device against the GaAs one.

  14. Effect of Fe doping concentration on photocatalytic activity of ZnO nanosheets under natural sunlight

    SciTech Connect

    Khokhra, Richa; Kumar, Rajesh

    2015-05-15

    A facile room temperature, aqueous solution-based chemical method has been adopted for large-scale synthesis of Fe doped ZnO nanosheets. The XRD and SEM results reveal the as-synthesized products well crystalline and accumulated by large amount of interweave nanosheets, respectively. Energy dispersive spectroscopy data confirmed Fe doping of the ZnO nanosheets with a varying Fe concentration. The photoluminescence spectrum reveals a continuous suppression of defect related emissions intensity by increasing the concentration of the Fe ion. A photocatalytic activity using these samples under sunlight irradiation in the mineralization of methylene blue dye was investigated. The photocatalytic activity of Fe doped ZnO nanosheets depends upon the presence of surface oxygen vacancies.

  15. Contactless two-stage solar concentrators for tubular absorber

    NASA Astrophysics Data System (ADS)

    Benitez, Pablo; Minano, Juan C.; Garcia, Raphael; Mohedano Arroyo, Ruben

    1997-10-01

    Two new types of two-mirror solar concentrator for tubular receiver, the snail concentrator and the helmet concentrator , are presented. The main feature of these concentrators is that they have a sizable gap between the secondary mirror and the absorber, and they still achieve concentrations close to the thermodynamic limit with high collection efficiencies. This characteristic makes them unique and, on the contrary to the present two-stage designs, allows for the location of the secondary outside the evacuated tube. One of the differences between the snail and the helmet concentrators is that the last is symmetric (as the conventional parabolic trough) but the first is not. For an acceptance angle of (alpha) equals +/- 0.73 degs and a collection efficiency of 96.8% (i.e. 3.2% of the rays incident on the primary mirror within the acceptance angle are rejected), the snail concentrator and the helmet concentrator achieve an average flux concentration of 91.1% and 72.8% of the thermodynamic limit, respectively. The gap between the absorber and the secondary mirror is 6.8 and 12.1 times the absorber radius for each concentrator. Moreover, both concentrators have also high rim angles of the primary mirror: +/- 86.2 degs (helmet) and 3.1 - 98.8 degs (snail). This is of interest for a good mechanical stability of the collector.

  16. Improved high temperature solar absorbers for use in Concentrating Solar Power central receiver applications.

    SciTech Connect

    Stechel, Ellen Beth; Ambrosini, Andrea; Hall, Aaron Christopher; Lambert, Timothy L.; Staiger, Chad Lynn; Bencomo, Marlene

    2010-09-01

    Concentrating solar power (CSP) systems use solar absorbers to convert the heat from sunlight to electric power. Increased operating temperatures are necessary to lower the cost of solar-generated electricity by improving efficiencies and reducing thermal energy storage costs. Durable new materials are needed to cope with operating temperatures >600 C. The current coating technology (Pyromark High Temperature paint) has a solar absorptance in excess of 0.95 but a thermal emittance greater than 0.8, which results in large thermal losses at high temperatures. In addition, because solar receivers operate in air, these coatings have long term stability issues that add to the operating costs of CSP facilities. Ideal absorbers must have high solar absorptance (>0.95) and low thermal emittance (<0.05) in the IR region, be stable in air, and be low-cost and readily manufacturable. We propose to utilize solution-based synthesis techniques to prepare intrinsic absorbers for use in central receiver applications.

  17. Container and method for absorbing and reducing hydrogen concentration

    DOEpatents

    Wicks, George G.; Lee, Myung W.; Heung, Leung K.

    2001-01-01

    A method for absorbing hydrogen from an enclosed environment comprising providing a vessel; providing a hydrogen storage composition in communication with a vessel, the hydrogen storage composition further comprising a matrix defining a pore size which permits the passage of hydrogen gas while blocking the passage of gaseous poisons; placing a material within the vessel, the material evolving hydrogen gas; sealing the vessel; and absorbing the hydrogen gas released into the vessel by the hydrogen storage composition. A container for absorbing evolved hydrogen gas comprising: a vessel having an interior and adapted for receiving materials which release hydrogen gas; a hydrogen absorbing composition in communication with the interior, the composition defining a matrix surrounding a hydrogen absorber, the matrix permitting the passage of hydrogen gas while excluding gaseous poisons; wherein, when the vessel is sealed, hydrogen gas, which is released into the vessel interior, is absorbed by the hydrogen absorbing composition.

  18. Deflection of Hazardous Near-Earth Objects by High Concentrated Sunlight and Adequate Design of Optical Collector

    NASA Astrophysics Data System (ADS)

    Vasylyev, V. P.

    2013-02-01

    Some detailed astronomical and applied aspects deflection of hazardous near-Earth objects (NEO) by direct high concentrated sunlight, causing intensive local ablation of their surfaces, are considered. The major requirements to solar concentrating optics within a single collector (a large mirror) approach, along with the asteroid properties being most substantial in achieving the predetermined effect for the period less than a year (mid-thrust action), are discussed. Such a hastened strategy may become topical in the case of late detection of potential danger, and also, if required, in providing the possibility for some additional action. It is also more acceptable in the public perception and keeping the peace for mankind rather than a long-run expectation of the incorrigible deflection resulting shortly ahead of the predicted hazard. The conventional concave reflectors have been graved to be practically inapplicable within the high concentrating geometry. This is primarily because of the dramatic spread of their focal spots at needful inclinations of optical axis from the direction toward the Sun, as well as of problematic use of the secondary optics. An alternative design of a mirrored ring-array collector is presented (as a tested and approved point-focus version of innovative reflective lenses for sunlight concentration within this approach), and comparative analysis was made. The assessment argues in favor of such a type of high-aperture optics having more capabilities than conventional devices. Mainly, this is because of the underside position (as respects the entrance aperture) of its focal area that allows avoidance of target shadowing the reflecting surfaces and minimizes their coating by the ejected debris. By using the modern asteroids database, some key estimations have been obtained. The surface irradiance around 4-5 MW/m2 (average across the focal spot concentration level ~5 × 103) for the ring-array collector size ~0.5 of asteroid diameter might

  19. Nonimaging secondary concentrators for large rim angle parabolic troughs with tubular absorbers

    NASA Astrophysics Data System (ADS)

    Ries, Harald; Spirkl, Wolfgang

    1996-05-01

    For parabolic trough solar collectors with tubular absorbers, we design new tailored secondary concentrators. The design is applicable for any rim angle of a parabolic reflector. With the secondary, the concentration can be increased by a factor of more than 2 with a compact secondary reflector consisting of a single piece, even for the important case of a rim angle of 90 deg. The parabolic reflector can be used without changes; the reduced absorber is still tubular but smaller than the original absorber and slightly displaced toward the primary. concentrators, solar trough collectors, tailored reflectors.

  20. Compound parabolic concentrator with cavity for tubular absorbers

    DOEpatents

    Winston, Roland

    1983-01-01

    A compond parabolic concentrator with a V-shaped cavity is provided in which an optical receiver is emplaced. The cavity redirects all energy entering between the receiver and the cavity structure onto the receiver, if the optical receiver is emplaced a distance from the cavity not greater than 0.27 r (where r is the radius of the receiver).

  1. Dielectric compound parabolic concentrating solar collector with a frustrated total internal reflection absorber.

    PubMed

    Hull, J R

    1989-01-01

    Coupling a dielectric compound parabolic concentrator (DCPC) to an absorber across a vacuum gap by means of frustrated total internal reflection (FTIR) can theoretically approach the maximum concentration permitted by physical laws, thus allowing higher radiative fluxes in thermal applications. The calculated optical performance of 2-D DCPCs with FTIR absorbers indicates that the ratio of gap thickness to optical wavelength must be <0.22 before the optical performance of the DCPC is superior to that of the nondielectric CPC.

  2. Establishing traceability of photometric absorbance values for accurate measurements of the haemoglobin concentration in blood

    NASA Astrophysics Data System (ADS)

    Witt, K.; Wolf, H. U.; Heuck, C.; Kammel, M.; Kummrow, A.; Neukammer, J.

    2013-10-01

    Haemoglobin concentration in blood is one of the most frequently measured analytes in laboratory medicine. Reference and routine methods for the determination of the haemoglobin concentration in blood are based on the conversion of haeme, haemoglobin and haemiglobin species into uniform end products. The total haemoglobin concentration in blood is measured using the absorbance of the reaction products. Traceable absorbance measurement values on the highest metrological level are a prerequisite for the calibration and evaluation of procedures with respect to their suitability for routine measurements and their potential as reference measurement procedures. For this purpose, we describe a procedure to establish traceability of spectral absorbance measurements for the haemiglobincyanide (HiCN) method and for the alkaline haematin detergent (AHD) method. The latter is characterized by a higher stability of the reaction product. In addition, the toxic hazard of cyanide, which binds to the iron ion of the haem group and thus inhibits the oxygen transport, is avoided. Traceability is established at different wavelengths by applying total least-squares analysis to derive the conventional quantity values for the absorbance from the measured values. Extrapolation and interpolation are applied to get access to the spectral regions required to characterize the Q-absorption bands of the HiCN and AHD methods, respectively. For absorbance values between 0.3 and 1.8, the contributions of absorbance measurements to the total expanded uncertainties (95% level of confidence) of absorbance measurements range from 1% to 0.4%.

  3. Fall in inspired oxygen and anaesthetic agent concentrations during change of soda lime absorber.

    PubMed

    Vinay, Byrappa; Gopalakrishna, Kadarapura Nanjundaiah; Umamaheswara Rao, Ganne S

    2015-06-01

    Following an episode of reduction in inspired oxygen concentration (FiO(2)) and inhalational agent concentration (Fi agent) during the changing of a soda lime absorber, We conducted an in vitro experiment to understand the impact of disconnection of the absorber on inspired gas dilution at different fresh gas flows. We found that both in Dräger Fabius GS and Primus anaesthesia work stations, disconnection of the absorber caused progressive reduction in FiO(2) and Fi agent as the FGF was decreased. The operating principle of fresh gas decoupling (FGD) valve is a potential source of this complication, which must be kept in mind while changing the soda lime during the course of surgery where an anaesthetic work stations utilizing FGD valves are used.

  4. Capturing sunlight

    NASA Astrophysics Data System (ADS)

    DeLuca, R.; Romeo, F.; Zozzaro, P.

    2006-03-01

    A 'sunflower' system able to concentrate light from the Sun, storing it in a black body for energy application either for household or industrial use, is developed by means of basic physics concepts. A particular application to household water heating, called Planckon, is presented. Given its simplicity, the system can be realized and tested in any high-school or college laboratory, in order to stress the link existing between basic physics concepts and renewable energy resources.

  5. Caustic and its use in designing optimal absorber shapes for 2D concentrators

    NASA Astrophysics Data System (ADS)

    Ries, Harald; Spirkl, Wolfgang

    1995-08-01

    The caustic of a set of edge rays is defined as the set of intersection points of adjacent edge rays. For a body having a smooth differentiable contour, the caustic of its edge rays coincides with the contour of the body. Therefore one would assume that by calculating the caustic of the edge rays as they are produced by a 2D concentrator such as a trough, the optimal shape for the absorber, e.g. the minimal surface absorber capable of intercepting all rays, should also coincide with the shape of the caustic. We show that this conjecture is not valid in general, but only if the caustic indeed forms a closed smooth curve. For parabolic trough systems, the caustic intersects and forms closed domains for half rim angles of around 60 degrees and 120 degrees. In both cases the contour is not smooth. Therefore the optimal shape is not given by the domain enclosed by the caustic. We present a general recipe of how to construct minimum surface absorbers for given caustics in 2D and apply this to the case of trough parabolic concentrators. We show practical absorber shapes for parabolic troughs with various rim angles. The optimal contour depends discontinuously on the rim angle. The area of the optimum shape for a rim angle of 90 degrees is 0.72 of the area of the smallest cylindric absorber capable of intersecting all rays.

  6. Origins of varying carrier concentration in Cu2SnS3 photovoltaic absorbers

    NASA Astrophysics Data System (ADS)

    Baranowski, Lauryn; Zawadzki, Pawel; Lany, Stephan; Tumas, William; Ginley, David; Toberer, Eric; Zakutayev, Andriy

    2014-03-01

    Within the Cu-Sn-S family of earth abundant photovoltaic absorbers, the Cu2SnS3 phase is predicted to be the most promising absorber material [P. Zawadzki, et al.]. To date there has been limited synthetic work on the Cu2SnS3 phase, particularly the carrier concentration. In this study, we develop an understanding of the effects of RF sputtering growth conditions on the hole concentrations of Cu2SnS3 absorber films, and use these results to identify the underlying causes of the observed variations in carrier concentration. Two effects are identified that control the carrier concentration in Cu2SnS3 films. The first effect, which occurs during Cu-rich growth, is isostructural alloying with a metallic Cu3SnS4 phase, which gives rise to hole concentrations above 1019 cm-3. The second effect is that, when the Cu2SnS3 films are grown under Sn-rich conditions, varying the S chemical potential during film deposition gives 1018-1019 cm-3 holes. This variation in carrier concentration with S chemical potential can be explained by a Cu vacancy defect model. Understanding the origins of the varying doping density in Cu2SnS3 films allows for targeted growth to achieve desired carrier concentrations for device integration.

  7. Experimental investigation of a nanofluid absorber employed in a low-profile, concentrated solar thermal collector

    NASA Astrophysics Data System (ADS)

    Li, Qiyuan; Zheng, Cheng; Mesgari, Sara; Hewakuruppu, Yasitha L.; Hjerrild, Natasha; Crisostomo, Felipe; Morrison, Karl; Woffenden, Albert; Rosengarten, Gary; Scott, Jason A.; Taylor, Robert A.

    2015-12-01

    Recent studies [1-3] have demonstrated that nanotechnology, in the form of nanoparticles suspended in water and organic liquids, can be employed to enhance solar collection via direct volumetric absorbers. However, current nanofluid solar collector experimental studies are either relevant to low-temperature flat plate solar collectors (<100 °C) [4] or higher temperature (>100 °C) indoor laboratory-scale concentrating solar collectors [1, 5]. Moreover, many of these studies involve in thermal properties of nanofluid (such as thermal conductivity) enhancement in solar collectors by using conventional selective coated steel/copper tube receivers [6], and no full-scale concentrating collector has been tested at outdoor condition by employing nanofluid absorber [2, 6]. Thus, there is a need of experimental researches to evaluate the exact performance of full-scale concentrating solar collector by employing nanofluids absorber at outdoor condition. As reported previously [7-9], a low profile (<10 cm height) solar thermal concentrating collector was designed and analysed which can potentially supply thermal energy in the 100-250 °C range (an application currently met by gas and electricity). The present study focuses on the design and experimental investigation of a nanofluid absorber employed in this newly designed collector. The nanofluid absorber consists of glass tubes used to contain chemically functionalized multi-walled carbon nanotubes (MWCNTs) dispersed in DI water. MWCNTs (average diameter of 6-13 nm and average length of 2.5-20 μm) were functionalized by potassium persulfate as an oxidant. The nanofluids were prepared with a MCWNT concentration of 50 +/- 0.1 mg/L to form a balance between solar absorption depth and viscosity (e.g. pumping power). Moreover, experimentally comparison of the thermal efficiency between two receivers (a black chrome-coated copper tube versus a MWCNT nanofluid contained within a glass tubetube) is investigated. Thermal

  8. Nest paper absorbency, toughness, and protein concentration of a native vs. an invasive social wasp.

    PubMed

    Curtis, Tracy R; Aponte, Yaira; Stamp, Nancy E

    2005-05-01

    The amount of proteinaceous food that was allocated to nest construction by a native wasp (Polistes fuscatus) vs. an invasive wasp (Polistes dominulus) in North America was examined following a field experiment under natural and surplus prey foraging conditions. Wasps of the surplus prey foraging conditions were provided with prey ad libitum within an enclosed area, while wasps of the natural treatment foraged in an adjacent field-woodland site. At the end of the field experiment, each nest was tested for water absorbency, toughness, and protein concentration. The hypotheses were: (1) When all nests are equally sheltered, the invasive P. dominulus (PD) allocates less protein to nest paper construction (for waterproofing and strengthening) and more protein to developing larvae than the native P. fuscatus (PF). (2) Nests of P. dominulus are more absorbent (less waterproof) and less tough than nests of P. fuscatus. Results indicate that P. fuscatus nests from surplus prey foraging conditions were more absorbent (less waterproof) to artificial rain drops than P. dominulus nests. The toughness of nests was similar between wasp species. However, nests from the natural treatment were tougher than those from the surplus prey treatment. Nests from the natural foraging conditions had half as much protein as those from surplus prey foraging conditions. There was no correlation between nest protein concentration and the number of prey taken, the number of cells, the number of adult offspring produced, or the total wasp biomass produced per colony. For PF under surplus prey conditions, protein concentration and absorbency were negatively correlated, but for PD the correlation was positive. In conclusion, when prey were scarce, Polistes wasps allocated less protein to nest construction. Also, the introduced P. dominulus may increase production of offspring by allocating less to nest construction than that of the native P. fuscatus, and so more protein to offspring production.

  9. Sunlight and Vitamin D

    PubMed Central

    Wacker, Matthias; Holick, Michael F.

    2013-01-01

    Vitamin D is the sunshine vitamin that has been produced on this earth for more than 500 million years. During exposure to sunlight 7-dehydrocholesterol in the skin absorbs UV B radiation and is converted to previtamin D3 which in turn isomerizes into vitamin D3. Previtamin D3 and vitamin D3 also absorb UV B radiation and are converted into a variety of photoproducts some of which have unique biologic properties. Sun induced vitamin D synthesis is greatly influenced by season, time of day, latitude, altitude, air pollution, skin pigmentation, sunscreen use, passing through glass and plastic, and aging. Vitamin D is metabolized sequentially in the liver and kidneys into 25-hydroxyvitamin D which is a major circulating form and 1,25-dihydroxyvitamin D which is the biologically active form respectively. 1,25-dihydroxyvitamin D plays an important role in regulating calcium and phosphate metabolism for maintenance of metabolic functions and for skeletal health. Most cells and organs in the body have a vitamin D receptor and many cells and organs are able to produce 1,25-dihydroxyvitamin D. As a result 1,25-dihydroxyvitamin D influences a large number of biologic pathways which may help explain association studies relating vitamin D deficiency and living at higher latitudes with increased risk for many chronic diseases including autoimmune diseases, some cancers, cardiovascular disease, infectious disease, schizophrenia and type 2 diabetes. A three-part strategy of increasing food fortification programs with vitamin D, sensible sun exposure recommendations and encouraging ingestion of a vitamin D supplement when needed should be implemented to prevent global vitamin D deficiency and its negative health consequences. PMID:24494042

  10. Concentration measurements of complex mixtures of broadband absorbers by widely tunable optical parametric oscillator laser spectroscopy

    NASA Astrophysics Data System (ADS)

    Ruxton, K.; Macleod, N. A.; Weidmann, D.; Malcolm, G. P. A.; Maker, G. T.

    2012-11-01

    The ability to obtain accurate vapour parameter information from a compound's absorption spectrum is an essential data processing application in order to quantify the presence of an absorber. Concentration measurements can be required for a variety of applications including environmental monitoring, pipeline leak detection, surface contamination and breath analysis. This work demonstrates sensitive concentration measurements of complex mixtures of volatile organic compounds (VOCs) using broadly tunable mid wave infrared (MWIR) laser spectroscopy. Due to the high absorption cross-sections, the MWIR spectral region is ideal to carry out sensitive concentration measurements of VOCs by tunable laser absorption spectroscopy (TLAS) methods. Absorption spectra of mixtures of VOCs were recorded using a MWIR optical parametric oscillator (OPO), with a tuning range covering 2.5 μm to 3.7 μm. The output of the MWIR OPO was coupled to a multi-pass astigmatic Herriott gas cell, maintained at atmospheric pressure that can provide up to 210 m of absorption path length, with the transmission output from the cell being monitored by a detector. The resulting spectra were processed by a concentration retrieval algorithm derived from the optimum estimation method, taking into account both multiple broadband absorbers and interfering molecules that exhibit narrow multi-line absorption features. In order to demonstrate the feasibility of the concentration measurements and assess the capability of the spectral processor, experiments were conducted on calibrated VOCs vapour mixtures flowing through the spectroscopic cell with concentrations ranging from parts per billion (ppb) to parts per million (ppm). This work represents as a first step in an effort to develop and apply a similar concentration fitting algorithm to hyperspectral images in order to provide concentration maps of the spatial distribution of multi-species vapours. The reported functionality of the novel fitting algorithm

  11. Temperature and Exciton Concentration Induced Excimer Emission of 4,4'-Bis(4''-Triphenylsilyl) Phenyl-1,1'-Binaphthalene and Application for Sunlight-Like White Organic Light-Emitting Diodes.

    PubMed

    Xu, Tao; Li, Weiling; Gao, Xicun; Sun, Chang; Chen, Guo; Zhang, Xiaowen; Li, Chunya; Zhu, Wenqing; Wei, Bin

    2016-12-01

    This paper demonstrates the influence of temperature, exciton concentration, and electron transportation layers on the excimer emission of a novel deep-blue material: 4,4'-bis(4''-triphenylsilyl) phenyl-1,1'-binaphthalene (SiBN), by studying the photoluminescence and electroluminescence spectra of SiBN-based film. We have further developed sunlight-like and warm-light white organic light-emitting diodes (WOLEDs) with high efficiency and wide-range spectra, using SiBN and bis(2-phenylbenzothiozolato-N,C2')iridium(acetylacetonate) (bt2Ir(acac)) as the blue excimer and yellow materials, respectively. The resulting device exhibited an excellent spectra overlap ratio of 82.9 % with sunlight, while the device peak current efficiency, external quantum efficiency, and power efficiency were 18.5 cd/A, 6.34 %, and 11.68 lm/W, respectively, for sunlight-like WOLEDs.

  12. Temperature and Exciton Concentration Induced Excimer Emission of 4,4'-Bis(4''-Triphenylsilyl) Phenyl-1,1'-Binaphthalene and Application for Sunlight-Like White Organic Light-Emitting Diodes

    NASA Astrophysics Data System (ADS)

    Xu, Tao; Li, Weiling; Gao, Xicun; Sun, Chang; Chen, Guo; Zhang, Xiaowen; Li, Chunya; Zhu, Wenqing; Wei, Bin

    2016-08-01

    This paper demonstrates the influence of temperature, exciton concentration, and electron transportation layers on the excimer emission of a novel deep-blue material: 4,4'-bis(4''-triphenylsilyl) phenyl-1,1'-binaphthalene (SiBN), by studying the photoluminescence and electroluminescence spectra of SiBN-based film. We have further developed sunlight-like and warm-light white organic light-emitting diodes (WOLEDs) with high efficiency and wide-range spectra, using SiBN and bis(2-phenylbenzothiozolato- N,C2')iridium(acetylacetonate) (bt2Ir(acac)) as the blue excimer and yellow materials, respectively. The resulting device exhibited an excellent spectra overlap ratio of 82.9 % with sunlight, while the device peak current efficiency, external quantum efficiency, and power efficiency were 18.5 cd/A, 6.34 %, and 11.68 lm/W, respectively, for sunlight-like WOLEDs.

  13. Sequence-specific determination of protein and peptide concentrations by absorbance at 205 nm.

    PubMed

    Anthis, Nicholas J; Clore, G Marius

    2013-06-01

    Quantitative studies in molecular and structural biology generally require accurate and precise determination of protein concentrations, preferably via a method that is both quick and straightforward to perform. The measurement of ultraviolet absorbance at 280 nm has proven especially useful, since the molar absorptivity (extinction coefficient) at 280 nm can be predicted directly from a protein sequence. This method, however, is only applicable to proteins that contain tryptophan or tyrosine residues. Absorbance at 205 nm, among other wavelengths, has been used as an alternative, although generally using absorptivity values that have to be uniquely calibrated for each protein, or otherwise only roughly estimated. Here, we propose and validate a method for predicting the molar absorptivity of a protein or peptide at 205 nm directly from its amino acid sequence, allowing one to accurately determine the concentrations of proteins that do not contain tyrosine or tryptophan residues. This method is simple to implement, requires no calibration, and should be suitable for a wide range of proteins and peptides.

  14. Hybrid sunlight/LED illumination and renewable solar energy saving concepts for indoor lighting.

    PubMed

    Tsuei, Chih-Hsuan; Sun, Wen-Shing; Kuo, Chien-Cheng

    2010-11-08

    A hybrid method for using sunlight and light-emitting diode (LED) illumination powered by renewable solar energy for indoor lighting is simulated and presented in this study. We can illuminate an indoor space and collect the solar energy using an optical switching system. When the system is turned off, the full spectrum of the sunlight is concentrated by a concentrator, to be absorbed by solar photovoltaic devices that provide the electricity to power the LEDs. When the system is turned on, the sunlight collected by the concentrator is split into visible and non-visible rays by a beam splitter. The visible rays pass through the light guide into a light box where it is mixed with LED light to ultimately provide uniform illumination by a diffuser. The non-visible rays are absorbed by the solar photovoltaic devices to provide electrical power for the LEDs. Simulation results show that the efficiency of the hybrid sunlight/LED illumination with the renewable solar energy saving design is better than that of LED and traditional lighting systems.

  15. Estimation of columnar concentrations of absorbing and scattering fine mode aerosol components using AERONET data

    NASA Astrophysics Data System (ADS)

    Choi, Yongjoo; Ghim, Young Sung

    2016-11-01

    Columnar concentrations of absorbing and scattering components of fine mode aerosols were estimated using Aerosol Robotic Network (AERONET) data for a site downwind of Seoul. The study period was between March 2012 and April 2013 including the period of the Distributed Regional Aerosol Gridded Observation Networks (DRAGON)-Asia campaign in March to May 2012. The Maxwell Garnett mixing rule was assumed for insoluble components embedded in a host solution, while the volume average mixing rule was assumed for the aqueous solution of soluble components. During the DRAGON-Asia campaign the surface concentrations of major components of fine particles were measured. The columnar mass fractions of black carbon (BC), organic carbon (OC), mineral dust (MD), and ammonium sulfate (AS) were 1.5, 5.9, 6.6, and 52%, respectively, which were comparable to the mass fractions measured at the surface for BC, OC, and secondary inorganic aerosols at 2.3, 18, and 55%. The vertical distributions of BC and AS were investigated by employing the concept of a column height. While the column height for BC was similar to the planetary boundary layer (PBL) height, that for AS was 4.4 times higher than the PBL height and increased with air temperature from March to May. The monthly variations of the columnar mass concentrations during the study period were generally well explained in term of meteorology and emission characteristics. However, certain variations of MD were different from those typically observed primarily because only fine mode aerosols were considered.

  16. Seasonal fluctuations in the concentration of UV-absorbing compounds in the leaves of some Mediterranean plants under field conditions.

    PubMed

    Liakoura, V.; Manetas, Y.; Karabourniotis, G.

    2001-04-01

    Leaves of 14 representative Mediterranean plant species were collected on a monthly basis and assayed for UV-absorbing compounds concentration, either on an area or a dry mass basis, from 1995 to 1997. Strong seasonal fluctuations were observed in eight species (all evergreens, two phrygana, one deciduous, one summer perennial and one winter perennial). Two different patterns of changing concentrations of UV-absorbing compounds were observed. In the first, concentration of these compounds was higher in young developing leaves and concentration declined during maturation, whereas in other plants, the opposite trend was observed. These differences could be attributed to the particular leaf surface morphology of each plant. The observed seasonal fluctuations of UV-absorbing compounds seem to be more correlated to developmental processes, than to seasonal fluctuations of the naturally occurring UV-B radiation. Most of the winter perennials did not show strong fluctuations during the period of development. The concentration of these compounds varied not only on a seasonal basis among the examined plants, but between different life forms as well: during winter, examination of the leaves of 13 species showed that evergreen sclerophylls and phrygana had at least two-fold higher concentration of UV-B-absorbing compounds on a leaf area basis than winter perennials. In addition, during the same season and irrespective of life form and species, the absorbance at 300 nm per unit of mature leaf area followed an asymptotic exponential decrease when specific leaf area increased. The UV-B radiation screening capacity of the leaves of these plants is discussed in relation to each adaptive strategy.

  17. Development of statistical seasonal prediction models of Arctic Sea Ice concentration using CERES absorbed solar radiation

    NASA Astrophysics Data System (ADS)

    Kim, Yoojin; Kim, Ha-Rim; Choi, Yong-Sang; Kim, WonMoo; Kim, Hye-Sil

    2016-11-01

    Statistical seasonal prediction models for the Arctic sea ice concentration (SIC) were developed for the late summer (August-October) when the downward trend is dramatic. The absorbed solar radiation (ASR) at the top of the atmosphere in June has a significant seasonal leading role on the SIC. Based on the lagged ASR-SIC relationship, two simple statistical models were established: the Markovian stochastic and the linear regression models. Crossvalidated hindcasts of SIC from 1979 to 2014 by the two models were compared with each other and observation. The hindcasts showed general agreement between the models as they share a common predictor, ASR in June and the observed SIC was well reproduced, especially over the relatively thin-ice regions (of one- or multi-year sea ice). The robust predictability confirms the functional role of ASR in the prediction of SIC. In particular, the SIC prediction in October was quite promising probably due to the pronounced icealbedo feedback. The temporal correlation coefficients between the predicted SIC and the observed SIC were 0.79 and 0.82 by the Markovian and regression models, respectively. Small differences were observed between the two models; the regression model performed slightly better in August and September in terms of temporal correlation coefficients. Meanwhile, the prediction skills of the Markovian model in October were higher in the north of Chukchi, the East Siberian, and the Laptev Seas. A strong non-linear relationship between ASR in June and SIC in October in these areas would have increased the predictability of the Markovian model.

  18. Visible absorbance spectra: A basis for in situ and passive remote sensing of phytoplankton concentration and community composition

    NASA Technical Reports Server (NTRS)

    Farmer, F. H.; Jarrett, O., Jr.; Brown, C. A., Jr.

    1983-01-01

    The concentration and composition of phytoplankton populations are measured by an optical method which can be used either in situ or remotely. This method is based upon the in vivo light absorption characteristics of phytoplankton. To provide a data base for testing assumptions relative to the proposed method, visible absorbance spectra of pure cultures of 20 marine phytoplankton were obtained under laboratory conditions. Descriptive and analytical statistics were computed for the absorbance spectra and were used to make comparisons between members of major taxonomic groups and between groups. Spectral variation between the members of the major taxonomic groups was observed to be considerably less than the spectral variation between these groups. In several cases the differences between the mean absorbance spectra of major taxonomic groups are significant enough to be detected with passive remote sensing techniques.

  19. Producing Hydrogen With Sunlight

    NASA Technical Reports Server (NTRS)

    Biddle, J. R.; Peterson, D. B.; Fujita, T.

    1987-01-01

    Costs high but reduced by further research. Producing hydrogen fuel on large scale from water by solar energy practical if plant costs reduced, according to study. Sunlight attractive energy source because it is free and because photon energy converts directly to chemical energy when it breaks water molecules into diatomic hydrogen and oxygen. Conversion process low in efficiency and photochemical reactor must be spread over large area, requiring large investment in plant. Economic analysis pertains to generic photochemical processes. Does not delve into details of photochemical reactor design because detailed reactor designs do not exist at this early stage of development.

  20. Ultra-accelerated natural sunlight exposure testing

    DOEpatents

    Jorgensen, Gary J.; Bingham, Carl; Goggin, Rita; Lewandowski, Allan A.; Netter, Judy C.

    2000-06-13

    Process and apparatus for providing ultra accelerated natural sunlight exposure testing of samples under controlled weathering without introducing unrealistic failure mechanisms in exposed materials and without breaking reciprocity relationships between flux exposure levels and cumulative dose that includes multiple concurrent levels of temperature and relative humidity at high levels of natural sunlight comprising: a) concentrating solar flux uniformly; b) directing the controlled uniform sunlight onto sample materials in a chamber enclosing multiple concurrent levels of temperature and relative humidity to allow the sample materials to be subjected to accelerated irradiance exposure factors for a sufficient period of time in days to provide a corresponding time of about at least a years worth of representative weathering of the sample materials.

  1. Sunlight-Induced Coloration of Silk

    NASA Astrophysics Data System (ADS)

    Yao, Ya; Tang, Bin; Chen, Wu; Sun, Lu; Wang, Xungai

    2016-06-01

    Silk fabrics were colored by gold nanoparticles (NPs) that were in situ synthesized through the induction of sunlight. Owing to the localized surface plasmon resonance (LSPR) of gold NPs, the treated silk fabrics presented vivid colors. The photo-induced synthesis of gold NPs was also realized on wet silk through adsorbing gold ions out of solution, which provides a water-saving coloration method for textiles. Besides, the patterning of silk was feasible using this simple sunlight-induced coloration approach. The key factors of coloration including gold ion concentration, pH value, and irradiation time were investigated. Moreover, it was demonstrated that either ultraviolet (UV) light or visible light could induce the generation of gold NPs on silk fabrics. The silk fabrics with gold NPs exhibited high light resistance including great UV-blocking property and excellent fastness to sunlight.

  2. “Nanofiltration” Enabled by Super-Absorbent Polymer Beads for Concentrating Microorganisms in Water Samples

    PubMed Central

    Xie, Xing; Bahnemann, Janina; Wang, Siwen; Yang, Yang; Hoffmann, Michael R.

    2016-01-01

    Detection and quantification of pathogens in water is critical for the protection of human health and for drinking water safety and security. When the pathogen concentrations are low, large sample volumes (several liters) are needed to achieve reliable quantitative results. However, most microbial identification methods utilize relatively small sample volumes. As a consequence, a concentration step is often required to detect pathogens in natural waters. Herein, we introduce a novel water sample concentration method based on superabsorbent polymer (SAP) beads. When SAP beads swell with water, small molecules can be sorbed within the beads, but larger particles are excluded and, thus, concentrated in the residual non-sorbed water. To illustrate this approach, millimeter-sized poly(acrylamide-co-itaconic acid) (P(AM-co-IA)) beads are synthesized and successfully applied to concentrate water samples containing two model microorganisms: Escherichia coli and bacteriophage MS2. Experimental results indicate that the size of the water channel within water swollen P(AM-co-IA) hydrogel beads is on the order of several nanometers. The millimeter size coupled with a negative surface charge of the beads are shown to be critical in order to achieve high levels of concentration. This new concentration procedure is very fast, effective, scalable, and low-cost with no need for complex instrumentation. PMID:26876979

  3. "Nanofiltration" Enabled by Super-Absorbent Polymer Beads for Concentrating Microorganisms in Water Samples.

    PubMed

    Xie, Xing; Bahnemann, Janina; Wang, Siwen; Yang, Yang; Hoffmann, Michael R

    2016-02-15

    Detection and quantification of pathogens in water is critical for the protection of human health and for drinking water safety and security. When the pathogen concentrations are low, large sample volumes (several liters) are needed to achieve reliable quantitative results. However, most microbial identification methods utilize relatively small sample volumes. As a consequence, a concentration step is often required to detect pathogens in natural waters. Herein, we introduce a novel water sample concentration method based on superabsorbent polymer (SAP) beads. When SAP beads swell with water, small molecules can be sorbed within the beads, but larger particles are excluded and, thus, concentrated in the residual non-sorbed water. To illustrate this approach, millimeter-sized poly(acrylamide-co-itaconic acid) (P(AM-co-IA)) beads are synthesized and successfully applied to concentrate water samples containing two model microorganisms: Escherichia coli and bacteriophage MS2. Experimental results indicate that the size of the water channel within water swollen P(AM-co-IA) hydrogel beads is on the order of several nanometers. The millimeter size coupled with a negative surface charge of the beads are shown to be critical in order to achieve high levels of concentration. This new concentration procedure is very fast, effective, scalable, and low-cost with no need for complex instrumentation.

  4. “Nanofiltration” Enabled by Super-Absorbent Polymer Beads for Concentrating Microorganisms in Water Samples

    NASA Astrophysics Data System (ADS)

    Xie, Xing; Bahnemann, Janina; Wang, Siwen; Yang, Yang; Hoffmann, Michael R.

    2016-02-01

    Detection and quantification of pathogens in water is critical for the protection of human health and for drinking water safety and security. When the pathogen concentrations are low, large sample volumes (several liters) are needed to achieve reliable quantitative results. However, most microbial identification methods utilize relatively small sample volumes. As a consequence, a concentration step is often required to detect pathogens in natural waters. Herein, we introduce a novel water sample concentration method based on superabsorbent polymer (SAP) beads. When SAP beads swell with water, small molecules can be sorbed within the beads, but larger particles are excluded and, thus, concentrated in the residual non-sorbed water. To illustrate this approach, millimeter-sized poly(acrylamide-co-itaconic acid) (P(AM-co-IA)) beads are synthesized and successfully applied to concentrate water samples containing two model microorganisms: Escherichia coli and bacteriophage MS2. Experimental results indicate that the size of the water channel within water swollen P(AM-co-IA) hydrogel beads is on the order of several nanometers. The millimeter size coupled with a negative surface charge of the beads are shown to be critical in order to achieve high levels of concentration. This new concentration procedure is very fast, effective, scalable, and low-cost with no need for complex instrumentation.

  5. High concentration two-stage optics for parabolic trough solar collectors with tubular absorber and large rim angle

    SciTech Connect

    Collares-Pereira, M. ); Gordon, J.M. ); Rabl, A. ); Winston, R. )

    1991-01-01

    A new two-stage optical design is proposed for parabolic trough solar collectors with tubular absorbers. It can boost the concentration ratio by a factor of 2.5 relative to the conventional design, while maintaining the large rim angles (i.e., low nominal f-numbers) that are desirable for practical and economical reasons. The second state involves asymmetric nonimaging concentrators of the CPC type, facing segments of the parabolic first stage. The second stage can be accommodated inside an evacuated receiver, allowing the use of first-surface silvered reflectors. The low heat loss of this design opens the possibility of producing steam at temperatures and pressures of conventional power plants, using only one-axis tracking. The improvement in conversion efficiency would be substantial.

  6. Transcriptional response of Enterococcus faecalis to sunlight.

    PubMed

    Sassoubre, Lauren M; Ramsey, Matthew M; Gilmore, Michael S; Boehm, Alexandria B

    2014-01-05

    Microarrays were used to investigate the transcriptional response of Enterococcus faecalis to photostress. E. faecalis are Gram-positive bacteria used as indicators of water quality and have been shown to vary diurnally in response to sunlight. E. faecalis in filtered seawater microcosms were exposed to artificial sunlight for 12h and then placed in the dark for 12h. Transcript abundance was measured at 0, 2, 6, 12, and 24h in the sunlit microcosm and a dark control using microarrays. Culturable E. faecalis concentrations decreased 6-7 orders of magnitude within the first 6h of light exposure. After 12h in the dark, no evidence of dark-repair was observed. Expression data collected after 12h of sunlight exposure revealed a difference in transcript abundance in the light relative to dark microcosms for 35 unique ORFs, 33 ORFs showed increased transcript abundance and 2 ORFs showed reduced transcript abundance. A majority (51%) of the ORFs with increased transcript abundance in the sunlit relative to dark microcosms encoded hypothetical proteins; others were associated with protein synthesis, oxidative stress and DNA repair. Results suggest that E. faecalis exposed to sunlight actively transcribe RNA in response to photostress.

  7. Pan-Arctic enhancements of light absorbing aerosol concentrations due to North American boreal forest fires during summer 2004

    NASA Astrophysics Data System (ADS)

    Stohl, A.; Andrews, E.; Burkhart, J. F.; Forster, C.; Herber, A.; Hoch, S. W.; Kowal, D.; Lunder, C.; Mefford, T.; Ogren, J. A.; Sharma, S.; Spichtinger, N.; Stebel, K.; Stone, R.; StröM, J.; TøRseth, K.; Wehrli, C.; Yttri, K. E.

    2006-11-01

    During summer of 2004, about 2.7 million hectare of boreal forest burned in Alaska, the largest annual area burned on record, and another 3.1 million hectare burned in Canada. This study explores the impact of emissions from these fires on light absorbing aerosol concentration levels, aerosol optical depths (AOD), and albedo at the Arctic stations Barrow (Alaska), Alert (Canada), Summit (Greenland), and Zeppelin/Ny Ålesund on Spitsbergen (Norway). The Lagrangian particle dispersion model FLEXPART was run backward from these sites to identify periods that were influenced by forest fire pollution plumes. It is shown that the fires led to enhanced values of particle light absorption coefficients (σap) at all of these sites. Barrow, about 1000 km away from the fires, was affected by several fire pollution plumes, one leading to spectacularly high 3-hour mean σap values of up to 32 Mm-1, more than the highest values measured in Arctic Haze. AOD measurements for a wavelength of 500 nm saturated but were estimated at above 4-5 units, unprecedented in the station records. Fire plumes were transported through the atmospheric column over Summit continuously for 2 months, during which all measured AOD values were enhanced, with maxima up to 0.4-0.5 units. Equivalent black carbon concentrations at the surface at Summit were up to 600 ng m-3 during two major episodes, and Alert saw at least one event with enhanced σap values. FLEXPART results show that Zeppelin was located in a relatively unaffected part of the Arctic. Nevertheless, there was a 4-day period with daily mean σap > 0.3 Mm-1, the strongest episode of the summer half year, and enhanced AOD values. Elevated concentrations of the highly source-specific compound levoglucosan positively confirmed that biomass burning was the source of the aerosols at Zeppelin. In summary, this paper shows that boreal forest fires can lead to elevated concentrations of light absorbing aerosols throughout the entire Arctic. Enhanced

  8. Extending neutron activation analysis to materials with high concentrations of neutron absorbing elements

    NASA Astrophysics Data System (ADS)

    Chilian, Cornelia

    chemical element and the sample geometrical factor. Therefore, the remaining nuclear factor, considered as a product of nuclide composite nuclear characteristics and irradiation site characteristics, led to the introduction of a so-called epithermal neutron absorption cross-sections, sigmaabs,ep. This new nuclear parameter will allow the calculation of the epithermal self-shielding for all cylindrical samples activated in all types of irradiation sites. For the 13 cases studied, the epithermal self-shielding factor, Gep, was obtained from the experimental effective self-shielding factor, Geff, by extracting the thermal neutron self-shielding factor, calculated with the sigmoid formulation. A least-squares fit of the experimental Gep values as a function of the mass of element yielded sigmaabs,ep for each activated nuclide. In addition, for all nuclides commonly used in neutron activation analysis, sigmaabs,ep was calculated with the Martinho, Salgado and Goncalves sigmoid formulation, which uses the total cross-section values at the peaks of the resonances. A comparison of the calculated sigmaabs,ep with the 13 measured values reveals that the calculated values are accurate to about 20%. Finally, for all 76 nuclides commonly used in NAA, a spreadsheet program was written to use experimental or calculated sigmaabs,ep nuclear parameters to perform iterative self-shielding corrections of concentrations measured by neutron activation analysis. The user provides the parameters f and alpha of the neutron spectrum, the sample mass and dimensions, and the measured concentrations. In a typical case with 10% thermal self-shielding and 30% epithermal self-shielding, the corrected concentrations had uncertainties varying from 2% to 3%. Keywords. Instrumental Neutron Activation Analysis, epithermal, thermal, self-shielding factors. (Abstract shortened by UMI.)

  9. Photochemical formation of H/sub 2/O/sub 2/ in natural waters exposed to sunlight

    SciTech Connect

    Cooper, W.J.; Zika, R.G.; Petasne, R.G.; Plane, J.M.C.

    1988-10-01

    Hydrogen peroxide is formed in most natural waters when they are exposed to sunlight. The rate at which H/sub 2/O/sub 2/ accumulates is related to the concentration of light-absorbing (>295 nm) organic substances in these waters. The photochemical accumulation rate of H/sub 2/O/sub 2/ in sunlight has been measured for several surface waters and ground waters and was found to be 2.7 /times/ 10/sup /minus/7/ to 48 /times/ 10/sup /minus/7/ mol L/sup /minus/1/ h/sup /minus/1/, in waters ranging from 0.53 to 18 mgL/sup -1/ dissolved organic carbon (DOC), respectively. These rates were determined in midday sunlight, 0.4 W m/sup /minus/2/ (295-385 nm), latitude 24.3/degrees/ N. Apparent quantum yields of H/sub 2/O/sub 2/ have been determined for natural waters at different wavelengths. These quantum yields decreased with increasing wavelength, from 10/sup /minus/3/ in the near-ultraviolet to 10/sup /minus/6/ in the visible spectral range. The quantum yields have been used in a photochemical model to calculate H/sub 2/O/sub 2/ accumulation rates of natural water samples. Model calculations agree with H/sub 2/O/sub 2/ accumulation rates obtained from exposing three different water samples to sunlight.

  10. Influence of the concentration of CO2 and SO2 on the absorption of CO2 by a lithium orthosilicate-based absorbent.

    PubMed

    Pacciani, R; Torres, J; Solsona, P; Coe, C; Quinn, R; Hufton, J; Golden, T; Vega, L F

    2011-08-15

    A novel, high temperature solid absorbent based on lithium orthosilicate (Li(4)SiO(4)) has shown promise for postcombustion CO(2) capture. Previous studies utilizing a clean, synthetic flue gas have shown that the absorbent has a high CO(2) capacity, >25 wt %, along with high absorption rates, lower heat of absorption and lower regeneration temperature than other solids such as calcium oxide. The current effort was aimed at evaluating the Li(4)SiO(4) based absorbent in the presence of contaminants found in typical flue gas, specifically SO(2), by cyclic exposure to gas mixtures containing CO(2), H(2)O (up to 25 vol. %), and SO(2) (up to 0.95 vol. %). In the absence of SO(2), a stable CO(2) capacity of ∼ 25 wt % over 25 cycles at 550 °C was achieved. The presence of SO(2), even at concentrations as low as 0.002 vol. %, resulted in an irreversible reaction with the absorbent and a decrease in CO(2) capacity. Analysis of SO(2)-exposed samples revealed that the absorbent reacted chemically and irreversibly with SO(2) at 550 °C forming Li(2)SO(4). Thus, industrial application would require desulfurization of flue gas prior to contacting the absorbent. Reactivity with SO(2) is not unique to the lithium orthosilicate material, so similar steps would be required for other absorbents that chemically react with SO(2).

  11. Absorption of Sunlight by Water Vapor in Cloudy Conditions: A Partial Explanation for the Cloud Absorption Anomaly

    NASA Technical Reports Server (NTRS)

    Crisp, D.

    1997-01-01

    The atmospheric radiative transfer algorithms used in most global general circulation models underestimate the globally-averaged solar energy absorbed by cloudy atmospheres by up to 25 W/sq m. The origin of this anomalous absorption is not yet known, but it has been attributed to a variety of sources including oversimplified or missing physical processes in these models, uncertainties in the input data, and even measurement errors. Here, a sophisticated atmospheric radiative transfer model was used to provide a more comprehensive description of the physical processes that contribute to the absorption of solar radiation by the Earth's atmosphere. We found that the amount of sunlight absorbed by a cloudy atmosphere is inversely proportional to the solar zenith angle and the cloud top height, and directly proportional to the cloud optical depth and the water vapor concentration within the clouds. Atmospheres with saturated, optically-thick, low clouds absorbed about 12 W/sq m more than clear atmospheres. This accounts for about 1/2 to 1/3 of the anomalous ab- sorption. Atmospheres with optically thick middle and high clouds usually absorb less than clear atmospheres. Because water vapor is concentrated within and below the cloud tops, this absorber is most effective at small solar zenith angles. An additional absorber that is distributed at or above the cloud tops is needed to produce the amplitude and zenith angle dependence of the observed anomalous absorption.

  12. MODIS Measures Fraction of Sunlight Absorbed by Plants

    NASA Technical Reports Server (NTRS)

    2002-01-01

    At the height of the solar cycle, the Sun is finally displaying some fireworks. This image from the Solar and Heliospheric Observatory (SOHO) shows a large solar flare from June 6, 2000 at 1424 Universal Time (10:24 AM Eastern Daylight Savings Time). Associated with the flare was a coronal mass ejection that sent a wave of fast moving charged particles straight towards Earth. (The image was acquired by the Extreme ultaviolet Imaging Telescope (EIT), one of 12 instruments aboard SOHO) Solar activity affects the Earth in several ways. The particles generated by flares can disrupt satellite communications and interfere with power transmission on the Earth's surface. Earth's climate is tied to the total energy emitted by the sun, cooling when the sun radiates less energy and warming when solar output increases. Solar radiation also produces ozone in the stratosphere, so total ozone levels tend to increase during the solar maximum. For more information about these solar flares and the SOHO mission, see NASA Science News or the SOHO home page. For more about the links between the sun and climate change, see Sunspots and the Solar Max. Image courtesy SOHO Extreme ultaviolet Imaging Telescope, ESA/NASA

  13. How much sunlight is enough?

    PubMed

    Byrne, Scott N

    2014-06-01

    Living on a sun-drenched planet has necessitated adaption to and protection from the harmful effects of solar ultraviolet (UV) radiation, particularly skin cancer. However, convincing epidemiological and recent empirical evidence also supports a protective effect of UV against a range of diseases including multiple sclerosis, asthma and cardiovascular disease. Despite years of research attention into the biological effects of sunlight exposure, we are still far from being able to fully answer the question: How much sunlight is enough? This is probably because the answer is dependent on many complex and interacting variables. Many talented researchers are focused on exploring whether UV-induced vitamin D explains some of these effects. This perspectives article proposes an alternative hypothesis, namely that targeting UV-induced immune suppression by affecting the activation of regulatory cells and molecules will be of therapeutic benefit.

  14. Sunlight Responsive Thermochromic Window System

    SciTech Connect

    Millett, F,A; Byker,H, J

    2006-10-27

    Pleotint has embarked on a novel approach with our Sunlight Responsive Thermochromic, SRT™, windows. We are integrating dynamic sunlight control, high insulation values and low solar heat gain together in a high performance window. The Pleotint SRT window is dynamic because it reversibly changes light transmission based on thermochromics activated directly by the heating effect of sunlight. We can achieve a window package with low solar heat gain coefficient (SHGC), a low U value and high insulation. At the same time our windows provide good daylighting. Our innovative window design offers architects and building designers the opportunity to choose their desired energy performance, excellent sound reduction, external pane can be self-cleaning, or a resistance to wind load, blasts, bullets or hurricanes. SRT windows would provide energy savings that are estimated at up to 30% over traditional window systems. Glass fabricators will be able to use existing equipment to make the SRT window while adding value and flexibility to the basic design. Glazing installers will have the ability to fit the windows with traditional methods without wires, power supplies and controllers. SRT windows can be retrofit into existing buildings,

  15. Dynamic light absorption of biomass-burning organic carbon photochemically aged under natural sunlight

    NASA Astrophysics Data System (ADS)

    Zhong, M.; Jang, M.

    2014-02-01

    Wood-burning aerosol produced under smoldering conditions was photochemically aged with different relative humidity (RH) and NOx conditions using a 104 m3 dual outdoor chamber under natural sunlight. Light absorption of organic carbon (OC) was measured over the course of photooxidation using a UV-visible spectrometer connected to an integrating sphere. At high RH, the color decayed rapidly. NOx slightly prolonged the color of wood smoke, suggesting that NOx promotes the formation of chromophores via secondary processes. Overall, the mass absorption cross section (integrated between 280 and 600 nm) of OC increased by 11-54% (except high RH) in the morning and then gradually decreased by 19-68% in the afternoon. This dynamic change in light absorption of wood-burning OC can be explained by two mechanisms: chromophore formation and sunlight bleaching. To investigate the effect of chemical transformation on light absorption, wood smoke particles were characterized using various spectrometers. The intensity of fluorescence, which is mainly related to polycyclic aromatic hydrocarbons (PAHs), rapidly decreased with time, indicating the potential bleaching of PAHs. A decline of levoglucosan concentrations evinced the change of primary organic aerosol with time. The aerosol water content measured by Fourier transform infrared spectroscopy showed that wood-burning aerosol became less hygroscopic as photooxidation proceeded. A similar trend in light absorption changes has been observed in ambient smoke aerosol originating from the 2012 County Line wildfire in Florida. We conclude that the biomass-burning OC becomes less light absorbing after 8-9 h sunlight exposure compared to fresh wood-burning OC.

  16. Dynamic light absorption of biomass burning organic carbon photochemically aged under natural sunlight

    NASA Astrophysics Data System (ADS)

    Zhong, M.; Jang, M.

    2013-08-01

    Wood burning aerosol produced under smoldering conditions was photochemically aged with different relative humidity (RH) and NOx conditions using a 104 m3 dual outdoor chamber under natural sunlight. Light absorption of organic carbon (OC) was measured over the course of photooxidation using a UV-visible spectrometer connected to an integrating sphere. At high RH, the color decayed rapidly. NOx slightly prolonged the color of wood smoke, suggesting that NOx promotes the formation of chromophores via secondary processes. Overall, the mass absorption cross-section (integrated between 280 nm and 600 nm) of OC increased by 11-54% (except high RH) in the morning and then gradually decreased by 19-68% in the afternoon. This dynamic change in light absorption of wood burning OC can be explained by two mechanisms: chromophore formation and sunlight bleaching. To investigate the effect of chemical transformation on light absorption, wood smoke particles were characterized using various spectrometers. The intensity of fluorescence, which is mainly related to polycyclic aromatic hydrocarbons (PAHs), rapidly decreased with time indicating the potential bleaching of PAHs. A decline of levoglucosan concentrations evinced the change of POA with time. The aerosol water content measured by Fourier transform infrared spectroscopy showed that wood burning aerosol became less hygroscopic as photooxidation proceeded. A similar trend in light absorption changes has been observed in ambient smoke aerosol originating from the 2012 County Line Wildfire in Florida. We conclude that the biomass burning OC becomes less light absorbing after 8-9 h sunlight exposure compared to fresh wood burning OC.

  17. Two new methods used to simulate the circumferential solar flux density concentrated on the absorber of a parabolic trough solar collector

    NASA Astrophysics Data System (ADS)

    Guo, Minghuan; Wang, Zhifeng; Sun, Feihu

    2016-05-01

    The optical efficiencies of a solar trough concentrator are important to the whole thermal performance of the solar collector, and the outer surface of the tube absorber is a key interface of energy flux. So it is necessary to simulate and analyze the concentrated solar flux density distributions on the tube absorber of a parabolic trough solar collector for various sun beam incident angles, with main optical errors considered. Since the solar trough concentrators are linear focusing, it is much of interest to investigate the solar flux density distribution on the cross-section profile of the tube absorber, rather than the flux density distribution along the focal line direction. Although a few integral approaches based on the "solar cone" concept were developed to compute the concentrated flux density for some simple trough concentrator geometries, all those integral approaches needed special integration routines, meanwhile, the optical parameters and geometrical properties of collectors also couldn't be changed conveniently. Flexible Monte Carlo ray trace (MCRT) methods are widely used to simulate the more accurate concentrated flux density distribution for compound parabolic solar trough concentrators, while generally they are quite time consuming. In this paper, we first mainly introduce a new backward ray tracing (BRT) method combined with the lumped effective solar cone, to simulate the cross-section flux density on the region of interest of the tube absorber. For BRT, bundles of rays are launched at absorber-surface points of interest, directly go through the glass cover of the absorber, strike on the uniformly sampled mirror segment centers in the close-related surface region of the parabolic reflector, and then direct to the effective solar cone around the incident sun beam direction after the virtual backward reflection. All the optical errors are convoluted into the effective solar cone. The brightness distribution of the effective solar cone is supposed

  18. Ultra-Accelerated Natural Sunlight Exposure Testing Facilities

    DOEpatents

    Lewandowski, Allan A.; Jorgensen, Gary J.

    2004-11-23

    A multi-faceted concentrator apparatus for providing ultra-accelerated natural sunlight exposure testing for sample materials under controlled weathering conditions comprising: facets that receive incident natural sunlight, transmits VIS/NIR and reflects UV/VIS onto a secondary reflector that delivers a uniform flux of UV/VIS onto a sample exposure plane located near a center of a facet array in a chamber that provide concurrent levels of temperature and/or relative humidity at high levels of up to 100.times. of natural sunlight that allow sample materials to be subjected to accelerated irradiance exposure factors for a significant period of time of about 3 to 10 days to provide a corresponding time of about at least a years worth representative weathering of sample materials.

  19. Ultra-accelerated natural sunlight exposure testing facilities

    DOEpatents

    Lewandowski, Allan A.; Jorgensen, Gary J.

    2003-08-12

    A multi-faceted concentrator apparatus for providing ultra-accelerated natural sunlight exposure testing for sample materials under controlled weathering conditions comprising: facets that receive incident natural sunlight, transmits VIS/NIR and reflects UV/VIS to deliver a uniform flux of UV/VIS onto a sample exposure plane located near a center of a facet array in chamber means that provide concurrent levels of temperature and/or relative humidity at high levels of up to 100.times. of natural sunlight that allow sample materials to be subjected to accelerated irradiance exposure factors for a significant period of time of about 3 to 10 days to provide a corresponding time of about at least a years worth representative weathering of sample materials.

  20. Fullerenes produced by harnessing sunlight

    SciTech Connect

    Not Available

    1993-08-01

    Two independent groups of researchers have demonstrated that fullerenes can be produced by harnessing focused sunlight to vaporize carbon. Adapted to a large scale, generation of the carbon-cage molecules in solar furnaces might overcome yield-limiting problems associated with other fullerene production techniques, the researchers suggest. At Rice University, Houston, chemistry professor Richard E. Smalley and graduate students L.P. Felipe Chibante, Andreas Thess, J. Michael Alford, and Michael D. Diener used a parabolic mirror to focus sunlight on a graphite target to produce what appears to be a high yield of fullerenes. At the National Renewable Energy Laboratory (NREL), Golden, Colo., Roland R. Pitts, Mary Jane Hale, Carl Bingham, Allan Lewandowski, and David E.King, working in collaboration with Clark L. Fields, a chemistry professor at the University of Northern Colorado, Greeley, used NREL's high-flux solar furnace to produce soot that contains C[sub 60] and C[sub 70]. Papers describing the Rice and NREL results appeared together in last week's Journal of Physical Chemistry (97, 8696 and 8701 (1993)).

  1. Toxic photoproducts of phenanthrene in sunlight

    SciTech Connect

    McConkey, B.L.; Duxbury, C.L.; El-Alawi, Y.S.; Dixon, D.G.; Greenberg, B.M.

    1995-12-31

    Phenanthrene, one of the most prevalent PAHs, undergoes a significant increase in toxicity on exposure to sunlight. Over a period of several days exposure to light, the toxicity of an aqueous phenanthrene solution increased dramatically. This increase in toxicity is largely due to the primary photoproduct, 9,10-phenanthrenequinone. This compound is more toxic than phenanthrene at equimolar concentrations, and is more water soluble than phenanthrene, increasing its bioavailability. Although many PAHs are potent photosensitizers, phenanthrene did not exhibit a significant increase in toxicity due to photosensitization. Photo-oxidation was the principal cause of photoinduced toxicity, with 9,10-phenanthrenequinone being formed via an unstable intermediate. In addition, mixtures of phenanthrene and 9,10-phenanthrenequinone exhibited potentially synergistic effects, as shown by joint toxicity testing using Photobacterium phosphoreum. Thus, mixtures of oxidized PAHs produced by photoaction in the environment create a significant risk to the biosphere.

  2. CPCs with segmented absorbers

    SciTech Connect

    Keita, M.; Robertson, H.S. )

    1991-01-01

    One of the most promising means of improving the performance of solar thermal collectors is to reduce the energy lost by the hot absorber. One way to do this, not currently part of the technology, is to recognize that since the absorber is usually not irradiated uniformly, it is therefore possible to construct an absorber of thermally isolated segments, circulate the fluid in sequence from low to high irradiance segments, and reduce loss by improving effective concentration. This procedure works even for ideal concentrators, without violating Winston's theorem. Two equivalent CPC collectors with single and segmented absorber were constructed and compared under actual operating conditions. The results showed that the daily thermal efficiency of the collector with segmented absorber is higher (about 13%) than that of the collector with nonsegmented absorber.

  3. Turning Sunlight into Liquid Fuels

    SciTech Connect

    2009-01-01

    An aqueous solution contains silica particles that have been embedded with photooxidizing cobalt oxide nanocrystals plus a sensitizer to allow the water-splitting reaction to be driven by visible light. When laser light hits the solution it turns blue as the sensitizer absorbs light. Bubbles soon begin to form as oxygen gas is released from the spilt water molecules.

  4. Decoloration and mineralization of reactive dyes using electron beam irradiation, Part I: Effect of the dye structure, concentration and absorbed dose (single, binary and ternary systems)

    NASA Astrophysics Data System (ADS)

    Vahdat, Ali; Bahrami, S. Hajir; Arami, M.; Bahjat, A.; Tabakh, F.; Khairkhah, M.

    2012-07-01

    In this study, three different reactive dyes (C.I. Reactive Red 4, C.I. Reactive Blue 2 and C.I. Reactive Yellow 4) and their blend solutions were irradiated with 10 MeV electron beam. Effect of absorbed dose, dye structure and primary solution concentrations on the pH value changes, degree of decoloration and chemical oxygen demand (COD) removal of solutions were investigated. Results show that this method is effective in decomposition and decoloration of the dyes solutions. This method can be applied in mineralization of wastewater containing different dyes.

  5. Photovoltaics. III - Concentrators

    NASA Astrophysics Data System (ADS)

    Backus, C. E.

    1980-02-01

    Photovoltaic concentration systems that redirect sunlight falling on a surface to a smaller solar-cell surface concentrating the intensity of sunlight many times are examined. It is noted that solar cells for concentrating systems must be designed for low internal resistance as well as for high sunlight intensities. Two designs of silicon cells are presented that perform well at high concentrations; these are interdigitated back-contact cells and vertical multijunction cells. Attention is given to heat tapping of reemitted light.

  6. Theoretical and experimental study of the diffuse transmission of light through highly concentrated absorbing and scattering materials. Part I: Monte-Carlo simulations

    NASA Astrophysics Data System (ADS)

    Bressel, L.; Reich, O.

    2014-10-01

    In many technical materials and commercial products like sunscreen or paint high particle and absorber concentrations are present. An important parameter for slabs of these materials is the diffuse transmission of light, which quantifies the total amount of directly and diffusely transmitted light. Due to the high content of scattering particles not only multiple scattering but also additional dependent scattering occurs. Hence, simple analytical models cannot be applied to calculate the diffuse transmission. In this work a Monte-Carlo program for the calculation of the diffuse transmission of light through dispersions in slab-like geometry containing high concentrations of scattering particles and absorbers is presented and discussed in detail. Mie theory is applied for the calculation of the scattering properties of the samples. Additionally, dependent scattering is considered in two different models, the well-known hard sphere model in the Percus-Yevick approximation (HSPYA) and the Yukawa model in the Mean Spherical Approximation (YMSA). Comparative experiments will show the accurateness of the program as well as its applicability to real samples [1].

  7. Technique to separate lidar signal and sunlight.

    PubMed

    Sun, Wenbo; Hu, Yongxiang; MacDonnell, David G; Weimer, Carl; Baize, Rosemary R

    2016-06-13

    Sunlight contamination dominates the backscatter noise in space-based lidar measurements during daytime. The background scattered sunlight is highly variable and dependent upon the surface and atmospheric albedo. The scattered sunlight contribution to noise increases over land and snow surfaces where surface albedos are high and thus overwhelm lidar backscatter from optically thin atmospheric constituents like aerosols and thin clouds. In this work, we developed a novel lidar remote sensing concept that potentially can eliminate sunlight induced noise. The new lidar concept requires: (1) a transmitted laser light that carries orbital angular momentum (OAM); and (2) a photon sieve (PS) diffractive filter that separates scattered sunlight from laser light backscattered from the atmosphere, ocean and solid surfaces. The method is based on numerical modeling of the focusing of Laguerre-Gaussian (LG) laser beam and plane-wave light by a PS. The model results show that after passing through a PS, laser light that carries the OAM is focused on a ring (called "focal ring" here) on the focal plane of the PS filter, very little energy arrives at the center of the focal plane. However, scattered sunlight, as a plane wave without the OAM, focuses at the center of the focal plane and thus can be effectively blocked or ducted out. We also find that the radius of the "focal ring" increases with the increase of azimuthal mode (L) of LG laser light, thus increasing L can more effectively separate the lidar signal away from the sunlight noise.

  8. Sunlight-into-energy conversion apparatus

    SciTech Connect

    Kuwano, Y.; Yamano, M.

    1982-06-08

    The present application discloses a sunlight-into-energy conversion apparatus in which at least one amorphous silicon solar cell having a thickness thin enough to permit the sunlight to pass therethrough is formed on the surface of a heat collecting plate attached to a heating medium tube in a thermal conductive manner, thereby permitting the sunlight to be effectively converted into thermal energy and electrical energy. When a plurality of such amorphous silicon solar cells are formed on the surface of the heat collecting plate through insulating films, respectively and connected in series to each other, high electromotive force may be obtained.

  9. Radiative cooling of solar absorbers using a visibly transparent photonic crystal thermal blackbody

    PubMed Central

    Zhu, Linxiao; Raman, Aaswath P.; Fan, Shanhui

    2015-01-01

    A solar absorber, under the sun, is heated up by sunlight. In many applications, including solar cells and outdoor structures, the absorption of sunlight is intrinsic for either operational or aesthetic considerations, but the resulting heating is undesirable. Because a solar absorber by necessity faces the sky, it also naturally has radiative access to the coldness of the universe. Therefore, in these applications it would be very attractive to directly use the sky as a heat sink while preserving solar absorption properties. Here we experimentally demonstrate a visibly transparent thermal blackbody, based on a silica photonic crystal. When placed on a silicon absorber under sunlight, such a blackbody preserves or even slightly enhances sunlight absorption, but reduces the temperature of the underlying silicon absorber by as much as 13 °C due to radiative cooling. Our work shows that the concept of radiative cooling can be used in combination with the utilization of sunlight, enabling new technological capabilities. PMID:26392542

  10. Radiative cooling of solar absorbers using a visibly transparent photonic crystal thermal blackbody.

    PubMed

    Zhu, Linxiao; Raman, Aaswath P; Fan, Shanhui

    2015-10-06

    A solar absorber, under the sun, is heated up by sunlight. In many applications, including solar cells and outdoor structures, the absorption of sunlight is intrinsic for either operational or aesthetic considerations, but the resulting heating is undesirable. Because a solar absorber by necessity faces the sky, it also naturally has radiative access to the coldness of the universe. Therefore, in these applications it would be very attractive to directly use the sky as a heat sink while preserving solar absorption properties. Here we experimentally demonstrate a visibly transparent thermal blackbody, based on a silica photonic crystal. When placed on a silicon absorber under sunlight, such a blackbody preserves or even slightly enhances sunlight absorption, but reduces the temperature of the underlying silicon absorber by as much as 13 °C due to radiative cooling. Our work shows that the concept of radiative cooling can be used in combination with the utilization of sunlight, enabling new technological capabilities.

  11. Hybrid Solar Lighting - Fiber Optics Brings Sunlight Inside

    SciTech Connect

    Maxey, L Curt

    2008-01-01

    Hybrid solar lighting systems focus highly concentrated sunlight into a fiber optic bundle to provide sunlight in rooms without windows or conventional skylights. The flexible sunlight bundles are easily routed through small openings and around obstacles to carry the light to where it is needed. The optical fibers terminate in hybrid luminaires where the sunlight is combined with electric light that is automatically adjusted to keep the overall light level constant within the lighted area. The hybrid solar lighting concept was originally proposed at Oak Ridge National Laboratory in Tennessee in the mid-1990s, but funding hurdles prevented the idea from seeing daylight for more than five years. Hybrid solar lighting was touted as a means for using solar energy directly without any conversion losses and for increasing the visual quality of interior lighting. As such, it promised to be both energy-efficient and aesthetically appealing, but its technical complexity made potential sponsors wary. They had to be convinced that the lighting concept could be accepted into the marketplace and that the systems could be manufactured at an acceptable cost. An earlier fiber-coupled daylighting system marketed in the early 1990s used expensive quartz optical fibers to distribute the light and served only a niche market that was willing to pay a premium for the novelty. By contrast, the hybrid solar lighting system proposed using inexpensive plastic optical fibers to distribute the light to hybrid (sunlight/electric) luminaires that would be visually and functionally identical to conventional luminaires. In this way, the lighting could be integrated seamlessly into existing design concepts and thus easily embraced by architects and lighting designers as a means for offering daylight as a lighting option.

  12. Degradation of hyaluronate by the concerted action of ozone and sunlight.

    PubMed

    Schmut, O; Ansari, A N; Faulborn, J

    1994-01-01

    The influence of ozone and sunlight in a concerted reaction on hyaluronate solutions was investigated. The kinematic viscosity of hyaluronate solutions is decreased by ozone-air mixtures and simultaneous radiation with sun rays within a few minutes, indicating a depolymerization of the hyaluronate molecule. The reaction is dependent on the concentration of ozone and on the time of exposure to ozone and sunlight. The concerted degradation of hyaluronate is more effective than the reaction with each component, ozone and sun rays, alone. We conclude that hyaluronate depolymerization by ozone and sunlight may be one factor for irritations of the eye by photochemical smog and increased exposure to sun rays.

  13. Sunlight activated lanthanide complex for luminescent solar collector applications: effect of waveguide matrix

    NASA Astrophysics Data System (ADS)

    Shahi, Praveen Kumar; Singh, Priyam; Bahadur Rai, Shyam

    2017-02-01

    The performance of Eu(DBM)3Phen complex (EDP) dispersed in PMMA poly-(methyl methacrylate) polymer matrix, as simple planner luminescent solar collectors (LSCs) is demonstrated using spectroscopic and photovoltaic (PV) measurements. The organic ligands absorb ultra-violet-blue (UV-blue) radiation (220–450 nm) very efficiently and transfer its energy to the Eu3+ ion, which gives an intense red emission even in sunlight exposure. The excellent optical properties of EDP in PMMA permit its coating on the front surface of c-Si solar cell (10  ×  10 cm2) for PV measurements. The PV characterizations reveal the improvement in the short circuit current density (J sc) of PV cell and maximum improvement is found to be 4.6% for 2.5 wt% EDP concentration in PMMA matrix. The efficiency of solar cell increases from 17.22% to 18.33% for bare and 2.5% EDP in PMMA. At a higher concentration of EDP, the thin film starts losing its transparency and hence PV efficiency decreases. These results illustrate that a EDP complex combined with a PV cell could work as a prototype of a new generation solar cell.

  14. Does sunlight prevent cancer? A systematic review.

    PubMed

    van der Rhee, H J; de Vries, E; Coebergh, J W W

    2006-09-01

    Accumulating evidence for beneficial effects of sunlight on several types of cancer with a high mortality rate makes it necessary to reconsider the health recommendations on sun exposure, which are now mainly based on the increased risks for skin cancer. We reviewed all published studies concerning sun exposure and cancer, excluding skin cancer. All selected studies on prostate (3 ecologic, 3 case-control and 2 cohort), breast (4 ecologic, 1 case-control and 2 cohort) and ovary cancer (2 ecologic and 1 case-control) showed a significantly inverse correlation between sunlight and mortality or incidence. Two ecologic, 1 case-control and 2 prospective studies showed an inverse relation between sunlight and colon cancer mortality; 1 case-control study found no such association. Ecologic studies on non-Hodgkin lymphoma (NHL) mortality and sunlight gave conflicting results: early studies showing mostly positive and later studies showing mostly negative correlations. Three case-control studies and 1 cohort study found a significant inverse association between the incidence of NHL and sunlight. The question of how to apply these findings to (public) health recommendations is discussed.

  15. Internal absorber solar collector

    DOEpatents

    Sletten, Carlyle J.; Herskovitz, Sheldon B.; Holt, F. S.; Sletten, E. J.

    1981-01-01

    Thin solar collecting panels are described made from arrays of small rod collectors consisting of a refracting dielectric rod lens with an absorber imbedded within it and a reflecting mirror coated on the back side of the dielectric rod. Non-tracking collector panels on vertical walls or roof tops receive approximately 90% of solar radiation within an acceptance zone 60.degree. in elevation angle by 120.degree. or more in the azimuth sectors with a collector concentration ratio of approximately 3.0. Miniaturized construction of the circular dielectric rods with internal absorbers reduces the weight per area of glass, plastic and metal used in the collector panels. No external parts or insulation are needed as heat losses are low due to partial vacuum or low conductivity gas surrounding heated portions of the collector. The miniature internal absorbers are generally made of solid copper with black selective surface and the collected solar heat is extracted at the collector ends by thermal conductivity along the absorber rods. Heat is removed from end fittings by use of liquid circulants. Several alternate constructions are provided for simplifying collector panel fabrication and for preventing the thermal expansion and contraction of the heated absorber or circulant tubes from damaging vacuum seals. In a modified version of the internal absorber collector, oil with temperature dependent viscosity is pumped through a segmented absorber which is now composed of closely spaced insulated metal tubes. In this way the circulant is automatically diverted through heated portions of the absorber giving higher collector concentration ratios than theoretically possible for an unsegmented absorber.

  16. Sunlight Diffusing Tent for Lunar Worksite

    NASA Technical Reports Server (NTRS)

    Burleson, Blair; Clark, Todd; Deese, Todd; Gentry, Ernest; Samad, Abdul

    1990-01-01

    The purpose is to provide a solution to problems astronauts encounter with sunlight on the lunar surface. Due to the absence of an atmosphere the Moon is subjected to intense sunlight creating problems with color and contrast. This problem can be overcome by providing a way to reduce intensity and diffuse the light in a working environment. The solution to the problem utilizes an umbrella, tent-like structure covered with a diffusing material. The design takes into account structural materials, stresses, fabrics, and deployment.

  17. Petroleum films exposed to sunlight produce hydroxyl radical.

    PubMed

    Ray, Phoebe Z; Tarr, Matthew A

    2014-05-01

    Sunlight exposed oil films on seawater or pure water produced substantial amounts of hydroxyl radical as a result of irradiation. Oil was collected from the surface of the Gulf of Mexico following the Deepwater Horizon spill and exposed to simulated sunlight in thin films over water. Photochemical production of hydroxyl radical was measured with benzoic acid as a selective chemical probe in the aqueous layer. Total hydroxyl radical formation was studied using high benzoic acid concentrations and varying exposure time. The total amount of hydroxyl radical produced in 24 h irradiations of thin oil films over Gulf of Mexico water and pure water were 3.7×10(-7) and 4.2×10(-7) moles respectively. Steady state concentrations of hydroxyl radical were measured using a competition kinetics approach. Hydroxyl radical concentrations of 1.2×10(-16) to 2.4×10(-16) M were observed for seawater and pure water under oil films. Titanium dioxide (TiO2) nanomaterials were added to the system in an effort to determine if the photocatalyst would enhance oil photodegradation. The addition of TiO2 nanoparticles dramatically changed the observed formation rate of hydroxyl radical in the systems with NP water at pH 3, showing increased formation rate in many cases. With photocatalyst, the steady state concentration of radical decreased, predominantly due to an increase in the hydroxyl radical scavenging rate with oxide present. This study illustrates that oil is a strong and important source of hydroxyl radical when exposed to sunlight. The fate of oil and other dissolved species following oil spills will be heavily dependent on the formation and fate of hydroxyl radical.

  18. Sunlight-induced carbon dioxide emissions from inland waters

    NASA Astrophysics Data System (ADS)

    Koehler, Birgit; Landelius, Tomas; Weyhenmeyer, Gesa A.; Machida, Nanako; Tranvik, Lars J.

    2014-07-01

    The emissions of carbon dioxide (CO2) from inland waters are substantial on a global scale. Yet the fundamental question remains open which proportion of these CO2 emissions is induced by sunlight via photochemical mineralization of dissolved organic carbon (DOC), rather than by microbial respiration during DOC decomposition. Also, it is unknown on larger spatial and temporal scales how photochemical mineralization compares to other C fluxes in the inland water C cycle. We combined field and laboratory data with atmospheric radiative transfer modeling to parameterize a photochemical rate model for each day of the year 2009, for 1086 lakes situated between latitudes from 55°N to 69°N in Sweden. The sunlight-induced production of dissolved inorganic carbon (DIC) averaged 3.8 ± 0.04 g C m-2 yr-1, which is a flux comparable in size to the organic carbon burial in the lake sediments. Countrywide, 151 ± 1 kt C yr-1 was produced by photochemical mineralization, corresponding to about 12% of total annual mean CO2 emissions from Swedish lakes. With a median depth of 3.2 m, the lakes were generally deep enough that incoming, photochemically active photons were absorbed in the water column. This resulted in a linear positive relationship between DIC photoproduction and the incoming photon flux, which corresponds to the absorbed photons. Therefore, the slope of the regression line represents the wavelength- and depth-integrated apparent quantum yield of DIC photoproduction. We used this relationship to obtain a first estimate of DIC photoproduction in lakes and reservoirs worldwide. Global DIC photoproduction amounted to 13 and 35 Mt C yr-1 under overcast and clear sky, respectively. Consequently, these directly sunlight-induced CO2 emissions contribute up to about one tenth to the global CO2 emissions from lakes and reservoirs, corroborating that microbial respiration contributes a substantially larger share than formerly thought, and generate annual C fluxes similar in

  19. Sound Absorbers

    NASA Astrophysics Data System (ADS)

    Fuchs, H. V.; Möser, M.

    Sound absorption indicates the transformation of sound energy into heat. It is, for instance, employed to design the acoustics in rooms. The noise emitted by machinery and plants shall be reduced before arriving at a workplace; auditoria such as lecture rooms or concert halls require a certain reverberation time. Such design goals are realised by installing absorbing components at the walls with well-defined absorption characteristics, which are adjusted for corresponding demands. Sound absorbers also play an important role in acoustic capsules, ducts and screens to avoid sound immission from noise intensive environments into the neighbourhood.

  20. Photochemical Transformation of Graphene Oxide in Sunlight

    EPA Science Inventory

    Graphene oxide (GO) is a graphene derivative that is more easily manufactured in large scale and used to synthesize reduced graphene oxide (rGO) with properties analogous to graphene. In this study, we investigate the photochemical fate of GO under sunlight conditions. The resu...

  1. Photochemical transformation of graphene oxide in sunlight.

    PubMed

    Hou, Wen-Che; Chowdhury, Indranil; Goodwin, David G; Henderson, W Matthew; Fairbrother, D Howard; Bouchard, Dermont; Zepp, Richard G

    2015-03-17

    Graphene oxide (GO) is promising in scalable production and has useful properties that include semiconducting behavior, catalytic reactivity, and aqueous dispersibility. In this study, we investigated the photochemical fate of GO under environmentally relevant sunlight conditions. The results indicate that GO readily photoreacts under simulated sunlight with the potential involvement of electron-hole pair creation. GO was shown to photodisproportionate to CO2, reduced materials similar to reduced GO (rGO) that are fragmented compared to the starting material, and low molecular-weight (LMW) species. Kinetic studies show that the rate of the initially rapid photoreaction of GO is insensitive to the dissolved oxygen content. In contrast, at longer time points (>10 h), the presence of dissolved oxygen led to a greater production of CO2 than the same GO material under N2-saturated conditions. Regardless, the rGO species themselves persist after extended irradiation equivalent to 2 months in natural sunlight, even in the presence of dissolved oxygen. Overall, our findings indicate that GO phototransforms rapidly under sunlight exposure, resulting in chemically reduced and persistent photoproducts that are likely to exhibit transport and toxic properties unique from parent GO.

  2. Changing sunlight to microwaves: A concept

    NASA Technical Reports Server (NTRS)

    Dickinson, R. M.

    1977-01-01

    Electromechanical device converts sunlight into microwave energy by direct process. Still in conceptual stage, device is expected to be lighter and more efficient (ninety percent conversion efficiency) than less-direct conversion systems that employ solar panels and magnetrons. Besides uses in satellites and spacecraft as microwave source, device has many terrestrial applications, including use in fuel-saving sun-powered microwave oven.

  3. Vitamin D, Sunlight and Prostate Cancer Risk

    PubMed Central

    Donkena, Krishna Vanaja; Young, Charles Y. F.

    2011-01-01

    Prostate cancer is the second common cancer in men worldwide. The prevention of prostate cancer remains a challenge to researchers and clinicians. Here, we review the relationship of vitamin D and sunlight to prostate cancer risk. Ultraviolet radiation of the sunlight is the main stimulator for vitamin D production in humans. Vitamin D's antiprostate cancer activities may be involved in the actions through the pathways mediated by vitamin D metabolites, vitamin D metabolizing enzymes, vitamin D receptor (VDR), and VDR-regulated genes. Although laboratory studies including the use of animal models have shown that vitamin D has antiprostate cancer properties, whether it can effectively prevent the development and/or progression of prostate cancer in humans remains to be inconclusive and an intensively studied subject. This review will provide up-to-date information regarding the recent outcomes of laboratory and epidemiology studies on the effects of vitamin D on prostate cancer prevention. PMID:21991434

  4. Sunlight vitamin D and skin cancer.

    PubMed

    Mason, Rebecca S; Reichrath, Jörg

    2013-01-01

    Today, there is a controversial debate in many scientific and public communities on how much sunlight is appropriate to balance between the positive and negative effects of solar UV-exposure. UV exposure undoubtedly causes DNA damage of skin cells and is a major environmental risk factor for all types of skin cancers. In geographic terms, living in parts of the world with increased erythemal UV or high average annual bright sun results in increased risks of skin cancers, with the greatest increased risk for squamous cell carcinoma, followed by basal cell carcinoma and then melanoma. On the other hand, sunlight exerts positive effects on human health, that are mediated in part via UV-B-mediated cutaneous photosynthesis of vitamin D. It has been estimated that at present, approximately 1 billion people worldwide are vitamin D-deficient or -insufficient. This epidemic causes serious health problems that are still widely under-recognized. Vitamin D deficiency leads to well documented problems for bone and muscle function. There are also associations between vitamin D-deficiency and increased incidence of and/or unfavourable outcome for a broad variety of independent diseases, including various types of malignancies (e.g. colon-, skin-, and breast cancer), autoimmune diseases, infectious diseases, and cardiovascular diseases. In this review, the present literature is analyzed to summarize our present knowledge about the important relationship of sunlight, vitamin D and skin cancer.

  5. The Seasonality of Tuberculosis, Sunlight, Vitamin D, and Household Crowding

    PubMed Central

    Wingfield, Tom; Schumacher, Samuel G.; Sandhu, Gurjinder; Tovar, Marco A.; Zevallos, Karine; Baldwin, Matthew R.; Montoya, Rosario; Ramos, Eric S.; Jongkaewwattana, Chulanee; Lewis, James J.; Gilman, Robert H.; Friedland, Jon S.; Evans, Carlton A.

    2014-01-01

    Background. Unlike other respiratory infections, tuberculosis diagnoses increase in summer. We performed an ecological analysis of this paradoxical seasonality in a Peruvian shantytown over 4 years. Methods. Tuberculosis symptom-onset and diagnosis dates were recorded for 852 patients. Their tuberculosis-exposed cohabitants were tested for tuberculosis infection with the tuberculin skin test (n = 1389) and QuantiFERON assay (n = 576) and vitamin D concentrations (n = 195) quantified from randomly selected cohabitants. Crowding was calculated for all tuberculosis-affected households and daily sunlight records obtained. Results. Fifty-seven percent of vitamin D measurements revealed deficiency (<50 nmol/L). Risk of deficiency was increased 2.0-fold by female sex (P < .001) and 1.4-fold by winter (P < .05). During the weeks following peak crowding and trough sunlight, there was a midwinter peak in vitamin D deficiency (P < .02). Peak vitamin D deficiency was followed 6 weeks later by a late-winter peak in tuberculin skin test positivity and 12 weeks after that by an early-summer peak in QuantiFERON positivity (both P < .04). Twelve weeks after peak QuantiFERON positivity, there was a midsummer peak in tuberculosis symptom onset (P < .05) followed after 3 weeks by a late-summer peak in tuberculosis diagnoses (P < .001). Conclusions. The intervals from midwinter peak crowding and trough sunlight to sequential peaks in vitamin D deficiency, tuberculosis infection, symptom onset, and diagnosis may explain the enigmatic late-summer peak in tuberculosis. PMID:24596279

  6. Detection of atmospheric nitrogen dioxide using a miniaturised fibre-optic spectroscopy system and the ambient sunlight.

    PubMed

    Morales, J A; Walsh, J E

    2005-07-01

    A miniaturised fibre-optic spectrometer based system is presented for direct detection of one of the major atmospheric pollutants, nitrogen dioxide, by absorption spectroscopy using the ambient sunlight as light source. The detection system consists of a 10 cm collimator assembly, a fibre-optic cable and a portable diode-array spectrometer. The absorbance spectrum of the open-path is calculated using a reference spectrum recorded when the nitrogen dioxide (NO2) concentration in the atmosphere is low. The relative concentration of the pollutant is calculated normalising the detected spectra and subtracting the background broadband spectrum from the specific NO2 absorbance features, since the broadband spectrum changes according to atmospheric conditions and solar intensity. Wavelengths between 400 and 500 nm are used in order to maximise sensitivity and to avoid interference from other species. Calibration is carried out using Tedlar sample bags of known concentration of the pollutant. A commercial differential optical absorption spectroscopy (DOAS) system is used as a reference standard detection system to compare the results with the new system. Results show that detection of NO2 at typical urban atmospheric levels has been achieved using an inexpensive field based fibre-optic spectrometer and a readily available, easy to align, light source. In addition the new system can be used to get a semi-quantitative estimation of the nitrogen dioxide concentration within errors of 20%. While keeping the typical benefits of open-path techniques, the new system has important advantages over them such as cost, simplicity and portability.

  7. Sunlight exposure assessment: can we accurately assess vitamin D exposure from sunlight questionnaires?

    PubMed

    McCarty, Catherine A

    2008-04-01

    The purpose of this review is to summarize the peer-reviewed literature in relation to sunlight exposure assessment and the validity of using sunlight exposure questionnaires to quantify vitamin D status. There is greater variability in personal ultraviolet (UV) light exposure as the result of personal behavior than as the result of ambient UV light exposure. Although statistically significant, the correlation coefficients for the relation between personal report of sun exposure and ambient UV light measured by dosimetry (assessment of radiation dose) are relatively low. Moreover, the few studies to assess the relation between sunlight measures and serum 25-hydroxyvitamin D show low correlations. These low correlations may not be surprising given that personal factors like melanin content in skin and age also influence cutaneous synthesis of vitamin D. In summary, sunlight exposure questionnaires currently provide imprecise estimates of vitamin D status. Research should be directed to develop more objective, nonintrusive, and economical measures of sunlight exposure to quantify personal vitamin D status.

  8. Energy from Water and Sunlight: Affordable Energy from Water and Sunlight

    SciTech Connect

    2010-01-01

    Broad Funding Opportunity Announcement Project: Sun Catalytix is developing wireless energy-storage devices that convert sunlight and water into renewable fuel. Learning from nature, one such device mimics the ability of a tree leaf to convert sunlight into storable energy. It is comprised of a silicon solar cell coated with catalytic materials, which help speed up the energy conversion process. When this cell is placed in a container of water and exposed to sunlight, it splits the water into bubbles of oxygen and hydrogen. The hydrogen and oxygen can later be recombined to create electricity, when the sun goes down for example. The Sun Catalytix device is novel in many ways: it consists primarily of low-cost, earth-abundant materials where other attempts have required more expensive materials like platinum. Its operating conditions also facilitate the use of less costly construction materials, whereas other efforts have required extremely corrosive conditions.

  9. Toxic photoproducts of phenanthrene and anthracene in sunlight

    SciTech Connect

    Duxbury, C.L.; McConkey, B.J.; Mallakin, A.; Dixon, D.G.; Greenberg, B.M.

    1995-12-31

    Phenanthrene and anthracene, two of the most prevalent PAHs, undergo significant increases in toxicity on exposure to sunlight. Over a period of several days exposure to light, the toxicity of an aqueous solution of phenanthrene or anthracene increased dramatically. This increase in toxicity is largely due to the primary products formed by these two PAHs due to light exposure. These compounds are more toxic than the parent compounds at equimolar concentrations. Although anthracene is a potent photosensitizer, phenanthrene did not exhibit a significant increase in toxicity due to photosensitization. Photo-oxidation was the principal cause of photoinduced toxicity, with 9,10-phenanthrenequinone being the primary product. This compound is more water soluble than phenanthrene increasing its bioavailability. In addition, mixtures of phenanthrene and 9,10-phenanthrenequinone exhibited toxicity similar to the quinone added alone. This was shown by joint toxicity testing using Lemna gibba and Daphnia magna. These two organisms are currently being used in the lab to further test individual oxidized products of anthracene and phenanthrene that occur as a result of exposure to sunlight.

  10. Does suicide have a stronger association with seasonality than sunlight?

    PubMed Central

    White, Richard A; Azrael, Deborah; Papadopoulos, Fotios C; Lambert, Gavin W; Miller, Matthew

    2015-01-01

    Objectives Suicide rates have widely been reported to peak in spring and summer. A frequent hypothesis is that increased sunlight exposure alters biological mechanisms. However, few attempts have been made to systematically untangle the putative suicidogenic risk of sunlight exposure from that of seasonality. We examined whether average hours of daily sunlight in a month confer additional risk over month of year when predicting monthly suicide rates. Design Historical population-based ecological longitudinal study. Setting and participants We used 3 longitudinal studies (n=31 060 suicides) with monthly suicide and meteorological data from Greece (1992–2001), Victoria, Australia (1990–1998) and Norway (1969–2009). Intervention We used a negative binomial regression to observe (1) the association of month of year with suicides, adjusting for different sunlight exposures, and (2) the association of sunlight exposure with suicides, adjusting for month of year. We then investigated claims that suicides were associated with daily sunlight exposures, defined by us as 2550 sunlight exposure combinations corresponding to a 1–50 days exposure window with lags of 0–50 days. Results Using monthly data, the association between month of year and suicides remained after adjusting for mean daily hours of sunlight and change in the mean daily hours of sunlight. Adjusted for month of year, the associations between sunlight exposure and suicides became non-significant and attenuated towards the null (the coefficient estimate for mean daily hours of sunlight decreased in absolute magnitude by 72%). The findings were consistent across all 3 cohorts, both when analysed separately and combined. When investigating daily sunlight exposures, we found no significant results after correcting for multiple testing. Conclusions Using monthly data, the robustness of our month of year effects, combined with the transient and modest nature of our sunlight effects, suggested that the

  11. 75 FR 52776 - Notice of Availability of the Draft Environmental Impact Statement for the Desert Sunlight...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-27

    ... Desert Sunlight Holdings, LLC Desert Sunlight Solar Farm Project and Possible California Desert...) has prepared a Draft Environmental Impact Statement (EIS) and Draft California Desert Conservation Area (CDCA) Plan Amendment for the Desert Sunlight Holdings, LLC Desert Sunlight Solar Farm...

  12. Reflected Sunlight Reduction and Characterization for a Deep-Space Optical Receiver Antenna (DSORA)

    NASA Technical Reports Server (NTRS)

    Clymer, B. D.

    1990-01-01

    A baffle system for the elimination of first-order specular and diffuse reflection of sunlight from the sunshade of a deep-space optical receiver telescope is presented. This baffle system consists of rings of 0.5cm blades spaced 2.5 cm apart on the walls of GO hexagonal sunshade tubes that combine to form the telescope sunshade. The shadow cast by the blades, walls, and rims of the tubes prevent all first-order reflections of direct sunlight from reaching the primary mirror of the telescope. A reflection model of the sunshade without baffles is also presented for comparison. Since manufacturers of absorbing surfaces do not measure data near grazing incidence, the reflection properties at anticipated angles of incidence must be characterized. A description of reflection from matte surfaces in term of bidirectional reflection distribution function (BRDF) is presented along with a discussion of measuring BRDF near grazing incidence.

  13. Semiconductor nanowire optical antenna solar absorbers.

    PubMed

    Cao, Linyou; Fan, Pengyu; Vasudev, Alok P; White, Justin S; Yu, Zongfu; Cai, Wenshan; Schuller, Jon A; Fan, Shanhui; Brongersma, Mark L

    2010-02-10

    Photovoltaic (PV) cells can serve as a virtually unlimited clean source of energy by converting sunlight into electrical power. Their importance is reflected in the tireless efforts that have been devoted to improving the electrical and structural properties of PV materials. More recently, photon management (PM) has emerged as a powerful additional means to boost energy conversion efficiencies. Here, we demonstrate an entirely new PM strategy that capitalizes on strong broad band optical antenna effects in one-dimensional semiconductor nanostructures to dramatically enhance absorption of sunlight. We show that the absorption of sunlight in Si nanowires (Si NWs) can be significantly enhanced over the bulk. The NW's optical properties also naturally give rise to an improved angular response. We propose that by patterning the silicon layer in a thin film PV cell into an array of NWs, one can boost the absorption for solar radiation by 25% while utilizing less than half of the semiconductor material (250% increase in the light absorption per unit volume of material). These results significantly advance our understanding of the way sunlight is absorbed by one-dimensional semiconductor nanostructures and provide a clear, intuitive guidance for the design of efficient NW solar cells. The presented approach is universal to any semiconductor and a wide range of nanostructures; as such, it provides a new PV platform technology.

  14. Photosynthesis, photoprotection, and growth of shade-tolerant tropical tree seedlings under full sunlight.

    PubMed

    Krause, G Heinrich; Winter, Klaus; Matsubara, Shizue; Krause, Barbara; Jahns, Peter; Virgo, Aurelio; Aranda, Jorge; García, Milton

    2012-09-01

    High solar radiation in the tropics is known to cause transient reduction in photosystem II (PSII) efficiency and CO(2) assimilation in sun-exposed leaves, but little is known how these responses affect the actual growth performance of tropical plants. The present study addresses this question. Seedlings of five woody neotropical forest species were cultivated under full sunlight and shaded conditions. In full sunlight, strong photoinhibition of PSII at midday was documented for the late-successional tree species Ormosia macrocalyx and Tetragastris panamensis and the understory/forest gap species, Piper reticulatum. In leaves of O. macrocalyx, PSII inhibition was accompanied by substantial midday depression of net CO(2) assimilation. Leaves of all species had increased pools of violaxanthin-cycle pigments. Other features of photoacclimation, such as increased Chl a/b ratio and contents of lutein, β-carotene and tocopherol varied. High light caused strong increase of tocopherol in leaves of T. panamensis and another late-successional species, Virola surinamensis. O. macrocalyx had low contents of tocopherol and UV-absorbing substances. Under full sunlight, biomass accumulation was not reduced in seedlings of T. panamensis, P. reticulatum, and V. surinamensis, but O. macrocalyx exhibited substantial growth inhibition. In the highly shade-tolerant understory species Psychotria marginata, full sunlight caused strongly reduced growth of most individuals. However, some plants showed relatively high growth rates under full sun approaching those of seedlings at 40 % ambient irradiance. It is concluded that shade-tolerant tropical tree seedlings can achieve efficient photoacclimation and high growth rates in full sunlight.

  15. Greenhouse Effect: Temperature of a Metal Sphere Surrounded by a Glass Shell and Heated by Sunlight

    ERIC Educational Resources Information Center

    Nguyen, Phuc H.; Matzner, Richard A.

    2012-01-01

    We study the greenhouse effect on a model satellite consisting of a tungsten sphere surrounded by a thin spherical, concentric glass shell, with a small gap between the sphere and the shell. The system sits in vacuum and is heated by sunlight incident along the "z"-axis. This development is a generalization of the simple treatment of the…

  16. Spectral comparison of solar simulators and sunlight.

    PubMed

    Sayre, R M; Cole, C; Billhimer, W; Stanfield, J; Ley, R D

    1990-08-01

    In evaluating sunscreen efficacy, spectral distribution of the irradiation sources can influence the sun protection factor (SPF). The purpose of this investigation was to examine the uniformity of ultraviolet (UV) spectral irradiance of solar simulators used in various SPF testing laboratories, compare them with natural sunlight UV radiation (UVR), and recommend performance limits to ensure that the variability of radiation sources in the UVB region minimally affects SPF estimates. The critical portion of the solar erythemogenic spectrum was identified as the UVB portion, defined as the region between 280 and 320 nm. The spectral irradiance of 26 solar simulators and other UV sources was measured and compared with a summer noon solar spectrum measured in Albuquerque, NM. Proposed spectral limits were developed as a 6-nm "acceptance band" centered on this standard spectrum normalized at 320 nm. The results indicated that the xenon-arc solar simulators currently used in the United States in testing sunscreens either meet the proposed standard solar spectrum or can be readily modified with available UV filters to meet this standard. The devices that have spectral characteristics not resembling sunlight fail to meet the proposed standard and should not be used for sunscreen SPF testing.

  17. Sunlight readability of displays: a numerical scale

    NASA Astrophysics Data System (ADS)

    Sharpe, Robert; Cartwright, Colin M.; Gillespie, W. Allan; Vassie, Ken; Christopher, W. Colin

    2003-07-01

    There is a great deal of interest in the sunlight readability of displays. How to quantify this, particularly on a numerical scale rather than pass/fail is an important consideration. Some military standards exist e.g. MIL-L-85762A but are these appropriate to non-military products? We report the use of a method developed by BAE SYSTEMS, the model is based on our ability to see things by virtue of a difference in either luminance or chrominance, or both. The model uses a method called PJND (Perceptible Just Noticeable Difference), based on LJND (Luminance Just Noticeable Difference) and CJND (Chrominance Just Noticeable Difference) thresholds. The basis of this model is a series of acceptance criteria established by subjects in a realistic environment; BAE SYSTEMS have an Ambient Lighting Facility (ALF) which simulates many lighting scenarios that are likely to be encountered in real life. Product mock-ups were taken into this environment and subjects were asked to choose levels of acceptance for differing screen presentations and various lighting geometries. The method results in a single figure of readability, which in effect summarizes the task and environment. This figure can then form the basis of a specification between display supplier and vendor. We plan to develop the model such that it should be possible to predict the best combination of treatments to apply to the display surface to give the optimum and most cost effective sunlight readable display for a given application and product.

  18. Effect of grape bunch sunlight exposure and UV radiation on phenolics and volatile composition of Vitis vinifera L. cv. Pinot noir wine.

    PubMed

    Song, Jianqiang; Smart, Richard; Wang, Hua; Dambergs, Bob; Sparrow, Angela; Qian, Michael C

    2015-04-15

    The effect of canopy leaf removal and ultraviolet (UV) on Pinot noir grape and wine composition was investigated in this study. Limited basal leaf removal in the fruit zone was conducted, compared to shaded bunches. The UV exposure was controlled using polycarbonate screens to block UV radiation, and acrylic screens to pass the UV. The results showed that bunch sunlight and UV exposure significantly increased the Brix and pH in the grape juice, and increased substantially wine colour density, anthocyanins, total pigment, total phenolics and tannin content. Bunch sunlight and UV exposure affected terpene alcohols, C13-norisprenoids and other volatile composition of the wine differently. Sunlight exposure and UV resulted in increase of nerol, geraniol and citronellol but not linalool. Sunlight exposure slightly increased the concentration of β-ionone, but the increase was not statistically significant for UV treatment. Neither sunlight nor UV treatment showed any impact on the concentration of β-damascenone.

  19. Converting Sunlight to Electricity--Some Practical Concerns

    ERIC Educational Resources Information Center

    Roman, Harry T.

    2005-01-01

    A photovoltaic panel can convert sunlight directly into electricity. If one connects enough of them in a series-parallel arrangement called a solar array, they can provide about half of a home's annual electricity needs. The panels comprise specially treated electronic materials that when exposed to sunlight will give up electrons freely, and…

  20. Real Time Monitoring of Dissolved Organic Carbon Concentration and Disinfection By-Product Formation Potential in a Surface Water Treatment Plant with Simulaneous UV-VIS Absorbance and Fluorescence Excitation-Emission Mapping

    NASA Astrophysics Data System (ADS)

    Gilmore, A. M.

    2015-12-01

    This study describes a method based on simultaneous absorbance and fluorescence excitation-emission mapping for rapidly and accurately monitoring dissolved organic carbon concentration and disinfection by-product formation potential for surface water sourced drinking water treatment. The method enables real-time monitoring of the Dissolved Organic Carbon (DOC), absorbance at 254 nm (UVA), the Specific UV Absorbance (SUVA) as well as the Simulated Distribution System Trihalomethane (THM) Formation Potential (SDS-THMFP) for the source and treated water among other component parameters. The method primarily involves Parallel Factor Analysis (PARAFAC) decomposition of the high and lower molecular weight humic and fulvic organic component concentrations. The DOC calibration method involves calculating a single slope factor (with the intercept fixed at 0 mg/l) by linear regression for the UVA divided by the ratio of the high and low molecular weight component concentrations. This method thus corrects for the changes in the molecular weight component composition as a function of the source water composition and coagulation treatment effects. The SDS-THMFP calibration involves a multiple linear regression of the DOC, organic component ratio, chlorine residual, pH and alkalinity. Both the DOC and SDS-THMFP correlations over a period of 18 months exhibited adjusted correlation coefficients with r2 > 0.969. The parameters can be reported as a function of compliance rules associated with required % removals of DOC (as a function of alkalinity) and predicted maximum contaminant levels (MCL) of THMs. The single instrument method, which is compatible with continuous flow monitoring or grab sampling, provides a rapid (2-3 minute) and precise indicator of drinking water disinfectant treatability without the need for separate UV photometric and DOC meter measurements or independent THM determinations.

  1. Photolysis of brominated flame retardants in textiles exposed to natural sunlight.

    PubMed

    Kajiwara, Natsuko; Desborough, Jennifer; Harrad, Stuart; Takigami, Hidetaka

    2013-03-01

    Photolytic transformation profiles of technical hexabromocyclododecane (HBCD) and technical decabromodiphenyl ether (DecaBDE) in flame-retarded textiles exposed to natural sunlight were compared. Textiles that contained approximately 4% HBCDs by weight showed no substantial loss of any of the HBCD diastereomers during the entire exposure period (371 days), indicating that they were resistant to sunlight, that is, that debromination and isomerization of HBCD diastereomers did not occur under the experimental conditions. Exposure of a textile treated with technical DecaBDE resulted in the formation of polybrominated dibenzofurans (PBDFs) as products of photodecomposition of polybrominated diphenyl ethers present in the technical DecaBDE. After 329 days of exposure, the total PBDF concentration reached a maximum of 27 000 ng g(-1), which was approximately 10 times the initial concentration. During the experiment, di- to hexa-BDF congener concentrations increased continuously. Although the concentrations of PBDFs in the textiles were 4–5 orders of magnitude lower than the concentrations of polybrominated diphenyl ethers, it is important to note that PBDFs were formed as a result of sunlight exposure during normal use of products treated with technical DecaBDE.

  2. The FDA proposed solar simulator versus sunlight.

    PubMed

    Sayre, Robert M; Dowdy, John C

    2010-04-01

    The US Food and Drug Administration is in the process of formulating final rules for sunscreen labeling and testing. They have adopted a version of the solar simulator standard proposed by COLIPA, a European cosmetic products trade association. From our files we have selected spectral data on several solar simulators that comply with the proposed rules and have compared these sources both one to another and to several standard solar spectra of Air Mass 1.0, 1.5, and 2.0. In doing so we have used additional spectral analysis procedures including examining the goodness of fit between each solar simulator spectrum and an Air Mass 1.0 (0 degrees zenith angle) solar spectrum. The index of goodness of fit ranges from approximately 78% to just over 90% compared to solar spectra representing other Air Masses of 1.5 and 2.0, the goodness of fit is lower. Unfortunately, one may not assume that complying with a standard assures that other solar simulators also complying will produce identical results. In fact, by our analysis, none of the solar simulators we examined would be expected to produce the same SPF as sunlight.

  3. A comparative study of different concentrations of pure Zn powder effects on synthesis, structure, magnetic and microwave-absorbing properties in mechanically-alloyed Ni-Zn ferrite

    NASA Astrophysics Data System (ADS)

    Hajalilou, Abdollah; Mazlan, Saiful Amri; Shameli, Kamyar

    2016-09-01

    In this study, a powder mixture of Zn, Fe2O3 and NiO was used to produce different compositions of Ni1-xZnxFe2O4 (x=0.36, 0.5 and 0.64) nanopowders. High-energy ball milling with a subsequent heat treatment method was carried out. The XRD results indicated that for the content of Zn, x=0.64 a single phase of Ni-Zn ferrite was produced after 30 h milling while for the contents of Zn, x=0.36 and 0.5, the desired ferrite was formed after sintering the 30 h-milled powders at 500 °C. The average crystallite size decreased with increase in the Zn content. A DC electrical resistivity of the Ni-Zn ferrite, however, decreased with increase in the Zn content, its value was much higher than those samples prepared by the conventional ceramic route by using ZnO instead of Zn. This is attributed to smaller grains size which were obtained by using Zn. The FT-IR results suggested two absorption bands for octahedral and tetrahedral sites in the range of 350-700 cm-1. The VSM results revealed that by increasing the Zn content from 0.36 to 0.5, a saturation magnetization reached its maximum value; afterwards, a decrease was observed for Zn with x=0.64. Finally, magnetic permeability and dielectric permittivity were studied by using vector network analyzer to explore microwave-absorbing properties in X-band frequency. The minimum reflection loss value obtained for Ni0.5Zn0.5Fe2O4 samples, about -34 dB at 9.7 GHz, making them the best candidates for high frequency applications.

  4. Structural and optical properties of copper-coated substrates for solar thermal absorbers

    NASA Astrophysics Data System (ADS)

    Pratesi, Stefano; De Lucia, Maurizio; Meucci, Marco; Sani, Elisa

    2016-10-01

    Spectral selectivity, i.e. merging a high absorbance at sunlight wavelengths to a low emittance at the wavelengths of thermal spectrum, is a key characteristics for materials to be used for solar thermal receivers. It is known that spectrally selective absorbers can raise the receiver efficiency for all solar thermal technologies. Tubular sunlight receivers for parabolic trough collector (PTC) systems can be improved by the use of spectrally selective coatings. Their absorbance is increased by deposing black films, while the thermal emittance is minimized by the use of properly-prepared substrates. In this work we describe the intermediate step in the fabrication of black-chrome coated solar absorbers, namely the fabrication and characterization of copper coatings on previously nickel-plated stainless steel substrates. We investigate the copper surface features and optical properties, correlating them to the coating thickness and to the deposition process, in the perspective to assess optimal conditions for solar absorber applications.

  5. Photochemical formation of hydrogen peroxide in surface and ground waters exposed to sunlight

    SciTech Connect

    Cooper, W.J.; Zika, R.G.

    1983-05-13

    A rapid increase in the concentration of hydrogen peroxide was observed when samples of natural surface and ground water from various locations in the United States were exposed to sunlight. The hydrogen peroxide is photochemically generated from organic constitutents present in the water; humic materials are believed to be the primary agent producing the peroxide. Studies with superoxide dismutase suggest that the superoxide anion is the precursor of the peroxide.

  6. Sunlight, ultraviolet radiation, vitamin D and skin cancer: how much sunlight do we need?

    PubMed

    Holick, Michael F

    2014-01-01

    Vitamin D is the sunshine vitamin for good reason. During exposure to sunlight, the UV B photons enter the skin and photolyze 7-dehydrocholesterol to previtamin D3 which in turn is isomerized by the body's temperature to vitamin D3. Most humans have depended on sun for their vitamin D requirement. Skin pigment, sunscreen use, aging, time of day, season and latitude dramatically affect previtamin 13 synthesis. Vitamin D deficiency was thought to have been conquered, but it is now recognized that more than 50% of the world's population is at risk for vitamin D deficiency. This deficiency is in part due to the inadequate fortification of foods with vitamin D and the misconception that a healthy diet contains an adequate amount of vitamin D. Vitamin D deficiency causes growth retardation and rickets in children and will precipitate and exacerbate osteopenia, osteoporosis and increase risk of fracture in adults. The vitamin D deficiency has been associated pandemic with other serious consequences including increased risk of common cancers, autoimmune diseases, infectious diseases and cardiovascular disease. There needs to be a renewed appreciation of the beneficial effect of moderate sunlight for providing all humans with their vitamin D requirement for health.

  7. Sunlight, UV-radiation, vitamin D and skin cancer: how much sunlight do we need?

    PubMed

    Holick, Michael F

    2008-01-01

    Vtamin D is the sunshine vitamin for good reason. During exposure to sunlight, the utraviolet B photons enter the skin and photolyze 7-dehydrocholesterol to previtamin D3 which in turn is isomerized by the body's temperature to vitamin D3. Most humans have depended on sun for their vitamin D requirement. Skin pigment, sunscreen use, aging, time of day, season and latitude dramatically affect previtamin D3 synthesis. Vitamin D deficiency was thought to have been conquered, but it is now recognized that more than 50% of the world's population is at risk for vitamin D deficiency. This deficiency is in part due to the inadequate fortification of foods with vitamin D and the misconception that a healthy diet contains an adequate amount of vitamin D. Vitamin D deficiency causes growth retardation and rickets in children and will precipitate and exacerbate osteopenia, osteoporosis and increase risk of fracture in adults. The vitamin D deficiency has been associated pandemic with other serious consequences including increased risk of common cancers, autoimmune diseases, infectious diseases and cardiovascular disease. There needs to be a renewed appreciation of the beneficial effect of moderate sunlight for providing all humans with their vitamin D requirement for health.

  8. Modified optical fiber daylighting system with sunlight transportation in free space.

    PubMed

    Vu, Ngoc-Hai; Pham, Thanh-Tuan; Shin, Seoyong

    2016-12-26

    We present the design, optical simulation, and experiment of a modified optical fiber daylighting system (M-OFDS) for indoor lighting. The M-OFDS is comprised of three sub-systems: concentration, collimation, and distribution. The concentration part is formed by coupling a Fresnel lens with a large-core plastic optical fiber. The sunlight collected by the concentration sub-system is propagated in a plastic optical fiber and then collimated by the collimator, which is a combination of a parabolic mirror and a convex lens. The collimated beam of sunlight travels in free space and is guided to the interior by directing flat mirrors, where it is diffused uniformly by a distributor. All parameters of the system are calculated theoretically. Based on the designed system, our simulation results demonstrated a maximum optical efficiency of 71%. The simulation results also showed that sunlight could be delivered to the illumination destination at distance of 30 m. A prototype of the M-OFDS was fabricated, and preliminary experiments were performed outdoors. The simulation results and experimental results confirmed that the M-OFDS was designed effectively. A large-scale system constructed by several M-OFDSs is also proposed. The results showed that the presented optical fiber daylighting system is a strong candidate for an inexpensive and highly efficient application of solar energy in buildings.

  9. Perfect selective metamaterial solar absorbers.

    PubMed

    Wang, Hao; Wang, Liping

    2013-11-04

    In this work, we numerically investigate the radiative properties of metamaterial nanostructures made of two-dimensional tungsten gratings on a thin dielectric spacer and an opaque tungsten film from UV to mid-infrared region as potential selective solar absorbers. The metamaterial absorber with single-sized tungsten patches exhibits high absorptance in the visible and near-infrared region due to several mechanisms such as surface plasmon polaritons, magnetic polaritons, and intrinsic bandgap absorption of tungsten. Geometric effects on the resonance wavelengths and the absorptance spectra are studied, and the physical mechanisms are elucidated in detail. The absorptance could be further enhanced in a broader spectral range with double-sized metamaterial absorbers. The total solar absorptance of the optimized metamaterial absorbers at normal incidence could be more than 88%, while the total emittance is less than 3% at 100°C, resulting in total photon-to-heat conversion efficiency of 86% without any optical concentration. Moreover, the metamaterial solar absorbers exhibit quasi-diffuse behaviors as well as polarization independence. The results here will facilitate the design of novel highly efficient solar absorbers to enhance the performance of various solar energy conversion systems.

  10. Graphene-based Recyclable Photo-Absorbers for High-Efficiency Seawater Desalination.

    PubMed

    Wang, Xiangqing; Ou, Gang; Wang, Ning; Wu, Hui

    2016-04-13

    Today's scientific advances in water desalination dramatically increase our ability to transform seawater into fresh water. As an important source of renewable energy, solar power holds great potential to drive the desalination of seawater. Previously, solar assisted evaporation systems usually relied on highly concentrated sunlight or were not suitable to treat seawater or wastewater, severely limiting the large scale application of solar evaporation technology. Thus, a new strategy is urgently required in order to overcome these problems. In this study, we developed a solar thermal evaporation system based on reduced graphene oxide (rGO) decorated with magnetic nanoparticles (MNPs). Because this material can absorb over 95% of sunlight, we achieved high evaporation efficiency up to 70% under only 1 kW m(-2) irradiation. Moreover, it could be separated from seawater under the action of magnetic force by decorated with MNPs. Thus, this system provides an advantage of recyclability, which can significantly reduce the material consumptions. Additionally, by using photoabsorbing bulk or layer materials, the deposition of solutes offen occurs in pores of materials during seawater desalination, leading to the decrease of efficiency. However, this problem can be easily solved by using MNPs, which suggests this system can be used in not only pure water system but also high-salinity wastewater system. This study shows good prospects of graphene-based materials for seawater desalination and high-salinity wastewater treatment.

  11. Charles Burchfield: "October Wind and Sunlight in the Woods."

    ERIC Educational Resources Information Center

    Fitzgerald, Gaynell

    1986-01-01

    Based on Charles Burchfield's watercolor, "October Wind and Sunlight in the Woods," the goal of this lesson is to introduce students in grades seven through nine to Burchfield's use of symbolism. (JDH)

  12. Direct and Indirect Phototransformation of Graphene Oxide in Sunlight

    EPA Science Inventory

    Direct and indirect (with added H202 that serves as OH precursor) photoreactions of grapheme oxide (GO) were examined under sunlight exposure. The results indicate that GO photoreacts under both conditions, leading to significant alterations in GO's physicochemical properties. In...

  13. Plant uptake-assisted round-the-clock photocatalysis for complete purification of aquaculture wastewater using sunlight.

    PubMed

    Bian, Zhenfeng; Cao, Fenglei; Zhu, Jian; Li, Hexing

    2015-02-17

    A novel reactor equipped with solar batteries, Bi2O3/TiO2 film photocatalyst, and celery plant was designed and used for purification of aquaculture wastewater. The Bi2O3/TiO2 film photocatalyst started photocatalytic degradation of organonitrogen compounds under irradiation of sunlight. Meanwhile, the solar batteries absorbed and converted excess sunlight into electric energy and then started UV lamps at night, leading to round-the-clock photocatalysis. Subsequently, the inorganic nitrogen species including NH4(+), NO2(-), and NO3(-) resulting from photocatalytic degradation of the organonitrogen compounds could subsequently be uptaken by the celery plant as the fertilizer to reduce the secondary pollution. It was found that, after 24 h circulation, both organonitrogen compounds and NO2(-) species were completely removed, while NH4(+) and NO3(-) contents also decreased by 30% and 50%, respectively. The reactor could be used repetitively, showing a good potential in practical application.

  14. Degradation of emerging contaminants from water under natural sunlight: The effect of season, pH, humic acids and nitrate and identification of photodegradation by-products.

    PubMed

    Koumaki, Elena; Mamais, Daniel; Noutsopoulos, Constantinos; Nika, Maria-Christina; Bletsou, Anna A; Thomaidis, Nikolaos S; Eftaxias, Alexander; Stratogianni, Georgia

    2015-11-01

    Both photodegradation and hydrolysis of non-steroidal anti-inflammatory drugs (NSAIDs) and endocrine disrupting chemicals (EDCs) were investigated in order to evaluate their photochemical fate in aquatic environment and to assess the effect of season and specific characteristics of water (pH, humic acids and nitrate concentration) on the removal of target EDCs and NSAIDs through photodegradation. An additional objective was the identification of the photodegradation by-products of specific NSAIDs and their dependence on irradiation time. Selected compounds' transformation was investigated under natural sunlight radiation while control experiments were conducted in the dark. As expected, most of compounds' degradation rate decreased with decreasing light intensity between two different experimental periods. Most of the tested compounds exhibited different rates of degradation during direct and indirect photolysis. The degradation rate of the selected compounds increased in the presence of NO3(-) and the photodegradation rate was higher for some compounds in alkaline than in acidic solution. The effect of humic acids' presence in the water depends on the absorbance spectrum of the compound and the produced photosensitizers. More specifically, humic acids act as inner filter toward most of the selected NSAIDs and as photosensitizers toward most of the EDCs. The results of the irradiation experiments in the presence of both humic acids and NO3(-), indicate that the direct photolysis is much more efficient than indirect photochemical processes. Finally, several degradation by-products of ketoprofen and diclofenac were identified in the samples, exposed to sunlight. The dependence of these by-products on radiation time is also demonstrated.

  15. Vitamin D mushrooms: comparison of the composition of button mushrooms (Agaricus bisporus) treated postharvest with UVB light or sunlight.

    PubMed

    Simon, Ryan R; Phillips, Katherine M; Horst, Ronald L; Munro, Ian C

    2011-08-24

    This study compared the compositional changes in mushrooms exposed to sunlight with those occurring after commercial ultraviolet (UV) light processing. Button mushrooms (75 kg) were processed in the presence or absence of UVB light; a third group was exposed to direct sunlight. Mushroom composition was evaluated using chemical analyses. Vitamin D concentrations were 5, 410, and 374 μg/100 g (dw) in control, UVB, and sunlight groups, respectively. On a dry weight basis, no significant changes in vitamin C, folate, vitamins B(6), vitamin B(5), riboflavin, niacin, amino acids, fatty acids, ergosterol, or agaritine were observed following UVB processing. Sunlight exposure resulted in a 26% loss of riboflavin, evidence of folate oxidation, and unexplained increases in ergosterol (9.5%). It was concluded that compositional effects of UVB light are limited to changes in vitamin D and show no detrimental changes relative to natural sunlight exposure and, therefore, provide important information relevant to the suitability and safety of UVB light technology for vitamin D enhanced mushrooms.

  16. Photoreactivity of carboxylated single-walled carbon nanotubes in sunlight: reactive oxygen species production in water.

    PubMed

    Chen, Chia-Ying; Jafvert, Chad T

    2010-09-01

    Very limited information exists on transformation processes of carbon nanotubes in the natural aquatic environment. Because the conjugated pi-bond structure of these materials is efficient in absorbing sunlight, photochemical transformations are a potential fate process with reactivity predicted to vary with their diameter, chirality, number and type of defects, functionalization, residual metal catalyst and amorphous carbon content, and with the composition of the water, including the type and composition of materials that act to disperse them into the aqueous environment. In this study, the photochemical reactions involving colloidal dispersions of carboxylated single-walled carbon nanotubes (SWNT-COOH) in sunlight were examined. Production of reactive oxygen species (ROS) during irradiation occurs and is evidence for potential further phototransformation and may be significant in assessing their overall environmental impacts. In aerated samples exposed to sunlight or to lamps that emit light only within the solar spectrum, the probe compounds, furfuryl alcohol (FFA), tetrazolium salts (NBT2+ and XTT), and p-chlorobenzoic acid (pCBA), were used to indicate production of 1O2, O2.-, and .OH, respectively. All three ROS were produced in the presence of SWNT-COOH and molecular oxygen (3O2). 1O2 production was confirmed by observing enhanced FFA decay in deuterium oxide, attenuated decay of FFA in the presence of azide ion, and the lack of decay of FFA in deoxygenated solutions. Photogeneration of O2.- and .OH was confirmed by applying superoxide dismutase (SOD) and tert-butanol assays, respectively. In air-equilibrated suspensions, the loss of 0.2 mM FFA in 10 mg/L SWNT-COOH was approximately 85% after 74 h. Production of 1O2 was not dependent on pH from 7 to 11; however photoinduced aggregation was observed at pH 3.

  17. 76 FR 21402 - Notice of Availability of the Final Environmental Impact Statement for the Desert Sunlight...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-15

    ... Desert Sunlight Holdings, LLC, Desert Sunlight Solar Farm and Proposed California Desert Conservation... Impact Statement (EIS) for the Desert Sunlight Solar Farm (DSSF) project and by this notice is announcing.../st/en/fo/palmsprings/Solar_Projects/Desert_Sunlight.html . All protests must be in writing and...

  18. Composition for absorbing hydrogen

    DOEpatents

    Heung, Leung K.; Wicks, George G.; Enz, Glenn L.

    1995-01-01

    A hydrogen absorbing composition. The composition comprises a porous glass matrix, made by a sol-gel process, having a hydrogen-absorbing material dispersed throughout the matrix. A sol, made from tetraethyl orthosilicate, is mixed with a hydrogen-absorbing material and solidified to form a porous glass matrix with the hydrogen-absorbing material dispersed uniformly throughout the matrix. The glass matrix has pores large enough to allow gases having hydrogen to pass through the matrix, yet small enough to hold the particles dispersed within the matrix so that the hydrogen-absorbing particles are not released during repeated hydrogen absorption/desorption cycles.

  19. Composition for absorbing hydrogen

    DOEpatents

    Heung, L.K.; Wicks, G.G.; Enz, G.L.

    1995-05-02

    A hydrogen absorbing composition is described. The composition comprises a porous glass matrix, made by a sol-gel process, having a hydrogen-absorbing material dispersed throughout the matrix. A sol, made from tetraethyl orthosilicate, is mixed with a hydrogen-absorbing material and solidified to form a porous glass matrix with the hydrogen-absorbing material dispersed uniformly throughout the matrix. The glass matrix has pores large enough to allow gases having hydrogen to pass through the matrix, yet small enough to hold the particles dispersed within the matrix so that the hydrogen-absorbing particles are not released during repeated hydrogen absorption/desorption cycles.

  20. Carbon Absorber Retrofit Equipment (CARE)

    SciTech Connect

    Klein, Eric

    2015-12-23

    During Project DE-FE0007528, CARE (Carbon Absorber Retrofit Equipment), Neumann Systems Group (NSG) designed, installed and tested a 0.5MW NeuStream® carbon dioxide (CO2) capture system using the patented NeuStream® absorber equipment and concentrated (6 molal) piperazine (PZ) as the solvent at Colorado Springs Utilities’ (CSU’s) Martin Drake pulverized coal (PC) power plant. The 36 month project included design, build and test phases. The 0.5MW NeuStream® CO2 capture system was successfully tested on flue gas from both coal and natural gas combustion sources and was shown to meet project objectives. Ninety percent CO2 removal was achieved with greater than 95% CO2product purity. The absorbers tested support a 90% reduction in absorber volume compared to packed towers and with an absorber parasitic power of less than 1% when configured for operation with a 550MW coal plant. The preliminary techno-economic analysis (TEA) performed by the Energy and Environmental Research Center (EERC) predicted an over-the-fence cost of $25.73/tonne of CO2 captured from a sub-critical PC plant.

  1. Contribution of UVB radiation to bacterial inactivation by natural sunlight.

    PubMed

    Oppezzo, Oscar J

    2012-10-03

    The contribution of different components of sunlight to the lethal action exerted by this radiation on bacteria was studied using Pseudomonas aeruginosa ATCC27853 as a model organism. When solar UVB was excluded from the incident radiation by filtering it through a naphthalene solution (cut off 327 nm), significant modifications were observed in the cell-death kinetics. These modifications were comparable to those expected for a reduction of 27-32% in the dose rate, according to the model used in the analysis of the survival curves, and were also observed when the effects of sunlight filtered through polyethylene terephthalate (cut off 331 nm) or polystyrene (cut off 298 nm) were compared. Viability of P. aeruginosa remained almost unchanged when the incident radiation was filtered through a sodium nitrite solution (cut off 406 nm) in order to exclude the UVA and UVB components of sunlight. Nevertheless, a delay in colony formation was detected in bacteria treated in this way, suggesting that a non-lethal effect was exerted by visible light. The results are not consistent with a generally accepted notion which attributes the lethal action of sunlight to the radiation with wavelengths above 320 nm. The characterization of UVB contribution to the lethal effect of sunlight on bacteria is relevant for understanding of the mechanism of cell death, and for improvement of dosimetry techniques and irradiation procedures.

  2. Sunlight exposure increases vitamin D sufficiency in growing pigs fed a diet formulated to exceed requirements.

    PubMed

    Alexander, B M; Ingold, B C; Young, J L; Fensterseifer, S R; Wechsler, P J; Austin, K J; Larson-Meyer, D E

    2017-04-01

    Traditional confinement practices limit exposure to sunlight and vitamin D synthesis, and vitamin insufficiency occurs even with dietary supplementation. The aim of this study was to determine the effect of limited sun exposure on serum concentration of vitamin D and the expression of vitamin D synthesizing enzymes in the liver and kidney of pigs on a vitamin D sufficient diet. White-pigmented grower pigs (29.7 ± 2.3 kg) fed 15% CP diet ad libitum providing >1,200 IU vitamin D3/kg of feed were exposed to sunlight for 1 h each day at solar noon for 14 d at the spring equinox (March pigs, n = 10) or summer solstice (June pigs, n = 5) and again before slaughter in June (March pigs) and September (June pigs). Blood for the analysis of 25(OH)D was collected before and after sunlight exposure. Traditionally housed pigs served as controls. After initial sun exposure, blood samples were collected from June pigs daily for 5 d and weekly for 8 wk to determine vitamin D3 and 25(OH)D decay, respectively. Kidney and liver samples were collected from the June pigs at slaughter after sun exposure for analysis of messenger RNA expression of vitamin D binding protein and synthesizing/degrading enzymes. Average daily gain (ADG) was not influenced (P > 0.5) by sunlight exposure. June pigs had fewer days on feed, lower (P = 0.003) ADG and were slaughtered at a lighter (P < 0.001) weight. Exposure to sunlight increased (P < 0.001) 25(OH) vitamin D for all pigs. March pigs, obtained from a Midwest producer, had lower (P < 0.001) concentration of 25(OH)D than June pigs born on-farm. Initial sunlight exposure increased serum concentration of 25(OH)D in March pigs by 200% and June pigs by 67%. Serum concentration of vitamin D3 was decreased (P < 0.05) by 72 h with 25(OH)D decreased (P < 0.05) by wk 4 after exposure. Expression of vitamin D binding protein, vitamin D synthesizing CYP2R1, CYP27A1, CYP2D25, or degrading enzyme CYP24A1 were not influenced (P ≥ 0.19) by sunlight

  3. Improved Flexible Transparent Conductive Electrodes based on Silver Nanowire Networks by a Simple Sunlight Illumination Approach

    PubMed Central

    Kou, Pengfei; Yang, Liu; Chang, Cheng; He, Sailing

    2017-01-01

    Silver nanowire (Ag NW) networks have attracted wide attention as transparent electrodes for emerging flexible optoelectronics. However, the sheet resistance is greatly limited by large wire-to-wire contact resistances. Here, we propose a simple sunlight illumination approach to remarkably improve their electrical conductivity without any significant degradation of the light transmittance. Because the power density is extremely low (0.1 W/cm2, 1-Sun), only slight welding between Ag NWs has been observed. Despite this, a sheet resistance of <20 Ω/sq and transmittance of ~87% at wavelength of 550 nm as well as excellent mechanical flexibility have still been achieved for Ag NW networks after sunlight illumination for 1 hour or longer, which are significant upgrades over those of ITO. Slight plasmonic welding together with the associated self-limiting effect has been investigated by numerical simulations and further verified experimentally through varied solar concentrations. Due to the reduced resistance, high-performance transparent film heaters as well as efficient defrosters have been demonstrated, which are superior to the previously-reported Ag NW based film heaters. Since the sunlight is environmentally friendly and easily available, sophisticated or expensive facilities are not necessary. Our findings are particularly meaningful and show enormous potential for outdoor applications. PMID:28169343

  4. Natural sunlight and residual fuel oils are an acutely lethal combination for fish embryos.

    PubMed

    Hatlen, Kristin; Sloan, Catherine A; Burrows, Douglas G; Collier, Tracy K; Scholz, Nathaniel L; Incardona, John P

    2010-08-01

    The majority of studies characterizing the mechanisms of oil toxicity in fish embryos and larvae have focused largely on unrefined crude oil. Few studies have addressed the toxicity of modern bunker fuels, which contain residual oils that are the highly processed and chemically distinct remains of the crude oil refinement process. Here we use zebrafish embryos to investigate potential toxicological differences between unrefined crude and residual fuel oils, and test the effects of sunlight as an additional stressor. Using mechanically dispersed oil preparations, the embryotoxicity of two bunker oils was compared to a standard crude oil from the Alaska North Slope. In the absence of sunlight, all three oils produced the stereotypical cardiac toxicity that has been linked to the fraction of tricyclic aromatic compounds in an oil mixture. However, the cardiotoxicity of bunker oils did not correlate strictly with the concentrations of tricyclic compounds. Moreover, when embryos were sequentially exposed to oil and natural sunlight, the bunker oils produced a rapid onset cell-lethal toxicity not observed with crude oil. To investigate the chemical basis of this differential toxicity, a GC/MS full scan analysis was used to identify a range of compounds that were enriched in the bunker oils. The much higher phototoxic potential of chemically distinct bunker oils observed here suggests that this mode of action should be considered in the assessment of bunker oil spill impacts, and indicates the need for a broader approach to understanding the aquatic toxicity of different oils.

  5. Improved Flexible Transparent Conductive Electrodes based on Silver Nanowire Networks by a Simple Sunlight Illumination Approach.

    PubMed

    Kou, Pengfei; Yang, Liu; Chang, Cheng; He, Sailing

    2017-02-07

    Silver nanowire (Ag NW) networks have attracted wide attention as transparent electrodes for emerging flexible optoelectronics. However, the sheet resistance is greatly limited by large wire-to-wire contact resistances. Here, we propose a simple sunlight illumination approach to remarkably improve their electrical conductivity without any significant degradation of the light transmittance. Because the power density is extremely low (0.1 W/cm(2), 1-Sun), only slight welding between Ag NWs has been observed. Despite this, a sheet resistance of <20 Ω/sq and transmittance of ~87% at wavelength of 550 nm as well as excellent mechanical flexibility have still been achieved for Ag NW networks after sunlight illumination for 1 hour or longer, which are significant upgrades over those of ITO. Slight plasmonic welding together with the associated self-limiting effect has been investigated by numerical simulations and further verified experimentally through varied solar concentrations. Due to the reduced resistance, high-performance transparent film heaters as well as efficient defrosters have been demonstrated, which are superior to the previously-reported Ag NW based film heaters. Since the sunlight is environmentally friendly and easily available, sophisticated or expensive facilities are not necessary. Our findings are particularly meaningful and show enormous potential for outdoor applications.

  6. Improved Flexible Transparent Conductive Electrodes based on Silver Nanowire Networks by a Simple Sunlight Illumination Approach

    NASA Astrophysics Data System (ADS)

    Kou, Pengfei; Yang, Liu; Chang, Cheng; He, Sailing

    2017-02-01

    Silver nanowire (Ag NW) networks have attracted wide attention as transparent electrodes for emerging flexible optoelectronics. However, the sheet resistance is greatly limited by large wire-to-wire contact resistances. Here, we propose a simple sunlight illumination approach to remarkably improve their electrical conductivity without any significant degradation of the light transmittance. Because the power density is extremely low (0.1 W/cm2, 1-Sun), only slight welding between Ag NWs has been observed. Despite this, a sheet resistance of <20 Ω/sq and transmittance of ~87% at wavelength of 550 nm as well as excellent mechanical flexibility have still been achieved for Ag NW networks after sunlight illumination for 1 hour or longer, which are significant upgrades over those of ITO. Slight plasmonic welding together with the associated self-limiting effect has been investigated by numerical simulations and further verified experimentally through varied solar concentrations. Due to the reduced resistance, high-performance transparent film heaters as well as efficient defrosters have been demonstrated, which are superior to the previously-reported Ag NW based film heaters. Since the sunlight is environmentally friendly and easily available, sophisticated or expensive facilities are not necessary. Our findings are particularly meaningful and show enormous potential for outdoor applications.

  7. Sunlight-induced photochemical decay of oxidants in natural waters: implications in ballast water treatment.

    PubMed

    Cooper, William J; Jones, Adam C; Whitehead, Robert F; Zika, Rod G

    2007-05-15

    The transport and discharge of ship ballast water has been recognized as a major vector for the introduction of invasive species. Chemical oxidants, long used in drinking water and wastewater treatment, are alternative treatment methods for the control of invasive species currently being tested for use on ships. One concern when a ballasted vessel arrives in port is the adverse effects of residual oxidant in the treated water. The most common oxidants include chlorine (HOCl/OCl-), bromine (HOBr/OBr-), ozone (03), hydrogen peroxide (H2O2), chlorine dioxide (ClO2), and monochloramine (NH2Cl). The present study was undertaken to evaluate the sunlight-mediated photochemical decomposition of these oxidants. Sunlight photodecomposition was measured at various pH using either distilled water or oligotrophic Gulf Stream water for specific oxidants. For selected oxidants, quantum yields at specific wavelengths were obtained. An environmental photochemical model, GCSOLAR, also provided predictions of the fate (sunlight photolysis half-lives) of HOCI/OCl-, HOBr/OBr-, ClO2, and NH2Cl for two different seasons at latitude 40 degrees and in water with two different concentrations of chromophoric dissolved organic matter. These data are useful in assessing the environmental fate of ballast water treatment oxidants if they were to be discharged in port.

  8. Exposure of organic extracts of air particulates to sunlight leads to metabolic activation independence for mutagenicity.

    PubMed

    al-Khodairy, F; Hannan, M A

    1997-06-13

    Air particulates were collected on Whatman, GFA glass fibre filters using a RADECO constant-flow air sampler from a car-parking basement and an open roadside adjacent to the basement. While the basement was not exposed to sunlight, the roadside from where air samples were collected was exposed to regular daylight in the month of July (peak summer month). The filters were soaked and sonicated in acetone to dislodge the particulates and then a residue was obtained after evaporation of acetone. The residues were either held in dark or exposed to natural sunlight or germicidal UV light before being tested for mutagenicity using the Salmonella tester strain TA98 with and without metabolic activation (S9 mix). The results showed that the addition of S9 mix resulted in only a slight increase in the frequency of histidine revertants/plate in the case of daylight-exposed roadside air samples. On the other hand, a considerable increase in mutagenicity was observed in the case of the basement air samples, particularly at higher concentrations of the organic extracts when S9 mix was added. However, a pre-exposure of the organic extract of air from the basement to sunlight abrogated the need for S9 mix for showing mutagenic activity. A pre-exposure of the same extracts to germicidal UV light failed to produce a similar effect. These results suggested that long wavelengths of natural sunlight could be responsible for the conversion of certain promutagens in air particulates into direct-acting mutagens. The environmental impact of solar radiation as a modifier of air particulate mutagens in high-sun countries like Saudi Arabia needs to be carefully considered for assessment of air pollution-related health risks.

  9. Photo-induced toxicity of titanium dioxide nanoparticles to Daphnia magna under natural sunlight.

    PubMed

    Mansfield, C M; Alloy, M M; Hamilton, J; Verbeck, G F; Newton, K; Klaine, S J; Roberts, A P

    2015-02-01

    Titanium dioxide nanoparticles (TiO2 NP) are one of the most abundantly utilized nanoparticles in the world. Studies have demonstrated the ability of the anatase crystal of TiO2 NP to produce reactive oxygen species (ROS) in the presence of ultraviolet radiation (UVR), a co-exposure likely to occur in aquatic ecosystems. The goal of this study was to examine the photo-induced toxicity of anatase TiO2 NP under natural sunlight to Daphnia magna. D. magna were exposed to a range of UVR intensities and anatase TiO2 concentrations in an outdoor exposure system using the sun as the source of UVR. Different UVR intensities were achieved using UVR opaque and transparent plastics. AnataseTiO2-NP demonstrated the reciprocal relationship seen in other phototoxic compounds such as polycyclic aromatic hydrocarbons (PAHs) at higher UVR treatments. The calculated 8h LC50 of anatase TiO2 NP was 139 ppb under full intensity ambient natural sunlight, 778 ppb under 50% natural sunlight, and >500 ppm under 10% natural sunlight. Mortality was also compared between animals allowed to accumulate a body burden of anatase TiO2 for 1h and organisms whose first exposure to anatase TiO2 aqueous suspensions occurred under UVR. A significantly greater toxic effect was observed in aqueous, low body burden suspensions than that of TiO2 1h body burdens, which is dissimilar from the model presented in PAHs. Anatase TiO2 presents a unique photo-induced toxic model that is different than that of established phototoxic compounds.

  10. Absorbance changes of carotenoids in different solvents.

    PubMed

    Zang, L Y; Sommerburg, O; van Kuijk, F J

    1997-01-01

    Carotenoids are typically measured in tissues with the high performance liquid chromatography (HPLC) and quantitation is usually done by calibrating with stock solutions in solvents. Four carotenoids including lutein, zeaxanthin, lycopene and beta-carotene were dissolved in hexane and methanol respectively, and their absorbance characteristics were compared. Lutein shows absorbance spectra that are almost independent of solvents at various concentrations. Spectra of zeaxanthin, lycopene and beta-carotene were found to be more solvent-dependent. The absorbance of zeaxanthin at lambda max is about approximately 2 times larger in methanol than in hexane at the higher concentrations, and increased non-linearly with increasing concentration in hexane. The absorbance of lycopene at lambda max in hexane is approximately 4 fold larger than in methanol, but the absorbance of the methanol sample can be recovered by re-extracting this sample in hexane. The absorbance of beta-carotene in hexane is larger than in methanol, and increased linearly with increasing concentration. But beta-carotene showed a non-linear concentration effect in methanol. There are very small variations in lambda max for all four carotenoids between hexane and methanol, due to differences in molar extinction coefficients. The non-linear concentration effects for these carotenoids are probably due to differences in solubility leading to the formation of microcrystals. Thus, care should be taken with quantitation of tissue carotenoid values, when they depend on measurement of concentrations in stock solutions.

  11. Life-threatening motor vehicle crashes in bright sunlight.

    PubMed

    Redelmeier, Donald A; Raza, Sheharyar

    2017-01-01

    Bright sunlight may create visual illusions that lead to driver error, including fallible distance judgment from aerial perspective. We tested whether the risk of a life-threatening motor vehicle crash was increased when driving in bright sunlight.This longitudinal, case-only, paired-comparison analysis evaluated patients hospitalized because of a motor vehicle crash between January 1, 1995 and December 31, 2014. The relative risk of a crash associated with bright sunlight was estimated by evaluating the prevailing weather at the time and place of the crash compared with the weather at the same hour and location on control days a week earlier and a week later.The majority of patients (n = 6962) were injured during daylight hours and bright sunlight was the most common weather condition at the time and place of the crash. The risk of a life-threatening crash was 16% higher during bright sunlight than normal weather (95% confidence interval: 9-24, P < 0.001). The increased risk was accentuated in the early afternoon, disappeared at night, extended to patients with different characteristics, involved crashes with diverse features, not apparent with cloudy weather, and contributed to about 5000 additional patient-days in hospital. The increased risk extended to patients with high crash severity as indicated by ambulance involvement, surgical procedures, length of hospital stay, intensive care unit admission, and patient mortality. The increased risk was not easily attributed to differences in alcohol consumption, driving distances, or anomalies of adverse weather.Bright sunlight is associated with an increased risk of a life-threatening motor vehicle crash. An awareness of this risk might inform driver education, trauma staffing, and safety warnings to prevent a life-threatening motor vehicle crash.

  12. Life-threatening motor vehicle crashes in bright sunlight

    PubMed Central

    Redelmeier, Donald A.; Raza, Sheharyar

    2017-01-01

    Abstract Bright sunlight may create visual illusions that lead to driver error, including fallible distance judgment from aerial perspective. We tested whether the risk of a life-threatening motor vehicle crash was increased when driving in bright sunlight. This longitudinal, case-only, paired-comparison analysis evaluated patients hospitalized because of a motor vehicle crash between January 1, 1995 and December 31, 2014. The relative risk of a crash associated with bright sunlight was estimated by evaluating the prevailing weather at the time and place of the crash compared with the weather at the same hour and location on control days a week earlier and a week later. The majority of patients (n = 6962) were injured during daylight hours and bright sunlight was the most common weather condition at the time and place of the crash. The risk of a life-threatening crash was 16% higher during bright sunlight than normal weather (95% confidence interval: 9–24, P < 0.001). The increased risk was accentuated in the early afternoon, disappeared at night, extended to patients with different characteristics, involved crashes with diverse features, not apparent with cloudy weather, and contributed to about 5000 additional patient-days in hospital. The increased risk extended to patients with high crash severity as indicated by ambulance involvement, surgical procedures, length of hospital stay, intensive care unit admission, and patient mortality. The increased risk was not easily attributed to differences in alcohol consumption, driving distances, or anomalies of adverse weather. Bright sunlight is associated with an increased risk of a life-threatening motor vehicle crash. An awareness of this risk might inform driver education, trauma staffing, and safety warnings to prevent a life-threatening motor vehicle crash. Level of evidence: Epidemiologic Study, level III. PMID:28072708

  13. Sunlight supply and gas exchange systems in microalgal bioreactor

    NASA Technical Reports Server (NTRS)

    Mori, K.; Ohya, H.; Matsumoto, K.; Furune, H.

    1987-01-01

    The bioreactor with sunlight supply system and gas exchange systems presented has proved feasible in ground tests and shows much promise for space use as a closed ecological life support system device. The chief conclusions concerning the specification of total system needed for a life support system for a man in a space station are the following: (1) Sunlight supply system - compactness and low electrical consumption; (2) Bioreactor system - high density and growth rate of chlorella; and (3) Gas exchange system - enough for O2 production and CO2 assimilation.

  14. Externally tuned vibration absorber

    DOEpatents

    Vincent, Ronald J.

    1987-09-22

    A vibration absorber unit or units are mounted on the exterior housing of a hydraulic drive system of the type that is powered from a pressure wave generated, e.g., by a Stirling engine. The hydraulic drive system employs a piston which is hydraulically driven to oscillate in a direction perpendicular to the axis of the hydraulic drive system. The vibration absorbers each include a spring or other resilient member having one side affixed to the housing and another side to which an absorber mass is affixed. In a preferred embodiment, a pair of vibration absorbers is employed, each absorber being formed of a pair of leaf spring assemblies, between which the absorber mass is suspended.

  15. Shock absorber control system

    SciTech Connect

    Nakano, Y.; Ohira, M.; Ushida, M.; Miyagawa, T.; Shimodaira, T.

    1987-01-13

    A shock absorber control system is described for controlling a dampening force of a shock absorber of a vehicle comprising: setting means for setting a desired dampening force changeable within a predetermined range; drive means for driving the shock absorber to change the dampening force of the shock absorber linearly; control means for controlling the drive means in accordance with the desired dampening force when the setting of the desired dampening force has been changed; detecting means for detecting an actual dampening force of the shock absorber; and correcting means for correcting the dampening force of the shock absorber by controlling the drive means in accordance with a difference between the desired dampening force and the detected actual dampening force.

  16. Methods for absorbing neutrons

    DOEpatents

    Guillen, Donna P [Idaho Falls, ID; Longhurst, Glen R [Idaho Falls, ID; Porter, Douglas L [Idaho Falls, ID; Parry, James R [Idaho Falls, ID

    2012-07-24

    A conduction cooled neutron absorber may include a metal matrix composite that comprises a metal having a thermal neutron cross-section of at least about 50 barns and a metal having a thermal conductivity of at least about 1 W/cmK. Apparatus for providing a neutron flux having a high fast-to-thermal neutron ratio may include a source of neutrons that produces fast neutrons and thermal neutrons. A neutron absorber positioned adjacent the neutron source absorbs at least some of the thermal neutrons so that a region adjacent the neutron absorber has a fast-to-thermal neutron ratio of at least about 15. A coolant in thermal contact with the neutron absorber removes heat from the neutron absorber.

  17. Photocatalytic degradation of humic substances in aqueous solution using Cu-doped ZnO nanoparticles under natural sunlight irradiation.

    PubMed

    Maleki, Afshin; Safari, Mahdi; Shahmoradi, Behzad; Zandsalimi, Yahya; Daraei, Hiua; Gharibi, Fardin

    2015-11-01

    In this study, Cu-doped ZnO nanoparticles were investigated as an efficient synthesized catalyst for photodegradation of humic substances in aqueous solution under natural sunlight irradiation. Cu-doped ZnO nanocatalyst was prepared through mild hydrothermal method and was characterized using FT-IR, powder XRD and SEM techniques. The effect of operating parameters such as doping ratio, initial pH, catalyst dosage, initial concentrations of humic substances and sunlight illuminance were studied on humic substances degradation efficiency. The results of characterization analyses of samples confirmed the proper synthesis of Cu-doped ZnO nanocatalyst. The experimental results indicated the highest degradation efficiency of HS (99.2%) observed using 1.5% Cu-doped ZnO nanoparticles at reaction time of 120 min. Photocatalytic degradation efficiency of HS in a neutral and acidic pH was much higher than that at alkaline pH. Photocatalytic degradation of HS was enhanced with increasing the catalyst dosage and sunlight illuminance, while increasing the initial HS concentration led to decrease in the degradation efficiency of HS. Conclusively, Cu-doped ZnO nanoparticles can be used as a promising and efficient catalyst for degradation of HS under natural sunlight irradiation.

  18. Antioxidant defences and oxidative damage in salt-treated olive plants under contrasting sunlight irradiance.

    PubMed

    Melgar, Juan Carlos; Guidi, Lucia; Remorini, Damiano; Agati, Giovanni; Degl'innocenti, Elena; Castelli, Silvana; Camilla Baratto, Maria; Faraloni, Cecilia; Tattini, Massimiliano

    2009-09-01

    The interactive effects of root-zone salinity and sunlight on leaf biochemistry, with special emphasis on antioxidant defences, were analysed in Olea europaea L. cv. Allora, during the summer period. Plants were grown outside under 15% (shade plants) or 100% sunlight (sun plants) and supplied with 0 or 125 mM NaCl. The following measurements were performed: (1) the contribution of ions and soluble carbohydrates to osmotic potentials; (2) the photosystem II (PSII) photochemistry and the photosynthetic pigment concentration; (3) the concentration and the tissue-specific distribution of leaf flavonoids; (4) the activity of antioxidant enzymes; and (5) the leaf oxidative damage. The concentrations of Na(+) and Cl(-) were significantly greater in sun than in shade leaves, as also observed for the concentration of the 'antioxidant' sugar-alcohol mannitol. The de-epoxidation state of violaxanthin-cycle pigments increased in response to salinity stress in sun leaves. This finding agrees with a greater maximal PSII photochemistry (F(v)/F(m)) at midday, detected in salt-treated than in control plants, growing in full sunshine. By contrast, salt-treated plants in the shade suffered from midday depression in F(v)/F(m) to a greater degree than that observed in control plants. The high concentration of violaxanthin-cycle pigments in sun leaves suggests that zeaxanthin may protect the chloroplast from photo-oxidative damage, rather than dissipating excess excitation energy via non-photochemical quenching mechanisms. Dihydroxy B-ring-substituted flavonoid glycosides accumulate greatly in the mesophyll, not only in the epidermal cells, in response to high sunlight. The activity of antioxidant enzymes varied little because of sunlight irradiance, but declined sharply in response to high salinity in shade leaves. Interestingly, control and particularly salt-treated plants in the shade underwent greater oxidative damage than their sunny counterparts. These findings, which conform to

  19. Non-tracking solar concentrator with a high concentration ratio

    DOEpatents

    Hinterberger, Henry

    1977-01-01

    A nontracking solar concentrator with a high concentration ratio is provided. The concentrator includes a plurality of energy absorbers which communicate with a main header by which absorbed heat is removed. Undesired heat flow of those absorbers not being heated by radiant energy at a particular instant is impeded, improving the efficiency of the concentrator.

  20. Photochemical transformation of graphene oxide in sunlight (journal)

    EPA Science Inventory

    Graphene oxide (GO) is a graphene derivative that is more easily manufactured in large scale and used to synthesize reduced graphene oxide (rGO) with properties analogous to graphene. In this study, we investigate the photochemical fate of GO under sunlight conditions. The resu...

  1. [Most common skin disorders caused by excessive exposure to sunlight].

    PubMed

    Zitás, Éva; Mészáros, Judit

    2016-01-17

    The healing properties of sunlight has been known for millennia, however the gradual deterioration of the ozone layer and the increased use of sun tanning beds in recent decades are causing an increase in skin damaging ultraviolet exposure. In this article the most common photodermatoses and the principles of their treatments are reviewed.

  2. Electricity from Sunlight: The Future of Photovoltaics. Worldwatch Paper 52.

    ERIC Educational Resources Information Center

    Flavin, Christopher

    Solar photovoltaic cells have been called the ultimate energy technology, environmentally benign and without moving parts, solar cells directly convert sunlight into electricity. Photovoltaic energy conversion is fundamentally different from all other forms of electricity generation. Without turbines, generators or other mechanical equipment, it…

  3. Sunlight Photochemistry: The Preparation of Dicarbonyl (n5-methylcyclopentadienyl) Triphenylphosphinemanganese.

    ERIC Educational Resources Information Center

    Calabro, David C.; Lichtenberger, Dennis L.

    1982-01-01

    Background information, materials/procedures, and results are provided for an undergraduate laboratory experiment on a photochemical ligand substitution reaction using sunlight. The experiment illustrates demonstration of photochemistry and basic mechanisms of transition metal reactions using inexpensive materials and is easily followed by…

  4. Modeling of light absorbing particles in atmosphere, snow and ice in the Arctic

    NASA Astrophysics Data System (ADS)

    Sobhani, N.; Kulkarni, S.; Carmichael, G. R.

    2015-12-01

    Long-range transport of atmospheric particles from mid-latitude sources to the Arctic is the main contributor to the Arctic aerosol loadings and deposition. Black Carbon (BC), Brown Carbon (BrC) and dust are considered of great climatic importance and are the main absorbers of sunlight in the atmosphere. Furthermore, wet and dry deposition of light absorbing particles (LAPs) on snow and ice cause reduction of snow and ice albedo. LAPs have significant radiative forcing and effect on snow albedo. There are high uncertainties in estimating radiative forcing of LAPs. We studied the potential effect of LAPs from different emission source regions and sectors on snow albedo in the Arctic. The transport pathway of LAPs to the Arctic is studies for different high pollution episodes. In this study a modeling framework including Weather Research and Forecasting Model (WRF) and the University of Iowa's Sulfur Transport and dEpostion model(STEM) is used to predict the transport of LAPs from different geographical sources and sectors (i.e. transportation, residential, industry, biomass burning and power) to the Arctic. For assessing the effect of LAP deposition on snow single-layer simulator of the SNow, Ice, and Aerosol Radiation (SNICAR-Online) model was used to derive snow albedo values for snow albedo reduction causes by BC deposition. To evaluate the simulated values we compared the BC concentration in snow with observed values from previous studies including Doherty et al. 2010.

  5. Proflavine-mediated inactivation of Salmonella dublin exposed to visible sunlight in natural fresh water.

    PubMed

    Kussovski, V K; Hristov, A E; Radoucheva, T S

    2001-01-01

    The survival of Salmonella dublin exposed to visible sunlight, and heterotrophic bacteria in freshwater microcosms in the presence and absence of the photosensitizer proflavine, was studied. Enumeration of S. dublin and the heterotrophic bacteria showed that in both illuminated and nonilluminated systems (without proflavine) the bacteria remained viable and culturable for at least 6 days. The optimal proflavine concentration (no effect in the dark and a maximal photoinactivation of salmonellae after irradiation) was 2 mg l(-1). In contrast to S. dublin, the heterotrophic bacteria overcame the initial inhibitory effect of proflavine. The possible use of photosterilization against contamination with pathogenic bacteria in water model ecosystems, is discussed.

  6. Advanced neutron absorber materials

    DOEpatents

    Branagan, Daniel J.; Smolik, Galen R.

    2000-01-01

    A neutron absorbing material and method utilizing rare earth elements such as gadolinium, europium and samarium to form metallic glasses and/or noble base nano/microcrystalline materials, the neutron absorbing material having a combination of superior neutron capture cross sections coupled with enhanced resistance to corrosion, oxidation and leaching.

  7. Multispectral metamaterial absorber.

    PubMed

    Grant, J; McCrindle, I J H; Li, C; Cumming, D R S

    2014-03-01

    We present the simulation, implementation, and measurement of a multispectral metamaterial absorber (MSMMA) and show that we can realize a simple absorber structure that operates in the mid-IR and terahertz (THz) bands. By embedding an IR metamaterial absorber layer into a standard THz metamaterial absorber stack, a narrowband resonance is induced at a wavelength of 4.3 μm. This resonance is in addition to the THz metamaterial absorption resonance at 109 μm (2.75 THz). We demonstrate the inherent scalability and versatility of our MSMMA by describing a second device whereby the MM-induced IR absorption peak frequency is tuned by varying the IR absorber geometry. Such a MSMMA could be coupled with a suitable sensor and formed into a focal plane array, enabling multispectral imaging.

  8. Effects of humic acid and sunlight on the generation and aggregation state of aqu/C60 nanoparticles.

    PubMed

    Isaacson, Carl W; Bouchard, Dermont C

    2010-12-01

    Aqueous suspensions of nanoscale C(60) aggregates (aqu/C(60)) were produced by stirring in water with Suwanee River Humic Acid (humic acid) and water from Call's Creek, a small stream near Athens, GA. Time course experiments were conducted to determine the effects of sunlight and solution chemistry on the mass of aqu/C(60) suspended, nanoparticle size, and ζ potential. For all treatments, sunlight had the greatest effect on the mass of aqu/C(60) suspended. The sunlight-exposed Call's Creek samples exhibited the greatest increase in mass suspended with aqu/C(60) concentrations 17 times greater than those of the dark controls, followed by the humic acid treatments, 8.1 times, and deionized water, 3.4 times. Asymmetric flow field-flow fractionation indicated that aqu/C(60) nanoparticles in humic acid were the smallest and their mass was evenly distributed in the 120-300 nm hydrodynamic diameter (D(h)) size range, whereas aqu/C(60) nanoparticles in Call's Creek water were the largest and were evenly distributed in the size range of 200-300 nm D(h). Aqu/C(60) in deionized water and humic acid treatments exposed to sunlight exhibited a trend of increasingly negative ζ potentials as suspension time increased; however, this trend was not observed for the Call's Creek treatment.

  9. An ultrathin dual-band metamaterial absorber

    NASA Astrophysics Data System (ADS)

    Zhang, Yong; Duan, Junping; Zhang, Wendong; Wang, Wanjun; Zhang, Binzhen

    2016-10-01

    The design and preparation of an ultrathin dual-band metamaterial absorber whose resonant frequency located at radar wave (20 GHz-60 GHz) is presented in this paper. The absorber is composed of a 2-D periodic sandwich featured with two concentric annuluses. The influence on the absorber's performance produced by resonant cell's structure size and material parameters was numerically simulated and analyzed based on the standard full wave finite integration technology in CST. Laser ablation process was adopted to prepare the designed absorber on epoxy resin board coated with on double plane of copper with a thickness that is 1/30 and 1/50 of the resonant wavelength at a resonant frequency of 30.51 GHz and 48.15 GHz. The full width at half maximum (FWHM) reached 2.2 GHz and 2.35 GHz and the peak of the absorptance reached 99.977%. The ultrathin absorber is nearly omnidirectional for all polarizations. The test results of prepared sample testify the designed absorber's excellent absorbing performance forcefully. The absorber expands inspirations of radar stealth in military domain due to its flexible design, cost-effective and other outstanding properties.

  10. Lipid-absorbing Polymers

    NASA Technical Reports Server (NTRS)

    Marsh, H. E., Jr.; Wallace, C. J.

    1973-01-01

    The removal of bile acids and cholesterol by polymeric absorption is discussed in terms of micelle-polymer interaction. The results obtained with a polymer composed of 75 parts PEO and 25 parts PB plus curing ingredients show an absorption of 305 to 309%, based on original polymer weight. Particle size effects on absorption rate are analyzed. It is concluded that crosslinked polyethylene oxide polymers will absorb water, crosslinked polybutadiene polymers will absorb lipids; neither polymer will absorb appreciable amounts of lipids from micellar solutions of lipids in water.

  11. Electromagnetic power absorber

    NASA Technical Reports Server (NTRS)

    Iwasaki, R. S. (Inventor)

    1979-01-01

    A structure is presented with a surface portion of dielectric material which passes electromagnetic radiation and with a portion below the surface which includes material that absorbs the radiation, the face of the structure being formed with numerous steep ridges. The steepness of the dielectric material results in a high proportion of the electromagnetic energy passing through the surface for absorption by the absorbing material under the surface. A backing of aluminum or other highly heat-conductive and reflective material lies under the face and has very steep protuberances supporting the absorbing and dielectric materials.

  12. Non-Absorbable Gas Behavior in the Absorber/Evaporator of a Absorption Chiller

    NASA Astrophysics Data System (ADS)

    Suzuki, Hiroshi; Nagamoto, Wataru; Sugiyama, Takahide

    A two-dimensional numerical study on non-absorbable gas behavior in the absorber/evaporator of an absorption chiller has been performed. In the present study, the effect of the pitch-to-diameter ratio of a cylinder bundle in the absorber was highlighted. From the results, a sudden decrease of the overall heat transfer coefficient of the absorber was observed at a certain mean concentration of non-absorbable gas for each pitch-to-diameter ratio. Such a critical concentration was also found to decrease as the pitch-to- diameter ratio increased. The sudden decrease occurs due to the sudden disappearance of recirculating region, which is formed between the absorber and the evaporator, and where most of non-absorbable gas stays when it exists. As the pitch-to-diameter ratio increases, the recirculating region becomes weak because the velocity of the high velocity region supporting the recirculating flow decreases. Then, the critical mean concentration of non-absorbable gas is found to decrease as pitch-to-ratio increases.

  13. A chaotic self-oscillating sunlight-driven polymer actuator

    PubMed Central

    Kumar, Kamlesh; Knie, Christopher; Bléger, David; Peletier, Mark A.; Friedrich, Heiner; Hecht, Stefan; Broer, Dirk J.; Debije, Michael G.; Schenning, Albertus P. H. J.

    2016-01-01

    Nature provides much inspiration for the design of materials capable of motion upon exposure to external stimuli, and many examples of such active systems have been created in the laboratory. However, to achieve continuous motion driven by an unchanging, constant stimulus has proven extremely challenging. Here we describe a liquid crystalline polymer film doped with a visible light responsive fluorinated azobenzene capable of continuous chaotic oscillatory motion when exposed to ambient sunlight in air. The presence of simultaneous illumination by blue and green light is necessary for the oscillating behaviour to occur, suggesting that the dynamics of continuous forward and backward switching are causing the observed effect. Our work constitutes an important step towards the realization of autonomous, persistently self-propelling machines and self-cleaning surfaces powered by sunlight. PMID:27375235

  14. Estimation of sunlight penetration in the sea for remote sensing

    NASA Technical Reports Server (NTRS)

    Mccluney, W. R.

    1974-01-01

    There is a need for a simple theoretical approach to the calculation of sunlight penetration depths suitable for passive multispectral remote sensing of water resources. An earlier paper presented an approach which is readily adapted to this calculation and which provides reasonably good agreement with more accurate but time-consuming radiative transfer models. The needed modifications are described and the model is used to calculate the penetration of sunlight into clear ocean water at several wavelengths throughout the visible portion of the spectrum. Calculations for both clear and turbid water are carried out for the two visible channels of the multispectral scanner on NASA's ERTS-1 satellite. The effect of a reflective bottom on the upwelling light field is discussed. Measurement parameters needed for the passive remote determination of water depths are identified and the use of submerged reflective panels for surface truth measurements is discussed.

  15. A chaotic self-oscillating sunlight-driven polymer actuator

    NASA Astrophysics Data System (ADS)

    Kumar, Kamlesh; Knie, Christopher; Bléger, David; Peletier, Mark A.; Friedrich, Heiner; Hecht, Stefan; Broer, Dirk J.; Debije, Michael G.; Schenning, Albertus P. H. J.

    2016-07-01

    Nature provides much inspiration for the design of materials capable of motion upon exposure to external stimuli, and many examples of such active systems have been created in the laboratory. However, to achieve continuous motion driven by an unchanging, constant stimulus has proven extremely challenging. Here we describe a liquid crystalline polymer film doped with a visible light responsive fluorinated azobenzene capable of continuous chaotic oscillatory motion when exposed to ambient sunlight in air. The presence of simultaneous illumination by blue and green light is necessary for the oscillating behaviour to occur, suggesting that the dynamics of continuous forward and backward switching are causing the observed effect. Our work constitutes an important step towards the realization of autonomous, persistently self-propelling machines and self-cleaning surfaces powered by sunlight.

  16. Analysis of Environmental Effects on Leaf Temperature under Sunlight, High Pressure Sodium and Light Emitting Diodes

    PubMed Central

    Nelson, Jacob A.; Bugbee, Bruce

    2015-01-01

    The use of LED technology is commonly assumed to result in significantly cooler leaf temperatures than high pressure sodium technology. To evaluate the magnitude of this effect, we measured radiation incident to and absorbed by a leaf under four radiation sources: clear sky sunlight in the field, sunlight in a glass greenhouse, and indoor plants under either high pressure sodium or light emitting diodes. We then applied a common mechanistic energy-balance model to compare leaf to air temperature difference among the radiation sources and environments. At equal photosynthetic photon flux, our results indicate that the effect of plant water status and leaf evaporative cooling is much larger than the effect of radiation source. If plants are not water stressed, leaves in all four radiation sources were typically within 2°C of air temperature. Under clear sky conditions, cool sky temperatures mean that leaves in the field are always cooler than greenhouse or indoor plants-when photosynthetic photon flux, stomatal conductance, wind speed, vapor pressure deficit, and leaf size are equivalent. As water stress increases and cooling via transpiration decreases, leaf temperatures can increase well above air temperature. In a near-worst case scenario of water stress and low wind, our model indicates that leaves would increase 6°, 8°, 10°, and 12°C above air temperature under field, LED, greenhouse, and HPS scenarios, respectively. Because LED fixtures emit much of their heat through convection rather than radiative cooling, they result in slightly cooler leaf temperatures than leaves in greenhouses and under HPS fixtures, but the effect of LED technology on leaf temperature is smaller than is often assumed. Quantifying the thermodynamic outputs of these lamps, and their physiological consequences, will allow both researchers and the horticulture industry to make informed decisions when employing these technologies. PMID:26448613

  17. Analysis of Environmental Effects on Leaf Temperature under Sunlight, High Pressure Sodium and Light Emitting Diodes.

    PubMed

    Nelson, Jacob A; Bugbee, Bruce

    2015-01-01

    The use of LED technology is commonly assumed to result in significantly cooler leaf temperatures than high pressure sodium technology. To evaluate the magnitude of this effect, we measured radiation incident to and absorbed by a leaf under four radiation sources: clear sky sunlight in the field, sunlight in a glass greenhouse, and indoor plants under either high pressure sodium or light emitting diodes. We then applied a common mechanistic energy-balance model to compare leaf to air temperature difference among the radiation sources and environments. At equal photosynthetic photon flux, our results indicate that the effect of plant water status and leaf evaporative cooling is much larger than the effect of radiation source. If plants are not water stressed, leaves in all four radiation sources were typically within 2°C of air temperature. Under clear sky conditions, cool sky temperatures mean that leaves in the field are always cooler than greenhouse or indoor plants-when photosynthetic photon flux, stomatal conductance, wind speed, vapor pressure deficit, and leaf size are equivalent. As water stress increases and cooling via transpiration decreases, leaf temperatures can increase well above air temperature. In a near-worst case scenario of water stress and low wind, our model indicates that leaves would increase 6°, 8°, 10°, and 12°C above air temperature under field, LED, greenhouse, and HPS scenarios, respectively. Because LED fixtures emit much of their heat through convection rather than radiative cooling, they result in slightly cooler leaf temperatures than leaves in greenhouses and under HPS fixtures, but the effect of LED technology on leaf temperature is smaller than is often assumed. Quantifying the thermodynamic outputs of these lamps, and their physiological consequences, will allow both researchers and the horticulture industry to make informed decisions when employing these technologies.

  18. "Smart" Electromechanical Shock Absorber

    NASA Technical Reports Server (NTRS)

    Stokes, Lebarian; Glenn, Dean C.; Carroll, Monty B.

    1989-01-01

    Shock-absorbing apparatus includes electromechanical actuator and digital feedback control circuitry rather than springs and hydraulic damping as in conventional shock absorbers. Device not subject to leakage and requires little or no maintenance. Attenuator parameters adjusted in response to sensory feedback and predictive algorithms to obtain desired damping characteristic. Device programmed to decelerate slowly approaching vehicle or other large object according to prescribed damping characteristic.

  19. Passive radiative cooling below ambient air temperature under direct sunlight.

    PubMed

    Raman, Aaswath P; Anoma, Marc Abou; Zhu, Linxiao; Rephaeli, Eden; Fan, Shanhui

    2014-11-27

    Cooling is a significant end-use of energy globally and a major driver of peak electricity demand. Air conditioning, for example, accounts for nearly fifteen per cent of the primary energy used by buildings in the United States. A passive cooling strategy that cools without any electricity input could therefore have a significant impact on global energy consumption. To achieve cooling one needs to be able to reach and maintain a temperature below that of the ambient air. At night, passive cooling below ambient air temperature has been demonstrated using a technique known as radiative cooling, in which a device exposed to the sky is used to radiate heat to outer space through a transparency window in the atmosphere between 8 and 13 micrometres. Peak cooling demand, however, occurs during the daytime. Daytime radiative cooling to a temperature below ambient of a surface under direct sunlight has not been achieved because sky access during the day results in heating of the radiative cooler by the Sun. Here, we experimentally demonstrate radiative cooling to nearly 5 degrees Celsius below the ambient air temperature under direct sunlight. Using a thermal photonic approach, we introduce an integrated photonic solar reflector and thermal emitter consisting of seven layers of HfO2 and SiO2 that reflects 97 per cent of incident sunlight while emitting strongly and selectively in the atmospheric transparency window. When exposed to direct sunlight exceeding 850 watts per square metre on a rooftop, the photonic radiative cooler cools to 4.9 degrees Celsius below ambient air temperature, and has a cooling power of 40.1 watts per square metre at ambient air temperature. These results demonstrate that a tailored, photonic approach can fundamentally enable new technological possibilities for energy efficiency. Further, the cold darkness of the Universe can be used as a renewable thermodynamic resource, even during the hottest hours of the day.

  20. Involvement of 5-methylcytosine in sunlight-induced mutagenesis.

    PubMed

    You, Y H; Li, C; Pfeifer, G P

    1999-10-29

    In human skin cancers, more than 30 % of all mutations in the p53 gene are transitions at dipyrimidines within the sequence context CpG, i.e. 5'-TCG and 5'-CCG, found at several mutational hotspots. Since CpGs are methylated along the p53 gene, these mutations may be derived from solar UV-induced pyrimidine dimers forming at sequences that contain 5-methylcytosine. In Xorder to define the contribution of 5-methylcytosine to sunlight-induced mutations, we have used mouse fibroblasts containing the CpG-methylated lacI transgene as a mutational target. We sequenced 182 UVC (254 nm UV)-induced mutations and 170 mutations induced by a solar UV simulator, along with 75 mutations in untreated cells. Only a few of the mutations in untreated cells were transitions at dipyrimidines, but more than 95% of the UVC and solar irradiation-induced mutations were targeted to dipyrimidine sites, the majority being transitions. After UVC irradiation, 6% of the base substitutions were at dipyrimidines containing 5-methylcytosine and only 2.2% of all mutations were transitions within this sequence context. However, 24% of the solar light-induced mutations were at dipyrimidines that contain 5-methylcytosine and most of them were transitions. Two sunlight-induced mutational hotspots at methylated CpGs correlated with sequences that form the highest levels of cyclobutane pyrimidine dimers after irradiation with sunlight but not with UVC. The data indicate that dipyrimidines that contain 5-methylcytosine are preferential targets for sunlight-induced mutagenesis in cultured mammalian cells, thus explaining the large proportion of p53 mutations at such sites in skin tumors in vivo.

  1. Sunlight over Earth as seen by STS-29 crew

    NASA Technical Reports Server (NTRS)

    1989-01-01

    A 35mm camera was used to photograph sunlight over a cloud- covered Earth surface by STS-29 crewmembers onboard Discovery, Orbiter Vehicle (OV) 103. This photographic frame was among NASA's STS-29 photo release on Monday, March 20,1989. Discovery was launched on March 18,1989, with the crew of Michael L. Coats (Commander), John E. Blaha (Pilot), James P. Bagian (Mission Specialist), James F. Buchli (Mission Specialist), and Robert C. Springer (Mission Specialist).

  2. Contributions of visible and ultraviolet parts of sunlight to photoinhibition.

    PubMed

    Hakala-Yatkin, Marja; Mäntysaari, Mika; Mattila, Heta; Tyystjärvi, Esa

    2010-10-01

    Photoinhibition is light-induced inactivation of PSII, and action spectrum measurements have shown that UV light causes photoinhibition much more efficiently than visible light. In the present study, we quantified the contribution of the UV part of sunlight in photoinhibition of PSII in leaves. Greenhouse-grown pumpkin leaves were pretreated with lincomycin to block the repair of photoinhibited PSII, and exposed to sunlight behind a UV-permeable or UV-blocking filter. Oxygen evolution and Chl fluorescence measurements showed that photoinhibition proceeds 35% more slowly under the UV-blocking than under the UV-permeable filter. Experiments with a filter that blocks UV-B but transmits UV-A and visible light revealed that UV-A light is almost fully responsible for the UV effect. The difference between leaves illuminated through a UV-blocking and UV-transparent filter disappeared when leaves of field-grown pumpkin plants were used. Thylakoids isolated from field-grown and greenhouse-grown plants were equally sensitive to UV light, and measurements of UV-induced fluorescence from leaves indicated that the protection of the field-grown plants was caused by substances that block the passage of UV light to the chloroplasts. Thus, the UV part of sunlight, especially the UV-A part, is potentially highly important in photoinhibition of PSII but the UV-screening compounds of plant leaves may offer almost complete protection against UV-induced photoinhibition.

  3. Delayed fluorescence spectra of intact leaves photoexcited by sunlight measured with a multichannel Fourier-transform chemiluminescence spectrometer

    NASA Astrophysics Data System (ADS)

    Akita, Saeka; Yano, Ayako; Ishii, Hiroshi; Satoh, Chikahiro; Akai, Nobuyuki; Nakata, Munetaka

    2013-06-01

    Delayed fluorescence spectra of intact leaves of Green pak choi (Brassica rapa var. chinensis) were measured with a multichannel Fourier-transform chemiluminescence spectrometer, which we developed recently. The intact samples, photoexcited by sunlight without artificial light sources, showed delayed fluorescence around 740 nm with a lifetime of ˜6 s. The observed spectra were deconvoluted into two Gaussian bands: the delayed fluorescence from photosystem II and photosystem I complexes. Their relative intensities depended on the chlorophyll concentration, but their wavelengths were unchanged.

  4. Energy-Absorbing, Lightweight Wheels

    NASA Technical Reports Server (NTRS)

    Waydo, Peter

    2003-01-01

    Improved energy-absorbing wheels are under development for use on special-purpose vehicles that must traverse rough terrain under conditions (e.g., extreme cold) in which rubber pneumatic tires would fail. The designs of these wheels differ from those of prior non-pneumatic energy-absorbing wheels in ways that result in lighter weights and more effective reduction of stresses generated by ground/wheel contact forces. These wheels could be made of metals and/or composite materials to withstand the expected extreme operating conditions. As shown in the figure, a wheel according to this concept would include an isogrid tire connected to a hub via spring rods. The isogrid tire would be a stiff, lightweight structure typically made of aluminum. The isogrid aspect of the structure would both impart stiffness and act as a traction surface. The hub would be a thin-walled body of revolution having a simple or compound conical or other shape chosen for structural efficiency. The spring rods would absorb energy and partially isolate the hub and the supported vehicle from impact loads. The general spring-rod configuration shown in the figure was chosen because it would distribute contact and impact loads nearly evenly around the periphery of the hub, thereby helping to protect the hub against damage that would otherwise be caused by large loads concentrated onto small portions of the hub.

  5. Unidirectional perfect absorber

    PubMed Central

    Jin, L.; Wang, P.; Song, Z.

    2016-01-01

    This study proposes a unidirectional perfect absorber (UPA), which we realized with a two-arm Aharonov-Bohm interferometer, that consists of a dissipative resonator side-coupled to a uniform resonator array. The UPA has reflection-less full absorption on one direction, and reflectionless full transmission on the other, with an appropriate magnetic flux and coupling, detuning, and loss of the side-coupled resonator. The magnetic flux controls the transmission, the left transmission is larger for magnetic flux less than one-half flux quantum; and the right transmission is larger for magnetic flux between one-half and one flux quantum. Besides, a perfect absorber (PA) can be realized based on the UPA, in which light waves from both sides, with arbitrary superposition of the ampli- tude and phase, are perfectly absorbed. The UPA is expected to be useful in the design of novel optical devices. PMID:27615125

  6. Shock absorber servicing tool

    NASA Technical Reports Server (NTRS)

    Koepler, Jack L. (Inventor); Hill, Robert L. (Inventor)

    1981-01-01

    A tool to assist in the servicing of a shock absorber wherein the shock absorber is constructed of a pair of aligned gas and liquid filled chambers. Each of the chambers is separated by a movable separator member. Maximum efficiency of the shock absorber is achieved in the locating of a precise volume of gas within the gas chamber and a precise volume of liquid within the liquid chamber. The servicing tool of this invention employs a rod which is to connect with the separator and by observation of the position of the rod with respect to the gauge body, the location of the separator is ascertained even though it is not directly observable.

  7. Unidirectional perfect absorber

    NASA Astrophysics Data System (ADS)

    Jin, L.; Wang, P.; Song, Z.

    2016-09-01

    This study proposes a unidirectional perfect absorber (UPA), which we realized with a two-arm Aharonov-Bohm interferometer, that consists of a dissipative resonator side-coupled to a uniform resonator array. The UPA has reflection-less full absorption on one direction, and reflectionless full transmission on the other, with an appropriate magnetic flux and coupling, detuning, and loss of the side-coupled resonator. The magnetic flux controls the transmission, the left transmission is larger for magnetic flux less than one-half flux quantum; and the right transmission is larger for magnetic flux between one-half and one flux quantum. Besides, a perfect absorber (PA) can be realized based on the UPA, in which light waves from both sides, with arbitrary superposition of the ampli- tude and phase, are perfectly absorbed. The UPA is expected to be useful in the design of novel optical devices.

  8. Effects of soluble organic complexants and their degradation products on the removal of selected radionuclides from high-level waste. Part 3, Distributions of Sr, Cs, Tc, Pu, and Am onto 33 absorbers from four variations of a 3:1 dilution of Hanford complexant concentrate (CC) simulant: Part 4, The effects of varying dilution ratios on the distributions of Sr, Cs, Tc, Pu, and Am onto 12 absorbers

    SciTech Connect

    Marsh, S.F.; Svitra, Z.V.; Bowen, S.M.

    1995-09-01

    Many of the radioactive waste storage tanks at USDOE facilities contain organic compounds that have been degraded by radiolysis and chemical reactions during decades of storage. Objective of this study was to measure effects of soluble organic complexants and their degradation products on sorption of Sr, Cs, Tc, Pu and Am onto 33 absorbers that in the absence of these organic compounds offer high sorption of these elements. The elements were in a generic simulant for Hanford complexant concentrate supernate that initially contained six organic complexants: EDTA, HEDTA, NTA, citrate, gluconate, and iminodiacetate. This simulant was tested as prepared and after gamma-irradiation to approximately 34 Mrads. Two other variations consisted of the unirradiated and irradiated simulants after treatment at 450C and 15,000 psi in a hydrothermal organic-destruction process. These experiments were conducted with a 3:1 water-to-simulant dilution of each of the four simulant variations. To determine effects of varying dilution ratios on the sorption of these five elements from the unirradiated and gamma-irradiated simulants that were not treated with the hydrothermal process, we measured their distribution from a 1:1 dilution, using 1 M NaOH as the diluent, onto the 12 best-performing absorbers. We then measured the sorption of these five elements from solutions having diluent-simulant ratios of 0, 0.5, 2.0, and 3.0 onto the three absorbers that performed best for sorbing Sr, Pu and Am from the 1:1 dilution. For each of 900 element/absorber/solution combinations, we measured distribution coefficients (Kd values) twice for each period for dynamic contact periods of 30 min, 2 h, and 6 h to obtain information about absorber stability and sorption kinetics. The 5400 measured Kd values indicate that the sorption of Sr, Pu, and Am is significantly decreased by the organic complexants in these simulant solutions, whereas the sorption of Cs and Tc is much less affected.

  9. Dose-Response Effect of Sunlight on Vitamin D2 Production in Agaricus bisporus Mushrooms.

    PubMed

    Urbain, Paul; Jakobsen, Jette

    2015-09-23

    The dose response effect of UV-B irradiation from sunlight on vitamin D2 content of sliced Agaricus bisporus (white button mushroom) during the process of sun-drying was investigated.Real-time UV-B and UV-A data were obtained using a high-performance spectroradiometer. During the first hour of sunlight exposure, the vitamin D2 content of the mushrooms increased in a linear manner, with concentrations increasing from 0.1 μg/g up to 3.9 ± 0.8 μg/g dry weight (DW). At the subsequent two measurements one and 3 h later, respectively, a plateau was reached. Two hours of additional exposure triggered a significant decline in vitamin D2 content. After just 15 min of sun exposure and an UV-B dose of 0.13 J/cm(2), the vitamin D2 content increased significantly to 2.2 ± 0.5 μg/g DW (P < 0.0001), which is equivalent to 17.6 μg (704 IU) vitamin D2 per 100 g of fresh mushrooms and comparable to levels found in fatty fish like the Atlantic salmon.

  10. Bacterial disinfection in a sunlight/visible-light-driven photocatalytic reactor by recyclable natural magnetic sphalerite.

    PubMed

    Peng, Xingxing; Ng, Tsz Wai; Huang, Guocheng; Wang, Wanjun; An, Taicheng; Wong, Po Keung

    2017-01-01

    A 5-L reactor was designed and used to enhance the sunlight/visible-light-driven (VLD) photocatalytic disinfection efficiency towards Gram-negative bacterium (Escherichia coli). Natural magnetic sphalerite (NMS) was used as the photocatalyst, which could be easily recycled by applying a magnetic field. Results showed that NMS with irradiation by the blue light emitting diode (LED) lamp could completely inactivate 1.5 × 10(5) cfu/mL of E. coli within 120 min in the first three runs. However, the inactivation efficiency of E. coli started to decrease in the 4th Run, while in the 5th run, the E. coli with the initial concentration of 5 logs was inactivated to 3.3 (blue-light) and 3.5 logs (sunlight), respectively. Moreover, the stability and deactivation mechanism of NMS during subsequent runs were also studied. The results showed that the decline of the photocatalytic activity was possibly attributed to adsorption of the bacterial decomposed compounds on the active sites. In addition, photocatalytic bactericidal mechanism of the NMS in the photocatalytic system was investigated by using multiple scavengers to remove the specific reactive species. Moreover, various Gram-positive bacteria including Staphylococcus aureus, Microbacterium barkeri, and Bacillus subtilis could also be efficiently inactivated in the photocatalytic system.

  11. Survival of Pseudomonas aeruginosa exposed to sunlight resembles the phenom of persistence.

    PubMed

    Forte Giacobone, Ana F; Oppezzo, Oscar J

    2015-01-01

    During exposure of Pseudomonas aeruginosa stationary phase cells to natural solar radiation, a reduction in the rate of loss of bacterial viability was observed when survival fractions were lower than 1/10,000. This reduction was independent of the growth medium used and of the initial bacterial concentration, and was also observed when irradiation was performed with artificial UVA radiation (365nm, 47Wm(-2)). These results indicate the presence of a small bacterial subpopulation with increased tolerance to radiation. Such a tolerance is non-heritable, since survival curves comparable to those of the parental strain were obtained from survivors to long-term exposure to radiation. The radiation response described here resembles the phenomenon called persistence, which consists of the presence of a small subpopulation of slow-growing cells which are able to survive antibiotic treatment within a susceptible bacterial population. The condition of persister cells is acquired via a reversible switch and involves active defense systems towards oxidative stress. Persistence is probably responsible for biphasic responses of bacteria to several stress conditions, one of which may be exposure to sunlight. The models currently used to analyze the lethal action of sunlight overestimate the effect of high-dose irradiation. These models could be improved by including the potential formation of persister cells.

  12. Shock Absorbing System

    NASA Astrophysics Data System (ADS)

    1982-01-01

    A lightweight, inexpensive shock-absorbing system, developed by Langley Research Center 20 years ago, is now in service as safety device for an automated railway at Duke University Medical Center. The transportation system travels at about 25 miles per hour, carrying patients, visitors, staff and cargo. At the end of each guideway of the system are "frangible," (breakable) tube "buffers." If a slowing car fails to make a complete stop at the terminal, it would bump and shatter the tubes, absorbing energy that might otherwise jolt the passengers or damage the vehicle.

  13. Enhancing the efficiency of luminescent solar concentrators (LSCs)

    NASA Astrophysics Data System (ADS)

    Assadi, M. Khalaji; Hanaei, H.; Mohamed, Norani Muti; Saidur, R.; Bakhoda, Shokoufeh; Bashiri, Robabeh; Moayedfar, M.

    2016-09-01

    Recent developments in the endeavor to enhance the efficiency of luminescent solar concentrators (LSCs) are presented in this paper along with an analysis of LSC devices. In recent years, several experimental and numerical research works have been carried out to improve the performance of LSCs in different ways. LSCs date back to the 1970s and comprise an extremely interesting notion of solar cells for various reasons. First, LSCs are cost-competitive and function in diffuse light, and as such, it is not necessary to use expensive solar tracking devices. Second, luminescence facilitates the cells to gather only cold light, which results in higher PV efficiency. LSCs generally consist of transparent polymer sheets doped with luminescent species. The luminescent species absorb incident sunlight and emit it with high quantum efficiency, such that the emitted light is trapped in the sheet and travels to the edges where the solar cells can collect it.

  14. Sunlight photolysis of benzotriazoles - Identification of transformation products and pathways.

    PubMed

    Weidauer, Cindy; Davis, Caroline; Raeke, Julia; Seiwert, Bettina; Reemtsma, Thorsten

    2016-07-01

    Benzotriazoles (BTs) are widely used corrosion inhibitors, incompletely removed in municipal wastewater treatment. The photochemical fate of the three BTs 1H-benzotriazole (1H-BT), 4-methyl-1H-benzotriazole (4Me-BT) and 5-methyl-1H-benzotriazole (5Me-BT) and of three microbial metabolites, was studied under simulated sunlight (290-800 nm) at neutral pH in aqueous solution for 24 h. The half-life, the quantum yield and the reaction rate were determined and a total of 36 photolysis products were detected and identified using liquid chromatography-high resolution-mass spectrometry. The half-lives of all six BTs were in the range of 6-24 h under the experimental conditions. Though the quantum yields were comparatively low (0.0007-0.0021), the environmental half-lives ranged from 2.4 to 8 d, suggesting that sunlight photolysis is still a relevant degradation process of BTs in surface waters. The photolysis pathway of 1H-BT under simulated sunlight differed from that suggested for UV-radiation, in that aminophenol is formed directly rather than via aniline. Similar pathways were found for the other BTs, except for 4-hydroxy-1H-benzotriazole (4OH-BT). Most identified transformation products of the BTs showed a high reactivity and appear not to persist in the environment. Upon co-photolysis of BTs with dissolved organic matter (DOM), however, series of reaction products were determined by Fourier transform - ion cyclotron resonance - mass spectrometry (FTICR-MS) which are formed by reaction of photolysis intermediates of the BTs with DOM.

  15. SETI Before Marconi - Sunlight Beacons and the Fermi Paradox

    NASA Astrophysics Data System (ADS)

    Baxter, S.

    The strategies underlying the search for extraterrestrial intelligence are generally predicated on a model of civilisations with telecommunications technology searching for evidence of each other and making contact accordingly. It is argued that there is at least one plausible signalling type detectable to pre-radio civilisations: naked-eye `sunlight beacons'. A motive for attempting such communication could be the remote detection of the injection of greenhouse and other waste gases into a planetary atmosphere as a result of agricultural and early industrial activities. We may have been detectable, and contactable, since the Neolithic. An absence of such contacts is therefore a deepening of the Fermi Paradox.

  16. Production of fullerenes using concentrated solar flux

    DOEpatents

    Fields, Clark L.; Pitts, John Roland; King, David E.; Hale, Mary Jane; Bingham, Carl E.; Lewandowski, Allan A.

    2000-01-01

    A method of producing soot containing high amounts of fullerenes comprising: providing a primary concentrator capable of impingement of a concentrated beam of sunlight onto a carbon source to cause vaporization of carbon and subsequent formation of fullerenes, or providing a solar furnace having a primary concentrator with a focal point that concentrates a solar beam of sunlight; providing a reflective secondary concentrator having an entrance aperture and an exit aperture at the focal point of the solar furnace; providing a carbon source at the exit aperture of the secondary concentrator; supplying an inert gas over the carbon source to keep the secondary concentrator free from vaporized carbon; and impinging a concentrated beam of sunlight from the secondary concentrator on the carbon source to vaporize the carbon source into a soot containing high amounts of fullerenes.

  17. Neutron Absorbing Alloys

    SciTech Connect

    Mizia, Ronald E.; Shaber, Eric L.; DuPont, John N.; Robino, Charles V.; Williams, David B.

    2004-05-04

    The present invention is drawn to new classes of advanced neutron absorbing structural materials for use in spent nuclear fuel applications requiring structural strength, weldability, and long term corrosion resistance. Particularly, an austenitic stainless steel alloy containing gadolinium and less than 5% of a ferrite content is disclosed. Additionally, a nickel-based alloy containing gadolinium and greater than 50% nickel is also disclosed.

  18. Shock Absorbing Helmets

    NASA Technical Reports Server (NTRS)

    1978-01-01

    This paper presents a description of helmets used by football players that offer three times the shock-absorbing capacity of earlier types. An interior padding for the helmets, composed of Temper Foam, first used by NASA's Ames Research Center in the design of aircraft seats is described.

  19. Mixing states of light-absorbing particles measured using a transmission electron microscope and a single-particle soot photometer in Tokyo, Japan

    NASA Astrophysics Data System (ADS)

    Adachi, Kouji; Moteki, Nobuhiro; Kondo, Yutaka; Igarashi, Yasuhito

    2016-08-01

    Light-absorbing atmospheric aerosols such as carbonaceous particles influence the climate through absorbing sunlight. The mixing states of these aerosol particles affect their optical properties. This study examines the changes in the mixing states and abundance of strongly light absorbing carbonaceous particles by using transmission electron microscopy (TEM) and single-particle soot photometer (SP2), as well as of iron oxide particles, in Tokyo, Japan. TEM and SP2 use fundamentally different detection techniques for the same light-absorbing particles. TEM allows characterization of the morphological, chemical, and structural features of individual particles, whereas SP2 optically measures the number, size, and mixing states of black carbon (BC). A comparison of the results obtained using these two techniques indicates that the peaks of high soot (nanosphere soot (ns-soot)) concentration periods agree with those of the BC concentrations determined by SP2 and that the high Fe-bearing particle fraction periods measured by TEM agree with that of high number concentrations of iron oxide particles measured using SP2 during the first half of the observation campaign. The results also show that the changes in the ns-soot/BC mixing states primarily correlate with the air mass sources, wind speed, precipitation, and photochemical processes. Nano-sized, aggregated, iron oxide particles mixed with other particles were commonly observed by using TEM during the high iron oxide particle periods. We conclude that although further quantitative comparison between TEM and SP2 data will be needed, the morphologically and optically defined ns-soot and BC, respectively, are essentially the same substance and that their mixing states are generally consistent across the techniques.

  20. Effect of Sunlight Exposure on Bone Mineral Density in Children with Severe Disability.

    PubMed

    Kanemura, Hideaki; Hatakeyama, Kazuo; Sano, Fumikazu; Yagasaki, Hideaki; Sugita, Kanji; Aihara, Masao

    2016-08-01

    The aim of this study was to determine the efficacy of sunlight exposure for increasing bone mineral density (BMD) in children with severe disability. The subjects were five children with severe disability, aged 6 to 8 years. BMD was measured at baseline and after 3, 6, 9, and 12 months of starting sunlight exposure. All caregivers of patients were instructed to create opportunities to stay outdoors. Daily sunlight exposure time was defined as hours of staying outdoors. Mean hours of sunbathing per day were calculated at baseline and after 3, 6, 9, and 12 months of starting sunlight exposure. Sunlight exposure tended to be longer after starting than before starting in all patients, but the difference was not significant (p = 0.052). Along with the increase in sunlight exposure, BMD increased significantly after the start of sunlight exposure in all patients (p < 0.01). The serum values of total alkaline phosphatase and intact parathyroid hormone were significantly decreased and that of 25-hydroxyvitamin D was significantly increased 12 months after starting sunlight exposure. No patients had bone fractures after the start of sunlight exposure. These results suggest that sunlight exposure increased BMD, and that this may reduce the risk of bone fracture in children with disability.

  1. Can skin exposure to sunlight prevent liver inflammation?

    PubMed

    Gorman, Shelley; Black, Lucinda J; Feelisch, Martin; Hart, Prue H; Weller, Richard

    2015-05-05

    Liver inflammation contributes towards the pathology of non-alcoholic fatty liver disease (NAFLD). Here we discuss how skin exposure to sunlight may suppress liver inflammation and the severity of NAFLD. Following exposure to sunlight-derived ultraviolet radiation (UVR), the skin releases anti-inflammatory mediators such as vitamin D and nitric oxide. Animal modeling studies suggest that exposure to UVR can prevent the development of NAFLD. Association studies also support a negative link between circulating 25-hydroxyvitamin D and NAFLD incidence or severity. Clinical trials are in their infancy and are yet to demonstrate a clear beneficial effect of vitamin D supplementation. There are a number of potentially interdependent mechanisms whereby vitamin D could dampen liver inflammation, by inhibiting hepatocyte apoptosis and liver fibrosis, modulating the gut microbiome and through altered production and transport of bile acids. While there has been a focus on vitamin D, other mediators induced by sun exposure, such as nitric oxide may also play important roles in curtailing liver inflammation.

  2. Use of sunlight to degrade oxytetracycline in marine aquaculture's waters.

    PubMed

    Leal, J F; Esteves, V I; Santos, E B H

    2016-06-01

    Oxytracycline (OTC) is a broad spectrum antibiotic authorized for use in European aquaculture. Its photo-degradation has been widely studied in synthetic aqueous solutions, sometimes resorting to expensive methods and without proven effectiveness in natural waters. Thus, this work studied the possibility to apply the solar photo-degradation for removal of OTC from marine aquaculture's waters. For that, water samples were collected at different locals of the water treatment circuit, from two different aquaculture companies. Water samples were firstly characterized regarding to pH, salinity, total suspended solids (TSS), organic carbon and UV-Vis spectroscopic characteristics. Then, the samples were spiked with OTC and irradiated using simulated sunlight in order to evaluate the matrix effects on OTC photo-degradation. From kinetic results, the apparent quantum yields and the outdoor half-life times, at 40°N for midsummer and midwinter days were estimated by the first time for these conditions. For a midsummer day, at sea level, the outdoor half-life time predicted for OTC in these aquaculture's waters ranged between 21 and 25 min. Additionally, the pH and salinity effects on the OTC photo-degradation were evaluated and it has been shown that high pH values and the presence of sea salt increase the OTC photo-degradation rate in aquaculture's waters, compared to results in deionised water. The results are very promising to apply this low-cost methodology using the natural sunlight in aquaculture's waters to remove OTC.

  3. Identification of toxic products of anthracene photomodification in simulated sunlight.

    PubMed

    Brack, Werner; Altenburger, Rolf; Küster, Eberhard; Meissner, Bettina; Wenzel, Klaus-Dieter; Schüürmann, Gerrit

    2003-10-01

    Currently, the evidence of a rapid photomodification of anthracene under sunlight resulting in enhanced toxicity exists; however, the chemical causes of toxicity are still unknown. The present study aimed at filling this gap by irradiation of an anthracene suspension with simulated sunlight and subsequent effect-directed fractionation and analysis of toxic products with respect to the inhibition of bacterial energy metabolism of Vibrio fischeri, reproduction of the green algae Scenedesmus vacuolatus, and genotoxicity in the umuC test. Algal toxicity of anthracene was hardly modified by irradiation prior to testing and distributed over all fractions with emphasis on the fractions containing anthracene-9,10-dione and a photometabolite suggested to be 10-hydroxyanthrone. Bacterial toxicity and genotoxicity in contrast emerged only when anthracene was irradiated. Anthracene-1,4-dione, a so-far-unknown trace photometabolite, was identified as a very potent toxicant dominating the toxicity of photomodified anthracene to V. fischeri. In genotoxic fractions, 1-hydroxyanthracene-9,10-dione and 1,4-dihydroxyanthracene-9,10-dione were identified and confirmed as genotoxicants. The results stress the potential of effect-directed analysis approaches in contrast to mere chemical analysis in studies aiming at toxicologically relevant photomodified substances.

  4. Genotoxic effects of sunlight-activated waste waters

    SciTech Connect

    Strniste, G.F.; Chen, D.J.; Okinaka, R.T.

    1981-01-01

    Natural sunlight induces a genotoxic response in cultured CHO cells pre-treated with shale oil retort process water. Near ultraviolet light (NUV) component of the solar spectrum is the apparent radiation responsible for photoactivation. Cultured human skin fibroblasts are acutely sensitive to the genotoxic effects of photoactivated process water. The mutagenic potential of photoactivated process water in human cells is the same as that witnessed for an equivalent killing dose of the potent skin carcinogen FUV. DNA repair processes are involved in modulating genotoxic effects of this photo-induced process. The exact magnitude of the potential health-related and environmental risks resulting from photoactivation of retort process waters and other oil shale by-products is unassessed at this time. Our demonstration that a significant rate of mutation occurs in cultured human cells exposed to high dilutions of process waters and fluences of NUV comparable to that encountered during nominal exposure to sunlight suggests that such assessment is a prerequisite to minimal risk development of our oil shale resources.

  5. Tracking booster and multiple mirror concentrator floating collector

    SciTech Connect

    Cluff, C.

    1981-10-27

    A water-borne tracking solar energy collecting and converting system employing booster and multiple mirror concentrator collectors for concentrating sunlight on either photovoltaic cells and/or flat plate collectors.

  6. Mass Spectrometry of Flavonoid Vicenin-2, Based Sunlight Barriers in Lychnophora species

    NASA Astrophysics Data System (ADS)

    Silva, Denise Brentan; Turatti, Izabel Cristina Casanova; Gouveia, Dayana Rubio; Ernst, Madeleine; Teixeira, Simone Pádua; Lopes, Norberto Peporine

    2014-03-01

    Lychnophora salicifolia plants collected from four different places in Brazil (three states: Goias, Minas Gerais and Bahia) revealed a conserved accumulation of vicenin-2, a di-C-glycosyl flavonoid. Quantitative studies by UPLC-MS/MS showed high concentration of vicenin-2 in leaves from sixty specimens of six Lychnophora species. So the tissue distributions of vicenin-2 were evaluated in wild Lychnophora leaves (Asteraceae) by laser based imaging mass spectrometry (IMS) to propose its distributions and possible functions for the species analyzed. Mass spectrometric imaging revealed that vicenin-2, unlike other flavonoids, was produced at the top of the leaves. The combination of localization and UV absorption properties of vicenin-2 suggests that it could act as a UV light barrier to protect the plants, since plants are sessile organisms that have to protect themselves from harsh external conditions such as intense sunlight.

  7. Metasurface Broadband Solar Absorber

    PubMed Central

    Azad, Abul K.; Kort-Kamp, Wilton J. M.; Sykora, Milan; Weisse-Bernstein, Nina R.; Luk, Ting S.; Taylor, Antoinette J.; Dalvit, Diego A. R.; Chen, Hou-Tong

    2016-01-01

    We demonstrate a broadband, polarization independent, wide-angle absorber based on a metallic metasurface architecture, which accomplishes greater than 90% absorptance in the visible and near-infrared range of the solar spectrum, and exhibits low absorptivity (emissivity) at mid- and far-infrared wavelengths. The complex unit cell of the metasurface solar absorber consists of eight pairs of gold nano-resonators that are separated from a gold ground plane by a thin silicon dioxide spacer. Our experimental measurements reveal high-performance absorption over a wide range of incidence angles for both s- and p-polarizations. We also investigate numerically the frequency-dependent field and current distributions to elucidate how the absorption occurs within the metasurface structure. PMID:26828999

  8. Metasurface Broadband Solar Absorber

    DOE PAGES

    Azad, Abul K.; Kort-Kamp, Wilton J. M.; Sykora, Milan; ...

    2016-02-01

    Here, we demonstrate a broadband, polarization independent, wide-angle absorber based on a metallic metasurface architecture, which accomplishes greater than 90% absorptance in the visible and near-infrared range of the solar spectrum, and exhibits low absorptivity (emissivity) at mid- and far-infrared wavelengths. The complex unit cell of the metasurface solar absorber consists of eight pairs of gold nano-resonators that are separated from a gold ground plane by a thin silicon dioxide spacer. Moreover, our experimental measurements reveal high-performance absorption over a wide range of incidence angles for both s- and p-polarizations. We also investigate numerically the frequency-dependent field and current distributionsmore » to elucidate how the absorption occurs within the metasurface structure.« less

  9. Metasurface Broadband Solar Absorber

    SciTech Connect

    Azad, Abul K.; Kort-Kamp, Wilton J. M.; Sykora, Milan; Weisse-Bernstein, Nina R.; Luk, Ting S.; Taylor, Antoinette J.; Dalvit, Diego A. R.; Chen, Hou-Tong

    2016-02-01

    Here, we demonstrate a broadband, polarization independent, wide-angle absorber based on a metallic metasurface architecture, which accomplishes greater than 90% absorptance in the visible and near-infrared range of the solar spectrum, and exhibits low absorptivity (emissivity) at mid- and far-infrared wavelengths. The complex unit cell of the metasurface solar absorber consists of eight pairs of gold nano-resonators that are separated from a gold ground plane by a thin silicon dioxide spacer. Moreover, our experimental measurements reveal high-performance absorption over a wide range of incidence angles for both s- and p-polarizations. We also investigate numerically the frequency-dependent field and current distributions to elucidate how the absorption occurs within the metasurface structure.

  10. Torus elements used in effective shock absorber

    NASA Technical Reports Server (NTRS)

    Cunningham, P.; Platus, D. L.

    1966-01-01

    Energy absorbing device forces torus elements to revolve annularly between two concentric tubes when a load is applied to one tube. Interference forces can be varied by using torus elements of different thicknesses. The device operates repeatedly in compression or tension, and under problems of large onset rate tolerance or structural overload.

  11. Ionized Absorbers in AGN

    NASA Technical Reports Server (NTRS)

    Mathur, S.

    1999-01-01

    As a part of this program, we observed three AGN:PKS2251 + 113, PG0043 = 039 and PLH909. Two objects show signatures of absorbtion in their UV spectra. Based on our earlier modeling of X-ray warm absorbents, we expected to observe X-ray observation in these objects. The third, PLH909, is known to have soft excess in EINSTEIN data. Attachment: "Exploratory ASCA observation of broad absorption line quasi-stellar objects".

  12. Apollo couch energy absorbers

    NASA Technical Reports Server (NTRS)

    Wesselski, C. J.; Drexel, R. E.

    1972-01-01

    Load attenuators for the Apollo spacecraft crew couch and its potential applications are described. Energy absorption is achieved through friction and cyclic deformation of material. In one concept, energy absorption is accomplished by rolling a compressed ring of metal between two surfaces. In another concept, energy is absorbed by forcing a plastically deformed washer along a rod. Among the design problems that had to be solved were material selection, fatigue life, ring slippage, lubrication, and friction loading.

  13. Sunlight mediated inactivation mechanisms of Enterococcus faecalis and Escherichia coli in clear water versus waste stabilization pond water.

    PubMed

    Kadir, Khalid; Nelson, Kara L

    2014-03-01

    Escherichia coli and enterococci have been previously reported to differ in the mechanisms and conditions that affect their sunlight-mediated inactivation in waste stabilization ponds. This study was undertaken to further characterize these mechanisms, using simulated sunlight and single strains of laboratory-grown E. coli and Enterococcus faecalis, with a focus on characterizing the contribution of exogenous reactive oxygen species to the inactivation process. We found that direct damage by UVB light (280-320 nm) was not a significant inactivation mechanism for either organism. E. coli inactivation was strongly dependent on dissolved oxygen concentrations and the presence of UVB wavelengths but E. coli were not susceptible to inactivation by exogenous sensitizers present in waste stabilization pond water. In contrast, E. faecalis inactivation in pond water occurred primarily through exogenous mechanisms, with strong evidence that singlet oxygen is an important transient reactive species. The exogenous mechanism could utilize wavelengths into the visible spectrum and sensitizers were mainly colloidal, distributed between 0.2 and ∼1 μm in size. Singlet oxygen is likely an important endogenous species in both E. faecalis and E. coli inactivation due to sunlight. Although the two organisms had similar inactivation rates in buffered, clear water, the inactivation rate of E. faecalis was 7 times greater than that of E. coli in air-saturated pond water at circumneutral pH due to its susceptibility to exogenous sensitizers and longer wavelengths.

  14. Efficient removal of Cr(VI) from wastewater under sunlight by Fe(II)-doped TiO₂ spherical shell.

    PubMed

    Xu, S C; Pan, S S; Xu, Y; Luo, Y Y; Zhang, Y X; Li, G H

    2015-01-01

    Fe(II)-doped TiO2 spherical shell catalyst was synthesized by one-pot hydrothermal method. The photocatalytic removal of Cr(VI) from plating wastewater under sunlight of the catalyst was demonstrated. It was found that the removal effectiveness of about 99.99% for initial Cr(VI) concentration of 102.3 ppm and 99.01% for 153.4 ppm under 3h sunlight irradiation is realized. The Fe(II) ions serve not only as reducing agents for reducing the Cr(VI) to Cr(III) but also as an intermedium of a two-step reduction, in which the TiO2 photoreduces the Fe(II) ions to Fe atoms firstly, and then the Fe atoms reduce the Cr(VI) to Cr(III). The improved photocatalytic activity of the catalyst is considered due to the synergistic effect of a multi reducing process by Fe(II) doping. The extended optical response and effectively utilization of sunlight of the special spherical-shell-like morphology also contribute to the enhanced photocatalytic activity.

  15. Sunlight inactivation of fecal indicator bacteria in open-water unit process treatment wetlands: Modeling endogenous and exogenous inactivation rates.

    PubMed

    Nguyen, Mi T; Jasper, Justin T; Boehm, Alexandria B; Nelson, Kara L

    2015-10-15

    A pilot-scale open-water unit process wetland was monitored for one year and found to be effective in enhancing sunlight inactivation of fecal indicator bacteria (FIB). The removal of Escherichia coli and enterococci in the open-water wetland receiving non-disinfected secondary municipal wastewater reached 3 logs and 2 logs in summer time, respectively. Pigmented enterococci were shown to be significantly more resistant to sunlight inactivation than non-pigmented enterococci. A model was developed to predict the inactivation of E. coli, and pigmented and non-pigmented enterococci that accounts for endogenous and exogenous sunlight inactivation mechanisms and dark processes. Endogenous inactivation rates were modeled using the sum of UVA and UVB irradiance. Exogenous inactivation was only significant for enterococci, and was modeled as a function of steady-state singlet oxygen concentration. The rate constants were determined from lab experiments and an empirical correction factor was used to account for differences between lab and field conditions. The model was used to predict removal rate constants for FIB in the pilot-scale wetland; considering the variability of the monitoring data, there was general agreement between the modeled values and those determined from measurements. Using the model, we estimate that open-water wetlands at 40° latitude with practical sizes can achieve 3-log (99.9%) removal of E. coli and non-pigmented enterococci throughout the year [5.5 ha and 7.0 ha per million gallons of wastewater effluent per day (MGD), respectively]. Differences in sunlight inactivation rates observed between pigmented and non-pigmented enterococci, as well as between lab-cultured and indigenous wastewater bacteria highlight the challenges of using FIB as model organisms for actual pathogens in natural sunlit environments.

  16. Biological Effects of Sunlight, Ultraviolet Radiation, Visible Light, Infrared Radiation and Vitamin D for Health.

    PubMed

    Holick, Michael F

    2016-03-01

    Humans evolved in sunlight and had depended on sunlight for its life giving properties that was appreciated by our early ancestors. However, for more than 40 years the lay press and various medical and dermatology associations have denounced sun exposure because of its association with increased risk for skin cancer. The goal of this review is to put into perspective the many health benefits that have been associated with exposure to sunlight, ultraviolet A (UVA) ultraviolet B (UVB), visible and infrared radiation.

  17. UVC upconversion material under sunlight excitation: LiYF(4): Pr(3+).

    PubMed

    Wu, Jianhong; Zheng, Haolin; Liu, Xinghua; Han, Boning; Wei, Jun; Yang, Yanmin

    2016-02-15

    UVC upconversion emission is observed in a LiYF4:Pr3+ microcrystal under sunlight excitation. The dependence of UVC UC emission intensity on the excitation density of a 488 nm laser and sunlight is investigated. The obtained data indicates that two-photon processes play an important role in UVC UC emission. The UVC UC mechanisms of Pr3+ under the excitation of a laser and sunlight are presented and discussed. The UVC emission under sunlight excitation has broad prospects for application.

  18. Sunlight exclusion from Muscat grape alters volatile profiles during berry development.

    PubMed

    Zhang, Haohao; Fan, Peige; Liu, Cuixia; Wu, Benhong; Li, Shaohua; Liang, Zhenchang

    2014-12-01

    The effects of sunlight exclusion on the volatile profiles of grapes during different stages of berry development were investigated by placing clusters of grapes in special boxes. Terpenes and aldehydes were the main volatile compounds in the ripe 'Jingxiangyu' berries. Sunlight exclusion was found to change volatile profiles at any stage. Sunlight exclusion from berries significantly inhibited the synthesis and accumulation of terpenes, which contribute to the characteristic aroma of Muscat grapes. However, sunlight exclusion during berry formation and veraison promoted the accumulation of aldehydes, alcohols, and ketones during the ripening stage. These results may provide important information regarding the metabolism of volatile compounds in grapes.

  19. Sustainable sunlight to biogas is via marginal organics.

    PubMed

    Shilton, Andy; Guieysse, Benoit

    2010-06-01

    Although biogas production from algae offers higher sunlight to biomass energy conversion efficiencies its production costs simply cannot compete with terrestrial plants. Unfortunately terrestrial plant cropping for biogas production is, in its own right, neither particularly sustainable nor profitable and its ongoing application is only driven by energy security concerns resulting in taxpayer subsidies. By comparison, scavenging the organic energy residual/wastes from food production offers a far more profitable and sustainable proposition and has an energy potential that dwarfs anything biogas production from dedicated energy crops can realistically offer. Thus researchers wanting to assist the development of sustainable biogas systems with viable process economics should forget about terrestrial and algal energy cropping and focus on the realm of scavengers.

  20. Asteroid thermal modeling in the presence of reflected sunlight

    NASA Astrophysics Data System (ADS)

    Myhrvold, Nathan

    2016-10-01

    This study addresses thermal modeling of asteroids with a new derivation of the Near Earth Asteroid Thermal (NEATM) model which correctly accounts for the presence of reflected sunlight in short wave IR bands. Kirchhoff's law of thermal radiation applies to this case and has important implications. New insight is provided into the ???? parameter in the NEATM model and it is extended to thermal models besides NEATM. The role of surface material properties on ???? is examined using laboratory spectra of meteorites and other asteroid compositional proxies; the common assumption that emissivity ????=0.9 in asteroid thermal models may not be justified and can lead to misestimating physical parameters. In addition, indeterminacy in thermal modeling can limit its ability to uniquely determine temperature and other physical properties. A new curve-fitting approach allows thermal modeling to be done independently of visible-band observational parameters, such as the absolute magnitude ????.

  1. Absorber for terahertz radiation management

    SciTech Connect

    Biallas, George Herman; Apeldoorn, Cornelis; Williams, Gwyn P.; Benson, Stephen V.; Shinn, Michelle D.; Heckman, John D.

    2015-12-08

    A method and apparatus for minimizing the degradation of power in a free electron laser (FEL) generating terahertz (THz) radiation. The method includes inserting an absorber ring in the FEL beam path for absorbing any irregular THz radiation and thus minimizes the degradation of downstream optics and the resulting degradation of the FEL output power. The absorber ring includes an upstream side, a downstream side, and a plurality of wedges spaced radially around the absorber ring. The wedges form a scallop-like feature on the innermost edges of the absorber ring that acts as an apodizer, stopping diffractive focusing of the THz radiation that is not intercepted by the absorber. Spacing between the scallop-like features and the shape of the features approximates the Bartlett apodization function. The absorber ring provides a smooth intensity distribution, rather than one that is peaked on-center, thereby eliminating minor distortion downstream of the absorber.

  2. Persistence of Bacteroides ovatus under simulated sunlight irradiation

    PubMed Central

    2014-01-01

    Background Bacteroides ovatus, a member of the genus Bacteroides, is considered for use in molecular-based methods as a general fecal indicator. However, knowledge on its fate and persistence after a fecal contamination event remains limited. In this study, the persistence of B. ovatus was evaluated under simulated sunlight exposure and in conditions similar to freshwater and seawater. By combining propidium monoazide (PMA) treatment and quantitative polymerase chain reaction (qPCR) detection, the decay rates of B. ovatus were determined in the presence and absence of exogenous photosensitizers and in salinity up to 39.5 parts per thousand at 27°C. Results UVB was found to be important for B. ovatus decay, averaging a 4 log10 of decay over 6 h of exposure without the presence of extracellular photosensitizers. The addition of NaNO2, an exogenous sensitizer producing hydroxyl radicals, did not significantly change the decay rate of B. ovatus in both low and high salinity water, while the exogenous sensitizer algae organic matter (AOM) slowed down the decay of B. ovatus in low salinity water. At seawater salinity, the decay rate of B. ovatus was slower than that in low salinity water, except when both NaNO2 and AOM were present. Conclusion The results of laboratory experiments suggest that if B. ovatus is released into either freshwater or seawater environment in the evening, 50% of it may be intact by the next morning; if it is released at noon, only 50% may be intact after a mere 5 min of full spectrum irradiation on a clear day. This study provides a mechanistic understanding to some of the important environmental relevant factors that influenced the inactivation kinetics of B. ovatus in the presence of sunlight irradiation, and would facilitate the use of B. ovatus to indicate the occurrence of fecal contamination. PMID:24993443

  3. Corrosion resistant neutron absorbing coatings

    DOEpatents

    Choi, Jor-Shan [El Cerrito, CA; Farmer, Joseph C [Tracy, CA; Lee, Chuck K [Hayward, CA; Walker, Jeffrey [Gaithersburg, MD; Russell, Paige [Las Vegas, NV; Kirkwood, Jon [Saint Leonard, MD; Yang, Nancy [Lafayette, CA; Champagne, Victor [Oxford, PA

    2012-05-29

    A method of forming a corrosion resistant neutron absorbing coating comprising the steps of spray or deposition or sputtering or welding processing to form a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material. Also a corrosion resistant neutron absorbing coating comprising a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material.

  4. Corrosion resistant neutron absorbing coatings

    DOEpatents

    Choi, Jor-Shan; Farmer, Joseph C; Lee, Chuck K; Walker, Jeffrey; Russell, Paige; Kirkwood, Jon; Yang, Nancy; Champagne, Victor

    2013-11-12

    A method of forming a corrosion resistant neutron absorbing coating comprising the steps of spray or deposition or sputtering or welding processing to form a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material. Also a corrosion resistant neutron absorbing coating comprising a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material.

  5. Sunlight Inactivation of Fecal Bacteriophages and Bacteria in Sewage-Polluted Seawater

    PubMed Central

    Sinton, Lester W.; Finlay, Rochelle K.; Lynch, Philippa A.

    1999-01-01

    Sunlight inactivation rates of somatic coliphages, F-specific RNA bacteriophages (F-RNA phages), and fecal coliforms were compared in seven summer and three winter survival experiments. Experiments were conducted outdoors, using 300-liter 2% (vol/vol) sewage-seawater mixtures held in open-top chambers. Dark inactivation rates (kDs), measured from exponential survival curves in enclosed (control) chambers, were higher in summer (temperature range: 14 to 20°C) than in winter (temperature range: 8 to 10°C). Winter kDs were highest for fecal coliforms and lowest for F-RNA phages but were the same or similar for all three indicators in summer. Sunlight inactivation rates (kS), as a function of cumulative global solar radiation (insolation), were all higher than the kDs with a consistent kS ranking (from greatest to least) as follows: fecal coliforms, F-RNA phages, and somatic coliphages. Phage inactivation was exponential, but bacterial curves typically exhibited a shoulder. Phages from raw sewage exhibited kSs similar to those from waste stabilization pond effluent, but raw sewage fecal coliforms were inactivated faster than pond effluent fecal coliforms. In an experiment which included F-DNA phages and Bacteroides fragilis phages, the kS ranking (from greatest to least) was as follows: fecal coliforms, F-RNA phages, B. fragilis phages, F-DNA phages, and somatic coliphages. In a 2-day experiment which included enterococci, the initial concentration ranking (from greatest to least: fecal coliforms, enterococci, F-RNA phages, and somatic coliphages) was reversed during sunlight exposure, with only the phages remaining detectable by the end of day 2. Inactivation rates under different optical filters decreased with the increase in spectral cutoff wavelength (50% light transmission) and indicated that F-RNA phages and fecal coliforms are more susceptible than somatic coliphages to longer solar wavelengths, which predominate in seawater. The consistently superior survival

  6. Sunlight inactivation of somatic coliphage in the presence of natural organic matter.

    PubMed

    Sun, Chen-Xi; Kitajima, Masaaki; Gin, Karina Yew-Hoong

    2016-01-15

    Long wavelengths of sunlight spectrum (UVA and visible light), as well as natural organic matter (NOM) are important environmental factors affecting survival of viruses in aquatic environment through direct and indirect inactivation. In order to understand the virus inactivation kinetics under such conditions, this study investigated the effects of Suwannee River natural organic matter (NOM) on the inactivation of a somatic coliphage, phiX174, by UVA and visible light. Experiments were carried out to examine the virucidal effects of UVA/visible light, assess the influence of SRNOM at different concentrations, and identify the effective ROS in virus inactivation. The results from this study showed that the presence of NOM could either enhance virus inactivation or reduce virus inactivation depending on the concentration, where the inactivation rate followed a parabolic relationship against NOM concentration. The results indicated that moderate levels of NOM (11 ppm) had the strongest antiviral activity, while very low or very high NOM concentrations prolonged virus survival. The results also showed that OH▪ was the primary ROS in causing phiX174 (ssDNA virus) inactivation, unlike previous findings where (1)O2 was the primary ROS causing MS2 (ssRNA virus) inactivation. The phiX174 inactivation by OH∙ could be described as k=3.7 ✕ 10(13)[OH∙]+1.404 (R(2)=0.8527).

  7. Degradation of triclosan in the presence of p-aminobenzoic acid under simulated sunlight irradiation.

    PubMed

    Zhai, Pingping; Chen, Xuan; Dong, Wenbo; Li, Hongjing; Chovelon, Jean-Marc

    2017-01-01

    This study aimed to investigate the degradation of triclosan (TCS) in the presence of p-aminobenzoic acid (PABA) under simulated sunlight irradiation (λ ≥ 290 nm). The effect of PABA concentration, pH, dissolved organic matter (DOM), and DOM-hydrolytic Fe(III) species complexes on the photodegradation of TCS in the presence of PABA (TCS-PABA) was also studied. The photolysis of TCS-PABA obeyed pseudo-first-order kinetics well, and the degradation of TCS-PABA enhanced with increasing solution pH (from 3.0 to 11.0). The presence of PABA inhibited the degradation of TCS-PABA, and the weakest inhibitory effect was observed while the concentration of PABA was 5 mg L(-1). The addition of DOM (Suwannee River fulvic acid standard I [SRFA], Suwannee River HA standard II [SRHA], and Suwannee River natural organic matter [SRNOM]) showed different inhibition effects on TCS-PABA degradation. However, higher Fe(III) concentration at the DOM concentration of 5 mg L(-1) could favor the formation of DOM-hydrolytic Fe(III) species complexes, further accelerating the degradation of TCS-PABA. In comparison with deionized water (DI water), TCS-PABA could be better photodegraded in river water nearby the effluent of a wastewater treatment plant. This study provides useful information for understanding the natural behavior of TCS in the presence of other organic contaminants.

  8. Solar radiation absorbing material

    DOEpatents

    Googin, John M.; Schmitt, Charles R.; Schreyer, James M.; Whitehead, Harlan D.

    1977-01-01

    Solar energy absorbing means in solar collectors are provided by a solar selective carbon surface. A solar selective carbon surface is a microporous carbon surface having pores within the range of 0.2 to 2 micrometers. Such a surface is provided in a microporous carbon article by controlling the pore size. A thermally conductive substrate is provided with a solar selective surface by adhering an array of carbon particles in a suitable binder to the substrate, a majority of said particles having diameters within the range of about 0.2-10 microns.

  9. Optical analysis of solar energy tubular absorbers.

    PubMed

    Saltiel, C; Sokolov, M

    1982-11-15

    The energy absorbed by a solar energy tubular receiver element for a single incident ray is derived. Two types of receiver elements were analyzed: (1) an inner tube with an absorbing coating surrounded by a semitransparent cover tube, and (2) a semitransparent inner tube filled with an absorbing fluid surrounded by a semitransparent cover tube. The formation of ray cascades in the semitransparent tubes is considered. A numerical simulation to investigate the influence of the angle of incidence, sizing, thickness, and coefficient of extinction of the tubes was performed. A comparison was made between receiver elements with and without cover tubes. Ray tracing analyses in which rays were followed within the tubular receiver element as well as throughout the rest of the collector were performed for parabolic and circular trough concentrating collectors.

  10. How to protect the Earth from Global warming by means of Sunlight Shield Equipments

    NASA Astrophysics Data System (ADS)

    Murakami, H.

    2010-09-01

    The Earth is getting warmer because excess carbon dioxide of the Earth's atmosphere. Many studies are proceeding in the world in order to prevent global warming. Three methods are studied: (1) How to reduce carbon dioxide of the Earth's atmosphere. For example, more trees will be planted and carbon dioxide is changed to oxygen and carbon. (2) How to reduce carbon dioxide emission that human activity makes. (3) How to protect the Earth from global warming. The first or the second method has been studied, and they do not immediately protect the Earth from global warming. On the other hand the third method has an immediate effect. Sunlight shield effects of a cloud or tiny sulfur in the air have been studied. The author has proposed a sunlight shield equipment which is composed of a flat balloon. Balloon's surface has a mirror function. The sunlight shield equipment is set at the stratosphere and its surface reflects sunlight to the space. It is different temperature between daytime and night time, because the earth is heated by the sun during only daytime. Temperature of the Earth could be controlled by controlling an amount of a sunlight power which the earth receives from the sun. In other word, when many sunlight shield equipments are set and operated at the stratosphere, and an amount of sunlight, which the earth receives from the sun, could be controlled. For example, when an amount of the sunlight power, which the earth receives, decreases one percent, a mean value of the earth temperature deceases about one centigrade. In order to decrease one percent of a sunlight power which the earth receives, it is required that many sunlight shield equipments are distributively set and operated, and the gross area of many sunlight shield equipments is equal to 5,060,000 km squares. When a size of a sunlight shield equipment is equal to 5 km squares, about one million of sunlight shield equipments are necessary, and a large scale of cost is required. Therefore, an

  11. Effect of artificial sunlight on the retention of external calcein marks on lake trout

    USGS Publications Warehouse

    Honeyfield, D.C.; Kehler, T.; Fletcher, J.W.; Mohler, J.W.

    2008-01-01

    When choosing a fish marking technique to address fishery related questions, it is important to consider factors that affect mark retention. Calcein, a chemical marking agent, is under investigation for potential use on fish. Two laboratory trials were conducted with calcein-marked lake trout Salvelinus namaycush to determine the effect of artificial sunlight on calcein mark intensity. In trial 1, fish exposed to 18,000 lx for 7 d lost 90% or more of the calcein mark intensity (relative to the colorimetric key, mg/L) on the head, body, ventral region, and pectoral fins relative to mark intensity in fish that were maintained in darkness. In trial 2, light intensity was reduced 2.5-3.0-fold. After 7 d of light exposure, calcein mark intensity on the head was reduced by 40-45% relative to mark intensity in fish that were held in darkness; by day 14, calcein mark intensity on the head was reduced by 55-60% relative to that of dark-treated fish. No further decline was observed in light-exposed fish, and head mark intensity values did not differ among days 14, 21, and 28 for this treatment group. Of the four areas evaluated, the head and pectoral fin were more easily read using a colorimetric key than the lateral or ventral regions of the fish. The concentration of calcein spotted on filter paper to devise the colorimetric key ranged from 1 to 100 mg/L. A difference of approximately 7 mg/L in apparent calcein mark intensity means for the head region could be detected using the colorimetric key. These trials showed that calcein mark intensity on lake trout declined when fish were exposed to artificial sunlight, and the use of a colorimetric key improved the objectivity of calcein mark intensity assessment.

  12. Water absorbency by wool fibers: Hofmeister effect.

    PubMed

    Lo Nostro, Pierandrea; Fratoni, Laura; Ninham, Barry W; Baglioni, Piero

    2002-01-01

    Wool is a complex material, composed of cuticle and epicuticle cells, surrounded by a cell membrane complex. Wool fibers absorb moisture from air, and, once immersed in water, they take up considerable amounts of liquid. The water absorbency parameter can be determined from weight gain, according to a standard method, and used to quantify this phenomenon. In this paper we report a study on the water absorbency (or retention) of untreated wool fibers in the presence of aqueous 1 M salt solutions at 29 degrees C and a relative humidity of either 33% or 56%. The effect of anions was determined by selecting a wide range of different sodium salts, while the effect of cations was checked through some chlorides and nitrates. Our results show a significant specific ion and ion pair "Hofmeister" effects, that change the amount of water absorbed by the fibers. To understand this phenomenon, the water absorbency parameter (A(w)) is compared to different physicochemical parameters such as the lyotropic number, free energy of hydration of ions, molar surface tension increment, polarizability, refractive index increment, and molar refractivity. The data indicate that this Hofmeister phenomenon is controlled by dispersion forces that depend on the polarizability of ionic species, their adsorption frequencies, the solvent, and the substrate. These dispersion forces dominate the behavior in concentrated solutions. They are in accord with new developing theories of solutions and molecular interactions in colloidal systems that account for Hofmeister effects.

  13. Oxygen absorbers in food preservation: a review.

    PubMed

    Cichello, Simon Angelo

    2015-04-01

    The preservation of packaged food against oxidative degradation is essential to establish and improve food shelf life, customer acceptability, and increase food security. Oxygen absorbers have an important role in the removal of dissolved oxygen, preserving the colour, texture and aroma of different food products, and importantly inhibition of food spoilage microbes. Active packaging technology in food preservation has improved over decades mostly due to the sealing of foods in oxygen impermeable package material and the quality of oxygen absorber. Ferrous iron oxides are the most reliable and commonly used oxygen absorbers within the food industry. Oxygen absorbers have been transformed from sachets of dried iron-powder to simple self-adhesive patches to accommodate any custom size, capacity and application. Oxygen concentration can be effectively lowered to 100 ppm, with applications spanning a wide range of food products and beverages across the world (i.e. bread, meat, fish, fruit, and cheese). Newer molecules that preserve packaged food materials from all forms of degradation are being developed, however oxygen absorbers remain a staple product for the preservation of food and pharmaceutical products to reduce food wastage in developed nations and increased food security in the developing & third world.

  14. Simultaneous retrieval of greenhouse gas concentrations and atmospheric scattering properties: first application to GOSAT observations

    NASA Astrophysics Data System (ADS)

    Butz, André; Hasekamp, Otto P.; Frankenberg, Christian; Aben, Ilse

    2010-05-01

    The Netherlands Institute for Space Research (SRON) has developed a method for the simultaneous retrieval of greenhouse gas concentrations and atmospheric scattering properties from space-based measurements of backscattered shortwave-infrared (SWIR) sunlight [Butz et al., 2009]. The method is dedicated to current and future satellite missions such as the Japanese Greenhouse gases Observing SATellite (GOSAT) and the American Orbiting Carbon Observatory (OCO). Observations by GOSAT orbiting the Earth since January 2009 provide a promising first application for our approach. Here, we present preliminary retrieval exercises and first results for deducing the atmospheric CO2 concentration from GOSAT's spectra in the SWIR spectral range. The SRON-approach is based on a vector radiative transfer model (RTM) that models the backscattered sunlight in a plane parallel, multi-layered, inhomogeneous atmosphere. The RTM takes into account absorption and scattering by molecules as well as particles such as aerosols and cirrus clouds. Thereby, the RTM is capable of treating multiple scattering and polarization effects at the expense of high computational cost. We consider scattering properties of the atmosphere through 3 effective parameters that account for the amount, the size, and the height distribution of scatterers. Retrieval simulations have shown, that GOSAT's observations in the O2 A-band, in the weakly absorbing CO2 bands around 1.6 micron, and in the strongly absorbing CO2 bands around 2.06 micron contain enough information to simultaneously retrieve these 3 scattering parameters and the column-average CO2 concentration. Retrieval performance for a synthetic ensemble of aerosol and cirrus contaminated scenes is convincing since our method reduces the aerosol and cirrus induced retrieval errors for CO2 to mostly below 1% up to scattering optical thickness 0.5. We further demonstrated that the strongly absorbing CO2 band around 2.06 micron alone might carry sufficient

  15. Liquid Cryogen Absorber for MICE

    SciTech Connect

    Baynham, D.E.; Bish, P.; Bradshaw, T.W.; Cummings, M.A.; Green,M.A.; Ishimoto, S.; Ivaniouchenkov, I.; Lau, W.; Yang, S.Q.; Zisman, M.S.

    2005-08-20

    The Muon Ionization Cooling Experiment (MICE) will test ionization cooling of muons. In order to have effective ionization cooling, one must use an absorber that is made from a low-z material. The most effective low z materials for ionization cooling are hydrogen, helium, lithium hydride, lithium and beryllium, in that order. In order to measure the effect of material on cooling, several absorber materials must be used. This report describes a liquid-hydrogen absorber that is within a pair of superconducting focusing solenoids. The absorber must also be suitable for use with liquid helium. The following absorber components are discussed in this report; the absorber body, its heat exchanger, the hydrogen system, and the hydrogen safety. Absorber cooling and the thin windows are not discussed here.

  16. Sunlight and health: attitudes of older people living in intermediate care facilities in southern Australia.

    PubMed

    Durvasula, Seeta; Kok, Cindy; Sambrook, Philip N; Cumming, Robert G; Lord, Stephen R; March, Lynette M; Mason, Rebecca S; Seibel, Markus J; Simpson, Judy M; Cameron, Ian D

    2010-01-01

    Older people have a high prevalence of falls and fractures, partly due to vitamin D deficiency. Sunlight is a major source of vitamin D, but many older people living in intermediate care facilities have inadequate sunlight exposure. The aim of this study was to determine the sun exposure practices and attitudes to sunlight in this population. Fifty-seven older residents of intermediate care facilities in Sydney, Australia were interviewed to determine their sun exposure practices, their views on sunlight and health and whether these have changed over their lives, factors affecting sunlight exposure and their knowledge of vitamin D. Sixty percent of the participants preferred to be outdoors, despite more than 92% believing that sunlight was healthy. In their youth however, almost 90% had preferred to be outdoors. Poor health, physical constraints and a sense of lack of ownership of outdoor spaces were barriers to sunlight exposure. Improved physical access, more outdoor leisure activities and promotion of greater autonomy may improve safe and appropriate sunlight exposure in this population.

  17. Analyses and experiments of background sunlight's effects on laser detection system

    NASA Astrophysics Data System (ADS)

    Guo, Hao; Yin, Rui-guang; Ma, Na; Liang, Wei-wei; Li, Bo

    2015-10-01

    Background sunlight effect the technical performance of laser detection system significantly. Analyses and experiments were done to find the degree and regularity of effects of background sunlight on laser detection system. At first, we established the theoretical model of laser detection probability curve. We emulated and analysed the effects on probability curve under different sunlight intensity by the model. Moreover, we got the variation regularity of parameter in probability curve. Secondly, we proposed a prediction method of probability curve, which deduced the detecting parameter from measured data. The method can not only get the probability curve in arbitrary background sunlight by a measured probability curve in typical background sunlight, but also calculate the sensitivity of laser detection systems by probability curve at the specified probability. Thirdly, we measured the probability curves under three types of background sunlight. The illumination conditions in experiments included fine, overcast and night. These three curves can be used as reference to deduce other curves. Using model, method, and measured data mentioned above, we finally finished the analyses and appraisal of the effects of background sunlight on typical laser detection system. The research findings can provide the theoretical reference and technical support for adaptability evaluation of typical laser detection systems in different background sunlight.

  18. Investigation of sunlight-induced deterioration of aroma of pummelo (Citrus maxima) essential oil.

    PubMed

    Sun, Hao; Ni, Hui; Yang, Yuanfan; Wu, Ling; Cai, Hui-nong; Xiao, An-feng; Chen, Feng

    2014-12-10

    Deterioration of aromas of pummelo essential oil (EO) induced by sunlight was compared to those induced by heat and oxygen exposure using the techniques of sensory evaluation and GC-MS analysis. The sunlight-exposed EO was found to possess an oily off-flavor odor, which was significantly different from its counterparts induced by oxygen and heat. The strong oily note of the sunlight-exposed EO was attributed to the existence of linalool oxides and limonene oxides, as well as the lack of neral and geranial, for which UV sunlight was revealed to be the critical contributor causing the chemical reactions for the aroma changes. The results demonstrated that UV sunlight could significantly affect the aroma of the pummelo EO, providing valuable information that will benefit the production and storage of EO-based aromatic products.

  19. Ferroelectrics based absorbing layers

    NASA Astrophysics Data System (ADS)

    Hao, Jianping; Sadaune, Véronique; Burgnies, Ludovic; Lippens, Didier

    2014-07-01

    We show that ferroelectrics-based periodic structure made of BaSrTiO3 (BST) cubes, arrayed onto a metal plate with a thin dielectric spacer film exhibit a dramatic enhancement of absorbance with value close to unity. The enhancement is found around the Mie magnetic resonance of the Ferroelectrics cubes with the backside metal layer stopping any transmitted waves. It also involves quasi-perfect impedance matching resulting in reflection suppression via simultaneous magnetic and electrical activities. In addition, it was shown numerically the existence of a periodicity optimum, which is explained from surface waves analysis along with trade-off between the resonance damping and the intrinsic loss of ferroelectrics cubes. An experimental verification in a hollow waveguide configuration with a good comparison with full-wave numerical modelling is at last reported by measuring the scattering parameters of single and dual BST cubes schemes pointing out coupling effects for densely packed structures.

  20. Dual broadband metamaterial absorber.

    PubMed

    Kim, Young Ju; Yoo, Young Joon; Kim, Ki Won; Rhee, Joo Yull; Kim, Yong Hwan; Lee, YoungPak

    2015-02-23

    We propose polarization-independent and dual-broadband metamaterial absorbers at microwave frequencies. This is a periodic meta-atom array consisting of metal-dielectric-multilayer truncated cones. We demonstrate not only one broadband absorption from the fundamental magnetic resonances but additional broadband absorption in high-frequency range using the third-harmonic resonance, by both simulation and experiment. In simulation, the absorption was over 90% in 3.93-6.05 GHz, and 11.64-14.55 GHz. The corresponding experimental absorption bands over 90% were 3.88-6.08 GHz, 9.95-10.46 GHz and 11.86-13.84 GHz, respectively. The origin of absorption bands was elucidated. Furthermore, it is independent of polarization angle owing to the multilayered circular structures. The design is scalable to smaller size for the infrared and the visible ranges.

  1. THz-metamaterial absorbers

    NASA Astrophysics Data System (ADS)

    Tuong Pham, Van; Park, J. W.; Vu, Dinh Lam; Zheng, H. Y.; Rhee, J. Y.; Kim, K. W.; Lee, Y. P.

    2013-03-01

    An ultrabroad-band metamaterial absorber was investigated in mid-IR regime based on a similar model in previous work. The high absorption of metamaterial was obtained in a band of 8-11.7 THz with energy loss distributed in SiO2, which is appropriate potentially for solar-cell applications. A perfect absorption peak was provided by using a sandwich structure with periodical anti-dot pattern in the IR region, getting closed to visible-band metamaterials. The dimensional parameters were examined for the corresponding fabrication. Invited talk at the 6th International Workshop on Advanced Materials Science and Nanotechnology, 30 October-2 November, 2012, Ha Long, Vietnam.

  2. Photolysis studies of technical decabromodiphenyl ether (DecaBDE) and ethane (DeBDethane) in plastics under natural sunlight.

    PubMed

    Kajiwara, Natsuko; Noma, Yukio; Takigami, Hidetaka

    2008-06-15

    Photodebromination of technical decabromodiphenyl ether (DecaBDE) incorporated into high-impact polystyrene (HIPS) and TV casings was compared under natural sunlight conditions with that of technical decabromodiphenyl ethane (DeBDethane). BDE 209 in pulverized HIPS+DecaBDE samples degraded with a half-life of 51 days. In contrast, no marked loss of DeBDethane occurred throughout the experimental period of 224 days. During BDE 209 photolysis in HIPS+DecaBDE samples, partly debromination to nona- and octa-BDE was observed, however, environmentally relevant polybrominated diphenyl ether (PBDE) congeners such as BDE 47, 99, and 100 were not formed. Formation of polybrominated dibenzofurans (PBDFs) was clearly apparent in the flame-retarded plastics that we investigated. In the HIPS+DecaBDE samples, the PBDF concentration increased by about 40 times after 1 week of exposure, with a concomitant decrease in BDE 209. In the TV casing, tetra- to octa-BDF congener concentrations increased continuously during the experiment Although the concentrations of PBDFs found in the plastic matrices tested were 1 to 4 orders of magnitude lower than those of PBDEs, more attention should be paid to the fact that PBDFs are formed by sunlight exposure during normal use as well as disposal/recycling processes of flame-retarded consumer products.

  3. Ideal light concentrators with reflector gaps

    DOEpatents

    Winston, Roland

    1980-01-01

    A cylindrical or trough-like radiant energy concentration and collection device is provided. The device includes an energy absorber, a glazing enveloping the absorber and a reflective wall. The ideal contour of the reflective wall is determined with reference to a virtual absorber and not the actual absorber cross section.

  4. Sunlight-Driven, Water-Mediated Generation of Prebiotic Complexity

    NASA Astrophysics Data System (ADS)

    Rapf, R.; Griffith, E. C.; Perkins, R. J.; Vaida, V.

    2014-12-01

    Formation of chemically complex biomolecules from simple, organic molecules under prebiotic conditions is both a thermodynamic and kinetic challenge. Synthesis of such molecules and their subsequent self-assembly into ordered structures requires a favorable source of energy as well as a favorable entropic environment. Our approach couples two such auspicious conditions, using sunlight as the energetic driver and air-water interfaces as the reaction medium. The Sun provides a large, prebiotically relevant source of energy to fuel synthetic photochemistry. Air-water interfaces are widely prevalent on oceans, lakes, and atmospheric aerosols and provide unique reaction environments that ameliorate some of the thermodynamic challenges of the aqueous bulk. Using these experimental principles, we demonstrate the ability to generate chemical complexity via in situ observation of non-enzymatic peptide bond synthesis at the surface of water. Additionally, we will discuss the photochemical formation of a double-tailed membrane component in aqueous solution, which subsequently self-assembles into ordered, three-dimensional structures.

  5. Sunlight and skin cancer: lessons from the immune system.

    PubMed

    Ullrich, Stephen E

    2007-08-01

    The ultraviolet (UV) radiation in sunlight induces skin cancer development. Skin cancer is the most common form of human neoplasia. Estimates suggest that in excess of 1.5 million new cases of skin cancer (www.cancer.org/statistics) will be diagnosed in the United States this year. Fortunately, because of their highly visible location, skin cancers are more rapidly diagnosed and more easily treated than other types of cancer. Be that as it may, approximately 10,000 Americans a year die from skin cancer, and the cost of treating skin cancer in the United States (both melanoma and non-melanoma skin cancer) is estimated to be in excess of $2.9 billion a year. In addition to causing skin cancer, UV radiation is also immune suppressive. In fact, data from studies with both experimental animals and biopsy proven skin cancer patients suggest that there is an association between the immune suppressive effects of UV radiation and its carcinogenic potential. Recent studies in my laboratory have focused on understanding the initial molecular events that induce immune suppression. We made two novel observations: first UV-induced keratinocyte-derived platelet activating factor plays a role in the induction of immune suppression. Second, cis-urocanic acid, a skin-derived immunosuppressive compound mediates immune suppression by binding to serotonin receptors on target cells. Recent findings suggest that blocking the binding of these compounds to their receptors not only inhibits UV-induced immune suppression but it also interferes with skin cancer induction.

  6. Isophotes of sunlight glitter on a wind-ruffled sea.

    PubMed

    Plass, G N; Kattawar, G W; Guinn, J A

    1977-03-01

    Time-averaged intensities are computed for the glitter pattern of sunlight on a wind-ruffled sea. Isopleths are drawn from these on graphs which simulate glitter-pattern photographs through projections of sea-surface grid points on an inclined plane assumed to be in front of the observer. The intensity computed for each grid point is based on a calculation of the wave-surface orientation required for direct reflection from source to observer at that point; the probability of occurrence of this orientation, determined from the Cox-Munk distribution, is the principal factor in the computed intensity. The curvature of the earth is taken into account, and calculations are made for various cases of source elevation angle, observer altitude, and wind speed (the controlling parameter for the distribution of wave inclinations). Percent polarization is computed for the glitter patterns, and projected isopleths of this quantity are plotted. The effects of variations in wind speed, source elevation angle, and observer height on the morphology of the glitter pattern are shown, and such phenomena as the shifting of a reflected image toward the horizon are clearly demonstrated. It is suggested that the technique developed here could be useful in evaluating models of ocean wave structure and in making remote determinations of the sea state in the region of the glitter pattern.

  7. Sunlight assisted photodegradation by tin oxide quantum dots

    NASA Astrophysics Data System (ADS)

    Shajira, P. S.; Prabhu, V. Ganeshchandra; Bushiri, M. Junaid

    2015-12-01

    Rutile phase of SnO2 quantum dots of average size of 2.5 nm were synthesized at a growth temperature of 70 °C and characterized with XRD, TEM, FTIR and Raman analysis. The effective strain within the lattice of SnO2 quantum dots was calculated by Williamson-Hall method. The broad peaks in XRD as well as Raman spectra and the presence of Raman bands at 569 and 432 cm-1 are due to lower crystallinity of nanoparticles. The optical band gap of SnO2 quantum dots was increased to 3.75 eV attributed to the quantum size effect. SnO2 quantum dots were annealed in air atmosphere and the crystallite size of the particles increased with annealing temperature. Sunlight assisted photodegration property of SnO2 quantum dots was investigated with vanillin as a model system and it shows the photodegradation efficiency of 87%. The photoluminescence and photodegradation efficiency of nanocrystallite SnO2 decreases with increase of crystallite size contributed to the reduction in population of defects and surface area.

  8. Evaluation of window-tinting films for sunlight phototherapy.

    PubMed

    Vreman, Hendrik J; Slusher, Tina M; Wong, Ronald J; Schulz, Stephanie; Olusanya, Bolajoko O; Stevenson, David K

    2013-12-01

    We evaluated nine semi-transparent plastic window-tinting films for their ability to block ultraviolet A (UVA) and infrared (IR) radiation and transmit therapeutic blue light (400-520 nm) for treating jaundiced newborns. For indoor testing, three light sources (TL/52 special blue fluorescent, Black Light UVA and IR heat lamps) were positioned above each film and measured successively using a thermocouple thermometer, UVA radiometer and blue light irradiance meter, placed below each film. For outdoor testing, the same setup was used with the sun at zenith and a cloudless sky. Compared with unfiltered radiation, blue light transmission through films ranged from 24 to 83%, UVA transmission was 0.1-7.1% and reductions in IR heat were 6-12°C and 5-10°C for heat lamp and sun, respectively. The data suggest that most of the relatively low-cost window-tinting films tested can effectively reduce sunlight UV and IR and offer a range of significant attenuations of therapeutic blue light.

  9. Photocatalytic Hydrogen Production by Direct Sunlight: A Laboratory Experiment

    NASA Astrophysics Data System (ADS)

    Koca, Atif; Sahin, Musa

    2003-11-01

    The demand for hydrogen will increase within the next decades as a result of the necessity to produce clean and environmentally and economically accepted fuels from natural and renewable energy resources. In principle, hydrogen has the potential to play an important role in future energy systems because of the diversity of its applications, the variety of ways in which it can be stored, its general environmental advantages, and especially because of the possibility of producing hydrogen by splitting water using photocatalysts and solar energy. Methods and techniques of photocatalytic reactions are covered in some detail in many undergraduate chemistry programs. However, many times in instructional settings, little attention is given to how it is used for the production of hydrogen. In the present investigation a photocatalytic hydrogen production experiment suitable for use in undergraduate chemistry laboratories is described. The experiment can be used to introduce students to the concept of a renewable and sustainable hydrogen energy system of the future, as well as its production techniques, and to demonstrate the use of a CdS/ZnS photocatalyst system for photocatalytic hydrogen production from direct sunlight.

  10. Sunlight-driven reduction of silver ion to silver nanoparticle by organic matter mitigates the acute toxicity of silver to Daphnia magna.

    PubMed

    Zhang, Zhen; Yang, Xiaoya; Shen, Mohai; Yin, Yongguang; Liu, Jingfu

    2015-09-01

    Due to the unique antibacterial activities, silver nanoparticles (AgNPs) have been extensively used in commercial products. Anthropogenic activities have released considerable AgNPs as well as highly toxic silver ion (Ag(+)) into the aquatic environment. Our recent study revealed that ubiquitous natural organic matter (NOM) could reduce Ag(+) to AgNP under natural sunlight. However, the toxic effect of this process is not well understood. In this work, we prepared mixture solution of Ag(+) and AgNPs with varied Ag(+)% through the sunlight-driven reduction of Ag(+) by NOM and investigated the acute toxicity of the solutions on Daphnia magna. Formation of AgNPs was demonstrated and characterized by comprehensive techniques and the fraction of unconverted Ag(+) was determined by ultrafiltration-inductively coupled plasma mass spectrometry determination. The formation of AgNPs enhanced significantly with the increasing of solution pH and cumulative photosynthetically active radiation of sunlight. The toxicity of the resulting solution was further investigated by using freshwater crustacean D. magna as a model and an 8hr-median lethal concentration (LC50) demonstrated that the reduction of Ag(+) by NOM to AgNPs significantly mitigated the acute toxicity of silver. These results highlight the importance of sunlight and NOM in the fate, transformation and toxicity of Ag(+) and AgNPs, and further indicate that the acute toxicity of AgNPs should be mainly ascribed to the dissolved Ag(+) from AgNPs.

  11. Optimized Interdigitated Back Contact (IBC) solar cell for high concentrated sunlight

    NASA Astrophysics Data System (ADS)

    Verlinden, P.; van de Wiele, F.; Stehelin, G.; David, J. P.

    A one-dimensional analytical model for Interdigitated Back Contact solar cells (IBC), also applicable to Front Surface Field (FSF) and Tandem Junction (TJ) solar cells, is presented. The quantum efficiency, generation current, dark current, and conversion efficiency are calculated as a function of the physical parameters of the cell (doping levels, junction depths, thickness, and lifetime). The proposed model simulates the response of FSF and TJ solar cells more accurately than models using the concept of effective surface recombination velocity. The optimization of parameters (doping level and dimension of each region) is discussed. It is shown that a conversion efficiency of 24.8 percent can be reached under 50 suns. IBC solar cells were fabricated with different substrate resistivities and thicknesses. The experimental results are compared to the theoretical predictions.

  12. Electrochemically regenerable carbon dioxide absorber

    NASA Technical Reports Server (NTRS)

    Woods, R. R.; Marshall, R. D.; Schubert, F. H.; Heppner, D. B.

    1979-01-01

    Preliminary designs were generated for two electrochemically regenerable carbon dioxide absorber concepts. Initially, an electrochemically regenerable absorption bed concept was designed. This concept incorporated the required electrochemical regeneration components in the absorber design, permitting the absorbent to be regenerated within the absorption bed. This hardware was identified as the electrochemical absorber hardware. The second hardware concept separated the functional components of the regeneration and absorption process. This design approach minimized the extravehicular activity component volume by eliminating regeneration hardware components within the absorber. The electrochemical absorber hardware was extensively characterized for major operating parameters such as inlet carbon dioxide partial pressure, process air flow rate, operational pressure, inlet relative humidity, regeneration current density and absorption/regeneration cycle endurance testing.

  13. Broadband patterned magnetic microwave absorber

    SciTech Connect

    Li, Wei; Wu, Tianlong; Wang, Wei; Guan, Jianguo; Zhai, Pengcheng

    2014-07-28

    It is a tough task to greatly improve the working bandwidth for the traditional flat microwave absorbers because of the restriction of available material parameters. In this work, a simple patterning method is proposed to drastically broaden the absorption bandwidth of a conventional magnetic absorber. As a demonstration, an ultra-broadband microwave absorber with more than 90% absorption in the frequency range of 4–40 GHz is designed and experimentally realized, which has a thin thickness of 3.7 mm and a light weight equivalent to a 2-mm-thick flat absorber. In such a patterned absorber, the broadband strong absorption is mainly originated from the simultaneous incorporation of multiple λ/4 resonances and edge diffraction effects. This work provides a facile route to greatly extend the microwave absorption bandwidth for the currently available absorbing materials.

  14. Liquid Hydrogen Absorber for MICE

    SciTech Connect

    Ishimoto, S.; Suzuki, S.; Yoshida, M.; Green, Michael A.; Kuno, Y.; Lau, Wing

    2010-05-30

    Liquid hydrogen absorbers for the Muon Ionization Cooling Experiment (MICE) have been developed, and the first absorber has been tested at KEK. In the preliminary test at KEK we have successfully filled the absorber with {approx}2 liters of liquid hydrogen. The measured hydrogen condensation speed was 2.5 liters/day at 1.0 bar. No hydrogen leakage to vacuum was found between 300 K and 20 K. The MICE experiment includes three AFC (absorber focusing coil) modules, each containing a 21 liter liquid hydrogen absorber made of aluminum. The AFC module has safety windows to separate its vacuum from that of neighboring modules. Liquid hydrogen is supplied from a cryocooler with cooling power 1.5 W at 4.2 K. The first absorber will be assembled in the AFC module and installed in MICE at RAL.

  15. Photochemical transformation of tetrabromobisphenol A under simulated sunlight irradiation: Kinetics, mechanism and influencing factors.

    PubMed

    Bao, Yueping; Niu, Junfeng

    2015-09-01

    A systematic study on photolysis of tetrabromobisphenol A (2,2',6,6'-tetrabromo-4,4'-isopropylidendiphenol, TBBPA) in water was investigated under simulated sunlight irradiation. The results showed that the photolysis of TBBPA followed apparent pseudo-first-order kinetics. The photolysis rate constants (k) changed from 2.80 × 10(-2) to 0.70 × 10(-2)min(-1) with the concentrations of TBBPA varying from 0.1 to 10 mg L(-1). Increasing humic acid (HA) concentration from 0-100 mg L(-1) led to the decrease of k from 2.53 × 10(-2) to 0.39 × 10(-2)min(-1), which was due to the competitive adsorption for photons between HA and TBBPA molecules. The photolysis rate was faster at near-neutral conditions (pH=6 and 7) than that in either acidic or basic conditions. Electron spin resonance (ESR) and reactive oxygen species (ROS) scavenging experiments indicated that TBBPA underwent self-sensitized photooxidation via ROS (i.e., OH, (1)O2 and O2(-)), and the process was mainly controlled by O2(-). After irradiation of 180 min, about 35.0% reduction of TOC occurred accompanied with approximate 99.1% of TBBPA removed. The detection of products (i.e., Br(-), bisphenol A, 2,6-dibromophenol, 2-bromophenol and phenol) revealed that the main photolytic pathways of TBBPA were debromination and breakage of C-C bond.

  16. The Effect of Sunlight in Parenchyma Pith Cells Diameter of Manihot esculenta

    NASA Astrophysics Data System (ADS)

    Susanti, D.; Aziz, D. N.; Astuti, W.; Nuraeni, E.

    2017-03-01

    Sunlight is one of the factors that effect on the grow of a plant. Manihot esculenta is one of the plants that easily found in Indonesia because its role as staple food. The aim of this research is to know the correlation between sunlight the grow of parenchyma pith cells diameter of Manihot esculenta. Independent variable in this research is sunlight, and dependent variable is the parenchyma pith cells diameter of Manihot esculenta. Data was collected is in qualitative and quantitative form. Qualitative data gotten gained by morphology observation. The parenchyma pith cells of Manihot esculenta that is affected by sunlight in 1310 x 10 Lux, morphologically has hexagon, cell walls thick, solid state, and regular composition. Meanwhile, the parenchyma pith cells that has less sunlight (363 x 10 Lux) has a hexagon shape, thin cell walls thin, soft state, and irregular composition. Qualitative data suported by quantitative data. The size of parenchyma pith cells diameter that is affected by sunlight in 1310 x 10 Lux 96,4 µm. While, the stem parenchyma pith cells diameter empulur that has less sunlight (363 x 10 Lux) is 129,8 µm.

  17. Satellite power system (SPS) brightness due to reflected sunlight

    SciTech Connect

    1980-10-01

    The development and operation of a Satellite Power System would place very large structures in orbit around earth for several decades. Sunlight reflected off such structures, particularly specular components from large flat areas, is expected to create ground illumination that will attract observers. In order to assure that this illumination does not exceed the irradiance tolerances of the eye, reflections from these satellites must be carefully controlled by vehicle orientation and surface specifications. The solar power satellite (SPS) at geosynchronous earth orbit (GEO) has 55 km/sup 2/ of glass covered solar cells that are oriented normal to the sun, as well as a 1 km/sup 2/ microwave antenna. Transportation of construction materials from low earth orbit (LEO) to GEO requires 23 Orbit Transfer Vehicles (OTVs) that have 1.6 km/sup 2/ solar panels oriented normal to the sun during their 6 month transits. The Staging Base (SB) at LEO, that accommodates OTV fabrication and cargo transfer, consists of 0.5 km arms protruding from a .44 km/sup 2/ open grid aligned with its orbit plane. Diffuse reflections would make the SB/OTVs readily discernible in the daytime and the OTVs and SPSs observable all night (except during eclipse). Sporadic specular glints would appear on the ground from the OTVs and SPSs near the midnight meridian, from the solar panel surfaces of OTVs during LEO fabrication around midday, and from OTVs near LEO at dawn and dusk. The ground level irradiance has been evaluated for several unusually bright configurations using the present system design. Procedures and results are presented and discussed.

  18. Sunlight Controls Water Column Processing of Carbon in Arctic Freshwaters

    NASA Astrophysics Data System (ADS)

    Cory, R. M.; Ward, C. P.; Crump, B. C.; Kling, G. W.

    2014-12-01

    Carbon (C) in thawing permafrost soils may have global impacts on climate change, yet controls on its processing and fate are poorly understood. The dominant fate of dissolved organic C (DOC) released from soils to inland waters is either complete oxidation to CO2 or partial oxidation and river export to oceans. Both processes are most often attributed to bacterial respiration, but we recently showed that photochemical oxidation exceeds rates of respiration and accounts for 70-95% of total DOC processed in the water column of arctic lakes and rivers. While the overall dominance of photochemical processing in streams and lakes remained, the fate of DOC varied consistently by water type. In small streams DOC was mainly mineralized by sunlight to CO2, while in lakes the main fate of DOC was partial photo-oxidation. Large rivers were intermediate between these end members, and photo-mineralization to CO2 was about equal to or less than partial photo-oxidation. We suggest this pattern is a result of light-exposure history, where DOC leached from soils into headwater streams has little prior light exposure and is labile to complete photo-oxidation, but as light exposure increases moving downstream and into lakes with longer residence times the DOC photo-lability declines. Thus as easily photo-mineralized moieties are removed, DOC fate shifts toward partial photo-oxidation and downstream export in rivers and lakes. At the basin scale, photochemical processing of DOC is about one third of the total CO2 released from surface waters, and is thus an important, newly measured component of the Arctic C budget. We also suggest that these photochemical transformations of DOC will occur in any shallow surface water, and could be important for better understanding inland water carbon cycling.

  19. Energy absorber for the CETA

    NASA Technical Reports Server (NTRS)

    Wesselski, Clarence J.

    1994-01-01

    The energy absorber that was developed for the CETA (Crew Equipment and Translation Aid) on Space Station Freedom is a metal on metal frictional type and has a load regulating feature that prevents excessive stroking loads from occurring while in operation. This paper highlights some of the design and operating aspects and the testing of this energy absorber.

  20. Improvement Of The Helmholtz Absorber

    NASA Technical Reports Server (NTRS)

    Morrow, Duane L.

    1992-01-01

    Helmholtz-resonator system improved to enable it to absorb sound at more than one frequency without appreciable loss of effectiveness at primary frequency. Addition of annular cavities enables absorption of sound at harmonic frequencies in addition to primary frequency. Improved absorber designed for use on structures of high transmission loss. Applied to such machines as fixed-speed engines and fans.

  1. Metal-shearing energy absorber

    NASA Technical Reports Server (NTRS)

    Fay, R. J.; Wittrock, E. P.

    1971-01-01

    Device, consisting of tongue of thin aluminum alloy strip, pull tab, slotted steel plate which serves as cutter, and steel buckle, absorbs mechanical energy when its ends are subjected to tensile loading. Device is applicable as auxiliary shock absorbing anchor for automobile and airplane safety belts.

  2. Leaf absorbance and photosynthesis

    NASA Technical Reports Server (NTRS)

    Schurer, Kees

    1994-01-01

    The absorption spectrum of a leaf is often thought to contain some clues to the photosynthetic action spectrum of chlorophyll. Of course, absorption of photons is needed for photosynthesis, but the reverse, photosynthesis when there is absorption, is not necessarily true. As a check on the existence of absorption limits we measured spectra for a few different leaves. Two techniques for measuring absorption have been used, viz. the separate determination of the diffuse reflectance and the diffuse transmittance with the leaf at a port of an integrating sphere and the direct determination of the non-absorbed fraction with the leaf in the sphere. In a cross-check both methods yielded the same results for the absorption spectrum. The spectrum of a Fuchsia leaf, covering the short-wave region from 350 to 2500 nm, shows a high absorption in UV, blue and red, the well known dip in the green and a steep fall-off at 700 nm. Absorption drops to virtually zero in the near infrared, with subsequent absorptions, corresponding to the water absorption bands. In more detailed spectra, taken at 5 nm intervals with a 5 nm bandwidth, differences in chlorophyll content show in the different depths of the dip around 550 nm and in a small shift of the absorption edge at 700 nm. Spectra for Geranium (Pelargonium zonale) and Hibiscus (with a higher chlorophyll content) show that the upper limit for photosynthesis can not be much above 700 nm. No evidence, however, is to be seen of a lower limit for photosynthesis and, in fact, some experiments down to 300 nm still did not show a decrease of the absorption although it is well recognized that no photosynthesis results with 300 nm wavelengths.

  3. Sunlight affects aggregation and deposition of graphene oxide in the aquatic environment.

    EPA Science Inventory

    In this study, we investigate the role of simulated sunlight on the physicochemical properties, aggregation, and deposition of graphene oxide (GO) in aquatic environments. Results show that light exposure under varied environmental conditions significantly impacts the physicochem...

  4. Application of photoremovable protecting group for controlled release of plant growth regulators by sunlight.

    PubMed

    Atta, Sanghamitra; Ikbal, Mohammed; Kumar, Ashutosh; Pradeep Singh, N D

    2012-06-04

    We report a novel technique for controlled release of plant growth regulators (PGRs) by sunlight using photoremovable protecting group (PRPG) as a delivery device. In the present work, carboxyl-containing PGRs of the auxin group [indoleacetic acid (IAA) and naphthoxyacetic acid (NOAA)] were chemically caged using PRPGs of coumarin derivatives. Photophysical studies showed that caged PGRs exhibited good fluorescence properties. Irradiation of caged PGRs by sunlight in both aqueous ethanol and soil media resulted in controlled release of PGRs. The results of the bioactivity experiments indicated that caged PGRs showed better enhancement in the root and shoot length growth of Cicer arietinum compared to PGRs after 10days of sunlight exposure. Our results indicated that use of PRPG as a delivery device for controlled release of PGRs by sunlight in soil holds great interest for field application since it can overcome the rapid loss of PGRs in environmental conditions.

  5. Sunlight suppressing rejection of 280- to 320-nm UV-radiation-induced skin tumors in mice

    SciTech Connect

    Morison, W.L.; Kelley, S.P.

    1985-02-01

    Repeated exposure of female C3H/HeNCR- mice to sunlight prevented the normal immunologic rejection of a UV-induced tumor. This systemic immunologic alteration was transferred to syngeneic lethally X-irradiated animals with lymphoid cells from mice exposed to sunlight. The lymphoid cells also were able to suppress the capacity of lymphoid cells from normal animals to reject a UV-induced tumor. The 295- to 320-nm wave band appeared to be responsible for this immunosuppressive effect of sunlight because suppression was prevented by filtration of the radiation through Mylar and by application of a sunscreen containing para-aminobenzoic acid. These observations may have importance in understanding the pathogenesis of sunlight-induced skin cancer in humans.

  6. Why Do Spacecraft Charge in Sunlight? Differential Charging and Surface Condition

    DTIC Science & Technology

    2005-01-01

    charge to high negative potentials in sunlight. Introduction Spacecraft charging in space plasmas is due to the imbalance of...in Sunlight In the Maxwellian space plasma model, the onset of spacecraft charging in eclipse occurs at a critical temperature T* [Lai, et al., 1982...S.T., Onset of spacecraft charging in single and double Maxwellian plasmas in space, Proceedings of the 8th Spacecraft Charging Technology

  7. Study of enhanced photogalvanic effect of Naphthol Green B in natural sunlight

    NASA Astrophysics Data System (ADS)

    Koli, Pooran

    2015-07-01

    The photogalvanic cells based on Naphthol Green B sensitizer-Fructose reductant-Sodium Lauryl Sulphate surfactant has been studied in natural sunlight. The cell has been found workable in natural sunlight with greatly enhanced optimum cell performance. The 1159.2 μW power, 4500 μA short-circuit current, 1070 mV open-circuit potential, 14.49% efficiency and 240 min storage capacity (as half change time) has been observed in optimum cell fabrication conditions.

  8. Sunlight, Sea Ice, and the Ice Albedo Feedback in a Changing Arctic Sea Ice Cover

    DTIC Science & Technology

    2013-09-30

    1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Sunlight, Sea Ice, and the Ice Albedo Feedback in a...ice age, and iv) onset dates of melt and freezeup. 4. Assess the magnitude of the contribution from ice- albedo feedback to the observed decrease of...COVERED 00-00-2013 to 00-00-2013 4. TITLE AND SUBTITLE Sunlight, Sea Ice, and the Ice Albedo Feedback in a Changing Arctic Sea Ice Cover 5a

  9. The influence of short-term exposure to tropical sunlight on boar seminal characteristics

    NASA Astrophysics Data System (ADS)

    Egbunike, G. N.; Dede, T. I.

    1980-06-01

    The seminal characteristics of 4 Large White boars exposed to direct tropical sunlight 45 min daily for three days were compared to those of their mates that were maintained under shade in the barn. During the period of exposure, both respiratory rate and rectal temperature increased significantly by 276.84 and 5.13% respectively in the exposed over the unexposed boars, thus indicating a high degree of hyperthermia. Although libido, as judged from the reaction time, was unaffected, the ejaculation time appeared to be longer for the stressed than unstressed animals. Gel mass, semen volume and pH appeared to be stable inspite of the treatment, unlike sperm motility and concentration which deteriorated. Also, the dehydrogenase activity of the semen was inferior in the stressed animals. Sperm output per ejaculate dropped drastically only in the week following exposure from 58.22 to 28.42 billion sperm as compared to corresponding values of 54.83 and 47.87 by the unexposed boars. Similarly, the frequency of sperm abnormality was higher in the stressed boars in this period after which the animals appeared to have recovered.

  10. First field-based atmospheric observation of the reduction of reactive mercury driven by sunlight

    NASA Astrophysics Data System (ADS)

    de Foy, Benjamin; Tong, Yindong; Yin, Xiufeng; Zhang, Wei; Kang, Shichang; Zhang, Qianggong; Zhang, Guoshuai; Wang, Xuejun; Schauer, James J.

    2016-06-01

    Hourly speciated measurements of atmospheric mercury made in a remote, high-altitude site in the Tibetan Plateau revealed the first field observations of the reduction of reactive mercury in the presence of sunlight in the atmosphere. Measurements were collected over four winter months on the shore of Nam Co Lake in the inland Tibetan Plateau. The data was analyzed to identify sources and atmospheric transformations of the speciated mercury compounds. The absence of local anthropogenic sources provided a unique opportunity to examine chemical transformations of mercury. An optimization algorithm was used to determine the parameters of a chemical box model that would match the measured reactive mercury concentrations. This required the presence of a photolytic reduction reaction previously observed in laboratory studies and in power plant plumes. In addition, the model estimated the role of vertical mixing in diluting reactive gaseous mercury during the day, and the role of bromine chemistry in oxidizing gaseous elemental mercury to produce reactive gaseous mercury. This work provides further evidence of the need to add the photolytic reduction reaction of oxidized mercury into atmospheric transport models in order to better simulate mercury deposition.

  11. Laser and sunlight-induced fluorescence from chlorophyll pigments

    NASA Technical Reports Server (NTRS)

    Kim, H. H.; Brown, K. S.

    1986-01-01

    Fluorescence properties of chlorophyll pigment bearing plant foliage utilizing a 337 nm nitrogen laser and integrating sphere were studied. Measured yields, in terms of number of photons emitted per 100 photons absorbed, range from 1.5 to 0.1 for the 685 nm peak, and from 4.2 to 0.2 for the 730 nm peak. Decreasing order of magnitude puts herbaceous leaves ahead of all others followed by broad leaves of hardwoods and coniferous needles. Meaningful quantization for the fluorescence peaks at 430 and 530 nm could not be attained. Passive monitoring of these fluorescence peaks is successful only for the 685 nm from the ocean surface. Field data show the reflectance changes at 685 nm due to the algae presence amounts to 1% at most.

  12. Absorbent product to absorb fluids. [for collection of human wastes

    NASA Technical Reports Server (NTRS)

    Dawn, F. S.; Correale, J. V. (Inventor)

    1982-01-01

    A multi-layer absorbent product for use in contact with the skin to absorb fluids is discussed. The product utilizes a water pervious facing layer for contacting the skin, overlayed by a first fibrous wicking layer, the wicking layer preferably being of the one-way variety in which fluid or liquid is moved away from the facing layer. The product further includes a first container section defined by inner and outer layer of a water pervious wicking material between which is disposed a first absorbent mass. A second container section defined by inner and outer layers between which is disposed a second absorbent mass and a liquid impermeable/gas permeable layer. Spacesuit applications are discussed.

  13. Rise in lens temperature on exposure to sunlight or high ambient temperature.

    PubMed Central

    Al-Ghadyan, A. A.; Cotlier, E.

    1986-01-01

    The effect of increase ambient temperature and sunlight on the temperatures of the rabbit lens and posterior chamber (PC) aqueous humour was measured by needle thermistor probes while the rectal temperature was monitored. Exposure of rabbits to sunlight (35 degrees-42 degrees C), in New Haven, Connecticut, USA, resulted in significant temperature increases in PC (4.3 degrees C), lens (3.2 degrees C), and rectum (2.3 degrees C). Returning animals to the shade resulted in a progressive decrease in the temperatures of the PC or lens in the tested eye, but repeating exposure to sunlight resulted in significant increases of the baseline (PC) temperature (increase 2.68 degrees C) of the second eye. Exposure of rabbits to sunlight at 49 degrees C in Chandigarh, India, resulted in increased PC temperature of 4.48 degrees C after 9 minutes. Increased PC and lens temperatures after exposure to sunlight are due both to an ambient temperature effect through the cornea and to increased body temperature. In dry and hot tropical areas of the world temperature increases in the lens after exposure to sunlight may initiate or accelerate the formation of senile cataracts. PMID:3718905

  14. Sunlight regulates the cutaneous production of vitamin D3 by causing its photodegradation.

    PubMed

    Webb, A R; DeCosta, B R; Holick, M F

    1989-05-01

    Exposure to sunlight initiates the formation of vitamin D3 in skin as the UV B radiation in the solar spectrum causes the photoconversion of 7-dehydrocholesterol to previtamin D3. A heat-induced isomerization then converts previtamin D3 to vitamin D3 over a period of days. A number of irradiation products of vitamin D3 are known to form upon irradiation with high intensity UV radiation, but the effect of subsequent exposures to sunlight on the vitamin D3 formed in skin is not known. To investigate this phenomenon, human skin containing vitamin D3 was exposed to sunlight in Boston. A model system of [3H]vitamin D3 in methanol was also used to study the effects of sunlight on vitamin D3 throughout the year. Vitamin D3 proved to be exquisitely sensitive to sunlight, and once formed in the skin, exposure to sunlight resulted in its rapid photodegradation to a variety of photoproducts, including 5,6-transvitamin D3, suprasterol I, and suprasterol II.

  15. An introduction to absorbent dressings.

    PubMed

    Jones, Menna Lloyd

    2014-12-01

    Exudate bathes the wound bed with a serous fluid that contains essential components that promote wound healing. However, excess exudate is often seen as a challenge for clinicians. Absorbent dressings are often used to aid in the management of exudate, with the aim of providing a moist but unmacerated environment. With so many different types of absorbent dressings available today-alongside making a holistic assessment-it is essential that clinicians also have the knowledge and skill to select the most appropriate absorbent dressing for a given patient.

  16. Self-Regulating Shock Absorber

    NASA Technical Reports Server (NTRS)

    Wesselski, Clarence J.

    1995-01-01

    Mechanical shock absorber keeps frictional damping force within tolerable limit. Its damping force does not increase with coefficient of friction between energy-absorbing components; rather, frictional damping force varies only slightly. Relatively insensitive to manufacturing variations and environmental conditions altering friction. Does not exhibit high breakaway friction and consequent sharp increase followed by sharp decrease in damping force at beginning of stroking. Damping force in absorber does not vary appreciably with speed of stroking. In addition, not vulnerable to leakage of hydraulic fluid.

  17. Mineralization of aromatics in water by sunlight-assisted electro-fenton technology in a pilot reactor.

    PubMed

    Casado, Juan; Fornaguera, Jordi; Galán, María Isabel

    2005-03-15

    The viability of the degradation of aqueous solutions of aniline, nitrobenzene, and 4-chlorophenol by the so-called Photoelectro-Fenton process in a pilot reactor is reported. The Electro-Fenton process stage, based on the flow of oxygen through a gas diffusion cathode to produce H2O2, allows mineralization of about a half of the TOC content in ca. 1 h, because anodic oxidation is coupled with Fenton reaction in the presence of Fe2+ catalyst. An intensity of 20 A was applied in a flow cell comprising a Ti/Pt anode and a carbon-PTFE cathode. After electrolysis, samples of the effluent were exposed to sunlight, and almost complete mineralization was reached after ca. 50 min. Effect of parameters such as electrolysis time, pH, initial concentration, and solar or UVA irradiation on the process efficiencies and the running costs are studied. The Photoelectro-Fenton process using sunlight effectively diminishes these costs. The analogous behavior of the three aromatics suggests similar degradation pathways, regardless of the different groups attached to the ring.

  18. 30% Efficient InGaP/GaAs/GaSb Cell-Interconnected-Circuits For Line-Focus Concentrator Arrays

    NASA Technical Reports Server (NTRS)

    Fraas, Lewis; Avery, James; Iles, Peter; Chu, Charlie; Piszczor, Mike

    2005-01-01

    In 1989, Fraas and Avery demonstrated a world-record 31% efficient AM0 GaAs/GaSb tandem solar cell. This record efficiency still holds today. However, the GaAs/GaSb mechanical-stacked cell was designed to work with concentrated sunlight and at that time, the space community had no experience with concentrated sunlight solar arrays.

  19. Spontaneous emission and absorber theory

    NASA Astrophysics Data System (ADS)

    Pegg, David T.

    1997-01-01

    One of the long term interests of George Series was the construction of a theory of spontaneous emission which does not involve field quantisation. His approach was written in terms of atomic operators only and he drew a parallel with the Wheeler-Feynman absorber theory of radiation. By making a particular extra postulate, he was able to obtain the correct spontaneous emission rate and the Lamb shift reasonably simply and directly. An examination of his approach indicates that this postulate is physically reasonable and the need for it arises because quantisation in his theory occurs after the response of the absorber has been accounted for by means of the radiative reaction field. We review briefly an alternative absorber theory approach to spontaneous emission based on the direct action between the emitting atom and a quantised absorber, and outline some applications to more recent effects of interest in quantum optics.

  20. Guided tissue regeneration. Absorbable barriers.

    PubMed

    Wang, H L; MacNeil, R L

    1998-07-01

    Over the past 15 years, techniques aimed at regeneration of lost periodontal tissue have become widely used and accepted in clinical practice. Among these techniques are those which use the principles of guided tissue regeneration (GTR), wherein barriers (i.e., membranes) are used to control cell and tissue repopulation of the periodontal wound. A variety of non-absorbable and absorbable barriers have been developed and used for this purpose, with a trend in recent years toward increased use of absorbable GTR materials. This article describes the evolution of absorbable barrier materials and overview materials available for clinical use today. In addition, advantages and disadvantages of these materials are discussed, as well as possible new developments in barrier-based GTR therapy.

  1. Countercurrent flow absorber and desorber

    DOEpatents

    Wilkinson, W.H.

    1984-10-16

    Countercurrent flow absorber and desorber devices are provided for use in absorption cycle refrigeration systems and thermal boosting systems. The devices have increased residence time and surface area resulting in improved heat and mass transfer characteristics. The apparatuses may be incorporated into open cycle thermal boosting systems in which steam serves both as the refrigerant vapor which is supplied to the absorber section and as the supply of heat to drive the desorber section of the system. 9 figs.

  2. Countercurrent flow absorber and desorber

    DOEpatents

    Wilkinson, William H.

    1984-01-01

    Countercurrent flow absorber and desorber devices are provided for use in absorption cycle refrigeration systems and thermal boosting systems. The devices have increased residence time and surface area resulting in improved heat and mass transfer characteristics. The apparatuses may be incorporated into open cycle thermal boosting systems in which steam serves both as the refrigerant vapor which is supplied to the absorber section and as the supply of heat to drive the desorber section of the system.

  3. Adaptations of Phytoplankton to Sunlight and Other Optical Properties of Aquatic Ecosystem Particles Detected With a Portable Integrating Sphere Version of QFT

    NASA Astrophysics Data System (ADS)

    Hargreaves, B. R.

    2006-12-01

    Suspended particles in aquatic ecosystems include autotrophic and heterotrophic micro-organisms, organic detritus, and suspended mineral particles. Spectral optical properties of these particles can be useful in characterizing the attenuation of sunlight underwater, the distribution and types of organisms, and their biological response to the underwater physical gradients, including photosynthesis and the release of dissolved organic matter. Recent measurements of spectral absorption of phytoplankton exposed to strong ultraviolet radiation (UVR) near the surface and declining irradiance with depth have shown a tendency to produce natural UV-B sunscreen compounds (MAA's) in proportion to the intensity of exposure to UV-B. A down-regulation of chlorophyll-a pigment with increasing intensity of visible wavelengths is well known. Some recent data also suggest a negative correlation between phytoplankton biomass and water column exposure to UV-B as mediated by stratospheric ozone. The standard method of characterizing the spectral optical properties of particles in aquatic ecosystems is the Quantitative Filterpad Technique (QFT) in which a water sample is concentrated on a fine glass fiber filter (GFF) and its optical density is then measured in the beam of a scanning spectrophotometer. An improved QFT method (QFT-TR) established in the past decade involves laboratory measurement of both transmittance and reflectance for each sample using an integrating sphere attachment in a scanning spectrophotometer. Both methods have disadvantages. Particle spectral data from a number of freshwater ecosystems were collected using a new battery-powered instrument that combines integrating sphere, lamp, and fiber optic spectrometer to create a portable improved QFT (pQFT-TR). Transmittance, reflectances, and absorbance spectra for particles from streams (rich in mineral particles) and lakes (some with humic particles, others with predominantly phytoplankton) are compared using the old

  4. Natural Sunlight Shapes Crude Oil-Degrading Bacterial Communities in Northern Gulf of Mexico Surface Waters.

    PubMed

    Bacosa, Hernando P; Liu, Zhanfei; Erdner, Deana L

    2015-01-01

    Following the Deepwater Horizon (DWH) spill in 2010, an enormous amount of oil was observed in the deep and surface waters of the northern Gulf of Mexico. Surface waters are characterized by intense sunlight and high temperature during summer. While the oil-degrading bacterial communities in the deep-sea plume have been widely investigated, the effect of natural sunlight on those in oil polluted surface waters remains unexplored to date. In this study, we incubated surface water from the DWH site with amendments of crude oil, Corexit dispersant, or both for 36 days under natural sunlight in the northern Gulf of Mexico. The bacterial community was analyzed over time for total abundance, density of alkane and polycyclic aromatic hydrocarbon degraders, and community composition via pyrosequencing. Our results showed that, for treatments with oil and/or Corexit, sunlight significantly reduced bacterial diversity and evenness and was a key driver of shifts in bacterial community structure. In samples containing oil or dispersant, sunlight greatly reduced abundance of the Cyanobacterium Synechococcus but increased the relative abundances of Alteromonas, Marinobacter, Labrenzia, Sandarakinotalea, Bartonella, and Halomonas. Dark samples with oil were represented by members of Thalassobius, Winogradskyella, Alcanivorax, Formosa, Pseudomonas, Eubacterium, Erythrobacter, Natronocella, and Coxiella. Both oil and Corexit inhibited the Candidatus Pelagibacter with or without sunlight exposure. For the first time, we demonstrated the effects of light in structuring microbial communities in water with oil and/or Corexit. Overall, our findings improve understanding of oil pollution in surface water, and provide unequivocal evidence that sunlight is a key factor in determining bacterial community composition and dynamics in oil polluted marine waters.

  5. PRKCZ methylation is associated with sunlight exposure in a North American but not a Mediterranean population.

    PubMed

    Aslibekyan, Stella; Dashti, Hassan S; Tanaka, Toshiko; Sha, Jin; Ferrucci, Luigi; Zhi, Degui; Bandinelli, Stefania; Borecki, Ingrid B; Absher, Devin M; Arnett, Donna K; Ordovas, Jose M

    2014-11-01

    Sunlight exposure has been shown to alter DNA methylation patterns across several human cell-types, including T-lymphocytes. Since epigenetic changes establish gene expression profiles, changes in DNA methylation induced by sunlight exposure warrant investigation. The purpose of this study was to assess the effects of sunlight exposure on CD4+ T-cell methylation patterns on an epigenome-wide scale in a North American population of European origin (n=991). In addition, we investigated the genetic contribution to epigenetic variation (methylQTL). We used linear regression to test the associations between methylation scores at 461,281 cytosine-phosphate-guanine (CpG) sites and sunlight exposure, followed by a genome-wide association analysis (methylQTL) to test for associations between methylation at the top CpG locus and common genetic variants, assuming an additive genetic model. We observed an epigenome-wide significant association between sunlight exposure and methylation status at cg26930596 (p=9.2×10(-8)), a CpG site located in protein kinase C zeta (PRKCZ), a gene previously shown to be entrained by light. MethylQTL analysis resulted in significant associations between cg26930596 and two intergenic single nucleotide polymorphisms on chromosome 3, rs4574216 (p=1.5×10(-10)) and rs4405858 (p=1.9×10(-9)). These common genetic variants reside downstream of WWTR1, a transcriptional co-activator of PRKCZ. Associations observed in the North American population, however, did not replicate in an independent Mediterranean cohort. Our preliminary results support the role of sunlight exposure in epigenetic processes, and lay the groundwork for future studies of the molecular link between sunlight and physiologic processes such as tumorigenesis and metabolism.

  6. Wintering birds avoid warm sunshine: predation and the costs of foraging in sunlight.

    PubMed

    Carr, Jennie M; Lima, Steven L

    2014-03-01

    Wintering birds can gain significant thermal benefits by foraging in direct sunlight. However, exposure to bright sunlight might make birds easier to detect by predators and may also cause visual glare that can reduce a bird's ability to monitor the environment. Thus, birds likely experience a trade-off between the thermal benefits and predation-related costs of foraging in direct sunlight. To examine this possible thermoregulation-predation trade-off, we monitored the behavior of mixed-species flocks of wintering emberizid sparrows foraging in alternating strips of sunlight and shade. On average, these sparrows routinely preferred to forage in the shade, despite midday air temperatures as much as 30 °C below their thermoneutral zone. This preference for shade was strongest at relatively high temperatures when the thermal benefits of foraging in sunlight were reduced, suggesting a thermoregulation-predation trade-off. Glare could be reduced if birds faced away from the sun while feeding in direct sunlight, but we found that foraging birds tended to face southward (the direction of the sun). We speculate that other factors, such as the likely direction of predator approach, may explain this southerly orientation, particularly if predators use solar glare to their advantage during an attack. This interpretation is supported by the fact that birds had the weakest southerly orientation on cloudy days. Wintering birds may generally avoid foraging in direct sunlight to minimize their risk of predation. However, given the thermal benefits of sunshine, such birds may benefit from foraging in habitats that provide a mosaic of sunlit and shaded microhabitats.

  7. Toxicological impact of cadmium-based quantum dots towards aquatic biota: Effect of natural sunlight exposure.

    PubMed

    Silva, B F; Andreani, T; Gavina, A; Vieira, M N; Pereira, C M; Rocha-Santos, T; Pereira, R

    2016-07-01

    Cadmium-based quantum dots (QDs) are increasingly applied in existent and emerging technologies, especially in biological applications due to their exceptional photophysical and functionalization properties. However, they are very toxic compounds due to the high reactive and toxic cadmium core. The present study aimed to determine the toxicity of three different QDs (CdS 380, CdS 480 and CdSeS/ZnS) before and after the exposure of suspensions to sunlight, in order to assess the effect of environmentally relevant irradiation levels in their toxicity, which will act after their release to the environment. Therefore, a battery of ecotoxicological tests was performed with organisms that cover different functional and trophic levels, such as Vibrio fischeri, Raphidocelis subcapitata, Chlorella vulgaris and Daphnia magna. The results showed that core-shell type QDs showed lower toxic effects to V. fischeri in comparison to core type QDs before sunlight exposure. However, after sunlight exposure, there was a decrease of CdS 380 and CdS 480 QD toxicity to bacterium. Also, after sunlight exposure, an effective decrease of CdSeS/ZnS and CdS 480 toxicity for D. magna and R. subcapitata, and an evident increase in CdS 380 QD toxicity, at least for D. magna, were observed. The results of this study suggest that sunlight exposure has an effect in the aggregation and precipitation reactions of larger QDs, causing the degradation of functional groups and formation of larger bulks which may be less prone to photo-oxidation due to their diminished surface area. The same aggregation behaviour after sunlight exposure was observed for bare QDs. These results further emphasize that the shell of QDs seems to make them less harmful to aquatic biota, both under standard environmental conditions and after the exposure to a relevant abiotic factor like sunlight.

  8. Natural Sunlight Shapes Crude Oil-Degrading Bacterial Communities in Northern Gulf of Mexico Surface Waters

    PubMed Central

    Bacosa, Hernando P.; Liu, Zhanfei; Erdner, Deana L.

    2015-01-01

    Following the Deepwater Horizon (DWH) spill in 2010, an enormous amount of oil was observed in the deep and surface waters of the northern Gulf of Mexico. Surface waters are characterized by intense sunlight and high temperature during summer. While the oil-degrading bacterial communities in the deep-sea plume have been widely investigated, the effect of natural sunlight on those in oil polluted surface waters remains unexplored to date. In this study, we incubated surface water from the DWH site with amendments of crude oil, Corexit dispersant, or both for 36 days under natural sunlight in the northern Gulf of Mexico. The bacterial community was analyzed over time for total abundance, density of alkane and polycyclic aromatic hydrocarbon degraders, and community composition via pyrosequencing. Our results showed that, for treatments with oil and/or Corexit, sunlight significantly reduced bacterial diversity and evenness and was a key driver of shifts in bacterial community structure. In samples containing oil or dispersant, sunlight greatly reduced abundance of the Cyanobacterium Synechococcus but increased the relative abundances of Alteromonas, Marinobacter, Labrenzia, Sandarakinotalea, Bartonella, and Halomonas. Dark samples with oil were represented by members of Thalassobius, Winogradskyella, Alcanivorax, Formosa, Pseudomonas, Eubacterium, Erythrobacter, Natronocella, and Coxiella. Both oil and Corexit inhibited the Candidatus Pelagibacter with or without sunlight exposure. For the first time, we demonstrated the effects of light in structuring microbial communities in water with oil and/or Corexit. Overall, our findings improve understanding of oil pollution in surface water, and provide unequivocal evidence that sunlight is a key factor in determining bacterial community composition and dynamics in oil polluted marine waters. PMID:26648916

  9. Synthesis of Cr and La-codoped SrTiO3 nanoparticles for enhanced photocatalytic performance under sunlight irradiation.

    PubMed

    Tonda, Surendar; Kumar, Santosh; Anjaneyulu, Oruganti; Shanker, Vishnu

    2014-11-21

    In this study, we report a facile polymeric citrate strategy for the synthesis of Cr,La-codoped SrTiO3 nanoparticles. The synthesized samples were well characterized by various analytical techniques. The UV-vis DRS studies reveal that the absorption edge shifts towards the visible light region after doping with Cr, which is highly beneficial for absorbing the visible light in the solar spectrum. More attractively, codoping with La exhibits greatly enhanced photocatalytic activity for the degradation of Rhodamine B under sunlight irradiation. The optimum photocatalytic activity at 1 atom% of Cr,La-codoped SrTiO3 nanoparticles is almost 6 times higher than that of pure SrTiO3 nanoparticles and 3 times higher than that of Cr-doped SrTiO3 nanoparticles. The high photocatalytic performance in the present photocatalytic system is due to codoping with La, which acts as a most effective donor for stabilizing Cr(3+) in Cr,La-codoped SrTiO3 nanoparticles. More importantly, the synthesized photocatalysts possess high reusability. A proposed mechanism for the enhanced photocatalytic activity of Cr,La-codoped SrTiO3 nanoparticles was also investigated by trapping experiments. Therefore, our results not only demonstrate the highly efficient visible light photocatalytic activity of the Cr,La-codoped SrTiO3 photocatalyst, but also enlighten the codoping strategy in the design and development of advanced photocatalytic materials for energy and environmental applications.

  10. A biomimetic absorbent for removal of trace level persistent organic pollutants from water.

    PubMed

    Liu, Huijuan; Qu, Jiuhui; Dai, Ruihua; Ru, Jia; Wang, Zijian

    2007-05-01

    A novel biomimetic absorbent containing the lipid triolein was developed for removing persistent organic pollutants (POPs) from water. The structural characteristics of the absorbent were obtained by SEM and a photoluminescence method. Under optimum preparation conditions, triolein was perfectly embedded in the cellulose acetate (CA) spheres, the absorbent was stable and no triolein leaked into the water. Dieldrin, endrin, aldrin and heptachlor epoxide were effectively removed by the CA--triolein absorbent in laboratory batch experiments. This suggests that CA-triolein absorbent may serve as a good absorbent for those selected POPs. Triolein in the absorbent significantly increased the absorption capacity, and lower residual concentrations of POPs were achieved when compared to the use of cellulose acetate absorbent. The absorption rate for lipophilic pollutants was very fast and exhibited some relationship with the octanol--water partition coefficient of the analyte. The absorption mechanism is discussed in detail.

  11. Vitamin D and Sunlight Exposure in Newly-Diagnosed Parkinson's Disease.

    PubMed

    Wang, Juan; Yang, Deyu; Yu, Yu; Shao, Gaohai; Wang, Qunbo

    2016-03-04

    Circulating vitamin D has previously been found to be lower in patients with Parkinson's disease (PD), while the effects of sunlight exposure have not yet been fully investigated. Therefore, we evaluated the associations between serum vitamin D, vitamin D intake, sunlight exposure, and newly-diagnosed PD patients in a Chinese population. This case-control study measured serum 25-hydroxyvitamin D (25(OH)D) levels and sunlight exposure in 201 patients with newly-diagnosed PD and 199 controls without neurodegenerative diseases. Data on vitamin D intake and sunlight exposure were obtained using a self-report questionnaire. Multivariable logistic regressions were employed to evaluate the associations between serum 25(OH)D levels, sunlight exposure, and PD. Adjustments were made for sex, age, smoking, alcohol use, education, BMI, and vitamin D intake. There were significantly lower levels of serum 25(OH)D (20.6 ± 6.5 ng/mL), daily vitamin D intake (8.3 ± 3.7 g/day), and sunlight exposure (9.7 ± 4.1 h/week) in patients with PD compared to healthy controls (p < 0.05). Crude odds ratios (ORs) for PD in the quartiles of serum 25(OH)D were 1 (reference), 0.710 (0.401, 1.257), 0.631 (0.348, 1.209), and 0.483 (0.267, 0.874), respectively. Crude ORs for PD in quartiles of sunlight exposure were 1 (reference), 0.809 (0.454, 1.443), 0.623 (0.345, 1.124) and 0.533 (0.294, 0.966), respectively. A significant positive correlation between serum 25(OH)D and sunlight exposure was found, but serum 25(OH)D was not correlated with daily vitamin D intake. This study indicates that lower levels of serum 25(OH)D and sunlight exposure are significantly associated with an increased risk for PD.

  12. Stainless steel in coastal seawater: sunlight counteracts biologically enhanced cathodic kinetics.

    PubMed

    Eashwar, M; Lakshman Kumar, A; Sreedhar, G; Kennedy, J; Suresh Bapu, R H

    2014-09-01

    The influence of sunlight of varying intensity on the performance of UNS S30400 stainless steel (SS) was explored under conditions of natural biofilm development in coastal seawater. In a series of tests performed outdoors under an opaque roof, a range of shades were fashioned to impart varied amounts of diurnal light. These were an ambient level where the underwater illumination was ~ 5% of full sunlight, two intermediate ranges of lighting with ~ 2.5% and ~ 1% of the daylight, and a condition of full darkness. In comparison with the dark, increments of sunlight rendered the SS progressively less aggressive as cathodes in galvanic couples with UNS C70600 alloy. Likewise, welded SS with pre-initiated localized corrosion sites exhibited substantially lower rates of propagation with light. Thus, biofilms and sunlight affected cathodic kinetics in opposite ways. Surface analytical tests showed that the accumulation of manganese (Mn) within the biofilms was small relative to reports from waters of lower salinity. These results not only reveal that extremely low amounts of sunlight are adequate to offset the microbial effect, but also highlight the lack of convincing evidence for Mn cycling as a potent mechanism for enhanced cathodic kinetics in full-strength seawater.

  13. Analysis of daylight performance of solar light pipes influenced by size and shape of sunlight captures

    NASA Astrophysics Data System (ADS)

    Wu, Yanpeng; Jin, Rendong; Zhang, Wenming; Liu, Li; Zou, Dachao

    2009-11-01

    Experimental investigations on three different sunlight captures with diameter 150mm, 212mm, 300mm were carried out under different conditions such as sunny conditions, cloudy conditions and overcast conditions and the two different size solar light pipes with diameter 360mm and 160mm under sunny conditions. The illuminance in the middle of the sunlight capture have relationship with its size, but not linear. To improve the efficiency of the solar light pipes, the structure and the performance of the sunlight capture must be enhanced. For example, University of Science and Technology Beijing Gymnasium, Beijing 2008 Olympic events of Judo and Taekwondo, 148 solar light pipes were installed with the diameter 530mm for each light pipe. Two sunlight captures with different shape were installed and tested. From the measuring results of the illuminance on the work plane of the gymnasium, the improvement sunlight captures have better effects with the size of augmenting and the machining of the internal surface at the same time, so that the refraction increased and the efficiency of solar light pipes improved. The better effects of supplementary lighting for the gymnasium have been achieved.

  14. Mushroom plasmonic metamaterial infrared absorbers

    SciTech Connect

    Ogawa, Shinpei Fujisawa, Daisuke; Hata, Hisatoshi; Uetsuki, Mitsuharu; Misaki, Koji; Kimata, Masafumi

    2015-01-26

    There has been a considerable amount of interest in the development of various types of electromagnetic wave absorbers for use in different wavelength ranges. In particular, infrared (IR) absorbers with wavelength selectivity can be applied to advanced uncooled IR sensors, which would be capable of identifying objects through their radiation spectrum. In the present study, mushroom plasmonic metamaterial absorbers (MPMAs) for the IR wavelength region were designed and fabricated. The MPMAs consist of a periodic array of thin metal micropatches connected to a thin metal plate with narrow silicon (Si) posts. A Si post height of 200 nm was achieved by isotropic XeF{sub 2} etching of a thin Si layer sandwiched between metal plates. This fabrication procedure is relatively simple and is consistent with complementary metal oxide semiconductor technology. The absorption spectra of the fabricated MPMAs were experimentally measured. In addition, theoretical calculations of their absorption properties were conducted using rigorous coupled wave analysis. Both the calculated and measured absorbance results demonstrated that these MPMAs can realize strong selective absorption at wavelengths beyond the period of the array by varying the micropatch width. Absorbance values greater than 90% were achieved. Dual- or single-mode absorption can also be selected by varying the width of the Si posts. Pixel structures using such MPMAs could be used as high responsivity, high resolution and fast uncooled IR sensors.

  15. Mushroom plasmonic metamaterial infrared absorbers

    NASA Astrophysics Data System (ADS)

    Ogawa, Shinpei; Fujisawa, Daisuke; Hata, Hisatoshi; Uetsuki, Mitsuharu; Misaki, Koji; Kimata, Masafumi

    2015-01-01

    There has been a considerable amount of interest in the development of various types of electromagnetic wave absorbers for use in different wavelength ranges. In particular, infrared (IR) absorbers with wavelength selectivity can be applied to advanced uncooled IR sensors, which would be capable of identifying objects through their radiation spectrum. In the present study, mushroom plasmonic metamaterial absorbers (MPMAs) for the IR wavelength region were designed and fabricated. The MPMAs consist of a periodic array of thin metal micropatches connected to a thin metal plate with narrow silicon (Si) posts. A Si post height of 200 nm was achieved by isotropic XeF2 etching of a thin Si layer sandwiched between metal plates. This fabrication procedure is relatively simple and is consistent with complementary metal oxide semiconductor technology. The absorption spectra of the fabricated MPMAs were experimentally measured. In addition, theoretical calculations of their absorption properties were conducted using rigorous coupled wave analysis. Both the calculated and measured absorbance results demonstrated that these MPMAs can realize strong selective absorption at wavelengths beyond the period of the array by varying the micropatch width. Absorbance values greater than 90% were achieved. Dual- or single-mode absorption can also be selected by varying the width of the Si posts. Pixel structures using such MPMAs could be used as high responsivity, high resolution and fast uncooled IR sensors.

  16. Additive manufacturing of RF absorbers

    NASA Astrophysics Data System (ADS)

    Mills, Matthew S.

    The ability of additive manufacturing techniques to fabricate integrated electromagnetic absorbers tuned for specific radio frequency bands within structural composites allows for unique combinations of mechanical and electromagnetic properties. These composites and films can be used for RF shielding of sensitive electromagnetic components through in-plane and out-of-plane RF absorption. Structural composites are a common building block of many commercial platforms. These platforms may be placed in situations in which there is a need for embedded RF absorbing properties along with structural properties. Instead of adding radar absorbing treatments to the external surface of existing structures, which adds increased size, weight and cost; it could prove to be advantageous to integrate the microwave absorbing properties directly into the composite during the fabrication process. In this thesis, a method based on additive manufacturing techniques of composites structures with prescribed electromagnetic loss, within the frequency range 1 to 26GHz, is presented. This method utilizes screen printing and nScrypt micro dispensing to pattern a carbon based ink onto low loss substrates. The materials chosen for this study will be presented, and the fabrication technique that these materials went through to create RF absorbing structures will be described. The calibration methods used, the modeling of the RF structures, and the applications in which this technology can be utilized will also be presented.

  17. Beam-Forming Concentrating Solar Thermal Array Power Systems

    NASA Technical Reports Server (NTRS)

    Cwik, Thomas A. (Inventor); Dimotakis, Paul E. (Inventor); Hoppe, Daniel J. (Inventor)

    2016-01-01

    The present invention relates to concentrating solar-power systems and, more particularly, beam-forming concentrating solar thermal array power systems. A solar thermal array power system is provided, including a plurality of solar concentrators arranged in pods. Each solar concentrator includes a solar collector, one or more beam-forming elements, and one or more beam-steering elements. The solar collector is dimensioned to collect and divert incoming rays of sunlight. The beam-forming elements intercept the diverted rays of sunlight, and are shaped to concentrate the rays of sunlight into a beam. The steering elements are shaped, dimensioned, positioned, and/or oriented to deflect the beam toward a beam output path. The beams from the concentrators are converted to heat at a receiver, and the heat may be temporarily stored or directly used to generate electricity.

  18. Co-exposure to sunlight enhances the toxicity of naturally weathered Deepwater Horizon oil to early lifestage red drum (Sciaenops ocellatus) and speckled seatrout (Cynoscion nebulosus).

    PubMed

    Alloy, Matthew; Garner, Thomas Ross; Bridges, Kristin; Mansfield, Charles; Carney, Michael; Forth, Heather; Krasnec, Michelle; Lay, Claire; Takeshita, Ryan; Morris, Jeffrey; Bonnot, Shane; Oris, James; Roberts, Aaron

    2017-03-01

    The 2010 Deepwater Horizon oil spill resulted in the accidental release of millions of barrels of crude oil into the Gulf of Mexico. Photo-induced toxicity following co-exposure to ultraviolet (UV) radiation is 1 mechanism by which polycyclic aromatic hydrocarbons (PAHs) from oil spills may exert toxicity. Red drum and speckled seatrout are both important fishery resources in the Gulf of Mexico. They spawn near-shore and produce positively buoyant embryos that hatch into larvae in approximately 24 h. The goal of the present study was to determine whether exposure to UV as natural sunlight enhances the toxicity of crude oil to early lifestage red drum and speckled seatrout. Larval fish were exposed to several dilutions of high-energy water-accommodated fractions (HEWAFs) from 2 different oils collected in the field under chain of custody during the 2010 spill and 3 gradations of natural sunlight in a factorial design. Co-exposure to natural sunlight and oil significantly reduced larval survival compared with exposure to oil alone. Although both species were sensitive at PAH concentrations reported during the Deepwater Horizon spill, speckled seatrout demonstrated a greater sensitivity to photo-induced toxicity than red drum. These data demonstrate that even advanced weathering of slicks does not ameliorate the potential for photo-induced toxicity of oil to these species. Environ Toxicol Chem 2017;36:780-785. © 2016 SETAC.

  19. Absorbing Aerosols Workshop, January 20-21, 2016

    SciTech Connect

    Nasiri, Shaima; Williamson, Ashley; Cappa, Christopher D.; Kotamarthi, Davis Rao; Sedlacek, Arthur J.; Flynn, Conner; Lewis, Ernie; McComiskey, Allison; Riemer, Nicole

    2016-07-01

    A workshop was held at DOE Headquarters on January 20-21, 2016 during which experts within and outside DOE were brought together to identify knowledge gaps in modeling and measurement of the contribution of absorbing aerosols (AA) to radiative forcing. Absorbing aerosols refer to those aerosols that absorb light, whereby they both reduce the amount of sunlight reaching the surface (direct effect) and heat their surroundings. By doing so, they modify the vertical distribution of heat in the atmosphere and affect atmospheric thermodynamics and stability, possibly hastening cloud drop evaporation, and thereby affecting cloud amount, formation, dissipation and, ultimately, precipitation. Deposition of AA on snow and ice reduces surface albedo leading to accelerated melt. The most abundant AA type is black carbon (BC), which results from combustion of fossil fuel and biofuel. The other key AA types are brown carbon (BrC), which also results from combustion of fossil fuel and biofuel, and dust (crustal material). Each of these sources may result from, and be strongly influenced by, anthropogenic activities. The properties and amounts of AA depend upon various factors, primarily fuel source and burn conditions (e.g., internal combustion engine, flaming or smoldering wildfire), vegetation type (in the case of BC and BrC), and in the case of dust, soil type and ground cover (i.e., vegetation, snow, etc.). After emission, AA undergo chemical processing in the atmosphere that affects their physical and chemical properties. Thus, attribution of sources of AA, and understanding processes AA undergo during their atmospheric lifetimes, are necessary to understand how they will behave in a changing climate.

  20. Sunlight-induced changes in chromophores and fluorophores of wastewater-derived organic matter in receiving waters--the role of salinity.

    PubMed

    Yang, Xiaofang; Meng, Fangang; Huang, Guocheng; Sun, Li; Lin, Zheng

    2014-10-01

    Wastewater-derived organic matter (WOM) is an important constituent of discharge to urban rivers and is suspected of altering the naturally occurring dissolved organic matter (DOM) in water systems. This study investigated sunlight-induced changes in chromophores and fluorophores of WOM with different salinities (S = 0, 10, 20 and 30) that were collected from two wastewater treatment plants (WWTP-A and WWTP-B). The results showed that exposure to sunlight for 5.3 × 10(5) J/m(2) caused significant decreases in UV254-absorbing WOM (45-59% loss) compared to gross dissolved organic carbon (<15% loss). An increase in salinity accelerated the overall photo-degradation rates of the UV254-absorbing chromophores from both WOM and natural DOM. In addition, irradiated WOM at a higher salinity had a larger molecular size than that at a lower salinity. However, natural DOM did not display such behavior. Parallel factor analysis of the excitation-emission matrix determined the presence of two humic-like components (C1 and C2) and two protein-like components (C3 and C4). All the components in WOM followed second-order kinetics, except for the C4 component in WWTP-A, which fit zero-order photoreaction kinetics. The photo-degradation of the C1 component in both WWTPs appeared to be independent of salinity; however, the photo-degradation rates of the C2 and C3 components in both WWTPs and C4 in WWTP-B increased significantly with increasing salinity. In comparison, the photo-degradation of the C1 component was significantly facilitated by increased salinity in natural DOM, fitting first-order photoreaction kinetics. As such, the current knowledge concerning the photo-degradation of naturally occurring DOM cannot be extrapolated for the understanding of WOM photo-degradation.

  1. Low temperature selective absorber research

    NASA Astrophysics Data System (ADS)

    Herzenberg, S. A.; Silberglitt, R.

    1982-04-01

    Research carried out since 1979 on selective absorbers is surveyed, with particular attention given to the low-temperature coatings seen as promising for flat plate and evacuated tube applications. The most thoroughly investigated absorber is black chrome, which is highly selective and is the most durable low-temperature absorber. It is believed that other materials, because of their low cost and lower content of strategic materials, may eventually supplant black chrome. Among these candidates are chemically converted black nickel; anodically oxidized nickel, zinc, and copper composites; and nickel or other low-cost multilayer coatings. In reviewing medium and high-temperature research, black chrome, multilayer coatings and black cobalt are seen as best medium-temperature candidates. For high temperatures, an Al2O3/Pt-Al203 multilayer composite or the zirconium diboride coating is preferred.

  2. [Decoloring and spectral properties analysis of innoxious ultraviolet absorbents].

    PubMed

    Fang, Yi-Wen; Ni, Wen-Xiu; Huang, Chong; Xue, Liang; Yu, Lin

    2006-07-01

    The ultraviolet absorbent extracted from mango leaves, was discolored by some decoloring agent. Then the spectral properties of the discolored ultraviolet absorbents were analyzed. The discolored method of ultraviolet absorbent was studied by comparing one with the others. The results showed that the discoloring effect was satisfactory by using active carbon, H2O2, citric acid, and oxalic acid as decoloring agent. Specially, when oxalic acid was used as decoloring agent, the color of the production was slight, the rate of production was high, and the absorption effect of ultraviolet ray was well. When the concentration of the ultraviolet absorbent solution is 0.5% (w/w), the ultraviolet ray transmission was smaller than 0.3% in 200-370 nm, and it increased slightly from 370 nm. There was a maximum value at 400 nm, approaching 12%.

  3. Optical modeling of sunlight by using partially coherent sources in organic solar cells.

    PubMed

    Alaibakhsh, Hamzeh; Darvish, Ghafar

    2016-03-01

    We investigate the effects of coherent and partially coherent sources in optical modeling of organic solar cells. Two different organic solar cells are investigated: one without substrate and the other with a millimeter-sized glass substrate. The coherent light absorption is calculated with rigorous coupled-wave analysis. The result of this method is convolved with a distribution function to calculate the partially coherent light absorption. We propose a new formulation to accurately model sunlight as a set of partially coherent sources. In the structure with glass substrate, the accurate sunlight modeling results in the elimination of coherent effects in the thick substrate, but the coherency in other layers is not affected. Using partially coherent sources instead of coherent sources for simulations with sunlight results in a smoother absorption spectrum, but the change in the absorption efficiency is negligible.

  4. Magnetically tunable metamaterial perfect absorber

    NASA Astrophysics Data System (ADS)

    Lei, Ming; Feng, Ningyue; Wang, Qingmin; Hao, Yanan; Huang, Shanguo; Bi, Ke

    2016-06-01

    A magnetically tunable metamaterial perfect absorber (MPA) based on ferromagnetic resonance is experimentally and numerically demonstrated. The ferrite-based MPA is composed of an array of ferrite rods and a metallic ground plane. Frequency dependent absorption of the ferrite-based MPA under a series of applied magnetic fields is discussed. An absorption peak induced by ferromagnetic resonance appears in the range of 8-12 GHz under a certain magnetic field. Both the simulated and experimental results demonstrate that the absorption frequency of the ferrite-based MPA can be tuned by the applied magnetic field. This work provides an effective way to fabricate the magnetically tunable metamaterial perfect absorber.

  5. Adaptive inertial shock-absorber

    NASA Astrophysics Data System (ADS)

    Faraj, Rami; Holnicki-Szulc, Jan; Knap, Lech; Seńko, Jarosław

    2016-03-01

    This paper introduces and discusses a new concept of impact absorption by means of impact energy management and storage in dedicated rotating inertial discs. The effectiveness of the concept is demonstrated in a selected case-study involving spinning management, a recently developed novel impact-absorber. A specific control technique performed on this device is demonstrated to be the main source of significant improvement in the overall efficiency of impact damping process. The influence of various parameters on the performance of the shock-absorber is investigated. Design and manufacturing challenges and directions of further research are formulated.

  6. Damage tolerant light absorbing material

    DOEpatents

    Lauf, R.J.; Hamby, C. Jr.; Akerman, M.A.; Seals, R.D.

    1993-09-07

    A light absorbing article comprised of a composite of carbon-bonded carbon fibers, is prepared by: blending carbon fibers with a carbonizable organic powder to form a mixture; dispersing the mixture into an aqueous slurry; vacuum molding the aqueous slurry to form a green article; drying and curing the green article to form a cured article; and, carbonizing the cured article at a temperature of at least about 1000 C to form a carbon-bonded carbon fiber light absorbing composite article having a bulk density less than 1 g/cm[sup 3]. 9 figures.

  7. Damage tolerant light absorbing material

    DOEpatents

    Lauf, Robert J.; Hamby, Jr., Clyde; Akerman, M. Alfred; Seals, Roland D.

    1993-01-01

    A light absorbing article comprised of a composite of carbon-bonded carbon fibers, prepared by: blending carbon fibers with a carbonizable organic powder to form a mixture; dispersing the mixture into an aqueous slurry; vacuum molding the aqueous slurry to form a green article; drying and curing the green article to form a cured article; and, carbonizing the cured article at a temperature of at least about 1000.degree. C. to form a carbon-bonded carbon fiber light absorbing composite article having a bulk density less than 1 g/cm.sup.3.

  8. Dense-array concentrator photovoltaic system using non-imaging dish concentrator and crossed compound parabolic concentrator

    NASA Astrophysics Data System (ADS)

    Chong, Kok-Keong; Yew, Tiong-Keat; Wong, Chee-Woon; Tan, Ming-Hui; Tan, Woei-Chong; Lai, An-Chow; Lim, Boon-Han; Lau, Sing-Liong; Rahman, Faidz Abdul

    2015-04-01

    Solar concentrating device plays an important role by making use of optical technology in the design, which can be either reflector or lens to deliver high flux of sunlight onto the Concentrator Photovoltaic (CPV) module receiver ranging from hundreds to thousand suns. To be more competitive compared with fossil fuel, the current CPV systems using Fresnel lens and Parabolic dish as solar concentrator that are widely deployed in United States, Australia and Europe are facing great challenge to produce uniformly focused sunlight on the solar cells as to reduce the cost of electrical power generation. The concept of non-imaging optics is not new, but it has not fully explored by the researchers over the world especially in solving the problem of high concentration solar energy, which application is only limited to be a secondary focusing device or low concentration device using Compound Parabolic Concentrator. With the current advancement in the computer processing power, we has successfully invented the non-imaging dish concentrator (NIDC) using numerical simulation method to replace the current parabolic dish as primary focusing device with high solar concentration ratio (more than 400 suns) and large collective area (from 25 to 125 m2). In this paper, we disclose our research and development on dense array CPV system based on non-imaging optics. The geometry of the NIDC is determined using a special computational method. In addition, an array of secondary concentrators, namely crossed compound parabolic concentrators, is also proposed to further focus the concentrated sunlight by the NIDC onto active area of solar cells of the concentrator photovoltaic receiver. The invention maximizes the absorption of concentrated sunlight for the electric power generation system.

  9. Rapid destruction of organic chemicals in groundwater using sunlight

    SciTech Connect

    Tyner, C.E.; Haslund, C.A.; Pacheco, J.E.; Holmes, J.T.

    1989-01-01

    We are currently investigating a solar-driven photocatalytic process that promises to destroy low concentrations of hazardous organic molecules in large volumes of contaminated groundwater or industrial waste streams. Preliminary results of laboratory-scale screening tests using a model compound, salicylic acid, and titanium dioxide catalyst have shown that no measurable reaction occurs without both uv light and catalyst; no measurable volatilization of the salicylic acid occurs at room temperature; salicylic acid destruction rates depend on catalyst supplier and concentration and on uv light intensity; and some intermediates are being formed and subsequently destroyed. Observed reaction rates are consistent with those observed in an initial pilot-scale solar test of a falling-film reactor, although further testing will be required to quantify the comparison. 10 refs., 5 figs.

  10. Fundamentals and techniques of nonimaging optics for solar energy concentration. Final report

    SciTech Connect

    Winston, R.

    1980-05-20

    Nonimaging optics is a new discipline with techniques, formalism and objectives quite distinct from the traditional methods of focusing optics. These new systems achieve or closely approach the maximum concentration permitted by the Second Law of Thermodynamics for a given angular acceptance and are often called ideal. Application of these new principles to solar energy over the past seven years has led to the invention of a new class of solar concentrators, the most well known version of which is the Compound Parabolic Concentrator or CPC. A new formalism for analyzing nonimaging systems in terms of a quantity called the geometrical vector flux has been developed. This has led not only to a better understanding of the properties of ideal concentrators but to the discovery of several new concentrator designs. One of these new designs referred to as the trumpet concentrator has several advantageous features when used as a secondary concentrator for a point focusing dish concentrator. A new concentrator solution for absorbers which must be separated from the reflector by a gap has been invented. The properties of a variety of new and previously known nonimaging optical configurations have been investigated: for example, Compound Elliptical Concentrators (CEC's) as secondary concentrators and asymmetric ideal concentrators. A thermodynamic model which explains quantitatively the enhancement of effective absorptance of gray body receivers through cavity effects has been developed. The classic method of Liu and Jordan, which allows one to predict the diffuse sunlight levels through correlation with the total and direct fraction was revised and updated and applied to predict the performance of nonimaging solar collectors. The conceptual design for an optimized solar collector which integrates the techniques of nonimaging concentration with evacuated tube collector technology was carried out.

  11. Light Absorbers and Catalysts for Solar to Fuel Conversion

    NASA Astrophysics Data System (ADS)

    Kornienko, Nikolay I.

    Increasing fossil fuel consumption and the resulting consequences to the environment has propelled research into means of utilizing alternative, clean energy sources. Solar power is among the most promising of renewable energy sources but must be converted into an energy dense medium such as chemical bonds to render it useful for transport and energy storage. Photoelectrochemistry (PEC), the splitting of water into oxygen and hydrogen fuel or reducing CO 2 to hydrocarbon fuels via sunlight is a promising approach towards this goal. Photoelectrochemical systems are comprised of several components, including light absorbers and catalysts. These parts must all synergistically function in a working device. Therefore, the continual development of each component is crucial for the overall goal. For PEC systems to be practical for large scale use, the must be efficient, stable, and composed of cost effective components. To this end, my work focused on the development of light absorbing and catalyst components of PEC solar to fuel converting systems. In the direction of light absorbers, I focused of utilizing Indium Phosphide (InP) nanowires (NWs) as photocathodes. I first developed synthetic techniques for InP NW solution phase and vapor phase growth. Next, I developed light absorbing photocathodes from my InP NWs towards PEC water splitting cells. I studied cobalt sulfide (CoSx) as an earth abundant catalyst for the reductive hydrogen evolution half reaction. Using in situ spectroscopic techniques, I elucidated the active structure of this catalyst and offered clues to its high activity. In addition to hydrogen evolution catalysts, I established a new generation of earth abundant catalysts for CO2 reduction to CO fuel/chemical feedstock. I first worked with molecularly tunable homogeneous catalysts that exhibited high selectivity for CO2 reduction in non-aqueous media. Next, in order to retain molecular tunability while achieving stability and efficiency in aqueous

  12. It is not a fixed drug eruption, it is a fixed "sunlight" eruption.

    PubMed

    Valdivieso, Rommel; Cañarte, Cecilia

    2010-12-01

    Hyperpigmented fixed eruption is a phenomenon usually related with drug antigens, and known as fixed drug eruption. A woman had a skin condition with clinical and histopathologic indications of fixed drug eruption. The disease first appeared when she went to a swimming pool and left with hyperpigmented macules. Previously affected skin reactivated on three other occasions when she again visited swimming pools. Sunlight involvement (UVA-UVB) was demonstrated through phototests. Sunlight should be considered as a cause of fixed drug-like eruption and a possible cause of some cases of FDE without any apparent etiological factor.

  13. Test technology on CCD anti-sunlight jamming based on complex circumstance

    NASA Astrophysics Data System (ADS)

    Shi, Sheng-bing; Chen, Zhen-xing; Han, Fu-li

    2016-09-01

    Visible-light reconnaissance device based on CCD is applied to all kinds of weapons, CCD cannot work because of saturation when it faces intense light. Sun is intense light source in nature and assignably influences CCD performance. In this paper, aim is appraising CCD anti-sunlight ability, object reflection characteristic test system is designed, based on typical background reflection characteristic including grant, sand and so on, complex circumstance is formulated and test project is optimized with orthogonal design method, problem that is without test technology on CCD anti-sunlight jamming is solved.

  14. Absorbed dose measurements on external surface of Kosmos-satellites with glass thermoluminescent detectors.

    PubMed

    Akatov YuA; Arkhangelsky, V V; Kovalev, E E; Spurny, F; Votochkova, I

    1989-01-01

    In this paper we present absorbed dose measurements with glass thermoluminescent detectors on external surface of satellites of Kosmos-serie flying in 1983-87. Experiments were performed with thermoluminescent aluminophosphate glasses of thicknesses 0.1, 0.3, 0.4, 0.5, and 1 mm. They were exposed in sets of total thickness between 5 and 20 mm, which were protected against sunlight with thin aluminized foils. In all missions, extremely high absorbed dose values were observed in the first layers of detectors, up to the thickness of 0.2 to 0.5 gcm-2. These experimental results confirm that, during flights at 250 to 400 km, doses on the surface of the satellites are very high, due to the low energy component of the proton and electron radiation.

  15. Counterflow absorber for an absorption refrigeration system

    DOEpatents

    Reimann, Robert C.

    1984-01-01

    An air-cooled, vertical tube absorber for an absorption refrigeration system is disclosed. Strong absorbent solution is supplied to the top of the absorber and refrigerant vapor is supplied to the bottom of the absorber to create a direct counterflow of refrigerant vapor and absorbent solution in the absorber. The refrigeration system is designed so that the volume flow rate of refrigerant vapor in the tubes of the absorber is sufficient to create a substantially direct counterflow along the entire length of each tube in the absorber. This provides several advantages for the absorber such as higher efficiency and improved heat transfer characteristics, and allows improved purging of non-condensibles from the absorber.

  16. Metamaterial Absorbers for Microwave Detection

    DTIC Science & Technology

    2015-06-01

    a) Depiction of metamaterial array of square resonators atop FR4. (b) Metamaterial dimensions and structure...comparison for varying resonator array dimension sizes. ..............23 Figure 12. Absorption derived from raw reflection data...36 x Figure 23. Metamaterial absorber array where resonator dimensions control the detection frequencies and

  17. Oil and fat absorbing polymers

    NASA Technical Reports Server (NTRS)

    Marsh, H. E., Jr. (Inventor)

    1977-01-01

    A method is described for forming a solid network polymer having a minimal amount of crosslinking for use in absorbing fats and oils. The polymer remains solid at a swelling ratio in oil or fat of at least ten and provides an oil absorption greater than 900 weight percent.

  18. Emissive Molecular Aggregates and Energy Migration in Luminescent Solar Concentrators.

    PubMed

    Banal, James L; Zhang, Bolong; Jones, David J; Ghiggino, Kenneth P; Wong, Wallace W H

    2017-01-17

    Luminescent solar concentrators (LSCs) are light harvesting devices that are ideally suited to light collection in the urban environment where direct sunlight is often not available. LSCs consist of highly luminescent compounds embedded or coated on a transparent substrate that absorb diffuse or direct solar radiation over a large area. The resulting luminescence is trapped in the waveguide by total internal reflection to the thin edges of the substrate where the concentrated light can be used to improve the performance of photovoltaic devices. The concept of LSCs has been around for several decades, and yet the efficiencies of current devices are still below expectations for commercial viability. There are two primary challenges when designing new chromophores for LSC applications. Reabsorption of dye emission by chromophores within the waveguide is a significant loss mechanism attenuating the light output of LSCs. Concentration quenching, particularly in organic dye systems, restricts the quantity of chromophores that can be incorporated in the waveguide thus limiting the light absorbed by the LSC. Frequently, a compromise between increased light harvesting of the incident light and decreasing emission quantum yield is required for most organic chromophore-based systems due to concentration quenching. The low Stokes shift of common organic dyes used in current LSCs also imposes another optimization problem. Increasing light absorption of LSCs based on organic dyes to achieve efficient light harvesting also enhances reabsorption. Ideally, a design strategy to simultaneously optimize light harvesting, concentration quenching, and reabsorption of LSC chromophores is clearly needed to address the significant losses in LSCs. Over the past few years, research in our group has targeted novel dye structures that address these primary challenges. There is a common perception that dye aggregates are to be avoided in LSCs. It became apparent in our studies that aggregates

  19. Phenolic carbonyls undergo rapid aqueous photodegradation to form low-volatility, light-absorbing products

    NASA Astrophysics Data System (ADS)

    Smith, Jeremy D.; Kinney, Haley; Anastasio, Cort

    2016-02-01

    We investigated the aqueous photochemistry of six phenolic carbonyls - vanillin, acetovanillone, guaiacyl acetone, syringaldehyde, acetosyringone, and coniferyl aldehyde - that are emitted from wood combustion. The phenolic carbonyls absorb significant amounts of solar radiation and decay rapidly via direct photodegradation, with lifetimes (τ) of 13-140 min under Davis, CA winter solstice sunlight at midday (solar zenith angle = 62°). The one exception is guaiacyl acetone, where the carbonyl group is not directly connected to the aromatic ring: This species absorbs very little sunlight and undergoes direct photodegradation very slowly (τ > 103 min). We also found that the triplet excited states (3C*) of the phenolic carbonyls rapidly oxidize syringol (a methoxyphenol without a carbonyl group), on timescales of 1-5 h for solutions containing 5 μM phenolic carbonyl. The direct photodegradation of the phenolic carbonyls, and the oxidation of syringol by 3C*, both efficiently produce low volatility products, with SOA mass yields ranging from 80 to 140%. Contrary to most aliphatic carbonyls, under typical fog conditions we find that the primary sink for the aromatic phenolic carbonyls is direct photodegradation in the aqueous phase. In areas of significant wood combustion, phenolic carbonyls appear to be small but significant sources of aqueous SOA: over the course of a few hours, nearly all of the phenolic carbonyls will be converted to SOA via direct photodegradation, enhancing the POA mass from wood combustion by approximately 3-5%.

  20. Thermal analysis of the crotch absorber in APS

    NASA Astrophysics Data System (ADS)

    Sheng, I. C. A.; Howell, Joseph W.

    1993-02-01

    A crotch absorber design for use in the Advanced Photon Source (APS) has been proposed and analyzed. The absorber is placed downstream of sectors S2 and S4 in the curved storage ring chamber and is subjected to a peak power of 120 W/mm2 per 100 mA synchrotron radiation. A beryllium ring is brazed on the GlidCop cooling cylinder in order to diffuse the concentrated bending magnet heating. One concentric water channel and two annular return water channels are arranged in the GlidCop cylinder to enhance the cooling. A Bodner-Partom thermoviscoplastic constitutive equation and a modified Manson-Coffin fatigue relation are proposed to simulate the cyclic thermal loading, as well as to predict the thermal fatigue life of the crotch absorber. Results of temperature and stress using finite element computations are displayed and a series of e-beam welder tests and microstructure measurements are reported.

  1. Thermal analysis of the crotch absorber in APS

    SciTech Connect

    Sheng, I.C.; Howell, J.

    1992-01-01

    A crotch absorber design for use in the Advanced Photon source (APS) has been proposed and analyzed. the absorber is placed downstream of sectors S2 and S4 in the curved storage ring chamber and will be subjected to a peak power of 120 W/mm{sup 2} per 100mA synchrotron radiation. A beryllium ring is brazed on the GlidCop cooling cylinder in order to diffuse the concentrated bending magnet heating. One concentric water channel and two annular return water channels are arranged in the GlidCop cylinder to enhance the cooling. A Bodner-Partom thermoviscoplastic constitutive equation and a modified Manson-Coffin fatigue relation are proposed to simulate the cyclic thermal loading, as well as to predict the thermal fatigue life of the crotch absorber. Results of temperature and stress using finite element computations are displayed and series of e-beam welder tests and microstructure measurements are reported.

  2. Thermal analysis of the crotch absorber in APS

    SciTech Connect

    Sheng, I.C.; Howell, J.

    1992-10-01

    A crotch absorber design for use in the Advanced Photon source (APS) has been proposed and analyzed. the absorber is placed downstream of sectors S2 and S4 in the curved storage ring chamber and will be subjected to a peak power of 120 W/mm{sup 2} per 100mA synchrotron radiation. A beryllium ring is brazed on the GlidCop cooling cylinder in order to diffuse the concentrated bending magnet heating. One concentric water channel and two annular return water channels are arranged in the GlidCop cylinder to enhance the cooling. A Bodner-Partom thermoviscoplastic constitutive equation and a modified Manson-Coffin fatigue relation are proposed to simulate the cyclic thermal loading, as well as to predict the thermal fatigue life of the crotch absorber. Results of temperature and stress using finite element computations are displayed and series of e-beam welder tests and microstructure measurements are reported.

  3. Mesoporous film of WO3-the "sunlight" assisted decomposition of surfactant in wastewater for voltammetric determination of Pb

    NASA Astrophysics Data System (ADS)

    Krasnodębska-Ostręga, Beata; Bielecka, Agnieszka; Biaduń, Ewa; Miecznikowski, Krzysztof

    2016-12-01

    In this paper we present the application of "sunlight" assisted digestion in the presence of WO3 to the decomposition of dissolved organic matter, using the anionic surfactant sodium dodecyl sulfate (SDS) and the nonionic surfactant (1,1,3,3-tetramethylbutyl)phenyl-polyethylene glycol (Triton™X-114) in natural water samples, prior to the determination of traces residues of lead by stripping voltammetry methods. The results of the study showed firstly that the preparation of reproducible WO3 layers characterized by high mechanical and chemical resistance was possible, and secondly that it was also possible to obtain a high efficiency of decomposition, equal in efficiency to that of the reference method, which was the hydrogen peroxide oxidation assisted by UV, with evaporation nearly to dryness. The developed procedure is suggested to be a no-reagents method for the decomposition of added SDS, leading to 100% recovery of added Pb (II). The anodic stripping voltammetric curves recorded in solution after 4 h irradiation with UV assisted by WO3 were repeatable and increased linearly with standard additions, but the data finally obtained were incorrect. The curves recorded in solution after "sunlight" assisted digestion in the presence of WO3 were repeatable, and increased linearly with an increasing of concentration of standard additions (100% recovery of Pb). In the case of a nonionic surfactant, the decomposition time is at least 6 h. The advantage of the proposed method is the fact that the digestion process does not need the addition of any chemicals for the complete decomposition of organic matter.

  4. Decay kinetics of microbial source tracking (MST) markers and human adenovirus under the effects of sunlight and salinity.

    PubMed

    L, Liang; S G, Goh; K Y H, Gin

    2017-01-01

    Artificial seawater and freshwater microcosms inoculated with raw sewage were set up to compare the persistence of microbial source tracking (MST) markers (i.e. Bacteroides thetaiotaomicron (B. theta), Methanobrevibacter smithii (M. smithii), human polyomaviruses JC and BK (HPyVs)) and human adenoviruses under different sunlight intensity and salinity. PMA pretreatment successfully eliminated the false-positive detection of dead bacterial cells in the model-development experiment. The results were then validated using real environmental matrices in microcosms inoculated with raw sewage. The genome concentrations of the targets followed a first-order decay pattern with 90% reduction of the initial amounts in <5days for both artificial and natural surface waters. Decay rate constant (k1) were developed microorganisms in artificial water matrices. Due to the different water environment conditions, improved decay rates (k2) incorporated with sunlight, TSS and TOC adjustment coefficients were used for validation of the natural water matrices. Based on the predictive squared correlation coefficient (Q(2)F) and root-mean-square error (RMSE) validation criteria, the improved k2 were able to provide better prediction on the survival of target microorganisms in environmental surface waters (Q(2)F>0.6 and RMSE ranged from 0.05 to 1.81). For microbial source tracking purposes, HPyVs are suggested to be better MST markers in freshwater, while B. theta is recommended for seawater based on the decay models developed in this study. The targeted DNA of M. smithii should only be used to indicate recent human faecal pollution in surface waters due to their faster decay than human adenoviruses.

  5. OVI absorbers in SDSS spectra

    NASA Astrophysics Data System (ADS)

    Frank, Stephan

    We conducted a systematic search for signatures of the Intergalactic Medium (IGM) in Quasar spectra of the Sloan Digital Sky Survey (SDSS) Data Release 3 (DR3), focusing on finding intervening absorbers via detection of their O VI doublet. We present a search algorithm, and criteria for distinguishing candidates from spurious Lyman a forest lines. In addition, we compare our findings with simulations of the Lyman a forest in order to estimate the detectability of O VI doublets over various redshift intervals. We obtain a sample of 1866 O VI doublet candidates with rest-frame equivalent width >= 0.05 λ in 855 AGN spectra (out of 3702 objects with redshifts in the range accessible for O VI detection). This sample is subdivided into 3 groups according to the likelihood of being real and the potential for follow-up observation of the candidate. The group with the cleanest and most secure candidates is comprised of 145 candidates. 69 of these reside at a velocity separation >= 5000 km/s from the QSO, and can therefore be classified tentatively as intervening absorbers. Most of these absorbers have not been picked up by earlier, automated QSO absorption line detection algorithms. This sample increases the number of known O VI absorbers at redshifts beyond z abs >= 2.7 substantially. We propose to obtain observations of some of the candidates with the best signatures for O VI doublets with high signal-to-noise and high resolution in order to better constrain the physical state of the absorbers. We then focused on a subsample of 387 AGN sightlines with an average S/N >= 5: 0, allowing for the detection of absorbers above a rest-frame equivalent width limit of W r >= 0:19 ? A for the O VI 1032 λ component. Accounting for random interlopers mimicking an O VI doublet, we derive for the first time a secure lower limit for the redshift number density DN/Dz for redshifts z abs >= 2:8. With extensive Monte Carlo simulations we quantify the losses of absorbers due to blending

  6. Photovoltaic solar concentrator

    DOEpatents

    Nielson, Gregory N.; Gupta, Vipin P.; Okandan, Murat; Watts, Michael R.

    2016-03-15

    A photovoltaic solar concentrator is disclosed with one or more transverse-junction solar cells (also termed point contact solar cells) and a lens located above each solar cell to concentrate sunlight onto the solar cell to generate electricity. Piezoelectric actuators tilt or translate each lens to track the sun using a feedback-control circuit which senses the electricity generated by one or more of the solar cells. The piezoelectric actuators can be coupled through a displacement-multiplier linkage to provide an increased range of movement of each lens. Each lens in the solar concentrator can be supported on a frame (also termed a tilt plate) having three legs, with the movement of the legs being controlled by the piezoelectric actuators.

  7. Photovoltaic solar concentrator

    DOEpatents

    Nielson, Gregory N.; Okandan, Murat; Resnick, Paul J.; Cruz-Campa, Jose Luis

    2012-12-11

    A photovoltaic solar concentrator is disclosed with one or more transverse-junction solar cells (also termed point contact solar cells) and a lens located above each solar cell to concentrate sunlight onto the solar cell to generate electricity. Piezoelectric actuators tilt or translate each lens to track the sun using a feedback-control circuit which senses the electricity generated by one or more of the solar cells. The piezoelectric actuators can be coupled through a displacement-multiplier linkage to provide an increased range of movement of each lens. Each lens in the solar concentrator can be supported on a frame (also termed a tilt plate) having three legs, with the movement of the legs being controlled by the piezoelectric actuators.

  8. Effect of sunlight on the infectivity of Cryptosporidium parvum in seawater.

    PubMed

    Nasser, Abid M; Telser, Lital; Nitzan, Yeshayahu

    2007-09-01

    The prevalence of pathogenic microorganisms in seawater can result in waterborne and food borne outbreaks. This study was performed to determine the effect of sunlight and salinity on the die-off of Cryptosporidium parvum. Cryptosporidium parvum oocysts, Escherichia coli, and MS2 coliphage were seeded into tap water and seawater samples and then exposed to sunlight. The die-off of C. parvum in seawater, as measured by infectivity, was greater under sunlight (-3.08 log10) than under dark conditions (-1.31 log10). While, no significant difference was recorded in the die-off of C. parvum, under dark conditions, in tap water as compared to seawater (P < 0.05), indicating that the synergistic effect of salinity and sunlight was responsible for the enhanced die-off in seawater. The die-off of MS2 coliphage and E. coli was greater than that observed for C. parvum under all tested conditions. This indicates that these microorganisms cannot serve as indicators for the presence of C. parvum oocysts in seawaters. The results of the study suggest that C. parvum can persist as infectious oocysts for a long time in seawater and can thus pose a serious hazard by direct and indirect contact with humans.

  9. Effect of Humic Acid and Sunlight on the Generation of aqu/C60

    EPA Science Inventory

    Little is known about the effect of sunlight and natural organic matter, such as humic acid, on the aqueous suspension of fullerene C60. This knowledge gap limits our ability to determine the environmental impact of potential environmental releases of these materials. Aqueous sus...

  10. [The Impact of Sunlight Exposure on the Health of Older Adults].

    PubMed

    Lin, Tzu-Chia; Liao, Yen-Chi

    2016-08-01

    Appropriate exposure to sunlight not only contributes to the production of vitamin D, which has been associated with enhanced bone health, mood, and cognitive functions, but also regulates the secretion of melatonin, which has been associated with the mediation of circadian rhythms, improved sleep quality, and optimized physical and social activity in the elderly. However, damage to the skin, eyes, and immune system has also been widely associated with long-term exposure to sunlight. Several studies have shown that many elderly, especially those that reside in institutions, do not receive sufficient sunlight exposure. Institutionalized elderly tend to participate in indoor activities and spend significant periods of time alone and asleep in front of the television. Furthermore, factors such as poor health, environmental design, indoor/outdoor preference, and activity design may impact the access of institutionalized elderly to sunlight more than their non-institutionalized peers. Therefore, we suggest that in addition to obtaining sufficient levels of vitamin D from their diet and from supplements, the elderly should perform outdoor activities for 20-30 minutes a day for five days each week. Furthermore, we suggest that the environment of the care facility should be made be more accessible and that some activities should be held outdoors.

  11. Preventive role of lens antioxidant defense mechanism against riboflavin-mediated sunlight damaging of lens crystallins.

    PubMed

    Anbaraki, Afrooz; Khoshaman, Kazem; Ghasemi, Younes; Yousefi, Reza

    2016-10-01

    The main components of sunlight reaching the eye lens are UVA and visible light exerting their photo-damaging effects indirectly by the aid of endogenous photosensitizer molecules such as riboflavin (RF). In this study, lens proteins solutions were incubated with RF and exposed to the sunlight. Then, gel mobility shift analysis and different spectroscopic assessments were applied to examine the structural damaging effects of solar radiation on these proteins. Exposure of lens proteins to direct sunlight, in the presence of RF, leads to marked structural crosslinking, oligomerization and proteolytic instability. These structural damages were also accompanied with reduction in the emission fluorescence of Trp and Tyr and appearance of a new absorption peak between 300 and 400nm which can be related to formation of new chromophores. Also, photo-oxidation of lens crystallins increases their oligomeric size distribution as examined by dynamic light scattering analysis. The above mentioned structural insults, as potential sources of sunlight-induced senile cataract and blindness, were significantly attenuated in the presence of ascorbic acid and glutathione which are two important components of lens antioxidant defense system. Therefore, the powerful antioxidant defense mechanism of eye lens is an important barrier against molecular photo-damaging effects of solar radiations during the life span.

  12. Facile synthesis of sunlight-driven AgCI:Ag plasmonic nanophotocatalyst.

    SciTech Connect

    An, C.; Peng, S.; Sun, Y.; Center for Nanoscale Materials; Univ. of Illinois

    2010-06-18

    Highly efficient plasmonic photocatalysts of AgCl:Ag hybrid nanoparticles are successfully synthesized via a one-pot synthetic approach involving a precipitation reaction followed by polyol reduction. The as-synthesized nanoparticles exhibit high catalytic performance under visible light and sunlight for decomposing organics, such as methylene blue.

  13. Degradation of benzotriazole and benzothiazole in treatment wetlands and by artificial sunlight.

    PubMed

    Felis, Ewa; Sochacki, Adam; Magiera, Sylwia

    2016-11-01

    Laboratory-scale experiments were performed using unsaturated subsurface-flow treatment wetlands and artificial sunlight (with and without TiO2) to study the efficiency of benzotriazole and benzothiazole removal and possible integration of these treatment methods. Transformation products in the effluent from the treatment wetlands and the artificial sunlight reactor were identified by high performance liquid chromatography coupled with tandem mass spectrometry. The removal of benzothiazole in the vegetated treatment wetlands was 99.7%, whereas the removal of benzotriazole was 82.8%. The vegetation positively affected only the removal of benzothiazole. The major transformation products in the effluents from the treatment wetlands were methylated and hydroxylated derivatives of benzotriazole, and hydroxylated derivatives of benzothiazole. Hydroxylation was found to be the main process governing the transformation pathway for both compounds in the artificial sunlight experiment (with and without TiO2). Benzotriazole was not found to be susceptible to photodegradation in the absence of TiO2. The integration of the sunlight-induced processes (with TiO2) with subsurface-flow treatment wetlands caused further elimination of the compounds (42% for benzotriazole and 58% for benzothiazole). This was especially significant for the elimination of benzotriazole, because the removal of this compound was 96% in the coupled processes.

  14. SUNLIGHT AND IRON(III)-INDUCED PHOTOCHEMICAL PRODUCTION OF DISSOLVED GASEOUS MERCURY IN FRESHWATER. (R827632)

    EPA Science Inventory

    Mechanistic understanding of sunlight-induced natural processes for
    production of dissolved gaseous mercury (DGM) in freshwaters has remained
    limited, and few direct field tests of the mechanistic hypotheses are available.
    We exposed ferric iron salt-spiked fresh s...

  15. Competitive Interaction of Axonopus compressus and Asystasia gangetica under Contrasting Sunlight Intensity

    PubMed Central

    Samedani, B.; Juraimi, A. S.; Anwar, M. P.; Rafii, M. Y.; Sheikh Awadz, S. H.; Anuar, A. R.

    2013-01-01

    Axonopus compressus is one of the native soft grass species in oil palm in Malaysia which can be used as a cover crop. The competitive ability of A. compressus to overcome A. gangetica was studied using multiple-density, multiple-proportion replacements series under a glasshouse and full sunlight conditions in a poly bag for 10 weeks. A. compressus produced more dry weight and leaf area when competing against A. gangetica than in monoculture at both densities in the full sunlight and at high density in the shade. Moreover, the relative yield and relative crowding coefficients also indicated A. compressus is a stronger competitor than A. gangetica at both densities in the full sunlight and high density in the shade. It seemed that A. gangetica plants in the shade did not compete with each other and were more competitive against A. compressus as could influence A. compressus height in the shade. It is concluded that although suppression of A. gangetica by A. compressus occurred under full sunlight, irrespective of plant density, this ability reduced under shade as A. compressus density decreased. The result suggests that A. compressus in high density could be considered as a candidate for cover crops under oil palm canopy. PMID:24163618

  16. Degradation of ethylparaben under simulated sunlight using photo-Fenton.

    PubMed

    Zúñiga-Benítez, Henry; Peñuela, Gustavo A

    2016-01-01

    Ethylparaben (EPB) has been classified by different research groups as a potential endocrine-disrupting chemical, implying that it can potentially interfere with the normal balance of the endocrine system of living beings, which with its presence in different effluents, including drinking water, generates the need to seek methods that allow its removal from different water bodies. Advanced oxidation processes have been employed widely to remove organic compounds from different matrices. In this way, Fenton technology (process based on the reaction between ferrous ions and hydrogen peroxide) has been able to degrade different substrates, but due to the Fe(2+) requirements to carry out the reaction optimally, combination of the conventional Fenton process with visible light radiation (photo-Fenton) is an alternative used in the treatment of pollution due to the presence of chemicals. In this way, the effectiveness of photo-Fenton on EPB degradation was assessed using a face-centered central composite experimental design that allowed assessment of the effects of Fe(2+) and H2O2 initial concentrations on process. In general, results indicated that after 180 min of reaction almost all EPB was eliminated, the dissolved organic carbon in solution was reduced and the sample biodegradability index was increased.

  17. 78 FR 45521 - Desert Sunlight 250, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-29

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Desert Sunlight 250, LLC; Supplemental Notice That Initial Market-Based Rate...-referenced proceeding, of Desert Sunlight 250, LLC's application for market-based rate authority, with...

  18. 78 FR 45922 - Desert Sunlight 300, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-30

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Desert Sunlight 300, LLC; Supplemental Notice That Initial Market-Based Rate...-referenced proceeding, of Desert Sunlight 300, LLC's application for market-based rate authority, with...

  19. 76 FR 50493 - Notice of Availability of the Record of Decision for the Desert Sunlight Holdings, LLC, Desert...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-15

    ... Bureau of Land Management Notice of Availability of the Record of Decision for the Desert Sunlight Holdings, LLC, Desert Sunlight Solar Farm (DSSF) and California Desert Conservation Area Plan Amendment... Amendment to the California Desert Conservation Area (CDCA) Plan, the applicable Resource Management...

  20. Oxidation and biodegradation of polyethylene films containing pro-oxidantadditives: Synergistic effects of sunlight exposure, thermal aging and fungal biodegradation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Synergistic effects of sunlight exposure, thermal aging and fungal biodegradation on the oxidation and biodegradation of linear low density poly (ethylene) PE-LLD films containing pro-oxidant were examined. To achieve oxidation and degradation, films were first exposed to the sunlight for 93 days du...

  1. Dietary calcein marking of shovelnose sturgeon and the effect of sunlight on mark retention

    USGS Publications Warehouse

    Honeyfield, D.C.; Kindschi, G.A.; Bell, T.A.; Mohler, J.W.

    2011-01-01

    Calcein, a fluorochrome dye, is a potential fish-marking agent that has not been evaluated in sturgeon. Shovelnose sturgeon Scaphirhynchus platorynchus (average weight, 9.7 g) were fed calcein, immersed in a calcein bath, or left unmarked to determine calcein mark intensity. In the first study, six treatments were evaluated in a two-by-three factorial arrangement. Feed was formulated with 2.0 g of SE-MARK/kg either as powder or in an encapsulated form. Sturgeon were fed the test diets for 5, 10, or 15 d. They readily ate feed containing powdered or encapsulated calcein. Sturgeon fed powdered calcein had more brilliant marks than those fed encapsulated calcein (8.27 versus 4.66 lm; P < 0.03) 6 months postexposure. Fish fed calcein for 15 d (11.26 lm) were more brilliant (P < 0.002) than fish fed for either 5 d (3.02 lm) or 10 d (5.11 lm). Post hoc comparison of the three treatment groups showed that sturgeon fed powdered calcein for 15 d (14.06 lm) were brighter (P < 0.01) than fish fed encapsulated calcein (8.46 lm) or fish immersed in calcein (9.68 lm). In the second study, previouslymarked sturgeon were exposed to sunlight for 14months to determine their retention of calcein marks. Dorsal marks were no longer visible on fish exposed to 100% sunlight after 8 weeks. Most but not all fish exposed to 20% sunlight had no discernable dorsalmarks after 8 weeks, but ventral marks at the pectoral fin girdle were present on all fish in the 0% and 20% sunlight exposure treatments. Feeding calcein for 15 d appears to have excellent potential for practical application, such as distinguishing hatchery-reared from wild fish. Ventral calcein marks remained visible after 14 months of exposure to 20% sunlight when sturgeon were reared in clear water. ?? American Fisheries Society 2011.

  2. Photosensitized rose Bengal-induced phototoxicity on human melanoma cell line under natural sunlight exposure.

    PubMed

    Srivastav, Ajeet K; Mujtaba, Syed Faiz; Dwivedi, Ashish; Amar, Saroj K; Goyal, Shruti; Verma, Ankit; Kushwaha, Hari N; Chaturvedi, Rajnish K; Ray, Ratan Singh

    2016-03-01

    Rose Bengal (RB) is an anionic water-soluble xanthene dye, which used for many years to assess eye cornea and conjunctiva damage. RB showed strong absorption maxima (λmax) under visible light followed by UV-B and UV-A. RB under sunlight exposure showed a time-dependent photodegradation. Our results show that photosensitized RB generates (1)O2 via Type-II photodynamic pathway and induced DNA damage under sunlight/UV-R exposure. 2'dGuO degradation, micronuclei formation, and single- and double-strand breakage were the outcome of photogenotoxicity caused by RB. Quenching studies with NaN3 advocate the involvement of (1)O2 in RB photogenotoxicity. RB induced linoleic acid photoperoxidation, which was parallel to (1)O2-mediated DNA damage. Oxidative stress in A375 cell line (human melanoma cell line) was detected through DCF-DA assay. Photosensitized RB decreased maximum cellular viability under sunlight followed by UV-B and UV-A exposures. Apoptosis was detected as a pattern of cell death through the increased of caspase-3 activity, decreased mitochondrial membrane potential, and PS translocation through inner to outer plasma membrane. Increased cytosolic levels of Bax also advocate the apoptotic cell death. We propose a p53-mediated apoptosis via increased expression of Bax gene and protein. Thus, the exact mechanism behind RB phototoxicity was the involvement of (1)O2, which induced oxidative stress-mediated DNA and membrane damage, finally apoptotic cell death under natural sunlight exposure. The study suggests that after the use of RB, sunlight exposure may avoid to prevent from its harmful effects.

  3. A Fluidically Tunable Metasurface Absorber for Flexible Large-Scale Wireless Ethanol Sensor Applications

    PubMed Central

    Kim, Hyung Ki; Lee, Dongju; Lim, Sungjoon

    2016-01-01

    In this paper, a novel flexible tunable metasurface absorber is proposed for large-scale remote ethanol sensor applications. The proposed metasurface absorber consists of periodic split-ring-cross resonators (SRCRs) and microfluidic channels. The SRCR patterns are inkjet-printed on paper using silver nanoparticle inks. The microfluidic channels are laser-etched on polydimethylsiloxane (PDMS) material. The proposed absorber can detect changes in the effective permittivity for different liquids. Therefore, the absorber can be used for a remote chemical sensor by detecting changes in the resonant frequencies. The performance of the proposed absorber is demonstrated with full-wave simulation and measurement results. The experimental results show the resonant frequency increases from 8.9 GHz to 10.04 GHz when the concentration of ethanol is changed from 0% to 100%. In addition, the proposed absorber shows linear frequency shift from 20% to 80% of the different concentrations of ethanol. PMID:27509498

  4. The 3D heat flux density distribution on a novel parabolic trough wavy absorber

    NASA Astrophysics Data System (ADS)

    Demagh, Yassine; Kabar, Yassine; Bordja, Lyes; Noui, Samira

    2016-05-01

    The non-uniform concentrated solar flux distribution on the outer surface of the absorber pipe can lead to large circumferential gradient temperature and high concentrated temperature of the absorber pipe wall, which is one of the primary causes of parabolic trough solar receiver breakdown. In this study, a novel shape of the parabolic trough absorber pipe is proposed as a solution to well homogenize the solar flux distribution, as well as, the temperature in the absorber wall. The conventional straight absorber located along the focal line of the parabola is replaced by wavy one (invention patent by Y. Demagh [1]) for which the heat flux density distribution on the outer surface varies in both axial and azimuthal directions (3D) while it varies only in the azimuthal direction on the former (2D). As far as we know, there is not previous study which has used a longitudinally wavy pipe as an absorber into the parabolic trough collector unit.

  5. Digital Alloy Absorber for Photodetectors

    NASA Technical Reports Server (NTRS)

    Hill, Cory J. (Inventor); Ting, David Z. (Inventor); Gunapala, Sarath D. (Inventor)

    2016-01-01

    In order to increase the spectral response range and improve the mobility of the photo-generated carriers (e.g. in an nBn photodetector), a digital alloy absorber may be employed by embedding one (or fraction thereof) to several monolayers of a semiconductor material (insert layers) periodically into a different host semiconductor material of the absorber layer. The semiconductor material of the insert layer and the host semiconductor materials may have lattice constants that are substantially mismatched. For example, this may performed by periodically embedding monolayers of InSb into an InAsSb host as the absorption region to extend the cutoff wavelength of InAsSb photodetectors, such as InAsSb based nBn devices. The described technique allows for simultaneous control of alloy composition and net strain, which are both key parameters for the photodetector operation.

  6. Changes in ultraviolet absorbance and hence in protective efficacy against lipid peroxidation of organic sunscreens after UVA irradiation.

    PubMed

    Damiani, Elisabetta; Rosati, Luca; Castagna, Riccardo; Carloni, Patricia; Greci, Lucedio

    2006-03-01

    Owing to the spectral distribution of solar UV, the UVA component of sunlight is now believed to be the main cause of photoaging and photocarcinogenesis and is much more effective than UVB in inducing peroxidative damage. Consequently, most skin care cosmetic products now include UVA filters in their formulations along with UVB filters. These modern sunscreens should provide and maintain their initial absorbance, hence protection, throughout the entire period of exposure to sunlight. However, not all UVA and UVB filters are sufficiently photostable. In this study, we examine the correlation between the photochemical degradation of sunscreen agents under UVA irradiation, with particular reference to the UVA-absorber 4-tert-butyl-4'-methoxydibenzoylmethane, alone and in combination with other organic UV filters (2-ethylhexyl 4 methoxycinnamate and 2-ethylhexyl 2-cyano-3,3-diphenylacrylate) and their ability to prevent UVA-induced lipid peroxidation. Since antioxidants are also added to formulations to deactivate free radicals generated during UVA exposure, vitamin E and the synthetic antioxidant, bis(2,2,6,6-tetramethyl-1-oxyl-piperidine-4-yl)sebacate, a nitroxide derivative, were also included in this study. By using simple in vitro tests, the results show that a decrease in spectral absorbance of the UV filters correlates in most cases with increased UVA-induced lipid peroxidation; this depends on the specific UV absorber analysed and also on whether they are alone or in combination. Furthermore, the combined presence or absence of antioxidants has a profound effect on this oxidative event. In particular, the nitroxide appears to be a more efficient photo-antioxidant than vitamin E. Similar experiments were also performed under natural sunlight and the results obtained did not differ substantially from those performed under UVA. The results presented and discussed in this work may help in understanding the effects of UVA/UVB absorbers and antioxidants upon the

  7. Recycling of waste tyre rubber into oil absorbent.

    PubMed

    Wu, B; Zhou, M H

    2009-01-01

    The abundant and indiscriminant disposal of waste tyres has caused both health and environmental problems. In this work, we provide a new way to dispose off waste tyres by reusing the waste tyre rubber (WTR) for oil absorptive material production. To investigate this feasibility, a series of absorbents were prepared by graft copolymerization-blending method, using waste tyre rubber and 4-tert-butylstyrene (tBS) as monomers. Divinylbenzene (DVB) and benzoyl peroxide (BPO) were employed as crosslinker and initiator, respectively. The existence of graft-blends (WTR-g-tBS) was determined by FTIR spectrometry and verified using thin-layer chromatography (TLC). In addition, the thermal properties of WTR-g-tBS were confirmed by a thermogravimetric analyzer (TGA). Oil absorbency of the grafted-blends increased with increases in either feed ratio of WTR to tBS or DVB concentration. This absorbency reached a maximum of 24.0gg(-1) as the feed ratio and DVB concentration were 60/40 and 1wt%, respectively, after which it decreased. At other ratios and concentrations the absorbency decreased. The gel fraction of grafted-blends increased with increasing concentration of DVB. Oil-absorption processes in pure toluene and crude oil diluted with toluene were found to adhere to first-order absorption kinetics. Furthermore, the oil-absorption rate in diluted crude oil was observed to be lower than pure toluene.

  8. One dimensional CdS nanowire@TiO2 nanoparticles core-shell as high performance photocatalyst for fast degradation of dye pollutants under visible and sunlight irradiation.

    PubMed

    Arabzadeh, Abbas; Salimi, Abdollah

    2016-10-01

    In this study, one-dimensional CdS nanowires@TiO2 nanoparticles core-shell structures (1D CdS NWs@TiO2 NPs) were synthesized by a facile wet chemical-solvothermal method. The different aspects of the properties of CdS NWs@TiO2 NPs were surveyed by using a comprehensive range of characterization techniques including X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), UV-vis spectroscopy, scanning electron microscopy (SEM), fluorescence spectroscopy, energy dispersive X-ray spectroscopy (EDX), Cyclic Voltammetry (CV) and amperometry. The as-prepared nanostructure was applied as an effective photocatalyst for degradation of methyl orange (MO), methylene blue (MB) and rhodamine B (Rh B) under visible and sunlight irradiation. The results indicated significantly enhanced photocatalytic activity of CdS NWs@TiO2 NPs for degradation of MO, MB and Rh B compared to CdS NWs. The enhanced photocatalytic activity could be attributed to the enhanced sunlight absorbance and the efficient charge separation of the formed heterostructure between CdS NWs and TiO2. The results showed that MO, Rh B and MB were almost completely degraded after 2, 2 and 3min of exposure to sunlight, respectively; while under visible light irradiation (3W blue LED lamp) the dyes were decomposed with less half degradation rate. The catalytic activity was retained even after three degradation cycles of organic dyes, demonstrating that the proposed nanocomposite can be effectively used as efficient photocatalyst for removal of environmental pollutions caused by organic dyes under sunlight irradiation and it could be an important addition to the field of wastewater treatment. We hope the present study may open a new window of such 1-D semiconductor nanocomposites to be used as visible light photocatalysts in the promising field of organic dyes degradation.

  9. Impacts of Snow Darkening by Absorbing Aerosols on Eurasian Climate

    NASA Technical Reports Server (NTRS)

    Kim, Kyu-Myong; Lau, William K M.; Yasunari, Teppei J.; Kim, Maeng-Ki; Koster, Randal D.

    2016-01-01

    The deposition of absorbing aerosols on snow surfaces reduces snow-albedo and allows snowpack to absorb more sunlight. This so-called snow darkening effect (SDE) accelerates snow melting and leads to surface warming in spring. To examine the impact of SDE on weather and climate during late spring and early summer, two sets of NASA GEOS-5 model simulations with and without SDE are conducted. Results show that SDE-induced surface heating is particularly pronounced in Eurasian regions where significant depositions of dust transported from the North African deserts, and black carbon from biomass burning from Asia and Europe occur. In these regions, the surface heating due to SDE increases surface skin temperature by 3-6 degrees Kelvin near the snowline in spring. Surface energy budget analysis indicates that SDE-induced excess heating is associated with a large increase in surface evaporation, subsequently leading to a significant reduction in soil moisture, and increased risks of drought and heat waves in late spring to early summer. Overall, we find that rainfall deficit combined with SDE-induced dry soil in spring provide favorable condition for summertime heat waves over large regions of Eurasia. Increased frequency of summer heat waves with SDE and the region of maximum increase in heat-wave frequency are found along the snow line, providing evidence that early snowmelt by SDE may increase the risks of extreme summer heat wave. Our results suggest that climate models that do not include SDE may significantly underestimate the effect of global warming over extra-tropical continental regions.

  10. Shock absorber operates over wide range

    NASA Technical Reports Server (NTRS)

    Creasy, W. K.; Jones, J. C.

    1965-01-01

    Piston-type hydraulic shock absorber, with a metered damping system, operates over a wide range of kinetic energy loading rates. It is used for absorbing shock and vibration on mounted machinery and heavy earth-moving equipment.

  11. 21 CFR 872.6050 - Saliva absorber.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... absorber is a device made of paper or cotton intended to absorb moisture from the oral cavity during dental... manufacturing practice requirements of the quality system regulation in part 820 of this chapter, with...

  12. Results from the Sunlight Absorption on the Greenland Ice Sheet Experiment (SAGE)

    NASA Astrophysics Data System (ADS)

    Polashenski, C.; Dibb, J. E.; Flanner, M.; Courville, Z.; Chen, J.

    2014-12-01

    MODIS observations indicate that albedo of the Greenland ice sheet (GIS) has been declining since 2001, with important implications for energy balance and surface melt. The SAGE project seeks to understand the relative roles played by grain size changes, black carbon (BC), dust, and surface melt in decreasing the albedo of the high elevation areas of the GIS. Traverses were conducted in 2013 and 2014, sampling a total of 67 snow pits across much of northwestern Greenland to characterize snow microphysics and the deposition of absorbing impurities over the prior 1-2 annual cycles, with particular attention paid to sampling the 2012 melt layer. Results show elevated biomass burning derived BC levels in summer 2012 and elevated dust concentrations in spring 2013 at some sites, both particularly in the central areas of the ice sheet. Observations and modeling results indicate, however, that the albedo impact of these modest enhancements in impurity concentrations was very minimal (<<1%) in the dry snow environment. Grain metamorphosis in dry snow and surface wetting/grain growth occurring when melt extends to higher elevations appear to be the most important processes controlling albedo change across the high elevations of the Greenland ice sheet.

  13. Improving the laboratory monitoring of absorbent oil

    SciTech Connect

    V.S. Shved; S.S. Sychev; I.V. Safina; S.A. Klykov

    2009-05-15

    The performance of absorbent coal tar oil is analyzed as a function of the constituent and group composition. The qualitative and quantitative composition of the oil that ensures the required absorbent properties is determined. Operative monitoring may be based on absorbent characteristics that permit regulation of the beginning and end of regeneration.

  14. Performance of a new carbon dioxide absorbent, Yabashi lime® as compared to conventional carbon dioxide absorbent during sevoflurane anesthesia in dogs.

    PubMed

    Kondoh, Kei; Atiba, Ayman; Nagase, Kiyoshi; Ogawa, Shizuko; Miwa, Takashi; Katsumata, Teruya; Ueno, Hiroshi; Uzuka, Yuji

    2015-08-01

    In the present study, we compare a new carbon dioxide (CO2) absorbent, Yabashi lime(®) with a conventional CO2 absorbent, Sodasorb(®) as a control CO2 absorbent for Compound A (CA) and Carbon monoxide (CO) productions. Four dogs were anesthetized with sevoflurane. Each dog was anesthetized with four preparations, Yabashi lime(®) with high or low-flow rate of oxygen and control CO2 absorbent with high or low-flow rate. CA and CO concentrations in the anesthetic circuit, canister temperature and carbooxyhemoglobin (COHb) concentration in the blood were measured. Yabashi lime(®) did not produce CA. Control CO2 absorbent generated CA, and its concentration was significantly higher in low-flow rate than a high-flow rate. CO was generated only in low-flow rate groups, but there was no significance between Yabashi lime(®) groups and control CO2 absorbent groups. However, the CO concentration in the circuit could not be detected (≤5ppm), and no change was found in COHb level. Canister temperature was significantly higher in low-flow rate groups than high-flow rate groups. Furthermore, in low-flow rate groups, the lower layer of canister temperature in control CO2 absorbent group was significantly higher than Yabashi lime(®) group. CA and CO productions are thought to be related to the composition of CO2 absorbent, flow rate and canister temperature. Though CO concentration is equal, it might be safer to use Yabashi lime(®) with sevoflurane anesthesia in dogs than conventional CO2 absorbent at the point of CA production.

  15. Porcelain enamel neutron absorbing material

    DOEpatents

    Iverson, Daniel C.

    1990-02-06

    A porcelain enamel composition as a neutron absorbing material can be prepared of a major proportion by weight of a cadmium compound and a minor proportion of compounds of boron, lithium and silicon. These compounds in the form of a porcelain enamel coating or layer on several alloys has been found to be particularly effective in enhancing the nuclear safety of equipment for use in the processing and storage of fissile material. The composition of the porcelain enamel coating can be tailored to match the coefficient of thermal expansion of the equipment to be coated and excellent coating adhesion can be achieved.

  16. Porcelain enamel neutron absorbing material

    DOEpatents

    Iverson, D.C.

    1987-11-20

    A porcelain enamel composition as a neutron absorbing material can be prepared of a major proportion by weight of a cadmium compound and a minor proportion of compound of boron, lithium and silicon. These compounds in the form of a porcelain enamel coating or layer on several alloys has been found to be particularly effective in enhancing the nuclear safety of equipment for use in the processing and storage of fissile material. The composition of the porcelain enamel coating can be tailored to match the coefficient of thermal expansion of the equipment to be coated and excellent coating adhesion can be achieved. 2 figs.

  17. Porcelain enamel neutron absorbing material

    DOEpatents

    Iverson, Daniel C.

    1990-01-01

    A porcelain enamel composition as a neutron absorbing material can be prepared of a major proportion by weight of a cadmium compound and a minor proportion of compounds of boron, lithium and silicon. These compounds in the form of a porcelain enamel coating or layer on several alloys has been found to be particularly effective in enhancing the nuclear safety of equipment for use in the processing and storage of fissile material. The composition of the porcelain enamel coating can be tailored to match the coefficient of thermal expansion of the equipment to be coated and excellent coating adhesion can be achieved.

  18. Waters of Hydration of Cupric Hydrates: A Comparison between Heating and Absorbance Methods

    ERIC Educational Resources Information Center

    Barlag, Rebecca; Nyasulu, Frazier

    2011-01-01

    The empirical formulas of four cupric hydrates are determined by measuring the absorbance in aqueous solution. The Beer-Lambert Law is verified by constructing a calibration curve of absorbance versus known Cu[superscript 2+](aq) concentration. A solution of the unknown hydrate is prepared by using 0.2-0.3 g of hydrate, and water is added such…

  19. Carbon dioxide absorbents for rebreather diving.

    PubMed

    Pennefather, John

    2016-09-01

    Firstly I would like to thank SPUMS members for making me a Life Member of SPUMS; I was surprised and greatly honoured by the award. I also want to confirm and expand on the findings on carbon dioxide absorbents reported by David Harvey et al. For about 35 years, I was the main player in deciding which absorbent went into Australian Navy and Army diving sets. On several occasions, suppliers of absorbents to the anaesthesia market tried to supply the Australian military market. On no occasion did they provide absorbent that came close to the minimum absorbent capacity required, generally being 30-40% less efficient than diving-grade absorbents. Because I regard lives as being more important than any likely dollar saving, the best absorbent was always selected unless two suppliers provided samples with the same absorbent capacity. On almost every occasion, there was a clear winner and cost was never considered. I suggest the same argument for the best absorbent should be used by members and their friends who dive using rebreather sets. I make this point because of my findings on a set that was brought to me after the death of its owner. The absorbent was not the type or grain size recommended by the manufacturer of the set and did not resemble any of the diving grade absorbents I knew of. I suspected by its appearance that it was anaesthetic grade absorbent. When I tested the set, the absorbent system failed very quickly so it is likely that carbon dioxide toxicity contributed to his death. The death was not the subject of an inquest and I have no knowledge of how the man obtained the absorbent. Possibly there was someone from an operating theatre staff who unintentionally caused their friend's death by supplying him with 'borrowed absorbent'. I make this point as I would like to discourage members from making a similar error.

  20. Estimating the Performance of a Concentrating Solar Array

    NASA Technical Reports Server (NTRS)

    French, E. P.; Mills, M. W.; Backovsky, Z.

    1985-01-01

    Comprehensive mathematical-analysis technique developed for array of solar-photovoltaic panels equipped with truncated-pyramid concentrators. Hollow pyramidal concentrator reflects Sunlight onto panel of photovoltaic cells. Comprehensive optical, thermal, and electrical analysis performed on array of units. Technique applicable, with modifications, to analysis and design of other multiple-cell reflecting photovoltaic systems.

  1. Semiconductor nanoparticle-based hydrogels prepared via self-initiated polymerization under sunlight, even visible light

    PubMed Central

    Zhang, Da; Yang, Jinhu; Bao, Song; Wu, Qingsheng; Wang, Qigang

    2013-01-01

    Since ancient times, people have used photosynthesized wood, bamboo, and cotton as building and clothing materials. The advantages of photo polymerization include the mild and easy process. However, the direct use of available sunlight for the preparation of materials is still a challenge due to its rather dilute intensity. Here, we show that semiconductor nanoparticles can be used for initiating monomer polymerization under sunlight and for cross-linking to form nanocomposite hydrogels with the aid of clay nanosheets. Hydrogels are an emerging multifunctional platform because they can be easily prepared using solar energy, retain semiconductor nanoparticle properties after immobilization, exhibit excellent mechanical strength (maximum compressive strength of 4.153 MPa and tensile strength 1.535 MPa) and high elasticity (maximum elongation of 2784%), and enable recyclable photodegradation of pollutants. This work suggests that functional nanoparticles can be immobilized in hydrogels for their collective application after combining their mechanical and physiochemical properties. PMID:23466566

  2. Nanocomposite heterojunctions as sunlight-driven photocatalysts for hydrogen production from water splitting

    NASA Astrophysics Data System (ADS)

    Reza Gholipour, Mohammad; Dinh, Cao-Thang; Béland, François; Do, Trong-On

    2015-04-01

    Hydrogen production via photocatalytic water splitting using sunlight has enormous potential in solving the worldwide energy and environmental crisis. The key challenge in this process is to develop efficient photocatalysts which must satisfy several criteria such as high chemical and photochemical stability, effective charge separation and strong sunlight absorption. The combination of different semiconductors to create composite materials offers a promising way to achieve efficient photocatalysts because doing so can improve the charge separation, light absorption and stability of the photocatalysts. In this review article, we summarized the most recent studies on semiconductor composites for hydrogen production under visible light irradiation. After a general introduction about the photocatalysis phenomenon, typical heterojunctions of widely studied heterogeneous semiconductors, including titanium dioxide, cadmium sulfide and graphitic carbon nitride are discussed in detail.

  3. Sunlight-enhanced calcareous deposition on cathodic stainless steel in natural seawater.

    PubMed

    Eashwar, M; Sathish Kumar, P; Ravishankar, R; Subramanian, G

    2013-01-01

    In replicate series of experiments in natural seawater, one in full darkness and the other in a 1:1 diurnal cycle with as little as ~5% of natural solar illumination, sunlight promoted calcareous deposition on cathodic stainless steel surfaces. As exemplified by scanning electron microscopy, the deposit that formed under the natural diurnal cycle, in the presence of photosynthetic biofilms, was composed of finer calcareous crystals that provided more compact and more uniform surface coverage than the one formed in the dark. The light-enhanced deposit also possessed better scale properties, as suggested by X-ray analysis and electrochemical measurements. Sunlight enhancement of calcareous deposition looked all the more conspicuous when day and night regimes were examined independently. These results not only bear important implications for cathodic protection in marine waters, but also provide an intriguing analogy to coral reef calcification.

  4. Light-absorbing impurities in Arctic snow

    NASA Astrophysics Data System (ADS)

    Doherty, S. J.; Warren, S. G.; Grenfell, T. C.; Clarke, A. D.; Brandt, R. E.

    2010-12-01

    Absorption of radiation by ice is extremely weak at visible and near-ultraviolet wavelengths, so small amounts of light-absorbing impurities in snow can dominate the absorption of solar radiation at these wavelengths, reducing the albedo relative to that of pure snow, contributing to the surface energy budget and leading to earlier snowmelt. In this study Arctic snow is surveyed for its content of light-absorbing impurities, expanding and updating the 1983-1984 survey of Clarke and Noone. Samples were collected in Alaska, Canada, Greenland, Svalbard, Norway, Russia, and the Arctic Ocean during 1998 and 2005-2009, on tundra, glaciers, ice caps, sea ice, frozen lakes, and in boreal forests. Snow was collected mostly in spring, when the entire winter snowpack is accessible for sampling. Sampling was carried out in summer on the Greenland Ice Sheet and on the Arctic Ocean, of melting glacier snow and sea ice as well as cold snow. About 1200 snow samples have been analyzed for this study. The snow is melted and filtered; the filters are analyzed in a specially designed spectrophotometer system to infer the concentration of black carbon (BC), the fraction of absorption due to non-BC light-absorbing constituents and the absorption Ångstrom exponent of all particles. This is done using BC calibration standards having a mass absorption efficiency of 6.0 m2 g-1 at 550 nm and by making an assumption that the absorption Angstrom exponent for BC is 1.0 and for non-BC light-absorbing aerosol is 5.0. The reduction of snow albedo is primarily due to BC, but other impurities, principally brown (organic) carbon, are typically responsible for ~40% of the visible and ultraviolet absorption. The meltwater from selected snow samples was saved for chemical analysis to identify sources of the impurities. Median BC amounts in surface snow are as follows (nanograms of carbon per gram of snow): Greenland 3, Arctic Ocean snow 7, melting sea ice 8, Arctic Canada 8, subarctic Canada 14

  5. A polarization-independent broadband terahertz absorber

    SciTech Connect

    Shi, Cheng; Zang, XiaoFei E-mail: ymzhu@usst.edu.cn; Wang, YiQiao; Chen, Lin; Cai, Bin; Zhu, YiMing E-mail: ymzhu@usst.edu.cn

    2014-07-21

    A highly efficient broadband terahertz absorber is designed, fabricated, and experimentally as well as theoretically evaluated. The absorber comprises a heavily doped silicon substrate and a well-designed two-dimensional grating. Due to the destructive interference of waves and diffraction, the absorber can achieve over 95% absorption in a broad frequency range from 1 to 2 THz and for angles of incidence from 0° to 60°. Such a terahertz absorber is also polarization-independent due to its symmetrical structure. This omnidirectional and broadband absorber have potential applications in anti-reflection coatings, imaging systems, and so on.

  6. Surface modification as an effective approach to enhance the microwave absorbing properties of hollow carbon spheres

    NASA Astrophysics Data System (ADS)

    Zhu, Hui-Ling; Xu, Zhen-Fu; Cui, Hong-Zhi; Wu, Jie; Dang, Jun-Fan; Wang, Tian-Fang; Zhang, Li-Dong

    2016-10-01

    The microwave absorbing properties of hollow carbon spheres modified by KOH were measured using a transmission/reflection coaxial method in the range of 2-18 GHz. The modification could result in a significant enhancement in the properties, including both the increment in absorbing intensity and bandwidth and the decrease in absorber thickness, which can be well explained by the high concentration of dangling bonds in per unit volume or per unit weight introduced during the modification. This dangling bond dominated mechanism could be used to instruct the design of absorbers with outstanding performances.

  7. Development of optical tool for the characterization of selective solar absorber tubes

    NASA Astrophysics Data System (ADS)

    Braillon, Julien; Stollo, Alessio; Delord, Christine; Raccurt, Olivier

    2016-05-01

    In the Concentrated Solar Power (CSP) technologies, selective solar absorbers, which have a cylindrical geometry, are submitted to strong environmental constraints. The degradation of their optical properties (total solar absorbance and total emittance) has a direct impact on the performances. In order to know optical properties of absorber tubes, we present in this article a new optical tool developed by our laboratory which fit onto commercial spectrometers. Total solar absorbance and total emittance are calculated from total reflectance spectra measured by UV-Vis and IR spectrophotometry. To verify and validate the measurement method, we performed a comparative study between flat and cylindrical samples with same surface properties.

  8. Production of Bio-Energy from Pig Manure: A Focus on the Dynamics Change of Four Parameters under Sunlight-Dark Conditions.

    PubMed

    Yin, Dongxue; Liu, Wei; Zhai, Ningning; Feng, Yongzhong; Yang, Gaihe; Wang, Xiaojiao; Han, Xinhui

    2015-01-01

    This study investigated the effect of sunlight-dark conditions on volatile fatty acids (VFAs), total ammonium nitrogen (TAN), total alkalinity (TA) and pH during pig manure (PM) digestion and then the subsequent influence on biogas yield of PM. PM1 and PM2 were performed in a transparent reactor and a non-transparent reactor, respectively. Two sets of experiments were conducted with a temperature of 35.0±2.0 °C and a total solid concentration of 8.0% to the digestion material. The dynamic change of the four parameters in response to sunlight-dark conditions resulted in variations of the physiological properties in the digester and affected the cumulative biogas production (CBP). PM1 obtained higher CBP (15020.0 mL) with a more stable pH and a lower TAN concentration (1414.5 mg/L) compared to PM2 (2675.0 mL and 1670.0 mg/L, respectively). The direct path coefficients and indirect path coefficients between the four parameters and CBP were also analyzed.

  9. Production of Bio-Energy from Pig Manure: A Focus on the Dynamics Change of Four Parameters under Sunlight-Dark Conditions

    PubMed Central

    Yin, Dongxue; Liu, Wei; Zhai, Ningning; Feng, Yongzhong; Yang, Gaihe; Wang, Xiaojiao; Han, Xinhui

    2015-01-01

    This study investigated the effect of sunlight-dark conditions on volatile fatty acids (VFAs), total ammonium nitrogen (TAN), total alkalinity (TA) and pH during pig manure (PM) digestion and then the subsequent influence on biogas yield of PM. PM1 and PM2 were performed in a transparent reactor and a non-transparent reactor, respectively. Two sets of experiments were conducted with a temperature of 35.0±2.0 °C and a total solid concentration of 8.0% to the digestion material. The dynamic change of the four parameters in response to sunlight-dark conditions resulted in variations of the physiological properties in the digester and affected the cumulative biogas production (CBP). PM1 obtained higher CBP (15020.0 mL) with a more stable pH and a lower TAN concentration (1414.5 mg/L) compared to PM2 (2675.0 mL and 1670.0 mg/L, respectively). The direct path coefficients and indirect path coefficients between the four parameters and CBP were also analyzed. PMID:25970266

  10. Inferring Absorbing Organic Carbon Content from AERONET Data

    NASA Technical Reports Server (NTRS)

    Arola, A.; Schuster, G.; Myhre, G.; Kazadzis, S.; Dey, S.; Tripathi, S. N.

    2011-01-01

    Black carbon, light-absorbing organic carbon (often called brown carbon) and mineral dust are the major light-absorbing aerosols. Currently the sources and formation of brown carbon aerosol in particular are not well understood. In this study we estimated globally the amount of light absorbing organic carbon and black carbon from AERONET measurements. We find that the columnar absorbing organic carbon (brown carbon) levels in biomass burning regions of South-America and Africa are relatively high (about 15-20 magnesium per square meters during biomass burning season), while the concentrations are significantly lower in urban areas in US and Europe. However, we estimated significant absorbing organic carbon amounts from the data of megacities of newly industrialized countries, particularly in India and China, showing also clear seasonality with peak values up to 30-35 magnesium per square meters during the coldest season, likely caused by the coal and biofuel burning used for heating. We also compared our retrievals with the modeled organic carbon by global Oslo CTM for several sites. Model values are higher in biomass burning regions than AERONET-based retrievals, while opposite is true in urban areas in India and China.

  11. Colorful solar selective absorber integrated with different colored units.

    PubMed

    Chen, Feiliang; Wang, Shao-Wei; Liu, Xingxing; Ji, Ruonan; Li, Zhifeng; Chen, Xiaoshuang; Chen, Yuwei; Lu, Wei

    2016-01-25

    Solar selective absorbers are the core part for solar thermal technologies such as solar water heaters, concentrated solar power, solar thermoelectric generators and solar thermophotovoltaics. Colorful solar selective absorber can provide new freedom and flexibility beyond energy performance, which will lead to wider utilization of solar technologies. In this work, we present a monolithic integration of colored solar absorber array with different colors on a single substrate based on a multilayered structure of Cu/TiN(x)O(y)/TiO(2)/Si(3)N(4)/SiO(2). A colored solar absorber array with 16 color units is demonstrated experimentally by using combinatorial deposition technique via changing the thickness of SiO(2) layer. The solar absorptivity and thermal emissivity of all the color units is higher than 92% and lower than 5.5%, respectively. The colored solar selective absorber array can have colorful appearance and designable patterns while keeping high energy performance at the same time. It is a new candidate for a number of solar applications, especially for architecture integration and military camouflage.

  12. Hyperkeratosis induced by sunlight degradation products of the major polybrominated biphenyl in Firemaster

    SciTech Connect

    Patterson, D.G.; Hill, R.H.; Needham, L.L.; Orti, D.L.; Kimbrough, R.D.; Liddle, J.A.

    1981-08-21

    Sunlight photodegradation of 2,2', 4,4', 5,5' -hexabromobiphenyl, the major component of Firemaster, gave a mixture that produces severe hyperkeratosis of the rabbit ear. This component in its pure state does not cause hyperkeratosis. One or more of the four major photolysis products must be responsible for this activity. A similar photodegradation pattern was observed for 2,2', 3,4,4', 5,5' -heptabromobiphenyl, the second largest component of Firemaster.

  13. Hyperkeratosis induced by sunlight degradation products of the major polybrominated biphenyl in Firemaster.

    PubMed

    Patterson, D G; Hill, R H; Needham, L L; Orti, D L; Kimbrough, R D; Liddle, J A

    1981-08-21

    Sunlight photodegradation of 2,2', 4,4', 5,5' -hexabromobiphenyl, the major component of Firemaster, gave a mixture that produces severe hyperkeratosis of the rabbit ear. This component in its pure state does not cause hyperkeratosis. One or more of the four major photolysis products must be responsible for this activity. A similar photodegradation pattern was observed for 2,2', 3,4,4', 5,5' -heptabromobiphenyl, the second largest component of Firemaster.

  14. Nanoscience at Work: Creating Energy from Sunlight (LBNL Science at the Theater)

    ScienceCinema

    Alivisatos, Paul

    2016-07-12

    Paul Alivisatos, co-leader of Berkeley Lab's Helios Project, is the Associate Director for Physical Sciences and director of the Materials Sciences Division at Berkeley Lab. In the Helios Project, Alivisatos will use nanotechnology in the efficient capture of sunlight and its conversion to electricity to drive economical fuel production processes. He is an authority on artificial nanostructure synthesis and inventor of the quantum dot technology.

  15. Sunlight, vitamin D and the prevention of cancer: a systematic review of epidemiological studies.

    PubMed

    van der Rhee, Han; Coebergh, Jan Willem; de Vries, Esther

    2009-11-01

    The number of studies reporting beneficial effects of sunlight and vitamin D on several types of cancer with a high mortality rate is growing rapidly. Present health recommendations on sun exposure are mainly based on the increased risks for skin cancer. We reviewed all published studies concerning cancer and sun exposure and vitamin D, respectively, excluding those about skin cancer. Most identified ecological, case-control and prospective studies on the incidence and mortality of colorectal, prostate, breast carcinoma and non-Hodgkin lymphoma reported a significantly inverse association with sun exposure. The results of the included studies on the association between cancer risk and vitamin D were much less consistent. Only those studies that prospectively examined the 25-hydroxyvitamin D serum levels in relation to risk of colorectal cancer are homogeneous: they all reported inverse associations, although not all reaching statistical significance. The results of the intervention studies are suggestive of a protective role of high doses of vitamin D in cancer, but they have been criticized in the literature. We, therefore, conclude that there is accumulating evidence for sunlight as a protective factor for several types of cancer. The same conclusion can be made concerning high vitamin D levels and the risk of colorectal cancer. This evidence, however, is not conclusive, because the number of (good quality) studies is still limited and publication biases cannot be excluded. The discrepancies between the epidemiological evidence for a possible preventive effect of sunlight and vitamin D and the question of how to apply the findings on the beneficial effects of sunlight to (public) health recommendations are discussed.

  16. High-performance flat-panel solar thermoelectric generators with high thermal concentration.

    PubMed

    Kraemer, Daniel; Poudel, Bed; Feng, Hsien-Ping; Caylor, J Christopher; Yu, Bo; Yan, Xiao; Ma, Yi; Wang, Xiaowei; Wang, Dezhi; Muto, Andrew; McEnaney, Kenneth; Chiesa, Matteo; Ren, Zhifeng; Chen, Gang

    2011-05-01

    The conversion of sunlight into electricity has been dominated by photovoltaic and solar thermal power generation. Photovoltaic cells are deployed widely, mostly as flat panels, whereas solar thermal electricity generation relying on optical concentrators and mechanical heat engines is only seen in large-scale power plants. Here we demonstrate a promising flat-panel solar thermal to electric power conversion technology based on the Seebeck effect and high thermal concentration, thus enabling wider applications. The developed solar thermoelectric generators (STEGs) achieved a peak efficiency of 4.6% under AM1.5G (1 kW m(-2)) conditions. The efficiency is 7-8 times higher than the previously reported best value for a flat-panel STEG, and is enabled by the use of high-performance nanostructured thermoelectric materials and spectrally-selective solar absorbers in an innovative design that exploits high thermal concentration in an evacuated environment. Our work opens up a promising new approach which has the potential to achieve cost-effective conversion of solar energy into electricity.

  17. Catching Sunlight

    NASA Astrophysics Data System (ADS)

    Friedman, Alan

    Everyone knows that astronomy is done in the dark. Astronomers are creatures of the night, like vampires, sleeping during the day and working all night long to catch the faint light of their elusive prey.

  18. Photolytic dehalogenation of disinfection byproducts in water by natural sunlight irradiation.

    PubMed

    Abusallout, Ibrahim; Hua, Guanghui

    2016-09-01

    The aqueous photolysis of halogenated disinfection byproducts (DBPs) by natural sunlight irradiation was studied to determine their photolytic dehalogenation kinetics. Total organic halogen analysis was used to quantify the dehalogenation extents of DBPs during outdoor photolysis experiments. Dichloroacetamide, chloral hydrate, chloroform, dichloroacetonitrile, monochloro-, monobromo-, dichloro-, dibromo-, and trichloroacetic acids were generally resistant to photolytic dehalogenation and showed less than 10% reduction after 6 h sunlight irradiation. Monoiodoacetic acid, tribromoacetic acid, bromoform, dibromoacetonitrile, and trichloronitromethane showed moderate to high dehalogenation degrees with half-lives of 4.0-19.3 h. Diiodoacetic acid, triiodoacetic acid, and iodoform degraded rapidly under the sunlight irradiation and exhibited half-lives of 5.3-10.2 min. In general, the photosensitive cleavage of carbon-halogen bonds of DBPs increased with increasing number of halogens (tri- > di- > mono-halogenated) and size of the substituted halogens (I > Br > Cl). Nitrate, nitrite, and pH had little impact on the photodehalogenation of DBPs under typical levels in surface waters. The presence of natural organic matter (NOM) inhibited the photodehalogenation of DBPs by light screening. The NOM inhibiting effects were more pronounced for the fast degrading iodinated DBPs. The results of this study improve our understanding about the photolytic dehalogenation of wastewater-derived DBPs in surface waters during water reuse.

  19. A comparative study on the aqueous photodegradation of two organophosphorus pesticides under simulated and natural sunlight.

    PubMed

    Weber, Jan; Halsall, Crispin J; Wargent, Jason J; Paul, Nigel D

    2009-03-01

    Aqueous solutions of fenitrothion and methyl parathion were photochemically degraded in an Atlas Suntest solar simulator (500 W m(-2)) as well as under ambient sunlight at Lancaster University (June & August 2007, 54 degrees N) and the degradation kinetics and disappearance quantum yields are reported. Fenitrothion degradation confirmed to first order kinetics (r(2) = 0.90-0.99) with a half-life range of 4.9 h-5.3 h, shorter than previously reported studies. In contrast, methyl parathion did not show significant degradation over the duration of these experiments. Light irradiances were monitored with a spectroradiometer during the Suntest simulator and outdoor experiments. The filtered-xenon arc lamp of the Suntest yielded spectral irradiances comparable to natural sunlight in the UVB and UVA wavelength range (280-400 nm), but with higher irradiances in the visible region (400-750 nm). Nonetheless, as both compounds have light absorption spectra at wavelengths < 400 nm, then the half-lives and disappearance quantum yields were similar between the Suntest and natural sunlight, and demonstrated that the Suntest is suitable for environmentally-relevant photochemical degradation experiments.

  20. Spore sensitivity to sunlight and freezing can restrict dispersal in wood-decay fungi

    PubMed Central

    Norros, Veera; Karhu, Elina; Nordén, Jenni; Vähätalo, Anssi V; Ovaskainen, Otso

    2015-01-01

    Assessment of the costs and benefits of dispersal is central to understanding species' life-history strategies as well as explaining and predicting spatial population dynamics in the changing world. While mortality during active movement has received much attention, few have studied the costs of passive movement such as the airborne transport of fungal spores. Here, we examine the potential of extreme environmental conditions to cause dispersal mortality in wood-decay fungi. These fungi play a key role as decomposers and habitat creators in forest ecosystems and the populations of many species have declined due to habitat loss and fragmentation. We measured the effect of simulated solar radiation (including ultraviolet A and B) and freezing at −25°C on the spore germinability of 17 species. Both treatments but especially sunlight markedly reduced spore germinability in most species, and species with thin-walled spores were particularly light sensitive. Extrapolating the species' laboratory responses to natural irradiance conditions, we predict that sunlight is a relevant source of dispersal mortality at least at larger spatial scales. In addition, we found a positive effect of spore size on spore germinability, suggesting a trade-off between dispersal distance and establishment. We conclude that freezing and particularly sunlight can be important sources of dispersal mortality in wood-decay fungi which can make it difficult for some species to colonize isolated habitat patches and habitat edges. PMID:26380666

  1. Spore sensitivity to sunlight and freezing can restrict dispersal in wood-decay fungi.

    PubMed

    Norros, Veera; Karhu, Elina; Nordén, Jenni; Vähätalo, Anssi V; Ovaskainen, Otso

    2015-08-01

    Assessment of the costs and benefits of dispersal is central to understanding species' life-history strategies as well as explaining and predicting spatial population dynamics in the changing world. While mortality during active movement has received much attention, few have studied the costs of passive movement such as the airborne transport of fungal spores. Here, we examine the potential of extreme environmental conditions to cause dispersal mortality in wood-decay fungi. These fungi play a key role as decomposers and habitat creators in forest ecosystems and the populations of many species have declined due to habitat loss and fragmentation. We measured the effect of simulated solar radiation (including ultraviolet A and B) and freezing at -25°C on the spore germinability of 17 species. Both treatments but especially sunlight markedly reduced spore germinability in most species, and species with thin-walled spores were particularly light sensitive. Extrapolating the species' laboratory responses to natural irradiance conditions, we predict that sunlight is a relevant source of dispersal mortality at least at larger spatial scales. In addition, we found a positive effect of spore size on spore germinability, suggesting a trade-off between dispersal distance and establishment. We conclude that freezing and particularly sunlight can be important sources of dispersal mortality in wood-decay fungi which can make it difficult for some species to colonize isolated habitat patches and habitat edges.

  2. Sunlight penetration through the Martian polar caps - Effects on the thermal and frost budgets

    NASA Technical Reports Server (NTRS)

    Lindner, Bernhard L.

    1992-01-01

    An energy balance model of the seasonal polar caps on Mars is modified to include penetration of solar radiation into and through the ice. Penetration of solar radiation has no effect on subsurface temperature or total frost sublimation if seasonal ice overlies a dust surface. An effect is noted for seasonal ice which overlies the residual polar caps. For the case of an exposed water-ice residual polar cap, the temperature at depth is calculated to be up to several degrees warmer, and the calculated lifetime of seasonal CO2 frost is slightly lower when penetration of sunlight is properly treated in the model. For the case of a residual polar cap which is perennially covered by CO2 frost, the calculated lifetime of seasonal CO2 frost is very slightly increased as a result of sunlight penetration through the ice. Hence, penetration of sunlight into the ice helps to stabilize the observed dichotomy in the residual polar caps on Mars, although it is a small effect.

  3. Sunlight penetration through the Martian polar caps: Effects on the thermal and frost budgets

    NASA Technical Reports Server (NTRS)

    Lindner, Bernhard Lee

    1992-01-01

    An energy balance model of the seasonal polar caps on Mars is modified to include penetration of solar radiation into and through the ice. Penetration of solar radiation has no effect on subsurface temperature or total frost sublimation if seasonal ice overlies a dust surface. An effect is noted for seasonal ice which overlies the residual polar caps. For the case of an exposed water-ice residual polar cap, the temperature at depth is calculated to be up to several degrees warmer and the calculated lifetime of seasonal CO2 frost is slightly lower when penetration of sunlight is properly treated in the model. For the case of a residual polar cap which is perennially covered by CO2 frost, the calculated lifetime of seasonal CO2 frost is very slightly increased as a result of sunlight penetration through the ice. Hence, penetration of sunlight into the ice helps to stabilize the observed dichotomy in the residual polar caps on Mars, although it is a small effect.

  4. Chemically derived luminescent graphene oxide nanosheets and its sunlight driven photocatalytic activity against methylene blue dye

    NASA Astrophysics Data System (ADS)

    Kumar, Sumeet; Kumar, Ashok

    2016-12-01

    In the present work, graphene oxide (GO) nanosheets (NSs) have been synthesized with precise control over their thickness and molecular structure. The existence of oxygen containing functional groups on GO NSs through chemical treatment confers remarkable optical properties on GO. XRD, TEM, Raman and FTIR techniques were used to confirm the phase and degree of oxidation, morphology, structural information and chemical structure of the synthesized GO NSs. UV-Vis. spectroscopy was employed to study the optical absorption properties of the synthesized GO NSs. The excitation wavelength dependent PL measurements of the synthesized GO NSs were carried out which could be useful for the design and development of GO based next generation optoelectronic devices. The most fascinating luminescent property of synthesized GO NSs is that its luminescence peak position can be easily tuned by only varying the excitation wavelength without significant changes in its size and chemical composition. In order to study the photocatalytic degradation of methylene blue (MB) dye using GO NSs as a photocatalyst, a sunlight driven photocatalytic activity has been performed. The degradation rate of MB dye becomes fast when GO NSs are added to the dye solution. The photodegradation efficiency of GO NSs is calculated to be 60%. The present results indicate that synthesized GO NSs can be used as sunlight active photocatalyst. The optimistic response to sunlight irradiation validates the potential of GO NSs in solar energy conversion.

  5. Sunlight Effects on Immune System: Is There Something Else in addition to UV-Induced Immunosuppression?

    PubMed Central

    Paz, M. L.; Leoni, J.

    2016-01-01

    Sunlight, composed of different types of radiation, including ultraviolet wavelengths, is an essential source of light and warmth for life on earth but has strong negative effects on human health, such as promoting the malignant transformation of skin cells and suppressing the ability of the human immune system to efficiently detect and attack malignant cells. UV-induced immunosuppression has been extensively studied since it was first described by Dr. Kripke and Dr. Fisher in the late 1970s. However, skin exposure to sunlight has not only this and other unfavorable effects, for example, mutagenesis and carcinogenesis, but also a positive one: the induction of Vitamin D synthesis, which performs several roles within the immune system in addition to favoring bone homeostasis. The impact of low levels of UV exposure on the immune system has not been fully reported yet, but it bears interesting differences with the suppressive effect of high levels of UV radiation, as shown by some recent studies. The aim of this article is to put some ideas in perspective and pose some questions within the field of photoimmunology based on established and new information, which may lead to new experimental approaches and, eventually, to a better understanding of the effects of sunlight on the human immune system. PMID:28070504

  6. Sunlight Effects on Immune System: Is There Something Else in addition to UV-Induced Immunosuppression?

    PubMed

    González Maglio, D H; Paz, M L; Leoni, J

    2016-01-01

    Sunlight, composed of different types of radiation, including ultraviolet wavelengths, is an essential source of light and warmth for life on earth but has strong negative effects on human health, such as promoting the malignant transformation of skin cells and suppressing the ability of the human immune system to efficiently detect and attack malignant cells. UV-induced immunosuppression has been extensively studied since it was first described by Dr. Kripke and Dr. Fisher in the late 1970s. However, skin exposure to sunlight has not only this and other unfavorable effects, for example, mutagenesis and carcinogenesis, but also a positive one: the induction of Vitamin D synthesis, which performs several roles within the immune system in addition to favoring bone homeostasis. The impact of low levels of UV exposure on the immune system has not been fully reported yet, but it bears interesting differences with the suppressive effect of high levels of UV radiation, as shown by some recent studies. The aim of this article is to put some ideas in perspective and pose some questions within the field of photoimmunology based on established and new information, which may lead to new experimental approaches and, eventually, to a better understanding of the effects of sunlight on the human immune system.

  7. Experimental approach to EUV imaging enhancement by mask absorber height optimization

    NASA Astrophysics Data System (ADS)

    Davydova, Natalia; de Kruif, Robert; Rolff, Haiko; Connolly, Brid; van Setten, Eelco; Lammers, Ad; Oorschot, Dorothe; Fukugami, Norihito; Kodera, Yutaka

    2013-10-01

    EUV lithography performance is improved significantly by optimizing and fine-tuning of the EUV mask. The EUV mask is an active element of the scanner optical system influencing main lithographic figure of merits such as image contrast, critical dimension uniformity (CDU), focus and overlay. The mask stack consists of Mo/Si multilayer acting as a bright field and a patterned absorber stack. In this work we will concentrate on investigation of EUV absorber. Absorber topography that is pronounced compared to the imaging wavelength of 13.5 nm, will give rise to various mask 3d effects such as shadowing or dependence of CD on feature orientation, best focus shift of different resolution structures, etc. Light interference in the absorber layer results in swinging behavior of various lithography metrics as function of the absorber height. Optimization of the mask absorber allows mitigating mask 3d effects and improving imaging performance. In particular, reduction of the absorber height mitigates the shadowing effect and relaxes requirements on Optical Proximity Correction (OPC), but can result in smaller Process Window due to lower imaging contrast and larger best focus shifts. In this work we will show results of an experimental approach to absorber height optimization. A special mask with 27 different absorber heights in the range 40-70 nm is manufactured by Toppan Photomasks. EUV reflectivity spectra are measured for the different absorber heights and an experimental swing curve is constructed. For each absorber height various resolution features are present on the mask. Lines of 27 nm and 22 nm are imaged on the wafer using the ASML EUV scanner NXE:3300B with an NA of 0.33. The experimental CD swing curve is constructed as well as HV change as a function of absorber height. The impact of the absorber height on Exposure Latitude (EL) and Dose to Size (D2S) is investigated. EL improves with increasing absorber height in some cases, however there is no clear EL gain

  8. Porphyrin Based Near Infrared-Absorbing Materials for Organic Photovoltaics

    NASA Astrophysics Data System (ADS)

    Zhong, Qiwen

    The conservation and transformation of energy is essential to the survival of mankind, and thus concerns every modern society. Solar energy, as an everlasting source of energy, holds one of the key solutions to some of the most urgent problems the world now faces, such as global warming and the oil crisis. Advances in technologies utilizing clean, abundant solar energy, could be the steering wheel of our societies. Solar cells, one of the major advances in converting solar energy into electricity, are now capturing people's interest all over the globe. While solar cells have been commercially available for many years, the manufacturing of solar cells is quite expensive, limiting their broad based implementation. The cost of solar cell based electricity is 15-50 cents per kilowatt hour (¢/kwh), depending on the type of solar cell, compared to 0.7 ¢/kwh for fossil fuel based electricity. Clearly, decreasing the cost of electricity from solar cells is critical for their wide spread deployment. This will require a decrease in the cost of light absorbing materials and material processing used in fabricating the cells. Organic photovoltaics (OPVs) utilize organic materials such as polymers and small molecules. These devices have the advantage of being flexible and lower cost than conventional solar cells built from inorganic semiconductors (e.g. silicon). The low cost of OPVs is tied to lower materials and fabrication costs of organic cells. However, the current power conversion efficiencies of OPVs are still below 15%, while convention crystalline Si cells have efficiencies of 20-25%. A key limitation in OPVs today is their inability to utilize the near infrared (NIR) portion of the solar spectrum. This part of the spectrum comprises nearly half of the energy in sunlight that could be used to make electricity. The first and foremost step in conversion solar energy conversion is the absorption of light, which nature has provided us optimal model of, which is

  9. Analysis of heat-pipe absorbers in evacuated-tube solar collectors

    NASA Astrophysics Data System (ADS)

    Hull, J. R.; Schertz, W. W.; Allen, J. W.

    1986-02-01

    Heat transfer in evacuated-tube solar collectors with heat-pipe absorbers is compared with that for similar collectors with flow-through absorbers. In systems that produce hot water or other heated fluids, the heat-pipe absorber suffers a heat transfer penalty compared with the flow-through absorber, but in many cases the penalty can be minimized by proper design at the heat-pipe condenser and system manifold. The heat transfer penalty decreases with decreasing collector heat loss coefficient, suggesting that evacuated tubes with optical concentration are more appropriate for use with heat pipes than evacuated or nonevacuated flat-plate collectors. When the solar collector is used to drive an absorption chiller, the heat-pipe absorber has better heat transfer characteristics than the flow-through absorbers.

  10. Relevance of sunscreen application method, visible light and sunlight intensity to free-radical protection: A study of ex vivo human skin.

    PubMed

    Haywood, Rachel

    2006-01-01

    With the continued rise in skin cancers worldwide there is a need for effective skin protection against sunlight damage. It was shown previously that sunscreens, which claimed UVA protection (SPF 20+), provided limited protection against UV-induced ascorbate radicals in human skin. Here the results of an electron spin resonance (ESR) investigation to irradiate ex vivo human skin with solar-simulated light are reported. The ascorbate radical signal in the majority of skin samples was directly proportional to the irradiance over relevant sunlight intensities (0.9-2.9 mW cm(-2)). Radical production (substratum-corneum) by UV (wavelengths < 400 nm) and visible components (> 400 nm) was approximately 67% and 33% respectively. Ascorbate radicals were in steady state concentration at low irradiance (approximately 1 mW cm(-2) equivalent to UK sunlight), but at higher irradiance (approximately 3 mW cm(-2)) decreased with time, suggesting ascorbate depletion. Radical protection by a four star-rated sunscreen (with UVA protection) was optimal when applied as a thin film (40-60% at 2 mg cm(-2)) but less so when rubbed into the skin (37% at 4 mg cm(-2) and no significant protection at 2 mg cm(-2)), possibly due to cream filling crevices, which reduced film thickness. This study validates ESR determinations of the ascorbate radical for quantitative protection measurements. Visible light contribution to radical production, and loss of protection when sunscreen is rubbed into skin, has implications for sunscreen design and use for the prevention of free-radical damage.

  11. Exact analytic flux distributions for two-dimensional solar concentrators.

    PubMed

    Fraidenraich, Naum; Henrique de Oliveira Pedrosa Filho, Manoel; Vilela, Olga C; Gordon, Jeffrey M

    2013-07-01

    A new approach for representing and evaluating the flux density distribution on the absorbers of two-dimensional imaging solar concentrators is presented. The formalism accommodates any realistic solar radiance and concentrator optical error distribution. The solutions obviate the need for raytracing, and are physically transparent. Examples illustrating the method's versatility are presented for parabolic trough mirrors with both planar and tubular absorbers, Fresnel reflectors with tubular absorbers, and V-trough mirrors with planar absorbers.

  12. Stretched Lens Array Photovoltaic Concentrator Technology Developed

    NASA Technical Reports Server (NTRS)

    Piszczor, Michael F., Jr.; O'Neill, Mark J.

    2004-01-01

    Solar arrays have been and continue to be the mainstay in providing power to nearly all commercial and government spacecraft. Light from the Sun is directly converted into electrical energy using solar cells. One way to reduce the cost of future space power systems is by minimizing the size and number of expensive solar cells by focusing the sunlight onto smaller cells using concentrator optics. The stretched lens array (SLA) is a unique concept that uses arched Fresnel lens concentrators to focus sunlight onto a line of high-efficiency solar cells located directly beneath. The SLA concept is based on the Solar Concentrator Array with Refractive Linear Element Technology (SCARLET) design that was used on NASA's New Millennium Deep Space 1 mission. The highly successful asteroid/comet rendezvous mission (1998 to 2001) demonstrated the performance and long-term durability of the SCARLET/SLA solar array design and set the foundation for further improvements to optimize its performance.

  13. Sunlight stimulates methane uptake and nitrous oxide emission from the High Arctic tundra.

    PubMed

    Li, Fangfang; Zhu, Renbin; Bao, Tao; Wang, Qing; Xu, Hua

    2016-12-01

    Many environmental factors affecting methane (CH4) and nitrous oxide (N2O) fluxes have been investigated during the processes of carbon and nitrogen transformation in the boreal tundra. However, effects of sunlight on CH4 and N2O fluxes and their budgets were neglected in the boreal tundra. Here, summertime CH4 and N2O fluxes in the presence and total absence of sunlight were investigated at the six tundra sites (DM1-DM6) on Ny-Ålesund in the High Arctic. The mean CH4 fluxes at the tundra sites ranged from -4.7 to -158.6μg CH4 m(-2)h(-1) in the presence of light, indicating that a large CH4 sink occurred in the tundra soils. However, enhanced CH4 emission in total absence of light occurred at all the tundra sites. The mean N2O fluxes ranged from 7.4 to 14.6μg N2O m(-2)h(-1) in the presence of light, whereas in the absence of light all the tundra sites generally released less N2O, and even significant N2O uptake occurred there. Soil temperature, chamber temperature and soil moisture showed no significant correlations with tundra CH4 and N2O flux. The presence of sunlight increased tundra CH4 uptake by 114.2μg CH4 m(-2)h(-1) and N2O emission by 10.9μg N2O m(-2)h(-1) compared with total absence of light. Overall our results showed that tundra ecosystem switched from CH4 sink and N2O emission source in the presence of light to CH4 emission source and N2O sink in the absence of light. Therefore sunlight had an important effect on CH4 and N2O budgets in the High Arctic tundra. The exclusion of sunlight might overestimate CH4 budgets, but underestimate N2O budgets in the Arctic tundra ecosystem.

  14. Liquid crystal tunable metamaterial absorber.

    PubMed

    Shrekenhamer, David; Chen, Wen-Chen; Padilla, Willie J

    2013-04-26

    We present an experimental demonstration of electronically tunable metamaterial absorbers in the terahertz regime. By incorporation of active liquid crystal into strategic locations within the metamaterial unit cell, we are able to modify the absorption by 30% at 2.62 THz, as well as tune the resonant absorption over 4% in bandwidth. Numerical full-wave simulations match well to experiments and clarify the underlying mechanism, i.e., a simultaneous tuning of both the electric and magnetic response that allows for the preservation of the resonant absorption. These results show that fundamental light interactions of surfaces can be dynamically controlled by all-electronic means and provide a path forward for realization of novel applications.

  15. Oxalate: Effect on calcium absorbability

    SciTech Connect

    Heaney, R.P.; Weaver, C.M. )

    1989-10-01

    Absorption of calcium from intrinsically labeled Ca oxalate was measured in 18 normal women and compared with absorption of Ca from milk in these same subjects, both when the test substances were ingested in separate meals and when ingested together. Fractional Ca absorption from oxalate averaged 0.100 +/- 0.043 when ingested alone and 0.140 +/- 0.063 when ingested together with milk. Absorption was, as expected, substantially lower than absorption from milk (0.358 +/- 0.113). Nevertheless Ca oxalate absorbability in these women was higher than we had previously found for spinach Ca. When milk and Ca oxalate were ingested together, there was no interference of oxalate in milk Ca absorption and no evidence of tracer exchange between the two labeled Ca species.

  16. Why We Need More Nature at Work: Effects of Natural Elements and Sunlight on Employee Mental Health and Work Attitudes

    PubMed Central

    An, Mihyang; Colarelli, Stephen M.; O'Brien, Kimberly; Boyajian, Melanie E.

    2016-01-01

    This study investigated the effects of natural elements and direct and indirect sunlight exposure on employee mental health and work attitudes. We recruited participants via an online panel from the United States and India, and analyzed data from 444 employees. Natural elements and sunlight exposure related positively to job satisfaction and organizational commitment, and negatively to depressed mood and anxiety. Direct sunlight was a dominant predictor of anxiety; indirect sunlight was a dominant predictor of depressed mood, job satisfaction, and organizational commitment. Natural elements buffered the relationship between role stressors and job satisfaction, depressed mood, and anxiety. We also found that depressed mood partially mediated the relationship between natural elements and job satisfaction. We discuss scientific and policy implications of these findings. PMID:27214041

  17. Air Ambient-Operated pNIPAM-Based Flexible Actuators Stimulated by Human Body Temperature and Sunlight.

    PubMed

    Yamamoto, Yuki; Kanao, Kenichiro; Arie, Takayuki; Akita, Seiji; Takei, Kuniharu

    2015-05-27

    Harnessing a natural power source such as the human body temperature or sunlight should realize ultimate low-power devices. In particular, macroscale and flexible actuators that do not require an artificial power source have tremendous potential. Here we propose and demonstrate electrically powerless polymer-based actuators operated at ambient conditions using a packaging technique in which the stimulating power source is produced by heat from the human body or sunlight. The actuating angle, force, and reliability are discussed as functions of temperature and exposure to sunlight. Furthermore, a wearable device platform and a smart curtain actuated by the temperature of human skin and sunlight, respectively, are demonstrated as the first proof-of-concepts. These nature-powered actuators should realize a new class of ultimate low-power devices.

  18. Sunlight induced cycloaddition and host-guest property of self-assembled organometallic macrocycles based on a versatile building block.

    PubMed

    Wu, Tong; Weng, Lin-Hong; Jin, Guo-Xin

    2012-05-11

    Organometallic rectangle 1 which undergoes [2+2] cycloaddition upon irradiation with sunlight and organometallic prism 3 which displayed interesting host-guest property were self-assembled based on a versatile building block.

  19. Sunlight-Driven Reduction of Silver Ions by Natural Organic Matter: Formation and Transformation of Silver Nanoparticles

    EPA Science Inventory

    Photobiogeochemical reactions involving metal species can be a source of naturally occurring nanoscale materials in the aquatic environment. This study demonstrates that, under simulated sunlight exposure, ionic Ag is photoreduced in river water or synthetic natural water samples...

  20. Protein oxidative damage and heme oxygenase in sunlight-exposed human skin: roles of MAPK responses to oxidative stress.

    PubMed

    Akasaka, Emiko; Takekoshi, Susumu; Horikoshi, Yosuke; Toriumi, Kentarou; Ikoma, Norihiro; Mabuchi, Tomotaka; Tamiya, Shiho; Matsuyama, Takashi; Ozawa, Akira

    2010-12-20

    Oxidative stress derived from ultraviolet (UV) light in sunlight induces different hazardous effects in the skin, including sunburn, photo-aging and DNA mutagenesis. In this study, the protein-bound lipid peroxidation products 4-hydroxy-2-nonenal (HNE) and the oxidative DNA damage marker 8-hydroxy-2'-deoxyguanosine (8OHdG) were investigated in chronically sun-exposed and sun-protected human skins using immunohistochemistry. The levels of antioxidative enzymes, such as heme oxygenase 1 and 2, Cu/Zn-SOD, Mn-SOD and catalase, were also examined. Oxidative stress is also implicated in the activation of signal transduction pathways, such as mitogen-activated protein kinase (MAPK). Therefore, the expression and distribution of phosphorylated p38 MAPK, phosphorylated Jun N-terminal kinase (JNK) and phosphorylated extracellular signal-regulated kinase (ERK) were observed. Skin specimens were obtained from the surgical margins. Chronically sunlight-exposed skin samples were taken from the ante-auricular (n = 10) and sunlight-protected skin samples were taken from the post-auricular (n = 10). HNE was increased in the chronically sunlight-exposed skin but not in the sunlight-protected skin. The expression of heme oxygenase-2 was markedly increased in the sunlight-exposed skin compared with the sun-protected skin. In contrast, the intensity of immunostaining of Cu/Zn-SOD, Mn-SOD and catalase was not different between the two areas. Phosphorylated p38 MAPK and phosphorylated JNK accumulated in the ante-auricular dermis and epidermis, respectively. These data show that particular anti-oxidative enzymes function as protective factors in chronically sunlight-exposed human skin. Taken together, our results suggest (1) antioxidative effects of heme oxygenase-2 in chronically sunlight-exposed human skin, and that (2) activation of p38 MAPK may be responsible for oxidative stress.

  1. Sunlight mediated synthesis of silver nanoparticles using redox phytoprotein and their application in catalysis and colorimetric mercury sensing.

    PubMed

    Ahmed, Khan Behlol Ayaz; Senthilnathan, Rajendran; Megarajan, Sengan; Anbazhagan, Veerappan

    2015-10-01

    Owing to the benign nature, plant extracts mediated green synthesis of metal nanoparticles (NPs) is rapidly expanding. In this study, we demonstrated the successful green synthesis of silver nanoparticles (AgNPs) by utilizing natural sunlight and redox protein complex composed of ferredoxin-NADP(+) reductase (FNR) and ferredoxin (FD). The capping and stabilization of the AgNPs by the redox protein was confirmed by Fourier transform infrared spectroscopy. Light and redox protein is the prerequisite factor for the formation of AgNPs. The obtained result shows that the photo generated free radicals by the redox protein is responsible for the reduction of Ag(+) to Ag(0). Transmission electron microscopy revealed the formation of spherical AgNPs with size ranging from 10 to 15 nm. As-prepared AgNPs exhibit excellent catalytic activity toward the degradation of hazardous organic dyes, such as methylene blue, methyl orange and methyl red. These bio-inspired AgNPs is highly sensitive and selective in sensing hazardous mercury ions in the water at micromolar concentration. In addition, FNR/FD extract stabilized AgNPs showed good antimicrobial activity against gram positive and gram negative bacteria.

  2. Photodegradation of hexabromocyclododecane (HBCD) by Fe(III) complexes/H2O 2 under simulated sunlight.

    PubMed

    Zhou, Danna; Wu, Yao; Feng, Xiaonan; Chen, Yong; Wang, Zongping; Tao, Tao; Wei, Dongbin

    2014-05-01

    Hexabromocyclododecane (HBCD) is a globally produced brominated flame retardant used primarily as an additive flame retardant in polystyrene and textile products. Photodegradation of HBCD in the presence of Fe(III)-carboxylate complexes/H2O2 was investigated under simulated sunlight. The degradation of HBCD decreased with increasing pH in the Fe(III)-oxalate solutions. In contrast, the optimum pH was 5.0 for the Fe(III)-citrate-catalyzed photodegradation within the range of 3.0 to 7.0. For both Fe(III)-oxalate and Fe(III)-citrate complexes, the increase of carboxylate concentrations facilitated the photodegradation. The photochemical removal of HBCD was related to the photoreactivity and speciation distribution of Fe(III) complexes. The addition of H2O2 markedly accelerated the degradation of HBCD in the presence of Fe(III)-citrate complexes. The quenching experiments showed that ·OH was responsible for the photodegradation of HBCD in the Fe(III)-carboxylate complexes/H2O2 solutions. The results suggest that Fe(III) complexes/H2O2 catalysis is a potential method for the removal of HBCD in the aqueous solutions.

  3. Electromagnetic scattering by pyramidal and wedge absorber

    NASA Technical Reports Server (NTRS)

    Dewitt, Brian T.; Burnside, Walter D.

    1988-01-01

    Electromagnetic scattering from pyramidal and wedge absorbers used to line the walls of modern anechoic chambers is measured and compared with theoretically predicted values. The theoretical performance for various angles of incidence is studied. It is shown that a pyramidal absorber scatters electromagnetic energy more as a random rough surface does. The apparent reflection coefficient from an absorber wall illuminated by a plane wave can be much less than the normal absorber specifications quoted by the manufacturer. For angles near grazing incidence, pyramidal absorbers give a large backscattered field from the pyramid side-faces or edges. The wedge absorber was found to give small backscattered fields for near-grazing incidence. Based on this study, some new guidelines for the design of anechoic chambers are advocated because the specular scattering models used at present do not appear valid for pyramids that are large compared to the wavelength.

  4. Magnetic field effects on microwave absorbing materials

    NASA Technical Reports Server (NTRS)

    Goldberg, Ira; Hollingsworth, Charles S.; Mckinney, Ted M.

    1991-01-01

    The objective of this program was to gather information to formulate a microwave absorber that can work in the presence of strong constant direct current (DC) magnetic fields. The program was conducted in four steps. The first step was to investigate the electrical and magnetic properties of magnetic and ferrite microwave absorbers in the presence of strong magnetic fields. This included both experimental measurements and a literature survey of properties that may be applicable to finding an appropriate absorbing material. The second step was to identify those material properties that will produce desirable absorptive properties in the presence of intense magnetic fields and determine the range of magnetic field in which the absorbers remain effective. The third step was to establish ferrite absorber designs that will produce low reflection and adequate absorption in the presence of intense inhomogeneous static magnetic fields. The fourth and final step was to prepare and test samples of such magnetic microwave absorbers if such designs seem practical.

  5. Sunlight inactivation of MS2 coliphage in the absence of photosensitizers: modeling the endogenous inactivation rate using a photoaction spectrum.

    PubMed

    Nguyen, Mi T; Silverman, Andrea I; Nelson, Kara L

    2014-04-01

    The endogenous sunlight inactivation rates of MS2 coliphage in photosensitizer-free water were measured (kobs) under different light conditions and compared to modeled inactivation rates (kmod) computed using a previously published action spectrum. Experiments were conducted under simulated and natural sunlight. There was generally good agreement between modeled and observed MS2 sunlight inactivation rates in the summer and winter, suggesting that the action spectrum can be used to predict changes in the inactivation rate caused by diurnal and seasonal changes in natural sunlight irradiance. However, we show that a major source of uncertainty in the predictions is the ability to accurately measure or model the comparatively weak and highly variable solar irradiance between 280 and 300 nm, a range to which the inactivation rate is very sensitive. The action spectrum was also used to predict the endogenous inactivation rates of MS2 at different depths in a column of strongly humic-colored [i.e., solar ultraviolet (UV)-attenuating] wetland water under simulated sunlight; we observed fairly good agreement between kobs and kmod, suggesting that the action spectrum can be used to estimate the decrease in the endogenous inactivation rate caused by spectrally selective sunlight attenuation in the water column.

  6. Simulated Sunlight-Mediated Photodynamic Therapy for Melanoma Skin Cancer by Titanium-Dioxide-Nanoparticle-Gold-Nanocluster-Graphene Heterogeneous Nanocomposites.

    PubMed

    Cheng, Yan; Chang, Yun; Feng, Yanlin; Liu, Ning; Sun, Xiujuan; Feng, Yuqing; Li, Xi; Zhang, Haiyuan

    2017-03-31

    Simulated sunlight has promise as a light source able to alleviate the severe pain associated with patients during photodynamic therapy (PDT); however, low sunlight utilization efficiency of traditional photosensitizers dramatically limits its application. Titanium-dioxide-nanoparticle-gold-nanocluster-graphene (TAG) heterogeneous nanocomposites are designed to efficiently utilize simulated sunlight for melanoma skin cancer PDT. The narrow band gap in gold nanoclusters (Au NCs), and staggered energy bands between Au NCs, titanium dioxide nanoparticles (TiO2 NPs), and graphene can result in efficient utilization of simulated sunlight and separation of electron-hole pairs, facilitating the production of abundant hydroxyl and superoxide radicals. Under irradiation of simulated sunlight, TAG nanocomposites can trigger a series of toxicological responses in mouse B16F1 melanoma cells, such as intracellular reactive oxygen species production, glutathione depletion, heme oxygenase-1 expression, and mitochondrial dysfunctions, resulting in severe cell death. Furthermore, intravenous or intratumoral administration of biocompatible TAG nanocomposites in B16F1-tumor-xenograft-bearing mice can significantly inhibit tumor growth and cause severe pathological tumor tissue changes. All of these results demonstrate prominent simulated sunlight-mediated PDT effects.

  7. Light-absorbing impurities in Arctic snow

    NASA Astrophysics Data System (ADS)

    Doherty, S. J.; Warren, S. G.; Grenfell, T. C.; Clarke, A. D.; Brandt, R. E.

    2010-08-01

    Absorption of radiation by ice is extremely weak at visible and near-ultraviolet wavelengths, so small amounts of light-absorbing impurities in snow can dominate the absorption of solar radiation at these wavelengths, reducing the albedo relative to that of pure snow, contributing to the surface energy budget and leading to earlier snowmelt. In this study Arctic snow is surveyed for its content of light-absorbing impurities, expanding and updating the 1983-1984 survey of Clarke and Noone. Samples were collected in Alaska, Canada, Greenland, Svalbard, Norway, Russia, and the Arctic Ocean during 2005-2009, on tundra, glaciers, ice caps, sea ice, frozen lakes, and in boreal forests. Snow was collected mostly in spring, when the entire winter snowpack is accessible for sampling. Sampling was carried out in summer on the Greenland ice sheet and on the Arctic Ocean, of melting glacier snow and sea ice as well as cold snow. About 1200 snow samples have been analyzed for this study. The snow is melted and filtered; the filters are analyzed in a specially designed spectrophotometer system to infer the concentration of black carbon (BC), the fraction of absorption due to non-BC light-absorbing constituents and the absorption Ångstrom exponent of all particles. The reduction of snow albedo is primarily due to BC, but other impurities, principally brown (organic) carbon, are typically responsible for ~40% of the visible and ultraviolet absorption. The meltwater from selected snow samples was saved for chemical analysis to identify sources of the impurities. Median BC amounts in surface snow are as follows (nanograms of carbon per gram of snow): Greenland 3, Arctic Ocean snow 7, melting sea ice 8, Arctic Canada 8, Subarctic Canada 14, Svalbard 13, Northern Norway 21, Western Arctic Russia 26, Northeastern Siberia 17. Concentrations are more variable in the European Arctic than in Arctic Canada or the Arctic Ocean, probably because of the proximity to BC sources. Individual

  8. Absorbent product and articles made therefrom

    NASA Technical Reports Server (NTRS)

    Dawn, F. S.; Correale, J. V. (Inventor)

    1982-01-01

    A multilayer absorbent product for use in contact with the skin to absorb fluids is described. The product has a water pervious facing layer for contacting the skin, and a first fibrous wicking layer overlaying the water pervious layer. A first container section is defined by inner and outer layers of a water pervious wicking material in between a first absorbent mass and a second container section defined by inner and outer layers of a water pervious wicking material between what is disposed a second absorbent mass, and a liquid impermeable/gas permeable layer overlaying the second fibrous wicking layer.

  9. Nonlinear dynamic vibration absorbers with a saturation

    NASA Astrophysics Data System (ADS)

    Febbo, M.; Machado, S. P.

    2013-03-01

    The behavior of a new type of nonlinear dynamic vibration absorber is studied. A distinctive characteristic of the proposed absorber is the impossibility to extend the system to infinity. The mathematical formulation is based on a finite extensibility nonlinear elastic potential to model the saturable nonlinearity. The absorber is attached to a single degree-of-freedom linear/nonlinear oscillator subjected to a periodic external excitation. In order to solve the equations of motion and to analyze the frequency-response curves, the method of averaging is used. The performance of the FENE absorber is evaluated considering a variation of the nonlinearity of the primary system, the damping and the linearized frequency of the absorber and the mass ratio. The numerical results show that the proposed absorber has a very good efficiency when the nonlinearity of the primary system increases. When compared with a cubic nonlinear absorber, for a large nonlinearity of the primary system, the FENE absorber shows a better effectiveness for the whole studied frequency range. A complete absence of quasi-periodic oscillations is also found for an appropriate selection of the parameters of the absorber. Finally, direct integrations of the equations of motion are performed to verify the accuracy of the proposed method.

  10. Metamaterial absorber with random dendritic cells

    NASA Astrophysics Data System (ADS)

    Zhu, Weiren; Zhao, Xiaopeng

    2010-05-01

    The metamaterial absorber composed of random dendritic cells has been investigated at microwave frequencies. It is found that the absorptivities come to be weaker and the resonant frequency get red shift as the disordered states increasing, however, the random metamaterial absorber still presents high absorptivity more than 95%. The disordered structures can help understanding of the metamaterial absorber and may be employed for practical design of infrared metamaterial absorber, which may play important roles in collection of radiative heat energy and directional transfer enhancement.

  11. Scattering Solar Thermal Concentrators

    SciTech Connect

    Giebink, Noel C.

    2015-01-31

    This program set out to explore a scattering-based approach to concentrate sunlight with the aim of improving collector field reliability and of eliminating wind loading and gross mechanical movement through the use of a stationary collection optic. The approach is based on scattering sunlight from the focal point of a fixed collection optic into the confined modes of a sliding planar waveguide, where it is transported to stationary tubular heat transfer elements located at the edges. Optical design for the first stage of solar concentration, which entails focusing sunlight within a plane over a wide range of incidence angles (>120 degree full field of view) at fixed tilt, led to the development of a new, folded-path collection optic that dramatically out-performs the current state-of-the-art in scattering concentration. Rigorous optical simulation and experimental testing of this collection optic have validated its performance. In the course of this work, we also identified an opportunity for concentrating photovoltaics involving the use of high efficiency microcells made in collaboration with partners at the University of Illinois. This opportunity exploited the same collection optic design as used for the scattering solar thermal concentrator and was therefore pursued in parallel. This system was experimentally demonstrated to achieve >200x optical concentration with >70% optical efficiency over a full day by tracking with <1 cm of lateral movement at fixed latitude tilt. The entire scattering concentrator waveguide optical system has been simulated, tested, and assembled at small scale to verify ray tracing models. These models were subsequently used to predict the full system optical performance at larger, deployment scale ranging up to >1 meter aperture width. Simulations at an aperture widths less than approximately 0.5 m with geometric gains ~100x predict an overall optical efficiency in the range 60-70% for angles up to 50 degrees from normal. However, the

  12. Technoeconomic analysis of different options for the production of hydrogen from sunlight, wind, and biomass

    SciTech Connect

    Mann, M.K.; Spath, P.L.; Amos, W.A.

    1998-08-01

    To determine their technical and economic viability and to provide insight into where each technology is in its development cycle, different options to produce hydrogen from sunlight, wind, and biomass were studied. Additionally, costs for storing and transporting hydrogen were determined for different hydrogen quantities and storage times. The analysis of hydrogen from sunlight examined the selling price of hydrogen from two technologies: direct photoelectrochemical (PEC) conversion of sunlight and photovoltaic (PV)-generated electricity production followed by electrolysis. The wind analysis was based on wind-generated electricity production followed by electrolysis. In addition to the base case analyses, which assume that hydrogen is the sole product, three alternative scenarios explore the economic impact of integrating the PV- and wind-based systems with the electric utility grid. Results show that PEC hydrogen production has the potential to be economically feasible. Additionally, the economics of the PV and wind electrolysis systems are improved by interaction with the grid. The analysis of hydrogen from biomass focused on three gasification technologies. The systems are: low pressure, indirectly-heated gasification followed by steam reforming; high pressure, oxygen-blown gasification followed by steam reforming; and pyrolysis followed by partial oxidation. For each of the systems studied, the downstream process steps include shift conversion followed by hydrogen purification. Only the low pressure system produces hydrogen within the range of the current industry selling prices (typically $0.7--$2/kg, or $5--14/GJ on a HHV basis). A sensitivity analysis showed that, for the other two systems, in order to bring the hydrogen selling price down to $2/kg, negative-priced feedstocks would be required.

  13. Device for absorbing mechanical shock

    DOEpatents

    Newlon, C.E.

    1979-08-29

    This invention is a comparatively inexpensive but efficient shock-absorbing device having special application to the protection of shipping and storage cylinders. In a typical application, two of the devices are strapped to a cylinder to serve as saddle-type supports for the cylinder during storage and to protect the cylinder in the event it is dropped during lifting or lowering operations. In its preferred form, the invention includes a hardwood plank whose grain runs in the longitudinal direction. The basal portion of the plank is of solid cross-section, whereas the upper face of the plank is cut away to form a concave surface fittable against the sidewall of a storage cylinder. The concave surface is divided into a series of segments by transversely extending, throughgoing relief slots. A layer of elastomeric material is positioned on the concave face, the elastomer being extrudable into slots when pressed against the segments by a preselected pressure characteristic of a high-energy impact. The compressive, tensile, and shear properties of the hardwood and the elastomer are utilized in combination to provide a surprisingly high energy-absorption capability.

  14. Device for absorbing mechanical shock

    DOEpatents

    Newlon, Charles E.

    1980-01-01

    This invention is a comparatively inexpensive but efficient shock-absorbing device having special application to the protection of shipping and storage cylinders. In a typical application, two of the devices are strapped to a cylinder to serve as saddle-type supports for the cylinder during storage and to protect the cylinder in the event it is dropped during lifting or lowering operations. In its preferred form, the invention includes a hardwood plank whose grain runs in the longitudinal direction. The basal portion of the plank is of solid cross-section, whereas the upper face of the plank is cut away to form a concave surface fittable against the sidewall of a storage cylinder. The concave surface is divided into a series of segments by transversely extending, throughgoing relief slots. A layer of elastomeric material is positioned on the concave face, the elastomer being extrudable into slots when pressed against the segments by a preselected pressure characteristic of a high-energy impact. The compressive, tensile, and shear properties of the hardwood and the elastomer are utilized in combination to provide a surprisingly high energy-absorption capability.

  15. Thermal and other tests of photovoltaic modules performed in natural sunlight

    NASA Technical Reports Server (NTRS)

    Stultz, J. W.

    1979-01-01

    The nominal operating cell temperature (NOCT), an effective way to characterize the thermal performance of a photovoltaic module in natural sunlight, is developed. NOCT measurements for more than twenty different modules are presented. Changes in NOCT reflect changes in module design, residential roof mounting, and dirt accumulation. Other test results show that electrical performance is improved by cooling modules with water and by use of a phase change wax. Electrical degradation resulting from the marriage of photovoltaic and solar water heating modules is demonstrated. Cost-effectiveness of each of these techniques is evaluated.

  16. Influence of Sound Wave Stimulation on the Growth of Strawberry in Sunlight Greenhouse

    NASA Astrophysics Data System (ADS)

    Qi, Lirong; Teng, Guanghui; Hou, Tianzhen; Zhu, Baoying; Liu, Xiaona

    In this paper, we adopt the QGWA-03 plant audio apparatus to investigate the sound effects on strawberry in the leaf area, the photosynthetic characteristics and other physiological indexes. It was found that when there were no significant differences between the circumstances of the two sunlight greenhouses, the strawberry after the sound wave stimulation grew stronger than in the control and its leaf were deeper green, and shifted to an earlier time about one week to blossom and bear fruit. It was also found that the resistance of strawberry against disease and insect pest were enhanced. The experiment results show that sound wave stimulation can certainly promote the growth of plants.

  17. Dispersed single-phase-step Michelson interferometer for Doppler imaging using sunlight.

    PubMed

    Wan, Xiaoke; Ge, Jian

    2012-09-15

    A Michelson interferometer is dispersed with a fiber array-fed spectrograph, providing 59 Doppler sensing channels using sunlight in the 510-570 nm wavelength region. The interferometer operates at a single-phase-step mode, which is particularly advantageous in multiplexing and data processing compared to the phase-stepping mode of other interferometer spectrometer instruments. Spectral templates are prepared using a standard solar spectrum and simulated interferometer modulations, such that the correlation function with a measured 1D spectrum determines the Doppler shift. Doppler imaging of a rotating cylinder is demonstrated. The average Doppler sensitivity is ~12 m/s, with some channels reaching ~5 m/s.

  18. Analytic Models for a Rapidly Spinning Spherical Satellite Charging in Sunlight

    DTIC Science & Technology

    2005-07-19

    spherical satellite charging in sunlight Maurice Tautz AER /Radex Inc., Lexington, Massachusetts, USA D TR•JTION STATEMENT A Shu T. Lai Approved for...trap escaping photoelectrons. Such a barrier exists if Vss = V,,n/Vshadc, (20) dV (r, t)/dr = 0 (14) has a solution. Using the previous expression for V(r...Geophys. Res., 85(A5), mil) 2324-2328. M. Tautz, AER /Radex Inc., Lexington, MA 02421, USA. 9 of 9 Form Approved REPORT DOCUMENTATION PAGE 0MB No

  19. Analytic Models for a Spherical Satellite Charging in Sunlight at any Spin Rate

    DTIC Science & Technology

    2006-10-01

    surface on the shaded SPIN PERIOD FRACTION side will go negative at a rate dV /dt=J/C where J is the dark side current density and C is the capacitance...on the sunlit side. The gives dV /dt=l Volt/s. If the satellite spins at one RPM, the horizontal dashed line represents the dark side equilibrium value...craft in a low density space plasma and could serve as a ref- tract F19628-00-C-0089. The website of AER , Inc. is at http: erence point for sunlight

  20. Dermal mast cells affect the development of sunlight-induced skin tumours.

    PubMed

    Sarchio, Seri N E; Kok, Lai-Fong; O'Sullivan, Clare; Halliday, Gary M; Byrne, Scott N

    2012-04-01

    Ultraviolet (UV) radiation contained in sunlight is considered a major risk in the induction of skin cancer. While mast cells are best known for their role in allergic responses, they have also been shown to play a crucial role in suppressing the anti-tumour immune response following UV exposure. Evidence is now emerging that UV may also trigger mast cell release of cutaneous tissue remodelling and pro-angiogenic factors. In this review, we will focus on the cellular and molecular mechanisms by which UV recruits and then activates mast cells to initiate and promote skin cancer development.

  1. Nighttime HOx chemistry in the Pearl River Delta and Beijing in summer 2006: intense oxidation without sunlight

    NASA Astrophysics Data System (ADS)

    Lu, K. D.; Rohrer, F.; Hofzumahaus, A.; Holland, F.; Fuchs, H.; Brauers, T.; Dlugi, R.; Li, X.; Lou, S. R.; Shao, M.; Zhu, T.; Wahner, A.; Zhang, Y. H.

    2012-04-01

    Due to the absence of sunlight, unexpected high nighttime OH concentrations reported in previous field studies are of high interest for in-depth understanding of trace gas removal and reaction kinetics. In summer 2006, within the framework of PRIDE-PRD2006 and CAREBEIJING2006, we performed intensive in-situ measurements for HOx radicals and ancillary parameters at two non-urban sites in Pearl River Delta and Beijing, respectively. During nighttime, quite similar features for both campaigns were observed. Measured nighttime OH and HO2 concentrations were about 0.5 - 3-106cm-3 and 0.2 - 5-108cm-3, respectively. A box model with the established chemical mechanism (RACM-MIM-GK) underestimated these observed OH concentrations by an order of magnitude while reproduced the observed HO2 taking into account the known interference from ambient RO2 radicals (Fuchs et al. 2011). By testing the recently proposed recycling mechanisms applied for daytime chemistry, we found both a small primary source and a secondary source of OH radicals, the last one comparable to daytime observations (Lu et al., 2011, Hofzumahaus et al., 2009). Interestingly, the widely applied LIM0 and MIM2+ showed marginal impacts on the modeled nighttime OH concentrations under high isoprene concentrations. With the help of a simple 1 d simulation, we found that direct input of ROx radicals by vertical transport was negligible while the input of PAN and MPAN could be of significance. Averaged nighttime pollutant turnover rates by OH were as high as 8 ppb/h and 4 ppb/h for PRD and Beijing, respectively, dominating nighttime oxidation processes. Fuchs, H., et al. Detection of HO2 by laser-induced fluorescence: calibration and interferences from RO2 radicals, Atmos. Meas. Tech., 4, 1209-1225, 2011. Hofzumahaus, A. et al. Amplified Trace Gas Removal in the Troposphere, Science, 324, 1702-1704, 2009. Lu, K. D. et al. Observation and modelling of OH and HO2 concentrations in the Pearl River Delta 2006: a missing

  2. Environmentally relevant impacts of nano-TiO2 on abiotic degradation of bisphenol A under sunlight irradiation.

    PubMed

    Wu, Wei; Shan, Guoqiang; Wang, Shanfeng; Zhu, Lingyan; Yue, Longfei; Xiang, Qian; Zhang, Yinqing; Li, Zhuo

    2016-09-01

    Understanding the effects of nano-TiO2 particles on the environmental behaviors of organic pollutants in natural aquatic environments is of paramount importance considering that large amount of nano-TiO2 is being released in the environment. In this study, the effect of nano-TiO2 on the degradation of bisphenol A (BPA) in water was investigated under simulated solar light irradiation. The results indicated that nano-TiO2 at environmentally relevant concentration (1 mg/L) could significantly facilitate the abiotic degradation of BPA (also at low concentration) under mild solar light irradiation, with the pseudo first-order rate constant (kobs) for BPA degradation raised by 1-2 orders of magnitude. As reflected by the inhibition experiments, hydroxyl radicals (OHs) and superoxide radical species were the predominant active species responsible for BPA degradation. The reaction was affected by water pH, and the degradation rate was higher at acidic or alkaline conditions than that at neutral condition. Humic acid (HA) also affected the reaction rate, depending on its concentration. At lower concentration (the mass ratio of HA/nano-TiO2 was 0.1:1), HA improved the dispersion and stability of nano-TiO2 in aquatic environment. As a result, the yield of OHs by nano-TiO2 under sunlight irradiation increased and BPA degradation was facilitated. When the HA concentration increased, a coating of HA formed on the surface of nano-TiO2. Although nano-TiO2 became more stable, the light absorption by nano-TiO2 was significantly reduced due to the strong light absorption of the HA coated on the surface. As a consequence, the yield of OH decreased and BPA degradation was depressed. The results imply that nano-TiO2 at low concentration may distinctly mediate BPA degradation, and can contribute to the natural attenuation of some organic pollutants in aquatic environment with low level of HA. However, this process would be significantly reduced in the presence of high level of HA.

  3. High temperature helical tubular receiver for concentrating solar power system

    NASA Astrophysics Data System (ADS)

    Hossain, Nazmul

    In the field of conventional cleaner power generation technology, concentrating solar power systems have introduced remarkable opportunity. In a solar power tower, solar energy concentrated by the heliostats at a single point produces very high temperature. Falling solid particles or heat transfer fluid passing through that high temperature region absorbs heat to generate electricity. Increasing the residence time will result in more heat gain and increase efficiency. A novel design of solar receiver for both fluid and solid particle is approached in this paper which can increase residence time resulting in higher temperature gain in one cycle compared to conventional receivers. The helical tubular solar receiver placed at the focused sunlight region meets the higher outlet temperature and efficiency. A vertical tubular receiver is modeled and analyzed for single phase flow with molten salt as heat transfer fluid and alloy625 as heat transfer material. The result is compared to a journal paper of similar numerical and experimental setup for validating our modeling. New types of helical tubular solar receivers are modeled and analyzed with heat transfer fluid turbulent flow in single phase, and granular particle and air plug flow in multiphase to observe the temperature rise in one cyclic operation. The Discrete Ordinate radiation model is used for numerical analysis with simulation software Ansys Fluent 15.0. The Eulerian granular multiphase model is used for multiphase flow. Applying the same modeling parameters and boundary conditions, the results of vertical and helical receivers are compared. With a helical receiver, higher temperature gain of heat transfer fluid is achieved in one cycle for both single phase and multiphase flow compared to the vertical receiver. Performance is also observed by varying dimension of helical receiver.

  4. Impact of structural heterogeneity in solar absorber layers (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Toney, Michael

    2016-09-01

    Impact of structural heterogeneity in solar absorber layers Michael F Toney SLAC National Accelerator Laboratory Structural and morphological heterogeneity is common in thin film and emerging solar cell absorber layers, including organic photovoltaic bulk heterojunctions (OPV BHJs), hybrid organic-inorganic perovskites (HOIP), and Cu2ZnSn(S,Se)4 (CZTSSe), and has a significant impact on the (opto)electronic heterogeneity and hence absorber properties. In this talk I will use X-ray based methods, including scattering and spectroscopies, to characterize and quantify the heterogeneity in OPV BHJs and HOIP absorber layers. The BHJ films are blends of the small molecule X2 and [6,6]-phenyl C71 butyric acid methyl ester (PC71BM) where it has been established that there are three distinct region of the films - pure PC71BM, pure X2 and intimately mixed X2:PC71BM. This talk will show how the absolute concentration of the mixed phase can be used to explain the large PC71BM:X2 composition range where good performance is observed [1]. The talk will also show that spin cast CH3NH3PbI3 films consistent of both crystalline and amorphous regions, which can explain previous heterogeneity in the PL imaging [2]. [1] Huang et al., Adv. Energy Mater. 4, 1301886 (2014). [2] deQuilettes et al., Science 348, 683 (2015).

  5. Absorbencies of six different rodent beddings: commercially advertised absorbencies are potentially misleading.

    PubMed

    Burn, C C; Mason, G J

    2005-01-01

    Moisture absorbency is one of the most important characteristics of rodent beddings for controlling bacterial growth and ammonia production. However, bedding manufacturers rarely provide information on the absorbencies of available materials, and even when they do, absorption values are usually expressed per unit mass of bedding. Since beddings are usually placed into cages to reach a required depth rather than a particular mass, their volumetric absorbencies are far more relevant. This study therefore compared the saline absorbencies of sawdust, aspen woodchips, two virgin loose pulp beddings (Alpha-Dri and Omega-Dri), reclaimed wood pulp (Tek-Fresh), and corncob, calculated both by volume and by mass. Absorbency per unit volume correlated positively with bedding density, while absorbency per unit mass correlated negatively. Therefore, the relative absorbencies of the beddings were almost completely reversed depending on how absorbency was calculated. By volume, corncob was the most absorbent bedding, absorbing about twice as much saline as Tek-Fresh, the least absorbent bedding. Conversely, when calculated by mass, Tek-Fresh appeared to absorb almost three times as much saline as the corncob. Thus, in practical terms the most absorbent bedding here was corncob, followed by the loose pulp beddings; and this is generally supported by their relatively low ammonia production as seen in previous studies. Many factors other than absorbency determine whether a material is suitable as a rodent bedding, and they are briefly mentioned here. However, manufacturers should provide details of bedding absorbencies in terms of volume, in order to help predict the relative absorbencies of the beddings in practical situations.

  6. Temporal stability of the microbial community in sewage-polluted seawater exposed to natural sunlight cycles and marine microbiota.

    PubMed

    Sassoubre, Lauren M; Yamahara, Kevan M; Boehm, Alexandria B

    2015-03-01

    Billions of gallons of untreated wastewater enter the coastal ocean each year. Once sewage microorganisms are in the marine environment, they are exposed to environmental stressors, such as sunlight and predation. Previous research has investigated the fate of individual sewage microorganisms in seawater but not the entire sewage microbial community. The present study used next-generation sequencing (NGS) to examine how the microbial community in sewage-impacted seawater changes over 48 h when exposed to natural sunlight cycles and marine microbiota. We compared the results from microcosms composed of unfiltered seawater (containing naturally occurring marine microbiota) and filtered seawater (containing no marine microbiota) to investigate the effect of marine microbiota. We also compared the results from microcosms that were exposed to natural sunlight cycles with those from microcosms kept in the dark to investigate the effect of sunlight. The microbial community composition and the relative abundance of operational taxonomic units (OTUs) changed over 48 h in all microcosms. Exposure to sunlight had a significant effect on both community composition and OTU abundance. The effect of marine microbiota, however, was minimal. The proportion of sewage-derived microorganisms present in the microcosms decreased rapidly within 48 h, and the decrease was the most pronounced in the presence of both sunlight and marine microbiota, where the proportion decreased from 85% to 3% of the total microbial community. The results from this study demonstrate the strong effect that sunlight has on microbial community composition, as measured by NGS, and the importance of considering temporal effects in future applications of NGS to identify microbial pollution sources.

  7. Temporal Stability of the Microbial Community in Sewage-Polluted Seawater Exposed to Natural Sunlight Cycles and Marine Microbiota

    PubMed Central

    Sassoubre, Lauren M.; Yamahara, Kevan M.

    2015-01-01

    Billions of gallons of untreated wastewater enter the coastal ocean each year. Once sewage microorganisms are in the marine environment, they are exposed to environmental stressors, such as sunlight and predation. Previous research has investigated the fate of individual sewage microorganisms in seawater but not the entire sewage microbial community. The present study used next-generation sequencing (NGS) to examine how the microbial community in sewage-impacted seawater changes over 48 h when exposed to natural sunlight cycles and marine microbiota. We compared the results from microcosms composed of unfiltered seawater (containing naturally occurring marine microbiota) and filtered seawater (containing no marine microbiota) to investigate the effect of marine microbiota. We also compared the results from microcosms that were exposed to natural sunlight cycles with those from microcosms kept in the dark to investigate the effect of sunlight. The microbial community composition and the relative abundance of operational taxonomic units (OTUs) changed over 48 h in all microcosms. Exposure to sunlight had a significant effect on both community composition and OTU abundance. The effect of marine microbiota, however, was minimal. The proportion of sewage-derived microorganisms present in the microcosms decreased rapidly within 48 h, and the decrease was the most pronounced in the presence of both sunlight and marine microbiota, where the proportion decreased from 85% to 3% of the total microbial community. The results from this study demonstrate the strong effect that sunlight has on microbial community composition, as measured by NGS, and the importance of considering temporal effects in future applications of NGS to identify microbial pollution sources. PMID:25576619

  8. Effect of sunlight irradiation on photocatalytic pyrene degradation in contaminated soils by micro-nano size TiO2.

    PubMed

    Chang Chien, S W; Chang, C H; Chen, S H; Wang, M C; Madhava Rao, M; Satya Veni, S

    2011-09-01

    The enhanced catalytic pyrene degradation in quartz sand and alluvial and red soils by micro-nano size TiO(2) in the presence and absence of sunlight was investigated. The results showed that the synergistic effect of sunlight irradiation and TiO(2) was more efficient on pyrene degradation in quartz sand and red and alluvial soils than the corresponding reaction system without sunlight irradiation. In the presence of sunlight irradiation, the photooxidation (without TiO(2)) of pyrene was very pronounced in alluvial and red soils and especially in quartz sand. However, in the absence of sunlight irradiation, the catalytic pyrene degradation by TiO(2) and the photooxidation (without TiO(2)) of pyrene were almost nil. This implicates that ultra-violet (UV) wavelength range of sunlight plays an important role in TiO(2)-enhanced photocatalytic pyrene degradation and in photooxidation (without TiO(2)) of pyrene. The percentages of photocatalytic pyrene degradation by TiO(2) in quartz sand, alluvial and red soils under sunlight irradiation were 78.3, 23.4, and 31.8%, respectively, at 5h reaction period with a 5% (w/w) dose of the amended catalyst. The sequence of TiO(2)-enhanced catalytic pyrene degradation in quartz sand and alluvial and red soils was quartz sand>red soil>alluvial soil, due to different texture and total organic carbon (TOC) contents of the quartz sand and other two soils. The differential Fourier transform infrared (FT-IR) spectra of degraded pyrene in alluvial soil corroborate that TiO(2)-enhanced photocatalytic degradation rate of degraded pyrene was much greater than photooxidation (without TiO(2)) rate of degraded pyrene. Based on the data obtained, the importance for the application of TiO(2)-enhanced photocatalytic pyrene degradation and associated organic contaminants in contaminated soils was elucidated.

  9. 21 CFR 872.6050 - Saliva absorber.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Saliva absorber. 872.6050 Section 872.6050 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6050 Saliva absorber. (a) Identification. A...

  10. 21 CFR 872.6050 - Saliva absorber.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Saliva absorber. 872.6050 Section 872.6050 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6050 Saliva absorber. (a) Identification. A...

  11. Influence of pH, Oxygen, and Humic Substances on Ability of Sunlight To Damage Fecal Coliforms in Waste Stabilization Pond Water

    PubMed Central

    Curtis, Thomas P.; Mara, D. Duncan; Silva, Salomao A.

    1992-01-01

    Simple beaker experiments established that light damages fecal coliforms in waste stabilization ponds by an oxygen-mediated exogenous photosensitization. Wavelengths of up to 700 nm were able to damage bacteria. The ability of wavelengths of >425 nm to damage fecal coliforms was dependent on the presence of dissolved sensitizers. The sensitizers were ubiquitous in raw sewage, unaffected by sewage treatment, not derivatives of bacteriochlorophyll or chlorophyll, absorbed well in UV light, and had a slight yellowish color; they are therefore believed to be humic substances. The ability of light to damage fecal coliforms was highly sensitive to, and completely dependent on, oxygen. Scavengers of H2O2 and singlet oxygen could protect the bacteria from the effects of sunlight, but scavengers of hydroxyl radicals and superoxides could not. Light-mediated damage of fecal coliforms was highly sensitive to elevated pH values, which also enabled light with wavelengths of >425 nm (in the presence of the sensitizer) to damage the bacteria. We conclude that humic substances, pH, and dissolved oxygen are important variables in the process by which light damages microorganisms in this and other environments and that these variables should be considered in future research on, and models of, the effects of light. PMID:16348698

  12. Improvement of Absorber's Performance by a Surfactant

    NASA Astrophysics Data System (ADS)

    Nishimura, Nobuya; Nomura, Tomohiro; Iyota, Hiroyuki; Kawakami, Ryuichiro

    Effects of an addition of surfactant to a lithium bromide aqueous solution have been investigated experimentally. N-octanol was used as a surfactant. The Marangoni convection occurred at/beneath the solution surface in the very beginning of steam absorption was observed both by a real-time type laser holographic visualization and by temperature measurements with extremely fine gauge thermocouples. Generation and growth of the Marangoni convection were both observed and evaluated quantitatively by the flow visualization. Furthermore, solution's surface temperatures with and without addition of the surfactant were measured minutely. Cell's formation pattern and migration speed at the surface were measured varying the initial surfactant's concentration ranging from 0 to 50000 ppm and the shallow liquid layer thickness ranging from 2 to 5 mm. And spacio-temporal scales of the Marangoni convection were determined. Also solution temperature changes at the surface were compared. Temperature increases when the surfactant was added to its solubility limit became almost double than that case of no surfactant. From these temperature differences, effects of the surfactant on absorber's performances were estimated by a calculation quantitatively with diffusion coefficient as an evaluation value.

  13. [Absorbed doses in dental radiology].

    PubMed

    Bianchi, S D; Roccuzzo, M; Albrito, F; Ragona, R; Anglesio, S

    1996-01-01

    The growing use of dento-maxillo-facial radiographic examinations has been accompanied by the publication of a large number of studies on dosimetry. A thorough review of the literature is presented in this article. Most studies were carried out on tissue equivalent skull phantoms, while only a few were in vivo. The aim of the present study was to evaluate in vivo absorbed doses during Orthopantomography (OPT). Full Mouth Periapical Examination (FMPE) and Intraoral Tube Panoramic Radiography (ITPR). Measurements were made on 30 patients, reproducing clinical conditions, in 46 anatomical sites, with 24 intra- and 22 extra-oral thermoluminiscent dosimeters (TLDS). The highest doses were measured, in orthopantomography, at the right mandibular angle (1899 mu Gy) in FMPE on the right naso-labial fold (5640 mu Gy and in ITPR on the palatal surface of the left second upper molar (1936 mu Gy). Intraoral doses ranged from 21 mu Gy, in orthopantomography, to 4494 mu Gy in FMPE. Standard errors ranged from 142% in ITPR to 5% in orthopantomography. The highest rate of standard errors was found in FMPE and ITPR. The data collected in this trial are in agreement with others in major literature reports. Disagreements are probably due to different exam acquisition and data collections. Such differences, presented comparison in several sites, justify lower doses in FMPE and ITPR. Advantages and disadvantages of in vivo dosimetry of the maxillary region are discussed, the former being a close resemblance to clinical conditions of examination and the latter the impossibility of collecting values in depth of tissues. Finally, both ITPR and FMPE required lower doses than expected, and can be therefore reconsidered relative to their radiation risk.

  14. Transformation of acesulfame in water under natural sunlight: joint effect of photolysis and biodegradation.

    PubMed

    Gan, Zhiwei; Sun, Hongwen; Wang, Ruonan; Hu, Hongwei; Zhang, Pengfei; Ren, Xinhao

    2014-11-01

    The transformation of acesulfame in water under environmentally relevant conditions, including direct and indirect photolysis, biodegradation, and hydrolysis, was systematically evaluated. Under natural sunlight, both direct and indirect photolysis of acesulfame were negligible in sterilized systems at neutral or alkaline pH, whereas direct photolysis occurred at pH of 4 with a rate constant of 0.0355 d(-1) in deionized water. No significant reduction in acesulfame contents was found in the dark controls or in the incubation experiments, indicating acesulfame was resistant to hydrolysis and biodegradation. In unsterilized systems, photolysis was substantially enhanced, implying that there was a joint effect of photolysis and biodegradation or that the sterilization process had the secondary effect of inactivating some photosensitizers. The near-surface summer half-life of acesulfame in the water from the Haihe River was 9 d. Specific experiments revealed the involvement of (1)O2/(3)DOM* in acesulfame photolysis, whereas OH exhibited only a slight contribution in the presence of DOM or bicarbonate. As indicated by the total organic carbon data, no significant mineralization occurred in both sterilized and unsterilized systems after acesulfame was irradiated under simulated sunlight for 7 d, suggesting the generation of persistent intermediates. Finally, major degradation intermediates were analyzed, and the degradation pathways of acesulfame under environmentally relevant conditions were proposed for the first time.

  15. Psychiatric hospitalizations for affective disorders in Warsaw, Poland: Effect of season and intensity of sunlight.

    PubMed

    Dominiak, Monika; Swiecicki, Lukasz; Rybakowski, Janusz

    2015-09-30

    The purpose of this study was to assess any associations between the number of hospitalizations for affective disorders, seasons of the year and the intensity of sunlight in Poland, a country with a very changeable climate and significant seasonal fluctuations. We analyzed 2837 admissions with affective disorders hospitalized in the Institute of Psychiatry and Neurology in Warsaw, between 2002 and 2010 (mania, n=380, mixed episode, n=131, bipolar depression, n=736, recurrent depression, n=681, single depressive episode, n=909). For each diagnostic group admission time series were created and categorized into subgroups according to sex and age, and these were analyzed by means of the Autoregressive Integrated Moving Average (ARIMA) method. Regression models and correlations were used to assess the influence of the intensity of sunlight on the number of hospitalizations. Most mania admissions were noted in spring/summer months and in midwinter, mixed episode-late spring and winter, and depression (bipolar, recurrent and single depressive episode)-spring and autumn months. The association between frequency of admissions and monthly hours of sunshine was observed in some age and sex subgroups of patients with bipolar disorder and single depressive episode. The results support the seasonality of admissions of patients with affective disorders.

  16. A full-sunlight-driven photocatalyst with super long-persistent energy storage ability.

    PubMed

    Li, Jie; Liu, Yuan; Zhu, Zhijian; Zhang, Guozhu; Zou, Tao; Zou, Zhijun; Zhang, Shunping; Zeng, Dawen; Xie, Changsheng

    2013-01-01

    A major drawback of traditional photocatalysts like TiO2 is that they can only work under illumination, and the light has to be UV. As a solution for this limitation, visible-light-driven energy storage photocatalysts have been developed in recent years. However, energy storage photocatalysts that are full-sunlight-driven (UV-visible-NIR) and possess long-lasting energy storage ability are lacking. Here we report, a Pt-loaded and hydrogen-treated WO3 that exhibits a strong absorption at full-sunlight spectrum (300-1,000 nm), and with a super-long energy storage time of more than 300 h to have formaldehyde degraded in dark. In this new material system, the hydrogen treated WO3 functions as the light harvesting material and energy storage material simultaneously, while Pt mainly acts as the cocatalyst to have the energy storage effect displayed. The extraordinary full-spectrum absorption effect and long persistent energy storage ability make the material a potential solar-energy storage and an effective photocatalyst in practice.

  17. Chloroplast avoidance movement is not functional in plants grown under strong sunlight.

    PubMed

    Higa, Takeshi; Wada, Masamitsu

    2016-04-01

    Chloroplast movement in nine climbing plant species was investigated. It is thought that chloroplasts generally escape from strong light to avoid photodamage but accumulate towards weak light to perform photosynthesis effectively. Unexpectedly, however, the leaves of climbing plants grown under strong sunlight showed very low or no chloroplast photorelocation responses to either weak or strong blue light when detected by red light transmittance through leaves. Direct observations of Cayratia japonica leaves, for example, revealed that the average number of chloroplasts in upper periclinal walls of palisade tissue cells was only 1.2 after weak blue-light irradiation and almost all of the chloroplasts remained at the anticlinal wall, the state of chloroplast avoidance response. The leaves grown under strong light have thin and columnar palisade tissue cells comparing with the leaves grown under low light. Depending on our analyses and our schematic model, the thinner cells in a unit leaf area have a wider total plasma membrane area, such that more chloroplasts can exist on the plasma membrane in the thinner cells than in the thicker cells in a unit leaf-area basis. The same strategy might be used in other plant leaves grown under direct sunlight.

  18. Surface exposure to sunlight stimulates CO2 release from permafrost soil carbon in the Arctic.

    PubMed

    Cory, Rose M; Crump, Byron C; Dobkowski, Jason A; Kling, George W

    2013-02-26

    Recent climate change has increased arctic soil temperatures and thawed large areas of permafrost, allowing for microbial respiration of previously frozen C. Furthermore, soil destabilization from melting ice has caused an increase in thermokarst failures that expose buried C and release dissolved organic C (DOC) to surface waters. Once exposed, the fate of this C is unknown but will depend on its reactivity to sunlight and microbial attack, and the light available at the surface. In this study we manipulated water released from areas of thermokarst activity to show that newly exposed DOC is >40% more susceptible to microbial conversion to CO(2) when exposed to UV light than when kept dark. When integrated over the water column of receiving rivers, this susceptibility translates to the light-stimulated bacterial activity being on average from 11% to 40% of the total areal activity in turbid versus DOC-colored rivers, respectively. The range of DOC lability to microbes seems to depend on prior light exposure, implying that sunlight may act as an amplification factor in the conversion of frozen C stores to C gases in the atmosphere.

  19. Effects of controlled exposure of sunlight on plasma and skin levels of beta-carotene.

    PubMed

    Biesalski, H K; Hemmes, C; Hopfenmuller, W; Schmid, C; Gollnick, H P

    1996-03-01

    We conducted a randomized placebo-controlled double-blind study in 20 healthy young female students (skin type II + III, body mass index 18-22) in order to evaluate the efficacy of 10 weeks of moderate dose (30 mg/d) beta-carotene (BC) on plasma and skin beta-carotene levels during 12 days of time and intensity controlled sunlight exposure at sea level (30 degrees latitude, Red Sea, Eilath, Israel). After 12 days of controlled sun exposure (total UV dose of about 10.000J/cm2), plasma beta-carotene decreased in the placebo (p < 0.01) and beta-carotene group (not significant). In addition cutaneous beta-carotene decreased significantly in both groups. Plasma alpha-tocopherol decreased significantly (p < 0.01) during exposure time in both groups. In the supplemented group, however, the decrease of a-tocopherol was significantly greater (p < 0.01) than in the placebo group. We conclude that sunlight influences the beta-carotene and alpha-tocopherol content of blood and tissues.

  20. Inactivation of vaccinia virus by natural sunlight and by artificial UVB radiation.

    PubMed

    Sagripanti, Jose-Luis; Voss, Luzie; Marschall, Hans-Juergen; Lytle, Carl David

    2013-01-01

    This study determined the sensitivity of vaccinia virus, an orthopox virus commonly used as a surrogate for variola virus (etiological agent of smallpox), exposed to UVB radiation emitted by a solar simulator, or to direct natural sunlight. The data obtained indicate that: (1) the virucidal effect of natural sunlight can be mimicked adequately by an artificial light source with similar spectral characteristics in the UVB, (2) viral sensitivity to UVB or to solar radiation can be correlated with experimental data previously obtained with UVC, (3) the correlation factor between virus inactivation by solar radiation (measured at 300 ± 5 nm) and by UVC (254 nm) is between 33 and 60, and (4) the sensitivity of viruses either dry on glass surfaces or in liquid suspension is similar when in the presence of similar amounts of cellular debris and growth media. The findings reported in this study should assist in estimating the threat posed by the persistence of virus during epidemics or after an accidental or intentional release.

  1. Modeling of Liquid Film along Absorber Cylinders in an Absorption Chiller

    NASA Astrophysics Data System (ADS)

    Suzuki, Hiroshi; Yamanaka, Tomofumi; Nagamoto, Wataru; Sugiyama, Takahide

    A two-dimensional liquid film model of LiBr solution falling along absorber cylinders has been studied to obtain boundary conditions for computing vapor flow in the absorber-evaporator of an absorption chiller. The model was established based on the assumptions that LiBr concentration and temperature profiles in the liquid film obey the third order polynomial expressions. It was indicated that mass flux and absorbed heat on the liquid surface can be calculated with simple numerical computations on the present analytical model. The overall heat transfer coefficient and total absorbed mass per second calculated with the present liquid film model was compared with experimental data for validation. The results calculated with the present model showed good agreement with the experimental data. Then, it was concluded the present model was useful enough for determining surface conditions on the LiBr liquid film around absorber cylinders.

  2. Design of a nonlinear torsional vibration absorber

    NASA Astrophysics Data System (ADS)

    Tahir, Ammaar Bin

    Tuned mass dampers (TMD) utilizing linear spring mechanisms to mitigate destructive vibrations are commonly used in practice. A TMD is usually tuned for a specific resonant frequency or an operating frequency of a system. Recently, nonlinear vibration absorbers attracted attention of researchers due to some potential advantages they possess over the TMDs. The nonlinear vibration absorber, or the nonlinear energy sink (NES), has an advantage of being effective over a broad range of excitation frequencies, which makes it more suitable for systems with several resonant frequencies, or for a system with varying excitation frequency. Vibration dissipation mechanism in an NES is passive and ensures that there is no energy backflow to the primary system. In this study, an experimental setup of a rotational system has been designed for validation of the concept of nonlinear torsional vibration absorber with geometrically induced cubic stiffness nonlinearity. Dimensions of the primary system have been optimized so as to get the first natural frequency of the system to be fairly low. This was done in order to excite the dynamic system for torsional vibration response by the available motor. Experiments have been performed to obtain the modal parameters of the system. Based on the obtained modal parameters, the design optimization of the nonlinear torsional vibration absorber was carried out using an equivalent 2-DOF modal model. The optimality criterion was chosen to be maximization of energy dissipation in the nonlinear absorber attached to the equivalent 2-DOF system. The optimized design parameters of the nonlinear absorber were tested on the original 5-DOF system numerically. A comparison was made between the performance of linear and nonlinear absorbers using the numerical models. The comparison showed the superiority of the nonlinear absorber over its linear counterpart for the given set of primary system parameters as the vibration energy dissipation in the former is

  3. Geometrical optical performance evaluation of some seasonally adjusted solar concentrators

    SciTech Connect

    Mazumder, R.K.; Kandpal, T.C.; Mullick, S.C.

    1986-12-01

    The concentration characteristics of mirror profiles composed of small plane mirror elements have been studied for seasonally adjusted solar concentrators with different absorbers: flat horizontal, flat vertical, triangular cross section, and tubular. The distributions of local concentration ratio over these absorbers have been investigated using a ray tracing procedure.

  4. Solar concentrating properties of truncated hexagonal, pyramidal and circular cones

    NASA Technical Reports Server (NTRS)

    Burkhard, D. G.; Strobel, G. L.; Shealy, D. L.

    1978-01-01

    The solar concentrating properties of specularly reflecting truncated pyramidal, hexagonal, and circular cones are evaluated. Pyramidal and hexagonal configurations are discussed with reference to the concentration factor as a function of half apex angle and the length of the side over the width, and to the irradiance distribution. Expressions are derived for the concentration factor and the irradiance at the base of a circular cone when the sunlight is incident normal to the aperture and for oblique incidence.

  5. Evaluation of high-concentration photovoltaic power plants

    SciTech Connect

    Stolte, W.J. ); Whisnant, R.A. ); McGowin, C.R. )

    1991-01-01

    This paper describes the conceptual design, and estimated cost and performance of two high-concentration, 50 MW photovoltaic power plants. Both designs are based on a similar advanced back-contact silicon concentrator cell. The first design uses Fresnel lens/glass silo modules mounted on two-axis tracking arrays. The second design has all of the cells mounted on a central receiver on top of a single tower, with heliostats concentrating sunlight onto the receiver.

  6. Line-focus concentrating collector program

    NASA Technical Reports Server (NTRS)

    Dugan, V. L.

    1980-01-01

    The Line-Focus Concentrating Collector Program has emphasized the development and dissemination of concentrating solar technology in which the reflected sunlight is focused onto a linear or line receiver. Although a number of different types of line-focus concentrators were developed, the parabolic trough has gained the widest acceptance and utilization within the industrial and applications sectors. The trough is best applied for application scenarios which require temperatures between 140 and 600 F. Another concept, the bowl, is investigated for applications which may require temperatures in the range between 600 and 1200 F. Current technology emphases are upon the reduction of system installation cost and the implementation of production oriented engineering.

  7. Thin film absorber for a solar collector

    DOEpatents

    Wilhelm, William G.

    1985-01-01

    This invention pertains to energy absorbers for solar collectors, and more particularly to high performance thin film absorbers. The solar collectors comprising the absorber of this invention overcome several problems seen in current systems, such as excessive hardware, high cost and unreliability. In the preferred form, the apparatus features a substantially rigid planar frame with a thin film window bonded to one planar side of the frame. An absorber in accordance with the present invention is comprised of two thin film layers that are sealed perimetrically. In a preferred embodiment, thin film layers are formed from a metal/plastic laminate. The layers define a fluid-tight planar envelope of large surface area to volume through which a heat transfer fluid flows. The absorber is bonded to the other planar side of the frame. The thin film construction of the absorber assures substantially full envelope wetting and thus good efficiency. The window and absorber films stress the frame adding to the overall strength of the collector.

  8. Advanced EMU electrochemically regenerable CO2 and moisture absorber module breadboard

    NASA Technical Reports Server (NTRS)

    Lee, M. C.; Sudar, M.; Chang, B. J.

    1988-01-01

    The applicability of the Electrochemically Regenerable Carbon Dioxide and Moisture Absorption Technology to the advanced extravehicular mobility unit was demonstrated by designing, fabricating, and testing a breadboard Absorber Module and an Electrochemical Regenerator. Test results indicated that the absorber module meets or exceeds the carbon dioxide removal requirements specified for the design and can meet the moisture removal requirement when proper cooling is provided. CO2 concentration in the vent gas stream was reduced from 0.52 to 0.027 kPa (3.9 to 0.20 mm Hg) for the full five hour test period. Vent gas dew point was reduced from inlet values of 294 K (69 F) to 278 K (41 F) at the outlet. The regeneration of expended absorbent was achieved by the electrochemical method employed in the testing. An absorbent bed using microporous hydrophobic membrane sheets with circulating absorbent is shown to be the best approach to the design of an Absorber Module based on sizing and performance. Absorber Module safety design, comparison of various absorbents and their characteristics, moisture absorption and cooling study and subsystem design and operation time-lining study were also performed.

  9. Evaluation of absorbed dose in Gadolinium neutron capture therapy

    NASA Astrophysics Data System (ADS)

    Abdullaeva, Gayane; Djuraeva, Gulnara; Kim, Andrey; Koblik, Yuriy; Kulabdullaev, Gairatulla; Rakhmonov, Turdimukhammad; Saytjanov, Shavkat

    2015-02-01

    Gadolinium neutron capture therapy (GdNCT) is used for treatment of radioresistant malignant tumors. The absorbed dose in GdNCT can be divided into four primary dose components: thermal neutron, fast neutron, photon and natural gadolinium doses. The most significant is the dose created by natural gadolinium. The amount of gadolinium at the irradiated region is changeable and depends on the gadolinium delivery agent and on the structure of the location where the agent is injected. To de- fine the time dependence of the gadolinium concentration ρ(t) in the irradiated region the pharmacokinetics of gadolinium delivery agent (Magnevist) was studied at intratumoral injection in mice and intramuscular injection in rats. A polynomial approximation was applied to the experimental data and the influence of ρ(t) on the relative change of the absorbed dose of gadolinium was studied.

  10. The nonlinear piezoelectric tuned vibration absorber

    NASA Astrophysics Data System (ADS)

    Soltani, P.; Kerschen, G.

    2015-07-01

    This paper proposes a piezoelectric vibration absorber, termed the nonlinear piezoelectric tuned vibration absorber (NPTVA), for the mitigation of nonlinear resonances of mechanical systems. The new feature of the NPTVA is that its nonlinear restoring force is designed according to a principle of similarity, i.e., the NPTVA should be an electrical analog of the nonlinear host system. Analytical formulas for the NPTVA parameters are derived using the homotopy perturbation method. Doing so, a nonlinear generalization of Den Hartog’s equal-peak tuning rule is developed for piezoelectric vibration absorbers.

  11. Freshwater DOM quantity and quality from a two-component model of UV absorbance

    USGS Publications Warehouse

    Carter, Heather T.; Tipping, Edward; Koprivnjak, Jean-Francois; Miller, Matthew P.; Cookson, Brenda; Hamilton-Taylor, John

    2012-01-01

    We present a model that considers UV-absorbing dissolved organic matter (DOM) to consist of two components (A and B), each with a distinct and constant spectrum. Component A absorbs UV light strongly, and is therefore presumed to possess aromatic chromophores and hydrophobic character, whereas B absorbs weakly and can be assumed hydrophilic. We parameterised the model with dissolved organic carbon concentrations [DOC] and corresponding UV spectra for c. 1700 filtered surface water samples from North America and the United Kingdom, by optimising extinction coefficients for A and B, together with a small constant concentration of non-absorbing DOM (0.80 mg DOC L-1). Good unbiased predictions of [DOC] from absorbance data at 270 and 350 nm were obtained (r2 = 0.98), the sum of squared residuals in [DOC] being reduced by 66% compared to a regression model fitted to absorbance at 270 nm alone. The parameterised model can use measured optical absorbance values at any pair of suitable wavelengths to calculate both [DOC] and the relative amounts of A and B in a water sample, i.e. measures of quantity and quality. Blind prediction of [DOC] was satisfactory for 9 of 11 independent data sets (181 of 213 individual samples).

  12. Detection of Organic Compounds in Water by an Optical Absorbance Method

    PubMed Central

    Kim, Chihoon; Eom, Joo Beom; Jung, Soyoun; Ji, Taeksoo

    2016-01-01

    This paper proposes an optical method which allows determination of the organic compound concentration in water by measurement of the UV (ultraviolet) absorption at a wavelength of 250 nm~300 nm. The UV absorbance was analyzed by means of a multiple linear regression model for estimation of the total organic carbon contents in water, which showed a close correlation with the UV absorbance, demonstrating a high adjusted coefficient of determination, 0.997. The comparison of the TOC (total organic carbon) concentrations for real samples (tab water, sea, and river) calculated from the UV absorbance spectra, and those measured by a conventional TOC analyzer indicates that the higher the TOC value the better the agreement. This UV absorbance method can be easily configured for real-time monitoring water pollution, and built into a compact system applicable to industry areas. PMID:26742043

  13. Applications of UV Scattering and Absorbing Aerosol Indices

    NASA Astrophysics Data System (ADS)

    Penning de Vries, M.; Beirle, S.; Wagner, T.

    2009-04-01

    Aerosols cause a substantial amount of radiative forcing, but quantifying this amount is difficult: determining aerosol concentrations in the atmosphere and, especially, characterizing their (optical) properties, has proved to be quite a challenge. A good way to monitor aerosol characteristics on a global scale is to perform satellite remote sensing. Most satellite aerosol retrieval algorithms are based on fitting of aerosol-induced changes in earth reflectance, which are usually subtle and have a smooth wavelength dependence. In such algorithms certain aerosol models are assumed, where optical parameters such as single scattering albedo, asymmetry parameter and size parameter (or Angstrom exponent) are defined. Another, semi-quantitative technique for detecting aerosols is the calculation of UV Aerosol Indices (UVAI). The Absorbing and Scattering Aerosol Indices detect "UV-absorbing" aerosols (most notably mineral dust, black and brown carbon particles) and "scattering" aerosols (sulfate and secondary organic aerosol particles), respectively. UVAI are essentially a measure of the contrast between two wavelengths in the UV range. The advantages of UVAI are: they can be determined in the presence of clouds, they are rather insensitive to surface type, and they are very sensitive to aerosols. The Absorbing Aerosol Index (AAI) has been in use for over a decade, and the Scattering Aerosol Index (SAI) was recently introduced by our group. Whereas the AAI is mainly used to detect desert dust and biomass burning plumes, the SAI can be used to study regions with high concentrations of non-absorbing aerosols, either anthropogenic (e.g. sulfate aerosols in eastern China) or biogenic (e.g. secondary organic aerosols formed from VOCs emitted by plants). Here we will present our recent UVAI results from SCIAMACHY: we will discuss the seasonal trend of SAI, and correlate our UVAI data with other datasets such as trace gases (HCHO, NO2, CO) and fire counts from the (A

  14. Roadmaps for powering the world, U.S., and individual states for all purposes with wind, water, and sunlight (Invited)

    NASA Astrophysics Data System (ADS)

    Jacobson, M. Z.

    2013-12-01

    Global warming, air pollution, and energy insecurity are three of the most significant problems facing the world today. This talk discusses these problems and technical and economic plans to solve them by powering 100% of the world, individual countries, and states for all purposes, including electricity, transportation, industry, and heating/cooling, with wind, water, and sunlight (WWS) together with efficiency measures, within 20-40 years. Specific plans for New York State and California are discussed. For California, the plan contemplates all new energy powered with WWS by 2020, 80-85% of existing energy replaced by 2030, and 100% replaced by 2050. Electrification plus modest efficiency measures would reduce California's end-use power demand ~44% and stabilize energy prices since WWS fuel costs are zero. Even without additional efficiency improvements, remaining all-purpose 2030 end-use demand could be met with 25% onshore and 10% offshore wind, 15% concentrated solar, 15% utility-scale PV, 10% residential PV, 15% commercial/government PV, 5% geothermal, 0.5% wave, 0.5% tidal, and 4% hydroelectric. These percentages will shift upon implementation. Converting would create ~137,000 net permanent jobs, decrease ~16,000 (4,800-29,600) state air pollution deaths/yr, and avoid 131 (39-296) billion/yr in health costs (6.9% of California's 2010 gross domestic product), repaying the 1 trillion capital cost for 573 GW installed power within ~7.3 yr. California's emission decreases would reduce 2050 U.S. and global climate costs by ~6 and 60 billion/yr, respectively.

  15. Superparamagnetic plasmonic nanohybrids: shape-controlled synthesis, TEM-induced structure evolution, and efficient sunlight-driven inactivation of bacteria.

    PubMed

    Zhai, Yueming; Han, Lei; Wang, Ping; Li, Gaiping; Ren, Wen; Liu, Ling; Wang, Erkang; Dong, Shaojun

    2011-11-22

    Magnetic materials and noble metal-based multifunctional hybrids have attracted much attention recently due to their unique properties and potential applications in a variety of fields. However, substantial challenges remain to directly obtain water-soluble hybrids with well-defined structures and to directly combine magnetic nanoparticles with nonspherical noble metals. We describe here for the first time a simple solvothermal method to synthesize a series of novel water-soluble nanohybrids composed of shape-tuned Ag cores and a Fe(3)O(4) shell. We found that small Fe(3)O(4) grains can be well-distributed directly on the surface on the Ag seeds. Such hybrids have both plasmonic and significant superparamagnetic properties, enabling magnetic separation. The plasmon resonance frequency of Ag nanostructures can be fine-tuned through the interactions between the two components. In addition, the decorated Fe(3)O(4) nanoparticles stabilized the Ag nanostructures when exposed to air and natural light for a long time. Furthermore, an interesting structural transformation is observed in the one-dimensional Ag-Fe(3)O(4) nanowires under high-energy electron beam. The Ag core can diffuse through the porous iron oxide shell, break away, and result in the formation of Ag nanocluster-decorated iron oxide tubes. Finally, the hybrids acted as a chemical template for the synthesis of Fe(3)O(4)/Au-AgCl double-layer nanotubes that display obvious near-infrared absorption. Importantly, the double-layer nanotubes exhibited enhanced photocatalytic inactivation of bacteria at very low concentrations under natural sunlight.

  16. Theoretical and thermal characterization of a wideband perfect absorber for application in solar cells

    NASA Astrophysics Data System (ADS)

    Rufangura, Patrick; Sabah, Cumali

    2016-12-01

    This paper suggests a metamaterial (MTM) absorber structure to be used for efficiency improved solar cell. The proposed MTM absorber consists of the topmost three concentric circular ring resonators, and a ground metal plane sandwiched to the top layer with a dielectric spacer. Numerical simulation and theoretical (interference theory) studies on the proposed design show a wideband with near-perfect (>99%) absorption response in the visible frequency region of the solar spectrum. Thermal characterization of the suggested design is also conducted in order to investigate its absorption capability at different temperatures. The proposed MTM absorber design is believed to be an outstanding candidate toward high-efficiency solar photovoltaic cell.

  17. Attenuation of external Bremsstrahlung in metallic absorbers

    SciTech Connect

    Dhaliwal, A.S.; Powar, M.S.; Singh, M. )

    1990-12-01

    In this paper attenuation of bremsstrahlung from {sup 147}Pm and {sup 170}Tm beta emitters has been studied in aluminum, copper, tin, and lead metallic absorbers. Bremsstrahlung spectra and mass attenuation coefficients for monoenergetic gamma rays are used to calculate theoretical attenuation curves. Magnetic deflection and beta stopping techniques are used to measure the integral bremsstrahlung intensities above 30 keV in different target thicknesses. Comparison of measured and calculated attenuation curves shows a good agreement for various absorbers, thus providing a test of this technique, which may be useful in understanding bremsstrahlung intensity buildup and in the design of optimum shielding for bremsstrahlung sources. It is found that the absorption of bremsstrahlung in metallic absorbers does not obey an exponential law and that absorbers act as energy filters.

  18. Energy absorber uses expanded coiled tube

    NASA Technical Reports Server (NTRS)

    Johnson, E. F.

    1972-01-01

    Mechanical shock mitigating device, based on working material to its failure point, absorbs mechanical energy by bending or twisting tubing. It functions under axial or tangential loading, has no rebound, is area independent, and is easy and inexpensive to build.

  19. Neutron absorbing coating for nuclear criticality control

    DOEpatents

    Mizia, Ronald E.; Wright, Richard N.; Swank, William D.; Lister, Tedd E.; Pinhero, Patrick J.

    2007-10-23

    A neutron absorbing coating for use on a substrate, and which provides nuclear criticality control is described and which includes a nickel, chromium, molybdenum, and gadolinium alloy having less than about 5% boron, by weight.

  20. Durability of Polymeric Glazing and Absorber Materials

    SciTech Connect

    Jorgensen, G.; Terwilliger, K.; Bingham, C.; Milbourne, M.

    2005-01-01

    The Solar Heating and Lighting Program has set the goal of reducing the cost of solar water heating systems by at least 50%. An attractive approach to such large cost reduction is to replace glass and metal parts with less-expensive, lighter-weight, more-integrated polymeric components. The key challenge with polymers is to maintain performance and assure requisite durability for extended lifetimes. The objective of this task is to quantify lifetimes through measurement of the optical and mechanical stability of candidate polymeric glazing and absorber materials. Polycarbonate sheet glazings, as proposed by two industry partners, have been tested for resistance to UV radiation with three complementary methods. Incorporation of a specific 2-mil thick UV-absorbing screening layer results in glazing lifetimes of at least 15 years; improved screens promise even longer lifetimes. Proposed absorber materials were tested for creep and embrittlement under high temperature, and appear adequate for planned ICS absorbers.

  1. Preparation of K-doped TiO2 nanostructures by wet corrosion and their sunlight-driven photocatalytic performance

    NASA Astrophysics Data System (ADS)

    Shin, Eunhye; Jin, Saera; Kim, Jiyoon; Chang, Sung-Jin; Jun, Byung-Hyuk; Park, Kwang-Won; Hong, Jongin

    2016-08-01

    K-doped TiO2 nanowire networks were prepared by the corrosion reaction of Ti nanoparticles in an alkaline (potassium hydroxide: KOH) solution. The prepared nanostructures were characterized by scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET) analysis, X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, X-ray diffraction (XRD) and photoluminescence (PL) spectra. Their sunlight-driven photocatalytic activity was also investigated with differently charged dye molecules, such as methylene blue, rhodamine B and methyl orange. The adsorption of the dye molecules on the photocatalyst surface would play a critical role in their selective photodegradation under sunlight illumination.

  2. Decomposition of 14C-fenitrothion under the influence of UV and sunlight under tropical and subtropical conditions.

    PubMed

    Zayed, S M A D; Mahdy, F

    2008-02-01

    The decomposition of (14)C-fenitrothion on silica gel chromatoplates as well as in polar and non polar solvents under sunlight and ultraviolet light was investigated, Its stability to sunlight on leaf surfaces of bean plants and on different surfaces (such as glass, quartz and plastic) was also determined. The main photoproducts were identified as carboxyfenitrothion, fenitrooxon, carboxyfenitrooxon and 3-methyl-4-nitrophenol and a small amount 3-caboxy-4-nitrophenol and methyl parathion. The addition of carbaryl and deltamethrin insecticides slightly accelerated the photodecomposition of fenitrothion on silica gel plates and in solution.

  3. Natural sunlight irradiated flower-like CuS synthesized from DMF solvothermal treatment

    NASA Astrophysics Data System (ADS)

    Zhao, Wei; Wang, Zihao; Zhou, Lei; Liu, Nianqi; Wang, Hongxing

    2016-09-01

    Three-dimensional CuS hierarchical crystals with high catalytic activity had been successfully fabricated using a facile solvothermal process. The CuS microparticles showed different flower-like morphology and good dispersion by optimizing reaction conditions. It was found that using N,N-dimethylformamide (DMF) as the solvent reagent in the proper temperature conditions was favorable for the growth of hierarchically structured CuS. The hexagonal flower-like CuS synthesized at 170°C for 60 min displayed broad-spectrum photocatalytic properties under ultraviolet (UV) and visible irradiation. The as-prepared CuS crystals exhibited good performance to decolorize methylene blue (MB) solution under visible light irradiation. The total organic carbon (TOC) removal of rhodamine B (RhB) solution was nearly 60% after 5 h of the natural sunlight irradiation, and the property was stable after testing over four recycles, demonstrating a potential application in waster water treatment.

  4. Pilot scale mineralization of organic acids by electro-Fenton process plus sunlight exposure.

    PubMed

    Casado, Juan; Fornaguera, Jordi; Galán, Maria Isabel

    2006-07-01

    The viability of the electro-Fenton degradation of aqueous solutions of benzoic acid, 2,4-dichlorophenoxyacetic acid and oxalic acid has been studied at 20 A using a pilot flow reactor containing an anode and an oxygen diffusion cathode, both of 100 cm(2) section. Pollutants were preferentially oxidized by hydroxyl radicals formed in solution from reaction of Fe(2+) with electrogenerated H(2)O(2), allowing mineralization of benzoic acid and 2,4-D. For oxalic acid no electrochemical mineralization was observed. After electrolysis, samples of the different effluents were exposed to sunlight (Helielectro-Fenton process) and almost complete mineralization was reached after ca. 30-50 min without additional cost. Effects of parameters such as electrolysis time, pH and solar irradiation time on the process efficiencies were studied.

  5. Graphene-SnO2 composites for highly efficient photocatalytic degradation of methylene blue under sunlight.

    PubMed

    Seema, Humaira; Christian Kemp, K; Chandra, Vimlesh; Kim, Kwang S

    2012-09-07

    Graphene sheets decorated with SnO(2) nanoparticles (RGO-SnO(2)) were prepared via a redox reaction between graphene oxide (GO) and SnCl(2). Graphene oxide (GO) was reduced to graphene (RGO) and Sn(2+) was oxidized to SnO(2) during the redox reaction, leading to a homogeneous distribution of SnO(2) nanoparticles on RGO sheets. The scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images show uniform distribution of the nanoparticles on the RGO surface and high-resolution transmission electron microscopy (HRTEM) shows an average particle size of 3-5 nm. The RGO-SnO(2) composite showed an enhanced photocatalytic degradation activity for the organic dye methylene blue under sunlight compared to bare SnO(2) nanoparticles. This result leads us to believe that the RGO-SnO(2) composite could be used in catalytic photodegradation of other organic dyes.

  6. The significance of direct sunlight and polarized skylight in the ant's celestial system of navigation

    NASA Astrophysics Data System (ADS)

    Wehner, Rüdiger; Müller, Martin

    2006-08-01

    As textbook knowledge has it, bees and ants use polarized skylight as a backup cue whenever the main compass cue, the sun, is obscured by clouds. Here we show, by employing a unique experimental paradigm, that the celestial compass system of desert ants, Cataglyphis, relies predominantly on polarized skylight. If ants experience only parts of the polarization pattern during training but the full pattern in a subsequent test situation, they systematically deviate from their true homeward courses, with the systematics depending on what parts of the skylight patterns have been presented during training. This "signature" of the polarization compass remains unaltered, even if the ants can simultaneously experience the sun, which, if presented alone, enables the ants to select their true homeward courses. Information provided by direct sunlight and polarized skylight is picked up by different parts of the ant's compound eyes and is channeled into two rather separate systems of navigation. insect vision | polarization compass | sun compass | Cataglyphis

  7. Sunlight and the plant: a toxic combination: severe phytophotodermatitis from Cneoridium dumosum.

    PubMed

    Tunget, C L; Turchen, S G; Manoguerra, A S; Clark, R F; Pudoff, D E

    1994-12-01

    A severe case of phytophotodermatitis occurred in a patient who had spent several hours walking through an area densely populated with Cneoridium dumosum. This patient's co-worker experienced a similar reaction after undergoing patch testing of an area of skin and exposing it to sunlight. Voluntary patch testing by one of the authors produced a reaction consistent with the other two cases. Approximately twenty other cases were described by a U.S. Fish and Wildlife Service ranger in students who came into contact with the plant during a field trip with him to Baja California, Mexico. Cneoridium dumosum is a common native bush that grows in the chaparral vegetation zone of southern California and Baja California, Mexico. In a search of Poisindex, Medline, Agris International, and Agricola databases, no previous reports of toxic exposures were found.

  8. Design and fabrication of light-guiding plate for a photobioreactor that utilizes sunlight

    NASA Astrophysics Data System (ADS)

    Lim, Hyon-Chol; Kim, Hun; Jang, Kyungmin; Kim, Jae-Young; Baek, Joon-Hyuck; Yang, Seung-Jin; Jeong, Sang-Hwa; Park, Jong-Rak

    2015-10-01

    We present the results of the optical design and fabrication of a light-guiding plate (LGP) that utilizes sunlight to be adopted as an illumination system for photobioreactors. A solar daylighting system was employed as the light source for the LGP. We modeled the light sources (optical fiber exit ports of the solar daylighting system), a reflection film, and LGP patterns. An LGP (1000 mm × 500 mm × 10 mm) was designed and fabricated using a computerized numerical control machine. It was optimized for the average deviation of the illuminance distribution by varying the maximum pattern spacing, minimum pattern spacing, and spacing constant of the pattern spacing function expressed in the form of an exponential function. Average illuminance and uniformity of the illuminance distribution of the fabricated LGP were measured to be 8174 lx (photon flux density: 122.0 μΕ m-2 s-1) and 90.0 %, respectively.

  9. Space Satellite Dynamics with Applications to Sunlight Pressure Attitude Control. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Stuck, B. W.

    1972-01-01

    A research program into three aspects of space satellite dynamics was carried out. First, a four-dimensional space-time formulation of Newtonian mechanics is developed. This theory allows a new physical interpretation of the conservation theorems of mechanics first derived rigorously by Noether. Second, a new concept for estimating the three angles which specify the orientation in space of a rigid body is presented. Two separate methods for implementing this concept are discussed, one based on direction cosines, the other on quaternions. Two examples are discussed: constant orientation in space, and constant rate of change of the three angles with time. Third, two synchronous equatorial orbit communication satellite designs which use sunlight pressure to control their attitude are analyzed. Each design is equipped with large reflecting surfaces, called solar sails, which can be canted in different directions to generate torques to correct pointing errors.

  10. Use of sunlight for plant lighting in a bioregenerative life support system Equivalent system mass calculations

    NASA Astrophysics Data System (ADS)

    Drysdale, Alan; Nakamura, Takashi; Yorio, Neil; Sager, John; Wheeler, Ray

    2008-12-01

    Plant lighting is a critical issue for cost effectiveness of bioregenerative systems. A plant lighting system using sunlight has been investigated and compared to systems using electrical lighting. Co-generation of electricity and use of in situ resource utilization (ISRU) were also considered. The fixed part of equivalent system mass was found to be reduced by factors of from 3.1 to 3.9, according to the mission assumptions. The time-dependent part of equivalent system mass was reduced by a smaller value, of about 1.05. Cost effectiveness of bioregeneration has been compared to the cost of shipping food. Break-even times for different Lunar and Mars missions were generally in the order of 2-10 years, and were quite sensitive to the assumptions. There is significant scope for future refinement of these values, and work is ongoing.

  11. Associations of Blood Pressure, Sunlight, and Vitamin D in Community-Dwelling Adults: The Reasons for Geographic and Racial Differences in Stroke (Regards) Study

    PubMed Central

    Rostand MD, Stephen G.; Mcclure, Leslie A.; Kent, Shia T.; Judd, Suzanne E.; Gutiérrez MD, Orlando M.

    2017-01-01

    Background Vitamin D deficiency/insufficiency is associated with hypertension. Blood pressure and circulating vitamin D concentrations vary with the seasons and distance from the equator suggesting blood pressure varies inversely with the sunshine available (insolation) for cutaneous vitamin D photosynthesis. Methods To determine if the association between insolation and blood pressure is partly explained by vitamin D we evaluated 1104 participants in the Reasons for Racial and Geographic Differences in Stroke (REGARDS) study whose blood pressure and plasma 25-hydroxyvitamin D (25(OH)D) concentrations were measured. Results We found a significant inverse association between systolic blood pressure (SBP) and 25(OH)D concentration and an inverse association between insolation and blood pressure in unadjusted analyses. After adjusting for other confounding variables, the association of solar insolation and blood pressure was augmented,-0.3.5±SE 0.01 mmHg/1SD higher solar insolation, p=0.01. We found the greatest of effects of insolation on SBP were observed in whites (-5.2±SE O.92 mmHg/1SD higher solar insolation, p=0.005) and in women (-3.8±SE 1.7 mmHg, p=0.024). We found that adjusting for 25(OH)D had no effect on the association of solar insolation with SBP. Conclusions We conclude that although 25(OH)D concentration is inversely associated with SBP, 25(OH)D it did not explain the association of greater sunlight exposure with lower blood pressure. Condensed Abstract To determine if the inverse association between solar insolation and blood pressure is partly explained by vitamin D we evaluated 1104 participants in the Reasons for Racial and Geographic Differences in Stroke (REGARDS) study whose blood pressure and plasma 25-hydroxyvitamin D (25(OH)D) concentrations were measured. We found that 25(OH)D concentration varied inversely with SBP and SBP varied inversely with solar insolation but we found that adjusting for 25(OH)D had no effect on the association of

  12. Porous absorber for solar air heaters

    SciTech Connect

    Finch, J.A.

    1980-09-10

    A general discussion of the factors affecting solar collector performance is presented. Bench scale tests done to try to determine the heat transfer characteristics of various screen materials are explained. The design, performance, and evaluation of a crude collector with a simple screen stack absorber is treated. The more sophisticated absorber concept, and its first experimental approximation is examined. A short summary of future plans for the collector concept is included. (MHR)

  13. Multilayer Radar Absorbing Non-Woven Material

    NASA Astrophysics Data System (ADS)

    Dedov, A. V.; Nazarov, V. G.

    2016-06-01

    We study the electrical properties of multilayer radar absorbing materials obtained by adding nonwoven sheets of dielectric fibers with an intermediate layer of electrically conductive carbon fibers. Multilayer materials that absorb electromagnetic radiation in a wide frequency range are obtained by varying the content of the carbon fibers. The carbon-fiber content dependent mechanism of absorption of electromagnetic radiation by sheets and multilayer materials is considered.

  14. Non-absorbed Antibiotics for IBS

    DTIC Science & Technology

    2012-03-16

    absorbed antibiotic rifaximin for nonconstipated irritable bowel syndrome (IBS). This effort adds to the body of literature from other, smaller studies that...have demonstrated clinical efficacy for IBS with rifaximin . Non-absorbed antibiotics have been endorsed by the American College of Gastroenterology... rifaximin 400 mg three times daily for 10 days or placebo. During the initial 2 weeks of therapy and the subsequent 10 weeks of follow-up rifaximin

  15. Structured metal film as a perfect absorber.

    PubMed

    Xiong, Xiang; Jiang, Shang-Chi; Hu, Yu-Hui; Peng, Ru-Wen; Wang, Mu

    2013-08-07

    A new type of absorber, a four-tined fish-spear-like resonator (FFR), constructed by the two-photon polymerization process, is reported. An absorbance of more than 90% is experimentally realized and the resonance occurs in the space between the tines. Since a continuous layer of metallic thin film covers the structure, it is perfectly thermo- and electroconductive, which is the mostly desired feature for many applications.

  16. Sunlight creates oxygenated species in water-soluble fractions of Deepwater Horizon oil.

    PubMed

    Ray, Phoebe Z; Chen, Huan; Podgorski, David C; McKenna, Amy M; Tarr, Matthew A

    2014-09-15

    In order to assess the impact of sunlight on oil fate, Macondo well oil from the Deepwater Horizon (DWH) rig was mixed with pure water and irradiated with simulated sunlight. After irradiation, the water-soluble organics (WSO) from the dark and irradiated samples were extracted and characterized by ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). Liquid-liquid extraction yielded two fractions from dark and irradiated water/oil mixtures: acidic WSOs (negative-ion electrospray (ESI)), and base/neutral WSOs (positive-ion ESI) coupled to FT-ICR MS to catalog molecular-level transformations that occur to Macondo-derived WSOs after solar irradiation. Such direct measure of oil phototransformation has not been previously reported. The most abundant heteroatom class detected in the irradiated WSO acid fractions correspond to molecules that contain five oxygens (O5), while the most abundant acids in the dark samples contain two oxygen atoms per molecule (O2). Higher-order oxygen classes (O5-O9) were abundant in the irradiated samples, but <1.5% relative abundance in the dark sample. The increased abundance of higher-order oxygen classes in the irradiated samples relative to the dark samples indicates that photooxidized components of the Macondo crude oil become water-soluble after irradiation. The base/neutral fraction showed decreased abundance of pyridinic nitrogen (N1) concurrent with an increased abundance of N1Ox classes after irradiation. The predominance of higher-order oxygen classes indicates that multiple photochemical pathways exist that result in oxidation of petroleum compounds.

  17. Effect of season and sunlight on viral kinetics during hepatitis C virus therapy

    PubMed Central

    Hernández-Alvarez, Noemi; Pascasio Acevedo, Juan Manuel; Quintero, Enrique; Fernández Vázquez, Inmaculada; García-Eliz, María; de la Revilla Negro, Juan; Crespo García, Javier; Hernández-Guerra, Manuel

    2017-01-01

    Background and aims Rapid viral response (RVR) during antiviral treatment for hepatitis C virus (HCV) predicts sustained viral response (SVR). Recently, vitamin D levels have been associated with SVR. As sunlight is the most important source of vitamin D and shows seasonal variation, we evaluated the effect of season on viral kinetics during peginterferon/ribavirin-based therapy for HCV. Methods Consecutive HCV patients treated with peginterferon/ribavirin and boceprevir/ telaprevir (June 2011–July 2014) were included. Patients were grouped according to season when therapy was initiated (Season A: May–October and Season B: November–April) depending on hours of daily sunlight. Multiple logistic regression analysis included factors known to influence SVR to treatment. The dependent variables were undetectable viral load (VL) or VL ≤15 UI/mL (VL ≤15) at weeks 4, 8 and 12, end of treatment and SVR. Results The study included 930 patients (66.8% men; median 54 years) treated with telaprevir (n=537) or boceprevir, without (n=481) or with lead-in therapy of peginterferon/ribavirin. Baseline characteristics of patients in Season A (45.3%, n=421) and Season B groups were similar. Overall, a higher rate of RVR (23.5% vs 16.1%, p=0.005) and VL ≤15 (51.0% vs 38.6%, p≤0.001) was observed in patients starting treatment during Season A versus Season B. By logistic regression analysis, initiating treatment in Season A proved to be an independent predictor of RVR and VL ≤15. Conclusions In our setting, seasonality affects viral kinetics in HCV genotype 1 patients treated with peginterferon/ribavirin-based therapy. Our findings support the hypothesis that vitamin D influences viral response to peginterferon/ribavirin-based therapy. PMID:28321328

  18. The relationship between long-term sunlight radiation and cognitive decline in the REGARDS cohort study

    NASA Astrophysics Data System (ADS)

    Kent, Shia T.; Kabagambe, Edmond K.; Wadley, Virginia G.; Howard, Virginia J.; Crosson, William L.; Al-Hamdan, Mohammad Z.; Judd, Suzanne E.; Peace, Fredrick; McClure, Leslie A.

    2014-04-01

    Sunlight may be related to cognitive function through vitamin D metabolism or circadian rhythm regulation. The analysis presented here sought to test whether ground and satellite measures of solar radiation are associated with cognitive decline. The study used a 15-year residential history merged with satellite and ground monitor data to determine sunlight (solar radiation) and air temperature exposure for a cohort of 19,896 cognitively intact black and white participants aged 45+ from the 48 contiguous United States. Exposures of 15, 10, 5, 2, and 1-year were used to predict cognitive status at the most recent assessment in logistic regression models; 1-year insolation and maximum temperatures were chosen as exposure measures. Solar radiation interacted with temperature, age, and gender in its relationships with incident cognitive impairment. After adjustment for covariates, the odds ratio (OR) of cognitive decline for solar radiation exposure below the median vs above the median in the 3rd tertile of maximum temperatures was 1.88 (95 % CI: 1.24, 2.85), that in the 2nd tertile was 1.33 (95 % CI: 1.09, 1.62), and that in the 1st tertile was 1.22 (95 % CI: 0.92, 1.60). We also found that participants under 60 years old had an OR = 1.63 (95 % CI: 1.20, 2.22), those 60-80 years old had an OR = 1.18 (95 % CI: 1.02, 1.36), and those over 80 years old had an OR = 1.05 (0.80, 1.37). Lastly, we found that males had an OR = 1.43 (95 % CI: 1.22, 1.69), and females had an OR = 1.02 (0.87, 1.20). We found that lower levels of solar radiation were associated with increased odds of incident cognitive impairment.

  19. Sensitivity Studies for Space-based Measurement of Atmospheric Total Column Carbon Dioxide Using Reflected Sunlight

    NASA Technical Reports Server (NTRS)

    Mao, Jianping; Kawa, S. Randolph

    2003-01-01

    A series of sensitivity studies is carried out to explore the feasibility of space-based global carbon dioxide (CO2) measurements for global and regional carbon cycle studies. The detection method uses absorption of reflected sunlight in the CO2 vibration-rotation band at 1.58 microns. The sensitivities of the detected radiances are calculated using the line-by-line model (LBLRTM), implemented with the DISORT (Discrete Ordinates Radiative Transfer) model to include atmospheric scattering in this band. The results indicate that (a) the small (approx.1%) changes in CO2 near the Earth's surface are detectable in this CO2 band provided adequate sensor signal-to-noise ratio and spectral resolution are achievable; (b) the radiance signal or sensitivity to CO2 change near the surface is not significantly diminished even in the presence of aerosols and/or thin cirrus clouds in the atmosphere; (c) the modification of sunlight path length by scattering of aerosols and cirrus clouds could lead to large systematic errors in the retrieval; therefore, ancillary aerosol/cirrus cloud data are important to reduce retrieval errors; (d) CO2 retrieval requires good knowledge of the atmospheric temperature profile, e.g. approximately 1K RMS error in layer temperature; (e) the atmospheric path length, over which the CO2 absorption occurs, must be known in order to correctly interpret horizontal gradients of CO2 from the total column CO2 measurement; thus an additional sensor for surface pressure measurement needs to be attached for a complete measurement package.

  20. Compositional changes in 'Bartlett' pear ( Pyrus communis L.) cell wall polysaccharides as affected by sunlight conditions.

    PubMed

    Raffo, María D; Ponce, Nora M A; Sozzi, Gabriel O; Vicente, Ariel R; Stortz, Carlos A

    2011-11-23

    Preharvest conditions can have a great impact on fruit quality attributes and postharvest responses. Firmness is an important quality attribute in pear, and excessive softening increases susceptibility to bruising and decay, thus limiting fruit postharvest life. Textural characteristics of fruits are determined at least in part by cell wall structure and disassembly. Few studies have analyzed the influence of fruit preharvest environment in softening, cell wall composition, and degradation. In the current work 'Bartlett' pears grown either facing the sun (S) or in the shade (H) were harvested and stored for 13 days at 20 °C. An evaluation of fruit soluble solids, acidity, color, starch degradation, firmness, cell wall yield, pectin and matrix glycan solubilization, depolymerization, and monosaccharide composition was carried out. Sun-exposed pears showed more advanced color development and similar levels of starch degradation, sugars, and acids than shaded fruit. Sunlight-grown pears were at harvest firmer than shade-grown pears. Both fruit groups softened during storage at 20 °C, but even after ripening, sun-exposed pears remained firmer. Sunlight exposure did not have a great impact on pectin molecular weight. Instead, at harvest a higher proportion of water-solubilized uronic acids and alkali-solubilized neutral sugars and a larger mean molecular size of tightly bound glycans was found in sun-exposed pears. During ripening cell wall catabolism took place in both sun- and shade-grown pears, but pectin solubilization was clearly delayed in sun-exposed fruit. This was associated with decreased removal of RG I-arabinan side chains rather than with reduced depolymerization.

  1. Epidemiology of melanoma and nonmelanoma skin cancer--the role of sunlight.

    PubMed

    Leiter, Ulrike; Garbe, Claus

    2008-01-01

    Melanoma and nonmelanoma skin cancer (NMSC) are now the most common types of cancer in white populations. Both tumor entities show an increasing incidence rate worldwide but a stable or decreasing mortality rate. The rising incidence rates of NMSC are probably caused by a combination of increased sun exposure or exposure to ultraviolet (UV) light, increased outdoor activities, changes in clothing style, increased longevity, ozone depletion, genetics and in some cases, immune suppression. A dose-dependent increase in the risk of squamous cell carcinoma (SCC) of the skin was found associated with exposure to Psoralen and UVA irradiation. An intensive UV exposure in childhood and adolescence was causative for the development of basal cell carcinoma (BCC) whereas for the aetiology of SCC a chronic UV exposure in the earlier decades was accused. Cutaneous malignant melanoma is the most rapidly increasing cancer in white populations. The frequency of its occurrence is closely associated with the constitutive colour of the skin and depends on the geographical zone. The highest incidence rates have been reported from Queensland, Australia with 56 new cases per year per 100,000 for men and 43 for women. Mortality rates of melanoma show a stabilisation in the USA, Australia and also in European countries. The tumor thickness is the most important prognostic factor in primary melanoma. There is an ongoing trend towards thin melanoma since the last two decades. Epidemiological studies have confirmed the hypothesis that the majority of all melanoma cases are caused, at least in part, by excessive exposure to sunlight. In contrast to squamous cell carcinoma, melanoma risk seems not to be associated with cumulative, but intermittent exposure to sunlight. Therefore campaigns for prevention and early detection are necessary.

  2. Radar Absorbing Materials for Cube Stealth Satellite

    NASA Astrophysics Data System (ADS)

    Micheli, D.; Pastore, R.; Vricella, A.; Marchetti, M.

    A Cube Stealth Satellite is proposed for potential applications in defense system. Particularly, the faces of the satellite exposed to the Earth are made of nanostructured materials able to absorb radar surveillance electromagnetic waves, conferring stealth capability to the cube satellite. Microwave absorbing and shielding material tiles are proposed using composite materials consisting in epoxy-resin and carbon nanotubes filler. The electric permittivity of the composite nanostructured materials is measured and discussed. Such data are used by the modeling algorithm to design the microwave absorbing and the shielding faces of the cube satellite. The electromagnetic modeling takes into account for several incidence angles (0-80°), extended frequency band (2-18 GHz), and for the minimization of the electromagnetic reflection coefficient. The evolutionary algorithm used for microwave layered microwave absorber modeling is the recently developed Winning Particle Optimization. The mathematical model of the absorbing structure is finally experimentally validated by comparing the electromagnetic simulation to the measurement of the manufactured radar absorber tile. Nanostructured composite materials manufacturing process and electromagnetic reflection measurements methods are described. Finally, a finite element method analysis of the electromagnetic scattering by cube stealth satellite is performed.

  3. Perfect terahertz absorber using fishnet based metafilm

    SciTech Connect

    Azad, Abul Kalam; Shchegolkov, Dmitry Yu; Chen, Houtong; Taylor, Antoinette; Smirnova, E I; O' Hara, John F

    2009-01-01

    We present a perfect terahertz (THz) absorber working for a broad-angle of incidence. The two fold symmetry of rectangular fishnet structure allows either complete absorption or mirror like reflection depending on the polarization of incident the THz beam. Metamaterials enable the ability to control the electromagnetic wave in a unique fashion by designing the permittivity or permeability of composite materials with desired values. Although the initial idea of metamaterials was to obtain a negative index medium, however, the evolution of metamaterials (MMs) offers a variety of practically applicable devices for controlling electromagnetic wave such as tunable filters, modulators, phase shifters, compact antenna, absorbers, etc. Terahertz regime, a crucial domain of the electromagnetic wave, is suffering from the scarcity of the efficient devices and might take the advantage of metamaterials. Here, we demonstrate design, fabrication, and characterization of a terahertz absorber based on a simple fishnet metallic film separated from a ground mirror plane by a dielectric spacer. Such absorbers are in particular important for bolometric terahertz detectors, high sensitivity imaging, and terahertz anechoic chambers. Recently, split-ring-resonators (SRR) have been employed for metamaterial-based absorbers at microwave and THz frequencies. The experimental demonstration reveals that such absorbers have absorptivity close to unity at resonance frequencies. However, the downside of these designs is that they all employ resonators of rather complicated shape with many fine parts and so they are not easy to fabricate and are sensitive to distortions.

  4. A new laboratory-scale experimental facility for detailed aerothermal characterizations of volumetric absorbers

    NASA Astrophysics Data System (ADS)

    Gomez-Garcia, Fabrisio; Santiago, Sergio; Luque, Salvador; Romero, Manuel; Gonzalez-Aguilar, Jose

    2016-05-01

    This paper describes a new modular laboratory-scale experimental facility that was designed to conduct detailed aerothermal characterizations of volumetric absorbers for use in concentrating solar power plants. Absorbers are generally considered to be the element with the highest potential for efficiency gains in solar thermal energy systems. The configu-ration of volumetric absorbers enables concentrated solar radiation to penetrate deep into their solid structure, where it is progressively absorbed, prior to being transferred by convection to a working fluid flowing through the structure. Current design trends towards higher absorber outlet temperatures have led to the use of complex intricate geometries in novel ceramic and metallic elements to maximize the temperature deep inside the structure (thus reducing thermal emission losses at the front surface and increasing efficiency). Although numerical models simulate the conjugate heat transfer mechanisms along volumetric absorbers, they lack, in many cases, the accuracy that is required for precise aerothermal validations. The present work aims to aid this objective by the design, development, commissioning and operation of a new experimental facility which consists of a 7 kWe (1.2 kWth) high flux solar simulator, a radiation homogenizer, inlet and outlet collector modules and a working section that can accommodate volumetric absorbers up to 80 mm × 80 mm in cross-sectional area. Experimental measurements conducted in the facility include absorber solid temperature distributions along its depth, inlet and outlet air temperatures, air mass flow rate and pressure drop, incident radiative heat flux, and overall thermal efficiency. In addition, two windows allow for the direct visualization of the front and rear absorber surfaces, thus enabling full-coverage surface temperature measurements by thermal imaging cameras. This paper presents the results from the aerothermal characterization of a siliconized silicon

  5. Testing and optical modeling of novel concentrating solar receiver geometries to increase light trapping and effective solar absorptance

    NASA Astrophysics Data System (ADS)

    Yellowhair, Julius; Ho, Clifford K.; Ortega, Jesus D.; Christian, Joshua M.; Andraka, Charles E.

    2015-09-01

    Concentrating solar power receivers are comprised of panels of tubes arranged in a cylindrical or cubical shape on top of a tower. The tubes contain heat-transfer fluid that absorbs energy from the concentrated sunlight incident on the tubes. To increase the solar absorptance, black paint or a solar selective coating is applied to the surface of the tubes. However, these coatings degrade over time and must be reapplied, which reduces the system performance and increases costs. This paper presents an evaluation of novel receiver shapes and geometries that create a light-trapping effect, thereby increasing the effective solar absorptance and efficiency of the solar receiver. Several prototype shapes were fabricated from Inconel 718 and tested in Sandia's solar furnace at an irradiance of ~30 W/cm2. Photographic methods were used to capture the irradiance distribution on the receiver surfaces. The irradiance profiles were compared to results from raytracing models. The effective solar absorptance was also evaluated using the ray-tracing models. Results showed that relative to a flat plate, the new geometries could increase the effective solar absorptance from 86% to 92% for an intrinsic material absorptance of 86%, and from 60% to 73% for an intrinsic material absorptance of 60%.

  6. 40 CFR 795.70 - Indirect photolysis screening test: Sunlight photolysis in waters containing dissolved humic...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... dissolved in natural waters are subject to two types of photoreaction. In the first case, the chemical of... electronic excitation transfer from light-absorbing humic species in the natural water. In contrast to direct photolysis, this photoreaction is governed initially by the spectroscopic properties of the natural water....

  7. 40 CFR 795.70 - Indirect photolysis screening test: Sunlight photolysis in waters containing dissolved humic...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... dissolved in natural waters are subject to two types of photoreaction. In the first case, the chemical of... electronic excitation transfer from light-absorbing humic species in the natural water. In contrast to direct photolysis, this photoreaction is governed initially by the spectroscopic properties of the natural water....

  8. 40 CFR 795.70 - Indirect photolysis screening test: Sunlight photolysis in waters containing dissolved humic...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... electronic excitation transfer from light-absorbing humic species in the natural water. In contrast to direct...) In general, both indirect and direct processes can proceed simultaneously. Under favorable conditions... a net value that is the sum of two first-order reaction rate constants for the direct (kDE)...

  9. Numerical modeling of incline plate LiBr absorber

    NASA Astrophysics Data System (ADS)

    Karami, Shahram; Farhanieh, Bijan

    2011-03-01

    Among major components of LiBr-H2O absorption chillers is the absorber, which has a direct effect on the chillier size and whose characteristics have significant effects on the overall efficiency of absorption machines. In this article, heat and mass transfer process in absorption of refrigerant vapor into a lithium bromide solution of water-cooled incline plate absorber in the Reynolds number range of 5 < Re < 150 is performed numerically. The boundary layer assumptions are used for the mass, momentum and energy transport equations and the fully implicit finite difference method is employed to solve the governing equations. Dependence of lithium bromide aqueous properties to the temperature and concentration is employed as well as dependence of film thickness to vapor absorption. An analysis for linear distribution of wall temperature condition carries out to investigate the reliability of the present numerical method through comparing with previous investigation. The effect of plate angle on heat and mass transfer parameters is investigated and the results show that absorption mass flux and heat and mass transfer coefficient increase as the angle of the plate increase. The main parameters of absorber design, namely Nusselt and Sherwood numbers, are correlated as a function of Reynolds Number and the plate angle.

  10. Method of absorbance correction in a spectroscopic heating value sensor

    SciTech Connect

    Saveliev, Alexei; Jangale, Vilas Vyankatrao; Zelepouga, Sergeui; Pratapas, John

    2013-09-17

    A method and apparatus for absorbance correction in a spectroscopic heating value sensor in which a reference light intensity measurement is made on a non-absorbing reference fluid, a light intensity measurement is made on a sample fluid, and a measured light absorbance of the sample fluid is determined. A corrective light intensity measurement at a non-absorbing wavelength of the sample fluid is made on the sample fluid from which an absorbance correction factor is determined. The absorbance correction factor is then applied to the measured light absorbance of the sample fluid to arrive at a true or accurate absorbance for the sample fluid.

  11. Photocatalytic degradation of phenol in natural seawater using visible light active carbon modified (CM)-n-TiO2 nanoparticles under UV light and natural sunlight illuminations.

    PubMed

    Shaban, Yasser A; El Sayed, Mohamed A; El Maradny, Amr A; Al Farawati, Radwan Kh; Al Zobidi, Mousa I

    2013-04-01

    The photocatalytic degradation of phenol in seawater was investigated under UV and natural sunlight using visible light active carbon modified (CM)-n-TiO2 nanoparticles, synthesized via a sol-gel method. Carbon modification of n-TiO2 was performed using titanium butoxide, carbon-containing precursor, as a source of both carbon and titanium. For comparison, unmodified n-TiO2 was also synthesized by hydrolysis and oxidation of titanium trichloride in the absence of any carbon source. The presence of carbon in CM-n-TiO2 nanoparticles was confirmed by energy dispersive spectroscopy (EDS) analysis. Carbon modification was found to be responsible for lowering the bandgap energy from 3.14eV for n-TiO2 to 1.86eV for CM-n-TiO2 which in turn enhanced the photocatalytic activity of CM-n-TiO2 towards the degradation of phenol in seawater under illumination of UV light as well as natural sunlight. This enhanced photoresponse of CM-n-TiO2 is in agreement with the UV-Vis spectroscopic results that showed higher absorption of light in both UV and visible regions. The effects of catalyst dose, initial concentration of phenol, and pH were studied. The highest degradation rate was obtained at pH 3 and catalyst dose of 1.0gL(-1). The data photocatalytic degradation of phenol in seawater using CM-n-TiO2 were successfully fitted to Langmuir-Hinshelwood model, and can be described by pseudo-first order kinetics.

  12. Concentrating Solar Power Fact Sheet

    SciTech Connect

    2015-12-01

    This fact sheet is an overview of the Concentrating Solar Power (CSP) subprogram at the U.S. Department of Energy SunShot Initiative. CSP is a dispatchable, renewable energy option that uses mirrors to focus and concentrate sunlight onto a receiver, from which a heat transfer fluid carries the intense thermal energy to a power block to generate electricity. CSP systems can store solar energy to be used when the sun is not shining. It will help meet the nation’s goal of making solar energy fully cost-competitive with other energy sources by the end of the decade. Worldwide, CSP activity is rapidly scaling, with approximately 10 gigawatts (GW) in various stages of operation or development. In the United States alone, nearly 2 GW of CSP are in operation.

  13. Nanocrystals for luminescent solar concentrators.

    PubMed

    Bradshaw, Liam R; Knowles, Kathryn E; McDowall, Stephen; Gamelin, Daniel R

    2015-02-11

    Luminescent solar concentrators (LSCs) harvest sunlight over large areas and concentrate this energy onto photovoltaics or for other uses by transporting photons through macroscopic waveguides. Although attractive for lowering solar energy costs, LSCs remain severely limited by luminophore reabsorption losses. Here, we report a quantitative comparison of four types of nanocrystal (NC) phosphors recently proposed to minimize reabsorption in large-scale LSCs: two nanocrystal heterostructures and two doped nanocrystals. Experimental and numerical analyses both show that even the small core absorption of the leading NC heterostructures causes major reabsorption losses at relatively short transport lengths. Doped NCs outperform the heterostructures substantially in this critical property. A new LSC phosphor is introduced, nanocrystalline Cd(1-x)Cu(x)Se, that outperforms all other leading NCs by a significant margin in both small- and large-scale LSCs under full-spectrum conditions.

  14. The effect of the dye neutral red on a strain of Staphylococcus aureus in the presence of sunlight

    PubMed Central

    Chattopadhyay, B.

    1974-01-01

    A strain of Staphylococcus aureus was isolated, the growth of which in the presence of neutral red was inhibited by sunlight. This phenomenon was not shown by any of a number of other strains of the same or different genera. Images PMID:4854783

  15. Diffused sunlight driven highly synergistic pathway for complete mineralization of organic contaminants using reduced graphene oxide supported photocatalyst.

    PubMed

    Babu, Sundaram Ganesh; Ramalingam Vinoth; Neppolian, Bernaurdshaw; Dionysiou, Dionysios D; Ashokkumar, Muthupandian

    2015-06-30

    Diffused sunlight is found to be an effective light source for the efficient degradation and mineralization of organic pollutant (methyl orange as a probe) by sono-photocatalytic degradation using reduced graphene oxide (rGO) supported CuO-TiO2 photocatalyst. The prepared catalysts are characterized by XRD, XPS, UV-vis DRS, PL, photoelectrochemical, SEM-EDS and TEM. A 10 fold synergy is achieved for the first time by combining sonochemical and photocatalytic degradation under diffused sunlight. rGO loading augments the activity of bare CuO-TiO2 more than two fold. The ability of rGO in storing, transferring, and shuttling electrons at the heterojunction between TiO2 and CuO facilitates the separation of photogenerated electron-hole pairs, as evidenced by the photoluminescence results. The complete mineralization of MO and the by-products within a short span of time is confirmed by TOC analysis. Further, hydroxyl radical mediated degradation under diffused sunlight is confirmed by LC-MS. This system shows similar activity for the degradation of methylene blue and 4-chlorophenol indicating the versatility of the catalyst for the degradation of various pollutants. This investigation is likely to open new possibilities for the development of highly efficient diffused sunlight driven TiO2 based photocatalysts for the complete mineralization of organic contaminants.

  16. EFFECTS OF SUNLIGHT ON CARBOXYL CONTENT OF DISSOLVED ORGANIC MATTER IN THE SATILLA RIVER OF GEORGIA, UNITED STATES

    EPA Science Inventory

    A study examined the effect of sunlight-initiated photo-degradation of dissolved organic matter (DOM) on its carboxyl content, and the role of oxygen and iron in this process. Solar-simulated irradiations were performed on 0.2-mm filtered water samples collected from the highly c...

  17. Effects of Humic Acid and Sunlight on the Generation and Aggregation State of Aqu/C60 Nanoparticles

    EPA Science Inventory

    Aqueous suspensions of nanoscale C60 aggregates (aqu/C60) were produced by stirring in water with Suwanee River Humic Acid (humic acid) and water from Call’s Creek, a small stream near Athens, GA. Time course experiments were conducted to determine the effects of sunlight and sol...

  18. Photodegradation of pharmaceuticals in the aquatic environment by sunlight and UV-A, -B and -C irradiation.

    PubMed

    Kawabata, Kohei; Sugihara, Kazumi; Sanoh, Seigo; Kitamura, Shigeyuki; Ohta, Shigeru

    2013-01-01

    In order to investigate the effect of sunlight on the persistence and ecotoxicity of pharmaceuticals contaminating the aquatic environment, we exposed nine pharmaceuticals (acetaminophen (AA), amiodarone (AM), dapsone (DP), dexamethasone (DX), indomethacin (IM), naproxen (NP), phenytoin (PH), raloxifene (RL), and sulindac (SL)) in aqueous media to sunlight and to ultraviolet (UV) irradiation at 254, 302 or 365 nm (UV-C, UV-B or UV-A, respectively). Degradation of the pharmaceuticals was monitored by means of high-performance liquid chromatography (HPLC). Sunlight completely degraded AM, DP and DX within 6 hr, and partly degraded the other pharmaceuticals, except AA and PH, which were not degraded. Similar results were obtained with UV-B, while UV-A was less effective (both UV-A and -B are components of sunlight). All the pharmaceuticals were photodegraded by UV-C, which is used for sterilization in sewage treatment plants. Thus, the photodegradation rates of pharmaceuticals are dependent on both chemical structure and the wavelength of UV exposure. Toxicity assay using the luminescent bacteria test (ISO11348) indicated that UV irradiation reduced the toxicity of some pharmaceuticals to aquatic organisms by decreasing their amount (photodegradation) and increased the toxicity of others by generating toxic photoproduct(s). These results indicate the importance of investigating not only parent compounds, but also photoproducts in the risk assessment of pharmaceuticals in aquatic environments.

  19. Sunlight inactivation of human polymerase chain reaction markers and cultured fecal indicators in river and saline waters.

    PubMed

    Gilpin, Brent J; Devane, Megan; Robson, Beth; Nourozi, Fariba; Scholes, Paula; Lin, Susan; Wood, David R; Sinton, Lester W

    2013-08-01

    Decay rates for sunlight inactivation of polymerase chain reaction (PCR) markers for total Bacteroidales, human-specific Bacteroidales, Escherichia coli, and Bifidobacterium adolescentis relative to cultured E. coli were investigated. The experiment used 100-L chambers of fresh water and seawater (paired with dark controls) seeded with human sewage and exposed to natural sunlight over three summer days. Culturable E. coli levels in sunlight-exposed chambers decreased by at least 3 logs on day 1, and by day 3 a total reduction of 4.5 to 5.5 logs was achieved in fresh water and seawater, respectively. In contrast, PCR detection of the four gene targets in sunlight-exposed chambers reduced by no more than 2 logs over the duration of the study (k(t) < 0.071 log(e) units h(-1)). Under these experimental conditions, PCR markers are considerably more conservative than culturable E. coli and can persist for extended periods of time following inactivation of E. coli.

  20. Use of sunlight to partially detoxify groundnut (peanut) cake flour and casein contaminated with aflatoxin B1

    SciTech Connect

    Shantha, T.; Murthy, V.S.

    1981-03-01

    Sunlight destroyed 83 and 50% of the toxin added to casein and groundnut cake flour, respectively. Equilibrium dialysis revealed that both casein and groundnut protein bind aflatoxin but the toxin bound to casein appeared more photo-labile than that bound to groundnut protein.

  1. Development of a prototype regenerable carbon dioxide absorber

    NASA Technical Reports Server (NTRS)

    Onischak, M.

    1976-01-01

    Design information was obtained for a new, regenerable carbon dioxide control system for extravehicular activity life support systems. Solid potassium carbonate was supported in a thin porous sheet form and fabricated into carbon dioxide absorber units. Carbon dioxide and water in the life support system atmosphere react with the potassium carbonate and form potassium bicarbonate. The bicarbonate easily reverts to the carbonate by heating to 150 deg C. The methods of effectively packing the sorbent material into EVA-sized units and the effects of inlet concentrations, flowrate, and temperature upon performance were investigated. The cycle life of the sorbent upon the repeated thermal regenerations was demonstrated through 90 cycles.

  2. Dust in the Milky Way absorbs and scatters starlight

    NASA Technical Reports Server (NTRS)

    2002-01-01

    1.25, 2.2, and 3.5 Aum Solar elongation angle = 90 degree Maps. Galactic coordinate Mollweide projection maps of the entire sky as seen by the DIRBE at a fixed angle relative to the Sun. Stars concentrated in the Galactic plane (horizontal feature) dominate the images at these wavelengths. Dust in the Milky Way absorbs and scatters starlight, producing the dark band that runs through the Galactic center in the 1.25 Aum image; this 'extinction' effect diminishes with increasing wavelength.

  3. Warm Absorber Diagnostics of AGN Dynamics

    NASA Astrophysics Data System (ADS)

    Kallman, Timothy

    Warm absorbers and related phenomena are observable manifestations of outflows or winds from active galactic nuclei (AGN) that have great potential value. Understanding AGN outflows is important for explaining the mass budgets of the central accreting black hole, and also for understanding feedback and the apparent co-evolution of black holes and their host galaxies. In the X-ray band warm absorbers are observed as photoelectric absorption and resonance line scattering features in the 0.5-10 keV energy band; the UV band also shows resonance line absorption. Warm absorbers are common in low luminosity AGN and they have been extensively studied observationally. They may play an important role in AGN feedback, regulating the net accretion onto the black hole and providing mechanical energy to the surroundings. However, fundamental properties of the warm absorbers are not known: What is the mechanism which drives the outflow?; what is the gas density in the flow and the geometrical distribution of the outflow?; what is the explanation for the apparent relation between warm absorbers and the surprising quasi-relativistic 'ultrafast outflows' (UFOs)? We propose a focused set of model calculations that are aimed at synthesizing observable properties of warm absorber flows and associated quantities. These will be used to explore various scenarios for warm absorber dynamics in order to answer the questions in the previous paragraph. The guiding principle will be to examine as wide a range as possible of warm absorber driving mechanisms, geometry and other properties, but with as careful consideration as possible to physical consistency. We will build on our previous work, which was a systematic campaign for testing important class of scenarios for driving the outflows. We have developed a set of tools that are unique and well suited for dynamical calculations including radiation in this context. We also have state-of-the-art tools for generating synthetic spectra, which are

  4. Comparison of the solar concentrating properties of truncated hexagonal, pyramidal and circular cones

    NASA Technical Reports Server (NTRS)

    Burkhard, D. G.; Shealy, D. L.; Strobel, G. L.

    1977-01-01

    The concentrating properties of specularly reflecting pyramids, hexagons and circular cones are examined. The concentration factor is determined as a function of the coefficient of reflection and the shape and orientation of the incident sunlight. Reflector designs allowing multiple reflections for both normal and oblique incidence are considered.

  5. Weathering patterns of polycyclic aromatic hydrocarbons contained in submerged Deepwater Horizon oil spill residues when re-exposed to sunlight.

    PubMed

    John, Gerald F; Han, Yuling; Clement, T Prabhakar

    2016-12-15

    The Deepwater Horizon (DWH) oil spill event released a large amount of sweet crude oil into the Gulf of Mexico (GOM). An unknown portion of this oil that arrived along the Alabama shoreline interacted with nearshore sediments and sank forming submerged oil mats (SOMs). A considerable amount of hydrocarbons, including polycyclic aromatic hydrocarbons (PAHs), were trapped within these buried SOMs. Recent studies completed using the oil spill residues collected along the Alabama shoreline have shown that several PAHs, especially higher molecular weight PAHs (four or more aromatic rings), are slowly weathering compared to the weathering levels experienced by the oil when it was floating over the GOM. In this study we have hypothesized that the weathering rates of PAHs in SOMs have slowed down because the buried oil was isolated from direct exposure to sunlight, thus hindering the photodegradation pathway. We further hypothesized that re-exposing SOMs to sunlight can reactivate various weathering reactions. Also, SOMs contain 75-95% sand (by weight) and the entrapped sand could either block direct sunlight or form large oil agglomerates with very little exposed surface area; these processes could possibly interfere with weathering reactions. To test these hypotheses, we completed controlled experiments to study the weathering patterns of PAHs in a field recovered SOM sample after re-exposing it to sunlight. Our experimental results show that the weathering levels of several higher molecular weight PAHs have slowed down primarily due to the absence of sunlight-induced photodegradation reactions. The data also show that sand particles in SOM material could potentially interfere with photodegradation reactions.

  6. How long can culturable bacteria and total DNA persist in environmental waters? The role of sunlight and solid particles.

    PubMed

    Gutiérrez-Cacciabue, Dolores; Cid, Alicia G; Rajal, Verónica B

    2016-01-01

    In this work, sunlight inactivation of two indicator bacteria in freshwater, with and without solid particles, was studied and the persistence of culturable cells and total DNA was compared. Environmental water was used to prepare two matrices, with and without solid particles, which were spiked with Escherichia coli and Enterococcus faecalis. These matrices were used to prepare microcosm bags that were placed in two containers: one exposed to sunlight and the other in the dark. During one month, samples were removed from each container and detection was done by membrane filter technique and real-time PCR. Kinetic parameters were calculated to assess sunlight effect. Indicator bacteria without solid particles exposed to sunlight suffered an immediate decay (<4h) compared with the ones which were shielded from them. In addition, the survival of both bacteria with solid particles varied depending on the situation analyzed (T99 from 3 up to 60days), being always culturable E. coli more persistent than E. faecalis. On the other side, E. faecalis DNA persisted much longer than culturable cells (T99>40h in the dark with particles). In this case active cells were more prone to sunlight than total DNA and the protective effect of solid particles was also observed. Results highlight that the effects caused by the parameters which describe the behavior of culturable microorganisms and total DNA in water are different and must be included in simulation models but without forgetting that these parameters will also depend on bacterial properties, sensitizers, composition, type, and uses of the aquatic environment under assessment.

  7. Modification of Sunlight Radiation through Colored Photo-Selective Nets Affects Anthocyanin Profile in Vaccinium spp. Berries

    PubMed Central

    Zoratti, Laura; Jaakola, Laura; Häggman, Hely; Giongo, Lara

    2015-01-01

    Objectives In recent years, the interest on the effects of the specific wavelengths of the light spectrum on growth and metabolism of plants has been increasing markedly. The present study covers the effect of modified sunlight conditions on the accumulation of anthocyanin pigments in two Vaccinium species: the European wild bilberry (V. myrtillus L.) and the cultivated highbush blueberry (V. corymbosum L.). Methods The two Vaccinium species were grown in the same test field in the Alps of Trentino (Northern Italy) under modified light environment. The modification of sunlight radiation was carried out in field, through the use of colored photo-selective nets throughout the berry ripening during two consecutive growing seasons. The anthocyanin profile was then assessed in berries at ripeness. Results The results indicated that the light responses of the two Vaccinium species studied were different. Although both studied species are shade-adapted plants, 90% shading of sunlight radiation was beneficial only for bilberry plants, which accumulated the highest content of anthocyanins in both seasons. The same condition, instead, was not favorable for blueberries, whose maturation was delayed for at least two weeks, and anthocyanin accumulation was significantly decreased compared to berries grown under sunlight conditions. Moreover, the growing season had strong influence on the anthocyanin accumulation in both species, in relation to temperature flow and sunlight spectra composition during the berry ripening period. Conclusions Our results suggest that the use of colored photo-selective nets may be a complementary agricultural practice for cultivation of Vaccinium species. However, further studies are needed to analyze the effect of the light spectra modifications to other nutritional properties, and to elucidate the molecular mechanisms behind the detected differences between the two relative Vaccinium species. PMID:26288240

  8. Salinity stress constrains photosynthesis in Fraxinus ornus more when growing in partial shading than in full sunlight: consequences for the antioxidant defence system

    PubMed Central

    Fini, Alessio; Guidi, Lucia; Giordano, Cristiana; Baratto, Maria Camilla; Ferrini, Francesco; Brunetti, Cecilia; Calamai, Luca; Tattini, Massimiliano

    2014-01-01

    Background and Aims A major challenge in plant ecophysiology is understanding the effects of multiple sub-optimal environmental conditions on plant performance. In most Mediterranean areas soil salinity builds up during the summer because of low availability of soil water coupled with hot temperatures. Although sunlight and soil salinity may strongly interact in determining a plant's performance, this has received relatively little attention. Methods Two-year-old seedlings of Fraxinus ornus were grown outdoors in pots during a Mediterranean summer in either 45 % (shaded plants) or 100 % (sun plants) sunlight irradiance and were supplied with either deionized water or deionized water plus 75 mm NaCl. Morpho-anatomical traits, water and ionic relations, gas exchange and photosystem II performance, concentrations of individual carotenoids, activity of antioxidant enzymes, concentrations of ascorbic acid and individual polyphenols were measured in leaves. Leaf oxidative stress and damage were estimated by in vivo analysis of stable free radicals and ultrastructural analyses. Key Results Leaf concentrations of potentially toxic ions did not markedly differ in shaded or sun plants in response to salinity. Leaves of sun plants displayed superior water use efficiency compared with leaves of shaded plants, irrespective of salinity treatment, and had both better stomatal control and higher CO2 carboxylation efficiency than leaves of shaded plants. In the salt-treated groups, the adverse effects of excess midday irradiance were greater in shade than in sun plants. The activity of enzymes responsible for detoxifying hydrogen peroxide decreased in shaded plants and increased in sun plants as a result of salinity stress. In contrast, the activity of guaiacol peroxidase and the concentration of phenylpropanoids increased steeply in response to salinity in shaded plants but were unaffected in sun plants. Conclusions It is concluded that salinity may constrain the performance of

  9. Absorber and emitter for solar thermo-photovoltaic systems to achieve efficiency exceeding the Shockley-Queisser limit.

    PubMed

    Rephaeli, Eden; Fan, Shanhui

    2009-08-17

    We present theoretical considerations as well as detailed numerical design of absorber and emitter for Solar Thermophotovoltaics (STPV) applications. The absorber, consisting of an array of tungsten pyramids, was designed to provide near-unity absorptivity over all solar wavelengths for a wide angular range, enabling it to absorb light effectively from solar sources regardless of concentration. The emitter, a tungsten slab with Si/SiO(2) multilayer stack, provides a sharp emissivity peak at the solar cell band-gap while suppressing emission at lower frequencies. We show that, under a suitable light concentration condition, and with a reasonable area ratio between the emitter and absorber, a STPV system employing such absorber-emitter pair and a single-junction solar cell can attain efficiency that exceeds the Shockley-Queisser limit.

  10. Development of optical tools for the characterization of selective solar absorber at elevated temperature

    NASA Astrophysics Data System (ADS)

    Giraud, Philemon; Braillon, Julien; Delord, Christine; Raccurt, Olivier

    2016-05-01

    Durability of solar components for CSP (Concentrated Solar Power Plant) technologies is a key point to lower cost and ensure their large deployment. These technologies concentrated the solar radiation by means of mirrors on a receiver tube where it is collected as thermal energy. The absorbers are submitted to strong environmental constraints and the degradation of their optical properties (emittance and solar absorbance) have a direct impact on performance. The objective is to develop new optical equipment for characterization of this solar absorber in condition of use that is to say in air and at elevated temperature. In this paper we present two new optical test benches developed for optical characterization of solar absorbers in condition of use up to 800°C. The first equipment is an integrated sphere with heated sample holder which measures the hemispherical reflectance between 280 and 2500 nm to calculate the solar absorbance at high temperature. The second optical test bench measures the emittance of samples up to 1000°C in the range of 1.25 to 28.57 µm. Results of high temperature measurements on a series of metallic absorbers with selective coating and refractory material for high thermal receiver are presented.

  11. Morphological degradation of human hair cuticle due to simulated sunlight irradiation and washing.

    PubMed

    Richena, M; Rezende, C A

    2016-08-01

    Morphological changes in hair surface are undesirable, since they cause shine loss, roughness increase and split ends. These effects occur more frequently in the cuticle, which is the outermost layer of the hair strand, and thus the most exposed to the environmental damages. Sunlight irradiation contributes significantly to these morphological alterations, which motivates the investigation of this effect on hair degradation. In this work, the influence of irradiation and hand-washing steps on the morphology of pigmented and non-pigmented hair cuticle was investigated using field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM). To simulate daily conditions, where hair is hand-washed and light exposed, samples of dark brown and gray hair underwent three different conditions: 1) irradiation with a mercury lamp for up to 600h; 2) irradiation with the mercury lamp combined with washes with a sodium lauryl sulphate solution; and 3) only washing. A new preparation procedure was applied for TEM samples to minimize natural variations among different hair strands: a single hair strand was cut into two neighbouring halves and only one of them underwent irradiation and washing. The non-exposed half was used as a control, so that the real effects caused by the controlled irradiation and washing procedures could be highlighted in samples that had very similar morphologies initially. More than 25images/sample were analysed using FESEM (total of 300 images) and ca. 150images/sample were obtained with TEM (total of 900 images). The results presented herein show that the endocuticle and the cell membrane complex (CMC) are the cuticle structures more degraded by irradiation. Photodegradation alone results in fracturing, cavities (Ø≈20-200nm) and cuticle cell lifting, while the washing steps were able to remove cuticle cells (≈1-2 cells removed after 60 washes). Finally, the combined action of irradiation and washing caused the most severe

  12. Sunlight-Exposed Biofilm Microbial Communities Are Naturally Resistant to Chernobyl Ionizing-Radiation Levels

    PubMed Central

    Ragon, Marie; Restoux, Gwendal; Moreira, David; Møller, Anders Pape; López-García, Purificación

    2011-01-01

    Background The Chernobyl accident represents a long-term experiment on the effects of exposure to ionizing radiation at the ecosystem level. Though studies of these effects on plants and animals are abundant, the study of how Chernobyl radiation levels affect prokaryotic and eukaryotic microbial communities is practically non-existent, except for a few reports on human pathogens or soil microorganisms. Environments enduring extreme desiccation and UV radiation, such as sunlight exposed biofilms could in principle select for organisms highly resistant to ionizing radiation as well. Methodology/Principal Findings To test this hypothesis, we explored the diversity of microorganisms belonging to the three domains of life by cultivation-independent approaches in biofilms developing on concrete walls or pillars in the Chernobyl area exposed to different levels of radiation, and we compared them with a similar biofilm from a non-irradiated site in Northern Ireland. Actinobacteria, Alphaproteobacteria, Bacteroidetes, Acidobacteria and Deinococcales were the most consistently detected bacterial groups, whereas green algae (Chlorophyta) and ascomycete fungi (Ascomycota) dominated within the eukaryotes. Close relatives to the most radio-resistant organisms known, including Rubrobacter species, Deinococcales and melanized ascomycete fungi were always detected. The diversity of bacteria and eukaryotes found in the most highly irradiated samples was comparable to that of less irradiated Chernobyl sites and Northern Ireland. However, the study of mutation frequencies in non-coding ITS regions versus SSU rRNA genes in members of a same actinobacterial operational taxonomic unit (OTU) present in Chernobyl samples and Northern Ireland showed a positive correlation between increased radiation and mutation rates. Conclusions/Significance Our results show that biofilm microbial communities in the most irradiated samples are comparable to non-irradiated samples in terms of general

  13. Nocturnal light pollution and underexposure to daytime sunlight: Complementary mechanisms of circadian disruption and related diseases.

    PubMed

    Smolensky, Michael H; Sackett-Lundeen, Linda L; Portaluppi, Francesco

    2015-01-01

    Routine exposure to artificial light at night (ALAN) in work, home, and community settings is linked with increased risk of breast and prostate cancer (BC, PC) in normally sighted women and men, the hypothesized biological rhythm mechanisms being frequent nocturnal melatonin synthesis suppression, circadian time structure (CTS) desynchronization, and sleep/wake cycle disruption with sleep deprivation. ALAN-induced perturbation of the CTS melatonin synchronizer signal is communicated maternally at the very onset of life and after birth via breast or artificial formula feedings. Nighttime use of personal computers, mobile phones, electronic tablets, televisions, and the like--now epidemic in adolescents and adults and highly prevalent in pre-school and school-aged children--is a new source of ALAN. However, ALAN exposure occurs concomitantly with almost complete absence of daytime sunlight, whose blue-violet (446-484 nm λ) spectrum synchronizes the CTS and whose UV-B (290-315 nm λ) spectrum stimulates vitamin D synthesis. Under natural conditions and clear skies, day/night and annual cycles of UV-B irradiation drive corresponding periodicities in vitamin D synthesis and numerous bioprocesses regulated by active metabolites augment and strengthen the biological time structure. Vitamin D insufficiency and deficiency are widespread in children and adults in developed and developing countries as a consequence of inadequate sunlight exposure. Past epidemiologic studies have focused either on exposure to too little daytime UV-B or too much ALAN, respectively, on vitamin D deficiency/insufficiency or melatonin suppression in relation to risk of cancer and other, e.g., psychiatric, hypertensive, cardiac, and vascular, so-called, diseases of civilization. The observed elevated incidence of medical conditions the two are alleged to influence through many complementary bioprocesses of cells, tissues, and organs led us to examine effects of the totality of the artificial light

  14. The relationship between long-term sunlight radiation and cognitive decline in the REGARDS cohort study.

    PubMed

    Kent, Shia T; Kabagambe, Edmond K; Wadley, Virginia G; Howard, Virginia J; Crosson, William L; Al-Hamdan, Mohammad Z; Judd, Suzanne E; Peace, Fredrick; McClure, Leslie A

    2014-04-01

    Sunlight may be related to cognitive function through vitamin D metabolism or circadian rhythm regulation. The analysis presented here sought to test whether ground and satellite measures of solar radiation are associated with cognitive decline. The study used a 15-year residential history merged with satellite and ground monitor data to determine sunlight (solar radiation) and air temperature exposure for a cohort of 19,896 cognitively intact black and white participants aged 45+ from the 48 contiguous United States. Exposures of 15, 10, 5, 2, and 1-year were used to predict cognitive status at the most recent assessment in logistic regression models; 1-year insolation and maximum temperatures were chosen as exposure measures. Solar radiation interacted with temperature, age, and gender in its relationships with incident cognitive impairment. After adjustment for covariates, the odds ratio (OR) of cognitive decline for solar radiation exposure below the median vs above the median in the 3rd tertile of maximum temperatures was 1.88 (95 % CI: 1.24, 2.85), that in the 2nd tertile was 1.33 (95 % CI: 1.09, 1.62), and that in the 1st tertile was 1.22 (95 % CI: 0.92, 1.60). We also found that participants under 60 years old had an OR = 1.63 (95 % CI: 1.20, 2.22), those 60-80 years old had an OR = 1.18 (95 % CI: 1.02, 1.36), and those over 80 years old had an OR = 1.05 (0.80, 1.37). Lastly, we found that males had an OR = 1.43 (95 % CI: 1.22, 1.69), and females had an OR = 1.02 (0.87, 1.20). We found that lower levels of solar radiation were associated with increased odds of incident cognitive impairment.

  15. Interference theory of metamaterial perfect absorbers.

    PubMed

    Chen, Hou-Tong

    2012-03-26

    The impedance matching to free space in metamaterial perfect absorbers has been believed to involve and rely on magnetic resonant response, with direct evidence provided by the anti-parallel surface currents in the metal structures. Here I present a different theoretical interpretation based on interference, which shows that the two layers of metal structures in metamaterial absorbers are linked only by multiple reflections with negligible near-field interactions or magnetic resonances. This is further supported by the out-of-phase surface currents derived at the interfaces of resonator array and ground plane through multiple reflections and superpositions. The theory developed here explains all features observed in narrowband metamaterial absorbers and therefore provides a profound understanding of the underlying physics.

  16. Translatory shock absorber for attitude sensors

    NASA Technical Reports Server (NTRS)

    Vonpragenau, G. L.; Morgan, I. T., Jr.; Kirby, C. A. (Inventor)

    1976-01-01

    A translatory shock absorber is provided for mounting an attitude sensor thereon for isolating a sensor from translatory vibrations. The translatory shock absorber includes a hollow block structure formed as one piece to form a parallelogram. The absorber block structure includes a movable top plate for supporting the attitude sensor and a fixed base plate with opposed side plates interposed between. At the junctions of the side plates, and the base and top plates, there are provided grooves which act as flexible hinges for attenuating translatory vibrations. A damping material is supported on a pedestal which is carried on the base plate between the side plates thereof. The top of the damping material rests against the bottom surface of the top plate for eliminating the resonant peaks of vibration.

  17. Absorber Materials at Room and Cryogenic Temperatures

    SciTech Connect

    F. Marhauser, T.S. Elliott, A.T. Wu, E.P. Chojnacki, E. Savrun

    2011-09-01

    We recently reported on investigations of RF absorber materials at cryogenic temperatures conducted at Jefferson Laboratory (JLab). The work was initiated to find a replacement material for the 2 Kelvin low power waveguide Higher Order Mode (HOM) absorbers employed within the original cavity cryomodules of the Continuous Electron Beam Accelerator Facility (CEBAF). This effort eventually led to suitable candidates as reported in this paper. Furthermore, though constrained by small funds for labor and resources, we have analyzed a variety of lossy ceramic materials, several of which could be usable as HOM absorbers for both normal conducting and superconducting RF structures, e.g. as loads in cavity waveguides and beam tubes either at room or cryogenic temperatures and, depending on cooling measures, low to high operational power levels.

  18. Ferrite HOM Absorber for the RHIC ERL

    SciTech Connect

    Hahn,H.; Choi, E.M.; Hammons, L.

    2008-10-01

    A superconducting Energy Recovery Linac is under construction at Brookhaven National Laboratory to serve as test bed for RHIC upgrades. The damping of higher-order modes in the superconducting five-cell cavity for the Energy-Recovery linac at RHIC is performed exclusively by two ferrite absorbers. The ferrite properties have been measured in ferrite-loaded pill box cavities resulting in the permeability values given by a first-order Debye model for the tiled absorber structure and an equivalent permeability value for computer simulations with solid ring dampers. Measured and simulated results for the higher-order modes in the prototype copper cavity are discussed. First room-temperature measurements of the finished niobium cavity are presented which confirm the effective damping of higher-order modes in the ERL. by the ferrite absorbers.

  19. Mode trap for absorbing transverse modes of an accelerated electron beam

    DOEpatents

    Chojnacki, E.P.

    1994-05-31

    A mode trap to trap and absorb transverse modes formed by a beam in a linear accelerator includes a waveguide having a multiplicity of electrically conductive (preferably copper) irises and rings, each iris and ring including an aperture, and the irises and rings being stacked in a side-by-side, alternating fashion such that the apertures of the irises and rings are concentrically aligned. An absorbing material layer such as a dielectric is embedded in each iris and ring, and this absorbing material layer encircles, but is circumferentially spaced from its respective aperture. Each iris and ring includes a plurality of circumferentially spaced slots around its aperture and extending radially out toward its absorbing material layer. 9 figs.

  20. Mode trap for absorbing transverse modes of an accelerated electron beam

    DOEpatents

    Chojnacki, Eric P.

    1994-01-01

    A mode trap to trap and absorb transverse modes formed by a beam in a linear accelerator includes a waveguide having a multiplicity of electrically conductive (preferably copper) irises and rings, each iris and ring including an aperture, and the irises and rings being stacked in a side-by-side, alternating fashion such that the apertures of the irises and rings are concentrically aligned. An absorbing material layer such as a dielectric is embedded in each iris and ring, and this absorbing material layer encircles, but is circumferentially spaced from its respective aperture. Each iris and ring includes a plurality of circumferentially spaced slots around its aperture and extending radially out toward its absorbing material layer.