Sample records for absorb uv radiation

  1. Effects of UV-B radiation on growth, photosynthesis, UV-B-absorbing compounds and NADP-malic enzyme in bean (Phaseolus vulgaris L.) grown under different nitrogen conditions.

    PubMed

    Pinto, M E; Casati, P; Hsu, T P; Ku, M S; Edwards, G E

    1999-02-01

    The effects of UV-B radiation on growth, photosynthesis, UV-B-absorbing compounds and NADP-malic enzyme have been examined in different cultivars of Phaseolous vulgaris L. grown under 1 and 12 mM nitrogen. Low nitrogen nutrition reduces chlorophyll and soluble protein contents in the leaves and thus the photosynthesis rate and dry-matter accumulation. Chlorophyll, soluble protein and Rubisco contents and photosynthesis rate are not significantly altered by ambient levels of UV-B radiation (17 microW m-2, 290-320 nm, 4 h/day for one week). Comparative studies show that under high nitrogen, UV-B radiation slightly enhances leaf expansion and dry-matter accumulation in cultivar Pinto, but inhibits these parameters in Vilmorin. These results suggest that the UV-B effect on growth is mediated through leaf expansion, which is particularly sensitive to UV-B, and that Pinto is more tolerant than Vilmorin. The effect of UV-B radiation on UV-B-absorbing compounds and on NADP-malic enzyme (NADP-ME) activity is also examined. Both UV-B radiation and low-nitrogen nutrition enhance the content of UV-B-absorbing compounds, and among the three cultivars used, Pinto exhibits the highest increases and Arroz the lowest. The same trend is observed for the specific activity and content of NADP-ME. On a leaf-area basis, the amount of UV-B-absorbing compounds is highly correlated with the enzyme activity (r2 = 0.83), suggesting that NADP-ME plays a key role in biosynthesis of these compounds. Furthermore, the higher sensitivity of Vilmorin than Pinto to UV-B radiation appears to be related to the activity of NADP-ME and the capacity of the plants to accumulate UV-B-absorbing compounds.

  2. Effect of UV-B radiation on UV absorbing compounds and pigments of moss and lichen of Schirmacher oasis region, East Antarctica.

    PubMed

    Singh, J; Gautam, S; Bhushan Pant, A

    2012-12-22

    The survival of Antarctic flora under ozone depletion depends on their ability to acclimate against increasing UV—B radiation by employing photo protective mechanisms either by avoiding or repairing UV—B damage. A fifteen days experiment was designed to study moss (Bryum argenteum) and lichen (Umbilicaria aprina) under natural UV—B exposure and under UV filter frames at the Maitri region of Schirmacher oasis, East Antarctica. Changes in UV absorbing compounds, phenolics, carotenoids and chlorophyll content were studied for continuous fifteen days and significant changes were observed in the UV exposed plants of B. argenteum and U. aprina. The change in the UV absorbing compounds was more significant in B. argenteum (P<0.0001) than U. aprina (P<0.0002). The change in phenolic contents and total carotenoid content was significant (P<0.0001) in both B. argenteum and lichen U. aprina indicating that the increase in UV absorbing compounds, phenolic contents and total carotenoid content act as a protective mechanism against the deleterious effect of UV—B radiations.

  3. Ultraviolet radiation and the snow alga Chlamydomonas nivalis (Bauer) Wille.

    PubMed

    Gorton, Holly L; Vogelmann, Thomas C

    2003-06-01

    Aplanospores of Chlamydomonas nivalis are frequently found in high-altitude, persistent snowfields where they are photosynthetically active despite cold temperatures and high levels of visible and ultraviolet (UV) radiation. The goals of this work were to characterize the UV environment of the cells in the snow and to investigate the existence and localization of screening compounds that might prevent UV damage. UV irradiance decreased precipitously in snow, with UV radiation of wavelengths 280-315 nm and UV radiation of wavelengths 315-400 nm dropping to 50% of incident levels in the top 1 and 2 cm, respectively. Isolated cell walls exhibited UV absorbance, possibly by sporopollenin, but this absorbance was weak in images of broken or plasmolyzed cells observed through a UV microscope. The cells also contained UV-absorbing cytoplasmic compounds, with the extrachloroplastic carotenoid astaxanthin providing most of the screening. Additional screening compound(s) soluble in aqueous methanol with an absorption maximum at 335 nm played a minor role. Thus, cells are protected against potentially high levels of UV radiation by the snow itself when they live several centimeters beneath the surface, and they rely on cellular screening compounds, chiefly astaxanthin, when located near the surface where UV fluxes are high.

  4. The effects of simulated solar UVB radiation on early developmental stages of the Northwestern Salamander (Ambystoma gracile) from three lakes

    USGS Publications Warehouse

    Calfee, Robin D.; Little, Edward E.; Pearl, Christopher A.; Hoffman, Robert L.

    2010-01-01

    Solar ultraviolet radiation (UV) has received much attention as a factor that could play a role in amphibian population declines. UV can be hazardous to some amphibians, but the resultant effects depend on a variety of environmental and behavioral factors. In this study, the potential effects of UV on the Northwestern Salamander, Ambystoma gracile, from three lakes were assessed in the laboratory using a solar simulator. We measured the survival of embryos and the survival and growth of larvae exposed to four UV treatments in controlled laboratory studies, the UV absorbance of egg jelly, oviposition depths in the lakes, and UV absorbance in water samples from the three lakes. Hatching success of embryos decreased in the higher UV treatments as compared to the control treatments, and growth of surviving larvae was significantly reduced in the higher UVB irradiance treatments. The egg jelly exhibited a small peak of absorbance within the UVB range (290–320 nm). The magnitude of UV absorbance differed among egg jellies from the three lakes. Oviposition depths at the three sites averaged 1.10 m below the water surface. Approximately 66% of surface UVB radiation was attenuated at 10-cm depth in all three lakes. Results of this study indicate that larvae may be sensitive to UVB exposure under laboratory conditions; however, in field conditions the depths of egg deposition in the lakes, absorbance of UV radiation by the water column, and the potential for behavioral adjustments may mitigate severe effects of UV radiation.

  5. Effects of simulated solar UVB radiation on early developmental stages of the northwestern salamander (Ambystoma gracile) from three lakes

    USGS Publications Warehouse

    Calfee, R.D.; Little, E.E.; Pearl, C.A.; Hoffman, R.L.

    2010-01-01

    Solar ultraviolet radiation (UV) has received much attention as a factor that could play a role in amphibian population declines. UV can be hazardous to some amphibians, but the resultant effects depend on a variety of environmental and behavioral factors. In this study, the potential effects of UV on the Northwestern Salamander, Ambystoma gracile, from three lakes were assessed in the laboratory using a solar simulator. We measured the survival of embryos and the survival and growth of larvae exposed to four UV treatments in controlled laboratory studies, the UV absorbance of egg jelly, oviposition depths in the lakes, and UV absorbance in water samples from the three lakes. Hatching success of embryos decreased in the higher UV treatments as compared to the control treatments, and growth of surviving larvae was significantly reduced in the higher UVB irradiance treatments. The egg jelly exhibited a small peak of absorbance within the UVB range (290-320 nm). The magnitude of UV absorbance differed among egg jellies from the three lakes. Oviposition depths at the three sites averaged 1.10 m below the water surface. Approximately 66 of surface UVB radiation was attenuated at 10-cm depth in all three lakes. Results of this study indicate that larvae may be sensitive to UVB exposure under laboratory conditions; however, in field conditions the depths of egg deposition in the lakes, absorbance of UV radiation by the water column, and the potential for behavioral adjustments may mitigate severe effects of UV radiation. Copyright 2010 Society for the Study of Amphibians and Reptiles.

  6. Detection of ultraviolet radiation using tissue equivalent radiochromic gel materials

    NASA Astrophysics Data System (ADS)

    Bero, M. A.; Abukassem, I.

    2009-05-01

    Ferrous Xylenol-orange Gelatin gel (FXG) is known to be sensitive to ionising radiation such as γ and X-rays. The effect of ionising radiation is to produce an increase in the absorption over a wide region of the visible spectrum, which is proportional to the absorbed dose. This study demonstrates that FXG gel is sensitive to ultraviolet radiation and therefore it could functions as UV detector. Short exposure to UV radiation produces linear increase in absorption measured at 550nm, however high doses of UV cause the ion indicator colour to fad away in a manner proportional to the incident UV energy. Light absorbance increase at the rate of 1.1% per minute of irradiation was monitored. The exposure level at which the detector has linear response is comparable to the natural summer UV radiation. Evaluating the UV ability to pass through tissue equivalent gel materials shows that most of the UV gets absorbed in the first 5mm of the gel materials, which demonstrate the damaging effects of this radiation type on human skin and eyes. It was concluded that FXG gel dosimeter has the potential to offer a simple, passive ultraviolet radiation detector with sensitivity suitable to measure and visualises the natural sunlight UV exposure directly by watching the materials colour changes.

  7. Effect of ultraviolet light absorbers on photostabilization of azadirachtin-A in solution (part: II).

    PubMed

    Deota, P T; Upadhyay, P R; Valodkar, V B

    2003-01-01

    The effect of photostabilization of azadirachtin-A (Aza-A) was examined in solutions when exposed to UV radiation, in the presence of four structurally different UV absorbers namely, p-aminobenzoic acid, 2,4-dihydroxybenzophenone, 4,4'-dihydroxybenzophenone and phenyl salicylate. The percentages of Aza-A recovered from the solutions after 6 h exposed to UV radiation in the presence and absence of UV absorbers indicated that the order of stabilization of Aza-A by these absorbers was similar to that obtained in the solid phase experiments in accordance with our previous observations. It is observed that the addition of phenyl salicylate in Aza-A (in 1:1 mole ratio) provides the excellent photostabilization of Aza-A molecule in solid phase as well as in solution among the four absorbers studied.

  8. Analysis of UV-absorbing photoprotectant mycosporine-like amino acid (MAA) in the cyanobacterium Arthrospira sp. CU2556.

    PubMed

    Rastogi, Rajesh P; Incharoensakdi, Aran

    2014-07-01

    Mycosporine-like amino acids (MAAs) are ecologically important biomolecules with great photoprotective potential. The present study aimed to investigate the biosynthesis of MAAs in the cyanobacterium Arthrospira sp. CU2556. High-performance liquid chromatography (HPLC) with photodiode-array detection studies revealed the presence of a UV-absorbing compound with an absorption maximum at 310 nm. Based on its UV absorption spectrum and ion trap liquid chromatography/mass spectrometry (LC/MS) analysis, the compound was identified as a primary MAA mycosporine-glycine (m/z: 246). To the best of our knowledge this is the first report on the occurrence of MAA mycosporine-glycine (M-Gly) in Arthrospira strains studied so far. In contrast to photosynthetic activity under UV-A radiation, the induction of the biosynthesis of M-Gly was significantly more prominent under UV-B radiation. The content of M-Gly was found to increase with the increase in exposure time under UV-B radiation. The MAA M-Gly was highly stable under UV radiation, heat, strongly acidic and alkaline conditions. It also exhibited good antioxidant activity and photoprotective ability by detoxifying the in vivo reactive oxygen species (ROS) generated by UV radiation. Our results indicate that the studied cyanobacterium may protect itself by synthesizing the UV-absorbing/screening compounds as important defense mechanisms, in their natural brightly-lit habitat with high solar UV-B fluxes.

  9. Responses of a marine red tide alga Skeletonema costatum (Bacillariophyceae) to long-term UV radiation exposures.

    PubMed

    Wu, Hongyan; Gao, Kunshan; Wu, Haiyan

    2009-02-09

    UV radiation (280-400 nm) is known to affect phytoplankton in negative, neutral and positive ways depending on the species or levels of irradiation energy. However, little has been documented on how photosynthetic physiology and growth of red tide alga respond to UVR in a long-term period. We exposed the cells of the marine red tide diatom Skeletonema costatum for 6 days to simulated solar radiations with UV-A (320-400 nm) or UV-A+UV-B (295-400 nm) and examined their changes in photosynthesis and growth. Presence of UV-B continuously reduced the effective photosynthetic quantum yield of PSII, and resulted in complete growth inhibition and death of cells. When UV-B or UV-B+UV-A was screened off, the growth rate decreased initially but regained thereafter. UV-absorbing compounds and carotenoids increased in response to the exposures with UVR. However, mechanisms for photoprotection associated with the increased carotenoids or UV-absorbing compounds were not adequate under the continuous exposure to a constant level of UV-B (0.09 Wm(-2), DNA-weighted). In contrast, under solar radiation screened off UV-B, the photoprotection was first accomplished by an initial increase of carotenoids and a later increase in UV-absorbing compounds. The overall response of this red tide alga to prolonged UV exposures indicates that S. costatum is a UV-B-sensitive species and increased UV-B irradiance would influence the formation of its blooms.

  10. Corneal epithelium and UV-protection of the eye.

    PubMed

    Ringvold, A

    1998-04-01

    To study UV-absorption and UV-induced fluorescence in the bovine corneal epithelium. Spectrophotometry and spectrofluorimetry. The corneal epithelium absorbs UV-B radiation mainly owing to its content of protein, RNA, and ascorbate. Some of the absorbed energy is transformed to the less biotoxic UV-A radiation by fluorescence. RNA and ascorbate reduce tissue fluorescence. The corneal epithelium acts as a UV-filter, protecting internal eye structures through three different mechanisms: (1) Absorption of UV-B roughly below 310 nm wavelength. (2) Fluorescence-mediated ray transformation to longer wavelengths. (3) Fluorescence reduction. The extremely high ascorbate concentration in the corneal epithelium has a key role in two of these processes.

  11. Model of radiation transmittance by inorganic fouling on UV reactor lamp sleeves.

    PubMed

    Wait, Isaac W; Blatchley, Ernest R

    2010-11-01

    The efficacy of UV disinfection of water depends on the ability of radiation to pass from UV lamps through the quartz sleeves that encase them; the accumulation of metal-containing foulants on sleeve surfaces inhibits disinfection by absorbing radiation that would otherwise be available for inactivation. In a series of experiments, the composition and quantity of sleeve foulants were studied relative to water chemistry and sleeve transmittance. Findings indicate that iron and calcium dominate fouling, with elevated fouling activity by iron, aluminum, manganese, and zinc. A regression-based modeling approach was used to characterize and quantify the effects of foulant metals on UV absorbance. The molar extinction coefficient for iron was found to be more than 3 times greater than that of calcium. Iron's relatively high activity in fouling reactions, elevated capacity to absorb UV, and reduced solubility under oxidizing conditions makes it a fouling precursor of particular concern, with respect to potential for sleeve fouling in UV reactors.

  12. A novel research model for evaluating sunscreen protection in the UV-A1.

    PubMed

    Figueiredo, Sônia Aparecida; de Moraes, Dayane Cristina; Vilela, Fernanda Maria Pinto; de Faria, Amanda Natalina; Dos Santos, Marcelo Henrique; Fonseca, Maria José Vieira

    2018-01-01

    The use of a broad spectrum sunscreen is considered one of the main and most popular measures for preventing the damaging effects of ultraviolet radiation (UVR) on the skin. In this study we have developed a novel in vitro method to assess sunscreens efficacy to protect calcineurin enzyme activity, a skin cell marker. The photoprotective efficacy of sunscreen products was assessed by measuring the UV-A1 radiation-induced depletion of calcineurin (Cn) enzyme activity in primary neonatal human dermal fibroblast (HDFn) cell lysates. After exposure to 24J/cm 2 UV-A1 radiation, the sunscreens containing larger amounts of UV-A1 filters (brand B), the astaxanthin (UV-A1 absorber) and the Tinosorb® M (UV-A1 absorber) were capable of preventing loss of Cn activity when compared to the sunscreens formulations of brand A (low concentration of UV-A1 filters), with the Garcinia brasiliensis extract (UV-B absorber) and with the unprotected cell lysate and exposed to irradiation (Irradiated Control - IC). The Cn activity assay is a reproducible, accurate and selective technique for evaluating the effectiveness of sunscreens against the effects of UV-A1 radiation. The developed method showed that calcineurin activity have the potential to act as a biological indicator of UV-A1 radiation-induced damages in skin and the assay might be used to assess the efficacy of sunscreens agents and plant extracts prior to in vivo tests. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Photoprotectant improves photostability and bioactivity of abscisic acid under UV radiation.

    PubMed

    Gao, Fei; Hu, Tanglu; Tan, Weiming; Yu, Chunxin; Li, Zhaohu; Zhang, Lizhen; Duan, Liusheng

    2016-05-01

    Photosensitivity causes serious drawback for abscisic acid (ABA) application, but preferable methods to stabilize the compound were not found yet. To select an efficient photoprotectant for the improvement of photostability and bioactivity of ABA when exposed to UV light, we tested the effects of a photostabilizer bis(2,2,6,6-tetramethyl-4-piperidinyl) sebacate (HS-770) and two UV absorbers 2-hydroxy-4-n-octoxy-benzophenone (UV-531) and 2-hydroxy-4-methoxybenzophenone-5-sulfonic acid (BP-4) with or without HS-770 on the photodegradation of ABA. Water soluble UV absorber BP-4 and oil soluble UV absorber UV-531 showed significant photo-stabilizing capability on ABA, possibly due to competitive energy absorption of UVB by the UV absorbers. The two absorbers showed no significant difference. Photostabilizer HS-770 accelerated the photodegradation of ABA and did not improve the photo-stabilizing capability of BP-4, likely due to no absorption in UVB region and salt formation with ABA and BP-4. Approximately 26% more ABA was kept when 280mg/l ABA aqueous solution was irradiated by UV light for 2h in the presence of 200mg/l BP-4. What's more, its left bioactivity on wheat seed (JIMAI 22) germination was greatly kept by BP-4, comparing to that of ABA alone. The 300 times diluent of 280mg/l ABA plus 200mg/l BP-4 after 2h irradiation showed more than 13% inhibition on shoot and root growth of wheat seed than that of ABA diluent alone. We concluded that water soluble UV absorber BP-4 was an efficient agent to keep ABA activity under UV radiation. The results could be used to produce photostable products of ABA compound or other water soluble agrichemicals which are sensitive to UV radiation. The frequencies and amounts of the agrichemicals application could be thereafter reduced. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. UV-absorbing bacteria in coral mucus and their response to simulated temperature elevations

    NASA Astrophysics Data System (ADS)

    Ravindran, J.; Kannapiran, E.; Manikandan, B.; Francis, K.; Arora, Shruti; Karunya, E.; Kumar, Amit; Singh, S. K.; Jose, Jiya

    2013-12-01

    Reef-building corals encompass various strategies to defend against harmful ultraviolet (UV) radiation. Coral mucus contains UV-absorbing compounds and has rich prokaryotic diversity associated with it. In this study, we isolated and characterized the UV-absorbing bacteria from the mucus of the corals Porites lutea and Acropora hyacinthus during the pre-summer and summer seasons. A total of 17 UV-absorbing bacteria were isolated and sequenced. The UV-absorbing bacteria showed UV absorption at wavelengths ranging from λ max = 333 nm to λ min = 208 nm. Analysis of the DNA sequences revealed that the majority of the UV-absorbing bacteria belonged to the family Firmicutes and the remaining belonged to the family Proteobacteria (class Gammaproteobacteria). Comparison of the sequences with the curated database yielded four distinct bacterial groups belonging to the genus Bacillus, Staphylococcus, Salinicoccus and Vibrio. The absorption peaks for the UV-absorbing bacteria shifted to the UV-A range (320-400 nm) when they were incubated at higher temperatures. Deciphering the complex relationship between corals and their associated bacteria will help us to understand their adaptive strategies to various stresses.

  15. Ultraviolet-induced responses in two species of climax tropical marine macrophytes.

    PubMed

    Detrés, Y; Armstrong, R A; Connelly, X M

    2001-09-01

    In tropical regions nominal reductions in stratospheric ozone could be detrimental to marine organisms that live near their upper tolerance levels of ultraviolet (UV) radiation and temperature. Well-known plant responses to UV include inhibition of photosynthesis, reductions in chlorophyll content, morphological changes and production of UV absorbing compounds such as flavonoids. An assessment of the effects and responses of two tropical marine macrophytes to full solar radiation and solar radiation depleted of UV were conducted in southwestern Puerto Rico. Changes in concentration of photosynthetic and photoprotective pigments, and in leaf optical properties of the red mangrove Rhizophora mangle and the seagrass Thalassia testudinum, were evaluated in field exclusion experiments. Rhizophora mangle exposed to full solar radiation showed lower leaf reflectance and a shift of 5 nm in the inflection point of the red edge. Thalassia testudinum samples excluded from UV had significant increases in total chlorophyll and carotenoid concentrations. These marine macrophytes showed increments in their concentration of UV-B absorbing compounds with exposure to UV radiation. Results indicate that even minor increases in UV radiation at low latitudes could have significant effects on the pigment composition of these climax species.

  16. The influence of enhanced UV-B radiation on Batrachium trichophyllum and Potamogeton alpinus -- aquatic macrophytes with amphibious character.

    PubMed

    Germ, Mateja; Mazej, Zdenka; Gaberscik, Alenka; Häder, Donat P

    2002-02-01

    The responses of two amphibious species, Batrachium trichophyllum and Potamogeton alpinus to different UV-B environments were studied. Plant material from natural environments, as well as from outdoor treatments was examined. In long-term outdoor experiments plants were grown under three different levels of UV-B radiation: reduced and ambient UV-B levels, and a UV-B level simulating 17% ozone depletion. The following parameters were monitored: contents of total methanol soluble UV-absorbing compounds and chlorophyll a, terminal electron transport system (ETS) activity and optimal and effective quantum yield of photosystem II. No effect of the different UV-B levels on the measured parameters was observed. The amount of UV-B absorbing compounds seems to be saturated, since no differences were observed between treatments and no increase was found in peak season, when natural UV-B levels were the highest. Physiological measurements revealed no harmful effects; neither on potential and actual photochemical efficiency, nor on terminal ETS activity. The contents of UV-B absorbing compounds were examined also in plant material sampled in low and high altitude environments during the growth season. Both species exhibited no seasonal dynamics of production of UV-absorbing compounds. The contents were variable and showed no significant differences between high and low altitude populations.

  17. The Effects of UV Light on the Chemical and Mechanical Properties of a Transparent Epoxy-Diamine System in the Presence of an Organic UV Absorber

    PubMed Central

    Nikafshar, Saeid; Zabihi, Omid; Ahmadi, Mojtaba; Mirmohseni, Abdolreza; Taseidifar, Mojtaba; Naebe, Minoo

    2017-01-01

    Despite several excellent properties including low shrinkage, good chemical resistance, curable at low temperatures and the absence of byproducts or volatiles, epoxy resins are susceptible to ultra violet (UV) damage and their durability is reduced substantially when exposed to outdoor environments. To overcome this drawback, UV absorbers have been usually used to decrease the rate of UV degradation. In this present study, the effects of UV light on the chemical, mechanical and physical properties of cured epoxy structure, as well as the effect of an organic UV absorber, Tinuvin 1130, on the epoxy properties were investigated. Chemical changes in a cured epoxy system as a result of the presence and absence of Tinuvin 1130 were determined using Fourier transform infrared spectroscopy (FT-IR) analyses. The effect of Tinuvin 1130 on the surface morphology of the epoxy systems was also investigated by scanning electron microscopy (SEM) imaging. Additionally, the glass transition temperatures (Tg) before and during UV radiation were measured. After an 800 h UV radiation, mechanical test results revealed that the lack of the UV absorber can lead to a ~30% reduction in tensile strength. However, in the presence of Tinuvin 1130, the tensile strength was reduced only by ~11%. It was hypothesized that the use of Tinuvin 1130, as an organic UV absorber in the epoxy-amine system, could decrease the undesirable effects, arising from exposure to UV light. PMID:28772538

  18. Effects of enhanced ultraviolet-B radiation, water deficit, and their combination on UV-absorbing compounds and osmotic adjustment substances in two different moss species.

    PubMed

    Hui, Rong; Zhao, Ruiming; Song, Guang; Li, Yixuan; Zhao, Yang; Wang, Yanli

    2018-05-01

    A simulation experiment was conducted to explore the influence of enhanced ultraviolet-B (UV-B) radiation, water deficit, and their combination on UV-absorbing compounds and osmotic adjustment substances of mosses Bryum argenteum and Didymodon vinealis isolated from biological soil crusts (BSCs) growing in a revegetated area of the Tengger Desert, China. Four levels of UV-B radiation and two gradients of water regime were employed. Compared with their controls, amounts of total flavonoids, chlorophyll, carotenoids, soluble sugars, and soluble proteins significantly decreased (p < 0.05), but proline content significantly increased (p < 0.05), when exposed to either enhanced UV-B or water deficit. The negative effects of enhanced UV-B were alleviated when water deficit was applied. There were increases in UV-absorbing compounds and osmotic adjustment substances when exposed to a combination of enhanced UV-B and water deficit compared with single stresses, except for the proline content in D. vinealis. In addition, our results also indicated interspecific differences in response to enhanced UV-B, water deficit, and their combination. Compared with B. argenteum, D. vinealis was more resistant to enhanced UV-B and water deficit singly and in combination. These results suggest that the damage of enhanced UV-B on both species might be alleviated by water deficit. This alleviation is important for understanding the response of BSCs to UV-B radiation in future global climate change. This also provides novel insights into assessment damages of UV-B to BSC stability in arid and semiarid regions.

  19. Epidermal UV-A absorbance and whole-leaf flavonoid composition in pea respond more to solar blue light than to solar UV radiation.

    PubMed

    Siipola, Sari M; Kotilainen, Titta; Sipari, Nina; Morales, Luis O; Lindfors, Anders V; Robson, T Matthew; Aphalo, Pedro J

    2015-05-01

    Plants synthesize phenolic compounds in response to certain environmental signals or stresses. One large group of phenolics, flavonoids, is considered particularly responsive to ultraviolet (UV) radiation. However, here we demonstrate that solar blue light stimulates flavonoid biosynthesis in the absence of UV-A and UV-B radiation. We grew pea plants (Pisum sativum cv. Meteor) outdoors, in Finland during the summer, under five types of filters differing in their spectral transmittance. These filters were used to (1) attenuate UV-B; (2) attenuate UV-B and UV-A < 370 nm; (3) attenuate UV-B and UV-A; (4) attenuate UV-B, UV-A and blue light; and (5) as a control not attenuating these wavebands. Attenuation of blue light significantly reduced the flavonoid content in leaf adaxial epidermis and reduced the whole-leaf concentrations of quercetin derivatives relative to kaempferol derivatives. In contrast, UV-B responses were not significant. These results show that pea plants regulate epidermal UV-A absorbance and accumulation of individual flavonoids by perceiving complex radiation signals that extend into the visible region of the solar spectrum. Furthermore, solar blue light instead of solar UV-B radiation can be the main regulator of phenolic compound accumulation in plants that germinate and develop outdoors. © 2014 John Wiley & Sons Ltd.

  20. The effect of selenium and UV radiation on leaf traits and biomass production in Triticum aestivum L.

    PubMed

    Golob, Aleksandra; Kavčič, Jan; Stibilj, Vekoslava; Gaberščik, Alenka; Vogel-Mikuš, Katarina; Germ, Mateja

    2017-02-01

    UV radiation as an evolutionarily important environmental factor, significantly affects plants traits and alters the effects of other environmental factors. Single and combined effects of ambient UV radiation, its exclusion, and Se foliar treatments on Si concentrations and production of Si phytoliths in wheat (Triticum aestivum L.) cv. 'Reska' were studied. The effects of these treatments on growth parameters of the plants, structural and biochemical traits of the leaves, and interactions of the leaves with light, as Si incrustation is the first barrier to light at the leaf surface were also examined. Under ambient UV radiation and foliar treatment with 10mgL -1 sodium selenate solution, there was a trade-off between the plant investment in primary and secondary metabolism, as the production of UV-absorbing compounds was enhanced while photosynthetic pigment levels were reduced. Independent of Se treatment, ambient UV radiation lowered respiratory potential, Ca concentration, and leaf thickness, and increased Si concentration, Si phytoliths formation, and cuticle thickness. The Se treatment has little effect on plant traits and biomass production but it increased Se concentrations in the plants by >100-fold, independent of UV radiation. In combination with UV radiation Se strengthen the protection of plants against stress by increasing the amount of UV absorbing compounds, light reflectance and transmittance. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Response of Two Plant Species to Two Ultraviolet-B Radiation Regimes

    NASA Technical Reports Server (NTRS)

    Levy, Daniel L.; Skiles, J. W.; Peterson, David (Technical Monitor)

    1996-01-01

    The depleted stratospheric ozone layer has been directly linked to increased levels of ultraviolet radiation at the earth's surface. It is important to understand what effect this will have on plants. We tested the hypothesis that in response to increased UV-B radiation (280-320 man), soybean (Glycine max Merrill) and alfalfa (Mercado Saliva L.) would produce higher concentrations of flavonoids than plants screened from UV-B. Soybean and alfalfa plants were grown successively in a growth chamber that provided UV-B radiation intensities 45% above summer field levels. A wooden frame was used to suspend mylar-D film over one group of plants and mono-acetate film over another group. Mylar is opaque in the 280-316 nm range, and acetate absorbs most radiation from 280-290 nm and then reduces intensities in the 290-320 nm range by roughly 15%. Leaf chlorophyll concentration was determined with a Minolta SPAD-502 chlorophyll meter; the BRAD meter was calibrated with N,N- extractions. Flavonoids were extracted with an acidified methanol/water solution. Soybean grown under the acetate treatment showed 26% smaller internodal lengths and higher concentrations of flavonoids compared to plants grown under mylar. Significant results for alfalfa included 22% greater leaf flavonoid concentration under acetate, 14% greater leaf chlorophyll concentration under mylar, and 32% greater above-ground biomass under mylar. We found that increased UV-B radiation leads to increased production of UV-B absorbing compounds (i.e. flavonoids) in soybean and alfalfa leaves. This suggests that a protective mechanism in these plants is triggered by UV-B. In response, flavonoids are produced that absorb UV-B, and consequently decrease potentially damaging effects to the plants. In addition, we hypothesize that this flavonoid protection mechanism saturates at certain UV-B intensities.

  2. Response of Two Legumes to Two Ultraviolet-B Radiation Regimes

    NASA Technical Reports Server (NTRS)

    Levy, Daniel L.; Skiles, J. W.

    2000-01-01

    Depletion of the stratospheric ozone layer has been directly linked to increased levels of UV radiation at the earth's surface. The purpose of this study was to evaluate the responses of soybean (Glycine max) and alfalfa (Medicago sativa) to increased UV-B radiation (280-320 nm). Soybean and alfalfa were grown successively in a growth chamber that provided UV-B intensities 45% above nominal summer field levels. Mylar-D (UVB opaque) and mono-acetate (UV-B transparent) films were used to establish the two UV-B treatments. Soybean grown under increased UV showed 21% smaller internodal lengths and higher concentrations of UV-B absorbing pigments (i.e. flavonoids) compared to plants grown under no UV. Significant results for alfalfa included 22% greater leaf flavonoid concentration under increased UV, 14% greater leaf chlorophyll concentration under no UV, and 32% greater above-ground biomass with no UV. These leguminous species possess mechanisms that protect against UV-B damage as indicated by increases in foliar concentrations of UV-B absorbing compounds. Alfalfa appears to be more sensitive to UV-B damage than soybean. Remote sensing of chlorophyll fluorescence may offer a means of monitoring UV-induced plant stress and damage.

  3. Effects of Solar Ultraviolet Radiation on the Potential Efficiency of Photosystem II in Leaves of Tropical Plants1

    PubMed Central

    Krause, G. Heinrich; Schmude, Claudia; Garden, Hermann; Koroleva, Olga Y.; Winter, Klaus

    1999-01-01

    The effects of solar ultraviolet (UV)-B and UV-A radiation on the potential efficiency of photosystem II (PSII) in leaves of tropical plants were investigated in Panama (9°N). Shade-grown tree seedlings or detached sun leaves from the outer crown of mature trees were exposed for short periods (up to 75 min) to direct sunlight filtered through plastic or glass filters that absorbed either UV-B or UV-A+B radiation, or transmitted the complete solar spectrum. Persistent changes in potential PSII efficiency were monitored by means of the dark-adapted ratio of variable to maximum chlorophyll a fluorescence. In leaves of shade-grown tree seedlings, exposure to the complete solar spectrum resulted in a strong decrease in potential PSII efficiency, probably involving protein damage. A substantially smaller decline in the dark-adapted ratio of variable to maximum chlorophyll a fluorescence was observed when UV-B irradiation was excluded. The loss in PSII efficiency was further reduced by excluding both UV-B and UV-A light. The photoinactivation of PSII was reversible under shade conditions, but restoration of nearly full activity required at least 10 d. Repeated exposure to direct sunlight induced an increase in the pool size of xanthophyll cycle pigments and in the content of UV-absorbing vacuolar compounds. In sun leaves of mature trees, which contained high levels of UV-absorbing compounds, effects of UV-B on PSII efficiency were observed in several cases and varied with developmental age and acclimation state of the leaves. The results show that natural UV-B and UV-A radiation in the tropics may significantly contribute to photoinhibition of PSII during sun exposure in situ, particularly in shade leaves exposed to full sunlight. PMID:10594122

  4. Replicated mesocosm study on the role of natural ultraviolet radiation in high CDOM, shallow lakes.

    PubMed

    Pérez, A Patricia; Diaz, Mónica M; Ferraro, Marcela A; Cusminsky, Gabriela C; Zagarese, Horacio E

    2003-02-01

    The role of ultraviolet radiation on shallow, high CDOM (colored dissolved organic matter) lakes was investigated during two consecutive summers (1999 and 2000) in replicated mesocosms (rectangular fiberglass tanks). Each tank (volume: 300 L; depth: 40 cm) was covered with a layer (approximately 3 cm) of sediment from lake El Toro (40 degrees 14' S; 70 degrees 22' W) and filled with filtered water. The experimental design consisted of two treatments: full natural radiation (UV-exposed) and natural radiation without ultraviolet radiation (UV-shielded). UV-exposed and UV-shielded treatments differed in most studied variables as revealed by repeated measures ANOVA. UV-exposed tanks displayed lower CDOM levels (dissolved absorbance) of lower average molecular size (absorbance ratio between 250 and 365 nm), higher bacterial biomass, and lower chlorophyll a concentration. The effect on consumers (rotifers and crustaceans) was less noticeable. The results are consistent with UV stimulation of bacteria production mediated by higher rates of CDOM photobleaching, and the photoinhibition of planktonic algae. Thus, a major effect of UVR in shallow, high CDOM ecosystems appears to be the stimulation of heterotrophic pathways and a simultaneous inhibition of photoautotrophs.

  5. The Nature of the UV/X-ray Absorber In PG 2302+029

    NASA Technical Reports Server (NTRS)

    Sabra, Bassem M.; Hamann, Fred; Jannuzi, Buell T.; George, Ian M.; Shields, Joseph C.

    2003-01-01

    We present Chandra X-ray observations of the radio-quiet QSO PG 2302+029. This quasar has a rare system of ultra-high velocity (-56,000 km s(exp -1) UV absorption lines that form in an outflow from the active nucleus. The Chandra data indicate that soft X-ray absorption is also present. We perform a joint UV and X-ray analysis, using photoionization calculations, to determine the nature of the absorbing gas. The UV and X-ray datasets were not obtained simultaneously. Nonetheless, our analysis suggests that the X-ray absorption occurs at high velocities in the same general region as the UV absorber. There are not enough constraints to rule out multi-zone models. In fact, the distinct broad and narrow UV line profiles clearly indicate that multiple zones are present. Our preferred estimates of the ionization and total column density in the X-ray absorber (logU = 1.6, N(sub eta) = 10(exp 22.4) cm (exp -2) over predict the O VI lambda lambda1032,1038 absorption unless the X-ray absorber is also outflowing at approximately 56,000 km s(exp-l), but they over predict the Ne VIII lambda lambda 770,780 absorption at all velocities. If we assume that the X-ray absorbing gas is outflowing at the same velocity of the UV-absorbing wind and that the wind is radiatively accelerated, then the outflow must be launched at a radius of less than or equal to 10(exp 15) cm from the central continuum source. The smallness of this radius casts doubts on the assumption of radiative acceleration.

  6. UV dichroic coatings on metallic reflectors

    NASA Astrophysics Data System (ADS)

    Raghunath, C.; Babu, N. J.; chandran, K. M.

    2008-05-01

    The work presented here explains the design and deposition process of dichroic coating on metallic reflectors developed for UV curing systems. Special designs are adopted to achieve the spectral band and optimized to suit to the requirements. A mirror, which reflects the UV radiation (220 - 400 nm) and absorbs visible and infrared radiation (400 - 2000nm), is described in detail.

  7. Radiation Sensitivity of Soluble Polysilane Derivatives: Science and Applications

    DTIC Science & Technology

    1988-08-01

    sigma bonded, all substituted silane polymers absorb strongly in the UV-visible region. Their absorption spectra depend to some extent on the nature...of the substituents. In this regard alkyl substituted, atatic, amphorous materials absorb from 300-325 nm with sterically bulky groups producing a...cases, the polysilane is the primary absorber of the incident radiation. Interestingly, when 3, which absorbs at -400 inm, was incorporated into a film

  8. A new UV-A/B protecting pigment in the terrestrial cyanobacterium Nostoc commune

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scherer, S.; Chen, T.W.; Boeger, P.

    1988-12-01

    A new ultraviolet (UV)-A/B absorbing pigment with maxima at 312 and 330 nanometers from the cosmopolitan terrestrial cyanobacterium Nostoc commune is described. The pigment is found in high amounts (up to 10% of dry weight) in colonies grown under solar UV radiation but only in low concentrations in laboratory cultures illuminated by artificial light without UV. Its experimental induction by UV as well as its capacity to efficiently protect Nostoc against UV radiation is reported.

  9. Penetration of UV-A, UV-B, blue, and red light into leaf tissues of pecan measured by a fiber optic microprobe system

    NASA Astrophysics Data System (ADS)

    Qi, Yadong; Bai, Shuju; Vogelmann, Thomas C.; Heisler, Gordon M.

    2003-11-01

    The depth of light penetration from the adaxial surfaces of the mature leaves of pecan (Carya illinoensis) was measured using a fiber optic microprobe system at four wavelengths: UV-B (310nm), UV-A (360 nm), blue light (430nm), and red light (680nm). The average thickness of the leaf adaxial epidermal layer was 15um and the total leaf thickness was 219um. The patterns of the light attenuation by the leaf tissues exhibited strong wavelength dependence. The leaf adaxial epidermal layer was chiefly responsible for absorbing the UV-A UV-B radiation. About 98% of 310 nm light was steeply attenuated within the first 5 um of the adaxial epidermis; thus, very little UV-B radiation was transmitted to the mesophyll tissues where contain photosynthetically sensitive sites. The adaxial epidermis also attenuated 96% of the UV-A radiation. In contrast, the blue and red light penetrated much deeper and was gradually attenutated by the leaves. The mesophyll tissues attenuated 17% of the blue light and 42% of the red light, which were available for photosynthesis use. Since the epidermal layer absorbed nearly all UV-B light, it acted as an effective filter screening out the harmful radiation and protecting photosynthetically sensitive tissues from the UV-B damage. Therefore, the epidermal function of the UV-B screening effectiveness can be regarded as one of the UV-B protection mechanisms in pecan.

  10. Adverse Effects of UV-B Radiation on Plants Growing at Schirmacher Oasis, East Antarctica.

    PubMed

    Singh, Jaswant; Singh, Rudra P

    2014-01-01

    This study aimed to assess the impacts of ultraviolet-B (UV-B) radiation over a 28-day period on the levels of pigments of Umbilicaria aprina and Bryum argenteum growing in field. The depletion of stratospheric ozone is most prominent over Antarctica, which receives more UV-B radiation than most other parts of the planet. Although UV-B radiation adversely affects all flora, Antarctic plants are better equipped to survive the damaging effects of UV-B owing to defenses provided by UV-B absorbing compounds and other screening pigments. The UV-B radiations and daily average ozone values were measured by sun photometer and the photosynthetic pigments were analyzed by the standard spectrophotometric methods of exposed and unexposed selected plants. The daily average atmospheric ozone values were recorded from 5 January to 2 February 2008. The maximum daily average for ozone (310.7 Dobson Units (DU)) was recorded on 10 January 2008. On that day, average UV-B spectral irradiances were 0.016, 0.071, and 0.186 W m(-2) at wavelengths of 305, 312, and 320 nm, respectively. The minimum daily average ozone value (278.6 DU) was recorded on 31 January 2008. On that day, average UV-B spectral irradiances were 0.018, 0.085, and 0.210 W m(-2) at wavelengths of 305, 312, and 320 nm, respectively. Our results concludes that following prolonged UV-B exposure, total chlorophyll levels decreased gradually in both species, whereas levels of UV-B absorbing compounds, phenolics, and carotenoids gradually increased.

  11. Adverse Effects of UV-B Radiation on Plants Growing at Schirmacher Oasis, East Antarctica

    PubMed Central

    Singh, Jaswant; Singh, Rudra P.

    2014-01-01

    This study aimed to assess the impacts of ultraviolet-B (UV-B) radiation over a 28-day period on the levels of pigments of Umbilicaria aprina and Bryum argenteum growing in field. The depletion of stratospheric ozone is most prominent over Antarctica, which receives more UV-B radiation than most other parts of the planet. Although UV-B radiation adversely affects all flora, Antarctic plants are better equipped to survive the damaging effects of UV-B owing to defenses provided by UV-B absorbing compounds and other screening pigments. The UV-B radiations and daily average ozone values were measured by sun photometer and the photosynthetic pigments were analyzed by the standard spectrophotometric methods of exposed and unexposed selected plants. The daily average atmospheric ozone values were recorded from 5 January to 2 February 2008. The maximum daily average for ozone (310.7 Dobson Units (DU)) was recorded on 10 January 2008. On that day, average UV-B spectral irradiances were 0.016, 0.071, and 0.186 W m-2 at wavelengths of 305, 312, and 320 nm, respectively. The minimum daily average ozone value (278.6 DU) was recorded on 31 January 2008. On that day, average UV-B spectral irradiances were 0.018, 0.085, and 0.210 W m-2 at wavelengths of 305, 312, and 320 nm, respectively. Our results concludes that following prolonged UV-B exposure, total chlorophyll levels decreased gradually in both species, whereas levels of UV-B absorbing compounds, phenolics, and carotenoids gradually increased. PMID:24748743

  12. Production of Chromophoric Dissolved Organic Matter from Mangrove Leaf Litter and Floating Sargassum Colonies

    EPA Science Inventory

    Chromophoric dissolved organic matter (CDOM) strongly absorbs solar radiation in the blue-green and serves as the primary attenuator of water column ultraviolet radiation (UV-R). CDOM interferes with remote sensing of ocean chlorophyll and can control UV-R-induced damage to light...

  13. Rapid modulation of ultraviolet shielding in plants is influenced by solar ultraviolet radiation and linked to alterations in flavonoids.

    PubMed

    Barnes, Paul W; Tobler, Mark A; Keefover-Ring, Ken; Flint, Stephan D; Barkley, Anne E; Ryel, Ronald J; Lindroth, Richard L

    2016-01-01

    The accumulation of ultraviolet (UV)-absorbing compounds (flavonoids and related phenylpropanoids) and the resultant decrease in epidermal UV transmittance (TUV ) are primary protective mechanisms employed by plants against potentially damaging solar UV radiation and are critical components of the overall acclimation response of plants to changing solar UV environments. Whether plants can adjust this UV sunscreen protection in response to rapid changes in UV, as occurs on a diurnal basis, is largely unexplored. Here, we use a combination of approaches to demonstrate that plants can modulate their UV-screening properties within minutes to hours, and these changes are driven, in part, by UV radiation. For the cultivated species Abelmoschus esculentus, large (30-50%) and reversible changes in TUV occurred on a diurnal basis, and these adjustments were associated with changes in the concentrations of whole-leaf UV-absorbing compounds and several quercetin glycosides. Similar results were found for two other species (Vicia faba and Solanum lycopersicum), but no such changes were detected in Zea mays. These findings reveal a much more dynamic UV-protection mechanism than previously recognized, raise important questions concerning the costs and benefits of UV-protection strategies in plants and have practical implications for employing UV to enhance crop vigor and quality in controlled environments. © 2015 John Wiley & Sons Ltd.

  14. Protection of Nomex from Ultraviolet Degradation

    DTIC Science & Technology

    1977-03-01

    absorbs UV radiation beginning at approximately 390 nano- meters (nm) and extending into the near UV with a peak at approximately 360 nm. This absorption is...the region near 290 nm [ 5 ]. Sunlight is much richer in radiation at 360 nm than at 290 nm and this fact undoubt- edly accounts for the much greater...function as UV screening agents. The absorption spectrum of Nomex in the near UV and visible region which is responsible for Nomex photodegra- dation is

  15. Method of fabricating a high aspect ratio microstructure

    DOEpatents

    Warren, John B.

    2003-05-06

    The present invention is for a method of fabricating a high aspect ratio, freestanding microstructure. The fabrication method modifies the exposure process for SU-8, an negative-acting, ultraviolet-sensitive photoresist used for microfabrication whereby a UV-absorbent glass substrate, chosen for complete absorption of UV radiation at 380 nanometers or less, is coated with a negative photoresist, exposed and developed according to standard practice. This UV absorbent glass enables the fabrication of cylindrical cavities in a negative photoresist microstructures that have aspect ratios of 8:1.

  16. The budget of biologically active ultraviolet radiation in the earth-atmosphere system

    NASA Technical Reports Server (NTRS)

    Frederick, John E.; Lubin, Dan

    1988-01-01

    This study applies the concept of a budget to describe the interaction of solar ultraviolet (UV) radiation with the earth-atmosphere system. The wavelength ranges of interest are the biologically relevant UV-B between 280 and 320 nm and the UV-A from 32000 to 400 nm. The Nimbus 7 solar backscattered ultraviolet (SBUV) instrument provides measurements of total column ozone and information concerning cloud cover which, in combination with a simple model of radiation transfer, define the fractions of incident solar irradiance absorbed in the atmosphere, reflected to space, and absorbed at the ground. Results for the month of July quantify the contribution of fractional cloud cover and cloud optical thickness to the radiation budget's three components. Scattering within a thick cloud layer makes the downward radiation field at the cloud base more isotropic than is the case for clear skies. For small solar zenith angles, typical of summer midday conditions, the effective pathlength of this diffuse irradiance through tropospheric ozone is greater than that under clear-sky conditions. The result is an enhanced absorption of UV-B radiation in the troposphere during cloud-covered conditions. Major changes in global cloud cover or cloud optical thicknesses could alter the ultraviolet radiation received by the biosphere by an amount comparable to that predicted for long-term trends in ozone.

  17. Oceanic protection of prebiotic organic compounds from UV radiation

    NASA Technical Reports Server (NTRS)

    Cleaves, H. J.; Miller, S. L.; Bada, J. L. (Principal Investigator)

    1998-01-01

    It is frequently stated that UV light would cause massive destruction of prebiotic organic compounds because of the absence of an ozone layer. The elevated UV flux of the early sun compounds this problem. This applies to organic compounds of both terrestrial and extraterrestrial origin. Attempts to deal with this problem generally involve atmospheric absorbers. We show here that prebiotic organic polymers as well as several inorganic compounds are sufficient to protect oceanic organic molecules from UV degradation. This aqueous protection is in addition to any atmospheric UV absorbers and should be a ubiquitous planetary phenomenon serving to increase the size of planetary habitable zones.

  18. Efficacy and durability of ultraviolet tints in CR-39 ophthalmic lenses.

    PubMed

    Lee, D Y; Brown, W L; Trachimowicz, R

    1997-11-01

    Ocular protection from solar ultraviolet (UV) radiation has been emphasized in recent years as a result of the thinning of the ozone layer in the atmosphere. The purpose of this study was to evaluate the absorptive properties of UV tints in CR-39 lenses. We used a spectrophotometer to measure the UV transmittance of three groups of UV tinted CR-39 lenses, including (1) lenses tinted by local optical laboratories: (2) lenses tinted by us, using commercially available dyes: and (3) stock UV lenses that have UV absorptive molecules throughout the lens. We also tested the durability of these tints to daily washing/drying by measuring their UV transmittance characteristics at 3, 6, and 12 months. All the tested lenses absorbed all of the UV-B and at least 99% of UV-A. The durability of these UV tints when exposed to daily washing/drying was excellent: all lenses continued to absorb all of the UV-B and at least 99% of UV-A after 1 year. These data suggest that UV tinted CR-39 lenses provide protection against UV radiation that meets the ANSI Z80.3-1996 Standard for non-prescription sunglasses and fashion eyewear. Furthermore, normal daily washing/drying for 1 year does not cause a significant decrease in the protective effect of the UV tint.

  19. A Ten-Year Global Record of Absorbing Aerosols Above Clouds from OMI's Near-UV Observations

    NASA Technical Reports Server (NTRS)

    Jethva, Hiren; Torres, Omar; Ahn, Changwoo

    2016-01-01

    Aerosol-cloud interaction continues to be one of the leading uncertain components of climate models, primarily due to the lack of an adequate knowledge of the complex microphysical and radiative processes associated with the aerosol-cloud system. The situations when aerosols and clouds are found in the same atmospheric column, for instance, when light-absorbing aerosols such as biomass burning generated carbonaceous particles or wind-blown dust overlay low-level cloud decks, are commonly found over several regional of the world. Contrary to the cloud-free scenario over dark surface, for which aerosols are known to produce a net cooling effect (negative radiative forcing) on climate, the overlapping situation of absorbing aerosols over cloud can potentially exert a significant level of atmospheric absorption and produces a positive radiative forcing at top-of-atmosphere. The magnitude of direct radiative effects of aerosols above cloud depends directly on the aerosol loading, microphysical-optical properties of the aerosol layer and the underlying cloud deck, and geometric cloud fraction. We help in addressing this problem by introducing a novel product of optical depth of absorbing aerosols above clouds retrieved from near-UV observations made by the Ozone Monitoring Instrument (OMI) on board NASA's Aura platform. The presence of absorbing aerosols above cloud reduces the upwelling radiation reflected by cloud and produces a strong 'color ratio' effect in the near-UV region, which can be unambiguously detected in the OMI measurements. Physically based on this effect, the OMACA algorithm retrieves the optical depths of aerosols and clouds simultaneously under a prescribed state of atmosphere. The algorithm architecture and results from a ten-year global record including global climatology of frequency of occurrence and above-cloud aerosol optical depth, and a discussion on related future field campaigns are presented.

  20. Changes in growth, leaf anatomy and pigment concentrations in pea under modulated UV-B field treatments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Day, T.A.; Howells, B.W.; Ruhland, C.T.

    1995-06-01

    In growth-chamber and greenhouse studies, garden pea is typically quite sensitive to enhanced UV-B radiation (280-320 nm). We assessed whether growth of pea was reduced under more ecologically relevant UV-B enhancements by employing modulated field lampbanks simulating 0, 16 or 24% ozone depletion. We also examined if these UV-B treatments altered leaf anatomy and concentrations of chlorophyll and UV-B-absorbing compounds, and whether this was dependent on leaf age. We used Pisum sativum mutant Argenteum which has an easily detachable epidermis that allowed us to compare concentrations in epidermal and mesophyll tissues. There were no significant UV-B effects on whole-plant growth.more » Of the 15 leaf-level parameters we examined, UV-B had a strong effect on only two parameters: the ratio of UV-B-absorbing compounds to chlorophyll (which increased with UV-B dose), and stomatal density of the adaxial surface (which decreased with UV-B dose). Chlorophyll concentrations tended to decrease, while the proportion of UV-B-absorbing compounds in the adaxial epidermis tended to increase with UV-B dose (p = 0.11 for both). In contrast to UV-B effects, we found strong leaf-age effects on nearly all parameters except the ratio of UV-B-absorbing compounds to chlorophyll, which remained relatively constant with leaf age.« less

  1. Diurnal changes in epidermal UV transmittance of plants in naturally high UV environments.

    PubMed

    Barnes, Paul W; Flint, Stephan D; Slusser, James R; Gao, Wei; Ryel, Ronald J

    2008-06-01

    Studies were conducted on three herbaceous plant species growing in naturally high solar UV environments in the subalpine of Mauna Kea, Hawaii, USA, to determine if diurnal changes in epidermal UV transmittance (T(UV)) occur in these species, and to test whether manipulation of the solar radiation regime could alter these diurnal patterns. Additional field studies were conducted at Logan, Utah, USA, to determine if solar UV was causing diurnal T(UV) changes and to evaluate the relationship between diurnal changes in T(UV) and UV-absorbing pigments. Under clear skies, T(UV), as measured with a UV-A-pulse amplitude modulation fluorometer for leaves of Verbascum thapsus and Oenothera stricta growing in native soils and Vicia faba growing in pots, was highest at predawn and sunset and lowest at midday. These patterns in T(UV) closely tracked diurnal changes in solar radiation and were the result of correlated changes in fluorescence induced by UV-A and blue radiation but not photochemical efficiency (F(v)/F(m)) or initial fluorescence yield (F(o)). The magnitude of the midday reduction in T(UV) was greater for young leaves than for older leaves of Verbascum. Imposition of artificial shade eliminated the diurnal changes in T(UV) in Verbascum, but reduction in solar UV had no effect on diurnal T(UV) changes in Vicia. In Vicia, the diurnal changes in T(UV) occurred without detectable changes in the concentration of whole-leaf UV-absorbing compounds. Results suggest that plants actively control diurnal changes in UV shielding, and these changes occur in response to signals other than solar UV; however, the underlying mechanisms responsible for rapid changes in T(UV) remain unclear.

  2. The Photostabilizing Effect of Grape Seed Extract on Three Common Sunscreen Absorbers.

    PubMed

    Martincigh, Bice S; Ollengo, Moses A

    2016-11-01

    The photostabilizing ability of grape seed extract on three common sunscreen absorbers, 2-ethylhexyl-p-methoxycinnamate (EHMC), benzophenone-3 (BP3) and tert-butylmethoxy dibenzoylmethane (BMDBM), was investigated. Samples were exposed to simulated solar radiation and monitored by spectrophotometric and chromatographic methods. The chemical composition of the grape seed extract was determined by GC-MS and HPLC-MS, and the major secondary metabolites were found to be epicatechin and catechin. Exposure of the extract to UV radiation increased the UV absorption capacity of the extract. All sunscreens showed an improved photostability in the extract. The inherent photo-instability of BMDBM when exposed to UV radiation was almost eliminated in the presence of grape seed extract. A mixture of all three sunscreens in the extract showed very high photostability and a red shift covering the entire UVB and UVA regions, thereby improving the broad-spectrum protection. The incorporation of grape seed extract in sunscreen and other cosmetic formulations for topical application boosts photoprotection by stabilizing the UV filters and enhancing broad-spectrum coverage. This in turn helps in reducing the amounts of absorbers and other additives incorporated in a sunscreen product and consequently lowers the risk of an unprecedented buildup of photoproducts whose toxicities are currently unknown. © 2016 The American Society of Photobiology.

  3. Identification and determination butylmethoxydibenzoylmethane in the presence benzophenone-3 and ethylhexylmethoxycinnamate in suncare preparation.

    PubMed

    Imamović, B; Sober, M; Becić, E

    2009-10-01

    The protection of sun radiation is a problem on global level for all living organisms on Earth. The need of people for the overexposure to the UV radiation led human population towards finding novel ways of protection of this kind of radiation, in form of cosmetic preparations applied on the skin. So far, the high values of protection factors of preparations and total block preparations with sun protection factor of 50+ were achieved. Physical and chemical filters which absorb radiation are constituents of these preparations. European Union has set regulations as which substances and in what amounts could be used as UV absorbers. American FDA (Food and Drug Administration) also gave its list of the most frequently used UV absorbers in the sunscreen products, as well as their declared concentrations. The most frequently used concentrations of UV filters in cosmetics is between 0.1% and 10%. Concentrations of UV filters in sunscreen products have to be monitored in order to ensure that they are not less from the declared levels, on which depends the efficacy and safety of the product. Butyl methoxydibenzoylmethane (BMDM) is used as a UV-A filter in suncare products. Optimized high performance liquid chromatography method for BMDM determination in the presence of other UV filters in suncare preparations is presented in this paper. Determination was performed on C(8) reversed phase using UV detection at 357 nm and isocratic mobile phase of acetonitrile and 0.5% phosphoric acid (70 : 30 v/v). Proposed method has limit of detection of 0.058 microg mL(-1), limit of quantification 0.193 microg mL(-1) and linearity correlation coefficient of 0.9989. Commercially available products were analysed using the proposed method. All analysed samples complied with EU directives limit of BMDM content to no more than 5%.

  4. Gene Expression Profiling in Response to Ultraviolet Radiation in Maize Genotypes with Varying Flavonoid Content1[w

    PubMed Central

    Casati, Paula; Walbot, Virginia

    2003-01-01

    Microarray hybridization was used to assess acclimation responses to four UV regimes by near isogenic maize (Zea mays) lines varying in flavonoid content. We found that 355 of the 2,500 cDNAs tested were regulated by UV radiation in at least one genotype. Among these, 232 transcripts are assigned putative functions, whereas 123 encode unknown proteins. UV-B increased expression of stress response and ribosomal protein genes, whereas photosynthesis-associated genes were down-regulated; lines lacking UV-absorbing pigments had more dramatic responses than did lines with these pigments, confirming the shielding role of these compounds. Sunlight filtered to remove UV-B or UV-B plus UV-A resulted in significant expression changes in many genes not previously associated with UV responses. Some pathways regulated by UV radiation are shared with defense, salt, and oxidative stresses; however, UV-B radiation can activate additional pathways not shared with other stresses. PMID:12913132

  5. Altered UV absorbance and cytotoxicity of chlorinated sunscreen agents.

    PubMed

    Sherwood, Vaughn F; Kennedy, Steven; Zhang, Hualin; Purser, Gordon H; Sheaff, Robert J

    2012-12-01

    Sunscreens are widely utilized due to the adverse effects of ultraviolet (UV) radiation on human health. The safety of their active ingredients as well as that of any modified versions generated during use is thus of concern. Chlorine is used as a chemical disinfectant in swimming pools. Its reactivity suggests sunscreen components might be chlorinated, altering their absorptive and/or cytotoxic properties. To test this hypothesis, the UV-filters oxybenzone, dioxybenzone, and sulisobenzone were reacted with chlorinating agents and their UV spectra analyzed. In all cases, a decrease in UV absorbance was observed. Given that chlorinated compounds can be cytotoxic, the effect of modified UV-filters on cell viability was examined. Chlorinated oxybenzone and dioxybenzone caused significantly more cell death than unchlorinated controls. In contrast, chlorination of sulisobenzone actually reduced cytotoxicity of the parent compound. Exposing a commercially available sunscreen product to chlorine also resulted in decreased UV absorbance, loss of UV protection, and enhanced cytotoxicity. These observations show chlorination of sunscreen active ingredients can dramatically decrease UV absorption and generate derivatives with altered biological properties.

  6. A depleted ozone layer absorbs less UV-B, cooling the ozone layer, increasing the amount of UV-B observed to reach Earth, heating air by dissociating tropospheric and ground-level ozone, and heating oceans very efficiently by penetrating tens of meters into the mixed layer. UV-B is 48 times more energetic ("hotter") than IR absorbed by greenhouse gases

    NASA Astrophysics Data System (ADS)

    Ward, P. L.

    2017-12-01

    This new insight into the physics of radiation shows why changes in stratospheric ozone are observed to cause changes in global temperature. By 1970, manufactured CFC gases and ozone depletion began increasing. By 1993, increases in CFCs stopped as mandated by the Montreal Protocol. By 1995, increases in ozone depletion stopped. By 1998, increases in temperature stopped until 2014. Ozone is also depleted by halogen gases emitted from major basaltic lava flows, the largest of which, since 1783, occurred at Bardarbunga in Iceland in 2014, causing 2015 and 2016 to be the hottest years on record. Throughout Earth history, the largest basaltic lava flows were contemporaneous with periods of greatest warming and greatest levels of mass extinctions. Planck's empirical law shows that temperature of matter results from oscillation of all the bonds holding matter together. The higher the temperature, the higher the frequencies and amplitudes of oscillation. Thus, radiation from a nearby hotter body will make the absorbing body hotter than radiation from a cooler body. According to the Planck-Einstein relation, thermal energy (E) in matter and in radiation equals frequency of oscillation (ν) times the Planck constant (h), E=hν—the energy of a frictionless atomic oscillator. Since frequency is observed to be a very broad continuum extending from radio signals through visible light to gamma rays, thermal energy (E=hν) must also be a very broad continuum. Thermal flux cannot be represented properly by a single number of watts per square meter, as commonly assumed throughout the physical sciences, because all frequencies coexist and the number of watts increases with frequency. Thus, UV-B solar radiation is 48 times more energetic than IR terrestrial radiation absorbed by greenhouse gases and can make the absorbing body 48 times hotter. UV-B causes sunburn; no amount of IR can cause sunburn. Furthermore, in a basic experiment, I show that air containing more than 23 times normal concentrations of CO2, shows minimal warming compared to normal air when exposed to the same IR radiation. Dobson (1929) reported the close correlation between regions of high and low ozone concentrations and weather. Variation in ozone levels are closely associated with changes in the Multivariate ENSO Index and other atmospheric and oceanic oscillations.

  7. Heavy-ion-induced sucrose radicals investigated using EPR and UV spectroscopy.

    PubMed

    Nakagawa, Kouichi; Karakirova, Yordanka; Yordanov, Nicola D

    2015-05-01

    The potential use of a sucrose dosimeter for estimating both linear energy transfer (LET) and the absorbed dose of heavy ion and X-ray radiation was investigated. The stable free radicals were produced when sucrose was irradiated with heavy ions, such as helium, carbon, silicon and neon ions, and when the X-ray radiation was similar to the obtained electron paramagnetic resonance (EPR) spectra, which were ∼7 mT wide and composed of several hyperfine structures. In addition, the total spin concentration resulting from heavy-ion irradiation increased linearly as the absorbed dose increased, and decreased logarithmically as the LET increased. These empirical relations imply that the LET at a certain dose can be determined from the spin concentration. For sucrose and alanine, both cross-sections following C-ion irradiation with a 50 Gy dose were ∼1.3 × 10(-12) [μm(2)], taking into account the molecular size of the samples. The values of these cross-sections imply that multiple ionizing particles were involved in the production of stable radicals. Furthermore, UV absorbance at 267 nm of an aqueous solution of irradiated sucrose was found to linearly increase with increasing absorbed dose. Therefore, the EPR and UV results suggest that sucrose can be a useful dosimeter for heavy-ion irradiation. © The Author 2014. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  8. Phenylalanine Is Required to Promote Specific Developmental Responses and Prevents Cellular Damage in Response to Ultraviolet Light in Soybean (Glycine max) during the Seed-to-Seedling Transition

    PubMed Central

    Sullivan, Joe H.; Muhammad, DurreShahwar; Warpeha, Katherine M.

    2014-01-01

    UV-radiation elicits a suite of developmental (photomorphogenic) and protective responses in plants, but responses early post-germination have received little attention, particularly in intensively bred plants of economic importance. We examined germination, hypocotyl elongation, leaf pubescence and subcellular responses of germinating and/or etiolated soybean (Glycine max (L.) Merr.) seedlings in response to treatment with discrete wavelengths of UV-A or UV-B radiation. We demonstrate differential responses of germinating/young soybean seedlings to a range of UV wavelengths that indicate unique signal transduction mechanisms regulate UV-initiated responses. We have investigated how phenylalanine, a key substrate in the phenylpropanoid pathway, may be involved in these responses. Pubescence may be a key location for phenylalanine-derived protective compounds, as UV-B irradiation increased pubescence and accumulation of UV-absorbing compounds within primary leaf pubescence, visualized by microscopy and absorbance spectra. Mass spectrometry analysis of pubescence indicated that sinapic esters accumulate in the UV-irradiated hairs compared to unirradiated primary leaf tissue. Deleterious effects of some UV-B wavelengths on germination and seedling responses were reduced or entirely prevented by inclusion of phenylalanine in the growth media. Key effects of phenylalanine were not duplicated by tyrosine or tryptophan or sucrose, nor is the specificity of response due to the absorbance of phenylalanine itself. These results suggest that in the seed-to-seedling transition, phenylalanine may be a limiting factor in the development of initial mechanisms of UV protection in the developing leaf. PMID:25549094

  9. Theoretical insights on flavanones as antioxidants and UV filters: A TDDFT and NLMO study.

    PubMed

    Ajmala Shireen, P; Abdul Mujeeb, V M; Muraleedharan, K

    2017-05-01

    UV radiations can cause several irritations to the skin like sunburn, photo aging and even skin cancer. Sunscreens are widely used to protect the skin against these harmful radiations. One of the ingredients present in these sunscreens are organic molecules capable of absorbing these harmful radiations. Recently, the search is on for antioxidant molecules which can act as UV filters as they can facilitate photo protection. In this study, a computational investigation based on density functional theory (DFT) is attempted on flavanones namely pinocembrin, pinostrobin and alpinetin found in Boesenbergia pandurata. Several quantum chemical descriptors are computed to understand the antioxidant potentiality of these molecules. Quantum chemical descriptors of these flavanone molecules are found to be comparable to that of well-known anti-oxidant quercetin. UV response of these molecules are studied using time dependent density functional theory (TD-DFT) formalism and by means of natural bond orbital (NBO) theory. It could be seen that these molecules exhibit a broad absorption in the UV region 270-390nm. This falls exactly in the region of harmful UVB and UVA radiation. Thus, these molecules have the potential to absorb the harmful UV radiation. From NLMO cluster studies, the orbital contribution to absorption is explained. In flavanones, unlike other classes of flavonoids, there is a discontinuity in the electron conjugation due to the absence of C2C3 double bond. This might be the key structural feature that leads to the absorption of these molecules to be centered around the UV region. These molecules can thus be treated as promising candidates for antioxidant UV filters in sunscreens. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Response of antioxidant defense system to laser radiation apical meristem of Isatis indigotica seedlings exposed to UV-B.

    PubMed

    Chen, Yi-Ping

    2009-07-01

    To determine the response of antioxidant defense system to laser radiation apical meristem of Isatis indigotica seedlings, Isatis indigotica seedlings were subjected to UV-B radiation (10.08 kJ m(-2)) for 8 h day(-1) for 8 days (PAR, 220 micromol m(-2) s(-1)) and then exposed to He-Ne laser radiation (633 nm; 5.23 mW mm(-2); beam diameter: 1.5 mm) for 5 min each day without ambient light radiation. Changes in free radical elimination systems were measured, the results indicate that: (1) UV-B radiation enhanced the concentration of Malondialdahyde (MDA) and decreased the activities of superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) in seedlings compared with the control. The concentration of MDA was decreased and the activities of SOD, CAT and POD were increased when seedlings were subjected to elevated UV-B damage followed by laser; (2) the concentration of UV absorbing compounds and proline were increased progressively with UV-B irradiation, laser irradiation and He-Ne laser irradiation plus UV-B irradiation compared with the control. These results suggest that laser radiation has an active function in repairing UV-B-induced lesions in seedlings.

  11. Cell damage caused by ultraviolet B radiation in the desert cyanobacterium Phormidium tenue and its recovery process.

    PubMed

    Wang, Gaohong; Deng, Songqiang; Liu, Jiafeng; Ye, Chaoran; Zhou, Xiangjun; Chen, Lanzhou

    2017-10-01

    Phormidium tenue, a cyanobacterium that grows in the topsoil of biological soil crusts (BSCs), has the highest recovery rate among desert crust cyanobacteria after exposure to ultraviolet B (UV-B) radiation. However, the mechanism underlying its recovery process is unclear. To address this issue, we measured chlorophyll a fluorescence, generation of reactive oxygen species (ROS), lipid peroxidation, and repair of DNA breakage in P. tenue following exposure to UV-B. We found that UV-B radiation at all doses tested reduced photosynthesis and induced cell damage in P. tenue. However, P. tenue responded to UV-B radiation by rapidly reducing photosynthetic activity, which protects the cell by leaking less ROS. Antioxidant enzymes, DNA damage repair systems, and UV absorbing pigments were then induced to mitigate the damage caused by UV-B radiation. The addition of exogenous antioxidant chemicals ascorbate and N-acetylcysteine also mitigated the harmful effects caused by UV-B radiation and enhanced the recovery process. These chemicals could aid in the resistance of P. tenue to the exposure of intense UV-B radiation in desertified areas when inoculated onto the sand surface to form artificial algal crusts. Copyright © 2017. Published by Elsevier Inc.

  12. Effect of UV-C radiation and vapor released from a water hyacinth root absorbent containing bergamot oil to control mold on storage of brown rice.

    PubMed

    Songsamoe, Sumethee; Matan, Narumol; Matan, Nirundorn

    2016-03-01

    The aims of this study were to develop absorbent material from a water hyacinth root containing bergamot oil and to improve its antifungal activity by using ultraviolet C (UV-C) against the growth of A. flavus on the brown rice. Process optimization was studied by the immersion of a water hyacinth root into a water and bergamot oil (300, 500 and 700 μl ml(-1)). The root (absorbent material) was dried at 50, 70, and 90 °C for 10 min. Then, ultraviolet C (UV-C) was used for enhancing the antifungal activity of bergamot oil for 10, 15, and 20 min. The shelf-life of the brown rice with the absorbent after incubation at 25 ° C with 100 % RH for 12 weeks was also investigated. A microscope and a Fourier transform infrared spectroscopy (FTIR) were used to find out possible mode of action. Results indicated that the absorbent material produced from the water hyacinth root containing bergamot oil at 500 μl ml(-1) in the water solution, dried at 70 ° C and UV for 15 min showed the highest antifungal activity in a vapor phase against A. flavus on the brown rice. A microscopy investigation confirmed that the water hyacinth root could absorb bergamot oil from an outside water solution into root cells. Limonene in vapor phase was shown to be a stronger inhibitor than essential oil after UV-C radiation and should be the key factor in boosting bergamot oil antifungal activity. A vapor phase of bergamot oil could be released and inhibit natural mold on the surface of the brown rice for up to 12 weeks; without the absorbent, mold covered the brown rice in only 4 weeks.

  13. DNA damage and repair in plants under ultraviolet and ionizing radiations.

    PubMed

    Gill, Sarvajeet S; Anjum, Naser A; Gill, Ritu; Jha, Manoranjan; Tuteja, Narendra

    2015-01-01

    Being sessile, plants are continuously exposed to DNA-damaging agents present in the environment such as ultraviolet (UV) and ionizing radiations (IR). Sunlight acts as an energy source for photosynthetic plants; hence, avoidance of UV radiations (namely, UV-A, 315-400 nm; UV-B, 280-315 nm; and UV-C, <280 nm) is unpreventable. DNA in particular strongly absorbs UV-B; therefore, it is the most important target for UV-B induced damage. On the other hand, IR causes water radiolysis, which generates highly reactive hydroxyl radicals (OH(•)) and causes radiogenic damage to important cellular components. However, to maintain genomic integrity under UV/IR exposure, plants make use of several DNA repair mechanisms. In the light of recent breakthrough, the current minireview (a) introduces UV/IR and overviews UV/IR-mediated DNA damage products and (b) critically discusses the biochemistry and genetics of major pathways responsible for the repair of UV/IR-accrued DNA damage. The outcome of the discussion may be helpful in devising future research in the current context.

  14. UV-B effect on constituents of Azolla caroliniana.

    PubMed

    Ibrahim, Mohamed M; Mostafa, Eazaz M

    2007-01-01

    Changes in growth and ultrastructure of Azolla caroliniana in response to elevated UV-B radiation were investigated. Exposure of plants to UV-B radiation for 1, 8, 16, 24 and 48 h exhibited a significant decrease in biomass and relative growth rate. This decrease resulted in an increase in doubling time over the control. Also, Chl a and b contents were significantly decreased especially after 16 h. The reduction was accompanied by a decrease in 5-aminolaevulinic acid content (precursor of chlorophyll). On the other hand, contents of carotenoid and UV-absorbing phenolic compounds (flavonoids and anthocyanins) were increased.

  15. EFFECTS OF SUSPENDED SEDIMENTS ON PHOTOLYSIS RATES OF DISSOLVED POLLUTANTS

    EPA Science Inventory

    Data are presented concerning the effects of suspended sediments upon photolysis rates of dissolved ultraviolet (u.v.) absorbing pollutants. The malachite green leucocyanide actinometer was found to be a convenient and sensitive device for measurement of solar u.v. radiation (abo...

  16. Estimation of UV index in the clear-sky using OMI PROFOZ and AERONET data

    NASA Astrophysics Data System (ADS)

    Lee, H.; Kim, J.; Jeong, U.

    2016-12-01

    Due to a strong influence to the human health and ecosystem environment, continuous monitoring of the surface-level ultraviolet (UV) radiation is important nowadays. UV index (UVI) is a simple parameter to show the strength of surface UV radiation, therefore UVI has been widely utilized for the purpose of UV monitoring. In this work, we also try to develop our own retrieval algorithm for better estimation of UVI. The amount of UVA (320-400 nm) and UVB (290-320 nm) radiation at the Earth surface depends on the extent of Rayleigh scattering by atmospheric gas molecules, the radiative absorption by ozone, radiative scattering by clouds, and both absorption and scattering by airborne aerosols. Thus advanced consideration of these factors is the essential part to establish the process of UVI estimation. In this study, we estimate UV Index (UVI) at Seoul first in a clear-sky atmosphere, and then validate this estimated UVI comparing to UVI from Brewer spectrophotometer measurements located at Yonsei University in Seoul. We use the Vector Linearized Discrete Ordinate Radiative Transfer (VLIDORT) model version 2.6 for our UVI calculation. To consider the ozone and aerosol influence in a real situation, we input ozone and temperature profiles from the Ozone Monitoring Instrument (OMI) Aura vertical profile ozone (PROFOZ) data, and aerosol properties from the AErosol RObotic NETwork (AERONET) measurements at Seoul into the model. Inter-comparison of UVI is performed for the year 2011, 2012 and 2014, and resulted in a high correlation coefficient (R=0.95) under clear-sky condition. But a slight overestimation of Brewer UVI occurred under high AOD conditions in clear-sky. Because our UVI algorithm does not account for surface absorbing aerosols, it is lead to systematic overestimation of surface UV irradiances. Therefore, we also investigate the effect of absorbing aerosol on the amount of UV irradiance in the clear-sky over East Asia.

  17. DirtyGrid I: 3D Dust Radiative Transfer Modeling of Spectral Energy Distributions of Dusty Stellar Populations

    NASA Astrophysics Data System (ADS)

    Law, Ka-Hei; Gordon, Karl D.; Misselt, Karl A.

    2018-06-01

    Understanding the properties of stellar populations and interstellar dust has important implications for galaxy evolution. In normal star-forming galaxies, stars and the interstellar medium dominate the radiation from ultraviolet (UV) to infrared (IR). In particular, interstellar dust absorbs and scatters UV and optical light, re-emitting the absorbed energy in the IR. This is a strongly nonlinear process that makes independent studies of the UV-optical and IR susceptible to large uncertainties and degeneracies. Over the years, UV to IR spectral energy distribution (SED) fitting utilizing varying approximations has revealed important results on the stellar and dust properties of galaxies. Yet the approximations limit the fidelity of the derived properties. There is sufficient computer power now available that it is now possible to remove these approximations and map out of landscape of galaxy SEDs using full dust radiative transfer. This improves upon previous work by directly connecting the UV, optical, and IR through dust grain physics. We present the DIRTYGrid, a grid of radiative transfer models of SEDs of dusty stellar populations in galactic environments designed to span the full range of physical parameters of galaxies. Using the stellar and gas radiation input from the stellar population synthesis model PEGASE, our radiative transfer model DIRTY self-consistently computes the UV to far-IR/sub-mm SEDs for each set of parameters in our grid. DIRTY computes the dust absorption, scattering, and emission from the local radiation field and a dust grain model, thereby physically connecting the UV-optical to the IR. We describe the computational method and explain the choices of parameters in DIRTYGrid. The computation took millions of CPU hours on supercomputers, and the SEDs produced are an invaluable tool for fitting multi-wavelength data sets. We provide the complete set of SEDs in an online table.

  18. Ultraviolet radiation-induced suppression of contact hypersensitivity in relation to padimate O and oxybenzone.

    PubMed

    Fisher, M S; Menter, J M; Willis, I

    1989-03-01

    Contact hypersensitivity (CHS) in mice can be induced by cutaneous sensitization followed by elicitation via ear-painting with trinitrochlorobenzene (TNCB). This CHS reaction is systemic and can be suppressed by exposure of mice to suberythemogenic doses of 280-315 nm radiation. In this study, we investigated whether a commercially available water-resistant sunscreen, either SPF-6 or SPF-15, containing Padimate O (UVB absorber) and oxybenzone (UVA absorber), was effective in preventing systemic suppression of CHS induced by either FS36 sunlamp exposure or solar simulating radiation. We observed that these two sunscreen preparations were totally incapable of preventing the immunologic suppression of contact hypersensitivity by UV radiation. These results indicate that application of sunscreen does not retard the development of suppression of CHS following repeated UV exposure under conditions where erythema is not clinically observed. Thus, erythema may not be a good end point for assessing systemic immune suppression and its consequences.

  19. Light absorption of secondary organic aerosol: Composition and contribution of nitro-aromatic compounds

    EPA Science Inventory

    Secondary organic aerosol (SOA) might affect the atmospheric radiation balance through absorbing light at shorter visible and UV wavelengths. However, the composition and optical properties of light-absorbing SOA is poorly understood. In this work, SOA filter samples were collect...

  20. A potential role for endogenous proteins as sacrificial sunscreens and antioxidants in human tissues.

    PubMed

    Hibbert, Sarah A; Watson, Rachel E B; Gibbs, Neil K; Costello, Patrick; Baldock, Clair; Weiss, Anthony S; Griffiths, Christopher E M; Sherratt, Michael J

    2015-08-01

    Excessive ultraviolet radiation (UVR) exposure of the skin is associated with adverse clinical outcomes. Although both exogenous sunscreens and endogenous tissue components (including melanins and tryptophan-derived compounds) reduce UVR penetration, the role of endogenous proteins in absorbing environmental UV wavelengths is poorly defined. Having previously demonstrated that proteins which are rich in UVR-absorbing amino acid residues are readily degraded by broadband UVB-radiation (containing UVA, UVB and UVC wavelengths) here we hypothesised that UV chromophore (Cys, Trp and Tyr) content can predict the susceptibility of structural proteins in skin and the eye to damage by physiologically relevant doses (up to 15.4 J/cm(2)) of solar UVR (95% UVA, 5% UVB). We show that: i) purified suspensions of UV-chromophore-rich fibronectin dimers, fibrillin microfibrils and β- and γ-lens crystallins undergo solar simulated radiation (SSR)-induced aggregation and/or decomposition and ii) exposure to identical doses of SSR has minimal effect on the size or ultrastructure of UV chromophore-poor tropoelastin, collagen I, collagen VI microfibrils and α-crystallin. If UV chromophore content is a factor in determining protein stability in vivo, we would expect that the tissue distribution of Cys, Trp and Tyr-rich proteins would correlate with regional UVR exposure. From bioinformatic analysis of 244 key structural proteins we identified several biochemically distinct, yet UV chromophore-rich, protein families. The majority of these putative UV-absorbing proteins (including the late cornified envelope proteins, keratin associated proteins, elastic fibre-associated components and β- and γ-crystallins) are localised and/or particularly abundant in tissues that are exposed to the highest doses of environmental UVR, specifically the stratum corneum, hair, papillary dermis and lens. We therefore propose that UV chromophore-rich proteins are localised in regions of high UVR exposure as a consequence of an evolutionary pressure to express sacrificial protein sunscreens which reduce UVR penetration and hence mitigate tissue damage. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  1. A potential role for endogenous proteins as sacrificial sunscreens and antioxidants in human tissues

    PubMed Central

    Hibbert, Sarah A.; Watson, Rachel E.B.; Gibbs, Neil K.; Costello, Patrick; Baldock, Clair; Weiss, Anthony S.; Griffiths, Christopher E.M.; Sherratt, Michael J.

    2015-01-01

    Excessive ultraviolet radiation (UVR) exposure of the skin is associated with adverse clinical outcomes. Although both exogenous sunscreens and endogenous tissue components (including melanins and tryptophan-derived compounds) reduce UVR penetration, the role of endogenous proteins in absorbing environmental UV wavelengths is poorly defined. Having previously demonstrated that proteins which are rich in UVR-absorbing amino acid residues are readily degraded by broadband UVB-radiation (containing UVA, UVB and UVC wavelengths) here we hypothesised that UV chromophore (Cys, Trp and Tyr) content can predict the susceptibility of structural proteins in skin and the eye to damage by physiologically relevant doses (up to 15.4 J/cm2) of solar UVR (95% UVA, 5% UVB). We show that: i) purified suspensions of UV-chromophore-rich fibronectin dimers, fibrillin microfibrils and β- and γ-lens crystallins undergo solar simulated radiation (SSR)-induced aggregation and/or decomposition and ii) exposure to identical doses of SSR has minimal effect on the size or ultrastructure of UV chromophore-poor tropoelastin, collagen I, collagen VI microfibrils and α-crystallin. If UV chromophore content is a factor in determining protein stability in vivo, we would expect that the tissue distribution of Cys, Trp and Tyr-rich proteins would correlate with regional UVR exposure. From bioinformatic analysis of 244 key structural proteins we identified several biochemically distinct, yet UV chromophore-rich, protein families. The majority of these putative UV-absorbing proteins (including the late cornified envelope proteins, keratin associated proteins, elastic fibre-associated components and β- and γ-crystallins) are localised and/or particularly abundant in tissues that are exposed to the highest doses of environmental UVR, specifically the stratum corneum, hair, papillary dermis and lens. We therefore propose that UV chromophore-rich proteins are localised in regions of high UVR exposure as a consequence of an evolutionary pressure to express sacrificial protein sunscreens which reduce UVR penetration and hence mitigate tissue damage. PMID:25911998

  2. Antioxidant responses of damiana (Turnera diffusa Willd) to exposure to artificial ultraviolet (UV) radiation in an in vitro model; part I; UV-C radiation.

    PubMed

    Soriano-Melgar, Lluvia de Abril Alexandra; Alcaraz-Meléndez, Lilia; Méndez-Rodríguez, Lía C; Puente, María Esther; Rivera-Cabrera, Fernando; Zenteno-Savín, Tania

    2014-05-01

    Ultraviolet type C (UV-C) radiation has higher energy than the UV-B radiation and has been less studied because it is completely absorbed by the ozone layer. However, artificial UV-C radiation can generate diverse modifications in the plants. Given that exposure to UV-C for short periods of time increases the antioxidant content, improving the appearance and shelf-life of products, its potential application in postharvest treatments to modify the antioxidant content of medicinal plants, such as damiana (Turnera diffusa), is novel and relevant. To determine the effects of UV-C radiation on enzymatic and non-enzymatic antioxidant defenses, as well as oxidative damage levels, in damiana (Turnera diffusa) plants in vitro. UV-C radiation decreased superoxide dismutase (SOD, EC 1.15.1.1) and total peroxidases (POX, EC 1.11.1) activities, the concentration of chlorophylls (a and b), carotenes, vitamin C, and total antioxidant capacity. UV-C radiation increased the phenolic compound levels in damiana. Loss of antioxidant defenses was higher in damiana plants exposed to higher UV-C doses and/or for longer periods. This study suggests that UV-C radiation induces oxidative stress, evidenced as increased protein carbonyls and phenolic compound content, in damiana (T. diffusa). Low dose, short exposure to UV-C stimulates phenolic compound content in damiana. Thus, controlled UV-C treatments could be used as postharvest treatment to increase phenolic compound content in damiana plants. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  3. Acute dermal toxicity and sensitization studies of novel nano-enhanced UV absorbers.

    PubMed

    Piasecka-Zelga, Joanna; Zelga, Piotr; Górnicz, Magdalena; Strzelczyk, Paweł; Sójka-Ledakowicz, Jadwiga

    2015-01-01

    Many employees working outside are exposed to the harmful effects of UV radiation. A growing problem is also sensitization to textile materials and allergic reactions to active compounds. Groups of inorganic UV blockers with nanoparticles may provide superior properties over organic UV absorbers with relatively less potential of provoking dermatitis. To assess acute dermal irritation and sensitization of nano UV absorbers. Five UV absorbers with nano-sized particles (Z11, TiO2 - SiO2 [TDPK], TK44, TK11, A8G) and 2 vehicles (paste-based on 10% PEG, and dispersion with 1% HEC) were tested. Acute dermal irritation was tested using group of 3 rabbits for each absorber. The sensitization study was carried out on groups of 15 guinea pigs for each tested textile with a UV absorber showing an Ultraviolet Protection Factor (UPF)>40. This research was designed according to OECD Test Guideline No. 404 and 406, and 21 rabbits and 60 guinea pigs were used in the study. In acute dermal irritation, Z11 and A8G modifiers and the analyzed paste gave results of 0.047 to 0.33 which classifies them as barely perceptible irritants, whereas the other analyzed modifiers and dispersion gave results of 0.00 and were classified as nonirritating. Only the textile with TK 11 did not have UPF>40. The analyzed barrier materials were classified as nonsenitizers (TDPK, A8G) or mild sensitizers (TK44, Z11). None of the analyzed materials or modifiers induced major skin reactions in animals. Therefore, they present low risk of provoking skin reactions in humans.

  4. W Photoprotection in Tropical Marine Organisms

    NASA Technical Reports Server (NTRS)

    Armstrong, Roy A.

    1997-01-01

    Increasing levels of ultraviolet (UV) radiation reaching the earth's surface which results from stratospheric ozone depletions could have serious implications for terrestrial plants and for aquatic organisms within the euphotic zone. A documented 9% decline in ozone at mid-latitudes is considered to produce a 12% increase in harmful UV radiation. The biologically damaging effects of higher UV levels, particularly W-B (280-320 rim), could manifest earlier in the tropics because of the relative thinness of the earth's equatorial ozone layer. Tropical marine organisms are also living close to their upper tolerance levels of water temperature, However, despite the large potential effects on plants and animals, little is known about UV effects on tropical ecosystems. Long-term ecological studies are needed to quantify the effects of increased UV radiation on terrestrial and marine ecosystems and to produce reliable data for prediction. Plants have developed several mechanisms to protect themselves from harmful UV radiation, one of which is the production of secondary leaf pigments that absorb W-B radiation (screening pigments). A higher concentration of screening pigments (e.g. flavonoids) in leaves may be interpreted as a natural response to increased W radiation. If higher concentrations of flavonoids filter out the excessive W radiation, no damage will occur, as suggested by Caldwell et al. (1989) and Tevini (1993). Failure to screen all W-B may result in deleterious effects on photosynthesis, plant genetic material, and plant and leaf morphology and growth. Eventually this will have an impact on ecosystem processes, structure, species composition, and productivity. This paper describes an ongoing project that is assessing the responses of mangroves, seagrasses and corals to W radiation by studying pigment concentrations, biophysical parameters, and variations in spectral reflectance in the field and in W-reduction experiments. Preliminary results on the distribution of W-absorbing flavonoid compounds in red mangroves (Rhizophora mangle) and the seagrass Thalassia testudinum, are presented. This research also provides, for the first time, a permanent record of daily W irradiance measurements at a tropical -location.

  5. Radiation heat transfer calculations for the uranium fuel-containment region of the nuclear light bulb engine.

    NASA Technical Reports Server (NTRS)

    Rodgers, R. J.; Latham, T. S.; Krascella, N. L.

    1971-01-01

    Calculation results are reviewed of the radiant heat transfer characteristics in the fuel and buffer gas regions of a nuclear light bulb engine based on the transfer of energy by thermal radiation from gaseous uranium fuel in a neon vortex, through an internally cooled transparent wall, to seeded hydrogen propellant. The results indicate that the fraction of UV energy incident on the transparent walls increases with increasing power level. For the reference engine power level of 4600 megw, it is necessary to employ space radiators to reject the UV radiated energy absorbed by the transparent walls. This UV energy can be blocked by employing nitric oxide and oxygen seed gases in the fuel and buffer gas regions. However, this results in increased UV absorption in the buffer gas which also requires space radiators to reject the heat load.

  6. Phototransformation of dissolved organic carbon within mercury sensitive lakes in Kejimkujik National Park, Nova Scotia, Canada

    NASA Astrophysics Data System (ADS)

    Klapstein, S.; O'Driscoll, N.; Risk, D. A.; Ziegler, S. E.

    2013-12-01

    Methyl mercury bioaccumulation is an issue for aquatic and terrestrial wildlife in high dissolved organic matter (DOM) lake systems of Kejimkujik National Park, Nova Scotia. While many studies have focused on mercury methylation processes, few have examined mercury photodemethylation rates and how these rates may vary temporally and with DOM quality. To gain understanding of lake photodemethylation processes we must first determine the effect of radiation on chromophoric DOM (CDOM). The goal of this study was to quantify changes in DOM concentration and quality (i.e. chromophoric properties) with ultraviolet (UV) radiation exposure and seasonal changes in UV attenuation. Six lakes were sampled for irradiation experiments three times during the summer of 2013. Floating equipment was installed in two lakes to continuously monitor UV, photosynthetically active radiation (PAR), and temperature at three depths in the lake water columns. Lake water was filtered and continuously irradiated in a Luzchem photoreactor using 47 W/m2 UVA radiation for 24 hours. Subsamples were analyzed at 0, 4, 8, 12, 16, 20, and 24 hours for absorbance, fluorescence, dissolved organic carbon (DOC) and dissolved inorganic carbon (DIC) concentrations. Several phototransformation indicators were used in this study, including: loss of absorbance at 350 nm, changes in absorption ratios a254:a350, spectral slopes S275-295 and S350-400, and these spectral slopes ratio (S275-295:S350-400; SR) to characterize CDOM optical properties of the molecules. With the exception of one lake, lower initial concentrations of DOC yielded greater losses of absorbance at 350 nm throughout the experiments. This trend suggests that lower C lakes are more susceptible to undergo rapid changes in DOM optical properties. Across all lakes absorbance losses at 350 nm ranged from 18-33% after 24 hours. All other phototransformation indices increased significantly with irradiation in all but one lake suggesting a decrease in high molecular weight relative to low molecular weight CDOM with UV exposure. Ongoing research will investigate the seasonality of UV attenuation and DOM photolability and link these properties with photodemethylation rates in Kejimkujik lakes.

  7. [Effect of ultraviolet radiation on ALDH1 expression in human lens epithelial cells].

    PubMed

    Shi, Jingming; Jia, Songbai; Chen, Xuan; Tang, Luosheng

    2012-06-01

    To determine the apoptosis-inducing effect of ultraviolet light (UV) on human lens epithelial cell (HLEC) and to explore the involvement of changes in ALDH1 folowing UV radiation. HLEC was exposed to the same UV light source and was subsequently divided into 6 groups according to UV radiation time of 0 (control group), 5, 10, 15, and 30 min. Apoptosis was detected by AO/EB staining. Changes of ALDH1 in HLEC were detected by immunohistochemical staining and Western blot. The intensity of immunohistochemical staining and the rate of positive cells decreased with increase of UV time (P<0.05). The rate of positive ALDH1 cells was negatively correlated with the rate of apoptosis (r= -0.92, P<0.05). Western blot showed the integrated absorbance values significantly decreased with the increase of UV time (P<0.05). ALDH1 in HLEC decreases with an increase of UV exposure, which may be related to UV induced apoptosis of HLEC.

  8. Heavy-ion-induced sucrose radicals investigated using EPR and UV spectroscopy

    PubMed Central

    Nakagawa, Kouichi; Karakirova, Yordanka; Yordanov, Nicola D.

    2015-01-01

    The potential use of a sucrose dosimeter for estimating both linear energy transfer (LET) and the absorbed dose of heavy ion and X-ray radiation was investigated. The stable free radicals were produced when sucrose was irradiated with heavy ions, such as helium, carbon, silicon and neon ions, and when the X-ray radiation was similar to the obtained electron paramagnetic resonance (EPR) spectra, which were ∼7 mT wide and composed of several hyperfine structures. In addition, the total spin concentration resulting from heavy-ion irradiation increased linearly as the absorbed dose increased, and decreased logarithmically as the LET increased. These empirical relations imply that the LET at a certain dose can be determined from the spin concentration. For sucrose and alanine, both cross-sections following C-ion irradiation with a 50 Gy dose were ∼1.3 × 10−12 [μm2], taking into account the molecular size of the samples. The values of these cross-sections imply that multiple ionizing particles were involved in the production of stable radicals. Furthermore, UV absorbance at 267 nm of an aqueous solution of irradiated sucrose was found to linearly increase with increasing absorbed dose. Therefore, the EPR and UV results suggest that sucrose can be a useful dosimeter for heavy-ion irradiation. PMID:25480828

  9. Long-term changes in pigmentation of arctic Daphnia provide potential for reconstructing aquatic UV exposure

    NASA Astrophysics Data System (ADS)

    Nevalainen, Liisa; Rantala, Marttiina V.; Luoto, Tomi P.; Ojala, Antti E. K.; Rautio, Milla

    2016-07-01

    Despite the biologically damaging impacts of solar ultraviolet radiation (UV) in nature, little is known about its natural variability, forcing mechanisms, and long-term effects on ecosystems and organisms. Arctic zooplankton, for example the aquatic keystone genus Daphnia (Crustacea, Cladocera) responds to biologically damaging UV by utilizing photoprotective strategies, including pigmentation. We examined the preservation and content of UV-screening pigments in fossil Daphnia remains (ephippia) in two arctic lake sediment cores from Cornwallis Island (Lake R1), Canada, and Spitsbergen (Lake Fugledammen), Svalbard. The aims were to document changes in the degree of UV-protective pigmentation throughout the past centuries, elucidate the adaptive responses of zooplankton to long-term variations in UV exposure, and estimate the potential of fossil zooplankton pigments in reconstructing aquatic UV regimes. The spectroscopic absorbance measurements of fossil Daphnia ephippia under UV (280-400 nm) and visible light (400-700 nm) spectral ranges indicated that melanin (absorbance maxima at UV wavebands 280-350 nm) and carotenoids (absorbance maxima at 400-450 nm) pigments were preserved in the ephippia in both sediment cores. Downcore measurements of the most important UV-protective pigment melanin (absorbance measured at 305 and 340 nm) showed marked long-term variations in the degree of melanisation. These variations likely represented long-term trends in aquatic UV exposure and were positively related with solar radiation intensity. The corresponding trends in melanisation and solar activity were disrupted at the turn of the 20th century in R1, but remained as strong in Fugledammen. The reversed trends in the R1 core were simultaneous with a significant aquatic community reorganization taking place in the lake, suggesting that recent environmental changes, likely related to climate warming had a local effect on pigmentation strategies. This time horizon is also concurrent with previously recorded major ecological shifts in circumpolar lakes when human induced changes in ecological processes of sensitive arctic ecosystems started to occur. The current centennial record of UV-induced melanisation of sedimentary Daphnia ephippia presents unique reference material for assessing UV impacts in arctic aquatic ecosystems before human influence and during the 20th century climate change and provides potential for assessing past aquatic UV regimes.

  10. DNA Damage and Repair in Plants under Ultraviolet and Ionizing Radiations

    PubMed Central

    Gill, Sarvajeet S.; Gill, Ritu; Jha, Manoranjan; Tuteja, Narendra

    2015-01-01

    Being sessile, plants are continuously exposed to DNA-damaging agents present in the environment such as ultraviolet (UV) and ionizing radiations (IR). Sunlight acts as an energy source for photosynthetic plants; hence, avoidance of UV radiations (namely, UV-A, 315–400 nm; UV-B, 280–315 nm; and UV-C, <280 nm) is unpreventable. DNA in particular strongly absorbs UV-B; therefore, it is the most important target for UV-B induced damage. On the other hand, IR causes water radiolysis, which generates highly reactive hydroxyl radicals (OH•) and causes radiogenic damage to important cellular components. However, to maintain genomic integrity under UV/IR exposure, plants make use of several DNA repair mechanisms. In the light of recent breakthrough, the current minireview (a) introduces UV/IR and overviews UV/IR-mediated DNA damage products and (b) critically discusses the biochemistry and genetics of major pathways responsible for the repair of UV/IR-accrued DNA damage. The outcome of the discussion may be helpful in devising future research in the current context. PMID:25729769

  11. Ultraviolet Radiations: Skin Defense-Damage Mechanism.

    PubMed

    Mohania, Dheeraj; Chandel, Shikha; Kumar, Parveen; Verma, Vivek; Digvijay, Kumar; Tripathi, Deepika; Choudhury, Khushboo; Mitten, Sandeep Kumar; Shah, Dilip

    2017-01-01

    UV-radiations are the invisible part of light spectra having a wavelength between visible rays and X-rays. Based on wavelength, UV rays are subdivided into UV-A (320-400 nm), UV-B (280-320 nm) and UV-C (200-280 nm). Ultraviolet rays can have both harmful and beneficial effects. UV-C has the property of ionization thus acting as a strong mutagen, which can cause immune-mediated disease and cancer in adverse cases. Numbers of genetic factors have been identified in human involved in inducing skin cancer from UV-radiations. Certain heredity diseases have been found susceptible to UV-induced skin cancer. UV radiations activate the cutaneous immune system, which led to an inflammatory response by different mechanisms. The first line of defense mechanism against UV radiation is melanin (an epidermal pigment), and UV absorbing pigment of skin, which dissipate UV radiation as heat. Cell surface death receptor (e.g. Fas) of keratinocytes responds to UV-induced injury and elicits apoptosis to avoid malignant transformation. In addition to the formation of photo-dimers in the genome, UV also can induce mutation by generating ROS and nucleotides are highly susceptible to these free radical injuries. Melanocortin 1 receptor (MC1R) has been known to be implicated in different UV-induced damages such as pigmentation, adaptive tanning, and skin cancer. UV-B induces the formation of pre-vitamin D3 in the epidermal layer of skin. UV-induced tans act as a photoprotection by providing a sun protection factor (SPF) of 3-4 and epidermal hyperplasia. There is a need to prevent the harmful effects and harness the useful effects of UV radiations.

  12. Polymeric materials in Space

    NASA Astrophysics Data System (ADS)

    Skurat, Vladimir

    Paper of short review type. It is the continuation of and addition to previous review papers "V. E. Skurat. Polymers in Space. In: Encyclopedia of aerospace engineering, vol. 4, Wiley and sons, 2010; Ibid., 2012 (on line)". Following topics are considered: (1) Destruction of polymers by solar radiation with various wavelengths in different spectral regions (visible-UV, vacuum UV (VUV), deep UV, soft and hard X-rays) are discussed. In difference with common polymer photochemistry induced by UV radiation, directions of various routs of polymer phototransformations and their relative yields are greatly dependent on wavelength of light (photon energy) during illuminations in VUV, deep UV and X-ray regions. During last twenty years, intensive spacecraft investigations of solar spectrum show great periodic and spontaneous variations of radiation intensities in short-wavelengths regions - up to one - two decimal orders of magnitude for X-rays. As a result, during solar flares the absorbed dose on the polymer surfaces from X-rays can be compared with absorbed dose from VUV radiation. (2) Some new approaches to predictions of reaction efficiencies of fast orbital atomic oxygen in their interaction with polymeric materials are considered. (3) Some aspects of photocatalitic destruction of polymers in vacuum conditions by full-spectrum solar radiation are discussed. This process can take place in enamels containing semiconducting particles (TiO2, ZnO) as pigments. (4) Contamination of spacecraft surfaces from intrinsic outer atmosphere play important role not only from the point of view of deterioration of optical and thermophysical properties. Layers of SiO2 contaminations with nanometer thicknesses can greatly diminish mass losses from perfluorinated polymers under VUV irradiation.

  13. Potential of herbs in skin protection from ultraviolet radiation

    PubMed Central

    Korać, Radava R.; Khambholja, Kapil M.

    2011-01-01

    Herbs have been used in medicines and cosmetics from centuries. Their potential to treat different skin diseases, to adorn and improve the skin appearance is well-known. As ultraviolet (UV) radiation can cause sunburns, wrinkles, lower immunity against infections, premature aging, and cancer, there is permanent need for protection from UV radiation and prevention from their side effects. Herbs and herbal preparations have a high potential due to their antioxidant activity, primarily. Antioxidants such as vitamins (vitamin C, vitamin E), flavonoids, and phenolic acids play the main role in fighting against free radical species that are the main cause of numerous negative skin changes. Although isolated plant compounds have a high potential in protection of the skin, whole herbs extracts showed better potential due to their complex composition. Many studies showed that green and black tea (polyphenols) ameliorate adverse skin reactions following UV exposure. The gel from aloe is believed to stimulate skin and assist in new cell growth. Spectrophotometer testing indicates that as a concentrated extract of Krameria triandra it absorbs 25 to 30% of the amount of UV radiation typically absorbed by octyl methoxycinnamate. Sesame oil resists 30% of UV rays, while coconut, peanut, olive, and cottonseed oils block out about 20%. A “sclerojuglonic” compound which is forming from naphthoquinone and keratin is the reaction product that provides UV protection. Traditional use of plant in medication or beautification is the basis for researches and making new trends in cosmetics. This review covers all essential aspects of potential of herbs as radioprotective agents and its future prospects. PMID:22279374

  14. Study the Characterization of Spectral Absorbance on Irradiated Milk Protein

    NASA Astrophysics Data System (ADS)

    Fohely, F.; Suardi, N.

    2018-04-01

    The milk has been adopted as a structural nature food for a long era since it is containing most of the growth factors, protective agents, and enzymes needed for the body. a few attempts have been conducted to treat the dairy products especially raw milk by the means of ionizing radiation. as its production has been an expanding industry for many years due to the high demands from the consumers worldwide, there is still some doubt about preserving these products by irradiation. In this work, a preliminary effort to describe the influences of ionizing radiation on raw milk’s protein will be devoted to measuring the spectral absorbance of the total protein (after subjected to varied radiation doses) by UV-VIS-NIR spectroscopy analysis. The absorbance spectrum then analyzed based on absorbance spectra of organic compounds. A comparison is made between the effects of different radiation doses to estimate the influence in milk’s structure.

  15. Temporal variation in epidermal flavonoids due to altered solar UV radiation is moderated by the leaf position in Betula pendula.

    PubMed

    Morales, Luis O; Tegelberg, Riitta; Brosché, Mikael; Lindfors, Anders; Siipola, Sari; Aphalo, Pedro J

    2011-11-01

    The physiological mechanisms controlling plant responses to dynamic changes in ambient solar ultraviolet (UV) radiation are not fully understood: this information is important to further comprehend plant adaptation to their natural habitats. We used the fluorimeter Dualex to estimate in vivo the epidermal flavonoid contents by measuring epidermal UV absorbance (A(375) ) in Betula pendula Roth (silver birch) leaves of different ages under altered UV. Seedlings were grown in a greenhouse for 15 days without UV and transferred outdoors under three UV treatments (UV-0, UV-A and UV-A+B) created by three types of plastic film. After 7 and 13 days, Dualex measurements were taken at adaxial and abaxial epidermis of the first three leaves (L1, L2 and L3) of the seedlings. After 14 days, some of the seedlings were reciprocally swapped amongst the treatments to study the accumulation of epidermal flavonoids in the youngest unfolded leaves (L3) during leaf expansion under changing solar UV environments. A(375) of the leaves responded differently to the UV treatment depending on their position. UV-B increased the A(375) in the leaves independently of leaf position. L3 quickly adjusted A(375) in their epidermis according to the UV they received and these adjustments were affected by previous UV exposure. The initial absence of UV-A+B or UV-A, followed by exposure to UV-A+B, particularly enhanced leaf A(375) . Silver birch leaves modulate their protective pigments in response to changes in the UV environment during their expansion, and their previous UV exposure history affects the epidermal-absorbance achieved during later UV exposure. Copyright © Physiologia Plantarum 2011.

  16. Ultraviolet absorbing compounds provide a rapid response mechanism for UV protection in some reef fish.

    PubMed

    Braun, C; Reef, R; Siebeck, U E

    2016-07-01

    The external mucus surface of reef fish contains ultraviolet absorbing compounds (UVAC), most prominently Mycosporine-like Amino Acids (MAAs). MAAs in the external mucus of reef fish are thought to act as sunscreens by preventing the damaging effects of ultraviolet radiation (UVR), however, direct evidence for their protective role has been missing. We tested the protective function of UVAC's by exposing fish with naturally low, Pomacentrus amboinensis, and high, Thalassoma lunare, mucus absorption properties to a high dose of UVR (UVB: 13.4W∗m(-2), UVA: 6.1W∗m(-2)) and measuring the resulting DNA damage in the form of cyclobutane pyrimidine dimers (CPDs). For both species, the amount of UV induced DNA damage sustained following the exposure to a 1h pulse of high UVR was negatively correlated with mucus absorbance, a proxy for MAA concentration. Furthermore, a rapid and significant increase in UVAC concentration was observed in P. amboinensis following UV exposure, directly after capture and after ten days in captivity. No such increase was observed in T. lunare, which maintained relatively high levels of UV absorbance at all times. P. amboinensis, in contrast to T. lunare, uses UV communication and thus must maintain UV transparent mucus to be able to display its UV patterns. The ability to rapidly alter the transparency of mucus could be an important adaptation in the trade off between protection from harmful UVR and UV communication. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Characterization of visual pigments, oil droplets, lens and cornea in the whooping crane Grus americana

    PubMed Central

    Porter, Megan L.; Kingston, Alexandra C. N.; McCready, Robert; Cameron, Evan G.; Hofmann, Christopher M.; Suarez, Lauren; Olsen, Glenn H.; Cronin, Thomas W.; Robinson, Phyllis R.

    2014-01-01

    Vision has been investigated in many species of birds, but few studies have considered the visual systems of large birds and the particular implications of large eyes and long-life spans on visual system capabilities. To address these issues we investigated the visual system of the whooping crane Grus americana (Gruiformes, Gruidae), which is one of only two North American crane species. It is a large, long-lived bird in which UV sensitivity might be reduced by chromatic aberration and entrance of UV radiation into the eye could be detrimental to retinal tissues. To investigate the whooping crane visual system we used microspectrophotometry to determine the absorbance spectra of retinal oil droplets and to investigate whether the ocular media (i.e. the lens and cornea) absorb UV radiation. In vitro expression and reconstitution was used to determine the absorbance spectra of rod and cone visual pigments. The rod visual pigments had wavelengths of peak absorbance (λmax) at 500 nm, whereas the cone visual pigment λmax values were determined to be 404 nm (SWS1), 450 nm (SWS2), 499 nm (RH2) and 561 nm (LWS), similar to other characterized bird visual pigment absorbance values. The oil droplet cut-off wavelength (λcut) values similarly fell within ranges recorded in other avian species: 576 nm (R-type), 522 nm (Y-type), 506 nm (P-type) and 448 nm (C-type). We confirm that G. americana has a violet-sensitive visual system; however, as a consequence of the λmax of the SWS1 visual pigment (404 nm), it might also have some UV sensitivity. PMID:25267845

  18. The effects of enhanced UV-B radiation on growth, stomata, flavonoid, and ABA content in cucumber leaves

    NASA Astrophysics Data System (ADS)

    An, Lizhe; Wang, Jianhui; Liu, Yanhong; Chen, Tuo; Xu, Shijian; Feng, Huyuan; Wang, Xunling

    2003-06-01

    Cucumber plants (Cucumis sativus L. cv. Jinchun No 3) grown in a greenhouse were treated with three different biologically effective ultraviolet-B (UV-B) radiation levels: 1.28 kJ. m-2 (CK), 8.82kJ.m-2 (T1) and 12.6 kJ. m-2 (T2). Irradiances corresponded to 8% and 21% reduction in stratospheric ozone in Lanzhou. Plants at three-leaf stage were irradiated 7 h daily for 25 days. The growth, stomata, flavonoid and ABA content in cucumber leaves exposed to 3 levels of UV-B radiation were determined in this paper. The results indicated that, compared with the control after 25 days UV-B radiation, RI of cucumber under T1 treatment is -18.0% and RI under T2 treatment is -48% mostly because of the reduce of leave area and dry weight accompanying with the increase of SLW; the rate of stomata closure under the treatments of T1 and T2 on the 6th day was up to respectively 70% and 89%, and amounted to 90% and 100% on the 18th day, and the guard cells in some stomata apparatus became permanent pores and lost their function at the same time; with the duration of UV-B radiation, the rise of the absorbance to ultraviolet light (305nm) showed the content increase of flavonoid; Abscisic acid (ABA) was determined by means of ELISA which showed that under the T1 treatment, the content of ABA was up to maximum to 510% higher than that of the control on the 21st day, meanwhile, under the treatment of T2, it was the highest on the 18th day to 680% of the control, and then had a decrease tendency on 21st day. The result still indicated that ABA accumulation could be induced by enhanced UV-B the radiation. The bigger was the dose of radiation, the higher was the accumulation of ABA. When intensity of UV-B radiation went beyond the degree of endurance of cucumber plants, ABA content descended then. Cucumber plants resist enhanced UV-B radiation by means of improving the contents of ABA and flavonoid. The increase of ABA content in cucumber leaves could lead to the stomata closure. Therefore, the changes of ABA content and absorbance, the rate of stoma closure in cucumber leaves were the adaptive mechanism to enhanced UV-B radiation.

  19. Parabens and Sunscreens in the Environment: Determination by HPLC-ESI-MS/MS and GC-MS and Calculation of Phototoxicity

    EPA Science Inventory

    Ultraviolet (UV)-absorbing chemicals are widely used in cosmetics, sunscreens, and plastics to block UV radiation from the sun. Parabens are preservatives and are used extensively in cosmetics, pharmaceuticals, and foods to prevent microbial growth and preserve a product’s inte...

  20. Antagonizing Effects and Mechanisms of Afzelin against UVB-Induced Cell Damage

    PubMed Central

    Shin, Seoung Woo; Jung, Eunsun; Kim, Seungbeom; Kim, Jang-Hyun; Kim, Eui-Gyun; Lee, Jongsung; Park, Deokhoon

    2013-01-01

    Ultraviolet (UV) radiation induces DNA damage, oxidative stress, and inflammatory processes in human keratinocytes, resulting in skin inflammation, photoaging, and photocarcinogenesis. Adequate protection of skin against the harmful effects of UV irradiation is essential. Therefore, in this study, we investigated the protective effects of afzelin, one of the flavonoids, against UV irradiation in human keratinocytes and epidermal equivalent models. Spectrophotometric measurements revealed that the afzelin extinction maxima were in the UVB and UVA range, and UV transmission below 376 nm was <10%, indicating UV-absorbing activity of afzelin. In the phototoxicity assay using the 3T3 NRU phototoxicity test (3T3-NRU-PT), afzelin presented a tendency to no phototoxic potential. In addition, in order to investigate cellular functions of afzelin itself, cells were treated with afzelin after UVB irradiation. In human keratinocyte, afzelin effectively inhibited the UVB-mediated increase in lipid peroxidation and the formation of cyclobutane pyrimidine dimers. Afzelin also inhibited UVB-induced cell death in human keratinocytes by inhibiting intrinsic apoptotic signaling. Furthermore, afzelin showed inhibitory effects on UVB-induced release of pro-inflammatory mediators such as interleukin-6, tumor necrosis factor-α, and prostaglandin-E2 in human keratinocytes by interfering with the p38 kinase pathway. Using an epidermal equivalent model exposed to UVB radiation, anti-apoptotic activity of afzelin was also confirmed together with a photoprotective effect at the morphological level. Taken together, our results suggest that afzelin has several cellular activities such as DNA-protective, antioxidant, and anti-inflammatory as well as UV-absorbing activity and may protect human skin from UVB-induced damage by a combination of UV-absorbing and cellular activities. PMID:23626759

  1. Effect of UV-B Radiation and Desiccation Stress on Photoprotective Compounds Accumulation in Marine Leptolyngbya sp.

    PubMed

    Joshi, Devika; Mohandass, C; Dhale, Mohan

    2018-01-01

    Increased awareness regarding the harmful effects of ultraviolet (UV)-B radiation has led to the search for new sources of natural UV-B protecting compounds. Mycosporine-like amino acids are one of such promising compounds found in several organisms. Cyanobacteria are ideal organisms for isolation of these compounds due to their compatibility and adaptability to thrive under harsh environmental conditions. In the following investigation, we report the production of shinorine in Leptolyngbya sp. isolated from the intertidal region. Based on the spectral characteristics and liquid chromatography-mass spectrometry analysis, the UV-absorbing compound was identified as shinorine. To the best of our knowledge, this is the first report on the occurrence of shinorine in Leptolyngbya sp. We also investigated the effect of artificial UV-B radiation and periodic desiccation on chlorophyll-a, total carotenoids, and mycosporine-like amino acids (MAAs) production. The UV-B radiation had a negative effect on growth and chlorophyll concentration, whereas it showed an inductive effect on the production of total carotenoids and MAAs. Desiccation along with UV-B radiation led to an increase in the concentration of photoprotective compounds. These results indicate that carotenoids and MAAs thus facilitate cyanobacteria to avoid and protect themselves from the deleterious effects of UV-B and desiccation.

  2. Structural, energetic, and UV-Vis spectral analysis of UVA filter 4-tert-butyl-4'-methoxydibenzoylmethane.

    PubMed

    Pinto da Silva, Luís; Ferreira, Paulo J O; Duarte, Darío J R; Miranda, Margarida S; Esteves da Silva, Joaquim C G

    2014-02-27

    The growing awareness of the harmful effects of ultraviolet (UV) solar radiation has increased the production and consumption of sunscreen products, which contain organic and inorganic molecules named UV filters that absorb, reflect, or scatter UV radiation, thus minimizing negative human health effects. 4-tert-Butyl-4'-methoxydibenzoylmethane (BMDBM) is one of the few organic UVA filters and the most commonly used. BMDBM exists in sunscreens in the enol form which absorbs strongly in the UVA range. However, under sunlight irradiation tautomerization occurs to the keto form, resulting in the loss of UV protection. In this study we have performed quantum chemical calculations to study the excited-state molecular structure and excitation spectra of the enol and keto tautomers of BMDBM. This knowledge is of the utmost importance as the starting point for studies aiming at the understanding of its activity when applied on human skin and also its fate once released into the aquatic environment. The efficiency of excitation transitions was rationalized based on the concept of molecular orbital superposition. The loss of UV protection was attributed to the enol → keto phototautomerism and subsequent photodegradation. Although this process is not energetically favorable in the singlet bright state, photodegradation is possible because of intersystem crossing to the first two triplet states.

  3. Venus Upper Clouds and the UV Absorber From MESSENGER/MASCS Observations

    NASA Astrophysics Data System (ADS)

    Pérez-Hoyos, S.; Sánchez-Lavega, A.; García-Muñoz, A.; Irwin, P. G. J.; Peralta, J.; Holsclaw, G.; McClintock, W. M.; Sanz-Requena, J. F.

    2018-01-01

    One of the most intriguing, long-standing questions regarding Venus's atmosphere is the origin and distribution of the unknown UV absorber, responsible for the absorption band detected at the near-UV and blue range of Venus's spectrum. In this work, we use data collected by Mercury Atmospheric and Surface Composition Spectrometer (MASCS) spectrograph on board the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) mission during its second Venus flyby in June 2007 to address this issue. Spectra range from 0.3 μm to 1.5 μm including some gaseous H2O and CO2 bands, as well as part of the SO2 absorption band and the core of the UV absorption. We used the NEMESIS radiative transfer code and retrieval suite to investigate the vertical distribution of particles in the equatorial atmosphere and to retrieve the imaginary refractive indices of the UV absorber, assumed to be well mixed with Venus's small mode 1 particles. The results show a homogeneous equatorial atmosphere, with cloud tops (height for unity optical depth) at 75 ± 2 km above surface. The UV absorption is found to be centered at 0.34 ± 0.03 μm with a full width at half maximum of 0.14 ± 0.01 μm. Our values are compared with previous candidates for the UV aerosol absorber, among which disulfur oxide (S2O) and dioxide disulfur (S2O2) provide the best agreement with our results.

  4. Photoprotection, photosynthesis and growth of tropical tree seedlings under near-ambient and strongly reduced solar ultraviolet-B radiation.

    PubMed

    Krause, G Heinrich; Jahns, Peter; Virgo, Aurelio; García, Milton; Aranda, Jorge; Wellmann, Eckard; Winter, Klaus

    2007-10-01

    Seedlings of two late-successional tropical rainforest tree species, Tetragastris panamensis (Engler) O. Kuntze and Calophyllum longifolium (Willd.), were field grown for 3-4 months at an open site near Panama City (9 degrees N), Panama, under plastic films that either transmitted or excluded most solar UV-B radiation. Experiments were designed to test whether leaves developing under bright sunlight with strongly reduced UV-B are capable of acclimating to near-ambient UV-B conditions. Leaves of T. panamensis that developed under near-ambient UV-B contained higher amounts of UV-absorbing substances than leaves of seedlings grown under reduced UV-B. Photosynthetic pigment composition, content of alpha-tocopherol, CO(2) assimilation, potential photosystem II (PSII) efficiency (evaluated by F(v)/F(m) ratios) and growth of T. panamensis and C. longifolium did not differ between seedlings developed under near-ambient and reduced solar UV-B. When seedlings were transferred from the reduced UV-B treatment to the near-ambient UV-B treatment, a pronounced inhibition of photosynthetic capacity was observed initially in both species. UV-B-mediated inhibition of photosynthetic capacity nearly fully recovered within 1 week of the transfer in C. longifolium, whereas in T. panamensis an about 35% reduced capacity of CO(2) uptake was maintained. A marked increase in UV-absorbing substances was observed in foliage of transferred T. panamensis seedlings. Both species exhibited enhanced mid-day photoinhibition of PSII immediately after being transferred from the reduced UV-B to the near-ambient UV-B treatment. This effect was fully reversible within 1d in T. panamensis and within a few days in C. longifolium. The data show that leaves of these tropical tree seedlings, when developing in full-spectrum sunlight, are effectively protected against high solar UV-B radiation. In contrast, leaves developing under conditions of low UV-B lacked sufficient UV protection. They experienced a decline in photosynthetic competence when suddenly exposed to near-ambient UV-B levels, but exhibited pronounced acclimative responses.

  5. Assessment of UV biological spectral weighting functions for phenolic metabolites and growth responses in silver birch seedlings.

    PubMed

    Kotilainen, Titta; Venäläinen, Tuulia; Tegelberg, Riitta; Lindfors, Anders; Julkunen-Tiitto, Riitta; Sutinen, Sirkka; O'Hara, Robert B; Aphalo, Pedro J

    2009-01-01

    In research concerning stratospheric ozone depletion, action spectra are used as biological spectral weighting functions (BSWFs) for describing the effects of UV radiation on plant responses. Our aim was to evaluate the appropriateness of six frequently used BSWFs that differ in effectiveness with increasing wavelength. The evaluation of action spectra was based on calculating the effective UV radiation doses according to 1-2) two formulations of the generalized plant action spectrum, 3) a spectrum for ultraviolet induced erythema in human skin, 4) a spectrum for the accumulation of a flavonol in Mesembryanthemum crystallinum, 5) a spectrum for DNA damage in alfalfa seedlings and 6) the plant growth action spectrum. We monitored effects of UV radiation on the concentration of individual UV absorbing metabolites and chlorophyll concentrations in leaves and growth responses of silver birch (Betula pendula) seedlings. Experiments were conducted outdoors using plastic films attenuating different parts of the UV spectrum. Chlorophyll concentrations and growth were not affected by the UV treatments. The response to UV radiation varied between and within groups of phenolics. In general, the observed responses of phenolic groups and individual flavonoids were best predicted by action spectra extending into the UV-A region with moderate effectiveness.

  6. Phenol-Oxidizing Peroxidases Contribute to the Protection of Plants from Ultraviolet Radiation Stress1

    PubMed Central

    Jansen, Marcel A.K.; van den Noort, Ria E.; Tan, M.Y. Adillah; Prinsen, Els; Lagrimini, L. Mark; Thorneley, Roger N.F.

    2001-01-01

    We have studied the mechanism of UV protection in two duckweed species (Lemnaceae) by exploiting the UV sensitivity of photosystem II as an in situ sensor for radiation stress. A UV-tolerant Spirodela punctata G.F.W. Meyer ecotype had significantly higher indole-3-acetic acid (IAA) levels than a UV-sensitive ecotype. Parallel work on Lemna gibba mutants suggested that UV tolerance is linked to IAA degradation rather than to levels of free or conjugated IAA. This linkage is consistent with a role for class III phenolic peroxidases, which have been implicated both in the degradation of IAA and the cross-linking of various UV-absorbing phenolics. Biochemical analysis revealed increased activity of a specific peroxidase isozyme in both UV-tolerant duckweed lines. The hypothesis that peroxidases play a role in UV protection was tested in a direct manner using genetically modified tobacco (Nicotiana sylvestris). It was found that increased activity of the anionic peroxidase correlated with increased tolerance to UV radiation as well as decreased levels of free auxin. We conclude that phenol-oxidizing peroxidases concurrently contribute to UV protection as well as the control of leaf and plant architecture. PMID:11457952

  7. Effects of ultraviolet radiation on photosynthetic performance and N2 fixation in Trichodesmium erythraeum IMS 101

    NASA Astrophysics Data System (ADS)

    Cai, Xiaoni; Hutchins, David A.; Fu, Feixue; Gao, Kunshan

    2017-10-01

    Biological effects of ultraviolet radiation (UVR; 280-400 nm) on marine primary producers are of general concern, as oceanic carbon fixers that contribute to the marine biological CO2 pump are being exposed to increasing UV irradiance due to global change and ozone depletion. We investigated the effects of UV-B (280-320 nm) and UV-A (320-400 nm) on the biogeochemically critical filamentous marine N2-fixing cyanobacterium Trichodesmium (strain IMS101) using a solar simulator as well as under natural solar radiation. Short exposure to UV-B, UV-A, or integrated total UVR significantly reduced the effective quantum yield of photosystem II (PSII) and photosynthetic carbon and N2 fixation rates. Cells acclimated to low light were more sensitive to UV exposure compared to high-light-grown ones, which had more UV-absorbing compounds, most likely mycosporine-like amino acids (MAAs). After acclimation under natural sunlight, the specific growth rate was lower (by up to 44 %), MAA content was higher, and average trichome length was shorter (by up to 22 %) in the full spectrum of solar radiation with UVR, than under a photosynthetically active radiation (PAR) alone treatment (400-700 nm). These results suggest that prior shipboard experiments in UV-opaque containers may have substantially overestimated in situ nitrogen fixation rates by Trichodesmium, and that natural and anthropogenic elevation of UV radiation intensity could significantly inhibit this vital source of new nitrogen to the current and future oligotrophic oceans.

  8. Impacts of long-term enhanced UV-B radiation on bryophytes in two sub-Arctic heathland sites of contrasting water availability.

    PubMed

    Arróniz-Crespo, M; Gwynn-Jones, D; Callaghan, T V; Núñez-Olivera, E; Martínez-Abaigar, J; Horton, P; Phoenix, G K

    2011-09-01

    Anthropogenic depletion of stratospheric ozone in Arctic latitudes has resulted in an increase of ultraviolet-B radiation (UV-B) reaching the biosphere. UV-B exposure is known to reduce above-ground biomass and plant height, to increase DNA damage and cause accumulation of UV-absorbing compounds in polar plants. However, many studies on Arctic mosses tended to be inconclusive. The importance of different water availability in influencing UV-B impacts on lower plants in the Arctic has been poorly explored and might partially explain the observed wide variation of responses, given the importance of water in controlling bryophyte physiology. This study aimed to assess the long-term responses of three common sub-Arctic bryophytes to enhanced UV-B radiation (+UV-B) and to elucidate the influence of water supply on those responses. Responses of three sub-Arctic bryophytes (the mosses Hylocomium splendens and Polytrichum commune and the liverwort Barbilophozia lycopodioides) to +UV-B for 15 and 13 years were studied in two field experiments using lamps for UV-B enhancement with identical design and located in neighbouring areas with contrasting water availability (naturally mesic and drier sites). Responses evaluated included bryophyte abundance, growth, sporophyte production and sclerophylly; cellular protection by accumulation of UV-absorbing compounds, β-carotene, xanthophylls and development of non-photochemical quenching (NPQ); and impacts on photosynthesis performance by maximum quantum yield (F(v) /F(m)) and electron transport rate (ETR) through photosystem II (PSII) and chlorophyll concentrations. Responses were species specific: H. splendens responded most to +UV-B, with reduction in both annual growth (-22 %) and sporophyte production (-44 %), together with increased β-carotene, violaxanthin, total chlorophyll and NPQ, and decreased zeaxanthin and de-epoxidation of the xanthophyll cycle pool (DES). Barbilophozia lycopodioides responded less to +UV-B, showing increased β-carotene and sclerophylly and decreased UV-absorbing compounds. Polytrichum commune only showed small morphogenetic changes. No effect of UV-B on bryophyte cover was observed. Water availability had profound effects on bryophyte ecophysiology, and plants showed, in general, lower growth and ETR, together with a higher photoprotection in the drier site. Water availability also influenced bryophyte responses to +UV-B and, in particular, responses were less detectable in the drier site. Impacts of UV-B exposure on Arctic bryophytes were significant, in contrast to modest or absent UV-B effects measured in previous studies. The impacts were more easily detectable in species with high plasticity such as H. splendens and less obvious, or more subtle, under drier conditions. Species biology and water supply greatly influences the impact of UV-B on at least some Arctic bryophytes and could contribute to the wide variation of responses observed previously.

  9. Towards a high performing UV-A sensor based on Silicon Carbide and hydrogenated Silicon Nitride absorbing layers

    NASA Astrophysics Data System (ADS)

    Mazzillo, M.; Sciuto, A.; Mannino, G.; Renna, L.; Costa, N.; Badalà, P.

    2016-10-01

    Exposure to ultraviolet (UV) radiation is a major risk factor for most skin cancers. The sun is our primary natural source of UV radiation. The strength of the sun's ultraviolet radiation is expressed as Solar UV Index (UVI). UV-A (320-400 nm) and UV-B (290-320 nm) rays mostly contribute to UVI. UV-B is typically the most destructive form of UV radiation because it has enough energy to cause photochemical damage to cellular DNA. Also overexposure to UV-A rays, although these are less energetic than UV-B photons, has been associated with toughening of the skin, suppression of the immune system, and cataract formation. The use of preventive measures to decrease sunlight UV radiation absorption is fundamental to reduce acute and irreversible health diseases to skin, eyes and immune system. In this perspective UV sensors able to monitor in a monolithic and compact chip the UV Index and relative UV-A and UV-B components of solar spectrum can play a relevant role for prevention, especially in view of the integration of these detectors in close at hand portable devices. Here we present the preliminary results obtained on our UV-A sensor technology based on the use of hydrogenated Silicon Nitride (SiN:H) thin passivating layers deposited on the surface of thin continuous metal film Ni2Si/4H-SiC Schottky detectors, already used for UV-Index monitoring. The first UV-A detector prototypes exhibit a very low leakage current density of about 0.2 pA/mm2 and a peak responsivity value of 0.027 A/W at 330 nm, both measured at 0V bias.

  10. Biochemical traits and proteomic changes in postharvest flowers of medicinal chrysanthemum exposed to enhanced UV-B radiation.

    PubMed

    Yao, Xiaoqin; Chu, Jian-Zhou; Ma, Chun-Hui; Si, Chao; Li, Ji-Gang; Shi, Xiao-Fei; Liu, Chao-Nan

    2015-08-01

    The article studied UV-B effects on biochemical traits and proteomic changes in postharvest flowers of medicinal chrysanthemum. The experiment about UV-B effects on biochemical traits in flowers included six levels of UV-B treatments (0 (UV0), 50 (UV50), 200 (UV200), 400 (UV400), 600 (UV600) and 800 (UV800) μWcm(-2)). UV400, UV600 and UV800 treatments significantly increased the contents of hydrogen peroxide, malondialdehyde and UV-B absorbing compounds, and the activity of phenylalanine ammonia lyase enzyme over the control. The contents of chlorogenic acid and flavone in flowers were significantly increased by UV-B treatments (except for UV50 and UV800). Two-dimensional gel electrophoresis was utilized to analyze proteomic changes in flowers with or without UV-B radiation. Results indicated that 43 protein spots (>1.5-fold difference in volume) were detected, including 19 spots with a decreasing trend and 24 spots with an increasing trend, and 19 differentially expressed protein spots were successfully indentified by MALDI-TOF MS. The indentified proteins were classified based on functions, the most of which were involved in photosynthesis, respiration, protein biosynthesis and degradation and defence. An overall assessment using biochemical and differential proteomic data revealed that UV-B radiation could affect biochemical reaction and promote secondary metabolism processes in postharvest flowers. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. UV-A radiation effects on higher plants: Exploring the known unknown.

    PubMed

    Verdaguer, Dolors; Jansen, Marcel A K; Llorens, Laura; Morales, Luis O; Neugart, Susanne

    2017-02-01

    Ultraviolet-A radiation (UV-A: 315-400nm) is a component of solar radiation that exerts a wide range of physiological responses in plants. Currently, field attenuation experiments are the most reliable source of information on the effects of UV-A. Common plant responses to UV-A include both inhibitory and stimulatory effects on biomass accumulation and morphology. UV-A effects on biomass accumulation can differ from those on root: shoot ratio, and distinct responses are described for different leaf tissues. Inhibitory and enhancing effects of UV-A on photosynthesis are also analysed, as well as activation of photoprotective responses, including UV-absorbing pigments. UV-A-induced leaf flavonoids are highly compound-specific and species-dependent. Many of the effects on growth and development exerted by UV-A are distinct to those triggered by UV-B and vary considerably in terms of the direction the response takes. Such differences may reflect diverse UV-perception mechanisms with multiple photoreceptors operating in the UV-A range and/or variations in the experimental approaches used. This review highlights a role that various photoreceptors (UVR8, phototropins, phytochromes and cryptochromes) may play in plant responses to UV-A when dose, wavelength and other conditions are taken into account. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  12. Mask fabrication process

    DOEpatents

    Cardinale, Gregory F.

    2000-01-01

    A method for fabricating masks and reticles useful for projection lithography systems. An absorber layer is conventionally patterned using a pattern and etch process. Following the step of patterning, the entire surface of the remaining top patterning photoresist layer as well as that portion of an underlying protective photoresist layer where absorber material has been etched away is exposed to UV radiation. The UV-exposed regions of the protective photoresist layer and the top patterning photoresist layer are then removed by solution development, thereby eliminating the need for an oxygen plasma etch and strip and chances for damaging the surface of the substrate or coatings.

  13. Water quality monitor for recovered spacecraft water

    NASA Technical Reports Server (NTRS)

    Ejzak, E. M.; Price, D. F.

    1985-01-01

    A total organic carbon (TOC) analysis system based on ultraviolet absorption is described. The equation for measuring the intensity of the absorbed radiation of the organic substances, which is based on the Lambert-Beer law, is given; the intensity of the absorption is proportional to the concentration of the solution. The operation of the UV-Absorption analyzer, which utilizes a split beam, two wvaelength method, is studied. The influences of the cell path length and specific compounds in the solution flowing through the cell on absorbances is discussed. The performance and response of the analyzer is evaluated; good correlation is observed between the absorption value and TOC. The advantage of the UV-Absorption as compared with the UV-Oxidation are examined.

  14. Reduction of short wavelength reflectance of multi-wall carbon nanotubes through ultraviolet laser irradiation

    NASA Astrophysics Data System (ADS)

    Stephens, Michelle S.; Simonds, Brian J.; Yung, Christopher S.; Conklin, Davis; Livigni, David J.; Oliva, Alberto Remesal; Lehman, John H.

    2018-05-01

    Multi-wall carbon nanotube coatings are used as broadband, low-reflectance absorbers for bolometric applications and for stray light control. They are also used as high emittance blackbody radiators. Irradiation of single wall carbon nanotubes with ultraviolet (UV) laser light has been shown to remove amorphous carbon debris, but there have been few investigations of the interaction of UV light with the more complex physics of multi-wall carbon nanotubes. We present measurements of reflectance and surface morphology before and after exposure of multi-wall carbon nanotube coatings to 248 nm UV laser light. We show that UV exposure reduces the reflectivity at wavelengths below 600 nm and present modeling of the thermal cycling the UV exposure causes at the surface of the carbon nanotubes. This effect can be used to flatten the spectral shape of the reflectivity curve of carbon nanotube absorber coatings used for broadband applications. Finally, we find that the effect of UV exposure depends on the nanotube growth process.

  15. Anti-Inflammation Activities of Mycosporine-Like Amino Acids (MAAs) in Response to UV Radiation Suggest Potential Anti-Skin Aging Activity

    PubMed Central

    Suh, Sung-Suk; Hwang, Jinik; Park, Mirye; Seo, Hyo Hyun; Kim, Hyoung-Shik; Lee, Jeong Hun; Moh, Sang Hyun; Lee, Taek-Kyun

    2014-01-01

    Certain photosynthetic marine organisms have evolved mechanisms to counteract UV-radiation by synthesizing UV-absorbing compounds, such as mycosporine-like amino acids (MAAs). In this study, MAAs were separated from the extracts of marine green alga Chlamydomonas hedleyi using HPLC and were identified as porphyra-334, shinorine, and mycosporine-glycine (mycosporine-Gly), based on their retention times and maximum absorption wavelengths. Furthermore, their structures were confirmed by triple quadrupole MS/MS. Their roles as UV-absorbing compounds were investigated in the human fibroblast cell line HaCaT by analyzing the expression levels of genes associated with antioxidant activity, inflammation, and skin aging in response to UV irradiation. The mycosporine-Gly extract, but not the other MAAs, had strong antioxidant activity in the 2,2-diphenyl-1-picryhydrazyl (DPPH) assay. Furthermore, treatment with mycosporine-Gly resulted in a significant decrease in COX-2 mRNA levels, which are typically increased in response to inflammation in the skin, in a concentration-dependent manner. Additionally, in the presence of MAAs, the UV-suppressed genes, procollagen C proteinase enhancer (PCOLCE) and elastin, which are related to skin aging, had increased expression levels equal to those in UV-mock treated cells. Interestingly, the increased expression of involucrin after UV exposure was suppressed by treatment with the MAAs mycosporine-Gly and shinorine, but not porphyra-334. This is the first report investigating the biological activities of microalgae-derived MAAs in human cells. PMID:25317535

  16. Anti-inflammation activities of mycosporine-like amino acids (MAAs) in response to UV radiation suggest potential anti-skin aging activity.

    PubMed

    Suh, Sung-Suk; Hwang, Jinik; Park, Mirye; Seo, Hyo Hyun; Kim, Hyoung-Shik; Lee, Jeong Hun; Moh, Sang Hyun; Lee, Taek-Kyun

    2014-10-14

    Certain photosynthetic marine organisms have evolved mechanisms to counteract UV-radiation by synthesizing UV-absorbing compounds, such as mycosporine-like amino acids (MAAs). In this study, MAAs were separated from the extracts of marine green alga Chlamydomonas hedleyi using HPLC and were identified as porphyra-334, shinorine, and mycosporine-glycine (mycosporine-Gly), based on their retention times and maximum absorption wavelengths. Furthermore, their structures were confirmed by triple quadrupole MS/MS. Their roles as UV-absorbing compounds were investigated in the human fibroblast cell line HaCaT by analyzing the expression levels of genes associated with antioxidant activity, inflammation, and skin aging in response to UV irradiation. The mycosporine-Gly extract, but not the other MAAs, had strong antioxidant activity in the 2,2-diphenyl-1-picryhydrazyl (DPPH) assay. Furthermore, treatment with mycosporine-Gly resulted in a significant decrease in COX-2 mRNA levels, which are typically increased in response to inflammation in the skin, in a concentration-dependent manner. Additionally, in the presence of MAAs, the UV-suppressed genes, procollagen C proteinase enhancer (PCOLCE) and elastin, which are related to skin aging, had increased expression levels equal to those in UV-mock treated cells. Interestingly, the increased expression of involucrin after UV exposure was suppressed by treatment with the MAAs mycosporine-Gly and shinorine, but not porphyra-334. This is the first report investigating the biological activities of microalgae-derived MAAs in human cells.

  17. Effect of Aerosols on Surface Radiation and Air Quality in the Central American Region Estimated Using Satellite UV Instruments

    NASA Astrophysics Data System (ADS)

    Bhartia, P. K.; Torres, O.; Krotkov, N. A.

    2007-05-01

    Solar radiation reaching the Earth's surface is reduced by both aerosol scattering and aerosol absorption. Over many parts of the world the latter effect can be as large or larger than the former effect, and small changes in the aerosol single scattering albedo can either cancel the former effect or enhance it. In addition, absorbing aerosols embedded in clouds can greatly reduce the amount of radiation reaching the surface by multiple scattering. Though the potential climatic effects of absorbing aerosols have received considerable attention lately, their effect on surface UV, photosynthesis, and photochemistry can be equally important for our environment and may affect human health and agricultural productivity. Absorption of all aerosols commonly found in the Earth's atmosphere becomes larger in the UV and blue wavelengths and has a relatively strong wavelength dependence. This is particularly true of mineral dust and organic aerosols. However, these effects have been very difficult to estimate on a global basis since the satellite instruments that operate in the visible are primarily sensitive to aerosol scattering. A notable exception is the UV Aerosol Index (AI), first produced using NASA's Nimbus-7 TOMS data. AI provides a direct measure of the effect of aerosol absorption on the backscattered UV radiation in both clear and cloudy conditions, as well as over snow/ice. Although many types of aerosols produce a distinct color cast in the visible images, and aerosols absorption over clouds and snow/ice could, in principle be detected from their color, so far this technique has worked well only in the UV. In this talk we will discuss what we have learned from the long-term record of AI produced from TOMS and Aura/OMI about the possible role of aerosols on surface radiation and air quality in the Central American region.

  18. Leaf expansion and development of photosynthetic capacity and pigments in Liquidambar Styraciflua (Hamamelidaceae)-effects of UV-B radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dillenburg, L.R.; Sullivan, J.H.; Teramura, A.H.

    1995-07-01

    In order to perform their functions as photosynthetic organs, leaves must cope with excess heat and potentially damaging ultraviolet radiation. Possible increases in the UV-B portion of the solar spectrum may place an additional burden on leaves, and this could be particularly important for young expanding leaves with poorly developed UV-B defense mechanisms. We evaluated the effects of supplemental UV-B radiation on leaf expansion and the development of photosynthetic capacity and pigments in sweetgum (Liquidambar styraciflua L.) seedlings. Seedlings were grown in the field under either ambient or ambient plus 3 or 5.0 kJ of biologically effective supplemental UV-B radiation.more » Although final leaf size was unaffected, the rate of leaf elongation and accumulation of leaf area was slower in leaves exposed to the lower supplemental UV-B irradiance. In contrast, chlorophyll accumulation and the development of photosynthetic capacity was more rapid in plants exposed to the higher, compared to the lower supplemental UV-B irradiance. The accumulation of anthocyanins and other putative flavonoids or UV-absorbing compounds was scarcely affected by exposure to supplemental UV-B radiation. These results suggest that the UV-B portion of the solar spectrum may, in the absence of gross affects on biomass, exert subtle influences on leaf ontogeny and the development of photosynthetic pigments and capacity in sweetgum. 44 refs., 6 figs.« less

  19. Combined Effects of UVR and Temperature on the Survival of Crab Larvae (Zoea I) from Patagonia: The Role of UV-Absorbing Compounds

    PubMed Central

    Hernández Moresino, Rodrigo D.; Helbling, E. Walter

    2010-01-01

    The aim of our study was to assess the combined impact of UVR (280–400 nm) and temperature on the first larval stage (Zoea I) of three crab species from the Patagonian coast: Cyrtograpsus altimanus, C. angulatus, and Leucippa pentagona. We determined the survival response of newly hatched Zoea I after being exposed for 8–10 h under a solar simulator (Hönle SOL 1200) at 15 and 20 °C. There was no mortality due to Photosynthetic Active Radiation (PAR, 400–700 nm) or ultraviolet-A radiation (UV-A, 315–400 nm), and all the observed mortality was due to ultraviolet-B radiation (UV-B, 280–315 nm). The data of larval mortality relative to exposure time was best fit using a sigmoid curve. Based on this curve, a threshold (Th) and the lethal dose for 50% mortality (LD50) were determined for each species. Based on the Th and LD50, C. altimanus was found to be the most resistant species, while L. pentagona was found to be the most sensitive to UV-B. For both species of Cyrtograpsus, mortality was significantly lower at 20 °C than at 15 °C; however, no significant differences between the two temperature treatments were found in L. pentagona. Bioaccumulation of UV-absorbing compounds in the gonads and larvae of C. altimanus, and to a lesser extent in C. angulatus, might have contributed for counteracting the impact of UV-B. However, most of the resilience to UV-B observed with the increase in temperature might be due to an increase in metabolic activity caused by a repair mechanism mediated by enzymes. PMID:20559492

  20. A Global, Decadal, Quantitative Record of Absorbing Aerosols above Cloud Using OMI's Near-UV Observations

    NASA Astrophysics Data System (ADS)

    Torres, O.; Jethva, H. T.; Ahn, C.

    2016-12-01

    Aerosol-cloud interaction continues to be one of the leading uncertain components of climate models, primarily due to the lack of an adequate knowledge of the complex microphysical and radiative processes of the aerosol-cloud system. The situations when aerosols and clouds are found in the same atmospheric column, for instance, when light-absorbing aerosols such as biomass burning generated carbonaceous particles or wind-blown dust overlay low-level cloud decks, are commonly found over several regions of the world. Contrary to the known cooling effects of these aerosols in cloud-free scenario over dark surface, the overlapping situation of absorbing aerosols over cloud can potentially exert a significant level of atmospheric absorption and produces a positive radiative forcing (warming) at top-of-atmosphere. The magnitude of direct radiative effects of aerosols above cloud directly depends on the aerosol loading, microphysical and optical properties of the aerosol layer and the underlying cloud deck, and geometric cloud fraction. We help in addressing this problem by introducing a novel product of above-cloud aerosol optical depth (ACAOD) of absorbing aerosols retrieved from near-UV observations made by the Ozone Monitoring Instrument (OMI) on board NASA's Aura platform. Physically based on the strong `color ratio' effect in the near-UV caused by the spectral absorption of aerosols above cloud, the algorithm, formally named as OMACA, retrieves the optical depths of aerosols and clouds simultaneously under a prescribed state of atmosphere. Here, we present the algorithm architecture and results from an 11-year global record (2005-2015) including global climatology of frequency of occurrence and ACAOD. The theoretical uncertainty analysis and planned validation activities using measurements from upcoming field campaigns are also discussed.

  1. Satellite estimation of surface spectral ultraviolet irradiance using OMI data in East Asia

    NASA Astrophysics Data System (ADS)

    Lee, H.; Kim, J.; Jeong, U.

    2017-12-01

    Due to a strong influence to the human health and ecosystem environment, continuous monitoring of the surface ultraviolet (UV) irradiance is important nowadays. The amount of UVA (320-400 nm) and UVB (290-320 nm) radiation at the Earth surface depends on the extent of Rayleigh scattering by atmospheric gas molecules, the radiative absorption by ozone, radiative scattering by clouds, and both absorption and scattering by airborne aerosols. Thus advanced consideration of these factors is the essential part to establish the process of UV irradiance estimation. Also UV index (UVI) is a simple parameter to show the strength of surface UV irradiance, therefore UVI has been widely utilized for the purpose of UV monitoring. In this study, we estimate surface UV irradiance at East Asia using realistic input based on OMI Total Ozone and reflectivity, and then validate this estimated comparing to UV irradiance from World Ozone and Ultraviolet Radiation Data Centre (WOUDC) data. In this work, we also try to develop our own retrieval algorithm for better estimation of surface irradiance. We use the Vector Linearized Discrete Ordinate Radiative Transfer (VLIDORT) model version 2.6 for our UV irradiance calculation. The input to the VLIDORT radiative transfer calculations are the total ozone column (TOMS V7 climatology), the surface albedo (Herman and Celarier, 1997) and the cloud optical depth. Based on these, the UV irradiance is calculated based on look-up table (LUT) approach. To correct absorbing aerosol, UV irradiance algorithm added climatological aerosol information (Arola et al., 2009). The further study, we analyze the comprehensive uncertainty analysis based on LUT and all input parameters.

  2. UV filters for lighting of plants

    NASA Astrophysics Data System (ADS)

    Doehring, T.; Koefferlein, M.; Thiel, S.; Seidlitz, H. K.; Payer, H. D.

    1994-03-01

    The wavelength dependent interaction of biological systems with radiation is commonly described by appropriate action spectra. Particularly effective plant responses are obtained for ultraviolet (UV) radiation. Excess shortwave UV-B radiation will induce genetic defects and plant damage. Besides the ecological discussion of the deleterious effects of the excess UV radiation there is increasing interest in horticultural applications of this spectral region. Several metabolic pathways leading to valuable secondary plant products like colors, odors, taste, or resulting in mechanical strength and vitality are triggered by UV radiation. Thus, in ecologically as well as in economically oriented experiments the exact generation and knowledge of the spectral irradiance, particularly near the UV absorption edge, is essential. The ideal filter 'material' to control the UV absorption edge would be ozone itself. However, due to problems in controlling the toxic and chemically aggressive, instable gas, only rather 'small ozone filters' have been realized so far. In artificial plant lighting conventional solid filter materials such as glass sheets and plastic foils (celluloseacetate or cellulosetriacetate) which can be easily handled have been used to absorb the UV-C and the excess shortwave UV-B radiation of the lamp emissions. Different filter glasses are available which provide absorption properties suitable for gradual changes of the spectral UV-B illumination of artificial lighting. Using a distinct set of lamps and filter glasses an acceptable simulation of the UV-B part of natural global radiation can be achieved. The aging of these and other filter materials under the extreme UV radiation in the lamphouse of a solar simulator is presently unavoidable. This instability can be dealt with only by a precise spectral monitoring and by replacing the filters accordingly. For this reason attempts would be useful to develop real ozone filters which can replace glass filters. In any case chamber experiments require a careful selection of the filter material used and must be accompanied by a continuous UV-B monitoring.

  3. UV filters for lighting of plants

    NASA Technical Reports Server (NTRS)

    Doehring, T.; Koefferlein, M.; Thiel, S.; Seidlitz, H. K.; Payer, H. D.

    1994-01-01

    The wavelength dependent interaction of biological systems with radiation is commonly described by appropriate action spectra. Particularly effective plant responses are obtained for ultraviolet (UV) radiation. Excess shortwave UV-B radiation will induce genetic defects and plant damage. Besides the ecological discussion of the deleterious effects of the excess UV radiation there is increasing interest in horticultural applications of this spectral region. Several metabolic pathways leading to valuable secondary plant products like colors, odors, taste, or resulting in mechanical strength and vitality are triggered by UV radiation. Thus, in ecologically as well as in economically oriented experiments the exact generation and knowledge of the spectral irradiance, particularly near the UV absorption edge, is essential. The ideal filter 'material' to control the UV absorption edge would be ozone itself. However, due to problems in controlling the toxic and chemically aggressive, instable gas, only rather 'small ozone filters' have been realized so far. In artificial plant lighting conventional solid filter materials such as glass sheets and plastic foils (celluloseacetate or cellulosetriacetate) which can be easily handled have been used to absorb the UV-C and the excess shortwave UV-B radiation of the lamp emissions. Different filter glasses are available which provide absorption properties suitable for gradual changes of the spectral UV-B illumination of artificial lighting. Using a distinct set of lamps and filter glasses an acceptable simulation of the UV-B part of natural global radiation can be achieved. The aging of these and other filter materials under the extreme UV radiation in the lamphouse of a solar simulator is presently unavoidable. This instability can be dealt with only by a precise spectral monitoring and by replacing the filters accordingly. For this reason attempts would be useful to develop real ozone filters which can replace glass filters. In any case chamber experiments require a careful selection of the filter material used and must be accompanied by a continuous UV-B monitoring.

  4. (E)-5-[2-(methoxycarbonyl)ethenyl]cytidine as a chemical actinometer for germicidal UV radiation.

    PubMed

    Shen, Chengyue; Fang, Shiyue; Bergstrom, Donald E; Blatchley, Ernest R

    2005-05-15

    (E)-5-[2-(Methoxycarbonyl)ethenyl]cytidine (S) was examined for use as a chemical actinometer for germicidal UV radiation. Its photoproduct, 3-beta-D-ribofuranosyl-2,7-dioxopyrido[2,3-d]pyrimidine (P), is strongly fluorescent with excitation and emission maxima at 330 and 385 nm, respectively. Experiments were conducted to characterize the dynamic behavior of aqueous solutions of S and P when subjected to UV radiation. UV sources used for these experiments included a low-pressure mercury lamp, a XeBr excimer lamp, and a KrCI excimer lamp; all three sources were mounted in collimating devices to provide incident beams that could be easily and accurately characterized by radiometry. These three sources each yielded essentially monochromatic outputwith characteristic wavelengths of 254, 282, and 222 nm, respectively. At practical concentrations, it was found that the absorbance of the actinometer solution was neither high enough to make the actinometer solutions optically opaque nor low enough to be optically transparent to UV. In addition, the photoproduct displayed a molar absorption coefficient that was similar in magnitude to that of the parent compound, thereby resulting in competitive absorption of UV energy between Sand Pduring irradiation. For purposes of evaluation of the results of irradiation, a mathematical model was developed to accountforthe nonideal optical characteristics of the system. The model is based on a description of local photochemical kinetics; predictions of overall reactor performance were developed by spatial and temporal integration of model results. The model was used to analyze the dynamic behavior of actinometer solutions during UV irradiation and to estimate the quantum yield for photoproduction of Pfrom S. This modeling approach is potentially applicable to other photochemical processes in which multiple compounds are present that absorb photoactive radiation; however, general application of this modeling approach to photochemical reactor systems will require inclusion of othertermsto describe relevanttransport behavior within the system.

  5. Toxic effects of combined effects of anthracene and UV radiation on Brachionus plicatilis

    NASA Astrophysics Data System (ADS)

    Gao, Ceng; Zhang, Xinxin; Xu, Ningning; Tang, Xuexi

    2017-05-01

    Anthracene is a typical polycyclic aromatic hydrocarbon, with photo activity, can absorb ultraviolet light a series of chemical reactions, aquatic organisms in the ecosystem has a potential light induced toxicity. In this paper, the effects of anthracene and UV radiation on the light-induced toxicity of Brachionus plicatilis were studied. The main methods and experimental results were as follows: (1) The semi-lethal concentration of anthracene in UV light was much lower than that in normal light, The rotifers have significant light-induced acute toxicity. (2) Under UV irradiation, anthracene could induce the increase of ROS and MDA content in B. plicatilis, and the activity of antioxidant enzymes in B. plicatilis significantly changed, Where SOD, GPx activity was induced within 24 hours of the beginning of the experiment. And the content of GPX and CAT was inhibited after 48 hours. Therefore, the anthracite stress induced by UV radiation could more strongly interfere with the ant oxidative metabolism of B. plicatilis, and more seriously cause oxidative damage, significant light-induced toxicity.

  6. Possible impacts of ozone depletion on trophic interactions and biogenic vertical carbon flux in the Southern Ocean

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marchant, H.J.; Davidson, A.

    1992-03-01

    Among the most productive region of the Southern Ocean is the marginal ice edge zone that trails the retreating ice edge in spring and early summer. The timing of this near-surface phytoplankton bloom coincides with seasonal stratospheric ozone depletion when UV irradiance is reportedly as high as in mid-summer. Recent investigations indicate that antarctic marine phytoplankton are presently UV stressed. The extent to which increasing UV radiation diminishes the ability of phytoplankton to fix C02 and/or leads to changes in their species composition is equivocal. The colonial stage in the life cycle of the alga Phaeocystis pouchetii is one ofmore » the major components of the bloom. The authors have found that this alga produces extracellular products which are strongly UV-B absorbing. When exposed to increasing levels of UV-B radiation, survival of antarctic colonial Phaeocystis was significantly greater than colonies of this species from temperate waters and of the single-celled stage of its life cycle which produces no UV-B-absorbing compounds. Phaeocystis is apparently a minor dietary component of Antarctic krill, Euphausia superba, and its nutritional value to crustacea is reportedly low. Phytoplankton, principally diatoms, together with fecal pellets and molted exoskeletons of grazers contribute most of the particulate carbon flux from the euphotic zone to deep water.« less

  7. Photoadaptation and protection against active forms of oxygen in the symbiotic procaryote Prochloron sp. and its ascidian host

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lesser, M.P.; Stochaj, W.R.

    1990-06-01

    Superoxide dismutase, ascorbate, peroxidase, and catalase activities were studied in the symbiotic photosynthetic procaryote Prochloron sp. and its ascidian host Lissoclinum patella. The protein-specific activities of these antioxidant enzymes in the Prochloron sp. and L. patella collected at different depths from the Great Barrier Reef, Australia, were directly proportional to irradiance, whereas the pigment concentrations in the Prochloron sp. were inversely proportional to irradiance. The presence of a cyanide-sensitive superoxide dismutase, presumably a Cu-An metalloprotein, in the Prochloron sp. extends the possible phylogenetic distribution of this protein. The concentration of UV-absorbing mycosporine-like amino acids in inversely proportional to irradiance inmore » both the host and symbiont, suggesting that these compounds may not provide sufficient protection against UV radiation in high-irradiance environments. The significant differences in the specific activities of these antioxidant enzymes, cellular photosynthetic pigment concentrations, and UV-absorbing compounds from high- and low-irradiance habitats constitute an adaptive response to different photic environments. These photoadaptive responses are essential to prevent inhibition of photosynthesis by high fluxes of visible and UV radiation.« less

  8. A three-dimensional spatial mapping approach to quantify fine-scale heterogeneity among leaves within canopies1

    PubMed Central

    Wingfield, Jenna L.; Ruane, Lauren G.; Patterson, Joshua D.

    2017-01-01

    Premise of the study: The three-dimensional structure of tree canopies creates environmental heterogeneity, which can differentially influence the chemistry, morphology, physiology, and/or phenology of leaves. Previous studies that subdivide canopy leaves into broad categories (i.e., “upper/lower”) fail to capture the differences in microenvironments experienced by leaves throughout the three-dimensional space of a canopy. Methods: We use a three-dimensional spatial mapping approach based on spherical polar coordinates to examine the fine-scale spatial distributions of photosynthetically active radiation (PAR) and the concentration of ultraviolet (UV)-absorbing compounds (A300) among leaves within the canopies of black mangroves (Avicennia germinans). Results: Linear regressions revealed that interior leaves received less PAR and produced fewer UV-absorbing compounds than leaves on the exterior of the canopy. By allocating more UV-absorbing compounds to the leaves on the exterior of the canopy, black mangroves may be maximizing UV-protection while minimizing biosynthesis of UV-absorbing compounds. Discussion: Three-dimensional spatial mapping provides an inexpensive and portable method to detect fine-scale differences in environmental and biological traits within canopies. We used it to understand the relationship between PAR and A300, but the same approach can also be used to identify traits associated with the spatial distribution of herbivores, pollinators, and pathogens. PMID:29188145

  9. Photosynthetic characteristics and mycosporine-like amino acids under UV radiation: a competitive advantage of Mastocarpus stellatus over Chondrus crispus at the Helgoland shoreline?

    NASA Astrophysics Data System (ADS)

    Bischof, K.; Kräbs, G.; Hanelt, D.; Wiencke, C.

    2000-05-01

    Chondrus crispus and Mastocarpus stellatus both inhabit the intertidal and upper sublittoral zone of Helgoland, but with C. crispus generally taking a lower position. Measurements of chlorophyll fluorescence, activity of ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO), and content and composition of UV absorbing mycosporine-like amino acids (MAAs) were conducted in the laboratory, to test whether susceptibility to UV radiation may play a role in the vertical distribution of these two species. Effective and maximal quantum yield of photochemistry as well as maximal electron transport rate (ETRmax) in C. crispus were more strongly affected by UV-B radiation than in M. stellatus. In both species, no negative effects of the respective radiation conditions were found on total activity of RubisCO. Total MAA content in M. stellatus was up to 6-fold higher than in C. crispus and the composition of MAAs in the two species was different. The results indicate that, among others, UV-B sensitivity may be a factor restricting C. crispus to the lower intertidal and upper sublittoral zone, whereas M. stellatus is better adapted to UV radiation and is therefore more competitive in the upper intertidal zone.

  10. Role of near ultraviolet wavelength measurements in the detection and retrieval of absorbing aerosols from space

    NASA Astrophysics Data System (ADS)

    Mukai, Sonoyo; Fujito, Toshiyuki; Nakata, Makiko; Sano, Itaru

    2017-10-01

    Aerosol remote sensing by ultraviolet (UV) wavelength is established by a Total Ozone Mapping Spectrometer (TOMS) mounted on the long-life satellite Nimbus-7 and continues to make observations using Ozone monitoring instrument (OMI) located on the Aura satellite. For example, TOMS demonstrated that UV radiation (0.331 and 0.360 μm) could easily detect absorbing particles such as mineral dust or smoke aerosols. TOMS-AI (absorbing aerosol index) has been used to identify the absorbing aerosols from space. For an upcoming mission, JAXA/GCOM-C will have the polarization sensor SGLI boarded in December 2017. The SGLI has multi (19)-channels including near UV (0.380 μm) and violet (0.412 μm) wavelengths. This work intends to examine the role of near UV data in the detection of absorbing aerosols similar to TOMS-AI played. In practice, the measurements by GLI mounted on the short Japanese mission JAXA/ADEOS-2, whose data archive period was just 8 months from April to October in 2003, are available for simulation of SGLI data because ADEOS-2/GLI installed near UV and violet channels. First of all, the ratio of data at 0.412 μm to that at 0.380 μm is examined as an indicator to detect absorbing aerosols on a global scale during ADEOS-2 era. It is noted that our research group has developed an efficient algorithm for aerosol retrieval in hazy episodes (dense concentrations of atmospheric aerosols). It can be said that at least this work is an attempt to grasp the biomass burning plumes from the satellite.

  11. Studies on the performance of TiO{sub 2} thin films as protective layer to chlorophyll in Ocimum tenuiflorum L from UV radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malliga, P.; Selvi, B. Karunai; Pandiarajan, J.

    Thin films of TiO{sub 2} were prepared on glass substrates using sol-gel dip coating technique. The films with 10 coatings were prepared and annealed at temperatures 350°C, 450°C and 550°C for 1 hour in muffle furnace. The annealed films were characterized by X – Ray diffraction (XRD), UV – Visible, AFM, Field Effect Scanning Electron Microscopy (FESEM) and EDAX studies. Chlorophyll has many health benefits due to its structural similarity to human blood and its good chelating ability. It has antimutagenic and anticarcinogenic properties. UV light impairs photosynthesis and reduces size, productivity, and quality in many of the crop plantmore » species. Increased exposure of UV light reduces chlorophyll contents a, b and total content in plants. Titanium Dioxide (TiO{sub 2}) is a wide band gap semiconductor and efficient light harvester. TiO{sub 2} has strong UltraViolet (UV) light absorbing capability. Here, we have studied the performance of TiO{sub 2} thin films as a protective layer to the chlorophyll contents present in medicinal plant, tulsi (Ocimum tenuiflorum L) from UV radiation. The study reveals that crystallite size increases, transmittance decreases and chlorophyll contents increases with increase in annealing temperature. This study showed that TiO{sub 2} thin films are good absorber of UV light and protect the chlorophyll contents a, b and total content in medicinal plants.« less

  12. Growth of a mat-forming photograph in the presence of UV radiation

    NASA Technical Reports Server (NTRS)

    Pierson, Beverly K.; Ruff, A. L.

    1989-01-01

    Knowledge of the survival and growth of microorganisms in the presence of ultraviolet radiation is important for understanding the potential for life to exist in environments exposed to high fluxes of UV radiation. The growth of a mat-forming phototrophic prokaryote, Chloroflexus aurantiacus, was examined in the presence of continuous high UV irradiation under otherwise optimal growth conditions. Evidence was sought for an intrinsic ability to grow in the presence of UV radiation in a carefully chosen organism known to be unusually resistant to UV radiation, of ancient lineage among the phototrophs, to resemble ancient microfossils from the Precambrian, and to be a mat-former. It was assumed that even a high intrinsic UV resistance would be inadequate for survival and growth in the presence of very high UV fluxes, and iron (Fe3+) was selected as a common, abundant UV-absorbing substance that might protest microorganisms growing in or under iron-bearing sediments. The effectiveness of Fe(3+) was tested as a UV protective agent at low concentrations in thin layers. It was concluded that intrinsic UV resistance in some organisms may account for growth, not just survival, of these organisms when exposed to high UV fluxes under otherwise optimal growth conditions in an anoxic environment. It was also concluded that Fe(3+) bearing sediments of 1 mm or less in thickness may provide an adequate shield against high UV fluxes permitting the growth of microorganisms just below their surface. As long as growth conditions were met, then the evolution and development of microorganisms would not be hampered by high UV fluxes impinging upon the surface of iron-bearing sediments.

  13. Hybrid AlGaN-SiC Avalanche Photodiode for Deep-UV Photon Detection

    NASA Technical Reports Server (NTRS)

    Aslam, Shahid; Herrero, Federico A.; Sigwarth, John; Goldsman, Neil; Akturk, Akin

    2010-01-01

    The proposed device is capable of counting ultraviolet (UV) photons, is compatible for inclusion into space instruments, and has applications as deep- UV detectors for calibration systems, curing systems, and crack detection. The device is based on a Separate Absorption and Charge Multiplication (SACM) structure. It is based on aluminum gallium nitride (AlGaN) absorber on a silicon carbide APD (avalanche photodiode). The AlGaN layer absorbs incident UV photons and injects photogenerated carriers into an underlying SiC APD that is operated in Geiger mode and provides current multiplication via avalanche breakdown. The solid-state detector is capable of sensing 100-to-365-nanometer wavelength radiation at a flux level as low as 6 photons/pixel/s. Advantages include, visible-light blindness, operation in harsh environments (e.g., high temperatures), deep-UV detection response, high gain, and Geiger mode operation at low voltage. Furthermore, the device can also be designed in array formats, e.g., linear arrays or 2D arrays (micropixels inside a superpixel).

  14. Impact of nanostructured thin ZnO film in ultraviolet protection

    PubMed Central

    Sasani Ghamsari, Morteza; Alamdari, Sanaz; Han, Wooje; Park, Hyung-Ho

    2017-01-01

    Nanoscale ZnO is one of the best choices for ultraviolet (UV) protection, not only because of its antimicrobial properties but also due to its potential application for UV preservation. However, the behavior of nanostructured thin ZnO films and long-term effects of UV-radiation exposure have not been studied yet. In this study, we investigated the UV-protection ability of sol gel-derived thin ZnO films after different exposure times. Scanning electron microscopy, atomic force microscopy, and UV-visible optical spectroscopy were carried out to study the structure and optical properties of the ZnO films as a function of the UV-irradiation time. The results obtained showed that the prepared thin ZnO films were somewhat transparent under the visible wavelength region and protective against UV radiation. The UV-protection factor was 50+ for the prepared samples, indicating that they were excellent UV protectors. The deposited thin ZnO films demonstrated promising antibacterial potential and significant light absorbance in the UV range. The experimental results suggest that the synthesized samples have potential for applications in the health care field. PMID:28096668

  15. Impact of nanostructured thin ZnO film in ultraviolet protection.

    PubMed

    Sasani Ghamsari, Morteza; Alamdari, Sanaz; Han, Wooje; Park, Hyung-Ho

    2017-01-01

    Nanoscale ZnO is one of the best choices for ultraviolet (UV) protection, not only because of its antimicrobial properties but also due to its potential application for UV preservation. However, the behavior of nanostructured thin ZnO films and long-term effects of UV-radiation exposure have not been studied yet. In this study, we investigated the UV-protection ability of sol gel-derived thin ZnO films after different exposure times. Scanning electron microscopy, atomic force microscopy, and UV-visible optical spectroscopy were carried out to study the structure and optical properties of the ZnO films as a function of the UV-irradiation time. The results obtained showed that the prepared thin ZnO films were somewhat transparent under the visible wavelength region and protective against UV radiation. The UV-protection factor was 50+ for the prepared samples, indicating that they were excellent UV protectors. The deposited thin ZnO films demonstrated promising antibacterial potential and significant light absorbance in the UV range. The experimental results suggest that the synthesized samples have potential for applications in the health care field.

  16. Towards standardization of UV eye protection: what can be learned from photodermatology?

    PubMed

    Krutmann, Jean; Béhar-Cohen, Francine; Baillet, Gilles; de Ayguavives, Tito; Ortega Garcia, Paula; Peña-García, Pablo; Remé, Charlotte; Wolffsohn, James

    2014-01-01

    While knowledge about standardization of skin protection against ultraviolet radiation (UVR) has progressed over the past few decades, there is no uniform and generally accepted standardized measurement for UV eye protection. The literature provides solid evidence that UV can induce considerable damage to structures of the eye. As well as damaging the eyelids and periorbital skin, chronic UV exposure may also affect the conjunctiva and lens. Clinically, this damage can manifest as skin cancer and premature skin ageing as well as the development of pterygia and premature cortical cataracts. Modern eye protection, used daily, offers the opportunity to prevent these adverse sequelae of lifelong UV exposure. A standardized, reliable and comprehensive label for consumers and professionals is currently lacking. In this review we (i) summarize the existing literature about UV radiation-induced damage to the eye and surrounding skin; (ii) review the recent technological advances in UV protection by means of lenses; (iii) review the definition of the Eye-Sun Protection Factor (E-SPF®), which describes the intrinsic UV protection properties of lenses and lens coating materials based on their capacity to absorb or reflect UV radiation; and (iv) propose a strategy for establishing the biological relevance of the E-SPF. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Effects of ultraviolet-B radiation on the growth, physiology and cannabinoid production of Cannabis sativa L

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lydon, J.

    The concentration of cannabinoids in Cannabis sativa L. is correlated with high ultraviolet-B (UV-B) radiation environments. ..delta../sup 9/-Tetrahydrocannabinolic acid and cannabidiolic acid, both major secondary products of C. sativa, absorb UV-B radiation and may function as solar screens. The object of this study was to test the effects of UV-B radiation on the physiology and cannabinoid production of C. sativa. Drug and fiber-type C. sativa were irradiated with three levels of UV-B radiation for 40 days in greenhouse experiments. Physiological measurements on leaf tissues were made by infra-red gas analysis. Drug and fiber-type control plants had similar CO/sub 2/ assimilationmore » rates from 26 to 32/sup 0/C. Drug-type control plant had higher dark respiration rates and stomatal conductances than fiber-type control plants. The concentration of ..delta../sup 9/-THC, but not of other cannabinoids) in both vegetative and reproductive tissues increased with UV-B dose in drug-type plants. None of the cannabinoids in fiber-type plants were affected by UV-B radiation. The increased level of ..delta../sup 9/-THC found in leaves after irradiation may account for the physiological and morphological insensitivity to UV-B radiation in the drug-type plants. However, fiber plants showed no comparable change in the level of cannabidoil (CBD). Resin stripped form fresh fiber-type floral tissue by sonication was spotted on filter paper and irradiated continuously for 7 days. Cannabidiol (CBD) gradually decreased when irradiated but ..delta../sup 9/-THC and cannabichromene did not.« less

  18. Effects of ultraviolet radiation and temperature on the ultrastructure of zoospores of the brown macroalga Laminaria hyperborea.

    PubMed

    Steinhoff, F S; Wiencke, C; Müller, R; Bischof, K

    2008-05-01

    The interactive effects of an 8 h exposure to UV radiation and altered temperatures on the ultrastructure and germination of zoospores of the sublittoral brown alga Laminaria hyperborea (Gunn.) Foslie were investigated for the first time. Spores were exposed to four temperatures (2, 7, 12 and 17 degrees C) and three light regimes (PAR, PAR + UV-A, PAR + UV-A+UV-B). Freshly-released spores of L. hyperborea lack a cell wall and contain a nucleus with fine granular nucleoplasm and a nucleolus, one chloroplast, several mitochondria, dictyosomes and an endoplasmatic reticulum. Further, several kinds of so-called adhesive vesicles, lipid globuli and physodes containing UV-absorbing phlorotannins are embedded in the cytoplasm. No eye-spot is present. Physodes were found but they were rare and small. After an 8 h exposure to UV-B, the nucleoplasm had a mottled structure, chloroplasts contained plastoglobuli, the structure of the mitochondria changed from crista- to sacculus-type and germination was strongly inhibited at all temperatures. UV-A only had an impact on the ultrastructure at the highest temperature tested. The strongest effects were found at 17 degrees C, where germination was reduced to 35%, 32% and 9% after exposure to PAR, PAR+UV-A and PAR + UV-A + UV-B, respectively. This study indicates that UV-B radiation has strong damaging effects on the physiology and ultrastructure of zoospores of L. hyperborea. The results are important for developing scenarios for the effect of enhanced UV radiation and increasing temperatures caused by global climate changes.

  19. Effect of Solar Ultraviolet-B Radiation during Springtime Ozone Depletion on Photosynthesis and Biomass Production of Antarctic Vascular Plants1

    PubMed Central

    Xiong, Fusheng S.; Day, Thomas A.

    2001-01-01

    We assessed the influence of springtime solar UV-B radiation that was naturally enhanced during several days due to ozone depletion on biomass production and photosynthesis of vascular plants along the Antarctic Peninsula. Naturally growing plants of Colobanthus quitensis (Kunth) Bartl. and Deschampsia antarctica Desv. were potted and grown under filters that absorbed or transmitted most solar UV-B. Plants exposed to solar UV-B from mid-October to early January produced 11% to 22% less total, as well as above ground biomass, and 24% to 31% less total leaf area. These growth reductions did not appear to be associated with reductions in photosynthesis per se: Although rates of photosynthetic O2 evolution were reduced on a chlorophyll and a dry-mass basis, on a leaf area basis they were not affected by UV-B exposure. Leaves on plants exposed to UV-B were denser, probably thicker, and had higher concentrations of photosynthetic and UV-B absorbing pigments. We suspect that the development of thicker leaves containing more photosynthetic and screening pigments allowed these plants to maintain their photosynthetic rates per unit leaf area. Exposure to UV-B led to reductions in quantum yield of photosystem II, based on fluorescence measurements of adaxial leaf surfaces, and we suspect that UV-B impaired photosynthesis in the upper mesophyll of leaves. Because the ratio of variable to maximal fluorescence, as well as the initial slope of the photosynthetic light response, were unaffected by UV-B exposure, we suggest that impairments in photosynthesis in the upper mesophyll were associated with light-independent enzymatic, rather than photosystem II, limitations. PMID:11161031

  20. Effect of solar ultraviolet-B radiation during springtime ozone depletion on photosynthesis and biomass production of Antarctic vascular plants.

    PubMed

    Xiong, F S; Day, T A

    2001-02-01

    We assessed the influence of springtime solar UV-B radiation that was naturally enhanced during several days due to ozone depletion on biomass production and photosynthesis of vascular plants along the Antarctic Peninsula. Naturally growing plants of Colobanthus quitensis (Kunth) Bartl. and Deschampsia antarctica Desv. were potted and grown under filters that absorbed or transmitted most solar UV-B. Plants exposed to solar UV-B from mid-October to early January produced 11% to 22% less total, as well as above ground biomass, and 24% to 31% less total leaf area. These growth reductions did not appear to be associated with reductions in photosynthesis per se: Although rates of photosynthetic O(2) evolution were reduced on a chlorophyll and a dry-mass basis, on a leaf area basis they were not affected by UV-B exposure. Leaves on plants exposed to UV-B were denser, probably thicker, and had higher concentrations of photosynthetic and UV-B absorbing pigments. We suspect that the development of thicker leaves containing more photosynthetic and screening pigments allowed these plants to maintain their photosynthetic rates per unit leaf area. Exposure to UV-B led to reductions in quantum yield of photosystem II, based on fluorescence measurements of adaxial leaf surfaces, and we suspect that UV-B impaired photosynthesis in the upper mesophyll of leaves. Because the ratio of variable to maximal fluorescence, as well as the initial slope of the photosynthetic light response, were unaffected by UV-B exposure, we suggest that impairments in photosynthesis in the upper mesophyll were associated with light-independent enzymatic, rather than photosystem II, limitations.

  1. An ultraviolet simulator for the incident Martian surface radiation and its applications

    NASA Astrophysics Data System (ADS)

    Kolb, C.; Abart, R.; Bérces, A.; Garry, J. R. C.; Hansen, A. A.; Hohenau, W.; Kargl, G.; Lammer, H.; Patel, M. R.; Rettberg, P.; Stan-Lotter, H.

    2005-10-01

    Ultraviolet (UV) radiation can act on putative organic/biological matter at the Martian surface in several ways. Only absorbed, but not transmitted or reflected, radiation energy can be photo-chemically effective. The most important biological UV effects are due to photochemical reactions in nucleic acids, DNA or RNA, which constitute the genetic material of all cellular organisms and viruses. Protein or lipid effects generally play a minor role, but they are also relevant in some cases. UV radiation can induce wavelengths-specific types of DNA damage. At the same time it can also induce the photo-reversion reaction of a UV induced DNA photoproduct of nucleic acid bases, the pyrimidine dimers. Intense UVB and UVC radiation, experienced on early Earth and present-day Mars, has been revealed to be harmful to all organisms, including extremophile bacteria and spores. Moreover, the formation of oxidants, catalytically produced in the Martian environment through UV irradiation, may be responsible for the destruction of organic matter on Mars. Following this, more laboratory simulations are vital in order to investigate and understand UV effects on organic matter in the case of Mars. We have designed a radiation apparatus that simulates the anticipated Martian UV surface spectrum between 200 and 400 nm (UVC UVA). The system comprises a UV enhanced xenon arc lamp, special filter-sets and mirrors to simulate the effects of the Martian atmospheric column and dust loading. We describe the technical setup and performance of the system and discuss its uses for different applications. The design is focused on portability, therefore, the Mars-UV simulator represents a device for several different Mars simulation facilities with specific emphasis on Mars research topics.

  2. Disposal of Energy by UV-B Sunscreens

    NASA Astrophysics Data System (ADS)

    Nordlund, Thomas; Krishnan, Rajagopal

    2008-03-01

    Ideal sunscreens absorb dangerous UV light and dispose of the energy safely. ``Safe disposal'' usually means conversion to heat. However, efficient absorption entails a high radiative rate, which implies high energy-transfer and other rates, unless some process intervenes to ``defuse'' the excited state. We studied the excited-state kinetics of three UV-B (290-320 nm) sunscreens by absorption, steady-state and time-resolved fluorescence. Excited-state rate analysis suggests that some sunscreens have low radiative-rate ``dark'' states, in addition to normal excited states.* We deduce dark states when sunscreens of high extinction coefficient do not show lifetimes and total emission consistent with such high radiative rates. A high radiative rate, accompanied by efficient fluorescence emission and/or transfer, may be unfavorable for a sunscreen. In spite of its dark excited state, padimate O shows significant re-emission of light in the UV-A (320-400 nm) and energy transfer to a natural component of excised skin, probably collagen. * Krishnan, R. and T.M. Nordlund (2007) J. Fluoresc. DOI 10.1007/s10895-007-0264-3.

  3. Surface Composition and Physical Mixture State of the Regoliths of Outer Solar System Satellites: The Role of Scattering and Absorption by the non-Ice Components and Implications for Rayleigh Absorption and Rayleigh Scattering

    NASA Astrophysics Data System (ADS)

    Clark, R. N.; Perlman, Z. S.; Pearson, N.; Hendrix, A. R.; Cuzzi, J. N.; Cruikshank, D. P.; Bradley, E. T.; Filacchione, G.; Nicholson, P. D.; Hedman, M. M.; Brown, R. H.; Buratti, B. J.; Baines, K. H.; Sotin, C.; Nelson, R. M.

    2014-12-01

    Many outer Solar System satellites have surfaces dominated by water ice and a mysterious material(s) causing strong visible to ultraviolet absorption along with trace other compounds with infrared absorptions, including CO2 and organics. Various mechanisms have been proposed for the UV absorber, including tholins, iron oxides, and nano-sized metallic iron particles (e.g. see Clark et al., 2012, Icarus v218 p831, and references therein). We have constructed extensive laboratory analog measurements and radiative transfer modeling of the materials and scattering conditions that can contribute to the optical properties seen on outer Solar System satellites. We have successfully modeled Rayleigh absorption and Rayleigh scattering to produce spectral shapes typical of those seen in spectra of icy Solar System satellites, including those in the Saturn system observed with the Cassini UVIS and VIMS instruments. While it is easy to create these absorptions with radiative transfer modeling, it has been more difficult to do with laboratory analogs. We are finding that laboratory analogs refine and restricts the possible mixing states of the UV absorber in icy satellite surfaces. We have found that just because a particle is highly absorbing, as in metallic iron, if the particle is not embedded in another matrix, scattering will dominate over absorption and Rayleigh absorption will not be observed. Further, the closer the indices of refraction match between the absorbing particle and the matrix, there will be less scattering and more absorption will occur. But we have also found this to be true with other absorbing material, like Tholins. It is very difficult to obtain the very low reflectances observed in the UV in icy satellite spectra using traditional intimate mixtures, as scattering and first surface reflections contribute significantly to the reflectance. The solution, both from radiative transfer modeling and laboratory analogs point to embedded absorbing materials. For example, nano-phase metallic iron embedded in a less absorbing silicate matrix as meteoritic dust infall onto satellitesurfaces is one explanation. An alternative would be tholins embedded in the ice. Spectral features should be able to distinguish between these and other possibilities and will be explored.

  4. Surface-Plasma Interaction on the Moon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horanyi, M.; Wang, X.; Robertson, S.

    2008-09-07

    The electrostatic levitation and transport of lunar dust remains a controversial science issue since the Apollo era. As a function of time and location, the lunar surface is exposed to solar wind plasma, UV radiation, and/or the plasma environment of our magnetosphere. Dust grains on the lunar surface emit and absorb plasma particles and are exposed to solar UV photons. There are several in situ and remote sensing observations that indicate that dusty plasma processes are responsible for the mobilization and transport of lunar soil. We briefly discuss the existing observations, and report on a series of experiments that addressmore » some of the most relevant processes acting on dusty surfaces exposed to plasmas and UV radiation.« less

  5. Reduction of ultraviolet transmission through cotton T-shirt fabrics with low ultraviolet protection by various laundering methods and dyeing: clinical implications.

    PubMed

    Wang, S Q; Kopf, A W; Marx, J; Bogdan, A; Polsky, D; Bart, R S

    2001-05-01

    The public has long been instructed to wear protective clothing against ultraviolet (UV) damage. Our purpose was to determine the UV protection factor (UPF) of two cotton fabrics used in the manufacture of summer T-shirts and to explore methods that could improve the UPF of these fabrics. Each of the two types of white cotton fabrics (cotton T-shirt and mercerized cotton print cloth) used in this study was divided into 4 treatment groups: (1) water-only (machine washed with water), (2) detergent-only (washed with detergent), (3) detergent-UV absorber (washed with detergent and a UV absorber), and (4) dyes (dyed fabrics). Ultraviolet transmission through the fabrics was measured with a spectrophotometer before and after laundry and dyeing treatments. Based on UV transmission through these fabrics, the UPF values were calculated. Before any treatments, the mean UPFs were 4.94 for the T-shirt fabric and 3.13 for the print cloth. There was greater UVA (320-400 nm) than UVB (280-320 nm) transmission through these fabrics. After 5 washings with water alone and with detergent alone, UPF increased by 51% and 17%, respectively, for the cotton T-shirt fabric. Washing the T-shirt fabrics with detergent plus the UV-absorbing agent increased the UPF by 407% after 5 treatments. Dyeing the fabric blue or yellow increased the UPF by 544% and 212%, respectively. Similar changes in UPFs were observed for the print cloth fabric. The two cotton fabrics used in this study offered limited protection against UV radiation as determined by spectrophotometric analysis. Laundering with detergent and water improves UPF slightly by causing fabric shrinkage. Dyeing fabrics or adding a UV-absorbing agent during laundering substantially reduces UV transmission and increases UPF. More UVA is transmitted through the fabrics than UVB.

  6. Characterization of the adaptive response of grapevine (cv. Tempranillo) to UV-B radiation under water deficit conditions.

    PubMed

    Martínez-Lüscher, J; Morales, F; Delrot, S; Sánchez-Díaz, M; Gomès, E; Aguirreolea, J; Pascual, I

    2015-03-01

    This work aims to characterize the physiological response of grapevine (Vitis vinifera L.) cv. Tempranillo to UV-B radiation under water deficit conditions. Grapevine fruit-bearing cuttings were exposed to three levels of supplemental biologically effective UV-B radiation (0, 5.98 and 9.66kJm(-2)day(-1)) and two water regimes (well watered and water deficit), in a factorial design, from fruit-set to maturity under glasshouse-controlled conditions. UV-B induced a transient decrease in net photosynthesis (Anet), actual and maximum potential efficiency of photosystem II, particularly on well watered plants. Methanol extractable UV-B absorbing compounds (MEUVAC) concentration and superoxide dismutase activity increased with UV-B. Water deficit effected decrease in Anet and stomatal conductance, and did not change non-photochemical quenching and the de-epoxidation state of xanthophylls, dark respiration and photorespiration being alternative ways to dissipate the excess of energy. Little interactive effects between UV-B and drought were detected on photosynthesis performance, where the impact of UV-B was overshadowed by the effects of water deficit. Grape berry ripening was strongly delayed when UV-B and water deficit were applied in combination. In summary, deficit irrigation did not modify the adaptive response of grapevine to UV-B, through the accumulation of MEUVAC. However, combined treatments caused additive effects on berry ripening. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  7. Topically Applied Carvedilol Attenuates Solar Ultraviolet Radiation Induced Skin Carcinogenesis.

    PubMed

    Huang, Kevin M; Liang, Sherry; Yeung, Steven; Oiyemhonlan, Etuajie; Cleveland, Kristan H; Parsa, Cyrus; Orlando, Robert; Meyskens, Frank L; Andresen, Bradley T; Huang, Ying

    2017-10-01

    In previous studies, the β-blocker carvedilol inhibited EGF-induced epidermal cell transformation and chemical carcinogen-induced mouse skin hyperplasia. As exposure to ultraviolet (UV) radiation leads to skin cancer, the present study examined whether carvedilol can prevent UV-induced carcinogenesis. Carvedilol absorbs UV like a sunscreen; thus, to separate pharmacological from sunscreen effects, 4-hydroxycarbazole (4-OHC), which absorbs UV to the same degree as carvedilol, served as control. JB6 P + cells, an established epidermal model for studying tumor promotion, were used for evaluating the effect of carvedilol on UV-induced neoplastic transformation. Both carvedilol and 4-OHC (1 μmol/L) blocked transformation induced by chronic UV (15 mJ/cm 2 ) exposure for 8 weeks. However, EGF-mediated transformation was inhibited by only carvedilol but not by 4-OHC. Carvedilol (1 and 5 μmol/L), but not 4-OHC, attenuated UV-induced AP-1 and NF-κB luciferase reporter activity, suggesting a potential anti-inflammatory activity. In a single-dose UV (200 mJ/cm 2 )-induced skin inflammation mouse model, carvedilol (10 μmol/L), applied topically after UV exposure, reduced skin hyperplasia and the levels of cyclobutane pyrimidine dimers, IL1β, IL6, and COX-2 in skin. In SKH-1 mice exposed to gradually increasing levels of UV (50-150 mJ/cm 2 ) three times a week for 25 weeks, topical administration of carvedilol (10 μmol/L) after UV exposure increased tumor latency compared with control (week 18 vs. 15), decreased incidence and multiplicity of squamous cell carcinomas, while 4-OHC had no effect. These data suggest that carvedilol has a novel chemopreventive activity and topical carvedilol following UV exposure may be repurposed for preventing skin inflammation and cancer. Cancer Prev Res; 10(10); 598-606. ©2017 AACR . ©2017 American Association for Cancer Research.

  8. Responses of photosynthetic properties and chloroplast ultrastructure of two moss crusts from a desert biological soil crust to supplementary UV-B radiation

    NASA Astrophysics Data System (ADS)

    Hui, Rong; Li, Xinrong; Zhao, Yang; Pan, Yanxia

    2016-04-01

    Our understanding of plant responses to supplementary ultraviolet-B (UV-B) radiation due to stratospheric ozone depletion has improved over recent decades. However, research on biological soil crusts (BSCs) is scarce and it remains controversial. Laboratory studies were conducted to investigate the influence of UV-B radiation on the Bryum argenteum and Didymodon vinealis isolated from BSCs, which are both dominant species in moss crusts found within patches of shrubs and herbs in the Tengger Desert of northern China. The aim of the current work was to evaluate whether supplementary UV-B radiation affected photosynthetic properties and chloroplast ultrastructure of two moss crusts and whether response differences were observed between the crusts. Four levels of UV-B radiation of 2.75 (control), 3.08, 3.25, and 3.41 W m-2 was achieved using fluorescence tube systems for 10 days, simulating 0, 6, 9, and 12% of stratospheric ozone at the latitude of Shapotou, respectively. We measured photosynthetic apparatus as assessed by chlorophyll a fluorescence parameters, photosynthetic pigment contents, and observations of chloroplast ultrastructure. Additionally, soluble proteins and UV-B absorbing compounds were simultaneously investigated. The results of this study showed that chlorophyll a fluorescence parameters (i.e., the maximal quantum yield of PSII photochemistry, the effective quantum yield of PSII photochemistry, and photochemical quenching coefficient), photosynthetic pigment contents, soluble protein contents, total flavonoid contents and the ultrastructure were negatively influenced by elevated UV-B radiation and the degree of detrimental effects significantly increased with the intensity of UV-B radiation. Moreover, results demonstrated that the negative effects on photosynthesis and chloroplast ultrastructure were more serious in B. argenteum than that in D. vinealis. These results may not only provide a potential mechanism for supplemental UV-B effects on photosynthesis of moss crusts, but also establish a theoretical basis for further studies of adaptation and response mechanisms of desert ecosystems under further ozone depletion.

  9. Photodegradation inhibitors for polyacrylonitrile/Ag (PAN/Ag) films. Annual report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sergides, C.A.; Chughtai, A.R.; Smith, D.M.

    1985-09-01

    Three types of UV stabilizers have been investigated for the photostabilization of PAN/Ag films. First, the effect of UV-absorber stabilizers, like the hydrohybenzophenone derivatives (UVINUL SERIES, BASF) absorbing UV radiation in the same region as PAN, was studied. Such additives generally had little effect, while in some cases, photodegradation of PAN was enhanced because of photosensitization. Second, the effect of quencher stabilizers like nickel chelate complexes (Irgastab 2002, CIBA-GEIGY) on the photodegradation of PAN/Ag films was examined. They resulted in marked decreases in the photodegradation of the polymer. Thirdly, antioxidant stabilizers, such as 2,6-di-tert-butyl-4-methylphenol derivatives (Irganox 1010, CIBA-GEIGY), were studiedmore » and also found to have a significant inhibiting effect on the photodegradation of PAN. Increasing the concentration of an effective stabilizer was observed to further decrease the photodegradation. The stabilizer concentration was kept generally low, and a combination of 1% wt antioxidant (Irganox 1010) and 0.5% wt quencher (Irgastab 2002) proved to be optimum. Irganox 1010 and Irgastab 2002 in separate preliminary experiments (in the absence of the polymer) were found to be stable to ultraviolet radiation of air mass one (WG 305).« less

  10. Solar UVB response of bioactives in strawberry (Fragaria × ananassa Duch. L.): a comparison of protected and open-field cultivation.

    PubMed

    Josuttis, Melanie; Dietrich, Helmut; Treutter, Dieter; Will, Frank; Linnemannstöns, Ludger; Krüger, Erika

    2010-12-22

    Strawberries (Fragaria × ananassa Duch. cvs. Everest, Elsanta) were grown in a tunnel covered with two films, which were distinguished in their ultraviolet transparency, as well as under open-field conditions. One applied film was not transparent for UVB radiation, and the second film transmitted 70% of UVB radiation. During the present study, the nutritional value and quality parameters of the fruits were evaluated. Strawberries were UV-unresponsive in view of the content of ascorbic acid and sum parameters like total anthocyanins and antioxidant capacity measured with TEAC (trolox equivalent antioxidant capacity), ORAC (oxygen radical absorbance capacity) and total phenols. These parameters were mainly affected by sampling date and cultivar. However, HPLC analysis showed that individual phenolics were affected in the absence of UV radiation. The content of the anthocyanin cyanidin 3-glucoside and the flavonols quercetin 3-glucuronide and kaempferol 3-glucoside was decreased in the fruits grown under UV blocking film compared to open-field grown strawberries. By means of the UV transparent film the content of the mentioned flavonoids could be enhanced up to similar amounts like in open-field grown strawberries. All other phenolics were not consistently affected by UV radiation. This result was independent of cultivar.

  11. Reproductive, morphological, and phytochemical responses of Arabidopsis thaliana ecotypes to enhanced UV-B radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trumbull, V.L.; McCloud, E.S.; Paige, K.N.

    1994-06-01

    Two ecotypes of Arabidopsis thaliana, collected from Libya and Norway, were grown in the greenhouse under. UV-B doses of 0 and 10.5 kJ m[sup [minus]2] UV-B[sub BE]. The high UV-B dose simulated midsummer ambient conditions over Libya and a 40% reduction in stratospheric ozone over Norway. The Libyan ectotype, which originated from latitudes where solar UV-B is high, showed no UV-B induced damage to plant growth. However the Norwegian ecotype, which originated from latitudes where solar UV-B is low, showed a significant reduction in plant height, inflorescence weight, and rosette weight in response to enhanced UV-B. Although fruit and seedmore » number for both ecotypes were unaffected by enhanced UV-B radiation the germination success of the seeds harvested from the irradiated Norwegian plants were significantly reduced. The two ecotypes also differed with respect to their accumulation of kaempferol, a putative UV-B protective filter. The Libyan ecotype increased kaempferol concentration by 38% over the 0 kJ treatment whereas the Norwegian ecotype increased by only 15%. These data suggest that, for these ecotypes, variation in UV-B sensitivity may be explained by the differential induction of UV-absorbing leaf pigments.« less

  12. Chemiexcitation of Melanin Derivatives Induces DNA Photoproducts Long after UV Exposure

    PubMed Central

    Premi, Sanjay; Wallisch, Silvia; Mano, Camila M.; Weiner, Adam B.; Bacchiocchi, Antonella; Wakamatsu, Kazumasa; Bechara, Etelvino J. H.; Halaban, Ruth; Douki, Thierry; Brash, Douglas E.

    2015-01-01

    Mutations in sunlight-induced melanoma arise from cyclobutane pyrimidine dimers (CPD), DNA photoproducts that are typically created picoseconds after an ultraviolet (UV) photon is absorbed at thymine or cytosine. Here we show that in melanocytes, CPD are generated for >3 hours after exposure to UVA, a major component of the radiation in sunlight and in tanning beds. These “dark CPD” constitute the majority of CPD and include the cytosine-containing CPD that initiate UV-signature C→T mutations. Dark CPD arise when UV-induced reactive oxygen and nitrogen species combine to excite an electron in fragments of the pigment melanin. This creates a quantum triplet state that has the energy of a UV photon but that induces CPD by energy transfer to DNA in a radiation-independent manner. Melanin may thus be carcinogenic as well as protective against cancer. These findings also validate the long-standing suggestion that chemically-generated excited electronic states are relevant to mammalian biology. PMID:25700512

  13. Assessing the effects of ultraviolet radiation on the photosynthetic potential in Archean marine environments

    NASA Astrophysics Data System (ADS)

    Avila-Alonso, Dailé; Baetens, Jan M.; Cardenas, Rolando; de Baets, Bernard

    2017-07-01

    In this work, the photosynthesis model presented by Avila et al. in 2013 is extended and more scenarios inhabited by ancient cyanobacteria are investigated to quantify the effects of ultraviolet (UV) radiation on their photosynthetic potential in marine environments of the Archean eon. We consider ferrous ions as blockers of UV during the Early Archean, while the absorption spectrum of chlorophyll a is used to quantify the fraction of photosynthetically active radiation absorbed by photosynthetic organisms. UV could have induced photoinhibition at the water surface, thereby strongly affecting the species with low light use efficiency. A higher photosynthetic potential in early marine environments was shown than in the Late Archean as a consequence of the attenuation of UVC and UVB by iron ions, which probably played an important role in the protection of ancient free-floating bacteria from high-intensity UV radiation. Photosynthetic organisms in Archean coastal and ocean environments were probably abundant in the first 5 and 25 m of the water column, respectively. However, species with a relatively high efficiency in the use of light could have inhabited ocean waters up to a depth of 200 m and show a Deep Chlorophyll Maximum near 60 m depth. We show that the electromagnetic radiation from the Sun, both UV and visible light, could have determined the vertical distribution of Archean marine photosynthetic organisms.

  14. Exclusion of solar UV radiation improves photosynthetic performance and yield of wheat varieties.

    PubMed

    Kataria, Sunita; Guruprasad, K N

    2015-12-01

    Field studies were conducted to determine the potential for alterations in photosynthetic performance and grain yield of four wheat (Triticum aestivum) varieties of India- Vidisha, Purna, Swarna and Naveen Chandausi by ambient ultraviolet radiation (UV). The plants were grown in specially designed UV exclusion chambers, wrapped with filters that excluded UV-B (<315 nm), UV-A/B (<400 nm) or transmitted ambient UV or lacked filters. The results indicated that solar UV exclusion increased the leaf mass per area ratio, leaf weight ratio and chlorophylls per unit area of flag leaves in all the four varieties of wheat. Polyphasic chlorophyll a fluorescence transients from the flag leaves of UV excluded wheat plants gave a higher fluorescence yield. Exclusion of solar UV significantly enhanced photosynthetic performance as a consequence of increased efficiency of PS II, performance index (PIABS) and rate of photosynthesis in the flag leaves of wheat varieties along with a remarkable increase in carbonic anhydrase, Rubisco and nitrate reductase activities. This additional fixation of carbon and nitrogen by exclusion of UV was channelized towards the improvement in grain yield of wheat varieties as there was a decrease in the UV-B absorbing substances and an increase in soluble protein content in flag leaves of all the four varieties of wheat. The magnitude of response for UV exclusion for all the measured parameters was higher in two varieties of wheat Vidisha and Purna as compared to Swarna and Naveen Chandausi. Cumulative stress response index (CSRI) for each variety was developed from the cumulative sum of physiological and yield parameters such as leaf mass area ratio of flag leaf, total chlorophyll content, performance index at absorption basis, rate of photosynthesis and grain yield. All the varieties had a negative CSRI, demonstrating a negative impact of ambient UV radiation. Naveen Chandausi and Swarna are less sensitive to ambient UV radiation; Vidisha is more sensitive to both UV-A and UV-B and Purna is more sensitive to ambient UV-B radiation. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  15. An essential role for platelet-activating factor in activating mast cell migration following ultraviolet irradiation

    PubMed Central

    Chacón-Salinas, Rommel; Chen, Limo; Chávez-Blanco, Alma D.; Limón-Flores, Alberto Y.; Ma, Ying; Ullrich, Stephen E.

    2014-01-01

    The UVB (290–320 nm) radiation in sunlight is responsible for inducing skin cancer. Exposure to UV radiation is also immunosuppressive, and the systemic immune suppression induced by UV is a well-recognized risk factor for cancer induction. As UVB radiation is absorbed within the upper layers of the skin, indirect mechanisms must play a role in activating systemic immune suppression. One prominent example is mast cell migration, which from the skin to the draining LN is an essential step in the cascade of events leading to immune suppression. What triggers mast cell migration is not entirely clear. Here, we tested the hypothesis that PAF, a lipid mediator of inflammation produced by the skin in response to UV exposure, is involved. Mast cell-deficient mice (KitW-sh/W-sh) are resistant to the suppressive effect of UV radiation, and reconstituting mast cell-deficient mice with normal bone marrow-derived mast cells restores susceptibility to immunosuppression. However, when mast cells from PAFR−/− mice were used, the reconstituted mice were not susceptible to the suppressive effects of UV. Furthermore, PAFR−/− mice showed impaired UV-induced mast cell migration when compared with WT mice. Finally, injecting PAF into WT mice mimicked the effect of UV irradiation and induced mast cell migration but not in PAFR−/− mice. Our findings indicate that PAFR binding induces mast cells to migrate from the skin to the LNs, where they mediate immune suppression. PMID:24009177

  16. Interpreting the Ultraviolet Aerosol Index Observed with the OMI Satellite Instrument to Understand Absorption by Organic Aerosols: Implications for Atmospheric Oxidation and Direct Radiative Effects

    NASA Technical Reports Server (NTRS)

    Hammer, Melanie S.; Martin, Randall V.; Donkelaar, Aaron van; Buchard, Virginie; Torres, Omar; Ridley, David A.; Spurr, Robert J. D.

    2016-01-01

    Satellite observations of the ultraviolet aerosol index (UVAI) are sensitive to absorption of solar radiation by aerosols; this absorption affects photolysis frequencies and radiative forcing. We develop a global simulation of the UVAI using the 3-D chemical transport model GEOSChem coupled with the Vector Linearized Discrete Ordinate Radiative Transfer model (VLIDORT). The simulation is applied to interpret UVAI observations from the Ozone Monitoring Instrument (OMI) for the year 2007. Simulated and observed values are highly consistent in regions where mineral dust dominates the UVAI, but a large negative bias (-0.32 to -0.97) exists between simulated and observed values in biomass burning regions. We determine effective optical properties for absorbing organic aerosol, known as brown carbon (BrC), and implement them into GEOS-Chem to better represent observed UVAI values over biomass burning regions. The inclusion of absorbing BrC decreases the mean bias between simulated and OMI UVAI values from -0.57 to -0.09 over West Africa in January, from -0.32 to +0.0002 over South Asia in April, from -0.97 to -0.22 over southern Africa in July, and from -0.50 to +0.33 over South America in September. The spectral dependence of absorption after including BrC in the model is broadly consistent with reported observations for biomass burning aerosol, with absorbing Angstrom exponent (AAE) values ranging from 2.9 in the ultraviolet (UV) to 1.3 across the UV-Near IR spectrum. We assess the effect of the additional UV absorption by BrC on atmospheric photochemistry by examining tropospheric hydroxyl radical (OH) concentrations in GEOS-Chem. The inclusion of BrC decreases OH by up to 30% over South America in September, up to 20% over southern Africa in July, and up to 15% over other biomass burning regions. Global annual mean OH concentrations in GEOS-Chem decrease due to the presence of absorbing BrC, increasing the methyl chloroform lifetime from 5.62 to 5.68 years, thus reducing the bias against observed values. We calculate the direct radiative effect (DRE) of BrC using GEOS-Chem coupled with the radiative transfer model RRTMG (GC-RT). Treating organic aerosol as containing more strongly absorbing BrC changes the global annual mean all-sky top of atmosphere (TOA) DRE by +0.03Wm(exp -2) and all-sky surface DRE by -0.08Wm(exp -2). Regional changes of up to +0.3Wm(exp -2) at TOA and down to -1.5Wm(exp -2) at the surface are found over major biomass burning regions.

  17. Liposomogenic UV Absorbers are Water-Resistant on Pig Skin-A Model Study With Relevance for Sunscreens.

    PubMed

    Herzog, Bernd; Hüglin, Dietmar; Luther, Helmut

    2017-02-01

    An important property of sunscreens is their water resistance after the application on human skin. In this work, the hypothesis that UV absorber molecules which are able to form liposomes, so-called liposomogenic UV absorbers, show better water resistance on a pig skin model than UV-absorbing molecules lacking this ability was tested. The assumption behind is that molecules which can form liposomes are able to integrate into the stratum corneum lipids of the skin. Three different liposomogenic UV absorbers were synthesized and their behavior investigated, leading to the confirmation of the hypothesis. With one of the liposomogenic UV absorbers, it was possible to show the integration of the UV absorber molecules into the bilayers of another liposome consisting of phosphatidylcholine, supporting the assumption that liposomogenic UV absorbers exhibit improved water resistance because they integrate into the skin lipids. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  18. Problems in Assessment of the UV Penetration into Natural Waters from Space-based Measurements

    NASA Technical Reports Server (NTRS)

    Vasilkov, Alexander P.; Herman, Jay; Krotkov, Nickolay A.; Kahru, Mati; Mitchell, B. Greg; Hsu, Christina; Bhartia, P. K. (Technical Monitor)

    2002-01-01

    Satellite instruments currently provide global maps of surface UV (ultraviolet) irradiance by combining backscattered radiance data with radiative transfer models. The models are often limited by uncertainties in physical input parameters of the atmosphere and surface. Global mapping of the underwater UV irradiance creates further challenges for the models. The uncertainties in physical input parameters become more serious because of the presence of absorbing and scattering quantities caused by biological processes within the oceans. In this paper we summarize the problems encountered in the assessment of the underwater UV irradiance from space-based measurements, and propose approaches to resolve the problems. We have developed a radiative transfer scheme for computation of the UV irradiance in the atmosphere-ocean system. The scheme makes use of input parameters derived from satellite instruments such as TOMS (Total Ozone Mapping Spectrometer) and SeaWiFS (Sea-viewing Wide Field-of-view Sensor). The major problem in assessment of the surface UV irradiance is to accurately quantify the effects of clouds. Unlike the standard TOMS UV algorithm, we use the cloud fraction products available from SeaWiFS and MODIS (Moderate Resolution Imaging Spectrometer) to calculate instantaneous surface flux at the ocean surface. Daily UV doses can be calculated by assuming a model of constant cloudiness throughout the day. Both SeaWiFS and MODIS provide some estimates of seawater optical properties in the visible. To calculate the underwater UV flux the seawater optical properties must be extrapolated down to shorter wavelengths. Currently, the problem of accurate extrapolation of visible data down to the UV spectral range is not solved completely, and there are few available measurements. The major difficulty is insufficient correlation between photosynthetic and photoprotective pigments of phytoplankton absorbing in the visible and UV respectively. We propose to empirically parameterize seawater absorption in the UV on a basis of available data sets of bio-optical measurements from a variety of ocean waters. Another problem is the lack of reliable data on pure seawater absorption in the UV. Laboratory measurements of the UV absorption of both pure water and pure seawater are required.

  19. The impact of solar UV radiation on the early biosphere

    NASA Astrophysics Data System (ADS)

    Horneck, G.

    2007-08-01

    Stratospheric ozone, photochemically produced from atmospheric oxygen, is a protective filter of the Earth's atmosphere by absorbing most of the biologically harmful UV radiation of our sun in the UV-C (190-280 nm) and short wavelength-region of the UV-B (280-315 nm). Numerous lines of isotopic and geologic evidence suggest that the Archean atmosphere was essentially anoxic. As a result the column abundance of ozone would have been insufficient to affect the surface UV radiation environment. Thus, as well as UV-B radiation, UV-C radiation would have penetrated to the Earth's surface with its associated biological consequences. The history of this ultraviolet stress for the early Earth has been determined from theoretical data and data obtained in Earth orbit on the inactivation of Bacillus subtilis spores under a simulated ozone layer of different thicknesses. Although the UV-C and UV-B regions contribute only 2 % of the entire solar extraterrestrial irradiance, photobiological experiments in space have demonstrated a high mutagenicity and lethality of this UV range to living organisms. The reason for these severe effects of extraterrestrial solar UV radiation - compared to conditions on present-day Earth - lies in the absorption characteristics of the DNA, which is the decisive target for inactivation and mutation induction at this UV range. Being a strong mutagen, UV-radiation is considered as a powerful promoter of biological evolution on the one hand, one the other hand, it may have deleterious consequences to individual cells and organisms, e.g. by causing inactivation, mutations or cancer induction. In response to potential harmful effects of environmental UV radiation, life on Earth has developed several strategies of survival, either avoiding exposure to UV radiation or restoring UV damage. Mechanisms of avoidance of exposure to UV radiation include (i) moving away from the UV radiation into shadowed areas, which requires the development of UV radiation sensing mechanisms; (ii) application of external shielding, such as covering by mud, sand or rock material; (iii) development of intrinsic UV screening pigments, such as tanning, inductive flavonoid production of plants, intracellular mycosporin production in cyanobacteria, (iv) accumulation of antioxidants and quenching substances. However, if UV damage has been induced - in spite of all avoidance efforts, organisms may restore their functionality by numerous repair processes. Repair pathways of a rich diversity and functional universality include (i) direct repair with the reversal of photochemical abnormalities, e.g. in the DNA; (ii) recombination repair removing the UV-induced abnormality by homologous recombination; and (iii) excision repair, where the section of the DNA strand containing the abnormality is removed and a repair patch is synthesized using the intact strand as a template. In addition to efficient repair systems for radiation-induced DNA injury, life has developed a variety of defense mechanisms, such as the increase in the production of stress proteins and the activation of the immune defence system. Some of these capacities have certainly already been evolved in the early biosphere, when it was exposed to the extended UV-spectrum of the sun. Only since the early Proterozoic, due to a rapid rise in the atmospheric oxygen concentration and consequently a photochemical built up of the stratospheric ozone layer, a more moderate UV radiation climate prevailed with wavelengths shorter than 295 nm being effectively cut off.

  20. Multiple scattering calculation of the middle ultraviolet reaching the ground. [SST effects on ozone layer

    NASA Technical Reports Server (NTRS)

    Shettle, E. P.; Green, A. E. S.

    1974-01-01

    An investigation is conducted regarding the increase in the UV radiation as a function of wavelength due to changes in the amounts of ozone and various other parameters affecting the radiation in the atmosphere. Attention is given to the methods that can be used to solve the problem of the transfer of radiation through an absorbing and scattering atmosphere which includes aerosols. The multiple channel solution reported by Mudgett and Richards' (1971) is extended to vertically inhomogeneous atmospheres.

  1. The effect of gamma irradiation on rice protein aqueous solution

    NASA Astrophysics Data System (ADS)

    Baccaro, Stefania; Bal, Oya; Cemmi, Alessia; Di Sarcina, Ilaria

    2018-05-01

    The use of proteins as natural biopolymers are sensibly increasing in several application fields such as food industry, packaging and environment protection. In particular, rice proteins (RP) present good nutritional, hypoallergenic and healthful properties very interesting for human consumption. Since ionizing radiation can be successfully applied on protein containing systems involved in different industrial processes, this work aims to determine the effect of gamma radiation on 5 wt%-7.5 wt% RP aqueous solutions in a wide range of absorbed doses up to around 40 kGy. The changes of RP secondary and tertiary structures and their chemical composition were followed by UV-VIS absorbance spectroscopy, luminescence analysis and pH measurements. The experimental data showed the occurrence of the unfolding of RP chains with the increase of the absorbed dose and the formation of new molecules, due to the reaction among tryptophane and tyrosine amino acids and the radical species induced by gamma radiation. The results are also confirmed by the modification of the pH values measured for the irradiated solutions.

  2. Short- and long-term physiological responses of grapevine leaves to UV-B radiation.

    PubMed

    Martínez-Lüscher, J; Morales, F; Delrot, S; Sánchez-Díaz, M; Gomés, E; Aguirreolea, J; Pascual, I

    2013-12-01

    The present study aimed at evaluating the short- and long-term effects of UV-B radiation on leaves of grapevine Vitis vinifera (cv. Tempranillo). Grapevine fruit-bearing cuttings were exposed to two doses of supplemental biologically effective UV-B radiation (UV-BBE) under glasshouse-controlled conditions: 5.98 and 9.66kJm(-2)d(-1). The treatments were applied either for 20d (from mid-veraison to ripeness) or 75d (from fruit set to ripeness). A 0kJm(-2)d(-1) UV-B treatment was included as control. The main effects of UV-B were observed after the short-term exposure (20d) to 9.66kJm(-2)d(-1). Significant decreases in net photosynthesis, stomatal conductance, sub-stomatal CO2 concentration, the actual photosystem II (PSII) efficiency, total soluble proteins and de-epoxidation state of the VAZ cycle were observed, whereas the activities of several antioxidant enzymes increased significantly. UV-B did not markedly affect dark respiration, photorespiration, the maximum potential PSII efficiency (Fv/Fm), non-photochemical quenching (NPQ), as well as the intrinsic PSII efficiency. However, after 75d of exposure to 5.98and 9.66kJm(-2)d(-1) UV-B most photosynthetic and biochemical variables were unaffected and there were no sign of oxidative damage in leaves. The results suggest a high long-term acclimation capacity of grapevine to high UV-B levels, associated with a high accumulation of UV-B absorbing compounds in leaves, whereas plants seemed to be tolerant to moderate doses of UV-B. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  3. The Protective Role of Melanin Against UV Damage in Human Skin

    PubMed Central

    Brenner, Michaela; Hearing, Vincent J.

    2009-01-01

    Human skin is repeatedly exposed to ultraviolet radiation (UVR) that influences the function and survival of many cell types and is regarded as the main causative factor in the induction of skin cancer. It has been traditionally believed that skin pigmentation is the most important photoprotective factor, since melanin, besides functioning as a broadband UV absorbent, has antioxidant and radical scavenging properties. Besides, many epidemiological studies have shown a lower incidence for skin cancer in individuals with darker skin compared to those with fair skin. Skin pigmentation is of great cultural and cosmetic importance, yet the role of melanin in photoprotection is still controversial. This article outlines the major acute and chronic effects of UV radiation on human skin, the properties of melanin, the regulation of pigmentation and its effect on skin cancer prevention. PMID:18435612

  4. Plant Responses to Increased UV-B Radiation: A Research Project

    NASA Technical Reports Server (NTRS)

    DAntoni, H. L.; Skiles, J. W.; Armstrong, R.; Coughlan, J.; Daleo, G.; Mayoral, A.; Lawless, James G. (Technical Monitor)

    1994-01-01

    Ozone decrease implies more ultraviolet-B (UV-B) radiation reaching the surface of the Earth. Increased UV-B radiation triggers responses by living organisms. Despite the large potential impacts on vegetation, little is known about UV-B effects on terrestrial ecosystems. Long-term ecological studies are needed to quantify the effects of increased UV radiation on terrestrial ecosystems, asses the risks, and produce reliable data for prediction. Screening pigments are part of one of the protective mechanism in plants. Higher concentrations of screening pigments in leaves may be interpreted as a response to increased UV radiation. If the screening effect is not sufficient, important molecules will be disturbed by incoming radiation. Thus, genetics, photosynthesis, growth, plant and leaf shape and size, and pollen grains may be affected. This will have an impact on ecosystem dynamics, structure and productivity. It is necessary to monitor selected terrestrial ecosystems to permit detection and interpretation of changes attributable to global climate change and depleted ozone shield. The objectives of this project are: (1) To identify and measure indicators of the effects of increased solar UV-B radiation on terrestrial plants; (2) to select indicators with the greatest responses to UV-B exposure; (3) to test, adapt or create ecosystem models that use the information gathered by this project for prediction and to enhance our understanding of the effects of increased UV-B radiation on terrestrial ecosystems. As a first step to achieve these objectives we propose a three-year study of forest and steppe vegetation on the North slope of the Brooks Range (within the Arctic circle, in Alaska), in the Saguaro National Monument (near Tucson, Arizona) and in the forests and steppes of Patagonia (Argentina). We selected (1) vegetation north of the Polar Circle because at 70N there is 8% risk of plant damage due to increased UV-B radiation; (2) the foothills of Catalina Mountains because there is anecdotal evidence of plant damage on the saguaros that has been linked to increased UV radiation, and (3) the forests of Nothofagus spp. and the steppe of Patagonia where the risk of plant damage at 35S is 5% and increases to as much as 15% at 55S due to increased UV-B radiation. Measurements of UV-B radiation impinging on the surface at 55S largely exceed the predicted UV-B radiation values at 50 latitude and 0% ozone depletion. Preliminary HPLC analyses of UV-B absorbing compounds in Nothofagus antartica, N. pumilio, N. betuloides and Rumex sp. in natural conditions show species-specific patterns. The spectrum of N. antartica grown at 38S differs significantly from that of N. antartica in natural conditions in Ushuaia (55S). These results suggest that the selected main area (Patagonia) is appropriate for assessing the problem and its magnitude and that Nothofagus is appropriate for our study.

  5. Photodegradation of the antimicrobial triclocarban in aqueous systems under ultraviolet radiation.

    PubMed

    Ding, Shi-Ling; Wang, Xi-Kui; Jiang, Wen-Qiang; Meng, Xia; Zhao, Ru-Song; Wang, Chen; Wang, Xia

    2013-05-01

    This work aimed to investigate the effectiveness of ultraviolet (UV) radiation on the degradation of the antimicrobial triclocarban (TCC). We investigated the effects of several operational parameters, including solution pH, initial TCC concentration, photocatalyst TiO₂ loading, presence of natural organic matter, and most common anions in surface waters (e.g., bicarbonate, nitrate, and sulfate). The results showed that UV radiation was very effective for TCC photodegradation and that the photolysis followed pseudo-first-order kinetics. The TCC photolysis rate was pH dependent and favored at high pH. A higher TCC photolysis rate was observed by direct photolysis than TiO₂ photocatalysis. The presence of the inorganic ions bicarbonate, nitrate, and sulfate hindered TCC photolysis. Negative effects on TCC photolysis were also observed by the addition of humic acid due to competitive UV absorbance. The main degradation products of TCC were tentatively identified by gas chromatograph with mass spectrometer, and a possible degradation pathway of TCC was also proposed.

  6. Development of absorbing aerosol index simulator based on TM5-M7

    NASA Astrophysics Data System (ADS)

    Sun, Jiyunting; van Velthoven, Peter; Veefkind, Pepijn

    2017-04-01

    Aerosols alter the Earth's radiation budget directly by scattering and absorbing solar and thermal radiation, or indirectly by perturbing clouds formation and lifetime. These mechanisms offset the positive radiative forcing ascribed to greenhouse gases. In particular, absorbing aerosols such as black carbon and dust strongly enhance global warming. To quantify the impact of absorbing aerosol on global radiative forcing is challenging. In spite of wide spatial and temporal coverage space-borne instruments (we will use the Ozone Monitoring Instrument, OMI) are unable to derive complete information on aerosol distribution, composition, etc. The retrieval of aerosol optical properties also partly depends on additional information derived from other measurements or global atmospheric chemistry models. Common quantities of great interest presenting the amount of absorbing aerosol are AAOD (absorbing aerosol optical depth), the extinction due to absorption of aerosols under cloud free conditions; and AAI (absorbing aerosol index), a measure of aerosol absorption more directly derivable from UV band observations than AAOD. When comparing model simulations and satellite observations, resemblance is good in terms of the spatial distribution of both parameters. However, the quantitative discrepancy is considerable, indicating possible underestimates of simulated AAI by a factor of 2 to 3. Our research, hence, has started by evaluating to what extent aerosol models, such as our TM5-M7 model, represent the satellite measurements and by identifying the reasons for discrepancies. As a next step a transparent methodology for the comparison between model simulations and satellite observations is under development in the form of an AAI simulator based on TM5-M7.

  7. Fabrication and characterization of UV-emitting nanoparticles as novel radiation sensitizers targeting hypoxic tumor cells

    NASA Astrophysics Data System (ADS)

    Squillante, Michael R.; Jüstel, Thomas; Anderson, R. Rox; Brecher, Charles; Chartier, Daniel; Christian, James F.; Cicchetti, Nicholas; Espinoza, Sara; McAdams, Daniel R.; Müller, Matthias; Tornifoglio, Brooke; Wang, Yimin; Purschke, Martin

    2018-06-01

    Radiation therapy is one of the primary therapeutic techniques for treating cancer, administered to nearly two-thirds of all cancer patients. Although largely effective in killing cancer cells, radiation therapy, like other forms of cancer treatment, has difficulty dealing with hypoxic regions within solid tumors. The incomplete killing of cancer cells can lead to recurrence and relapse. The research presented here is investigating the enhancement of the efficacy of radiation therapy by using scintillating nanoparticles that emit UV photons. UV photons, with wavelengths between 230 nm and 280 nm, are able to inactivate cells due to their direct interaction with DNA, causing a variety of forms of damage. UV-emitting nanoparticles will enhance the treatment in two ways: first by generating UV photons in the immediate vicinity of cancer cells, leading to direct and oxygen-independent DNA damage, and second by down-converting the applied higher energy X-rays into softer X-rays and particles that are more efficiently absorbed in the targeted tumor region. The end result will be nanoparticles with a higher efficacy in the treatment of hypoxic cells in the tumor, filling an important, unmet clinical need. Our preliminary experiments show an increase in cell death using scintillating LuPO4:Pr nanoparticles over that achieved by the primary radiation alone. This work describes the fabrication of the nanoparticles, their physical characterization, and the spectroscopic characterization of the UV emission. The work also presents in vitro results that demonstrate an enhanced efficacy of cell killing with x-rays and a low unspecific toxicity of the nanoparticles.

  8. Scutellaria radix Extract as a Natural UV Protectant for Human Skin.

    PubMed

    Seok, Jin Kyung; Kwak, Jun Yup; Choi, Go Woon; An, Sang Mi; Kwak, Jae-Hoon; Seo, Hyeong-Ho; Suh, Hwa-Jin; Boo, Yong Chool

    2016-03-01

    Ultraviolet (UV) radiation induces oxidative injury and inflammation in human skin. Scutellaria radix (SR, the root of Scutellaria baicalensis Georgi) contains flavonoids with high UV absorptivity and antioxidant properties. The purpose of this study was to examine the potential use of SR extract as an additive in cosmetic products for UV protection. SR extract and its butanol (BuOH) fraction strongly absorbed UV radiation and displayed free radical scavenging activity against 2,2-diphenyl-1-picrylhydrazyl radials and 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) radicals. They also attenuated the UV-induced death of HaCaT cells. Sunscreen creams, with or without supplementation of SR extract BuOH fraction, were tested in vivo in human trials to evaluate potential skin irritation and determine the sun protection factor (SPF). Both sunscreen creams induced no skin irritation. A sunscreen cream containing 24% ZnO showed an SPF value of 17.8, and it increased to 22.7 when supplemented with 5% SR extract BuOH fraction. This study suggests that SR-derived materials are useful as safe cosmetic additives that provide UV protection. Copyright © 2015 John Wiley & Sons, Ltd.

  9. Physical properties of organic particulate UV-absorbers used in sunscreens. I. Determination of particle size with fiber-optic quasi-elastic light scattering (FOQELS), disc centrifugation, and laser diffractometry.

    PubMed

    Herzog, Bernd; Katzenstein, Armin; Quass, Katja; Stehlin, Albert; Luther, Helmut

    2004-03-01

    In this study microparticles consisting of a benzotriazole derivative, which are used as absorbers for UV radiation in cosmetic sunscreens, were investigated. The particles were micronized in presence of a dispersing agent by means of a ball milling process. According to the energy input different particle sizes were produced in the range of 0.16 to 4 microm. The particle sizes obtained after different stages of the micronization process were measured using fiber-optic quasi-elastic light scattering (FOQELS), disc centrifugation, and laser diffractometry. All methods showed satisfactory agreement over the whole range of sizes. With the FOQELS technique the particle size distribution could be resolved to sizes well below 0.1 microm.

  10. Leaf chemical changes induced in Populus trichocarpa by enhanced UV-B radiation and concomitant effects on herbivory by Chrysomela scripta (Coleoptera: Chrysomelidae).

    PubMed

    Warren, Jeffrey M; Bassman, John H; Eigenbrode, Sanford

    2002-11-01

    To assess the potential impact of enhanced ultraviolet-B (UV-B) radiation over two trophic levels, we monitored key leaf chemical constituents and related changes in their concentration to dietary preference and performance of a specialist insect herbivore. Ramets of Populus trichocarpa Torr. & Gray (black cottonwood) were subjected to near zero (0X), ambient (1X) or twice ambient (2X) doses of biologically effective UV-B radiation (UV-B(BE)) in a randomized block design using either a square-wave (greenhouse) or a modulated (field) lamp system. After a 3-month treatment period, apparent photosynthesis was determined in situ and plants were harvested for biomass determination. Leaf subsamples were analyzed for nitrogen, sulfur, chlorophylls, UV-absorbing compounds and protein-precipitable tannins. Effects of changes in these constituents on feeding by Chrysomela scripta Fab. (cottonwood leaf beetle) were determined by (1) adult feeding preference trials and (2) larval growth rate trials. Enhanced UV-B(BE) radiation had minimal effects on photosynthesis, growth, leaf area and biomass distribution. In the greenhouse study, concentrations of foliar nitrogen and chlorophylls increased, but tannins decreased slightly in young leaves exposed to enhanced UV-B(BE) radiation. There were no significant effects on these parameters in the field study. The concentration of methanol-extractable foliar phenolics increased in plants grown with enhanced UV-B(BE) radiation in both the greenhouse and field studies. In feeding preference trials, adult C. scripta chose 2X-treated tissue almost twice as often as 1X-treated tissue in both greenhouse and field studies, but differences were not statistically significant (P = 0.12). In the field study, first instar larvae grown to adult eclosion on 2X-treated leaves had a significant (P < 0.001) reduction in consumption efficiency compared with larvae grown on 1X-treated leaves. We conclude that effects of enhanced UV-B(BE) radiation at the molecular-photochemical level can elicit significant responses at higher trophic levels that may ultimately affect forest canopy structure, plant competitive interactions and ecosystem-level processes.

  11. Chemical and optical changes in freshwater dissolved organic matter exposed to solar radiation

    USGS Publications Warehouse

    Osburn, C.L.; Morris, D.P.; Thorn, K.A.; Moeller, R.E.

    2001-01-01

    We studied the chemical and optical changes in the dissolved organic matter (DOM) from two freshwater lakes and a Sphagnum bog after exposure to solar radiation. Stable carbon isotopes and solid-state 13C-NMR spectra of DOM were used together with optical and chemical data to interpret results from experimental exposures of DOM to sunlight and from seasonal observations of two lakes in northeastern Pennsylvania. Solar photochemical oxidation of humic-rich bog DOM to smaller LMW compounds and to DIC was inferred from losses of UV absorbance, optical indices of molecular weight and changes in DOM chemistry. Experimentally, we observed a 1.2??? enrichment in ??13C and a 47% loss in aromatic C functionality in bog DOM samples exposed to solar UVR. Similar results were observed in the surface waters of both lakes. In late summer hypolimnetic water in humic Lake Lacawac, we observed 3 to 4.5??? enrichments in ??13C and a 30% increase in aromatic C relative to early spring values during spring mixing. These changes coincided with increases in molecular weight and UV absorbance. Anaerobic conditions of the hypolimnion in Lake Lacawac suggest that microbial metabolism may be turning over allochthonous C introduced during spring mixing, as well as autochthonous C. This metabolic activity produces HMW DOM during the summer, which is photochemically labile and isotopically distinct from allochthonous DOM or autochthonous DOM. These results suggest both photooxidation of allochthonous DOM in the epilimnion and autotrophic production of DOM by bacteria in the hypolimnion cause seasonal trends in the UV absorbance of lakes.

  12. Analysis of reflectance spectra of UV-absorbing aerosol scenes measured by SCIAMACHY

    NASA Astrophysics Data System (ADS)

    de Graaf, M.; Stammes, P.; Aben, E. A. A.

    2007-01-01

    Reflectance spectra from 280-1750 nm of typical desert dust aerosol (DDA) and biomass burning aerosol (BBA) scenes over oceans are presented, measured by the space-borne spectrometer Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY). DDA and BBA are both UV-absorbing aerosols, but their effect on the top-of-atmosphere (TOA) reflectance is different due to differences in the way mineral aerosols and smoke reflect and absorb radiation. Mineral aerosols are typically large, inert particles, found in warm, dry continental air. Smoke particles, on the other hand, are usually small particles, although often clustered, chemically very active and highly variable in composition. Moreover, BBA are hygroscopic and over oceans BBA were invariably found in cloudy scenes. TOA reflectance spectra of typical DDA and BBA scenes were analyzed, using radiative transfer simulations, and compared. The DDA spectrum was successfully simulated using a layer with a bimodal size distribution of mineral aerosols in a clear sky. The spectrum of the BBA scene, however, was determined by the interaction between cloud droplets and smoke particles, as is shown by simulations with a model of separate aerosol and cloud layers and models with internally and externally mixed aerosol/cloud layers. The occurrence of clouds in smoke scenes when sufficient water vapor is present usually prevents the detection of optical properties of these aerosol plumes using space-borne sensors. However, the Absorbing Aerosol Index (AAI), a UV color index, is not sensitive to scattering aerosols and clouds and can be used to detect these otherwise obscured aerosol plumes over clouds. The amount of absorption of radiation can be expressed using the absorption optical thickness. The absorption optical thickness in the DDA case was 0.42 (340 nm) and 0.14 (550 nm) for an aerosol layer of optical thickness 1.74 (550 nm). In the BBA case the absorption optical thickness was 0.18 (340 nm) and 0.10 (550 nm) for an aerosol/cloud layer of optical thickness 20.0 (550 nm). However, this reduced the cloud albedo by about 0.2 (340 nm) and 0.15 (550 nm). This method can be an important tool to estimate the global impact of absorption of shortwave radiation by smoke and industrial aerosols inside clouds.

  13. The Methoxyflavonoid Isosakuranetin Suppresses UV-B-Induced Matrix Metalloproteinase-1 Expression and Collagen Degradation Relevant for Skin Photoaging.

    PubMed

    Jung, Hana; Lee, Eunjoo H; Lee, Tae Hoon; Cho, Man-Ho

    2016-09-01

    Solar ultraviolet (UV) radiation is a main extrinsic factor for skin aging. Chronic exposure of the skin to UV radiation causes the induction of matrix metalloproteinases (MMPs), such as MMP-1, and consequently results in alterations of the extracellular matrix (ECM) and skin photoaging. Flavonoids are considered as potent anti-photoaging agents due to their UV-absorbing and antioxidant properties and inhibitory activity against UV-mediated MMP induction. To identify anti-photoaging agents, in the present study we examined the preventative effect of methoxyflavonoids, such as sakuranetin, isosakuranetin, homoeriodictyol, genkwanin, chrysoeriol and syringetin, on UV-B-induced skin photo-damage. Of the examined methoxyflavonoids, pretreatment with isosakuranetin strongly suppressed the UV-B-mediated induction of MMP-1 in human keratinocytes in a concentration-dependent manner. Isosakuranetin inhibited UV-B-induced phosphorylation of mitogen-activated protein kinase (MAPK) signaling components, ERK1/2, JNK1/2 and p38 proteins. This result suggests that the ERK1/2 kinase pathways likely contribute to the inhibitory effects of isosakuranetin on UV-induced MMP-1 production in human keratinocytes. Isosakuranetin also prevented UV-B-induced degradation of type-1 collagen in human dermal fibroblast cells. Taken together, our findings suggest that isosakuranetin has the potential for development as a protective agent for skin photoaging through the inhibition of UV-induced MMP-1 production and collagen degradation.

  14. Mass Loss from the Nuclei of Active Galaxies

    NASA Technical Reports Server (NTRS)

    Crenshaw, Michael; Kraemer, Steven B.; George, Ian M.

    2003-01-01

    Blueshifted absorption lines in the UV and X-ray spectra of active galaxies reveal the presence of massive outflows of ionized gas from their nuclei. The intrinsic UV and X-ray absorbers show large global covering factors of the central continuum source, and the inferred mass loss rates are comparable to the mass accretion rates. Many absorbers show variable ionic column densities which are attributed to a combination of variable ionizing flux and motion of gas into and out of the line of sight . Detailed studies of the intrinsic absorbers. with the assistance of monitoring observations and photoionization models. provide constraints on their kinematics] physical conditions. and locations relative to the central continuum source. which range from the inner nucleus (approx.0.01 pc) to the galactic disk or halo (approx.10 kpc) . Dynamical models that make use of thermal winds. radiation pressure. and/or hydromagnetic flows have reached a level of sophistication that permits comparisons with the observational constraints .

  15. Antioxidant content and ultraviolet absorption characteristics of human tears.

    PubMed

    Choy, Camus Kar Man; Cho, Pauline; Benzie, Iris F F

    2011-04-01

    Dry eye syndrome is a common age-related disorder, and decreased antioxidant/ultraviolet (UV) radiation protection in tears may be part of the cause. This study aimed to compare the tear antioxidant content and flow rate in young and older adults. The total antioxidant content and UV absorbing properties of various commercially available ophthalmic solutions used to alleviate dry eye symptoms were also examined. Minimally stimulated tears were collected from 120 healthy Chinese adults with no ocular pathology. Two age groups were studied: 19 to 29 years (n = 58) and 50 to 75 years (n = 62). Tear samples from each subject and 13 ophthalmic solutions were analyzed for total antioxidant content (as the Ferric Reducing/Antioxidant Power value). Tear flow rates were estimated from time taken to collect a fixed volume of tear fluid. UV absorbance spectra of pooled fresh reflex tear fluid and the ophthalmic solutions were determined. Results showed that the antioxidant content of minimally stimulated tears from older subjects (398 ± 160 μmol/l) was not significantly lower than that of younger subjects (348 ± 159 μmol/l; p = 0.0915). However, there was a significant difference in the tear flow rates between the two groups (p < 0.0001), with the younger group having three to four fold higher flow rate. None of the commercial preparations tested had detectable antioxidant content, and none showed the UV absorption characteristics of natural reflex tears. The effect of low flow rate on the dynamic antioxidant supply to the corneal surface indicates that older subjects have poorer overall defense against photooxidative and other oxidative processes. This could predispose older persons to corneal stress and development of dry eye syndrome. The commercially available artificial tears tested lack both the antioxidant content and UV absorbing characteristics of natural tears. Artificial tears formulations that help restore natural antioxidant and UV absorbing properties to the tear film of the aging eye may help prevent or improve dry eye symptoms and promote ocular health.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larsen, G.

    Research conducted in FY17 used photo-electrochemical methods to investigate the potential for radiationenhanced galvanic coupling in tritium-producing burnable absorber rod (TPBAR) materials. Specifically, a laboratory electrochemical cell was coupled with UV light in order to perform electrochemical opencircuit voltage and galvanic current measurements, techniques that have been used successfully in previous studies to replicate galvanic processes in reactor settings. UV irradiation can mimic reactor-like behavior because, similar to both directly and indirectly ionizing radiation, UV photons with energy greater than the band gap of the material will generate free charge carriers (electrons and holes) and can substantially alter the passivatingmore » effect of metal oxides.« less

  17. Inhibitory Effect of Solar Radiation on Amino Acid Uptake in Chesapeake Bay Bacteria

    PubMed Central

    Bailey, Carmela A.; Neihof, Rex A.; Tabor, Paul S.

    1983-01-01

    The effect of solar radiation on a natural bacterial population from the Chesapeake Bay was evaluated from measured changes in numbers of organisms engaged in amino acid uptake. From July through May, freshly collected water samples were exposed in quartz containers to 3.5 h of total sunlight both with and without UV-absorbing filters. Water samples were subsequently incubated with tritiated amino acids, and the uptake-active bacteria were assayed by microauto-radiography-epifluorescence microscopy. The survival index, defined as the fraction of the uptake-active population that remained active after the exposure to sunlight, ranged from 0.93 to 0.20. Decreased survival was correlated with increased solar intensity. The inhibition of amino acid uptake was attributed not only to the UV-B component of the solar spectrum (280 to 320 nm), but also to longer UV and visible wavelengths. PMID:16346351

  18. Inhibitory effect of solar radiation on amino Acid uptake in chesapeake bay bacteria.

    PubMed

    Bailey, C A; Neihof, R A; Tabor, P S

    1983-07-01

    The effect of solar radiation on a natural bacterial population from the Chesapeake Bay was evaluated from measured changes in numbers of organisms engaged in amino acid uptake. From July through May, freshly collected water samples were exposed in quartz containers to 3.5 h of total sunlight both with and without UV-absorbing filters. Water samples were subsequently incubated with tritiated amino acids, and the uptake-active bacteria were assayed by microauto-radiography-epifluorescence microscopy. The survival index, defined as the fraction of the uptake-active population that remained active after the exposure to sunlight, ranged from 0.93 to 0.20. Decreased survival was correlated with increased solar intensity. The inhibition of amino acid uptake was attributed not only to the UV-B component of the solar spectrum (280 to 320 nm), but also to longer UV and visible wavelengths.

  19. Comprehensive Expression Profiling and Functional Network Analysis of Porphyra-334, One Mycosporine-Like Amino Acid (MAA), in Human Keratinocyte Exposed with UV-radiation.

    PubMed

    Suh, Sung-Suk; Lee, Sung Gu; Youn, Ui Joung; Han, Se Jong; Kim, Il-Chan; Kim, Sanghee

    2017-06-24

    Mycosporine-like amino acids (MAAs) have been highlighted as pharmacologically active secondary compounds to protect cells from harmful UV-radiation by absorbing its energy. Previous studies have mostly focused on characterizing their physiological properties such as antioxidant activity and osmotic regulation. However, molecular mechanisms underlying their UV-protective capability have not yet been revealed. In the present study, we investigated the expression profiling of porphyra-334-modulated genes or microRNA (miRNAs) in response to UV-exposure and their functional networks, using cDNA and miRNAs microarray. Based on our data, we showed that porphyra-334-regulated genes play essential roles in UV-affected biological processes such as Wnt (Wingless/integrase-1) and Notch pathways which exhibit antagonistic relationship in various biological processes; the UV-repressed genes were in the Wnt signaling pathway, while the activated genes were in the Notch signaling. In addition, porphyra-334-regulated miRNAs can target many genes related with UV-mediated biological processes such as apoptosis, cell proliferation and translational elongation. Notably, we observed that functional roles of the target genes for up-regulated miRNAs are inversely correlated with those for down-regulated miRNAs; the former genes promote apoptosis and translational elongation, whereas the latter function as inhibitors in these processes. Taken together, these data suggest that porphyra-334 protects cells from harmful UV radiation through the comprehensive modulation of expression patterns of genes involved in UV-mediated biological processes, and that provide a new insight to understand its functional molecular networks.

  20. The role of a generalized ultraviolet cue for blackbird food selection.

    PubMed

    Werner, Scott J; Tupper, Shelagh K; Carlson, James C; Pettit, Susan E; Ellis, Jeremy W; Linz, George M

    2012-07-16

    Birds utilize ultraviolet (UV) wavelengths for plumage signaling and sexual selection. Ultraviolet cues may also be used for the process of avian food selection. The aim of our study was to investigate whether a UV cue and a postingestive repellent can be used to condition food avoidance in red-winged blackbirds (Agelaius phoeniceus). We found that birds conditioned with an UV-absorbent, postingestive repellent subsequently avoided UV-absorbent food. Thus, the UV-absorbent cue (coupled with 0-20% of the conditioned repellent concentration) was used to maintain avoidance for up to 18 days post-conditioning. Similarly, birds conditioned with the UV-absorbent, postingestive repellent subsequently avoided UV-reflective food. Thus, conditioned avoidance of an UV-absorbent cue can be generalized to an unconditioned, UV-reflective cue for nutrient selection and toxin avoidance. These findings support the hypothesized function of UV vision for avian food selection, the implications of which remain to be explored for the sensory and behavioral ecology within agronomic and natural environments. Published by Elsevier Inc.

  1. A Comparative Study of Melanin Content and Skin Morphology for Three Commonly Used Laboratory Swine (Sus scrofa domestica)

    DTIC Science & Technology

    2012-09-01

    2004, Pg. 475). Note that keratinocytes produce keratin, the primary constituent for hair . Melanosomes enter the hair when it is being formed...to UV radiation, endothelines, histamine, eicosanoids, sex steroids, and vitamin D (Slominski et al., 2004). The role of sex steroids (i.e...absorbed by melanosomes in the epidermis and hair , optical radiation can still penetrate through this layer of the skin into the dermal layer below

  2. Sensitivity of multiangle photo-polarimetry to absorbing aerosol vertical layering and properties: Quantifying measurement uncertainties for ACE requirements

    NASA Astrophysics Data System (ADS)

    Kalashnikova, O. V.; Garay, M. J.; Davis, A. B.; Natraj, V.; Diner, D. J.; Tanelli, S.; Martonchik, J. V.; JPl Team

    2011-12-01

    The impact of tropospheric aerosols on climate can vary greatly based upon relatively small variations in aerosol properties, such as composition, shape and size distributions, as well as vertical layering. Multi-angle polarimetric measurements have been advocated in recent years as an additional tool to better understand and retrieve the aerosol properties needed for improved predictions of aerosol radiative forcing on climate. The central concern of this work is the assessment of the effects of absorbing aerosol properties under measurement uncertainties achievable for future generation multi-angle, polarimetric imaging instruments under ACE mission requirements. As guidelines, the on-orbit performance of MISR for multi-angle intensity measurements and the reported polarization sensitivities of a MSPI prototype were adopted. In particular, we will focus on sensitivities to absorbing aerosol layering and observation-constrained refractive indices (resulting in various single scattering albedos (SSA)) of both spherical and non-spherical absorbing aerosol types. We conducted modeling experiments to determine how the measured Stokes vector elements are affected in UV-NIR range by the vertical distribution, mixing and layering of smoke and dust aerosols, and aerosol SSA under the assumption of a black and polarizing ocean surfaces. We use a vector successive-orders-of-scattering (SOS) and VLIDORT transfer codes that show excellent agreement. Based on our sensitivity studies we will demonstrate advantages and disadvantages of wavelength selection in UV-NIR range to access absorbing aerosol properties. Polarized UV channels do not show particular advantage for absorbing aerosol property characterization due to dominating molecular signal. Polarimetric SSA sensitivity is small, however needed to be considered in the future polarimetric retrievals under ACE-defined uncertainty.

  3. Tolerance to Ultraviolet Radiation of Psychrotolerant Yeasts and Analysis of Their Carotenoid, Mycosporine, and Ergosterol Content.

    PubMed

    Villarreal, Pablo; Carrasco, Mario; Barahona, Salvador; Alcaíno, Jennifer; Cifuentes, Víctor; Baeza, Marcelo

    2016-01-01

    Yeasts colonizing the Antarctic region are exposed to a high ultraviolet radiation evolving mechanisms to minimize the UV radiation damages, such as the production of UV-absorbing or antioxidant compounds like carotenoid pigments and mycosporines. Ergosterol has also been suggested to play a role in this response. These compounds are also economically attractive for several industries such as pharmaceutical and food, leading to a continuous search for biological sources of them. In this work, the UV-C radiation tolerance of yeast species isolated from the sub-Antarctic region and their production of carotenoids, mycosporines, and ergosterol were evaluated. Dioszegia sp., Leuconeurospora sp. (T27Cd2), Rhodotorula laryngis, Rhodotorula mucilaginosa, and Cryptococcus gastricus showed the highest UV-C radiation tolerance. The yeasts with the highest content of carotenoids were Dioszegia sp. (OHK torulene), Rh. laryngis (torulene and lycopene), Rh. mucilaginosa, (torulene, gamma carotene, and lycopene), and Cr. gastricus (2-gamma carotene). Probable mycosporine molecules and biosynthesis intermediates were found in Rh. laryngis, Dioszegia sp., Mrakia sp., Le. creatinivora, and Leuconeurospora sp. (T27Cd2). Ergosterol was the only sterol detected in all yeasts, and M. robertii and Le. creatinivora showed amounts higher than 4 mg g−1. Although there was not a well-defined relation between UV-C tolerance and the production of these three kinds of compounds, the majority of the yeasts with lower amounts of carotenoids showed lower UV-C tolerance. Dioszegia sp., M. robertii, and Le. creatinivora were the greatest producers of carotenoids, ergosterol, and mycosporines, respectively, representing good candidates for future studies intended to increase their production for large-scale applications.

  4. UV/PAR radiations and DOM properties in surface coastal waters of the Canadian shelf of the Beaufort Sea during summer 2009

    NASA Astrophysics Data System (ADS)

    Para, J.; Charrière, B.; Matsuoka, A.; Miller, W. L.; Rontani, J. F.; Sempéré, R.

    2012-11-01

    Water masses from the Beaufort Sea in the Arctic Ocean were evaluated for dissolved organic carbon (DOC), and optical characteristics including UV and PAR diffuse attenuation (Kd), and chromophoric and fluorescent dissolved organic matter (CDOM and FDOM) as part of the MALINA field campaign (30 July to 27 August). Even with relatively low mean daily solar radiation incident on the sea surface (0.12 ± 0.03, 8.46 ± 1.64 and 18.09 ± 4.20 kJ m-2 for UV-B (305 nm), UV-A (380 nm) and PAR, respectively), we report significant light penetration with 10% irradiance depths (Z10% (λ)) reaching 9.5 m for 340 nm (UV-A) radiation in the Eastern sector and 4.5 m in the Mackenzie River influenced area (Western sector). Spectral absorption coefficients (aCDOM (350 nm) (m-1)) were significantly correlated to both diffuse attenuation coefficients (Kd) in the UV-A and UV-B and to DOC concentrations. This indicates CDOM as the dominant attenuator of UV solar radiation and suggests its use as an optical proxy for DOC concentrations in this region. Extrapolating CDOM to DOC relationships, we estimate that ~ 16% of the DOC in the Mackenzie River does not absorb radiation at 350 nm. DOC and CDOM discharges by the Mackenzie River during the MALINA Cruise are estimated as ~ 0.22 TgC and 0.18 TgC, respectively. Three dissolved fluorescent components (C1-C3) were identified by fluorescence Excitation/Emission Matrix Spectroscopy (EEMS) and PARAFAC analysis. Our results showed an in-situ biological component (C1) that co-dominated with a terrestrial humic-like component (C2) in the Mackenzie Delta sector, whereas the protein-like (C3) component dominated in the saltiest waters of the North East sector.

  5. Preparation and characterization of functional poly(vinylidene fluoride) (PVDF) membranes with ultraviolet-absorbing property

    NASA Astrophysics Data System (ADS)

    Dong, Li; Liu, Xiangdong; Xiong, Zhengrong; Sheng, Dekun; Lin, Changhong; Zhou, Yan; Yang, Yuming

    2018-06-01

    We first reported a strategy to prepare functional poly(vinylidene fluoride) (PVDF) membranes with excellent ultraviolet-absorbing property through chemically induced grafting. Herein, the polymerizable ultraviolet (UV) absorber 2-hydroxy-4-(3-methacryloxy-2-hydroxylpropoxy) benzophenone (BPMA) made by ourselves was grafted onto the PVDF chains that have been pretreated with tetraethylammonium hydroxide (TEAH) alkaline solution. Moreover, the effect of experiment conditions such as the alkali and monomer concentrations, alkali treatment time on the UV-absorbing property of the obtained PVDF-g-PBPMA membranes were studied in detail. The chemical structure of the modified membranes was confirmed by 1H NMR, FT-IR and XPS measurements. Meanwhile, the thermal and UV-absorbing properties were characterized by TGA, DSC and UV-Vis spectrophotometer, respectively. The results indicated that BPMA side chains were successfully introduced onto PVDF backbones. Most importantly, the obtained PVDF-g-PBPMA membranes exhibited excellent UV-absorbing property. The transmittance of UV light at 300 nm decreased to as low as 0.02% and the UV light below 388 nm could be completely absorbed by the PVDF-g-PBPMA membrane made under optimal condition.

  6. CUVE - Cubesat UV Experiment: Unveil Venus' UV Absorber with Cubesat UV Mapping Spectrometer

    NASA Astrophysics Data System (ADS)

    Cottini, V.; Aslam, S.; D'Aversa, E.; Glaze, L.; Gorius, N.; Hewagama, T.; Ignatiev, N.; Piccioni, G.

    2017-09-01

    Our Venus mission concept Cubesat UV Experiment (CUVE) is one of ten proposals selected for funding by the NASA PSDS3 Program - Planetary Science Deep Space SmallSat Studies. CUVE concept is to insert a CubeSat spacecraft into a Venusian orbit and perform remote sensing of the UV spectral region using a high spectral resolution point spectrometer to resolve UV molecular bands, observe nightglow, and characterize the unidentified main UV absorber. The UV spectrometer is complemented by an imaging UV camera with multiple bands in the UV absorber main band range for contextual imaging. CUVE Science Objectives are: the nature of the "Unknown" UV-absorber; the abundances and distributions of SO2 and SO at and above Venus's cloud tops and their correlation with the UV absorber; the atmospheric dynamics at the cloud tops, structure of upper clouds and wind measurements from cloud-tracking; the nightglow emissions: NO, CO, O2. This mission will therefore be an excellent platform to study Venus' cloud top atmospheric properties where the UV absorption drives the planet's energy balance. CUVE would complement past, current and future Venus missions with conventional spacecraft, and address critical science questions cost effectively.

  7. Efficiency of ocular UV protection by clear lenses

    PubMed Central

    Rifai, Katharina; Hornauer, Matthias; Buechinger, Ramona; Schoen, Roland; Barraza-Bernal, Maria; Habtegiorgis, Selam; Glasenapp, Carsten; Wahl, Siegfried; Mappes, Timo

    2018-01-01

    Ocular UV doses accumulate all-day, not only during periods of direct sun exposure. The UV protection efficiency of three clear lenses was evaluated experimentally, validated by simulation, and compared to non-UV protection: a first spectacle lens with a tailored UV absorber, a second spectacle lens, minimizing UV back reflections, as well as a third spectacle lens, combining both. A tailored UV-absorber efficiently reduced overall UV irradiance to 7 %, whereas reduction of back-reflections still left UV irradiance at 42 %. Thus, clear lenses with a tailored UV absorber efficiently protect the eye from UV, supplementing sun glasses wear to an all-day protection scenario. PMID:29675331

  8. Efficiency of ocular UV protection by clear lenses.

    PubMed

    Rifai, Katharina; Hornauer, Matthias; Buechinger, Ramona; Schoen, Roland; Barraza-Bernal, Maria; Habtegiorgis, Selam; Glasenapp, Carsten; Wahl, Siegfried; Mappes, Timo

    2018-04-01

    Ocular UV doses accumulate all-day, not only during periods of direct sun exposure. The UV protection efficiency of three clear lenses was evaluated experimentally, validated by simulation, and compared to non-UV protection: a first spectacle lens with a tailored UV absorber, a second spectacle lens, minimizing UV back reflections, as well as a third spectacle lens, combining both. A tailored UV-absorber efficiently reduced overall UV irradiance to 7 %, whereas reduction of back-reflections still left UV irradiance at 42 %. Thus, clear lenses with a tailored UV absorber efficiently protect the eye from UV, supplementing sun glasses wear to an all-day protection scenario.

  9. Radiative characteristics of Clouds embedded in and occurring beneath Smoke analyzed using airborne multiangular measurements

    NASA Astrophysics Data System (ADS)

    Gautam, R.; Gatebe, C. K.; Varnai, T.; Singh, M.; Poudyal, R.

    2016-12-01

    Clouds in the presence of absorbing aerosols results in their apparent darkening, observed at the Top of Atmosphere (TOA), which is associated with the radiative effects of aerosol absorption. Owing to the warming/darkening effect and potential impacts on regional climate via semidirect and thermodynamic pathways, above-cloud aerosols have been characterized in recent satellite-based studies. While satellite data are particularly useful in showing the radiative impact of above-cloud aerosols at the TOA, retrievals of aerosol and cloud properties are affected by large uncertainties when they co-occur. In this study, we present radiative characteristics of clouds in the presence of wildfire smoke using airborne data primarily from NASA's Cloud Absorption Radiometer (CAR), collected during the ARCTAS and SAFARI campaigns in Canada and southern Africa, respectively. Scattered cumulus clouds embedded in dense smoke over land (Canada) as well as smoke aerosols above marine stratocumulus clouds (southeast Atlantic) show characteristic spectral gradient across the UV-visible-NIR spectrum using CAR data. In general, clouds in the presence of smoke are impacted by absorbing aerosol-induced darkening at the shorter wavelengths (e.g. UV and blue bands), as opposed to an (expected) negative gradient for cloud-free smoke and a flat spectrum for smoke-free cloud cover. The circular and spiral flights not only allowed the complete characterization of the angular distribution of smoke-cloud radiative interactions, but also provided the vertical distribution of smoke and clouds. Overall, the observational-based smoke-cloud radiative interactions were found to be physically consistent with theoretical 1D and 3D radiation calculations. These airborne observations are also complemented by satellite data from MODIS reflectances and CERES shortwave fluxes, providing a synergistic radiative impact assessment of clouds in the presence of smoke. http://car.gsfc.nasa.gov/

  10. Time profile of cosmic radiation exposure during the EXPOSE-E mission: the R3DE instrument.

    PubMed

    Dachev, Tsvetan; Horneck, Gerda; Häder, Donat-Peter; Schuster, Martin; Richter, Peter; Lebert, Michael; Demets, Rene

    2012-05-01

    The aim of this paper is to present the time profile of cosmic radiation exposure obtained by the Radiation Risk Radiometer-Dosimeter during the EXPOSE-E mission in the European Technology Exposure Facility on the International Space Station's Columbus module. Another aim is to make the obtained results available to other EXPOSE-E teams for use in their data analysis. Radiation Risk Radiometer-Dosimeter is a low-mass and small-dimension automatic device that measures solar radiation in four channels and cosmic ionizing radiation as well. The main results of the present study include the following: (1) three different radiation sources were detected and quantified-galactic cosmic rays (GCR), energetic protons from the South Atlantic Anomaly (SAA) region of the inner radiation belt, and energetic electrons from the outer radiation belt (ORB); (2) the highest daily averaged absorbed dose rate of 426 μGy d(-1) came from SAA protons; (3) GCR delivered a much smaller daily absorbed dose rate of 91.1 μGy d(-1), and the ORB source delivered only 8.6 μGy d(-1). The analysis of the UV and temperature data is a subject of another article (Schuster et al., 2012 ).

  11. Faster recovery of a diatom from UV damage under ocean acidification.

    PubMed

    Wu, Yaping; Campbell, Douglas A; Gao, Kunshan

    2014-11-01

    Diatoms are the most important group of primary producers in marine ecosystems. As oceanic pH declines and increased stratification leads to the upper mixing layer becoming shallower, diatoms are interactively affected by both lower pH and higher average exposures to solar ultraviolet radiation. The photochemical yields of a model diatom, Phaeodactylum tricornutum, were inhibited by ultraviolet radiation under both growth and excess light levels, while the functional absorbance cross sections of the remaining photosystem II increased. Cells grown under ocean acidification (OA) were less affected during UV exposure. The recovery of PSII under low photosynthetically active radiation was much faster than in the dark, indicating that photosynthetic processes were essential for the full recovery of photosystem II. This light dependent recovery required de novo synthesized protein. Cells grown under ocean acidification recovered faster, possibly attributable to higher CO₂ availability for the Calvin cycle producing more resources for repair. The lower UV inhibition combined with higher recovery rate under ocean acidification could benefit species such as P.tricornutum, and change their competitiveness in the future ocean. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Growth of antarctic cyanobacteria under ultraviolet radiation: UVA counteracts UVB inhibition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quesada, A.; Mouget, J.L.; Vincent, W.F.

    A mat-forming cyanobacterium (Phormidium murayi West and West) isolated from an ice-shelf pond in Antarctica was grown under white light combined with a range of UVA and UVB irradiance. The 4-day growth rate decreased under increasing ultraviolet (UV) radiation, with a ninefold greater response to UVB relative to UVA. In vivo absorbance spectra showed that UVA and to a greater extent UVB caused a decrease in phycocyanin/chlorophyll a and an increase in carotenoids/chlorophyll a. The phycocyanin/chlorophyll a ratio was closely and positively correlated to the UVB-inhibited growth rate. Under fixed spectral gradients of UV radiation, the growth inhibition effect wasmore » dominated by UVB. However, at specific UVB irradiances the inhibition of growth depended on the ratio of UVB to UVA, and growth rates increased linearly with increasing UVA. These results are consistent with the view that UVB inhibition represents the balance between damage and repair processes that are each controlled by separate wavebands. They also underscore the need to consider UV spectral balance in laboratory and field assays of UVB toxicity. 49 refs., 6 figs.« less

  13. Astrophysical and biological constraints on radiopanspermia.

    PubMed

    Secker, J; Wesson, P S; Lepock, J R

    1996-08-01

    We have carried out a series of calculations involving bacteria and viruses embedded in dust grains, which are ejected from our solar system by radiation pressure and travel through space to other star systems. Under many conditions this type of panspermia is impractical, primarily because the ultraviolet (UV) radiation of the present Sun inactivates the micro-organisms. However, if the organisms are shielded by an absorbing material like carbon and if ejection takes place in the red-giant phase of a one solar mass star like our Sun, there is a significant probability that the micro-organisms can reach another star system alive (i.e. with only sub-lethal damage from UV and ionizing radiation). In addition to panspermia with viable micro-organisms, it is possible to seed the Galaxy with inactivated ones whose DNA and RNA fragments may provide the initial information necessary to start biological evolution in favourable environments.

  14. Estimated ultraviolet radiation doses in wetlands in six national parks

    USGS Publications Warehouse

    Diamond, S.A.; Trenham, P.C.; Adams, Michael J.; Hossack, B.R.; Knapp, R.A.; Stark, L.; Bradford, D.; Corn, P.S.; Czarnowski, K.; Brooks, P.D.; Fagre, D.B.; Breen, B.; Dentenbeck, N.E.; Tonnessen, K.

    2005-01-01

    Ultraviolet-B radiation (UV-B, 280–320-nm wavelengths) doses were estimated for 1024 wetlands in six national parks: Acadia (Acadia), Glacier (Glacier), Great Smoky Mountains (Smoky), Olympic (Olympic), Rocky Mountain (Rocky), and Sequoia/Kings Canyon (Sequoia). Estimates were made using ground-based UV-B data (Brewer spectrophotometers), solar radiation models, GIS tools, field characterization of vegetative features, and quantification of DOC concentration and spectral absorbance. UV-B dose estimates were made for the summer solstice, at a depth of 1 cm in each wetland. The mean dose across all wetlands and parks was 19.3 W-h m−2 (range of 3.4–32.1 W-h m−2). The mean dose was lowest in Acadia (13.7 W-h m−2) and highest in Rocky (24.4 W-h m−2). Doses were significantly different among all parks. These wetland doses correspond to UV-B flux of 125.0 μW cm−2 (range 21.4–194.7 μW cm−2) based on a day length, averaged among all parks, of 15.5 h. Dissolved organic carbon (DOC), a key determinant of water-column UV-B flux, ranged from 0.6 (analytical detection limit) to 36.7 mg C L−1 over all wetlands and parks, and reduced potential maximal UV-B doses at 1-cm depth by 1%–87 %. DOC concentration, as well as its effect on dose, was lowest in Sequoia and highest in Acadia (DOC was equivalent in Acadia, Glacier, and Rocky). Landscape reduction of potential maximal UV-B doses ranged from zero to 77% and was lowest in Sequoia. These regional differences in UV-B wetland dose illustrate the importance of considering all aspects of exposure in evaluating the potential impact of UV-B on aquatic organisms.

  15. Contribution of nitrated phenols to wood burning brown carbon light absorption in Detling, United Kingdom during winter time.

    PubMed

    Mohr, Claudia; Lopez-Hilfiker, Felipe D; Zotter, Peter; Prévôt, André S H; Xu, Lu; Ng, Nga L; Herndon, Scott C; Williams, Leah R; Franklin, Jonathan P; Zahniser, Mark S; Worsnop, Douglas R; Knighton, W Berk; Aiken, Allison C; Gorkowski, Kyle J; Dubey, Manvendra K; Allan, James D; Thornton, Joel A

    2013-06-18

    We show for the first time quantitative online measurements of five nitrated phenol (NP) compounds in ambient air (nitrophenol C6H5NO3, methylnitrophenol C7H7NO3, nitrocatechol C6H5NO4, methylnitrocatechol C7H7NO4, and dinitrophenol C6H4N2O5) measured with a micro-orifice volatilization impactor (MOVI) high-resolution chemical ionization mass spectrometer in Detling, United Kingdom during January-February, 2012. NPs absorb radiation in the near-ultraviolet (UV) range of the electromagnetic spectrum and thus are potential components of poorly characterized light-absorbing organic matter ("brown carbon") which can affect the climate and air quality. Total NP concentrations varied between less than 1 and 98 ng m(-3), with a mean value of 20 ng m(-3). We conclude that NPs measured in Detling have a significant contribution from biomass burning with an estimated emission factor of 0.2 ng (ppb CO)(-1). Particle light absorption measurements by a seven-wavelength aethalometer in the near-UV (370 nm) and literature values of molecular absorption cross sections are used to estimate the contribution of NP to wood burning brown carbon UV light absorption. We show that these five NPs are potentially important contributors to absorption at 370 nm measured by an aethalometer and account for 4 ± 2% of UV light absorption by brown carbon. They can thus affect atmospheric radiative transfer and photochemistry and with that climate and air quality.

  16. Radical protection by differently composed creams in the UV/VIS and IR spectral ranges.

    PubMed

    Meinke, Martina C; Syring, Felicia; Schanzer, Sabine; Haag, Stefan F; Graf, Rüdiger; Loch, Manuela; Gersonde, Ingo; Groth, Norbert; Pflücker, Frank; Lademann, Jürgen

    2013-01-01

    Modern sunscreens are well suited to provide sufficient protection in the UV range because the filter substances absorb or scatter UV radiation. Although up to 50% of radicals are formed in the visible and infrared spectral range during solar radiation protection strategies are not provided in this range. Previous investigations of commercially available products have shown that in addition to physical filters, antioxidants (AO) are necessary to provide protective effects in the infrared range by neutralizing already formed radicals. In this study, the efficacy of filter substances and AO to reduce radical formation in both spectral ranges was investigated after UV/VIS or IR irradiation. Optical properties and radical protection were determined for the investigated creams. It was found that organic UV filters lower radical formation in the UV/VIS range to 35% compared to untreated skin, independent of the presence of AO. Further reduction to 14% was reached by addition of 2% physical filters, whereas physical filters alone were ineffective in the UV/VIS range due to the low concentration. In contrast, this filter type reduced radical formation in the IR range significantly to 65%; similar effects were aroused after application of AO. Sunscreens which contain organic UV filters, physical filters and AO ensure protection in the complete solar spectrum. © 2013 The American Society of Photobiology.

  17. Refractive Index and Absorption Attribution of Highly Absorbing Brown Carbon Aerosols from an Urban Indian City-Kanpur.

    PubMed

    Shamjad, P M; Tripathi, S N; Thamban, Navaneeth M; Vreeland, Heidi

    2016-11-24

    Atmospheric aerosols influence Earth's radiative balance, having both warming and cooling effects. Though many aerosols reflect radiation, carbonaceous aerosols such as black carbon and certain organic carbon species known as brown carbon have the potential to warm the atmosphere by absorbing light. Black carbon absorbs light over the entire solar spectrum whereas brown carbon absorbs near-UV wavelengths and, to a lesser extent, visible light. In developing countries, such as India, where combustion sources are prolific, the influence of brown carbon on absorption may be significant. In order to better characterize brown carbon, we present experimental and modeled absorption properties of submicron aerosols measured in an urban Indian city (Kanpur). Brown carbon here is found to be fivefold more absorbing at 365 nm wavelength compared to previous studies. Results suggest ~30% of total absorption in Kanpur is attributed to brown carbon, with primary organic aerosols contributing more than secondary organics. We report the spectral brown carbon refractive indices along with an experimentally constrained estimate of the influence of aerosol mixing state on absorption. We conclude that brown carbon in Kanpur is highly absorbing in nature and that the mixing state plays an important role in light absorption from volatile species.

  18. Refractive Index and Absorption Attribution of Highly Absorbing Brown Carbon Aerosols from an Urban Indian City-Kanpur

    PubMed Central

    Shamjad, P. M.; Tripathi, S. N.; Thamban, Navaneeth M.; Vreeland, Heidi

    2016-01-01

    Atmospheric aerosols influence Earth’s radiative balance, having both warming and cooling effects. Though many aerosols reflect radiation, carbonaceous aerosols such as black carbon and certain organic carbon species known as brown carbon have the potential to warm the atmosphere by absorbing light. Black carbon absorbs light over the entire solar spectrum whereas brown carbon absorbs near-UV wavelengths and, to a lesser extent, visible light. In developing countries, such as India, where combustion sources are prolific, the influence of brown carbon on absorption may be significant. In order to better characterize brown carbon, we present experimental and modeled absorption properties of submicron aerosols measured in an urban Indian city (Kanpur). Brown carbon here is found to be fivefold more absorbing at 365 nm wavelength compared to previous studies. Results suggest ~30% of total absorption in Kanpur is attributed to brown carbon, with primary organic aerosols contributing more than secondary organics. We report the spectral brown carbon refractive indices along with an experimentally constrained estimate of the influence of aerosol mixing state on absorption. We conclude that brown carbon in Kanpur is highly absorbing in nature and that the mixing state plays an important role in light absorption from volatile species. PMID:27883083

  19. CO2 Enhancement of Growth and Photosynthesis in Rice (Oryza sativa) 1

    PubMed Central

    Ziska, Lewis H.; Teramura, Alan H.

    1992-01-01

    Two cultivars of rice (Oryza sativa L.) IR-36 and Fujiyama-5 were grown at ambient (360 microbars) and elevated CO2 (660 microbars) from germination through reproduction in unshaded greenhouses at the Duke University Phytotron. Growth at elevated CO2 resulted in significant decreases in nighttime respiration and increases in photosynthesis, total biomass, and yield for both cultivars. However, in plants exposed to simultaneous increases in CO2 and ultraviolet-B (UV-B) radiation, CO2 enhancement effects on respiration, photosynthesis, and biomass were eliminated in IR-36 and significantly reduced in Fujiyama-5. UV-B radiation simulated a 25% depletion in stratospheric ozone at Durham, North Carolina. Analysis of the response of CO2 uptake to internal CO2 concentration at light saturation suggested that, for IR-36, the predominant limitation to photosynthesis with increased UV-B radiation was the capacity for regeneration of ribulose bisphosphate (RuBP), whereas for Fujiyama-5 the primary photosynthetic decrease appeared to be related to a decline in apparent carboxylation efficiency. Changes in the RuBP regeneration limitation in IR-36 were consistent with damage to the photochemical efficiency of photosystem II as estimated from the ratio of variable to maximum chlorophyll fluorescence. Little change in RuBP regeneration and photochemistry was evident in cultivar Fujiyama-5, however. The degree of sensitivity of photochemical reactions with increased UV-B radiation appeared to be related to leaf production of UV-B-absorbing compounds. Fujiyama-5 had a higher concentration of these compounds than IR-36 in all environments, and the production of these compounds in Fujiyama-5 was stimulated by UV-B fluence. Results from this study suggest that in rice alterations in growth or photosynthesis as a result of enhanced CO2 may be eliminated or reduced if UV-B radiation continues to increase. PMID:16668910

  20. Inhibition of the Induced Formation of Tryptophanase in Escherichia coli by Near-Ultraviolet Radiation

    PubMed Central

    Swenson, P. A.; Setlow, R. B.

    1970-01-01

    Induced formation of tryptophanase in Escherichia coli B/r is temporarily inhibited by near-ultraviolet (UV) irradiation. The inhibition is greater when irradiation is at 5 C than when at room temperature. Hence, the inhibition is the result of a photochemical, rather than photoenzymatic, alteration of some cellular component. The action spectrum has a peak in the region of 334 nm and is similar to that for growth delay. However, inhibition of tryptophanase formation is more sensitive to near-UV irradiation than are growth, respiration, and the induced formation of β-galactosidase. Thus, for tryptophanase the lack of formation cannot be due to general inhibition of metabolism. Pyridoxal phosphate absorbs in the near-UV region of the spectrum and is a cofactor for tryptophanase, but this enzyme in induced cells is not inactivated by near UV-radiations. An experiment in which toluene-treated suspensions from irradiated and unirradiated cells were mixed showed that irradiation does not cause the formation of an inhibitor of tryptophanase activity. The possibility remains that the absorption of radiant energy by pyridoxal phosphate interferes with the synthesis of tryptophanase. PMID:4914082

  1. Multi-target determination of organic ultraviolet absorbents in organism tissues by ultrasonic assisted extraction and ultra-high performance liquid chromatography-tandem mass spectrometry.

    PubMed

    Peng, Xianzhi; Jin, Jiabin; Wang, Chunwei; Ou, Weihui; Tang, Caiming

    2015-03-06

    A sensitive and reliable method was developed for multi-target determination of 13 most widely used organic ultraviolet (UV) absorbents (including UV filters and UV stabilizers) in aquatic organism tissues. The organic UV absorbents were extracted using ultrasonic-assisted extraction, purified via gel permeation chromatography coupled with silica gel column chromatography, and determined by ultra-high performance liquid chromatography-tandem mass spectrometry. Recoveries of the UV absorbents from organism tissues mostly ranged from 70% to 120% from fish filet with satisfactory reproducibility. Method quantification limits were 0.003-1.0ngg(-1) dry weight (dw) except for 2-ethylhexyl 4-methoxycinnamate. This method has been applied to analysis of the UV absorbents in wild and farmed aquatic organisms collected from the Pearl River Estuary, South China. 2-Hydroxy-4-methoxybenzophenone and UV-P were frequently detected in both wild and farmed marine organisms at low ngg(-1)dw. 3-(4-Methylbenzylidene)camphor and most of the benzotriazole UV stabilizers were also frequently detected in maricultured fish. Octocrylene and 2-ethylhexyl 4-methoxycinnamate were not detected in any sample. This work lays basis for in-depth study about bioaccumulation and biomagnification of the UV absorbents in marine environment. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. The role of solar UV radiation in the ecology of alpine lakes.

    PubMed

    Sommaruga, R

    2001-09-01

    Solar ultraviolet radiation (UVR, 290-400 nm) is a crucial environmental factor in alpine lakes because of the natural increase of the UVR flux with elevation and the high water transparency of these ecosystems. The ecological importance of UVR, however, has only recently been recognized. This review, examines the general features of alpine lakes regarding UVR, summarizes what is known about the role of solar UVR in the ecology of alpine lakes, and identifies future research directions. Unlike the pattern observed in most lowland lakes, variability of UV attenuation in alpine lakes is poorly explained by differences in dissolved organic carbon (DOC) concentrations, and depends mainly on optical characteristics (absorption) of the chromophoric dissolved organic matter (CDOM). Within the water column of lakes with low DOC concentrations (0.2-0.4 mg l(-1)), UV attenuation is influenced by phytoplankton whose development at depth (i.e. the deep chlorophyll maximum) causes important changes in UV attenuation. Alpine aquatic organisms have developed a number of strategies to minimize UV damage. The widespread synthesis or bioaccumulation of different compounds that directly or indirectly absorb UV energy is one such strategy. Although most benthic and planktonic primary producers and crustacean zooplankton are well adapted to high intensities of solar radiation, heterotrophic protists, bacteria, and viruses seem to be particularly sensitive to UVR. Understanding the overall impact of UVR on alpine lakes would need to consider synergistic and antagonistic processes resulting from the pronounced climatic warming, which have the potential to modify the UV underwater climate and consequently the stress on aquatic organisms.

  3. Effects of near-UV radiation on the protein of the grey squirrel lens.

    PubMed

    Zigman, S; Paxhia, T; Waldron, W

    1988-06-01

    In vivo exposure of grey squirrels to 40W BLB illumination resulted in alterations in the state of the lens crystallins, mainly in the outer layer of the lens. HPLC revealed an increase of the void volume or crosslinked crystallins and an increase in peptides with molecular weights lower than 20,000 d. In vitro exposure of squirrel lens aqueous extracts to Woods lamp radiation (predominantly 365 nm) led to similar but more exaggerated changes as viewed by high performance liquid chromatography. When viewed by polyacrylamide gel electrophoresis (PAGE), soluble protein crosslinking was also observed. The near-UV absorbing chromophores of low molecular weight present in the lens served as photosensitizers that enhanced the protein changes. Sodium azide inhibited the changes, indicating a role for singlet oxygen in the crosslinking.

  4. Ultraviolet, Visible, and Fluorescence Spectroscopy

    NASA Astrophysics Data System (ADS)

    Penner, Michael H.

    Spectroscopy in the ultraviolet-visible (UV-Vis) range is one of the most commonly encountered laboratory techniques in food analysis. Diverse examples, such as the quantification of macrocomponents (total carbohydrate by the phenol-sulfuric acid method), quantification of microcomponents, (thiamin by the thiochrome fluorometric procedure), estimates of rancidity (lipid oxidation status by the thiobarbituric acid test), and surveillance testing (enzyme-linked immunoassays), are presented in this text. In each of these cases, the analytical signal for which the assay is based is either the emission or absorption of radiation in the UV-Vis range. This signal may be inherent in the analyte, such as the absorbance of radiation in the visible range by pigments, or a result of a chemical reaction involving the analyte, such as the colorimetric copper-based Lowry method for the analysis of soluble protein.

  5. Detection of UV Pulse from Insulators and Application in Estimating the Conditions of Insulators

    NASA Astrophysics Data System (ADS)

    Wang, Jingang; Chong, Junlong; Yang, Jie

    2014-10-01

    Solar radiation in the band of 240-280 nm is absorbed by the ozone layer in the atmosphere, and corona discharges from high-voltage apparatus emit in air mainly in the 230-405 nm range of ultraviolet (UV), so the band of 240-280 nm is called UV Solar Blind Band. When the insulators in a string deteriorate or are contaminated, the voltage distribution along the string will change, which causes the electric fields in the vicinity of insulators change and corona discharge intensifies. An UV pulse detection method to check the conditions of insulators is presented based on detecting the UV pulse among the corona discharge, then it can be confirmed that whether there exist faulty insulators and whether the surface contamination of insulators is severe for the safe operation of power systems. An UV-I Insulator Detector has been developed, and both laboratory tests and field tests have been carried out which demonstrates the practical viability of UV-I Insulator Detector for online monitoring.

  6. Characterization of cubic ceria?zirconia powders by X-ray diffraction and vibrational and electronic spectroscopy

    NASA Astrophysics Data System (ADS)

    Sánchez Escribano, Vicente; Fernández López, Enrique; Panizza, Marta; Resini, Carlo; Gallardo Amores, José Manuel; Busca, Guido

    2003-10-01

    The X-ray diffraction (XRD) patterns and the Infrared, Raman and UV-visible spectra of CeO 2ZrO 2 powders prepared by co-precipitation are presented. Raman spectra provide evidence for the largely predominant cubic structure of the powders with CeO 2 molar composition higher than 25%. Also skeletal IR spectra allow to distinguish cubic from tetragonal phases which are instead not easily distinguished on the basis of the XRD patterns. All mixed oxides including pure ceria are strong UV absorbers although also absorb in the violet visible region. By carefully selecting their composition and treatment temperature, the onset of the radiation that they cut off can be chosen in the 425-475 nm interval. Although they are likely metastable, the cubic phases are still pure even after heating at 1173 K for 4 h.

  7. Aureole radiance field about a source in a scattering-absorbing medium.

    PubMed

    Zachor, A S

    1978-06-15

    A technique is described for computing the aureole radiance field about a point source in a medium that absorbs and scatters according to an arbitrary phase function. When applied to an isotropic source in a homogenous medium, the method uses a double-integral transform which is evaluated recursively to obtain the aureole radiances contributed by successive scattering orders, as in the Neumann solution of the radiative transfer equation. The normalized total radiance field distribution and the variation of flux with field of view and range are given for three wavelengths in the uv and one in the visible, for a sea-level model atmosphere assumed to scatter according to a composite of the Rayleigh and modified Henyey-Greenstein phase functions. These results have application to the detection and measurement of uncollimated uv and visible sources at short ranges in the lower atmosphere.

  8. Effect of topical sunscreens on the UV-radiation-induced suppression of the alloactivating capacity in human skin in vivo.

    PubMed

    van Praag, M C; Out-Luyting, C; Claas, F H; Vermeer, B J; Mommaas, A M

    1991-10-01

    Exposure of mice or humans to solar or artificial ultraviolet radiation (UV) has been shown to induce a number of changes in the immune system that may influence their susceptibility to skin tumors. The protective effect of sunscreens on these changes is not clear. Thirty-two patients with a variety of dermatoses routinely undergoing treatment with standard UVB (n = 19) or PUVA (n = 13) therapy were studied. One of the two tested sunscreens or its vehicle was applied to the right flexor forearm immediately prior to each total-body UV exposure. Epidermal sheets were obtained by the suction-blister method from the left flexor forearm before treatment and from both flexor forearms after 4 weeks of photo- or photochemotherapy and used as stimulator epidermal cells (EC) in the mixed epidermal cell-lymphocyte reaction (MECLR). After 4 weeks of either UVB or PUVA therapy the MECLR responses on EC from both arms were markedly decreased. Neither the tested sunscreens nor their vehicles prevented the UV-induced suppression of the alloactivating capacity. The failure of sunscreens to protect against the UV-induced suppression of the alloactivating capacity could be explained in two ways. First, the energy not absorbed by the sunscreen could be sufficient to induce suppression of the alloactivating capacity. An alternative explanation could be systemic immune suppression by UV. In order to discriminate between these possibilities only the right forearms of 10 healthy volunteers, treated with a sunscreen or its vehicle, were irradiated with UVB during 4 weeks. In this manner systemic immune suppression by UVB could be excluded. This experiment resulted in a similar suppression of the MECLR responses, as induced by total body UVB irradiation, without any protection by the sunscreen. Apparently, the UV dose not absorbed by the sunscreen was capable to induce suppression of the alloactivating capacity. Our results indicate that people protected from sunburn by sunscreens may be exposed to UV for a long period of time, and thereby subject themselves to its immunosuppressive action.

  9. UV/PAR radiation and DOM properties in surface coastal waters of the Canadian shelf of the Beaufort Sea during summer 2009

    NASA Astrophysics Data System (ADS)

    Para, J.; Charrière, B.; Matsuoka, A.; Miller, W. L.; Rontani, J. F.; Sempéré, R.

    2013-04-01

    Surface waters from the Beaufort Sea in the Arctic Ocean were evaluated for dissolved organic carbon (DOC), and optical characteristics including UV (ultraviolet) radiation and PAR (photosynthetically active radiation) diffuse attenuation (Kd), and chromophoric and fluorescent dissolved organic matter (CDOM and FDOM) as part of the MALINA field campaign (30 July to 27 August). Spectral absorption coefficients (aCDOM (350 nm) (m-1)) were significantly correlated to both diffuse attenuation coefficients (Kd) in the UV-A and UV-B and to DOC concentrations. This indicates CDOM as the dominant attenuator of both UV and PAR solar radiation and suggests its use as an optical proxy for DOC concentrations in this region. While the Mackenzie input is the main driver of CDOM dynamics in low salinity waters, locally, primary production can create significant increases in CDOM. Extrapolating CDOM to DOC relationships, we estimate that ∼16% of the DOC in the Mackenzie River does not absorb radiation at 350 nm. The discharges of DOC and its chromophoric subset (CDOM) by the Mackenzie River during the MALINA cruise are estimated as ∼0.22 TgC and 0.18 TgC, respectively. Three dissolved fluorescent components (C1-C3) were identified by fluorescence excitation/emission matrix spectroscopy (EEMS) and parallel factor (PARAFAC) analysis. Our results showed an aquatic dissolved organic matter (DOM) component (C1), probably produced in the numerous lakes of the watershed, that co-dominated with a terrestrial humic-like component (C2) in the Mackenzie Delta Sector. This aquatic DOM could partially explain the high CDOM spectral slopes observed in the Beaufort Sea.

  10. Insights into the mechanism of X-ray-induced disulfide-bond cleavage in lysozyme crystals based on EPR, optical absorption and X-ray diffraction studies.

    PubMed

    Sutton, Kristin A; Black, Paul J; Mercer, Kermit R; Garman, Elspeth F; Owen, Robin L; Snell, Edward H; Bernhard, William A

    2013-12-01

    Electron paramagnetic resonance (EPR) and online UV-visible absorption microspectrophotometry with X-ray crystallography have been used in a complementary manner to follow X-ray-induced disulfide-bond cleavage. Online UV-visible spectroscopy showed that upon X-irradiation, disulfide radicalization appeared to saturate at an absorbed dose of approximately 0.5-0.8 MGy, in contrast to the saturating dose of ∼0.2 MGy observed using EPR at much lower dose rates. The observations suggest that a multi-track model involving product formation owing to the interaction of two separate tracks is a valid model for radiation damage in protein crystals. The saturation levels are remarkably consistent given the widely different experimental parameters and the range of total absorbed doses studied. The results indicate that even at the lowest doses used for structural investigations disulfide bonds are already radicalized. Multi-track considerations offer the first step in a comprehensive model of radiation damage that could potentially lead to a combined computational and experimental approach to identifying when damage is likely to be present, to quantitate it and to provide the ability to recover the native unperturbed structure.

  11. Changes in the Optical Properties of Simulated Shuttle Waste Water Deposits: Urine Darkening

    NASA Technical Reports Server (NTRS)

    Albyn, Keith; Edwards, David; Alred, John

    2003-01-01

    Manned spacecraft have historically dumped the crew generated waste water overboard, into the environment in which the spacecraft operates, sometimes depositing the waste water on the external spacecraft surfaces. The change in optical properties of wastewater deposited on spacecraft external surfaces, from exposure to space environmental effects, is not well understood. This study used nonvolatile residue (NVR) from Human Urine to simulate wastewater deposits and documents the changes in the optical properties of the NVR deposits after exposure to ultra violet(UV)radiation. Twenty four NVR samples of, 0-angstromes/sq cm to 1000-angstromes/sq cm, and one sample contaminated with 1 to 2-mg/sq cm were exposed to UV radiation over the course of approximately 6151 equivalent sun hours (ESH). Random changes in sample mass, NVR, solar absorbance, and infrared emission were observed during the study. Significant changes in the UV transmittance were observed for one sample contaminated at the mg/sq cm level.

  12. Changes in the Optical Properties of Simulated Shuttle Waste Water Deposits- Urine Darkening

    NASA Technical Reports Server (NTRS)

    Albyn, Keith; Edwards, David; Alred, John

    2004-01-01

    Manned spacecraft have historically dumped the crew generated waste waster overboard, into the environment in which the spacecraft operates, sometimes depositing the waste water on the external spacecraft surfaces. The change in optical properties of wastewater deposited on spacecraft external surfaces, from exposure to space environmental effects, is not well understood. This study used nonvolatile residue (NVR) from Human Urine to simulate wastewater deposits and documents the changes in the optical properties of the NVR deposits after exposure to ultra violet (UV) radiation. Twenty NVR samples of, 0-angstromes/sq cm to 1000-angstromes/sq cm, and one sample contaminated with 1 to 2-mg/sq cm were exposed to UV radiation over the course of approximately 6151 equivalent sun hours (ESH). Random changes in sample mass, NVR, solar absorbance, and infrared emission were observed during the study. Significant changes in the UV transmittance were observed for one sample contaminated at the mg/sq cm level.

  13. Sulfur, ultraviolet radiation, and the early evolution of life

    NASA Technical Reports Server (NTRS)

    Kasting, J. F.; Zahnle, K. J.; Pinto, J. P.; Young, A. T.

    1989-01-01

    The present biosphere is shielded from harmful solar near ultraviolet (UV) radiation by atmospheric ozone. It is suggested that elemental sulfur vapor could have played a similar role in an anoxic, ozone-free, primitive atmosphere. Sulfur vapor would have been produced photochemically from volcanogenic SO2 and H2S. It is composed of ring molecules, primarily S8, that absorb strongly throughout the near UV, yet are expected to be relatively stable against photolysis and chemical attack. It is also insoluble in water and would thus have been immune to rainout or surface deposition over the oceans. Since the concentration of S8 in the primitive atmosphere would have been limited by its saturation vapor pressure, surface temperatures of 45 C or higher, corresponding to carbon dioxide partial pressures exceeding 2 bars, are required to sustain an effective UV screen. A warm, sulfur-rich, primitive atmosphere is consistent with inferences drawn from molecular phylogeny, which suggest that some of the earliest organisms were thermophilic bacteria that metabolized elemental sulfur.

  14. Ozone Depletion, UVB and Atmospheric Chemistry

    NASA Technical Reports Server (NTRS)

    Stolarski, Richard S.

    1999-01-01

    The primary constituents of the Earth's atmosphere are molecular nitrogen and molecular oxygen. Ozone is created when ultraviolet light from the sun photodissociates molecular oxygen into two oxygen atoms. The oxygen atoms undergo many collisions but eventually combine with a molecular oxygen to form ozone (O3). The ozone molecules absorb ultraviolet solar radiation, primarily in the wavelength region between 200 and 300 nanometers, resulting in the dissociation of ozone back into atomic oxygen and molecular oxygen. The oxygen atom reattaches to an O2 molecule, reforming ozone which can then absorb another ultraviolet photon. This sequence goes back and forth between atomic oxygen and ozone, each time absorbing a uv photon, until the oxygen atom collides with and ozone molecule to reform two oxygen molecules.

  15. Probing the Physical Properties and Origins of Ultra-fast Outflows in AGN

    NASA Astrophysics Data System (ADS)

    Kraemer, Steven B.; Tombesi, Francesco; Bottorff, Mark

    2017-01-01

    Approximately half of Type 1 AGN possess intrinsic absorption and high resolution UV and X-ray spectroscopy have revealed that the absorbing gas is radially outflowing, with velocities of 100s to 1000s km/sec. X-ray ("warm") absorbers, originally revealed by the presence of bound-free edges of O~VII and O~VIII, are more highly ionized than their UV counterparts, and photo-ionization modeling studies have determined that they have ionization parameters of logU ~ -1 to 1. Recently, muchmore highly ionized gas, with logU > 2, has been detected in XMM-Newton spectra, as evidenced by absorption lines from H- and He-like Fe. Some of these absorbers, ``Ultra Fast Outlows (UFOs)'', have radial velocities up to 0.2c. We have undertaken a detailed photo-ionization study of high-ionization Fe absorbers, both UFOs and non-UFOs, in a sample of AGN observed by XMM-Newton. We find that the UFOs are completely Compton-cooled, unlike the non-UFOS. Both types are too highly ionized to be radiatively accelerated, hence they are more likely driven via Magneto-Hydrodynamic processes. Their large column densities and velocity gradients are consistent with flows along magnetic streamlines emanating from accretion disks. Open questions include: the temporal stability of the UFOs, the apparent lack of non-UFOs in UFO sources, and their relationship to warm absorbers.

  16. Light-Absorbing Brown Carbon Aerosol Constituents from Combustion of Indonesian Peat and Biomass.

    PubMed

    Budisulistiorini, Sri Hapsari; Riva, Matthieu; Williams, Michael; Chen, Jing; Itoh, Masayuki; Surratt, Jason D; Kuwata, Mikinori

    2017-04-18

    Light-absorbing brown carbon (BrC) constituents of organic aerosol (OA) have been shown to significantly absorb ultraviolet (UV) and visible light and thus impact radiative forcing. However, molecular identification of the BrC constituents is still limited. In this study, we characterize BrC constituents at the molecular level in (i) aerosols emitted by combustion of peat, fern/leaf, and charcoal from Indonesia and (ii) ambient aerosols collected in Singapore during the 2015 haze episode. Aerosols were analyzed using ultra performance liquid chromatography instrument interfaced to a diode array detector and electrospray ionization high-resolution quadrupole time-of-flight mass spectrometer operated in the negative ion mode. In the laboratory-generated aerosols, we identified 41 compounds that can potentially absorb near-UV and visible wavelengths, such as oxygenated-conjugated compounds, nitroaromatics, and S-containing compounds. The sum of BrC constituents in peat, fern/leaf, and charcoal burning aerosols are 16%, 35%, and 28% of the OA mass, respectively, giving an average contribution of 24%. On average, the BrC constituents account for 0.4% of the ambient OA mass; however, large uncertainties in mass closure remain because of the lack of authentic standards. This study highlights the potential of light-absorbing BrC OA constituents from peat, fern/leaf, and charcoal burning and their importance in the atmosphere.

  17. Nanosecond laser-induced back side wet etching of fused silica with a copper-based absorber liquid

    NASA Astrophysics Data System (ADS)

    Lorenz, Pierre; Zehnder, Sarah; Ehrhardt, Martin; Frost, Frank; Zimmer, Klaus; Schwaller, Patrick

    2014-03-01

    Cost-efficient machining of dielectric surfaces with high-precision and low-roughness for industrial applications is still challenging if using laser-patterning processes. Laser induced back side wet etching (LIBWE) using UV laser pulses with liquid heavy metals or aromatic hydrocarbons as absorber allows the fabrication of well-defined, nm precise, free-form surfaces with low surface roughness, e.g., needed for optical applications. The copper-sulphatebased absorber CuSO4/K-Na-Tartrate/NaOH/formaldehyde in water is used for laser-induced deposition of copper. If this absorber can also be used as precursor for laser-induced ablation, promising industrial applications combining surface structuring and deposition within the same setup could be possible. The etching results applying a KrF excimer (248 nm, 25 ns) and a Nd:YAG (1064 nm, 20 ns) laser are compared. The topography of the etched surfaces were analyzed by scanning electron microscopy (SEM), white light interferometry (WLI) as well as laser scanning microscopy (LSM). The chemical composition of the irradiated surface was studied by energy-dispersive X-ray spectroscopy (EDX) and Fourier transform infrared spectroscopy (FT-IR). For the discussion of the etching mechanism the laser-induced heating was simulated with finite element method (FEM). The results indicate that the UV and IR radiation allows micro structuring of fused silica with the copper-based absorber where the etching process can be explained by the laser-induced formation of a copper-based absorber layer.

  18. Retrieval of Aerosol Optical Depth Above Clouds from OMI Observations: Sensitivity Analysis, Case Studies

    NASA Technical Reports Server (NTRS)

    Torres, O.; Jethva, H.; Bhartia, P. K.

    2012-01-01

    A large fraction of the atmospheric aerosol load reaching the free troposphere is frequently located above low clouds. Most commonly observed aerosols above clouds are carbonaceous particles generally associated with biomass burning and boreal forest fires, and mineral aerosols originated in arid and semi-arid regions and transported across large distances, often above clouds. Because these aerosols absorb solar radiation, their role in the radiative transfer balance of the earth atmosphere system is especially important. The generally negative (cooling) top of the atmosphere direct effect of absorbing aerosols, may turn into warming when the light-absorbing particles are located above clouds. The actual effect depends on the aerosol load and the single scattering albedo, and on the geometric cloud fraction. In spite of its potential significance, the role of aerosols above clouds is not adequately accounted for in the assessment of aerosol radiative forcing effects due to the lack of measurements. In this paper we discuss the basis of a simple technique that uses near-UV observations to simultaneously derive the optical depth of both the aerosol layer and the underlying cloud for overcast conditions. The two-parameter retrieval method described here makes use of the UV aerosol index and reflectance measurements at 388 nm. A detailed sensitivity analysis indicates that the measured radiances depend mainly on the aerosol absorption exponent and aerosol-cloud separation. The technique was applied to above-cloud aerosol events over the Southern Atlantic Ocean yielding realistic results as indicated by indirect evaluation methods. An error analysis indicates that for typical overcast cloudy conditions and aerosol loads, the aerosol optical depth can be retrieved with an accuracy of approximately 54% whereas the cloud optical depth can be derived within 17% of the true value.

  19. In vitro photostability and photoprotection studies of a novel 'multi-active' UV-absorber.

    PubMed

    Venditti, E; Spadoni, T; Tiano, L; Astolfi, P; Greci, L; Littarru, G P; Damiani, E

    2008-08-01

    This paper reports on the synthesis and properties of a new UV-absorber (OC-NO) based on the most popular UV filter worldwide, ethylhexyl methoxycinnamate (OMC) in which the methoxy group has been replaced with a pyrrolidine nitroxide bearing antioxidant activity. This sunscreen active has therefore both UV-absorbing and antioxidant properties which could ideally address both the UV-B and UV-A skin photo-damage. For broad-spectrum coverage, the combinations of OC-NO with two commonly used UV-A absorbers (BMDBM and DHHB) were also studied. The results obtained reveal that OC-NO: (a) is as photostable as OMC after UV-A exposure; (b) acts as free radical scavenger as demonstrated by EPR and chemical studies; (c) reduces UV-A and UV-A+BMDBM induced lipid peroxidation in liposomes and cells, measured as reduced TBARS levels and increased C11-BODIPY red fluorescence, respectively; (d) has comparable antioxidant activity to that of vitamin E and BHT commonly used in skin care formulations; (e) is non-cytotoxic to human skin fibroblasts as assessed with the MTT assay when exposed to increasing doses of UV-A; and (f) OC-NO+DHHB is a promising, photostable broad spectrum UV-filter combination that concomitantly reduces UV-induced free radical damage. These results suggest that nitroxide/antioxidant-based UV-absorbers may pave the way for the utilization of 'multi-active' ingredients in sunscreens thereby reducing the number of ingredients in these formulations.

  20. Microclimatic variation in UV perception and related disparity in tropane and quinolizidine alkaloid composition of Atropa acuminata, Lupinus polyphyllus and Hyoscyamus niger.

    PubMed

    Jan, Sumira; Kamili, Azra N; Parray, Javid A; Bedi, Yashbir S; Ahmad, Parvaiz

    2016-08-01

    The aim of current research was to evaluate the physiological adjustment in three medicinal herbs viz., Atropa acuminata, Lupinus polyphyllus and Hyoscyamus niger to the winter period characterised by intense UV flux in Kashmir valley across the North Western Himalaya. Quinolizidine (QA) and tropane alkaloid (TA) concentrations were analysed in these herbs thriving at two different altitudes via GC-MS and correlated by PCA analysis. This study investigated the hypothesis that UV reflectance and absorbance at low temperatures are directly related to disparity in alkaloid accumulation. Among QAs in L. polyphyllus, ammodendrine and lupanine accumulated at higher concentration and exhibited significant variation of 186.36% and 95.91% in ammodendrine and lupanine respectively in both sites. Tetrahydrohombifoline displayed non-significant variation of about 9.60% irrespective of sites. Among tropane alkaloid (TA), hyoscyamine was recorded as the most abundant constituent irrespective of the plant and site while apotropine accumulated in lesser quantity in A. acuminata than H. niger. However, apotropine demonstrated significant variation of 175% among both sites. The final concentration of quinolizidine (QA) and tropane alkaloid (TA) reflects the interplay between reflectance and absorbance of UV radiation response field. These findings suggest that spectral response of UV light contributes directly to alkaloid biosynthesis. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Time Profile of Cosmic Radiation Exposure During the EXPOSE-E Mission: The R3DE Instrument

    PubMed Central

    Horneck, Gerda; Häder, Donat-Peter; Schuster, Martin; Richter, Peter; Lebert, Michael; Demets, Rene

    2012-01-01

    Abstract The aim of this paper is to present the time profile of cosmic radiation exposure obtained by the Radiation Risk Radiometer-Dosimeter during the EXPOSE-E mission in the European Technology Exposure Facility on the International Space Station's Columbus module. Another aim is to make the obtained results available to other EXPOSE-E teams for use in their data analysis. Radiation Risk Radiometer-Dosimeter is a low-mass and small-dimension automatic device that measures solar radiation in four channels and cosmic ionizing radiation as well. The main results of the present study include the following: (1) three different radiation sources were detected and quantified—galactic cosmic rays (GCR), energetic protons from the South Atlantic Anomaly (SAA) region of the inner radiation belt, and energetic electrons from the outer radiation belt (ORB); (2) the highest daily averaged absorbed dose rate of 426 μGy d−1 came from SAA protons; (3) GCR delivered a much smaller daily absorbed dose rate of 91.1 μGy d−1, and the ORB source delivered only 8.6 μGy d−1. The analysis of the UV and temperature data is a subject of another article (Schuster et al., 2012). Key Words: Ionizing radiation—R3D—ISS. Astrobiology 12, 403–411. PMID:22680687

  2. Satellite Detection of Smoke Aerosols Over a Snow/Ice Surface by TOMS

    NASA Technical Reports Server (NTRS)

    Hsu, N. Christina; Herman, Jay R.; Gleason, J. F.; Torres, O.; Seftor, C. J.

    1998-01-01

    The use of TOMS (Total Ozone Mapping Spectrometer) satellite data demonstrates the recently developed technique of using satellite UV radiance measurements to detect absorbing tropospheric aerosols is effective over snow/ice surfaces. Instead of the traditional single wavelength (visible or infrared) method of measuring tropospheric aerosols, this method takes advantage of the wavelength dependent reduction in the backscattered radiance due to the presence of absorbing aerosols over snow/ice surfaces. An example of the resulting aerosol distribution derived from TOMS data is shown for an August 1998 event in which smoke generated by Canadian forest fires drifts over and across Greenland. As the smoke plume moved over Greenland, the TOMS observed 380 nm reflectivity over the snow/ice surface dropped drastically from 90-100% down to 30-40%. To study the effects of this smoke plume in both the UV and visible regions of the spectrum, we compared a smoke-laden spectrum taken over Greenland by the high spectral resolution (300 to 800 nm) GOME instrument with one that is aerosol-free. We also discuss the results of modeling the darkening effects of various types of absorbing aerosols over snow/ice surfaces using a radiative transfer code. Finally, we investigated the history of such events by looking at the nearly twenty year record of TOMS aerosol index measurements and found that there is a large interannual variability in the amount of smoke aerosols observed over Greenland. This information will be available for studies of radiation and transport properties in the Arctic.

  3. Cavitation induced Becquerel effect.

    PubMed

    Prevenslik, T V

    2003-06-01

    The observation of an electrical current upon the ultraviolet (UV) illumination of one of a pair of identical electrodes in liquid water, called the Becquerel effect, was made over 150 years ago. More recently, an electrical current was found if the water surrounding one electrode was made to cavitate by focused acoustic radiation, the phenomenon called the cavitation induced Becquerel effect. Since cavitation is known to produce UV light, the electrode may simply absorb the UV light and produce the current by the photo-emission theory of photoelectrochemistry. But the current was found to be semi-logarithmic with the standard electrode potential which is characteristic of the oxidation of the electrode surface in the photo-decomposition theory, and not the photo-emission theory. High bubble collapse temperatures may oxidize the electrode, but this is unlikely because melting was not observed on the electrode surfaces. At ambient temperature, oxidation may proceed by chemical reaction provided a source of vacuum ultraviolet (VUV) radiation is available to produce the excited OH* states of water to react with the electrode. The source of VUV radiation is shown to be the spontaneous emission of coherent infrared (IR) radiation from water molecules in particles that form in bubbles because of surface tension, the spontaneous IR emission induced by cavity quantum electrodynamics. The excited OH* states are produced as the IR radiation accumulates to VUV levels in the bubble wall molecules.

  4. Cytoprotective effect against UV-induced DNA damage and oxidative stress: role of new biological UV filter.

    PubMed

    Said, T; Dutot, M; Martin, C; Beaudeux, J-L; Boucher, C; Enee, E; Baudouin, C; Warnet, J-M; Rat, P

    2007-03-01

    The majority of chemical solar filters are cytotoxic, particularly on sensitive ocular cells (corneal and conjunctival cells). Consequently, a non-cytotoxic UV filter would be interesting in dermatology, but more especially in ophthalmology. In fact, light damage to the eye can be avoided thanks to a very efficient ocular antioxidant system; indeed, the chromophores absorb light and dissipate its energy. After middle age, a decrease in the production of antioxidants and antioxidative enzymes appears with accumulation of endogenous molecules that are phototoxic. UV radiations can induce reactive oxygen species formation, leading to various ocular diseases. Because most UV filters are cytotoxic for the eye, we investigated the anti-UV properties of Calophyllum inophyllum oil in order to propose it as a potential vehicle, free of toxicity, with a natural UV filter action in ophthalmic formulation. Calophyllum inophyllum oil, even at low concentration (1/10,000, v/v), exhibited significant UV absorption properties (maximum at 300nm) and was associated with an important sun protection factor (18-22). Oil concentrations up to 1% were not cytotoxic on human conjunctival epithelial cells, and Calophyllum inophyllum oil appeared to act as a cytoprotective agent against oxidative stress and DNA damage (85% of the DNA damage induced by UV radiations were inhibited with 1% Calophyllum oil) and did not induce in vivo ocular irritation (Draize test on New Zealand rabbits). Calophyllum inophyllum oil thus exhibited antioxidant and cytoprotective properties, and therefore might serve, for the first time, as a natural UV filter in ophthalmic preparations.

  5. Feasibility of the silver-UV process for drinking water disinfection.

    PubMed

    Butkus, Michael A; Talbot, Mark; Labare, Michael P

    2005-12-01

    A synergistic effect between cationic silver and UV radiation (silver-UV disinfection) has been observed that can appreciably enhance inactivation of viruses. The purpose of this work was to assess the feasibility of this technique for drinking water disinfection and evaluate the effects of selected impurities, found in fresh water, and common parameters on inactivation of the coliphage MS-2 with the silver-UV process. Turbidity (kaolin), calcium hardness, carbonate alkalinity, and pH did not significantly degrade inactivation. Inactivation was reduced in the presence of chloride, at concentrations greater than 30 mg/L, and in water samples with UV-254 absorbance values greater than ca. 0.1 cm(-1). Inactivation of MS-2 with silver-UV disinfection was also reduced at high phosphate concentrations (above ca. 5 mM). Silver-UV inactivation of MS-2 increased with increases in temperature between 10 and 20 degrees C. Silver-UV inactivation of MS-2 was increased by greater than 1-log over UV alone, in two untreated fresh water sources, which indicates that silver-UV may be a viable treatment technology. An assessment of operation and management costs suggests that an increase in inactivation of MS-2 with silver-UV disinfection could be economically beneficial.

  6. Effect of pH and chloroauric acid concentration on the geometry of gold nanoparticles obtained by photochemical synthesis

    NASA Astrophysics Data System (ADS)

    Conde Rodríguez, G. R.; Gauthier, G. H.; Ladeira, L. O.; Sanabria Cala, J. A.; Laverde Cataño, D.

    2017-12-01

    Due to their excellent surface properties, gold nanoparticles have been used in a wide range of applications from optics and catalysis to biology and cancer treatment by thermal therapy. Gold nanoparticles can absorb a large amount of radiation according to their geometry, such as nanospheres and nanorods. The importance of gold nanoparticles geometry is based on the electromagnetic spectrum wavelength where exists a greater absorption of radiation, which belongs to the visible region for nanospheres and ranges between visible and near infrared regions for nanorods, conferring greater biomedical applicability to the latter. When using photochemical synthesis method, which consists of reducing gold atoms to their metallic state with UV radiation, the geometry of gold nanoparticles depends on different variables such as: 1) pH, 2) concentration of chloroauric acid, 3) the surfactant, 4) concentration of silver nitrate, 5) temperature and 6) irradiation time. Therefore, in this study the geometry of the gold nanoparticles obtained by photochemical synthesis was determined as a function of solution pH and chloroauric acid concentration, using Spectrophotometry in the Ultraviolet Visible region (UV-vis) as characterization technique. From the analysis of the UV-vis spectra, it was determined that at an acidic pH the particles have two absorption bands corresponding to nanorods geometry, while at a basic pH only nanospheres are found and at a neutral pH the lower relative intensity of the second band indicates the simultaneous existence of the two geometries. The increase in the concentration of chloroauric acid produces a decrease in the amount of synthesized nanorods, seen as a decrease of the relative intensity of the second absorption band. Therefore, obtaining gold nanoparticles with nanorods geometry favours fields such as biomedicine, because they are capable of absorbing infrared radiation and can be used as photosensitive agents in localized thermal therapy against cancer.

  7. Design of UV-absorbing PVDF membrane via surface-initiated AGET ATRP

    NASA Astrophysics Data System (ADS)

    Dong, Li; Liu, Xiangdong; Xiong, Zhengrong; Sheng, Dekun; Zhou, Yan; Lin, Changhong; Yang, Yuming

    2018-03-01

    Herein, PVDF membranes with excellent UV-absorbing property were first synthesized through grafting the polymerizable low-molecular-weight organic UV-absorber 2-hydroxy-4-(3-methacryloxy-2-hydroxylpropoxy) benzophenone (BPMA) onto α-bromoester-functionalized PVDF membranes via the surface-initiated activator generated by electron transfer atom transfer radical polymerization (SI-AGET ATRP). The surface initiators were immobilized by the reaction between 2-bromoisobutyryl bromide (BIBB) and the hydroxylated PVDF membranes. PVDF-g-PBPMA membranes with different grafting densities were obtained by tuning the polymerization time and the modified membranes were characterized by 1H-NMR, FT-IR, XPS, SEM, UV-vis Spectrophotometer, TGA and DSC. The experimental results indicated that PBPMA chains were successfully introduced onto PVDF membranes. Most importantly, the PVDF-g-PBPMA membranes exhibited outstanding UV-shielding property. UV-vis transmittance spectra showed that most UV light below 360 nm could be absorbed by PVDF-g-PBPMA membranes and the whole UV light region (200-400 nm) can be blocked with the reaction time increased.

  8. Effects of solar UV-B radiation on aquatic ecosystems

    NASA Astrophysics Data System (ADS)

    Häder, D.-P.

    Solar UV degrades dissolved organic carbon photolytically so that they can readily be taken up by bacterioplankton. On the other hand solar UV radiation inhibits bacterioplankton activity. Bacterioplankton productivity is far greater than previously thought and is comparable to phytoplankton primary productivity. According to the "microbial loop hypothesis," bacterioplankton is seen in the center of a food web, having a similar function to phytoplankton and protists. The penetration of UV and PAR into the water column can be measured. Marine waters show large temporal and regional differences in their concentrations of dissolved and particulate absorbing substances. A network of dosimeters (ELDONET) has been installed in Europe ranging from Abisko in Northern Sweden to Gran Canaria. Cyanobacteria are capable of fixing atmospheric nitrogen which is then made available to higher plants. The agricultural potential of cyanobacteria has been recognized as a biological fertilizer for wet soils such as in rice paddies. UV-B is known to impair processes such as growth, survival, pigmentation, motility, as well as the enzymes of nitrogen metabolism and CO 2 fixation. The marine phytoplankton represents the single most important ecosystem on our planet and produces about the same biomass as all terrestrial ecosystems taken together. It is the base of the aquatic food chain and any changes in the size and composition of phytoplankton communities will directly affect food production for humans from marine sources. Another important role of marine phytoplankton is to serve as a sink for atmospheric carbon dioxide. Recent investigations have shown a large sensitivity of most phytoplankton organisms toward solar short-wavelength ultraviolet radiation (UV-B); even at ambient levels of UV-B radiation many organisms seem to be under UV stress. Because of their requirement for solar energy, the phytoplankton dwell in the top layers of the water column. In this near-surface position phytoplankton will be exposed to solar ultraviolet radiation. This radiation has been shown to affect growth, photosynthesis, nitrogen incorporation and enzyme activity. Other targets of solar UV irradiation are proteins and pigments involved in photosynthesis. Whether or not screening pigments can be induced in phytoplankton to effectively shield the organisms from excessive UV irradiation needs to be determined. Macroalgae show a distinct pattern of vertical distribution in their habitat. They have developed mechanisms to regulate their photosynthetic activity to adapt to the changing light regime and protect themselves from excessive radiation. A broad survey was carried out to understand photosynthesis in aquatic ecosystems and the different adaptation strategies to solar radiation of ecologically important species of green, red and brown algae from the North Sea, Baltic Sea, Mediterranean, Atlantic, polar and tropical oceans. Photoinhibition was quantified by oxygen exchange and by PAM (pulse amplitude modulated) fluorescence measurements based on transient changes of chlorophyll fluorescence.

  9. Rapid transcriptome responses of maize (Zea mays) to UV-B in irradiated and shielded tissues

    PubMed Central

    Casati, Paula; Walbot, Virginia

    2004-01-01

    Background Depletion of stratospheric ozone has raised terrestrial levels of ultraviolet-B radiation (UV-B), an environmental change linked to an increased risk of skin cancer and with potentially deleterious consequences for plants. To better understand the processes of UV-B acclimation that result in altered plant morphology and physiology, we investigated gene expression in different organs of maize at several UV-B fluence rates and exposure times. Results Microarray hybridization was used to assess UV-B responses in directly exposed maize organs and organs shielded by a plastic that absorbs UV-B. After 8 hours of high UV-B, the abundance of 347 transcripts was altered: 285 were increased significantly in at least one organ and 80 were downregulated. More transcript changes occurred in directly exposed than in shielded organs, and the levels of more transcripts were changed in adult compared to seedling tissues. The time course of transcript abundance changes indicated that the response kinetics to UV-B is very rapid, as some transcript levels were altered within 1 hour of exposure. Conclusions Most of the UV-B regulated genes are organ-specific. Because shielded tissues, including roots, immature ears, and leaves, displayed altered transcriptome profiles after exposure of the plant to UV-B, some signal(s) must be transmitted from irradiated to shielded tissues. These results indicate that there are integrated responses to UV-B radiation above normal levels. As the same total UV-B irradiation dose applied at three intensities elicited different transcript profiles, the transcriptome changes exhibit threshold effects rather than a reciprocal dose-effect response. Transcriptome profiling highlights possible signaling pathways and molecules for future research. PMID:15003119

  10. Fast Resistive Bolometry

    NASA Astrophysics Data System (ADS)

    Graham, Jeffrey

    2005-10-01

    A bolometer with microsecond scale response time is under construction for the Caltech spheromak experiment to measure radiation from a ˜20 μs duration plasma discharge emitting ˜10^2---10^3 kW/m^2. A gold film several micrometers thick absorbs the radiation, heats up, and the consequent change in resistance can be measured. The film itself is vacuum deposited upon a glass slide. Several geometries for the film are under consideration to optimize the amount of radiation absorbed, the response time and the signal-to-noise ratio. We measure the change in voltage across the film for a known current driven through it; a square pulse (3---30A, ˜20 μs) is used to avoid Joule heating. Results from prototypes tested with a UV flashlamp will be presented. After optimizing the bolometer design, the final vacuum-compatible diagnostic would consist of a plasma-facing bolometer and a reference in a camera obscura. This device could provide a design for fast resistive bolometry.

  11. [Research progress and direction of atmospheric brown carbon].

    PubMed

    Yan, Cai-Qing; Zheng, Mei; Zhang, Yuan-Hang

    2014-11-01

    Organic aerosol is one of the most important components of atmospheric aerosols. In recent years, organic aerosol has been found and proved to be light absorbing in UV-Visible region. Light absorbing organic carbon (also named as brown carbon) has been one of the forefronts in the field of atmospheric research. Its light absorption contributions to radiative forcing, regional air quality, and global climate change have drawn much attention. Regional air pollution is complex in China. Frequent visibility decline and severe regional haze episodes occurred since January 2013. Previous studies showed high amount of estimated columnar light-absorbing organic carbon in China, and according to current research findings, major sources of fine particulate matter in China (e. g. biomass burning and fossil fuel combustion) were also recognized as the main sources for brown carbon. Considering the high abundance of brown carbon in atmosphere, there is a great need to reconsider and reevaluate contributions of organic aerosol to light absorption, especially its role in haze formation and radiative forcing. However, up to now, basic researches on light absorbing organic carbon are still limited in China. This study aimed to elucidate the need for basic research on brown carbon, summarize previous studies and research progress from different aspects such as sources, composition, measurement, mass concentration distribution, optical property, radiative forcing of brown carbon, point out the existing problems and deficiencies, and put forward suggestions for future study.

  12. Construction of Nontoxic Polymeric UV-Absorber with Great Resistance to UV-Photoaging

    PubMed Central

    Huang, Zhong; Ding, Aishun; Guo, Hao; Lu, Guolin; Huang, Xiaoyu

    2016-01-01

    In this article, we developed a series of new nontoxic polymeric UV-absorbers through covalently attaching a benzophenone derivative onto the main chain of poly(vinyl chloride) (PVC) via mild and quantitative click chemistry. Azide groups were firstly introduced into the backbone of PVC via a nucleophilic reaction without affecting polymeric skeleton. Copper-catalyzed Husigen-Click cycloaddition reaction was performed between the pendant azide groups of PVC and alkynyl of (2-hydroxy-4-(prop-2-ynyloxy)phenyl)(phenyl)methanone at ambient temperature for affording the desired PVC-based UV-absorbers (PVC-UV) with different amounts of benzophenone moieties, which displayed great resistance to photoaging without degradation while exposed to UV irradiation. These polymeric UV-absorbers also showed good solubilities in common organic solvents and no cytotoxicity vs. HaCat cell. Small amounts of PVC-UV were homogeneously mixed with PVC as additive for stabilizing PVC against UV-photoaging without degradation and releasing small molecule even after 200 h while keeping thermal stability. This route of polymeric additive clearly paved an efficient way for solving the puzzle of separation of small molecule additive. PMID:27138547

  13. Nanophotonic Hot Electron Solar-Blind Ultraviolet Detectors with a Metal-Oxide-Semiconductor Structure

    NASA Astrophysics Data System (ADS)

    Wang, Zhiyuan

    Solar-blind ultraviolet detection refers to photon detection specifically in the wavelength range of 200 nm to 320 nm. Without background noises from solar radiation, it has broad applications from homeland security to environmental monitoring. In this thesis, we design and fabricate a nanophotonic metal-oxide-semiconductor device for solar-blind UV detection. Instead of using semiconductors as the active absorber, we use metal Sn nano- grating structures to absorb UV photons and generate hot electrons for internal photoemission across the Sn/SiO 2 interfacial barrier, thereby generating photocurrent between metal and semiconductor region upon UV excitation. The large metal/oxide interfacial energy barrier enables solar-blind UV detection by blocking the less energetic electrons excited by visible photons. With optimized design, 85% UV absorption and hot electron excitation can be achieved within the mean free path of 20 nm from the metal/oxide interface. This feature greatly enhances hot electron transport across the interfacial barrier to generate photocurrent. Various fabrication techniques have been developed for preparing nano gratings. For nominally 20 nm-thick deposited Sn, the self- formed pseudo-periodic nanostructure help achieve 75% UV absorption from lambda=200 nm to 300 nm. With another layer of nominally 20 nm-thick Sn, similar UV absorption is maintained while conductivity is improved, which is beneficial for overall device efficiency. The Sn/SiO2/Si MOS devices show good solar-blind character while achieving 13% internal quantum efficiency for 260 nm UV with only 20 nm-thick Sn and some devices demonstrate much higher (even >100%) internal quantum efficiency. While a more accurate estimation of device effective area is needed for proving our calculation, these results indeed show a great potential for this type of hot-electron-based photodetectors and for Sn nanostructure as an effective UV absorber. The simple geometry of the self- assembled Sn nano-gratings and MOS structure make this novel type of device easy to fabricate and integrate with Si ROICs compared to existing solar-blind UV detection schemes. The presented device structure also breaks through the conventional notion that photon absorption by metal is always a loss in solid-state photodetectors, and it can potentially be extended to other active metal photonic devices.

  14. The use of FT-IR reflection-absorbance spectroscopy to study photochemical degradation of polymeric coatings on mirrors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Webb, J.D.; Chughtai, A.R.; Czanderna, A.W.

    1981-10-01

    A technique is presented for in situ study of degradative changes in polymeric coatings on metallic substrates. The technique uses a controlled environment chamber in conjunction with a Fourier-transform infrared (FT-IR) spectrophotometer. The chamber design permits collection of IR reflection-absorbance spectra from a sample undergoing exposure to controlled ultraviolet (UV) radiation, gas mixtures, and temperatures. Initial data presented confirm the ability of the technique to provide information regarding the bulk photochemistry of bisphenol-A polycarbonate coatings on gold and aluminum substrates. Refinements of this technique should allow a detailed kinetic study of degradative reactions at the polymer/metal interface.

  15. Use of FT-IR reflection-absorbance spectroscopy to study photochemical degradation of polymeric coatings on mirrors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Webb, J D; Schissel, P; Czanderna, A W

    1981-01-01

    A technique is presented for in situ study of degradative changes in polymeric coatings on metallic substrates. The technique uses a controlled environment chamber in conjunction with a Fourier-transform infrared (FT-IR) spectrophotometer. The chamber design permits collection of IR reflection-absorbance spectra from a sample undergoing exposure to controlled ultraviolet (uv) radiation, gas mixtures, and temperatures. Initial data presented confirm the ability of the technique to provide information regarding the bulk photochemistry of bisphenol-A polycarbonate coatings on gold and aluminum substrates. Refinements of this technique should allow a detailed kinetic study of degradative reactions at the polymer/metal interface.

  16. Production of a Novel Mineral-based Sun Lotion for Protecting the Skin from Biohazards of Electromagnetic Radiation in the UV Region.

    PubMed

    Movahedi, M M; Alipour, A; Mortazavi, S A R; Tayebi, M

    2014-03-01

    Sun protection materials have been one of the major concerns in pharmaceutical in-dustry since almost one century ago. Various materials have been found to have such an effect but there are still many unknown substances that have not been discovered. Objective : To introduce a novel mineral-based sun lotion with considerable UV absorption properties compared to commercially available sunscreens.  UV absorption properties of transparent plas-tic sheets covered by a uniform cream layer of different mineral-based sun lotions and a commercially available sun lotion were tested. Sun lotions containing specific proportion of bentonite and zeolite minerals were capable of absorbing the highest level of UV light com-pared to that of the commercially available sun lotion. Mineral-based sun lotions can be considered as cost effective alternatives for current commercial sunscreens.

  17. Production of a Novel Mineral-based Sun Lotion for Protecting the Skin from Biohazards of Electromagnetic Radiation in the UV Region

    PubMed Central

    Movahedi, M M; Alipour, A; Mortazavi, S A R; Tayebi, M

    2014-01-01

    Background: Sun protection materials have been one of the major concerns in pharmaceutical in­dustry since almost one century ago. Various materials have been found to have such an effect but there are still many unknown substances that have not been discovered. Objective: To introduce a novel mineral-based sun lotion with considerable UV absorption properties compared to commercially available sunscreens. Method:  UV absorption properties of transparent plas­tic sheets covered by a uniform cream layer of different mineral-based sun lotions and a commercially available sun lotion were tested. Results: Sun lotions containing specific proportion of bentonite and zeolite minerals were capable of absorbing the highest level of UV light com­pared to that of the commercially available sun lotion. Conclusion: Mineral-based sun lotions can be considered as cost effective alternatives for current commercial sunscreens. PMID:25505763

  18. Assessment of capabilities of multiangle imaging photo-polarimetry for atmospheric correction in presence of absorbing aerosols

    NASA Astrophysics Data System (ADS)

    Kalashnikova, O. V.; Garay, M. J.; Xu, F.; Seidel, F. C.; Diner, D. J.

    2015-12-01

    Satellite remote sensing of ocean color is a critical tool for assessing the productivity of marine ecosystems and monitoring changes resulting from climatic or environmental influences. Yet water-leaving radiance comprises less than 10% of the signal measured from space, making correction for absorption and scattering by the intervening atmosphere imperative. Traditional ocean color retrieval algorithms utilize a standard set of aerosol models and the assumption of negligible water-leaving radiance in the near-infrared. Modern improvements have been developed to handle absorbing aerosols such as urban particulates in coastal areas and transported desert dust over the open ocean, where ocean fertilization can impact biological productivity at the base of the marine food chain. Even so, imperfect knowledge of the absorbing aerosol optical properties or their height distribution results in well-documented sources of error. In the UV, the problem of UV-enhanced absorption and nonsphericity of certain aerosol types are amplified due to the increased Rayleigh and aerosol optical depth, especially at off-nadir view angles. Multi-angle spectro-polarimetric measurements have been advocated as an additional tool to better understand and retrieve the aerosol properties needed for atmospheric correction for ocean color retrievals. The central concern of the work to be described is the assessment of the effects of absorbing aerosol properties on water leaving radiance measurement uncertainty by neglecting UV-enhanced absorption of carbonaceous particles and by not accounting for dust nonsphericity. In addition, we evaluate the polarimetric sensitivity of absorbing aerosol properties in light of measurement uncertainties achievable for the next generation of multi-angle polarimetric imaging instruments, and demonstrate advantages and disadvantages of wavelength selection in the UV/VNIR range. The phase matrices for the spherical smoke particles were calculated using a standard Mie code, while those for non-spherical dust particles were calculated using the numerical approach described by Dubovik et al., 2006. A vector Markov Chain radiative transfer code including bio-optical models was used to evaluate TOA and water leaving radiances.

  19. Search for low-latitude atmospheric hydrocarbon variations on Jupiter from Juno-UVS measurements

    NASA Astrophysics Data System (ADS)

    Hue, V.; Gladstone, R.; Greathouse, T.; Versteeg, M.; Davis, M. W.; Gerard, J. C. M. C.; Grodent, D. C.; Bonfond, B.; Bolton, S. J.; Levin, S.; Connerney, J. E. P.

    2016-12-01

    The Juno mission offers the opportunity to study Jupiter, from its inner structure, up to its magnetospheric environment. Juno was launched on August 2011 and its Jupiter orbit insertion (JOI) occurred on July 4th 2016. The nominal Juno mission involves 35 science polar-orbits of 14-days period, with perijove and apojove distances located at 0.06 Rj and 45 Rj, respectively. Juno-UVS is a UV spectrograph with a bandpass of 70<λ<205 nm, designed to characterize Jupiter UV emissions. One of the main additions of UVS compared to its predecessors (New Horizons- and Rosetta- Alice, LRO-LAMP) is a 2.54 mm tantalum shielding, to protect it from the harsh radiation environment at Jupiter, and a scan mirror, to allow for targeting specific auroral and atmospheric features at +/- 30° perpendicular to the Juno spin plane. It will provide new constraints on Jupiter's auroral morphology, spectral features, and vertical structure, while providing remote-sensing constraints for the onboard waves and particle instruments. It will also be used to probe upper-atmospheric composition through absorption features found in the UV spectra using reflected solar UV radiation. For example, stratospheric hydrocarbons such as C2H2 and C2H6 are known to absorb significantly in the 150-180 nm regions, and these absorption features can be used to determine their abundances. We will present our search for the spectroscopic features seen in Jupiter's reflected sunlight during the first perijove.

  20. Liquid Chromatographic Analysis of Hydraulic Fluids.

    DTIC Science & Technology

    1979-11-01

    chemical mixtures of a petroleum- or nonpetroleum-base stock component formulated with various additives which may be present in trace amounts or...absorb UV radiation near the monitoring wavelength may swamp the detector signal and therefore should be avoided in 1JV detection. The recorder trace of...Also, organic phosphites , thiophosphates, and sulfides are used to inhibit oxidative catalysis by metal ions. The oxidation inhibitor in 6083D-0 is BPC

  1. 403 nm cavity ring-down measurements of brown carbon aerosol

    NASA Astrophysics Data System (ADS)

    Kwon, D.; Grassian, V. H.; Kleiber, P.; Young, M. A.

    2017-12-01

    Atmospheric aerosol influences Earth's climate by absorbing and scattering incoming solar radiation and outgoing terrestrial radiation. One class of secondary organic aerosol (SOA), called brown carbon (BrC), has attracted attention for its wavelength dependent light absorbing properties with absorption coefficients that generally increase from the visible (Vis) to ultraviolet (UV) regions. Here we report results from our investigation of the optical properties of BrC aerosol products from the aqueous phase reaction of ammonium sulfate (AS) with methylglyoxal (MG) using cavity ring-down spectroscopy (CRDS) at 403 nm wavelength. We have measured the optical constants of BrC SOA from the AS/MG reaction as a function of reaction time. Under dry flow conditions, we observed no apparent variation in the BrC refractive index with aging over the course of 22 days. The retrieved BrC optical constants are similar to those of AS with n = 1.52 for the real component. Despite significant UV absorption observed from the bulk BrC solution, the imaginary index value at 403 nm is below our minimum detection limit which puts an upper bound of k as 0.03. These observations are in agreement with results from our recent studies of the light scattering properties of this BrC aerosol.

  2. Macroevolutionary patterns of ultraviolet floral pigmentation explained by geography and associated bioclimatic factors.

    PubMed

    Koski, Matthew H; Ashman, Tia-Lynn

    2016-07-01

    Selection driven by biotic interactions can generate variation in floral traits. Abiotic selection, however, also contributes to floral diversity, especially with respect to patterns of pigmentation. Combining comparative studies of floral pigmentation and geography can reveal the bioclimatic factors that may drive macroevolutionary patterns of floral color. We create a molecular phylogeny and measure ultraviolet (UV) floral pattern for 177 species in the Potentilleae tribe (Rosaceae). Species are similar in flower shape and visible color but vary in UV floral pattern. We use comparative approaches to determine whether UV pigmentation variation is associated with geography and/or bioclimatic features (UV-B, precipitation, temperature). Floral UV pattern was present in half of the species, while others were uniformly UV-absorbing. Phylogenetic signal was detected for presence/absence of pattern, but among patterned species, quantitative variation in UV-absorbing area was evolutionarily labile. Uniformly UV-absorbing species tended to experience higher UV-B irradiance. Patterned species occurring at higher altitudes had larger UV-absorbing petal areas, corresponding with low temperature and high UV exposure. This analysis expands our understanding of the covariation of UV-B irradiance and UV floral pigmentation from within species to that among species, and supports the view that abiotic selection is associated with floral diversification among species. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  3. Effects of UV-B radiation on phenolic composition and deposition patterns and leaf physiology in three Eastern tree species

    NASA Astrophysics Data System (ADS)

    Sullivan, Joseph H.; Gitz, Dennis C.; Peek, Michael S.; McElrone, Andrew J.

    2002-01-01

    Quantitative changes in foliar chemistry in response to UVB radiation are frequently reported but less is known about the qualitative changes in putative UV-screening compounds. It has also not been conclusively shown whether qualitative differences in screening compounds or differences in localization patterns influences the sensitivity of plants to damage from UVB radiation. In this study we evaluated the chemical composition and deposition patterns of UV-absorbing compounds in three tree species and assayed these species for possible effects on gas exchange and photosynthetic carbon assimilation. Branches of mature trees of sweetgum (Liquidambar styraciflua), tulip poplar (Liriodendron tulipifera) and red maple (Acer rubrum) were exposed to supplemental levels of UVB radiation over three growing seasons. Controls for UVA were also measured by exposing branches to supplemental UVA only, and additional branches not irradiated were also used for controls. These species demonstrated contrasting chemical composition and deposition patterns with poplar being the most responsive in terms of epidermal accumulation of phenolics including flavonols and chlorogenic acid and hydroxycinnamates. Sweetgum and red maple showed increases primarily in hydroxycinnamates, particularly in the mesophyll in red maple. Leaf area was marginally influenced by UV exposure level. Assimilation was generally not reduced by UVB radiation in these species and was enhanced in red maple by both UVB and UVA and by UVA in sweetgum. These finding are consistent with a hypothesis that epidermal attenuation of UVB would only be reduced in poplar, which accumulated the additional epidermal screening compounds. It is possible that photosynthetic efficiency was enhanced in red maple by the increased absorption of blue light within the mesophyll. Stomatal conductance was generally reduced, and this led to an increase in water use efficiency in red maple and poplar.

  4. UV absorbers for cellulosic apparels: A computational and experimental study

    NASA Astrophysics Data System (ADS)

    Sahar, Anum; Ali, Shaukat; Hussain, Tanveer; Irfan, Muhammad; Eliasson, Bertil; Iqbal, Javed

    2018-01-01

    Two triazine based Ultra Violet (UV) absorbers Sulfuric acid mono-(2-{4-[4-chloro-6-(4-{4-chloro-6-[4-(2-sulfooxy-ethanesulfonyl)-phenylamino]-[1,3,5] triazin-2-ylamino-phenylamino)-[1,3,5]triazin-2-ylamino]-benzenesulfonyl}-ethyl) ester (1a) and 4-{4-chloro-6-[4-(2-sulfooxy-ethanesulfonyl)-phenylamino]-[1,3,5] triazin-2-ylamino}-2-[4-chloro-6-(2-sulfooxy-ethanesulfonyl)-[1,3,5]triazin-2-ylamino]-benzenesulfonic acid (2a) with different substituents were designed computationally. The influence of different substituents on the electrochemical properties and UV spectra of the absorbers was investigated. The presence of electron deficient unit in 1a to the molecular core significantly reduces the LUMO levels and energy gap. The designed absorbers were synthesized via condensation reaction and characterized by UV-Vis, FT-IR, MS studies. The performance of synthesized compounds as UV absorbers and their fastness properties were assessed by finishing the cotton fabric through exhaust method at different concentration and results appeared in good range.

  5. UV-induced DNA damage is an intermediate step in UV-induced expression of human immunodeficiency virus type 1, collagenase, c-fos, and metallothionein.

    PubMed Central

    Stein, B; Rahmsdorf, H J; Steffen, A; Litfin, M; Herrlich, P

    1989-01-01

    UV irradiation of human and murine cells enhances the transcription of several genes. Here we report on the primary target of relevant UV absorption, on pathways leading to gene activation, and on the elements receiving the UV-induced signal in the human immunodeficiency virus type 1 (HIV-1) long terminal repeat, in the gene coding for collagenase, and in the cellular oncogene fos. In order to induce the expression of genes. UV radiation needs to be absorbed by DNA and to cause DNA damage of the kind that cannot be repaired by cells from patients with xeroderma pigmentosum group A. UV-induced activation of the three genes is mediated by the major enhancer elements (located between nucleotide positions -105 and -79 of HIV-1, between positions -72 and -65 of the collagenase gene, and between positions -320 and -299 of fos). These elements share no apparent sequence motif and bind different trans-acting proteins; a member of the NF kappa B family binds to the HIV-1 enhancer, the heterodimer of Jun and Fos (AP-1) binds to the collagenase enhancer, and the serum response factors p67 and p62 bind to fos. DNA-binding activities of the factors recognizing the HIV-1 and collagenase enhancers are augmented in extracts from UV-treated cells. The increase in activity is due to posttranslational modification. While AP-1 resides in the nucleus and must be modulated there, NF kappa B is activated in the cytoplasm, indicating the existence of a cytoplasmic signal transduction pathway triggered by UV-induced DNA damage. In addition to activation, new synthesis of AP-1 is induced by UV radiation. Images PMID:2557547

  6. Reactor for simulation and acceleration of solar ultraviolet damage

    NASA Technical Reports Server (NTRS)

    Laue, E.; Gupta, A.

    1979-01-01

    An environmental test chamber providing acceleration of UV radiation and precise temperature control (+ or -)1 C was designed, constructed and tested. This chamber allows acceleration of solar ultraviolet up to 30 suns while maintaining temperature of the absorbing surface at 30 C - 60 C. This test chamber utilizes a filtered medium pressure mercury arc as the source of radiation, and a combination of selenium radiometer and silicon radiometer to monitor solar ultraviolet (295-340 nm) and total radiant power output, respectively. Details of design and construction and operational procedures are presented along with typical test data.

  7. Phosphor blends for high-CRI fluorescent lamps

    DOEpatents

    Setlur, Anant Achyut [Niskayuna, NY; Srivastava, Alok Mani [Niskayuna, NY; Comanzo, Holly Ann [Niskayuna, NY; Manivannan, Venkatesan [Clifton Park, NY; Beers, William Winder [Chesterland, OH; Toth, Katalin [Pomaz, HU; Balazs, Laszlo D [Budapest, HU

    2008-06-24

    A phosphor blend comprises at least two phosphors each selected from one of the groups of phosphors that absorb UV electromagnetic radiation and emit in a region of visible light. The phosphor blend can be applied to a discharge gas radiation source to produce light sources having high color rendering index. A phosphor blend is advantageously includes the phosphor (Tb,Y,LuLa,Gd).sub.x(Al,Ga).sub.yO.sub.12:Ce.sup.3+, wherein x is in the range from about 2.8 to and including 3 and y is in the range from about 4 to and including 5.

  8. Sex-dependent effects of ultraviolet radiation on the marine amphipod Ampithoe valida (Ampithoidae).

    PubMed

    Valiñas, Macarena S; Helbling, E Walter

    2015-06-01

    The combined effects of solar radiation and diet on the marine amphipod Ampithoe valida were investigated exposing individuals to two solar radiation treatments: PAB (>280 nm, PAR+UV-A+UV-B) and P (>400 nm, only PAR), and three diets: poor (Ulva rigida) and rich (Porphyra columbina) in UV-absorbing compounds (UVAC), and mixed diet: (U. rigida+P. columbina). Females of A. valida showed higher food consumption rates when diets contained P. columbina, and preferred this macroalgae rather than U. rigida, resulting in a higher content of UVAC in their bodies. Moreover, the content of UVAC increased in the PAB treatment, thus suggesting the existence of a mechanism to accumulate these compounds under UVR. Although UVR affected the survival, the highest mortality rates were found in those females fed with poor-UVAC diets, which evidence that UVAC provided partial protection against UVR. Males preferred mixed diet, and did not show preference for any particular macroalgae. No differences in mortality were observed between radiation treatments, indicating that UVR did not affect the survival of males, independently if they accumulated UVAC or not. The vulnerability of females to UVR would be partially determined by the type of food consumed, which in turn would be closely related to the macroalgae composition of the intertidal they inhabiting. These effects could be even more pronounced under a global change scenario. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Radiative transfer and radiative driving of outflows in active galactic nuclei and starbursts

    NASA Astrophysics Data System (ADS)

    Novak, G. S.; Ostriker, J. P.; Ciotti, L.

    2012-12-01

    To facilitate the study of black hole fuelling, star formation and feedback in galaxies, we outline a method for treating the radial forces on interstellar gas due to absorption of photons by dust grains. The method gives the correct behaviour in all of the relevant limits [dominated by the central point source; dominated by the distributed isotropic source; optically thin; optically thick to ultraviolet (UV)/optical; optically thick to infrared (IR)] and reasonably interpolates between the limits when necessary. The method is explicitly energy conserving so that UV/optical photons that are absorbed are not lost, but are rather redistributed to the IR where they may scatter out of the galaxy. We implement the radiative transfer algorithm in a two-dimensional hydrodynamical code designed to study feedback processes in the context of early-type galaxies. We find that the dynamics and final state of simulations are measurably but only moderately affected by radiative forces on dust, even when assumptions about the dust-to-gas ratio are varied from zero to a value appropriate for the Milky Way. In simulations with high gas densities designed to mimic ultraluminous IR galaxies with a star formation rate of several hundred solar masses per year, dust makes a more substantial contribution to the dynamics and outcome of the simulation. We find that, despite the large opacity of dust to UV radiation, the momentum input to the flow from radiation very rarely exceeds L/c due to two factors: the low opacity of dust to the re-radiated IR and the tendency for dust to be destroyed by sputtering in hot gas environments. We also develop a simplification of our radiative transfer algorithm that respects the essential physics but is much easier to implement and requires a fraction of the computational cost.

  10. Effects of solar UV-B radiation on aquatic ecosystems.

    PubMed

    Hader, D P

    2000-01-01

    Solar UV degrades dissolved organic carbon photolytically so that they can readily be taken up by bacterioplankton. On the other hand solar UV radiation inhibits bacterioplankton activity. Bacterioplankton productivity is far greater than previously thought and is comparable to phytoplankton primary productivity. According to the "microbial loop hypothesis," bacterioplankton is seen in the center of a food web, having a similar function to phytoplankton and protists. The penetration of UV and PAR into the water column can be measured. Marine waters show large temporal and regional differences in their concentrations of dissolved and particulate absorbing substances. A network of dosimeters (ELDONET) has been installed in Europe ranging from Abisko in Northern Sweden to Gran Canaria. Cyanobacteria are capable of fixing atmospheric nitrogen which is then made available to higher plants. The agricultural potential of cyanobacteria has been recognized as a biological fertilizer for wet soils such as in rice paddies. UV-B is known to impair processes such as growth, survival, pigmentation, motility, as well as the enzymes of nitrogen metabolism and CO2 fixation. The marine phytoplankton represents the single most important ecosystem on our planet and produces about the same biomass as all terrestrial ecosystems taken together. It is the base of the aquatic food chain and any changes in the size and composition of phytoplankton communities will directly affect food production for humans from marine sources. Another important role of marine phytoplankton is to serve as a sink for atmospheric carbon dioxide. Recent investigations have shown a large sensitivity of most phytoplankton organisms toward solar short-wavelength ultraviolet radiation (UV-B); even at ambient levels of UV-B radiation many organisms seem to be under UV stress. Because of their requirement for solar energy, the phytoplankton dwell in the top layers of the water column. In this near-surface position phytoplankton will be exposed to solar ultraviolet radiation. This radiation has been shown to affect growth, photosynthesis, nitrogen incorporation and enzyme activity. Other targets of solar UV irradiation are proteins and pigments involved in photosynthesis. Whether or not screening pigments can be induced in phytoplankton to effectively shield the organisms from excessive UV irradiation needs to be determined. Macroalgae show a distinct pattern of vertical distribution in their habitat. They have developed mechanisms to regulate their photosynthetic activity to adapt to the changing light regime and protect themselves from excessive radiation. A broad survey was carried out to understand photosynthesis in aquatic ecosystems and the different adaptation strategies to solar radiation of ecologically important species of green, red and brown algae from the North Sea, Baltic Sea, Mediterranean, Atlantic, polar and tropical oceans. Photoinhibition was quantified by oxygen exchange and by PAM (pulse amplitude modulated) fluorescence measurements based on transient changes of chlorophyll fluorescence. c2001 COSPAR Published by Elsevier Science Ltd. All rights reserved.

  11. Antiradiation UV Vaccine: UV Radiation, Biological effects, lesions and medical management - immune-therapy and immune-protection.

    NASA Astrophysics Data System (ADS)

    Popov, Dmitri; Jones, Jeffrey; Maliev, Slava

    Key Words: Ultraviolet radiation,Standard Erythema Dose(SED), Minimal Erythema Dose(MED), Sun Burns, Solar Dermatitis, Sun Burned Disease, DNA Damage,Cell Damage, Antiradiation UV Vaccine, Immune-Prophylaxis of Sun Burned Diseases, Immune-Prophylaxis of Sun Burns, Immune-Therapy of Sun-Burned Disease and Sun Burns,Basal Cell Carcinoma (BCC), Squamous Cell Carcinoma (SCC), Toxic Epidermal Necrolysis(TEN). Introduction: High doses of UV generated by solar source and artificial sources create an exposure of mammals and other species which can lead to ultraviolet(UV)radiation- associated disease (including erythema, epilation, keratitis, etc.). UV radiation belongs to the non-ionizing part of the electromagnetic spectrum and ranges between 100 nm and 400 nm with 100 nm having been chosen arbitrarily as the boundary between non-ionizing and ionizing radiation, however EMR is a spectrum and UV can produce molecular ionization. UV radiation is conventionally categorized into 3 areas: UV-A (>315-400 nm),UV-B (>280-315 nm)and UV-C (>100-280 nm) [IARC,Working Group Reports,2005] An important consequence of stratospheric ozone depletion is the increased transmission of solar ultraviolet (UV)radiation to the Earth's lower atmosphere and surface. Stratospheric ozone levels have been falling, in certain areas, for the past several decades, so current surface ultraviolet-B (UV-B) radiation levels are thought to be close to their modern day maximum. [S.Madronich et al.1998] Overexposure of ultraviolet radiation a major cause of skin cancer including basal cell carcinoma (BCC), squamous cell carcinoma (SCC) { collectively referred to as “non-melanoma" skin cancer (NMSC) and melanoma as well, with skin cancers being the most common cancer in North America. [Armstrong et al. 1993, Gallagher et al. 2005] Methods and Experimental Design: Our experiments and testing of a novel UV “Antiradiation Vaccine” have employed a wide variety of laboratory animals which include : Chinchilla rabbits, 11-12 months old, live weight 3.5-3.7 (n=11), Balb mice, 2-3 months old, live weight 20-22 g (n=33), Wistar rats, 3-4 months old, live weight 180-220 g(n=33). The studies were approved by the Animal Care and Use Committee for ethical animal research equivalent, at each institution. Seven rabbits, ten mice, eleven Wistar rats were vaccinated with a UV antiradiation vaccine. A second group of animals was used as biological control which received vaccine but no UV Radiation and a third group of animals was used as control without any interventions. Before and after UV Radiation, Vaccination with the UV antiradiation vaccine were provided 17 days prior to UV exposure. The animals were irradiated by a DRT-1 UV generator lamp. The dose of irradiation for laboratory, experimental animals was 10-12 * Standard Erythema Dose (SED) at L=283,7 Laboratory animals were placed in to the box with ventilation. Results: Ultraviolet irradiation of the skin was performed with high doses and causes an inflammation or erythema in all experimental animals. However the grade of skin damage and inflammation was significantly different between animals protected by vaccination and non-protected, non-vaccinated animals. Animals UV-irradiated, but who did not receive the antiradiation vaccine suffered from extensive UV skin burns of second or third degree (grade 2-3). However, animals protected with the UV antiradiation vaccine demonstrated much mild forms of skin cellular injury - mainly erythema, first degree skin burns and a few small patches with second degree skin burns (grade 1-2). Discussion: The severity of skin damage depended on area of exposed skin, time and dose of UV irradiation. Skin injury could be divided into 4 major grades: 1. Faint erythema with dry desquamation. 2. Moderate to severe erythema. 3. Severe erythema with blistering, moist desquamation. 4. Toxic epidermal necrolysis. Mild doses of UV radiation and ionizing radiation can induce cell death by apoptosis and moderate and high doses of UV and ionizing radiation induce cell death by necrosis and generate systemic inflammatory response syndrome (SIRS), toxic multiple organ injury (TMOI), toxic multiple organ dysfunction syndromes (TMODS),and finally, toxic multiple organ failure (TMOF). [D.Popov et al.2012, Fliedner T.et al. 2005, T. Azizova et al. 2004] UV-B is a complete carcinogen that is absorbed by DNA and directly damages DNA. DNA damage induced by UV-B irradiation typically includes the formation of cyclobutane pyrimidine dimmers (CPD) and 6-4 photoproducts (6-4P)[IARC, Working Group Reports, M.Saraiya et al. 2004]. The pre-vaccinated animals seem to have a blunted injury response relative to the unvaccinated animals, presumably by reduction in the inflammatory response and secondary injury effects. The mechanism of action of the antiradiation vaccine, needs further evaluation. Conclusion: A UV antiradiation vaccine appears to demonstrate efficacy as a prophylactic agent for acute solar burns and toxicity. An antiradiation UV vaccine could be used in conjunction with adjunctive measures, e.g. antioxidants and UV barriers to reduce UV radiation toxicity. The authors of this experiments would like to propose further development work of the antiradiation UV vaccine to enhance the armamentarium for prophylaxis and prevention of the various forms skin cancer.

  12. Survival of plant seeds, their UV screens, and nptII DNA for 18 months outside the International Space Station.

    PubMed

    Tepfer, David; Zalar, Andreja; Leach, Sydney

    2012-05-01

    The plausibility that life was imported to Earth from elsewhere can be tested by subjecting life-forms to space travel. Ultraviolet light is the major liability in short-term exposures (Horneck et al., 2001 ), and plant seeds, tardigrades, and lichens-but not microorganisms and their spores-are candidates for long-term survival (Anikeeva et al., 1990 ; Sancho et al., 2007 ; Jönsson et al., 2008 ; de la Torre et al., 2010 ). In the present study, plant seeds germinated after 1.5 years of exposure to solar UV, solar and galactic cosmic radiation, temperature fluctuations, and space vacuum outside the International Space Station. Of the 2100 exposed wild-type Arabidopsis thaliana and Nicotiana tabacum (tobacco) seeds, 23% produced viable plants after return to Earth. Survival was lower in the Arabidopsis Wassilewskija ecotype and in mutants (tt4-8 and fah1-2) lacking UV screens. The highest survival occurred in tobacco (44%). Germination was delayed in seeds shielded from solar light, yet full survival was attained, which indicates that longer space travel would be possible for seeds embedded in an opaque matrix. We conclude that a naked, seed-like entity could have survived exposure to solar UV radiation during a hypothetical transfer from Mars to Earth. Chemical samples of seed flavonoid UV screens were degraded by UV, but their overall capacity to absorb UV was retained. Naked DNA encoding the nptII gene (kanamycin resistance) was also degraded by UV. A fragment, however, was detected by the polymerase chain reaction, and the gene survived in space when protected from UV. Even if seeds do not survive, components (e.g., their DNA) might survive transfer over cosmic distances.

  13. Preillumination of lettuce seedlings with red light enhances the resistance of photosynthetic apparatus to UV-A.

    PubMed

    Kreslavski, Vladimir D; Lyubimov, Valery Yu; Shirshikova, Galina N; Shmarev, Alexander N; Kosobryukhov, Anatoly A; Schmitt, Franz-Josef; Friedrich, Thomas; Allakhverdiev, Suleyman I

    2013-05-05

    Seedlings of 10-day-old lettuce (Lactuca sativa L., cultivar Berlin) were preilluminated by low intensity red light (λmax=660 nm, 10 min, 5 μmol quanta m(-2) s(-1)) and far-red light (λmax=730 nm, 10 min, 5 μmol quanta m(-2) s(-1)) to study the effect of pre-treatment on photosynthesis, photochemical activity of photosystem II (PSII), the contents of photosynthetic and UV-A-absorbing pigments (UAPs) and H2O2, as well as total and ascorbate peroxidase activities in cotyledonary leaves of seedlings exposed to UV-A. UV radiation reduced the photosynthetic rate (Pn), the activity of PSII, and the contents of Chl a and b, carotenoids and UAPs in the leaves, but increased the content of H2O2 and the total peroxidase activity. Preillumination with red light removed these effects of UV. In turn, the illumination with red light, then far-red light removed the effect of the red light. Illumination with red light alone increased the content of UAPs, as well as peroxidase activity. It is suggested that higher resistance of the lettuce photosynthetic apparatus to UV-A radiation is associated with involvement of the active form of phytochrome B, thereby increasing peroxidase activities as well as UAPs and saving preservation of photosynthetic pigment contents due to pre-illumination with red light. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Highlights from 40 Years of Satellite UV Measurements

    NASA Technical Reports Server (NTRS)

    Bhartia, Pawan K.

    2010-01-01

    This year we are celebrating the 40th anniversary of the launch of the Backscatter Ultraviolet (BUV) instrument on NASA's Nimbus-4 satellite. The purpose of this instrument was to demonstrate the capability to measure total column ozone and its vertical distribution from space. The success of this instrument led to about a dozen instruments of this type on various NASA and NOAA satellites. These instruments used a single photomultiplier tube (PMT) that restricted the measurements to 6-12 discrete wavelengths in the 250-380 nm range. With the availability of solid-state detector arrays in the past decade it has been possible to make similar measurements but with hyperspectral (contiguous in wavelength) sampling and enhanced spectral resolution. This has allowed global mapping of several weakly-absorbing trace gases including S0 2, NO2, BrO, HCHO, and CIIOCHO. Since these measurements are affected by clouds and aerosols, a great deal of effort has gone into understanding their effect on ultraviolet radiation- both upwelling and downwelling. The downwelling UV radiation is chemically and biologically active and has both negative (genetic damage, air pollution) and positive (production of vitamin D and OH radical) environmental effects. I will discuss how the interaction of Rayleigh-scattered UV radiation with clouds and aerosols produce a variety of interesting effects that are leading to new methods of remote sensing of their properties. The UV measurements can greatly enhance the information that one derives from more traditional methods that use infrared and visible part of the solar spectrum.

  15. Degradation of modified carbon black/epoxy nanocomposite coatings under ultraviolet exposure

    NASA Astrophysics Data System (ADS)

    Ghasemi-Kahrizsangi, Ahmad; Shariatpanahi, Homeira; Neshati, Jaber; Akbarinezhad, Esmaeil

    2015-10-01

    Degradation of epoxy coatings with and without Carbon Black (CB) nanoparticles under ultraviolet (UV) radiation were investigated using electrochemical impedance spectroscopy (EIS). Sodium dodecyl sulfate (SDS) was used to obtain a good dispersion of CB nanoparticles in a polymer matrix. TEM analysis proved a uniform dispersion of modified CB nanoparticles in epoxy coating. The coatings were subjected to UV radiation to study the degradation behavior and then immersed in 3.5 wt% NaCl. The results showed that the electrochemical behavior of neat epoxy coating was related to the formation and development of microcracks on the surface. The occurrence of microcracks on the surface of the coatings and consequently the penetration of ionic species reduced by adding CB nanoparticles into the formulation of the coatings. CB nanoparticles decreased degradation of CB coatings by absorbing UV irradiation. The ATR-FTIR results showed that decrease in the intensity of methyl group as main peak in presence of 2.5 wt% CB was lower than neat epoxy. In addition, the reduction in impedance of neat epoxy coating under corrosive environment was larger than CB coatings. The CB coating with 2.5 wt% nanoparticles had the highest impedance to corrosive media after 2000 h UV irradiation and 24 h immersion in 3.5 wt% NaCl.

  16. Determination of ultraviolet filter activity on coconut oil cosmetic cream

    NASA Astrophysics Data System (ADS)

    Widiyati, Eni

    2017-08-01

    A research on determination of ultraviolet (UV) filter activity of cosmetic cream with coconut oil as raw material has been done. The cream was made by mixing the oil phase (coconut oil, stearic acid, lanolin and cetyl alcohol) at 70°C and the water phase (glycerin, aquadest and triethanolamine) at 70°C, while stirring until reached a temperature of 35°C. It was made also a cream with inorganic sunscreen TiO2 and organic sunscreen benzophenone-3 as a comparison. To study the UV filter activity, each cream was determined the UV absorption using UV spectrophotometer. The results show that cosmetic cream with coconut oil as raw material absorbs UV rays in the region of UV-C, whereas the cream with TiO2 absorbs the UV rays from UV-C to UV-A and cream with benzophenone-3 absorbs the UV rays from UV-B to UV-A region. This means that, the cosmetic cream with coconut oil as raw material has an activity as UV-C filter. If this cream is expected to have an activity as a sunscreen, it must be added an inorganic or organic sunscreen or a mixture of both as an active materials.

  17. Bioconvertible vitamin antioxidants improve sunscreen photoprotection against UV-induced reactive oxygen species.

    PubMed

    Hanson, Kerry M; Clegg, Robert M

    2003-01-01

    The ability of sunscreens and antioxidants to deactivate highly destructive reactive oxygen species in human skin has remained inconclusive. Two-photon fluorescence imaging microscopy was used to determine the effect of sunscreen/antioxidant combinations upon UV-induced ROS generation in ex vivo human skin. A sunscreen combination containing octylmethoxycinnamate (Parsol MCX) and avobenzone (Parsol 1789) at SPF 8 and SPF 15 was tested for its ability to prevent UV radiation from generating ROS in the viable epidermal strata of ex vivo human skin. A UV dose equivalent to two hours of North American solar UV was used to irradiate the skin. Each sunscreen reduced the amount of ROS induced in the viable strata by a value consistent with the SPF level. UV photons that were not absorbed/scattered by the sunscreen formulations generated ROS within the viable epidermal layers. The addition of the bioconvertible antioxidants vitamin E acetate and sodium ascorbyl phosphate (STAY-C 50) improves photoprotection by converting to vitamins E and C, respectively, within the skin. The bioconversion forms an antioxidant reservoir that deactivates the ROS generated (within the strata granulosum, spinosum, and basale) by the UV photons that the sunscreens do not block in the stratum corneum.

  18. In Situ UV-Visible Assessment of Iron-Based High-Temperature Water-Gas Shift Catalysts Promoted with Lanthana: An Extent of Reduction Study

    DOE PAGES

    Hallac, Basseem B.; Brown, Jared C.; Stavitski, Eli; ...

    2018-02-04

    Here, the extent of reduction of unsupported iron-based high-temperature water-gas shift catalysts with small (<5 wt %) lanthana contents was studied using UV-visible spectroscopy. Temperature- programmed reduction measurements showed that lanthana content higher than 0.5 wt % increased the extent of reduction to metallic Fe, while 0.5 wt % of lanthana facilitated the reduction to Fe 3O 4. In situ measurements on the iron oxide catalysts using mass and UV-visible spectroscopies permitted the quantification of the extent of reduction under temperature-programmed reduction and high-temperature water-gas shift conditions. The oxidation states were successfully calibrated against normalized absorbance spectra of visible lightmore » using the Kubelka-Munk theory. The normalized absorbance relative to the fully oxidized Fe 2O 3 increased as the extent of reduction increased. XANES suggested that the average bulk iron oxidation state during the water-gas shift reaction was Fe +2.57 for the catalyst with no lanthana and Fe +2.54 for the catalysts with 1 wt % lanthana. However, the UV-vis spectra suggest that the surface oxidation state of iron would be Fe +2.31 for the catalyst with 1 wt % lanthana if the oxidation state of iron in the catalyst with 0 wt % lanthana were Fe +2.57. The findings of this paper emphasize the importance of surface sensitive UV-visible spectroscopy for determining the extent of catalyst reduction during operation. Furthermore, the paper highlights the potential to use bench-scale UV-visible spectroscopy to study the surface chemistry of catalysts instead of less-available synchrotron X-ray radiation facilities.« less

  19. In Situ UV-Visible Assessment of Iron-Based High-Temperature Water-Gas Shift Catalysts Promoted with Lanthana: An Extent of Reduction Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hallac, Basseem B.; Brown, Jared C.; Stavitski, Eli

    Here, the extent of reduction of unsupported iron-based high-temperature water-gas shift catalysts with small (<5 wt %) lanthana contents was studied using UV-visible spectroscopy. Temperature- programmed reduction measurements showed that lanthana content higher than 0.5 wt % increased the extent of reduction to metallic Fe, while 0.5 wt % of lanthana facilitated the reduction to Fe 3O 4. In situ measurements on the iron oxide catalysts using mass and UV-visible spectroscopies permitted the quantification of the extent of reduction under temperature-programmed reduction and high-temperature water-gas shift conditions. The oxidation states were successfully calibrated against normalized absorbance spectra of visible lightmore » using the Kubelka-Munk theory. The normalized absorbance relative to the fully oxidized Fe 2O 3 increased as the extent of reduction increased. XANES suggested that the average bulk iron oxidation state during the water-gas shift reaction was Fe +2.57 for the catalyst with no lanthana and Fe +2.54 for the catalysts with 1 wt % lanthana. However, the UV-vis spectra suggest that the surface oxidation state of iron would be Fe +2.31 for the catalyst with 1 wt % lanthana if the oxidation state of iron in the catalyst with 0 wt % lanthana were Fe +2.57. The findings of this paper emphasize the importance of surface sensitive UV-visible spectroscopy for determining the extent of catalyst reduction during operation. Furthermore, the paper highlights the potential to use bench-scale UV-visible spectroscopy to study the surface chemistry of catalysts instead of less-available synchrotron X-ray radiation facilities.« less

  20. Evaluation of phototoxic properties of fragrances.

    PubMed

    Placzek, Marianne; Frömel, Wolfgang; Eberlein, Bernadette; Gilbertz, Klaus-Peter; Przybilla, Bernhard

    2007-01-01

    Fragrances are widely used in topical formulations and can cause photoallergic or phototoxic reactions. To identify phototoxic effects, 43 fragrances were evaluated in vitro with a photohaemolysis test using suspensions of human erythrocytes exposed to radiation sources rich in ultraviolet (UV) A or B in the presence of the test compounds. Haemolysis was measured by reading the absorbance values, and photohaemolysis was calculated as a percentage of total haemolysis. Oakmoss caused photohaemolysis of up to 100% with radiation rich in UVA and up to 26% with radiation rich in UVB. Moderate UVA-induced haemolysis (5-11%) was found with benzyl alcohol, bergamot oil, costus root oil, lime oil, orange oil, alpha-amyl cinnamic aldehyde and laurel leaf oil. Moderate UVB-induced haemolysis was induced by hydroxy citronellal, cinnamic alcohol, cinnamic aldehyde, alpha-amyl cinnamic aldehyde and laurel leaf oil. The phototoxic effects depended on the concentration of the compounds and the UV doses administered. We conclude that some, but not all, fragrances exert phototoxic effects in vitro. Assessment of the correlation of the clinical effects of these findings could lead to improved protection of the skin from noxious compounds.

  1. Near-visible light and UV photoprotection in the treatment of melasma: a double-blind randomized trial.

    PubMed

    Castanedo-Cazares, Juan Pablo; Hernandez-Blanco, Diana; Carlos-Ortega, Blanca; Fuentes-Ahumada, Cornelia; Torres-Álvarez, Bertha

    2014-02-01

    Melasma is an acquired hyperpigmentation on sun-exposed areas. Multiple approaches are used to treat it, but all include broad ultraviolet (UV)-spectrum sunscreens. Visible light (VL) can induce pigmentary changes similar to those caused by UV radiation on darker-skinned patients. To assess the efficacy of sunscreen with broad-spectrum UV protection that contains iron oxide as a VL-absorbing pigment (UV-VL) compared with a regular UV-only broad-spectrum sunscreen for melasma patients exposed to intense solar conditions. Sixty-eight patients with melasma were randomized in two groups to receive either UV-VL sunscreen or UV-only sunscreen, both with sun protection factor ≥ 50, over 8 weeks. All patients received 4% hydroquinone as a depigmenting treatment. At onset and at conclusion of the study, they were assessed by the Melasma Activity and Severity Index (MASI; a subjective scale), colorimetry (L*) and histological analysis of melanin. Sixty-one patients concluded the study. At 8 weeks, the UV-VL group showed 15%, 28% and 4% greater improvements than the UV-only group in MASI scores, colorimetric values and melanin assessments, respectively. UV-VL sunscreen enhances the depigmenting efficacy of hydroquinone compared with UV-only sunscreen in treatment of melasma. These findings suggest a role for VL in melasma pathogenesis. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Influence of cyclodextrin complexation on the in vivo photoprotective effects of oxybenzone.

    PubMed

    Felton, Linda A; Wiley, Cody J; Godwin, Donald A

    2004-01-01

    The objective of the current study was to investigate the influence of cyclodextrin complexation on the in vivo photoprotective effects of a model ultraviolet (UV) absorber, oxybenzone, and to compare these novel sunscreens to a commercial SPF 30 sunscreen product. Aqueous-based solutions and suspensions containing 2.7 mg/mL oxybenzone and up to 20% (w/w) hydroxypropyl-beta-cyclodextrin (HPCD) were prepared. The sunscreens were applied to the dorsal skin of SKH-1 hairless mice and the animals were exposed to up to two minimal erythemal doses (MEDs) of UV radiation. Control animals received no sunscreen treatment. Lipid damage, as quantified by decreases in the lipid melting temperature of the epidermis, was determined using differential scanning calorimetry immediately after UV exposure. The number of sunburn cells (SBCs) and the extent of edema were measured 24 hours postexposure. Results showed that all oxybenzone-containing formulations decreased the number of SBCs formed, diminished swelling, and reduced the physical damage to the skin structure, in comparison to control. Thus, complexation did not prevent oxybenzone from reacting with light. The 20% HPCD formulation exhibited more substantial photoprotection at UV exposures of one or two MEDs, as evidenced by the formation of fewer SBCs. The 5% HPCD formulation also provided substantial protection against epidermal lipid damage. These studies demonstrate that inclusion of HPCD in sunscreen formulations may enhance the in vivo photoprotective effects of the UV absorbers. No single HPCD-containing sunscreen, however, was found to be equivalent to a commercially available sunscreen product for all biomarkers investigated.

  3. Promotion by humus-reducing bacteria for the degradation of UV254 absorbance in reverse-osmosis concentrates pretreated with O3-assisted UV-Fenton method.

    PubMed

    Xia, Jiaohui; Zhang, Hui; Ding, Shaoxuan; Li, Changyu; Ding, Jincheng; Lu, Jie

    2017-07-12

    The primary pollutants in reverse-osmosis concentrates (ROC) are the substances with the UV absorbance at 254 nm (UV 254 ), which is closely related to humic substances that can be degraded by humus-reducing bacteria. This work studied the degradation characteristics of humus-reducing bacteria in ROC treatment. The physiological and biochemical characteristics of humus-reducing bacteria were investigated, and the effects of pH values and electron donors on the reduction of humic analog, antraquinone-2, 6-disulfonate were explored to optimize the degradation. Furthermore, the O 3 -assisted UV-Fenton method was applied for the pretreatment of ROC, and the degradation of UV 254 absorbance was apparently promoted with their removal rate, reaching 84.2% after 10 days of degradation by humus-reducing bacteria.

  4. Physico-chemical properties and fatty acid composition of pomegranate, cherry and pumpkin seed oils.

    PubMed

    Siano, Francesco; Straccia, Maria C; Paolucci, Marina; Fasulo, Gabriella; Boscaino, Floriana; Volpe, Maria G

    2016-03-30

    Nut and seed oils are often considered waste products but in recent years they have been receiving growing interest due to their high concentration of hydrophilic and lipophilic bioactive components, which have important pharmacological properties on human health. The aim of this work was to compare the physico-chemical and biochemical properties of pomegranate (Punicagranatum), sweet cherry (Prunusavium) and pumpkin (Cucurbita maxima) seed oils obtained by solvent extraction. High amount of linoleic acid was found in the cherry and pumpkin seed oils, while pomegranate seed oil showed relevant content of polyunsaturated fatty acids (PUFAs) and monounsaturated fatty acids (MUFAs) along to eicosapentaenoic acid (EPA) and nervonic acid. Pumpkin seed oil had high concentration of carotenoids, while pomegranate oil was the best absorber in the UV-A and UV-B ranges. Pomegranate, cherry and pumpkin seed oils can be an excellent source of bioactive molecules and antioxidant compounds such as polyphenols, carotenoids and unsaturated fatty acids. These seed oils can be included both as preservatives and functional ingredients in the food, pharmaceutical and cosmetic fields and can contribute to disease prevention and health promotion. Moreover, high absorbance of UV light indicates a potential use of these oils as filters from radiations in the food, pharmaceutical, and cosmetic fields. © 2015 Society of Chemical Industry.

  5. Absorbance detector for high performance liquid chromatography based on a deep-UV light-emitting diode at 235nm.

    PubMed

    da Silveira Petruci, João Flavio; Liebetanz, Michael G; Cardoso, Arnaldo Alves; Hauser, Peter C

    2017-08-25

    In this communication, we describe a flow-through optical absorption detector for HPLC using for the first time a deep-UV light-emitting diode with an emission band at 235nm as light source. The detector is also comprised of a UV-sensitive photodiode positioned to enable measurement of radiation through a flow-through cuvette with round aperture of 1mm diameter and optical path length of 10mm, and a second one positioned as reference photodiode; a beam splitter and a power supply. The absorbance was measured and related to the analyte concentration by emulating the Lambert-Beer law with a log-ratio amplifier circuitry. This detector showed noise levels of 0.30mAU, which is comparable with our previous LED-based detectors employing LEDs at 280 and 255nm. The detector was coupled to a HPLC system and successfully evaluated for the determination of the anti-diabetic drugs pioglitazone and glimepiride in an isocratic separation and the benzodiazepines flurazepam, oxazepam and clobazam in a gradient elution. Good linearities (r>0.99), a precision better than 0.85% and limits of detection at sub-ppm levels were achieved. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Freshwater DOM quantity and quality from a two-component model of UV absorbance

    USGS Publications Warehouse

    Carter, Heather T.; Tipping, Edward; Koprivnjak, Jean-Francois; Miller, Matthew P.; Cookson, Brenda; Hamilton-Taylor, John

    2012-01-01

    We present a model that considers UV-absorbing dissolved organic matter (DOM) to consist of two components (A and B), each with a distinct and constant spectrum. Component A absorbs UV light strongly, and is therefore presumed to possess aromatic chromophores and hydrophobic character, whereas B absorbs weakly and can be assumed hydrophilic. We parameterised the model with dissolved organic carbon concentrations [DOC] and corresponding UV spectra for c. 1700 filtered surface water samples from North America and the United Kingdom, by optimising extinction coefficients for A and B, together with a small constant concentration of non-absorbing DOM (0.80 mg DOC L-1). Good unbiased predictions of [DOC] from absorbance data at 270 and 350 nm were obtained (r2 = 0.98), the sum of squared residuals in [DOC] being reduced by 66% compared to a regression model fitted to absorbance at 270 nm alone. The parameterised model can use measured optical absorbance values at any pair of suitable wavelengths to calculate both [DOC] and the relative amounts of A and B in a water sample, i.e. measures of quantity and quality. Blind prediction of [DOC] was satisfactory for 9 of 11 independent data sets (181 of 213 individual samples).

  7. Gamma-radiation induced synthesis of silver nanoparticles in gelatin and its application for radiotherapy dose measurements

    NASA Astrophysics Data System (ADS)

    Soliman, Y. S.

    2014-09-01

    A new gel dosimeter based on a radiation-sensitive silver nitrate was formulated and investigated for its potential use in γ-radiation treatment, from 3 to 100 Gy. This gel matrix is analyzed by UV-vis spectrophotometry and X-ray diffraction (XRD). Subjecting the gel to γ-rays produces Ag nanoparticles that exhibit a plasmon resonance absorption band at 450 nm. The intensity of this band increases linearly with the increase of absorbed dose up to 100 Gy. Stability of Ag nanoparticle in the dark at 6 °C is good. The overall uncertainty (2σ) of the gel dosimeter is estimated as ~4.65% in the dose range of 5-100 Gy.

  8. Preliminary results of fluid dynamic model calculation of convective motion induced by solar heating at the Venus cloud top level.

    NASA Astrophysics Data System (ADS)

    Lee, Yeon Joo; Imamura, Takeshi; Maejima, Yasumitsu; Sugiyama, Ko-ichiro

    The thick cloud layer of Venus reflects solar radiation effectively, resulting in a Bond albedo of 76% (Moroz et al., 1985). Most of the incoming solar flux is absorbed in the upper cloud layer at 60-70 km altitude. An unknown UV absorber is a major sink of the solar energy at the cloud top level. It produces about 40-60% of the total solar heating near the cloud tops, depending on its vertical structure (Crisp et al., 1986; Lee et al., in preparation). UV images of Venus show a clear difference in morphology between laminar flow shaped clouds on the morning side and convective-like cells on the afternoon side of the planet in the equatorial region (Titov et al., 2012). This difference is probably related to strong solar heating at the cloud tops at the sub-solar point, rather than the influence from deeper level convection in the low and middle cloud layers (Imamura et al., 2014). Also, small difference in cloud top structures may trigger horizontal convection at this altitude, because various cloud top structures can significantly alter the solar heating and thermal cooling rates at the cloud tops (Lee et al., in preparation). Performing radiative forcing calculations for various cloud top structures using a radiative transfer model (SHDOM), we investigate the effect of solar heating at the cloud tops on atmospheric dynamics. We use CReSS (Cloud Resolving Storm Simulator), and consider the altitude range from 35 km to 90 km, covering a full cloud deck.

  9. Genoprotective effect of Phyllanthus orbicularis extract against UVA, UVB and solar radiation.

    PubMed

    Vernhes Tamayo, Marioly; Schuch, André Passaglia; Yagura, Teiti; Baly Gil, Luis; Menck, Carlos Frederico Martins; Sánchez-Lamar, Angel

    2018-05-16

    One approach to protect the human skin against harmful effects of solar ultraviolet (UV) radiation is to use natural products as photoprotectors. In this work, the extract from specie Phyllanthus orbicularis K was evaluated as a protective agent against the photodamage by UVB, UVA artificial lamps and environmental sunlight exposure. The plasmid DNA solutions were exposed to radiations using the DNA-dosimeter system in presence of plant extract. The DNA repair enzymes, E. coli Formamidopyrimidine-DNA glycosylase (Fpg) and T4 bacteriophage endonuclease V (T4-endo V), were employed to discriminate oxidized DNA damage and cyclobutane pyrimidine dimers (CPD) respectively. The supercoiled and relaxed forms of DNA were separated through electrophoretic migration in agarose gels. These DNA forms were quantified to determine strands break, representing the types of lesion levels. The results showed that, in presence of P. orbicularis extract, the CPD and oxidative damage were reduced in irradiated DNA samples. The photoprotective effect of extract was more evident for UVB and sunlight radiation than for UVA. This work documents the UV absorbing properties of P. orbicularis aqueous extract and opens up new vistas in its characterization as protective agent against DNA damage induced by environmental sunlight radiation. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  10. Protective Effect of Chitin Urocanate Nanofibers against Ultraviolet Radiation

    PubMed Central

    Ito, Ikuko; Yoneda, Toshikazu; Omura, Yoshihiko; Osaki, Tomohiro; Ifuku, Shinsuke; Saimoto, Hiroyuki; Azuma, Kazuo; Imagawa, Tomohiro; Tsuka, Takeshi; Murahata, Yusuke; Ito, Norihiko; Okamoto, Yoshiharu; Minami, Saburo

    2015-01-01

    Urocanic acid is a major ultraviolet (UV)-absorbing chromophore. Chitins are highly crystalline structures that are found predominantly in crustacean shells. Alpha-chitin consists of microfibers that contain nanofibrils embedded in a protein matrix. Acid hydrolysis is a common method used to prepare chitin nanofibrils (NFs). We typically obtain NFs by hydrolyzing chitin with acetic acid. However, in the present study, we used urocanic acid to prepare urocanic acid chitin NFs (UNFs) and examined its protective effect against UVB radiation. Hos: HR-1 mice coated with UNFs were UVB irradiated (302 nm, 150 mJ/cm2), and these mice showed markedly lower UVB radiation-induced cutaneous erythema than the control. Additionally, sunburn cells were rarely detected in the epidermis of UNFs-coated mice after UVB irradiation. Although the difference was not as significant as UNFs, the number of sunburn cells in mice treated with acetic acid chitin nanofibrils (ANFs) tended to be lower than in control mice. These results demonstrate that ANFs have a protective effect against UVB and suggest that the anti-inflammatory and antioxidant effects of NFs influence the protective effect of ANFs against UVB radiation. The combination of NFs with other substances that possess UV-protective effects, such as urocanic acid, may provide an enhanced protective effect against UVB radiation. PMID:26703629

  11. Skin protection efficacy from UV irradiation and skin penetration property of polysaccharide-benzophenone conjugates as a sunscreen agent.

    PubMed

    Heo, Sukyoung; Hwang, Hee Sook; Jeong, Yohan; Na, Kun

    2018-09-01

    Sunscreen materials have been developed to protect skin from UV radiation. However, many organic sunscreen materials are small molecules and absorbed into human skin after topical application and lead to systemic side effects. To improve the adverse effects of conventional sunscreen materials, we designed a sunscreen agent using an organic sunscreen material and a polymer. Dioxybenzone, an organic sunscreen compound is selected and polymerized with natural polymer pullulan. Polymerization not only provides a long polymer backbone to dioxybenzone, but also keeps the distance between benzene rings of the dioxybenzone and prevents reduction of photoabsorption intensity. UV/vis spectrophotometry confirmed that dioxybenzone-pullulan polymer (DOB-PUL) and dioxybenzone (DOB) demonstrated similar UV absorption. To measure the accumulation of sunscreen materials on skin, Franz diffusion cell was used to confirm the accumulation of DOB and lack of penetration of DOB-PUL. Most importantly, DOB showed higher plasma concentration after multiple applications compared to that of DOB-PUL. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. An Estimate of Changes in the Sun's Total Irradiance Caused by UV Irradiance Variations from 1874 to 1988

    NASA Technical Reports Server (NTRS)

    Lean, J.

    1990-01-01

    Enhanced emission from bright solar faculae is a source of significant variation in the sun's total irradiance. Relative to the emission from the quiet sun, facular emission is known to be considerably greater at UV wavelengths than at visible wavelengths. Determining the spectral dependence of facular emission is of interest for the physical insight this may provide to the origin of the sun's irradiance variations. It is also of interest because solar radiation at lambda less than 300 nm is almost totally absorbed in the Earth's atmosphere. Depending on the magnitude of the UV irradiance variations, changes in the sun's irradiance that penetrates to the Earth's surface may not be equivalent to total irradiance variations measured above the Earth's atmosphere. Using an empirical model of total irradiance variations which accounts separately for changes caused by bright faculae from those associated with dark sunspots, the contribution of UV irradiance variations to changes in the sun's total irradiance is estimated during solar cycles 12 to 21.

  13. UV and ionizing radiations induced DNA damage, differences and similarities

    NASA Astrophysics Data System (ADS)

    Ravanat, Jean-Luc; Douki, Thierry

    2016-11-01

    Both UV and ionizing radiations damage DNA. Two main mechanisms, so-called direct and indirect pathways, are involved in the degradation of DNA induced by ionizing radiations. The direct effect of radiation corresponds to direct ionization of DNA (one electron ejection) whereas indirect effects are produced by reactive oxygen species generated through water radiolysis, including the highly reactive hydroxyl radicals, which damage DNA. UV (and visible) light damages DNA by again two distinct mechanisms. UVC and to a lesser extend UVB photons are directly absorbed by DNA bases, generating their excited states that are at the origin of the formation of pyrimidine dimers. UVA (and visible) light by interaction with endogenous or exogenous photosensitizers induce the formation of DNA damage through photosensitization reactions. The excited photosensitizer is able to induce either a one-electron oxidation of DNA (type I) or to produce singlet oxygen (type II) that reacts with DNA. In addition, through an energy transfer from the excited photosensitizer to DNA bases (sometime called type III mechanism) formation of pyrimidine dimers could be produced. Interestingly it has been shown recently that pyrimidine dimers are also produced by direct absorption of UVA light by DNA, even if absorption of DNA bases at these wavelengths is very low. It should be stressed that some excited photosensitizers (such as psoralens) could add directly to DNA bases to generate adducts. The review will described the differences and similarities in terms of damage formation (structure and mechanisms) between these two physical genotoxic agents.

  14. HAC1 and HAF1 Histone Acetyltransferases Have Different Roles in UV-B Responses in Arabidopsis.

    PubMed

    Fina, Julieta P; Masotti, Fiorella; Rius, Sebastián P; Crevacuore, Franco; Casati, Paula

    2017-01-01

    Arabidopsis has 12 histone acetyltransferases grouped in four families: the GNAT/HAG, the MYST/HAM, the p300/CBP/HAC and the TAFII250/HAF families. We previously showed that ham1 and ham2 mutants accumulated higher damaged DNA after UV-B exposure than WT plants. In contrast, hag3 RNA interference transgenic plants showed less DNA damage and lower inhibition of plant growth by UV-B, and increased levels of UV-B-absorbing compounds. These results demonstrated that HAM1, HAM2, and HAG3 participate in UV-B-induced DNA damage repair and signaling. In this work, to further explore the role of histone acetylation in UV-B responses, a putative function of other acetyltransferases of the HAC and the HAF families was analyzed. Neither HAC nor HAF acetyltrasferases participate in DNA damage and repair after UV-B radiation in Arabidopsis. Despite this, haf1 mutants presented lower inhibition of leaf and root growth by UV-B, with altered expression of E2F transcription factors. On the other hand, hac1 plants showed a delay in flowering time after UV-B exposure and changes in FLC and SOC1 expression patterns. Our data indicate that HAC1 and HAF1 have crucial roles for in UV-B signaling, confirming that, directly or indirectly, both enzymes also have a role in UV-B responses.

  15. HAC1 and HAF1 Histone Acetyltransferases Have Different Roles in UV-B Responses in Arabidopsis

    PubMed Central

    Fina, Julieta P.; Masotti, Fiorella; Rius, Sebastián P.; Crevacuore, Franco; Casati, Paula

    2017-01-01

    Arabidopsis has 12 histone acetyltransferases grouped in four families: the GNAT/HAG, the MYST/HAM, the p300/CBP/HAC and the TAFII250/HAF families. We previously showed that ham1 and ham2 mutants accumulated higher damaged DNA after UV-B exposure than WT plants. In contrast, hag3 RNA interference transgenic plants showed less DNA damage and lower inhibition of plant growth by UV-B, and increased levels of UV-B-absorbing compounds. These results demonstrated that HAM1, HAM2, and HAG3 participate in UV-B-induced DNA damage repair and signaling. In this work, to further explore the role of histone acetylation in UV-B responses, a putative function of other acetyltransferases of the HAC and the HAF families was analyzed. Neither HAC nor HAF acetyltrasferases participate in DNA damage and repair after UV-B radiation in Arabidopsis. Despite this, haf1 mutants presented lower inhibition of leaf and root growth by UV-B, with altered expression of E2F transcription factors. On the other hand, hac1 plants showed a delay in flowering time after UV-B exposure and changes in FLC and SOC1 expression patterns. Our data indicate that HAC1 and HAF1 have crucial roles for in UV-B signaling, confirming that, directly or indirectly, both enzymes also have a role in UV-B responses. PMID:28740501

  16. Mycosporine-Like Amino Acids: Potential Health and Beauty Ingredients

    PubMed Central

    Chrapusta, Ewelina; Kaminski, Ariel; Duchnik, Kornelia; Bober, Beata; Adamski, Michal; Bialczyk, Jan

    2017-01-01

    Human skin is constantly exposed to damaging ultraviolet radiation (UVR), which induces a number of acute and chronic disorders. To reduce the risk of UV-induced skin injury, people apply an additional external protection in the form of cosmetic products containing sunscreens. Nowadays, because of the use of some chemical filters raises a lot of controversies, research focuses on exploring novel, fully safe and highly efficient natural UV-absorbing compounds that could be used as active ingredients in sun care products. A promising alternative is the application of multifunctional mycosporine-like amino acids (MAAs), which can effectively compete with commercially available filters. Here, we outline a complete characterization of these compounds and discuss their enormous biotechnological potential with special emphasis on their use as sunscreens, activators of cells proliferation, anti-cancer agents, anti-photoaging molecules, stimulators of skin renewal, and functional ingredients of UV-protective biomaterials. PMID:29065484

  17. Rapid laser fabrication of microlens array using colorless liquid photopolymer for AMOLED devices

    NASA Astrophysics Data System (ADS)

    Kim, Kwang-Ryul; Jeong, Han-Wook; Lee, Kong-Soo; Yi, Junsin; Yoo, Jae-Chern; Cho, Myung-Woo; Cho, Sung-Hak; Choi, Byoungdeog

    2011-01-01

    Microlens array (MLA) is microfabricated using Ultra Violet (UV) laser for display device applications. A colorless liquid photopolymer, Norland Optical Adhesive (NOA) 60, is spin-coated and pre-cured via UV light for completing the laser process. The laser energy controlled by a galvano scanner is radiated on the surface of the NOA 60. A rapid thermal volume expansion inside the material creates microlens array when the Gaussian laser energy is absorbed. The fabrication process conditions for various shapes and densities of MLA using a non-contact surface profiler are investigated. Furthermore, we analyze the optical and display characteristics for the Organic Light Emitting Diode (OLED) devices. Optimized condition furnishes the OLED with the enhancement of light emission by 15%. We show that UV laser technique, which is installed with NOA 60 MLA layer, is eligible for improving the performance of the next generation display devices.

  18. Design of tunable ultraviolet (UV) absorbance by controlling the Agsbnd Al co-sputtering deposition

    NASA Astrophysics Data System (ADS)

    Zhang, Xin-Yuan; Chen, Lei; Wang, Yaxin; Zhang, Yongjun; Yang, Jinghai; Choi, Hyun Chul; Jung, Young Mee

    2018-05-01

    Changing the structure and composition of a material can alter its properties; hence, the controlled fabrication of metal nanostructures plays a key role in a wide range of applications. In this study, the structure of Agsbnd Al ordered arrays fabricated by co-sputtering deposition onto a monolayer colloidal crystal significantly increased its ultraviolet (UV) absorbance owing to a tunable localized surface plasmon resonance (LSPR) effect. By increasing the spacing between two nanospheres and the content of aluminum, absorbance in the UV region could be changed from UVA (320-400 nm) to UVC (200-275 nm), and the LSPR peak in the visible region gradually shifted to the UV region. This provides the potential for surface-enhanced Raman scattering (SERS) in both the UV and visible regions.

  19. The complex refractive index of atmospheric and model humic-like substances (HULIS) retrieved by a cavity ring down aerosol spectrometer (CRD-AS).

    PubMed

    Dinar, E; Riziq, A Abo; Spindler, C; Erlick, C; Kiss, G; Rudich, Y

    2008-01-01

    Atmospheric aerosols absorb and reflect solar radiation causing surface cooling and heating of the atmosphere. The interaction between aerosols and radiation depends on their complex index of refraction, which is related to the particles' chemical composition. The contribution of light absorbing organic compounds, such as HUmic-LIke Substances (HULIS) to aerosol scattering and absorption is among the largest uncertainties in assessing the direct effect of aerosols on climate. Using a Cavity Ring Down Aerosol Spectrometer (CRD-AS), the complex index of refraction of aerosols containing HULIS extracted from pollution, smoke, and rural continental aerosols, and molecular weight-fractionated fulvic acid was measured at 390 nm and 532 nm. The imaginary part of the refractive index (absorption) substantially increases towards the UV range with increasing molecular weight and aromaticity. At both wavelengths, HULIS extracted from pollution and smoke particles absorb more than HULIS from the rural aerosol. Sensitivity calculations for a pollution-type aerosol containing ammonium sulfate, organic carbon (HULIS), and soot suggests that accounting for absorption by HULIS leads in most cases to a significant decrease in the single scattering albedo and to a significant increase in aerosol radiative forcing efficiency, towards more atmospheric absorption and heating. This indicates that HULIS in biomass smoke and pollution aerosols, in addition to black carbon, can contribute significantly to light absorption in the ultraviolet and visible spectral regions.

  20. Synergic use of TOMS and Aeronet Observations for Characterization of Aerosol Absorption

    NASA Technical Reports Server (NTRS)

    Torres, O.; Bhartia, P. K.; Dubovik, O.; Holben, B.; Siniuk, A.

    2003-01-01

    The role of aerosol absorption on the radiative transfer balance of the earth-atmosphere system is one of the largest sources of uncertainty in the analysis of global climate change. Global measurements of aerosol single scattering albedo are, therefore, necessary to properly assess the radiative forcing effect of aerosols. Remote sensing of aerosol absorption is currently carried out using both ground (Aerosol Robotic Network) and space (Total Ozone Mapping Spectrometer) based observations. The satellite technique uses measurements of backscattered near ultraviolet radiation. Carbonaceous aerosols, resulting from the combustion of biomass, are one of the most predominant absorbing aerosol types in the atmosphere. In this presentation, TOMS and AERONET retrievals of single scattering albedo of carbonaceous aerosols, are compared for different environmental conditions: agriculture related biomass burning in South America and Africa and peat fires in Eastern Europe. The AERONET and TOMS derived aerosol absorption information are in good quantitative agreement. The most absorbing smoke is detected over the African Savanna. Aerosol absorption over the Brazilian rain forest is less absorbing. Absorption by aerosol particles resulting from peat fires in Eastern Europe is weaker than the absorption measured in Africa and South America. This analysis shows that the near UV satellite method of aerosol absorption characterization has the sensitivity to distinguish different levels of aerosol absorption. The analysis of the combined AERONET-TOMS observations shows a high degree of synergy between satellite and ground based observations.

  1. Mechanical Properties of the Surface Material of Comet 67P/Churyumov-Gerasimenko Measured By the Casse Instrument Onboard the Philae Lander

    NASA Astrophysics Data System (ADS)

    Knapmeyer, M.; Fischer, H. H.; Seidensticker, K. J.; Arnold, W.; Faber, C.; Möhlmann, D.; Thiel, K.

    2014-12-01

    Satellite remote sensing of ocean color is a critical tool for assessing the productivity of marine ecosystems and monitoring changes resulting from climatic or environmental influences. Yet water-leaving radiance comprises less than 10% of the signal measured from space, making correction for absorption and scattering by the intervening atmosphere imperative. Traditional ocean color retrieval algorithms utilize a standard set of aerosol models and the assumption of negligible water-leaving radiance in the near-infrared. Modern improvements have been developed to handle absorbing aerosols such as urban particulates in coastal areas and transported desert dust over the open ocean, where ocean fertilization can impact biological productivity at the base of the marine food chain. Even so, imperfect knowledge of the absorbing aerosol optical properties or their height distribution results in well-documented sources of error. In the UV, the problem of UV-enhanced absorption and nonsphericity of certain aerosol types are amplified due to the increased Rayleigh and aerosol optical depth, especially at off-nadir view angles. Multi-angle spectro-polarimetric measurements have been advocated as an additional tool to better understand and retrieve the aerosol properties needed for atmospheric correction for ocean color retrievals. The central concern of the work to be described is the assessment of the effects of absorbing aerosol properties on water leaving radiance measurement uncertainty by neglecting UV-enhanced absorption of carbonaceous particles and by not accounting for dust nonsphericity. In addition, we evaluate the polarimetric sensitivity of absorbing aerosol properties in light of measurement uncertainties achievable for the next generation of multi-angle polarimetric imaging instruments, and demonstrate advantages and disadvantages of wavelength selection in the UV/VNIR range. The phase matrices for the spherical smoke particles were calculated using a standard Mie code, while those for non-spherical dust particles were calculated using the numerical approach described by Dubovik et al., 2006. A vector Markov Chain radiative transfer code including bio-optical models was used to evaluate TOA and water leaving radiances.

  2. The UVR8 UV-B Photoreceptor: Perception, Signaling and Response

    PubMed Central

    Tilbrook, Kimberley; Arongaus, Adriana B.; Binkert, Melanie; Heijde, Marc; Yin, Ruohe; Ulm, Roman

    2013-01-01

    Ultraviolet-B radiation (UV-B) is an intrinsic part of sunlight that is accompanied by significant biological effects. Plants are able to perceive UV-B using the UV-B photoreceptor UVR8 which is linked to a specific molecular signaling pathway and leads to UV-B acclimation. Herein we review the biological process in plants from initial UV-B perception and signal transduction through to the known UV-B responses that promote survival in sunlight. The UVR8 UV-B photoreceptor exists as a homodimer that instantly monomerises upon UV-B absorption via specific intrinsic tryptophans which act as UV-B chromophores. The UVR8 monomer interacts with COP1, an E3 ubiquitin ligase, initiating a molecular signaling pathway that leads to gene expression changes. This signaling output leads to UVR8-dependent responses including UV-B-induced photomorphogenesis and the accumulation of UV-B-absorbing flavonols. Negative feedback regulation of the pathway is provided by the WD40-repeat proteins RUP1 and RUP2, which facilitate UVR8 redimerization, disrupting the UVR8-COP1 interaction. Despite rapid advancements in the field of recent years, further components of UVR8 UV-B signaling are constantly emerging, and the precise interplay of these and the established players UVR8, COP1, RUP1, RUP2 and HY5 needs to be defined. UVR8 UV-B signaling represents our further understanding of how plants are able to sense their light environment and adjust their growth accordingly. PMID:23864838

  3. Analyzing Exonuclease-Induced Hyperchromicity by Uv Spectroscopy: An Undergraduate Biochemistry Laboratory Experiment

    ERIC Educational Resources Information Center

    Ackerman, Megan M.; Ricciardi, Christopher; Weiss, David; Chant, Alan; Kraemer-Chant, Christina M.

    2016-01-01

    An undergraduate biochemistry laboratory experiment is described that utilizes free online bioinformatics tools along with readily available exonucleases to study the effects of base stacking and hydrogen bonding on the UV absorbance of DNA samples. UV absorbance of double-stranded DNA at the ?[subscript max] is decreased when the DNA bases are…

  4. Spectrophotometry of Artemisia tridentata to quantitatively determine subspecies

    USGS Publications Warehouse

    Richardson, Bryce; Boyd, Alicia; Tobiasson, Tanner; Germino, Matthew

    2018-01-01

    Ecological restoration is predicated on our abilities to discern plant taxa. Taxonomic identification is a first step in ensuring that plants are appropriately adapted to the site. An example of the need to identify taxonomic differences comes from big sagebrush (Artemisia tridentata). This species is composed of three predominant subspecies occupying distinct environmental niches, but overlap and hybridization are common in ecotones. Restoration of A. tridentata largely occurs using wildland collected seed, but there is uncertainty in the identification of subspecies or mix of subspecies from seed collections. Laboratory techniques that can determine subspecies composition would be desirable to ensure that subspecies match the restoration site environment. In this study, we use spectrophotometry to quantify chemical differences in the water-soluble compound, coumarin. Ultraviolet (UV) absorbance of A. tridentata subsp. vaseyana showed distinct differences among A.t. tridentata and wyomingensis. No UV absorbance differences were detected between A.t. tridentata and wyomingensis. Analyses of samples from > 600 plants growing in two common gardens showed that UV absorbance was unaffected by environment. Moreover, plant tissues (leaves and seed chaff) explained only a small amount of the variance. UV fluorescence of water-eluted plant tissue has been used for many years to indicate A.t. vaseyana; however, interpretation has been subjective. Use of spectrophotometry to acquire UV absorbance provides empirical results that can be used in seed testing laboratories using the seed chaff present with the seed to certify A. tridentata subspecies composition. On the basis of our methods, UV absorbance values 3.1 would indicate either A.t. tridentata or wyomingensis. UV absorbance values between 2.7 and 3.1 would indicate a mixture of A.t. vaseyana and the other two subspecies.

  5. Croconic acid - An absorber in the Venus clouds?

    NASA Technical Reports Server (NTRS)

    Hartley, Karen K.; Wolff, Andrew R.; Travis, Larry D.

    1989-01-01

    The absorbing species responsible for the UV cloud features and pale yellow hue of the Venus clouds is presently suggested to be the carbon monoxide-polymer croconic acid, which strongly absorbs in the blue and near-UV. Laboratory absorption-coefficient measurements of a dilute solution of croconic acid in sulfuric acid are used as the bases of cloud-scattering models; the Venus planetary albedo's observed behavior in the blue and near-UV are noted to be qualitatively reproduced. Attention is given to a plausible croconic acid-production mechanism for the Venus cloudtop region.

  6. Light absorption of organic aerosol from pyrolysis of corn stalk

    NASA Astrophysics Data System (ADS)

    Li, Xinghua; Chen, Yanju; Bond, Tami C.

    2016-11-01

    Organic aerosol (OA) can absorb solar radiation in the low-visible and ultra-violet wavelengths thereby modifying radiative forcing. Agricultural waste burning emits a large quantity of organic carbon in many developing countries. In this work, we improved the extraction and analysis method developed by Chen and Bond, and extended the spectral range of OC absorption. We examined light absorbing properties of primary OA from pyrolysis of corn stalk, which is a major type of agricultural wastes. Light absorption of bulk liquid extracts of OA was measured using a UV-vis recording spectrophotometer. OA can be extracted by methanol at 95%, close to full extent, and shows polar character. Light absorption of organic aerosol has strong spectral dependence (Absorption Ångström exponent = 7.7) and is not negligible at ultra-violet and low-visible regions. Higher pyrolysis temperature produced OA with higher absorption. Imaginary refractive index of organic aerosol (kOA) is 0.041 at 400 nm wavelength and 0.005 at 550 nm wavelength, respectively.

  7. Determining the refractive index of human hemoglobin solutions by Kramers-Kronig relations with an improved absorption model.

    PubMed

    Gienger, Jonas; Groß, Hermann; Neukammer, Jörg; Bär, Markus

    2016-11-01

    The real part of the refractive index of aqueous solutions of human hemoglobin is computed from their absorption spectra in the wavelength range 250-1100 nm using the Kramers-Kronig (KK) relations, and the corresponding uncertainty analysis is provided. The strong ultraviolet (UV) and infrared absorbance of the water outside this spectral range were taken into account in a previous study employing KK relations. We improve these results by including the concentration dependence of the water absorbance as well as by modeling the deep UV absorbance of hemoglobin's peptide backbone. The two free parameters of the model for the deep UV absorbance are fixed by a global fit.

  8. The SOS Chromotest applied for screening plant antigenotoxic agents against ultraviolet radiation.

    PubMed

    Fuentes, J L; García Forero, A; Quintero Ruiz, N; Prada Medina, C A; Rey Castellanos, N; Franco Niño, D A; Contreras García, D A; Córdoba Campo, Y; Stashenko, E E

    2017-09-13

    In this work, we investigated the usefulness of the SOS Chromotest for screening plant antigenotoxic agents against ultraviolet radiation (UV). Fifty Colombian plant extracts obtained by supercritical fluid (CO 2 ) extraction, twelve plant extract constituents (apigenin, carvacrol, β-caryophyllene, 1,8-cineole, citral, p-cymene, geraniol, naringenin, pinocembrin, quercetin, squalene, and thymol) and five standard antioxidant and/or photoprotective agents (curcumin, epigallocatechin gallate, resveratrol, α-tocopherol, and Trolox®) were evaluated for their genotoxicity and antigenotoxicity against UV using the SOS Chromotest. None of the plant extracts, constituents or agents were genotoxic in the SOS Chromotest at tested concentrations. Based on the minimal extract concentration that significantly inhibited UV-genotoxicity (CIG), five plant extracts were antigenotoxic against UV as follows: Baccharis nítida (16 μg mL -1 ) = Solanum crotonifolium (16 μg mL -1 ) > Hyptis suaveolens (31 μg mL -1 ) = Persea caerulea (31 μg mL -1 ) > Lippia origanoides (62 μg mL -1 ). Based on CIG values, the flavonoid compounds showed the highest antigenotoxic potential as follows: apigenin (7 μM) > pinocembrin (15 μM) > quercetin (26 μM) > naringenin (38 μM) > epigallocatechin gallate (108 μM) > resveratrol (642 μM). UV-genotoxicity inhibition with epigallocatechin gallate, naringenin and resveratrol was related to its capability for inhibiting protein synthesis. A correlation analysis between compound antigenotoxicity estimates and antioxidant activity evaluated by the oxygen radical absorbance capacity (ORAC) assay showed that these activities were not related. The usefulness of the SOS Chromotest for bioprospecting of plant antigenotoxic agents against UV was discussed.

  9. Trans-cis molecular photoswitching in interstellar space

    NASA Astrophysics Data System (ADS)

    Cuadrado, S.; Goicoechea, J. R.; Roncero, O.; Aguado, A.; Tercero, B.; Cernicharo, J.

    2016-11-01

    As many organic molecules, formic acid (HCOOH) has two conformers (trans and cis). The energy barrier to internal conversion from trans to cis is much higher than the thermal energy available in molecular clouds. Thus, only the most stable conformer (trans) is expected to exist in detectable amounts. We report the first interstellar detection of cis-HCOOH. Its presence in ultraviolet (UV) irradiated gas exclusively (the Orion Bar photodissociation region), with a low trans-to-cis abundance ratio of 2.8 ± 1.0, supports a photoswitching mechanism: a given conformer absorbs a stellar photon that radiatively excites the molecule to electronic states above the interconversion barrier. Subsequent fluorescent decay leaves the molecule in a different conformer form. This mechanism, which we specifically study with ab initio quantum calculations, was not considered in Space before but likely induces structural changes of a variety of interstellar molecules submitted to UV radiation. This paper makes use of observations obtained with the IRAM-30 m telescope. IRAM is supported by INSU/CNRS (France), MPG (Germany), and IGN (Spain).

  10. Arctic, Antarctic, and temperate green algae Zygnema spp. under UV-B stress: vegetative cells perform better than pre-akinetes.

    PubMed

    Holzinger, Andreas; Albert, Andreas; Aigner, Siegfried; Uhl, Jenny; Schmitt-Kopplin, Philippe; Trumhová, Kateřina; Pichrtová, Martina

    2018-07-01

    Species of Zygnema form macroscopically visible mats in polar and temperate terrestrial habitats, where they are exposed to environmental stresses. Three previously characterized isolates (Arctic Zygnema sp. B, Antarctic Zygnema sp. C, and temperate Zygnema sp. S) were tested for their tolerance to experimental UV radiation. Samples of young vegetative cells (1 month old) and pre-akinetes (6 months old) were exposed to photosynthetically active radiation (PAR, 400-700 nm, 400 μmol photons m -2  s -1 ) in combination with experimental UV-A (315-400 nm, 5.7 W m -2 , no UV-B), designated as PA, or UV-A (10.1 W m -2 ) + UV-B (280-315 nm, 1.0 W m -2 ), designated as PAB. The experimental period lasted for 74 h; the radiation period was 16 h PAR/UV-A per day, or with additional UV-B for 14 h per day. The effective quantum yield, generally lower in pre-akinetes, was mostly reduced during the UV treatment, and recovery was significantly higher in young vegetative cells vs. pre-akinetes during the experiment. Analysis of the deepoxidation state of the xanthophyll-cycle pigments revealed a statistically significant (p < 0.05) increase in Zygnema spp. C and S. The content of UV-absorbing phenolic compounds was significantly higher (p < 0.05) in young vegetative cells compared to pre-akinetes. In young vegetative Zygnema sp. S, these phenolic compounds significantly increased (p < 0.05) upon PA and PAB. Transmission electron microscopy showed an intact ultrastructure with massive starch accumulations at the pyrenoids under PA and PAB. A possible increase in electron-dense bodies in PAB-treated cells and the occurrence of cubic membranes in the chloroplasts are likely protection strategies. Metabolite profiling by non-targeted RP-UHPLC-qToF-MS allowed a clear separation of the strains, but could not detect changes due to the PA and PAB treatments. Six hundred seventeen distinct molecular masses were detected, of which around 200 could be annotated from databases. These results indicate that young vegetative cells can adapt better to the experimental UV-B stress than pre-akinetes.

  11. Discovery of Associated Absorption Lines in an X-Ray Warm Absorber: Hubble Space Telescope Faint Object Spectrograph Observations of MR 2251-178

    NASA Technical Reports Server (NTRS)

    Monier, Eric M.; Mathur, Smita; Wilkes, Belinda; Elvis, Martin

    2001-01-01

    The presence of a 'warm absorber' was first suggested to explain spectral variability in an X-ray spectrum of the radio-quiet quasi-stellar object (QSO) MR 2251-178. A unified picture, in which X-ray warm absorbers and 'intrinsic' UV absorbers are the same, offers the opportunity to probe the nuclear environment of active galactic nuclei. To test this scenario and understand the physical properties of the absorber, we obtained a UV spectrum of MR 2251-178 with the Faint Object Spectrograph on board the Hubble Space Telescope (HST). The HST spectrum clearly shows absorption due to Lyalpha, N v, and C IV, blueshifted by 300 km s(exp -1) from the emission redshift of the QSO. The rarity of both X-ray and UV absorbers in radio-quiet QSOs suggests these absorbers are physically related, if not identical. Assuming the unified scenario, we place constraints on the physical parameters of the absorber and conclude the mass outflow rate is essentially the same as the accretion rate in MR 2251-178.

  12. Bacterial Sunscreen: Layer-by-Layer Deposition of UV-Absorbing Polymers on Whole-Cell Biosensors (POSTPRINT)

    DTIC Science & Technology

    2012-06-13

    mycosporine - like amino acids that absorb in the UV range and can quench UV-induced intracellular free radicals.2,3 Common in both microorganisms and higher...oxygen, which will react with amino acid side chains and reduce protein stability. GFPuv is excited by long-wave UV and requires ionization for...vinyl sulfate, poly-4-styrenesulfonic acid , and humic acid ) were used to encapsulate E. coli cells expressing green fluorescent protein (GFP) either

  13. Chemical oxidation for mitigation of UV-quenching substances (UVQS) from municipal landfill leachate: Fenton process versus ozonation.

    PubMed

    Jung, Chanil; Deng, Yang; Zhao, Renzun; Torrens, Kevin

    2017-01-01

    UV-quenching substance (UVQS), as an emerging municipal solid waste (MSW)-derived leachate contaminant, has a potential to interfere with UV disinfection when leachate is disposed of at publicly owned treatment works (POTWs). The objective of this study was to evaluate and compare two chemical oxidation processes under different operational conditions, i.e. Fenton process and ozonation, for alleviation of UV 254 absorbance of a biologically pre-treated landfill leachate. Results showed that leachate UV 254 absorbance was reduced due to the UVQS decomposition by hydroxyl radicals (·OH) during Fenton treatment, or by ozone (O 3 ) and ·OH during ozonation. Fenton process exhibited a better treatment performance than ozonation under their respective optimal conditions, because ·OH could effectively decompose both hydrophobic and hydrophilic dissolved organic matter (DOM), but O 3 tended to selectively oxidize hydrophobic compounds alone. Different analytical techniques, including molecular weight (MW) fractionation, hydrophobic/hydrophilic isolation, UV spectra scanning, parallel factor (PARAFAC) analysis, and fluorescence excitation-emission matrix spectrophotometry, were used to characterize UVQS. After either oxidation treatment, residual UVQS was more hydrophilic with a higher fraction of low MW molecules. It should be noted that the removed UV 254 absorbance (ΔUV 254 ) was directly proportional to the removed COD (ΔCOD) for the both treatments (Fenton process: ΔUV 254  = 0.011ΔCOD; ozonation: ΔUV 254  = 0.016ΔCOD). A greater ΔUV 254 /ΔCOD was observed for ozonation, suggesting that oxidant was more efficiently utilized during ozonation than in Fenton treatment for mitigation of the UV absorbance. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Method 415.3, Rev. 1.2: Determination of Total Organic Carbon and Specific UV Absorbance at 254 nm in Source Water and Drinking Water

    EPA Science Inventory

    This method provides procedures for the determination of total organic carbon (TOC), dissolved organic carbon (DOC), and UV absorption at 254 nm (UVA) in source waters and drinking waters. The DOC and UVA determinations are used in the calculation of the Specific UV Absorbance (S...

  15. Far Ultraviolet Spectroscopic Explorer Observations of the Seyfert 1.5 Galaxy NGC 5548 in a Low State

    NASA Technical Reports Server (NTRS)

    Brotherton, M. S.; Green, R. F.; Kriss, G. A.; Oegerle, W.; Kaiser, M. E.; Zheng, W.; Hutchings, J. B.; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    We present far-ultraviolet spectra of the Seyfert 1.5 galaxy NGC 5548 obtained in 2000 June with the Far Ultraviolet Spectroscopic Explorer (FUSE). Our data span the observed wavelength range 915-1185 A at a resolution of approximately 20 km s(exp -1). The spectrum shows a weak continuum and emission from O VI (lambda)(lambda)1032, 1038, C III (lambda)977, and He II (lambda)1085. The FUSE data were obtained when the AGN (Active Galactic Nuclei) was in a low state, which has revealed strong, narrow O VI emission lines. We also resolve intrinsic, associated absorption lines of O VI and the Lyman series. Several distinct kinematic components are present, spanning a velocity range of approximately 0 to -1300 km s(exp -1) relative to systemic, with kinematic structure similar to that seen in previous observations of longer wavelength ultraviolet (UV) lines. We explore the relationships between the far-UV (ultraviolet) absorbers and those seen previously in the UV and X-rays. We find that the high-velocity UV absorption component is consistent with being low-ionization, contrary to some previous claims, and is consistent with its non-detection in high-resolution X-ray spectra. The intermediate velocity absorbers, at -300 to -400 km s(exp -1), show H I and O VI column densities consistent with having contributions from both a high-ionization X-ray absorber and a low-ionization UV absorber. No single far-UV absorbing component can be solely identified with the X-ray absorber.

  16. Simultaneous energy generation and UV quencher removal from landfill leachate using a microbial fuel cell.

    PubMed

    Iskander, Syeed Md; Novak, John T; Brazil, Brian; He, Zhen

    2017-11-01

    The presence of UV quenching compounds in landfill leachate can negatively affect UV disinfection in a wastewater treatment plant when leachate is co-treated. Herein, a microbial fuel cell (MFC) was investigated to remove UV quenchers from a landfill leachate with simultaneous bioelectricity generation. The key operating parameters including hydraulic retention time (HRT), anolyte recirculation rate, and external resistance were systematically studied to maximize energy recovery and UV absorbance reduction. It was found that nearly 50% UV absorbance was reduced under a condition of HRT 40 days, continuous anolyte recirculation, and 10 Ω external resistance. Further analysis showed a total reduction of organics by 75.3%, including the reduction of humic acids, fulvic acids, and hydrophilic fraction concentration as TOC. The MFC consumed 0.056 kWh m -3 by its pump system for recirculation and oxygen supply. A reduced HRT of 20 days with periodical anode recirculation (1 hour in every 24 hours) and 39 Ω external resistance (equal to the internal resistance of the MFC) resulted in the highest net energy of 0.123 kWh m -3 . Granular activated carbon (GAC) was used as an effective post-treatment step and could achieve 89.1% UV absorbance reduction with 40 g L -1 . The combined MFC and GAC treatment could reduce 92.9% of the UV absorbance and remove 89.7% of the UV quenchers. The results of this study would encourage further exploration of using MFCs as an energy-efficient method for removing UV quenchers from landfill leachate.

  17. Modeling UV Radiation Feedback from Massive Stars. II. Dispersal of Star-forming Giant Molecular Clouds by Photoionization and Radiation Pressure

    NASA Astrophysics Data System (ADS)

    Kim, Jeong-Gyu; Kim, Woong-Tae; Ostriker, Eve C.

    2018-05-01

    UV radiation feedback from young massive stars plays a key role in the evolution of giant molecular clouds (GMCs) by photoevaporating and ejecting the surrounding gas. We conduct a suite of radiation hydrodynamic simulations of star cluster formation in marginally bound, turbulent GMCs, focusing on the effects of photoionization and radiation pressure on regulating the net star formation efficiency (SFE) and cloud lifetime. We find that the net SFE depends primarily on the initial gas surface density, Σ0, such that the SFE increases from 4% to 51% as Σ0 increases from 13 to 1300 {M}ȯ {pc}}-2. Cloud destruction occurs within 2–10 Myr after the onset of radiation feedback, or within 0.6–4.1 freefall times (increasing with Σ0). Photoevaporation dominates the mass loss in massive, low surface density clouds, but because most photons are absorbed in an ionization-bounded Strömgren volume, the photoevaporated gas fraction is proportional to the square root of the SFE. The measured momentum injection due to thermal and radiation pressure forces is proportional to {{{Σ }}}0-0.74, and the ejection of neutrals substantially contributes to the disruption of low mass and/or high surface density clouds. We present semi-analytic models for cloud dispersal mediated by photoevaporation and by dynamical mass ejection, and show that the predicted net SFE and mass loss efficiencies are consistent with the results of our numerical simulations.

  18. Light Absorptive Properties of Articular Cartilage, ECM Molecules, Synovial Fluid, and Photoinitiators as Potential Barriers to Light-Initiated Polymer Scaffolding Procedures.

    PubMed

    Finch, Anthony J; Benson, Jamie M; Donnelly, Patrick E; Torzilli, Peter A

    2017-06-01

    Objective Many in vivo procedures to repair chondral defects use ultraviolet (UV)-photoinitiated in situ polymerization within the cartilage matrix. Chemical species that absorb UV light might reduce the effectiveness of these procedures by acting as light absorption barriers. This study evaluated whether any of the individual native biochemical components in cartilage and synovial fluid interfered with the absorption of light by common scaffolding photosensitizers. Materials UV-visible spectroscopy was performed on each major component of cartilage in solution, on bovine synovial fluid, and on four photosensitizers, riboflavin, Irgacure 2959, quinine, and riboflavin-5'-phosphate. Molar extinction and absorption coefficients were calculated at wavelengths of maximum absorbance and 365 nm. Intact articular cartilage was also examined. Results The individual major biochemical components of cartilage, Irgacure 2959, and quinine did not exhibit a significant absorption at 365 nm. Riboflavin and riboflavin-5'-phosphate were more effectual light absorbers at 365 nm, compared with the individual native species. Intact cartilage absorbed a significantly greater amount of UV light in comparison with the native species. Conclusion Our results indicate that none of the individual native species in cartilage will interfere with the absorption of UV light at 365 nm by these commonly used photoinitiators. Intact cartilage slices exhibited significant light absorption at 365 nm, while also having distinct absorbance peaks at wavelengths less than 300 nm. Determining the UV absorptive properties of the biomolecules native to articular cartilage and synovial fluid will aid in optimizing scaffolding procedures to ensure sufficient scaffold polymerization at a minimum UV intensity.

  19. Triplet-triplet energy transfer from a UV-A absorber butylmethoxydibenzoylmethane to UV-B absorbers.

    PubMed

    Kikuchi, Azusa; Oguchi-Fujiyama, Nozomi; Miyazawa, Kazuyuki; Yagi, Mikio

    2014-01-01

    The phosphorescence decay of a UV-A absorber, 4-tert-butyl-4'-methoxydibenzolymethane (BMDBM) has been observed following a 355 nm laser excitation in the absence and presence of UV-B absorbers, 2-ethylhexyl 4-methoxycinnamate (octyl methoxycinnamate, OMC) and octocrylene (OCR) in ethanol at 77 K. The lifetime of the lowest excited triplet (T1) state of BMDBM is significantly reduced in the presence of OMC and OCR. The observed quenching of BMDBM triplet by OMC and OCR suggests that the intermolecular triplet-triplet energy transfer occurs from BMDBM to OMC and OCR. The T1 state of OCR is nonphosphorescent or very weakly phosphorescent. However, we have shown that the energy level of the T1 state of OCR is lower than that of the enol form of BMDBM. Our methodology of energy-donor phosphorescence decay measurements can be applied to the study of the triplet-triplet energy transfer between UV absorbers even if the energy acceptor is nonphosphorescent. In addition, the delayed fluorescence of BMDBM due to triplet-triplet annihilation was observed in the BMDBM-OMC and BMDBM-OCR mixtures in ethanol at 77 K. Delayed fluorescence is one of the deactivation processes of the excited states of BMDBM under our experimental conditions. © 2013 The American Society of Photobiology.

  20. Synthesis and characterization of UV-absorbing fluorine-silicone acrylic resin polymer

    NASA Astrophysics Data System (ADS)

    Lei, Huibin; He, Deliang; Guo, Yanni; Tang, Yining; Huang, Houqiang

    2018-06-01

    A series of UV-absorbing fluorine-silicone acrylic resin polymers containing different amount of UV-absorbent were successfully prepared by solution polymerization, with 2-[3-(2H-Benzotriazol-2-yl)-4-hydroxyphenyl] ethyl methacrylate (BHEM), vinyltrimethoxysilane (VTMS) and hexafluorobutyl methacrylate (HFMA) as modifying monomers. The acrylic polymers and the coatings thereof were characterized by Fourier transform infrared spectrum (FT-IR), X-ray photoelectron spectroscopy (XPS), Ultraviolet-visible (UV-vis) absorption spectrum, thermogravimetric analysis (TGA), water contact angle (CA) and Xenon lamp artificial accelerated aging tests. Results indicated that the resin exhibited high UV absorption performance as well as good thermal stability. The hydrophobicity of the coatings was of great improvement because of the bonded fluorine and silicone. Meanwhile, the weather-resistance was promoted through preferably colligating the protective effects of BHEM, organic fluorine and silicone. Also, a fitting formula about the weatherability with the BMHE content was tentatively proposed.

  1. The robustness of using near-UV observations to detect and study exoplanet magnetic fields

    NASA Astrophysics Data System (ADS)

    Turner, J.; Christie, D.; Arras, P.; Johnson, R.

    2015-10-01

    Studying the magnetic fields of exoplanets will allow for the investigation of their formation history, evolution, interior structure, rotation period, atmospheric dynamics, moons, and potential habitability. We previously observed the transits of 16 exoplanets as they crossed the face of their host-star in the near-UV in an attempt to detect their magnetic fields (Turner et al. 2013; Pearson et al. 2014; Turner et al. in press). It was postulated that the magnetic fields of all our targets could be constrained if their near-UV light curves start earlier than in their optical light curves (Vidotto et al. 2011). This effect can be explained by the presence of a bow shock in front of the planet formed by interactions between the stellar coronal material and the planet's magnetosphere. Furthermore, if the shocked material in the magnetosheath is optically thick, it will absorb starlight and cause an early ingress in the near- UV light curve. We do not observe an early ingress in any of our targets (See Figure 1 for an example light curve in our study), but determine upper limits on their magnetic field strengths. All our magnetic field upper limits are well below the predicted magnetic field strengths for hot Jupiters (Reiners & Christensen 2010; Sanchez-Lavega 2004). The upper limits we derived assume that there is an absorbing species in the near-UV. Therefore, our upper limits cannot be trusted if there is no species to cause the absorption. In this study we simulate the atomic physics, chemistry, radiation transport, and dynamics of the plasma characteristics in the vicinity of a hot Jupiter using the widely used radiative transfer code CLOUDY (Ferland et al. 2013). Using CLOUDY we have investigated whether there is an absorption species in the near-UV that can exist to cause an observable early ingress. The number density of hydrogen in the bow shock was varied from 104 - -108 cm-3 and the output spectrum was calculated (Figure 2) and compared to the input spectrum to mimic a transit like event (Figure 3). We find that there isn't a species in the near-UV that can cause an absorption under the conditions (T = 1×106 K, semi-major axis of 0.02 AU, solar input spectrum, solar metallicity) of a transiting hot Jupiter (Figure 3). Therefore, our upper limits can not be trusted. We can eventually use CLOUDY to explore the escaping atmospheres from hot Jupiters. We can still use our data to constrain the atmospheric proprieties of the exoplanets.

  2. Neutral and ionized polycyclic aromatic hydrocarbons, diffuse interstellar bands and the ultraviolet extinction curve

    NASA Technical Reports Server (NTRS)

    Salama, Farid; Allamandola, Louis John

    1993-01-01

    Neutral naphthalene C10H8, phenanthrene C14H10 and pyrene C16H10 absorb strongly in the ultraviolet region and may contribute to the extinction curve. High abundances are required to produce detectable structures. The cations of these polycyclic aromatic hydrocarbons (PAHs) absorb in the visible C10H8(+) has 13 discrete absorption bands which fall between 6800 and 4500 A. The strongest band at 6741 A falls close to the weak 6742 A diffuse interstellar band (DIB). Five other weaker bands also match DIBs. The possibility that C10H8(+) is responsible for some of the DIBs can be tested by searching for new DIBs at 6520 and 6151 A, other strong naphthalene cation band positions. If C10H8(+) is indeed responsible for the 6742 A feature, it accounts for 0.3% of the cosmic carbon. The spectrum of C16H10(+) is dominated by a strong band at 4435 A in an Ar matrix and 4395 A in Ne, wavelengths which fall very close to the strongest DIB at 4430 A. If C16H10(+) or a closely related pyrene-like ion, is indeed responsible for the 4430 A feature, it accounts for 0.2% of the cosmic carbon. An intense, very broad UV-to-visible continuum is reported which is associated with both ions and could explain how PAHs convert interstellar UV and visible radiation into IR radiation.

  3. Evaporation of Particle-Stabilized Emulsion Sunscreen Films.

    PubMed

    Binks, Bernard P; Fletcher, Paul D I; Johnson, Andrew J; Marinopoulos, Ioannis; Crowther, Jonathan M; Thompson, Michael A

    2016-08-24

    We recently showed (Binks et al., ACS Appl. Mater. Interfaces, 2016, DOI: 10.1021/acsami.6b02696) how evaporation of sunscreen films consisting of solutions of molecular UV filters leads to loss of UV light absorption and derived sun protection factor (SPF). In the present work, we investigate evaporation-induced effects for sunscreen films consisting of particle-stabilized emulsions containing a dissolved UV filter. The emulsions contained either droplets of propylene glycol (PG) in squalane (SQ), droplets of SQ in PG or droplets of decane in PG. In these different emulsion types, the SQ is involatile and shows no evaporation, the PG is volatile and evaporates relatively slowly, whereas the decane is relatively very volatile and evaporates quickly. We have measured the film mass and area, optical micrographs of the film structure, and the UV absorbance spectra during evaporation. For emulsion films containing the involatile SQ, evaporation of the PG causes collapse of the emulsion structure with some loss of specular UV absorbance due to light scattering. However, for these emulsions with droplets much larger than the wavelength of light, the light is scattered only at small forward angles so does not contribute to the diffuse absorbance and the film SPF. The UV filter remains soluble throughout the evaporation and thus the UV absorption by the filter and the SPF remain approximately constant. Both PG-in-SQ and SQ-in-PG films behave similarly and do not show area shrinkage by dewetting. In contrast, the decane-in-PG film shows rapid evaporative loss of the decane, followed by slower loss of the PG resulting in precipitation of the UV filter and film area shrinkage by dewetting which cause the UV absorbance and derived SPF to decrease. Measured UV spectra during evaporation are in reasonable agreement with spectra calculated using models discussed here.

  4. Degradation of Methyl Orange and Congo Red dyes by using TiO2 nanoparticles activated by the solar and the solar-like radiation.

    PubMed

    Ljubas, Davor; Smoljanić, Goran; Juretić, Hrvoje

    2015-09-15

    In this study we used TiO2 nanoparticles as semiconductor photocatalysts for the degradation of Methyl Orange (MO) and Congo Red (CR) dyes in an aqueous solution. Since TiO2 particles become photocatalytically active by UV radiation, two sources of UV-A radiation were used - natural solar radiation which contains 3-5% UV-A and artificial, solar-like radiation, created by using a lamp. The optimal doses of TiO2 of 500 mg/L for the CR and 1500 mg/L for the MO degradation were determined in experiments with the lamp and were also used in degradation experiments with natural solar light. The efficiency of each process was determined by measuring the absorbance at two visible wavelengths, 466 nm for MO and 498 nm for CR, and the total organic carbon (TOC), i.e. decolorization and mineralization, respectively. In both cases, considerable potential for the degradation of CR and MO was observed - total decolorization of the solution was achieved within 30-60 min, while the TOC removal was in the range 60-90%. CR and MO solutions irradiated without TiO2 nanoparticles showed no observable changes in either decolorization or mineralization. Three different commercially available TiO2 nanoparticles were used: pure-phase anatase, pure-phase rutile, and mixed-phase preparation named Degussa P25. In terms of degradation kinetics, P25 TiO2 exhibited a photocatalytic activity superior to that of pure-phase anatase or rutile. The electric energy consumption per gram of removed TOC was determined. For nearly the same degradation effect, the consumption in the natural solar radiation experiment was more than 60 times lower than in the artificial solar-like radiation experiment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Images in the rocket ultraviolet - Young clusters in H II regions of M83

    NASA Technical Reports Server (NTRS)

    Bohlin, Ralph C.; Cornett, Robert H.; Hill, Jesse K.; Stecher, Theodore P.

    1990-01-01

    UV images of M83 at 1540 and 2360 A reveal 18 compact sources that are associated with H II regions. E(B - V) values were estimated individually from the observed UV and optical colors and the Galactic UV extinction curve, using theoretical flux distributions. The dereddened colors are consistent with ages up to 3 x 10 to the 6th yr. A maximum possible age of 6.5 x 10 to the 6th yr is obtained assuming foreground reddening only. The distribution of observed colors is consistent with the Galactic reddening curve but not with enhanced far-UV extinction, as in the LMC 30 Dor curve. The H-alpha fluxes suggest either that dust within the H II regions absorbs up to 70 percent of the Lyman continuum radiation or that a similar fraction of the H-alpha flux is below the surface brightness detection limit. Cluster mass estimates depend on the range of stellar masses present but are probably in the range 10,000-100,000 solar masses.

  6. Direct radiative effect due to brownness in organic carbon aerosols generated from biomass combustion

    NASA Astrophysics Data System (ADS)

    Rathod, T. D.; Sahu, S. K.; Tiwari, M.; Pandit, G. G.

    2016-12-01

    We report the enhancement in the direct radiative effect due the presence of Brown carbon (BrC) as a part of organic carbon aerosols. The optical properties of organic carbon aerosols generated from pyrolytic combustion of mango tree wood (Magnifera Indica) and dung cake at different temperatures were considered. Mie codes were used to calculate absorption and scattering coefficients coupled with experimentally derived imaginary complex refractive index. The direct radiative effect (DRE) for sampled organic carbon aerosols was estimated using a wavelength dependent radiative transfer equation. The BrC DRE was estimated taking virtually non absorbing organic aerosols as reference. The BrC DRE from wood and dung cake was compared at different combustion temperatures and conditions. The BrC contributed positively to the direct top of the atmosphere radiative effect. Dung cake generated BrC aerosols were found to be strongly light absorbing as compared to BrC from wood combustion. It was noted that radiative effects of BrC from wood depended on its generation temperature and conditions. For BrC aerosols from dung cake such strong dependence was not observed. The average BrC aerosol DRE values were 1.53±0.76 W g-1 and 17.84±6.45 W g-1 for wood and dung cake respectively. The DRE contribution of BrC aerosols came mainly (67-90%) from visible light absorption though they exhibited strong absorption in shorter wavelengths of the UV-visible spectrum.

  7. Diurnal adjustment in ultraviolet sunscreen protection is widespread among higher plants.

    PubMed

    Barnes, Paul W; Flint, Stephan D; Tobler, Mark A; Ryel, Ronald J

    2016-05-01

    The accumulation of ultraviolet (UV)-absorbing compounds (flavonoids and related phenylpropanoids) in the epidermis of higher plants reduces the penetration of solar UV radiation to underlying tissues and is a primary mechanism of acclimation to changing UV conditions resulting from ozone depletion and climate change. Previously we reported that several herbaceous plant species were capable of rapid, diurnal adjustments in epidermal UV transmittance (T UV), but how widespread this phenomenon is among plants has been unknown. In the present study, we tested the generality of this response by screening 37 species of various cultivated and wild plants growing in four locations spanning a gradient of ambient solar UV and climate (Hawaii, Utah, Idaho and Louisiana). Non-destructive measurements of adaxial T UV indicated that statistically significant midday decreases in T UV occurred in 49 % of the species tested, including both herbaceous and woody growth forms, and there was substantial interspecific variation in the magnitude of these changes. In general, plants in Louisiana exhibited larger diurnal changes in T UV than those in the other locations. Moreover, across all taxa, the magnitude of these changes was positively correlated with minimum daily air temperatures but not daily UV irradiances. Results indicate that diurnal changes in UV shielding are widespread among higher plants, vary both within and among species and tend to be greatest in herbaceous plants growing in warm environments. These findings suggest that plant species differ in their UV protection "strategies" though the functional and ecological significance of this variation in UV sunscreen protection remains unclear at present.

  8. The effects of ultraviolet radiation on photosynthetic performance, growth and sunscreen compounds in aeroterrestrial biofilm algae isolated from building facades.

    PubMed

    Karsten, U; Lembcke, S; Schumann, R

    2007-03-01

    The effects of artificial ultraviolet radiation [UVR; 8 W m(-2) ultraviolet-A (UVA), 0.4 W m(-2) ultraviolet-B (UVB)] on photosynthetic performance, growth and the capability to synthesise mycosporine-like amino acids (MAAs) was investigated in the aeroterrestrial green algae Stichococcus sp. and Chlorella luteoviridis forming biofilms on building facades, and compared with the responses of two green algae, from soil (Myrmecia incisa) and brackish water (Desmodesmus subspicatus). All species exhibited decreasing quantum efficiency (Fv/Fm) after 1-3 days exposure to UVR. After 8-12 days treatment, however, all aeroterrestrial isolates exhibited full recovery under UVA and UVA/B. In contrast, D. subspicatus showed only 80% recovery after treatment with UVB. While Stichococcus sp. and C. luteoviridis exhibited a broad tolerance in growth under all radiation conditions tested, M. incisa showed a significant decrease in growth rate after exposure to UVA and UVA/B. Similarly D. subspicatus grew with a reduced rate under UVA, but UVA/B led to full inhibition. Using HPLC, an UV-absorbing MAA (324 nm-MAA) was identified in Stichococcus sp. and C. luteoviridis. While M. incisa contained a specific 322 nm-MAA, D. subspicatus lacked any trace of such compounds. UV-exposure experiments indicated that all MAA-containing species are capable of synthesizing and accumulating these compounds, thus supporting their function as an UV-sunscreen. All data well explain the conspicuous ecological success of aeroterrestrial green algae in biofilms on facades. Biosynthesis and accumulation of MAAs under UVR seem to result in a reduced UV-sensitivity of growth and photosynthesis, which consequently may enhance survival in the environmentally harsh habitat.

  9. Environmental plasticity of Pinot noir grapevine leaves: A trans-European study of morphological and biochemical changes along a 1,500-km latitudinal climatic gradient.

    PubMed

    Castagna, Antonella; Csepregi, Kristóf; Neugart, Susanne; Zipoli, Gaetano; Večeřová, Kristýna; Jakab, Gábor; Jug, Tjaša; Llorens, Laura; Martínez-Abaigar, Javier; Martínez-Lüscher, Johann; Núñez-Olivera, Encarnación; Ranieri, Annamaria; Schoedl-Hummel, Katharina; Schreiner, Monika; Teszlák, Péter; Tittmann, Susanne; Urban, Otmar; Verdaguer, Dolors; Jansen, Marcel A K; Hideg, Éva

    2017-11-01

    A 2-year study explored metabolic and phenotypic plasticity of sun-acclimated Vitis vinifera cv. Pinot noir leaves collected from 12 locations across a 36.69-49.98°N latitudinal gradient. Leaf morphological and biochemical parameters were analysed in the context of meteorological parameters and the latitudinal gradient. We found that leaf fresh weight and area were negatively correlated with both global and ultraviolet (UV) radiation, cumulated global radiation being a stronger correlator. Cumulative UV radiation (sumUVR) was the strongest correlator with most leaf metabolites and pigments. Leaf UV-absorbing pigments, total antioxidant capacities, and phenolic compounds increased with increasing sumUVR, whereas total carotenoids and xanthophylls decreased. Despite of this reallocation of metabolic resources from carotenoids to phenolics, an increase in xanthophyll-cycle pigments (the sum of the amounts of three xanthophylls: violaxanthin, antheraxanthin, and zeaxanthin) with increasing sumUVR indicates active, dynamic protection for the photosynthetic apparatus. In addition, increased amounts of flavonoids (quercetin glycosides) and constitutive β-carotene and α-tocopherol pools provide antioxidant protection against reactive oxygen species. However, rather than a continuum of plant acclimation responses, principal component analysis indicates clusters of metabolic states across the explored 1,500-km-long latitudinal gradient. This study emphasizes the physiological component of plant responses to latitudinal gradients and reveals the physiological plasticity that may act to complement genetic adaptations. © 2017 John Wiley & Sons Ltd.

  10. Protective effects of citrus and rosemary extracts on UV-induced damage in skin cell model and human volunteers.

    PubMed

    Pérez-Sánchez, A; Barrajón-Catalán, E; Caturla, N; Castillo, J; Benavente-García, O; Alcaraz, M; Micol, V

    2014-07-05

    Ultraviolet radiation absorbed by the epidermis is the major cause of various cutaneous disorders, including photoaging and skin cancers. Although topical sunscreens may offer proper skin protection, dietary plant compounds may significantly contribute to lifelong protection of skin health, especially when unconsciously sun UV exposed. A combination of rosemary and citrus bioflavonoids extracts was used to inhibit UV harmful effects on human HaCaT keratinocytes and in human volunteers after oral intake. Survival of HaCaT cells after UVB radiation was higher in treatments using the combination of extracts than in those performed with individual extracts, indicating potential synergic effects. The combination of extracts also decreased UVB-induced intracellular radical oxygen species (ROS) and prevented DNA damage in HaCaT cells by comet assay and decreased chromosomal aberrations in X-irradiated human lymphocytes. The oral daily consumption of 250 mg of the combination by human volunteers revealed a significant minimal erythema dose (MED) increase after eight weeks (34%, p<0.05). Stronger protection was achieved after 12 weeks (56%, p<0.01). The combination of citrus flavonoids and rosemary polyphenols and diterpenes may be considered as an ingredient for oral photoprotection. Their mechanism of action may deserve further attention. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. A long term study of the relations between erythemal UV-B irradiance, total ozone column, and aerosol optical depth at central Argentina

    NASA Astrophysics Data System (ADS)

    Palancar, Gustavo G.; Olcese, Luis E.; Achad, Mariana; López, María Laura; Toselli, Beatriz M.

    2017-09-01

    Global ultraviolet-B irradiance (UV-B, 280-315 nm) measurements made at the campus of the University of Córdoba, Argentina were analyzed to quantify the effects of ozone and aerosols on surface UV-B erythemal irradiance (UVER). The measurements have been carried out with a YES Pyranometer during the period 2000-2013. The effect of ozone and aerosols has been quantified by means of the Radiation Amplification Factor (RAF) and by an aerosol factor (AF, analogous to RAF), respectively. The overall mean RAF under cloudless conditions was (1.2 ± 0.3) %, ranging from 0.67 to 2.10% depending on solar zenith angle (SZA) and on Aerosol Optical Depth (AOD). The RAF increased with the SZA with a clear trend. Similarly, the aerosol effect under almost-constant ozone and SZA showed that, on average, a 1% increase in AOD forced a decrease of (0.15 ± 0.04) % in the UVER, with a range of 0.06 to 0.27 and no defined trend as a function of the SZA. To analyze the effect of absorbing aerosols, an effective single scattering albedo (SSA) was determined by comparing the experimental UVER with calculations carried out with the TUV radiative transfer model.

  12. Optical and electron paramagnetic resonance studies of the excited triplet states of UV-B absorbers: 2-ethylhexyl salicylate and homomenthyl salicylate.

    PubMed

    Sugiyama, Kazuto; Tsuchiya, Takumi; Kikuchi, Azusa; Yagi, Mikio

    2015-09-26

    The energy levels and lifetimes of the lowest excited triplet (T1) states of UV-B absorbers, 2-ethylhexyl salicylate (EHS) and homomenthyl salicylate (HMS), and their deprotonated anions (EHS(-) and HMS(-)) were determined through measurements of phosphorescence and electron paramagnetic resonance (EPR) spectra in rigid solutions at 77 K. The observed T1 energies of EHS and HMS are higher than those of butylmethoxydibenzoylmethane, the most widely used UV-A absorber, and octyl methoxycinnamate, the most widely used UV-B absorber. The T1 states of EHS, HMS, EHS(-) and HMS(-) were assigned to almost pure (3)ππ* state from the observed T1 lifetimes and zero-field splitting parameters. EHS and HMS with an intramolecular hydrogen bond show a photoinduced phosphorescence enhancement in ethanol at 77 K. The EPR signals of the T1 states of EHS and HMS also increase in intensity with UV-irradiation time (photoinduced EPR enhancement). The T1 lifetimes of EHS and HMS at room temperature were determined through triplet-triplet absorption measurements in ethanol. The quantum yields of singlet oxygen production by EHS and HMS were determined by using time-resolved near-IR phosphorescence.

  13. Intraocular and crystalline lens protection from ultraviolet damage.

    PubMed

    Sliney, David H

    2011-07-01

    Although the risks of excess solar ultraviolet (UV) exposure of the skin are well recognized, the need for eye protection is frequently overlooked, or when sunglasses are also recommended, specific guidance is wrong or is not explained. Guidance from the World Health Organization at its InterSun webpage advises people to wear "wrap-around" sunglasses under many conditions. The objective of this study was to examine the need for UV filtration in prescription lenses, contact lenses, and sunglasses. The geometry of UV exposure of both eyes, solar position, ground reflection, pupil size, and lid opening were studied. Because an accurate determination of cumulative ocular exposure is difficult, the cornea itself can serve as a biologic dosimeter, because photokeratitis is not experienced on a daily basis but does under certain ground-surface and sunlight conditions. From a knowledge of the UV-threshold dose required to produce photokeratitis, we have an upper level of routine ocular exposure to ambient UV. From ambient UV measurements and observed photokeratitis, the upper limits of UV exposure of the crystalline lens or an intraocular lens implant are estimated. The risk of excess UV exposure of the germinative cells of the lens is greatest from the side. Sunglasses can actually increase UV exposure of the germinative region of the crystalline lens and the corneal limbus by disabling the eyes' natural protective mechanisms of lid closure and pupil constriction! The level of UV-A risk is difficult to define. Proper UV-absorbing contact lenses offer the best mode for filtering needless exposure of UV radiation of the lens and limbus.

  14. Atmospheric Constraints on the Surface UV Environment of Mars at 3.9 Ga Relevant to Prebiotic Chemistry.

    PubMed

    Ranjan, Sukrit; Wordsworth, Robin; Sasselov, Dimitar D

    2017-08-01

    Recent findings suggest that Mars may have been a clement environment for the emergence of life and may even have compared favorably to Earth in this regard. These findings have revived interest in the hypothesis that prebiotically important molecules or even nascent life may have formed on Mars and been transferred to Earth. UV light plays a key role in prebiotic chemistry. Characterizing the early martian surface UV environment is key to understanding how Mars compares to Earth as a venue for prebiotic chemistry. Here, we present two-stream, multilayer calculations of the UV surface radiance on Mars at 3.9 Ga to constrain the surface UV environment as a function of atmospheric state. We explore a wide range of atmospheric pressures, temperatures, and compositions that correspond to the diversity of martian atmospheric states consistent with available constraints. We include the effects of clouds and dust. We calculate dose rates to quantify the effect of different atmospheric states on UV-sensitive prebiotic chemistry. We find that, for normative clear-sky CO 2 -H 2 O atmospheres, the UV environment on young Mars is comparable to young Earth. This similarity is robust to moderate cloud cover; thick clouds (τ cloud  ≥ 100) are required to significantly affect the martian UV environment, because cloud absorption is degenerate with atmospheric CO 2 . On the other hand, absorption from SO 2 , H 2 S, and dust is nondegenerate with CO 2 , meaning that, if these constituents build up to significant levels, surface UV fluence can be suppressed. These absorbers have spectrally variable absorption, meaning that their presence affects prebiotic pathways in different ways. In particular, high SO 2 environments may admit UV fluence that favors pathways conducive to abiogenesis over pathways unfavorable to it. However, better measurements of the spectral quantum yields of these pathways are required to evaluate this hypothesis definitively. Key Words: Radiative transfer-Origin of life-Mars-UV radiation-Prebiotic chemistry. Astrobiology 17, 687-708.

  15. Carbonaceous Aerosol Removal During Precipitation Events: Climate Implications

    NASA Astrophysics Data System (ADS)

    Gaffney, J. S.; Marley, N. A.; Bridges, G. L.; Marchany-Rivera, A.; Begum, M.

    2009-12-01

    Atmospheric aerosols and their links to clouds are one of the main focus areas of the Department of Energy’s Atmospheric Systems Research, due to the fact that aerosols and clouds constitute the major uncertainties in radiative forcing that need to be reduced for more accurate modeling of climate, particularly regional climate. The impact of absorbing aerosols on radiative balance of the atmosphere will depend on their atmospheric lifetimes as well as their UV-visible absorption profiles. Aerosol lifetimes depend on the aerosols ability to take up water and grow to sufficient size to be either removed by gravitational settling or to act as cloud condensation nuclei and be removed by precipitation scavenging. The investigation of uv-visible absorbing aerosols is underway using a seven-channel aethalometer to evaluate the change in aerosol optical absorption during precipitation events. Angstrom absorption exponents (AAEs) are determined before, during, and after rain events to examine the impact on the aerosol absorption profiles anticipated by removal of the water soluble short-wave absorbing species (i.e. HULIS) that can be produced by photochemical oxidation of biogenic emissions (isoprene, monoterpenes, sesquiterpenes). Aerosol absorption data are presented from observations made at the University of Arkansas at Little Rock and other sites, which clearly show that a significant amount of absorbing carbon is not removed during rain events, and that the organic matter removed is likely secondary organics produced from biogenic precursors. The dissolved organic carbon measured in precipitation samples along with determinations of natural radionuclide tracers are also used to help examine the extent of carbonaceous aerosol removal by precipitation. The data are discussed in terms of the potential impacts of anthropogenic enhancement of aerosol absorption by secondary organic aerosols adding to atmospheric heating and changes in atmospheric dynamics. The potential impacts of these organic aerosol species as sources of organic carbon in surface waters is also addressed. This work was supported by the Office of Science (BER), U.S. Department of Energy, Grant No. DE-FG02-07ER64328 and Grant No. DE-FG02-07-ER64329 as part of the Atmospheric Science Program.

  16. Simulations of dust in interacting galaxies

    NASA Astrophysics Data System (ADS)

    Jonsson, Patrik

    This dissertation studies the effects of dust in N-body simulations of interacting galaxies. A new Monte-Carlo radiative-transfer code, Sunrise , is used in conjunction with hydrodynamic simulations. Results from radiative- transfer calculations in over 20 SPH simulations of disk-galaxy major mergers (Cox, 2004) are presented. Dust has a profound effect on the appearance of these simulations. At peak luminosities, 90% of the bolometric luminosity is absorbed by dust. The dust obscuration increases with luminosity in such a way that the brightness at UV/ visual wavelengths remains roughly constant. A general relationship between the fraction of energy absorbed and the ratio of bolometric luminosity to baryonic mass is found to hold in galaxies with metallicities >0.7 [Special characters omitted.] over a factor of 50 in mass. The accuracy to which the simulations describe observed starburst galaxies is evaluated by comparing them to observations by Meurer et al. (1999) and Heckman et al. (1998). The simulations are found to follow a relation similar to the IRX-b relation found by Meurer et al. (1999) when similar luminosity objects are considered. The highest-luminosity simulated galaxies depart from this relation and occupy the region where local LIRGs/ULIRGs are found. Comparing to the Heckman et al. (1998) sample, the simulations are found to obey the same relations between UV luminosity, UV color, IR luminosity, absolute blue magnitude and metallicity as the observations. This agreement is contingent on the presence of a realistic mass-metallicity relation, and Milky-Way-like dust. SMC-like dust results in far too red a UV continuum slope. On the whole, the agreement between the simulated and observed galaxies is impressive considering that the simulations have not been fit to agree with the observations, and we conclude that the simulations provide a realistic replication of the real universe. The simulations are used to study the performance of star-formation indicators in the presence of dust. The far-infrared luminosity is found to be reliable. In contrast, the Ha and far-ultraviolet luminosities suffer severely from dust attenuation, and dust corrections can only partially remedy the situation.

  17. Equatorial cloud level convection on Venus

    NASA Astrophysics Data System (ADS)

    Lee, Yeon Joo; Imamura, Takeshi; Sugiyama, Koichiro; Sato, Takao M.; Maejima, Yasumitsu

    2016-10-01

    In the equatorial region on Venus, a clear cloud top morphology difference depending on solar local time has been observed through UV images. Laminar flow shaped clouds are shown on the morning side, and convective-like cells on the afternoon side (Titov et al. 2012). Baker et al. (1998) suggested that deep convective motions in the low-to-middle cloud layers at the 40-60 km range can explain cellular shapes. Imamura et al. (2014), however argued that this cannot be a reason, as convection in the low-to-middle cloud layers can be suppressed near sub solar regions due to a stabilizing effect by strong solar heating. We suggest that the observed feature may be related to strong solar heating at local noon time (Lee et al. 2015). Horizontal uneven distribution of an unknown UV absorber and/or cloud top structure may trigger horizontal convection (Toigo et al. 1994). In order to examine these possibilities, we processed 1-D radiative transfer model calculations from surface to 100 km altitude (SHDOM, Evans 1998), which includes clouds at 48-71 km altitudes (Crisp et al. 1986). The results on the equatorial thermal cooling and solar heating profiles were employed in a 2D fluid dynamic model calculation (CReSS, Tsuboki and Sakakibara 2007). The calculation covered an altitude range of 40-80 km and a 100-km horizontal distance. We compared three conditions; an 'effective' global circulation condition that cancels out unbalanced net radiative energy at equator, a condition without such global circulation effect, and the last condition assumed horizontally inhomogeneous unknown UV absorber distribution. Our results show that the local time dependence of lower level cloud convection is consistent with Imamura et al.'s result, and suggest a possible cloud top level convection caused by locally unbalanced net energy and/or horizontally uneven solar heating. This may be related to the observed cloud morphology in UV images. The effective global circulation condition, however, can "remove" such cloud top level convection. The later one consists with measured high static stability at the cloud top level from radio occultation measurement.

  18. A Long-term Record of Saharan Dust Aerosol Properties from TOMS Observations: Optical Depth and Single Scattering Albedo

    NASA Technical Reports Server (NTRS)

    Torres, Omar; Bhartia, P. K.; Herman, J. R.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    The interaction between the strong Rayleigh scattering in the near UV spectral region (330-380 nm) and the processes of aerosol absorption and scattering, produce a clear spectral signal in the upwelling radiance at the top of the atmosphere. This interaction is the basis of the TOMS (Total Ozone Mapping Spectrometer) aerosol retrieval technique that can be used for their characterization and to differentiate non-absorbing sulfates from strongly UV-absorbing aerosols such as mineral dust. For absorbing aerosols, the characterization is in terms of the optical depth and single scattering albedo with assumptions about the aerosol plume height. The results for non-absorbing aerosols are not dependent on plume height. Although iron compounds represent only between 5% to 8% of desert dust aerosol mass, hematite (Fe2O3) accounts for most of the near UV absorption. Because of the large ultraviolet absorption characteristic of hematite, the near UV method of aerosol sensing is especially suited for the detection and characterization of desert dust aerosols. Using the combined record of near UV measurements by the Nimbus7 (1978-1992) and Earth Probe (1996-present) TOMS instruments, a global longterm climatology of near UV optical depth and single scattering albedo has been produced. The multi-year long record of mineral aerosol properties over the area of influence of the Saharan desert, will be discussed.

  19. Microcolonial fungi: survival potential of terrestrial vegetative structures.

    PubMed

    Gorbushina, Anna

    2003-01-01

    So far mainly spores or other "differentiated-for-survival" structures were considered to be resistant against extreme environmental constraints (including extraterrestrial challenges). Microcolonial fungi (MCF) are unique growth structures formed by eukaryotic microorganisms inhabiting rock varnish surfaces in terrestrial deserts. They are here proposed as a new object for exobiological study. Sun-exposed desert rocks provide surface habitats with intense solar radiation, a scarce water supply, drastic changes in temperature, and episodic to sporadic availability of nutrients. These challenging conditions reduce the diversity of life to MCF, whose resistance to desiccation and tolerance for ultraviolet (UV) radiation make them survival specialists. Based upon our studies of MCF, we propose that the following mechanisms are universally employed for survival on rock surfaces: (1) compact tissue-like colony organization formed by thermodynamically optimal round cells embedded in extracellular polymeric substances, (2) the presence of several types of UV-absorbing compounds (melanins and mycosporines) and antioxidants (carotenoids, melanins, and mycosporines) that convey multiple stress resistance to desiccation, temperature, and irradiation changes, and (3) intracellular developmental mechanisms typical for these structures.

  20. UVB radiation generates sunburn pain and affects skin by activating epidermal TRPV4 ion channels and triggering endothelin-1 signaling

    PubMed Central

    Moore, Carlene; Cevikbas, Ferda; Pasolli, H. Amalia; Chen, Yong; Kong, Wei; Kempkes, Cordula; Parekh, Puja; Lee, Suk Hee; Kontchou, Nelly-Ange; Yeh, Iwei; Jokerst, Nan Marie; Fuchs, Elaine; Steinhoff, Martin; Liedtke, Wolfgang B.

    2013-01-01

    At our body surface, the epidermis absorbs UV radiation. UV overexposure leads to sunburn with tissue injury and pain. To understand how, we focus on TRPV4, a nonselective cation channel highly expressed in epithelial skin cells and known to function in sensory transduction, a property shared with other transient receptor potential channels. We show that following UVB exposure mice with induced Trpv4 deletions, specifically in keratinocytes, are less sensitive to noxious thermal and mechanical stimuli than control animals. Exploring the mechanism, we find that epidermal TRPV4 orchestrates UVB-evoked skin tissue damage and increased expression of the proalgesic/algogenic mediator endothelin-1. In culture, UVB causes a direct, TRPV4-dependent Ca2+ response in keratinocytes. In mice, topical treatment with a TRPV4-selective inhibitor decreases UVB-evoked pain behavior, epidermal tissue damage, and endothelin-1 expression. In humans, sunburn enhances epidermal expression of TRPV4 and endothelin-1, underscoring the potential of keratinocyte-derived TRPV4 as a therapeutic target for UVB-induced sunburn, in particular pain. PMID:23929777

  1. UVB radiation generates sunburn pain and affects skin by activating epidermal TRPV4 ion channels and triggering endothelin-1 signaling.

    PubMed

    Moore, Carlene; Cevikbas, Ferda; Pasolli, H Amalia; Chen, Yong; Kong, Wei; Kempkes, Cordula; Parekh, Puja; Lee, Suk Hee; Kontchou, Nelly-Ange; Yeh, Iwei; Ye, Iwei; Jokerst, Nan Marie; Fuchs, Elaine; Steinhoff, Martin; Liedtke, Wolfgang B

    2013-08-20

    At our body surface, the epidermis absorbs UV radiation. UV overexposure leads to sunburn with tissue injury and pain. To understand how, we focus on TRPV4, a nonselective cation channel highly expressed in epithelial skin cells and known to function in sensory transduction, a property shared with other transient receptor potential channels. We show that following UVB exposure mice with induced Trpv4 deletions, specifically in keratinocytes, are less sensitive to noxious thermal and mechanical stimuli than control animals. Exploring the mechanism, we find that epidermal TRPV4 orchestrates UVB-evoked skin tissue damage and increased expression of the proalgesic/algogenic mediator endothelin-1. In culture, UVB causes a direct, TRPV4-dependent Ca(2+) response in keratinocytes. In mice, topical treatment with a TRPV4-selective inhibitor decreases UVB-evoked pain behavior, epidermal tissue damage, and endothelin-1 expression. In humans, sunburn enhances epidermal expression of TRPV4 and endothelin-1, underscoring the potential of keratinocyte-derived TRPV4 as a therapeutic target for UVB-induced sunburn, in particular pain.

  2. Infrared analysis of LMC superbubbles

    NASA Technical Reports Server (NTRS)

    Verter, Fran; Dwek, Eli

    1990-01-01

    Researchers are analyzing three superbubbles in the Large Magellanic Cloud (LMC), cataloged by Meaburn (1980) as LMC-1, LMC-4 (a.k.a. Shapley Constellation III), and LMC-5. Superbubbles are the largest infrared sources in the disks of external galaxies. Their expansion requires multiple supernovae from successive generations of star formation. In LMC superbubbles, the grains swept up by shocks and winds represent an interstellar medium (ISM) whose abundances are quite different from the Galaxy. By applying the Dwek (1986) grain model, we can derive the composition and size spectrum of the grains. The inputs to this model are the dust emission in the four Infrared Astronomy Satellite (IRAS) bands and the interstellar radiation field (ISRF) that provides the heating. The first step in the project is to derive the ISRF for star-forming regions on the periphery of superbubbles. Researchers are doing this by combining observations at several wavelengths to determine the energy budget of the region. They will use a UV image to trace the ionizing stellar radiation that escapes, an H alpha image to trace the ionizing stellar radiation that is absorbed by gas, and the four IRAS images to trace the stellar radiation, both ionizing and non-ionizing, that is absorbed by dust. This multi-wavelength approach has the advantages that we do not have to assume the shape of the IMF or the extinction of the source.

  3. New noninvasive approach assessing in vivo sun protection factor (SPF) using diffuse reflectance spectroscopy (DRS) and in vitro transmission.

    PubMed

    Ruvolo Junior, Eduardo; Kollias, Nikiforos; Cole, Curtis

    2014-08-01

    In the past 56 years, many different in vitro methodologies have been developed and published to assess the sun protection factor (SPF) of products, but there is no method that has 1:1 correlation with in vivo measurements. Spectroscopic techniques have been used to noninvasively assess the UVA protection factor with good correlation to in vivo UVA-PF methodologies. To assess the SPF of sunscreen product by diffuse reflectance spectroscopy (DRS) technique, it is necessary to also determine the absorbance spectrum of the test material in the UVB portion of the spectrum (290-320 nm). However, because of the high absorbance characteristics of the stratum corneum and epidermis, the human skin does not remit enough UVB radiation to be used to measure the absorption spectrum of the applied product on skin. In this work, we present a new method combining the evaluation of the absolute UVA absorption spectrum, as measured by DRS with the spectral absorbance 'shape' of the UVB absorbance of the test material as determined with current in vitro thin film spectroscopy. The measurement of the in vivo UVA absorption spectrum involves the assessment of the remitted intensity of monochromatic UVA radiation (320-400 nm) before and after a sunscreen product was applied on skin using a spectrofluorimeter Fluorolog 3, FL3-22 (Yvon Horiba, Edison, NJ, USA). The probe geometry assures that light scattering products as well as colored products may be correctly assessed. This methodology has been extensively tested, validated, and reported in the literature. The in vitro absorption spectrum of the sunscreen samples and polyvinyl chloride (PVC) films 'surrogate' sunscreen standards were measured using Labsphere® UV-2000S (Labsphere, North Sutton, NH, USA). Sunscreens samples were tested using PMMA Helioplates (Helioscience, Marseille, France) as substrates. The UVB absorbance spectrum (Labsphere) is 'attached' to the UVA absorbance spectrum (diffuse reflectance) with the UVB absorbance matched to the UVA absorbance at 340 nm to complete the full spectral absorbance from which an estimate the SPF of the product can be calculated. Seventeen test materials with known in vivo SPF values were tested. Two of the tested products were PVC sunscreen thin films with 10-15 micrometers thickness and were used to investigate the absorption spectrum of these films when applied on different reflectance surfaces. Similar to the human in vivo SPF test, the developed methodology suggests limiting the use on Fitzpatrick skin phototypes I to III. The correlation of this new method with in vivo clinical SPF values was 0.98 (r2) with a slope of 1.007. This new methodology provides a new approach to determine SPF values without the extensive UV irradiation procedures (and biological responses) currently used to establish sunscreen efficacy. Further work will be conducted to establish methods for evaluation of products that are not photostable. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Study of noninvasive detection of latent fingerprints using UV laser

    NASA Astrophysics Data System (ADS)

    Li, Hong-xia; Cao, Jing; Niu, Jie-qing; Huang, Yun-gang; Mao, Lin-jie; Chen, Jing-rong

    2011-06-01

    Latent fingerprints present a considerable challenge in forensics, and noninvasive procedure that captures a digital image of the latent fingerprints is significant in the field of criminal investigation. The capability of photography technologies using 266nm UV Nd:YAG solid state laser as excitation light source to provide detailed images of unprocessed latent fingerprints is demonstrated. Unprocessed latent fingerprints were developed on various non-absorbent and absorbing substrates. According to the special absorption, reflection, scattering and fluorescence characterization of the various residues in fingerprints (fatty acid ester, protein, and carbosylic acid salts etc) to the UV light to weaken or eliminate the background disturbance and increase the brightness contrast of fingerprints with the background, and using 266nm UV laser as excitation light source, fresh and old latent fingerprints on the surface of four types of non-absorbent objects as magazine cover, glass, back of cellphone, wood desktop paintwork and two types of absorbing objects as manila envelope, notebook paper were noninvasive detected and appeared through reflection photography and fluorescence photography technologies, and the results meet the fingerprint identification requirements in forensic science.

  5. UV-responsive nano-sponge for oil absorption and desorption

    PubMed Central

    Kim, Do Hyun; Jung, Min Chan; Cho, So-Hye; Kim, Sang Hoon; Kim, Ho-Young; Lee, Heon Ju; Oh, Kyu Hwan; Moon, Myoung-Woon

    2015-01-01

    Controlled surface wettability for oil has been intensively studied to remove industrial oil waste or oil spill pollution from seas or rivers. In particular, external stimuli-induced special wetting materials, such as photo-responsive TiO2, have attracted considerable attention for oil-water separation. In this study, a novel method is reported to fabricate a nano-sponge which is composed of hydrophobic hydrocarbon and hydrophilic TiO2 nanoparticles for oil absorption or desorption that are responsive to UV irradiation. The hydrocarbon in the nano-sponge could selectively absorb oil from water, whereas the absorbed oil is released into the water by TiO2 in response to UV irradiation. The nano-sponge functionalized porous polydimethylsiloxane released more than 98% of the absorbed crude oil with UV irradiation and air-bubbling. It could be continuously reused while maintaining a high absorption capacity and desorption efficiency without incurring secondary air or water pollution. This smart oil absorption/desorption methodology with excellent selectivity and recyclability with almost perfect removal of absorbed oil can be applied for oil-water separation, oil spill cleanup and reuse of spilled oil. PMID:26260470

  6. Kinetics of patulin degradation in model solution, apple cider and apple juice by ultraviolet radiation.

    PubMed

    Zhu, Yan; Koutchma, Tatiana; Warriner, Keith; Shao, Suqin; Zhou, Ting

    2013-08-01

    Patulin is a mycotoxin produced by a wide range of molds involved in fruit spoilage, most commonly by Penicillium expansum and is a health concern for both consumers and manufacturers. The current study evaluated feasibility of monochromatic ultraviolet (UV) radiation at 253.7 nm as a possible commercial application for the reduction of patulin in fresh apple cider and juice. The R-52G MINERALIGHT® UV bench top lamp was used for patulin destruction. It was shown that 56.5%, 87.5%, 94.8% and 98.6% reduction of patulin can be achieved, respectively, in the model solution, apple cider, apple juice without ascorbic acid addition and apple juice with ascorbic acid addition in 2-mm thickness sample initially spiked by 1 mg·L(-1) of patulin after UV exposure for 40 min at UV irradiance of 3.00 mW·cm(-2). A mathematic model to compare the degradation rate and effective UV dose was developed. The effective UV doses that were directly absorbed by patulin for photochemical reaction were 430, 674, 724 and 763 mJ·cm(-3), respectively. The fluence-based decimal reduction time was estimated to 309.3, 31.3, 28.9 and 5.1 mW·cm(-2)·min, respectively, in four media mentioned above. The degradation of patulin followed the first-order reaction model. The time-based and fluence-based reaction rate constants were determined to predict patulin degradation. The time-based reaction rate constant of samples treated in dynamic regime with constant stirring (model solution: 2.95E-4 s(-1), juice: 4.31E-4 s(-1)) were significantly higher than samples treated in static regime (model solution: 2.79E-4 s(-1), juice: 3.49E-4 s(-1), p < 0.05) when applied UV irradiance and sample thickness were consistent. The reaction rate constant of patulin degradation in apple juice was significantly higher than model solution (p < 0.05). Although further investigations are still needed, the results of this study demonstrated that UV radiation may be an effective method for treating patulin-containing apple cider and juice.

  7. Calculation of Brown Carbon Optical Properties in the Fifth version Community Atmospheric Model (CAM5) and Validation with a Case Study in Kanpur, India

    NASA Astrophysics Data System (ADS)

    Xu, L.; Peng, Y.; Ram, K.

    2017-12-01

    The presence of absorbing component of organic carbon in atmospheric aerosols (Brown Carbon, BrC) has recently received much attention to the scientific community because of its absorbing nature, especially in the UV and Visible region. Attempts to account for BrC in radiative forcing calculations in climate model are rather scarce, primarily due to observational constrain as well as its incorporation in the model-based studies. Due to non-treatment of BrC in the off-line models, there exists a large discrepancy between model- and observational- based estimate of direct radiative effect of carbonaceous aerosols. In this study, we have included BrC absorption and optical characteristics in the fifth version of Community Atmospheric Model (CAM5) for the better understanding of radiative impact of BrC over northern India, also for improving the performance of aerosol radiative calculation in climate model. We have used the inputs of aerosol chemical composition measurements conducted at an urban site, Kanpur, in the Indo-Gangetic Plain (IGP) during 2007-2008 to construct the optical properties of BrC in CAM5 model. Model radiative simulations of sensitive tests showed good agreement with observations. Effects of varying imaginary part of BrC refractive index, relative mass ratio of BrC to organic aerosol in combination with core-shell mixing style of BrC with other anthropogenic aerosols are also analyzed for understanding BrC impact on simulated aerosol absorption in model.

  8. Spectral properties of plant leaves pertaining to urban landscape design of broad-spectrum solar ultraviolet radiation reduction

    NASA Astrophysics Data System (ADS)

    Yoshimura, Haruka; Zhu, Hui; Wu, Yunying; Ma, Ruijun

    2010-03-01

    Human exposure to harmful ultraviolet (UV) radiation has important public health implications. Actual human exposure to solar UV radiation depends on ambient UV irradiance, and the latter is influenced by ground reflection. In urban areas with higher reflectivity, UV exposure occurs routinely. To discover the solar UV radiation regulation mechanism of vegetation, the spectral reflectance and transmittance of plant leaves were measured with a spectrophotometer. Typically, higher plants have low leaf reflectance (around 5%) and essentially zero transmittance throughout the UV region regardless of plant species and seasonal change. Accordingly, incident UV radiation decreases to 5% by being reflected and is reduced to zero by passing through a leaf. Therefore, stratified structures of vegetation are working as another terminator of UV rays, protecting whole terrestrial ecosystems, while vegetation at waterfronts contributes to protect aquatic ecosystems. It is possible to protect the human population from harmful UV radiation by urban landscape design of tree shade and the botanical environment. Even thin but uniformly distributed canopy is effective in attenuating UV radiation. To intercept diffuse radiation, UV screening by vertical structures such as hedges should be considered. Reflectivity of vegetation is around 2%, as foliage surfaces reduce incident UV radiation via reflection, while also eliminating it by transmittance. Accordingly, vegetation reduces incident UV radiation to around 2% by reflection. Vegetation influence on ambient UV radiation is broad-spectrum throughout the UV region. Only trees provide cool UV protective shade. Urban landscapes aimed at abating urban heat islands integrated with a reduction of human UV over-exposure would contribute to mitigation of climate change.

  9. High-performance liquid chromatography - Ultraviolet method for the determination of total specific migration of nine ultraviolet absorbers in food simulants based on 1,1,3,3-Tetramethylguanidine and organic phase anion exchange solid phase extraction to remove glyceride.

    PubMed

    Wang, Jianling; Xiao, Xiaofeng; Chen, Tong; Liu, Tingfei; Tao, Huaming; He, Jun

    2016-06-17

    The glyceride in oil food simulant usually causes serious interferences to target analytes and leads to failure of the normal function of the RP-HPLC column. In this work, a convenient HPLC-UV method for the determination of the total specific migration of nine ultraviolet (UV) absorbers in food simulants was developed based on 1,1,3,3-tetramethylguanidine (TMG) and organic phase anion exchange (OPAE) SPE to efficiently remove glyceride in olive oil simulant. In contrast to the normal ion exchange carried out in an aqueous solution or aqueous phase environment, the OPAE SPE was performed in the organic phase environments, and the time-consuming and challenging extraction of the nine UV absorbers from vegetable oil with aqueous solution could be readily omitted. The method was proved to have good linearity (r≥0.99992), precision (intra-day RSD≤3.3%), and accuracy(91.0%≤recoveries≤107%); furthermore, the lower limit of quantifications (0.05-0.2mg/kg) in five types of food simulants(10% ethanol, 3% acetic acid, 20% ethanol, 50% ethanol and olive oil) was observed. The method was found to be well suited for quantitative determination of the total specific migration of the nine UV absorbers both in aqueous and vegetable oil simulant according to Commission Regulation (EU) No. 10/2011. Migration levels of the nine UV absorbers were determined in 31 plastic samples, and UV-24, UV-531, HHBP and UV-326 were frequently detected, especially in olive oil simulant for UV-326 in PE samples. In addition, the OPAE SPE procedure was also been applied to efficiently enrich or purify seven antioxidants in olive oil simulant. Results indicate that this procedure will have more extensive applications in the enriching or purification of the extremely weak acidic compounds with phenol hydroxyl group that are relatively stable in TMG n-hexane solution and that can be barely extracted from vegetable oil. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. FUSE Observations of the Dwarf Seyfert Nucleus of NGC 4395

    NASA Astrophysics Data System (ADS)

    Kraemer, Steven B.

    The Sd IV dwarf galaxy NGC 4395 is the nearest (d approx. 2.6 Mpc) and least luminous (L_bol < 1041 ergs s-1) example of a Seyfert 1 galaxy. This unique object possesses all of the classic Seyfert 1 properties in miniature, including broad and narrow emission lines, a non-stellar continuum, and highly variable X-ray emission, presumably powered by a small (105 M_sun) black hole. Furthermore, there is evidence for blue-shifted, intrinsic absorption lines in the UV (C IV lambda lambda 1548.2, 1550.8), while X-ray spectra show the presence of bound-free edges from O VII and O VIII and evidence for even more highly ionized gas. The UV absorption could arise within the X-ray absorbers or, alternatively, within the emission-line gas, which we have determined to have a high covering factor. The unique capabilities of FUSE provide the means with which to constrain the ionization state, column density, and covering factor of the absorbers and, hence, distinguish between these two possibilities. By extending our investigation of intrinsic absorption to the low luminosity extreme of the Seyfert population, we will obtain crucial insight into the effects of luminosity, global covering factor, and central black hole mass on the intrinsic absorbers. A second goal of this project is to constrain the spectral energy distribution of the non-stellar continuum radiation, which may be unique in this object as a consequence of its small black hole mass.

  11. UV-visible absorbance spectroscopy as a proxy for peatland dissolved organic carbon (DOC) quantity and quality: considerations on wavelength and absorbance degradation.

    PubMed

    Peacock, Mike; Evans, Chris D; Fenner, Nathalie; Freeman, Chris; Gough, Rachel; Jones, Timothy G; Lebron, Inma

    2014-05-01

    Absorbance in the UV or visible spectrum (UV-vis) is commonly used as a proxy for DOC concentrations in waters draining upland catchments. To determine the appropriateness of different UV-vis measurements we used surface and pore water samples from two Welsh peatlands in four different experiments: (i) an assessment of single wavelength proxies (1 nm increments between 230-800 nm) for DOC concentration demonstrated that 254 nm was more accurate than 400 nm. The highest R(2) values between absorbance and DOC concentration were generated using 263 nm for one sample set (R(2) = 0.91), and 230 nm for the other three sample sets (respective R(2) values of 0.86, 0.81, and 0.93). (ii) A comparison of different DOC concentration proxies, including single wavelength proxies, a two wavelength model, a proxy using phenolic concentration, and a proxy using the area under a UV spectrum at 250-350 nm. It was found that both a single wavelength proxy (≤263 nm) and a two wavelength model performed well for both pore water and surface water. (iii) An evaluation of the E2 : E3, E2 : E4, E4 : E6 ratios, and SUVA (absorbance at 254 nm normalised to DOC concentration) as indicators of DOC quality showed that the E4 : E6 ratio was subject to extensive variation over time, and was highly correlated between surface water and pore water, suggesting that it is a useful metric to determine temporal changes in DOC quality. (iv) A repeated weekly analysis over twelve weeks showed no consistent change in UV-vis absorbance, and therefore an inferred lack of degradation of total DOC in samples that were filtered and stored in the dark at 4 °C.

  12. The removal of disinfection by-product precursors from water with ceramic membranes.

    PubMed

    Harman, B I; Koseoglu, H; Yigit, N O; Sayilgan, E; Beyhan, M; Kitis, M

    2010-01-01

    The main objective of this work was to investigate the effectiveness of ceramic ultrafiltration (UF) membranes with different pore sizes in removing natural organic matter (NOM) from model solutions and drinking water sources. A lab-scale, cross-flow ceramic membrane test unit was used in all experiments. Two different single-channel tubular ceramic membrane modules were tested with average pore sizes of 4 and 10 nm. The impacts of membrane pore size and pressure on permeate flux and the removals of UV(280 nm) absorbance, specific UV absorbance (SUVA(280 nm)), and dissolved organic carbon (DOC) were determined. Prior to experiments with model solutions and raw waters, clean water flux tests were conducted. UV(280) absorbance reductions ranged between 63 and 83% for all pressures and membranes tested in the raw water. More than 90% of UV(280) absorbance reduction was consistently achieved with both membranes in the model NOM solutions. Such high UV absorbance reductions are advantageous due to the fact that UV absorbing sites of NOM are known to be one of the major precursors to disinfection by-products (DBP) such as trihalomethanes and haloacetic acids. For both UF membranes, the ranges of DOC removals in the raw water and model NOM solutions were 55-73% and 79-91%, respectively. SUVA(280) value of the raw water decreased from 2 to about 1.5 L/mg-m by both membranes. For the model solutions, SUVA(280) values were consistently reduced to < or =1 L/mg-m levels after membrane treatment. As the SUVA(280) value of the NOM source increased, the extent of SUVA(280) reduction and DOC removal by the tested ceramic UF membranes also increased. The results overall indicated that ceramic UF membranes, especially the one with 4 nm average pore size, appear to be effective in removing organic matter and DBP precursors from drinking water sources with relatively high and sustainable permeate flux values.

  13. Influence of Transcutol CG on the skin accumulation and transdermal permeation of ultraviolet absorbers.

    PubMed

    Godwin, Donald A; Kim, Nae-Hwa; Felton, Linda A

    2002-01-01

    The objective of this study was to determine the influence of Transcutol CG concentration on the transdermal permeation and skin accumulation of two ultraviolet (UV) absorbers, 2-hydroxy-4-methoxybenzophenone (oxybenzone) and 2-octyl-4-methoxycinnamate (cinnamate). The concentration of the UV absorber was held constant at 6% (w/w) for all vehicle systems while the concentration of Transcutol CG was varied from 0 to 50% (w/w). Data showed that both UV absorbers exhibited increases in skin accumulation with increasing concentrations of Transcutol CG. Skin accumulation of oxybenzone was significantly (P<0.05) greater than that of cinnamate for all formulations investigated. Oxybenzone skin accumulation ranged from 22.9+/-2.8 microg/mg (0% Transcutol CG) to 80.8+/-27.2 microg/mg (50% Transcutol CG). Cinnamate skin accumulation ranged from 9.0+/-0.9 microg/mg to 39.8+/-12.2 microg/mg at 0 and 50% Transcutol CG, respectively. No significant differences were found in the transdermal permeation of oxybenzone or cinnamate for any of the formulations tested. The results of this study demonstrate that the inclusion of Transcutol CG in sunscreen formulations increases the skin accumulation of the UV absorbers oxybenzone and cinnamate without a concomitant increase in transdermal permeation.

  14. Kinetic study on UV-absorber photodegradation under different conditions

    NASA Astrophysics Data System (ADS)

    Bubev, Emil; Georgiev, Anton; Machkova, Maria

    2016-09-01

    The photodegradation kinetics of two benzophenone derivative UV-absorbers (UVAs)-BP-4 (benzophenone-4) and 4-HBP (4-hydroxybenzophenone), as additives in polyvinyl acetate (PVAc) films, were studied. Solution-processed PVAc films were irradiated in different environments in order to study oxygen and atmospheric humidity influence on UVA photodegradation. Photodegradation was traced by absorption intensity loss via UV-vis spectroscopy. Both UVAs exhibited excellent photostability in an inert atmosphere. Rate constants showed that BP-4 has better permanence in absence of oxygen. Both film types experienced rapid absorption loss, when irradiated in an oxygen containing atmosphere. UVA degradation was treated as a two-stage process. The photodegradation kinetics in the first stage agreed with the adopted complex rate law, but the second stage was best described by pseudo-first order kinetics. BP-4 exhibited better stability. Oxygen was established as the main accelerating factor for photodegradation of benzophenone derivatives UV-absorbers in thin PVAc films.

  15. On the Validity of Beer-Lambert Law and its Significance for Sunscreens.

    PubMed

    Herzog, Bernd; Schultheiss, Amélie; Giesinger, Jochen

    2018-03-01

    The sun protection factor (SPF) is the most important quantity to characterize the performance of sunscreens. As the standard method for its determination is based on clinical trials involving irradiation of human volunteers, calculations of sunscreen performance have become quite popular to reduce the number of in vivo studies. Such simulations imply the calculation of UV transmittance of the sunscreen film using the amounts and spectroscopic properties of the UV absorbers employed, and presuppose the validity of the Beer-Lambert law. As sunscreen films on human skin can contain considerable concentrations of UV absorbers, it is questioned whether the Beer-Lambert law is still valid for these systems. The results of this work show that the validity of the Beer-Lambert law is still given at the high concentrations at which UV absorbers occur in sunscreen films on human skin. © 2017 The American Society of Photobiology.

  16. Preparation of O/I1-type Emulsions and S/I1-type Dispersions Encapsulating UV-Absorbing Agents.

    PubMed

    Aramaki, Kenji; Kimura, Minami; Masuda, Kazuki

    2015-01-01

    Oil-in-cubic phase (O/I1) emulsions encapsulating the cosmetic UV absorbing agents 2-ethylhexyl 4-methoxycinnamate (EHMC), 2-ethylhexyl 2-cyano-3,3-diphenylacrylate (octocrylene, OCR) and 1-(4-tertbutylphenyl)-3-(4-methoxyphenyl)-1,3-propanedione (Avobenzone, TBMP) were prepared by vortex mixing accompanied by a heating-cooling process. A ternary phase diagram in a water/C12EO25/EHMC system at 25°C was constructed and the two-phase equilibrium of an oil phase and an I1 phase, which is necessary to prepare the O/I1-type emulsions, was confirmed. Also, the melting of the I1 phase into a fluid micellar solution phase was confirmed, allowing emulsification by a heating-cooling process. The O/I1-type emulsions were formulated in the ternary system as well as a quaternary system. The four-component system contained an additional cosolvent, isopropyl myristate (IPM). The use of the cosolvent allows the use of reduced amounts of EHMC, which is desirable because EHMC can cause temporary skin irritation. Formulation of the O/I1-type emulsions with other UV absorbing agents (OCR and TBMP) was also possible using the same emulsification method. When IPM was changed to tripalmitin, which has a melting point greater than room temperature, a solid-oil dispersion in I1 phase was formed. We have termed this a "solidin-cubic phase (S/I1) type dispersion". These novel emulsions have not been reported previously. The UV absorbability of the O/I1-type emulsions and S/I1-type dispersions that encapsulate the UV absorbing agents was confirmed by measurement of UV absorption spectra.

  17. Simultaneous UV and X-ray Spectroscopy of the Seyfert 1 Galaxy NGC 5548. I: Physical Conditions in the UV Absorbers

    NASA Technical Reports Server (NTRS)

    Crenshaw, D. M.; Kraemer, S. B.; Gabel, J. R.; Kaastra, J. S.; Steenbrugge, K. C.; Brinkman, A. C.; Dunn, J. P.; George, I. M.; Liedahl, D. A.; Paerels, F. B. S.

    2003-01-01

    We present new UV spectra of the nucleus of the Seyfert 1 galaxy NGC 5548, which we obtained with the Space Telescope Imaging Spectrograph at high spectral resolution, in conjunction with simultaneous Chandra X-ray Observatory spectra. Taking advantage of the low UV continuum and broad emission-line fluxes, we have determined that the deepest UV absorption component covers at least a portion of the inner, high-ionization narrow-line region (NLR). We find nonunity covering factors in the cores of several kinematic components, which increase the column density measurements of N V and C IV by factors of 1.2 to 1.9 over the full-covering case; however, the revised columns have only a minor effect on the parameters derived from our photoionization models. For the first time, we have simultaneous N V and C IV columns for component 1 (at -1040 km/s), and find that this component cannot be an X-ray warm absorber, contrary to our previous claim based on nonsimultaneous observations. We find that models of the absorbers based on solar abundances severely overpredict the O VI columns previously obtained with the Far Ultraviolet Spectrograph, and present arguments that this is not likely due to variability. However, models that include either enhanced nitrogen (twice solar) or dust, with strong depletion of carbon in either case, are successful in matching all of the observed ionic columns. These models result in substantially lower ionization parameters and total column densities compared to dust-free solar-abundance models, and produce little O VII or O VIII, indicating that none of the UV absorbers are X-ray warm absorbers.

  18. Measuring the Impact of AGN Outflows via Intensive UV and X-ray Monitoring Campaigns

    NASA Astrophysics Data System (ADS)

    Kriss, Gerard

    2015-08-01

    Observations of AGN outflows have progressed from the era of single-object surveys to intensive monitoring campaigns spanning weeks to months. The combination of multiple observations, improved temporal coverage, multi-wavelength monitoring in both the X-ray and UV bands, and the baseline of prior historical observations has enabled determinations of the locations, mass flux, and kinetic luminosities of the outflowing absorbing gas in several AGN, notably Mrk 509, NGC 5548, Mrk 335, and NGC 985. Another intensive campaign is planned for 2015-2016 on NGC 7469. In all cases, the mass flux and kinetic energy is dominated by the higher-ionization X-ray absorbing gas. But the higher-resolution UV observations give a kinematically resolved picture of the overall outflow. In most cases, the outflowing gas is located at parsec to kpc scales, with insufficient kinetic luminosity to have an evolutionary impact on the host galaxy. Typically, the kinetic luminosity is less than a percent of the Eddington luminosity. In some cases, transient, broad UV absorption troughs have appeared (e.g., Mrk 335 and NGC 5548), with variability timescales suggesting locations near the broad-line region of the AGN. Yet these higher-velocity outflows also have low-impact kinetic luminosities. In the best-studied case of NGC 5548, the strength of the broad UV absorption lines varies with the degree of soft X-ray obscuration first revealed by XMM-Newton spectra. The lower-ionization, narrow associated absorption lines in the UV spectrum of NGC 5548 that appeared concurrently with the soft X-ray obscuration vary in response to the changing UV flux on a daily basis. The intensive monitoring allows us to fit time-dependent photoionization models to the UV-absorbing gas, allowing precise determinations of the locations, mass flux, and kinetic luminosities of the absorbers.

  19. The protective effect of niacinamide on CHO AA8 cell line against ultraviolet radiation in the context of main cytoskeletal proteins.

    PubMed

    Izdebska, Magdalena; Hałas-Wiśniewska, Marta; Adamczyk, Iwona; Lewandowska, Ismena; Kwiatkowska, Iga; Gagat, Maciej; Grzanka, Alina

    2018-03-13

    Niacinamide is a stable and water-soluble form of vitamin B3, a valuable and versatile cosmetic ingredient, which is well absorbed and tolerated by the skin. A large body of literature has reported on the antioxidant and cell repair properties of niacinamide. Therefore, it has been shown to be useful in the protection of the skin against ultraviolet B (UVB) radiation and free radicals. Despite numerous hypotheses on the mechanism of vitamin B3, its protective effects have not yet been fully elucidated. The aim of the study was to determine the protective effects of niacinamide on CHO AA8 cell line against UVB radiation. We assessed the following factors: cell death, cell cycle phase distributions, reorganization of main cytoskeletal proteins, such as F-actin, vimentin and β-tubulin, and also alterations at the ultrastructural level. The material used for our research was Chinese hamster ovary cell line (CHO AA8). We used 4 research groups: 1) control cells; 2) cells treated with niacinamide; 3) cells exposed to UV radiation; and 4) cells co-incubated with niacinamide and next exposed to ultraviolet. The cell death and cell cycle were evaluated by a Tali® based-image cytometer. A fluorescence microscope was used to assess the reorganization of cytoskeletal proteins, whereas a transmission electron microscope enabled the evaluation of the alterations at the ultrastructural level of cells. We showed that UV-induced apoptosis and cell cycle distributions during treatment with niacinamide resulted in a non-statistical significance in cell survival and no significant changes in the morphology and cytoskeleton in comparison to the control group. In turn, a combination of both factors led to an increase in the population of live cells and a decreased level of apoptotic cells in comparison to UV-exposed cells. Our results confirmed the harmful effects of UV radiation on CHO AA8 cell line. Furthermore, niacinamide can protect cells against these factors, and the mechanism of action may be related to the stabilization of the cell cytoskeleton.

  20. Discussion of vicarious calibration of GOSAT/TANSO-CAI UV-band (380nm) and aerosol retrieval in wildfire region in the OCO-2 and GOSAT observation campaign at Railroad Valley in 2016

    NASA Astrophysics Data System (ADS)

    Hashimoto, M.; Kuze, A.; Bruegge, C. J.; Shiomi, K.; Kataoka, F.; Kikuchi, N.; Arai, T.; Kasai, K.; Nakajima, T.

    2016-12-01

    The GOSAT (Greenhouse Gases Observing Satellite) / TANSO-CAI (Cloud and Aerosol Imager, CAI) is an imaging sensor to measure cloud and aerosol properties and observes reflected sunlight from the atmosphere and surface of the ground. The sensor has four bands from near ultraviolet (near-UV) to shortwave infrared, 380, 674, 870 and 1600nm. The field of view size is 0.5 km for band-1 through band-3, and 1.5km for band-4. Band-1 (380nm) is one of unique function of the CAI. The near-UV observation offers several advantages for the remote sensing of aerosols over land: Low reflectance of most surfaces; Sensitivity to absorbing aerosols; Absorption of trace gases is weak (Höller et al., 2004). CAI UV-band is useful to distinguish absorbing aerosol (smoke) from cloud. GOSAT-2/TANSO-CAI-2 that will be launched in the future also has UV-bands, 340 and 380nm. We carried out an experiment to calibrate CAI UV-band radiance using data taken in a field campaign of OCO-2 and GOSAT at Railroad Valley in 2016. The campaign period is June 27 to July 3 in 2016. We measured surface reflectance by using USB4000 Spectrometer with 74-UV collimating lens (Ocean Optics) and Spectralon (Labsphere). USB4000 is a UV spectrometer, and its measurement range from 300 to 520nm. We simulated CAI UV-band radiance using a vector type of radiation transfer code, i.e. including polarization calculation, pstar3 (Ota et al., 2010) using measured surface reflectance and atmospheric data, pressure and relative humidity by radiosonde in the same campaign, and aerosol optical depth by AERONET, etc. Then, we evaluated measured UV radiances with the simulated data. We show the result of vicarious calibration of CAI UV-band in the campaign, and discuss about this method for future sensor, CAI-2. Around the campaign period, there was wildfire around Los Angeles, and aerosol optical thickness (AOT) observed by AERONET at Rail Road valley and Caltech sites is also high. We tried to detect and retrieve aerosol properties using CAI data around campaign region by the multi-wavelength and multi-pixel method (MWPM) (Hashimoto AGU Fall meeting, 2014) using CAI UV-band. In the analysis, we use CAI four bands to retrieve aerosol optical properties including cloud optical characteristics. We also like to introduce the analysis result of aerosol optical properties during wildfire.

  1. Sunlight and Vitamin D

    PubMed Central

    Wacker, Matthias; Holick, Michael F.

    2013-01-01

    Vitamin D is the sunshine vitamin that has been produced on this earth for more than 500 million years. During exposure to sunlight 7-dehydrocholesterol in the skin absorbs UV B radiation and is converted to previtamin D3 which in turn isomerizes into vitamin D3. Previtamin D3 and vitamin D3 also absorb UV B radiation and are converted into a variety of photoproducts some of which have unique biologic properties. Sun induced vitamin D synthesis is greatly influenced by season, time of day, latitude, altitude, air pollution, skin pigmentation, sunscreen use, passing through glass and plastic, and aging. Vitamin D is metabolized sequentially in the liver and kidneys into 25-hydroxyvitamin D which is a major circulating form and 1,25-dihydroxyvitamin D which is the biologically active form respectively. 1,25-dihydroxyvitamin D plays an important role in regulating calcium and phosphate metabolism for maintenance of metabolic functions and for skeletal health. Most cells and organs in the body have a vitamin D receptor and many cells and organs are able to produce 1,25-dihydroxyvitamin D. As a result 1,25-dihydroxyvitamin D influences a large number of biologic pathways which may help explain association studies relating vitamin D deficiency and living at higher latitudes with increased risk for many chronic diseases including autoimmune diseases, some cancers, cardiovascular disease, infectious disease, schizophrenia and type 2 diabetes. A three-part strategy of increasing food fortification programs with vitamin D, sensible sun exposure recommendations and encouraging ingestion of a vitamin D supplement when needed should be implemented to prevent global vitamin D deficiency and its negative health consequences. PMID:24494042

  2. Retrieval of Aerosol Absorption Properties from Satellite Observations

    NASA Technical Reports Server (NTRS)

    Torres, Omar; Bhartia, Pawan K.; Jethva, H.; Ahn, Chang-Woo

    2012-01-01

    The Angstrom Absorption Exponent (AAE) is a parameter commonly used to characterize the wavelength-dependence of aerosol absorption optical depth (AAOD). It is closely related to aerosol composition. Black carbon (BC) containing aerosols yield AAE values near unity whereas Organic carbon (OC) aerosol particles are associated with values larger than 2. Even larger AAE values have been reported for desert dust aerosol particles. Knowledge of spectral AAOD is necessary for the calculation of direct radiative forcing effect of aerosols and for inferring aerosol composition. We have developed a satellitebased method of determining the spectral AAOD of absorbing aerosols. The technique uses multi-spectral measurements of upwelling radiation from scenes where absorbing aerosols lie above clouds as indicated by the UV Aerosol Index. For those conditions, the satellite measurement can be explained, using an approximations of Beer's Law (BL), as the upwelling reflectance at the cloud top attenuated by the absorption effects of the overlying aerosol layer. The upwelling reflectance at the cloud-top in an aerosol-free atmospheric column is mainly a function of cloud optical depth (COD). In the proposed method of AAE derivation, the first step is determining COD which is retrieved using a previously developed color-ratio based approach. In the second step, corrections for molecular scattering effects are applied to both the observed ad the calculated cloud reflectance terms, and the spectral AAOD is then derived by an inversion of the BL approximation. The proposed technique will be discussed in detail and application results making use of OMI multi-spectral measurements in the UV-Vis. will be presented.

  3. Degradation and mineralization of organic UV absorber compound 2-phenylbenzimidazole-5-sulfonic acid (PBSA) using UV-254nm/H2O2.

    PubMed

    Abdelraheem, Wael H M; He, Xuexiang; Duan, Xiaodi; Dionysiou, Dionysios D

    2015-01-23

    Various studies have revealed the non-biodegradable and endocrine disrupting properties of sulfonated organic UV absorbers, directing people's attention toward their risks on ecological and human health and hence their removal from water. In this study, UV-254nm/H2O2 advanced oxidation process (AOP) was investigated for degrading a model UV absorber compound 2-phenylbenzimidazole-5-sulfonic acid (PBSA) and a structurally similar compound 1H-benzimidazole-2-sulfonic acid (BSA), with a specific focus on their mineralization. At 4.0mM [H2O2]0, a complete removal of 40.0μM parent PBSA and 25% decrease in TOC were achieved with 190min of UV irradiation; SO4(2-) was formed and reached its maximum level while the release of nitrogen as NH4(+) was much lower (around 50%) at 190min. Sulfate removal was strongly enhanced by increasing [H2O2]0 in the range of 0-4.0mM, with slight inhibition in 4.0-12.0mM. Faster and earlier ammonia formation was observed at higher [H2O2]0. The presence of Br(-) slowed down the degradation and mineralization of both compounds while a negligible effect on the degradation was observed in the presence of Cl(-). Our study provides important technical and fundamental results on the HO based degradation and mineralization of SO3H and N-containing UV absorber compounds. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. 21 CFR 352.72 - General testing procedures.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... administered the doses of UV radiation. After UV radiation exposure from the solar simulator is completed, all... specified dosage of UV radiation, in a series of UV radiation exposures, in which the test site area is... subsites should be exposed to the varying doses of UV radiation in a randomized manner. (f) Waiting period...

  5. Broadband Measurement of Aerosol Extinction in the Visible Range

    NASA Astrophysics Data System (ADS)

    He, Quanfu; Bluvshtein, Nir; Segev, Lior; Flores, Michel; Rudich, Yinon; Washenfelder, Rebecca; Brown, Steven

    2017-04-01

    Atmospheric aerosols influence the Earth's radiative budget directly by scattering and absorbing incoming solar radiation. Aerosol direct forcing remains one of the largest uncertainties in quantifying the role that aerosols play in the Earth's radiative budget. The optical properties of aerosols vary as a function of wavelength, but few measurements reported the wavelength dependence of aerosol extinction cross section and complex refractive indices, particularly in the blue and visible spectral range. There is also currently a large gap in our knowledge of how the optical properties evolve as a function of atmospheric aging in the visible spectrum. In this study, we constructed a new and novel laboratory instrument to measure aerosol extinction as a function of wavelength, using cavity enhanced spectroscopy with a white light source. This broadband cavity enhanced spectroscopy (BBCES) covers the 395-700 nm spectral region using a broadband light source and a grating spectrometer with charge-coupled device detector (CCD). We evaluated this BBCES by measuring extinction cross section for aerosols that are pure scattering, slightly absorbing and strongly absorbing atomized from standard materials. We also retrieved the refractive indices from the measured extinction cross sections. Secondary organic aerosols from biogenic and anthropogenic precursors were "aged" to differential time scales (1 to 10 days) in an Oxidation Flow Reactor (OFR) under the combined influence of OH, O3 and UV light. The new BBCES was used to online measure the extinction cross sections of the SOA. This talk will provide a comprehensive understanding of aerosol optical properties alerting during aging process in the 395 - 700 nm spectrum.

  6. Impacts of Brown Carbon from Biomass Burning on Surface UV and Ozone Photochemistry in the Amazon Basin

    NASA Technical Reports Server (NTRS)

    Mok, Jungbin; Krotkov, Nickolay A.; Arola, Antti; Torres, Omar; Jethva, Hiren; Andrade, Marcos; Labow, Gordon; Eck, Thomas F.; Li, Zhangqing; Dickerson, Russell R.; hide

    2016-01-01

    The spectral dependence of light absorption by atmospheric particulate matter has major implications for air quality and climate forcing, but remains uncertain especially in tropical areas with extensive biomass burning. In the September-October 2007 biomass-burning season in Santa Cruz, Bolivia, we studied light absorbing (chromophoric) organic or brown carbon (BrC) with surface and space-based remote sensing. We found that BrC has negligible absorption at visible wavelengths, but significant absorption and strong spectral dependence at UV wavelengths. Using the ground-based inversion of column effective imaginary refractive index in the range 305368nm, we quantified a strong spectral dependence of absorption by BrC in the UV and diminished ultraviolet B (UV-B) radiation reaching the surface. Reduced UV-B means less erythema, plant damage, and slower photolysis rates. We use a photochemical box model to show that relative to black carbon (BC) alone, the combined optical properties of BrC and BC slow the net rate of production of ozone by up to 18 and lead to reduced concentrations of radicals OH, HO2, and RO2 by up to 17, 15, and 14, respectively. The optical properties of BrC aerosol change in subtle ways the generally adverse effects of smoke from biomass burning.

  7. Impacts of brown carbon from biomass burning on surface UV and ozone photochemistry in the Amazon Basin.

    PubMed

    Mok, Jungbin; Krotkov, Nickolay A; Arola, Antti; Torres, Omar; Jethva, Hiren; Andrade, Marcos; Labow, Gordon; Eck, Thomas F; Li, Zhanqing; Dickerson, Russell R; Stenchikov, Georgiy L; Osipov, Sergey; Ren, Xinrong

    2016-11-11

    The spectral dependence of light absorption by atmospheric particulate matter has major implications for air quality and climate forcing, but remains uncertain especially in tropical areas with extensive biomass burning. In the September-October 2007 biomass-burning season in Santa Cruz, Bolivia, we studied light absorbing (chromophoric) organic or "brown" carbon (BrC) with surface and space-based remote sensing. We found that BrC has negligible absorption at visible wavelengths, but significant absorption and strong spectral dependence at UV wavelengths. Using the ground-based inversion of column effective imaginary refractive index in the range 305-368 nm, we quantified a strong spectral dependence of absorption by BrC in the UV and diminished ultraviolet B (UV-B) radiation reaching the surface. Reduced UV-B means less erythema, plant damage, and slower photolysis rates. We use a photochemical box model to show that relative to black carbon (BC) alone, the combined optical properties of BrC and BC slow the net rate of production of ozone by up to 18% and lead to reduced concentrations of radicals OH, HO 2 , and RO 2 by up to 17%, 15%, and 14%, respectively. The optical properties of BrC aerosol change in subtle ways the generally adverse effects of smoke from biomass burning.

  8. Pterin pigments amplify iridescent ultraviolet signal in males of the orange sulphur butterfly, Colias eurytheme

    PubMed Central

    Rutowski, R.L; Macedonia, J.M; Morehouse, N; Taylor-Taft, L

    2005-01-01

    Animal colouration is typically the product of nanostructures that reflect or scatter light and pigments that absorb it. The interplay between these colour-producing mechanisms may influence the efficacy and potential information content of colour signals, but this notion has received little empirical attention. Wing scales in the male orange sulphur butterfly (Colias eurytheme) possess ridges with lamellae that produce a brilliant iridescent ultraviolet (UV) reflectance via thin-film interference. Curiously, these same scales contain pterin pigments that strongly absorb wavelengths below 550 nm. Given that male UV reflectance functions as a sexual signal in C. eurytheme, it is paradoxical that pigments in the wing scales are highly UV absorbing. We present spectrophotometric analyses of the wings before and after pterin removal that show that pterins both depress the amplitude of UV iridescence and suppress a diffuse UV reflectance that emanates from the scales. This latter effect enhances the directionality and spectral purity of the iridescence, and increases the signal's chromaticity and potential signal content. Our findings also suggest that pterins amplify the contrast between iridescent UV reflectance and scale background colour as a male's wings move during flight. PMID:16191648

  9. Pterin pigments amplify iridescent ultraviolet signal in males of the orange sulphur butterfly, Colias eurytheme.

    PubMed

    Rutowski, R L; Macedonia, J M; Morehouse, N; Taylor-Taft, L

    2005-11-07

    Animal colouration is typically the product of nanostructures that reflect or scatter light and pigments that absorb it. The interplay between these colour-producing mechanisms may influence the efficacy and potential information content of colour signals, but this notion has received little empirical attention. Wing scales in the male orange sulphur butterfly (Colias eurytheme) possess ridges with lamellae that produce a brilliant iridescent ultraviolet (UV) reflectance via thin-film interference. Curiously, these same scales contain pterin pigments that strongly absorb wavelengths below 550 nm. Given that male UV reflectance functions as a sexual signal in C. eurytheme, it is paradoxical that pigments in the wing scales are highly UV absorbing. We present spectrophotometric analyses of the wings before and after pterin removal that show that pterins both depress the amplitude of UV iridescence and suppress a diffuse UV reflectance that emanates from the scales. This latter effect enhances the directionality and spectral purity of the iridescence, and increases the signal's chromaticity and potential signal content. Our findings also suggest that pterins amplify the contrast between iridescent UV reflectance and scale background colour as a male's wings move during flight.

  10. SR-71 Ship #1 - Ultraviolet Experiment

    NASA Technical Reports Server (NTRS)

    1994-01-01

    NASA's SR-71 streaks into the twilight on a night/science flight from the Dryden Flight Research Center, Edwards, California. Mounted in the nose of the SR-71 was an ultraviolet video camera aimed skyward to capture images of stars, asteroids and comets. The science portion of the flight is a project of the Jet Propulsion Laboratory, Pasadena, California. Two SR-71 aircraft have been used by NASA as test beds for high-speed and high-altitude aeronautical research. One early research project flown on one of Dryden's SR-71s consisted of a proposal for a series of flights using the SR-71 as a science camera platform for the Jet Propulsion Laboratory (JPL) of the California Institute of Technology, which operates under contract to NASA in much the way that NASA centers do. In March 1993, an upward-looking ultraviolet (UV) video camera placed in the SR-71's nosebay studied a variety of celestial objects in the ultraviolet light spectrum. The SR-71 was proposed as a test bed for the experiment because it is capable of flying at altitudes above 80,000 feet for an extended length of time. Observation of ultraviolet radiation is not possible from the Earth's surface because the atmosphere's ozone layer absorbs UV rays. Study of UV radiation is important because it is known to cause skin cancer with prolonged exposure. UV radiation is also valuable to study from an astronomical perspective. Satellite study of ultraviolet radiation is very expensive. As a result, the South West Research Institute (SWRI) in Texas developed the hypothesis of using a high-flying aircraft such as the SR-71 to conduct UV observations. The SR-71 is capable of flying above 90 percent of the Earth's atmosphere. The flight program was also designed to test the stability of the aircraft as a test bed for UV observation. A joint flight program was developed between the JPL and NASA's Ames-Dryden Flight Research Facility (redesignated the Dryden Flight Research Center, Edwards, California, in 1994) in conjunction with SWRI to test the hypothesis. Dryden modified the nosebay of the SR-71, creating an upward-observing window to carry SWRI's ultraviolet CCD camera so it could make observations. According to Dryden's SR-71 Project Manager Dave Lux, a single flight of the aircraft confirmed the aircraft's capability and stability as a test bed for UV observations. SWRI's principle investigator was Dr. Allen Stern.

  11. Effects of near-ultraviolet light on mutations, intragenic and intergenic recombinations in Saccharomyces cerevisiae.

    PubMed

    Machida, I; Saeki, T; Nakai, S

    1986-03-01

    The effects of far (254 nm) and near (290-350 nm) ultraviolet (UV) light on mutations, intragenic and intergenic recombinations were compared in diploid strains of Saccharomyces cerevisiae. At equivalent survival levels there was not much difference in the induction of nonsense and missense mutations between far- and near-UV radiations. However, frameshift mutations were induced more frequently by near-UV than by far-UV radiation. Near-UV radiation induced intragenic recombination (gene conversion) as efficiently as far-UV radiation and the induced levels were similar in both radiations at equitoxic doses. A strikingly higher frequency was observed for the intergenic recombination induced by near-UV radiation than by far-UV radiation when compared at equivalent survival levels. Photoreactivation reduced the frequency only slightly in far-UV induced intergenic recombination and not at all in near-UV induction. These results indicate that near-UV damage involves strand breakage in addition to pyrimidine dimers and other lesions induced, whereas far-UV damage consists largely of photoreactivable lesions, pyrimidine dimers, and near-UV induced damage is more efficient for the induction of crossing-over.

  12. Developing LED UV fluorescence sensors for online monitoring DOM and predicting DBPs formation potential during water treatment.

    PubMed

    Li, Wen-Tao; Jin, Jing; Li, Qiang; Wu, Chen-Fei; Lu, Hai; Zhou, Qing; Li, Ai-Min

    2016-04-15

    Online monitoring dissolved organic matter (DOM) is urgent for water treatment management. In this study, high performance size exclusion chromatography with multi-UV absorbance and multi-emission fluorescence scans were applied to spectrally characterize samples from 16 drinking water sources across Yangzi River and Huai River Watersheds. The UV absorbance indices at 254 nm and 280 nm referred to the same DOM components and concentration, and the 280 nm UV light could excite both protein-like and humic-like fluorescence. Hence a novel UV fluorescence sensor was developed out using only one UV280 light-emitting diode (LED) as light source. For all samples, enhanced coagulation was mainly effective for large molecular weight biopolymers; while anion exchange further substantially removed humic substances. During chlorination tests, UVA280 and UVA254 showed similar correlations with yields of disinfection byproducts (DBPs); the humic-like fluorescence obtained from LED sensors correlated well with both trihalomethanes and haloacetic acids yields, while the correlation between protein-like fluorescence and trihalomethanes was relatively poor. Anion exchange exhibited more reduction of DBPs yields as well as UV absorbance and fluorescence signals than enhanced coagulation. The results suggest that the LED UV fluorescence sensors are very promising for online monitoring DOM and predicting DBPs formation potential during water treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. UV radiation is the primary factor driving the variation in leaf phenolics across Chinese grasslands

    PubMed Central

    Chen, Litong; Niu, Kechang; Wu, Yi; Geng, Yan; Mi, Zhaorong; Flynn, Dan FB; He, Jin-Sheng

    2013-01-01

    Due to the role leaf phenolics in defending against ultraviolet B (UVB) under previously controlled conditions, we hypothesize that ultraviolet radiation (UVR) could be a primary factor driving the variation in leaf phenolics in plants over a large geographic scale. We measured leaf total phenolics, ultraviolet-absorbing compounds (UVAC), and corresponding leaf N, P, and specific leaf area (SLA) in 151 common species. These species were from 84 sites across the Tibetan Plateau and Inner Mongolian grasslands of China with contrasting UVR (354 vs. 161 mW/cm2 on average). Overall, leaf phenolics and UVAC were all significantly higher on the Tibetan Plateau than in the Inner Mongolian grasslands, independent of phylogenetic relationships between species. Regression analyses showed that the variation in leaf phenolics was strongly affected by climatic factors, particularly UVR, and soil attributes across all sites. Structural equation modeling (SEM) identified the primary role of UVR in determining leaf phenolic concentrations, after accounting for colinearities with altitude, climatic, and edaphic factors. In addition, phenolics correlated positively with UVAC and SLA, and negatively with leaf N and N: P. These relationships were steeper in the lower-elevation Inner Mongolian than on the Tibetan Plateau grasslands. Our data support that the variation in leaf phenolics is controlled mainly by UV radiation, implying high leaf phenolics facilitates the adaptation of plants to strong irradiation via its UV-screening and/or antioxidation functions, particularly on the Tibetan Plateau. Importantly, our results also suggest that leaf phenolics may influence on vegetation attributes and indirectly affect ecosystem processes by covarying with leaf functional traits. PMID:24363898

  14. Comparative study of nuclear magnetic resonance and UV-visible spectroscopy dose-response of polymer gel based on N-(Isobutoxymethyl) acrylamide

    NASA Astrophysics Data System (ADS)

    Lotfy, S.; Basfar, A. A.; Moftah, B.; Al-Moussa, A. A.

    2017-12-01

    A comparative study of nuclear magnetic resonance and UV-visible spectroscopy of dose-response for polymer gel dosimeters was performed. Dosimeters were prepared using N-(Isobutoxymethyl) acrylamide (NIBMA) as a new monomer via radiation induced polymerization for use in radiotherapy planning. The prepared dosimeters were irradiated with doses up to 30 Gy at a constant dose rate of 600 MU/min. Using a medical linear accelerator at irradiation energies of 6, 10 and 18 MV photon beam. The nuclear magnetic resonance (NMR), via spin-spin relaxation rate (R2) for water proton surrounding the polymer formulation and UV-Visible spectroscopy, via the optical absorbance measurements of irradiated dosimeters at selected wavelengths of 500 nm, was used to investigate the dose response of NIBMAGAT gel dosimeters. Scavenge of oxygen was done using tetrakis (hydroxymethyl) phosphonium chloride (THPC). The THPC optimum concentration in the dosimeters formulations were 5 and 10 mM for the NMR and optical absorbance measurements respectively. The quantitative investigation of the dosimeters components reveals the selective formulations based on 4% w/w gelatin, 1% w/w NIBMA, 3% w/w BisAAm, 5 or 10 mM THPC and 17% w/w glycerol which significantly increase the dosimeters dose response. The prepared dosimeters were found to be dose rate and photon beam irradiation energy independent. The stability study shows no change in the relaxation rate or in the optical absorbance of the gel dosimeters up to 8 days post-irradiation. The prepared polymer gel dosimeters at the energies of 6, 10 and 18 MV photon beam irradiation in the range of 1-30 Gy have the linearity of the dose response function in the case of R2 is better than in the case of absorbance measurements; correlation coefficient (r2) equals 0.995 and 0.991, respectively. Dose sensitivity, R2 of NIBMAGAT dosimeters (0.0775 s-1 Gy-1). The absorption band intensity increases linearly with a dose sensitivity of 0.016 cm-1 Gy-1. The detection limit of the present dosimeter analyzed by R2 and absorbance measurements is 1 Gy and 2 Gy respectively. The overall uncertainty measurements of dose approve that by using the absorbance measurements the gel is not useful as a dosimeter like as R2 measurements. It could be a new composition of dosimeters successfully utilized for MRI (Magnetic Resonance Imaging) for radiotherapy treatment planning.

  15. Towards a Better Understanding of the Venus Atmosphere - Observations needed between 65 - 120 km

    NASA Astrophysics Data System (ADS)

    Limaye, S. S.; Clancy, R. T.; Rengel, M.; Sorning, M.

    2013-12-01

    Through a half century of exploring Venus with spacecraft, we have learned that the planet and its atmos-phere continue to hold many mysteries. The ubiquitous clouds contain one or more particulate or gaseous spe-cies which absorb much of the incident UV solar radiation. While there are some candidates, the identity and physical properties of the UV absorber are unknown. Energy emitted by the surface and lower atmosphere es-capes through small- and large-scale inhomogeneities in opacity in the near-infrared region of the spectrum, and thus a better knowledge of the UV absorber distribution and Venus clouds are needed to understand the energy balance which drives the atmospheric circulation. First-principles postulates predicted a global day-side to night-side circulation for the entire atmosphere, but subsequent measurements show that this exists only in the 90-120 km layer and superrotation is present throughout the atmosphere below. However, systematic measure-ments are lacking and details of the day-night circulation are very sketchy. Döppler observations at (emitted) infrared [1] and reflected visible [2] wavelengths and imaging observa-tions at near infrared wavelengths from telescopes and spacecraft [3] provide insights into the circulation, above, near and below the cloud tops, but much less is known about the winds in the lower atmosphere. Recent efforts by many groups have been able to achieve some resemblance between the model results and some aspects of observed circulation. The different models disagree on the details and the processes for the maintenance of the circulation [4]. One of the dominant problems inhibiting further progress is uncertainty in the distribution of heating by absorbed solar energy and thermal radiation emitted from the lower atmosphere and surface [5], and a better understanding of the nature of the ultraviolet absorber will help. Only Döppler measurements are possible to learn about the circulation above the cloud tops but provide only line of sight component and so far have been made only from ground based telescopes. The results show sub-stantial variability on long and short time scales and until recently were generally focused more on the zonal circulation and less on the day-night circulation. Spacecraft observations from orbit may be necessary to learn more about the sub-solar to anti-solar circulation that is inferred from the night glow observations. Ground based Döppler observations covering the entire planet and the day and night limb with sufficient spatial resolu-tion will also help to better characterize the atmospheric circulation above the cloudtops to ~ 120 km. In-situ sampling may be necessary to confirm the identity of the ultraviolet absorber(s) in the clouds to better under-stand the global energy deposition and loss from the Venus atmosphere. References: [1] Limaye, S.; Rengel, M., 2013, Int. Space Studies Inst., Bern, Switzerland, Report # 11, 55-72, [2] Machado, P. et al., 2012, , Icarus 221, 248-261. [8] Taylor et al., (1997) Venus II, 325-351. [3] Sánchez-Lavega et al., (2008) Geophys. Res. Lett., 35, L13204, doi: 10.1029/2008GL033817. [4] Lebonnois et al. , 2013, Intl. Space Studies Inst., Bern, Switzerland, Report # 11, 129-156. [5]Titov et al. , 2013, Intl. Space Studies Inst., Bern, Switzerland, Report # 11, 23-54.

  16. Metallic Iron and Iron Oxide as an Explanation for the Dark Material Observed on Saturn's Icy Satellites and Rings with Cassini VIMS

    NASA Astrophysics Data System (ADS)

    Clark, Roger Nelson; Cruikshank, D. P.; Jaumann, R.; Brown, R. H.; Dalle Ore, C.; Stephan, K.; Hoefen, T. M.; Curchin, J. M.; Buratti, B. J.; Filacchione, G.; Baines, K. H.; Nicholson, P. D.

    2010-10-01

    The Visual and Infrared Mapping Spectrometer (VIMS) on Cassini has obtained spatially resolved spectra on satellites of Saturn. The Cassini Rev 49 Iapetus fly-by on September 10, 2007, provided data on both the dark material and the transition zone between the dark material and the visually bright ice. The dark material has low albedo with a linear increase in reflectance with wavelength, 3-micron water, and CO2 absorptions. The transition between bright and dark regions shows mixing with unusual optical properties including increased blue scattering and increasing strength of a UV absorber in areas with stronger ice absorptions. Similar spectral effects are observed on other Saturnian satellites and in the rings. We have been unable to match these spectral properties and trends using tholins and carbon compounds. However, the dark material is spectrally matched by fine-grained metallic iron plus nano-phase hematite and adsorbed water which contribute UV and 3-micron absorption, respectively. The blue scattering peak and UV absorption can be explained by Rayleigh scattering from sub-micron particles with a UV absorption, or a combination of Rayleigh scattering and Rayleigh absorption as has been attributed to spectral properties of the Moon. A new radiative transfer model that includes Rayleigh scattering and Rayleigh absorption has been constructed. Models of ice, sub-micron metallic iron, hydrated iron oxide, and trace CO2 explain the observed spectra. Rayleigh absorption requires high absorption coefficient nano-sized particles, which is also consistent with metallic iron. The UV absorber appears to have increased strength on satellite surfaces close to Saturn, with a corresponding decrease in metallic iron signature. A possible explanation is that the iron is oxidized closer to Saturn by oxygen in the extended atmosphere of Saturn's rings, or the dark material is simply covered by clean fine-grained ice particles, for example, from the E-ring.

  17. Sulfur and Sulfuric Acid Microphysics in the Venus Atmosphere: Implications for the Unknown UV Absorber

    NASA Astrophysics Data System (ADS)

    Gao, P.; Carlson, R. W.; Robinson, T. D.; Crisp, D.; Lyons, J. R.; Yung, Y. L.

    2016-12-01

    A mystery that has continued to plague our sister planet, Venus, for nearly a century is the nature of the brightness contrasts observed crisscrossing its disk in near-ultraviolet wavelength images. These contrasts - specifically the dark regions - have been attributed to the actions of an unknown UV absorber, knowing the identity of which is integral to understanding the Venus atmosphere due to the high rates of mesospheric heating attributed to the absorption of solar UV. One possible candidate for the UV absorber is polysulfur, which form from polymerization of elemental sulfur arising from SO2 photolysis at the Venus cloud tops under low O2 conditions. In this work we investigate the microphysics of condensed polysulfur and its interaction with the sulfuric acid clouds. We consider the "gumdrop model", where sulfur is allowed to condense onto sulfuric acid cloud particles. We explore the possibility that S2 vapor may condense faster than its loss to gas phase reactions that produce higher allotropes, leading to solid state polymerization to S8. This process may explain the ephemeral and variable nature of the UV absorption.

  18. Ultraviolet-B-induced DNA damage and ultraviolet-B tolerance mechanisms in species with different functional groups coexisting in subalpine moorlands.

    PubMed

    Wang, Qing-Wei; Kamiyama, Chiho; Hidema, Jun; Hikosaka, Kouki

    2016-08-01

    High doses of ultraviolet-B (UV-B; 280-315 nm) radiation can have detrimental effects on plants, and especially damage their DNA. Plants have DNA repair and protection mechanisms to prevent UV-B damage. However, it remains unclear how DNA damage and tolerance mechanisms vary among field species. We studied DNA damage and tolerance mechanisms in 26 species with different functional groups coexisting in two moorlands at two elevations. We collected current-year leaves in July and August, and determined accumulation of cyclobutane pyrimidine dimer (CPD) as UV-B damage and photorepair activity (PRA) and concentrations of UV-absorbing compounds (UACs) and carotenoids (CARs) as UV-B tolerance mechanisms. DNA damage was greater in dicot than in monocot species, and higher in herbaceous than in woody species. Evergreen species accumulated more CPDs than deciduous species. PRA was higher in Poaceae than in species of other families. UACs were significantly higher in woody than in herbaceous species. The CPD level was not explained by the mechanisms across species, but was significantly related to PRA and UACs when we ignored species with low CPD, PRA and UACs, implying the presence of another effective tolerance mechanism. UACs were correlated negatively with PRA and positively with CARs. Our results revealed that UV-induced DNA damage significantly varies among native species, and this variation is related to functional groups. DNA repair, rather than UV-B protection, dominates in UV-B tolerance in the field. Our findings also suggest that UV-B tolerance mechanisms vary among species under evolutionary trade-off and synergism.

  19. Solar UV-A and UV-B radiation fluxes at two Alpine stations at different altitudes

    NASA Astrophysics Data System (ADS)

    Blumthaler, M.; Ambach, W.; Rehwald, W.

    1992-03-01

    Daily totals of UV-A and UV-B radiation fluxes and global radiation were measured since 1981 at Jungfraujoch (3576 m) a.s.l.) and in Innsbruck (577 m a.s.l.) in their seasonal course. The altitude effect of annual totals yields 19%/1000 m (UV-B), 11%/1000 m (UV-A) and 9%/1000 m (global radiation) with reference to Innsbruck station. The ratio of the daily totals of UV-B/global radiation shows a significant seasonal course with the maximum in summer, whereas the ratio of the daily totals of UV-A/global radiation shows no significant seasonal variation. The biological effective doses of erythema reaction, delayed tanning and immediate tanning by UV-A and UV-B radiant exposure are reported in the seasonal course at Jungfraujoch and in Innsbruck.

  20. Study of Photosensitive Dry Films Absorption for Printed Circuit Boards by Photoacoustic Technique

    NASA Astrophysics Data System (ADS)

    Hernández, R.; Zaragoza, J. A. Barrientos; Jiménez-Pérez, J. L.; Orea, A. Cruz; Correa-Pacheco, Z. N.

    2017-08-01

    In this work, the study of photosensitive dry-type films by photoacoustic technique is proposed. The dry film photoresist is resistant to chemical etching for printed circuit boards such as ferric chloride, sodium persulfate or ammonium, hydrochloric acid. It is capable of faithfully reproducing circuit pattern exposed to ultraviolet light (UV) through a negative. Once recorded, the uncured portion is removed with alkaline solution. It is possible to obtain good results in surface mount circuits with tracks of 5 mm. Furthermore, the solid resin films are formed by three layers, two protective layers and a UV-sensitive optical absorption layer in the range of 325 nm to 405 nm. By means of optical absorption of UV-visible rays emitted by a low-power Xe lamp, the films transform this energy into thermal waves generated by the absorption of optical radiation and subsequently no-radiative de-excitation occurs. The photoacoustic spectroscopy is a useful technique to measure the transmittance and absorption directly. In this study, the optical absorption spectra of the three layers of photosensitive dry-type films were obtained as a function of the wavelength, in order to have a knowledge of the absorber layer and the protective layers. These analyses will give us the physical properties of the photosensitive film, which are very important in curing the dry film for applications in printed circuit boards.

  1. An insect with selective control of egg coloration.

    PubMed

    Abram, Paul K; Guerra-Grenier, Eric; Després-Einspenner, Marie-Lyne; Ito, Shosuke; Wakamatsu, Kazumasa; Boivin, Guy; Brodeur, Jacques

    2015-08-03

    The color and patterning of animal eggs has important consequences for offspring survival. There are examples of between-species and polymorphic differences in egg coloration in birds and amphibians [1-3], as well as cases of birds and insects whose nutritional status or age can cause within-individual variation in egg pigmentation [4-6]. However, no studies to date have demonstrated that individual animals can selectively control the color of their eggs. Here, we show that individual females of the predatory stink bug Podisus maculiventris can control the pigmentation of their eggs during oviposition, as a response to environmental conditions. The color of egg masses produced by individual females can range from pale yellow to dark black/brown. Females tend to lay darker eggs, which are more resistant to UV radiation, on the upper surface of leaves where UV exposure is highest in nature. Conversely, they lay lighter eggs on the undersides of leaves. However, egg color is not determined by the intensity of UV radiation falling on the surface where they are laid. Rather, female stink bugs appear to use a visual assessment of oviposition substrate reflectance to determine egg color. Unexpectedly, biochemical analyses revealed that the egg pigment is not melanin, the most ubiquitous light-absorbing pigment in animals. Our study offers the first example of an animal able to selectively control the color of its eggs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Changes in ultraviolet-B and visible optical properties and absorbing pigment concentrations in pecan leaves during a growing season

    Treesearch

    Yadong Qi; Shuju Bai; Gordon M. Heisler

    2003-01-01

    UV-B (280-320 nm) and visible (400-760 nm) spectral reflectance, transmittance, and absorptance; chlorophyll content; UV-B absorbing compound concentration; and leaf thickness were measured for pecan (Carya illinoensis) leaves over a growing season (April-October). Leaf samples were collected monthly from a pecan plantation located on the Southern...

  3. Coupling Reagent for UV/vis Absorbing Azobenzene-Based Quantitative Analysis of the Extent of Functional Group Immobilization on Silica.

    PubMed

    Choi, Ra-Young; Lee, Chang-Hee; Jun, Chul-Ho

    2018-05-18

    A methallylsilane coupling reagent, containing both a N-hydroxysuccinimidyl(NHS)-ester group and a UV/vis absorbing azobenzene linker undergoes acid-catalyzed immobilization on silica. Analysis of the UV/vis absorption band associated with the azobenzene group in the adduct enables facile quantitative determination of the extent of loading of the NHS groups. Reaction of NHS-groups on the silica surface with amine groups of GOx and rhodamine can be employed to generate enzyme or dye-immobilized silica for quantitative analysis.

  4. Solar ultraviolet radiation is necessary to enhance grapevine fruit ripening transcriptional and phenolic responses.

    PubMed

    Carbonell-Bejerano, Pablo; Diago, Maria-Paz; Martínez-Abaigar, Javier; Martínez-Zapater, José M; Tardáguila, Javier; Núñez-Olivera, Encarnación

    2014-07-09

    Ultraviolet (UV) radiation modulates secondary metabolism in the skin of Vitis vinifera L. berries, which affects the final composition of both grapes and wines. The expression of several phenylpropanoid biosynthesis-related genes is regulated by UV radiation in grape berries. However, the complete portion of transcriptome and ripening processes influenced by solar UV radiation in grapes remains unknown. Whole genome arrays were used to identify the berry skin transcriptome modulated by the UV radiation received naturally in a mid-altitude Tempranillo vineyard. UV radiation-blocking and transmitting filters were used to generate the experimental conditions. The expression of 121 genes was significantly altered by solar UV radiation. Functional enrichment analysis of altered transcripts mainly pointed out that secondary metabolism-related transcripts were induced by UV radiation including VvFLS1, VvGT5 and VvGT6 flavonol biosynthetic genes and monoterpenoid biosynthetic genes. Berry skin phenolic composition was also analysed to search for correlation with gene expression changes and UV-increased flavonols accumulation was the most evident impact. Among regulatory genes, novel UV radiation-responsive transcription factors including VvMYB24 and three bHLH, together with known grapevine UV-responsive genes such as VvMYBF1, were identified. A transcriptomic meta-analysis revealed that genes up-regulated by UV radiation in the berry skin were also enriched in homologs of Arabidopsis UVR8 UV-B photoreceptor-dependent UV-B -responsive genes. Indeed, a search of the grapevine reference genomic sequence identified UV-B signalling pathway homologs and among them, VvHY5-1, VvHY5-2 and VvRUP were up-regulated by UV radiation in the berry skin. Results suggest that the UV-B radiation-specific signalling pathway is activated in the skin of grapes grown at mid-altitudes. The biosynthesis and accumulation of secondary metabolites, which are appreciated in winemaking and potentially confer cross-tolerance, were almost specifically triggered. This draws attention to viticultural practices that increase solar UV radiation on vineyards as they may improve grape features.

  5. On the evolution of Saturn's 'Spokes' - Theory

    NASA Technical Reports Server (NTRS)

    Morfill, G. E.; Gruen, E.; Goertz, C. K.; Johnson, T. V.

    1983-01-01

    Starting with the assumption that negatively charged micron-sized dust grains may be elevated above Saturn's ring plane by plasma interactions, the subsequent evolution of the system is discussed. The discharge of the fine dust by solar UV radiation produces a cloud of electrons which moves adiabatically in Saturn's dipolar magnetic field. The electron cloud is absorbed by the ring after one bounce, alters the local ring potential significantly, and reduces the local Debye length. As a result, more micron-sized dust particles may be elevated above the ring plane and the spoke grows. This process continues until the electron cloud has dissipated.

  6. UV-B Radiation Induces Root Bending Through the Flavonoid-Mediated Auxin Pathway in Arabidopsis.

    PubMed

    Wan, Jinpeng; Zhang, Ping; Wang, Ruling; Sun, Liangliang; Wang, Wenying; Zhou, Huakun; Xu, Jin

    2018-01-01

    Ultraviolet (UV)-B radiation-induced root bending has been reported; however, the underlying mechanisms largely remain unclear. Here, we investigate whether and how auxin and flavonoids are involved in UV-B radiation-induced root bending in Arabidopsis using physiological, pharmacological, and genetic approaches. UV-B radiation modulated the direction of root growth by decreasing IAA biosynthesis and affecting auxin distribution in the root tips, where reduced auxin accumulation and asymmetric auxin distribution were observed. UV-B radiation increased the distribution of auxin on the nonradiated side of the root tips, promoting growth and causing root bending. Further analysis indicated that UV-B induced an asymmetric accumulation of flavonoids; this pathway is involved in modulating the accumulation and asymmetric distribution of auxin in root tips and the subsequent redirection of root growth by altering the distribution of auxin carriers in response to UV-B radiation. Taken together, our results indicate that UV-B radiation-induced root bending occurred through a flavonoid-mediated phototropic response to UV-B radiation.

  7. UV-B Radiation Induces Root Bending Through the Flavonoid-Mediated Auxin Pathway in Arabidopsis

    PubMed Central

    Wan, Jinpeng; Zhang, Ping; Wang, Ruling; Sun, Liangliang; Wang, Wenying; Zhou, Huakun; Xu, Jin

    2018-01-01

    Ultraviolet (UV)-B radiation-induced root bending has been reported; however, the underlying mechanisms largely remain unclear. Here, we investigate whether and how auxin and flavonoids are involved in UV-B radiation-induced root bending in Arabidopsis using physiological, pharmacological, and genetic approaches. UV-B radiation modulated the direction of root growth by decreasing IAA biosynthesis and affecting auxin distribution in the root tips, where reduced auxin accumulation and asymmetric auxin distribution were observed. UV-B radiation increased the distribution of auxin on the nonradiated side of the root tips, promoting growth and causing root bending. Further analysis indicated that UV-B induced an asymmetric accumulation of flavonoids; this pathway is involved in modulating the accumulation and asymmetric distribution of auxin in root tips and the subsequent redirection of root growth by altering the distribution of auxin carriers in response to UV-B radiation. Taken together, our results indicate that UV-B radiation-induced root bending occurred through a flavonoid-mediated phototropic response to UV-B radiation. PMID:29868074

  8. Photophysical properties of hexyl diethylaminohydroxybenzoylbenzoate (Uvinul A Plus), a UV-A absorber.

    PubMed

    Shamoto, Yuta; Yagi, Mikio; Oguchi-Fujiyama, Nozomi; Miyazawa, Kazuyuki; Kikuchi, Azusa

    2017-09-13

    Hexyl diethylaminohydroxybenzoylbenzoate (DHHB, Uvinul A Plus) is a photostable UV-A absorber. The photophysical properties of DHHB have been studied by obtaining the transient absorption, total emission, phosphorescence and electron paramagnetic resonance spectra. DHHB exhibits an intense phosphorescence in a hydrogen-bonding solvent (e.g., ethanol) at 77 K, whereas it is weakly phosphorescent in a non-hydrogen-bonding solvent (e.g., 3-methylpentane). The triplet-triplet absorption and EPR spectra for the lowest excited triplet state of DHHB were observed in ethanol, while they were not observed in 3-methylpentane. These results are explained by the proposal that in the benzophenone derivatives possessing an intramolecular hydrogen bond, intramolecular proton transfer is an efficient mechanism of the very fast radiationless decay from the excited singlet state. The energy level of the lowest excited triplet state of DHHB is higher than those of the most widely used UV-B absorbers, octyl methoxycinnamate (OMC) and octocrylene (OCR). DHHB may act as a triplet energy donor for OMC and OCR in the mixtures of UV-A and UV-B absorbers. The bimolecular rate constant for the quenching of singlet oxygen by DHHB was determined by measuring the near-IR phosphorescence of singlet oxygen. The photophysical properties of diethylaminohydroxybenzoylbenzoic acid (DHBA) have been studied for comparison. It is a closely related building block to assist in interpreting the observed data.

  9. Effectiveness of Sunscreen at Preventing Solar UV-Induced Alterations of Human Stratum Corneum

    NASA Astrophysics Data System (ADS)

    Martinez, O.; Dauskardt, R.; Biniek, K.; Novoa, F.

    2012-12-01

    The outermost layer of the epidermis, the stratum corneum, protects the body from harmful environmental conditions by serving as a selective barrier. Solar ultraviolet (UV) radiation is one of the most common conditions the body encounters and is responsible for many negative skin responses, including compromised barrier function. UV exposure has dramatic effects on stratum corneum cell cohesion and mechanical integrity that are related to its effects on the stratum corneum's intercellular lipids. Hypothesis Sunscreen contains chemicals that absorb UV radiation to prevent the radiation from penetrating the skin. Thus, it is expected that the application of sunscreen on human stratum corneum will reduce UV-induced alterations of human stratum corneum. Procedures/Equipment Human tissue was processed in order to isolate the stratum corneum, the top layer of the epidermis. Double cantilever beam (DCB) testing was used to study the effect of UV radiation on human stratum corneum. Two different types of DCB samples were created: control DCB samples with the application of carrier and UV light to the stratum corneum and DCB samples with the application of sunscreen and UV light to the stratum corneum. For the control sample, one side of the stratum corneum was glued to a polycarbonate beam and carrier was applied. Then, the sample was placed 10 cm away from the UV lamp inside of the environmental chamber and were exposed to UV dosages of about 800 J/cm2. Once this step was complete, a second polycarbonate beam was glued to the other side of the stratum corneum. The steps were similar for the DCB sample that had sunscreen applied and that was exposed to UV light. After gluing one side of the stratum corneum to a polycarbonate beam, Octinoxate sunscreen was applied. The next steps were similar to those of the control sample. All DCB samples were then let out to dry for two hours in a dry box in order for the moisture from the lab to be extracted. Each DCB sample was tested with a Delaminator test system (DTS Company). The Delaminator was used to measure the force required to break the bonds between the Stratum Corneum lipid layers. Delamination energies, Gc, were presented as mean values ± 1.96 x the standard error of the mean (STDEM) in which the mean values reported are expected to fall within these bounds with 95% confidence. Results The samples for the UV exposed carrier and Octinoxate samples were tested. Various samples were used to compare the average delamination energy in order to fulfill the 95% confidence level. The delamination energy was lower for the carrier samples than for the Octinoxate samples. The average Gc value for the carrier samples was 5, and the average Gc value for the Octinoxate samples was 7. Conclusion In response to the averaging lower Gc value for the carrier, it is evident that sunscreen does protect the stratum corneum's mechanical properties. It took higher delamination energy to break apart the lipids in the sunscreen sample than it did for the carrier sample. Therefore, the sunscreen helps the stratum corneum contain its intercellular cohesion.

  10. Broad-Band Continuum and Line Emission of the gamma-Ray Blazar PKS 0537-441

    NASA Technical Reports Server (NTRS)

    Pian, E.; Falomo, R.; Hartman, R. C.; Maraschi, L.; Tavecchio, F.; Tornikoski, M.; Treves, A.; Urry, C. M.; Ballo, L.; Mukherjee, R.; hide

    2002-01-01

    PKS 0537-441, a bright gamma ray emitting blazar was observed at radio, optical, UV and X-ray frequencies during various EGRET paintings, often quasi-simultaneously. In 1995 the object was found in an intense emission state at all wavelengths. BeppoSAX observations made in 1998, non-simultaneously with exposures at other frequencies, allow us to characterize precisely the spectral shape of the high energy blazer component, which we attribute to inverse Compton scatter in The optical-to-gamma-ray spectral energy distributions at the different epochs show that the gamma-ray luminosity dominates the barometric output. This, together with the presence of optical and UV line emission, suggests that, besides the synchrotron self-Compton mechanism, the Compton upscattering of photons external to the jet (e.g., in the broad line region) may have a significant role for high energy radiation. The multiwavelength variability can be reproduced by changes of the plasma bulk Lorentz factor. The spectrum secured by ICE in 1995 appears to be partially absorbed shortward of approximately 1700 Angstroms. However, this signature is not detected in the HST spectrum taker during a lower state of the source. The presence of intervening absorbers is not supported by optical imaging and spectroscopy of the field.

  11. Large Abundances of Polycyclic Aromatic Hydrocarbons in Titan's Upper Atmosphere

    NASA Technical Reports Server (NTRS)

    Lopez-Puertas, M.; Dinelli, B. M.; Adriani, A.; Funke, B.; Garcia-Comas, M.; Moriconi, M. L.; D'Aversa, E.; Boersma, C.; Allamandola, L. J.

    2013-01-01

    In this paper, we analyze the strong unidentified emission near 3.28 micron in Titan's upper daytime atmosphere recently discovered by Dinelli et al.We have studied it by using the NASA Ames PAH IR Spectroscopic Database. The polycyclic aromatic hydrocarbons (PAHs), after absorbing UV solar radiation, are able to emit strongly near 3.3 micron. By using current models for the redistribution of the absorbed UV energy, we have explained the observed spectral feature and have derived the vertical distribution of PAH abundances in Titan's upper atmosphere. PAHs have been found to be present in large concentrations, about (2-3) × 10(exp 4) particles / cubic cm. The identified PAHs have 9-96 carbons, with a concentration-weighted average of 34 carbons. The mean mass is approx 430 u; the mean area is about 0.53 sq. nm; they are formed by 10-11 rings on average, and about one-third of them contain nitrogen atoms. Recently, benzene together with light aromatic species as well as small concentrations of heavy positive and negative ions have been detected in Titan's upper atmosphere. We suggest that the large concentrations of PAHs found here are the neutral counterpart of those positive and negative ions, which hence supports the theory that the origin of Titan main haze layer is located in the upper atmosphere.

  12. COBALT-60 Gamma Irradiation of Shrimp.

    NASA Astrophysics Data System (ADS)

    Sullivan, Nancy L. B.

    Meta- and ortho-tyrosine were measured using high performance liquid chromatography (HPLC) in conjunction with electrochemical detection in shrimp irradiated using cobalt-60 gamma radiation in the absorbed dose range 0.8 to 6.0 kGy, in nonirradiated shrimp, and in bovine serum albumin (BSA) irradiated in dilute aqueous solution at 25.0 kGy. Ortho-tyrosine was measured in nonirradiated BSA. Para-, meta-, and ortho-tyrosine were measured using HPLC in conjunction with uv-absorption detection in dilute aqueous solutions of phenylalanine irradiated in the absorbed dose range 16.0 to 195.0 kGy. The measured yields of tyrosine isomers were approximately linear as a function of absorbed dose in shrimp, and in irradiated solutions of phenylalanine up to 37.0 kGy. The occurrence of meta- and ortho-tyrosine, which had formerly been considered unique radiolytic products, has not previously been reported in nonirradiated shrimp or BSA. The conventional hydrolyzation and analytical techniques used in the present study to measure meta- and ortho-tyrosine may provide the basis for a method to detect and determine the dose used in food irradiation.

  13. Far-ultraviolet absorption spectra of quasars: How to find missing hot gas and metals

    NASA Technical Reports Server (NTRS)

    Verner, D. A.; Tytler, David; Barthel, P. D.

    1994-01-01

    We show that some high-redshift QSO absorption systems that reveal only the H I Lyman series lines at wavelengths visible from the ground maybe a new class of ultra-high-ionization metal line systems, with metal lines in the far-UV region which is now being explored with satellites. At high temperatures or in intense radiation fields metal systems will not show the usual C IV absorption, and O VI will become the most prominent metal absorber. At still higher ionization, O IV also becomes weak and the strongest metal lines are from Ne VIII, Mg X and Si XII, which have doublets in the rangs 500-800 A. Hence very high ionization metal systems will not show metal lines in existing spectra. Recent X-ray observations show that galaxy halos contain hot gas, so we predict that far-UV spectra of QSOs will also show this gas.

  14. Lyman-Alpha Observations of High Radial Velocity Stars

    NASA Astrophysics Data System (ADS)

    Bookbinder, Jay

    1990-12-01

    H I LYMAN -ALPHA (LY-A) IS ONE OF THE MOST IMPORTANT LINES EMITTED BY PLASMA IN THE TEMPERATURE RANGE OF 7000 TO 10 TO THE FIFTH POWER K IN LATE-TYPE STARS. IT IS A MAJOR COMPONENT OF THE TOTAL RADIATIVE LOSS RATE, AND IT PLAYS A CRUCIAL ROLE IN DETERMINING THE ATMOSPHERIC STRUCTURE AND IN FLUORESCING OTHER UV LINES. YET IT IS ALSO THE LEAST STUDIED MAJOR LINE IN THE FAR UV, BECAUSE MOST OF THE LINE FLUX IS ABSORBED BY THE ISM ALONG THE LINE OF SIGHT AND BECAUSE IT IS STRONGLY COMTAMINATED BY THE GEOCORONAL BACKGROUND. A KNOWLEDGE OF THE Ly-A PROFILE IS ALSO IMPORTANT FOR STUDIES OF DEUTERIUM IN THE INTERSTELLAR MEDIUM. BY OBSERVING HIGH RADIAL VELOCITY STARS WE WILL OBTAIN FOR THE FIRST TIME HIGH RESOLUTION SPECTRA OF THE CORE OF A STELLAR H I LYMAN-A EMISSION LINE PROFILE.

  15. Thermal design concept for a high resolution UV spectrometer

    NASA Technical Reports Server (NTRS)

    Caruso, P.; Stipandic, E.

    1979-01-01

    The thermal design concept described has been developed for the High Resolution UV Spectrometer/Polarimeter to be flown on the Solar Maximum Mission. Based on experience gained from a similar Orbiting Solar Observatory mission payload, it has been recognized that initial protection of the optical elements, contamination control, reduction of scattered light, tight bulk temperature, and gradient constraints are key elements that must be accommodated in any thermal control concept for this class of instrument. Salient features of the design include: (1) a telescope door providing contamination protection of an aplanatic Gregorian telescope; (2) a rastering system for the secondary mirror; (3) a unique solar heat absorbing device; (4) heat pipes and special radiators; (5) heaters for active temperature control and optics contamination protection; and (6) high precision platinum resistance thermometers. Viability of the design concept has been established by extensive thermal analysis and some subsystem testing. A summary of analytical and test results is included.

  16. Using OMI Observations to Measure Aerosol Absorption of Biomass Burning Aerosols Above Clouds

    NASA Technical Reports Server (NTRS)

    Torres, Omar; Bhartia, P. K.; Jethva, Hiren

    2011-01-01

    The presence of absorbing aerosol layers above clouds is unambiguously detected by the TOMS/OMI UV Aerosol Index (AI) that uses satellite observations at two near-UV channels. A sensitivity study using radiative transfer calculations shows that the AI signal of resulting from the presence of aerosols above clouds is mainly driven by the aerosol absorption optical depth and the optical depth of the underlying cloud. Based on these results, an inversion algorithm has been developed to retrieve the aerosol optical depth (AOD) of aerosol layers above clouds. In this presentation we will discuss the sensitivity analysis, describe the retrieval approach, and present results of applications of the retrieval method to OMI observations over the South Atlantic Ocean. Preliminary error analyses, to be discussed, indicate that the AOD can be underestimated (up to -30%) or overestimated (up to 60%) depending on algorithmic assumptions.

  17. Space environmental effects on polymeric materials

    NASA Technical Reports Server (NTRS)

    Kiefer, Richard L.; Orwoll, Robert A.

    1987-01-01

    Polymeric materials that may be exposed on spacecraft to the hostile environment beyond Earth's atmosphere were subjected to atomic oxygen, electron bombardment, and ultraviolet radiation in terrestrial experiments. Evidence is presented for the utility of an inexpensive asher for determining the relative susceptibility of organic polymers to atomic oxygen. Kapton, Ultem, P1700 polysulfone, and m-CBB/BIS-A (a specially formulated polymer prepared at NASA Langley) all eroded at high rates, just as was observed in shuttle experiments. Films of Ultem, P1700 polysulfone, and m-CBB/BIS-A were irradiated with 85 keV electrons. The UV/VIS absorbance of Ultem was found to decay with time after irradiation, indicating free radical decay. The tensile properties of Ultem began to change only after it had been exposed to 100 Mrads. The effects of dose rate, temperature, and simultaneous vs. sequential electron and UV irradiation were also studied.

  18. Ultraviolet absorbance as a proxy for total dissolved mercury in streams

    USGS Publications Warehouse

    Dittman, J.A.; Shanley, J.B.; Driscoll, C.T.; Aiken, G.R.; Chalmers, A.T.; Towse, J.E.

    2009-01-01

    Stream water samples were collected over a range of hydrologic and seasonal conditions at three forested watersheds in the northeastern USA. Samples were analyzed for dissolved total mercury (THgd), DOC concentration and DOC composition, and UV254 absorbance across the three sites over different seasons and flow conditions. Pooling data from all sites, we found a strong positive correlation of THgd to DOC (r2 = 0.87), but progressively stronger correlations of THgd with the hydrophobic acid fraction (HPOA) of DOC (r2 = 0.91) and with UV254 absorbance (r2 = 0.92). The strength of the UV254 absorbance-THgd relationship suggests that optical properties associated with dissolved organic matter may be excellent proxies for THgd concentration in these streams. Ease of sample collection and analysis, the potential application of in-situ optical sensors, and the possibility for intensive monitoring over the hydrograph make this an effective, inexpensive approach to estimate THgd flux in drainage waters. ?? 2009 Elsevier Ltd.

  19. Protective mechanisms and acclimation to solar ultraviolet-B radiation in Oenothera stricta

    NASA Technical Reports Server (NTRS)

    Robberecht, R.; Caldwell, M. M.

    1981-01-01

    Plant adaptations ameliorating or repairing the damaging effects of ultraviolet-B (UV-B) radiation on plant tissue were investigated. The degree of phenotype plasticity in UV protective mechanisms and acclimation in relation to the natural solar UV-B radiation flux and in an enhanced UV-B irradiance environment was also examined. Mechanisms by which plants avoid radiation, adaptations altering the path of radiation incident on the leaf, and repair processes were considered. Attenuation of UV-B by tissues, UV-B irradiation into the leaf, and the effects of UV-B on photosynthesis were investigated.

  20. A Fe(II)/citrate/UV/PMS process for carbamazepine degradation at a very low Fe(II)/PMS ratio and neutral pH: The mechanisms.

    PubMed

    Ling, Li; Zhang, Dapeng; Fan, Chihhao; Shang, Chii

    2017-11-01

    A novel Fe(II)/citrate/UV/PMS process for degrading a model micropollutant, carbamazepine (CBZ), at a low Fe(II)/PMS ratio and neutral pH has been proposed in this study, and the mechanisms of radical generation in the system was explored. With a UV dose of 302.4 mJ/cm 2 , an initial pH of 7, and CBZ, PMS, Fe(II) and citrate at initial concentrations of 10, 100, 12 and 26 μM, respectively, the CBZ degradation efficiency reached 71% in 20 min in the Fe(II)/citrate/UV/PMS process, which was 4.7 times higher than that in either the citrate/UV/PMS or Fe(II)/citrate/PMS process. The enhanced CBZ degradation in the Fe(II)/citrate/UV/PMS process was mainly attributed to the continuous activation of PMS by the UV-catalyzed regenerated Fe(II) from a Fe(III)-citrate complex, [Fe 3 O(cit) 3 H 3 ] 2- , which not only maintained Fe(III) soluble at neutral pH, but also increased 6.6 and 2.6 times of its molar absorbance and quantum yield as compared to those of ionic Fe(III), respectively. In the Fe(II)/citrate/UV/PMS process, the SO 4 •- produced from the fast reaction between PMS and the initially-added Fe(II) contributed 11% of CBZ degradation. The PMS activation by the UV radiation and regenerated Fe(II) contributed additional 14% and 46% of CBZ removal, respectively. The low iron and citrate doses and the fast radical generation at neutral pH make the Fe(II)/citrate/UV/PMS process suitable for degrading recalcitrant organic compounds in potable water. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Estimation of nitrite in source-separated nitrified urine with UV spectrophotometry.

    PubMed

    Mašić, Alma; Santos, Ana T L; Etter, Bastian; Udert, Kai M; Villez, Kris

    2015-11-15

    Monitoring of nitrite is essential for an immediate response and prevention of irreversible failure of decentralized biological urine nitrification reactors. Although a few sensors are available for nitrite measurement, none of them are suitable for applications in which both nitrite and nitrate are present in very high concentrations. Such is the case in collected source-separated urine, stabilized by nitrification for long-term storage. Ultraviolet (UV) spectrophotometry in combination with chemometrics is a promising option for monitoring of nitrite. In this study, an immersible in situ UV sensor is investigated for the first time so to establish a relationship between UV absorbance spectra and nitrite concentrations in nitrified urine. The study focuses on the effects of suspended particles and saturation on the absorbance spectra and the chemometric model performance. Detailed analysis indicates that suspended particles in nitrified urine have a negligible effect on nitrite estimation, concluding that sample filtration is not necessary as pretreatment. In contrast, saturation due to very high concentrations affects the model performance severely, suggesting dilution as an essential sample preparation step. However, this can also be mitigated by simple removal of the saturated, lower end of the UV absorbance spectra, and extraction of information from the secondary, weaker nitrite absorbance peak. This approach allows for estimation of nitrite with a simple chemometric model and without sample dilution. These results are promising for a practical application of the UV sensor as an in situ nitrite measurement in a urine nitrification reactor given the exceptional quality of the nitrite estimates in comparison to previous studies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Ozonation of the oxybenzone, octinoxate, and octocrylene UV-filters: Reaction kinetics, absorbance characteristics, and transformation products.

    PubMed

    Hopkins, Zachary R; Snowberger, Sebastian; Blaney, Lee

    2017-09-15

    UV-filters (UVFs) are active ingredients in personal care products that protect skin from exposure to UV light. Environmentally-relevant concentrations of UVFs have recently been linked to toxicity in aquatic organisms, necessitating research into improved UVF removal in water/wastewater treatment. Here, we investigated ozonation of the three most commonly employed UVFs: octinoxate (OMC), octocrylene (OC), and oxybenzone (OXY). Specific second-order rate constants for UVF reaction with ozone were identified as follows: OMC, 5.25×10 4 M -1 s -1 ; OC, 1.58M -1 s -1 ; OXY (neutral), 3.80×10 2 M -1 s -1 ; and, OXY (anion), 1.51×10 6 M -1 s -1 . These kinetic parameters indicated that OMC and OXY undergo significant (2-log or greater) transformation for typical ozone exposures in disinfection processes; however, minimal oxidation is expected for OC. UV absorbance mapping was employed to characterize the loss of UVF activity (i.e., absorbance across the UV-A, UV-B, and UV-C ranges) during ozonation. These 4-dimensional maps also confirmed ozone attack mechanisms, namely reaction at phenolate (OXY) and olefin (OMC, OC) groups. Primary transformation products from these reactions were identified for all three UVFs of concern. For OC and OXY, the benzophenone structure is conserved, suggesting that transformation products retain toxicity concerns. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Sources and measurement of ultraviolet radiation.

    PubMed

    Diffey, Brian L

    2002-09-01

    Ultraviolet (UV) radiation is part of the electromagnetic spectrum. The biological effects of UV radiation vary enormously with wavelength and for this reason the UV spectrum is further subdivided into three regions: UVA, UVB, and UVC. Quantities of UV radiation are expressed using radiometric terminology. A particularly important term in clinical photobiology is the standard erythema dose (SED), which is a measure of the erythemal effectiveness of a UV exposure. UV radiation is produced either by heating a body to an incandescent temperature, as is the case with solar UV, or by passing an electric current through a gas, usually vaporized mercury. The latter process is the mechanism whereby UV radiation is produced artificially. Both the quality (spectrum) and quantity (intensity) of terrestrial UV radiation vary with factors including the elevation of the sun above the horizon and absorption and scattering by molecules in the atmosphere, notably ozone, and by clouds. For many experimental studies in photobiology it is simply not practicable to use natural sunlight and so artificial sources of UV radiation designed to simulate the UV component of sunlight are employed; these are based on either optically filtered xenon arc lamps or fluorescent lamps. The complete way to characterize an UV source is by spectroradiometry, although for most practical purposes a detector optically filtered to respond to a limited portion of the UV spectrum normally suffices.

  4. Temporal-spatial variation of DOC concentration, UV absorbance and the flux estimation in the Lower Dagu River, China

    NASA Astrophysics Data System (ADS)

    Xi, Min; Kong, Fanlong; Li, Yue; Kong, Fanting

    2017-12-01

    Dissolved organic carbon (DOC) is an important component for both carbon cycle and energy balance. The concentration, UV absorbance, and export flux of DOC in the natural environment dominate many important transport processes. To better understand the temporal and spatial variation of DOC, 7 sites along the Lower Dagu River were chosen to conduct a comprehensive measurement from March 2013 to February 2014. Specifically, water samples were collected from the Lower Dagu River between the 26th and 29th of every month during the experimental period. The DOC concentration (CDOC) and UV absorbance were analyzed using a total organic carbon analyzer and the ultraviolet-visible absorption spectrum, and the DOC export flux was estimated with a simple empirical model. The results showed that the CDOC of the Lower Dagu River varied from 1.32 to 12.56 mg/L, consistent with global rivers. The CDOC and UV absorbance showed significant spatial variation in the Dagu River during the experiential period because of the upstream natural processes and human activities in the watershed. The spatial variation is mainly due to dam or reservoir constructions, riverside ecological environment changes, and non-point source or wastewater discharge. The seasonal variation of CDOC was mainly related to the source of water DOC, river runoff, and temperature, and the UV absorbance and humification degree of DOC had no obvious differences among months ( P<0.05). UV absorbance was applied to test the CDOC in Lower Dagu River using wave lengths of 254 and 280 nm. The results revealed that the annual DOC export flux varied from 1.6 to 3.76 × 105 g C/km2/yr in a complete hydrological year, significantly lower than the global average. It is worth mentioning that the DOC export flux was mainly concentrated in summer (˜90% of all-year flux in July and August), since the runoff in the Dagu River took place frequently in summer. These observations implied environment change could bring the temporal-spatial variation of DOC and the exports, which would further affect the land-ocean interactions in the Lower Dagu River and the global carbon cycle.

  5. UV-induced effects on growth, photosynthetic performance and sunscreen contents in different populations of the green alga Klebsormidium fluitans (Streptophyta) from alpine soil crusts.

    PubMed

    Kitzing, C; Pröschold, T; Karsten, U

    2014-02-01

    Members of the green algal genus Klebsormidium (Klebsormidiales, Streptophyta) are typical components of biological soil crust communities worldwide, which exert important ecological functions. Klebsormidium fluitans (F. Gay) Lokhorst was isolated from an aeroterrestrial biofilm as well as from four different biological soil crusts along an elevational gradient between 600 and 2350 m in the Tyrolean and South Tyrolean Alps (Austria, Italy), which are characterised by seasonally high solar radiation. Since the UVtolerance of Klebsormidium has not been studied in detail, an ecophysiological and biochemical study was applied. The effects of controlled artificial ultraviolet radiation (UVR; <9 W m(-2) UV-A, <0.5 W m(-2) UV-B) on growth, photosynthetic performance and the capability to synthesise mycosporine-like amino acids (MAAs) as potential sunscreen compounds were comparatively investigated to evaluate physiological plasticity and possible ecotypic differentiation within this Klebsormidium species. Already under control conditions, the isolates showed significantly different growth rates ranging from 0.42 to 0.74 μm day(-1). The UVR effects on growth were isolate specific, with only two strains affected by the UV treatments. Although all photosynthetic and respiratory data indicated strain-specific differences under control conditions, UV-A and UV-B treatment led only to rather minor effects. All physiological results clearly point to a high UV tolerance in the K. fluitans strains studied, which can be explained by their biochemical capability to synthesize and accumulate a putative MAA after exposure to UV-A and UV-B. Using HPLC, a UV-absorbing compound with an absorption maximum at 324 nm could be identified in all strains. The steady-state concentrations of this Klebsormidium MAA under control conditions ranged from 0.09 to 0.93 mg g(-1) dry weight (DW). While UV-A led to a slight stimulation of MAA accumulation, exposure to UV-B was accompanied by a strong but strain-specific increase of this compound (5.34-12.02 mg(-1) DW), thus supporting its function as UV sunscreen. Although ecotypic differences in the UVR response patterns of the five K. fluitans strains occurred, this did not correlate with the altitude of the respective sampling location. All data indicate a generally high UV tolerance which surely contributes to the aeroterrestrial lifestyle of K. fluitans in soil crusts of the alpine regions of the European Alps.

  6. Effect of core quantum-dot size on power-conversion-efficiency for silicon solar-cells implementing energy-down-shift using CdSe/ZnS core/shell quantum dots.

    PubMed

    Baek, Seung-Wook; Shim, Jae-Hyoung; Seung, Hyun-Min; Lee, Gon-Sub; Hong, Jin-Pyo; Lee, Kwang-Sup; Park, Jea-Gun

    2014-11-07

    Silicon solar cells mainly absorb visible light, although the sun emits ultraviolet (UV), visible, and infrared light. Because the surface reflectance of a textured surface with SiNX film on a silicon solar cell in the UV wavelength region (250-450 nm) is higher than ∼27%, silicon solar-cells cannot effectively convert UV light into photo-voltaic power. We implemented the concept of energy-down-shift using CdSe/ZnS core/shell quantum-dots (QDs) on p-type silicon solar-cells to absorb more UV light. CdSe/ZnS core/shell QDs demonstrated clear evidence of energy-down-shift, which absorbed UV light and emitted green-light photoluminescence signals at a wavelength of 542 nm. The implementation of 0.2 wt% (8.8 nm QDs layer) green-light emitting CdSe/ZnS core/shell QDs reduced the surface reflectance of the textured surface with SiNX film on a silicon solar-cell from 27% to 15% and enhanced the external quantum efficiency (EQE) of silicon solar-cells to around 30% in the UV wavelength region, thereby enhancing the power conversion efficiency (PCE) for p-type silicon solar-cells by 5.5%.

  7. Forecasting of UV-Vis absorbance time series using artificial neural networks combined with principal component analysis.

    PubMed

    Plazas-Nossa, Leonardo; Hofer, Thomas; Gruber, Günter; Torres, Andres

    2017-02-01

    This work proposes a methodology for the forecasting of online water quality data provided by UV-Vis spectrometry. Therefore, a combination of principal component analysis (PCA) to reduce the dimensionality of a data set and artificial neural networks (ANNs) for forecasting purposes was used. The results obtained were compared with those obtained by using discrete Fourier transform (DFT). The proposed methodology was applied to four absorbance time series data sets composed by a total number of 5705 UV-Vis spectra. Absolute percentage errors obtained by applying the proposed PCA/ANN methodology vary between 10% and 13% for all four study sites. In general terms, the results obtained were hardly generalizable, as they appeared to be highly dependent on specific dynamics of the water system; however, some trends can be outlined. PCA/ANN methodology gives better results than PCA/DFT forecasting procedure by using a specific spectra range for the following conditions: (i) for Salitre wastewater treatment plant (WWTP) (first hour) and Graz West R05 (first 18 min), from the last part of UV range to all visible range; (ii) for Gibraltar pumping station (first 6 min) for all UV-Vis absorbance spectra; and (iii) for San Fernando WWTP (first 24 min) for all of UV range to middle part of visible range.

  8. Nanophase Iron Oxides as an Ultraviolet Sunscreen for Ancient Photosynthetic Microbes: A Possible Link Between Early Organisms, Banded-Iron Formations, and the Oxygenation of the Atmosphere

    NASA Technical Reports Server (NTRS)

    Bishop, Janice L.; Rothschild, Lynn J.; Rothschild, Lynn J.; Rogoff, Dana A.

    2006-01-01

    We propose that nanophase iron oxide-bearing materials provided important niches for ancient photosynthetic microbes on the early Earth that ultimately led to the oxygenation of the Earth s atmosphere and the formation of iron oxide deposits. Atmospheric oxygen and ozone attenuate UV radiation on the Earth today providing substantial protection for photosynthetic organisms. With ultraviolet radiation fluxes likely to have been even higher on the early Earth than today, accessing solar radiation was particularly risky for early organisms. Yet, we know that photosynthesis arose then and played a critical role in subsequent evolution. Of primary importance was protection at approx.250-290 nm, where peak nucleic acid (approx.260 nm) and protein (approx.280 nm) absorptions occur. Nanophase ferric oxide/oxyhydroxide minerals absorb, and thus block, the lethal UV radiation, while transmitting light through much of the visible and near-infrared regions of interest to photosynthesis (400 to 1100 nm). Further, they were available in early environments, and are synthesized by many organisms. Based on ferric oxide/oxyhydroxide spectral properties, likely geologic processes, and the results of experiments with the photosynthetic organisms, Euglena sp. and Chlumydomonus reinhardtii, we propose a scenario where photosynthesis, and ultimately the oxygenation of the atmosphere, depended on the protection of early microbes by nanophase ferric oxides/oxyhydroxides. The results of this study are also applicable to other potentially habitable iron-bearing planetary bodies because of the evolutionary pressure to utilize solar radiation when available as an energy source.

  9. UV-B Radiation Contributes to Amphibian Population Declines

    NASA Astrophysics Data System (ADS)

    Blaustein, Andrew

    2007-05-01

    UV-B (280-315 nm) radiation is the most significant biologically damaging radiation at the terrestrial surface. At the organismal level, UV-B radiation can slow growth rates, cause immune dysfunction and result in sublethal damage. UV-B radiation can lead to mutations and cell death. Over evolutionary time, UV radiation has been an important stressor on living organisms. Natural events, including impacts from comets and asteroids, volcanic activity, supernova explosions and solar flares, can cause large-scale ozone depletion with accompanying increases in UV radiation. However, these natural events are transient. Moreover, the amount of ozone damage due to natural events depends upon a number of variables, including the magnitude of the event. This is different from modern-day human-induced production of chlorofluorocarbons (CFCs) and other chemicals that deplete stratospheric ozone continuously, resulting in long-term increases in UV-B radiation at the surface of the earth. We will briefly review the effects of UV-B exposure in one group of aquatic organisms_amphibians. UV-B has been implicated as a possible factor contributing to global declines and range reductions in amphibian populations.

  10. Effect of humic substance photodegradation on bacterial growth and respiration in lake water

    USGS Publications Warehouse

    Anesio, A.M.; Graneli, W.; Aiken, G.R.; Kieber, D.J.; Mopper, K.

    2005-01-01

    This study addresses how humic substance (HS) chemical composition and photoreactivity affect bacterial growth, respiration, and growth efficiency (BGE) in lake water. Aqueous solutions of HSs from diverse aquatic environments representing different dissolved organic matter sources (autochthonous and allochthonous) were exposed to artificial solar UV radiation. These solutions were added to lake water passed through a 0.7-??m-pore-size filter (containing grazer-free lake bacteria) followed by dark incubation for 5, 43, and 65 h. For the 5-h incubation, several irradiated HSs inhibited bacterial carbon production (BCP) and this inhibition was highly correlated with H 2O2 photoproduction. The H2O2 decayed in the dark, and after 43 h, nearly all irradiated HSs enhanced BCP (average 39% increase relative to nonirradiated controls, standard error = 7.5%, n = 16). UV exposure of HSs also increased bacterial respiration (by ???18%, standard error = 5%, n = 4), but less than BCP, resulting in an average increase in BGE of 32% (standard error = 10%, n = 4). Photoenhancement of BCP did not correlate to HS bulk properties (i.e., elemental and chemical composition). However, when the photoenhancement of BCP was normalized to absorbance, several trends with HS origin and extraction method emerged. Absorbance-normalized hydrophilic acid and humic acid samples showed greater enhancement of BCP than hydrophobic acid and fulvic acid samples. Furthermore, absorbance-normalized autochthonous samples showed ???10-fold greater enhancement of BCP than allochthonous-dominated samples, indicating that the former are more efficient photoproducers of biological substrates. Copyright ?? 2005, American Society for Microbiology. All Rights Reserved.

  11. Microbial degradation of usnic acid in the reindeer rumen

    NASA Astrophysics Data System (ADS)

    Sundset, Monica A.; Barboza, Perry S.; Green, Thomas K.; Folkow, Lars P.; Blix, Arnoldus Schytte; Mathiesen, Svein D.

    2010-03-01

    Reindeer ( Rangifer tarandus) eat and utilize lichens as an important source of energy and nutrients in winter. Lichens synthesize and accumulate a wide variety of phenolic secondary compounds, such as usnic acid, as a defense against herbivores and to protect against damage by UV-light in solar radiation. We have examined where and to what extent these phenolic compounds are degraded in the digestive tract of the reindeer, with particular focus on usnic acid. Three male reindeer were given ad libitum access to a control diet containing no usnic acid for three weeks and then fed lichens ad libitum (primarily Cladonia stellaris) containing 9.1 mg/g DM usnic acid for 4 weeks. Usnic acid intake in reindeer on the lichen diet was 91-117 mg/kg BM/day. In spite of this, no trace of usnic acid or conjugates of usnic acid was found either in fresh rumen fluid, urine, or feces. This suggests that usnic acid is rapidly degraded by rumen microbes, and that it consequently is not absorbed by the animal. This apparent ability to detoxify lichen phenolic compounds may gain increased importance with future enhanced UV-B radiation expected to cause increased protective usnic acid/phenol production in lichens.

  12. Simultaneous UV and X-ray Spectroscopy of the Seyfert 1 Galaxy NGC 5548. I. Evidence for Dust in the UV Absorbers

    NASA Astrophysics Data System (ADS)

    Kraemer, S. B.; Crenshaw, D. M.; Gabel, J. R.; Kaastra, J. S.; Steenbrugge, K.; George, I. M.; Turner, T. J.; Yaqoob, T.; Dunn, J. P.

    2002-12-01

    We present new UV spectra of the nucleus of the Seyfert 1 galaxy NGC 5548, obtained with the Space Telescope Imaging Spectrograph at high spectral resolution (λ /Δ λ = 30,000 - 46,000), simultaneously with Chandra X-ray Observatory spectra. Taking advantage of the low UV continuum and broad emission-line fluxes, we have determined that the deepest UV absorption component covers at least a portion of the inner high-ionization narrow-line region (NLR). Assuming the NLR is fully covered, we find nonunity covering factors in the cores of several components, which increase the column density measurements of N V and C IV by factors of 1.2 to 1.9; however, the revised columns have only a minor effect on the parameters derived from our photoionization models. For the first time, we have simultaneous C IV and N V columns for component 1 (at -1040 km s-1), and find that this component cannot be an X-ray warm absorber, contrary to our previous claim (based on nonsimultaneous observations of N V and C IV). We find that dust-free models of the absorbers severely overpredict the O VI columns previously obtained with the Far Ultraviolet Spectrograph, and present arguments that this is not likely due to variability. However, models that include dust (and thereby heavily deplete carbon) are successful in matching all of the observed ionic columns, and result in substantially lower ionization parameters and total column densities compared to dust-free models. Interestingly, these models yield the exact amount of dust needed to produce the observed reddening of the inner NLR, assuming a Galactic dust to gas ratio. The models produce little O VII and O VIII, indicating that none of the dusty UV absorbers is associated with a classic X-ray warm absorber.

  13. Sunlight and Vitamin D: A global perspective for health.

    PubMed

    Wacker, Matthias; Holick, Michael F

    2013-01-01

    Vitamin D is the sunshine vitamin that has been produced on this earth for more than 500 million years. During exposure to sunlight 7-dehydrocholesterol in the skin absorbs UV B radiation and is converted to previtamin D3 which in turn isomerizes into vitamin D3. Previtamin D3 and vitamin D3 also absorb UV B radiation and are converted into a variety of photoproducts some of which have unique biologic properties. Sun induced vitamin D synthesis is greatly influenced by season, time of day, latitude, altitude, air pollution, skin pigmentation, sunscreen use, passing through glass and plastic, and aging. Vitamin D is metabolized sequentially in the liver and kidneys into 25-hydroxyvitamin D which is a major circulating form and 1,25-dihydroxyvitamin D which is the biologically active form respectively. 1,25-dihydroxyvitamin D plays an important role in regulating calcium and phosphate metabolism for maintenance of metabolic functions and for skeletal health. Most cells and organs in the body have a vitamin D receptor and many cells and organs are able to produce 1,25-dihydroxyvitamin D. As a result 1,25-dihydroxyvitamin D influences a large number of biologic pathways which may help explain association studies relating vitamin D deficiency and living at higher latitudes with increased risk for many chronic diseases including autoimmune diseases, some cancers, cardiovascular disease, infectious disease, schizophrenia and type 2 diabetes. A three-part strategy of increasing food fortification programs with vitamin D, sensible sun exposure recommendations and encouraging ingestion of a vitamin D supplement when needed should be implemented to prevent global vitamin D deficiency and its negative health consequences.

  14. Sensing and Responding to UV-A in Cyanobacteria

    PubMed Central

    Moon, Yoon-Jung; Kim, Seung Il; Chung, Young-Ho

    2012-01-01

    Ultraviolet (UV) radiation can cause stresses or act as a photoregulatory signal depending on its wavelengths and fluence rates. Although the most harmful effects of UV on living cells are generally attributed to UV-B radiation, UV-A radiation can also affect many aspects of cellular processes. In cyanobacteria, most studies have concentrated on the damaging effect of UV and defense mechanisms to withstand UV stress. However, little is known about the activation mechanism of signaling components or their pathways which are implicated in the process following UV irradiation. Motile cyanobacteria use a very precise negative phototaxis signaling system to move away from high levels of solar radiation, which is an effective escape mechanism to avoid the detrimental effects of UV radiation. Recently, two different UV-A-induced signaling systems for regulating cyanobacterial phototaxis were characterized at the photophysiological and molecular levels. Here, we review the current understanding of the UV-A mediated signaling pathways in the context of the UV-A perception mechanism, early signaling components, and negative phototactic responses. In addition, increasing evidences supporting a role of pterins in response to UV radiation are discussed. We outline the effect of UV-induced cell damage, associated signaling molecules, and programmed cell death under UV-mediated oxidative stress. PMID:23208372

  15. Radiative characteristics of clouds embedded in smoke derived from airborne multiangular measurements

    NASA Astrophysics Data System (ADS)

    Gautam, Ritesh; Gatebe, Charles K.; Singh, Manoj K.; Várnai, Tamás.; Poudyal, Rajesh

    2016-08-01

    Clouds in the presence of absorbing aerosols result in their apparent darkening, observed at the top of atmosphere (TOA), which is associated with the radiative effects of aerosol absorption. Owing to the large radiative effect and potential impacts on regional climate, above-cloud aerosols have recently been characterized in multiple satellite-based studies. While satellite data are particularly useful in showing the radiative impact of above-cloud aerosols at the TOA, recent literature indicates large uncertainties in satellite retrievals of above-cloud aerosol optical depth (AOD) and single scattering albedo (SSA), which are among the most important parameters in the assessment of associated radiative effects. In this study, we analyze radiative characteristics of clouds in the presence of wildfire smoke using airborne data primarily from NASA's Cloud Absorption Radiometer, collected during the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites campaign in Canada during the 2008 summer season. We found a strong positive reflectance (R) gradient in the UV-visible (VIS)-near infrared (NIR) spectrum for clouds embedded in dense smoke, as opposed to an (expected) negative gradient for cloud-free smoke and a flat spectrum for smoke-free cloud cover. Several cases of clouds embedded in thick smoke were found, when the aircraft made circular/spiral measurements, which not only allowed the complete characterization of angular distribution of smoke scattering but also provided the vertical distribution of smoke and clouds (within 0.5-5 km). Specifically, the largest darkening by smoke was found in the UV/VIS, with R0.34μm reducing to 0.2 (or 20%), in contrast to 0.8 at NIR wavelengths (e.g., 1.27 µm). The observed darkening is associated with large AODs (0.5-3.0) and moderately low SSA (0.85-0.93 at 0.53 µm), resulting in a significantly large instantaneous aerosol forcing efficiency of 254 ± 47 W m-2 τ-1. Our observations of smoke-cloud radiative interactions were found to be physically consistent with theoretical plane-parallel 1-D and Monte Carlo 3-D radiative transfer calculations, capturing the observed gradient across UV-VIS-NIR. Results from this study offer insights into aerosol-cloud radiative interactions and may help in better constraining satellite retrieval algorithms.

  16. Radiative Characteristics of Clouds Embedded in Smoke Derived from Airborne Multiangular Measurements

    NASA Technical Reports Server (NTRS)

    Gautam, Ritesh; Gatebe, Charles K.; Singh, Manoj; Varnai, Tamas; Poudyal, Rajesh

    2016-01-01

    Clouds in the presence of absorbing aerosols result in their apparent darkening, observed at the top of atmosphere (TOA), which is associated with the radiative effects of aerosol absorption. Owing to the large radiative effect and potential impacts on regional climate, above-cloud aerosols have recently been characterized in multiple satellite-based studies. While satellite data are particularly useful in showing the radiative impact of above-cloud aerosols at the TOA, recent literature indicates large uncertainties in satellite retrievals of above-cloud aerosol optical depth (AOD) and single scattering albedo (SSA), which are among the most important parameters in the assessment of associated radiative effects. In this study, we analyze radiative characteristics of clouds in the presence of wildfire smoke using airborne data primarily from NASA's Cloud Absorption Radiometer, collected during the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites campaign in Canada during the 2008 summer season. We found a strong positive reflectance (R) gradient in the UV-visible (VIS)-near infrared (NIR) spectrum for clouds embedded in dense smoke, as opposed to an (expected) negative gradient for cloud-free smoke and a flat spectrum for smoke-free cloud cover. Several cases of clouds embedded in thick smoke were found, when the aircraft made circular/spiral measurements, which not only allowed the complete characterization of angular distribution of smoke scattering but also provided the vertical distribution of smoke and clouds (within 0.5-5 km). Specifically, the largest darkening by smoke was found in the UV/VIS, with R(sub 0.34 microns) reducing to 0.2 (or 20%), in contrast to 0.8 at NIR wavelengths (e.g., 1.27 microns). The observed darkening is associated with large AODs (0.5-3.0) and moderately low SSA (0.85-0.93 at 0.53 microns), resulting in a significantly large instantaneous aerosol forcing efficiency of 254 +/- 47 W/sq m/t. Our observations of smoke-cloud radiative interactions were found to be physically consistent with theoretical plane-parallel 1-D and Monte Carlo 3-D radiative transfer calculations, capturing the observed gradient across UV-VIS-NIR. Results from this study offer insights into aerosol-cloud radiative interactions and may help in better constraining satellite retrieval algorithms.

  17. Modeling Optical and Radiative Properties of Clouds Constrained with CARDEX Observations

    NASA Astrophysics Data System (ADS)

    Mishra, S. K.; Praveen, P. S.; Ramanathan, V.

    2013-12-01

    Carbonaceous aerosols (CA) have important effects on climate by directly absorbing solar radiation and indirectly changing cloud properties. These particles tend to be a complex mixture of graphitic carbon and organic compounds. The graphitic component, called as elemental carbon (EC), is characterized by significant absorption of solar radiation. Recent studies showed that organic carbon (OC) aerosols absorb strongly near UV region, and this faction is known as Brown Carbon (BrC). The indirect effect of CA can occur in two ways, first by changing the thermal structure of the atmosphere which further affects dynamical processes governing cloud life cycle; secondly, by acting as cloud condensation nuclei (CCN) that can change cloud radiative properties. In this work, cloud optical properties have been numerically estimated by accounting for CAEDEX (Cloud Aerosol Radiative Forcing Dynamics Experiment) observed cloud parameters and the physico-chemical and optical properties of aerosols. The aerosol inclusions in the cloud drop have been considered as core shell structure with core as EC and shell comprising of ammonium sulfate, ammonium nitrate, sea salt and organic carbon (organic acids, OA and brown carbon, BrC). The EC/OC ratio of the inclusion particles have been constrained based on observations. Moderate and heavy pollution events have been decided based on the aerosol number and BC concentration. Cloud drop's co-albedo at 550nm was found nearly identical for pure EC sphere inclusions and core-shell inclusions with all non-absorbing organics in the shell. However, co-albedo was found to increase for the drop having all BrC in the shell. The co-albedo of a cloud drop was found to be the maximum for all aerosol present as interstitial compare to 50% and 0% inclusions existing as interstitial aerosols. The co-albedo was found to be ~ 9.87e-4 for the drop with 100% inclusions existing as interstitial aerosols externally mixed with micron size mineral dust with 2% hematite content. The cloud spectral optical properties and the radiative properties for the aforesaid cases during CARDEX observations will be discussed in detail.

  18. Interspecific Variability in Sensitivity to UV Radiation and Subsequent Recovery in Selected Isolates of Marine Bacteria†

    PubMed Central

    Arrieta, Jesús María; Weinbauer, Markus G.; Herndl, Gerhard J.

    2000-01-01

    The interspecific variability in the sensitivity of marine bacterial isolates to UV-B (295- to 320-nm) radiation and their ability to recover from previous UV-B stress were examined. Isolates originating from different microenvironments of the northern Adriatic Sea were transferred to aged seawater and exposed to artificial UV-B radiation for 4 h and subsequently to different radiation regimens excluding UV-B to determine the recovery from UV-B stress. Bacterial activity was assessed by thymidine and leucine incorporation measurements prior to and immediately after the exposure to UV-B and after the subsequent exposure to the different radiation regimens. Large interspecific differences among the 11 bacterial isolates were found in the sensitivity to UV-B, ranging from 21 to 92% inhibition of leucine incorporation compared to the bacterial activity measured in dark controls and from 14 to 84% for thymidine incorporation. Interspecific differences in the recovery from the UV stress were also large. An inverse relation was detectable between the ability to recover under dark conditions and the recovery under photosynthetic active radiation (400 to 700 nm). The observed large interspecific differences in the sensitivity to UV-B radiation and even more so in the subsequent recovery from UV-B stress are not related to the prevailing radiation conditions of the microhabitats from which the bacterial isolates originate. Based on our investigations on the 11 marine isolates, we conclude that there are large interspecific differences in the sensitivity to UV-B radiation and even larger differences in the mechanisms of recovery from previous UV stress. This might lead to UV-mediated shifts in the bacterioplankton community composition in marine surface waters. PMID:10742228

  19. Biophysical Characterization of an Bifunctional Iron Regulating Enzyme

    DTIC Science & Technology

    2002-05-01

    of the direct assay 29 Citrate, cis- aconitate and d- isocitrate all absorb light in the UV-Vis region, a fact which was confirmed...experimentally using a Hewlard-Packard 8452 Diode UV-Vis Diode Array Spectrophotometer. The maximum absorbance of cis- aconitate was determined to be 240 nm...and isocitrate was 212 nm. The preponderance of cis- aconitate concentration versus the formation of isocitrate concentration made tracking a

  20. Absorbing Aerosols Above Cloud: Detection, Quantitative Retrieval, and Radiative Forcing from Satellite-based Passive Sensors

    NASA Astrophysics Data System (ADS)

    Jethva, H.; Torres, O.; Remer, L. A.; Bhartia, P. K.

    2012-12-01

    Light absorbing particles such as carbonaceous aerosols generated from biomass burning activities and windblown dust particles can exert a net warming effect on climate; the strength of which depends on the absorption capacity of the particles and brightness of the underlying reflecting background. When advected over low-level bright clouds, these aerosols absorb the cloud reflected radiation from ultra-violet (UV) to shortwave-IR (SWIR) and makes cloud scene darker-a phenomenon commonly known as "cloud darkening". The apparent "darkening" effect can be seen by eyes in satellite images as well as quantitatively in the spectral reflectance measurements made by space borne sensors over regions where light absorbing carbonaceous and dust aerosols overlay low-level cloud decks. Theoretical radiative transfer simulations support the observational evidence, and further reveal that the strength of the cloud darkening and its spectral signature (or color ratio) between measurements at two wavelengths are a bi-function of aerosol and cloud optical thickness (AOT and COT); both are measures of the total amount of light extinction caused by aerosols and cloud, respectively. Here, we developed a retrieval technique, named as the "color ratio method" that uses the satellite measurements at two channels, one at shorter wavelength in the visible and one at longer wavelength in the shortwave-IR for the simultaneous retrieval of AOT and COT. The present technique requires assumptions on the aerosol single-scattering albedo and aerosol-cloud separation which are supplemented by the Aerosol Robotic Network (AERONET) and space borne CALIOP lidar measurements. The retrieval technique has been tested making use of the near-UV and visible reflectance observations made by the Ozone Monitoring Instrument (OMI) and Moderate Resolution Imaging Spectroradiometer (MODIS) for distinct above-cloud smoke and dust aerosol events observed seasonally over the southeast and tropical Atlantic Ocean, respectively. This study constitutes the first attempt to use non-polarized and non-lidar reflectance observations-both of them shown to have above-cloud aerosols retrieval capability, to retrieve above-cloud AOT by a passive non-polarized sensor. The uncertainty analysis suggests that the present method should retrieve above-cloud AOT within -10% to 50% which mainly arises due to uncertainty associated with the single-scattering albedo assumption. Although, currently tested by making use of OMI and MODIS measurements, the present color ratio method can be equally applied to the other satellite measurements that carry similar or near-by channels in VIS region of the spectrum such as MISR and NPP/VIIRS. The capability of quantifying the above-cloud aerosol load will facilitate several aspects of cloud-aerosol interaction research such as estimation of the direct radiative forcing of aerosols above clouds; the sign of which can be opposite (warming) to cloud-free aerosol forcing (cooling), aerosol transport, indirect effects of aerosols on clouds, and hydrological cycle.

  1. UV-Vis Ratiometric Resonance Synchronous Spectroscopy for Determination of Nanoparticle and Molecular Optical Cross Sections.

    PubMed

    Nettles, Charles B; Zhou, Yadong; Zou, Shengli; Zhang, Dongmao

    2016-03-01

    Demonstrated herein is a UV-vis Ratiometric Resonance Synchronous Spectroscopic (R2S2, pronounced as "R-two-S-two" for simplicity) technique where the R2S2 spectrum is obtained by dividing the resonance synchronous spectrum of a NP-containing solution by the solvent resonance synchronous spectrum. Combined with conventional UV-vis measurements, this R2S2 method enables experimental quantification of the absolute optical cross sections for a wide range of molecular and nanoparticle (NP) materials that range optically from pure photon absorbers or scatterers to simultaneous photon absorbers and scatterers, simultaneous photon absorbers and emitters, and all the way to simultaneous photon absorbers, scatterers, and emitters in the UV-vis wavelength region. Example applications of this R2S2 method were demonstrated for quantifying the Rayleigh scattering cross sections of solvents including water and toluene, absorption and resonance light scattering cross sections for plasmonic gold nanoparticles, and absorption, scattering, and on-resonance fluorescence cross sections for semiconductor quantum dots (Qdots). On-resonance fluorescence quantum yields were quantified for the model molecular fluorophore Eosin Y and fluorescent Qdots CdSe and CdSe/ZnS. The insights and methodology presented in this work should be of broad significance in physical and biological science research that involves photon/matter interactions.

  2. Modifications in the optical and thermal properties of a CR-39 polymeric detector induced by high doses of γ-radiation

    NASA Astrophysics Data System (ADS)

    Saad, A. F.; Ibraheim, Mona H.; Nwara, Aya M.; Kandil, S. A.

    2018-04-01

    Effects of γ-radiation on the optical and thermal properties of a poly allyl diglycol carbonate (PADC), a form of CR-39, polymer have been investigated. CR-39 detectors were exposed to γ-rays at very high doses ranging from 5.0 × 105 to 3.0 × 106 Gy. The induced changes were analyzed using ultraviolet-visible spectroscopy (UV-VIS) in absorbance mode, and thermogravimetric analysis (TGA). The UV-visible spectra of the virgin and γ-irradiated CR-39 polymer detectors displayed a significant decreasing trend in their optical energy band gaps for indirect transitions, whereas for the direct ones showed a little change. This drop in the energy band gap with increasing dose is discussed on the basis of the gamma irradiation induced modifications in the CR-39 polymeric detector. The TGA thermograms show that the weight loss rate increased with increase in dose, which may be due to the disordered system via scission followed by crosslinking in the irradiated polymer detector. The TGA thermograms also indicated that the CR-39 detector decomposed in three/four stages for the virgin and irradiated samples. The activation energy for thermal decomposition was determined using a type of Arrhenius equation based on the TGA experimental results. These experimental results so obtained can be well used in radiation dosimetry.

  3. Distribution and nature of UV absorbers on Trition's surface

    NASA Technical Reports Server (NTRS)

    Stern, S. Alan

    1995-01-01

    Substantial evidence suggests that a UV (ultraviolet) Spectrally Absorbing Material (UV-SAM) exists on Triton's surface. This evidence is found in the positive slope in Triton's spectrum from the UV to the near-IR, and the increasing contrast in Triton's light curve in the blue and UV. Although it is now widely-thought that UV-SAM's exist on Triton, little is known about their distribution and spectral properties. The goal of this NDAP Project is to determine the spatial distribution and geological context of the UV-SAM material. We hope to determine if UV-SAM's on Triton are correlated with geologic wind streaks, craters, calderas, geomorphic/topographic units, regions containing (or lacking) volatile frosts, or some other process (e.g., magnetospheric interactions). Once the location and distribution of UV-SAM's has been determined, further constraints on their composition can be made by analyzing the spectrographic data set. To accomplish these goals, various data sets will be used, including Voyager 2 UV and visible images of Triton's surface, IUE and HST spectra of Triton, and a geologic map of the surface based on Voyager 2 and spectrophotometric data. The results of this research will be published in the planetary science literature.

  4. Distribution and nature of UV absorbers on Triton's surface

    NASA Technical Reports Server (NTRS)

    Stern, S. Alan

    1995-01-01

    Substantial evidence suggests that a UV spectrally Absorbing Material (UV-SAM) exists on Triton's surface. This evidence is found in the positive slope in Triton's spectrum from the UV to the near-IR, and the increasing contrast in Triton's light curve in the blue and UV. Although it is now widely-thought that UV-SAMs exist on Triton, little is known about their distribution and spectral properties. The goal of this NDAP Project is to determine the spatial distribution and geological context of the UV-SaM material. We hope to determine if UV-SAMs on Triton are correlated with geologic wind streaks, craters, calderas, geomorphic/topographic units, regions containing (or lacking) volatile frosts, or some other process (e.g., magnetospheric interactions). Once the location and distribution of UV-SAMs has been determined, further constraints on their composition cable made by analyzing the spectrographic data set. To accomplish these goals, various data sets will be used, including Voyager 2 UV and visible images of Triton's surface, IUE and HST spectra of Triton, and a geologic map of the surface based on voyager 2 and spectrophotometric data. The results of this research will be published in the planetary science literature.

  5. Distribution and nature of UV absorbers on Triton's surface

    NASA Technical Reports Server (NTRS)

    Stern, S. Alan

    1994-01-01

    Substantial evidence suggests that a UV Spectrally Absorbing Material (UV-SAM) exists on Triton's surface. This evidence is found in the positive slope in Triton's spectrum from the UV to the near-IR, and the increasing contrast in Triton's light curve in the blue and UV. Although it is now widely-thought that UV-SAM's exist on Triton, little is known about their distribution and spectral properties. The goal of this NDAP Project is to determine the spatial distribution and geological context of the UV-SAM material. We hope to determine if UV-SAM's on Triton are correlated with geologic wind streaks, craters, calderas, geomorphic/topographic units, regions containing (or lacking) volatile frosts, or some other process (e.g., magnetospheric interactions). Once the location and distribution of UV-SAM's has been determined, further constraints on their composition can be made by analyzing the spectrographic data set. To accomplish these goals, various data sets will be used, including Voyager 2 UV and visible images of Triton's surface, IUE and HST spectra of Triton, and a geologic map of the surface based on Voyager 2 and spectrophotometric data. The results of this research will be published in the planetary science literature.

  6. Impacts of brown carbon from biomass burning on surface UV and ozone photochemistry in the Amazon Basin

    PubMed Central

    Mok, Jungbin; Krotkov, Nickolay A.; Arola, Antti; Torres, Omar; Jethva, Hiren; Andrade, Marcos; Labow, Gordon; Eck, Thomas F.; Li, Zhanqing; Dickerson, Russell R.; Stenchikov, Georgiy L.; Osipov, Sergey; Ren, Xinrong

    2016-01-01

    The spectral dependence of light absorption by atmospheric particulate matter has major implications for air quality and climate forcing, but remains uncertain especially in tropical areas with extensive biomass burning. In the September-October 2007 biomass-burning season in Santa Cruz, Bolivia, we studied light absorbing (chromophoric) organic or “brown” carbon (BrC) with surface and space-based remote sensing. We found that BrC has negligible absorption at visible wavelengths, but significant absorption and strong spectral dependence at UV wavelengths. Using the ground-based inversion of column effective imaginary refractive index in the range 305–368 nm, we quantified a strong spectral dependence of absorption by BrC in the UV and diminished ultraviolet B (UV-B) radiation reaching the surface. Reduced UV-B means less erythema, plant damage, and slower photolysis rates. We use a photochemical box model to show that relative to black carbon (BC) alone, the combined optical properties of BrC and BC slow the net rate of production of ozone by up to 18% and lead to reduced concentrations of radicals OH, HO2, and RO2 by up to 17%, 15%, and 14%, respectively. The optical properties of BrC aerosol change in subtle ways the generally adverse effects of smoke from biomass burning. PMID:27833145

  7. Long-term solar UV radiation reconstructed by Artificial Neural Networks (ANN)

    NASA Astrophysics Data System (ADS)

    Feister, U.; Junk, J.; Woldt, M.

    2008-01-01

    Artificial Neural Networks (ANN) are efficient tools to derive solar UV radiation from measured meteorological parameters such as global radiation, aerosol optical depths and atmospheric column ozone. The ANN model has been tested with different combinations of data from the two sites Potsdam and Lindenberg, and used to reconstruct solar UV radiation at eight European sites by more than 100 years into the past. Annual totals of UV radiation derived from reconstructed daily UV values reflect interannual variations and long-term patterns that are compatible with variabilities and changes of measured input data, in particular global dimming by about 1980-1990, subsequent global brightening, volcanic eruption effects such as that of Mt. Pinatubo, and the long-term ozone decline since the 1970s. Patterns of annual erythemal UV radiation are very similar at sites located at latitudes close to each other, but different patterns occur between UV radiation at sites in different latitude regions.

  8. Detecting free radicals in sunscreens exposed to UVA radiation using chemiluminescence.

    PubMed

    Millington, Keith R; Osmond, Megan J; McCall, Maxine J

    2014-04-05

    One of the current concerns with the application of nanoparticles in sunscreens, and in particular nano-TiO2 and ZnO, is their potential to photogenerate free radicals and reactive oxygen species (ROS) when they absorb ultraviolet wavelengths from sunlight. Free radicals and ROS are known to be associated with UV-induced skin damage and oxidative stress, from which sunscreens are expected to offer significant protection. Here we describe a simple method, based on chemiluminescence emission, for detecting free radicals generated in commercial sunscreens alone, and when applied to various substrates, following exposure to UVA (320-400nm) radiation. This photo-induced chemiluminescence (PICL) technique could be used to optimise sunscreen formulations so as to minimise free radical photogeneration during exposure to sunlight. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.

  9. Organic UV filters in personal care products in Switzerland: a survey of occurrence and concentrations.

    PubMed

    Manová, Eva; von Goetz, Natalie; Hauri, Urs; Bogdal, Christian; Hungerbühler, Konrad

    2013-07-01

    Organic ultraviolet (UV) filters are a group of compounds designed to absorb UV radiation and hence protect our skin against UV-induced damage. Apart from traditional sunscreens, they can be found in many other categories of personal care products (PCPs). These include skin care, facial makeup and lip care products, which are often used simultaneously, and on a regular basis. The frequency of occurrence as well as concentrations of organic UV filters contained in PCPs change over time. Furthermore, in Switzerland the exact UV filter concentrations are confidential. To date, only limited data are available for the levels of organic UV filters in PCPs, and these data refer mainly to sunscreens. In this paper, we provide an up-to-date frequency of occurrence and concentrations of organic UV filters in PCPs, including for the first time PCPs used in everyday life. A total of 116 PCPs was selected on the basis of a product-use questionnaire and distributed among seven PCP categories: lip care products, lipsticks, face creams, liquid makeup foundations, aftershaves, hand creams, and sunscreens. Concentrations of 22 organic UV filters were measured in the selected PCPs. The most frequently occurring UV filters were butyl methoxydibenzoylmethane (BMBM) detected in 82 products (71%), ethylhexyl methoxycinnamate (EHMC) in 59 products (51%) and octocrylene (OCT) in 50 products (43%). BMBM, EHMC and OCT concentrations averaged 2.6%, 4.0%, and 6.0%, respectively. Overall, UV filter concentrations in PCPs applied regularly throughout the year can be as high as those in sunscreens that are primarily used for sun protection and hence applied only on selected days. PCPs that are used on a regular basis, and often simultaneously, thus represent an important and, as yet, unquantified source of UV filter exposure. This study provides essential information for aggregate exposure assessments that combine data on concentrations of individual UV filters widely used in a variety of PCP categories. Copyright © 2012 Elsevier GmbH. All rights reserved.

  10. Influences of the clearness index on UV solar radiation for two locations in the Tibetan Plateau-Lhasa and Haibei

    NASA Astrophysics Data System (ADS)

    Hu, Bo; Wang, Yuesi; Liu, Guangren

    2008-09-01

    Ultraviolet (UV) solar radiation has a significant influence on human health, the environment and climate. A series of measurements, including UV radiation (290-400 nm) and global solar radiation ( R s), were continuously recorded from August 2004 at the Lhasa and Haibei sites on the Tibetan Plateau. Both observation sites’ altitudes are above 3000 m and have similar meteorological conditions. The data from 2005-2006 was used to identify the varying characteristics of UV radiation. It’s relation to the clearness index K s, the relative optical mass m r, and R s were established. The annual mean values of total daily UV radiation are 0.92 and 0.67 MJ m-2 at Lhasa and Haibei, respectively. The UV radiation in Lhasa represented 4.6% of the global solar radiation while in Haibei this percentage was 4.2%. In the case of clear days ( K s > 0.8), these percentages ranged between 4.0% and 4.5% in Lhasa and between 5.1% and 5.5% in Haibei. In the case of cloudy days ( K s < 0.4), these percentages ranged from 4.4% to 6.8% in Lhasa and from 5.1% to 5.5% in Haibei. The maximum values of UV radiation for each relative optical mass diminished exponentially with m r. Thus, for Lhasa and Haibei, UV=46.25 m {4/-1.29}, and UV=51.76 m {r/-1.42}, respectively. The results of this study can be used to obtain more UV radiation data for the study of UV climate characteristics, the effects of UV on ecological processes and the feedback of the thinning of the stratospheric ozone, from more routine measurements R s data.

  11. UV EFFECTS IN TOOTH ENAMEL AND THEIR POSSIBLE APPLICATION IN EPR DOSIMETRY WITH FRONT TEETH

    PubMed Central

    Sholom, S.; Desrosiers, M.; Chumak, V.; Luckyanov, N.; Simon, S.L.; Bouville, A.

    2009-01-01

    The effects of ultraviolet (UV) radiation on ionizing radiation biodosimetry were studied in human tooth enamel samples using the technique of electron paramagnetic resonance (EPR) in X-band. For samples in the form of grains, UV-specific EPR spectra were spectrally distinct from that produced by exposure to gamma radiation. From larger enamel samples, the UV penetration depth was determined to be in the 60–120 μm range. The difference in EPR spectra from UV exposure and from exposure to gamma radiation samples was found to be a useful marker of UV equivalent dose (defined as the apparent contribution to the gamma dose in mGy that results from UV radiation absorption) in tooth enamel. This concept was preliminarily tested on front teeth from inhabitants of the region of the Semipalatinsk Nuclear Test Site (Kazakhstan) who might have received some exposure to gamma radiation from the nuclear tests conducted there as well as from normal UV radiation in sunlight. The technique developed here to quantify and subtract the UV contribution to the measured tooth is currently limited to cumulative dose measurements with a component of UV equivalent dose equal to or greater than 300 mGy. PMID:20065706

  12. Simultaneous X-ray and Far-Ultraviolet Spectra of AGN with ASCA and HUT

    NASA Technical Reports Server (NTRS)

    Kriss, Gerard A.

    1997-01-01

    We obtained ASCA spectra of the Seyfert 1 galaxy NGC 3516 in March 1995. Simultaneous far-UV observations were obtained with the Hopkins Ultraviolet Telescope on the Astro-2 shuttle mission. The ASCA spectrum shows a lightly absorbed power law of energy index 0.78. The low energy absorbing column is significantly less than previously seen. Prominent 0 VII and 0 VIII absorption edges are visible, but, consistent with the much lower total absorbing column, no Fe K absorption edge is detectable. A weak, narrow Fe K(alpha) emission line from cold material is present as well as a broad Fe K(alpha) line. These features are similar to those reported in other Seyfert 1 galaxies. A single warm absorber model provides only an imperfect description of the low energy absorption. In addition to a highly ionized absorber with ionization parameter U = 1.66 and a total column density of 1.4 x 10(exp 22)/sq cm, adding a lower ionization absorber with U = 0.32 and a total column of 6.9 x 10(exp 21)/sq cm significantly improves the fit. The contribution of resonant line scattering to our warm absorber models limits the Doppler parameter to less than 160 km/s at 90% confidence. Turbulence at the sound speed of the photoionized gas provides the best fit. None of the warm absorber models fit to the X-ray spectrum can match the observed equivalent widths of all the UV absorption lines. Accounting for the X-ray and UV absorption simultaneously requires an absorbing region with a broad range of ionization parameters and column densities.

  13. Direct DOC and nitrate determination in water using dual pathlength and second derivative UV spectrophotometry.

    PubMed

    Causse, Jean; Thomas, Olivier; Jung, Aude-Valérie; Thomas, Marie-Florence

    2017-01-01

    UV spectrophotometry is largely used for water and wastewater quality monitoring. The measurement/estimation of specific and aggregate parameters such as nitrate and dissolved organic carbon (DOC) is possible with UV spectra exploitation, from 2 to multi wavelengths calibration. However, if nitrate determination from UV absorbance is known, major optical interferences linked to the presence of suspended solids, colloids or dissolved organic matter limit the relevance of UV measurement for DOC assessment. A new method based on UV spectrophotometric measurement of raw samples (without filtration) coupling a dual pathlength for spectra acquisition and the second derivative exploitation of the signal is proposed in this work. The determination of nitrate concentration is carried out from the second derivative of the absorbance at 226 nm corresponding at the inflexion point of nitrate signal decrease. A short optical pathlength can be used considering the strong absorption of nitrate ion around 210 nm. For DOC concentration determination the second derivative absorbance at 295 nm is proposed after nitrate correction. Organic matter absorbing slightly in the 270-330 nm window, a long optical pathlength must be selected in order to increase the sensitivity. The method was tested on several hundred of samples from small rivers of two agricultural watersheds located in Brittany, France, taken during dry and wet periods. The comparison between the proposed method and the standardised procedures for nitrate and DOC measurement gave a good adjustment for both parameters for ranges of 2-100 mg/L NO3 and 1-30 mg/L DOC. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Ultraviolet Satellite Measurements of Volcanic Ash. Chapter 12

    NASA Technical Reports Server (NTRS)

    Carn, S. A.; Krotkov, N. A.

    2016-01-01

    Ultraviolet (UV) remote sensing of volcanic ash and other absorbing aerosols from space began with the launch of the first Total Ozone Mapping Spectrometer (TOMS) instrument in 1978. Subsequent UV satellite missions (TOMS, GOME, SCIAMACHY, OMI, GOME-2, OMPS) have extended UV ash measurements to the present, generating a unique multidecadal record. A UV Aerosol Index (UVAI) based on two near-UV wavelengths, equally applicable to multispectral (TOMS, DSCOVR) or hyperspectral (GOME, SCIAMACHY, OMI, GOME-2, OMPS) instruments, has been used to derive a unique absorbing aerosol climatology across multiple UV satellite missions. Advantages of UV ash measurements relative to infrared (IR) techniques include the ability to detect ash at any altitude (assuming no clouds), above clouds, and over bright surfaces, where visible and IR techniques may fail. Disadvantages include the daytime-only restriction and nonspecificity to silicate ash, since UV measurements are sensitive to any UV-absorbing aerosol, including smoke, desert dust, and pollution. However, simultaneous retrieval of sulfur dioxide (SO2) abundance and UVAI provides robust discrimination of volcanic clouds. Although the UVAI is only semiquantitative, it has proved successful at detecting and tracking volcanic ash clouds from many volcanic eruptions since 1978. NASA A-Train measurements since 2006 (eg, CALIOP) have provided much improved constraints on volcanic ash altitude, and also permit identification of aerosol type through sensor synergy. Quantitative UV retrievals of ash optical depth, effective particle size, and ash column mass are possible and require assumptions of ash refractive index, particle size distribution, and ash layer altitude. The lack of extensive ash refractive index data in the UV-visible and the effects of ash particle shape on retrievals introduce significant uncertainty in the retrieved parameters, although limited validation against IR ash retrievals has been successful. In this contribution, we review UV ash detection and retrieval techniques and provide examples of volcanic eruptions detected in the approx. 37 year data record.

  15. Accumulation of flavonoids and related compounds in birch induced by UV-B irradiance.

    PubMed

    Lavola, Anu

    1998-01-01

    A growth chamber experiment was conducted to examine the effects of UV-B exposure (4.9 kJ m(-2) day(-1) of biologically effective UV-B, 280-320 nm) on shoot growth and secondary metabolite production in Betula pendula (Roth) and B. resinifera (Britt.) seedlings originating from environments in Finland, Germany and Alaska differing in solar UV-B radiation and climate. Neither shoot growth nor the composition of secondary metabolites was affected by UV-B irradiance, but the treatment induced significant changes in the amounts of individual secondary metabolites in leaves. Leaves of seedlings exposed to UV-B radiation contained higher concentrations of several flavonoids, condensed tannins and some hydroxycinnamic acids than leaves of control seedlings that received no UV-B radiation. At the population level, there was considerable variation in secondary metabolite responses to UV-B radiation: among populations, the induced response was most prominent in Alaskan populations, which were adapted to the lowest ambient UV-B radiation environment. I conclude that solar UV-B radiation plays an important role in the formation of secondary chemical characteristics in birch trees.

  16. Ultraviolet spectrophotometry as an index parameter for estimating the biochemical oxygen demand of domestic wastewater.

    PubMed

    Nataraja, M; Qin, Y; Seagren, E A

    2006-07-01

    The relationship between ultraviolet absorbance at 280 nm (UV280) and the 5-day Biochemical Oxygen Demand (BOD5) test was evaluated using wastewater samples collected during March - December 1998 from the Fort Meade wastewater treatment plant (Maryland, U.S.A.). Three types of samples were collected: raw influent wastewater, primary effluent, and the effluent from the nitrification settling basin. A regression of BOD5 on UV280 was obtained using half of the data, with the other half of the data used to test application of the equation. The presence of NO3 and NO2, did not interfere with the BOD5/UV relationship. However, the relative fraction of organic compounds that absorb at UV280 and are biodegradable did appear to decrease across the treatment plant, thereby reducing the strength of the association between BOD5 and UV280 further along the treatment train. Interestingly, the exclusion of solids > 1 microm from the BOD5 test did not strengthen the association between BOD5 and UV280. These results suggest that simple UV absorbance measurements may be a useful analytical tool for wastewater treatment personnel, allowing them to quickly monitor for changes in the BOD5 during the treatment process and to quickly estimate the BOD5 when determining what dilutions to use in the standard BOD5 test. However, such relationships are likely to be wastewater and treatment plant specific and variable with time and treatment.

  17. Bees, birds and yellow flowers: pollinator-dependent convergent evolution of UV patterns.

    PubMed

    Papiorek, S; Junker, R R; Alves-Dos-Santos, I; Melo, G A R; Amaral-Neto, L P; Sazima, M; Wolowski, M; Freitas, L; Lunau, K

    2016-01-01

    Colour is one of the most obvious advertisements of flowers, and occurs in a huge diversity among the angiosperms. Flower colour is responsible for attraction from a distance, whereas contrasting colour patterns within flowers aid orientation of flower visitors after approaching the flowers. Due to the striking differences in colour vision systems and neural processing across animal taxa, flower colours evoke specific behavioural responses by different flower visitors. We tested whether and how yellow flowers differ in their spectral reflectance depending on the main pollinator. We focused on bees and birds and examined whether the presence or absence of the widespread UV reflectance pattern of yellow flowers predicts the main pollinator. Most bee-pollinated flowers displayed a pattern with UV-absorbing centres and UV-reflecting peripheries, whereas the majority of bird-pollinated flowers are entirely UV- absorbing. In choice experiments we found that bees did not show consistent preferences for any colour or pattern types. However, all tested bee species made their first antennal contact preferably at the UV-absorbing area of the artificial flower, irrespective of its spatial position within the flower. The appearance of UV patterns within flowers is the main difference in spectral reflectance between yellow bee- and bird-pollinated flowers, and affects the foraging behaviour of flower visitors. The results support the hypothesis that flower colours and the visual capabilities of their efficient pollinators are adapted to each other. © 2015 German Botanical Society and The Royal Botanical Society of the Netherlands.

  18. Lanthanum (III) regulates the nitrogen assimilation in soybean seedlings under ultraviolet-B radiation.

    PubMed

    Huang, Guangrong; Wang, Lihong; Zhou, Qing

    2013-01-01

    Ultraviolet-B (UV-B, 280-320 nm) radiation has seriously affected the growth of plants. Finding the technology/method to alleviate the damage of UV-B radiation has become a frontal topic in the field of environmental science. The pretreatment with rare earth elements (REEs) is an effective method, but the regulation mechanism of REEs is unknown. Here, the regulation effects of lanthanum (La(III)) on nitrogen assimilation in soybean seedlings (Glycine max L.) under ultraviolet-B radiation were investigated to elucidate the regulation mechanism of REEs on plants under UV-B radiation. UV-B radiation led to the inhibition in the activities of the key enzymes (nitrate reductase, glutamine synthetase, glutamate synthase) in the nitrogen assimilation, the decrease in the contents of nitrate and soluble proteins, as well as the increase in the content of amino acid in soybean seedlings. The change degree of UV-B radiation at the high level (0.45 W m(-2)) was higher than that of UV-B radiation at the low level (0.15 W m(-2)). The pretreatment with 20 mg L(-1) La(III) could alleviate the effects of UV-B radiation on the activities of nitrate reductase, glutamine synthetase, glutamate synthase, and glutamate dehydrogenase, promoting amino acid conversion and protein synthesis in soybean seedlings. The regulation effect of La(III) under UV-B radiation at the low level was better than that of UV-B radiation at the high level. The results indicated that the pretreatment with 20 mg L(-1) La(III) could alleviate the inhibition of UV-B radiation on nitrogen assimilation in soybean seedlings.

  19. Assessment of silicone as support to investigate the transformation routes of organic chemicals under environmental conditions and UV exposure. Application to selected fungicides.

    PubMed

    Rodríguez-Cabo, T; Rodríguez, I; Ramil, M; Cela, R

    2013-05-01

    The suitability of bulk silicone as support to follow the degradation of chemical compounds under environmental conditions and UV radiation is illustrated selecting three fungicides (fenhexamid, FEN; triadimenol, TRI and difenoconazole, DIF) as model compounds. These precursor species were first absorbed in silicone supports (10 mm length × 2 mm i.d. and 0.5 mm thickness) and then kept outdoors for several days (up to 2 months) or exposed to UV radiation (254 nm), from a low pressure mercury lamp, in the laboratory. Degradation of precursor fungicides and by-products formation was followed by liquid chromatography (LC) quadrupole time-of-flight (QTOF) mass spectrometry (MS), after desorption of silicone supports using 0.5 mL of acetonitrile. Half-lives (t(1/2)) measured under UV exposure varied from 5 to 100 min. As regards environmental conditions, the most stable fungicide was DIF, degraded by just 15 % after 2 months; whereas, t(1/2) values of 30 and 83 h were calculated for FEN during summer and autumn, respectively. Supports contained by-products arising from precursor species through de-chlorination, cleavage, hydroxylation, intra-molecular cyclation and oligomerization reactions. Most of them have been previously identified in soil surface, vegetable leaves and water after application of fungicides in agriculture fields. The low cost of silicone tubes (ca. 0.4 Euros), added to their excellent chemical stability and capability to retain precursor species and their by-products, make them ideal supports to follow the transformation routes of organic compounds under environmental and simulated conditions, even for relatively stable species with t(1/2) in the range of weeks or months.

  20. Two ultraviolet radiation datasets that cover China

    NASA Astrophysics Data System (ADS)

    Liu, Hui; Hu, Bo; Wang, Yuesi; Liu, Guangren; Tang, Liqin; Ji, Dongsheng; Bai, Yongfei; Bao, Weikai; Chen, Xin; Chen, Yunming; Ding, Weixin; Han, Xiaozeng; He, Fei; Huang, Hui; Huang, Zhenying; Li, Xinrong; Li, Yan; Liu, Wenzhao; Lin, Luxiang; Ouyang, Zhu; Qin, Boqiang; Shen, Weijun; Shen, Yanjun; Su, Hongxin; Song, Changchun; Sun, Bo; Sun, Song; Wang, Anzhi; Wang, Genxu; Wang, Huimin; Wang, Silong; Wang, Youshao; Wei, Wenxue; Xie, Ping; Xie, Zongqiang; Yan, Xiaoyuan; Zeng, Fanjiang; Zhang, Fawei; Zhang, Yangjian; Zhang, Yiping; Zhao, Chengyi; Zhao, Wenzhi; Zhao, Xueyong; Zhou, Guoyi; Zhu, Bo

    2017-07-01

    Ultraviolet (UV) radiation has significant effects on ecosystems, environments, and human health, as well as atmospheric processes and climate change. Two ultraviolet radiation datasets are described in this paper. One contains hourly observations of UV radiation measured at 40 Chinese Ecosystem Research Network stations from 2005 to 2015. CUV3 broadband radiometers were used to observe the UV radiation, with an accuracy of 5%, which meets the World Meteorology Organization's measurement standards. The extremum method was used to control the quality of the measured datasets. The other dataset contains daily cumulative UV radiation estimates that were calculated using an all-sky estimation model combined with a hybrid model. The reconstructed daily UV radiation data span from 1961 to 2014. The mean absolute bias error and root-mean-square error are smaller than 30% at most stations, and most of the mean bias error values are negative, which indicates underestimation of the UV radiation intensity. These datasets can improve our basic knowledge of the spatial and temporal variations in UV radiation. Additionally, these datasets can be used in studies of potential ozone formation and atmospheric oxidation, as well as simulations of ecological processes.

  1. Graphene Oxide Transparent Hybrid Film and Its Ultraviolet Shielding Property.

    PubMed

    Xie, Siyuan; Zhao, Jianfeng; Zhang, Bowu; Wang, Ziqiang; Ma, Hongjuan; Yu, Chuhong; Yu, Ming; Li, Linfan; Li, Jingye

    2015-08-19

    Herein, we first reported a facile strategy to prepare functional Poly(vinyl alcohol) (PVA) hybrid film with well ultraviolet (UV) shielding property and visible light transmittance using graphene oxide nanosheets as UV-absorber. The absorbance of ultraviolet light at 300 nm can be up to 97.5%, while the transmittance of visible light at 500 nm keeps 40% plus. This hybrid film can protect protein from UVA light induced photosensitive damage, remarkably.

  2. New Dimensions for Manufacturing: A UK Strategy for Nanotechnology

    DTIC Science & Technology

    2002-06-01

    market sun-block creams based on nanoparticles that absorb UV light lasers, modulators and amplifiers for telecommunications computer...the spectrum in sunlight. Which is why these particles could appeal to people who make sunscreen or cosmetics. Nanoparticles can absorb much more UV ...company has its sights on one of today’s hot subjects, counterfeiting , which costs the UK more than £6 billion a year. NanoCo is working with a major

  3. Tuning stable and unstable aggregates of gallic acid capped gold nanoparticles using Mg2+ as coordinating agent.

    PubMed

    Kim, Dae-Young; Shinde, Surendra; Ghodake, Gajanan

    2017-05-15

    High reducibility of gallic acid allows synthesis of small sized monodisperse gold nanoparticles (GNPs) at ambient temperature (25°C). Mg 2+ rapidly interacts with the gallic acid ligands and suppresses the dispersion of GNPs therefore, causing a decrease in UV-vis absorbance intensity, and color change from red to blue. Thus, the colorimetric response of GNPs with Mg 2+ was investigated by observing temporal quenching of UV-vis absorbance and precise tuning of fractal growth of GNP aggregates. Moreover, Mg 2+ at concentrations as low as 200ppb can be detected using gallic acid ligand-mediated coordination chemistry which results quenching in UV-vis absorbance proportional to the exposure time. This gallic acid-based colorimetric sensor shown a great potential for the selective detection of pathologically important electrolyte Mg 2+ without any interference from other cations Ca 2+ and K + . Copyright © 2017 Elsevier Inc. All rights reserved.

  4. The near-UV absorber OSSO and its isomers.

    PubMed

    Wu, Zhuang; Wan, Huabin; Xu, Jian; Lu, Bo; Lu, Yan; Eckhardt, André K; Schreiner, Peter R; Xie, Changjian; Guo, Hua; Zeng, Xiaoqing

    2018-05-01

    Disulfur dioxide, OSSO, has been proposed as the enigmatic "near-UV absorber" in the yellowish atmosphere of Venus. However, the fundamentally important spectroscopic properties and photochemistry of OSSO are scarcely documented. By either condensing gaseous SO or 266 laser photolysis of an S2O2 complex in Ar or N2 at 15 K, syn-OSSO, anti-OSSO, and cyclic OS([double bond, length as m-dash]O)S were identified by IR and UV/Vis spectroscopy for the first time. The observed absorptions (λmax) for OSSO at 517 and 390 nm coincide with the near-UV absorption (320-400 nm) found in the Venus clouds by photometric measurements with the Pioneer Venus orbiter. Subsequent UV light irradiation (365 nm) depletes syn-OSSO and anti-OSSO and yields a fourth isomer, syn-OSOS, with concomitant dissociation into SO2 and elemental sulfur.

  5. Ultraviolet-B and water stress effects on growth, gas exchange and oxidative stress in sunflower plants.

    PubMed

    Cechin, Inês; Corniani, Natália; de Fátima Fumis, Terezinha; Cataneo, Ana Catarina

    2008-07-01

    The effects and interaction of drought and UV-B radiation were studied in sunflower plants (Helianthus annuus L. var. Catissol-01), growing in a greenhouse under natural photoperiod conditions. The plants received approximately 1.7 W m(-2) (controls) or 8.6 W m(-2) (+UV-B) of UV-B radiation for 7 h per day. The UV-B and water stress treatments started 18 days after sowing. After a period of 12 days of stress, half of the water-stressed plants (including both UV-B irradiated or non-irradiated) were rehydrated. Both drought and UV-B radiation treatments resulted in lower shoot dry matter per plant, but there was no significant interaction between the two treatments. Water stress and UV-B radiation reduced photosynthesis, stomatal conductance and transpiration. However, the amplitude of the effects of both stressors was dependent on the interactions. This resulted in alleviation of the negative effect of drought on photosynthesis and transpiration by UV-B radiation as the water stress intensified. Intercelluar CO(2) concentration was initially reduced in all treatments compared to control plants but it increased with time. Photosynthetic pigments were not affected by UV-B radiation. Water stress reduced photosynthetic pigments only under high UV-B radiation. The decrease was more accentuated for chlorophyll a than for chlorophyll b. As a measure for the maximum efficiency of photosystem II in darkness F (v)/F (m) was used, which was not affected by drought stress but initially reduced by UV-B radiation. Independent of water supply, UV-B radiation increased the activity of pirogalol peroxidase and did not increase the level of malondialdehyde. On the other hand, water stress did not alter the activity of pirogalol peroxidase and caused membrane damage as assessed by lipid peroxidation. The application of UV-B radiation together with drought seemed to have a protective effect by lowering the intensity of lipid peroxidation caused by water stress. The content of proline was not affected by UV-B radiation but was increased by water stress under both low and high UV-B radiation. After 24 h of rehydration, most of the parameters analyzed recovered to the same level as the unstressed plants.

  6. Photocurable acrylic composition, and U.V. curing with development of U.V. absorber

    DOEpatents

    McKoy, Vincent B.; Gupta, Amitava

    1992-01-01

    In-situ development of an ultraviolet absorber is provided by a compound such as a hydroxy-phenyl-triazole containing a group which protects the absorber during actinically activated polymerization by light at first frequency. After polymerization the protective group is removed by actinic reaction at a second frequency lower than the first frequency. The protective group is formed by replacing the hydrogen of the hydroxyl group with an acyl group containing 1 to 3 carbon atoms or an acryloxy group of the formula: ##STR1## where R.sup.1 is either an alkyl containing 1 to 6 carbon atoms or --CH.dbd.CH.sub.2.

  7. Simulation of UV atomic radiation for application in exhaust plume spectrometry

    NASA Astrophysics Data System (ADS)

    Wallace, T. L.; Powers, W. T.; Cooper, A. E.

    1993-06-01

    Quantitative analysis of exhaust plume spectral data has long been a goal of developers of advanced engine health monitoring systems which incorporate optical measurements of rocket exhaust constituents. Discussed herein is the status of present efforts to model and predict atomic radiation spectra and infer free-atom densities from emission/absorption measurements as part of the Optical Plume Anomaly Detection (OPAD) program at Marshall Space Flight Center (MSFC). A brief examination of the mathematical formalism is provided in the context of predicting radiation from the Mach disk region of the SSME exhaust flow at nominal conditions during ground level testing at MSFC. Computational results are provided for Chromium and Copper at selected transitions which indicate a strong dependence upon broadening parameter values determining the absorption-emission line shape. Representative plots of recent spectral data from the Stennis Space Center (SSC) Diagnostic Test Facility (DTF) rocket engine are presented and compared to numerical results from the present self-absorbing model; a comprehensive quantitative analysis will be reported at a later date.

  8. Alteration of foliar flavonoid chemistry induced by enhanced UV-B radiation in field-grown Pinus ponderosa, Quercus rubra and Pseudotsuga menziesii.

    PubMed

    Warren, Jeffrey M; Bassman, John H; Mattinson, D Scott; Fellman, John K; Edwards, Gerald E; Robberecht, Ronald

    2002-03-01

    Chromatographic analyses of foliage from several tree species illustrate the species-specific effects of UV-B radiation on both quantity and composition of foliar flavonoids. Pinus ponderosa, Quercus rubra and Pseudotsuga menziesii were field-grown under modulated ambient (1x) and enhanced (2x) biologically effective UV-B radiation. Foliage was harvested seasonally over a 3-year period, extracted, purified and the flavonoid fraction applied to a mu Bondapak/C(18) column HPLC system sampling at 254 nm. Total flavonoid concentrations in Quercus rubra foliage were more than twice (leaf area basis) that of the other species; Pseudotsuga menziesii foliage had intermediate levels and P. ponderosa had the lowest concentrations of total flavonoids. No statistically significant UV-B radiation-induced effects were found in total foliar flavonoid concentrations for any species; however, concentrations of specific compounds within each species exhibited significant treatment effects. Higher (but statistically insignificant) levels of flavonoids were induced by UV-B irradiation in 1- and 2-year-old P. ponderosa foliage. Total flavonoid concentrations in 2-year-old needles increased by 50% (1x ambient UV-B radiation) or 70% (2x ambient UV-B radiation) from that of 1-year-old tissue. Foliar flavonoids of Q. rubra under enhanced UV-B radiation tended to shift from early-eluting compounds to less polar flavonoids eluting later. There were no clear patterns of UV-B radiation effects on 1-year-old P. menziesii foliage. However, 2-year-old tissue had slightly higher foliar flavonoids under the 2x UV-B radiation treatment compared to ambient levels. Results suggest that enhanced UV-B radiation will alter foliar flavonoid composition and concentrations in forest tree species, which could impact tissue protection, and ultimately, competition, herbivory or litter decomposition.

  9. Influence of UV radiation on chlorophyll, and antioxidant enzymes of wetland plants in different types of constructed wetland.

    PubMed

    Xu, Defu; Wu, Yinjuan; Li, Yingxue; Howard, Alan; Jiang, Xiaodong; Guan, Yidong; Gao, Yongxia

    2014-09-01

    A surface- and vertical subsurface-flow-constructed wetland were designed to study the response of chlorophyll and antioxidant enzymes to elevated UV radiation in three types of wetland plants (Canna indica, Phragmites austrail, and Typha augustifolia). Results showed that (1) chlorophyll content of C. indica, P. austrail, and T. augustifolia in the constructed wetland was significantly lower where UV radiation was increased by 10 and 20 % above ambient solar level than in treatment with ambient solar UV radiation (p < 0.05). (2) The malondialdehyde (MDA) content, guaiacol peroxidase (POD), superoxide dismutase (SOD), and catalase (CAT) activities of wetland plants increased with elevated UV radiation intensity. (3) The increased rate of MDA, SOD, POD, and CAT activities of C. indica, P. australis, and T. angustifolia by elevated UV radiation of 10 % was higher in vertical subsurface-flow-constructed wetland than in surface-flow-constructed wetland. The sensitivity of MDA, SOD, POD, and CAT activities of C. indica, P. austrail, and T. augustifolia to the elevated UV radiation was lower in surface-flow-constructed wetland than in the vertical subsurface-flow-constructed wetland, which was related to a reduction in UV radiation intensity through the dissolved organic carbon and suspended matter in the water. C. indica had the highest SOD and POD activities, which implied it is more sensitive to enhanced UV radiation. Therefore, different wetland plants had different antioxidant enzymes by elevated UV radiation, which were more sensitive in vertical subsurface-flow-constructed wetland than in surface-flow-constructed wetland.

  10. Protective effect of rare earth against oxidative stress under ultraviolet-B radiation.

    PubMed

    Wang, Lihong; Huang, Xiaohua; Zhou, Qing

    2009-04-01

    The effects of lanthanum (III) (La(III)) in protecting soybean leaves against oxidative stress induced by ultraviolet-B (UV-B) radiation were investigated. The increase in contents of hydrogen peroxide (H(2)O(2)) and superoxide (O2*-) due to UV-B radiation suggested oxidative stress. The increase in the content of malondialdehyde (MDA) and the decrease in the index of unsaturated fatty acid (IUFA) indicated oxidative damage on cell membrane induced by UV-B radiation. La(III) partially reversed UV-B-radiation-induced damage of plant growth. The reduction in the contents of H(2)O(2), O2*-, and MDA and increase in the content of IUFA, compared with UV-B treatment, also indicated that La(III) alleviated the oxidative damage induced by UV-B radiation. The increase in the activities of superoxide dismutase and peroxidase and the contents of ascorbate, carotenoids, and flavonoids were observed in soybean leaves with La(III) + UV-B treatment, compared with UV-B treatment. Our data suggested that La(III) could protect soybean plants from UV-B-radiation-induced oxidative stress by reacting with reactive oxygen species directly or by improving the defense system of plants.

  11. Ultraviolet-B phototoxicity and hypothetical photomelanomagenesis: intraocular and crystalline lens photoprotection.

    PubMed

    Mainster, Martin A; Turner, Patricia L

    2010-04-01

    Ultraviolet-B (UV-B) radiation can cause phototoxic macular injuries in young people who have been sunbathing but not sungazing and in welders. Welders have a reportedly increased risk of uveal melanoma. We analyze phakic and pseudophakic risks for solar and welding arc UV-B exposure. Optical radiation measurement, analysis, and perspective. Spectral transmittances were measured for UV-transmitting, UV-blocking, and blue-blocking intraocular lenses (IOLs). The photoprotective performances of crystalline and intraocular lenses were analyzed using relevant epidemiologic and laboratory data and action spectra for acute retinal phototoxicity and melanoma photocarcinogenesis. Crystalline lens UV-B retinal protection is deficient in children and young adults, increasing their potential susceptibility to acute retinal phototoxicity and hypothetical photomelanomagenesis. UV-B radiation has sufficient energy/photon to induce primary melanomagenic DNA lesions, unlike blue light or UV-A radiation. UV-blocking and blue-blocking IOLs have negligible UV-B transmittance. UV-transmitting IOL transmittance of UV-B radiation is equivalent to that of a 15-year-old crystalline lens. If optical radiation exposure is responsible for welders' increased risk of uveal melanoma, then UV-B radiation is the most probable causative agent and spectacle wear is a potential confounding factor in epidemiologic studies of ocular melanoma. Welders under 30 years of age are at greater risk for welding maculopathy than older welders. Children, adults under 30 years of age, and pseudophakic individuals with UV-transmitting IOLs should wear sunglasses in bright environments because of the UV-B window in their crystalline lenses or IOLs. Copyright 2010 Elsevier Inc. All rights reserved.

  12. Effects of UV-B radiation on the isoflavone accumulation and physiological-biochemical changes of soybean during germination: Physiological-biochemical change of germinated soybean induced by UV-B.

    PubMed

    Ma, Meng; Wang, Pei; Yang, Runqiang; Gu, Zhenxin

    2018-06-01

    In this study, the effects of UV-B radiation on the isoflavones accumulation, physiological and nutritional quality, water status, and characteristics of proteins in germinated soybeans were investigated. The results showed that isoflavones content in soybeans increased with appropriate intensity and time of UV-B radiation and decreased with excessive treatment. Fresh weight, length, free amino acids, reducing sugar contents and bulk water (T 23 ) in germinated soybeans decreased with increasing radiation time, indicating that UV-B inhibited the growth and nutrients metabolism of soybean during germination. Cell damage was detected in germinated soybeans with excessive UV-B radiation, as shown by the black spots in cotyledons and the increased intercellular water determined by LF-NMR. Germination resulted in an increase in random coil structures, while UV-B radiation induced no obvious changes in FT-IR spectrum and protein conformation of soybeans. Both UV-B radiation and germination caused the increase in soluble proteins, especially in 1.0-75.0 kDa fraction. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. The changes in quality ingredients of Qi chrysanthemum flowers treated with elevated UV-B radiation at different growth stages.

    PubMed

    Yao, Xiaoqin; Chu, Jianzhou; He, Xueli; Ma, Chunhui; Han, Chao; Shen, Haiyu

    2015-05-01

    The paper mainly reported the changes in quality ingredients of Qi chrysanthemum flowers treated with elevated UV-B radiation at different growth stages. The experiment included two levels of UV-B radiation (ambient UV-B, a 10% increase in ambient UV-B). Elevated UV-B radiation was carried out for 10-days during seedling, vigorous growth, bud and flower stages of Qi chrysanthemum, respectively. Elevated UV-B treatments applied during four development stages did not significantly affect flower yield, the rate of superoxide radical production and malondialdehyde concentration in flowers, while increased free amino acid concentration. The amino acid concentration induced by elevated UV-B radiation applied during bud stage was higher than that during the other stages. Elevated UV-B radiation applied during vigorous growth (except for flavone), bud and flower stages of chrysanthemum significantly increased hydrogen peroxide concentration, phenylalanine ammonia lyase enzyme activity, vitamin C, chlorogenic acid and flavone concentrations in flowers. These results suggested that active and nutritional ingredients in flowers of chrysanthemum could be increased by elevated UV-B radiation applied during the later growth stages of chrysanthemum. The paper supplied a simple and environmental-friendly method to improve quality of medicinal plants. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Measurements of DNA Damage and Repair in Bacillus anthracis Sterne Spores by UV Radiation

    DTIC Science & Technology

    2014-09-18

    MEASUREMENTS OF DNA DAMAGE AND REPAIR IN BACILLUS ANTHRACIS STERNE SPORES BY UV RADIATION...AFIT-ENP-T-14-S-01 MEASUREMENTS OF DNA DAMAGE AND REPAIR IN BACILLUS ANTHRACIS STERNE SPORES BY UV RADIATION THESIS Presented to the... DAMAGE AND REPAIR IN BACILLUS ANTHRACIS STERNE SPORES BY UV RADIATION Chelsea C. Marcum, BS Approved

  15. Effects of different levels of vitamin C on UV radiation-induced DNA damage

    NASA Astrophysics Data System (ADS)

    Zhou, Dianfeng; Heng, Hang; Ji, Kang; Ke, Weizhong

    2005-05-01

    The Raman spectra of DNA in different levels of vitamin C with 10- and 30-min ultraviolet (UV) radiations were reported. The intensity of UV radiation was 18.68 W/m2. The experimental results proved that vitamin C could alone prevent UV radiation from damaging DNA, but the effects depended on the concentration of vitamin C. When the concentration of vitamin C was about 0.08-0.4 mmol/L, vitamin C decreased UV radiation-induced DNA's damage. When the concentration of vitamin C exceeded 0.4 mmol/L, vitamin C accelerated DNA's damage instead. Maybe the reason is that when DNA in aqueous solution is radiated by UV, free radicals come into being, and vitamin C can scavenge free radicals, so vitamin C in lower concentration can protect DNA. The quantity of free radicals is finite, when vitamin C is superfluous, free radicals have been scavenged absolutely and vitamin C is residual. Vitamin C is a strong reductant. When the mixture of DNA and residual vitamin C is radiated by UV, vitamin C reacts with DNA. The more residual vitamin C and the longer time of UV radiation, the more DNA is damaged.

  16. Long-term exposure to enhanced UV-B radiation has no significant effects on growth or secondary compounds of outdoor-grown Scots pine and Norway spruce seedlings.

    PubMed

    Turtola, Satu; Sallas, Leena; Holopainen, Jarmo K; Julkunen-Tiitto, Riitta; Kainulainen, Pirjo

    2006-11-01

    The effects of long-term enhanced UV-B radiation on growth and secondary compounds of two conifer species were studied in an outdoor experiment. Scots pine (Pinus sylvestris) seedlings were exposed for two growing seasons and Norway spruce (Picea abies) seedlings for three growing seasons to supplemental UV-B radiation, corresponding to a 30% increase in ambient UV-B radiation. The experiment also included appropriate controls for ambient and increased UV-A radiation. Enhanced UV-B did not affect the growth of the conifer seedlings. In addition, neither the concentrations of terpenes and phenolics in the needles nor the concentrations of terpenes in the wood were affected. However, in the UV-A control treatment the concentrations of diterpenes in the wood of Scots pine decreased significantly compared to the ambient control. Apparently, a small increase in UV-B radiation has no significant effects on the secondary compounds and growth of Scots pine and Norway spruce seedlings.

  17. The effect of ultraviolet radiation on the pathogenesis of Candida albicans in mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Denkins, Y.M.

    1991-01-01

    This dissertation addresses questions concerning the effects of UV radiation on the pathogenesis of opportunistic fungal pathogens such as Candida albicans. UV radiation decreased the survival of Candida-infected mice; however, no correlation was found between suppression of the delayed type hypersensitivity (DTH) response and the course of lethal infection. This suggested that DTH was not protective against lethal disease with this organism. UV radiation also changed the persistence of the organism in the internal organs. UV-irradiated, infected animals had increased numbers of Candida in their kidneys compared to non-irradiated mice. Sensitization prior to UV irradiation aided clearance of the organismmore » from the kidneys of UV-irradiated mice. These data show that UV radiation suppresses cell-mediated immunity to Candida albicans in mice and increases mortality of Candida-infected mice. Moreover, the data suggest that an increase in environmental UV radiation could increase the severity of pathogenic infections.« less

  18. Combined effects of Lanthanum(III) and elevated Ultraviolet-B radiation on root nitrogen nutrient in soybean seedlings.

    PubMed

    Huang, Guangrong; Wang, Lihong; Sun, Zhaoguo; Li, Xiaodong; Zhou, Qing; Huang, Xiaohua

    2015-02-01

    Rare earth element pollution and elevated ultraviolet-B (UV-B) radiation occur simultaneously in some regions, but the combined effects of these two factors on plants have not attracted enough attention. Nitrogen nutrient is vital to plant growth. In this study, the combined effects of lanthanum(III) and elevated UV-B radiation on nitrate reduction and ammonia assimilation in soybean (Glycine max L.) roots were investigated. Treatment with 0.08 mmol L(-1) La(III) did not change the effects of elevated UV-B radiation on nitrate reductase (NR), nitrite reductase (NiR), glutamine synthetase (GS), glutamate synthase (GOGAT), glutamate dehydrogenase (GDH), nitrate, ammonium, amino acids, or soluble protein in the roots. Treatment with 0.24 mmol L(-1) La(III) and elevated UV-B radiation synergistically decreased the NR, NiR, GS, and GOGAT activities as well as the nitrate, amino acid, and soluble protein levels, except for the GDH activity and ammonium content. Combined treatment with 1.20 mmol L(-1) La(III) and elevated UV-B radiation produced severely deleterious effects on all test indices, and these effects were stronger than those induced by La(III) or elevated UV-B radiation treatment alone. Following the withdrawal of La(III) and elevated UV-B radiation, all test indices for the combined treatments with 0.08/0.24 mmol L(-1) La(III) and elevated UV-B radiation recovered to a certain extent, but they could not recover for treatments with 1.20 mmol L(-1) La(III) and elevated UV-B radiation. In summary, combined treatment with La(III) and elevated UV-B radiation seriously affected nitrogen nutrition in soybean roots through the inhibition of nitrate reduction and ammonia assimilation.

  19. Absorber for terahertz radiation management

    DOEpatents

    Biallas, George Herman; Apeldoorn, Cornelis; Williams, Gwyn P.; Benson, Stephen V.; Shinn, Michelle D.; Heckman, John D.

    2015-12-08

    A method and apparatus for minimizing the degradation of power in a free electron laser (FEL) generating terahertz (THz) radiation. The method includes inserting an absorber ring in the FEL beam path for absorbing any irregular THz radiation and thus minimizes the degradation of downstream optics and the resulting degradation of the FEL output power. The absorber ring includes an upstream side, a downstream side, and a plurality of wedges spaced radially around the absorber ring. The wedges form a scallop-like feature on the innermost edges of the absorber ring that acts as an apodizer, stopping diffractive focusing of the THz radiation that is not intercepted by the absorber. Spacing between the scallop-like features and the shape of the features approximates the Bartlett apodization function. The absorber ring provides a smooth intensity distribution, rather than one that is peaked on-center, thereby eliminating minor distortion downstream of the absorber.

  20. Raman spectroscopic analysis of the responds of desert cyanobacterium Nostoc sp under UV-B radiation

    NASA Astrophysics Data System (ADS)

    Wang, Gaohong; Hao, Zongjie; Hu, Chunxiang; Liu, Yongding

    Cyanobacteria are renowned for tolerating extremes of desiccation, UV radiation, freezethaw cycles, hypersalinity and oligotrophy, which make them as candidate par excellence for terraforming in extraterrestrial planet. Recently Raman spectrum was applied to study the biochemical information changes in different field of life science. In this study, we investigated the respond of desert cyanobactreium Nostoc sp under UV-B radiation via FT-Raman spectra. It was found that the spectral biomarkers of protectant molecular of UV radiation such as β-carotene and scytonemin were induced by UV-B radiation, but Chlorophyll a content was decreased, and also the photosynthesis activity was inhibited significantly. After light adaptation without UV-B radiation, the Chlorophyll a content and photosynthesis activity returned to high level, butβ-carotene and scytonemin content remained in the cells. Those results indicated that desert Cyanobacteria have good adaptation ability for UV-B radiation and synthesis of protectant molecular may be an effective strategy for its adaptation in evolution.

  1. Monitoring Time-Dependent Formation of Oligomers and Brown Carbon in Reactions of Glycolaldehyde, Methylglyoxal, and Amines

    NASA Astrophysics Data System (ADS)

    Espelien, B.; Galloway, M. M.; De Haan, D. O.

    2012-12-01

    Authors: Brenna Espelien, Melissa Galloway, and David De Haan The brown carbon components of atmospheric aerosol exhibit strong UV absorbance with a featureless 'tail' that extends into the visible range. Recent work has shown that brown carbon (or HULIS) is formed at least in part by aqueous-phase chemical reactions in the atmosphere. Reactions between aldehydes (such as glycolaldehyde and methylglyoxal) and amines create brown products that have similar light-absorbing spectra as HULIS extracted from atmospheric aerosol. However, the structures of these products have not been well-characterized. Bulk-phase reactions were monitored using LCMS and UV-Vis spectroscopy over a period of 2-3 weeks to see what products formed, whether oligomerization is occurring, and how this correlates with the development of absorbance peaks in the visible range. UV-Vis data shows that these reactions generally take several days to reach maximum absorbance in the visible range. For the glycolaldehyde/glycine reaction, the appearance of a strong absorber at about 400 nm correlated with the appearance of high-mass products at m/z 227, 363, 393, and 431. Additional reactions between aldehydes and amines that quickly produce brown products are being studied. We suggest that imine oligomers are major products of these reactions.

  2. Can dual chlorophyll fluorescence excitation be used to assess the variation in the content of UV-absorbing phenolic compounds in leaves of temperate tree species along a light gradient?

    PubMed

    Barthod, Sandrine; Cerovic, Zoran; Epron, Daniel

    2007-01-01

    The present study assesses light-induced variations in phenolic compounds in leaves of saplings of two co-occurring temperate species (Acer platanoides L., and Fraxinus excelsior L.) along a light gradient using a new non-invasive optical method (Dualex). The Dualex-derived UV absorbance of leaf epidermis (the sum of the adaxial and abaxial faces, AUV) increased significantly with increasing light in both species. AUV values were correlated with absorbance of the leaf extract at 305 nm and 375 nm (A305 and A375) in both species with similar slopes for both species. However, a large difference in intercept was observed between the two species when A305 was regressed against AUV. Similarly, AUV values were well correlated with the amount of phenolics in the leaf extracts assessed by the Folin-Ciocalteu method, but slopes were significantly different for the two species. Thus, the UV-A epidermal transmittance, despite being a reliable indicator of the UV-screening capacity of the leaf epidermis, cannot be used for any quantitative estimate of UV-B screening capacity or of energetic requirement for leaf construction without a species-specific calibration.

  3. Direct Retrieval of Sulfur Dioxide Amount and Altitude from Spaceborne Hyperspectral UV Measurements: Theory and Application

    NASA Technical Reports Server (NTRS)

    Yang, Kau; Liu, Xiong; Bhartia, Pawan K.; Krotkov, Nickolay A.; Carn, Simon A.; Hughes, Eric J.; Krueger, Arlin J.; Spurr, Robert D.; Trahan, Samuel G.

    2010-01-01

    We describe the physical processes by which a vertically localized absorber perturbs the top-of-atmosphere solar backscattered ultraviolet (UV) radiance. The distinct spectral responses to perturbations of an absorber in its column amount and layer altitude provide the basis for a practical satellite retrieval technique, the Extended Iterative Spectral Fitting (EISF) algorithm, for the simultaneous retrieval of these quantities of a SO2 plume. In addition, the EISF retrieval provides an improved UV aerosol index for quantifying the spectral contrast of apparent scene reflectance at the bottom of atmosphere bounded by the surface and/or cloud; hence it can be used for detection of the presence or absence of UV absorbing aerosols. We study the performance and characterize the uncertainties of the EISF algorithm using synthetic backscattered UV radiances, retrievals from which can be compared with those used in the simulation. Our findings indicate that the presence of aerosols (both absorbing and nonabsorbing) does not cause large errors in EISF retrievals under most observing conditions when they are located below the SO2 plume. The EISF retrievals assuming a homogeneous field of view can provide accurate column amounts for inhomogeneous scenes, but they always underestimate the plume altitudes. The EISF algorithm reduces systematic errors present in existing linear retrieval algorithms that use prescribed SO2 plume heights. Applying the EISF algorithm to Ozone Monitoring Instrument satellite observations of the recent Kasatochi volcanic eruption, we demonstrate the successful retrieval of effective plume altitude of volcanic SO2, and we also show the improvement in accuracy in the corresponding SO2 columns.

  4. CHANGES IN SPECTRAL AND PHOTOCHEMICAL PROPERTIES OF COLORED DISSOLVED ORGANIC MATTER IN A COASTAL ESTUARY

    EPA Science Inventory

    Colored dissolved organic matter (CDOM) is the primary determinant of UV penetration and exposure in freshwater and coastal environments. CDOM is photochemically reactive and its photoreactions can lead to reductions in UV absorbance and increased UV exposure in aquatic ecosystem...

  5. Comparison of UV Protection Properties of Cotton Fabrics Treated with Aqueous and Methanolic Extracts of Achyranthes aspera and Alhagi maurorum Plants.

    PubMed

    Nazir, Ahsan; Saleem, Muhammad Asad; Nazir, Faiza; Hussain, Tanveer; Faizan, Muhammad Qasim; Usman, Muhammad

    2016-03-01

    UV radiations are high-energy radiations present in sunlight that can damage human skin. Protection against these radiations becomes vital especially in those areas of the globe where UV index is quite high that makes the inhabitants more prone to dangerous effects of UV radiations. Clothing materials are good blockers of UV radiations, particularly when the fabric cover factor is high and/or the fabrics contain suitable UV-blocking finishes. In this study, effect of application of aqueous and methanolic extracts of two different plants, i.e., Achyranthes aspera and Alhagi maurorum on UV protection properties of cotton fabric was investigated. The results showed that the fabric samples treated with extracts of both the plants have excellent UV protection properties as indicated by their ultraviolet protection factor. It was concluded that both the aqueous and methanolic plant extracts are very effective in blocking UVA and UVB radiations, when applied on cotton fabrics. The UV protection performance of Achyranthes aspera extracts was much better as compared to that of Alhagi maurorum, and methanolic extracts of both the plants outperformed the aqueous extracts in terms of UV protection. © 2016 The American Society of Photobiology.

  6. Soybean resistance to stink bugs (Nezara viridula and Piezodorus guildinii) increases with exposure to solar UV-B radiation and correlates with isoflavonoid content in pods under field conditions.

    PubMed

    Zavala, Jorge A; Mazza, Carlos A; Dillon, Francisco M; Chludil, Hugo D; Ballaré, Carlos L

    2015-05-01

    Solar UV-B radiation (280-315 nm) has a significant influence on trophic relationships in natural and managed ecosystems, affecting plant-insect interactions. We explored the effects of ambient UV-B radiation on the levels of herbivory by stink bugs (Nezara viridula and Piezodorus guildinii) in field-grown soybean crops. The experiments included two levels of UV-B radiation (ambient and attenuated UV-B) and four soybean cultivars known to differ in their content of soluble leaf phenolics. Ambient UV-B radiation increased the accumulation of the isoflavonoids daidzin and genistin in the pods of all cultivars. Soybean crops grown under attenuated UV-B had higher numbers of unfilled pods and damaged seeds than crops grown under ambient UV-B radiation. Binary choice experiments with soybean branches demonstrated that stink bugs preferred branches of the attenuated UV-B treatment. We found a positive correlation between percentage of undamaged seeds and the contents of daidzin and genistin in pods. Our results suggest that constitutive and UV-B-induced isoflavonoids increase plant resistance to stink bugs under field conditions. © 2014 John Wiley & Sons Ltd.

  7. The absorption budget of fresh biomass burning aerosol from realistic laboratory fires

    NASA Astrophysics Data System (ADS)

    Wagner, N. L.; Adler, G. A.; Franchin, A.; Lamb, K.; Manfred, K.; Middlebrook, A. M.; Selimovic, V.; Schwarz, J. P.; Washenfelder, R. A.; Womack, C.; Yokelson, R. J.

    2017-12-01

    Wildfires are expected to increase globally due to climate change. The smoke from these wildfires has a highly uncertain radiative effect, largely due to the lack of detailed understanding of its optical properties. As part of the NOAA FIREX project, we have measured the optical properties of smoke primarily from laboratory burning of North American fuels at the Missoula Fire Sciences Laboratory. Here, we present a budget of the aerosol absorption from a portion of the laboratory fires. The total aerosol absorption was measured with photoacoustic spectrometers (PAS) at four wavelengths (405 nm, 532 nm, 660 nm, 870 nm) spanning the visible spectral region. The aerosol absorption is attributed to black carbon which absorbs broadly across the visible and ultraviolet (UV) spectral region and brown carbon (BrC) which absorbs in the blue and UV spectral regions. Then aerosol absorption measurements are compared with measurements of refractory black carbon (rBC) concentration by laser induced incandescence (SP2) and measurements of BrC concentration from a particle-into-liquid sampler coupled to a liquid absorption cell (BrC-PILS). Periodically, a thermodenuder was inserted upstream of all of the instruments to constrain the relationship between aerosol volatility and absorption. We synthesize these measurements to constrain the various contributors to total absorption including effects of lensing on rBC absorption, and of BrC that is not volatilized in the thermodenuder.

  8. Photostability of commercial sunscreens upon sun exposure and irradiation by ultraviolet lamps

    PubMed Central

    Gonzalez, Helena; Tarras-Wahlberg, Nils; Strömdahl, Birgitta; Juzeniene, Asta; Moan, Johan; Larkö, Olle; Rosén, Arne; Wennberg, Ann-Marie

    2007-01-01

    Background Sunscreens are being widely used to reduce exposure to harmful ultraviolet (UV) radiation. The fact that some sunscreens are photounstable has been known for many years. Since the UV-absorbing ingredients of sunscreens may be photounstable, especially in the long wavelength region, it is of great interest to determine their degradation during exposure to UV radiation. Our aim was to investigate the photostability of seven commercial sunscreen products after natural UV exposure (UVnat) and artificial UV exposure (UVart). Methods Seven commercial sunscreens were studied with absorption spectroscopy. Sunscreen product, 0.5 mg/cm2, was placed between plates of silica. The area under the curve (AUC) in the spectrum was calculated for UVA (320–400 nm), UVA1 (340–400 nm), UVA2 (320–340 nm) and UVB (290–320 nm) before (AUCbefore) and after (AUCafter) UVart (980 kJ/m2 UVA and 12 kJ/m2 of UVB) and before and after UVnat. If theAUC Index (AUCI), defined as AUCI = AUCafter/AUCbefore, was > 0.80, the sunscreen was considered photostable. Results Three sunscreens were unstable after 90 min of UVnat; in the UVA range the AUCI was between 0.41 and 0.76. In the UVB range one of these sunscreens was unstable with an AUCI of 0.75 after 90 min. Three sunscreens were photostable after 120 min of UVnat; in the UVA range the AUCI was between 0.85 and 0.99 and in the UVB range between 0.92 and 1.0. One sunscreen showed in the UVA range an AUCI of 0.87 after UVnat but an AUCI of 0.72 after UVart. Five of the sunscreens were stable in the UVB region. Conclusion The present study shows that several sunscreens are photounstable in the UVA range after UVnat and UVart. There is a need for a standardized method to measure photostability, and the photostability should be marked on the sunscreen product. PMID:17324264

  9. Optical system design of solar-blind UV target simulator with long focal length

    NASA Astrophysics Data System (ADS)

    Chen, Yu; Huo, Furong; Zheng, Liqin

    2014-11-01

    Ultraviolet (UV) radiation of 200nm-300nm waveband from the sun is absorbed by atmosphere, which is often referred to the solar-blind region of the solar spectrum. Solar-blind characteristics of this waveband have important application value, especially in military fields. The application of solar-blind waveband has developed very rapidly, which is receiving more and more attention. Sometimes, to test the performance of a UV optical system, a standard solar-blind UV target simulator is needed as the UV light source. In this paper, an optical system of a solar-blind UV target simulator is designed with waveband 240nm-280nm. To simulate a far UV target, the focal length of this UV optical system needs to be long. Besides, different field of view (FOV) of the system should meet aplanatic condition. The optional materials are very few for UV optical systems, in which only CaF2 and JGS1 are commonly used. Various aberrations are difficult to be corrected. To save production cost and enhance the precision of fabrication and test, aspheric surfaces and binary elements are not adopted in the system. Moreover, doublet or triplet cannot be used in UV optical system considering possible cracking for different thermal expansion coefficients of different materials. After optimization, the system is composed of 4 lenses with focal length 500mm. MTF curves of different FOV coincide together. The maximum RMS radius of the optimized system has almost the same size as Airy disk, which proves the good image quality after system optimization. The aplanatic condition is met very well in this system. In the spot diagram, root mean square (RMS) radius changes from 3 microns to 3.6 microns, which has similar size with Airy disk and meets aplanatic condition very well. This optical system of solar-blind UV target simulator also has relatively loose tolerance data, which can prove the system is designed in an optimal state.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pern, F.J.; Glick, S.H.; Czanderna, A.W.

    Results from extensive studies of the commercial ethylene vinyl acetate (EVA) formulations show that the UV absorber and curing-generated UV-excitable, {alpha},{beta}-unsaturated carbonyl chromophores facilitate the EVA discoloration, which is further enhanced by curing-generated acetic acid and probably residual peroxide curing agent also. Formation and concentration of the UV-excitable chromophores are substantially promoted by the antioxidant, Naugard P. The discoloration rate is greater under higher UV light intensity and temperatures. Heating in the dark at elevated temperatures (e.g., 85&hthinsp;{degree}C) in the air for {approximately}200 days only results in light yellowing. The discoloration reactions compete with photobleaching reactions, which destroy curing-generated chromophoresmore » and result in non-discoloring of EVA. By using better performance stabilizers to minimize the curing-generated UV-excitable chromophores, a new fast curing agent, and no UV absorber, the NREL-developed EVA formulations show a superior photothermal stability against browning to the commercial counterparts. Alternatively, the discoloration rate of the commercial EVA pottants can be considerably reduced by using UV-filtering glass superstrates that largely inhibit the UV-induced photooxidation reactions, or completely eliminated by using air-permeable polymer superstrate films that enable photobleaching reactions. {copyright} {ital 1999 American Institute of Physics.}« less

  11. The enhancement of biological ocular UV radiation on beaches compared to the radiation on grass.

    PubMed

    Liu, Guang-Cong; Wang, Fang; Gao, Yan-Yan; Yang, Zheng; Hu, Li-Wen; Gao, Qian; Ri, Jun-Chol; Liu, Yang

    2014-12-01

    The influence of albedo on ocular UV exposure has seldom been reported. This paper aimed to explore the enhancement effect on measured ocular UV radiation due to a sand surface compared to measured ocular UV radiation due to a grass surface. We measured ambient and ocular UV radiation over the beach and grass surface in Sanya City of China (18.4°N, 109.7°E). The experimental apparatus was composed of a manikin and a dual-detector spectrometer. Integration of both UVA and UVB radiation was used to denote UV radiation. Then biologically effective ocular UVB radiation (UVBE) and the ratios of UVBE of two surfaces were calculated. Maximum of ocular UV radiation versus time over the two surfaces is bimodal. UVBE on the beach is significantly larger than UVBE on the sand, and UVBE peaked at different solar elevation angle (SEA) over the two surfaces (about 53° and 40° on the beach and grass, respectively, according to Bayesian regression). The maximum of ocular UVBE ratios is greater than two, which peaked SEA was about 50°. One hour's cumulative radiation under sunny weather exceeds thresholds for photokeratitis, conjunctivitis and lens damage. Higher albedo significantly increased biological ocular UV radiation. Tourists on tropical beaches should take protective measures and avoid facing the sun directly, especially when SEA is around 50°. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Syntheses, structures and photoelectrochemical properties of three water-stable, visible light absorbing mental-organic frameworks based on tetrakis(4-carboxyphenyl)silane and 1,4-bis(pyridyl)benzene mixed ligands

    NASA Astrophysics Data System (ADS)

    Guo, Tiantian; Yang, Xiaowei; Li, Ruyan; Liu, Xiaoyu; Gao, Yanling; Dai, Zhihui; Fang, Min; Liu, Hong-Ke; Wu, Yong

    2017-09-01

    Photovoltaics (PV), which directly convert solar energy into electricity generally using semiconductors, offer a practical and sustainable solution to the current energy shortage and environmental pollution crisis. Photovoltaic applications of metal-organic frameworks (MOFs) belong to a relatively new area of research. Given that UV light accounts for only 4% while visible light contributes 43% of solar energy, it is rather imperative to develop semiconductors with narrow band gaps so that they could absorb visible light. In this work, three water-stable, narrow band semiconducting MOFs of [Cu(H2TCS)(H2O)] (1), [Co(H2TCS)(BPB)] (2) and [Ni(H2TCS)(BPB)] (3) were synthesized using tetrakis(4-carboxyphenyl)silane (H4TCS) and 1,4-bis (pyridyl)benzene (BPB) in water, and structurally characterized by single-crystal X-ray diffractions. MOF 1 has a 2D structure. MOF 2 and 3 are isostructrual and have 3D frameworks formed by interwoven 2D layers. All three MOFs are stable in acidic water solutions and can be stable in water for 7 days. MOFs 1-3 absorb UV and visible light and have band gaps of 0.50, 1.77 and 1.49 eV, respectively. Rapid and stable photocurrent responses of MOFs 1-3 under UV and visible light illuminations are observed. This work demonstrates that using electron rich Cu2+, Co2+, or Ni2+ as metal nodes can effectively decrease the band gaps of MOFs to make them absorbing visible light. To increase the conjugation in the linker is generally considered to be the method to decrease the band gap of MOFs. The conjugation in H4TCS is not significant and this ligand basically only absorbs UV light. However, by using electron rich Cu2+ ions as metal nodes, the prepared [Cu(H2TCS)(H2O)]·H2O (1) absorbs broadly in the visible light region. Thus, this work suggests that by using electron rich Cu2+, many narrow-band semiconductor MOFs can be prepared even by using ligands which only absorbs UV light.

  13. [Study on optical characteristics of chromophoric dissolved organic matter (CDOM) in rainwater by fluorescence excitation-emission matrix and absorbance spectroscopy].

    PubMed

    Cheng, Yuan-yue; Guo, Wei-dong; Long, Ai-min; Chen, Shao-yong

    2010-09-01

    The optical characteristics of chromophoric dissolved organic matter (CDOM) were determined in rain samples collected in Xiamen Island, during a rainy season in 2007, using fluorescence excitation-emission matrix spectroscopy associated with UV-Vis absorbance spectra. Results showed that the absorbance spectra of CDOM in rain samples decreased exponentially with wavelength. The absorbance coefficient at 300 nm [a(300)] ranged from 0.27 to 3.45 m(-1), which would be used as an index of CDOM abundance, and the mean value was 1.08 m(-1). The content of earlier stage of precipitation events was higher than that of later stage of precipitation events, which implied that anthropogenic sources or atmospheric pollution or air mass types were important contributors to CDOM levels in precipitation. EEMs spectra showed 4 types of fluorescence signals (2 humic-like fluorescence peaks and 2 protein-like fluorescence peaks) in rainwater samples, and there were significant positive correlations of peak A with C and peak B with S, showing their same sources or some relationship of the two humic-like substance and the two protein-like substance. The strong positive correlations of the two humic-like fluorescence peaks with a(300), suggested that the chromophores responsible for absorbance might be the same as fluorophores responsible for fluorescence. Results showed that the presence of highly absorbing and fluorescing CDOM in rainwater is of significant importance in atmospheric chemistry and might play a previously unrecognized role in the wavelength dependent spectral attenuation of solar radiation by atmospheric waters.

  14. Are the surgeons safe during UV-A radiation exposure in collagen cross-linking procedure?

    PubMed

    Shetty, Rashmi; Shetty, Rohit; Mahendradas, Padmamalini; Shetty, Bhujang K

    2012-02-01

    To quantify the effect of scattered UV-A radiation used in the collagen cross-linking (CXL) procedure and the amount of radiation reaching the surgeon and the surrounding area and to estimate the dampening effect by various protective devices. In this case series, 3 patients [aged 25-30 (±2.5) years] with keratoconus underwent a CXL procedure with UV-A light and riboflavin. Irradiance was measured using a spectrometer (Model USB2000; Ocean Optics, Inc) for various distances from the source, at various angles, and for different durations of radiation. The spectrometer was also used to measure the dampening effect produced by gown, latex gloves, and UV-protective glasses. Maximum UV-A radiation (1.4 × 10(-9) mW/cm(2)) was measured at 2 cm from the limbus, when the probe was held at a 45-degree angle to the floor. UV-A radiation reaching the surgeon's eye and the abdomen was 3.403 × 10(-11) and 2.36 × 10(-11) mW/cm(2), respectively. Gown, latex gloves, and UV-protective glasses showed dampening effects of 99.58%, 95.01%, and 99.73%, respectively. CXL appears to be a safe procedure with respect to UV-A radiation exposure to the surgeon. Further safety can be ensured by UV-protective devices.

  15. Mycosporine-Like Amino Acids and Their Derivatives as Natural Antioxidants

    PubMed Central

    Wada, Naoki; Sakamoto, Toshio; Matsugo, Seiichi

    2015-01-01

    Mycosporine-like amino acids (MAAs) are water-soluble molecules that absorb UV-A and UV-B radiation and disperse the energy as heat. MAAs show great diversity in their molecular structures, which exhibit a range of molecular weights spanning 188 to 1050 Daltons. MAAs are utilized in a wide variety of organisms including prokaryotes and eukaryotic micro-organisms that inhabit aquatic, terrestrial, and marine environments. These features suggest that MAAs are stable and fundamental molecules that allow these organisms to live under UV irradiation. MAAs are thought to have been greatly important to ancient forms of life on Earth, functioning as a primary sunscreen to reduce short-wavelength light. Structurally different MAAs might have been developed in MAA-producing organisms during their environmental adaptation. Harmful irradiation directly damages biomolecules, including lipids, proteins and DNA, and induces oxidative stress through radical-propagating processes. Thus, MAAs are expected to play an additional role in the antioxidant system. This review focuses on MAAs with radical scavenging activities. To cover all the reported MAAs known thus far, we surveyed the CAS database and have summarized the structures and the chemical and physical properties of these MAAs, including their antioxidant activities. PMID:26783847

  16. Fate dynamics of environmentally exposed explosive traces.

    PubMed

    Kunz, Roderick R; Gregory, Kerin E; Aernecke, Matthew J; Clark, Michelle L; Ostrinskaya, Alla; Fountain, Augustus W

    2012-04-12

    The chemical and physical fates of trace amounts (<50 μg) of explosives containing 2,4,6-trinitrotoluene (TNT), hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), and pentaerythritol tetranitrate (PETN) were determined for the purpose of informing the capabilities of tactical trace explosive detection systems. From these measurements, it was found that the mass decreases and the chemical composition changes on a time scale of hours, with the loss mechanism due to a combination of sublimation and photodegradation. The rates for these processes were dependent on the explosive composition, as well as on both the ambient temperature and the size distribution of the explosive particulates. From these results, a persistence model was developed and applied to model the time dependence of both the mass and areal coverage of the fingerprints, resulting in a predictive capability for determining fingerprint fate. Chemical analysis confirmed that sublimation rates for TNT were depressed by UV (330-400 nm) exposure due to photochemically driven increases in the molecular weight, whereas the opposite was observed for RDX. No changes were observed for PETN upon exposure to UV radiation, and this was attributed to its low UV absorbance.

  17. Variable extinction in HD 45677 and the evolution of dust grains in pre-main-sequence disks

    NASA Technical Reports Server (NTRS)

    Sitko, Michael L.; Halbedel, Elaine M.; Lawrence, Geoffrey F.; Smith, J. Allyn; Yanow, Ken

    1994-01-01

    Changes in the UV extinction and IR emission were sought in the Herbig Ae/Be star candidate HD 45677 (= FS CMa) by comparing UV, optical, and IR observations made approximately 10 yr apart. HD 45677 varied significantly, becoming more than 50% brighter in the UV and optical than it was a decade ago. A comparison of the observations between epochs indicates that if the variations are due to changes in dust obscuration, the dust acts as a gray absorber into the near-IR and must be depleted in grains smaller than 1 micron. This is similar to the results obtained on the circumstellar disks of stars like Vega and Beta Pic, and suggests that radiation pressure may be responsible for the small-grain depletion. In addition, the total IR flux seems to have declined, indicating a decrease in the total mass of the dust envelope that contributes to the IR emission in this part of the spectrum. Due to the anomalous nature of the extinction, the use of normal extinction curves to deredden the spectral energy distributions of stars with circumstellar dust may lead to significant errors and should be used with great caution.

  18. Temporal variation of optimal UV exposure time over Korea: risks and benefits of surface UV radiation

    NASA Astrophysics Data System (ADS)

    Lee, Y. G.; Koo, J. H.

    2015-12-01

    Solar UV radiation in a wavelength range between 280 to 400 nm has both positive and negative influences on human body. Surface UV radiation is the main natural source of vitamin D, providing the promotion of bone and musculoskeletal health and reducing the risk of a number of cancers and other medical conditions. However, overexposure to surface UV radiation is significantly related with the majority of skin cancer, in addition other negative health effects such as sunburn, skin aging, and some forms of eye cataracts. Therefore, it is important to estimate the optimal UV exposure time, representing a balance between reducing negative health effects and maximizing sufficient vitamin D production. Previous studies calculated erythemal UV and vitamin-D UV from the measured and modelled spectral irradiances, respectively, by weighting CIE Erythema and Vitamin D3 generation functions (Kazantzidis et al., 2009; Fioletov et al., 2010). In particular, McKenzie et al. (2009) suggested the algorithm to estimate vitamin-D production UV from erythemal UV (or UV index) and determined the optimum conditions of UV exposure based on skin type Ⅱ according to the Fitzpatrick (1988). Recently, there are various demands for risks and benefits of surface UV radiation on public health over Korea, thus it is necessary to estimate optimal UV exposure time suitable to skin type of East Asians. This study examined the relationship between erythemally weighted UV (UVEry) and vitamin D weighted UV (UVVitD) over Korea during 2004-2012. The temporal variations of the ratio (UVVitD/UVEry) were also analyzed and the ratio as a function of UV index was applied in estimating the optimal UV exposure time. In summer with high surface UV radiation, short exposure time leaded to sufficient vitamin D and erythema and vice versa in winter. Thus, the balancing time in winter was enough to maximize UV benefits and minimize UV risks.

  19. Long-term variations of the UV-B radiation over Central Europe since early 1960s, as revealed from the UV observations and reconstructed data

    NASA Astrophysics Data System (ADS)

    Krzyscin, J. W.

    2003-04-01

    A method of reconstruction of the UV variations for periods when UV-B measurements were not carried out is proposed. The reconstruction is based on observations of total (Sun+sky) radiation by a pyranometer, Dobson total ozone, sunshine duriation from the Campbel Stokes heliograph, and atmospheric column water content taken from NCEP/NOAA reanalysis. Modeled all-sky erythemaly weighted daily dose is calculated as a product of the cloud reduction factor (CRF) over UV range and clear-sky dose from a radiative transfer model. CRF over UV range is estimated from measured CRF for total solar radiation and the statistical dependence relating CRF over UV with that over whole solar spectrum. The measured daily UV doses and daily sum of total radiation taken at Belsk, Poland (52N, 21E) for the period 1976-2001 have been used to construct the regressions for various solar zenith angles. The time series of monthly means from the modeled daily UV doses follows the observed monthly means supporting the possibility of reconstruction of the UV time series for other periods. An inspection of the long-term stability of total radiation measurements is necessary to discuss trends in the reconstructed time series. We examine the data homogeneity analyzing the ratio of the observed to modeled total radiation for fully clear sky days that are selected from the daily values of sunshine duration measured by the Campbel-Stokes heliograph. Combining reconstructed and observed monthly means of the UV doses we found a positive trend in the UV radiation in the period 1980-1995 and almost constant UV level for other periods (early 60s up to 1980, and 1995-2001). The trend pattern suggests dominating role of the long-term total ozone forcing on the UV level with a small impact of the long-term changes in the cloud/aerosol properties.

  20. UV-Induced cell death in plants.

    PubMed

    Nawkar, Ganesh M; Maibam, Punyakishore; Park, Jung Hoon; Sahi, Vaidurya Pratap; Lee, Sang Yeol; Kang, Chang Ho

    2013-01-14

    Plants are photosynthetic organisms that depend on sunlight for energy. Plants respond to light through different photoreceptors and show photomorphogenic development. Apart from Photosynthetically Active Radiation (PAR; 400-700 nm), plants are exposed to UV light, which is comprised of UV-C (below 280 nm), UV-B (280-320 nm) and UV-A (320-390 nm). The atmospheric ozone layer protects UV-C radiation from reaching earth while the UVR8 protein acts as a receptor for UV-B radiation. Low levels of UV-B exposure initiate signaling through UVR8 and induce secondary metabolite genes involved in protection against UV while higher dosages are very detrimental to plants. It has also been reported that genes involved in MAPK cascade help the plant in providing tolerance against UV radiation. The important targets of UV radiation in plant cells are DNA, lipids and proteins and also vital processes such as photosynthesis. Recent studies showed that, in response to UV radiation, mitochondria and chloroplasts produce a reactive oxygen species (ROS). Arabidopsis metacaspase-8 (AtMC8) is induced in response to oxidative stress caused by ROS, which acts downstream of the radical induced cell death (AtRCD1) gene making plants vulnerable to cell death. The studies on salicylic and jasmonic acid signaling mutants revealed that SA and JA regulate the ROS level and antagonize ROS mediated cell death. Recently, molecular studies have revealed genes involved in response to UV exposure, with respect to programmed cell death (PCD).

  1. UV-Induced Cell Death in Plants

    PubMed Central

    Nawkar, Ganesh M.; Maibam, Punyakishore; Park, Jung Hoon; Sahi, Vaidurya Pratap; Lee, Sang Yeol; Kang, Chang Ho

    2013-01-01

    Plants are photosynthetic organisms that depend on sunlight for energy. Plants respond to light through different photoreceptors and show photomorphogenic development. Apart from Photosynthetically Active Radiation (PAR; 400–700 nm), plants are exposed to UV light, which is comprised of UV-C (below 280 nm), UV-B (280–320 nm) and UV-A (320–390 nm). The atmospheric ozone layer protects UV-C radiation from reaching earth while the UVR8 protein acts as a receptor for UV-B radiation. Low levels of UV-B exposure initiate signaling through UVR8 and induce secondary metabolite genes involved in protection against UV while higher dosages are very detrimental to plants. It has also been reported that genes involved in MAPK cascade help the plant in providing tolerance against UV radiation. The important targets of UV radiation in plant cells are DNA, lipids and proteins and also vital processes such as photosynthesis. Recent studies showed that, in response to UV radiation, mitochondria and chloroplasts produce a reactive oxygen species (ROS). Arabidopsis metacaspase-8 (AtMC8) is induced in response to oxidative stress caused by ROS, which acts downstream of the radical induced cell death (AtRCD1) gene making plants vulnerable to cell death. The studies on salicylic and jasmonic acid signaling mutants revealed that SA and JA regulate the ROS level and antagonize ROS mediated cell death. Recently, molecular studies have revealed genes involved in response to UV exposure, with respect to programmed cell death (PCD). PMID:23344059

  2. Acclimation to UV-B radiation and visible light in Lactuca sativa involves up-regulation of photosynthetic performance and orchestration of metabolome-wide responses.

    PubMed

    Wargent, J J; Nelson, B C W; McGhie, T K; Barnes, P W

    2015-05-01

    UV-B radiation is often viewed as a source of stress for higher plants. In particular, photosynthetic function has been described as a common target for UV-B impairment; yet as our understanding of UV-B photomorphogenesis increases, there are opportunities to expand the emerging paradigm of regulatory UV response. Lactuca sativa is an important dietary crop species and is often subjected to rapid sunlight exposure at field transfer. Acclimation to UV-B and visible light conditions in L. sativa was dissected using gas exchange and chlorophyll fluorescence measurements, in addition to non-destructive assessments of UV epidermal shielding (SUV ). After UV-B treatment, seedlings were subjected to wide-range metabolomic analysis using liquid chromatography hybrid quadrupole time-of-flight high-resolution mass spectrometry (LC-QTOF-HRMS). During the acclimation period, net photosynthetic rate increased in UV-treated plants, epidermal UV shielding increased in both subsets of plants transferred to the acclimatory conditions (UV+/UV- plants) and Fv /Fm declined slightly in UV+/UV- plants. Metabolomic analysis revealed that a key group of secondary compounds was up-regulated by higher light conditions, yet several of these compounds were elevated further by UV-B radiation. In conclusion, acclimation to UV-B radiation involves co-protection from the effects of visible light, and responses to UV-B radiation at a photosynthetic level may not be consistently viewed as damaging to plant development. © 2014 John Wiley & Sons Ltd.

  3. The interaction between abiotic photodegradation and microbial decomposition under ultraviolet radiation.

    PubMed

    Wang, Jing; Liu, Lingli; Wang, Xin; Chen, Yiwei

    2015-05-01

    Elevated ultraviolet (UV) radiation has been demonstrated to stimulate litter decomposition. Despite years of research, it is still not fully understood whether the acceleration in litter degradation is primarily attributed to abiotic photodegradation or the combined effects of abiotic photodegradation and microbial decomposition. In this study, we used meta-analysis to synthesize photodegradation studies and compared the effects of UV radiation on litter decomposition between abiotic and biotic conditions. We also conducted a microcosm experiment to assess the effects of UV radiation on litter biodegradability and microbial activity. Overall, our meta-analysis found that under abiotic photodegradation, UV radiation reduced the remaining litter mass by 1.44% (95% CI: 0.85% to 2.08%), did not affect the remaining lignin and increased the dissolved organic carbon (DOC) concentration by 14.01% (1.49-23.67%). Under combined abiotic photodegradation and microbial decomposition, UV radiation reduced the remaining litter mass and lignin by 1.60% (0.04-3.58%) and 16.07% (9.27-24.23%), respectively, but did not alter DOC concentration. UV radiation had no significant impact on soil microbial biomass carbon (MBC), but it reduced microbial respiration by 44.91% (2.26-78.62%) and altered the composition of the microbial community. In addition, UV radiation reduced nitrogen (N) immobilization by 19.44% (4.77-37.92%). Our microcosm experiment further indicated that DOC concentration and the amount of respired C in UV-treated litter increased with UV exposure time, suggesting that longer UV exposure resulted in greater biodegradability. Overall, our study suggested that UV exposure could increase litter biodegradability by increasing the microbial accessibility of lignin, as well as the labile carbon supply to microbes. However, the remaining litter mass was not different between the abiotic and biotic conditions, most likely because the positive effect of UV radiation on litter biodegradability was offset by its negative effect on microbial activity. Our results also suggested that UV radiation could alter the N cycle during decomposition, primarily by inhibiting N immobilization. © 2014 John Wiley & Sons Ltd.

  4. Sunscreens--the ultimate cosmetic.

    PubMed

    Wolf, Ronni; Matz, Hagit; Orion, Edith; Lipozencić, Jasna

    2003-01-01

    One decade ago, a sun protection factor (SPF) of 15 was considered a complete blocker of ultraviolet radiation (UV). The logic behind that cutoff point was that sunscreens with this SPF number would always prevent erythema and that preventing erythema would prevent all the ill effects of UV exposure. Today, we know that both of these assumptions were wrong and we tend to recommend higher SPF. Consumers apply only about one-quarter to one-half thickness of the layer of sunscreen material used to measure the SPF in the laboratory. That means that less than 50% of the SPF number claimed on the label is spread on the consumer's skin, meaning that a sunscreen with an SPF 30 will give the real protection of an SPF of 15. Therefore, recommend 60 when you want a real protection of 30! Significant injury, DNA damage, mutations, and carcinogenesis can and do occur also with cumulative suberythemal UV exposure. Thus, erythema induction, a criterion that defines SPF, is not a good indicator of UV damage. We also need higher SPF values to prevent the damage caused by suberythemal doses of UV. The value of the SPF claimed on the label is diminished by environmental factors that are not taken into account during SPF measurements in the laboratory, such as sweating, water immersion, rubbing off, and photodegradation. There are some misunderstandings and confusion about the mode of action of physical sunscreens. It was originally considered that, in contrast to organic sunscreens, the inorganic metal oxides (zinc oxide and titanium dioxide) acted as scatterers or reflectors of UV light, as a mirror. This is not the case with modern micronized forms of metal oxides. It has been shown that both zinc oxide and titanium dioxide mobilize electrons within their atomic structure while absorbing UV radiation. Thus, although metallic oxides are not inert per se, in their coated form they are stable, non-toxic, and safe and they act as highly efficient UV attenuators. Therefore, we recommend our patients to use this type of sunscreens. We should exert all our influence upon our patients not to expose themselves to excessive sunlight, to routinely use generous layers of sunscreen agents, and to wear protective clothing. To wait for the dust to settle around the issue of the effectiveness of sunscreens in preventing melanoma, while the ideal sunscreens--topical, systemic, whatever--are at our disposal, is a luxury we cannot afford.

  5. DSCOVR_EPIC_L2_AER_01

    Atmospheric Science Data Center

    2018-04-23

    DSCOVR_EPIC_L2_AER_01 The Aerosol UV product provides aerosol and UV products in three tiers. Tier 1 products include Absorbing Aerosol Index (AAI) and above-cloud-aerosol optical depth (ACAOD). Tier 2 ...

  6. Intercalation of anionic organic ultraviolet ray absorbers into layered zinc hydroxide nitrate.

    PubMed

    Cursino, Ana Cristina Trindade; Gardolinski, José Eduardo Ferreira da Costa; Wypych, Fernando

    2010-07-01

    Layered zinc hydroxide nitrate (ZHN) was synthesized and nitrate ions were topotactically exchanged with three different anionic species of commercial organic ultraviolet (UV) ray absorbers: 2-mercaptobenzoic acid, 2-aminobenzoic acid, and 4-aminobenzoic acid. The exchange reactions were confirmed by X-ray powder diffraction (XRPD), Fourier transform infrared spectroscopy (FTIR), ultraviolet visible (UV-Vis) spectroscopy, and thermal analysis (thermogravimetry, TGA, and differential thermal analysis, DTA). In all the anionic exchanged products, evidence of grafting of the organic species onto the inorganic matrix was obtained. In general, after intercalation/grafting, the UV absorption ability was improved in relation to the use of the parent organic material, showing that layered hydroxide salts (LHS) can be good alternative matrixes for the immobilization of organic species with UV-blocking properties in cosmetic products. Copyright 2010 Elsevier Inc. All rights reserved.

  7. Long-term solar UV radiation reconstructed by ANN modelling with emphasis on spatial characteristics of input data

    NASA Astrophysics Data System (ADS)

    Feister, U.; Junk, J.; Woldt, M.; Bais, A.; Helbig, A.; Janouch, M.; Josefsson, W.; Kazantzidis, A.; Lindfors, A.; den Outer, P. N.; Slaper, H.

    2008-06-01

    Artificial Neural Networks (ANN) are efficient tools to derive solar UV radiation from measured meteorological parameters such as global radiation, aerosol optical depths and atmospheric column ozone. The ANN model has been tested with different combinations of data from the two sites Potsdam and Lindenberg, and used to reconstruct solar UV radiation at eight European sites by more than 100 years into the past. Special emphasis will be given to the discussion of small-scale characteristics of input data to the ANN model. Annual totals of UV radiation derived from reconstructed daily UV values reflect interannual variations and long-term patterns that are compatible with variabilities and changes of measured input data, in particular global dimming by about 1980/1990, subsequent global brightening, volcanic eruption effects such as that of Mt. Pinatubo, and the long-term ozone decline since the 1970s. Patterns of annual erythemal UV radiation are very similar at sites located at latitudes close to each other, but different patterns occur between UV radiation at sites in different latitude regions.

  8. Photophysics of sunscreen molecules in the gas phase: a stepwise approach towards understanding and developing next-generation sunscreens

    PubMed Central

    Rodrigues, Natércia D. N.; Staniforth, Michael

    2016-01-01

    The relationship between exposure to ultraviolet (UV) radiation and skin cancer urges the need for extra photoprotection, which is presently provided by widespread commercially available sunscreen lotions. Apart from having a large absorption cross section in the UVA and UVB regions of the electromagnetic spectrum, the chemical absorbers in these photoprotective products should also be able to dissipate the excess energy in a safe way, i.e. without releasing photoproducts or inducing any further, harmful, photochemistry. While sunscreens are tested for both their photoprotective capability and dermatological compatibility, phenomena occurring at the molecular level upon absorption of UV radiation are largely overlooked. To date, there is only a limited amount of information regarding the photochemistry and photophysics of these sunscreen molecules. However, a thorough understanding of the intrinsic mechanisms by which popular sunscreen molecular constituents dissipate excess energy has the potential to aid in the design of more efficient, safer sunscreens. In this review, we explore the potential of using gas-phase frequency- and time-resolved spectroscopies in an effort to better understand the photoinduced excited-state dynamics, or photodynamics, of sunscreen molecules. Complementary computational studies are also briefly discussed. Finally, the future outlook of expanding these gas-phase studies into the solution phase is considered. PMID:27956888

  9. Photophysics of sunscreen molecules in the gas phase: a stepwise approach towards understanding and developing next-generation sunscreens

    NASA Astrophysics Data System (ADS)

    Rodrigues, Natércia D. N.; Staniforth, Michael; Stavros, Vasilios G.

    2016-11-01

    The relationship between exposure to ultraviolet (UV) radiation and skin cancer urges the need for extra photoprotection, which is presently provided by widespread commercially available sunscreen lotions. Apart from having a large absorption cross section in the UVA and UVB regions of the electromagnetic spectrum, the chemical absorbers in these photoprotective products should also be able to dissipate the excess energy in a safe way, i.e. without releasing photoproducts or inducing any further, harmful, photochemistry. While sunscreens are tested for both their photoprotective capability and dermatological compatibility, phenomena occurring at the molecular level upon absorption of UV radiation are largely overlooked. To date, there is only a limited amount of information regarding the photochemistry and photophysics of these sunscreen molecules. However, a thorough understanding of the intrinsic mechanisms by which popular sunscreen molecular constituents dissipate excess energy has the potential to aid in the design of more efficient, safer sunscreens. In this review, we explore the potential of using gas-phase frequency- and time-resolved spectroscopies in an effort to better understand the photoinduced excited-state dynamics, or photodynamics, of sunscreen molecules. Complementary computational studies are also briefly discussed. Finally, the future outlook of expanding these gas-phase studies into the solution phase is considered.

  10. Response of growth and photosynthesis of Emiliania huxleyi to visible and UV irradiances under different light regimes.

    PubMed

    Xing, Tao; Gao, Kunshan; Beardall, John

    2015-01-01

    Microalgae are capable of acclimating to changes in light and ultraviolet radiation (UVR, 280-400 nm). However, little is known about how the ecologically important coccolithophore Emiliania huxleyi responds to UVR when acclimated to different light regimes. Here, we grew E. huxleyi under indoor constant light or fluctuating sunlight with or without UVR, and investigated its growth, photosynthetic performance and pigmentation. Under the indoor constant light regime, the specific growth rate (μ) was highest, while fluctuating outdoor solar radiation significantly decreased the growth rate. Addition of UVR further decreased the growth rate. The repair rate of photosystem II (PSII), as reflected in changes in PSII quantum yield, showed an inverse correlation with growth rate. Cells grown under the indoor constant light regime exhibited the lowest repair rate, while cells from the outdoor fluctuating light regimes significantly increased their repair rate. Addition of UVR increased both the repair rate and intracellular UV-absorbing compounds. This increased repair capability, at the cost of decreased growth rate, persisted after the cells were transferred back to the indoor again, suggesting an enhanced allocation of energy and resources for repair of photosynthetic machinery damage by solar UVR which persisted for a period after transfer from solar UVR. © 2014 The American Society of Photobiology.

  11. UV-B radiation and photosynthetic irradiance acclimate eggplant for outdoor exposure

    NASA Technical Reports Server (NTRS)

    Latimer, J. G.; Mitchell, C. A.; Mitchell, G. A.

    1987-01-01

    Treatment of greenhouse-grown eggplant (Solanum melongena L. var. esculentum Nees. 'Burpee's Black Beauty') seedlings with supplemental photosynthetically active radiation from cool-white fluorescent lamps increased growth of plants subsequently transferred outdoors relative to growth of plants that received no supplemental radiation or were shaded to 45% of solar irradiation in the greenhouse before transfer outdoors. Eggplant seedlings transferred outdoors were placed under plastic tarps either to provide relative protection from solar ultraviolet-B (UV-B) radiation (280-315 nm) using Mylar film or to allow exposure to UV-B using cellulose acetate. Protection of seedlings from UV-B radiation resulted in greater leaf expansion than for UV-B-exposed seedlings, but no change in leaf or shoot dry weight occurred after 9 days of treatment. Specific leaf weight increased in response to UV-B exposure outdoors. Exposure of eggplant to UV-B radiation from fluorescent sunlamps in the greenhouse also decreased leaf expansion and leaf and shoot dry weight gain after 5 days of treatment. However, there were no differences in leaf or shoot dry weight relative to control plants after 12 days of UV-B treatment, indicating that UV-B treated plants had acclimated to the treatment and actually had caught up with non-UV-B-irradiated plants in terms of growth.

  12. Biological dosimetry to determine the UV radiation climate inside the MIR station and its role in vitamin D biosynthesis

    NASA Astrophysics Data System (ADS)

    Rettberg, P.; Horneck, G.; Zittermann, A.; Heer, M.

    1998-11-01

    The vitamin D synthesis in the human skin, is absolutely dependent on UVB radiation. Natural UVB from sunlight is normally absent in the closed environment of a space station like MIR. Therefore it was necessary to investigate the UV radiation climate inside the station resulting from different lamps as well as from occasional solar irradiation behind a UV-transparent quartz window. Biofilms, biologically weighting and integrating UV dosimeters successfully applied on Earth (e.g. in Antarctica) and in space (D-2, Biopan I) were used to determine the biological effectiveness of the UV radiation climate at different locations in the space station. Biofilms were also used to determine the personal UV dose of an individual cosmonaut. These UV data were correlated with the concentration of vitamin D in the cosmonaut's blood and the dietary vitamin D intake. The results showed that the UV radiation climate inside the Mir station is not sufficient for an adequate supply of vitamin D, which should therefore be secured either by vitamin D supplementat and/or by the regular exposure to special UV lamps like those in sun-beds. The use of natural solar UV radiation through the quartz window for `sunbathing' is dangerous and should be avoided even for short exposure periods.

  13. UV-B radiation and photosynthetic irradiance acclimate eggplant for outdoor exposure.

    PubMed

    Latimer, J G; Mitchell, C A; Mitchell, G A

    1987-06-01

    Treatment of greenhouse-grown eggplant (Solanum melongena L. var. esculentum Nees. 'Burpee's Black Beauty') seedlings with supplemental photosynthetically active radiation from cool-white fluorescent lamps increased growth of plants subsequently transferred outdoors relative to growth of plants that received no supplemental radiation or were shaded to 45% of solar irradiation in the greenhouse before transfer outdoors. Eggplant seedlings transferred outdoors were placed under plastic tarps either to provide relative protection from solar ultraviolet-B (UV-B) radiation (280-315 nm) using Mylar film or to allow exposure to UV-B using cellulose acetate. Protection of seedlings from UV-B radiation resulted in greater leaf expansion than for UV-B-exposed seedlings, but no change in leaf or shoot dry weight occurred after 9 days of treatment. Specific leaf weight increased in response to UV-B exposure outdoors. Exposure of eggplant to UV-B radiation from fluorescent sunlamps in the greenhouse also decreased leaf expansion and leaf and shoot dry weight gain after 5 days of treatment. However, there were no differences in leaf or shoot dry weight relative to control plants after 12 days of UV-B treatment, indicating that UV-B treated plants had acclimated to the treatment and actually had caught up with non-UV-B-irradiated plants in terms of growth.

  14. UV-B radiation-induced oxidative stress and p38 signaling pathway involvement in the benthic copepod Tigriopus japonicus.

    PubMed

    Kim, Bo-Mi; Rhee, Jae-Sung; Lee, Kyun-Woo; Kim, Min-Jung; Shin, Kyung-Hoon; Lee, Su-Jae; Lee, Young-Mi; Lee, Jae-Seong

    2015-01-01

    Ultraviolet B (UV-B) radiation presents an environmental hazard to aquatic organisms. To understand the molecular responses of the intertidal copepod Tigriopus japonicus to UV-B radiation, we measured the acute toxicity response to 96 h of UV-B radiation, and we also assessed the intracellular reactive oxygen species (ROS) levels, glutathione (GSH) content, and antioxidant enzyme (GST, GR, GPx, and SOD) activities after 24 h of exposure to UV-B with LD50 and half LD50 values. Also, expression patterns of p53 and hsp gene families with phosphorylation of p38 MAPK were investigated in UV-B-exposed copepods. We found that the ROS level, GSH content, and antioxidant enzyme activity levels were increased with the transcriptional upregulation of antioxidant-related genes, indicating that UV-B induces oxidative stress by generating ROS and stimulating antioxidant enzymatic activity as a defense mechanism. Additionally, we found that p53 expression was significantly increased after UV-B irradiation due to increases in the phosphorylation of the stress-responsive p38 MAPK, indicating that UV-B may be responsible for inducing DNA damage in T. japonicus. Of the hsp family genes, transcriptional levels of hsp20, hsp20.7, hsp70, and hsp90 were elevated in response to a low dose of UV-B radiation (9 kJ m(-2)), suggesting that these hsp genes may be involved in cellular protection against UV-B radiation. In this paper, we performed a pathway-oriented mechanistic analysis in response to UV-B radiation, and this analysis provides a better understanding of the effects of UV-B in the intertidal benthic copepod T. japonicus. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Degradation mechanisms of gamma irradiated LWIR HgCdTe photovoltaic detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarusi, G.; Eger, D.; Zemel, A.

    1990-12-01

    Planar n{sup +}p Hg{sub 1{minus}x}Cd{sub x}Te (x = 0.23) photodiodes passivated with ZnS were irradiated by Co{sup 60} gamma source. A strong increase in the reverse dark current was observed for doses above 0.3 Mrad(air). A similar effect was found by exposing the photodiodes to U.V illumination from a high pressure mercury lamp. By filtering the U.V light it is shown that the degradation in the performance of the photodiodes is caused by the light or radiation absorbed in the ZnS layer above the implanted n-type region. C-V measurements of irradiated MIS devices showed a significant increase in the fastmore » surface state density. Galvanomagnetic and lifetime measurements made on irradiated p-type HgCdTe layer showed no significant changes in the bulk transport parameters. Based on these findings, a model for the degradation mechanism is proposed.« less

  16. Structural-modification mechanism for polyimide-doped poly(tetrafluoroethylene)at subthreshold fluences using 248 nm radiation

    NASA Astrophysics Data System (ADS)

    Davis, C. R.; Snyder, R. W.; Egitto, F. D.; D'Couto, G. C.; Babu, S. V.

    1994-09-01

    Single-photon excimer laser ablation of neat poly(tetrafluoroethylene) (PTFE) is not observed at emissions in the 'quartz' UV, i.e., from about 190-380 nm. However, it has been successfully demonstrated that, when the fluoropolymer is doped with small quantities of polyimide (PI), ablation in the quartz UV, e.g., at 248 and 308 nm and pulse widths of about 25 ns, is readily achieved. When PI-PTFE blends are exposed to subthreshold fluences, considerable changes in surface topography occur although clearly defined structures, e.g., pits, are not formed. Using photoacoustic infrared spectroscopy to evaluate surface and bulk chemical changes to blends exposed to subthreshold excimer laser fluences, is less than 100 mJ/sq cm, it is shown that PI (1) is distributed throughout the bulk and resides at the surface and (2) is selectively absorbing the high-energy photons and as a result being preferentially removed from the surface.

  17. Fibers based on polyethylene with silicon and silicon carbide nanoparticles

    NASA Astrophysics Data System (ADS)

    Olkhov, A. A.; Krutikova, A. A.; Kovaleva, A. N.; Rychagov, O. V.; Ischenko, A. A.

    2017-12-01

    In the paper, fibrous materials based on polyethylene with nanosized silicon and silicon carbide obtained by the plasma chemical method have been obtained. The concentration of nanosilicon nanoparticles was 0.1-1.5%. Fibers absorb UV radiation in the range 200-400 nm. The size of silicon nanoparticles and dispersion in fibers are estimated by X-ray diffraction. It is shown that silicon nanoparticles exert no effect on the formation of the internal structure of the PE matrix. The degree of crystallinity, melting and crystallization temperatures remain constant. The surface properties of films are investigated by triboelectric methods and by determining the wetting angle. The surface properties of composite films do not differ from the properties of PE films with the concentration of nanoparticles from 0.1 to 1.0%. At a 1.5% content of n-SiC, the microrelief of the surface changes, and the friction coefficient of the films increases. The resulting films are recommended for application as a UV protective coating.

  18. UV RADIATION EFFECTS ON MICROBES AND MICROBIAL PROCESSES

    EPA Science Inventory

    The ultraviolet (UV) region of solar radiation is defined as wavelengths in the range of 200 to 400 nm. In contrast to visible radiation (400 - 800 nm), which has a well-defined role as the energy source for most of the Earth's primary production, the effects of UV radiation on b...

  19. ULTRAVIOLET PROTECTIVE PIGMENTS AND DNA DIMER INDUCTION AS RESPONSES TO ULTRAVIOLET RADIATION

    EPA Science Inventory

    Life on Earth has evolved adaptations to many environmental stresses over the epochs. One consistent stress has been exposure to ultraviolet (UV) radiation. The most basic effect of UV radiation on biological systems is damage to DNA. In response to UV radiation organisms have ad...

  20. The "Mars-Sun Connection" and the Impact of Solar Variability on Mars Weather and Climate

    NASA Astrophysics Data System (ADS)

    Hassler, D. M.; Grinspoon, D.

    2004-05-01

    We develop the scientific case to measure simultaneously the UV and near-UV solar irradiance incident on the Mars atmosphere and at the Martian surface, to explore the effects and influence of Solar variability and "Space Weather" on Mars weather and climate, its implications for life, and the implications for astronaut safety on future manned Mars missions. The UV flux at the Martian surface is expected to be highly variable, due to diurnal, daily, and seasonal variations in opacity of atmospheric dust and clouds, as well as diurnal and seasonal variations in ozone, water vapor and other absorbing species. This flux has been modeled (Kuhn and Atreya, 1979), but never measured directly from the Martian surface. By directly observing the UV and near UV solar irradiance both at the top of the atmosphere and at the Martian surface we will be able to directly constrain important model parameters necessary to understand the variations of atmospheric dynamics which drive both Mars weather and climate. Directly measuring the solar UV radiation incident upon the Mars atmosphere and at the Martian surface also has important implications for astronaut safety on future manned Mars missions. The flux at the surface of Mars at 250 nm is also believed to be approximately 3000 times greater than that on Earth. This presents potential hazards to future human explorers as well as challenges for future agriculture such as may be carried out in surface greenhouses to provide food for human colonists. A better understanding of the surface flux will aid in designing appropriate protection against these hazards.

  1. The ``Mars-Sun Connection" and the Impact of Solar Variability on Mars Weather and Climate

    NASA Astrophysics Data System (ADS)

    Hassler, D. M.; Grinspoon, D. H.

    2003-05-01

    We develop the scientific case to measure simultaneously the UV and near-UV solar irradiance incident on the Mars atmosphere and at the Martian surface, to explore the effects and influence of Solar variability and ``Space Weather" on Mars weather and climate, its implications for life, and the implications for astronaut safety on future manned Mars missions. The UV flux at the Martian surface is expected to be highly variable, due to diurnal, daily, and seasonal variations in opacity of atmospheric dust and clouds, as well as diurnal and seasonal variations in ozone, water vapor and other absorbing species. This flux has been modeled (Kuhn and Atreya, 1979), but never measured directly from the Martian surface. By directly observing the UV and near UV solar irradiance both at the top of the atmosphere and at the Martian surface we will be able to directly constrain important model parameters necessary to understand the variations of atmospheric dynamics which drive both Mars weather and climate. Directly measuring the solar UV radiation incident upon the Mars atmosphere and at the Martian surface also has important implications for astronaut safety on future manned Mars missions. The flux at the surface of Mars at 250 nm is also believed to be approximately 3000 times greater than that on Earth. This presents potential hazards to future human explorers as well as challenges for future agriculture such as may be carried out in surface greenhouses to provide food for human colonists. A better understanding of the surface flux will aid in designing appropriate protection against these hazards.

  2. The protective roles of TiO2 nanoparticles against UV-B toxicity in Daphnia magna.

    PubMed

    Liu, Jie; Wang, Wen-Xiong

    2017-09-01

    Aquatic environments are increasingly under environmental stress due to ultraviolet (UV) radiation and potential inputs of nanoparticles with intense application of nanotechnology. In this study, we investigated the interaction between UV-B radiation and titanium nanoparticles (TiO 2 -NPs) in a model freshwater cladoceran Daphnia magna. UV-B toxicity to Daphnia magna was examined when the daphnids were exposed to a range of TiO 2 -NPs concentrations with an initial 5 or 10min of 200μW/cm 2 UV-B radiation. In addition, UV-B toxicity was also examined in the presence of TiO 2 -NPs in the body of daphnids. Our results demonstrated that the daphnid mortality under UV-B radiation decreased significantly in the presence of TiO 2 -NPs both in the water and in the body, indicating that TiO 2 -NPs had some protective effects on D. magna against UV-B. Such protective effect was mainly caused by the blockage of UV-B by TiO 2 -NPs adsorption. UV-B produced reactive oxygen species (ROS) in the water and in the daphnids, which was not sufficient to cause mortality of daphnids over short periods of radiation. Previous studies focused on the effects of TiO 2 -NPs on the toxicity of total UV radiation, and did not attempt to differentiate the potential diverse roles of UV-A and UV-B. Our study indicated that TiO 2 -NPs may conversely protect the UV-B toxicity to daphnids. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Conidia survival of Aspergillus section Nigri, Flavi and Circumdati under UV-A and UV-B radiation with cycling temperature/light regime.

    PubMed

    García-Cela, Maria Esther; Marín, Sonia; Reyes, Monica; Sanchis, Vicent; Ramos, Antonio J

    2016-04-01

    Bio-geographical differences in fungal infection distribution have been observed around the world, confirming that climatic conditions are decisive in colonization. This research is focused on the impact of ultraviolet radiation (UV) on Aspergillus species, based on the consideration that an increase in UV-B radiation may have large ecological effects. Conidia of six mycotoxigenic Aspergillus species isolated from vineyards located in the northeast and south of Spain were incubated for 15 days under light/dark cycles and temperatures between 20 and 30 °C per day. Additionally, 6 h of exposure to UV-A or UV-B radiation per day were included in the light exposure. UV irradiance used were 1.7 ± 0.2 mW cm(-2) of UV-A (peak 365 nm) and 0.10 ± 0.2 mW cm(-2) of UV-B (peak 312 nm). The intrinsic decrease in viability of conidia over time was accentuated when they were UV irradiated. UV-B radiation was more harmful. Conidial sensitivity to UV light was marked in Aspergillus section Circumdati. Conidia pigmentation could be related to UV sensitivity. Different resistance was observed within species belonging to sections Flavi and Nigri. An increase in UV radiation could lead to a reduction in the Aspergillus spp. inoculum present in the field (vineyards, nuts, cereal crops). In addition, it could unbalance the spore species present in the field, leading to a higher predominance of dark-pigmented conidia. © 2015 Society of Chemical Industry.

  4. Increased exposure to UV-B radiation during early development leads to enhanced photoprotection and improved long-term performance in Lactuca sativa.

    PubMed

    Wargent, Jason J; Elfadly, Eslam M; Moore, Jason P; Paul, Nigel D

    2011-08-01

    Plant responses to solar UV radiation are numerous and have often been considered from a perspective of negative outcomes for plant productivity. In this study, we used two experimental approaches consisting of: (1) field-based spectrally modifying filters in addition to (2) controlled indoor exposure to UV-B, to examine the effects of UV radiation on growth and photosynthetic performance of lettuce (Lactuca sativa L.) seedlings. Various aspects of growth were affected in plants grown under a UV-inclusive environment compared to a UV-depleted environment, including reductions in leaf expansion, increases in leaf thickness and the rate of net photosynthesis. After transplantation to a uniform field environment, lettuce plants initially propagated under the UV-inclusive environment exhibited higher harvestable yields than those from a UV-depleted environment. In controlled conditions, photosynthetic rates were higher in plants grown in the presence of UV-B radiation, and relative growth of plants pre-acclimatized to UV-B was also increased, in addition to higher maximum photochemical efficiency of photosystem II (PSII) (F(v) /F(m) ) following subsequent exposure to high photosynthetically active radiation (PAR) and temperature stress. Our findings are discussed within the context of sustainability in agriculture and the paradigm shift in photobiology which such beneficial responses to UV radiation could represent. © 2011 Blackwell Publishing Ltd.

  5. Can we use the ozone response in a CCM to say which solar spectral irradiance is most likely correct?

    NASA Astrophysics Data System (ADS)

    Ball, William; Rozanov, Eugene; Shapiro, Anna

    2015-04-01

    Ozone plays a key role in the temperature structure of the Earth's atmosphere and absorbs damaging ultraviolet (UV) solar radiation. Evidence suggests that variations in stratospheric ozone resulting from changes in solar UV output may have an important role to play in weather over the North Atlantic and Europe on decadal timescales through a "top-down" coupling with the troposphere. However, the magnitude of the stratospheric response to the Sun over the 11-year solar cycle (SC) depends primarily on how much the UV changes. SC UV changes differ significantly between different observational instruments and the observations and models. The substantial disagreements between existing SSI datasets lead to different atmospheric responses when they are used in climate models and, therefore, we still cannot fully understand and simulate the ozone variability. We use the SOCOL chemistry-climate model, in specified dynamics mode, to calculate the atmospheric response from using different spectral irradiance from the SATIRE-S and NRLSSI models and with SORCE observations and a constant Sun. We compare the ozone and hydroxl results from these runs with observations to try to determine which SSI dataset is most likely to be correct. This is important to get a better understanding of which SSI dataset should be used in climate modelling and what magnitude of UV variability the Sun has. This will lead to a better understanding of the Sun's influence upon our climate and weather.

  6. A new biocompatible nanocomposite as a promising constituent of sunscreens.

    PubMed

    Amin, Rehab M; Elfeky, Souad A; Verwanger, Thomas; Krammer, Barbara

    2016-06-01

    Skin naturally uses antioxidants to protect itself from the damaging effects of sunlight. If this is not sufficient, other measures have to be taken. Like this, hydroxyapatite has the potential to be applied as an active constituent of sunscreens since calcium phosphate absorbs in the ultraviolet region (UV). The objective of the present work was to synthesize a hydroxyapatite-ascorbic acid nanocomposite (HAp/AA-NC) as a new biocompatible constituent of sunscreens and to test its efficiency with skin cell models. The synthesized HAp/AA-NC was characterized by Fourier transform infrared spectroscopy, transmission electron microscopy, absorption spectrophotometry and X-ray diffraction analysis. The protective effect of the construct was tested with respect to viability and intracellular reactive oxygen species (ROS) generation of primary human dermal fibroblasts (SKIN) and human epidermal keratinocytes (HaCaT). Both cell lines were irradiated with UV light, λmax=254 nm with a fluence of 25 mJ cm(-2) to mimic the effect of UV radiation of sunlight on the skin. Results showed that HAp/AA-NC had a stimulating effect on the cell viability of both, HaCaT and SKIN cells, relative to the irradiated control. Intracellular ROS significantly decreased in UV irradiated cells when treated with HAp/AA-NC. We conclude that the synthesized HAp/AA-NC have been validated in vitro as a skin protector against the harmful effect of UV-induced ROS. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. A Fast Hyperspectral Vector Radiative Transfer Model in UV to IR spectral bands

    NASA Astrophysics Data System (ADS)

    Ding, J.; Yang, P.; Sun, B.; Kattawar, G. W.; Platnick, S. E.; Meyer, K.; Wang, C.

    2016-12-01

    We develop a fast hyperspectral vector radiative transfer model with a spectral range from UV to IR with 5 nm resolutions. This model can simulate top of the atmosphere (TOA) diffuse radiance and polarized reflectance by considering gas absorption, Rayleigh scattering, and aerosol and cloud scattering. The absorption component considers several major atmospheric absorbers such as water vapor, CO2, O3, and O2 including both line and continuum absorptions. A regression-based method is used to parameterize the layer effective optical thickness for each gas, which substantially increases the computation efficiency for absorption while maintaining high accuracy. This method is over 500 times faster than the existing line-by-line method. The scattering component uses the successive order of scattering (SOS) method. For Rayleigh scattering, convergence is fast due to the small optical thickness of atmospheric gases. For cloud and aerosol layers, a small-angle approximation method is used in SOS calculations. The scattering process is divided into two parts, a forward part and a diffuse part. The scattering in the small-angle range in the forward direction is approximated as forward scattering. A cloud or aerosol layer is divided into thin layers. As the ray propagates through each thin layer, a portion diverges as diffuse radiation, while the remainder continues propagating in forward direction. The computed diffuse radiance is the sum of all of the diffuse parts. The small-angle approximation makes the SOS calculation converge rapidly even in a thick cloud layer.

  8. Apigenin prevents ultraviolet-B radiation induced cyclobutane pyrimidine dimers formation in human dermal fibroblasts.

    PubMed

    Britto, S Mary; Shanthakumari, D; Agilan, B; Radhiga, T; Kanimozhi, G; Prasad, N Rajendra

    2017-09-01

    Exposure to solar ultraviolet-B (UVB) radiation leads to the formation of cyclobutane pyrimidine dimers (CPDs). We investigated the protective effect of apigenin against UVB-induced CPDs formation in human dermal fibroblasts cells (HDFa). For this purpose, HDFa cells were treated with apigenin (15μM) prior to UVB irradiation (20mJ/cm 2 ); DNA damage and subsequent molecular end points were observed. Exposure to UVB radiation increased significant CPDs formation in HDFa cells and the frequencies of CPDs were reduced by treatment with apigenin (15μM). UVB-induced CPDs downregulates the expression of nucleotide excision repair (NER) genes such as xeroderma pigmentosum complementation group C, B, G and F (XPC, XPB, XPG and XPF), transcription factor II human (TFIIH) and excision repair cross-complementation group 1 (ERCC1) in HDFa cells. Conversely, apigenin treatment restored UVB-induced loss of NER proteins in HDFa cells, which indicates its preventive effect against CPDs formation. Besides, single low dose UVB-exposure induced nuclear fragmentation, apoptotic frequency and apoptotic proteins expression (Bax and Caspase-3) have been prevented by the apigenin pretreatment. Furthermore, apigenin exhibits strong UV absorbance property and showed 10.08 SPF value. Thus, apigenin can protect skin cells against UVB-induced CPDs formation probably through its sunscreen effect. Hence, apigenin can be considered as an effective protective agent against UV induced skin damages. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Natural organic matters removal efficiency by coagulation

    NASA Astrophysics Data System (ADS)

    Sapingi, Mohd Sharizal Mohd; Pishal, Munirah; Murshed, Mohamad Fared

    2017-10-01

    The presence of Natural Organic Matter (NOM) in surface water results in unwanted characteristics in terms of color, odor, and taste. NOM content reaction with free chlorine in treated water lowers the water quality further. Chlorine is added for disinfection and produces undesirable disinfection by-products (DPBs). DBPs in drinking water are carcinogenic to consumers and may promote cancerous cell development in the human body. This study was performed to compare the coagulant efficiency of aluminum sulfate (Alum) and ferric chloride (FeCl3) on NOM removal (as in UV254 absorbance) and turbidity removal under three pH conditions (pH 6, pH 7, and sample actual pH). The three sampling points for these studies were Jalan Baru River, Kerian River, and Redac Pond. Additional sampling points, such as Lubuk Buntar and a tubewell located in the Civil Engineering School, were included to observe differences in characteristics. DOC, UV absorbance, and full wavelength were tested, after which samples treated with alum were also tested to further analyze the NOM content. Based on UV254 absorbance and DOC data, specific UV value was calculated to obtain vital synopsis of the characteristics of NOM content, as well as coagulation efficiency.

  10. [Effects of silicon supply on diurnal variations of physiological properties at rice heading stage under elevated UV-B radiation].

    PubMed

    Wu, Lei; Lou, Yun-sheng; Meng, Yan; Wang, Wei-qing; Cui, He-yang

    2015-01-01

    A pot experiment was conducted to investigate the effects of silicon (Si) supply on diurnal variations of photosynthesis and transpiration-related physiological parameters at rice heading stage under elevated UV-B radiation. The experiment was designed with two UV-B radiation levels, i.e. ambient UV-B. (ambient, A) and elevated UV-B (elevated by 20%, E), and four Si supply levels, i.e. Sio (control, 0 kg SiO2 . hm-2), Si, (sodium silicate, 100 kg SiO2 . hm-2), Si2 (sodium silicate, 200 kg SiO2 . hm2), Si3 (slag fertilizer, 200 kg SiO2 . hm-2). The results showed that, compared with ambient UV-B radiation, elevated UV-B radiation decreased the net photosynthesis rate (Pn) , intercellular CO2 concentration (Ci), transpiration rate (Tr), stomatal conductivity (gs) and water use efficiency (WUE) by 11.3%, 5.5%, 10.4%, 20.3% and 6.3%, respectively, in the treatment without Si supply (Si, level), and decreased the above parameters by 3.8%-5.5%, 0.7%-4.8%, 4.0%-8.7%, 7.4%-20.2% and 0.7%-5.9% in the treatments with Si supply (Si1, Si2 and Si3 levels) , respectively. Namely, elevated UV-B radiation decreased the photosynthesis and transpiration-related physiological parameters, but silicon supply could obviously mitigate the depressive effects of elevated UV-B radiation. Under elevated UV-B radiation, compared with control (Si0 level), silicon supply increased Pn, Ci, gs and WUE by 16.9%-28.0%, 3.5%-14.3%, 16.8% - 38.7% and 29.0% - 51.2%, respectively, but decreased Tr by 1.9% - 10.8% in the treatments with Si supply (Si1 , Si2 and Si3 levels). That is, silicon supply could mitigate the depressive effects of elevated UV-B radiation through significantly increasingnP., CigsgK and WUE, but decreasing T,. However, the difference existed in ameliorating the depressive effects of elevated UV-B radiation on diurnal variations of physiological parameters among the treatments of silicon supply, with the sequence of Si3>Si2>1i >Si0. This study suggested that fertilizing slag was helpful not only in recycling industrial wastes, but also in effectively mitigating the depressive effects of elevated UV-B radiation on photosynthesis and transpiration in rice production.

  11. Ultraviolet damage to the eye revisited: eye-sun protection factor (E-SPF®), a new ultraviolet protection label for eyewear.

    PubMed

    Behar-Cohen, Francine; Baillet, Gilles; de Ayguavives, Tito; Garcia, Paula Ortega; Krutmann, Jean; Peña-García, Pablo; Reme, Charlotte; Wolffsohn, James S

    2014-01-01

    Ultraviolet (UV) radiation potentially damages the skin, the immune system, and structures of the eye. A useful UV sun protection for the skin has been established. Since a remarkable body of evidence shows an association between UV radiation and damage to structures of the eye, eye protection is important, but a reliable and practical tool to assess and compare the UV-protective properties of lenses has been lacking. Among the general lay public, misconceptions on eye-sun protection have been identified. For example, sun protection is mainly ascribed to sunglasses, but less so to clear lenses. Skin malignancies in the periorbital region are frequent, but usual topical skin protection does not include the lids. Recent research utilized exact dosimetry and demonstrated relevant differences in UV burden to the eye and skin at a given ambient irradiation. Chronic UV effects on the cornea and lens are cumulative, so effective UV protection of the eyes is important for all age groups and should be used systematically. Protection of children's eyes is especially important, because UV transmittance is higher at a very young age, allowing higher levels of UV radiation to reach the crystalline lens and even the retina. Sunglasses as well as clear lenses (plano and prescription) effectively reduce transmittance of UV radiation. However, an important share of the UV burden to the eye is explained by back reflection of radiation from lenses to the eye. UV radiation incident from an angle of 135°-150° behind a lens wearer is reflected from the back side of lenses. The usual antireflective coatings considerably increase reflection of UV radiation. To provide reliable labeling of the protective potential of lenses, an eye-sun protection factor (E-SPF®) has been developed. It integrates UV transmission as well as UV reflectance of lenses. The E-SPF® compares well with established skin-sun protection factors and provides clear messages to eye health care providers and to lay consumers.

  12. Interactive effects of elevated ozone and UV-B radiation on soil nematode diversity.

    PubMed

    Bao, Xuelian; Li, Qi; Hua, Jianfeng; Zhao, Tianhong; Liang, Wenju

    2014-01-01

    Ultraviolet-B (UV-B) radiation and elevated tropospheric ozone may cause reductions in the productivity and quality of important agricultural crops. However, research regarding their interactive effect is still scarce, especially on the belowground processes. Using the open top chambers experimental setup, we monitored the response of soil nematodes to the elevated O3 and UV-B radiation individually as well as in combination. Our results indicated that elevated O3 and UV-B radiation have impact not only on the belowground biomass of plants, but also on the community structure and functional diversity of soil nematodes. The canonical correspondence analysis suggested that soil pH, shoot biomass and microbial biomass C and N were relevant parameters that influencing soil nematode distribution. The interactive effects of elevated O3 and UV-B radiation was only observed on the abundance of bacterivores. UV-B radiation significantly increased the abundance of total nematodes and bacterivores in comparison with the control at pod-filling stage of soybean. Following elevated O3, nematode diversity index decreased and dominance index increased relative to the control at pod-filling stage of soybean. Nematode functional diversity showed response to the effects of elevated O3 and UV-B radiation at pod-bearing stage. Higher enrichment index and lower structure index in the treatment with both elevated O3 and UV-B radiation indicated a stressed soil condition and degraded soil food web. However, the ratios of nematode trophic groups suggested that the negative effects of elevated O3 on soil food web may be weakened by the UV-B radiations.

  13. Characterization of an Escherichia coli mutant (radB101) sensitive to. gamma. and uv radiation, and methyl methanesulfonate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sargentini, N.J.; Smith, K.C.

    1983-03-01

    After N-methyl-N'-nitro-N-nitrosoguanidine mutagenesis of Escherichia coli K-12 (xthA14), an X-ray-sensitive mutant was isolated. This sensitivity is due to a mutation, radB101, which is located at 56.5 min on the E.coli K-12 linkage map. The radB101 mutation sensitized wild-type cells to ..gamma.. and uv radiation, and to methyl methanesulfonate. When known DNA repair-deficient mutants were ranked for their ..gamma..-radiation sensitivity relative to their uv-radiation sensitivity, their order was (starting with the most selectively ..gamma..-radiation-sensitive strain): recB21, radB101, wild type, polA1, recF143, lexA101, recA56, uvrD3, and uvrA6. The radB mutant was normal for ..gamma..- and uv-radiation mutagenesis, it showed only a slightmore » enhancement of ..gamma..- and uv-radiation-induced DNA degradation, and it was approx. 60% deficient in recombination ability. The radB gene is suggested to play a role in the recA gene-dependent (Type III) repair of DNA single-strand breaks after ..gamma.. irradiation and in postreplication repair after uv irradiation for the following reasons: the radB strain was normal for the host-cell reactivation of ..gamma..- and uv-irradiated bacteriophage lambda; the radB mutation did not sensitize a recA strain, but did sensitize a polA strain to ..gamma.. and uv radiation; the radB mutation sensitized a uvrB strain to uv radiation.« less

  14. Dual-wavelength recording, a simple algorithm to eliminate interferences due to UV-absorbing substances in capillary electrophoresis.

    PubMed

    Seaux, Liesbeth; Van Houcke, Sofie; Dumoulin, Els; Fiers, Tom; Lecocq, Elke; Delanghe, Joris R

    2014-08-01

    Analytical interferences have been described due to the presence of various exogenous UV-absorbing substances in serum. Iodine-based X-ray contrast agents and various antibiotics have been reported to interfere with interpretation of serum protein pherograms, resulting in false diagnosis of paraproteinemia. In the present study, we have explored the possibility of measuring UV absorbance at two distinct wavelengths (210 and 246 nm) to distinguish between true and false paraproteins on a Helena V8 clinical electrophoresis instrument. This study demonstrates that most substances potentially interfering with serum protein electrophoresis show UV-absorption spectra that are distinct from those of serum proteins. Scanning at 246 nm allows detection of all described interfering agents. Comparing pherograms recorded at both wavelengths (210 and 246 nm) enables to distinguish paraproteins from UV-absorbing substances. In case of a true paraprotein, the peak with an electrophoretic mobility in the gamma-region decreases, whereas the X-ray contrast media and antibiotics show an increased absorption when compared to the basic setting (210 nm). The finding of iodine-containing contrast media interfering with serum protein electrophoresis is not uncommon. In a clinical series, interference induced by contrast media was reported in 54 cases (of 13 237 analyses), corresponding with a prevalence of 0.4%. In the same series, 1631 true paraproteins (12.3%) were detected. Implementation of the proposed algorithm may significantly improve the interpretation of routine electrophoresis results. However, attention should still be paid to possible interference due to presence of atypical proteins fractions (e.g., tumor markers, C3). © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Life and the solar uv environment on the early Earth

    NASA Astrophysics Data System (ADS)

    Bérces, A.; Kovács, G.; Rontó, G.; Lammer, H.; Kargl, G.; Kömle, N.; Bauer, S.

    2003-04-01

    The solar UV radiation environment on planetary surfaces and within their atmospheres is of importance in a wide range of scientific disciplines. Solar UV radiation is the driving force of chemical and organic evolution and serves also as a constraint in biological evolution. Studies of the solar UV environment of the early Earth 2.0 Gyr to 3.8 Gyr ago suggest that the terrestrial atmosphere was essentially anoxic, resulting in an ozone column abundance insufficient for protecting the planetary surface in the UV-B and the UV-C ranges. Since, short wavelength solar UV radiation in the UV-B ind UV-C range penetrated through the unprotected atmosphere to the surface on early Earth, associated biological consequences may be expected. For DNA-based terrestrial solar UV dosimetry, bacteriophage T7, isolated phage-DNA ind polycrystalline Uracil samples have been used. The effect of solar UV radiation can be measured by detecting the biological-structural consequences of the damage induced by UV photons. We show model calculations for the Biological Effective Dose (BED) rate of Uracil and bacteriophage T7, for various ozone concentrations representing early atmospheric conditions on Earth up to a UV protecting ozone layer comparable to present times. Further, we discuss experimental data which show the photo-reverse effect of Uracil molecules caused by short UV wavelengths. These photoreversion effect highly depend on the wavelength of the radiation. Shorter wavelength UV radiation of about 200 nm is strongly effective in monomerisation, while the longer wavelengths prefer the production of dimerisation. We could demonstrate experimentally, for the case of an Uracil thin-layer that the photo-reaction process of the nucleotides can be both, dimerization and the reverse process: monomerization. These results are important for the study of solar UV exposure on organisms in the terrestrial environment more than 2 Gyr ago where Earth had no UV protecting ozone layer as well as for the search for life on Mars since we can show that biological harmful effects can also be reduced by shorter wavelength UV radiation, which is of importance in reducing DNA damages provoked by wavelengths longer than about 240 nm.

  16. Factors that affect the EVA encapsulant discoloration rate upon accelerated exposure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pern, F.J.

    1994-12-31

    Several factors that may affect the net discoloration rate of the ethylene-vinyl acetate (EVA) copolymer encapsulants used in crystalline-Si photovoltaic (c-Si PV) modules upon accelerated exposure have been investigated by employing UV-visible spectrophotometry, spectrocolorimetry, and fluorescence analysis. A number of laminated films, including the two typical EVA formulations, A9918 and 15295, were studied. The results indicate that the rate of EVA discoloration is affected by the (1) curing agent and curing conditions; (2) presence and concentration of curing-generated, UV-excitable chromophores; (3) UV light intensity; (4) loss rate of the UV absorber, Cyasorb UV 531; (5) lamination; (6) film thickness; andmore » (7) photobleaching rate due to the diffusion of air into the laminated films. In general, the loss rate of the UV absorber and the rate of discoloration from light yellow to brown follow a sigmoidal pattern. A reasonable correlation for net changes in transmittance at 420 nm, yellowness index, and fluorescence peak area (or intensity) ratio is obtained as the extent of EVA discoloration progressed.« less

  17. UV controlling factors and trends derived from the ground-based measurements taken at Belsk, Poland, 1976-1994

    NASA Astrophysics Data System (ADS)

    KrzyśCin, Janusz W.

    1996-07-01

    Monthly means of UV erythemal dose at ground level from the Robertson-Berger (RB) sunburn meter (1976-1992) and the UV-Biometer model 501 MED meter (1993-1994) located at Belsk (21°E, 52°N), Poland, are examined. The monthly means are calculated from all-sky daily means of UV erythemal dose. Ancillary measurements of column ozone (by Dobson spectrophotometer), sunshine duration (by Campbell-Stokes heliograph), and total (sun and sky) radiation (by a pyranometer) are considered to explain variations in the UV data. A multiple regression model is proposed to study trends in the UV data. The model accounts for the UV erythemal dose changes induced by total ozone, sunshine duration (surrogate for cloud cover variations), or total solar radiation (surrogate for combined cloud cover and atmospheric turbidity impact on the UV radiation), trends due to instrument drift, step changes in the data, and serial correlations. A strong relationship between monthly all-sky UV erythemal dose changes and total ozone (and total solar radiation) is found. Calculations show that an erythemal radiative amplification factor (RAF) due to ozone under all skies is close to its clear-sky value (about 1). However, the model gives evidence that the RAF due to ozone is smaller for cloudier (and/or more turbid) atmospheres than long-term reference. Total solar radiation change of 1% is associated with a change of 0.7% in the UV erythemal dose. Modeled trends in the Belsk's UV data, inferred from the model using ozone and total solar radiation as the UV forcing factors, are 2.3% ± 0.4% (1σ) per decade in the period 1976-1994. The large increase in the UV erythemal dose, of the order of 4% per decade due to ozone depletion (-3.2% per decade), is partially compensated by a decreasing tendency (-2.8% per decade) in total solar radiation. The model estimates the trend in the UV data of the order of 0.1% per decade (not statistically significant) due to superposition of the instrument drift and long-term effects related to other UV influencing factors (not parameterized by the model).

  18. Protocol for Determining Ultraviolet Light Emitting Diode (UV-LED) Fluence for Microbial Inactivation Studies.

    PubMed

    Kheyrandish, Ataollah; Mohseni, Madjid; Taghipour, Fariborz

    2018-06-15

    Determining fluence is essential to derive the inactivation kinetics of microorganisms and to design ultraviolet (UV) reactors for water disinfection. UV light emitting diodes (UV-LEDs) are emerging UV sources with various advantages compared to conventional UV lamps. Unlike conventional mercury lamps, no standard method is available to determine the average fluence of the UV-LEDs, and conventional methods used to determine the fluence for UV mercury lamps are not applicable to UV-LEDs due to the relatively low power output, polychromatic wavelength, and specific radiation profile of UV-LEDs. In this study, a method was developed to determine the average fluence inside a water suspension in a UV-LED experimental setup. In this method, the average fluence was estimated by measuring the irradiance at a few points for a collimated and uniform radiation on a Petri dish surface. New correction parameters were defined and proposed, and several of the existing parameters for determining the fluence of the UV mercury lamp apparatus were revised to measure and quantify the collimation and uniformity of the radiation. To study the effect of polychromatic output and radiation profile of the UV-LEDs, two UV-LEDs with peak wavelengths of 262 and 275 nm and different radiation profiles were selected as the representatives of typical UV-LEDs applied to microbial inactivation. The proper setup configuration for microorganism inactivation studies was also determined based on the defined correction factors.

  19. Study of UV radiation dose received by the Spanish population.

    PubMed

    Gurrea, Gonzalo; Cañada, Javier

    2007-01-01

    Excess exposure to UV radiation can affect our health by causing sunburn, skin cancer, etc. It is therefore useful to determine the UV dosage received by people as a way of protecting them from the possible negative effects that this kind of radiation can cause. In this work, the personal outdoor percentage, which shows the time spent in outdoor activities, as well as personal UV doses, has been calculated by means of global UV radiation on a horizontal plane. A database of average daily UVB radiation on the horizontal plane given by the National Institute of Meteorology has been used. In this work we evaluate the standard erythema dose of the Spanish population throughout the year.

  20. Radiation damage of all-silica fibers in the UV region

    NASA Astrophysics Data System (ADS)

    Gombert, Joerg; Ziegler, M.; Assmus, J.; Klein, Karl-Friedrich; Nelson, Gary W.; Clarkin, James P.; Pross, H.; Kiefer, J.

    1999-04-01

    Since several years, UVI-fibers having higher solarization- resistance are well known stimulating new fiber-optic applications in the UV-region below 250 nm. Besides the description of the improved transmission properties of UV- light from different UV-sources, the mechanisms of improvement have been discussed in detail. The UV-defects, mainly the E'- center with the UV-absorption band around 215 nm, were passivated by using hydrogen-doping. Besides DUV-light, ionizing radiation like Gamma-radiation or X-rays can create similar defects in the UV-region. In the past, the radiation- damage in the UV-region was studied on silica bulk samples: again, E'-centers were generated. Up to now, no UV- transmission through a 1 m long fiber during or after Gamma- radiation had been observed. However, the hydrogen in the UVI- fibers behaves the same for Gamma-irradiation, leading to a passivation of the radiation-induced defects and an improved transmission in the UV-C region below 250 nm. On this report, the influence of total dose and fiber diameter on the UV- damage after irradiation will be described and discussed. In addition, we will include annealing studies, with and without UV-light. Based on our results, the standard process of Gamma- sterilization with a total dose of approx. 2 Mrad can be used for UVI-fibers resulting in a good UV-transmission below 320 nm. Excimer-laser light at 308 nm (XeCl) and 248 nm (KrF) and deuterium-lamp light with the full spectrum starting at 200 nm can also be transmitted.

  1. Are current guidelines for sun protection optimal for health? Exploring the evidence.

    PubMed

    Lucas, Robyn M; Neale, Rachel E; Madronich, Sasha; McKenzie, Richard L

    2018-06-15

    Exposure of the skin to ultraviolet (UV) radiation is the main risk factor for skin cancer, and a major source of vitamin D, in many regions of the world. Sun protection messages to minimize skin cancer risks but avoid vitamin D deficiency are challenging, partly because levels of UV radiation vary by location, season, time of day, and atmospheric conditions. The UV Index provides information on levels of UV radiation and is a cornerstone of sun protection guidelines. Current guidelines from the World Health Organization are that sun protection is required only when the UV Index is 3 or greater. This advice is pragmatic rather than evidence based. The UV Index is a continuous scale; more comprehensive sun protection is required as the UV Index increases. In addition, a wide range of UVA doses is possible with a UVI of 3, from which there may be health consequences, while full sun protection when the UVI is "moderate" (between 3 and 5) may limit vitamin D production. Finally, the duration of time spent in the sun is an essential component of a public health message, in addition to the intensity of ambient UV radiation as measured by the UV Index. Together these provide the dose of UV radiation that is relevant to both skin cancer genesis and vitamin D production. Further education is required to increase the understanding of the UV Index; messages framed using the UV Index need to incorporate the importance of duration of exposure and increasing sun protection with increasing dose of UV radiation.

  2. Wild bees preferentially visit Rudbeckia flower heads with exaggerated ultraviolet absorbing floral guides

    PubMed Central

    Horth, Lisa; Campbell, Laura; Bray, Rebecca

    2014-01-01

    ABSTRACT Here, we report on the results of an experimental study that assessed the visitation frequency of wild bees to conspecific flowers with different sized floral guides. UV absorbent floral guides are ubiquitous in Angiosperms, yet surprisingly little is known about conspecific variation in these guides and very few studies have evaluated pollinator response to UV guide manipulation. This is true despite our rich understanding about learning and color preferences in bees. Historical dogma indicates that flower color serves as an important long-range visual signal allowing pollinators to detect the flowers, while floral guides function as close-range signals that direct pollinators to a reward. We initiated the work presented here by first assessing the population level variation in UV absorbent floral guides for conspecific flowers. We assessed two species, Rudbeckia hirta and R. fulgida. We then used several petal cut-and-paste experiments to test whether UV floral guides can also function to attract visitors. We manipulated floral guide size and evaluated visitation frequency. In all experiments, pollinator visitation rates were clearly associated with floral guide size. Diminished floral guides recruited relatively few insect visitors. Exaggerated floral guides recruited more visitors than smaller or average sized guides. Thus, UV floral guides play an important role in pollinator recruitment and in determining the relative attractiveness of conspecific flower heads. Consideration of floral guides is therefore important when evaluating the overall conspicuousness of flower heads relative to background coloration. This work raises the issue of whether floral guides serve as honest indicators of reward, since guide size varies in nature for conspecific flowers at the same developmental stage and since preferences for larger guides were found. To our knowledge, these are the first cut-and-paste experiments conducted to examine whether UV absorbent floral guides affect visitation rates and pollinator preference. PMID:24585774

  3. Wild bees preferentially visit Rudbeckia flower heads with exaggerated ultraviolet absorbing floral guides.

    PubMed

    Horth, Lisa; Campbell, Laura; Bray, Rebecca

    2014-03-15

    Here, we report on the results of an experimental study that assessed the visitation frequency of wild bees to conspecific flowers with different sized floral guides. UV absorbent floral guides are ubiquitous in Angiosperms, yet surprisingly little is known about conspecific variation in these guides and very few studies have evaluated pollinator response to UV guide manipulation. This is true despite our rich understanding about learning and color preferences in bees. Historical dogma indicates that flower color serves as an important long-range visual signal allowing pollinators to detect the flowers, while floral guides function as close-range signals that direct pollinators to a reward. We initiated the work presented here by first assessing the population level variation in UV absorbent floral guides for conspecific flowers. We assessed two species, Rudbeckia hirta and R. fulgida. We then used several petal cut-and-paste experiments to test whether UV floral guides can also function to attract visitors. We manipulated floral guide size and evaluated visitation frequency. In all experiments, pollinator visitation rates were clearly associated with floral guide size. Diminished floral guides recruited relatively few insect visitors. Exaggerated floral guides recruited more visitors than smaller or average sized guides. Thus, UV floral guides play an important role in pollinator recruitment and in determining the relative attractiveness of conspecific flower heads. Consideration of floral guides is therefore important when evaluating the overall conspicuousness of flower heads relative to background coloration. This work raises the issue of whether floral guides serve as honest indicators of reward, since guide size varies in nature for conspecific flowers at the same developmental stage and since preferences for larger guides were found. To our knowledge, these are the first cut-and-paste experiments conducted to examine whether UV absorbent floral guides affect visitation rates and pollinator preference.

  4. Beneficial effects of solar UV-B radiation on soybean yield mediated by reduced insect herbivory under field conditions.

    PubMed

    Mazza, Carlos A; Giménez, Patricia I; Kantolic, Adriana G; Ballaré, Carlos L

    2013-03-01

    Ultraviolet-B radiation (UV-B: 280-315 nm) has damaging effects on cellular components and macromolecules. In plants, natural levels of UV-B can reduce leaf area expansion and growth, which can lead to reduced productivity and yield. UV-B can also have important effects on herbivorous insects. Owing to the successful implementation of the Montreal Protocol, current models predict that clear-sky levels of UV-B radiation will decline during this century in response to ozone recovery. However, because of climate change and changes in land use practices, future trends in UV doses are difficult to predict. In the experiments reported here, we used an exclusion approach to study the effects of solar UV-B radiation on soybean crops, which are extensively grown in many areas of the world that may be affected by future variations in UV-B radiation. In a first experiment, performed under normal management practices (which included chemical pest control), we found that natural levels of UV-B radiation reduced soybean yield. In a second experiment, where no pesticides were applied, we found that solar UV-B significantly reduced insect herbivory and, surprisingly, caused a concomitant increase in crop yield. Our data support the idea that UV-B effects on agroecosystems are the result of complex interactions involving multiple trophic levels. A better understanding of the mechanisms that mediate the anti-herbivore effect of UV-B radiation may be used to design crop varieties with improved adaptation to the cropping systems that are likely to prevail in the coming decades in response to agricultural intensification. Copyright © Physiologia Plantarum 2012.

  5. Influence of clouds on UV-B penetration to the earth's surface

    NASA Technical Reports Server (NTRS)

    Green, A. E. S.

    1979-01-01

    Radiometric measurements of cloud influence on ultraviolet B radiation (UV-B) were obtained. Mathematical models of the influence were defined to lay the groundwork for the construction of the global UV-B climatology from satellite determined ozone data. More refined measurements comparing UV-B radiation with total solar radiation were carried out. The cloudy case is referred to the cloudless sky irradiance and convenient transmission ratios are given An approach to the inversion of scattering data is summarized. An improved characterization of the UV-B radiation from a cloudless sky is also presented.

  6. Solar UV exposures measured simultaneously to all arbitrarily oriented leaves on a plant.

    PubMed

    Parisi, Alfio V; Schouten, Peter; Downs, Nathan J; Turner, Joanna

    2010-05-03

    The possible ramifications of climate change include the influence it has upon the amount of cloud cover in the atmosphere. Clouds cause significant variation in the solar UV radiation reaching the earth's surface and in turn the amount incident on ecosystems. The consequences of changes in solar UV radiation delivered to ecosystems due to climate change may be significant and should be investigated. Plants are an integral part of the world wide ecological balance, and research has shown they are affected by variations in solar UV radiation. Therefore research into the influence of solar UV radiation on plants is of particular significance. However, this requires a means of obtaining detailed information on the solar UV radiation received by plants. This research describes a newly developed dosimetric technique employed to gather information on solar UV radiation incident to the leaves of plants in combination with the measurement of spectral irradiances in order to provide an accurate method of collecting detailed information on the solar UV radiation affecting the canopy and lower leaf layers of individual plants. Variations in the measurements take into account the inclination and orientation of each leaf investigated, as well as the influence of shading by other leaves in the plant canopy. Copyright 2010 Elsevier B.V. All rights reserved.

  7. UV-radiation-induced electron emission by hormones. Hypothesis for specific communication mechanisms

    NASA Astrophysics Data System (ADS)

    Getoff, Nikola

    2009-11-01

    The highlights of recently observed electron emission from electronically excited sexual hormones (17β-estradiol, progesterone, testosterone) and the phytohormone genistein in polar media are briefly reviewed. The electron yield, Q(e aq-), dependence from substrate concentration, hormone structure, polarity of solvent, absorbed energy and temperature are discussed. The hormones reactivity with e aq- and efficiency in electron transfer ensure them the ability to communicate with other biological systems in an organism. A hypothesis is presented for the explanation of the mechanisms of the distinct recognition of signals transmitted by electrons, originating from different types of hormones to receiving centres. Biological consequences of the electron emission in respect to cancer are mentioned.

  8. Implications of a 3.472-3.333 Gyr-old subaerial microbial mat from the Barberton greenstone belt, South Africa for the UV environmental conditions on the early Earth.

    PubMed

    Westall, Frances; de Ronde, Cornel E J; Southam, Gordon; Grassineau, Nathalie; Colas, Maggy; Cockell, Charles; Lammer, Helmut

    2006-10-29

    Modelling suggests that the UV radiation environment of the early Earth, with DNA weighted irradiances of about three orders of magnitude greater than those at present, was hostile to life forms at the surface, unless they lived in specific protected habitats. However, we present empirical evidence that challenges this commonly held view. We describe a well-developed microbial mat that formed on the surface of volcanic littoral sediments in an evaporitic environment in a 3.5-3.3Ga-old formation from the Barberton greenstone belt. Using a multiscale, multidisciplinary approach designed to strongly test the biogenicity of potential microbial structures, we show that the mat was constructed under flowing water by 0.25 microm filaments that produced copious quantities of extracellular polymeric substances, representing probably anoxygenic photosynthesizers. Associated with the mat is a small colony of rods-vibroids that probably represent sulphur-reducing bacteria. An embedded suite of evaporite minerals and desiccation cracks in the surface of the mat demonstrates that it was periodically exposed to the air in an evaporitic environment. We conclude that DNA-damaging UV radiation fluxes at the surface of the Earth at this period must either have been low (absorbed by CO2, H2O, a thin organic haze from photo-dissociated CH4, or SO2 from volcanic outgassing; scattered by volcanic, and periodically, meteorite dust, as well as by the upper layers of the microbial mat) and/or that the micro-organisms exhibited efficient gene repair/survival strategies.

  9. UV RADIATION MEASUREMENTS/ATMOSPHERIC CHARACTERIZATION

    EPA Science Inventory

    Because exposure to ultraviolet (UV) radiation is an ecosystem stressor and poses a human health risk, the National Exposure Research Laboratory (NERL) has undertaken a research program to measure the intensity of UV-B radiation at various locations throughout the U.S. In Septem...

  10. Advanced Design Heat PumpRadiator for EVA Suits

    NASA Technical Reports Server (NTRS)

    Izenson, Michael G.; Chen, Weibo; Passow, Christian; Phillips, Scott; Trevino, Luis

    2009-01-01

    Absorption cooling using a LiCl/water heat pump can enable lightweight and effective thermal control for EVA suits without venting water to the environment. The key components in the system are an absorber/radiator that rejects heat to space and a flexible evaporation cooling garment that absorbs heat from the crew member. This paper describes progress in the design, development, and testing of the absorber/radiator and evaporation cooling garment. New design concepts and fabrication approaches will significantly reduce the mass of the absorber/radiator. We have also identified materials and demonstrated fabrication approaches for production of a flexible evaporation cooling garment. Data from tests of the absorber/radiator s modular components have validated the design models and allowed predictions of the size and weight of a complete system.

  11. Satellite-Based Evidence of Wavelength-Dependent Aerosol Absorption in Biomass Burning Smoke Inferred from Ozone Monitoring Instrument

    NASA Technical Reports Server (NTRS)

    Jethva, H.; Torres, O.

    2012-01-01

    We provide satellite-based evidence of the spectral dependence of absorption in biomass burning aerosols over South America using near-UV measurements made by the Ozone Monitoring Instrument (OMI) during 2005-2007. In the current near-UV OMI aerosol algorithm (OMAERUV), it is implicitly assumed that the only absorbing component in carbonaceous aerosols is black carbon whose imaginary component of the refractive index is wavelength independent. With this assumption, OMI-derived aerosol optical depth (AOD) is found to be significantly over-estimated compared to that of AERONET at several sites during intense biomass burning events (August-September). Other well-known sources of error affecting the near-UV method of aerosol retrieval do not explain the large observed AOD discrepancies between the satellite and the ground-based observations. A number of studies have revealed strong spectral dependence in carbonaceous aerosol absorption in the near-UV region suggesting the presence of organic carbon in biomass burning generated aerosols. A sensitivity analysis examining the importance of accounting for the presence of wavelength-dependent aerosol absorption in carbonaceous particles in satellite-based remote sensing was carried out in this work. The results convincingly show that the inclusion of spectrally-dependent aerosol absorption in the radiative transfer calculations leads to a more accurate characterization of the atmospheric load of carbonaceous aerosols.

  12. Enhanced UV-B radiation during pupal stage reduce body mass and fat content, while increasing deformities, mortality and cell death in female adults of solitary bee Osmia bicornis.

    PubMed

    Wasielewski, Oskar; Wojciechowicz, Tatiana; Giejdasz, Karol; Krishnan, Natraj

    2015-08-01

    The effects of enhanced UV-B radiation on the oogenesis and morpho-anatomical characteristics of the European solitary red mason bee Osmia bicornis L. (Hymenoptera: Megachilidae) were tested under laboratory conditions. Cocooned females in the pupal stage were exposed directly to different doses (0, 9.24, 12.32, and 24.64 kJ/m(2) /d) of artificial UV-B. Our experiments revealed that enhanced UV-B radiation can reduce body mass and fat body content, cause deformities and increase mortality. Following UV exposure at all 3 different doses, the body mass of bees was all significantly reduced compared to the control, with the highest UV dose causing the largest reduction. Similarly, following UV-B radiation, in treated groups the fat body index decreased and the fat body index was the lowest in the group receiving the highest dose of UV radiation. Mortality and morphological deformities, between untreated and exposed females varied considerably and increased with the dose of UV-B radiation. Morphological deformities were mainly manifested in the wings and mouthparts, and occurred more frequently with an increased dose of UV. Cell death was quantified by the Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay (DNA fragmentation) during early stages of oogenesis of O. bicornis females. The bees, after UV-B exposure exhibited more germarium cells with fragmented DNA. The TUNEL test indicated that in germarium, low doses of UV-B poorly induced the cell death during early development. However, exposure to moderate UV-B dose increased programmed cell death. In females treated with the highest dose of UV-B the vast majority of germarium cells were TUNEL-positive. © 2014 Institute of Zoology, Chinese Academy of Sciences.

  13. Establishing a ultraviolet radiation observational network and enhancing the study on ultraviolet radiation

    NASA Astrophysics Data System (ADS)

    Bai, Jianhui; Wang, Gengchen

    2003-09-01

    On the basis of analyzing observational data on solar radiation, meteorological parameters, and total ozone amount for the period of January 1990 to December 1991 in the Beijing area, an empirical calculation method for ultraviolet radiation (UV) in clear sky is obtained. The results show that the calculated values agree well with the observed, with maximum relative bias of 6.2% and mean relative bias for 24 months of 1.9%. Good results are also obtained when this method is applied in Guangzhou and Mohe districts. The long-term variation of UV radiation in clear sky over the Beijing area from 1979 to 1998 is calculated, and the UV variation trends and causes are discussed: direct and indirect UV energy absorption by increasing pollutants in the troposphere may have caused the UV decrease in clear sky in the last 20 years. With the enhancement of people’s quality of life and awareness of health, it will be valuable and practical to provid UV forecasts for typical cities and rural areas. So, we should develop and enhance UV study in systematic monitoring, forecasting, and developing a good and feasible method for UV radiation reporting in China, especially for big cities.

  14. The effect of UV radiation from oxygen and argon plasma on the adhesion of organosilicon coatings on polypropylene

    NASA Astrophysics Data System (ADS)

    Jaritz, M.; Behm, H.; Hopmann, Ch; Kirchheim, D.; Mitschker, F.; Awakowicz, P.; Dahlmann, R.

    2017-01-01

    The influence of ultraviolet (UV) radiation from oxygen and argon pretreatment plasmas on a plastic substrate has not been fully understood yet. In particular, its influence on the adhesion properties has not been sufficiently researched so far. This paper addresses this issue by comparing the bond strength of a plasmapolymerized silicon organic coating (SiO x C y H z ) on polypropylene (PP) after oxygen and argon plasma pretreatment and pretreatment by UV radiation emitted by the same plasmas. The UV radiation is isolated from the other species from the plasma by means of a magnesium fluoride (MgF2) optical filter. It could be shown that UV radiation originating from an oxygen plasma has a significant impact on both substrate surface chemistry and coating adhesion. The same maximum bond strength enhancement can be reached by pretreating the polypropylene surface either with pulsed oxygen plasma, or with only the UV radiation from this oxygen plasma. Also, similar surface chemistry and topography modifications are induced. For argon plasma no significant influence of its UV radiation on the substrate could be observed in this study.

  15. New apparatus with high radiation energy between 320 to 460 nm: physical description and dermatological applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mutzhas, M.F.; Holzle, E.; Hofmann, C.

    1981-01-01

    A new apparatus (UVASUN 5000) is presented with high radiation energy between 320 to 460 nm. The radiator is a specially developed source for high uv-A intensity, housing a quartz bulb with a mixture of argon, mercury and metal-halides. The uv-A energy in the range of 320 to 400 nm is about 84% of the total radiation energy. Effects of very high doses of uv-A on human skin were studied. Following single uv-A applications the minimal tanning dose uv-A (MTD) and the immediate pigment darkening (IPD) dose of uv-A were established. Repeated exposure to this uv-A delivering system yields longmore » lasting dark brown skin pigmentation without any clinical or histological signs of sunburn (uv-B) damage, epidermal hyperplasia or thickening of the stratum corneum. Minimal therapeutic results were seen in the phototherapy of vitiligo and inflammatory acne.« less

  16. Impulse powerful UV-radiation source pumped by the sublight ionization waves for the bacteriological disinfection of water

    NASA Astrophysics Data System (ADS)

    Filiouguine, Igor V.; Kostiouchenko, S. V.; Koudryavtsev, N. N.; Vasilyak, Leonid M.; Yakimenko, A. V.

    1993-11-01

    The bacteriological disinfective action of UV-radiation is well known. The pioneer work on UV-radiation used for bacteriological disinfection of waste water was made in 1910. Because of the high cost and low living time of the UV-radiation sources, the alternative technique for waste water purification by chlorine introducing was spread out. During the second stage of the UV purification development, beginning in approximately 1970, the interest for bacteriological cleaning of water, increased again. Two reasons were responsible for this event: first, the significant improvement of technology and design of UV-bacteriological purificators, and second, recognition of the serious danger of chlorine compounds introduced into water under purification because of the toxicity of these compounds. Further investigations gave excellent results in the creation and industrial applications of UV- bacteriological purificators. Now we can see a rapid development of industrial technology in UV-purification of drinking and waste waters.

  17. Soft, stretchable, epidermal sensor with integrated electronics and photochemistry for measuring personal UV exposures.

    PubMed

    Shi, Yunzhou; Manco, Megan; Moyal, Dominique; Huppert, Gil; Araki, Hitoshi; Banks, Anthony; Joshi, Hemant; McKenzie, Richard; Seewald, Alex; Griffin, Guy; Sen-Gupta, Ellora; Wright, Donald; Bastien, Philippe; Valceschini, Florent; Seité, Sophie; Wright, John A; Ghaffari, Roozbeh; Rogers, John; Balooch, Guive; Pielak, Rafal M

    2018-01-01

    Excessive ultraviolet (UV) radiation induces acute and chronic effects on the skin, eye and immune system. Personalized monitoring of UV radiation is thus paramount to measure the extent of personal sun exposure, which could vary with environment, lifestyle, and sunscreen use. Here, we demonstrate an ultralow modulus, stretchable, skin-mounted UV patch that measures personal UV doses. The patch contains functional layers of ultrathin stretchable electronics and a photosensitive patterned dye that reacts to UV radiation. Color changes in the photosensitive dyes correspond to UV radiation intensity and are analyzed with a smartphone camera. A software application has feature recognition, lighting condition correction, and quantification algorithms that detect and quantify changes in color. These color changes are then correlated with corresponding shifts in UV dose, and compared to existing UV dose risk levels. The soft mechanics of the UV patch allow for multi-day wear in the presence of sunscreen and water. Two evaluation studies serve to demonstrate the utility of the UV patch during daily activities with and without sunscreen application.

  18. Soft, stretchable, epidermal sensor with integrated electronics and photochemistry for measuring personal UV exposures

    PubMed Central

    Shi, Yunzhou; Manco, Megan; Moyal, Dominique; Huppert, Gil; Araki, Hitoshi; Banks, Anthony; Joshi, Hemant; McKenzie, Richard; Seewald, Alex; Griffin, Guy; Sen-Gupta, Ellora; Wright, Donald; Bastien, Philippe; Valceschini, Florent; Seité, Sophie; Wright, John A.; Ghaffari, Roozbeh; Rogers, John; Balooch, Guive

    2018-01-01

    Excessive ultraviolet (UV) radiation induces acute and chronic effects on the skin, eye and immune system. Personalized monitoring of UV radiation is thus paramount to measure the extent of personal sun exposure, which could vary with environment, lifestyle, and sunscreen use. Here, we demonstrate an ultralow modulus, stretchable, skin-mounted UV patch that measures personal UV doses. The patch contains functional layers of ultrathin stretchable electronics and a photosensitive patterned dye that reacts to UV radiation. Color changes in the photosensitive dyes correspond to UV radiation intensity and are analyzed with a smartphone camera. A software application has feature recognition, lighting condition correction, and quantification algorithms that detect and quantify changes in color. These color changes are then correlated with corresponding shifts in UV dose, and compared to existing UV dose risk levels. The soft mechanics of the UV patch allow for multi-day wear in the presence of sunscreen and water. Two evaluation studies serve to demonstrate the utility of the UV patch during daily activities with and without sunscreen application. PMID:29293664

  19. Definition and dynamic control of a continuous chromatography process independent of cell culture titer and impurities.

    PubMed

    Chmielowski, Rebecca A; Mathiasson, Linda; Blom, Hans; Go, Daniel; Ehring, Hanno; Khan, Heera; Li, Hong; Cutler, Collette; Lacki, Karol; Tugcu, Nihal; Roush, David

    2017-12-01

    Advances in cell culture technology have enabled the production of antibody titers upwards of 30g/L. These highly productive cell culture systems can potentially lead to productivity bottlenecks in downstream purification due to lower column loadings, especially in the primary capture chromatography step. Alternative chromatography solutions to help remedy this bottleneck include the utilization of continuous processing systems such as periodic counter-current chromatography (PCC). Recent studies have provided methods to optimize and improve the design of PCC for cell culture titers up to about 3g/L. This paper defines a continuous loading strategy for PCC that is independent of cell culture background and encompasses cell culture titers up to about 31g/L. Initial experimentation showed a challenge with determining a difference in change in UV280nm signal (ie. ΔUV) between cell culture feed and monoclonal antibody (mAb) concentration. Further investigation revealed UV280nm absorbance of the cell culture feedstock without antibody was outside of the linear range of detection for a given cell pathlength. Additional experimentation showed the difference in ΔUV for various cell culture feeds can be either theoretically predicted by Beer's Law given a known absorbance of the media background and impurities or experimentally determined using various UV280nm cell pathlengths. Based on these results, a 0.35mm pathlength at UV280nm was chosen for dynamic control to overcome the background signal. The pore diffusion model showed good agreement with the experimental frontal analysis data, which resulted in definition of a ΔUV setpoint range between 20 and 70% for 3C-PCC experiments. Product quality of the elution pools was acceptable between various cell culture feeds and titers up to about 41g/L. Results indicated the following ΔUV setpoints to achieve robust dynamic control and maintain 3C-PCC yield: ∼20-45% for titers greater than 10g/L depending on UV absorbance of the HCCF and ∼45-70% for titers of up to 10g/L independent of UV absorbance of the HCCF. The strategy and results presented in this paper show column loading in a continuous chromatography step can be dynamically controlled independent of the cell culture feedstock and titer, and allow for enhanced process control built into the downstream continuous operations. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Reconstruction of daily solar UV irradiation from 1893 to 2002 in Potsdam, Germany

    NASA Astrophysics Data System (ADS)

    Junk, Jürgen; Feister, Uwe; Helbig, Alfred

    2007-08-01

    Long-term records of solar UV radiation reaching the Earth’s surface are scarce. Radiative transfer calculations and statistical models are two options used to reconstruct decadal changes in solar UV radiation from long-term records of measured atmospheric parameters that contain information on the effect of clouds, atmospheric aerosols and ground albedo on UV radiation. Based on earlier studies, where the long-term variation of daily solar UV irradiation was derived from measured global and diffuse irradiation as well as atmospheric ozone by a non-linear regression method [Feister et al. (2002) Photochem Photobiol 76:281 293], we present another approach for the reconstruction of time series of solar UV radiation. An artificial neural network (ANN) was trained with measurements of solar UV irradiation taken at the Meteorological Observatory in Potsdam, Germany, as well as measured parameters with long-term records such as global and diffuse radiation, sunshine duration, horizontal visibility and column ozone. This study is focussed on the reconstruction of daily broad-band UV-B (280 315 nm), UV-A (315 400 nm) and erythemal UV irradiation (ER). Due to the rapid changes in cloudiness at mid-latitude sites, solar UV irradiance exhibits appreciable short-term variability. One of the main advantages of the statistical method is that it uses doses of highly variable input parameters calculated from individual spot measurements taken at short time intervals, which thus do represent the short-term variability of solar irradiance.

Top