Science.gov

Sample records for absorb uv radiation

  1. Dynamic response of UV-absorbing compounds, quantum yield and the xanthophyll cycle to diel changes in UV-B and photosynthetic radiations in an aquatic liverwort.

    PubMed

    Fabón, Gabriel; Monforte, Laura; Tomás-Las-Heras, Rafael; Núñez-Olivera, Encarnación; Martínez-Abaigar, Javier

    2012-01-01

    We studied the diel responses of the liverwort Jungermannia exsertifolia subsp. cordifolia to radiation changes under laboratory conditions. The samples were exposed to three radiation regimes: P (only PAR), PA (PAR+UV-A), and PAB (PAR+UV-A+UV-B). The day was divided in four periods: darkness, a first low-PAR period, the high-PAR plus UV period, and a second low-PAR period. After 15 days of culture, we measured photosynthetic pigments, chlorophyll fluorescence and UV-absorbing compounds in the four periods of the day on two consecutive days. With respect to UV-absorbing compounds, we analyzed their global amount (as the bulk UV absorbance of methanolic extracts) and the concentration of seven hydroxycinnamic acid derivatives, both in the soluble (mainly vacuolar) and insoluble (cell wall-bound) fractions of the plant extracts. PAB samples increased the bulk UV absorbance of the soluble and insoluble fractions, and the concentrations of p-coumaroylmalic acid in the soluble fraction and p-coumaric acid in the cell wall. Most of these variables showed significant diel changes and responded within a few hours to radiation changes (more strongly to UV-B), increasing at the end of the period of high-PAR plus UV. F(v)/F(m), Φ(PSII), NPQ and the components of the xanthophyll cycle showed significant and quick diel changes in response to high PAR, UV-A and UV-B radiation, indicating dynamic photoinhibition and protection of PSII from excess radiation through the xanthophyll cycle. Thus, the liverwort showed a dynamic protection and acclimation capacity to the irradiance level and spectral characteristics of the radiation received.

  2. Epidermal UV-A absorbance and whole-leaf flavonoid composition in pea respond more to solar blue light than to solar UV radiation.

    PubMed

    Siipola, Sari M; Kotilainen, Titta; Sipari, Nina; Morales, Luis O; Lindfors, Anders V; Robson, T Matthew; Aphalo, Pedro J

    2015-05-01

    Plants synthesize phenolic compounds in response to certain environmental signals or stresses. One large group of phenolics, flavonoids, is considered particularly responsive to ultraviolet (UV) radiation. However, here we demonstrate that solar blue light stimulates flavonoid biosynthesis in the absence of UV-A and UV-B radiation. We grew pea plants (Pisum sativum cv. Meteor) outdoors, in Finland during the summer, under five types of filters differing in their spectral transmittance. These filters were used to (1) attenuate UV-B; (2) attenuate UV-B and UV-A < 370 nm; (3) attenuate UV-B and UV-A; (4) attenuate UV-B, UV-A and blue light; and (5) as a control not attenuating these wavebands. Attenuation of blue light significantly reduced the flavonoid content in leaf adaxial epidermis and reduced the whole-leaf concentrations of quercetin derivatives relative to kaempferol derivatives. In contrast, UV-B responses were not significant. These results show that pea plants regulate epidermal UV-A absorbance and accumulation of individual flavonoids by perceiving complex radiation signals that extend into the visible region of the solar spectrum. Furthermore, solar blue light instead of solar UV-B radiation can be the main regulator of phenolic compound accumulation in plants that germinate and develop outdoors.

  3. Effect of UV-B radiation on UV absorbing compounds and pigments of moss and lichen of Schirmacher oasis region, East Antarctica.

    PubMed

    Singh, J; Gautam, S; Bhushan Pant, A

    2012-12-22

    The survival of Antarctic flora under ozone depletion depends on their ability to acclimate against increasing UV—B radiation by employing photo protective mechanisms either by avoiding or repairing UV—B damage. A fifteen days experiment was designed to study moss (Bryum argenteum) and lichen (Umbilicaria aprina) under natural UV—B exposure and under UV filter frames at the Maitri region of Schirmacher oasis, East Antarctica. Changes in UV absorbing compounds, phenolics, carotenoids and chlorophyll content were studied for continuous fifteen days and significant changes were observed in the UV exposed plants of B. argenteum and U. aprina. The change in the UV absorbing compounds was more significant in B. argenteum (P<0.0001) than U. aprina (P<0.0002). The change in phenolic contents and total carotenoid content was significant (P<0.0001) in both B. argenteum and lichen U. aprina indicating that the increase in UV absorbing compounds, phenolic contents and total carotenoid content act as a protective mechanism against the deleterious effect of UV—B radiations.

  4. The role of UV-B radiation in aquatic and terrestrial ecosystems--an experimental and functional analysis of the evolution of UV-absorbing compounds.

    PubMed

    Rozema, J; Björn, L O; Bornman, J F; Gaberscik, A; Häder, D-P; Trost, T; Germ, M; Klisch, M; Gröniger, A; Sinha, R P; Lebert, M; He, Y-Y; Buffoni-Hall, R; de Bakker, N V J; van de Staaij, J; Meijkamp, B B

    2002-02-01

    Gyrodinium dorsum, the green algal species Prasiola stipitata and in the cyanobacterium Anabaena sp. While visible (400-700 nm) and long wavelength UV-A (315-400 nm) showed only a slight effect, MAAs were effectively induced by UV-B (280-315 nm). The growth of the lower land organisms studied, i.e. the lichens Cladina portentosa, Cladina foliacaea and Cladonia arbuscula, and the club moss Lycopodiumannotinum, was not significantly reduced when grown under elevated UV-B radiation (simulating 15% ozone depletion). The growth in length of the moss Tortula ruralis was reduced under elevated UV-B. Of the aquatic plants investigated the charophytes Chara aspera showed decreased longitudinal growth under elevated UV-B. In the 'aquatic higher plants' studied, Ceratophyllum demersum, Batrachium trichophyllum and Potamogeton alpinus, there was no such depressed growth with enhanced UV-B. In Chara aspera, neither MAAs nor flavonoids could be detected. Of the terrestrial higher plants studied, Fagopyrum esculentum, Deschampsia antarctica, Vicia faba, Calamagrostis epigejos and Carex arenaria, the growth of the first species was depressed with enhanced UV-B, in the second species length growth was decreased, but the shoot number was increased, and in the latter two species of a dune grassland there was no reduced growth with enhanced UV-B. In the dune grassland species studied outdoors, at least five different flavonoids appeared in shoot tissue. Some of the flavonoids in the monocot species, which were identified and quantified with HPLC, included orientin, luteolin, tricin and apigenin. A greenhouse study with Vicia faba showed that two flavonoids (aglycones) respond particularly to enhanced UV-B. Of these, quercetin is UV-B inducible and mainly located in epidermal cells, while kaempferol occurs constitutively. In addition to its UV-screening function, quercetin may also act as an antioxidant. Polychromatic action spectra were determined for induction of the UV-absorbing pigments in

  5. Effect of UV-C radiation and vapor released from a water hyacinth root absorbent containing bergamot oil to control mold on storage of brown rice.

    PubMed

    Songsamoe, Sumethee; Matan, Narumol; Matan, Nirundorn

    2016-03-01

    The aims of this study were to develop absorbent material from a water hyacinth root containing bergamot oil and to improve its antifungal activity by using ultraviolet C (UV-C) against the growth of A. flavus on the brown rice. Process optimization was studied by the immersion of a water hyacinth root into a water and bergamot oil (300, 500 and 700 μl ml(-1)). The root (absorbent material) was dried at 50, 70, and 90 °C for 10 min. Then, ultraviolet C (UV-C) was used for enhancing the antifungal activity of bergamot oil for 10, 15, and 20 min. The shelf-life of the brown rice with the absorbent after incubation at 25 ° C with 100 % RH for 12 weeks was also investigated. A microscope and a Fourier transform infrared spectroscopy (FTIR) were used to find out possible mode of action. Results indicated that the absorbent material produced from the water hyacinth root containing bergamot oil at 500 μl ml(-1) in the water solution, dried at 70 ° C and UV for 15 min showed the highest antifungal activity in a vapor phase against A. flavus on the brown rice. A microscopy investigation confirmed that the water hyacinth root could absorb bergamot oil from an outside water solution into root cells. Limonene in vapor phase was shown to be a stronger inhibitor than essential oil after UV-C radiation and should be the key factor in boosting bergamot oil antifungal activity. A vapor phase of bergamot oil could be released and inhibit natural mold on the surface of the brown rice for up to 12 weeks; without the absorbent, mold covered the brown rice in only 4 weeks.

  6. Advanced UV Absorbers for the Protection of Human Skin.

    PubMed

    Hüglin, Dietmar

    The increasing awareness of the damaging effects of UV radiation to human skin triggered the market introduction of new cosmetic UV absorbers. This article summarizes the outcome of a multi-year research program, in which the author contributed to the development of different new UV filters. First of all, the molecular design and the basic properties of bis-ethylhexyloxyphenol methoxyphenyl triazine (BEMT) will be presented. This oil-soluble filter, which today is widely used in both beach products and skin care products, exhibits inherent photostability and strong broad-spectrum UV-A+B absorbance. Based on the concept of micronized organic UV absorbers, the UV-B filter tris biphenyl triazine (TBPT) will be introduced. At present TBPT exhibits the highest efficacy of all cosmetic UV absorbers in the market (measured by area under the UV spectrum). Finally, the concept of liposomogenic UV absorbers will be featured. This approach was developed to create water-resistant UV filters, as liposomogenic structures are thought to integrate into the lipids of the horny layer. Due to prohibitively high costs, this technology did not result in a commercial product so far.

  7. Absorber for terahertz radiation management

    SciTech Connect

    Biallas, George Herman; Apeldoorn, Cornelis; Williams, Gwyn P.; Benson, Stephen V.; Shinn, Michelle D.; Heckman, John D.

    2015-12-08

    A method and apparatus for minimizing the degradation of power in a free electron laser (FEL) generating terahertz (THz) radiation. The method includes inserting an absorber ring in the FEL beam path for absorbing any irregular THz radiation and thus minimizes the degradation of downstream optics and the resulting degradation of the FEL output power. The absorber ring includes an upstream side, a downstream side, and a plurality of wedges spaced radially around the absorber ring. The wedges form a scallop-like feature on the innermost edges of the absorber ring that acts as an apodizer, stopping diffractive focusing of the THz radiation that is not intercepted by the absorber. Spacing between the scallop-like features and the shape of the features approximates the Bartlett apodization function. The absorber ring provides a smooth intensity distribution, rather than one that is peaked on-center, thereby eliminating minor distortion downstream of the absorber.

  8. Altered UV absorbance and cytotoxicity of chlorinated sunscreen agents.

    PubMed

    Sherwood, Vaughn F; Kennedy, Steven; Zhang, Hualin; Purser, Gordon H; Sheaff, Robert J

    2012-12-01

    Sunscreens are widely utilized due to the adverse effects of ultraviolet (UV) radiation on human health. The safety of their active ingredients as well as that of any modified versions generated during use is thus of concern. Chlorine is used as a chemical disinfectant in swimming pools. Its reactivity suggests sunscreen components might be chlorinated, altering their absorptive and/or cytotoxic properties. To test this hypothesis, the UV-filters oxybenzone, dioxybenzone, and sulisobenzone were reacted with chlorinating agents and their UV spectra analyzed. In all cases, a decrease in UV absorbance was observed. Given that chlorinated compounds can be cytotoxic, the effect of modified UV-filters on cell viability was examined. Chlorinated oxybenzone and dioxybenzone caused significantly more cell death than unchlorinated controls. In contrast, chlorination of sulisobenzone actually reduced cytotoxicity of the parent compound. Exposing a commercially available sunscreen product to chlorine also resulted in decreased UV absorbance, loss of UV protection, and enhanced cytotoxicity. These observations show chlorination of sunscreen active ingredients can dramatically decrease UV absorption and generate derivatives with altered biological properties.

  9. Solar radiation absorbing material

    DOEpatents

    Googin, John M.; Schmitt, Charles R.; Schreyer, James M.; Whitehead, Harlan D.

    1977-01-01

    Solar energy absorbing means in solar collectors are provided by a solar selective carbon surface. A solar selective carbon surface is a microporous carbon surface having pores within the range of 0.2 to 2 micrometers. Such a surface is provided in a microporous carbon article by controlling the pore size. A thermally conductive substrate is provided with a solar selective surface by adhering an array of carbon particles in a suitable binder to the substrate, a majority of said particles having diameters within the range of about 0.2-10 microns.

  10. Leaves of Citrus aurantifolia exhibit a different sensibility to solar UV-B radiation according to development stage in relation to photosynthetic pigments and UV-B absorbing compounds production.

    PubMed

    Ibañez, Silvina; Rosa, Mariana; Hilal, Mirna; González, Juan A; Prado, Fernando E

    2008-03-28

    Plants of Citrus aurantifolia grown in a greenhouse without solar UV radiation (UVR) were transferred outdoors to evaluate the effect of solar UV-B radiation (UVBR, 280-315 nm) in prior-developed leaves, constituted by apical bud and those fully expanded before being taken outdoors, and post-developed leaves, formed by those expanded outdoors. Results demonstrated that over a 40 d outdoor period leaf chlorophyll content and distribution pattern were different with and without solar UVBR. Chlorophyll a, chlorophyll b and total chlorophyll contents in both treatments were higher in prior-developed leaves than in post-developed ones. However, highest values were observed in prior-developed leaves under solar UVBR, whereas in post-developed leaves an opposite trend was observed. Carotenoids content in prior-developed leaves was higher with solar UVBR, whereas in post-developed leaves there were no significant differences in both with and without solar UVBR. In addition, prior-developed leaves under solar UVBR accumulated flavonoids, but not anthocyanins. Growth parameters (e.g. DW, DW/FW ratio, LMA, plant height, length and width of foliar lamina) did not show significant differences between plants grown with and without solar UVBR. Thus, our results demonstrated that C. aurantifolia leaves exhibited a different sensibility to solar UVBR according to development stage in relation to photosynthetic pigments and UV-B absorbing compounds production. In addition, the solar UVBR was not necessary as inductor of photosynthetic protection mechanisms in a short-time growth period. On the other hand, our results also demonstrated that solar UVBR acted as an effective feeding deterrent against citrus leafminer.

  11. Spatial variability of ultraviolet-absorbing compounds in an aquatic liverwort and their usefulness as biomarkers of current and past UV radiation: a case study in the Atlantic-Mediterranean transition.

    PubMed

    Monforte, Laura; Tomás-Las-Heras, Rafael; Del-Castillo-Alonso, María-Ángeles; Martínez-Abaigar, Javier; Núñez-Olivera, Encarnación

    2015-06-15

    The spatial variability of ultraviolet-absorbing compounds (UVACs) in the freshwater liverwort Jungermannia exsertifolia subsp. cordifolia was studied in mid-latitudes (the Atlantic-Mediterranean transition) across a wide lati-altitudinal gradient, with the aim of testing the usefulness of UVACs as biomarkers of current ambient levels of UV radiation. We analysed 17 samples from streams located in the main mountain ranges of the Iberian Peninsula, differentiating methanol-soluble (SUVACs, mainly located in the vacuoles) and methanol-insoluble (IUVACs, bound to cell walls) compounds, since they represent different manners to cope with UV radiation. In both fractions, the bulk level of UVACs and the concentrations of several individual compounds were measured. In addition, we measured Fv/Fm, DNA damage and sclerophylly index (SI) as possible additional UV biomarkers. UVACs showed a high variability, probably due not only to the gradients of macroenvironmental factors (UV radiation, PAR, and water temperature), but also to microenvironmental factors inherent to the dynamic nature of mountain streams. Two soluble coumarins were positively correlated with UV levels and could be used for ambient UV biomonitoring in the spatial scale. In contrast to the variability in UVACs, the relatively homogeneous values of Fv/Fm and the lack of any DNA damage made these variables useless for ambient UV biomonitoring, but suggested a strong acclimation capacity of this liverwort to changing environmental conditions (in particular, to UV levels). Finally, UVACs of fresh samples of the liverwort were compared to those of herbarium samples collected in the same lati-altitudinal gradient. SUVACs were significantly higher in fresh samples, whereas IUVACs generally showed the contrary. Thus, IUVACs were more stable than SUVACs and hence more adequate for retrospective UV biomonitoring. In conclusion, UVAC compartmentation should be taken into account for bryophyte-based UV biomonitoring in

  12. Applications of UV Scattering and Absorbing Aerosol Indices

    NASA Astrophysics Data System (ADS)

    Penning de Vries, M.; Beirle, S.; Wagner, T.

    2009-04-01

    Aerosols cause a substantial amount of radiative forcing, but quantifying this amount is difficult: determining aerosol concentrations in the atmosphere and, especially, characterizing their (optical) properties, has proved to be quite a challenge. A good way to monitor aerosol characteristics on a global scale is to perform satellite remote sensing. Most satellite aerosol retrieval algorithms are based on fitting of aerosol-induced changes in earth reflectance, which are usually subtle and have a smooth wavelength dependence. In such algorithms certain aerosol models are assumed, where optical parameters such as single scattering albedo, asymmetry parameter and size parameter (or Angstrom exponent) are defined. Another, semi-quantitative technique for detecting aerosols is the calculation of UV Aerosol Indices (UVAI). The Absorbing and Scattering Aerosol Indices detect "UV-absorbing" aerosols (most notably mineral dust, black and brown carbon particles) and "scattering" aerosols (sulfate and secondary organic aerosol particles), respectively. UVAI are essentially a measure of the contrast between two wavelengths in the UV range. The advantages of UVAI are: they can be determined in the presence of clouds, they are rather insensitive to surface type, and they are very sensitive to aerosols. The Absorbing Aerosol Index (AAI) has been in use for over a decade, and the Scattering Aerosol Index (SAI) was recently introduced by our group. Whereas the AAI is mainly used to detect desert dust and biomass burning plumes, the SAI can be used to study regions with high concentrations of non-absorbing aerosols, either anthropogenic (e.g. sulfate aerosols in eastern China) or biogenic (e.g. secondary organic aerosols formed from VOCs emitted by plants). Here we will present our recent UVAI results from SCIAMACHY: we will discuss the seasonal trend of SAI, and correlate our UVAI data with other datasets such as trace gases (HCHO, NO2, CO) and fire counts from the (A

  13. Inhibition of Lens Photodamage by UV-Absorbing Contact Lenses

    PubMed Central

    Malone, James P.; Townsend, R. Reid

    2011-01-01

    Purpose. To determine whether class 1 UV-blocking contact lenses protect against UVB radiation–induced damage in a human lens epithelial cell line (HLE B-3) and postmortem human lenses using a proteomics approach. Methods. HLE B-3 cells were exposed to 6.4 mW/cm2 UVB radiation at 302 nm for 2 minutes (768 mJ/cm2) with or without covering by senofilcon A class 1 UV-blocking contact lenses or lotrafilcon A non–UV-blocking (lotrafilcon A has some UV-blocking ability, albeit minimal) contact lenses. Control cells were not exposed to UVB radiation. Four hours after treatment, cells were analyzed by two-dimensional difference gel electrophoresis and tandem mass spectrometry, and changes in protein abundance were quantified. F-actin and microtubule cytoskeletons were examined by fluorescence staining. In addition, human donor lenses were exposed to UVB radiation at 302 nm for 4 minutes (1536 mJ/cm2). Cortical and epithelial cell proteins were scraped from lens surfaces and subjected to the same protein analyses. Results. Senofilcon A lenses were beneficial for protecting HLE B-3 cells against UVB radiation–induced changes in caldesmon 1 isoform, lamin A/C transcript variant 1, DEAD (Asp-Glu-Ala-Asp) box polypeptide, β-actin, glyceraldehyde 3-phosphate dehydrogenase (G3PDH), annexin A2, triose phosphate isomerase, and ubiquitin B precursor. These contact lenses also prevented actin and microtubule cytoskeleton changes typically induced by UVB radiation. Conversely, non–UV-blocking contact lenses were not protective. UVB-irradiated human lenses showed marked reductions in αA-crystallin, αB-crystallin, aldehyde dehydrogenase 1, βS-crystallin, βB2-crystallin, and G3PDH, and UV-absorbing contact lenses significantly prevented these alterations. Conclusions. Senofilcon A class 1 UV-blocking contact lenses largely prevented UVB-induced changes in protein abundance in lens epithelial cells and in human lenses. PMID:21873653

  14. The precipitation synthesis of broad-spectrum UV absorber nanoceria

    NASA Astrophysics Data System (ADS)

    Nurhasanah, Iis; Sutanto, Heri; Puspaningrum, Nurul Wahyu

    2013-09-01

    In this paper the possibility of nanoceria as broad-spectrum UV absorber was evaluated. Nanoceria were synthesized by precipitation process from cerium nitrate solution and ammonium hydroxide as precipitant agent. Isopropanol was mixed with water as solvent to prevent hard agglomeration. The structure of resulting nanoceria was characterized by x-ray diffractometer (XRD). The transparency in the visible light and efficiency of protection in UV A region were studied using ultraviolet-visible (UV - Vis) spectrophotometer. The results show that nanoceria possess good tranparency in visible light and high UV light absorption. The critical absorption wavelenght of 368 nm was obtained which is desirable for excellent broad-spectrum protection absorbers. Moreover, analysis of photodegradation nanoceria to methylene blue solution shows poor photocatalytic activity. It indicates that nanoceria suitable for used as UV absorber in personal care products.

  15. The precipitation synthesis of broad-spectrum UV absorber nanoceria

    SciTech Connect

    Nurhasanah, Iis; Sutanto, Heri; Puspaningrum, Nurul Wahyu

    2013-09-09

    In this paper the possibility of nanoceria as broad-spectrum UV absorber was evaluated. Nanoceria were synthesized by precipitation process from cerium nitrate solution and ammonium hydroxide as precipitant agent. Isopropanol was mixed with water as solvent to prevent hard agglomeration. The structure of resulting nanoceria was characterized by x-ray diffractometer (XRD). The transparency in the visible light and efficiency of protection in UV A region were studied using ultraviolet-visible (UV - Vis) spectrophotometer. The results show that nanoceria possess good tranparency in visible light and high UV light absorption. The critical absorption wavelenght of 368 nm was obtained which is desirable for excellent broad-spectrum protection absorbers. Moreover, analysis of photodegradation nanoceria to methylene blue solution shows poor photocatalytic activity. It indicates that nanoceria suitable for used as UV absorber in personal care products.

  16. UV absorbance dependent toxicity of acridine to the marine diatom Phaeodactylum tricornutum.

    PubMed

    Wiegman, Saskia; Termeer, Joost A G; Verheul, Tommie; Kraak, Michiel H S; De Voogt, Pim; Laane, Remi W P M; Admiraal, Wim

    2002-03-01

    The present study seeks quantitative measures for photoenhanced toxicity under natural light regimes by comparing the effects of an aromatic compound under natural and laboratory light. To this purpose, the influence of light irradiance and spectral composition on the extent of photoenhanced toxicity of acridine, a three-ringed azaarene, to the marine diatom Phaeodactylum tricornutum was analyzed. Under laboratory light containing ultraviolet radiation (UV), the 72-h EC50 growth value for acridine was 1.55 microM. Under natural light, a 72-h EC50 value for acridine below the lowest test concentration (0.44 microM) was observed. Under both laboratory and natural light, the toxicity of acridine was equally enhanced by total UV (UV-A and UV-B) and UV-A radiation, while in the absence of UV no enhancement of toxicity was observed. Hence, the UV-A region of light was dominant in the photoenhanced toxicity of acridine to P. tricornutum, in accordance with its absorption spectrum in the UV-A region. Therefore, the total amount of UV radiation absorbed by aqueous acridine was calculated for each separate treatment. The amount of UV absorbed by acridine effectively described the effect of acridine on the growth of P. tricornutum in a dose-response-dependent manner. It is concluded that photoenhanced toxicity of aromatic compounds expressed as a function of the actually absorbed UV may circumvent some of the variability between studies using different concentrations of the phototoxic compounds and light sources. The UV quantity absorbed by these compounds allows a comparison with the absorption characteristics of natural waters and, thus, is a key parameter to determine the role of photoenhanced toxicity in water.

  17. UV Radiation and the Skin

    PubMed Central

    D’Orazio, John; Jarrett, Stuart; Amaro-Ortiz, Alexandra; Scott, Timothy

    2013-01-01

    UV radiation (UV) is classified as a “complete carcinogen” because it is both a mutagen and a non-specific damaging agent and has properties of both a tumor initiator and a tumor promoter. In environmental abundance, UV is the most important modifiable risk factor for skin cancer and many other environmentally-influenced skin disorders. However, UV also benefits human health by mediating natural synthesis of vitamin D and endorphins in the skin, therefore UV has complex and mixed effects on human health. Nonetheless, excessive exposure to UV carries profound health risks, including atrophy, pigmentary changes, wrinkling and malignancy. UV is epidemiologically and molecularly linked to the three most common types of skin cancer, basal cell carcinoma, squamous cell carcinoma and malignant melanoma, which together affect more than a million Americans annually. Genetic factors also influence risk of UV-mediated skin disease. Polymorphisms of the melanocortin 1 receptor (MC1R) gene, in particular, correlate with fairness of skin, UV sensitivity, and enhanced cancer risk. We are interested in developing UV-protective approaches based on a detailed understanding of molecular events that occur after UV exposure, focusing particularly on epidermal melanization and the role of the MC1R in genome maintenance. PMID:23749111

  18. Life under solar UV radiation in aquatic organisms

    NASA Astrophysics Data System (ADS)

    Sinha, R. P.; Häder, D.-P.

    Aquatic photosynthetic organisms are exposed to solar ultraviolet (UV) radiation while they harvest longer wavelength radiation for energetic reasons. Solar UV-B radiation (280 - 315 nm) affects motility and orientation in motile organisms and impairs photosynthesis in cyanobacteria, phytoplankton and macroalgae as measured by monitoring oxygen production or pulse amplitude modulated fluorescence analysis. Upon moderate UV stress most organisms respond by photoinhibition which is an active downregulation of the photosynthetic electron transport in photosystem II by degradation of UV-damaged D1 protein. Photoinhibition is readily reversible during recovery in shaded conditions. Excessive UV stress causes photodamage which is not easily reversible. Another major target is the DNA where UV-B mainly induces thymine dimers. Cyanobacteria, phytoplankton and macroalgae produce scytonemin, mycosporine-like amino acids and other UV-absorbing substances to protect themselves from short wavelength solar radiation.

  19. Distribution and nature of UV absorbers on Triton's surface

    NASA Technical Reports Server (NTRS)

    Stern, S. Alan

    1994-01-01

    Substantial evidence suggests that a UV Spectrally Absorbing Material (UV-SAM) exists on Triton's surface. This evidence is found in the positive slope in Triton's spectrum from the UV to the near-IR, and the increasing contrast in Triton's light curve in the blue and UV. Although it is now widely-thought that UV-SAM's exist on Triton, little is known about their distribution and spectral properties. The goal of this NDAP Project is to determine the spatial distribution and geological context of the UV-SAM material. We hope to determine if UV-SAM's on Triton are correlated with geologic wind streaks, craters, calderas, geomorphic/topographic units, regions containing (or lacking) volatile frosts, or some other process (e.g., magnetospheric interactions). Once the location and distribution of UV-SAM's has been determined, further constraints on their composition can be made by analyzing the spectrographic data set. To accomplish these goals, various data sets will be used, including Voyager 2 UV and visible images of Triton's surface, IUE and HST spectra of Triton, and a geologic map of the surface based on Voyager 2 and spectrophotometric data. The results of this research will be published in the planetary science literature.

  20. Distribution and nature of UV absorbers on Triton's surface

    NASA Technical Reports Server (NTRS)

    Stern, S. Alan

    1995-01-01

    Substantial evidence suggests that a UV spectrally Absorbing Material (UV-SAM) exists on Triton's surface. This evidence is found in the positive slope in Triton's spectrum from the UV to the near-IR, and the increasing contrast in Triton's light curve in the blue and UV. Although it is now widely-thought that UV-SAMs exist on Triton, little is known about their distribution and spectral properties. The goal of this NDAP Project is to determine the spatial distribution and geological context of the UV-SaM material. We hope to determine if UV-SAMs on Triton are correlated with geologic wind streaks, craters, calderas, geomorphic/topographic units, regions containing (or lacking) volatile frosts, or some other process (e.g., magnetospheric interactions). Once the location and distribution of UV-SAMs has been determined, further constraints on their composition cable made by analyzing the spectrographic data set. To accomplish these goals, various data sets will be used, including Voyager 2 UV and visible images of Triton's surface, IUE and HST spectra of Triton, and a geologic map of the surface based on voyager 2 and spectrophotometric data. The results of this research will be published in the planetary science literature.

  1. Distribution and nature of UV absorbers on Trition's surface

    NASA Technical Reports Server (NTRS)

    Stern, S. Alan

    1995-01-01

    Substantial evidence suggests that a UV (ultraviolet) Spectrally Absorbing Material (UV-SAM) exists on Triton's surface. This evidence is found in the positive slope in Triton's spectrum from the UV to the near-IR, and the increasing contrast in Triton's light curve in the blue and UV. Although it is now widely-thought that UV-SAM's exist on Triton, little is known about their distribution and spectral properties. The goal of this NDAP Project is to determine the spatial distribution and geological context of the UV-SAM material. We hope to determine if UV-SAM's on Triton are correlated with geologic wind streaks, craters, calderas, geomorphic/topographic units, regions containing (or lacking) volatile frosts, or some other process (e.g., magnetospheric interactions). Once the location and distribution of UV-SAM's has been determined, further constraints on their composition can be made by analyzing the spectrographic data set. To accomplish these goals, various data sets will be used, including Voyager 2 UV and visible images of Triton's surface, IUE and HST spectra of Triton, and a geologic map of the surface based on Voyager 2 and spectrophotometric data. The results of this research will be published in the planetary science literature.

  2. Effect of biopolishing and UV absorber treatment on the UV protection properties of cotton knitted fabrics.

    PubMed

    Kan, C W; Au, C H

    2014-01-30

    Cotton knitted fabrics were manufactured with gauge number 20 G by circular knitting machine with conventional ring spun yarn and torque-free ring spun yarn. Torque-free ring spinning is a new spinning technology that produces yarns with low twist and balanced torque. This study examined whether the impact of biopolishing and UV absorber treatment on UV protection properties on cotton knitted fabric made of torque-free ring spun yarn is different. Biopolishing agent and UV absorber were used to treat the cotton knitted fabrics after scouring and bleaching. The UV protection properties were measured in terms of UV protection factor (UPF) and UV ray transmittance. Experimental results revealed that knitted fabric made from torque-free ring spun has better UPF than knitted fabric made from conventional ring spun yarn in untreated and biopolished states. However, knitted fabric made from conventional ring spun yarn has better UPF than knitted fabric made from torque-free ring spun after UV absorber treatment and combined UV absorber and biopolishing treatment.

  3. Ultraviolet absorbing compounds provide a rapid response mechanism for UV protection in some reef fish.

    PubMed

    Braun, C; Reef, R; Siebeck, U E

    2016-07-01

    The external mucus surface of reef fish contains ultraviolet absorbing compounds (UVAC), most prominently Mycosporine-like Amino Acids (MAAs). MAAs in the external mucus of reef fish are thought to act as sunscreens by preventing the damaging effects of ultraviolet radiation (UVR), however, direct evidence for their protective role has been missing. We tested the protective function of UVAC's by exposing fish with naturally low, Pomacentrus amboinensis, and high, Thalassoma lunare, mucus absorption properties to a high dose of UVR (UVB: 13.4W∗m(-2), UVA: 6.1W∗m(-2)) and measuring the resulting DNA damage in the form of cyclobutane pyrimidine dimers (CPDs). For both species, the amount of UV induced DNA damage sustained following the exposure to a 1h pulse of high UVR was negatively correlated with mucus absorbance, a proxy for MAA concentration. Furthermore, a rapid and significant increase in UVAC concentration was observed in P. amboinensis following UV exposure, directly after capture and after ten days in captivity. No such increase was observed in T. lunare, which maintained relatively high levels of UV absorbance at all times. P. amboinensis, in contrast to T. lunare, uses UV communication and thus must maintain UV transparent mucus to be able to display its UV patterns. The ability to rapidly alter the transparency of mucus could be an important adaptation in the trade off between protection from harmful UVR and UV communication.

  4. UV-radiation in galaxies

    NASA Astrophysics Data System (ADS)

    Sil'Chenko, Olga K.

    2011-09-01

    I review the origin of UV-radiation in galaxies of different morphological types. UV-excess in spectra of massive elliptical galaxies which have predominantly old stellar populations is traditionally explained by the contribution of low-mass stars at very late, poorly known stages of evolution—by so called `AGB-manqué' stars or by the population of extended horizontal branch. However recent results from the GALEX survey of a large sample of nearby ellipticals have also demonstrated probable traces of recent star formation in a third of all ellipticals observed. In spiral galaxies extended UV-disks have been discovered by the GALEX; they are certainly illuminated by the current star formation, but what has provoked star formation in the areas of very low gas density, beyond the distribution of older stars, is a puzzle yet. The UV-spectra of starburst galaxies or starforming galactic nuclei are characterized by weak emission lines, if any, quite dissimilar to their optical spectra.

  5. Construction of Nontoxic Polymeric UV-Absorber with Great Resistance to UV-Photoaging

    NASA Astrophysics Data System (ADS)

    Huang, Zhong; Ding, Aishun; Guo, Hao; Lu, Guolin; Huang, Xiaoyu

    2016-05-01

    In this article, we developed a series of new nontoxic polymeric UV-absorbers through covalently attaching a benzophenone derivative onto the main chain of poly(vinyl chloride) (PVC) via mild and quantitative click chemistry. Azide groups were firstly introduced into the backbone of PVC via a nucleophilic reaction without affecting polymeric skeleton. Copper-catalyzed Husigen-Click cycloaddition reaction was performed between the pendant azide groups of PVC and alkynyl of (2-hydroxy-4-(prop-2-ynyloxy)phenyl)(phenyl)methanone at ambient temperature for affording the desired PVC-based UV-absorbers (PVC-UV) with different amounts of benzophenone moieties, which displayed great resistance to photoaging without degradation while exposed to UV irradiation. These polymeric UV-absorbers also showed good solubilities in common organic solvents and no cytotoxicity vs. HaCat cell. Small amounts of PVC-UV were homogeneously mixed with PVC as additive for stabilizing PVC against UV-photoaging without degradation and releasing small molecule even after 200 h while keeping thermal stability. This route of polymeric additive clearly paved an efficient way for solving the puzzle of separation of small molecule additive.

  6. Construction of Nontoxic Polymeric UV-Absorber with Great Resistance to UV-Photoaging

    PubMed Central

    Huang, Zhong; Ding, Aishun; Guo, Hao; Lu, Guolin; Huang, Xiaoyu

    2016-01-01

    In this article, we developed a series of new nontoxic polymeric UV-absorbers through covalently attaching a benzophenone derivative onto the main chain of poly(vinyl chloride) (PVC) via mild and quantitative click chemistry. Azide groups were firstly introduced into the backbone of PVC via a nucleophilic reaction without affecting polymeric skeleton. Copper-catalyzed Husigen-Click cycloaddition reaction was performed between the pendant azide groups of PVC and alkynyl of (2-hydroxy-4-(prop-2-ynyloxy)phenyl)(phenyl)methanone at ambient temperature for affording the desired PVC-based UV-absorbers (PVC-UV) with different amounts of benzophenone moieties, which displayed great resistance to photoaging without degradation while exposed to UV irradiation. These polymeric UV-absorbers also showed good solubilities in common organic solvents and no cytotoxicity vs. HaCat cell. Small amounts of PVC-UV were homogeneously mixed with PVC as additive for stabilizing PVC against UV-photoaging without degradation and releasing small molecule even after 200 h while keeping thermal stability. This route of polymeric additive clearly paved an efficient way for solving the puzzle of separation of small molecule additive. PMID:27138547

  7. Methods of calculating radiation absorbed dose.

    PubMed

    Wegst, A V

    1987-01-01

    The new tumoricidal radioactive agents being developed will require a careful estimate of radiation absorbed tumor and critical organ dose for each patient. Clinical methods will need to be developed using standard imaging or counting instruments to determine cumulated organ activities with tracer amounts before the therapeutic administration of the material. Standard MIRD dosimetry methods can then be applied.

  8. UV-B radiation and acclimation in timberline plants.

    PubMed

    Turunen, Minna; Latola, Kirsi

    2005-10-01

    Research has shown that some plants respond to enhanced UV-B radiation by producing smaller and thicker leaves, by increasing the thickness of epidermis and concentration of UV-B absorbing compounds of their surface layers and activation of the antioxidant defence system. The response of high-altitude plants to UV-B radiation in controlled conditions is often less pronounced compared to low-altitude plants, which shows that the alpine timberline plants are adapted to UV-B. These plants may have a simultaneous co-tolerance for several stress factors: acclimation or adaptation to the harsh climate can also increase tolerance to UV-B radiation, and vice versa. On the other hand, alpine timberline plants of northern latitudes may be less protected against increasing UV-B radiation than plants from more southern latitudes and higher elevations due to harsh conditions and weaker preadaptation resulting from lower UV-B radiation exposure. It is evident that more long-term experimental field research is needed in order to study the interaction of climate, soil and UV-B irradiance on the timberline plants.

  9. Triplet-triplet energy transfer from a UV-A absorber butylmethoxydibenzoylmethane to UV-B absorbers.

    PubMed

    Kikuchi, Azusa; Oguchi-Fujiyama, Nozomi; Miyazawa, Kazuyuki; Yagi, Mikio

    2014-01-01

    The phosphorescence decay of a UV-A absorber, 4-tert-butyl-4'-methoxydibenzolymethane (BMDBM) has been observed following a 355 nm laser excitation in the absence and presence of UV-B absorbers, 2-ethylhexyl 4-methoxycinnamate (octyl methoxycinnamate, OMC) and octocrylene (OCR) in ethanol at 77 K. The lifetime of the lowest excited triplet (T1) state of BMDBM is significantly reduced in the presence of OMC and OCR. The observed quenching of BMDBM triplet by OMC and OCR suggests that the intermolecular triplet-triplet energy transfer occurs from BMDBM to OMC and OCR. The T1 state of OCR is nonphosphorescent or very weakly phosphorescent. However, we have shown that the energy level of the T1 state of OCR is lower than that of the enol form of BMDBM. Our methodology of energy-donor phosphorescence decay measurements can be applied to the study of the triplet-triplet energy transfer between UV absorbers even if the energy acceptor is nonphosphorescent. In addition, the delayed fluorescence of BMDBM due to triplet-triplet annihilation was observed in the BMDBM-OMC and BMDBM-OCR mixtures in ethanol at 77 K. Delayed fluorescence is one of the deactivation processes of the excited states of BMDBM under our experimental conditions.

  10. Protection from harmful UV radiation by contact lenses.

    PubMed

    Bergmanson, J P; Pitts, D G; Chu, L W

    1988-03-01

    Ultraviolet radiation (UVR) has been demonstrated to be harmful to the cornea, the lens and the retina. Recent research has indicated that, in addition to the epithelial trauma found in UVR-induced keratitis, the deeper corneal layers are also involved. Since trauma to keratocytes and endothelial cells can result in permanent damage or cell loss, it is imperative to protect eyes against excessive dosages of UVR. Standard hydrogel contact lenses (Vistamarc normal) and newly developed UV-filtering hydrogel lenses (Vistakon UV-BLOC) were fitted on five rabbits and compared in protection from harmful UVR (300 nm). The eyes that wore the UV-filtering lens maintained normal corneas; however, the eyes that wore the standard hydrogel lens showed pronounced epithelial, stromal and endothelial changes. We concluded that the UV-filtering lens effectively absorbed the hazardous UV radiation while the standard soft lens provided little protection.

  11. The impact of solar UV radiation on the early biosphere

    NASA Astrophysics Data System (ADS)

    Horneck, G.

    2007-08-01

    Stratospheric ozone, photochemically produced from atmospheric oxygen, is a protective filter of the Earth's atmosphere by absorbing most of the biologically harmful UV radiation of our sun in the UV-C (190-280 nm) and short wavelength-region of the UV-B (280-315 nm). Numerous lines of isotopic and geologic evidence suggest that the Archean atmosphere was essentially anoxic. As a result the column abundance of ozone would have been insufficient to affect the surface UV radiation environment. Thus, as well as UV-B radiation, UV-C radiation would have penetrated to the Earth's surface with its associated biological consequences. The history of this ultraviolet stress for the early Earth has been determined from theoretical data and data obtained in Earth orbit on the inactivation of Bacillus subtilis spores under a simulated ozone layer of different thicknesses. Although the UV-C and UV-B regions contribute only 2 % of the entire solar extraterrestrial irradiance, photobiological experiments in space have demonstrated a high mutagenicity and lethality of this UV range to living organisms. The reason for these severe effects of extraterrestrial solar UV radiation - compared to conditions on present-day Earth - lies in the absorption characteristics of the DNA, which is the decisive target for inactivation and mutation induction at this UV range. Being a strong mutagen, UV-radiation is considered as a powerful promoter of biological evolution on the one hand, one the other hand, it may have deleterious consequences to individual cells and organisms, e.g. by causing inactivation, mutations or cancer induction. In response to potential harmful effects of environmental UV radiation, life on Earth has developed several strategies of survival, either avoiding exposure to UV radiation or restoring UV damage. Mechanisms of avoidance of exposure to UV radiation include (i) moving away from the UV radiation into shadowed areas, which requires the development of UV radiation

  12. European Conference on Atmospheric UV Radiation: Overview

    NASA Astrophysics Data System (ADS)

    Taalas, Petteri; Amanatidis, Georgios T.; Heikkilä, Anu

    2000-02-01

    Interest in atmospheric ultraviolet radiation (UV) research has increased considerably since the discovery of the Antarctic ozone "hole" and after indications of the existence of a similar kind of potential in northern high latitudes. UV measuring and research activities have grown accordingly, including development of new instruments, improvement in quality assurance/quality control methodologies, as well as development of models. Modeling methodologies have been applied for development of spaceborne techniques for estimating the global distribution of solar UV radiation. The European Conference on Atmospheric UV Radiation (ECUV), which was held on June 28 to July 2, 1998 in Helsinki, Finland, brought together 160 scientists from all parts of the world. The Journal of Geophysical Research (JGR) ECUV special issue summarizes 32 papers presented at the conference. New UV trend analyses based on spectral and broadband measurements and modeled UV data for the most recent decades indicate increases of UV-B radiation in various parts of Europe. Additional observational and modeled information on the impact of cloudiness, total ozone, ozone profiles, aerosols, and albedo on ground level UV irradiance has been gathered. The regional UV albedo has been studied over snow-covered surfaces, vegetation, and sea areas by aircraft-based, ground-based, and modeled methods. Further instrument development, improved QA/QC practices, and the application of data correction methods have already taken place but are also clearly needed in the future. Different methods for estimating UV irradiance using spaceborne information have been developed. Additional efforts to improve our understanding of the impact of cloudiness, albedo, and aerosol on UV are expected to improve spaceborne UV retrievals in the future. In Europe the European Commission and national funding agencies have been supporting research projects aimed at understanding the UV climatology in Europe through UV instrument

  13. Glory on Venus cloud tops and the unknown UV absorber

    NASA Astrophysics Data System (ADS)

    Markiewicz, W. J.; Petrova, E.; Shalygina, O.; Almeida, M.; Titov, D. V.; Limaye, S. S.; Ignatiev, N.; Roatsch, T.; Matz, K. D.

    2014-05-01

    We report on the implications of the observations of the glory phenomenon made recently by Venus Express orbiter. Glory is an optical phenomenon that poses stringent constraints on the cloud properties. These observations thus enable us to constrain two properties of the particles at the cloud tops (about 70 km altitude) which are responsible for a large fraction of the solar energy absorbed by Venus. Firstly we obtain a very accurate estimate of the cloud particles size to be 1.2 μm with a very narrow size distribution. We also find that for the two observations presented here the clouds are homogenous, as far as cloud particles sizes are concerned, on scale of at least 1200 km. This is in contrast to previous estimates that were either local, from entry probes data, or averaged over space and time from polarization data. Secondly we find that the refractive index for the data discussed here is higher than that of sulfuric acid previously proposed for the clouds composition (Hansen, J.E., Hovenier, J.W. [1974]. J. Atmos. Sci. 31, 1137-1160; Ragent, B. et al. [1985]. Adv. Space Res. 5, 85-115). Assuming that the species contributing to the increase of the refractive index is the same as the unknown UV absorber, we are able to constrain the list of candidates. We investigated several possibilities and argue that either small ferric chloride (FeCl3) cores inside sulfuric acid particles or elemental sulfur coating their surface are good explanations of the observation. Both ferric chloride and elemental sulfur have been suggested in the past as candidates for the as yet unknown UV absorber (Krasnopolsky, V.A. [2006]. Planet. Space Sci. 54, 1352-1359; Mills, F.P. et al. [2007]. In: Esposito, L.W., Stofan, E.R., Cravens, T.E. (Eds.), Exploring Venus as a Terrestrial Planet, vol. 176. AGU Monogr. Ser., Washington, DC, pp. 73-100).

  14. The efficacy of a UV-blocking soft contact lens in protecting cornea against UV radiation.

    PubMed

    Bergmanson, J P; Pitts, D G; Chu, L W

    1987-06-01

    Recently, it has been shown that UV keratitis is more serious than previously thought because it is not limited to the corneal epithelium but also involves the stroma and the endothelium. It is, therefore, very important to avoid ultraviolet radiation (UVR) damage, and the purpose of the present study was to examine the ability of a UV absorbing hydrogel lens to filter such wavelengths. Ultrastructural observations of rabbit corneas showed that a regular soft (Vistamarc normal) contact lens offered no protection, and since wearing one adds stress to the cornea it seems possible that the cornea may be more vulnerable to UVR trauma. A UV absorbing soft contact lens (Vistakon UV-BLOC) provided complete protection to all corneal layers. Subepithelial nerve fibres in the traumatized corneas were mostly of normal morphology and may explain why UV keratitis is a very painful experience. It was concluded that a UV absorbing soft contact lenses with acceptable clinical performance may be prescribed on a routine basis.

  15. The encapsulation effect of UV molecular absorbers into biocompatible lipid nanoparticles

    NASA Astrophysics Data System (ADS)

    Lacatusu, Ioana; Badea, Nicoleta; Murariu, Alina; Meghea, Aurelia

    2011-12-01

    The efficiency of a cosmetic product depends not only on the active ingredients, but also on the carrier system devoted to improve its bioavailability. This article aims to encapsulate two couples of UV molecular absorbers, with a blocking action on both UV-A and UV-B domains, into efficient lipid nanoparticles. The effect of encapsulation on the specific properties such as sun protection factor and photostability behaviour has been demonstrated. The lipid nanoparticles with size range 30-350 nm and a polydispersity index between 0.217 and 0.244 are obtained using a modified high shear homogenisation method. The nanoparticles had spherical shapes with a single crystallisation form of lipid matrices characteristic for the least ordered crystal structure (α-form). The in vitro determination of photoprotection has led to high SPF ratings, with values of about 20, which assure a good photoprotection and filtering about 95% of UV radiation. The photoprotection effect after irradiation stage was observed to be increased more than twice compared to initial samples as a result of isomerisation phenomena. All the results have shown that good photoprotection effect and improved photostability could be obtained using such sunscreen couples, thus demonstrating that UV absorbers-solid lipid nanoparticles are promising carriers for cosmetic formulations.

  16. The encapsulation effect of UV molecular absorbers into biocompatible lipid nanoparticles

    PubMed Central

    2011-01-01

    The efficiency of a cosmetic product depends not only on the active ingredients, but also on the carrier system devoted to improve its bioavailability. This article aims to encapsulate two couples of UV molecular absorbers, with a blocking action on both UV-A and UV-B domains, into efficient lipid nanoparticles. The effect of encapsulation on the specific properties such as sun protection factor and photostability behaviour has been demonstrated. The lipid nanoparticles with size range 30-350 nm and a polydispersity index between 0.217 and 0.244 are obtained using a modified high shear homogenisation method. The nanoparticles had spherical shapes with a single crystallisation form of lipid matrices characteristic for the least ordered crystal structure (α-form). The in vitro determination of photoprotection has led to high SPF ratings, with values of about 20, which assure a good photoprotection and filtering about 95% of UV radiation. The photoprotection effect after irradiation stage was observed to be increased more than twice compared to initial samples as a result of isomerisation phenomena. All the results have shown that good photoprotection effect and improved photostability could be obtained using such sunscreen couples, thus demonstrating that UV absorbers-solid lipid nanoparticles are promising carriers for cosmetic formulations. PMID:21711592

  17. Spacesuit Evaporator-Absorber-Radiator (SEAR)

    NASA Technical Reports Server (NTRS)

    Hodgson, Ed; Izenson, Mike; Chan, Weibo; Bue, Grant C.

    2012-01-01

    For decades advanced spacesuit developers have pursued a regenerable, robust nonventing system for heat rejection. Toward this end, this paper investigates linking together two previously developed technologies, namely NASA s Spacesuit Water Membrane Evaporator (SWME), and Creare s Lithium Chloride Absorber Radiator (LCAR). Heat from a liquid cooled garment is transported to SWME that provides cooling through evaporation. This water vapor is then captured by solid LiCl in the LCAR with a high enthalpy of absorption, resulting in sufficient temperature lift to reject heat to space by radiation. After the sortie, the LCAR would be heated up and dried in a regenerator to drive off and recover the absorbed evaporant. A engineering development prototype was built and tested in vacuum conditions at a sink temperature of 250 K. The LCAR was able to stably reject 75 W over a 7-hour period. A conceptual design of a full-scale radiator is proposed. Excess heat rejection above 240 W would be accomplished through venting of the evaporant. Loop closure rates were predicted for various exploration environment scenarios.

  18. Electromagnetic radiation absorbers and modulators comprising polyaniline

    DOEpatents

    Epstein, Arthur J.; Ginder, John M.; Roe, Mitchell G.; Hajiseyedjavadi, Hamid

    1992-01-01

    A composition for absorbing electromagnetic radiation, wherein said electromagnetic radiation possesses a wavelength generally in the range of from about 1000 Angstroms to about 50 meters, wherein said composition comprises a polyaniline composition of the formula ##STR1## where y can be equal to or greater than zero, and R.sup.1 and R.sup.2 are independently selected from the group containing of H, --OCH.sub.3, --CH.sub.3, --F, --Cl, --Br, --I, NR.sup.3 .sub.2, --NHCOR.sup.3, --OH, --O.sup.-, SR.sup.3, --OCOR.sup.3, --NO.sub.2, --COOH, --COOR.sup.3, --COR.sup.3, --CHO, and --CN, where R.sup.3 is a C.sub.1 to C.sub.8 alkyl, aryl or aralkyl group.

  19. [Skin and occupational artificial UV-radiation].

    PubMed

    Fartasch, M; Wittlich, M; Broding, H C; Gellert, B; Blome, H; Brüning, T

    2012-10-01

    In various areas of professional activity, exposure of skin to ultraviolet radiation coming from artificial sources may occur. These UV rays differ from the solar UV radiation due to their intensity and spectrum. We review current developments with the introduction of statutory exposure limit values for jobs with UV radiation from artificial sources, a selection of relevant activities with artificial UV exposure and an overview of the occurrence of skin disorders and dermatologically relevant skin diseases caused by these specific occupational exposures. The latter is relevant for medical advice in occupational dermatology and occupational medicine. On the basis of existing studies on welders and studies regarding occupations with "open flames" (using the example of the glassblower) it is evident that so far no reliable data exist regarding the chronic photodamage or the occurrence of UV-typical skin cancers, but instead clear evidence exists regarding the regular occurrence of acute light damage in these occupations.

  20. Integration and scaling of UV-B radiation effects on plants: from DNA to leaf

    PubMed Central

    Suchar, Vasile Alexandru; Robberecht, Ronald

    2015-01-01

    A process-based model integrating the effects of UV-B radiation through epidermis, cellular DNA, and its consequences to the leaf expansion was developed from key parameters in the published literature. Enhanced UV-B radiation-induced DNA damage significantly delayed cell division, resulting in significant reductions in leaf growth and development. Ambient UV-B radiation-induced DNA damage significantly reduced the leaf growth of species with high relative epidermal absorbance at longer wavelengths and average/low pyrimidine cyclobutane dimers (CPD) photorepair rates. Leaf expansion was highly dependent on the number of CPD present in the DNA, as a result of UV-B radiation dose, quantitative and qualitative absorptive properties of epidermal pigments, and repair mechanisms. Formation of pyrimidine-pyrimidone (6-4) photoproducts (6-4PP) has no effect on the leaf expansion. Repair mechanisms could not solely prevent the UV-B radiation interference with the cell division. Avoidance or effective shielding by increased or modified qualitative epidermal absorptance was required. Sustained increased UV-B radiation levels are more detrimental than short, high doses of UV-B radiation. The combination of low temperature and increased UV-B radiation was more significant in the level of UV-B radiation-induced damage than UV-B radiation alone. Slow-growing leaves were more affected by increased UV-B radiation than fast-growing leaves. PMID:26257869

  1. Integration and scaling of UV-B radiation effects on plants: from DNA to leaf.

    PubMed

    Suchar, Vasile Alexandru; Robberecht, Ronald

    2015-07-01

    A process-based model integrating the effects of UV-B radiation through epidermis, cellular DNA, and its consequences to the leaf expansion was developed from key parameters in the published literature. Enhanced UV-B radiation-induced DNA damage significantly delayed cell division, resulting in significant reductions in leaf growth and development. Ambient UV-B radiation-induced DNA damage significantly reduced the leaf growth of species with high relative epidermal absorbance at longer wavelengths and average/low pyrimidine cyclobutane dimers (CPD) photorepair rates. Leaf expansion was highly dependent on the number of CPD present in the DNA, as a result of UV-B radiation dose, quantitative and qualitative absorptive properties of epidermal pigments, and repair mechanisms. Formation of pyrimidine-pyrimidone (6-4) photoproducts (6-4PP) has no effect on the leaf expansion. Repair mechanisms could not solely prevent the UV-B radiation interference with the cell division. Avoidance or effective shielding by increased or modified qualitative epidermal absorptance was required. Sustained increased UV-B radiation levels are more detrimental than short, high doses of UV-B radiation. The combination of low temperature and increased UV-B radiation was more significant in the level of UV-B radiation-induced damage than UV-B radiation alone. Slow-growing leaves were more affected by increased UV-B radiation than fast-growing leaves.

  2. Electrodeless microwave source of UV radiation

    NASA Astrophysics Data System (ADS)

    Barkhudarov, E. M.; Kozlov, Yu. N.; Kossyi, I. A.; Malykh, N. I.; Misakyan, M. A.; Taktakishvili, I. M.; Khomichenko, A. A.

    2012-06-01

    The parameters of an electrodeless microwave low-pressure discharge in an Ar + Hg vapor mixture are studied, the design of a UV radiation source for water disinfection is suggested, and its main characteristics are presented. The domestic microwave oven ( f = 2.45 GHz; N = kW) is used as a microwave radiation source. The maximal UV power at wavelength λ = 254 nm amounts to 120-130 W.

  3. Spectral absorbance of benthic cladoceran carapaces as a new method for inferring past UV exposure of aquatic biota

    NASA Astrophysics Data System (ADS)

    Nevalainen, Liisa; Rautio, Milla

    2014-01-01

    We developed a method for measuring fossil cladoceran (Branchiopoda) carapace absorbance to infer past ultraviolet radiation (UV) exposure in lakes. This was done under the presumptions that cladocerans synthesize photoprotective compounds, of which melanin is the main UV-absorbing pigment, to their exoskeletons and melanin is preserved in sedimentary cladoceran remains. We extracted large-sized cladoceran (benthic Alona spp.) carapaces from subsections of sediment cores from two environmentally divergent lakes; a humic boreal forest lake in eastern Finland (past 1500 years) and a clear-water mountain lake in the Austrian Alps (past 300 years). We measured the absorbance of extracted carapaces with a spectrophotometer under visible light and UV wavelengths using an adapter, which was designed to hold the microfossils. When compared to the spectrum of synthetic melanin, the shapes of absorbance spectra at the 700-280 nm range suggested that the fossil carapaces contained melanin. The carapace absorbance under UV throughout the sediment cores was significantly higher in the clear-water alpine lake than in the humic boreal lake reflecting differences in the general underwater UV and optical environments between the sites. In addition, carapace absorbance was significantly higher during the Little Ice Age (LIA) than during pre- or post-LIA periods in both lakes. In the alpine lake, this was most likely a response to increased underwater UV induced by reduced primary production and more transparent water column during the cold summers of LIA, whereas reduced input of carbon compounds from the catchment through elongated permafrost and ice-cover periods likely induced higher water transparency in the boreal lake during this cold climate phase. We conclude that fossil melanin provides a good estimation of past underwater UV exposure in lakes with large cladoceran carapaces preserved in sediments and that the method introduced here is easy and cost- and time

  4. Spacesuit Evaporator-Absorber-Radiator (SEAR)

    NASA Technical Reports Server (NTRS)

    Bue, Grant C.; Hodgson, Ed; Izenso, Mike; Chan, Weibo; Cupples, Scott

    2011-01-01

    For decades advanced spacesuit developers have pursued a regenerable, robust non-venting system for heat rejection. Toward this end, this paper investigates linking together two previously developed technologies, namely NASA's Spacesuit Water Membrane Evaporator (SWME), and Creare's lithium chloride Heat Pump Radiator (HPR). Heat from a liquid cooled garment is transported to SWME that provides cooling through evaporation. The SEAR is evacuated at the onset of operations and thereafter, the water vapor absorption rate of the HPR maintains a low pressure environment for the SWME to evaporate effectively. This water vapor captured by solid LiCl in the HPR with a high enthalpy of absorption, results in sufficient temperature lift to reject most of the heat to space by radiation. After the sortie, the HPR would be heated up in a regenerator to drive off and recover the absorbed evaporant. A one-fourth scale prototype was built and tested in vacuum conditions at a sink temperature of 250 K. The HPR was able to stably reject 60 W over a 7-hour period. A conceptual design of a full-scale radiator is proposed. Excess heat rejection above 240 W would be accomplished through venting of the evaporant. Loop closure rates were predicted for various exploration environment scenarios.

  5. [UV-radiation--sources, wavelength, environment].

    PubMed

    Hölzle, Erhard; Hönigsmann, Herbert

    2005-09-01

    The UV-radiation in our environment is part of the electromagnetic radiation, which emanates from the sun. It is designated as optical radiation and reaches from 290-4,000 nm on the earth's surface. According to international definitions UV irradiation is divided into short-wave UVC (200-280 nm), medium-wave UVB (280-320 nm), and long-wave UVA (320-400 nm). Solar radiation which reaches the surface of the globe at a defined geographical site and a defined time point is called global radiation. It is modified quantitatively and qualitatively while penetrating the atmosphere. Besides atmospheric conditions, like ozone layer and air pollution, geographic latitude, elevation, time of the season, time of the day, cloudiness and the influence of indirect radiation resulting from stray effects in the atmosphere and reflection from the underground play a role in modifying global radiation, which finally represents the biologically effective radiation. The radiation's distribution on the body surface varies according to sun angle and body posture. The cumulative UV exposure is mainly influenced by outdoor profession and recreational activities. The use of sun beds and phototherapeutic measures additionally may contribute to the cumulative UV dose.

  6. An overview of UV-absorbing compounds (organic UV filters) in aquatic biota.

    PubMed

    Gago-Ferrero, Pablo; Díaz-Cruz, M Silvia; Barceló, Damià

    2012-11-01

    The purpose of this article is to summarize biological monitoring information on UV-absorbing compounds, commonly referred as organic UV filters or sunscreen agents, in aquatic ecosystems. To date a limited range of species (macroinvertebrates, fish, and birds), habitats (lakes, rivers, and sea), and compounds (benzophenones and camphors) have been investigated. As a consequence there is not enough data enabling reliable understanding of the global distribution and effect of UV filters on ecosystems. Both liquid chromatography and gas chromatography coupled with mass spectrometry-based methods have been developed and applied to the trace analysis of these pollutants in biota, enabling the required selectivity and sensitivity. As expected, the most lipophilic compounds occur most frequently with concentrations up to 7112 ng g(-1) lipids in mussels and 3100 ng g(-1) lipids (homosalate) in fish. High concentrations have also been reported for 4-methylbenzilidenecamphor (up to 1800 ng g(-1) lipids) and octocrylene (2400 ng g(-1) lipids). Many fewer studies have evaluated the potential bioaccumulation and biomagnification of these compounds in both fresh and marine water and terrestrial food webs. Estimated biomagnification factors suggest biomagnification in predator-prey pairs, for example bird-fish and fish-invertebrates. Ecotoxicological data and preliminary environmental assessment of the risk of UV filters are also included and discussed.

  7. Optimization of UV absorptivity of layered double hydroxide by intercalating organic UV-absorbent molecules.

    PubMed

    Mohsin, Sumaiyah Megat Nabil; Hussein, Mohd Zobir; Sarijo, Siti Halimah; Fakurazi, Sharida; Arulselvan, Palanisamy; Taufiq-Yap, Yun Hin

    2014-08-01

    Intercalation of Zn/Al layered double hydroxide (LDH) with benzophenone 9 (B9), a strong ultraviolet (UV) absorber, had been carried out by two different routes; co-precipitation and ion exchange method. Powder X-ray diffraction (PXRD) patterns of co-precipitated (ZB9C) and ion exchanged product (ZB91) showed basal spacing of 15.9 angstrom and 16.6 angstrom, respectively, as a result of the intercalation of B9 anions into the lamellae spaces of LDH. Intercalation was further confirmed by Fourier transform infrared spectra (FTIR), carbon, hydrogen, nitrogen and sulfur (CHNS) and thermogravimetric and differential thermogravimetric (TGA/DTG) studies. UV-vis absorption properties of the nanocomposite was investigated with diffuse reflectance UV-visible spectrometer and showed broader UV absorption range. Furthermore, stability of sunscreen molecules in LDH interlayer space was tested in deionized water, artificial sea water and skin pH condition to show slow deintercalation and high retention in host. Cytotoxicity study of the synthesized nanocomposites on human dermal fibroblast (HDF) cells shows no significant cytotoxicity after 24 h exposure for test concentrations up to 25 microg/mL.

  8. Space Evaporator-Absorber-Radiator (SEAR)

    NASA Technical Reports Server (NTRS)

    Bue, Grant C.; Stephan, Ryan; Hodgson, Ed; Izenson, Mike; Chen, Weibo

    2012-01-01

    A system for non-venting thermal control for spacesuits was built by integrating two previously developed technologies, namely NASA s Spacesuit Water Membrane Evaporator (SWME), and Creare s flexible version of the Lithium Chloride Absorber Radiator (LCAR). This SEAR system was tested in relevant thermal vacuum conditions. These tests show that a 1 m2 radiator having about three times as much absorption media as in the test article would be required to support a 7 hour spacewalk. The serial flow arrangement of the LCAR of the flexible version proved to be inefficient for venting non-condensable gas (NCG). A different LCAR packaging arrangement was conceived wherein the Portable Life Support System (PLSS) housing would be made with a high-strength carbon fiber composite honeycomb, the cells of which would be filled with the chemical absorption media. This new packaging reduces the mass and volume impact of the SEAR on the Portable Life Support System (PLSS) compared to the flexible design. A 0.2 sq m panel with flight-like honeycomb geometry is being constructed and will be tested in thermal and thermal vacuum conditions. Design analyses forecast improved system performance and improved NCG control. A flight-like regeneration system also is also being built and tested. Design analyses for the structurally integrated prototype as well as the earlier test data show that SEAR is not only practical for spacesuits but also has useful applications in spacecraft thermal control.

  9. Multifunctional Space Evaporator-Absorber-Radiator (SEAR)

    NASA Technical Reports Server (NTRS)

    Bue, Grant C.; Hodgson, Ed; Izenson, Mike; Chen, Weibo

    2013-01-01

    A system for non-venting thermal control for spacesuits was built by integrating two previously developed technologies, namely NASA's Spacesuit Water Membrane Evaporator (SWME), and Creare's flexible version of the Lithium Chloride Absorber Radiator (LCAR). This SEAR system was tested in relevant thermal vacuum conditions. These tests show that a 1 sq m radiator having about three times as much absorption media as in the test article would be required to support a 7 hour spacewalk. The serial flow arrangement of the LCAR of the flexible version proved to be inefficient for venting non-condensable gas (NCG). A different LCAR packaging arrangement was conceived wherein the Portable Life Support System (PLSS) housing would be made with a high-strength carbon fiber composite honeycomb, the cells of which would be filled with the chemical absorption media. This new packaging reduce the mass and volume impact of the SEAR on the Portable Life Support System (PLSS) compared to the flexible design. A 0.2 sq m panel with flight-like honeycomb geometry is being constructed and will be tested in thermal and thermal vacuum conditions. Design analyses forecast improved system performance and improved NCG control. A flight-like regeneration system also is also being built and tested. Design analyses for the structurally integrated prototype as well as the earlier test data show that SEAR is not only practical for spacesuits but also has useful applications in spacecraft thermal control.

  10. Model of radiation transmittance by inorganic fouling on UV reactor lamp sleeves.

    PubMed

    Wait, Isaac W; Blatchley, Ernest R

    2010-11-01

    The efficacy of UV disinfection of water depends on the ability of radiation to pass from UV lamps through the quartz sleeves that encase them; the accumulation of metal-containing foulants on sleeve surfaces inhibits disinfection by absorbing radiation that would otherwise be available for inactivation. In a series of experiments, the composition and quantity of sleeve foulants were studied relative to water chemistry and sleeve transmittance. Findings indicate that iron and calcium dominate fouling, with elevated fouling activity by iron, aluminum, manganese, and zinc. A regression-based modeling approach was used to characterize and quantify the effects of foulant metals on UV absorbance. The molar extinction coefficient for iron was found to be more than 3 times greater than that of calcium. Iron's relatively high activity in fouling reactions, elevated capacity to absorb UV, and reduced solubility under oxidizing conditions makes it a fouling precursor of particular concern, with respect to potential for sleeve fouling in UV reactors.

  11. Seasonal fluctuations in the concentration of UV-absorbing compounds in the leaves of some Mediterranean plants under field conditions.

    PubMed

    Liakoura, V.; Manetas, Y.; Karabourniotis, G.

    2001-04-01

    Leaves of 14 representative Mediterranean plant species were collected on a monthly basis and assayed for UV-absorbing compounds concentration, either on an area or a dry mass basis, from 1995 to 1997. Strong seasonal fluctuations were observed in eight species (all evergreens, two phrygana, one deciduous, one summer perennial and one winter perennial). Two different patterns of changing concentrations of UV-absorbing compounds were observed. In the first, concentration of these compounds was higher in young developing leaves and concentration declined during maturation, whereas in other plants, the opposite trend was observed. These differences could be attributed to the particular leaf surface morphology of each plant. The observed seasonal fluctuations of UV-absorbing compounds seem to be more correlated to developmental processes, than to seasonal fluctuations of the naturally occurring UV-B radiation. Most of the winter perennials did not show strong fluctuations during the period of development. The concentration of these compounds varied not only on a seasonal basis among the examined plants, but between different life forms as well: during winter, examination of the leaves of 13 species showed that evergreen sclerophylls and phrygana had at least two-fold higher concentration of UV-B-absorbing compounds on a leaf area basis than winter perennials. In addition, during the same season and irrespective of life form and species, the absorbance at 300 nm per unit of mature leaf area followed an asymptotic exponential decrease when specific leaf area increased. The UV-B radiation screening capacity of the leaves of these plants is discussed in relation to each adaptive strategy.

  12. Different growth sensitivity to enhanced UV-B radiation between male and female Populus cathayana.

    PubMed

    Xu, Xiao; Zhao, Hongxia; Zhang, Xiaolu; Hänninen, Heikki; Korpelainen, Helena; Li, Chunyang

    2010-12-01

    We investigated sex-related morphological and physiological responses to enhanced UV-B radiation in the dioecious species Populus cathayana Rehd. Cuttings were subjected to two UV-B radiation regimes: ambient (4.5 kJ m⁻² day⁻¹) and enhanced (12.5 kJ m⁻² day⁻¹) biologically effective UV-B radiation for one growing season. Enhanced UV-B radiation was found to significantly decrease the shoot height and basal diameter and to reduce the leaf area, dry matter accumulation, net photosynthesis rate (P(n)), chlorophyll a/b ratio (Chl a/b) and anthocyanin content. Enhanced UV-B radiation also increased chlorophyll pigment, leaf nitrogen, malondialdehyde and abscisic acid (ABA) content, superoxide dismutase and peroxidase activities and UV-B-absorbing compounds. No significant effects of enhanced UV-B radiation were found on biomass allocation, gas exchange (except for P(n)), photochemical efficiency of photosystem II or water use efficiency. Moreover, different sensitivity to enhanced UV-B radiation between males and females was detected. Under enhanced UV-B radiation, males exhibited significantly higher basal diameter and leaf nitrogen, and lower Chl a/b, ABA content, UV-B-absorbing compounds, as well as less decrement of leaf area and dry matter accumulation than did females. However, no significant sexual differences in these traits were found under ambient UV-B radiation. Our results suggest that males may possess a greater UV-B resistance than do females, with males having a more efficient antioxidant system and higher anthocyanin content to alleviate UV-B penetration stress than females.

  13. Effects of UV radiation on phytoplankton

    NASA Astrophysics Data System (ADS)

    Smith, Raymond C.; Cullen, John J.

    1995-07-01

    It is now widely documented that reduced ozone will result in increased levels of ultraviolet (UV) radiation, especially UV-B (280-320nm), incident at the surface of the earth [Watson, 1988; Anderson et al., 1991; Schoeberl and Hartmann, 1991; Frederick and Alberts, 1991; WMO, 1991; Madronich, 1993; Kerr and McElroy, 1993], and there is considerable and increasing evidence that these higher levels of UV-B radiation may be detrimental to various forms of marine life in the upper layers of the ocean. With respect to aquatic ecosystems, we also know that this biologically- damaging mid-ultraviolet radiation can penetrate to ecologically- significant depths in marine and freshwater systems [Jerlov, 1950; Lenoble, 1956; Smith and Baker, 1979; Smith and Baker, 1980; Smith and Baker, 1981; Kirk et al., 1994]. This knowledge, plus the dramatic decline in stratospheric ozone over the Antarctic continent each spring, now known to be caused by anthropogenically released chemicals [Solomon, 1990; Booth et al., 1994], has resulted in increased UV-environmental research and a number of summary reports. The United Nations Environmental Program (UNEP) has provided recent updates with respect to the effects of ozone depletion on aquatic ecosystems (Hader, Worrest, Kumar in UNEP 1989, 1991, Hader, Worrest, Kumar and Smith UNEP 1994) and the Scientific Committee on Problems of the Environment (SCOPE) has provided [SCOPE, 1992] a summary of the effects of increased UV radiation on biological systems. SCOPE has also reported [SCOPE, 1993] on the effects of increased UV on the biosphere. In addition, several books have recently been published reviewing various aspects of environmental UV photobiology [Young et al., 1993], UV effects on humans, animals and plants [Tevini, 1993], the biological effects of UV radiation in Antarctica [Weiler and Penhale, 1994], and UV research in freshwater ecosystems [Williamson and Zagarese, 1994]. Several other reviews are relevant [NAS, 1984; Caldwell

  14. Leaf UV optical properties of rumex patientia l. and rumex obtusifolius l. in regard to a protective mechanism against solar UV-B radiation injury

    SciTech Connect

    Robberecht, R.; Caldwell, M.M.

    1987-01-01

    Effective UV attenuation in the outer leaf layers may represent an important protective mechanism against potentially damaging solar UV-B radiation. Epidermal optical properties for Rumex patientia and Rumex obtusifolius were examined on field-collected and greenhouse-grown plants. Rumex patientia, a relatively UV-B sensitive plant, has substantially higher epidermal UV transmittance than Rumex obtusifolius, which indicated that the UV-B flux at the mesophyll layer for Rumex obtusifolius by 27% after exposure to solar UV-B radiation. Flavonoid extract absorbance also increased in whole leaves of both species after solar UV-B radiation. The epidermis is not only an effective filter for UV-B radiation, but is wavelength selective, and shows a degree of plasticity in this attenuation.

  15. Ozone depletion and climate change: impacts on UV radiation.

    PubMed

    Bais, A F; McKenzie, R L; Bernhard, G; Aucamp, P J; Ilyas, M; Madronich, S; Tourpali, K

    2015-01-01

    We assess the importance of factors that determine the intensity of UV radiation at the Earth's surface. Among these, atmospheric ozone, which absorbs UV radiation, is of considerable importance, but other constituents of the atmosphere, as well as certain consequences of climate change, can also be major influences. Further, we assess the variations of UV radiation observed in the past and present, and provide projections for the future. Of particular interest are methods to measure or estimate UV radiation at the Earth's surface. These are needed for scientific understanding and, when they are sufficiently sensitive, they can serve as monitors of the effectiveness of the Montreal Protocol and its amendments. Also assessed are several aspects of UV radiation related to biological effects and health. The implications for ozone and UV radiation from two types of geoengineering methods that have been proposed to combat climate change are also discussed. In addition to ozone effects, the UV changes in the last two decades, derived from measurements, have been influenced by changes in aerosols, clouds, surface reflectivity, and, possibly, by solar activity. The positive trends of UV radiation observed after the mid-1990s over northern mid-latitudes are mainly due to decreases in clouds and aerosols. Despite some indications from measurements at a few stations, no statistically significant decreases in UV-B radiation attributable to the beginning of the ozone recovery have yet been detected. Projections for erythemal irradiance (UVery) suggest the following changes by the end of the 21(st) century (2090-2100) relative to the present time (2010-2020): (1) Ozone recovery (due to decreasing ozone-depleting substances and increasing greenhouse gases) would cause decreases in UVery, which will be highest (up to 40%) over Antarctica. Decreases would be small (less than 10%) outside the southern Polar Regions. A possible decline of solar activity during the 21(st) century

  16. SOLAR UV RADIATION AND AQUATIC BIOGEOCHEMISTRY

    EPA Science Inventory

    During the past decade significant interest has developed in the influence of solar UV radiation on biogeochemical cycles in surface waters of lakes and the sea. A major portion of this research has focused on photoreactions of the colored component of dissolved organic matter, ...

  17. Photoprotectant improves photostability and bioactivity of abscisic acid under UV radiation.

    PubMed

    Gao, Fei; Hu, Tanglu; Tan, Weiming; Yu, Chunxin; Li, Zhaohu; Zhang, Lizhen; Duan, Liusheng

    2016-05-01

    Photosensitivity causes serious drawback for abscisic acid (ABA) application, but preferable methods to stabilize the compound were not found yet. To select an efficient photoprotectant for the improvement of photostability and bioactivity of ABA when exposed to UV light, we tested the effects of a photostabilizer bis(2,2,6,6-tetramethyl-4-piperidinyl) sebacate (HS-770) and two UV absorbers 2-hydroxy-4-n-octoxy-benzophenone (UV-531) and 2-hydroxy-4-methoxybenzophenone-5-sulfonic acid (BP-4) with or without HS-770 on the photodegradation of ABA. Water soluble UV absorber BP-4 and oil soluble UV absorber UV-531 showed significant photo-stabilizing capability on ABA, possibly due to competitive energy absorption of UVB by the UV absorbers. The two absorbers showed no significant difference. Photostabilizer HS-770 accelerated the photodegradation of ABA and did not improve the photo-stabilizing capability of BP-4, likely due to no absorption in UVB region and salt formation with ABA and BP-4. Approximately 26% more ABA was kept when 280mg/l ABA aqueous solution was irradiated by UV light for 2h in the presence of 200mg/l BP-4. What's more, its left bioactivity on wheat seed (JIMAI 22) germination was greatly kept by BP-4, comparing to that of ABA alone. The 300 times diluent of 280mg/l ABA plus 200mg/l BP-4 after 2h irradiation showed more than 13% inhibition on shoot and root growth of wheat seed than that of ABA diluent alone. We concluded that water soluble UV absorber BP-4 was an efficient agent to keep ABA activity under UV radiation. The results could be used to produce photostable products of ABA compound or other water soluble agrichemicals which are sensitive to UV radiation. The frequencies and amounts of the agrichemicals application could be thereafter reduced.

  18. Photosynthesis, Growth, and Ultraviolet Irradiance Absorbance of Cucurbita pepo L. Leaves Exposed to Ultraviolet-B Radiation (280-315 nm).

    PubMed

    Sisson, W B

    1981-01-01

    Net photosynthesis, growth, and ultraviolet (UV) radiation absorbance were determined for the first leaf of Cucurbita pepo L. exposed to two levels of UV-B irradiation and a UV-B radiation-free control treatment. Absorbance by extracted flavonoid pigments and other UV-B radiation-absorbing compounds from the first leaves increased with time and level of UV-B radiation impinging on leaf surfaces. Although absorbance of UV-B radiation by extracted pigments increased substantially, UV-B radiation attenuation apparently was insufficient to protect completely the photosynthetic apparatus or leaf growth processes. Leaf expansion was repressed by daily exposure to 1365 Joules per meter per day of biologically effective UV-B radiation but not by exposure to 660 Joules per meter per day. Photosynthesis measured through ontogenesis of the first leaf was depressed by both UV-B radiation treatments. Repression of photosynthesis by UV-B radiation was especially evident during the ontogenetic period of maximum photosynthetic activity.

  19. Photosynthesis, Growth, and Ultraviolet Irradiance Absorbance of Cucurbita pepo L. Leaves Exposed to Ultraviolet-B Radiation (280-315 nm) 1

    PubMed Central

    Sisson, William B.

    1981-01-01

    Net photosynthesis, growth, and ultraviolet (UV) radiation absorbance were determined for the first leaf of Cucurbita pepo L. exposed to two levels of UV-B irradiation and a UV-B radiation-free control treatment. Absorbance by extracted flavonoid pigments and other UV-B radiation-absorbing compounds from the first leaves increased with time and level of UV-B radiation impinging on leaf surfaces. Although absorbance of UV-B radiation by extracted pigments increased substantially, UV-B radiation attenuation apparently was insufficient to protect completely the photosynthetic apparatus or leaf growth processes. Leaf expansion was repressed by daily exposure to 1365 Joules per meter per day of biologically effective UV-B radiation but not by exposure to 660 Joules per meter per day. Photosynthesis measured through ontogenesis of the first leaf was depressed by both UV-B radiation treatments. Repression of photosynthesis by UV-B radiation was especially evident during the ontogenetic period of maximum photosynthetic activity. PMID:16661610

  20. Photosynthesis, growth, and ultraviolet irradiance absorbance of Cucurbita pepo L. leaves exposed to ultraviolet-B radiation (280 to 315 nm)

    SciTech Connect

    Sisson, W.B.

    1981-01-01

    Net photosynthesis, growth, and ultraviolet (uv) radiation absorbance were determined for the first leaf of Cucurbita pepo L. exposed to two levels of uv-B irradiation and a uv-B radiation-free control treatment. Absorbance by extracted flavonoid pigments and other uv-B radiation-absorbing compounds from the first leaves increased with time and level of uv-B radiation impinging on leaf surfaces. Although absorbance of uv-B radiation by extracted pigments increased substantially, uv-B radiation attenuation apparently was insufficient to protect completely the photosynthetic apparatus or leaf growth processes. Leaf expansion was repressed by daily exposure to 1365 Joules per meter per day of biologically effective uv-B radiation by not by exposure to 660 Joules per meter per day. Photosynthesis measured through ontogenesis of the first leaf was depressed by both uv-B radiation treatments. Repression of photosynthesis by uv-B radiation was especially evident during the ontogenetic period of maximum photosynthetic activity.

  1. The cloudiness effect on UV radiation

    NASA Astrophysics Data System (ADS)

    Mateos, D.; de Miguel, A.; Bilbao, J.

    2009-04-01

    Ultraviolet total solar irradiation, 290-385 nm, at ground level in Valladolid, Spain (lat. 41° 40'N, long. 4°50'W and 840 m a.m.s.l.), has been recorded from February 2001 to June 2008 with an Eppley TUVR radiometer. The aim of this study is to examine the effects of clouds on the ultraviolet total irradiation (UV). To this end, two parameters have been calculated to quantify the effect of clouds on this radiation: clearness index or hemispherical transmittance and cloud modification factor (CMF). The global hemispherical transmittance is defined as the ratio between the global measured irradiation and the global extraterrestrial irradiation. The global cloud modification factor is defined as the ratio between the global measured irradiation and the estimated in a clear sky model. By analogy, these parameters are defined for ultraviolet range. The dependence of UV and global hemispherical transmittances on cloudiness (in octas) have been analyzed. It can be seen that, for high solar elevation angles, the global hemispherical transmittance falls 60% from cloudless to overcast skies, whereas UV hemispherical transmittance decreases only 50%. Linear and potential fits have been found like the best relationships between these transmittances. Moreover, the dependence of UV/G ratio and the clearness index on the cloudiness (in octas) have been studied. Both variables show different behaviours, while the UV/G ratio increases with cloud cover, the clearness index decreases. For example, for high solar elevation, the clearness index falls 50% from cloudless to overcast skies, while the UV/G ratio rises almost 1%. The relationships between global and UV cloud modification factor have been found. The best ones obtained have been with the exponential or potential functions. It can be shown that these relationships move away from the linearity. Therefore, the clouds do not transmit the UV irradiation and the global solar irradiation in the same way. UV-CMF and global

  2. UV-Radiation: From Physics to Impacts

    PubMed Central

    Moshammer, Hanns; Simic, Stana; Haluza, Daniela

    2017-01-01

    Ultraviolet (UV) radiation has affected life at least since the first life forms moved out of the seas and crawled onto the land. Therefore, one might assume that evolution has adapted to natural UV radiation. However, evolution is mostly concerned with the propagation of the genetic code, not with a long, happy, and fulfilling life. Because rickets is bad for a woman giving birth, the beneficial effects of UV-radiation outweigh the adverse effects like aged skin and skin tumors of various grades of malignancy that usually only afflict us at older age. Anthropogenic damage to the stratospheric ozone layer and frighteningly high rates of melanoma skin cancer in the light-skinned descendants of British settlers in Australia piqued interest in the health impacts of UV radiation. A changing cultural perception of the beauty of tanned versus light skin and commercial interests in selling UV-emitting devices such as tanning booths caught public health experts off-guard. Counseling and health communication are extremely difficult when dealing with a “natural” risk factor, especially when this risk factor cannot (and should not) be completely avoided. How much is too much for whom or for which skin type? How even measure “much”? Is it the (cumulative) dose or the dose rate that matters most? Or should we even construct a more complex metric such as the cumulative dose above a certain dose rate threshold? We find there are still many open questions, and we are glad that this special issue offered us the opportunity to present many interesting aspects of this important topic. PMID:28218687

  3. Effects of UV radiation on aquatic ecosystems and interactions with other environmental factors.

    PubMed

    Häder, Donat-P; Williamson, Craig E; Wängberg, Sten-Åke; Rautio, Milla; Rose, Kevin C; Gao, Kunshan; Helbling, E Walter; Sinha, Rajeshwar P; Worrest, Robert

    2015-01-01

    Interactions between climate change and UV radiation are having strong effects on aquatic ecosystems due to feedback between temperature, UV radiation, and greenhouse gas concentration. Higher air temperatures and incoming solar radiation are increasing the surface water temperatures of lakes and oceans, with many large lakes warming at twice the rate of regional air temperatures. Warmer oceans are changing habitats and the species composition of many marine ecosystems. For some, such as corals, the temperatures may become too high. Temperature differences between surface and deep waters are becoming greater. This increase in thermal stratification makes the surface layers shallower and leads to stronger barriers to upward mixing of nutrients necessary for photosynthesis. This also results in exposure to higher levels of UV radiation of surface-dwelling organisms. In polar and alpine regions decreases in the duration and amount of snow and ice cover on lakes and oceans are also increasing exposure to UV radiation. In contrast, in lakes and coastal oceans the concentration and colour of UV-absorbing dissolved organic matter (DOM) from terrestrial ecosystems is increasing with greater runoff from higher precipitation and more frequent extreme storms. DOM thus creates a refuge from UV radiation that can enable UV-sensitive species to become established. At the same time, decreased UV radiation in such surface waters reduces the capacity of solar UV radiation to inactivate viruses and other pathogens and parasites, and increases the difficulty and price of purifying drinking water for municipal supplies. Solar UV radiation breaks down the DOM, making it more available for microbial processing, resulting in the release of greenhouse gases into the atmosphere. In addition to screening solar irradiance, DOM, when sunlit in surface water, can lead to the formation of reactive oxygen species (ROS). Increases in carbon dioxide are in turn acidifying the oceans and inhibiting

  4. Role of pigmentation in protecting Bacillus sp. endospores against environmental UV radiation.

    PubMed

    Moeller, Ralf; Horneck, Gerda; Facius, Rainer; Stackebrandt, Erko

    2005-01-01

    Bacillus endospores show different kinds of pigmentation. Red-pigmented spores of Bacillus atrophaeus DSM 675, dark-gray spores of B. atrophaeus(T) DSM 7264 and light-gray spores of B. subtilis DSM 5611 were used to study the protective role of the pigments in their resistance to defined ranges of environmental UV radiation. Spores of B. atrophaeus DSM 675 possessing a dark-red pigment were 10 times more resistant to UV-A radiation than those of the other two investigated strains, whereas the responses to the more energetic UV-B and UV-C radiation were identical in all three strains. The methanol fraction of the extracted pigment from the spores absorbs in the associated wavelength area. These results indicate that the carotene-like pigment of spores of B. atrophaeus DSM 675 affects the resistance of spores to environmental UV-A radiation.

  5. Absorption of UV radiation by DNA: spatial and temporal features.

    PubMed

    Markovitsi, Dimitra; Gustavsson, Thomas; Banyasz, Akos

    2010-01-01

    The present review focuses on studies carried out by our group on the interaction of UV radiation with DNA. In particular, we examine the way that the energy acquired by DNA helices following direct absorption of UVC radiation is extended spatially and how its effects evolve during the time. These effects depend on the base sequence and can be revealed by the study of model helices. The experimental results were obtained by optical spectroscopy, used in a refined way which allows detection of very weak absorbance changes (10(-3)) as well as of intrinsic emission from DNA components whose fluorescence quantum yields are as low as 10(-4). Measurements were performed both under continuous irradiation and using pulsed excitation which permitted us to follow early events, occurring from 10(-14) to 10(-1)s. The experiments were guided by theoretical calculations. The spatial features concern the extent of the excited states formed immediately upon UV absorption; these were shown to be delocalized over several bases under the effect of electronic coupling. Moreover, thanks to the spectral fingerprints governed by the electronic coupling; we probed local denaturation induced on a double helix following formation of cyclobutane dimers. Regarding the temporal features, three different topics are presented: (i) ultrafast excitation energy transfer occurring among the bases in less than 100 fs, (ii) electron ejection from DNA upon absorption of one photon at 266 nm and (iii) formation of (6-4) photo-adducts involving a reaction intermediate. The most important message emerging from these studies is that DNA bases may adopt a collective behaviour versus UV radiation. Furthermore, time-resolved studies unravel processes which are undetectable by investigations using continuous irradiation. All these pieces of information change our understanding of how DNA damage occurs upon absorption of UV radiation.

  6. Liposomogenic UV Absorbers are Water-Resistant on Pig Skin-A Model Study With Relevance for Sunscreens.

    PubMed

    Herzog, Bernd; Hüglin, Dietmar; Luther, Helmut

    2017-02-01

    An important property of sunscreens is their water resistance after the application on human skin. In this work, the hypothesis that UV absorber molecules which are able to form liposomes, so-called liposomogenic UV absorbers, show better water resistance on a pig skin model than UV-absorbing molecules lacking this ability was tested. The assumption behind is that molecules which can form liposomes are able to integrate into the stratum corneum lipids of the skin. Three different liposomogenic UV absorbers were synthesized and their behavior investigated, leading to the confirmation of the hypothesis. With one of the liposomogenic UV absorbers, it was possible to show the integration of the UV absorber molecules into the bilayers of another liposome consisting of phosphatidylcholine, supporting the assumption that liposomogenic UV absorbers exhibit improved water resistance because they integrate into the skin lipids.

  7. [Determination of chemical oxygen demand in water using near infrared transmission and UV absorbance method].

    PubMed

    Wu, Guo-Qing; Bi, Wei-Hong; Lui, Jia-Ming; Fu, Guang-Wei

    2011-06-01

    Chemical oxygen demand (COD) is a synthetical indicator which represents the degree of organic pollution in water. The near-infrared (NIR) transmission and the UV absorbance method based on photoelectric detection technology and spectroscopy analysis have some advantages such as high precision, speed, non-contact, no secondary pollution etc compared to conventional wet chemical method. The NIR transmission spectra and UV absorbance spectra of standard solution configured with phthalate hydrogen potassium were collected respectively by MPA FTIR spectrometer (Bruker Optics Inc.) made in Germany and AvaSpec-2048-2 UV spectrometer (Avantes Inc.) made in Netherlands. After different pretreatment to the spectra, COD quantitative analysis model was established using partial least squares regression (PLS) and linear regression. The statistical analysis of COD quantitative model was implemented, and the result showed that UV absorbance method had a higher relevance but lower forecast accuracy and precision than NIR transmission method.

  8. Responses of a rice-field cyanobacterium Anabaena siamensis TISTR-8012 upon exposure to PAR and UV radiation.

    PubMed

    Rastogi, Rajesh P; Incharoensakdi, Aran; Madamwar, Datta

    2014-10-15

    The effects of PAR and UV radiation and subsequent responses of certain antioxidant enzymatic and non-enzymatic defense systems were studied in a rice field cyanobacterium Anabaena siamensis TISTR 8012. UV radiation resulted in a decline in growth accompanied by a decrease in chlorophyll a and photosynthetic efficiency. Exposure of cells to UV radiation significantly affected the differentiation of vegetative cells into heterocysts or akinetes. UV-B radiation caused the fragmentation of the cyanobacterial filaments conceivably due to the observed oxidative stress. A significant increase of reactive oxygen species in vivo and DNA strand breaks were observed in UV-B exposed cells followed by those under UV-A and PAR radiation, respectively. The UV-induced oxidative damage was alleviated due to an induction of antioxidant enzymatic/non-enzymatic defense systems. In response to UV irradiation, the studied cyanobacterium exhibited a significant increase in antioxidative enzyme activities of superoxide dismutase, catalase and peroxidase. Moreover, the cyanobacterium also synthesized some UV-absorbing/screening substances. HPLC coupled with a PDA detector revealed the presence of three compounds with UV-absorption maxima at 326, 331 and 345 nm. The induction of the biosynthesis of these UV-absorbing compounds was found under both PAR and UV radiation, thus suggesting their possible function as an active photoprotectant.

  9. A ten-year global record of absorbing aerosols above clouds from OMI's near-UV observations

    NASA Astrophysics Data System (ADS)

    Jethva, Hiren; Torrres, Omar; Ahn, Changwoo

    2016-05-01

    Aerosol-cloud interaction continues to be one of the leading uncertain components of climate models, primarily due to the lack of an adequate knowledge of the complex microphysical and radiative processes associated with the aerosolcloud system. The situations when aerosols and clouds are found in the same atmospheric column, for instance, when light-absorbing aerosols such as biomass burning generated carbonaceous particles or wind-blown dust overlay low-level cloud decks, are commonly found over several regional of the world. Contrary to the cloud-free scenario over dark surface, for which aerosols are known to produce a net cooling effect (negative radiative forcing) on climate, the overlapping situation of absorbing aerosols over cloud can potentially exert a significant level of atmospheric absorption and produces a positive radiative forcing at top-of-atmosphere. The magnitude of direct radiative effects of aerosols above cloud depends directly on the aerosol loading, microphysical-optical properties of the aerosol layer and the underlying cloud deck, and geometric cloud fraction. We help in addressing this problem by introducing a novel product of optical depth of absorbing aerosols above clouds retrieved from near-UV observations made by the Ozone Monitoring Instrument (OMI) on board NASA's Aura platform. The presence of absorbing aerosols above cloud reduces the upwelling radiation reflected by cloud and produces a strong `color ratio' effect in the near-UV region, which can be unambiguously detected in the OMI measurements. Physically based on this effect, the OMACA algorithm retrieves the optical depths of aerosols and clouds simultaneously under a prescribed state of atmosphere. The algorithm architecture and results from a ten-year global record including global climatology of frequency of occurrence and above-cloud aerosol optical depth, and a discussion on related future field campaigns are presented.

  10. MEDICAL AND ENVIRONMENTAL EFFECTS OF UV RADIATION.

    SciTech Connect

    SUTHERLAND, B.M.

    2001-07-26

    Organisms living on the earth are exposed to solar radiation, including its ultraviolet (UV) components (for general reviews, the reader is referred to Smith [1] and Young et al. [2]). UV wavelength regions present in sunlight are frequently designated as UVB (290-320 nm) and UVA (320-400 nm). In today's solar spectrum, UVA is the principal UV component, with UVB present at much lower levels. Ozone depletion will increase the levels of UVB reaching the biosphere, but the levels of UVA will not be changed significantly [3]. Because of the high efficiency of UVB in producing damage in biological organisms in the laboratory experiments, it has sometimes been assumed that UVA has little or no adverse biological effects. However, accumulating data [4, 5], including action spectra (efficiency of biological damage as a function of wavelength of radiation; see Section 5) for DNA damage in alfalfa seedlings [6], in human skin [7], and for a variety of plant damages (Caldwell, this volume) indicate that UVA can induce damage in DNA in higher organisms. Thus, understanding the differential effects of UVA and UVB wavebands is essential for estimating the biological consequences of stratospheric ozone depletion.

  11. Observations of the diffuse UV radiation field

    NASA Technical Reports Server (NTRS)

    Murthy, Jayant; Henry, R. C.; Feldman, P. D.; Tennyson, P. D.

    1989-01-01

    Spectra are presented for the diffuse UV radiation field between 1250 to 3100 A from eight different regions of the sky, which were obtained with the Johns Hopkins UVX experiment. UVX flew aboard the Space Shuttle Columbia (STS-61C) in January 1986 as part of the Get-Away Special project. The experiment consisted of two 1/4 m Ebert-Fastie spectrometers, covering the spectral range 1250 to 1700 A at 17 A resolution and 1600 to 3100 A at 27 A resolution, respectively, with a field of view of 4 x .25 deg, sufficiently small to pick out regions of the sky with no stars in the line of sight. Values were found for the diffuse cosmic background ranging in intensity from 300 to 900 photons/sq cm/sec/sr/A. The cosmic background is spectrally flat from 1250 to 3100 A, within the uncertainties of each spectrometer. The zodiacal light begins to play a significant role in the diffuse radiation field above 2000 A, and its brightness was determined relative to the solar emission. Observed brightnesses of the zodiacal light in the UV remain almost constant with ecliptic latitude, unlike the declining visible brightnesses, possibly indicating that those (smaller) grains responsible for the UV scattering have a much more uniform distribution with distance from the ecliptic plane than do those grains responsible for the visible scattering.

  12. Modelling of ground-level UV radiation

    NASA Astrophysics Data System (ADS)

    Koepke, P.; Schwander, H.; Thomalla, E.

    1996-06-01

    A number of modifications were made on the STAR radiation transmission model for greater ease of use while keeping its fault liability low. The improvements concern the entire aerosol description function of the model, the option of radiation calculation for different receiver geometries, the option of switching off temperature-dependent ozone absorption, and simplications of the STAR menu. The assets of using STAR are documented in the studies on the accuracy of the radiation transmission model. One of these studies gives a detailed comparison of the present model with a simple radiation model which reveals the limitations of approximation models. The other examines the error margin of radiation transmission models as a function of the input parameters available. It was found here that errors can be expected to range between 5 and 15% depending on the quality of the input data sets. A comparative study on the values obtained by measurement and through the model proved this judgement correct, the relative errors lying within the predicted range. Attached to this final report is a comprehensive sensitivity study which quantifies the action of various atmospheric parameters relevant to UV radiation, thus contributing to an elucidation of the process.

  13. Effects of solar UV-B radiation on aquatic ecosystems.

    PubMed

    Hader, D P

    2000-01-01

    Solar UV degrades dissolved organic carbon photolytically so that they can readily be taken up by bacterioplankton. On the other hand solar UV radiation inhibits bacterioplankton activity. Bacterioplankton productivity is far greater than previously thought and is comparable to phytoplankton primary productivity. According to the "microbial loop hypothesis," bacterioplankton is seen in the center of a food web, having a similar function to phytoplankton and protists. The penetration of UV and PAR into the water column can be measured. Marine waters show large temporal and regional differences in their concentrations of dissolved and particulate absorbing substances. A network of dosimeters (ELDONET) has been installed in Europe ranging from Abisko in Northern Sweden to Gran Canaria. Cyanobacteria are capable of fixing atmospheric nitrogen which is then made available to higher plants. The agricultural potential of cyanobacteria has been recognized as a biological fertilizer for wet soils such as in rice paddies. UV-B is known to impair processes such as growth, survival, pigmentation, motility, as well as the enzymes of nitrogen metabolism and CO2 fixation. The marine phytoplankton represents the single most important ecosystem on our planet and produces about the same biomass as all terrestrial ecosystems taken together. It is the base of the aquatic food chain and any changes in the size and composition of phytoplankton communities will directly affect food production for humans from marine sources. Another important role of marine phytoplankton is to serve as a sink for atmospheric carbon dioxide. Recent investigations have shown a large sensitivity of most phytoplankton organisms toward solar short-wavelength ultraviolet radiation (UV-B); even at ambient levels of UV-B radiation many organisms seem to be under UV stress. Because of their requirement for solar energy, the phytoplankton dwell in the top layers of the water column. In this near-surface position

  14. UV and ionizing radiations induced DNA damage, differences and similarities

    NASA Astrophysics Data System (ADS)

    Ravanat, Jean-Luc; Douki, Thierry

    2016-11-01

    Both UV and ionizing radiations damage DNA. Two main mechanisms, so-called direct and indirect pathways, are involved in the degradation of DNA induced by ionizing radiations. The direct effect of radiation corresponds to direct ionization of DNA (one electron ejection) whereas indirect effects are produced by reactive oxygen species generated through water radiolysis, including the highly reactive hydroxyl radicals, which damage DNA. UV (and visible) light damages DNA by again two distinct mechanisms. UVC and to a lesser extend UVB photons are directly absorbed by DNA bases, generating their excited states that are at the origin of the formation of pyrimidine dimers. UVA (and visible) light by interaction with endogenous or exogenous photosensitizers induce the formation of DNA damage through photosensitization reactions. The excited photosensitizer is able to induce either a one-electron oxidation of DNA (type I) or to produce singlet oxygen (type II) that reacts with DNA. In addition, through an energy transfer from the excited photosensitizer to DNA bases (sometime called type III mechanism) formation of pyrimidine dimers could be produced. Interestingly it has been shown recently that pyrimidine dimers are also produced by direct absorption of UVA light by DNA, even if absorption of DNA bases at these wavelengths is very low. It should be stressed that some excited photosensitizers (such as psoralens) could add directly to DNA bases to generate adducts. The review will described the differences and similarities in terms of damage formation (structure and mechanisms) between these two physical genotoxic agents.

  15. Freshwater DOM quantity and quality from a two-component model of UV absorbance

    USGS Publications Warehouse

    Carter, Heather T.; Tipping, Edward; Koprivnjak, Jean-Francois; Miller, Matthew P.; Cookson, Brenda; Hamilton-Taylor, John

    2012-01-01

    We present a model that considers UV-absorbing dissolved organic matter (DOM) to consist of two components (A and B), each with a distinct and constant spectrum. Component A absorbs UV light strongly, and is therefore presumed to possess aromatic chromophores and hydrophobic character, whereas B absorbs weakly and can be assumed hydrophilic. We parameterised the model with dissolved organic carbon concentrations [DOC] and corresponding UV spectra for c. 1700 filtered surface water samples from North America and the United Kingdom, by optimising extinction coefficients for A and B, together with a small constant concentration of non-absorbing DOM (0.80 mg DOC L-1). Good unbiased predictions of [DOC] from absorbance data at 270 and 350 nm were obtained (r2 = 0.98), the sum of squared residuals in [DOC] being reduced by 66% compared to a regression model fitted to absorbance at 270 nm alone. The parameterised model can use measured optical absorbance values at any pair of suitable wavelengths to calculate both [DOC] and the relative amounts of A and B in a water sample, i.e. measures of quantity and quality. Blind prediction of [DOC] was satisfactory for 9 of 11 independent data sets (181 of 213 individual samples).

  16. Design of UV-Absorbing Polypropylene Films with Polymeric Benzotriaziole Based Nano- and Microparticle Coatings.

    PubMed

    Cohen, Sarit; Haham, Hai; Pellach, Michal; Margel, Shlomo

    2017-01-11

    UV-absorbing nanoparticles (NPs) and microparticles (MPs) were prepared by emulsion and dispersion copolymerization of the vinylic monomer 2-(2'-hydroxy-5'-methacryloxyethylphenyl)-2H-benzotriazole (Norbloc (NB)) with the crosslinking monomer divinylbenzene. The effect of the initiator concentration on the size and size distribution of the polyNB (PNB) particles was elucidated. Thin coatings of the formed PNB NPs or MPs of 19 ± 2 and 200 ± 25 nm dry diameter, respectively, onto polypropylene (PP) films were then prepared and characterized. Increasing the concentration or thickness of the PNB NP or MP thin coatings on the PP films decreased their UV transmittance, up to complete UV blocking with just 2 μm of a 4% NP coating. Migration of the UV-absorbing agents from the coated PP films was not observed during three years of storage at room temperature, offering a unique solution to current problems of migration of UV-absorbing additives. The thin coatings obtained by the PNB NPs were superior to those of the PNB MPs, in that no UV transmittance or loss of optical properties of the PP films were observed for the NP coatings, while the coatings produced by the PNB MPs resulted in damaged optical properties, particularly increasing the haze, and achieved incomplete UV blocking.

  17. Oceanic protection of prebiotic organic compounds from UV radiation

    NASA Technical Reports Server (NTRS)

    Cleaves, H. J.; Miller, S. L.; Bada, J. L. (Principal Investigator)

    1998-01-01

    It is frequently stated that UV light would cause massive destruction of prebiotic organic compounds because of the absence of an ozone layer. The elevated UV flux of the early sun compounds this problem. This applies to organic compounds of both terrestrial and extraterrestrial origin. Attempts to deal with this problem generally involve atmospheric absorbers. We show here that prebiotic organic polymers as well as several inorganic compounds are sufficient to protect oceanic organic molecules from UV degradation. This aqueous protection is in addition to any atmospheric UV absorbers and should be a ubiquitous planetary phenomenon serving to increase the size of planetary habitable zones.

  18. UV laser radiation-induced modifications and microstructuring of glass

    NASA Astrophysics Data System (ADS)

    Talkenberg, Marc; Kreutz, Ernst-Wolfgang; Horn, Alexander; Jacquorie, Michael; Poprawe, Reinhart

    2002-06-01

    Modifications and microstructures are generated on the surface and in the volume of silicate glasses using pulsed UV laser radiation of small pulse length. During the interaction of pulsed excimer laser radiation and frequency-trippled Nd:YAG laser radiation with intensities below the removal-threshold of the cerium- and silver-doped multi-component silicate glass absorption centers in the UV are induced. Subsequent thermal treatment and wet chemical etching results in crystallization of the laser-illuminated absorbing region and in the fabrication of microstructures on the surface. Processing of sodalime- and boro-silicate glass with pulsed ArF excimer laser radiation and frequency-doubled Nd:YAG laser radiation with intensities above the removal-threshold leads to microstructures including the generation of microcracks on the surface and in the bulk. The dynamics and the transmission of the expanding plasma and changes in the refractive index of the glass are investigated with speckle photography using the pump and probe method. The determination of plasma emission and crack generation is carried out using high speed and Nomarski photography. Morphological and chemical properties of the debris generated under defined processing gas atmospheres are investigated with REM, white light interferometry, XPS and EPMA. Induced absorption and changes of the crystalline- phase are probed using optical-spectroscopy and XRD as well REM. On the basis of these investigations the processes of the generation of induced absorption centers and crystallization on the one hand and the generation of cracks and debris on the other hand as well as the quality of the produced microstructures is discussed.

  19. Absorbed dose thresholds and absorbed dose rate limitations for studies of electron radiation effects on polyetherimides

    NASA Technical Reports Server (NTRS)

    Long, Edward R., Jr.; Long, Sheila Ann T.; Gray, Stephanie L.; Collins, William D.

    1989-01-01

    The threshold values of total absorbed dose for causing changes in tensile properties of a polyetherimide film and the limitations of the absorbed dose rate for accelerated-exposure evaluation of the effects of electron radiation in geosynchronous orbit were studied. Total absorbed doses from 1 kGy to 100 MGy and absorbed dose rates from 0.01 MGy/hr to 100 MGy/hr were investigated, where 1 Gy equals 100 rads. Total doses less than 2.5 MGy did not significantly change the tensile properties of the film whereas doses higher than 2.5 MGy significantly reduced elongation-to-failure. There was no measurable effect of the dose rate on the tensile properties for accelerated electron exposures.

  20. UV RADIATION EFFECTS ON MICROBES AND MICROBIAL PROCESSES

    EPA Science Inventory

    The ultraviolet (UV) region of solar radiation is defined as wavelengths in the range of 200 to 400 nm. In contrast to visible radiation (400 - 800 nm), which has a well-defined role as the energy source for most of the Earth's primary production, the effects of UV radiation on b...

  1. Temporal variation of optimal UV exposure time over Korea: risks and benefits of surface UV radiation

    NASA Astrophysics Data System (ADS)

    Lee, Y. G.; Koo, J. H.

    2015-12-01

    Solar UV radiation in a wavelength range between 280 to 400 nm has both positive and negative influences on human body. Surface UV radiation is the main natural source of vitamin D, providing the promotion of bone and musculoskeletal health and reducing the risk of a number of cancers and other medical conditions. However, overexposure to surface UV radiation is significantly related with the majority of skin cancer, in addition other negative health effects such as sunburn, skin aging, and some forms of eye cataracts. Therefore, it is important to estimate the optimal UV exposure time, representing a balance between reducing negative health effects and maximizing sufficient vitamin D production. Previous studies calculated erythemal UV and vitamin-D UV from the measured and modelled spectral irradiances, respectively, by weighting CIE Erythema and Vitamin D3 generation functions (Kazantzidis et al., 2009; Fioletov et al., 2010). In particular, McKenzie et al. (2009) suggested the algorithm to estimate vitamin-D production UV from erythemal UV (or UV index) and determined the optimum conditions of UV exposure based on skin type Ⅱ according to the Fitzpatrick (1988). Recently, there are various demands for risks and benefits of surface UV radiation on public health over Korea, thus it is necessary to estimate optimal UV exposure time suitable to skin type of East Asians. This study examined the relationship between erythemally weighted UV (UVEry) and vitamin D weighted UV (UVVitD) over Korea during 2004-2012. The temporal variations of the ratio (UVVitD/UVEry) were also analyzed and the ratio as a function of UV index was applied in estimating the optimal UV exposure time. In summer with high surface UV radiation, short exposure time leaded to sufficient vitamin D and erythema and vice versa in winter. Thus, the balancing time in winter was enough to maximize UV benefits and minimize UV risks.

  2. Performance of a Multifunctional Space Evaporator-Absorber-Radiator (SEAR)

    NASA Technical Reports Server (NTRS)

    Izenson, Michael G.; Chen, Weibo; Phillips, Scott; Chepko, Ariane; Bue, Grant; Quinn, Gregory

    2014-01-01

    The Space Evaporator-Absorber-Radiator (SEAR) is a nonventing thermal control subsystem that combines a Space Water Membrane Evaporator (SWME) with a Lithium Chloride Absorber Radiator (LCAR). The LCAR is a heat pump radiator that absorbs water vapor produced in the SWME. Because of the very low water vapor pressure at equilibrium with lithium chloride solution, the LCAR can absorb water vapor at a temperature considerably higher than the SWME, enabling heat rejection sufficient for most EVA activities by thermal radiation from a relatively small area radiator. Prior SEAR prototypes used a flexible LCAR that was designed to be installed on the outer surface of a portable life support system (PLSS) backpack. This paper describes a SEAR subsystem that incorporates a very compact LCAR. The compact, multifunctional LCAR is built in the form of thin panels that can also serve as the PLSS structural shell. We designed and assembled a 2 ft² prototype LCAR based on this design and measured its performance in thermal vacuum tests when supplied with water vapor by a SWME. These tests validated our models for SEAR performance and showed that there is enough area available on the PLSS backpack shell to enable rejection of metabolic heat from the LCAR. We used results of these tests to assess future performance potential and suggest approaches for integrating the SEAR system with future space suits.

  3. Performance of a Multifunctional Space Evaporator- Absorber-Radiator (SEAR)

    NASA Technical Reports Server (NTRS)

    Izenson, Michael G.; Chen, Weibo; Bue, Grant; Quinn, Gregory

    2013-01-01

    The Space Evaporator-Absorber-Radiator (SEAR) is a nonventing thermal control subsystem that combines a Space Water Membrane Evaporator (SWME) with a Lithium Chloride Absorber Radiator (LCAR). The LCAR is a heat pump radiator that absorbs water vapor produced in the SWME. Because of the very low water vapor pressure at equilibrium with lithium chloride solution, the LCAR can absorb water vapor at a temperature considerably higher than the SWME, enabling heat rejection by thermal radiation from a relatively small area radiator. Prior SEAR prototypes used a flexible LCAR that was designed to be installed on the outer surface of a portable life support system (PLSS) backpack. This paper describes a SEAR subsystem that incorporates a very compact LCAR. The compact, multifunctional LCAR is built in the form of thin panels that can also serve as the PLSS structural shell. We designed and assembled a 2 sq ft prototype LCAR based on this design and measured its performance in thermal vacuum tests when supplied with water vapor by a SWME. These tests validated our models for SEAR performance and showed that there is enough area available on the PLSS backpack shell to enable heat rejection from the LCAR.

  4. Antiradiation UV Vaccine: UV Radiation, Biological effects, lesions and medical management - immune-therapy and immune-protection.

    NASA Astrophysics Data System (ADS)

    Popov, Dmitri; Jones, Jeffrey; Maliev, Slava

    moderate and high doses of UV and ionizing radiation induce cell death by necrosis and generate systemic inflammatory response syndrome (SIRS), toxic multiple organ injury (TMOI), toxic multiple organ dysfunction syndromes (TMODS),and finally, toxic multiple organ failure (TMOF). [D.Popov et al.2012, Fliedner T.et al. 2005, T. Azizova et al. 2004] UV-B is a complete carcinogen that is absorbed by DNA and directly damages DNA. DNA damage induced by UV-B irradiation typically includes the formation of cyclobutane pyrimidine dimmers (CPD) and 6-4 photoproducts (6-4P)[IARC, Working Group Reports, M.Saraiya et al. 2004]. The pre-vaccinated animals seem to have a blunted injury response relative to the unvaccinated animals, presumably by reduction in the inflammatory response and secondary injury effects. The mechanism of action of the antiradiation vaccine, needs further evaluation. Conclusion: A UV antiradiation vaccine appears to demonstrate efficacy as a prophylactic agent for acute solar burns and toxicity. An antiradiation UV vaccine could be used in conjunction with adjunctive measures, e.g. antioxidants and UV barriers to reduce UV radiation toxicity. The authors of this experiments would like to propose further development work of the antiradiation UV vaccine to enhance the armamentarium for prophylaxis and prevention of the various forms skin cancer.

  5. Biochemical traits and proteomic changes in postharvest flowers of medicinal chrysanthemum exposed to enhanced UV-B radiation.

    PubMed

    Yao, Xiaoqin; Chu, Jian-Zhou; Ma, Chun-Hui; Si, Chao; Li, Ji-Gang; Shi, Xiao-Fei; Liu, Chao-Nan

    2015-08-01

    The article studied UV-B effects on biochemical traits and proteomic changes in postharvest flowers of medicinal chrysanthemum. The experiment about UV-B effects on biochemical traits in flowers included six levels of UV-B treatments (0 (UV0), 50 (UV50), 200 (UV200), 400 (UV400), 600 (UV600) and 800 (UV800) μWcm(-2)). UV400, UV600 and UV800 treatments significantly increased the contents of hydrogen peroxide, malondialdehyde and UV-B absorbing compounds, and the activity of phenylalanine ammonia lyase enzyme over the control. The contents of chlorogenic acid and flavone in flowers were significantly increased by UV-B treatments (except for UV50 and UV800). Two-dimensional gel electrophoresis was utilized to analyze proteomic changes in flowers with or without UV-B radiation. Results indicated that 43 protein spots (>1.5-fold difference in volume) were detected, including 19 spots with a decreasing trend and 24 spots with an increasing trend, and 19 differentially expressed protein spots were successfully indentified by MALDI-TOF MS. The indentified proteins were classified based on functions, the most of which were involved in photosynthesis, respiration, protein biosynthesis and degradation and defence. An overall assessment using biochemical and differential proteomic data revealed that UV-B radiation could affect biochemical reaction and promote secondary metabolism processes in postharvest flowers.

  6. Spectral estimators of absorbed photosynthetically active radiation in corn canopies

    NASA Technical Reports Server (NTRS)

    Gallo, K. P.; Daughtry, C. S. T.; Bauer, M. E.

    1985-01-01

    Most models of crop growth and yield require an estimate of canopy leaf area index (LAI) or absorption of radiation. Relationships between photosynthetically active radiation (PAR) absorbed by corn canopies and the spectral reflectance of the canopies were investigated. Reflectance factor data were acquired with a Landsat MSS band radiometer. From planting to silking, the three spectrally predicted vegetation indices examined were associated with more than 95 percent of the variability in absorbed PAR. The relationships developed between absorbed PAR and the three indices were evaluated with reflectance factor data acquired from corn canopies planted in 1979 through 1982. Seasonal cumulations of measured LAI and each of the three indices were associated with greater than 50 percent of the variation in final grain yields from the test years. Seasonal cumulations of daily absorbed PAR were associated with up to 73 percent of the variation in final grain yields. Absorbed PAR, cumulated through the growing season, is a better indicator of yield than cumulated leaf area index. Absorbed PAR may be estimated reliably from spectral reflectance data of crop canopies.

  7. Spectral estimators of absorbed photosynthetically active radiation in corn canopies

    NASA Technical Reports Server (NTRS)

    Gallo, K. P.; Daughtry, C. S. T.; Bauer, M. E.

    1984-01-01

    Most models of crop growth and yield require an estimate of canopy leaf area index (LAI) or absorption of radiation. Relationships between photosynthetically active radiation (PAR) absorbed by corn canopies and the spectral reflectance of the canopies were investigated. Reflectance factor data were acquired with a LANDSAT MSS band radiometer. From planting to silking, the three spectrally predicted vegetation indices examined were associated with more than 95% of the variability in absorbed PAR. The relationships developed between absorbed PAR and the three indices were evaluated with reflectance factor data acquired from corn canopies planted in 1979 through 1982. Seasonal cumulations of measured LAI and each of the three indices were associated with greater than 50% of the variation in final grain yields from the test years. Seasonal cumulations of daily absorbed PAR were associated with up to 73% of the variation in final grain yields. Absorbed PAR, cumulated through the growing season, is a better indicator of yield than cumulated leaf area index. Absorbed PAR may be estimated reliably from spectral reflectance data of crop canopies.

  8. Absorbed radiation by various tissues during simulated endodontic radiography

    SciTech Connect

    Torabinejad, M.; Danforth, R.; Andrews, K.; Chan, C.

    1989-06-01

    The amount of absorbed radiation by various organs was determined by placing lithium fluoride thermoluminescent chip dosimeters at selected anatomical sites in and on a human-like X-ray phantom and exposing them to radiation at 70- and 90-kV X-ray peaks during simulated endodontic radiography. The mean exposure dose was determined for each anatomical site. The results show that endodontic X-ray doses received by patients are low when compared with other radiographic procedures.

  9. Testing Asymmetry in Plasma-Ball Growth Seeded by a Nanoscale Absorbing Defect Embedded in a SiO2 Thin-Film Matrix Subjected to UV Pulsed-Laser Radiation

    SciTech Connect

    Papernov, S.; Schmid, A.W.

    2008-09-16

    Previous studies of ultraviolet, nanosecond-pulsed-laser damage in thin films revealed nanoscale absorbing defects as a major source of damage initiation. It was also demonstrated that damage (crater formation) is facilitated by plasma-ball formation around absorbing defects. In this work an attempt is made to verify the symmetry of the plasma ball by irradiating SiO2 thin film with embedded gold nanoparticles from the side of either the air/film or substrate/film interfaces. Crater-formation thresholds derived in each case support preferential plasma-ball growth in the direction of the laser-beam source. The strong impact of internal E-field distribution is identified.

  10. Adverse Effects of UV-B Radiation on Plants Growing at Schirmacher Oasis, East Antarctica

    PubMed Central

    Singh, Jaswant; Singh, Rudra P.

    2014-01-01

    This study aimed to assess the impacts of ultraviolet-B (UV-B) radiation over a 28-day period on the levels of pigments of Umbilicaria aprina and Bryum argenteum growing in field. The depletion of stratospheric ozone is most prominent over Antarctica, which receives more UV-B radiation than most other parts of the planet. Although UV-B radiation adversely affects all flora, Antarctic plants are better equipped to survive the damaging effects of UV-B owing to defenses provided by UV-B absorbing compounds and other screening pigments. The UV-B radiations and daily average ozone values were measured by sun photometer and the photosynthetic pigments were analyzed by the standard spectrophotometric methods of exposed and unexposed selected plants. The daily average atmospheric ozone values were recorded from 5 January to 2 February 2008. The maximum daily average for ozone (310.7 Dobson Units (DU)) was recorded on 10 January 2008. On that day, average UV-B spectral irradiances were 0.016, 0.071, and 0.186 W m-2 at wavelengths of 305, 312, and 320 nm, respectively. The minimum daily average ozone value (278.6 DU) was recorded on 31 January 2008. On that day, average UV-B spectral irradiances were 0.018, 0.085, and 0.210 W m-2 at wavelengths of 305, 312, and 320 nm, respectively. Our results concludes that following prolonged UV-B exposure, total chlorophyll levels decreased gradually in both species, whereas levels of UV-B absorbing compounds, phenolics, and carotenoids gradually increased. PMID:24748743

  11. Adverse Effects of UV-B Radiation on Plants Growing at Schirmacher Oasis, East Antarctica.

    PubMed

    Singh, Jaswant; Singh, Rudra P

    2014-01-01

    This study aimed to assess the impacts of ultraviolet-B (UV-B) radiation over a 28-day period on the levels of pigments of Umbilicaria aprina and Bryum argenteum growing in field. The depletion of stratospheric ozone is most prominent over Antarctica, which receives more UV-B radiation than most other parts of the planet. Although UV-B radiation adversely affects all flora, Antarctic plants are better equipped to survive the damaging effects of UV-B owing to defenses provided by UV-B absorbing compounds and other screening pigments. The UV-B radiations and daily average ozone values were measured by sun photometer and the photosynthetic pigments were analyzed by the standard spectrophotometric methods of exposed and unexposed selected plants. The daily average atmospheric ozone values were recorded from 5 January to 2 February 2008. The maximum daily average for ozone (310.7 Dobson Units (DU)) was recorded on 10 January 2008. On that day, average UV-B spectral irradiances were 0.016, 0.071, and 0.186 W m(-2) at wavelengths of 305, 312, and 320 nm, respectively. The minimum daily average ozone value (278.6 DU) was recorded on 31 January 2008. On that day, average UV-B spectral irradiances were 0.018, 0.085, and 0.210 W m(-2) at wavelengths of 305, 312, and 320 nm, respectively. Our results concludes that following prolonged UV-B exposure, total chlorophyll levels decreased gradually in both species, whereas levels of UV-B absorbing compounds, phenolics, and carotenoids gradually increased.

  12. Improving dye laser efficiency with uv absorbers and wavelength shifters. Final report

    SciTech Connect

    Matheson, K L; Thorne, J M

    1981-01-01

    The nonuniform heating in flashlamp pumped dye lasers forms refractive index gradients in the dye solution. These gradients distort the wavefront of the laser beam resulting in limited output power, limited pulse repetition rate, and limited attainable linewidth. The theorectical bases for using uv absorbers and wavelength shifters to eliminate light of detrimental wavelengths and thereby improve dye laser efficiency are described, and the results of experiments for evaluating 12 uv absorbers and 12 wavelength filters for use as possible pump light filters are presented. These experiments showed that the appropriate uv absorber or wavelength shifter to be used with a given laser dye is based on the absorption spectrum of the dye. If a uv absorber is needed, then the compound should be chosen so that its long wavelength absorption peak is just to the short wavelength side of the absorption peaks of the laser dye. If a wavelength shifter is needed, then the compound should be chosen so that there is maximum overlap between the fluorescence spectrum of the shifter and the absorption spectrum of the dye. Tabulated data are presented which can be used to selected protectors and shifters for specific dyes. (LCL)

  13. Exposure to UV radiation and human health

    NASA Astrophysics Data System (ADS)

    Kimlin, Michael G.

    2005-08-01

    This paper will overview the significant issues facing researchers in relating the impact of exposure to sunlight and human health. Exposure to solar ultraviolet radiation is the major causative factor in most sun-related skin and eye disorders, however, very little is known quantitatively about human UV exposures. Interestingly, human exposure to sunlight also has a nutritional impact, namely the development of pre-Vitamin D, which is an important nutrient in bone health. New research suggest that low vitamin D status may be a causative factor in the development of selective types of cancer and autoimminue diseases, as well as a contributing factor in bone health. The 'health duality' aspect of sunlight exposure is an interesting and controversial topic that is a research focus of Kimlin's research group.

  14. Photocurable acrylic composition, and U.V. curing with development of U.V. absorber

    DOEpatents

    McKoy, Vincent B.; Gupta, Amitava

    1992-01-01

    In-situ development of an ultraviolet absorber is provided by a compound such as a hydroxy-phenyl-triazole containing a group which protects the absorber during actinically activated polymerization by light at first frequency. After polymerization the protective group is removed by actinic reaction at a second frequency lower than the first frequency. The protective group is formed by replacing the hydrogen of the hydroxyl group with an acyl group containing 1 to 3 carbon atoms or an acryloxy group of the formula: ##STR1## where R.sup.1 is either an alkyl containing 1 to 6 carbon atoms or --CH.dbd.CH.sub.2.

  15. Thermal radiation absorbed by dairy cows in pasture.

    PubMed

    da Silva, Roberto Gomes; Guilhermino, Magda Maria; de Morais, Débora Andréia E Façanha

    2010-01-01

    The goal of the present paper was to assess a method for estimating the thermal radiation absorbed by dairy cows (0.875 Holstein-0.125 Guzerath) on pasture. A field test was conducted with 472 crossbred dairy cows in three locations of a tropical region. The following environmental data were collected: air temperature, partial vapour pressure, wind speed, black globe temperature, ground surface temperature and solar radiation. Average total radiation absorbed by animals was calculated as R(abs) = 640.0 +/- 3.1 W .m(-2). Absorbed short-wave radiation (solar direct, diffuse and reflected) averaged 297.9 +/- 2.7 W m(-2); long wave (from the sky and from terrestrial surfaces) averaged 342.1 +/- 1.5 W m(-2). It was suggested that a new environmental measurement, the effective radiant heat load (ERHL), could be used to assess the effective mean radiant temperature (T*(mr)). Average T*(mr) was 101.4 +/- 1.2 degrees C, in contrast to the usual mean radiant temperature, T(mr) = 65.1 +/- 0.5 degrees C. Estimates of T*(mr) were considered as more reliable than those of T (mr) in evaluating the thermal environment in the open field, because T (mr) is almost totally associated only with long wave radiation.

  16. Recent studies on UV radiation in Brazil

    NASA Astrophysics Data System (ADS)

    Correa, M. P.; Ceballos, J. C.; Moregula, A.; Okuno, E.; Fausto, A.; Mol, A.; Santos, J. C.

    2009-04-01

    This presentation shows a summary of UV index measurements performed in the last years in Southeastern (SE) and Northeastern (NE) Brazilian regions. Brazil has an area of 8.5 million km2 distributed between latitudes 5˚ N and 35˚ S and longitudes 5˚ W and 75˚ W. SE is the most important economic pole of South America and the NE coast is an important tourist region. This large area has a great diversity of climatic, atmospheric and geographical conditions in addition to very diverse social and cultural habits. Non-melanoma skin cancer (NMSC) is an epidemiological health problem with more than 120,000 new cases each year. The most of these cases are found in the South and Southeast regions, with about 70 new NMSC per 100,000 inhabitants. Solar Light UV501 biometers are installed in the SE cities of São Paulo (23.6˚ S, 46.7˚ W, 865 m ASL), Itajubá/Minas Gerais (22.4˚ S; 45.5˚ W, 846 m ASL) and the NE city of Ilhéus/Bahia (14.8˚ S; 39.3˚ W; 54 m ASL). First measurements began in 2005 in São Paulo city, while Itajubá and Ilhéus have regular measurements from the beginning of 2008. Other studies related to the UV radiation modeling and interactions with atmosphere components, as ozone, aerosols and clouds, have also been performed. For example: a) UVI modelling calculations performed by a multiple-scattering spectral models; b) studies on the aerosol radiative properties based on satellite (MODIS/Terra-Aqua) and ground-based (Aeronet) observation; c) ozone content variability from satellite (OMI/Aura) and ground-based (Microtops ozonometer) measurements; d) behavioral profile of the population, as regarding habits of solar exposure and sun protection measures. Results show that more than 75% of the measurements conducted in the summer (outside noon) can be classified as upper than high UVI according to World Health Organization (WHO) recommended categories: Low (UVI < 2), Medium (3 ? UVI < 6), High (6 ? UVI < 8), Very High (8 ? UVI

  17. Growth of a mat-forming photograph in the presence of UV radiation

    NASA Technical Reports Server (NTRS)

    Pierson, Beverly K.; Ruff, A. L.

    1989-01-01

    Knowledge of the survival and growth of microorganisms in the presence of ultraviolet radiation is important for understanding the potential for life to exist in environments exposed to high fluxes of UV radiation. The growth of a mat-forming phototrophic prokaryote, Chloroflexus aurantiacus, was examined in the presence of continuous high UV irradiation under otherwise optimal growth conditions. Evidence was sought for an intrinsic ability to grow in the presence of UV radiation in a carefully chosen organism known to be unusually resistant to UV radiation, of ancient lineage among the phototrophs, to resemble ancient microfossils from the Precambrian, and to be a mat-former. It was assumed that even a high intrinsic UV resistance would be inadequate for survival and growth in the presence of very high UV fluxes, and iron (Fe3+) was selected as a common, abundant UV-absorbing substance that might protest microorganisms growing in or under iron-bearing sediments. The effectiveness of Fe(3+) was tested as a UV protective agent at low concentrations in thin layers. It was concluded that intrinsic UV resistance in some organisms may account for growth, not just survival, of these organisms when exposed to high UV fluxes under otherwise optimal growth conditions in an anoxic environment. It was also concluded that Fe(3+) bearing sediments of 1 mm or less in thickness may provide an adequate shield against high UV fluxes permitting the growth of microorganisms just below their surface. As long as growth conditions were met, then the evolution and development of microorganisms would not be hampered by high UV fluxes impinging upon the surface of iron-bearing sediments.

  18. Covalent dimerization of ribulose bisphosphate carboxylase subunits by UV radiation.

    PubMed

    Ferreira, R M; Franco, E; Teixeira, A R

    1996-08-15

    The effect of UV radiation (UV-A, UV-B and UV-C) on ribulose bisphosphate carboxylase from a variety of plant species was examined. The exposition of plant leaves or the pure enzyme to UV radiation produced a UV-dependent accumulation of a +5 kDa polypeptide (P65). Different approaches were utilized to elucidate the origin and structure of P65: electrophoretic and fluorographic analyses of 35S-labelled ribulose bisphosphate carboxylase exposed to UV radiation and immunological experiments using antibodies specific for P65, for the large and small subunits of ribulose bisphosphate carboxylase and for high-molecular-mass aggregates of the enzyme. These studies revealed that P65 is a dimer, formed by the covalent, non-disulphide linkage of one small subunit with one large subunit of ribulose bisphosphate carboxylase. For short periods of time (< 1 h), the amount of P65 formed increased with the duration of the exposure to the UV radiation and with the energy of the radiation applied. Prolonged exposure to UV radiation (1-6 h) resulted in the formation of high-molecular-mass aggregates of ribulose bisphosphate carboxylase. Formation of P65 was shown to depend on the native state of the protein, was stimulated by inhibitors of enzyme activity, and was inhibited by activators of enzyme activity. A UV-independent accumulation of P65 was also achieved by the in vitro incubation of plant crude extracts. However, the UV-dependent and the UV-independent formation of P65 seemed to occur by distinct molecular mechanisms. The UV-dependent accumulation of P65 was immunologically detected in all species examined, including Lemna minor, Arum italicum, Brassica oleracea, Triticum aestivum, Zea mays, Pisum sativum and Phaseolus vulgaris, suggesting that it may constitute a universal response to UV radiation, common to all photo-synthetic tissues.

  19. The Martian and extraterrestrial UV radiation environment. Part II: further considerations on materials and design criteria for artificial ecosystems.

    PubMed

    Cockell, C S

    2001-12-01

    Ultraviolet radiation is an important natural physical influence on organism function and ecosystem interactions. The UV radiation fluxes in extraterrestrial environments are substantially different from those experienced on Earth. On Mars, the moon and in Earth orbit they are more biologically detrimental than on Earth. Based on previously presented fluxes and biologically weighted irradiances, this paper considers in more detail measures to mitigate UV radiation damage and methods to modify extraterrestrial UV radiation environments in artificial ecosystems that use natural sunlight. The transmission characteristics of a Martian material that will mimic the terrestrial UV radiation environment are presented. Transmissivity characteristics of other Martian and lunar materials are described. Manufacturing processes for the production of plastics and glass on the lunar and Martian surface are presented with special emphasis on photobiological requirements. Novel UV absorbing configurations are suggested.

  20. Microchip micellar electrokinetic chromatography separation of alkaloids with UV-absorbance spectral detection.

    PubMed

    Newman, Carl I D; Giordano, Braden C; Copper, Christine L; Collins, Greg E

    2008-02-01

    A microchip device is demonstrated for the electrophoretic separation and UV-absorbance spectral detection of four toxic alkaloids: colchicine, aconitine, strychnine, and nicotine. A fused-silica (quartz) microchip containing a simple cross geometry is utilized to perform the separations, and a miniature, fiber-optic CCD spectrometer is coupled to the microchip for detection. Sensitive UV-absorbance detection is achieved via the application of online preconcentration techniques in combination with the quartz microchip substrate which contains an etched bubble-cell for increased pathlength. The miniature CCD spectrometer is configured to detect light between 190 and 645 nm and LabView programming written in-house enables absorbance spectra as well as separations to be monitored from 210 to 400 nm. Consequently, the configuration of this microchip device facilitates qualitative and quantitative separations via simultaneous spatial and spectral resolution of solutes. UV-absorbance limits of quantification for colchicine, 20 microM (8 mg/L); strychnine, 50 microM (17 mg/L); aconitine, 50 microM (32 mg/L); and nicotine, 100 microM (16 mg/L) are demonstrated on the microchip. With the exception of aconitine, these concentrations are > or =20-times more sensitive than lethal dose monitoring requirements. Finally, this device is demonstrated to successfully detect each toxin in water, skim milk, and apple juice samples spiked at sublethal dose concentrations after a simple, SPE procedure.

  1. Reproductive, morphological, and phytochemical responses of Arabidopsis thaliana ecotypes to enhanced UV-B radiation

    SciTech Connect

    Trumbull, V.L.; McCloud, E.S.; Paige, K.N. )

    1994-06-01

    Two ecotypes of Arabidopsis thaliana, collected from Libya and Norway, were grown in the greenhouse under. UV-B doses of 0 and 10.5 kJ m[sup [minus]2] UV-B[sub BE]. The high UV-B dose simulated midsummer ambient conditions over Libya and a 40% reduction in stratospheric ozone over Norway. The Libyan ectotype, which originated from latitudes where solar UV-B is high, showed no UV-B induced damage to plant growth. However the Norwegian ecotype, which originated from latitudes where solar UV-B is low, showed a significant reduction in plant height, inflorescence weight, and rosette weight in response to enhanced UV-B. Although fruit and seed number for both ecotypes were unaffected by enhanced UV-B radiation the germination success of the seeds harvested from the irradiated Norwegian plants were significantly reduced. The two ecotypes also differed with respect to their accumulation of kaempferol, a putative UV-B protective filter. The Libyan ecotype increased kaempferol concentration by 38% over the 0 kJ treatment whereas the Norwegian ecotype increased by only 15%. These data suggest that, for these ecotypes, variation in UV-B sensitivity may be explained by the differential induction of UV-absorbing leaf pigments.

  2. UV radiation-induced accumulation of photoprotective compounds in the green alga Tetraspora sp. CU2551.

    PubMed

    Rastogi, Rajesh P; Incharoensakdi, Aran

    2013-09-01

    The effect of UV radiation on the accumulation of novel mycosporine-like amino acids (MAAs) along with their photoprotective function was investigated in the green alga Tetraspora sp. CU2551. No UV-absorbing compound was detected in this organism growing under normal light condition while two MAAs with absorption maxima at 324 nm and 322 nm were found to be accumulated after UV irradiation. The effects of UV exposure time with different cut-off filter foils namely 295 (PAR + UV-A + UV-B), 320 (PAR + UV-A) and 395 nm (PAR only) were studied on induction of the synthesis of these MAAs. Concentration of MAAs was found to increase with increase in exposure time under UV radiation. Furthermore, the antioxidant and photoprotective action of these MAAs was also investigated. The role of MAAs in diminishing the UV-induced production of ROS in vivo was also demonstrated using the oxidant-sensing probe 2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA) and results obtained supported the results of DPPH free radical scavenging assay. The MAAs also exhibited efficient photoprotective ability on Escherichia coli cells against UV-B stress. Thus, the MAAs in Tetraspora sp. CU2551 may act as efficient antioxidants as well as UV-sunscreen. This is the first report for the UV-induced synthesis and co-accumulation of these MAAs and their photoprotective actions in Tetraspora sp. which is a member of the class Chlorophyceae. Moreover, UV-induced accumulation as well as photoprotective function of these compounds may facilitate this chlorophyte to perform important ecological functions in harsh environmental conditions with high UV-B fluxes in their brightly lit habitats.

  3. The effect of selenium and UV radiation on leaf traits and biomass production in Triticum aestivum L.

    PubMed

    Golob, Aleksandra; Kavčič, Jan; Stibilj, Vekoslava; Gaberščik, Alenka; Vogel-Mikuš, Katarina; Germ, Mateja

    2017-02-01

    UV radiation as an evolutionarily important environmental factor, significantly affects plants traits and alters the effects of other environmental factors. Single and combined effects of ambient UV radiation, its exclusion, and Se foliar treatments on Si concentrations and production of Si phytoliths in wheat (Triticum aestivum L.) cv. 'Reska' were studied. The effects of these treatments on growth parameters of the plants, structural and biochemical traits of the leaves, and interactions of the leaves with light, as Si incrustation is the first barrier to light at the leaf surface were also examined. Under ambient UV radiation and foliar treatment with 10mgL(-1) sodium selenate solution, there was a trade-off between the plant investment in primary and secondary metabolism, as the production of UV-absorbing compounds was enhanced while photosynthetic pigment levels were reduced. Independent of Se treatment, ambient UV radiation lowered respiratory potential, Ca concentration, and leaf thickness, and increased Si concentration, Si phytoliths formation, and cuticle thickness. The Se treatment has little effect on plant traits and biomass production but it increased Se concentrations in the plants by >100-fold, independent of UV radiation. In combination with UV radiation Se strengthen the protection of plants against stress by increasing the amount of UV absorbing compounds, light reflectance and transmittance.

  4. UV Tanning Equipment | Radiation Protection | US EPA

    EPA Pesticide Factsheets

    2016-05-18

    Sun lamps and tanning equipment emit ultraviolet (UV) rays. People who are exposed to UV rays over a long period of time are more likely to develop skin cancer. People with light skin are in more danger because their skin is more sensitive to UV rays.

  5. Occurrence of UV-Absorbing, Mycosporine-Like Compounds among Cyanobacterial Isolates and an Estimate of Their Screening Capacity

    PubMed Central

    Garcia-Pichel, Ferran; Castenholz, Richard W.

    1993-01-01

    A survey of 20 strains of cyanobacteria (belonging to 13 genera) isolated from habitats exposed to strong insolation revealed that 13 strains contained one or more water-soluble, UV-absorbing, mycosporine amino acid (MAA)-like compounds. Some of the compounds were identical in several strains. In all, 13 distinct compounds were found. The UV absorption spectra of MAAs complemented well that of the extracellular sunscreen pigment scytonemin, which many of the strains also produced. Even though the specific MAA contents were variable among strains, they were invariably higher when the cultures were grown with UV radiation than when it was absent. In five strains tested, the MAA complement accumulated as a solute in the cytoplasmic cell fraction. The sunscreen capacities of MAA and scytonemin and their combined capacity were estimated for each strain and condition on the basis of the specific contents, cell size, and cellular location of the compounds. The estimates suggested that significant, albeit not complete, protection from UV photodamage could be gained from the possession of either MAA or scytonemin but especially from simultaneous screening by both types of compounds. PMID:16348839

  6. Frequency Integrated Radiation Models for Absorbing and Scattering Media

    NASA Technical Reports Server (NTRS)

    Ripoll, J. F.; Wray, A. A.

    2004-01-01

    The objective of this work is to contribute to the simplification of existing radiation models used in complex emitting, absorbing, scattering media. The application in view is the computation of flows occurring in such complex media, such as certain stellar interiors or combusting gases. In these problems, especially when scattering is present, the complexity of the radiative transfer leads to a high numerical cost, which is often avoided by simply neglecting it. The complexity lies partly in the strong dependence of the spectral coefficients on frequency. Models are then needed to capture the effects of the radiation when one cannot afford to directly solve for it. In this work, the frequency dependence will be modeled and integrated out in order retain only the average effects. A frequency-integrated radiative transfer equation (RTE) will be derived.

  7. High-Capacity Spacesuit Evaporator Absorber Radiator (SEAR)

    NASA Technical Reports Server (NTRS)

    Izenson, Michael G.; Chen, Weibo; Phillips, Scott; Chepko, Ariane; Bue, Grant; Quinn, Gregory

    2015-01-01

    Future human space exploration missions will require advanced life support technology that can operate across a wide range of applications and environments. Thermal control systems for space suits and spacecraft will need to meet critical requirements for water conservation and multifunctional operation. This paper describes a Space Evaporator Absorber Radiator (SEAR) that has been designed to meet performance requirements for future life support systems. A SEAR system comprises a lithium chloride absorber radiator (LCAR) for heat rejection coupled with a space water membrane evaporator (SWME) for heat acquisition. SEAR systems provide heat pumping to minimize radiator size, thermal storage to accommodate variable environmental conditions, and water absorption to minimize use of expendables. We have built and tested a flight-like, high-capacity LCAR, demonstrated its performance in thermal vacuum tests, and explored the feasibility of an ISS demonstration test of a SEAR system. The new LCAR design provides the same cooling capability as prior LCAR prototypes while enabling over 30% more heat absorbing capacity. Studies show that it should be feasible to demonstrate SEAR operation in flight by coupling with an existing EMU on the space station.

  8. High-Capacity Spacesuit Evaporator Absorber Radiator (SEAR)

    NASA Technical Reports Server (NTRS)

    Izenson, Michael G.; Chen, Weibo; Phillips, Scott; Chepko, Ariane; Bue, Grant; Quinn, Gregory

    2014-01-01

    Future human space exploration missions will require advanced life support technology that can operate across a wide range of applications and environments. Thermal control systems for space suits and spacecraft will need to meet critical requirements for water conservation and adaptability to highly variable thermal environments. This paper describes a Space Evaporator Absorber Radiator (SEAR) that has been designed to meet performance requirements for future life support systems. A SEAR system comprises a lithium chloride absorber radiator (LCAR) for heat rejection coupled with a space water membrane evaporator (SWME) for heat acquisition. SEAR systems provide heat pumping to minimize radiator size, thermal storage to accommodate variable environmental conditions, and water absorption to minimize use of expendables. We have built and tested a flightlike, high-capacity LCAR, demonstrated its performance in thermal vacuum tests, and explored the feasibility of an ISS demonstration test of a SEAR system. The new LCAR design provides the same cooling capability as prior LCAR prototypes while enabling over 30% more heat absorbing capacity. Studies show that it should be feasible to demonstrate SEAR operation in flight by coupling with an existing EMU on the space station.

  9. Effects of UV radiation on aquatic ecosystems and interactions with climate change.

    PubMed

    Häder, D-P; Helbling, E W; Williamson, C E; Worrest, R C

    2011-02-01

    The health of freshwater and marine ecosystems is critical to life on Earth. The impact of solar UV-B radiation is one potential stress factor that can have a negative impact on the health of certain species within these ecosystems. Although there is a paucity of data and information regarding the effect of UV-B radiation on total ecosystem structure and function, several recent studies have addressed the effects on various species within each trophic level. Climate change, acid deposition, and changes in other anthropogenic stressors such as pollutants alter UV exposure levels in inland and coastal marine waters. These factors potentially have important consequences for a variety of aquatic organisms including waterborne human pathogens. Recent results have demonstrated the negative impacts of exposure to UV-B radiation on primary producers, including effects on cyanobacteria, phytoplankton, macroalgae and aquatic plants. UV-B radiation is an environmental stressor for many aquatic consumers, including zooplankton, crustaceans, amphibians, fish, and corals. Many aquatic producers and consumers rely on avoidance strategies, repair mechanisms and the synthesis of UV-absorbing substances for protection. However, there has been relatively little information generated regarding the impact of solar UV-B radiation on species composition within natural ecosystems or on the interaction of organisms between trophic levels within those ecosystems. There remains the question as to whether a decrease in population size of the more sensitive primary producers would be compensated for by an increase in the population size of more tolerant species, and therefore whether there would be a net negative impact on the absorption of atmospheric carbon dioxide by these ecosystems. Another question is whether there would be a significant impact on the quantity and quality of nutrients cycling through the food web, including the generation of food proteins for humans. Interactive effects

  10. Radiation environments and absorbed dose estimations on manned space missions.

    PubMed

    Curtis, S B; Atwell, W; Beever, R; Hardy, A

    1986-01-01

    In order to make an assessment of radiation risk during manned missions in space, it is necessary first to have as accurate an estimation as possible of the radiation environment within the spacecraft to which the astronauts will be exposed. Then, with this knowledge and the inclusion of body self-shielding, estimations can be made of absorbed doses for various body organs (skin, eye, blood-forming organs, etc.). A review is presented of our present knowledge of the radiation environments and absorbed doses expected for several space mission scenarios selected for our development of the new radiation protection guidelines. The scenarios selected are a 90-day mission at an altitude (450 km) and orbital inclinations (28.5 degrees, 57 degrees and 90 degrees) appropriate for NASA's Space Station, a 15-day sortie to geosynchronous orbit and a 90-day lunar mission. All scenarios chosen yielded dose equivalents between five and ten rem to the blood forming organs if no large solar particle event were encountered. Such particle events could add considerable exposure particularly to the skin and eye for all scenarios except the one at 28.5 degrees orbital inclination.

  11. UV radiation transmittance: regular clothing versus sun-protective clothing.

    PubMed

    Bielinski, Kenneth; Bielinski, Nolan

    2014-09-01

    There are many clothing options available for patients who are interested in limiting their exposure to UV radiation; however, these options can be confusing for patients. For dermatologists, there is limited clinical data regarding the advantages, if any, of sun-protective clothing. In this study, we examined the UV radiation transmittance of regular clothing versus sun-protective clothing. We found that regular clothing may match or even exceed sun-protective clothing in blocking the transmittance of UV radiation. These data will help dermatologists better counsel their patients on clothing options for sun protection.

  12. UV Radiation Damage and Bacterial DNA Repair Systems

    ERIC Educational Resources Information Center

    Zion, Michal; Guy, Daniel; Yarom, Ruth; Slesak, Michaela

    2006-01-01

    This paper reports on a simple hands-on laboratory procedure for high school students in studying both radiation damage and DNA repair systems in bacteria. The sensitivity to ultra-violet (UV) radiation of both "Escherichia coli" and "Serratia marcescens" is tested by radiating them for varying time periods. Two growth temperatures are used in…

  13. Exclusion of solar UV radiation improves photosynthetic performance and yield of wheat varieties.

    PubMed

    Kataria, Sunita; Guruprasad, K N

    2015-12-01

    Field studies were conducted to determine the potential for alterations in photosynthetic performance and grain yield of four wheat (Triticum aestivum) varieties of India- Vidisha, Purna, Swarna and Naveen Chandausi by ambient ultraviolet radiation (UV). The plants were grown in specially designed UV exclusion chambers, wrapped with filters that excluded UV-B (<315 nm), UV-A/B (<400 nm) or transmitted ambient UV or lacked filters. The results indicated that solar UV exclusion increased the leaf mass per area ratio, leaf weight ratio and chlorophylls per unit area of flag leaves in all the four varieties of wheat. Polyphasic chlorophyll a fluorescence transients from the flag leaves of UV excluded wheat plants gave a higher fluorescence yield. Exclusion of solar UV significantly enhanced photosynthetic performance as a consequence of increased efficiency of PS II, performance index (PIABS) and rate of photosynthesis in the flag leaves of wheat varieties along with a remarkable increase in carbonic anhydrase, Rubisco and nitrate reductase activities. This additional fixation of carbon and nitrogen by exclusion of UV was channelized towards the improvement in grain yield of wheat varieties as there was a decrease in the UV-B absorbing substances and an increase in soluble protein content in flag leaves of all the four varieties of wheat. The magnitude of response for UV exclusion for all the measured parameters was higher in two varieties of wheat Vidisha and Purna as compared to Swarna and Naveen Chandausi. Cumulative stress response index (CSRI) for each variety was developed from the cumulative sum of physiological and yield parameters such as leaf mass area ratio of flag leaf, total chlorophyll content, performance index at absorption basis, rate of photosynthesis and grain yield. All the varieties had a negative CSRI, demonstrating a negative impact of ambient UV radiation. Naveen Chandausi and Swarna are less sensitive to ambient UV radiation; Vidisha is more

  14. Temporal variation in epidermal flavonoids due to altered solar UV radiation is moderated by the leaf position in Betula pendula.

    PubMed

    Morales, Luis O; Tegelberg, Riitta; Brosché, Mikael; Lindfors, Anders; Siipola, Sari; Aphalo, Pedro J

    2011-11-01

    The physiological mechanisms controlling plant responses to dynamic changes in ambient solar ultraviolet (UV) radiation are not fully understood: this information is important to further comprehend plant adaptation to their natural habitats. We used the fluorimeter Dualex to estimate in vivo the epidermal flavonoid contents by measuring epidermal UV absorbance (A(375) ) in Betula pendula Roth (silver birch) leaves of different ages under altered UV. Seedlings were grown in a greenhouse for 15 days without UV and transferred outdoors under three UV treatments (UV-0, UV-A and UV-A+B) created by three types of plastic film. After 7 and 13 days, Dualex measurements were taken at adaxial and abaxial epidermis of the first three leaves (L1, L2 and L3) of the seedlings. After 14 days, some of the seedlings were reciprocally swapped amongst the treatments to study the accumulation of epidermal flavonoids in the youngest unfolded leaves (L3) during leaf expansion under changing solar UV environments. A(375) of the leaves responded differently to the UV treatment depending on their position. UV-B increased the A(375) in the leaves independently of leaf position. L3 quickly adjusted A(375) in their epidermis according to the UV they received and these adjustments were affected by previous UV exposure. The initial absence of UV-A+B or UV-A, followed by exposure to UV-A+B, particularly enhanced leaf A(375) . Silver birch leaves modulate their protective pigments in response to changes in the UV environment during their expansion, and their previous UV exposure history affects the epidermal-absorbance achieved during later UV exposure.

  15. Rediscovering leaf optical properties: New insights into plant acclimation to solar UV radiation.

    PubMed

    Barnes, Paul W; Flint, Stephan D; Ryel, Ronald J; Tobler, Mark A; Barkley, Anne E; Wargent, Jason J

    2015-08-01

    The accumulation of UV-absorbing compounds (flavonoids and other phenylpropanoid derivatives) and resultant decrease in the UV transmittance of the epidermis in leaves (TUV), is a primary protective mechanism against the potentially deleterious effects of UV radiation and is a critical component of the overall acclimation response of plants to changing UV environments. Traditional measurements of TUV were laborious, time-consuming and destructive or invasive, thus limiting their ability to efficiently make multiple measurements of the optical properties of plants in the field. The development of rapid, nondestructive optical methods of determining TUV has permitted the examination of UV optical properties of leaves with increased replication, on a finer time scale, and enabled repeated sampling of the same leaf over time. This technology has therefore allowed for studies examining acclimation responses to UV in plants in ways not previously possible. Here we provide a brief review of these earlier studies examining leaf UV optical properties and some of their important contributions, describe the principles by which the newer non-invasive measurements of epidermal UV transmittance are made, and highlight several case studies that reveal how this technique is providing new insights into this UV acclimation response in plants, which is far more plastic and dynamic than previously thought.

  16. Study of UV radiation dose received by the Spanish population.

    PubMed

    Gurrea, Gonzalo; Cañada, Javier

    2007-01-01

    Excess exposure to UV radiation can affect our health by causing sunburn, skin cancer, etc. It is therefore useful to determine the UV dosage received by people as a way of protecting them from the possible negative effects that this kind of radiation can cause. In this work, the personal outdoor percentage, which shows the time spent in outdoor activities, as well as personal UV doses, has been calculated by means of global UV radiation on a horizontal plane. A database of average daily UVB radiation on the horizontal plane given by the National Institute of Meteorology has been used. In this work we evaluate the standard erythema dose of the Spanish population throughout the year.

  17. Long-Term Dosimetry of Solar UV Radiation in Antarctica with Spores of Bacillus subtilis

    PubMed Central

    Puskeppeleit, Monika; Quintern, Lothar E.; el Naggar, Saad; Schott, Jobst-Ulrich; Eschweiler, Ute; Horneck, Gerda; Bücker, Horst

    1992-01-01

    The main objective was to assess the influence of the seasonal stratospheric ozone depletion on the UV climate in Antarctica by using a biological test system. This method is based on the UV sensitivity of a DNA repair-deficient strain of Bacillus subtilis (TKJ 6321). In our field experiment, dried layers of B. subtilis spores on quartz discs were exposed in different seasons in an exposure box open to solar radiation at the German Antarctic Georg von Neumayer Station (70°37′S, 8°22′W). The UV-induced loss of the colony-forming ability was chosen as the biological end point and taken as a measure for the absorbed biologically harmful UV radiation. Inactivation constants were calculated from the resulting dose-response curves. The results of field experiments performed in different seasons indicate a strongly season-dependent trend of the daily UV-B level. Exposures performed at extremely depleted ozone concentrations (October 1990) gave higher biologically harmful UV-B levels than expected from the calculated season-dependent trend, which was determined at normal ozone values. These values were similar to values which were measured during the Antarctic summer, indicating that the depleted ozone column thickness has an extreme influence on the biologically harmful UV climate on ground. PMID:16348742

  18. Sun, UV Radiation and Your Eyes

    MedlinePlus

    ... Protect their eyes with hats and sunglasses. UV Light: Good in Moderation for a Good Night's Sleep ... accumulated during the day. Some research suggests that light-sensitive cells in the eye are important to ...

  19. Sensing of UV-B radiation by plants

    PubMed Central

    Jiang, Lei; Wang, Yan; Olof Björn, Lars; He, Jun-Xian; Li, Shaoshan

    2012-01-01

    Daylight UV-B (UV-B) radiation (280–315 nm) is, because of its photochemical effects and potential destructive impact, an important environmental factor for plants. After decades of fruitless attempts, a receptor molecule, UVR8, for sensing of ambient UV-B radiation by plants has been characterized, and the initial steps in signal transduction have been identified. There are, however, other signaling pathways, and there are apparent contradictions in the literature. There is still much to find out about the complex signaling network in plants for processing of information about the daylight surrounding them. PMID:22751358

  20. Space radiation absorbed dose distribution in a human phantom

    NASA Technical Reports Server (NTRS)

    Badhwar, G. D.; Atwell, W.; Badavi, F. F.; Yang, T. C.; Cleghorn, T. F.

    2002-01-01

    The radiation risk to astronauts has always been based on measurements using passive thermoluminescent dosimeters (TLDs). The skin dose is converted to dose equivalent using an average radiation quality factor based on model calculations. The radiological risk estimates, however, are based on organ and tissue doses. This paper describes results from the first space flight (STS-91, 51.65 degrees inclination and approximately 380 km altitude) of a fully instrumented Alderson Rando phantom torso (with head) to relate the skin dose to organ doses. Spatial distributions of absorbed dose in 34 1-inch-thick sections measured using TLDs are described. There is about a 30% change in dose as one moves from the front to the back of the phantom body. Small active dosimeters were developed specifically to provide time-resolved measurements of absorbed dose rates and quality factors at five organ locations (brain, thyroid, heart/lung, stomach and colon) inside the phantom. Using these dosimeters, it was possible to separate the trapped-proton and the galactic cosmic radiation components of the doses. A tissue-equivalent proportional counter (TEPC) and a charged-particle directional spectrometer (CPDS) were flown next to the phantom torso to provide data on the incident internal radiation environment. Accurate models of the shielding distributions at the site of the TEPC, the CPDS and a scalable Computerized Anatomical Male (CAM) model of the phantom torso were developed. These measurements provided a comprehensive data set to map the dose distribution inside a human phantom, and to assess the accuracy and validity of radiation transport models throughout the human body. The results show that for the conditions in the International Space Station (ISS) orbit during periods near the solar minimum, the ratio of the blood-forming organ dose rate to the skin absorbed dose rate is about 80%, and the ratio of the dose equivalents is almost one. The results show that the GCR model dose

  1. Space radiation absorbed dose distribution in a human phantom.

    PubMed

    Badhwar, G D; Atwell, W; Badavi, F F; Yang, T C; Cleghorn, T F

    2002-01-01

    The radiation risk to astronauts has always been based on measurements using passive thermoluminescent dosimeters (TLDs). The skin dose is converted to dose equivalent using an average radiation quality factor based on model calculations. The radiological risk estimates, however, are based on organ and tissue doses. This paper describes results from the first space flight (STS-91, 51.65 degrees inclination and approximately 380 km altitude) of a fully instrumented Alderson Rando phantom torso (with head) to relate the skin dose to organ doses. Spatial distributions of absorbed dose in 34 1-inch-thick sections measured using TLDs are described. There is about a 30% change in dose as one moves from the front to the back of the phantom body. Small active dosimeters were developed specifically to provide time-resolved measurements of absorbed dose rates and quality factors at five organ locations (brain, thyroid, heart/lung, stomach and colon) inside the phantom. Using these dosimeters, it was possible to separate the trapped-proton and the galactic cosmic radiation components of the doses. A tissue-equivalent proportional counter (TEPC) and a charged-particle directional spectrometer (CPDS) were flown next to the phantom torso to provide data on the incident internal radiation environment. Accurate models of the shielding distributions at the site of the TEPC, the CPDS and a scalable Computerized Anatomical Male (CAM) model of the phantom torso were developed. These measurements provided a comprehensive data set to map the dose distribution inside a human phantom, and to assess the accuracy and validity of radiation transport models throughout the human body. The results show that for the conditions in the International Space Station (ISS) orbit during periods near the solar minimum, the ratio of the blood-forming organ dose rate to the skin absorbed dose rate is about 80%, and the ratio of the dose equivalents is almost one. The results show that the GCR model dose

  2. Tertiary treatment of slaughterhouse effluent: degradation kinetics applying UV radiation or H2O2/UV.

    PubMed

    Luiz, D B; Genena, A K; José, H J; Moreira, R F P M; Schröder, H Fr

    2009-01-01

    In some Brazilian regions, surface water has become scarce, e.g. semi arid climate areas and densely populated and industrial areas, where water over-exploitation and/or fluvial pollution has been more common. Advanced oxidative processes (AOP) provide treated water as a source of reuse water even with the characteristics of drinking water enabling water reuse practices also in food industries. The secondary wastewater of a slaughterhouse was the water source for a tertiary treatment study evaluating the kinetics of the photo-induced degradation of color and UV254 under UV radiation with and without the addition of H2O2. The proximity of the k' values of color and UV254 degradation by UV indicates that the compounds responsible for color may be the same content measured by UV254. The H2O2/UV treatment was 5.2 times faster than simple UV in removing aromatic compounds. The degradation kinetics of aromatic compounds in both treatments followed a pseudo-first order law. The pseudo-first order constant for H2O2/UV and UV treatments were kUV254'=0.0306 min(-1) and kUV254'=0.0056 min(-1), respectively.

  3. Thermally Resilient, Broadband Optical Absorber from UV to IR Derived from Carbon Nanostructures

    NASA Technical Reports Server (NTRS)

    Kaul, Anupama B.; Coles, James B.

    2012-01-01

    electric field inherent in a plasma yields vertically aligned CNTs at small length scales (less than 10 m), which still exhibit broadband, and high-efficiency optical absorption characteristics from the ultraviolet (UV) to IR. A thin and yet highly absorbing coating is extremely valuable for detector applications for radiometry in order to enhance sensitivity. A plasma-based process also increases the potential of forming the optical absorbers at lower synthesis temperatures in the future, increasing the prospects of integrating the absorbers with flexible substrates for low-cost solar cell applications, for example.

  4. Ambient UV-B radiation causes deformities in amphibian embryos

    USGS Publications Warehouse

    Blaustein, A.R.; Kiesecker, J.M.; Chivers, D.P.; Anthony, R.G.

    1997-01-01

    There has been a great deal of recent attention on the suspected increase in amphibian deformities. However, most reports of amphibian deformities have been anecdotal, and no experiments in the field under natural conditions have been performed to investigate this phenomenon. Under laboratory conditions, a variety of agents can induce deformities in amphibians. We investigated one of these agents, UV-B radiation, in field experiments, as a cause for amphibian deformities. We monitored hatching success and development in long-toed salamanders under UV-B shields and in regimes that allowed UV-B radiation. Embryos under UV-B shields had a significantly higher hatching rate and fewer deformities, and developed more quickly than those exposed to UV-B. Deformities may contribute directly to embryo mortality, and they may affect an individual's subsequent survival after hatching.

  5. Effects of UV-B radiation on tetraspores of Chondrus ocellatus Holm (Rhodophyta), and effects of red and blue light on repair of UV-B-induced damage

    NASA Astrophysics Data System (ADS)

    Ju, Qing; Xiao, Hui; Wang, You; Tang, Xuexi

    2015-05-01

    We evaluated the effects of red and blue light on the repair of UV-B radiation-induced damage in tetraspores of Chondrus ocellatus Holm. Tetraspores of C. ocellatus were treated with different UV-B radiation levels (0, 36, 72, 108, 144 and 180 J/m2), and thereafter subjected to PAR, darkness, or red or blue light during a 2-h repair stage, each day for 48 days. The diameters and cellular contents of cyclobutane pyrimidine dimmers (CPDs), chlorophyll a (Chl a), phycoerythrin, and UV-B-absorbing mycosporinelike amino acids (MAAs) contents of the tetraspores were determined. Our results show that low doses of UV-B radiation (36 and 72 J/m2) promoted the growth of C. ocellatus; however, increased UV-B radiation gradually reduced the C. ocellatus growth (greater than 72 J/m2). The MAAs (palythine and asterina-330) in C. ocellatus were detected and analyzed by LC/MS. Our results suggest that moderate red light could induce the growth of this alga in aquaculture. In addition, photorepair was inhibited by red light, so there may be some other DNA repair mechanism activated by red light. Blue light promoted the activity of DNA photolyase, greatly improving remediation efficiency. Red and blue lights were found to reduce the capacity of C. ocellatus to form MAAs. Therefore, PAR, red light, and blue light play different roles during the repair processes for damage induced by UV-B radiation.

  6. Reconstruction techniques of erythemal UV-radiation and future UV predictions

    NASA Astrophysics Data System (ADS)

    Wagner, J. E.; Rieder, H. E.; Simic, S.; Weihs, P.

    2009-04-01

    Since the discovery of anthropogenic ozone depletion more than 30 year ago, the scientific community has shown an increasing interest in UV-B radiation and started to monitor UV-radiation. However, difficulties involved in the routine operation and maintenance of the instruments have limited the length of reliable data records to about two decades. Further the number of places where they were measured, resulting in a set of observations too short and too sparse for a good understanding of past UV changes. Moreover state of the art climate models do not calculate future scenarios of UV-doses. Therefore detailed information about past and future UV-trends are lacking. Reconstruction techniques are indispensable to derive long-term time series of UV-radiation and fill this gap. Apart from the astronomical parameters, like solar zenith angle and sun-earth-distance, UV radiation is strongly influenced by clouds, ozone and surface albedo. We developed and evaluated a reconstruction technique for UV-doses that first calculates the UV-doses under clear-sky condition and afterwards applies corrections in order to take cloud effects into account. Since the input parameters cloud cover, total ozone column and surface albedo are available from the Regional Climate Model (REMO), we applied our reconstruction technique also for future scenarios using REMO data as input. Hence we are able to derive a seamless UV long-term time series from the past to the future. Our method was applied for the high alpine station Hoher Sonnblick (3108m) situated in Austrian Alps.

  7. Short- and long-term physiological responses of grapevine leaves to UV-B radiation.

    PubMed

    Martínez-Lüscher, J; Morales, F; Delrot, S; Sánchez-Díaz, M; Gomés, E; Aguirreolea, J; Pascual, I

    2013-12-01

    The present study aimed at evaluating the short- and long-term effects of UV-B radiation on leaves of grapevine Vitis vinifera (cv. Tempranillo). Grapevine fruit-bearing cuttings were exposed to two doses of supplemental biologically effective UV-B radiation (UV-BBE) under glasshouse-controlled conditions: 5.98 and 9.66kJm(-2)d(-1). The treatments were applied either for 20d (from mid-veraison to ripeness) or 75d (from fruit set to ripeness). A 0kJm(-2)d(-1) UV-B treatment was included as control. The main effects of UV-B were observed after the short-term exposure (20d) to 9.66kJm(-2)d(-1). Significant decreases in net photosynthesis, stomatal conductance, sub-stomatal CO2 concentration, the actual photosystem II (PSII) efficiency, total soluble proteins and de-epoxidation state of the VAZ cycle were observed, whereas the activities of several antioxidant enzymes increased significantly. UV-B did not markedly affect dark respiration, photorespiration, the maximum potential PSII efficiency (Fv/Fm), non-photochemical quenching (NPQ), as well as the intrinsic PSII efficiency. However, after 75d of exposure to 5.98and 9.66kJm(-2)d(-1) UV-B most photosynthetic and biochemical variables were unaffected and there were no sign of oxidative damage in leaves. The results suggest a high long-term acclimation capacity of grapevine to high UV-B levels, associated with a high accumulation of UV-B absorbing compounds in leaves, whereas plants seemed to be tolerant to moderate doses of UV-B.

  8. Towards a high performing UV-A sensor based on Silicon Carbide and hydrogenated Silicon Nitride absorbing layers

    NASA Astrophysics Data System (ADS)

    Mazzillo, M.; Sciuto, A.; Mannino, G.; Renna, L.; Costa, N.; Badalà, P.

    2016-10-01

    Exposure to ultraviolet (UV) radiation is a major risk factor for most skin cancers. The sun is our primary natural source of UV radiation. The strength of the sun's ultraviolet radiation is expressed as Solar UV Index (UVI). UV-A (320-400 nm) and UV-B (290-320 nm) rays mostly contribute to UVI. UV-B is typically the most destructive form of UV radiation because it has enough energy to cause photochemical damage to cellular DNA. Also overexposure to UV-A rays, although these are less energetic than UV-B photons, has been associated with toughening of the skin, suppression of the immune system, and cataract formation. The use of preventive measures to decrease sunlight UV radiation absorption is fundamental to reduce acute and irreversible health diseases to skin, eyes and immune system. In this perspective UV sensors able to monitor in a monolithic and compact chip the UV Index and relative UV-A and UV-B components of solar spectrum can play a relevant role for prevention, especially in view of the integration of these detectors in close at hand portable devices. Here we present the preliminary results obtained on our UV-A sensor technology based on the use of hydrogenated Silicon Nitride (SiN:H) thin passivating layers deposited on the surface of thin continuous metal film Ni2Si/4H-SiC Schottky detectors, already used for UV-Index monitoring. The first UV-A detector prototypes exhibit a very low leakage current density of about 0.2 pA/mm2 and a peak responsivity value of 0.027 A/W at 330 nm, both measured at 0V bias.

  9. Radiation absorbed dose estimates for 18F-BPA PET.

    PubMed

    Kono, Yuzuru; Kurihara, Hiroaki; Kawamoto, Hiroshi; Yasui, Naoko; Honda, Naoki; Igaki, Hiroshi; Itami, Jun

    2017-01-01

    Background Boron neutron capture therapy (BNCT) is a molecular radiation therapy approach based on the (10)B (n, α) (7)Li nuclear reaction in cancer cells. In BNCT, delivery of (10)B in the form of 4-borono-phenylalanine conjugated with fructose (BPA-fr) to the cancer cells is important. The PET tracer 4-borono-2-18F-fluoro-phenylalanine (FBPA) has been used to predict the accumulation of BPA-fr before BNCT. Purpose To determine the biodistribution and dosimetric parameters in 18F-BPA PET/CT studies. Material and Methods Human biokinetic data were obtained during clinical 18F-BPA PET studies between February and June 2015 at one institution. Nine consecutive patients were studied prospectively. The internal radiation dose was calculated on the basis of radioactivity data from blood, urine, and normal tissue of the heart, liver, spleen, kidney, and other parts of the body at each time point using OLINDA/EXM1.1 program. We compared our calculations with published 18F-FDG data. Results Adult patients (3 men, 3 women; age range, 28-68 years) had significantly smaller absorbed doses than pediatric patients (3 patients; age range, 5-12 years) ( P = 0.003). The mean effective dose was 57% lower in adult patients compared with pediatric patients. Mean effective doses for 18F-BPA were 25% lower than those for 18F-FDG presented in International Commission of Radiation Protection (ICRP) publication 106. Conclusion We found significant differences in organ absorbed doses for 18F-BPA against those for 18F-FDG presented in ICRP publication 106. Mean effective doses for 18F-BPA were smaller than those for 18F-FDG in the publication by 0.5-38% (mean difference, 25%).

  10. Response of biological uv dosimeters to the simulated extraterrestrial uv radiation

    NASA Astrophysics Data System (ADS)

    Bérces, A.; Rontó, G.; Kerékgyártó, T.; Kovács, G.; Lammer, H.

    In the Laboratory polycrystalline uracil thin layer and bacteriophage T7 detectors have been developed for UV dosimetry on the EarthSs surface. Exponential response of the uracil polycrystal has been detected both by absorption spectroscopy and measurements of the refractive index under the influence of terrestrial solar radiation or using UV-C sources. In UV biological dosimetry the UV dose scale is additive starting at a value of zero according to the definition of CIE (Technical Report TC-6-18). The biological dose can be defined by a measured end-effect. In our dosimeters (phage T7 and uracil dosimeter) exposed to natural (terrestrial) UV radiation the proportion of pyrimidin photoproducts among the total photoproducts is smaller than 0.1 and the linear correlation between the biological and physical dose is higher than 0.9. According to the experimental data this linear relationship is often not valid. We observed that UV radiation did not only induce dimerisation but shorter wavelengths caused monomerisation of pyrimidin dimers. Performing the irradiation in oxygen free environment and using a Deuterium lamp as UV source, we could increase monomerisation against dimerisation thus the DNA-based dosimetrySs additivity rule is not fulfilled in these conditions. In this study we will demonstrate those non-linear experiments which constitute the basis of our biological experiments on the International Space Station.

  11. Plant Responses to Increased UV-B Radiation: A Research Project

    NASA Technical Reports Server (NTRS)

    DAntoni, H. L.; Skiles, J. W.; Armstrong, R.; Coughlan, J.; Daleo, G.; Mayoral, A.; Lawless, James G. (Technical Monitor)

    1994-01-01

    because there is anecdotal evidence of plant damage on the saguaros that has been linked to increased UV radiation, and (3) the forests of Nothofagus spp. and the steppe of Patagonia where the risk of plant damage at 35S is 5% and increases to as much as 15% at 55S due to increased UV-B radiation. Measurements of UV-B radiation impinging on the surface at 55S largely exceed the predicted UV-B radiation values at 50 latitude and 0% ozone depletion. Preliminary HPLC analyses of UV-B absorbing compounds in Nothofagus antartica, N. pumilio, N. betuloides and Rumex sp. in natural conditions show species-specific patterns. The spectrum of N. antartica grown at 38S differs significantly from that of N. antartica in natural conditions in Ushuaia (55S). These results suggest that the selected main area (Patagonia) is appropriate for assessing the problem and its magnitude and that Nothofagus is appropriate for our study.

  12. Solar UV radiation reduces the barrier function of human skin.

    PubMed

    Biniek, Krysta; Levi, Kemal; Dauskardt, Reinhold H

    2012-10-16

    The ubiquitous presence of solar UV radiation in human life is essential for vitamin D production but also leads to skin photoaging, damage, and malignancies. Photoaging and skin cancer have been extensively studied, but the effects of UV on the critical mechanical barrier function of the outermost layer of the epidermis, the stratum corneum (SC), are not understood. The SC is the first line of defense against environmental exposures like solar UV radiation, and its effects on UV targets within the SC and subsequent alterations in the mechanical properties and related barrier function are unclear. Alteration of the SC's mechanical properties can lead to severe macroscopic skin damage such as chapping and cracking and associated inflammation, infection, scarring, and abnormal desquamation. Here, we show that UV exposure has dramatic effects on cell cohesion and mechanical integrity that are related to its effects on the SC's intercellular components, including intercellular lipids and corneodesmosomes. We found that, although the keratin-controlled stiffness remained surprisingly constant with UV exposure, the intercellular strength, strain, and cohesion decreased markedly. We further show that solar UV radiation poses a double threat to skin by both increasing the biomechanical driving force for damage while simultaneously decreasing the skin's natural ability to resist, compromising the critical barrier function of the skin.

  13. Ultroviolet (UV)- and thermal-stability of absorbing coatings for space instrumentation

    NASA Astrophysics Data System (ADS)

    Weissbrodt, P.; Raupach, L.; Hacker, Erich; Wagner, S.; Kappel, H.

    1994-09-01

    Absorbing coatings for space-borne optical instruments must accept - besides optical requirements - unusual challenges regarding their chemical stability and their emission of gaseous and condensable materials under space conditions. Consideration of mass balances according to ANSI/ASTM E 595 do not provide enough information for proper choice of the coatings in the vicinity of sensitive optical elements. By in-situ mass spectrometric and XPS measurements we have investigated chemical changes of different black paints and inorganic coatings, their outgassing and the contamination of the surfaces near the coatings. In general, organic black paints are threatened by UV- irradiation and by thermal loads. Changes of their chemical composition under energetic UV-irradiation and the intense emission of contaminating materials were proved. The inorganic coatings investigated do not change their chemical composition and cause only comparatively small contamination on surfaces in their vicinity. For reducing the problem of contamination in optical systems it is still necessary to make available appropriate inorganic coatings with improved absorbing characteristics. However, if lower absorption can be tolerated, the use of inorganic coatings in sensible optical equipment should be considered already now.

  14. Radiation-induced biomarkers for the detection and assessment of absorbed radiation doses

    PubMed Central

    Rana, Sudha; Kumar, Raj; Sultana, Sarwat; Sharma, Rakesh Kumar

    2010-01-01

    Radiation incident involving living organisms is an uncommon but a very serious situation. The first step in medical management including triage is high-throughput assessment of the radiation dose received. Radiation exposure levels can be assessed from viability of cells, cellular organelles such as chromosome and different intermediate metabolites. Oxidative damages by ionizing radiation result in carcinogenesis, lowering of the immune response and, ultimately, damage to the hematopoietic system, gastrointestinal system and central nervous system. Biodosimetry is based on the measurement of the radiation-induced changes, which can correlate them with the absorbed dose. Radiation biomarkers such as chromosome aberration are most widely used. Serum enzymes such as serum amylase and diamine oxidase are the most promising biodosimeters. The level of gene expression and protein are also good biomarkers of radiation. PMID:21829314

  15. Leaf surface wax is a source of plant methane formation under UV radiation and in the presence of oxygen.

    PubMed

    Bruhn, D; Mikkelsen, T N; Rolsted, M M M; Egsgaard, H; Ambus, P

    2014-03-01

    The terrestrial vegetation is a source of UV radiation-induced aerobic methane (CH4 ) release to the atmosphere. Hitherto pectin, a plant structural component, has been considered as the most likely precursor for this CH4 release. However, most of the leaf pectin is situated below the surface wax layer, and UV transmittance of the cuticle differs among plant species. In some species, the cuticle effectively absorbs and/or reflects UV radiation. Thus, pectin may not necessarily contribute substantially to the UV radiation-induced CH4 emission measured at surface level in all species. Here, we investigated the potential of the leaf surface wax itself as a source of UV radiation-induced leaf aerobic CH4 formation. Isolated leaf surface wax emitted CH4 at substantial rates in response to UV radiation. This discovery has implications for how the phenomenon should be scaled to global levels. In relation to this, we demonstrated that the UV radiation-induced CH4 emission is independent of leaf area index above unity. Further, we observed that the presence of O2 in the atmosphere was necessary for achieving the highest rates of CH4 emission. Methane formation from leaf surface wax is supposedly a two-step process initiated by a photolytic rearrangement reaction of the major component followed by an α-cleavage of the generated ketone.

  16. Estimation of photosynthetically active radiation absorbed at the surface

    NASA Astrophysics Data System (ADS)

    Li, Zhanqing; Moreau, Louis; Cihlar, Josef

    1997-12-01

    This paper presents a validation and application of an algorithm by Li and Moreau [1996] for retrieving photosynthetically active radiation (PAR) absorbed at the surface (APARSFC). APARSFC is a key input to estimating PAR absorbed by the green canopy during photosynthesis. Extensive ground-based and space-borne observations collected during the BOREAS experiment in 1994 were processed, colocated, and analyzed. They include downwelling and upwelling PAR observed at three flux towers, aerosol optical depth from ground-based photometers, and satellite reflectance measurements at the top of the atmosphere. The effects of three-dimensional clouds, aerosols, and bidirectional dependence on the retrieval of APARSFC were examined. While the algorithm is simple and has only three input parameters, the comparison between observed and estimated APARSFC shows a small bias error (<10 W m-2) and moderate random error (36 W m-2 for clear, 61 W m-2 for cloudy). Temporal and/or spatial mismatch between satellite and surface observations is a major cause of the random error, especially when broken clouds are present. The algorithm was subsequently employed to map the distribution of monthly mean APARSFC over the 1000×1000 km2 BOREAS region. Considerable spatial variation is found due to variable cloudiness, forest fires, and nonuniform surface albedo.

  17. Radiative transfer effects on reflected shock waves. II - Absorbing gas.

    NASA Technical Reports Server (NTRS)

    Su, F. Y.; Olfe, D. B.

    1972-01-01

    Radiative cooling effects behind a reflected shock wave are calculated for an absorbing-emitting gas by means of an expansion procedure in the small density ratio across the shock front. For a gray gas shock layer with an optical thickness of order unity or less the absorption integral is simplified by use of the local temperature approximation, whereas for larger optical thicknesses a Rosseland diffusion type of solution is matched with the local temperature approximation solution. The calculations show that the shock wave will attenuate at first and then accelerate to a constant velocity. Under appropriate conditions the gas enthalpy near the wall may increase at intermediate times before ultimately decreasing to zero. A two-band absorption model yields end-wall radiant-heat fluxes which agree well with available shock-tube measurements.

  18. Effective UV radiation from model calculations and measurements

    NASA Technical Reports Server (NTRS)

    Feister, Uwe; Grewe, Rolf

    1994-01-01

    Model calculations have been made to simulate the effect of atmospheric ozone and geographical as well as meteorological parameters on solar UV radiation reaching the ground. Total ozone values as measured by Dobson spectrophotometer and Brewer spectrometer as well as turbidity were used as input to the model calculation. The performance of the model was tested by spectroradiometric measurements of solar global UV radiation at Potsdam. There are small differences that can be explained by the uncertainty of the measurements, by the uncertainty of input data to the model and by the uncertainty of the radiative transfer algorithms of the model itself. Some effects of solar radiation to the biosphere and to air chemistry are discussed. Model calculations and spectroradiometric measurements can be used to study variations of the effective radiation in space in space time. The comparability of action spectra and their uncertainties are also addressed.

  19. Solar UV-A and UV-B radiation fluxes at two Alpine stations at different altitudes

    NASA Astrophysics Data System (ADS)

    Blumthaler, M.; Ambach, W.; Rehwald, W.

    1992-03-01

    Daily totals of UV-A and UV-B radiation fluxes and global radiation were measured since 1981 at Jungfraujoch (3576 m) a.s.l.) and in Innsbruck (577 m a.s.l.) in their seasonal course. The altitude effect of annual totals yields 19%/1000 m (UV-B), 11%/1000 m (UV-A) and 9%/1000 m (global radiation) with reference to Innsbruck station. The ratio of the daily totals of UV-B/global radiation shows a significant seasonal course with the maximum in summer, whereas the ratio of the daily totals of UV-A/global radiation shows no significant seasonal variation. The biological effective doses of erythema reaction, delayed tanning and immediate tanning by UV-A and UV-B radiant exposure are reported in the seasonal course at Jungfraujoch and in Innsbruck.

  20. Bacterial Sunscreen: Layer-by-Layer Deposition of UV-Absorbing Polymers on Whole-Cell Biosensors (POSTPRINT)

    DTIC Science & Technology

    2012-06-13

    intensity and can aggregate into biofilms and synthesize exopolymers that block UV light.5 Without these mechanisms, UV radiation produces reactive...common property of biofilms and other cell populations that exist in a community. PVS-coatings caused E. coli (pGFPuv) cells to aggregate in solution...Response of a Biofilm Bacterial Community to UV Radiation. Appl. Environ. Microbiol. 1999, 65, 2025−2031. (6) Su, L.; Jia, W.; Hou, C.; Lei, Y

  1. Occupational exposure to natural UV radiation and premature skin ageing.

    PubMed

    Lastowiecka-Moras, Elżbieta; Bugajska, Joanna; Młynarczyk, Beata

    2014-01-01

    The skin is the part of the human body most vulnerable to ultraviolet (UV) radiation. The spectrum of the negative effects of UV radiation on the skin ranges from acute erythema to carcinogenesis. Between these extreme conditions, there are other common skin lesions, e.g., photoageing. The aim of this study was to assess the skin for signs of photoageing in a group of 52 men occupationally exposed to natural UV radiation. There were 2 types of examinations: an examination of skin condition (moisture, elasticity, sebum, porosity, smoothness, discolourations and wrinkles) with a device for diagnosing the skin, and a dermatological examination. The results of both examinations revealed a higher percentage of skin characteristics typical for photoageing in outdoor workers compared to the general population.

  2. UV radiation induces CXCL5 expression in human skin.

    PubMed

    Reichert, Olga; Kolbe, Ludger; Terstegen, Lara; Staeb, Franz; Wenck, Horst; Schmelz, Martin; Genth, Harald; Kaever, Volkhard; Roggenkamp, Dennis; Neufang, Gitta

    2015-04-01

    CXCL5 has recently been identified as a mediator of UVB-induced pain in rodents. To compare and to extend previous knowledge of cutaneous CXCL5 regulation, we performed a comprehensive study on the effects of UV radiation on CXCL5 regulation in human skin. Our results show a dose-dependent increase in CXCL5 protein in human skin after UV radiation. CXCL5 can be released by different cell types in the skin. We presumed that, in addition to immune cells, non-immune skin cells also contribute to UV-induced increase in CXCL5 protein. Analysis of monocultured dermal fibroblasts and keratinocytes revealed that only fibroblasts but not keratinocytes displayed up regulated CXCL5 levels after UV stimulation. Whereas UV treatment of human skin equivalents, induced epidermal CXCL5 mRNA and protein expression. Up regulation of epidermal CXCL5 was independent of keratinocyte differentiation and keratinocyte-keratinocyte interactions in epidermal layers. Our findings provide first evidence on the release of CXCL5 in UV-radiated human skin and the essential role of fibroblast-keratinocyte interaction in the regulation of epidermal CXCL5.

  3. fs Laser surface nano-structuring of high refractory ceramics to enhance solar radiation absorbance

    NASA Astrophysics Data System (ADS)

    Cappelli, E.; Orlando, S.; Sciti, D.; Bellucci, A.; Lettino, A.; Trucchi, D. M.

    2014-10-01

    High refractory pressure-less sintered ternary composite ceramics of AlN-SiC-MoSi2 (ASMY), polished by mechanical grinding to a surface roughness R a ~40 nm, have been treated in vacuum by fs Ti:sapphire laser, operating at 800 nm wavelength, 100 fs pulse duration, and increasing fluence, to generate a "black ceramic material", able to minimize solar radiation reflectance, in such a way that they could be used as the absorber material in an innovative conversion module of solar radiation into electrical energy. Disk specimens of approximately 3 cm in diameter and 3 mm thick have been treated by normal incident laser beam, generating a scanning pattern of parallel lines, at a lateral distance of about 80 μm, using a stage in motion, in the x, y, z directions, driven by a computer. The experimental conditions of laser treatment (energy fluence, speed of transition and lateral distance of steps) have been optimized to maximize the absorption properties of the patterned surface. In some samples this value was increased by about 15 %, compared to untreated surface, up to a value of final absorbance of about 95 %, all over the range of solar radiation spectrum (from UV to NIR). The morphological and chemical effects have been evaluated by SEM-EDS analysis. At higher fluence, we obtained the characteristic ablation craters and corresponding local material decomposition, while at lower fluence (over the ablation threshold) an ordered periodic nano-structure has been obtained, exploitable for its high capacity of entrapment of visible light. The laser treated ceramic specimen, characterized by very high absorption properties and reflectivity values lower than 4 %, has been used as active absorber material in a conversion module, installed in a solar test platform.

  4. Silver-Teflon contamination UV radiation study

    NASA Technical Reports Server (NTRS)

    Muscari, J. A.

    1978-01-01

    Silver-Teflon (Ag/FEP) is planned to be used as the thermal control material covering the radiator surfaces on the shuttle orbiter payload bay doors. These radiators require the use of materials that have a very low solar absorptance and a high emittance for heat rejection. However, operationally, materials used on these critical radiator surfaces, such as silver-Teflon, will be exposed to a variety of conditions which include both the natural as well as the induced environments from the Shuttle Orbiter. A complete test facility was assembled, and detailed test procedures and a test matrix were developed. Measurements of low solar absorptance were taken before and after contamination, at intervals during irradiation, and after sample cleaning to fulfill all the requirements.

  5. Prediction of UV spectra and UV-radiation damage in actual plasma etching processes using on-wafer monitoring technique

    NASA Astrophysics Data System (ADS)

    Jinnai, Butsurin; Fukuda, Seiichi; Ohtake, Hiroto; Samukawa, Seiji

    2010-02-01

    UV radiation during plasma processing affects the surface of materials. Nevertheless, the interaction of UV photons with surface is not clearly understood because of the difficulty in monitoring photons during plasma processing. For this purpose, we have previously proposed an on-wafer monitoring technique for UV photons. For this study, using the combination of this on-wafer monitoring technique and a neural network, we established a relationship between the data obtained from the on-wafer monitoring technique and UV spectra. Also, we obtained absolute intensities of UV radiation by calibrating arbitrary units of UV intensity with a 126 nm excimer lamp. As a result, UV spectra and their absolute intensities could be predicted with the on-wafer monitoring. Furthermore, we developed a prediction system with the on-wafer monitoring technique to simulate UV-radiation damage in dielectric films during plasma etching. UV-induced damage in SiOC films was predicted in this study. Our prediction results of damage in SiOC films shows that UV spectra and their absolute intensities are the key cause of damage in SiOC films. In addition, UV-radiation damage in SiOC films strongly depends on the geometry of the etching structure. The on-wafer monitoring technique should be useful in understanding the interaction of UV radiation with surface and in optimizing plasma processing by controlling UV radiation.

  6. Oxidation of polynuclear aromatic hydrocarbons in water. 2: UV radiation and ozonation in the presence of UV radiation

    SciTech Connect

    Beltran, F.J.; Garcia-Araya, J.F.; Rivas, J.; Ovejero, G.

    1995-05-01

    Direct photolysis with UV radiation (254 nm) and oxidation with ozone combined with UV radiation of three polynuclear aromatic hydrocarbons, fluorene, phenanthrene, and acenaphthene, has been studied. Quantum yields of the direct photolysis of the PAHs determined were 7.5 {times} 10{sup {minus}3}, 6.9 {times} 10{sup {minus}3}, and 52 {times} 10{sup {minus}3} mol(photon){sup {minus}1} for fluorene, phenanthrene, and acenaphthene, respectively. Contributions of direct ozonation, direct photolysis, and radical oxidation have also been estimated for the oxidation with ozone combined with UV radiation. Fluorene is oxidized by direct photolysis and radical reactions, phenanthrene through direct mechanisms, ozonation, and photolysis, and acenaphthene mainly by direct ozonation.

  7. Aqueous Chemistry in the Clouds of Venus: A Possible Source for the UV Absorber

    NASA Astrophysics Data System (ADS)

    Baines, Kevin H.; Delitsky, M. L.

    2013-10-01

    The identity and cause of the UV absorber near the Venusian cloudtops 62-70 km altitude) has been an enduring mystery. Given the role of sulfur in Venus’s atmosphere, where, somewhat analogous to water on Earth, it cycles through gas, liquid, and (possibly) solid phases in the atmosphere, it has been a prime suspect as at least a key component, perhaps as long-lived solid poly-sulfur aerosols, Sn, where n > 4. However, the narrow range of altitudes inhabited by the UV absorber (thought to form and reside primarily above 62 km altitude) seems incompatible with Sn, which should vertically disperse after formation. Here, we point to another process that could lead to somewhat more exotic chemistries that favor formation and sequestration at high altitudes: Aqueous chemistry within H2SO4-nH2O cloud particles. Due to (1) the decrease of temperature and (2) the increase in the fraction of water (“n” in the previous formula) of each cloud droplet with altitude, high-altitude particles near the cloudtops are - via the “heterogeneous uptake” process - significantly more capable of capturing and concentrating trace gases, in particular HCl. For example, the heterogeneous uptake of HCl in H2SO4 droplets near the 65-km cloudtops is at least three times greater than that found in the middle of the clouds near 55 km altitude. Other factors such as local mixing ratios and the concentration of other solvents in the droplet also modify the uptake. Within the cloud droplets, solution chemistry between HCl and H2SO4 may lead to the formation of chlorosulfonic acid, ClSO3H, which is a weak acid that readily breaks down into other species, such as SO2Cl2 (sulfuryl chloride) and SOCl2 (thionyl chloride). Together, these three materials have UV-blue absorptions at 0.21, 0.29, 0.39 and 0.47 micron. Thus, H2SO4 aerosols at high altitudes may take on lasting UV absorption characteristics, dependent on temperature (altitude) and other conditions, Balloons floating at benign Earth

  8. A flavonoid from Brassica rapa flower as the UV-absorbing nectar guide.

    PubMed

    Sasaki, Katsunori; Takahashi, Takashi

    2002-10-01

    The corolla of Brassica rapa has an UV-absorbing zone in its center, known as the nectar guide for attracting pollinating insects. The pigment which plays the role of the nectar guide was isolated from the petals and identified to be isorhamnetin 3,7-O-di-beta-D-glucopyranoside on the basis of MS and NMR spectroscopic data. The D-, L-configurations of the sugar moieties were determined by the fluorometric HPLC method. In plants raised in open field, there was a 13-fold higher content of the compound in the basal parts of the petals compared with the apical parts. This difference in flavonoid content is presumed to contribute to the visual attractiveness of B. rapa flowers to insect pollinators.

  9. UV-visible absorbance spectroscopy as a proxy for peatland dissolved organic carbon (DOC) quantity and quality: considerations on wavelength and absorbance degradation.

    PubMed

    Peacock, Mike; Evans, Chris D; Fenner, Nathalie; Freeman, Chris; Gough, Rachel; Jones, Timothy G; Lebron, Inma

    2014-05-01

    Absorbance in the UV or visible spectrum (UV-vis) is commonly used as a proxy for DOC concentrations in waters draining upland catchments. To determine the appropriateness of different UV-vis measurements we used surface and pore water samples from two Welsh peatlands in four different experiments: (i) an assessment of single wavelength proxies (1 nm increments between 230-800 nm) for DOC concentration demonstrated that 254 nm was more accurate than 400 nm. The highest R(2) values between absorbance and DOC concentration were generated using 263 nm for one sample set (R(2) = 0.91), and 230 nm for the other three sample sets (respective R(2) values of 0.86, 0.81, and 0.93). (ii) A comparison of different DOC concentration proxies, including single wavelength proxies, a two wavelength model, a proxy using phenolic concentration, and a proxy using the area under a UV spectrum at 250-350 nm. It was found that both a single wavelength proxy (≤263 nm) and a two wavelength model performed well for both pore water and surface water. (iii) An evaluation of the E2 : E3, E2 : E4, E4 : E6 ratios, and SUVA (absorbance at 254 nm normalised to DOC concentration) as indicators of DOC quality showed that the E4 : E6 ratio was subject to extensive variation over time, and was highly correlated between surface water and pore water, suggesting that it is a useful metric to determine temporal changes in DOC quality. (iv) A repeated weekly analysis over twelve weeks showed no consistent change in UV-vis absorbance, and therefore an inferred lack of degradation of total DOC in samples that were filtered and stored in the dark at 4 °C.

  10. Reduction of patulin in apple cider by UV radiation.

    PubMed

    Dong, Qingfang; Manns, David C; Feng, Guoping; Yue, Tianli; Churey, John J; Worobo, Randy W

    2010-01-01

    The presence of the mycotoxin patulin in processed apple juice and cider presents a continual challenge to the food industry as both consumer health and product quality issues. Although several methods for control and/or elimination of patulin have been proposed, no unifying method has been commercially successful for reducing patulin burdens while maintaining product quality. In the present study, exposure to germicidal UV radiation was evaluated as a possible commercially viable alternative for the reduction and possible elimination of the patulin mycotoxin in fresh apple cider. UV exposure of 14.2 to 99.4 mJ/cm(2) resulted in a significant and nearly linear decrease in patulin levels while producing no quantifiable changes in the chemical composition (i.e., pH, Brix, and total acids) or organoleptic properties of the cider. For the range of UV doses tested, patulin levels decreased by 9.4 to 43.4%; the greatest reduction was achieved after less than 15 s of UV exposure. The method of UV radiation (the CiderSure 3500 system) is an easily implemented, high-throughput, and cost-effective method that offers simultaneous UV pasteurization of cider and juice products and reduction and/or elimination of patulin without unwanted alterations in the final product.

  11. Mutagenic effects of solar UV-radiation on DNA

    NASA Astrophysics Data System (ADS)

    Rabbow, E.; Horneck, G.

    2001-08-01

    A decrease of the stratospheric ozone layer will result in an increase of shorter wavelengths of the solar radiation reaching in earth. To investigate the biological efficiency, especially the mutagenic specificity, of ranges of polychromatic UVA and UBV irradiations with wavelengths between 280 nm and 400 nm, the plasmid DNA pUC19 and its E. coli host strain JM83 were used as a model system. Different ranges of solar UV radiation were simulated with the SOL 2 sun simulator (Dr. Hönle) and a variety of cut-off filters (Schott). Three wavelength bands were investigated: 280 - 400 nm (simulating UV-range under a stratospheric ozone layer depletion), 300-400 nm (simulating the UV-range today) and 315-400 nm to examine the effects induced by UVA alone.

  12. Room-temperature effects of UV radiation in KBr:? crystals

    NASA Astrophysics Data System (ADS)

    Pérez-Salas, R.; Meléndrez, R.; Aceves, R.; Rodriguez, R.; Barboza-Flores, M.

    1996-07-01

    Thermoluminescence and optical absorption measurements have been carried out in KBr:0953-8984/8/27/009/img9 crystals irradiated with monochromatic UV light (200 - 300 nm) and x-rays at room temperature. For UV- and x-irradiated crystals strong similarities between the thermoluminescence glow curves have been found, suggesting that the low-energy UV radiation produces the same defects as produced by x-irradiation in this material. The thermoluminescence glow curves are composed of six glow peaks located at 337, 383, 403, 435, 475 and 509 K. Thermal annealing experiments in previously irradiated crystals show clearly a correlation between the glow peak located at 383 K and the F-centre thermal bleaching process. Also, the excitation spectrum for each thermoluminescence glow peak has been investigated, showing that the low-energy radiation induces the formation of F centres.

  13. AOPs with ozone and UV radiation in drinking water: contaminants removal and effects on disinfection byproducts formation.

    PubMed

    Collivignarelli, C; Sorlini, S

    2004-01-01

    In this study, the advanced oxidation with ozone and UV radiation (with two low pressure UV lamps, at 254 and 185 nm wavelength) were experimented on a surface water in order to study the removal of two odorous compounds (geosmin and 2-methylisoborneol) and a pesticide (metolachlor), the influence on organic compounds (UV absorbance and THM precursors) and bromate formation. Different batch tests were performed with ozone concentration up to 10 mg/L, UV dose up to 14,000 J/m2 and a maximum contact time of 10 minutes. The main results show that metolachlor can be efficiently removed with ozone alone while for geosmin and MIB a complete removal can be obtained with the advanced oxidation of ozone (with concentration of 1.5-3 mg/L and contact time of 2-3 minutes) with UV radiation (with doses of 5,000-6,000 J/m2). As concerns the influence on the organic precursors, all the experimented processes show a medium removal of about 20-40% for UV absorbance and 15-30% for THMFP (trihalomethanes formation potential). As concerns bromate formation, the advanced oxidation of ozone/UV 254 nm shows a bromate formation that is about 40% lower with respect to conventional oxidation with ozone.

  14. ESTIMATION OF UV RADIATION DOSE IN NORTHERN MINNESOTA WETLANDS

    EPA Science Inventory

    The ultraviolet (UV) B wavelength range (280 nm to 320 nm) of solar radiation can be a significant biological stressor, and has been hypothesized to be partially responsible for amphibian declines and malformation. This hypothesis has been difficult to evaluate, in part, because ...

  15. Charge of particles in plasmas under external UV-radiation

    NASA Astrophysics Data System (ADS)

    Puttscher, M.; Melzer, A.

    2011-11-01

    In this experiment we investigate the charge of dust particles when they are exposed to external UV-radiation. The determination of the changes in charge of the dust particles is given by a combination of two methods to evaluate electrical charge: the resonance method and the normal mode analysis. This contribution describes the experimental setup and the determination of the charge differences.

  16. MicroRNAs in skin response to UV radiation.

    PubMed

    Syed, Deeba N; Khan, Mohammad Imran; Shabbir, Maria; Mukhtar, Hasan

    2013-09-01

    Solar ultraviolet (UV) radiation, an ubiquitous environmental carcinogen, is classified depending on the wavelength, into three regions; short-wave UVC (200-280 nm), mid-wave UVB (280-320 nm), and long-wave UVA (320- 400 nm). The human skin, constantly exposed to UV radiation, particularly the UVB and UVA components, is vulnerable to its various deleterious effects such as erythema, photoaging, immunosuppression and cancer. To counteract these and for the maintenance of genomic integrity, cells have developed several protective mechanisms including DNA repair, cell cycle arrest and apoptosis. The network of damage sensors, signal transducers, mediators, and various effector proteins is regulated through changes in gene expression. MicroRNAs (miRNAs), a group of small non-coding RNAs, act as posttranscriptional regulators through binding to complementary sequences in the 3´-untranslated region of their target genes, resulting in either translational repression or target degradation. Recent studies show that miRNAs add an additional layer of complexity to the intricately controlled cellular responses to UV radiation. This review summarizes our current knowledge of the role of miRNAs in the regulation of the human skin response upon exposure to UV radiation.

  17. Far-UV Radiation of the Early Sun

    NASA Technical Reports Server (NTRS)

    Heap, Sally

    2005-01-01

    Far-UV radiation is responsible for the photolysis of important greenhouse gases such as CO2, NH3 (ammonia), CH4 (methane) and more generally, the global UV photochemistry of the early atmosphere. In our project, we are concentrating on the young Sun's effect on methane, since UV sunlight (lambda less than 1450 Angstroms) was the main destruction mechanism for methane in the early Earth's atmosphere. Since the UV luminosity of the early Sun cannot be calculated a priori; it can only be estimated from observations of stars similar to the young Sun. We report our results based on Hubble + FUSE spectra of stars selected from Gaidos (1998) Catalog of Nearby Young Solar Analogs (YSA's).

  18. Photoexcited singlet and triplet states of a UV absorber ethylhexyl methoxycrylene.

    PubMed

    Kikuchi, Azusa; Hata, Yuki; Kumasaka, Ryo; Nanbu, Yuichi; Yagi, Mikio

    2013-01-01

    The excited states of UV absorber, ethylhexyl methoxycrylene (EHMCR) have been studied through measurements of UV absorption, fluorescence, phosphorescence and electron paramagnetic resonance (EPR) spectra in ethanol. The energy levels of the lowest excited singlet (S1) and triplet (T1) states of EHMCR were determined. The energy levels of the S1 and T1 states of EHMCR are much lower than those of photolabile 4-tert-butyl-4'-methoxydibenzoylmethane. The energy levels of the S1 and T1 states of EHMCR are lower than those of octyl methoxycinnamate. The weak phosphorescence and EPR B(min) signals were observed and the lifetime was estimated to be 93 ms. These facts suggest that the significant proportion of the S1 molecules undergoes intersystem crossing to the T1 state, and the deactivation process from the T1 state is predominantly radiationless. The photostability of EHMCR arises from the (3)ππ* character in the T1 state. The zero-field splitting (ZFS) parameter in the T1 state is D** = 0.113 cm(-1).

  19. Photoexcited triplet states of UV-B absorbers: ethylhexyl triazone and diethylhexylbutamido triazone.

    PubMed

    Tsuchiya, Takumi; Kikuchi, Azusa; Oguchi-Fujiyama, Nozomi; Miyazawa, Kazuyuki; Yagi, Mikio

    2015-04-01

    The excited states of UV-B absorbers, ethylhexyl triazone (EHT) and diethylhexylbutamido triazone (DBT), have been studied through measurements of UV absorption, fluorescence, phosphorescence, triplet-triplet absorption and electron paramagnetic resonance spectra in ethanol. The energy levels of the lowest excited singlet (S1) and triplet (T1) states and quantum yields of fluorescence and phosphorescence of EHT and DBT were determined. In ethanol at 77 K, the deactivation process of EHT and DBT is predominantly fluorescence, however, a significant portion of the S1 molecules undergoes intersystem crossing to the T1 state. The observed phosphorescence spectra, T1 lifetimes and zero-field splitting parameters suggest that the T1 state of EHT can be assigned to a locally excited (3)ππ* state within p-(N-methylamino)benzoic acid, while the T1 state of DBT can be assigned to a locally excited (3)ππ* state within p-(N-methylamino)benzoic acid or p-amino-N-methylbenzamide. The quantum yields of singlet oxygen generation by EHT and DBT were determined by time-resolved near-IR phosphorescence measurements in ethanol at room temperature. EHT and DBT did not exhibit significantly antioxidative properties by quenching singlet oxygen, in contrast to the study by Lhiaubet-Vallet et al.

  20. Degradation and mineralization of organic UV absorber compound 2-phenylbenzimidazole-5-sulfonic acid (PBSA) using UV-254nm/H2O2.

    PubMed

    Abdelraheem, Wael H M; He, Xuexiang; Duan, Xiaodi; Dionysiou, Dionysios D

    2015-01-23

    Various studies have revealed the non-biodegradable and endocrine disrupting properties of sulfonated organic UV absorbers, directing people's attention toward their risks on ecological and human health and hence their removal from water. In this study, UV-254nm/H2O2 advanced oxidation process (AOP) was investigated for degrading a model UV absorber compound 2-phenylbenzimidazole-5-sulfonic acid (PBSA) and a structurally similar compound 1H-benzimidazole-2-sulfonic acid (BSA), with a specific focus on their mineralization. At 4.0mM [H2O2]0, a complete removal of 40.0μM parent PBSA and 25% decrease in TOC were achieved with 190min of UV irradiation; SO4(2-) was formed and reached its maximum level while the release of nitrogen as NH4(+) was much lower (around 50%) at 190min. Sulfate removal was strongly enhanced by increasing [H2O2]0 in the range of 0-4.0mM, with slight inhibition in 4.0-12.0mM. Faster and earlier ammonia formation was observed at higher [H2O2]0. The presence of Br(-) slowed down the degradation and mineralization of both compounds while a negligible effect on the degradation was observed in the presence of Cl(-). Our study provides important technical and fundamental results on the HO based degradation and mineralization of SO3H and N-containing UV absorber compounds.

  1. UV Radiation and Sun Exposure | RadTown USA | US EPA

    EPA Pesticide Factsheets

    2016-05-18

    Tanning is your body's attempt to protect itself from being damaged by ultraviolet radiation. Too much ultraviolet radiation (UV) from sunlight is dangerous. Nearly half of UV radiation is received between 10 a.m. and 4 p.m., when the sun's rays are the strongest. Even on a cloudy day, you can be sunburned by UV radiation.

  2. Venus upper clouds and the UV-absorber from MESSENGER/MASCS observations

    NASA Astrophysics Data System (ADS)

    Perez-Hoyos, Santiago; Sanchez-Lavega, Agustin; Garcia Munoz, Antonio; Irwin, Patrick; Peralta, Javier; Holsclaw, Greg; McClintock, William

    2014-11-01

    In June 2007, the MESSENGER spacecraft performed its second Venus flyby on its route to Mercury. The spacecraft’s MASCS instrument (VIRS channel) acquired numerous spectra of the sunlight reflected from the equatorial region of the planet at wavelengths from the near ultraviolet (300nm) to the near infrared (1450 nm). In this work we present an analysis of the data and their spectral and spatial variability following the mission footprint on the Venus disk. In order to reproduce the observed reflectivity and obtain information on the upper clouds and the unknown UV absorber, we use the NEMESIS retrieval code, including SO2 , CO2 and H2O absorption together with absorption and scattering by mode-1, -2 and -3 cloud particles. This spectral range provides sensitivity to the uppermost cloud levels, above 60 km. Vertical profiles of the mode-1 and mode-2 particles have been retrieved along the equatorial region of Venus, with average retrieved sounding levels of 70 +/- 2 km at 1 micron, in good agreement with previous investigations. This spectral range is also very interesting because of the existence of a mysterious absorber in the blue and UV side of the reflected spectra, whose origin remains as one of the key questions about the Venus atmosphere. Here we report a comparison with some of the previously proposed absorbers: (1) sulfur-related compounds (amorphous and liquid sulfur, S3, S4, S8, S2O); (2) chlorine related species (Cl2, FeCl3); (3) organics (C3O2, Croconic acid). Preliminary results show that the first group provides better fits to the data, although combinations of the proposed agents might be required in order to produce better results. Acknowledgements: This work was supported by the Spanish MICIIN projects AYA2009- 10701, AYA2012-38897-C02-01, and AYA2012-36666 with FEDER support, PRICIT-S2009/ESP-1496, Grupos Gobierno Vasco IT765-13, and UPV/EHU UFI11/55. S.P.-H. acknowledges support from the Jose Castillejo Program funded by Ministerio de Educaci

  3. A DISCUSSION OF THE WHEELER-FEYNMAN ABSORBER THEORY OF RADIATION.

    DTIC Science & Technology

    The Wheeler - Feynman absorber theory of radiation is reviewed. A proof is offered to show that a sum of advanced and retarded effects from the...absorber can provide the origin of radiative reaction. This proof is different from and perhaps simpler than that of Wheeler and Feynman . From arguments

  4. The effect of ozone and aerosols on the surface erythemal UV radiation estimated from OMI measurements

    NASA Astrophysics Data System (ADS)

    Lee, Joonsuk; Choi, Won Jun; Kim, Deok Rae; Kim, Seung-Yeon; Song, Chang-Keun; Hong, Jun Suk; Hong, Youdeog; Lee, Sukjo

    2013-05-01

    Surface erythemal UV radiation is mainly affected by total column ozone, aerosols, clouds, and solar zenith angle. The effect of ozone on the surface UV radiation has been explored many times in the previous studies due to the decrease of ozone layer. In this study, we calculated the effect of aerosols on the surface UV radiation as well as that of ozone using data acquired from Ozone Monitoring Instrument (OMI). First, ozone, aerosol optical depth (AOD), and surface erythemal UVB radiation measured from satellite are compared with those from ground measurements. The results showed that the comparison for ozone was good with r 2 of 0.92. For aerosol, there was difference between satellite measurements and surface measurements due to the insufficient information on aerosol in the retrieval algorithm. The r 2 for surface erythemal UV radiation was high (˜0.94) but satellite measurements showed about 30% larger values than surface measurements on average by not considering the effect of absorbing aerosols in the retrieval process from satellite measurements. Radiative amplification factor (RAF) is used to access the effect of ozone and aerosol quantitatively. RAF for ozone was 0.97˜1.49 with solar zenith angle. To evaluate the effect of aerosol on the surface UV radiation, only clear-sky pixel data were used and solar zenith angle and total column amount of ozone were fixed. Also, RAF for aerosol was assessed according to the single scattering albedo (SSA) of aerosols. The results showed that RAF for aerosol with smaller SSA (< 0.90) was larger than that for with larger SSA (> 0.90). The RAF for aerosol was 0.09˜0.22 for the given conditions which was relatively small compared to that for ozone. However, considering the fact that aerosol optical depth can change largely in time and space while the total column amount of ozone does not change very much, it needs to include the effect of aerosol to predict the variations of surface UV radiation more correctly.

  5. Development of UV-B screening compounds in response to variation in ambient levels of UV-B radiation

    NASA Astrophysics Data System (ADS)

    Sullivan, Joe H.; Xu, Chenping; Gao, Wei; Slusser, James R.

    2005-08-01

    The induction of UV-B screening compounds in response to exposure to UV-B radiation is a commonly reported response and is generally considered to be an adaptive response of plants for protection from UVinduced damage. However, a number of questions remain to be answered including the importance of qualitative and localization differences among species in providing protection, indirect consequences of changes in leaf secondary chemistry on ecological processes and the dose response of metabolite accumulation. In this study we utilized UV monitoring data provided on site by the USDA UV-B Monitoring and Research Program to monitor the changes in UV-screening compounds in soybeans under a range of UV-B levels due to natural variation in ambient UV-B radiation. Soybean cultivars Essex, Clark and Clark-magenta, an isoline of Clark that produces minimal levels of flavonols, were grown beneath shelters covered either with polyester to block most UV-B radiation or teflon which is nearly transparent in the UV range and harvested at regular intervals for pigment and protein analysis. Daily levels of weighted UV-B varied from <1 to >7 kJ m-2. Increases in UV-screening compounds showed a positive dose response to UV-B radiation in all cultivars with Essex showing the steepest dose response. UV-A also induced screening compounds in all species The hydroxycinnimates of the magenta isoline showed a steep dose response to UV-A and a rather constant (non dose specific) but small additional increment in response to UV-B. The Clark isoline, which produced primarily the flavonol quercetin, showed a dose response to UV-B intermediate between that of Clark-magenta and Essex. All three cultivars show similar tolerance to UV-B in field conditions indicating that UV-induced pigment production is adequate to protect them from excessive UV-B damage.

  6. Characterization of the adaptive response of grapevine (cv. Tempranillo) to UV-B radiation under water deficit conditions.

    PubMed

    Martínez-Lüscher, J; Morales, F; Delrot, S; Sánchez-Díaz, M; Gomès, E; Aguirreolea, J; Pascual, I

    2015-03-01

    This work aims to characterize the physiological response of grapevine (Vitis vinifera L.) cv. Tempranillo to UV-B radiation under water deficit conditions. Grapevine fruit-bearing cuttings were exposed to three levels of supplemental biologically effective UV-B radiation (0, 5.98 and 9.66kJm(-2)day(-1)) and two water regimes (well watered and water deficit), in a factorial design, from fruit-set to maturity under glasshouse-controlled conditions. UV-B induced a transient decrease in net photosynthesis (Anet), actual and maximum potential efficiency of photosystem II, particularly on well watered plants. Methanol extractable UV-B absorbing compounds (MEUVAC) concentration and superoxide dismutase activity increased with UV-B. Water deficit effected decrease in Anet and stomatal conductance, and did not change non-photochemical quenching and the de-epoxidation state of xanthophylls, dark respiration and photorespiration being alternative ways to dissipate the excess of energy. Little interactive effects between UV-B and drought were detected on photosynthesis performance, where the impact of UV-B was overshadowed by the effects of water deficit. Grape berry ripening was strongly delayed when UV-B and water deficit were applied in combination. In summary, deficit irrigation did not modify the adaptive response of grapevine to UV-B, through the accumulation of MEUVAC. However, combined treatments caused additive effects on berry ripening.

  7. Ozone and UV254 radiation for municipal wastewater disinfection.

    PubMed

    Blatchley, Ernest R; Weng, Shihchi; Afifi, Mehrnaz Zare; Chiu, Hsiao-Han; Reichlin, Douglas B; Jousset, Stéphane; Erhardt, Richard S

    2012-11-01

    Bench-scale experiments were conducted with municipal wastewater effluent samples to examine the feasibility of combined application of ozone and ultraviolet (UV) radiation for disinfection. Effluent samples displayed rapid initial ozone demand, which promotes ozone transfer but diminishes disinfection efficacy. Ozone doses up to 10 mg/L yielded only trace quantities of residual ozone; despite the fact that initial ozone demand was never exceeded, quantifiable (though variable) inactivation of E. coli was observed, along with modest improvements of UV transmittance. Results from collimated beam experiments demonstrated that compliance with effluent discharge permit limitations could be achieved consistently with a UV254 dose of 12.4 mJ/cm2 at a pre-ozonation dose of 2 to 3 mg/L. In the absence of pre-ozonation, consistent compliance was observed at a UV dose of 16.5 mJ/cm2. No evidence of synergism between ozone and UV254 radiation was found in the measured inactivation responses of E. coli.

  8. Photodegradation of etridiazole by UV radiation during drinking water treatment.

    PubMed

    Liu, Chao; Qiang, Zhimin; Tian, Fang; Zhang, Tao

    2009-07-01

    The photodegradation of etridiazole (ETZ) in water by UV radiation at 254 nm was investigated. Results indicate that the simulated first-order rate constants decreased with the increase of initial ETZ concentration (i.e., 5, 20 and 30 microM), and did not show any pH dependence within the range from 6.0 to 8.0. The quantum yield was 0.46+/-0.02 molE(-1) at pH 7.0. H(2)O(2) was generated at trace levels in the range from 0 to 1.0 microM during photodegradation of ETZ. Direct photodegradation was responsible for the decomposition of ETZ in distilled water by UV radiation. Three organic byproducts were identified: 5-ethoxy-3-dichloromethyl-1,2,4-thiadiazole, 5-ethoxy-1,2,4-thiadiazole-3-carboxylic acid and 5-ethoxy-3-hydroxyl-1,2,4-thiadiazole. About 90% of chloro mass in the initial ETZ was released as Cl(-) at the end of photodegradation. In contrast, the formation of sulfate and nitrate was insignificant. In general, ETZ decayed more quickly in groundwater than in sand-filtered or surface water. It is reasonably deduced that ETZ may not get removed effectively under a typical UV dose of 40 mJcm(-2) at most water treatment plants that employ UV radiation for disinfection.

  9. Interactive effects of UV radiation and water availability on seedlings of six woody Mediterranean species.

    PubMed

    Bernal, Meritxell; Llorens, Laura; Badosa, Jordi; Verdaguer, Dolors

    2013-02-01

    To assess the effects of UV radiation and its interaction with water availability on Mediterranean plants, we performed an experiment with seedlings of six Mediterranean species (three mesophytes vs three xerophytes) grown in a glasshouse from May to October under three UV conditions (without UV, with UVA and with UVA+UVB) and two irrigation levels (watered to saturation and low watered). Morphological, physiological and biochemical measures were taken. Exposure to UVA+UVB increased the overall leaf mass per area (LMA) and the leaf carotenoids/chlorophyll a + b ratio of plants in relation to plants grown without UV or with UVA, respectively. In contrast, we did not find a general effect of UV on the leaf content of phenols or UVB-absorbing compounds of the studied species. Regarding plant growth, UV inhibited the above-ground biomass production of well-watered plants of Pistacia lentiscus. Conversely, under low irrigation, UVA tended to abolish the reduction in growth experienced by P. lentiscus plants growing in a UV-free environment, in accordance with UVA-enhanced apparent electron transport rate (ETR) values under drought in this species. UVA also induced an overall increase in root biomass when plants of the studied species were grown under a low water supply. In conclusion, while plant exposition to UVA favored root growth under water shortage, UVB addition only gave rise to photoprotective responses, such as the increase in LMA or in the leaf carotenoids/chlorophyll a + b ratio of plants. Species-specific responses to UV were not related with the xerophytic or mesophytic character of the studied species.

  10. Human pigmentation genes and their response to solar UV radiation.

    PubMed

    Sturm, R A

    1998-11-09

    Identification and characterisation of the genes involved in melanin pigment formation, together with the study of how their action is influenced by exposure to UV radiation, is providing a molecular understanding of the process of skin photoprotection through tanning. The mechanisms underlying this change in epidermal melanin involve both a transcriptional response of the pigmentation genes and post-translational control of the melanin biosynthetic pathway. UV rays are known to interact with numerous molecules within cells, and among these the photochemical reactions involving lipids and DNA are implicated in modulating melanogenesis. The combination of DNA damage, the formation of diacylglycerol, and the action of the melanocyte stimulating hormone receptor are all likely to be involved in UV-induced tanning.

  11. Penetration of UV Radiation in the Earth's Oceans

    NASA Technical Reports Server (NTRS)

    Mitchell, B. Greg; Lubin, Dan

    2005-01-01

    This project was a collaboration between SIO/UCSD and NASA/GSFC to develop a global estimation of the penetration of UV light into open ocean waters, and into coastal waters. We determined the ocean UV reflectance spectra seen by satellites above the atmosphere by combining existing sophisticated radiative transfer models with in situ UV Visible data sets to improve coupled radiance estimates both underwater and within the atmosphere. Results included improved estimates of surface spectral irradiance, 0.3-1.0 micron, and estimates of photosynthetic inhibition, DNA mutation, and CO production. Data sets developed under this proposal have been made publicly available via submission to the SeaWiFS Bio-Optical Archive and Storage System. Numerous peer-reviewed publications and conference proceedings and abstracts resulted from the work supported by this research award.

  12. UV Radiation in an Urban Canyon in Southeast Queensland

    NASA Astrophysics Data System (ADS)

    McKinley, A. R.; Moore, M. R.; Kimlin, M. G.

    2006-12-01

    Ultraviolet radiation (UV) has the possibility to both harm and to benefit human beings when unprotected exposure occurs. After receiving small amounts of UV our bodies begin to synthesise vitamin D, which is essential for maintaining healthy bones, however excessive UV exposure can result in a variety of damaging outcomes ranging from sunburn to skin cancer and cataracts. For this reason it is very important to understand the different environments in which people encounter UV so as to better prepare the public to make smart and healthy sun exposure decisions. Each day more and more people are moving into large cities around the world and spending their time inside the urban canyon, however UV measurements are generally taken at scientific stations in open areas or on top of tall buildings, meaning that at times the environmental characteristics measured may not accurately represent those found at street-level in these highly urbanized areas. Urban canyons are home to both very tall buildings and tropospheric air pollution, each of which reduces the amount of UV reaching street-level. This study measured the varying difference between UV measurements taken at street-level and at a standard UV monitoring site on top of a building outside of the urban canyon. Investigation was conducted in the central business district (CBD) of Brisbane, Australia, which models the CBDs of large cities around the world in that it boasts a great number of tall buildings, including many skyscrapers. Data was collected under clear sky conditions at five different street-level sites in the CBD (on either side of two streets running perpendicular to one another (four sites) and in a public square) and then compared to that obtained on the same day at the Queensland University of Technology's Australian Sun and Health Research Laboratory (ASHRL), which is located 2.5 kilometres outside Brisbane's CBD. Minimum erythemal dose (MED) data was collected at each location and it was found that

  13. Changes induced by UV radiation during virgin olive oil storage.

    PubMed

    Luna, G; Morales, M T; Aparicio, R

    2006-06-28

    The effects of UV radiation on the chemical and sensory characteristics of virgin olive oils (cv. Arbequina and Picual) were assessed. Even small doses of UV radiation induced oxidation of the virgin olive oil samples. Total phenols and fatty acids contents decreased during the process as well as the intensity of the bitter and fruity sensory attributes, while the intensity of the rancid sensory attribute notably increased. Acetaldehyde, 2-butenal, 2-pentenal, octane, octanal, hexanal, nonanal, and 2-decenal were the volatile compounds most affected, showing an important increase during the irradiation process. Nonanal, hexanal, and pentanal showed high correlation with the rancid sensory attribute (90%, 86%, and 86%, respectively). 2-Decenal and nonanal concentrations allowed us to predict the alteration level of the samples by mean of multiple Ridge regression.

  14. Multifaceted pathways protect human skin from UV radiation.

    PubMed

    Natarajan, Vivek T; Ganju, Parul; Ramkumar, Amrita; Grover, Ritika; Gokhale, Rajesh S

    2014-07-01

    The recurrent interaction of skin with sunlight is an intrinsic constituent of human life, and exhibits both beneficial and detrimental effects. The apparent robust architectural framework of skin conceals remarkable mechanisms that operate at the interface between the surface and environment. In this Review, we discuss three distinct protective mechanisms and response pathways that safeguard skin from deleterious effects of ultraviolet (UV) radiation. The unique stratified epithelial architecture of human skin along with the antioxidant-response pathways constitutes the important defense mechanisms against UV radiation. The intricate pigmentary system and its intersection with the immune-system cytokine axis delicately balance tissue homeostasis. We discuss the relationship among these networks in the context of an unusual depigmenting disorder, vitiligo. The elaborate tunable mechanisms, elegant multilayered architecture and evolutionary selection pressures involved in skin and sunlight interaction makes this a compelling model to understand biological complexity.

  15. uv radiation curable paints. Topical report on material identification

    SciTech Connect

    Not Available

    1981-01-13

    The program for the development of ultraviolet radiation curing of paints for application on preformed structures is discussed. The starting point of this program was the matching of resins, photoinitiators, and pigments which will result in coatings that can be cured by ultraviolet radiation. The initial work was the identification of reactive diluents and base resins that are sensitive to the uv curing process. The reactive monomeric diluents tested included multifunctional acrylates, monofunctional acrylates, and non-acrylic unsaturated esters. The end point will be the application of these coatings to prefabricated metal structures to demonstrate the viability of this technique in producing commercially acceptable painted products. These uv curable paints should produce films that are hard, adherent, and opaque at a nominal thickness of one mil (0.001 inch).

  16. Worldwide forecast of the biologically effective UV radiation: UV index and daily dose

    NASA Astrophysics Data System (ADS)

    Schmalwieser, Alois W.; Schauberger, Guenther; Janouch, Michal; Nunez, Manuel; Koskela, Tapani; Berger, Daniel; Karamanian, Gabriel; Prosek, Pavel; Laska, Kamil

    2002-01-01

    Since October 1995 a global daily forecast of the UV index and the daily dose, as the irradiance of the biologically effective ultraviolet radiation, for clear sky is calculated. The Austrian model as well as the input parameters are described. By connecting the daily dose with the sensitivity of the photobiological skin types, a recommendation is given to select an appropriate sun protection factor of a sunscreen to avoid overexposure of the skin. The validation of the Austrian forecast model is done by long-term measurements of the biologically effective ultraviolet radiation. Measurements were taken from 6 different sites at 4 continents (Antarctica, Australia, America and Europe) covering the latitudinal range from 67 degree(s)N to 60 degree(s)S. By using the underestimation as criteria in the sense of radiation protection, the Austrian model shows less than 12% underestimation over the whole period for the UV index and less than 10% for the daily dose. The evaluation shows further that the forecast of the daily dose is much more influenced by the attenuation due to clouds than the UV index.

  17. Quantitative characterization of the colloidal stability of metallic nanoparticles using UV-vis absorbance spectroscopy.

    PubMed

    Ray, Tyler R; Lettiere, Bethany; de Rutte, Joseph; Pennathur, Sumita

    2015-03-31

    Plasmonic nanoparticles are used in a wide variety of applications over a broad array of fields including medicine, energy, and environmental chemistry. The continued successful development of this material class requires the accurate characterization of nanoparticle stability for a variety of solution-based conditions. Although many characterization methods exists, there is an absence of a unified, quantitative means for assessing the colloidal stability of plasmonic nanoparticles. We present the particle instability parameter (PIP) as a robust, quantitative, and generalizable characterization technique based on UV-vis absorbance spectroscopy to characterize colloidal instability. We validate PIP performance with both traditional and alternative characterization methods by measuring gold nanorod instability in response to different salt (NaCl) concentrations. We further measure gold nanorod stability as a function of solution pH, salt, and buffer (type and concentration), nanoparticle concentration, and concentration of free surfactant. Finally, these results are contextualized within the literature on gold nanorod stability to establish a standardized methodology for colloidal instability assessment.

  18. Identification and quantitation of near-UV absorbing compounds (S-320) in a hermatypic scleractinian

    NASA Astrophysics Data System (ADS)

    Dunlap, W. C.; Chalker, B. E.

    1986-12-01

    Reef-building corals from shallow waters are known to contain a suite of water soluble compounds (collectively named S-320) which strongly absorb near-UV light. Compounds of this type have now been isolated from the Pacific staghor coral Acropora formosa and identified as a series of mycosporine-like amino acids including mycosporine-Gly (λmax=310nm), palythine (λmax=320nm) and palythinol (λmax=332nm). These compounds were separated and quantified by high-performance liquid chromatography. Serial extraction efficiencies were calculated using a simple formula which is derived herein. For 12-cm long coral branches collected from a depth of 3 m at Rib Reef, Great Barrier Reef, Australia (146° 53'E, 18° 29'S) the average concentrations of mycosporine-Gly, palythine, and palythinol were 37.8, 56.4 and 0.895 nmol per mg coral protein, respectively. The coral samples can be stored at-20°C for at least 144 days without degradation of the mycosporinelike amino acids.

  19. Self-assembly of organics promoted by UV radiation

    NASA Astrophysics Data System (ADS)

    Heredia-Barbero, Alejandro; Colin-Garcia, Maria; Negron-Mendoza, Alicia; Ramos-Bernal, Sergio; Ortega-Gutierrez, Fernando

    Life on Earth originated prior to 3500 million years ago as an event that was preceded by ca. 1000 million years of chemical evolution. During this period, geochemical reactions probably took place between small organic molecules and solid surfaces in the presence of water. Chemical evolution involved the formation, but also the complexation of organic molecules in the prebiotic milieu. On primitive Earth, the physicochemical processes involving the participation of organic molecules and inorganic surfacesmight have been a factor to increase chemical complexity (Negrón et al. 2004, Hazen, 2006). Certain minerals, such as clays may have actively contributed to this phenomenon promoting the emergence of life. In this research, we investigated the assembly of organics anchored on different surfaces promoted by UV radiation. Our current studies deal with the crystal growth of urea, glycine and aspartic acid. The results point out that crystal formation is encouraged by the action of UV radiation. This result suggests that the strong UV radiation present on primitive Earth could have been a factor to promote the formation of more complex organic molecules and eventually life.

  20. Photosynthetically active radiation (PAR) x ultraviolet radiation (UV) interact to initiate solar injury in apple

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sunburn or solar injury (SI) in apple is associated with high temperature, high visible light and ultraviolet radiation (UV). Fruit surface temperature (FST) thresholds for SI related disorders have been developed but there are no thresholds established for solar radiation. The objectives of the s...

  1. New procedure for direct measurements of absorbance of thin films of ultra-high absorbance UV blocks

    NASA Astrophysics Data System (ADS)

    McMillan, Norman D.; Solsvik, A.; Murphy, L.; Stevenson, A.; O'Neill, M.; Moore, J.

    2005-06-01

    A novel method for the measurement of ultra-high absorbance liquids has been devised and details are given of a new ultra absorbance instrument developed specifically for these thin liquid film measurements. The instrument specifically constructed for monitoring and measuring sunscreen products has been tested using locally produced sunscreen products. This new approach has been made possible by the development of very accurate liquid micro-dispensers and details are given of the novel procedure to carry out these measurements. Detailed description of the apparatus construction is given with photographs of the apparatus. The work described is largely based on research and quality control measurements of Parasol suncare products. Results on the reproducibility of measurements taken with the UAI for a commercial range of factor 20 sunscreen liquid are given and these have been used to validate the performance of the instrument. It is believed that the absorbance measurements described here are perhaps the largest ever reported. In addition, the photostability of this product has been monitored in aging tests. Finally, some studies have been done on two other commercially available factor 20 products that show that these are significantly worse with regards to both protection from ageing and burn.

  2. Simultaneous UV and X-ray Spectroscopy of the Seyfert 1 Galaxy NGC 5548. I: Physical Conditions in the UV Absorbers

    NASA Technical Reports Server (NTRS)

    Crenshaw, D. M.; Kraemer, S. B.; Gabel, J. R.; Kaastra, J. S.; Steenbrugge, K. C.; Brinkman, A. C.; Dunn, J. P.; George, I. M.; Liedahl, D. A.; Paerels, F. B. S.

    2003-01-01

    We present new UV spectra of the nucleus of the Seyfert 1 galaxy NGC 5548, which we obtained with the Space Telescope Imaging Spectrograph at high spectral resolution, in conjunction with simultaneous Chandra X-ray Observatory spectra. Taking advantage of the low UV continuum and broad emission-line fluxes, we have determined that the deepest UV absorption component covers at least a portion of the inner, high-ionization narrow-line region (NLR). We find nonunity covering factors in the cores of several kinematic components, which increase the column density measurements of N V and C IV by factors of 1.2 to 1.9 over the full-covering case; however, the revised columns have only a minor effect on the parameters derived from our photoionization models. For the first time, we have simultaneous N V and C IV columns for component 1 (at -1040 km/s), and find that this component cannot be an X-ray warm absorber, contrary to our previous claim based on nonsimultaneous observations. We find that models of the absorbers based on solar abundances severely overpredict the O VI columns previously obtained with the Far Ultraviolet Spectrograph, and present arguments that this is not likely due to variability. However, models that include either enhanced nitrogen (twice solar) or dust, with strong depletion of carbon in either case, are successful in matching all of the observed ionic columns. These models result in substantially lower ionization parameters and total column densities compared to dust-free solar-abundance models, and produce little O VII or O VIII, indicating that none of the UV absorbers are X-ray warm absorbers.

  3. Calculations in the Wheeler-Feynman Absorber Theory of Radiation.

    NASA Astrophysics Data System (ADS)

    Balaji, Kalathur Sreenivasan

    One dimensional computer aided calculations were done to find the self-consistent solutions for various absorber configurations in the context of the Wheeler-Feynman Absorber theory, wherein every accelerating charge is assumed to produce a time symmetric combination of advanced and retarded fields. These calculations picked out the so called "outerface" solution for incomplete absorbers and showed that advanced as well as retarded signals interact with matter in the same manner as in the full retarded theory. Based on these calculations the Partridge experiment and the Schmidt-Newman experiment were ruled out as tests of the Absorber theory. An experiment designed to produce and detect advanced effects is proposed, based on more one-dimensional calculations.

  4. Ecological responses to UV radiation: interactions between the biological effects of UV on plants and on associated organisms.

    PubMed

    Paul, Nigel D; Moore, Jason P; McPherson, Martin; Lambourne, Cathryn; Croft, Patricia; Heaton, Joanna C; Wargent, Jason J

    2012-08-01

    Solar ultraviolet (UV)-B radiation (280-315 nm) has a wide range of effects on terrestrial ecosystems, yet our understanding of how UV-B influences the complex interactions of plants with pest, pathogen and related microorganisms remains limited. Here, we report the results of a series of experiments in Lactuca sativa which aimed to characterize not only key plant responses to UV radiation in a field environment but also consequential effects for plant interactions with a sap-feeding insect, two model plant pathogens and phylloplane microorganism populations. Three spectrally modifying filters with contrasting UV transmissions were used to filter ambient sunlight, and when compared with our UV-inclusive filter, L. sativa plants grown in a zero UV-B environment showed significantly increased shoot fresh weight, reduced foliar pigment concentrations and suppressed population growth of green peach aphid (Myzus persicae). Plants grown under a filter which allowed partial transmission of UV-A radiation and negligible UV-B transmission showed increased density of leaf surface phylloplane microbes compared with the UV-inclusive treatment. Effects of UV treatment on the severity of two plant pathogens, Bremia lactucae and Botrytis cinerea, were complex as both the UV-inclusive and zero UV-B filters reduced the severity of pathogen persistence. These results are discussed with reference to known spectral responses of plants, insects and microorganisms, and contrasted with established fundamental responses of plants and other organisms to solar UV radiation, with particular emphasis on the need for future integration between different experimental approaches when investigating the effects of solar UV radiation.

  5. Ozone depletion and climate change: impacts on UV radiation.

    PubMed

    McKenzie, R L; Aucamp, P J; Bais, A F; Björn, L O; Ilyas, M; Madronich, S

    2011-02-01

    The Montreal Protocol is working, but it will take several decades for ozone to return to 1980 levels. The atmospheric concentrations of ozone depleting substances are decreasing, and ozone column amounts are no longer decreasing. Mid-latitude ozone is expected to return to 1980 levels before mid-century, slightly earlier than predicted previously. However, the recovery rate will be slower at high latitudes. Springtime ozone depletion is expected to continue to occur at polar latitudes, especially in Antarctica, in the next few decades. Because of the success of the Protocol, increases in UV-B radiation have been small outside regions affected by the Antarctic ozone hole, and have been difficult to detect. There is a large variability in UV-B radiation due to factors other than ozone, such as clouds and aerosols. There are few long-term measurements available to confirm the increases that would have occurred as a result of ozone depletion. At mid-latitudes UV-B irradiances are currently only slightly greater than in 1980 (increases less than ~5%), but increases have been substantial at high and polar latitudes where ozone depletion has been larger. Without the Montreal Protocol, peak values of sunburning UV radiation could have been tripled by 2065 at mid-northern latitudes. This would have had serious consequences for the environment and for human health. There are strong interactions between ozone depletion and changes in climate induced by increasing greenhouse gases (GHGs). Ozone depletion affects climate, and climate change affects ozone. The successful implementation of the Montreal Protocol has had a marked effect on climate change. The calculated reduction in radiative forcing due to the phase-out of chlorofluorocarbons (CFCs) far exceeds that from the measures taken under the Kyoto protocol for the reduction of GHGs. Thus the phase-out of CFCs is currently tending to counteract the increases in surface temperature due to increased GHGs. The amount of

  6. Solar UV Radiation and the Origin of Life on Earth

    NASA Technical Reports Server (NTRS)

    Heap, Sara R.; Hubeny, Ivan; Lanz, Thierry; Gaidos, Eric; Kasting, James; Fisher, Richard R. (Technical Monitor)

    2000-01-01

    We have started a comprehensive, interdisciplinary study of the influence of solar ultraviolet radiation on the atmosphere of of the early Earth. We plan to model the chemistry of the Earth atmosphere during its evolution, using observed UV flux distributions of early solar analogs as boundary conditions in photochemical models of the Earth's atmosphere. The study has four distinct but interlinked parts: (1) Establishing the radiation of the early Sun; (2) Determining the photochemistry of the early Earth's atmosphere; (3) Estimating the rates of H2 loss from the atmosphere; and (4) Ascertaining how sensitive is the photochemistry to the metallicity of the Sun. We are currently using STIS and EUVE to obtain high-quality far-UV and extreme-UV observations of three early-solar analogs. We will perform a detailed non-LTE study of each stars, and construct theoretical model photosphere, and an empirical model chromospheres, which can be used to extrapolate the continuum to the Lyman continuum region. Given a realistic flux distribution of the early Sun, we will perform photochemical modeling of weakly reducing primitive atmospheres to determine the lifetime and photochemistry of CH4. In particular, we will make estimates of the amount of CH4 present in the prebiotic atmosphere, and estimate the atmospheric CH4 concentration during the Late Archean (2.5-3.0 b.y. ago) and determine whether it would have been sufficiently abundant to help offset reduced solar luminosity at that time. Having obtained a photochemical model, we will solve for the concentrations of greenhouse gasses and important pre-biotic molecules, and perform a detailed radiative transfer calculations to compute the UV flux reaching the surface.

  7. Preparation of O/I1-type Emulsions and S/I1-type Dispersions Encapsulating UV-Absorbing Agents.

    PubMed

    Aramaki, Kenji; Kimura, Minami; Masuda, Kazuki

    2015-01-01

    Oil-in-cubic phase (O/I1) emulsions encapsulating the cosmetic UV absorbing agents 2-ethylhexyl 4-methoxycinnamate (EHMC), 2-ethylhexyl 2-cyano-3,3-diphenylacrylate (octocrylene, OCR) and 1-(4-tertbutylphenyl)-3-(4-methoxyphenyl)-1,3-propanedione (Avobenzone, TBMP) were prepared by vortex mixing accompanied by a heating-cooling process. A ternary phase diagram in a water/C12EO25/EHMC system at 25°C was constructed and the two-phase equilibrium of an oil phase and an I1 phase, which is necessary to prepare the O/I1-type emulsions, was confirmed. Also, the melting of the I1 phase into a fluid micellar solution phase was confirmed, allowing emulsification by a heating-cooling process. The O/I1-type emulsions were formulated in the ternary system as well as a quaternary system. The four-component system contained an additional cosolvent, isopropyl myristate (IPM). The use of the cosolvent allows the use of reduced amounts of EHMC, which is desirable because EHMC can cause temporary skin irritation. Formulation of the O/I1-type emulsions with other UV absorbing agents (OCR and TBMP) was also possible using the same emulsification method. When IPM was changed to tripalmitin, which has a melting point greater than room temperature, a solid-oil dispersion in I1 phase was formed. We have termed this a "solidin-cubic phase (S/I1) type dispersion". These novel emulsions have not been reported previously. The UV absorbability of the O/I1-type emulsions and S/I1-type dispersions that encapsulate the UV absorbing agents was confirmed by measurement of UV absorption spectra.

  8. Differential sensitivity of spinach and amaranthus to enhanced UV-B at varying soil nutrient levels: association with gas exchange, UV-B-absorbing compounds and membrane damage.

    PubMed

    Singh, Suruchi; Agrawal, Madhoolika; Agrawal, S B

    2013-07-01

    The metabolic reasons associated with differential sensitivity of C3 and C4 plant species to enhanced UV-B under varying soil nutrient levels are not well understood. In the present study, spinach (Spinacia oleracea L. var All Green), a C3 and amaranthus (Amaranthus tricolor L. var Pusa Badi Chaulai), a C4 plant were subjected to enhanced UV-B (280-315 nm; 7.2 kJ m(-2) day(-1)) over ambient under varying soil nutrient levels. The nutrient amendments were recommended Nitrogen (N), Phosphorus (P), Potassium (K), 1.5× recommended NPK, 1.5× recommended N and 1.5× recommended K. Enhanced UV-B negatively affected both the species at all nutrient levels, but the reductions varied with nutrient concentration and combinations. Reductions in photosynthetic rate, stomatal conductance and chlorophyll content were significantly more in spinach compared with amaranthus. The reduction in photosynthetic rate was maximum at 1.5× recommended K and minimum in 1.5× NPK amended plants. The oxidative damage to membranes measured in terms of malondialdehyde content was significantly higher in spinach compared with amaranthus. Enhanced UV-B reduced SOD activity in both the plants except in amaranthus at 1.5× recommended K. POX activity increased under enhanced UV-B at all nutrient levels in amaranthus, but only at 1.5× K in spinach. Amaranthus had significantly higher UV-B-absorbing compounds than spinach even under UV-B stress. Lowest reductions in yield and total biomass under enhanced UV-B compared with ambient were observed in amaranthus grown at 1.5× recommended NPK. Enhanced UV-B did not significantly change the nitrogen use efficiency in amaranthus at all NPK levels, but reduced in spinach except at 1.5× K. These findings suggest that the differential sensitivity of the test species under enhanced UV-B at varying nutrient levels is due to varying antioxidative and UV-B screening capacity, and their ability to utilize nutrients. Amaranthus tolerated enhanced UV-B stress

  9. Experimental study of acoustic radiation force of an ultrasound beam on absorbing and scattering objects

    NASA Astrophysics Data System (ADS)

    Nikolaeva, Anastasiia V.; Kryzhanovsky, Maxim A.; Tsysar, Sergey A.; Kreider, Wayne; Sapozhnikov, Oleg A.

    2015-10-01

    Acoustic radiation force is a nonlinear acoustic effect caused by the transfer of wave momentum to absorbing or scattering objects. This phenomenon is exploited in modern ultrasound metrology for measurement of the acoustic power radiated by a source and is used for both therapeutic and diagnostic sources in medical applications. To calculate radiation force an acoustic hologram can be used in conjunction with analytical expressions based on the angular spectrum of the measured field. The results of an experimental investigation of radiation forces in two different cases are presented in this paper. In one case, the radiation force of an obliquely incident ultrasound beam on a large absorber (which completely absorbs the beam) is considered. The second case concerns measurement of the radiation force on a spherical target that is small compared to the beam diameter.

  10. Experimental Study of Acoustic Radiation Force of an Ultrasound Beam on Absorbing and Scattering Objects

    PubMed Central

    Nikolaeva, Anastasiia V.; Kryzhanovsky, Maxim A.; Tsysar, Sergey A.; Kreider, Wayne; Sapozhnikov, Oleg A.

    2016-01-01

    Acoustic radiation force is a nonlinear acoustic effect caused by the transfer of wave momentum to absorbing or scattering objects. This phenomenon is exploited in modern ultrasound metrology for measurement of the acoustic power radiated by a source and is used for both therapeutic and diagnostic sources in medical applications. To calculate radiation force an acoustic hologram can be used in conjunction with analytical expressions based on the angular spectrum of the measured field. The results of an experimental investigation of radiation forces in two different cases are presented in this paper. In one case, the radiation force of an obliquely incident ultrasound beam on a large absorber (which completely absorbs the beam) is considered. The second case concerns measurement of the radiation force on a spherical target that is small compared to the beam diameter. PMID:27147775

  11. Experimental study of acoustic radiation force of an ultrasound beam on absorbing and scattering objects

    SciTech Connect

    Nikolaeva, Anastasiia V. Kryzhanovsky, Maxim A.; Tsysar, Sergey A.; Kreider, Wayne; Sapozhnikov, Oleg A.

    2015-10-28

    Acoustic radiation force is a nonlinear acoustic effect caused by the transfer of wave momentum to absorbing or scattering objects. This phenomenon is exploited in modern ultrasound metrology for measurement of the acoustic power radiated by a source and is used for both therapeutic and diagnostic sources in medical applications. To calculate radiation force an acoustic hologram can be used in conjunction with analytical expressions based on the angular spectrum of the measured field. The results of an experimental investigation of radiation forces in two different cases are presented in this paper. In one case, the radiation force of an obliquely incident ultrasound beam on a large absorber (which completely absorbs the beam) is considered. The second case concerns measurement of the radiation force on a spherical target that is small compared to the beam diameter.

  12. Fate of Earth Microbes on Mars -- UV Radiation Effects

    NASA Technical Reports Server (NTRS)

    Cockell, Charles

    2000-01-01

    A radiative transfer model is used to quantitatively investigate aspects of the martian ultraviolet radiation environment. Biological action spectra for DNA inactivation are used to estimate biologically effective irradiances for the martian surface under cloudless skies. Although the present-day martian UV flux is similar to early earth and thus may not be a limitation to life in the evolutionary context, it is a constraint to an unadapted biota and will rapidly kill spacecraft-borne microbes not covered by a martian dust layer. Here calculations for loss of microbial viability on the Pathfinder and Polar lander spacecraft are presented and the effects of martian dust on loss of viability are discussed. Details of the radiative transfer model are presented.

  13. Fate of Earth Microbes on Mars: UV Radiation Effects

    NASA Technical Reports Server (NTRS)

    Cockell, Charles

    2000-01-01

    A radiative transfer model is used to quantitatively investigate aspects of the martian ultraviolet radiation environment. Biological action spectra for DNA inactivation are used to estimate biologically effective irradiances for the martian surface under cloudless skies. Although the present-day martian UV flux is similar to early earth and thus may not be a limitation to life in the evolutionary context, it is a constraint to an unadapted biota and will rapidly kill spacecraft-borne microbes not covered by a martian dust layer. Here calculations for loss of microbial viability on the Pathfinder and Polar lander spacecraft are presented and the effects of martian dust on loss of viability are discussed. Details of the radiative transfer model are presented.

  14. Forecasting of UV-Vis absorbance time series using artificial neural networks combined with principal component analysis.

    PubMed

    Plazas-Nossa, Leonardo; Hofer, Thomas; Gruber, Günter; Torres, Andres

    2017-02-01

    This work proposes a methodology for the forecasting of online water quality data provided by UV-Vis spectrometry. Therefore, a combination of principal component analysis (PCA) to reduce the dimensionality of a data set and artificial neural networks (ANNs) for forecasting purposes was used. The results obtained were compared with those obtained by using discrete Fourier transform (DFT). The proposed methodology was applied to four absorbance time series data sets composed by a total number of 5705 UV-Vis spectra. Absolute percentage errors obtained by applying the proposed PCA/ANN methodology vary between 10% and 13% for all four study sites. In general terms, the results obtained were hardly generalizable, as they appeared to be highly dependent on specific dynamics of the water system; however, some trends can be outlined. PCA/ANN methodology gives better results than PCA/DFT forecasting procedure by using a specific spectra range for the following conditions: (i) for Salitre wastewater treatment plant (WWTP) (first hour) and Graz West R05 (first 18 min), from the last part of UV range to all visible range; (ii) for Gibraltar pumping station (first 6 min) for all UV-Vis absorbance spectra; and (iii) for San Fernando WWTP (first 24 min) for all of UV range to middle part of visible range.

  15. Protosteller Disks Under the Influence of Winds and UV Radiation

    NASA Technical Reports Server (NTRS)

    Yorke, H. W.

    2003-01-01

    Star formation and the creation of protostellar disks generally occur in a crowded environment. Nearby young stars and protostars can influence the disks of their closets neighbors by a combination of outflows and hard radiation. The central stars themselves can have a stellar wind and may produce sufficient UV and X-ray to ultimately destroy their surrounding disks. Here we describe the results of numerical simulations of the influence that an external UV source and a central star's wind can have on its circumstellar disk. The numerical method (axial symmetry assumed) is described elsewhere. We find that protostellar disks will be destroyed on a relatively short time scale ( 10(sup 5)yr) unless they are well shielded from O-stars. Initially isotropic T-Tauri winds do not significantly influence their disks, but instead are focused toward the rotation axis by the disk wind from photoevaporation.

  16. Observations of the diffuse near-UV radiation field

    NASA Technical Reports Server (NTRS)

    Murthy, J.; Henry, R. C.; Feldman, P. D.; Tennyson, P. D.

    1990-01-01

    The diffuse radiation field from 1650-3100 A has been observed by spectrometer aboard the Space Shuttle, and the contributions of the zodiacal light an the diffuse cosmic background to the signal have been derived. Colors ranging from 0.65 to 1.2 are found for the zodiacal light with an almost linear increase in the color with ecliptic latitude. This rise in color is due to UV brightness remaining almost constant while the visible brightnesses drop by almost a factor of two. This is interpreted as evidence that the grains responsible for the UV scattering have much more uniform distribution with distance from the ecliptic plane than do those grains responsible for the visible scattering. Intensities for the cosmic diffuse background ranging from 300 units to 900 units are found which are not consistent with either a correlation with N(H I) or with spatial isotropy.

  17. Skyglow effects in UV and visible spectra: Radiative fluxes

    NASA Astrophysics Data System (ADS)

    Kocifaj, Miroslav; Solano Lamphar, Hector Antonio

    2013-09-01

    Several studies have tried to understand the mechanisms and effects of radiative transfer under different night-sky conditions. However, most of these studies are limited to the various effects of visible spectra. Nevertheless, the invisible parts of the electromagnetic spectrum can pose a more profound threat to nature. One visible threat is from what is popularly termed skyglow. Such skyglow is caused by injudiciously situated or designed artificial night lighting systems which degrade desired sky viewing. Therefore, since lamp emissions are not limited to visible electromagnetic spectra, it is necessary to consider the complete spectrum of such lamps in order to understand the physical behaviour of diffuse radiation at terrain level. In this paper, the downward diffuse radiative flux is computed in a two-stream approximation and obtained ultraviolet spectral radiative fluxes are inter-related with luminous fluxes. Such a method then permits an estimate of ultraviolet radiation if the traditionally measured illuminance on a horizontal plane is available. The utility of such a comparison of two spectral bands is shown, using the different lamp types employed in street lighting. The data demonstrate that it is insufficient to specify lamp type and its visible flux production independently of each other. Also the UV emissions have to be treated by modellers and environmental scientists because some light sources can be fairly important pollutants in the near ultraviolet. Such light sources can affect both the living organisms and ambient environment.

  18. The influence of UV radiation on protistan evolution

    NASA Technical Reports Server (NTRS)

    Rothschild, L. J.

    1999-01-01

    Ultraviolet radiation has provided an evolutionary challenge to life on Earth. Recent increases in surficial ultraviolet B fluxes have focused attention on the role of UV radiation in protistan ecology, cancer, and DNA damage. Exploiting this new wealth of data, I examine the possibility that ultraviolet radiation may have played a significant role in the evolution of the first eukaryotes, that is, protists. Protists probably arose well before the formation of a significant ozone shield, and thus were probably subjected to substantial ultraviolet A, ultraviolet B, and ultraviolet C fluxes early in their evolution. Evolution consists of the generation of heritable variations and the subsequent selection of these variants. Ultraviolet radiation has played a role both as a mutagen and as a selective agent. In its role as a mutagen, it may have been crucial in the origin of sex and as a driver of molecular evolution. As a selective agent, its influence has been broad. Discussed in this paper are the influence of ultraviolet radiation on biogeography, photosynthesis, and desiccation resistance.

  19. Radiative cooling of solar absorbers using a visibly transparent photonic crystal thermal blackbody

    PubMed Central

    Zhu, Linxiao; Raman, Aaswath P.; Fan, Shanhui

    2015-01-01

    A solar absorber, under the sun, is heated up by sunlight. In many applications, including solar cells and outdoor structures, the absorption of sunlight is intrinsic for either operational or aesthetic considerations, but the resulting heating is undesirable. Because a solar absorber by necessity faces the sky, it also naturally has radiative access to the coldness of the universe. Therefore, in these applications it would be very attractive to directly use the sky as a heat sink while preserving solar absorption properties. Here we experimentally demonstrate a visibly transparent thermal blackbody, based on a silica photonic crystal. When placed on a silicon absorber under sunlight, such a blackbody preserves or even slightly enhances sunlight absorption, but reduces the temperature of the underlying silicon absorber by as much as 13 °C due to radiative cooling. Our work shows that the concept of radiative cooling can be used in combination with the utilization of sunlight, enabling new technological capabilities. PMID:26392542

  20. Radiative cooling of solar absorbers using a visibly transparent photonic crystal thermal blackbody.

    PubMed

    Zhu, Linxiao; Raman, Aaswath P; Fan, Shanhui

    2015-10-06

    A solar absorber, under the sun, is heated up by sunlight. In many applications, including solar cells and outdoor structures, the absorption of sunlight is intrinsic for either operational or aesthetic considerations, but the resulting heating is undesirable. Because a solar absorber by necessity faces the sky, it also naturally has radiative access to the coldness of the universe. Therefore, in these applications it would be very attractive to directly use the sky as a heat sink while preserving solar absorption properties. Here we experimentally demonstrate a visibly transparent thermal blackbody, based on a silica photonic crystal. When placed on a silicon absorber under sunlight, such a blackbody preserves or even slightly enhances sunlight absorption, but reduces the temperature of the underlying silicon absorber by as much as 13 °C due to radiative cooling. Our work shows that the concept of radiative cooling can be used in combination with the utilization of sunlight, enabling new technological capabilities.

  1. Solar UV Radiation and the Origin of Life on Earth

    NASA Technical Reports Server (NTRS)

    Heap, S. R.; Gaidos, E.; Hubeny, I.; Lanz, T. M.; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    We have embarked on a program aimed at understanding the atmosphere of the early Earth, because of its importance as a greenhouse, radiation shield, and energy source for life. Here, we give a progress report on the first phase of this program: to establish the UV radiation from the early Sun. We are presently obtaining ultraviolet spectra (STIS, FUSE, EUVE) of carefully selected nearby, young solar-type stars, which act as surrogates for the early Sun. We are currently making detailed non-LTE analyses of the spectra and constructing models of their photospheres + chromospheres. once validated, these models will allow us to extrapolate our theoretical spectra to unobserved spectral regions, and to proceed to the next step: to develop photochemical models of the pre-biotic and Archean atmosphere of the Earth.

  2. Solar UV Radiation and the Origin of Life On Earth

    NASA Technical Reports Server (NTRS)

    Heap, S. R.; Lanz, T.; Hubeny, I.; Gaidos, E.; Oegerle, William R. (Technical Monitor)

    2002-01-01

    We have embarked on a program aimed at understanding the atmosphere of the early Earth, because of its importance as a greenhouse, radiation shield and energy source for life. Here, we give a progress report on the first phase of this program to establish the UV radiation from the early Sun. We have obtained ultraviolet spectra (STIS, FUSE, EUVE) of carefully selected nearby, young solar-type stars, which act as surrogates for the early Sun We are making detailed non-LTE analyses of the spectra and constructing models of their photospheres + chromospheres. Once validated, these models will allow us to extrapolate our theoretical spectra to other metallicities and to unobserved spectral regions.

  3. Effect of Aerosols on Surface Radiation and Air Quality in the Central American Region Estimated Using Satellite UV Instruments

    NASA Astrophysics Data System (ADS)

    Bhartia, P. K.; Torres, O.; Krotkov, N. A.

    2007-05-01

    Solar radiation reaching the Earth's surface is reduced by both aerosol scattering and aerosol absorption. Over many parts of the world the latter effect can be as large or larger than the former effect, and small changes in the aerosol single scattering albedo can either cancel the former effect or enhance it. In addition, absorbing aerosols embedded in clouds can greatly reduce the amount of radiation reaching the surface by multiple scattering. Though the potential climatic effects of absorbing aerosols have received considerable attention lately, their effect on surface UV, photosynthesis, and photochemistry can be equally important for our environment and may affect human health and agricultural productivity. Absorption of all aerosols commonly found in the Earth's atmosphere becomes larger in the UV and blue wavelengths and has a relatively strong wavelength dependence. This is particularly true of mineral dust and organic aerosols. However, these effects have been very difficult to estimate on a global basis since the satellite instruments that operate in the visible are primarily sensitive to aerosol scattering. A notable exception is the UV Aerosol Index (AI), first produced using NASA's Nimbus-7 TOMS data. AI provides a direct measure of the effect of aerosol absorption on the backscattered UV radiation in both clear and cloudy conditions, as well as over snow/ice. Although many types of aerosols produce a distinct color cast in the visible images, and aerosols absorption over clouds and snow/ice could, in principle be detected from their color, so far this technique has worked well only in the UV. In this talk we will discuss what we have learned from the long-term record of AI produced from TOMS and Aura/OMI about the possible role of aerosols on surface radiation and air quality in the Central American region.

  4. Contribution to the ultraviolet metagalactic background from radiative recombination in intervening absorbers

    NASA Astrophysics Data System (ADS)

    Liu, J. M.

    1997-05-01

    Recently, Haardt & Madau (HM) showed that QSO absorption-line systems are not only sinks of the ultraviolet metagalactic background (UMB), but also significant sources of the UMB due to recombination radiation within photoionized absorbers. We demonstrate that the contribution to the UMB from H I and He II recombination radiation may be less than Haardt & Madau's by a factor of about 0.4 if intervening absorbers are modeled as a slab illuminated isotropically on two sides and the recombination radiation is assumed to be isotropic. This is the case which most closely approximates QSOs absorption-line systems.

  5. UV radiation field inside dense clouds - Its possible existence and chemical implications

    NASA Technical Reports Server (NTRS)

    Prasad, S. S.; Tarafdar, S. P.

    1983-01-01

    Interstellar UV radiation cannot penetrate into the interior of dense clouds, and cosmic ray ionization is thought to be the sole driver of the gas phase chemistry. However, cosmic ray energy deposition also involves electronic excitation of the absorbing gas. It appears, therefore, possible that emissions resulting from these excitations might maintain a significant flux of chemically effective UV photons in the interior of dense clouds. The present investigation is concerned with this possibility, taking into account a simplified approach. This approach involves a consideration of Lyman and Werner band photons of molecular hydrogen and their relevance to C and CO chemistry. The results of this investigation suggest that a chemically significant flux of UV photons may exist inside dense clouds due to cosmic ray excitation of the various band systems of hydrogen. These photons would recover C I from the CO reservoir in dense clouds via photodissociation at an order of magnitude faster rate than that possible in connection with the reaction of CO with He(+).

  6. Dual-wavelength recording, a simple algorithm to eliminate interferences due to UV-absorbing substances in capillary electrophoresis.

    PubMed

    Seaux, Liesbeth; Van Houcke, Sofie; Dumoulin, Els; Fiers, Tom; Lecocq, Elke; Delanghe, Joris R

    2014-08-01

    Analytical interferences have been described due to the presence of various exogenous UV-absorbing substances in serum. Iodine-based X-ray contrast agents and various antibiotics have been reported to interfere with interpretation of serum protein pherograms, resulting in false diagnosis of paraproteinemia. In the present study, we have explored the possibility of measuring UV absorbance at two distinct wavelengths (210 and 246 nm) to distinguish between true and false paraproteins on a Helena V8 clinical electrophoresis instrument. This study demonstrates that most substances potentially interfering with serum protein electrophoresis show UV-absorption spectra that are distinct from those of serum proteins. Scanning at 246 nm allows detection of all described interfering agents. Comparing pherograms recorded at both wavelengths (210 and 246 nm) enables to distinguish paraproteins from UV-absorbing substances. In case of a true paraprotein, the peak with an electrophoretic mobility in the gamma-region decreases, whereas the X-ray contrast media and antibiotics show an increased absorption when compared to the basic setting (210 nm). The finding of iodine-containing contrast media interfering with serum protein electrophoresis is not uncommon. In a clinical series, interference induced by contrast media was reported in 54 cases (of 13 237 analyses), corresponding with a prevalence of 0.4%. In the same series, 1631 true paraproteins (12.3%) were detected. Implementation of the proposed algorithm may significantly improve the interpretation of routine electrophoresis results. However, attention should still be paid to possible interference due to presence of atypical proteins fractions (e.g., tumor markers, C3).

  7. Microwave treatment of eight seconds protects cells of Isatis indigotica from enhanced UV-B radiation lesions.

    PubMed

    Chen, Yi-Ping

    2006-01-01

    To determine the role of microwaves in the stress resistance of plants to enhanced ultraviolet-B (UV-B) radiation, Isatis indigotica Fort. seeds were subjected to microwave radiation for 8 s (wavelength 125 mm, power density 1.26 mW mm(-2), 2450 MHz). Afterwards they were cultivated in plastic pots in an artificial-glass greenhouse maintained at 25 degrees C, 70% relative humidity, and 400 micromol mol(-1) CO2, under visible-light conditions of 1500 micromol m(-2) s(-1) for 8 h day(-1). When the seedlings were 10 days old, they were subjected to 10.08 kJ m(-2) UV-B (PAR: 220 micromol m(-2) s(-1)) radiation for 8 days. Changes in a number of physiological and biochemical characteristics and in the thermal decomposition enthalpy of biomass were measured and used as indicators of the protective capacity of microwave radiation in this experiment. Our results revealed that microwave pretreatment of seeds enhanced UV-B stress resistance in the seedlings by decreasing the concentration of malondialdehyde (MDA) and increasing the concentration of ascorbic acid (AsA) and UV-B-absorbing compounds, increasing the activities of catalase (CAT), peroxidase (POD), and superoxide dismutase (SOD), and increasing the energy accumulation of photosynthesis. All these results suggest that microwave radiation enhances plant metabolism and results in increased UV-B stress resistance. This is the first investigation reporting the use of microwave pretreatment to protect the cells of Isatis indigotica from UV-B-induced lesions.

  8. Estimation of top-altitude of Asian Dust from Satellite Observations of Backscattered UV Radiation

    NASA Astrophysics Data System (ADS)

    Choi, S.; Kim, J.; Lee, J.

    2008-12-01

    Asian dust (Hwangsa in Korean), which is a typical example of mineral dust aerosol, frequently occurs in the desert and loess plateau in northern China and Mongolia during the spring season (Park and Lee 2004). In particular, they mainly originate from the arid area above 1500m from sea level (Wang et al. 2000) and some of them affect to North Pacific Ocean and North America (Husar et al. 2001). In addition, UV-absorbing aerosols such as mineral dust have a strong altitude dependence in the near UV region that is a low surface reflectivity and nearly constant over land and water ( Herman et al. 1997; Torres et al. 1998). Thus, in this study, we concentrate on estimation of top-altitude for UV-absorbing aerosol like a mineral dust by using weather charts and radiative transfer model (RTM) and satellite data. To estimate the top-altitude of Asian dust using multiple satellite data, in the first, we investigate the source regions of Asian dust based on results of HYSPLIT backward trajectory for the period from Jan 2001 to May 2008 and analyze qualitative synoptic weather patterns associated with the long-range transport. Next, assuming that vertical profile of Asian dust is similar to Gaussian distribution from surface to maximum altitude, we select a sensitive wavelength for Asian dust from RTM test. Then, we evaluate the top-altitude of Asian dust estimated from the satellite data, MODIS, OMI, CALIOP and Rstar5b model. Rstar5b inputs are generated by MODIS-AOD and OMI geometry information, which is located in minimum distance from CALIOP data pixel. At last, we compare altitude calculated from Rstar5b with that retrieved from CALIOP using radiance of simulated Rstar5b and measured OMI. This simultaneous approach of multi-satellite platform and RTM is expected to contribute to the comprehension of the mechanism as well as the estimation of the altitude for Asian dust.

  9. Inclusion complexes of β-cyclodextrin-dinitrocompounds as UV absorber for ballpoint pen ink.

    PubMed

    Srinivasan, Krishnan; Radhakrishnan, S; Stalin, Thambusamy

    2014-08-14

    2,4-Dinitrophenol (2,4-DNP), 2,4-dinitroaniline (2,4-DNA), 2,6-dinitroaniline (2,6-DNA) and 2,6-dinitrobenzoic acid (2,6-DNB) has appeared for the UV absorption bands in different wavelength region below 400 nm, a combination of these dinitro aromatic compounds gave the broad absorption spectra within the UV region. The absorption intensities have been increased by preparation of the inclusion complex of dinitro compounds with β-cyclodextrin (β-CD). Prepared inclusion complexes are used to improve the UV protection properties of the ball point pen ink against photo degradation. The formation of solid inclusion complexes was characterized by FT-IR, and (1)H NMR spectroscopy. The UV protecting properties of these inclusion complexes were calculated their sun protection factor (SPF) is also discussed. The stability of the ballpoint pen ink has been confirmed by UV-Visible spectroscopic method.

  10. Inclusion complexes of β-cyclodextrin-dinitrocompounds as UV absorber for ballpoint pen ink

    NASA Astrophysics Data System (ADS)

    Srinivasan, Krishnan; Radhakrishnan, S.; Stalin, Thambusamy

    2014-08-01

    2,4-Dinitrophenol (2,4-DNP), 2,4-dinitroaniline (2,4-DNA), 2,6-dinitroaniline (2,6-DNA) and 2,6-dinitrobenzoic acid (2,6-DNB) has appeared for the UV absorption bands in different wavelength region below 400 nm, a combination of these dinitro aromatic compounds gave the broad absorption spectra within the UV region. The absorption intensities have been increased by preparation of the inclusion complex of dinitro compounds with β-cyclodextrin (β-CD). Prepared inclusion complexes are used to improve the UV protection properties of the ball point pen ink against photo degradation. The formation of solid inclusion complexes was characterized by FT-IR, and 1H NMR spectroscopy. The UV protecting properties of these inclusion complexes were calculated their sun protection factor (SPF) is also discussed. The stability of the ballpoint pen ink has been confirmed by UV-Visible spectroscopic method.

  11. Space Radiation Absorbed Dose Distribution in a Human Phantom Torso

    NASA Technical Reports Server (NTRS)

    Badhwar, G. D.; Yang, T.; Atwell, W.

    2000-01-01

    The flight of a human phantom torso with head that containing active dosimeters at 5 organ sites and 1400 TLDs distributed in 34 1" thick sections is described. Experimental dose rates and quality factors are compared with calculations for shielding distributions at the sites using the Computerized Anatomical Male (CAM) model. The measurements were complemented with those obtained from other instruments. These results have provided the most comprehensive data set to map the dose distribution inside a human and to assess the accuracy of radiation transport models and astronaut radiation risk.

  12. Effect of Index of Refraction on Radiation Characteristics in a Heated Absorbing, Emitting, and Scattering Layer

    NASA Technical Reports Server (NTRS)

    Siegel, R.; Spuckler, C. M.

    1992-01-01

    The effect of the index of refraction on the temperature distribution and radiative heat flux in semitransparent materials, such as some ceramics, is investigated analytically. In the case considered here, a plane layer of a ceramic material is subjected to external radiative heating incident on each of its surfaces; the material emits, absorbs, and isotropically scatters radiation. It is shown that, for radiative equilibrium in a gray layer with diffuse interfaces, the temperature distribution and radiative heat flux for any index of refraction can be obtained in a simple manner from the results for an index of refraction of unity.

  13. Photosensitizing potential of ciprofloxacin at ambient level of UV radiation.

    PubMed

    Agrawal, Neeraj; Ray, Ratan Singh; Farooq, Mohammad; Pant, Aditya Bhushan; Hans, Rajendra Kumar

    2007-01-01

    Ciprofloxacin is a widely used fluoroquinolone drug with broad spectrum antibacterial activities. Clinical experience has shown incidences of adverse effects related to skin, hepatic, central nervous system, gastrointestinal and phototoxicity. India is a tropical country and sunlight is abundant throughout the day. In this scenario exposure to ambient levels of ultraviolet radiation (UV-R) in sunlight may lead to harmful effects in ciprofloxacin users. Phototoxicity assessment of ciprofloxacin was studied by two mouse fibroblast cell lines L-929 and NIH-3T3. Generation of reactive oxygen species (ROS) like singlet oxygen (1O2), superoxide anion radical (O2*-) and hydroxyl radical (*OH) was studied under the exposure of ambient intensities of UV-A (1.14, 1.6 and 2.2 mW cm(-2)), UV-B (0.6, 0.9 and 1.2 mW cm(-2)) and sunlight (60 min). The drug was generating 1O2, O2*- and *OH in a concentration and dose-dependent manner. Sodium azide (NaN3) and 1,4-diazabicyclo 2-2-2-octane (DABCO) inhibited the generation of 1O2. Superoxide dismutase (SOD) inhibited 90-95% O2*- generation. The drug (5-40 microg mL(-1)) was responsible for linoleic acid peroxidation. Quenching study of linoleic acid peroxidation with SOD (25 and 50 U mL(-1)) confirms the involvement of ROS in drug-induced lipid peroxidation. The generation of *OH radical was further confirmed by using specific quenchers of *OH such as mannitol (0.5 M) and sodium benzoate (0.5 M). 2'-deoxyguanosine (2'-dGuO) assay and linoleic acid peroxidation showed that ROS were mainly responsible for ciprofloxacin-sensitized photo-degradation of guanine base. L-929 cell line showed 29%, 34% and 54% reduced cell viability at higher drug concentration (300 microg mL(-1)) under UV-A, UV-B and sunlight, respectively. 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay in NIH-3T3 cell line at higher drug concentration (300 microg mL(-1)) showed a decrease in cell viability by 54%, 56% and 59% under UV-A, UV

  14. Microwave radiation absorbers based on corrugated composites with carbon fibers

    NASA Astrophysics Data System (ADS)

    Bychanok, D. S.; Plyushch, A. O.; Gorokhov, G. V.; Bychanok, U. S.; Kuzhir, P. P.; Maksimenko, S. A.

    2016-12-01

    A complex analysis of the dependence of the absorption coefficient of polymer composites with nonmagnetic carbon inclusions on the real and imaginary parts of the complex permittivity, as well as on the material thickness is performed in frequency range 26-37 GHz. The composites containing 0.2 wt % of carbon fibers have been obtained. It has been experimentally found that the corrugation of the composite surface substantially increases the absorbability (from 63 to 92% at a frequency of 30 GHz and a thickness of 4.50 mm) upon a decrease in the sample mass (by 28%). A method has been proposed for calculating the absorptance of corrugated composites in the microwave range.

  15. High-resolution optical telescope for ultraviolet /UV/ radiation field

    NASA Technical Reports Server (NTRS)

    Karayan, W. W.

    1979-01-01

    Design techniques are discussed for all-reflecting optics from first-order system considerations and applications currently utilized in the field of astronomical optics. The solution of the Dall-Karkham design problem is described, showing the advantage of inexpensive construction as compared with higher order surfaces. The design process reported here is a F/5 collecting system which quickly mates directly with the spectrometer; it is capable of achieving desired high resolution and sensitivity requirements. The theoretical limit of aberration tolerances is achieved with less than 1/8 of a wavelength at final focus (OPD). The design of spectrometer for ultra-violet (UV) radiation and its mechanism is included in this study.

  16. [Effects of UV-B radiation on the growth and reproduction of Vicia angustifolia].

    PubMed

    Wang, Ying; Wang, Xing-An; Wang, Ren-Jun; Qiu, Nian-Wei; Ma, Zong-Qi; Du, Guo-Zhen

    2012-05-01

    A simulation experiment with supplementation and exclusion of solar ultraviolet-B (UV-B) radiation was conducted to study the effects of enhanced and near ambient UV-B radiation on the growth and reproduction of alpine annual pasture Vicia angustifolia on Qinghai-Tibet Plateau. Enhanced UV-B decreased the plant height and biomass, biomass allocation to fruit, flower number, and 100-seed mass significantly, delayed flowering stage, increased the concentration degree of flowering and success rate of reproduction, but had little effect on seed yield. Near ambient UV-B radiation made the plant height increased after an initial decrease, decreased biomass allocation to fruit and 100-seed mass, but little affected flowering duration, flower number, and seed yield. Both enhanced and near ambient UV-B radiation could inhibit the growth and production of V. angustifolia, and the effect of enhanced UV-B radiation was even larger.

  17. The response of human skin commensal bacteria as a reflection of UV radiation: UV-B decreases porphyrin production.

    PubMed

    Wang, Yanhan; Zhu, Wenhong; Shu, Muya; Jiang, Yong; Gallo, Richard L; Liu, Yu-Tsueng; Huang, Chun-Ming

    2012-01-01

    Recent global radiation fears reflect the urgent need for a new modality that can simply determine if people are in a radiation risk of developing cancer and other illnesses. Ultraviolet (UV) radiation has been thought to be the major risk factor for most skin cancers. Although various biomarkers derived from the responses of human cells have been revealed, detection of these biomarkers is cumbersome, probably requires taking live human tissues, and varies significantly depending on human immune status. Here we hypothesize that the reaction of Propionibacterium acnes (P. acnes), a human resident skin commensal, to UV radiation can serve as early surrogate markers for radiation risk because the bacteria are immediately responsive to radiation. In addition, the bacteria can be readily accessible and exposed to the same field of radiation as human body. To test our hypothesis, P. acnes was exposed to UV-B radiation. The production of porphyrins in P. acnes was significantly reduced with increasing doses of UV-B. The porphyrin reduction can be detected in both P. acnes and human skin bacterial isolates. Exposure of UV-B to P. acnes- inoculated mice led to a significant decrease in porphyrin production in a single colony of P. acnes and simultaneously induced the formation of cyclobutane pyrimidine dimers (CPD) in the epidermal layers of mouse skin. Mass spectrometric analysis via a linear trap quadrupole (LTQ)-Orbitrap XL showed that five peptides including an internal peptide (THLPTGIVVSCQNER) of a peptide chain release factor 2 (RF2) were oxidized by UV-B. Seven peptides including three internal peptides of 60 kDa chaperonin 1 were de-oxidized by UV-B. When compared to UV-B, gamma radiation also decreased the porphyrin production of P. acnes in a dose-dependent manner, but induced a different signature of protein oxidation/de-oxidation. We highlight that uncovering response of skin microbiome to radiation will facilitate the development of pre-symptomatic diagnosis

  18. The Response of Human Skin Commensal Bacteria as a Reflection of UV Radiation: UV-B Decreases Porphyrin Production

    PubMed Central

    Wang, Yanhan; Zhu, Wenhong; Shu, Muya; Jiang, Yong; Gallo, Richard L.; Liu, Yu-Tsueng; Huang, Chun-Ming

    2012-01-01

    Recent global radiation fears reflect the urgent need for a new modality that can simply determine if people are in a radiation risk of developing cancer and other illnesses. Ultraviolet (UV) radiation has been thought to be the major risk factor for most skin cancers. Although various biomarkers derived from the responses of human cells have been revealed, detection of these biomarkers is cumbersome, probably requires taking live human tissues, and varies significantly depending on human immune status. Here we hypothesize that the reaction of Propionibacterium acnes (P. acnes), a human resident skin commensal, to UV radiation can serve as early surrogate markers for radiation risk because the bacteria are immediately responsive to radiation. In addition, the bacteria can be readily accessible and exposed to the same field of radiation as human body. To test our hypothesis, P. acnes was exposed to UV-B radiation. The production of porphyrins in P. acnes was significantly reduced with increasing doses of UV-B. The porphyrin reduction can be detected in both P. acnes and human skin bacterial isolates. Exposure of UV-B to P. acnes- inoculated mice led to a significant decrease in porphyrin production in a single colony of P. acnes and simultaneously induced the formation of cyclobutane pyrimidine dimers (CPD) in the epidermal layers of mouse skin. Mass spectrometric analysis via a linear trap quadrupole (LTQ)-Orbitrap XL showed that five peptides including an internal peptide (THLPTGIVVSCQNER) of a peptide chain release factor 2 (RF2) were oxidized by UV-B. Seven peptides including three internal peptides of 60 kDa chaperonin 1 were de-oxidized by UV-B. When compared to UV-B, gamma radiation also decreased the porphyrin production of P. acnes in a dose-dependent manner, but induced a different signature of protein oxidation/de-oxidation. We highlight that uncovering response of skin microbiome to radiation will facilitate the development of pre-symptomatic diagnosis

  19. Spatial heterogeneity in vegetation canopies and remote sensing of absorbed photosynthetically active radiation - A modeling study

    NASA Technical Reports Server (NTRS)

    Asrar, G.; Myneni, R. B.; Choudhury, B. J.

    1992-01-01

    A 3D radiative transfer model is used to investigate the relationship between spectral indices and fraction of absorbed photosynthetically active radiation (PAR) in horizontally heterogeneous vegetation canopies. Canopy reflection at optical wavelengths and PAR absorption are simulated. Data obtained indicate that the leaf area index of a canopy is less of an instructive parameter than the ground cover and clump leaf area index for these canopies. It is found that the relationship between the normalized difference vegetation index and fraction of absorbed PAR is almost linear and independent of spatial heterogeneity.

  20. Effects of ozone and aerosol on surface UV radiation variability.

    PubMed

    Kim, Jhoon; Cho, Hi-Ku; Mok, Jungbin; Yoo, Hee Dong; Cho, Nayeong

    2013-02-05

    Global (direct+diffuse) spectral ultraviolet (UV, 290-363nm) and total ozone measurements made on the roof of the Main Science Building, Yonsei University at Seoul (37.57°, 128.98°E) were analyzed to quantify the effects of ozone and aerosol on the variability of surface erythemal UV (EUV) irradiance. The measurements have been made with a Brewer Spectrophotometer MKIV (SCI-TEC#148) and a Dobson Ozone Spectrophotometer (Beck#123), respectively, during 2004-2008. The overall mean radiation amplification factor, RAF(AOD, SZA) [23,24] due to total ozone (O(3)) (hereafter O(3) RAF) shows that 1% decrease in total ozone results in an increase of 1.18±0.02% in the EUV irradiance with the range of 0.67-1.74% depending on solar zenith angles (SZAs) (40-70°) and on aerosol optical depths (AODs) (<4.0), under both clear (cloud cover<25%) and all sky conditions. For the mean AOD, the O(3) RAFs(SZA) for both sky conditions increased as SZA increased from 40° to 60°, and then decreased for higher SZA 70°, where the patterns are consistent with results of the previous studies [2,10]. A similar analysis of the RAF(O(3), SZA) due to AOD (hereafter AOD RAF) under clear and all-sky conditions shows that on average, a 1% increase in AOD forces a decrease of 0.29±0.06% in the EUV irradiance with the maximum range 0.18-0.63% depending on SZAs and O(3). Thus, overall sensitivity of UV to ozone (O(3), RAF) was estimated to be about four times higher than to the aerosol (AOD RAF). At the mean O(3), the AOD RAFs(SZA) for both skies appears to be almost independent of SZAs. It is shown that the O(3) RAFs are nearly independent of the sky conditions, whereas the AOD RAFs depend distinctly on the sky conditions with the larger values for all skies. Under cloud free conditions, the overall mean ratio for measured-to-modeled O(3), RAF(AOD, SZA) is 1.13, whereas the ratio for AOD RAF(O(3), SZA) shows 0.82 in the EUV irradiance. Overall, the RAF measurements are corroborated by radiative

  1. Relationship between acoustic power and acoustic radiation force on absorbing and reflecting targets for spherically focusing radiators.

    PubMed

    Gélat, Pierre; Shaw, Adam

    2015-03-01

    Total acoustic output power is an important parameter required by standards for most ultrasonic medical equipment including high-intensity focused ultrasound (HIFU) systems. Radiation force balances are routinely used; however, radiation force is not strictly dependent on the ultrasound power but, rather, on the wave momentum resolved in one direction. Consequently, measurements based on radiation force become progressively less accurate as the ultrasound wave deviates further from a true plane wave. HIFU transducers can be very strongly focused with F-numbers less than one: under these conditions, the uncertainty associated with use of the radiation force method becomes very significant. International Standards IEC 61161 and IEC 62555 suggest plane-wave correction factors for unfocused transducers radiating onto an ideal absorbing target and focusing corrections for focused transducers radiating onto ideal absorbing targets and onto conical reflecting targets (IEC 61161). Previous models have relied on calculations based on the Rayleigh integral, which is not strictly correct for curved sources. In the work described here, an approach combining finite element methods with a discretization of the Helmholtz equation was developed, making it possible to model the boundary condition at the structure/fluid interface more correctly. This has been used to calculate the relationship between radiation force and total power for both absorbing and conical reflecting targets for transducers ranging from planar to an F-number of 0.5 (hemispherical) and to compare with the recommendations of IEC 61161 and IEC 62555.

  2. Divergences in the response to ultraviolet radiation between polar and non-polar ciliated protozoa: UV radiation effects in Euplotes.

    PubMed

    Di Giuseppe, Graziano; Cervia, Davide; Vallesi, Adriana

    2012-02-01

    Ultraviolet (UV) radiation has detrimental effects on marine ecosystems, in particular in the polar regions where stratospheric ozone reduction causes higher levels of solar radiation. We analyzed two polar species of Euplotes, Euplotes focardii and Euplotes nobilii, for the sensitivity to UV radiation in comparison with two akin species from mid-latitude and tropical waters. Results showed that they face UV radiation much more efficiently than the non-polar species by adopting alternative strategies that most likely reflect different times of colonization of the polar waters. While E. focardii, which is endemic to the Antarctic, survives for longer exposed to UV radiation, E. nobilii, which inhabits both the Antarctic and Arctic, recovers faster from UV-induced damage.

  3. Method 415.3, Rev. 1.2: Determination of Total Organic Carbon and Specific UV Absorbance at 254 nm in Source Water and Drinking Water

    EPA Science Inventory

    This method provides procedures for the determination of total organic carbon (TOC), dissolved organic carbon (DOC), and UV absorption at 254 nm (UVA) in source waters and drinking waters. The DOC and UVA determinations are used in the calculation of the Specific UV Absorbance (S...

  4. Bystander effect induced by UV radiation; why should we be interested?

    PubMed

    Widel, Maria

    2012-11-14

    The bystander effect, whose essence is an interaction of cells directly subjected to radiation with adjacent non-subjected cells, via molecular signals, is an important component of ionizing radiation action. However, knowledge of the bystander effect in the case of ultraviolet (UV) radiation is quite limited. Reactive oxygen and nitrogen species generated by UV in exposed cells induce bystander effects in non-exposed cells, such as reduction in clonogenic cell survival and delayed cell death, oxidative DNA damage and gene mutations, induction of micronuclei, lipid peroxidation and apoptosis. Although the bystander effect after UV radiation has been recognized in cell culture systems, its occurrence in vivo has not been studied. However, solar UV radiation, which is the main source of UV in the environment, may induce in human dermal tissue an inflammatory response and immune suppression, events which can be considered as bystander effects of UV radiation. The oxidative damage to DNA, genomic instability and the inflammatory response may lead to carcinogenesis. UV radiation is considered one of the important etiologic factors for skin cancers, basal- and squamous-cell carcinomas and malignant melanoma. Based on the mechanisms of actions it seems that the UV-induced bystander effect can have some impact on skin damage (carcinogenesis?), and probably on cells of other tissues. The paper reviews the existing data about the UV-induced bystander effect and discusses a possible implication of this phenomenon for health risk. 

  5. [Advances in influence of UV-B radiation on medicinal plant secondary metabolism].

    PubMed

    Wu, Yang; Fang, Minfeng; Yue, Ming; Chai, Yongfu; Wang, Hui; Li, Yifei

    2012-08-01

    Stratospheric ozone depletion results in an increased level of solar UV-B radiation (UV-B, 280-320 nm) reaching the earth surface. By the effect of UV-B radiation, various medicinal active ingredients changed because of the change of gene expression, enzyme activity and secondary metabolism, clinical effect is also changed. The research status of UV-B radiation and the accumulation of plant secondary metabolites in the past 10 years were summarized in this paper to supply reference for cultivation and exploitation of the medicinal plants.

  6. Synergism between UV-B radiation and pathogen magnifies amphibian embryo mortality in nature

    SciTech Connect

    Kiesecker, J.M.; Blaustein, R.

    1995-11-21

    Previous research has shown that amphibians have differential sensitivity to ultraviolet-B (UV-B) radiation. In some species, ambient levels of UV-B radiation cause embryonic mortality in nature. The detrimental effects of UV-B alone or with other agents may ultimately affect amphibians at the population level. Here, we experimentally demonstrate a synergistic effect between UV-B radiation and a pathogenic fungus in the field that increases the mortality of amphibian embryos compared with either factor alone. Studies investigating single factors for causes of amphibian egg mortality or population declines may not reveal the complex factors involved in declines.

  7. Effects of Solar UV Radiation and Climate Change on Biogeochemical Cycling: Interactions and Feedbacks

    EPA Science Inventory

    Solar UV radiation, climate and other drivers of global change are undergoing significant changes and models forecast that these changes will continue for the remainder of this century. Here we assess the effects of solar UV radiation on biogeochemical cycles and the interactions...

  8. Validation of the Austrian forecast model for solar, biologically effective UV radiation-UV index for Vienna

    NASA Astrophysics Data System (ADS)

    Schmalwieser, Alois W.; Schauberger, Günther

    2000-11-01

    Since October 1995, a daily forecast of the UV index, as the irradiance of the biologically effective ultraviolet radiation, for the next day is published for Austria, Europe, and world wide. The Austrian forecast model as well as the input parameters are described. By connecting the UV index with the sensitivity of the photobiological skin types, a recommendation is given to select an appropriate sun protection factor of a sunscreen to avoid overexposure of the skin. The validation of the Austrian forecast model is done by measurements of the biologically effective ultraviolet radiation collected between July 1996 and July 1998 at Vienna (48°N, 16°E), Austria. The forecast quality is evaluated by comparing the Austrian model with two statistical models used in Canada and the Netherlands. By using the underestimation of the UV index as criteria in the sense of radiation protection, the Austrian model shows a 12% underestimation over the whole year.

  9. Energy deposition through radiative processes in absorbers irradiated by electron beams

    NASA Astrophysics Data System (ADS)

    Tatsuo, Tabata; Pedro, Andreo; Kunihiko, Shinoda; Rinsuke, Ito

    1994-09-01

    The component of energy deposition due to radiative processes (bremsstrahlung component) in absorbers irradiated by electron beams has been computed together with the total energy deposition by using the ITS Monte Carlo system version 3.0. Plane-parallel electron beams with energies from 0.1 to 100 MeV have been assumed to be incident normally on the slab absorber, whose thickness is 2.5 times the continuous slowing-down approximation (csda) range of the incident electrons. Absorber materials considered are elemental solids with atomic numbers between 4 and 92 (Be, C, Al, Cu, Ag, Au and U). An analytic formula is given to express the depth profile of the bremsstrahlung component as a function of scaled depth (depth in units of the csda range), incident-electron energy and absorber atomic number. It is also applicable to compounds.

  10. Horizontal radiative fluxes in clouds and accuracy of the independent pixel approximation at absorbing wavelengths

    NASA Astrophysics Data System (ADS)

    Marshak, A.; Oreopoulos, L.; Davis, A. B.; Wiscombe, W. J.; Cahalan, R. F.

    For absorbing wavelengths, we discuss the effect of horizontal solar radiative fluxes in clouds on the accuracy of a conventional plane-parallel radiative transfer calculation for a single pixel, known as the Independent Pixel Approximation (IPA). Vertically integrated horizontal fluxes can be represented as a sum of three components: the IPA accuracies for reflectance, transmittance and absorptance. We show that IPA accuracy for reflectance always improves with more absorption, while the IPA accuracy for transmittance is less sensitive to the changes in absorption: with respect to the non-absorbing case, it may first deteriorate for weak absorption and then improve again for strongly absorbing wavelengths. IPA accuracy for absorptance always deteriorates with more absorption.

  11. Marine bacterial isolates display diverse responses to UV-B radiation.

    PubMed

    Joux, F; Jeffrey, W H; Lebaron, P; Mitchell, D L

    1999-09-01

    The molecular and biological consequences of UV-B radiation were investigated by studying five species of marine bacteria and one enteric bacterium. Laboratory cultures were exposed to an artificial UV-B source and subjected to various post-UV irradiation treatments. Significant differences in survival subsequent to UV-B radiation were observed among the isolates, as measured by culturable counts. UV-B-induced DNA photodamage was investigated by using a highly specific radioimmunoassay to measure cyclobutane pyrimidine dimers (CPDs). The CPDs determined following UV-B exposure were comparable for all of the organisms except Sphingomonas sp. strain RB2256, a facultatively oligotrophic ultramicrobacterium. This organism exhibited little DNA damage and a high level of UV-B resistance. Physiological conditioning by growth phase and starvation did not change the UV-B sensitivity of marine bacteria. The rates of photoreactivation following exposure to UV-B were investigated by using different light sources (UV-A and cool white light). The rates of photoreactivation were greatest during UV-A exposure, although diverse responses were observed. The differences in sensitivity to UV-B radiation between strains were reduced after photoreactivation. The survival and CPD data obtained for Vibrio natriegens when we used two UV-B exposure periods interrupted by a repair period (photoreactivation plus dark repair) suggested that photoadaptation could occur. Our results revealed that there are wide variations in marine bacteria in their responses to UV radiation and subsequent repair strategies, suggesting that UV-B radiation may affect the microbial community structure in surface water.

  12. Marine Bacterial Isolates Display Diverse Responses to UV-B Radiation

    PubMed Central

    Joux, Fabien; Jeffrey, Wade H.; Lebaron, Philippe; Mitchell, David L.

    1999-01-01

    The molecular and biological consequences of UV-B radiation were investigated by studying five species of marine bacteria and one enteric bacterium. Laboratory cultures were exposed to an artificial UV-B source and subjected to various post-UV irradiation treatments. Significant differences in survival subsequent to UV-B radiation were observed among the isolates, as measured by culturable counts. UV-B-induced DNA photodamage was investigated by using a highly specific radioimmunoassay to measure cyclobutane pyrimidine dimers (CPDs). The CPDs determined following UV-B exposure were comparable for all of the organisms except Sphingomonas sp. strain RB2256, a facultatively oligotrophic ultramicrobacterium. This organism exhibited little DNA damage and a high level of UV-B resistance. Physiological conditioning by growth phase and starvation did not change the UV-B sensitivity of marine bacteria. The rates of photoreactivation following exposure to UV-B were investigated by using different light sources (UV-A and cool white light). The rates of photoreactivation were greatest during UV-A exposure, although diverse responses were observed. The differences in sensitivity to UV-B radiation between strains were reduced after photoreactivation. The survival and CPD data obtained for Vibrio natriegens when we used two UV-B exposure periods interrupted by a repair period (photoreactivation plus dark repair) suggested that photoadaptation could occur. Our results revealed that there are wide variations in marine bacteria in their responses to UV radiation and subsequent repair strategies, suggesting that UV-B radiation may affect the microbial community structure in surface water. PMID:10473381

  13. Interactive effects of solar UV radiation and climate change on biogeochemical cycling.

    PubMed

    Zepp, R G; Erickson, D J; Paul, N D; Sulzberger, B

    2007-03-01

    This report assesses research on the interactions of UV radiation (280-400 nm) and global climate change with global biogeochemical cycles at the Earth's surface. The effects of UV-B (280-315 nm), which are dependent on the stratospheric ozone layer, on biogeochemical cycles are often linked to concurrent exposure to UV-A radiation (315-400 nm), which is influenced by global climate change. These interactions involving UV radiation (the combination of UV-B and UV-A) are central to the prediction and evaluation of future Earth environmental conditions. There is increasing evidence that elevated UV-B radiation has significant effects on the terrestrial biosphere with implications for the cycling of carbon, nitrogen and other elements. The cycling of carbon and inorganic nutrients such as nitrogen can be affected by UV-B-mediated changes in communities of soil organisms, probably due to the effects of UV-B radiation on plant root exudation and/or the chemistry of dead plant material falling to the soil. In arid environments direct photodegradation can play a major role in the decay of plant litter, and UV-B radiation is responsible for a significant part of this photodegradation. UV-B radiation strongly influences aquatic carbon, nitrogen, sulfur and metals cycling that affect a wide range of life processes. UV-B radiation changes the biological availability of dissolved organic matter to microorganisms, and accelerates its transformation into dissolved inorganic carbon and nitrogen, including carbon dioxide and ammonium. The coloured part of dissolved organic matter (CDOM) controls the penetration of UV radiation into water bodies, but CDOM is also photodegraded by solar UV radiation. Changes in CDOM influence the penetration of UV radiation into water bodies with major consequences for aquatic biogeochemical processes. Changes in aquatic primary productivity and decomposition due to climate-related changes in circulation and nutrient supply occur concurrently with

  14. Synthesis and characterization of zinc oxide nanoparticles: application to textiles as UV-absorbers

    NASA Astrophysics Data System (ADS)

    Becheri, Alessio; Dürr, Maximilian; Lo Nostro, Pierandrea; Baglioni, Piero

    2008-04-01

    We report the synthesis and characterization of nanosized zinc oxide particles and their application on cotton and wool fabrics for UV shielding. The nanoparticles were produced in different conditions of temperature (90 or 150 °C) and reacting medium (water or 1,2-ethanediol). A high temperature was necessary to obtain small monodispersed particles. Fourier transformed infrared spectroscopy (FTIR), transmission electron microscopy (TEM), and X-ray powder diffractometry (XRD) were used to characterize the nanoparticles composition, their shape, size and crystallinity. The specific surface area of the dry powders was also determined. ZnO nanoparticles were then applied to cotton and wool samples to impart sunscreen activity to the treated textiles. The effectiveness of the treatment was assessed through UV-Vis spectrophotometry and the calculation of the ultraviolet protection factor (UPF). Physical tests (tensile strength and elongation) were performed on the fabrics before and after the treatment with ZnO nanoparticles.

  15. UV-absorbent lignin-based multi-arm star thermoplastic elastomers.

    PubMed

    Yu, Juan; Wang, Jifu; Wang, Chunpeng; Liu, Yupeng; Xu, Yuzhi; Tang, Chuanbing; Chu, Fuxiang

    2015-02-01

    Lignin-grafted copolymers, namely lignin-graft-poly(methyl methacrylate-co-butyl acrylate) (lignin-g-P(MMA-co-BA)), are synthesized via "grafting from" atom transfer radical polymerization (ATRP) with the aid of lignin-based macroinitiators. By manipulating the monomer feed ratios of MMA/BA, grafted copolymers with tunable glass transition temperatures (-10-40 °C) are obtained. These copolymers are evaluated as sustainable thermoplastic elastomers (TPEs). The results suggest that the mechanical properties of these TPEs lignin-g-P(MMA-co-BA) copolymers are improved significantly by comparing with those of linear P(MMA-co-BA) copolymer counterparts, and the elastic strain recovery is nearly 70%. Lignin-g-P(MMA-co-BA) copolymers exhibit high absorption in the range of the UV spectrum, which might allow for applications in UV-blocking coatings.

  16. Identification of OSSO as a near-UV absorber in the Venusian atmosphere

    NASA Astrophysics Data System (ADS)

    Frandsen, Benjamin N.; Wennberg, Paul O.; Kjaergaard, Henrik G.

    2016-11-01

    The planet Venus exhibits atmospheric absorption in the 320-400 nm wavelength range produced by unknown chemistry. We investigate electronic transitions in molecules that may exist in the atmosphere of Venus. We identify two different S2O2 isomers, cis-OSSO and trans-OSSO, which are formed in significant amounts and are removed predominantly by near-UV photolysis. We estimate the rate of photolysis of cis- and trans-OSSO in the Venusian atmosphere and find that they are good candidates to explain the enigmatic 320-400 nm near-UV absorption. Between 58 and 70 km, the calculated OSSO concentrations are similar to those of sulfur monoxide (SO), generally thought to be the second most abundant sulfur oxide on Venus.

  17. Biologically weighted measurement of UV radiation in space and on Earth with the biofilm technique.

    PubMed

    Rettberg, P; Horneck, G

    2000-01-01

    Biological dosimetry has provided experimental proof of the high sensitivity of the biologically effective UVB doses to changes in atmospheric ozone and has thereby confirmed the predictions from model calculations. The biological UV dosimeter 'biofilm' whose sensitivity is based on dried spores of B. subtilis as UV target weights the incident UV radiation according to its DNA damaging potential. Biofilm dosimetry was applicated in space experiments as well as in use in remote areas on Earth. Examples are long-term UV measurements in Antarctica, measurements of diurnal UV profiles parallel in time at different locations in Europe, continuous UV measurements in the frame of the German UV measurement network and personal UV dosimetry. In space biofilms were used to determine the biological efficiency of the extraterrestrial solar UV, to simulate the effects of decreasing ozone concentrations and to determine the interaction of UVB and vitamin D production of cosmonauts in the MIR station.

  18. Natural organic UV-absorbent coatings based on cellulose and lignin: designed effects on spectroscopic properties.

    PubMed

    Hambardzumyan, Arayik; Foulon, Laurence; Chabbert, Brigitte; Aguié-Béghin, Véronique

    2012-12-10

    Novel nanocomposite coatings composed of cellulose nanocrystals (CNCs) and lignin (either synthetic or fractionated from spruce and corn stalks) were prepared without chemical modification or functionalization (via covalent attachment) of one of the two biopolymers. The spectroscopic properties of these coatings were investigated by UV-visible spectrophotometry and spectroscopic ellipsometry. When using the appropriate weight ratio of CNC/lignin (R), these nanocomposite systems exhibited high-performance optical properties, high transmittance in the visible spectrum, and high blocking in the UV spectrum. Atomic force microscopy analysis demonstrated that these coatings were smooth and homogeneous, with visible dispersed lignin nodules in a cellulosic matrix. It was also demonstrated that the introduction of nanoparticles into the medium increases the weight ratio and the CNC-specific surface area, which allows better dispersion of the lignin molecules throughout the solid film. Consequently, the larger molecular expansion of these aromatic polymers on the surface of the cellulosic nanoparticles dislocates the π-π aromatic aggregates, which increases the extinction coefficient and decreases the transmittance in the UV region. These nanocomposite coatings were optically transparent at visible wavelengths.

  19. Influence of exogenous silicon on UV-B radiation-induced cyclobutane pyrimidine dimmers in soybean leaves and its alleviation mechanism.

    PubMed

    Chen, Jiana; Zhang, Mingcai; Eneji, A Egrinya; Li, Jianmin

    2016-06-01

    The DNA is particularly sensitive to UV-B radiation and can readily be damaged by UV-B stress, resulting to the formation of photoproducts like cyclobutane pyrimidine dimers (CPDs). Silicon has multifarious benefits to plants, especially under biotic and abiotic stress. In this study, we used soybean seedlings to determine whether silicon could alleviate damage to DNA caused by UV-B stress. Silicon significantly reduced the accumulation of CPDs, lessening the damage of UV-B stress to the seedlings by the following three mechanisms: (1) increasing the concentration of UV-B absorbing compounds to reduce damage; (2) strengthening the antioxidant capacity of plants represented by higher levels of non-enzymatic antioxidants and (3) increasing the photolyase gene expression, thus accelerating photorepair.

  20. Solar UV radiation and cancer in young children

    PubMed Central

    Lombardi, Christina; Heck, Julia E.; Cockburn, Myles; Ritz, Beate

    2013-01-01

    Background Studies have shown that higher solar UV radiation exposure (UVR) may be related to lower risk of some cancers in adults. Recently an ecological study reported lower risks of some cancers among children living in higher UVR cities and countries. In a large population-based case-control study in California we tested the hypothesis that childhood cancers may be influenced by UVR. Methods Cancers in children ages 0 to 5 years were identified from California Cancer Registry records for 1986–2007 and linked to birth certificate data. Controls were sampled from the birth certificates at a ratio of 20:1. Based on birth address, we assigned UVR exposure in units of Watt-hours/m2 using a geostatistical exposure model developed with data from the National Solar Radiation Database. Results For cases with UVR exposure of 5111 Watt-hrs/m2 or above we estimated a reduction in odds of developing acute lymphoblastic leukemia (OR: 0.89, 95% CI: 0.81, 0.99), hepatoblastoma (OR: 0.69, 95% CI: 0.48, 1.00), and non-Hodgkin’s lymphoma (OR: 0.71, 95% CI: 0.50, 1.02) adjusting for mother’s age, mother’s race and child’s year of birth. We also observed a small increase in odds for intracranial/intraspinal embryonal tumors (OR: 1.29, 95% CI: 1.01, 1.65). Conclusions Our findings suggest that UVR during pregnancy may decrease the odds of some childhood cancers. Future studies should explore additional factors that may be correlated with UVR exposure and possibly include biomarkers of immune function and vitamin D. Impact This study shows protective associations of UVR with some childhood cancers. PMID:23585515

  1. [Using UV-Vis Absorbance for Characterization of Maturity in Composting Process with Different Materials].

    PubMed

    Zhao, Yue; Wei, Yu-quan; Li, Yang; Xi, Bei-dou; Wei, Zi-min; Wang, Xing-lei; Zhao, Zhi-nan; Ding, Jei

    2015-04-01

    The present study was conducted to assess the degree of humification in DOM during composting using different raw materials, and their effect on maturity of compost based on UV-Vis spectra measurements and chemometrics method. The raw materials of composting studied included chicken manure, pig manure, kitchen waste, lawn waste, fruits and vegetables waste, straw waste, green waste, sludge, and municipal solid waste. During composting, the parameters of UV-Vis spectra of DOM, including SUVA254 , SUVA280 , E250/E365, E4/E6, E2/E4, E2/E6, E253/E203, E253/E220, A226-400, S275-295 and S350-400 were calculated, Statistical analysis indicated that all the parameter were significantly changed during composting. SUVA254 and SUVA280 of DOM were continuously increased, E250/E365 and E4/E6 were continuously decreased in DOM, while A226-400, S275-295 and S350-400 of DOM at the final stage were significantly different with those at other stages of composting. Correlation analysis indicated that the parameters were significantly correlated with each other except for E2/E4 and E235/E203. Furthermore, principal component analysis suggested that A226-400, SUVA254, S350-400, SUVA280 and S275~295 were reasonable parameters for assessing the compost maturity. To distinguish maturity degree among different composts, hierarchical cluster analysis, an integrated tool utilizing multiple UV-Vis parameters, was performed based on the data (A226-400, SUVA254, S350-400, SUVA280 and S275-295) of DOM derived from the final stage of composting. Composts from different sources were clustered into 2 groups. The first group included chicken manure, pig manure, lawn waste, fruits and vegetables waste, green waste, sludge, and municipal solid waste characterized by a lower maturity degree, and the second group contained straw waste and kitchen waste associated with a higher maturity degree. The above results suggest that a multi-index of UV-Vis spectra could accurately evaluate the compost maturity

  2. Internal pigment cells respond to external UV radiation in frogs.

    PubMed

    Franco-Belussi, Lilian; Nilsson Sköld, Helen; de Oliveira, Classius

    2016-05-01

    Fish and amphibians have pigment cells that generate colorful skins important for signaling, camouflage, thermoregulation and protection against ultraviolet radiation (UVR). However, many animals also have pigment cells inside their bodies, on their internal organs and membranes. In contrast to external pigmentation, internal pigmentation is remarkably little studied and its function is not well known. Here, we tested genotoxic effects of UVR and its effects on internal pigmentation in a neotropical frog, Physalaemus nattereri We found increases in body darkness and internal melanin pigmentation in testes and heart surfaces and in the mesenterium and lumbar region after just a few hours of UVR exposure. The melanin dispersion in melanomacrophages in the liver and melanocytes in testes increased after UV exposure. In addition, the amount of melanin inside melanomacrophages cells also increased. Although mast cells were quickly activated by UVR, only longer UVR exposure resulted in genotoxic effects inside frogs, by increasing the frequency of micronuclei in red blood cells. This is the first study to describe systemic responses of external UVR on internal melanin pigmentation, melanomacrophages and melanocytes in frogs and thus provides a functional explanation to the presence of internal pigmentation.

  3. Effects of UV radiation on marine ectotherms in polar regions.

    PubMed

    Dahms, Hans-U; Dobretsov, Sergey; Lee, Jae-Seong

    2011-05-01

    Ozone-related increase in solar ultraviolet radiation (UVR) during the last decades provided an important ecological stressor, particularly for polar ecosystems since these are less adapted to such changes. All life forms appear to be susceptible to UVR to a highly variable extent that depends on individual species and their environment. Differences in sensitivity between organisms may relate to efficiency differences of their protection mechanisms and repair systems. UVR impacts are masked by large seasonal and geographic differences even in confined areas like the polar regions. UVR has effects and responses on various integration levels: from genetics, physiology, biology, populations, communities, to functional changes as in food webs with consequences on material and energy circulations through ecosystems. Even at current levels, solar UV-B affects consumer organisms, such as ectotherms (invertebrates and fish), particularly through impediments on critical phases of their development (early life history stages such as gametes, zygotes and larvae). Despite the overall negative implications of UVR, effect sizes vary widely in, e.g., molecular damage, cell and tissue damage, survival, growth, behavior, histology, and at the level of populations, communities and ecosystems.

  4. UV radiation is the primary factor driving the variation in leaf phenolics across Chinese grasslands

    PubMed Central

    Chen, Litong; Niu, Kechang; Wu, Yi; Geng, Yan; Mi, Zhaorong; Flynn, Dan FB; He, Jin-Sheng

    2013-01-01

    Due to the role leaf phenolics in defending against ultraviolet B (UVB) under previously controlled conditions, we hypothesize that ultraviolet radiation (UVR) could be a primary factor driving the variation in leaf phenolics in plants over a large geographic scale. We measured leaf total phenolics, ultraviolet-absorbing compounds (UVAC), and corresponding leaf N, P, and specific leaf area (SLA) in 151 common species. These species were from 84 sites across the Tibetan Plateau and Inner Mongolian grasslands of China with contrasting UVR (354 vs. 161 mW/cm2 on average). Overall, leaf phenolics and UVAC were all significantly higher on the Tibetan Plateau than in the Inner Mongolian grasslands, independent of phylogenetic relationships between species. Regression analyses showed that the variation in leaf phenolics was strongly affected by climatic factors, particularly UVR, and soil attributes across all sites. Structural equation modeling (SEM) identified the primary role of UVR in determining leaf phenolic concentrations, after accounting for colinearities with altitude, climatic, and edaphic factors. In addition, phenolics correlated positively with UVAC and SLA, and negatively with leaf N and N: P. These relationships were steeper in the lower-elevation Inner Mongolian than on the Tibetan Plateau grasslands. Our data support that the variation in leaf phenolics is controlled mainly by UV radiation, implying high leaf phenolics facilitates the adaptation of plants to strong irradiation via its UV-screening and/or antioxidation functions, particularly on the Tibetan Plateau. Importantly, our results also suggest that leaf phenolics may influence on vegetation attributes and indirectly affect ecosystem processes by covarying with leaf functional traits. PMID:24363898

  5. Solar UV-B in tropical forest gaps: Analysis using direct and diffuse radiation

    SciTech Connect

    Flint, S.D.; Caldwell, M.M.

    1995-06-01

    Experiments with natural levels of solar ultraviolet-B radiation (UV-B) have recently shown inhibition of the growth of some tropical forest tree seedlings. A knowledge of forest radiation environments is needed to help assess UV-B effects in natural situations. Although forest canopies strongly attenuate solar radiation, treefall gaps provide a very different radiation environment. We simultaneously measured both UV-B and photosynthetically active radiation (PAR) in forest gaps on Barro Colorado Island, Panama. Outside the forest, UV-B is predominately diffuse even under clear sky conditions. In sunflecks of small forest gaps, most of the UV-B was in the direct beam component. Compared to conditions outside the forest, the UV-B in these sunflecks was low relative to PAR. Shaded portions of the gap, in contrast, had proportionately high levels of UV-B relative to PAR. There are indications in the literature that relatively low UV-B levels may be effective under low PFD. Seasonal trends of PAR and UV-B in different locations in gaps can be inferred from hemispherical canopy photographs.

  6. UV-B radiation and photosynthetic irradiance acclimate eggplant for outdoor exposure

    NASA Technical Reports Server (NTRS)

    Latimer, J. G.; Mitchell, C. A.; Mitchell, G. A.

    1987-01-01

    Treatment of greenhouse-grown eggplant (Solanum melongena L. var. esculentum Nees. 'Burpee's Black Beauty') seedlings with supplemental photosynthetically active radiation from cool-white fluorescent lamps increased growth of plants subsequently transferred outdoors relative to growth of plants that received no supplemental radiation or were shaded to 45% of solar irradiation in the greenhouse before transfer outdoors. Eggplant seedlings transferred outdoors were placed under plastic tarps either to provide relative protection from solar ultraviolet-B (UV-B) radiation (280-315 nm) using Mylar film or to allow exposure to UV-B using cellulose acetate. Protection of seedlings from UV-B radiation resulted in greater leaf expansion than for UV-B-exposed seedlings, but no change in leaf or shoot dry weight occurred after 9 days of treatment. Specific leaf weight increased in response to UV-B exposure outdoors. Exposure of eggplant to UV-B radiation from fluorescent sunlamps in the greenhouse also decreased leaf expansion and leaf and shoot dry weight gain after 5 days of treatment. However, there were no differences in leaf or shoot dry weight relative to control plants after 12 days of UV-B treatment, indicating that UV-B treated plants had acclimated to the treatment and actually had caught up with non-UV-B-irradiated plants in terms of growth.

  7. A selective pyroelectric detector of millimeter-wave radiation with an ultrathin resonant meta-absorber

    NASA Astrophysics Data System (ADS)

    Paulish, A. G.; Kuznetsov, S. A.

    2016-11-01

    The results of experimental investigations of spectral and amplitude-frequency characteristics for a discrete wavelength-selective pyroelectric detector operating in the millimetric band are presented. The high spectral selectivity is attained due to integrating the detector with a resonant meta-absorber designed for a close-to-unity absorptivity at 140 GHz. It is demonstrated that the use of this meta-absorber provides an opportunity to construct small-sized and inexpensive multispectral polarization-sensitive systems for radiation detection in the range of millimeter and submillimeter waves.

  8. Biological responses to solar UV radiation in space and on Earth

    NASA Astrophysics Data System (ADS)

    Rettberg, P.; Scherer, K.; Horneck, G.

    2001-08-01

    Solar UV radiation is a dynamic driving force of organic chemical evolution. However, it has had also severe constraints in biological evolution. During the early history of life on Earth, before the formation of a protective ozone layer in the atmosphere, high intensities of solar UV radiation of short wavelengths could reach the surface of the Earth. Today the full spectrum of solar UV radiation is only experienced in space, where other important space parameters influence survival and genetic stability additionally, like vacuum, cosmic radiation, temperature, extremes, microgravity. To reach a better understanding of the processes leading to the origin, evolution and distribution of life on Earth we have performed several space experiments with microorganisms. The ability of resistant life forms like bacterial spores to survive high doses of extraterrestrial solar UV alone or in combination with other space parameters, e.g. vacuum, was investigated. Extraterrestrial solar UV was found to have a thousand times higher biological effectiveness than UV radiation filtered by stratospheric ozone concentrations found today on Earth. Radiative transfer models predicting a strong correlation between the decrease in biologically effective UV radiation with increasing ozone concentrations during the history of life on Earth could be validated experimentally in space.

  9. UV radiation-induced biosynthesis, stability and antioxidant activity of mycosporine-like amino acids (MAAs) in a unicellular cyanobacterium Gloeocapsa sp. CU2556.

    PubMed

    Rastogi, Rajesh P; Incharoensakdi, Aran

    2014-01-05

    The biosynthesis of natural sunscreening compounds as influenced by ultraviolet radiation, their stability and antioxidant activity were studied in the cyanobacterium Gloeocapsa sp. CU-2556. An analysis by high-performance liquid chromatography (HPLC) with photodiode-array (PDA) detection revealed the biosynthesis of two MAAs, shinorine (UVλmax 333nm) and an unknown MAA designated as M-307 (UVλmax 307nm) with retention times of 5.9 and 6.4min, respectively. Induction of the synthesis of MAAs was studied under 395 (PAR), 320 (PAR+UV-A) and 295 (PAR+UV-A+UV-B) nm cut-off filters. MAAs induction was significantly increased with an increase in exposure time up to 72h in the samples covered with 295nm cut-off filters. Contrary to shinorine, the biosynthesis of M-307 was more dominant in this unicellular cyanobacterium. Both MAAs were highly stable to some physico-chemical stressors such as UV radiation, heat and a strong oxidizing agent. The MAA M-307 was more stable under strong oxidative stress than shinorine. Moreover, UV-C radiation drastically decreased the stability of both MAAs. The MAAs (shinorine+M-307) also exhibited efficient antioxidant activity which was dose-dependent. The results indicate that MAAs may perform a vital role in survival and sustainability of Gloeocapsa sp. CU-2556 in harsh environmental conditions by its ability to absorb/screen short wavelength UV radiation and antioxidant function.

  10. Responses of photosynthetic properties and chloroplast ultrastructure of two moss crusts from a desert biological soil crust to supplementary UV-B radiation

    NASA Astrophysics Data System (ADS)

    Hui, Rong; Li, Xinrong; Zhao, Yang; Pan, Yanxia

    2016-04-01

    Our understanding of plant responses to supplementary ultraviolet-B (UV-B) radiation due to stratospheric ozone depletion has improved over recent decades. However, research on biological soil crusts (BSCs) is scarce and it remains controversial. Laboratory studies were conducted to investigate the influence of UV-B radiation on the Bryum argenteum and Didymodon vinealis isolated from BSCs, which are both dominant species in moss crusts found within patches of shrubs and herbs in the Tengger Desert of northern China. The aim of the current work was to evaluate whether supplementary UV-B radiation affected photosynthetic properties and chloroplast ultrastructure of two moss crusts and whether response differences were observed between the crusts. Four levels of UV-B radiation of 2.75 (control), 3.08, 3.25, and 3.41 W m-2 was achieved using fluorescence tube systems for 10 days, simulating 0, 6, 9, and 12% of stratospheric ozone at the latitude of Shapotou, respectively. We measured photosynthetic apparatus as assessed by chlorophyll a fluorescence parameters, photosynthetic pigment contents, and observations of chloroplast ultrastructure. Additionally, soluble proteins and UV-B absorbing compounds were simultaneously investigated. The results of this study showed that chlorophyll a fluorescence parameters (i.e., the maximal quantum yield of PSII photochemistry, the effective quantum yield of PSII photochemistry, and photochemical quenching coefficient), photosynthetic pigment contents, soluble protein contents, total flavonoid contents and the ultrastructure were negatively influenced by elevated UV-B radiation and the degree of detrimental effects significantly increased with the intensity of UV-B radiation. Moreover, results demonstrated that the negative effects on photosynthesis and chloroplast ultrastructure were more serious in B. argenteum than that in D. vinealis. These results may not only provide a potential mechanism for supplemental UV-B effects on

  11. Growth and gas exchange in field-grown and greenhouse-grown Quercus rubra following three years of exposure to enhanced UV-B radiation.

    PubMed

    Bassman, John H; Robberecht, Ronald

    2006-09-01

    Long-term effects of enhanced UV-B radiation were evaluated in field-grown and greenhouse-grown Quercus rubra L. (northern red oak), a species with a multiple flushing shoot growth habit. Seeds were germinated and grown in ambient, twice ambient (2x) or three times ambient (3x) biologically effective UV-B radiation from square-wave (greenhouse) or modulated (field) lamp systems for three growing seasons. Greenhouse plants in the 2x treatment had greater heights and diameters during the later part of the first year and into the second year, but by the third year there were no differences among treatments. There were no significant differences in growth among treatments for field plants. Enhanced UV-B radiation did not significantly reduce total biomass or distribution of biomass in either field or greenhouse plants. Net photosynthesis (3x), leaf conductance (2x and 3x) and water-use efficiency (3x) of greenhouse plants were greater in the enhanced UV-B radiation treatments in the second year but unaffected by the treatments in other years. None of the treatments affected these parameters in field plants. Dark respiration was increased by the 3x treatment in the first and third years in greenhouse plants, and by the 2x treatment during the second year in field plants. Enhanced UV-B had variable effects on apparent quantum yield and light compensation points. Chlorophylls were unaffected by enhanced UV-B radiation in both greenhouse and field conditions. Bulk methanol-extractable UV-absorbing compounds were increased only by the 3x treatment in greenhouse plants during the third year and by the 2x treatment in field plants during the second year. Overall, Q. rubra appears relatively resistant to potentially damaging enhanced UV-B radiation and is unlikely to be negatively impacted even in the predicted worst-case scenarios.

  12. Effects of Litter Exposure to UV Radiation on Subsequent Microbial Decomposition

    NASA Astrophysics Data System (ADS)

    Lin, Y.; Scarlett, R. D.; King, J. Y.

    2013-12-01

    In arid ecosystems, photodegradation has recently been identified as a key process in ecosystem carbon cycling. Photodegradation directly contributes to organic matter decomposition through photochemical mineralization. However, it remains unclear how photodegradation interacts with biotic decomposition processes. It is commonly thought that photodegradation can facilitate subsequent microbial decomposition, as it can preferentially decompose lignin, a recalcitrant substrate in microbial decomposition. We hypothesized that ultraviolet (UV) radiation exposure would increase the biodegradability of plant litter and that this effect would be greater with longer radiation exposure. In the field at the University of California's Sedgwick Reserve in Santa Ynez, CA, Bromus diandrus litter samples were exposed to two levels of UV radiation using screens: 'UV pass' (transmitting > 81% of UV radiation) and 'UV block' (transmitting < 8% of UV radiation). There were four lengths of UV exposure: 2.5 months (during summer), 4 months (during summer), 6 months, and 12 months. Litter samples were then analyzed for carbon and nitrogen content, fiber fractions, water extractable carbon and nitrogen, and biodegradability. We evaluated the biodegradability of litter using a 30-day laboratory incubation experiment. Litter samples were incubated in the dark in sealed glass microcosms with soil inoculum. The CO2 accumulation in each microcosm headspace was measured every 1-2 days to assess microbial respiration rate. In contrast to our hypothesis, litter exposed under UV block conditions had 28% higher cumulative CO2 production than litter from UV pass when the length of exposure was 2.5 months (P = 0.02, n = 4). Litter from the UV block treatment also tended to show higher cumulative CO2 production than litter from UV pass when the exposure lasted for 4 months (P = 0.10, n = 4). For samples with longer exposure times (6 and 12 months), there was no difference in CO2 production between UV

  13. Anti-inflammation activities of mycosporine-like amino acids (MAAs) in response to UV radiation suggest potential anti-skin aging activity.

    PubMed

    Suh, Sung-Suk; Hwang, Jinik; Park, Mirye; Seo, Hyo Hyun; Kim, Hyoung-Shik; Lee, Jeong Hun; Moh, Sang Hyun; Lee, Taek-Kyun

    2014-10-14

    Certain photosynthetic marine organisms have evolved mechanisms to counteract UV-radiation by synthesizing UV-absorbing compounds, such as mycosporine-like amino acids (MAAs). In this study, MAAs were separated from the extracts of marine green alga Chlamydomonas hedleyi using HPLC and were identified as porphyra-334, shinorine, and mycosporine-glycine (mycosporine-Gly), based on their retention times and maximum absorption wavelengths. Furthermore, their structures were confirmed by triple quadrupole MS/MS. Their roles as UV-absorbing compounds were investigated in the human fibroblast cell line HaCaT by analyzing the expression levels of genes associated with antioxidant activity, inflammation, and skin aging in response to UV irradiation. The mycosporine-Gly extract, but not the other MAAs, had strong antioxidant activity in the 2,2-diphenyl-1-picryhydrazyl (DPPH) assay. Furthermore, treatment with mycosporine-Gly resulted in a significant decrease in COX-2 mRNA levels, which are typically increased in response to inflammation in the skin, in a concentration-dependent manner. Additionally, in the presence of MAAs, the UV-suppressed genes, procollagen C proteinase enhancer (PCOLCE) and elastin, which are related to skin aging, had increased expression levels equal to those in UV-mock treated cells. Interestingly, the increased expression of involucrin after UV exposure was suppressed by treatment with the MAAs mycosporine-Gly and shinorine, but not porphyra-334. This is the first report investigating the biological activities of microalgae-derived MAAs in human cells.

  14. Solar UV radiation enhances the toxicity of arsenic in Ceriodaphnia dubia.

    PubMed

    Hansen, Lara J; Whitehead, J Andrew; Anderson, Susan L

    2002-08-01

    Extensive research exists regarding the toxicity of metals (including arsenic) to aquatic invertebrates. However, there has been little consideration of potential synergies between metals and ultraviolet (UV) radiation--despite considerable debate on this topic in human health research. Ultraviolet radiation is nearly ubiquitous in the natural environment, but it is generally overlooked as a confounding variable in toxicological assessments. We evaluate synergies between arsenic and solar UV radiation using the crustacean, Ceriodaphnia dubia. Both laboratory (with simulated solar radiation) and outdoor (with natural solar radiation) factorial experiments were performed with two intensities of UV (low and high) and four arsenic concentrations (0, 1, 1.25 and 1.5 mg/l). The laboratory experiment was multigenerational, examining survival and fecundity effects. The combination of high UV + 1.5 mg/l As adversely impacted survival; whereas, High UV + 0 mg/l As and Low UV + 1.5 mg/l As treatments did not. These results suggest synergism. This pattern was consistent for all three generations. Fecundity effects were not consistent across generations, and arsenic was demonstrated to have a greater impact than UV. Outdoor experiments were limited to assessing survival. Exposures in September 1999 resulted in a pattern similar to that in the laboratory exposure. High UV + 1.5 mg/l As treatment elicited diminished survival as compared to high UV + 0 mg/l As and low UV + 1.5 mg/l As. These results indicate that a synergistic effect between arsenic and UV exposure is possible under ambient conditions and within a relatively narrow dose range. The mechanism of this effect is unknown but could include synergistic genotoxic or oxidative stress. These findings point to the importance of using realistic UV exposures when determining criteria for protection of aquatic life.

  15. ZnO nanoparticle-containing emulsions for transparent, hydrophobic UV-absorbent films.

    PubMed

    Tigges, Britta; Möller, Martin; Weichold, Oliver

    2010-05-01

    A simple method for the preparation of thin, zinc oxide nanoparticle-containing films showing high UV absorption, high transmittance in the visible range (>88%), and water repellence with contact angles of 120 degrees is presented. The films are coated from an emulsion containing the hydrophobic polymer and the nanoparticles. This emulsion was prepared by mixing commercial o/w emulsions used for hydrophobic coatings on textiles with ZnO nanoparticle-containing o/w emulsions. The latter were designed so that the mixed coating formulation could be prepared without breaking. Preparation and properties of the o/w emulsions as well as the final films are elaborated. The performance of hydrophobic and hydrophilic ZnO nanoparticles during preparation and in the final film is evaluated.

  16. [Effects of enhanced UV-B radiation on the growth of five bryophytes in Changbai Mountains].

    PubMed

    Wu, Yu-Huan; Gu, Yan-Hong; Liu, Peng; Zoltán, Tuba

    2007-09-01

    Five bryophytes (Rhytidium rugosum, Rhytidiadelphus triquetrus, Hylocomium splendens, Hylocomium pyrenaicum, and Polytrichum alpinum) were exposed to 0.2 kJ x m(-2) x d(-1) (visible light under native condition, CK), 3.0 kJ x m(-2) x d(-1) (simulated dose of UV-B irradiance at the tundra in Changbai Mountains, medium dose of UV-B irradiance, T1), and 6.0 kJ x m(-2) x d(-1) (high dose of UV-B irradiance, T2) to investigate the effects of enhanced UV-B radiation on plant height, biomass, and chlorophyll content. The results indicated that medium and high UV-B radiations decreased the plant height, biomass, and chlorophyll content of R. triquetrus and H. splendens by 32.3%, 62.4%, and 81.3%, and 21.4%, 59.4%, and 62.8%, respectively, and the relative growth rates were negative. Enhanced UV-B radiations had less effect on P. alpinum chlorophyll content but doubled its below-ground biomass, and slightly increased the biomass of R. rugosum. P. alpinum and R. rugosum had higher tolerance against UV-B radiation, while R. triquetrus and H. splendens were more sensitive to UV-B radiation.

  17. Human skin pigmentation as an adaptation to UV radiation

    PubMed Central

    Jablonski, Nina G.; Chaplin, George

    2010-01-01

    Human skin pigmentation is the product of two clines produced by natural selection to adjust levels of constitutive pigmentation to levels of UV radiation (UVR). One cline was generated by high UVR near the equator and led to the evolution of dark, photoprotective, eumelanin-rich pigmentation. The other was produced by the requirement for UVB photons to sustain cutaneous photosynthesis of vitamin D3 in low-UVB environments, and resulted in the evolution of depigmented skin. As hominins dispersed outside of the tropics, they experienced different intensities and seasonal mixtures of UVA and UVB. Extreme UVA throughout the year and two equinoctial peaks of UVB prevail within the tropics. Under these conditions, the primary selective pressure was to protect folate by maintaining dark pigmentation. Photolysis of folate and its main serum form of 5-methylhydrofolate is caused by UVR and by reactive oxygen species generated by UVA. Competition for folate between the needs for cell division, DNA repair, and melanogenesis is severe under stressful, high-UVR conditions and is exacerbated by dietary insufficiency. Outside of tropical latitudes, UVB levels are generally low and peak only once during the year. The populations exhibiting maximally depigmented skin are those inhabiting environments with the lowest annual and summer peak levels of UVB. Development of facultative pigmentation (tanning) was important to populations settling between roughly 23° and 46° , where levels of UVB varied strongly according to season. Depigmented and tannable skin evolved numerous times in hominin evolution via independent genetic pathways under positive selection. PMID:20445093

  18. Co-intercalation of Acid Red 337 and a UV absorbent into layered double hydroxides: enhancement of photostability.

    PubMed

    Li, Dianqing; Qian, Leilei; Feng, Yongjun; Feng, Junting; Tang, Pinggui; Yang, Lan

    2014-12-10

    Organic-inorganic hybrid pigments with enhanced thermo- and photostability have been prepared by co-intercalating C.I. Acid Red 337 (AR337) and a UV absorbent (BP-4) into the interlayer of ZnAl layered double hydroxides through a coprecipitation method. The obtained compounds were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, thermogravimetric-differential thermogravimetric-differential thermal analysis, UV-visible spectroscopy, and the International Commission on Illumination (CIE) 1976 L*a*b* color scales. The results show the successful co-intercalation of AR337 and BP-4 into the interlayer region of layered double hydroxides (LDHs) and reveal the presence of host-guest interactions between LDH host layers and guest anions of AR337 and BP-4 and guest-guest interactions between AR337 and BP-4. The intercalation can improve the thermostability of AR337 due to the protection of LDH layers. Moreover, the co-intercalation of AR337 and BP-4 not only markedly enhances the photostability of AR337 but also significantly influences the color of the hybrid pigment.

  19. Traversal of cells by radiation and absorbed fraction estimates for electrons and alpha particles

    SciTech Connect

    Eckerman, K.F.; Ryman, J.C.; Taner, A.C.; Kerr, G.D.

    1985-01-01

    Consideration of the pathlength which radiation traverses in a cell is central to algorithms for estimating energy deposition on a cellular level. Distinct pathlength distributions occur for radionuclides: (1) uniformly distributed in space about the cell (referred to as -randomness); (2) uniformly distributed on the surface of the cell (S-randomness); and (3) uniformly distributed within the cell volume (I-randomness). For a spherical cell of diameter d, the mean pathlengths are 2/3d, 1/2d, and 3/4d, respectively, for these distributions. Algorithms for simulating the path of radiation through a cell are presented and the absorbed fraction in the cell and its nucleus are tabulated for low energy electrons and alpha particles emitted on the surface of spherical cells. The algorithms and absorbed fraction data should be of interest to those concerned with the dosimetry of radionuclide-labeled monoclonal antibodies. 8 refs., 3 figs., 2 tabs.

  20. Re-interpreting plant morphological responses to UV-B radiation.

    PubMed

    Robson, T Matthew; Klem, Karel; Urban, Otmar; Jansen, Marcel A K

    2015-05-01

    There is a need to reappraise the effects of UV-B radiation on plant morphology in light of improved mechanistic understanding of UV-B effects, particularly elucidation of the UV RESISTANCE LOCUS 8 (UVR8) photoreceptor. We review responses at cell and organismal levels, and explore their underlying regulatory mechanisms, function in UV protection and consequences for plant fitness. UV-induced morphological changes include thicker leaves, shorter petioles, shorter stems, increased axillary branching and altered root:shoot ratios. At the cellular level, UV-B morphogenesis comprises changes in cell division, elongation and/or differentiation. However, notwithstanding substantial new knowledge of molecular, cellular and organismal UV-B responses, there remains a clear gap in our understanding of the interactions between these organizational levels, and how they control plant architecture. Furthermore, despite a broad consensus that UV-B induces relatively compact architecture, we note substantial diversity in reported phenotypes. This may relate to UV-induced morphological changes being underpinned by different mechanisms at high and low UV-B doses. It remains unproven whether UV-induced morphological changes have a protective function involving shading and decreased leaf penetration of UV-B, counterbalancing trade-offs such as decreased photosynthetic light capture and plant-competitive abilities. Future research will need to disentangle seemingly contradictory interactions occurring at the threshold UV dose where regulation and stress-induced morphogenesis overlap.

  1. Solar UV radiation variations and their stratospheric and climatic effects

    NASA Technical Reports Server (NTRS)

    Donnelly, R. F.; Heath, D. F.

    1985-01-01

    Nimbus-7 SBUV measurements of the short-term solar UV variations caused by solar rotation and active-region evolution have determined the amplitude and wavelength dependence for the active-region component of solar UV variations. Intermediate-term variations lasting several months are associated with rounds of major new active regions. The UV flux stays near the peak value during the current solar cycle variation for more than two years and peaks about two years later than the sunspot number. Nimbus-7 measurements have observed the concurrent stratospheric ozone variations caused by solar UV variations. There is now no doubt that solar UV variations are an important cause of short- and long-term stratospheric variations, but the strength of the coupling to the troposphere and to climate has not yet been proven.

  2. Cooling systems and hybrid A/C systems using an electromagnetic radiation-absorbing complex

    DOEpatents

    Halas, Nancy J.; Nordlander, Peter; Neumann, Oara

    2015-05-19

    A method for powering a cooling unit. The method including applying electromagnetic (EM) radiation to a complex, where the complex absorbs the EM radiation to generate heat, transforming, using the heat generated by the complex, a fluid to vapor, and sending the vapor from the vessel to a turbine coupled to a generator by a shaft, where the vapor causes the turbine to rotate, which turns the shaft and causes the generator to generate the electric power, wherein the electric powers supplements the power needed to power the cooling unit

  3. Radiative forcing by light absorbing impurities in snow from MODIS surface reflectance data

    NASA Astrophysics Data System (ADS)

    Painter, Thomas H.; Bryant, Ann C.; Skiles, S. McKenzie

    2012-09-01

    The episodic deposition of dust and carbonaceous particles to snow decreases snow surface albedo and enhances absorption of solar radiation, leading to accelerated snowmelt, negative glacier mass balance, and the snow-albedo feedback. Until now, no remote sensing retrieval has captured the spatial and temporal variability of this forcing. Here we present the MODIS Dust Radiative Forcing in Snow (MODDRFS) model that retrieves surface radiative forcing by light absorbing impurities in snow cover from Moderate Resolution Imaging Spectroradiometer (MODIS) surface reflectance data. Validation of MODDRFS with a 7-year record of in situ measurements indicates the radiative forcing retrieval has positive bias at lower values and slight negative bias above 200 W m-2, subject to mixed pixel uncertainties. With bias-correction, MODDRFS has a root mean squared error of 32 W m-2 and mean absolute error of 25 W m-2. We demonstrate MODDRFS in the Upper Colorado River Basin and Hindu Kush-Himalaya.

  4. Novel radiator for carbon dioxide absorbents in low-flow anesthesia.

    PubMed

    Hirabayashi, Go; Mitsui, Takanori; Kakinuma, Takayasu; Ogihara, Yukihiko; Matsumoto, Shohei; Isshiki, Atsushi; Yasuo, Watanabe

    2003-01-01

    During long-term low-flow sevoflurane anesthesia, dew formation and the generation of compound A are increased in the anesthesia circuit because of elevated soda lime temperature. The object of this study was to develop a novel radiator for carbon dioxide absorbents used for long durations of low-flow sevoflurane anesthesia. Eleven female swine were divided into two groups comprising a "radiator" group (n = 5) that used a novel radiator for carbon dioxide absorbents and a "control" group (n = 6) that used a conventional canister. Anesthesia was maintained with N2O, O2, and sevoflurane, and low-flow anesthesia was performed with fresh gas flow at 0.6 L/min for 12 hr. In the "control" group, the soda lime temperature reached more than 40 degrees C and soda lime dried up with severe dew formation in the inspiratory valve. In the "radiator" group, the temperature of soda lime stayed at 30 degrees C, and the water content of soda lime was retained with no dew formation in the inspiratory valve. In addition, compound A concentration was reduced. In conclusion, radiation of soda lime reduced the amounts of condensation formed and the concentration of compound A in the anesthetic circuit, and allowed long term low-flow anesthesia without equipment malfunction.

  5. UV radiation, vitamin D, and cancer: how to measure the vitamin D synthetic capacity of UV sources?

    NASA Astrophysics Data System (ADS)

    Terenetskaya, Irina; Orlova, Tatiana

    2005-09-01

    UV irradiation is widely used in phototherapy. Regardless of the fact that UV overexposure is liable to cause adverse health effect, in appropriate doses UV radiation initiates synthesis of vitamin D in skin that is absolutely essential for human health. As it proved, most people in northern industrial countries have a level of vitamin D in their bodies that is insufficient for optimum health, especially in winter. These low levels of vitamin D are now known to be associated with a wide spectrum of serious disease much of which leads on to premature death. The diseases associated with D deficiency involve more than a dozen types of cancer including colon, breast and prostate, as well as the classic bone diseases: rickets, osteoporosis and osteomalacia. Irradiation with artificial UV sources can prevent the vitamin D deficiency. However, in view of different irradiation spectra of UV lamps, their ability to initiate vitamin D synthesis is different. The reliable method based on an in vitro model of vitamin D synthesis has been developed for direct measurement in situ of the vitamin D synthetic capacity of artificial UV sources during a phototherapeutic procedure

  6. MicroRNA-22 promotes cell survival upon UV radiation by repressing PTEN

    SciTech Connect

    Tan, Guangyun; Shi, Yuling; Wu, Zhao-Hui

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer miR-22 is induced in cells treated with UV radiation. Black-Right-Pointing-Pointer ATM is required for miR-22 induction in response to UV. Black-Right-Pointing-Pointer miR-22 targets 3 Prime -UTR of PTEN to repress its expression in UV-treated cells. Black-Right-Pointing-Pointer Upregulated miR-22 inhibits apoptosis in cells exposed to UV. -- Abstract: DNA damage response upon UV radiation involves a complex network of cellular events required for maintaining the homeostasis and restoring genomic stability of the cells. As a new class of players involved in DNA damage response, the regulation and function of microRNAs in response to UV remain poorly understood. Here we show that UV radiation induces a significant increase of miR-22 expression, which appears to be dependent on the activation of DNA damage responding kinase ATM (ataxia telangiectasia mutated). Increased miR-22 expression may result from enhanced miR-22 maturation in cells exposed to UV. We further found that tumor suppressor gene phosphatase and tensin homolog (PTEN) expression was inversely correlated with miR-22 induction and UV-induced PTEN repression was attenuated by overexpression of a miR-22 inhibitor. Moreover, increased miR-22 expression significantly inhibited the activation of caspase signaling cascade, leading to enhanced cell survival upon UV radiation. Collectively, these results indicate that miR-22 is an important player in the cellular stress response upon UV radiation, which may promote cell survival via the repression of PTEN expression.

  7. Decomposition of two haloacetic acids in water using UV radiation, ozone and advanced oxidation processes.

    PubMed

    Wang, Kunping; Guo, Jinsong; Yang, Min; Junji, Hirotsuji; Deng, Rongsen

    2009-03-15

    The decomposition of two haloacetic acids (HAAs), dichloroacetic acid (DCAA) and trichloroacetic acid (TCAA), from water was studied by means of single oxidants: ozone, UV radiation; and by the advanced oxidation processes (AOPs) constituted by combinations of O(3)/UV radiation, H(2)O(2)/UV radiation, O(3)/H(2)O(2), O(3)/H(2)O(2)/UV radiation. The concentrations of HAAs were analyzed at specified time intervals to elucidate the decomposition of HAAs. Single O(3) or UV did not result in perceptible decomposition of HAAs within the applied reaction time. O(3)/UV showed to be more suitable for the decomposition of DCAA and TCAA in water among the six methods of oxidation. Decomposition of DCAA was easier than TCAA by AOPs. For O(3)/UV in the semi-continuous mode, the effective utilization rate of ozone for HAA decomposition decreased with ozone addition. The kinetics of HAAs decomposition by O(3)/UV and the influence of coexistent humic acids and HCO(3)(-) on the decomposition process were investigated. The decomposition of the HAAs by the O(3)/UV accorded with the pseudo-first-order mode under the constant initial dissolved O(3) concentration and fixed UV radiation. The pseudo-first-order rate constant for the decomposition of DCAA was more than four times that for TCAA. Humic acids can cause the H(2)O(2) accumulation and the decrease in rate constants of HAAs decomposition in the O(3)/UV process. The rate constants for the decomposition of DCAA and TCAA decreased by 41.1% and 23.8%, respectively, when humic acids were added at a concentration of 1.2mgTOC/L. The rate constants decreased by 43.5% and 25.9%, respectively, at an HCO(3)(-) concentration of 1.0mmol/L.

  8. Evaluation of Structurally Different Carotenoids in Escherichia coli Transformants as Protectants against UV-B Radiation

    PubMed Central

    Sandmann, Gerhard; Kuhn, Silvia; Böger, Peter

    1998-01-01

    Escherichia coli cells transformed with several carotenogenic genes to mediate the formation of ζ-carotene, neurosporene, lycopene, β-carotene, and zeaxanthin were exposed to UV-B radiation. Short-term kinetics revealed that endogenous levels of neurosporene and β-carotene protected E. coli against irradiation with UV-B. Zeaxanthin protected against only the photosensitized UV-B treatment. All other carotenoids were ineffective. PMID:9572984

  9. UV-Radiation Induced Methane Emission from Murchison - Possible Implications for Methane in the Martian Atmosphere

    NASA Astrophysics Data System (ADS)

    Ott, U.; Keppler, F.; Vigano, I.; McLeod, A.; Früchtl, M.; Röckmann, T.

    2012-09-01

    Exposure of the Murchison meteorite to UV radiation releases large quantities of methane. Acting on meteoritic debris on the Martian surface, the process may be of importance for the Martian atmosphere.

  10. Degassing a vacuum system with in-situ UV radiation

    SciTech Connect

    Koebley, Sean R.; Outlaw, Ronald A.; Dellwo, Randy R.

    2012-11-15

    Photon-stimulated desorption (PSD) from a high-powered ultraviolet source was investigated as a technique to degas a vacuum system. A stainless steel vacuum system was pumped down from atmosphere with different time doses of 185 nm light, and the resulting outgassing rates were compared to that of a control pumpdown without UV assistance. PSD was found to provide a factor of 2 advantage in pumpdown pressure after only 30 min of UV exposure, with no additional advantage observed for longer irradiation times. Specifically, an outgassing rate of 3 Multiplication-Sign 10{sup -10} Torr L s{sup -1} cm{sup -2} was reached 3 h sooner in pumpdowns with UV assistance compared to those without UV, while a rate of 1.2 Multiplication-Sign 10{sup -10} Torr L s{sup -1} cm{sup -2} was reached 16 h sooner in UV runs. The authors calculated that about 22 monolayers of water were desorbed after 30 min of UV exposure. The results indicate that PSD by a 40 W 185 nm UV source can serve as a nonthermal technique to significantly speed the pumpdown of a vacuum system from atmosphere after only 30 min.

  11. INTERACTIVE EFFECTS OF SOLAR UV RADIATION AND CLIMATE CHANGE ON BIOGEOCHEMICAL CYCLING

    EPA Science Inventory

    This paper assesses research on the interactions of UV radiation (280-400 nm) and global climate change with global biogeochemical cycles at the Earth's surface. The effects of UV-B (280-315 nm), which are dependent on the stratospheric ozone layer, on biogeochemical cycles are o...

  12. INTERACTIONS OF SOLAR UV RADIATION AND DISSOLVED ORGANIC MATTER IN AQUATIC ENVIRONMENTS

    EPA Science Inventory

    Changes in the ozone layer over the past two decades have resulted in increases in solar ultraviolet (UV) radiation that reaches the surface of aquatic environments. Recent studies have demonstrated that these UV increases cause changes in photochemical reactions that affect the...

  13. Molecular and physiological effects of environmental UV radiation on fungal conidia.

    PubMed

    Braga, Gilberto U L; Rangel, Drauzio E N; Fernandes, Éverton K K; Flint, Stephan D; Roberts, Donald W

    2015-08-01

    Conidia are specialized structures produced at the end of the asexual life cycle of most filamentous fungi. They are responsible for fungal dispersal and environmental persistence. In pathogenic species, they are also involved in host recognition and infection. Conidial production, survival, dispersal, germination, pathogenicity and virulence can be strongly influenced by exposure to solar radiation, although its effects are diverse and often species dependent. UV radiation is the most harmful and mutagenic waveband of the solar spectrum. Direct exposure to solar radiation for a few hours can kill conidia of most fungal species. Conidia are killed both by solar UV-A and UV-B radiation. In addition to killing conidia, which limits the size of the fungal population and its dispersion, exposures to sublethal doses of UV radiation can reduce conidial germination speed and virulence. The focus of this review is to provide an overview of the effects of solar radiation on conidia and on the major systems involved in protection from and repair of damage induced by solar UV radiation. The efforts that have been made to obtain strains of fungi of interest such as entomopathogens more tolerant to solar radiation will also be reviewed.

  14. Analysis of differentially expressed genes under UV-B radiation in the desert plant Reaumuria soongorica.

    PubMed

    Liu, Meiling; Li, Xinrong; Liu, Yubing; Shi, Yulan; Ma, Xiaofei

    2015-12-15

    Reaumuria soongorica is one of the typical desert plants that present excellent tolerance to adverse environments. However, its molecular response to UV-B radiation remains poorly understood. To test the response and tolerance mechanisms of R. soongorica to the increasing UV-B radiation, the differentially expressed genes (DEGs) were investigated between the control and UV-B radiation groups. A total of 2150 DEGs were detected between the two groups, of which 561 were up-regulated and 1589 were down-regulated. For functional analysis, DEGs were divided into three groups: (i) Chloroplast-localized proteins, including photosynthesis-associated proteins, ribulose-phosphate-3-epimerase, and ATP-dependent Clp protease. Their transcripts were inhibited, implying that the normal function of chloroplast was affected by UV-B radiation. (ii) Proteins involved in signaling transduction, such as phototropins and GTP-binding proteins. The transcriptional alternation of phototropins may reduce the penetration of UV-B radiation by regulating phototropism, stomatal opening, and chloroplast relocation. The down regulation of GTP-binding proteins may inhibit replication of potentially damaged DNA through preventing cell division; and (iii) proteins for lipid transfer and flavonoids biosynthesis. The up-regulation of these genes suggested that lipid transfer and flavonoids may have a protective function in response to UV-B radiation. Thus, UV-B radiation may lead to the disruption of chloroplasts function. The induction of genes for signal transduction and protective proteins may be a strategy for responding to UV-B radiation in R. soongorica.

  15. Intraspecific variation in sensitivity to UV-B radiation in rice

    SciTech Connect

    Barnes, P.W.; Maggard, S.; Holman, S.R.; Vergara, B.S.

    1993-01-01

    Twenty-two cultivars of rice (Oryza sativa L.) from diverse origins were grown under greenhouse conditions and exposed to ultraviolet-B radiation (UV-B; 280-320 nm) simulating a 5% reduction in stratospheric ozone in spring for the Philippines (14 deg N lat.) to evaluate growth and morphological responses to UV-B. In comparison to controls that received no UV-B, plants exposed to UV-B exhibited significantly reduced dry matter production (total plant and shoot), shoot height, leaf blade length and total leaf area, increased number of tillers, and greater weight fractions in leaf blades and roots. For most cultivars, the relative effects of UV-B on shoot morphology were greater than the effects on biomass production. The direction of the UV-B effects were generally similar for all cultivars, however, there were significant differences among cultivars in the magnitude of the UV-B-induced changes.

  16. Solar UV-B Radiation Inhibits the Growth of Antarctic Terrestrial Fungi

    PubMed Central

    Hughes, Kevin A.; Lawley, Blair; Newsham, Kevin K.

    2003-01-01

    We tested the effects of solar radiation, and UV-B in particular, on the growth of Antarctic terrestrial fungi. The growth responses to solar radiation of five fungi, Geomyces pannorum, Phoma herbarum, Pythium sp., Verticillium sp., and Mortierella parvispora, each isolated from Antarctic terrestrial habitats, were examined on an agar medium in the natural Antarctic environment. A 3-h exposure to solar radiation of >287 nm reduced the hyphal extension rates of all species relative to controls kept in the dark. Pythium sp. cultures exposed to solar radiation for 1.5 h on five consecutive days were most sensitive to radiation of >287 nm, but radiation of >313 nm also inhibited growth to a lesser extent. Radiation of >400 nm had no effect on hyphal growth relative to controls kept in the dark. Short-wave solar UV-B radiation of between 287 and 305 nm inhibited the growth of Pythium sp. hyphae on and below the surface of the agar medium after 24 h, but radiation of ≥345 nm only reduced the growth of surface hyphae. Similar detrimental effects of UV-B on surface and, to a lesser extent, submerged hyphae of all five fungi were shown in the laboratory by using artificial UV-B from fluorescent lamps. A comparison of growth responses to solar radiation and temperature showed that the species that were most resistant to UV radiation grew fastest at higher temperatures. These data suggest that solar UV-B reduces the growth of fungi on the soil surface in the Antarctic terrestrial environment. PMID:12620833

  17. Quantitative estimation of UV light dose concomitant to irradiation with ionizing radiation

    NASA Astrophysics Data System (ADS)

    Petin, Vladislav G.; Morozov, Ivan I.; Kim, Jin Kyu; Semkina, Maria A.

    2011-01-01

    A simple mathematical model for biological estimation of UV light dose concomitant to ionizing radiation was suggested. This approach was applied to determine the dependency of equivalent UV light dose accompanied by 100 Gy of ionizing radiation on energy of sparsely ionizing radiation and on volume of the exposed cell suspension. It was revealed that the relative excitation contribution to the total lethal effect and the value of UV dose was greatly increased with an increase in energy of ionizing radiation and volume of irradiated suspensions. It is concluded that these observations are in agreement with the supposition that Čerenkov emission is responsible for the production of UV light damage and the phenomenon of photoreactivation observed after ionizing exposure of bacterial and yeast cells hypersensitive to UV light. A possible synergistic interaction of the damages produced by ionizations and excitations as well as a probable participation of UV component of ionizing radiation in the mechanism of hormesis and adaptive response observed after ionizing radiation exposure is discussed.

  18. Different Proteome Profiles between Male and Female Populus cathayana Exposed to UV-B Radiation

    PubMed Central

    Zhang, Yunxiang; Feng, Lihua; Jiang, Hao; Zhang, Yuanbin; Zhang, Sheng

    2017-01-01

    With increasing altitude, solar UV-B radiation is enhanced. Based on the phenomenon of male-biased sex ratio of Populus cathayana Rehder in high altitude alpine area, we hypothesized that males have a faster and more sophisticated responsive mechanism to high UV-B radiation than that of females. Our previous studies have shown sexually different responses to high UV-B radiation were existed in P. cathayana at the morphological, physiological, and transcriptomic levels. However, the responses at the proteomic level remain unclear. In this study, an isobaric tag for relative and absolute quantification (iTRAQ)-based quantitative proteome analysis was performed in P. cathayana females and males. A total of 2,405 proteins were identified, with 331 proteins defined as differentially expressed proteins (DEPs). Among of these, 79 and 138 DEPs were decreased and 47 and 107 DEPs were increased under high solar UV-B radiation in females and males, respectively. A bioinformatics analysis categorized the common responsive proteins in the sexes as related to carbohydrate and energy metabolism, translation/transcription/post-transcriptional modification, photosynthesis, and redox reactions. The responsive proteins that showed differences in sex were mainly those involved in amino acid metabolism, stress response, and translation/transcription/post-transcriptional modification. This study provides proteomic profiles that poplars responding to solar UV-B radiation, and it also provides new insights into differentially sex-related responses to UV-B radiation. PMID:28326097

  19. Effects of solar UV radiation on aquatic ecosystems and interactions with climate change.

    PubMed

    Häder, D-P; Kumar, H D; Smith, R C; Worrest, R C

    2007-03-01

    Recent results continue to show the general consensus that ozone-related increases in UV-B radiation can negatively influence many aquatic species and aquatic ecosystems (e.g., lakes, rivers, marshes, oceans). Solar UV radiation penetrates to ecological significant depths in aquatic systems and can affect both marine and freshwater systems from major biomass producers (phytoplankton) to consumers (e.g., zooplankton, fish, etc.) higher in the food web. Many factors influence the depth of penetration of radiation into natural waters including dissolved organic compounds whose concentration and chemical composition are likely to be influenced by future climate and UV radiation variability. There is also considerable evidence that aquatic species utilize many mechanisms for photoprotection against excessive radiation. Often, these protective mechanisms pose conflicting selection pressures on species making UV radiation an additional stressor on the organism. It is at the ecosystem level where assessments of anthropogenic climate change and UV-related effects are interrelated and where much recent research has been directed. Several studies suggest that the influence of UV-B at the ecosystem level may be more pronounced on community and trophic level structure, and hence on subsequent biogeochemical cycles, than on biomass levels per se.

  20. Near-UV radiation acts as a beneficial factor for physiological responses in cucumber plants.

    PubMed

    Mitani-Sano, Makiko; Tezuka, Takafumi

    2013-11-05

    Effects of near-UV radiation on the growth and physiological activity of cucumber plants were investigated morphologically, physiologically and biochemically using 3-week-old seedlings grown under polyvinyl chloride films featuring transmission either above 290 nm or above 400 nm in growth chambers. The hypocotyl length and leaf area of cucumber seedlings were reduced but the thickness of leaves was enhanced by near-UV radiation, due to increased upper/lower epidermis thickness, palisade parenchyma thickness and volume of palisade parenchyma cells. Photosynthetic and respiratory activities were also promoted by near-UV radiation, associated with general enhancement of physiological/biochemical responses. Particularly, metabolic activities in the photosynthetic system of chloroplasts and the respiratory system of mitochondria were analyzed under the conditions of visible light with and without near-UV radiation. For example, the activities of NAD(P)-dependent enzymes such as glyceraldehyde-3-phosphate dehydrogenase (G3PDH) in chloroplasts and isocitrate dehydrogenase (ICDH) in mitochondria were elevated, along with levels of pyridine nucleotides (nicotinamide coenzymes) [NAD(H) and NADP(H)] and activity of NAD kinase (NADP forming enzyme). Taken together, these data suggest that promotion of cucumber plant growth by near-UV radiation involves activation of carbon and nitrogen metabolism in plants. The findings of this research showed that near-UV radiation reaching the Earth's surface is a beneficial factor for plant growth.

  1. Studies on the performance of TiO2 thin films as protective layer to chlorophyll in Ocimum tenuiflorum L from UV radiation

    NASA Astrophysics Data System (ADS)

    Malliga, P.; Selvi, B. Karunai; Pandiarajan, J.; Prithivikumaran, N.; Neyvasagam, K.

    2015-06-01

    Thin films of TiO2 were prepared on glass substrates using sol-gel dip coating technique. The films with 10 coatings were prepared and annealed at temperatures 350°C, 450˚C and 550˚C for 1 hour in muffle furnace. The annealed films were characterized by X - Ray diffraction (XRD), UV - Visible, AFM, Field Effect Scanning Electron Microscopy (FESEM) and EDAX studies. Chlorophyll has many health benefits due to its structural similarity to human blood and its good chelating ability. It has antimutagenic and anticarcinogenic properties. UV light impairs photosynthesis and reduces size, productivity, and quality in many of the crop plant species. Increased exposure of UV light reduces chlorophyll contents a, b and total content in plants. Titanium Dioxide (TiO2) is a wide band gap semiconductor and efficient light harvester. TiO2 has strong UltraViolet (UV) light absorbing capability. Here, we have studied the performance of TiO2 thin films as a protective layer to the chlorophyll contents present in medicinal plant, tulsi (Ocimum tenuiflorum L) from UV radiation. The study reveals that crystallite size increases, transmittance decreases and chlorophyll contents increases with increase in annealing temperature. This study showed that TiO2 thin films are good absorber of UV light and protect the chlorophyll contents a, b and total content in medicinal plants.

  2. Studies on the performance of TiO{sub 2} thin films as protective layer to chlorophyll in Ocimum tenuiflorum L from UV radiation

    SciTech Connect

    Malliga, P.; Selvi, B. Karunai; Pandiarajan, J.; Prithivikumaran, N.; Neyvasagam, K.

    2015-06-24

    Thin films of TiO{sub 2} were prepared on glass substrates using sol-gel dip coating technique. The films with 10 coatings were prepared and annealed at temperatures 350°C, 450°C and 550°C for 1 hour in muffle furnace. The annealed films were characterized by X – Ray diffraction (XRD), UV – Visible, AFM, Field Effect Scanning Electron Microscopy (FESEM) and EDAX studies. Chlorophyll has many health benefits due to its structural similarity to human blood and its good chelating ability. It has antimutagenic and anticarcinogenic properties. UV light impairs photosynthesis and reduces size, productivity, and quality in many of the crop plant species. Increased exposure of UV light reduces chlorophyll contents a, b and total content in plants. Titanium Dioxide (TiO{sub 2}) is a wide band gap semiconductor and efficient light harvester. TiO{sub 2} has strong UltraViolet (UV) light absorbing capability. Here, we have studied the performance of TiO{sub 2} thin films as a protective layer to the chlorophyll contents present in medicinal plant, tulsi (Ocimum tenuiflorum L) from UV radiation. The study reveals that crystallite size increases, transmittance decreases and chlorophyll contents increases with increase in annealing temperature. This study showed that TiO{sub 2} thin films are good absorber of UV light and protect the chlorophyll contents a, b and total content in medicinal plants.

  3. Biological space experiments for the simulation of Martian conditions: UV radiation and Martian soil analogues.

    PubMed

    Rettberg, P; Rabbow, E; Panitz, C; Horneck, G

    2004-01-01

    The survivability of resistant terrestrial microbes, bacterial spores of Bacillus subtilis, was investigated in the BIOPAN facility of the European Space Agency onboard of Russian Earth-orbiting FOTON satellites (BIOPAN I -III missions). The spores were exposed to different subsets of the extreme environmental parameters in space (vacuum, extraterrestrial solar UV, shielding by protecting materials like artificial meteorites). The results of the three space experiments confirmed the deleterious effects of extraterrestrial solar UV radiation which, in contrast to the UV radiation reaching the surface of the Earth, also contains the very energy-rich, short wavelength UVB and UVC radiation. Thin layers of clay, rock or meteorite material were shown to be only successful in UV-shielding, if they are in direct contact with the spores. On Mars the UV radiation climate is similar to that of the early Earth before the development of a protective ozone layer in the atmosphere by the appearance of the first aerobic photosynthetic bacteria. The interference of Martian soil components and the intense and nearly unfiltered Martian solar UV radiation with spores of B. subtilis will be tested with a new BIOPAN experiment, MARSTOX. Different types of Mars soil analogues will be used to determine on one hand their potential toxicity alone or in combination with solar UV (phototoxicity) and on the other hand their UV protection capability. Two sets of samples will be placed under different cut-off filters used to simulate the UV radiation climate of Mars and Earth. After exposure in space the survival of and mutation induction in the spores will be analyzed at the DLR, together with parallel samples from the corresponding ground control experiment performed in the laboratory. This experiment will provide new insights into the principal limits of life and its adaptation to environmental extremes on Earth or other planets which and will also have implications for the potential for the

  4. Sensitivity of scattering and absorbing aerosol direct radiative forcing to physical climate factors

    NASA Astrophysics Data System (ADS)

    Ocko, Ilissa B.; Ramaswamy, V.; Ginoux, Paul; Ming, Yi; Horowitz, Larry W.

    2012-10-01

    The direct radiative forcing of the climate system includes effects due to scattering and absorbing aerosols. This study explores how important physical climate characteristics contribute to the magnitudes of the direct radiative forcings (DRF) from anthropogenic sulfate, black carbon, and organic carbon. For this purpose, we employ the GFDL CM2.1 global climate model, which has reasonable aerosol concentrations and reconstruction of twentieth-century climate change. Sulfate and carbonaceous aerosols constitute the most important anthropogenic aerosol perturbations to the climate system and provide striking contrasts between primarily scattering (sulfate and organic carbon) and primarily absorbing (black carbon) species. The quantitative roles of cloud coverage, surface albedo, and relative humidity in governing the sign and magnitude of all-sky top-of-atmosphere (TOA) forcings are examined. Clouds reduce the global mean sulfate TOA DRF by almost 50%, reduce the global mean organic carbon TOA DRF by more than 30%, and increase the global mean black carbon TOA DRF by almost 80%. Sulfate forcing is increased by over 50% as a result of hygroscopic growth, while high-albedo surfaces are found to have only a minor (less than 10%) impact on all global mean forcings. Although the radiative forcing magnitudes are subject to uncertainties in the state of mixing of the aerosol species, it is clear that fundamental physical climate characteristics play a large role in governing aerosol direct radiative forcing magnitudes.

  5. The role of coccoliths in protecting Emiliania huxleyi against stressful light and UV radiation

    NASA Astrophysics Data System (ADS)

    Xu, Juntian; Bach, Lennart T.; Schulz, Kai G.; Zhao, Wenyan; Gao, Kunshan; Riebesell, Ulf

    2016-08-01

    Coccolithophores are a group of phytoplankton species which cover themselves with small scales (coccoliths) made of calcium carbonate (CaCO3). The reason why coccolithophores form these calcite platelets has been a matter of debate for decades but has remained elusive so far. One hypothesis is that they play a role in light or UV protection, especially in surface dwelling species like Emiliania huxleyi, which can tolerate exceptionally high levels of solar radiation. In this study, we tested this hypothesis by culturing a calcified and a naked strain under different light conditions with and without UV radiation. The coccoliths of E. huxleyi reduced the transmission of visible radiation (400-700 nm) by 7.5 %, that of UV-A (315-400 nm) by 14.1 % and that of UV-B (280-315 nm) by 18.4 %. Growth rates of the calcified strain (PML B92/11) were about 2 times higher than those of the naked strain (CCMP 2090) under indoor constant light levels in the absence of UV radiation. When exposed to outdoor conditions (fluctuating sunlight with UV radiation), growth rates of calcified cells were almost 3.5 times higher compared to naked cells. Furthermore, the relative electron transport rate was 114 % higher and non-photochemical quenching (NPQ) was 281 % higher in the calcified compared to the naked strain, implying higher energy transfer associated with higher NPQ in the presence of calcification. When exposed to natural solar radiation including UV radiation, the maximal quantum yield of photosystem II was only slightly reduced in the calcified strain but strongly reduced in the naked strain. Our results reveal an important role of coccoliths in mitigating light and UV stress in E. huxleyi.

  6. Effects of UV-B radiation on phenolic composition and deposition patterns and leaf physiology in three Eastern tree species

    NASA Astrophysics Data System (ADS)

    Sullivan, Joseph H.; Gitz, Dennis C.; Peek, Michael S.; McElrone, Andrew J.

    2002-01-01

    Quantitative changes in foliar chemistry in response to UVB radiation are frequently reported but less is known about the qualitative changes in putative UV-screening compounds. It has also not been conclusively shown whether qualitative differences in screening compounds or differences in localization patterns influences the sensitivity of plants to damage from UVB radiation. In this study we evaluated the chemical composition and deposition patterns of UV-absorbing compounds in three tree species and assayed these species for possible effects on gas exchange and photosynthetic carbon assimilation. Branches of mature trees of sweetgum (Liquidambar styraciflua), tulip poplar (Liriodendron tulipifera) and red maple (Acer rubrum) were exposed to supplemental levels of UVB radiation over three growing seasons. Controls for UVA were also measured by exposing branches to supplemental UVA only, and additional branches not irradiated were also used for controls. These species demonstrated contrasting chemical composition and deposition patterns with poplar being the most responsive in terms of epidermal accumulation of phenolics including flavonols and chlorogenic acid and hydroxycinnamates. Sweetgum and red maple showed increases primarily in hydroxycinnamates, particularly in the mesophyll in red maple. Leaf area was marginally influenced by UV exposure level. Assimilation was generally not reduced by UVB radiation in these species and was enhanced in red maple by both UVB and UVA and by UVA in sweetgum. These finding are consistent with a hypothesis that epidermal attenuation of UVB would only be reduced in poplar, which accumulated the additional epidermal screening compounds. It is possible that photosynthetic efficiency was enhanced in red maple by the increased absorption of blue light within the mesophyll. Stomatal conductance was generally reduced, and this led to an increase in water use efficiency in red maple and poplar.

  7. Space Evaporator Absorber Radiator (SEAR) for Thermal Storage on Manned Spacecraft

    NASA Technical Reports Server (NTRS)

    Izenson, Michael G.; Chen, Weibo; Chepko, Ariane; Bue, Grant; Quinn, Gregory

    2014-01-01

    Future manned exploration spacecraft will need to operate in challenging thermal environments. State-of the- art technology for active thermal control relies on sublimating water ice and venting the vapor overboard in very hot environments. This approach can lead to large loss of water and a significant mass penalty for the spacecraft. This paper describes an innovative thermal control system that uses a Space Evaporator Absorber Radiator (SEAR) to control spacecraft temperatures in highly variable environments without venting water. SEAR uses heat pumping and energy storage by LiCl/water absorption to enable effective cooling during hot periods and regeneration during cool periods. The LiCl absorber technology has the potential to absorb over 800 kJ per kg of system mass, compared to phase change heat sink systems that typically achieve approx. 50 kJ/kg. The optimal system is based on a trade-off between the mass of water saved and extra power needed to regenerate the LiCl absorber. This paper describes analysis models and the predicted performance and optimize the size of the SEAR system, estimated size and mass of key components, and power requirements for regeneration. We also present a concept design for an ISS test package to demonstrate operation of a subscale system in zero gravity.

  8. UV radiation impacts body weight, oxygen consumption, and shelter selection in the intertidal vertebrate Girella laevifrons.

    PubMed

    Pulgar, José; Waldisperg, Melany; Galbán-Malagón, Cristóbal; Maturana, Diego; Pulgar, Victor M; Aldana, Marcela

    2017-02-01

    The amount of ultraviolet (UV) radiation reaching the earth's surface has increased due to ozone layer depletion, and this fact represents an opportunity to evaluate the physiological and behavioral responses of animals to this global-scale stressor. The transitory fish Girella laevifrons inhabits pools in the upper intertidal zone, which is characterized by exposure to a wide range of stressors, including UV radiation. We documented the field magnitude and the impact of UV radiation on oxygen consumption, body mass variations, and shelter (rocky and algae) selection by G. laevifrons. UV-exposed animals showed increased oxygen consumption, slower body weight increase, and active rocky shelter selection. Control fish showed increased body weight and no evident shelter selection. The results indicated that UV exposure affects fish energetic balance and habitat selection to favor greater protection against radiation. Increased UV exposure in transitory intertidal animals at levels observed in upper intertidal pools may alter the residency time of fish before leaving for the subtidal zone. Therefore, UV-induced energetic changes may determine animal performance and ontogenetic physiological itineraries, whereas shelter quality might determine habitat use.

  9. MicroRNA-22 promotes cell survival upon UV radiation by repressing PTEN.

    PubMed

    Tan, Guangyun; Shi, Yuling; Wu, Zhao-Hui

    2012-01-06

    DNA damage response upon UV radiation involves a complex network of cellular events required for maintaining the homeostasis and restoring genomic stability of the cells. As a new class of players involved in DNA damage response, the regulation and function of microRNAs in response to UV remain poorly understood. Here we show that UV radiation induces a significant increase of miR-22 expression, which appears to be dependent on the activation of DNA damage responding kinase ATM (ataxia telangiectasia mutated). Increased miR-22 expression may result from enhanced miR-22 maturation in cells exposed to UV. We further found that tumor suppressor gene phosphatase and tensin homolog (PTEN) expression was inversely correlated with miR-22 induction and UV-induced PTEN repression was attenuated by overexpression of a miR-22 inhibitor. Moreover, increased miR-22 expression significantly inhibited the activation of caspase signaling cascade, leading to enhanced cell survival upon UV radiation. Collectively, these results indicate that miR-22 is an important player in the cellular stress response upon UV radiation, which may promote cell survival via the repression of PTEN expression.

  10. Direct effects of UV-B radiation on the freshwater heterotrophic nanoflagellate Paraphysomonas sp.

    PubMed

    Macaluso, Amy L; Mitchell, David L; Sanders, Robert W

    2009-07-01

    The formation of DNA photoproducts in organisms exposed to ambient levels of UV-B radiation can lead to death and/or reduced population growth in aquatic systems. Dependence on photoenzymatic repair to reverse DNA damage caused by UV-B radiation is demonstrated for Paraphysomonas sp., a member of a widely distributed genus of heterotrophic nanoflagellates. At 20 degrees C, Paraphysomonas sp. was exposed to a range of UV-B intensities encountered in natural systems. Populations of the flagellate survived and grew in a dose-dependent manner, but only when simultaneously exposed to photorepair radiation (PRR). In contrast, flagellates exposed to UV-B at 15 degrees C suffered 100% mortality except at the lowest UV-B level (with PRR) tested, which suggested a photorepair temperature optimum above 15 degrees C. After acute UV-B exposures, DNA damage (measured as the formation of pyrimidine dimers) was reduced only in organisms that underwent subsequent exposure to PRR. Populations kept in the dark after UV-B exposure maintained the initial levels of pyrimidine dimers. These results are the first to demonstrate the reliance of a heterotrophic flagellate on photoenzymatic DNA repair for survival from UV-B exposure.

  11. Decreased frost hardiness of Vaccinium vitis-idaea in reponse to UV-A radiation.

    PubMed

    Taulavuori, Kari; Keränen, Johanna; Suokanerva, Hanne; Lakkala, Kaisa; Huttunen, Satu; Laine, Kari; Taulavuori, Erja

    2012-08-01

    The aim of this study was to investigate plant frost hardiness responses to ultraviolet (UV) radiation, since the few results reported are largely contradictory. It was hypothesized that functional adaptation of life forms could explain these contradictions. Dwarf shrubs and tree seedlings, representing both evergreen and deciduous forms, were tested (Vaccinium vitis-idaea, Vaccinium myrtillus, Pinus sylvestris, Betula pubescens and its red form f. rubra). The research was performed in Sodankylä, Northern Finland (67°N), with enhanced UV-B- and UV-A-radiation treatments between 2002 and 2009. Plant frost hardiness was determined using the freeze-induced electrolyte leakage method in early autumn, during the onset of the frost hardening process. Additional physiological variables (malondialdehyde, glutathione, total phenols, C and N contents) were analyzed in V. vitis-idaea to explain the possible responses. These variables did not respond significantly to UV-radiation treatments, but explained the frost hardiness well (r² = 0.678). The main finding was that frost hardiness decreased in the evergreen shrub V. vitis-idaea, particularly with enhanced UV-A radiation. No significant responses were observed with the other plants. Therefore, this study does not support the idea that enhanced UV radiation could increase plant frost hardiness.

  12. DNA repair and resistance to UV-B radiation in western spotted frogs

    USGS Publications Warehouse

    Blaustein, A.R.; Hays, J.B.; Hoffman, P.D.; Chivers, D.P.; Kiesecker, J.M.; Leonard, W.P.; Marco, A.; Olson, D.H.; Reaser, J.K.; Anthony, R.G.

    1999-01-01

    We assessed DNA repair and resistance to solar radiation in eggs of members of the western spotted frog complex (Rana pretiosa and R. luteiventris), species whose populations are suffering severe range reductions and declines. Specifically, we measured the activity of photoreactivating enzyme (photolyase) in oocytes of spotted frogs. In some species, photoreactivation is the most important mechanism for repair of UV-damaged DNA. Using field experiments, we also compared the hatching success of spotted frog embryos at natural oviposition sites at three elevations, where some embryos were subjected to ambient levels of UV-B radiation and others were shielded from UV-B radiation. Compared with other amphibians, photolyase activities in spotted frogs were relatively high. At all sites, hatching success was unaffected by UV-B. Our data support the interpretation that amphibian embryos with relatively high levels of photolyase are more resistant to UV-B radiation than those with lower levels of photolyase. At the embryonic stage, UV-B radiation does not presently seem to be contributing to the population declines of spotted frogs.

  13. Effect of Index of Refraction on Radiation Characteristics in a Heated Absorbing, Emitting, and Scattering Layer

    NASA Technical Reports Server (NTRS)

    Siegel, R.; Spuckler, C. M.

    1992-01-01

    The index of refraction can considerably influence the temperature distribution and radiative heat flow in semitransparent materials such as some ceramics. For external radiant heating, the refractive index influences the amount of energy transmitted into the interior of the material. Emission within a material depends on the square of its refractive index, and hence this emission can be many times that for a biackbody radiating into a vacuum. Since radiation exiting through an interface into a vacuum cannot exceed that of a blackbody, there is extensive reflection at the internal surface of an interface, mostly by total internal reflection. This redistributes energy within the layer and tends to make its temperature distribution more uniform. The purpose of the present analysis is to show that, for radiative equilibrium in a gray layer with diffuse interfaces, the temperature distribution and radiative heat flux for any index of refraction can be obtained very simply from the results for an index of refraction of unity. For the situation studied here, the layer is subjected to external radiative heating incident on each of its surfaces. The material emits, absorbs, and isotropically scatters radiation. For simplicity the index of refraction is unity in the medium surrounding the layer. The surfaces of the layer are assumed diffuse. This is probably a reasonable approximation for a ceramic layer that has not been polished. When transmitted radiation or radiation emitted from the interior reaches the inner surface of an interface, the radiation is diffused and some of it thereby placed into angular directions for which there is total internal reflection. This provides a trapping effect for retaining energy within the layer and tends to equalize its temperature distribution. An analysis of temperature distributions in absorbing-emitting layers, including index of refraction effects, was developed by Gardon (1958) to predict cooling and heat treating of glass plates

  14. Ornaments in radiation treatment of cultural heritage: Color and UV-vis spectral changes in irradiated nacres

    NASA Astrophysics Data System (ADS)

    Marušić, Katarina; Pucić, Irina; Desnica, Vladan

    2016-07-01

    Cultural heritage objects that are radiation treated in order to stop their biodegradation often contain ornamenting materials that cannot be removed. Radiation may produce unwanted changes to such materials. Nacre is a common ornamenting material so this is an attempt to assess the impact of gamma-radiation on its optical properties. Two types of nacre (yellow and white) were obtained from a museum and subjected to different absorbed doses of Co-60 gamma irradiation under the same conditions. The radiation induced changes of nacres color were investigated with fiber optic reflectance spectroscopy (FORS). Colorimetry in CIE Lab space revealed that in both nacres the lightness shifted to darker grey hues at high doses while the color component's (red, green, yellow and blue) behavior depended on the nacre type. Observable changes occurred at doses much above the dose range needed for radiation treatment of cultural heritage objects that are often ornamented with nacre. In UV-vis reflectance spectra of samples irradiated to high doses carbonate radical anion absorption appeared.

  15. A hybrid transport-diffusion model for radiative transfer in absorbing and scattering media

    NASA Astrophysics Data System (ADS)

    Roger, M.; Caliot, C.; Crouseilles, N.; Coelho, P. J.

    2014-10-01

    A new multi-scale hybrid transport-diffusion model for radiative transfer is proposed in order to improve the efficiency of the calculations close to the diffusive regime, in absorbing and strongly scattering media. In this model, the radiative intensity is decomposed into a macroscopic component calculated by the diffusion equation, and a mesoscopic component. The transport equation for the mesoscopic component allows to correct the estimation of the diffusion equation, and then to obtain the solution of the linear radiative transfer equation. In this work, results are presented for stationary and transient radiative transfer cases, in examples which concern solar concentrated and optical tomography applications. The Monte Carlo and the discrete-ordinate methods are used to solve the mesoscopic equation. It is shown that the multi-scale model allows to improve the efficiency of the calculations when the medium is close to the diffusive regime. The proposed model is a good alternative for radiative transfer at the intermediate regime where the macroscopic diffusion equation is not accurate enough and the radiative transfer equation requires too much computational effort.

  16. UV radiation reduces epidermal cell expansion in leaves of Arabidopsis thaliana.

    PubMed

    Hectors, Kathleen; Jacques, Eveline; Prinsen, Els; Guisez, Yves; Verbelen, Jean-Pierre; Jansen, Marcel A K; Vissenberg, Kris

    2010-10-01

    Plants have evolved a broad spectrum of mechanisms to ensure survival under changing and suboptimal environmental conditions. Alterations of plant architecture are commonly observed following exposure to abiotic stressors. The mechanisms behind these environmentally controlled morphogenic traits are, however, poorly understood. In this report, the effects of a low dose of chronic ultraviolet (UV) radiation on leaf development are detailed. Arabidopsis rosette leaves exposed for 7, 12, or 19 d to supplemental UV radiation expanded less compared with non-UV controls. The UV-mediated decrease in leaf expansion is associated with a decrease in adaxial pavement cell expansion. Elevated UV does not affect the number and shape of adaxial pavement cells, nor the stomatal index. Cell expansion in young Arabidopsis leaves is asynchronous along a top-to-base gradient whereas, later in development, cells localized at both the proximal and distal half expand synchronously. The prominent, UV-mediated inhibition of cell expansion in young leaves comprises effects on the early asynchronous growing stage. Subsequent cell expansion during the synchronous phase cannot nullify the UV impact established during the asynchronous phase. The developmental stage of the leaf at the onset of UV treatment determines whether UV alters cell expansion during the synchronous and/or asynchronous stage. The effect of UV radiation on adaxial epidermal cell size appears permanent, whereas leaf shape is transiently altered with a reduced length/width ratio in young leaves. The data show that UV-altered morphogenesis is a temporal- and spatial-dependent process, implying that common single time point or single leaf zone analyses are inadequate.

  17. Direct MC conversion of absorbed dose to graphite to absorbed dose to water for 60Co radiation.

    PubMed

    Lye, J E; Butler, D J; Franich, R D; Harty, P D; Oliver, C P; Ramanathan, G; Webb, D V; Wright, T

    2013-06-01

    The ARPANSA calibration service for (60)Co gamma rays is based on a primary standard graphite calorimeter that measures absorbed dose to graphite. Measurements with the calorimeter are converted to the absorbed dose to water using the calculation of the ratio of the absorbed dose in the calorimeter to the absorbed dose in a water phantom. ARPANSA has recently changed the basis of this calculation from a photon fluence scaling method to a direct Monte Carlo (MC) calculation. The MC conversion uses an EGSnrc model of the cobalt source that has been validated against water tank and graphite phantom measurements, a step that is required to quantify uncertainties in the underlying interaction coefficients in the MC code. A comparison with the Bureau International des Poids et Mesures (BIPM) as part of the key comparison BIPM.RI(I)-K4 showed an agreement of 0.9973 (53).

  18. The evolution of protostellar disks under the influence of external UV radiation and central stellar winds

    NASA Technical Reports Server (NTRS)

    Yorke, H. W.; Richling, S.

    2001-01-01

    The evolution and appearance of circumstellar disks in star forming regions can be influenced strongly by the radiation from nearby hot stars. Here we describe the results of numerical simulations of the evolution of protostellar disks and their immediate surroundings under the influence of external UV radiation.

  19. Effects of morphology on the radiative properties of internally mixed light absorbing carbon aerosols with different aging status.

    PubMed

    Cheng, Tianhai; Wu, Yu; Chen, Hao

    2014-06-30

    Light absorbing carbon aerosols play a substantial role in climate change through radiative forcing, which is the dominant absorber of solar radiation. Radiative properties of light absorbing carbon aerosols are strongly dependent on the morphological factors and the mixing mechanism of black carbon with other aerosol components. This study focuses on the morphological effects on the optical properties of internally mixed light absorbing carbon aerosols using the numerically exact superposition T-matrix method. Three types aerosols with different aging status such as freshly emitted BC particles, thinly coated light absorbing carbon aerosols, heavily coated light absorbing carbon aerosols are studied. Our study showed that morphological factors change with the aging of internally mixed light absorbing carbon aerosols to result in a dramatic change in their optical properties. The absorption properties of light absorbing carbon aerosols can be enhanced approximately a factor of 2 at 0.67 um, and these enhancements depend on the morphological factors. A larger shell/core diameter ratio of volume-equivalent shell-core spheres (S/C), which indicates the degree of coating, leads to stronger absorption. The enhancement of absorption properties accompanies a greater enhancement of scattering properties, which is reflected in an increase in single scattering albedo (SSA). The enhancement of single scattering albedo due to the morphological effects can reach a factor of 3.75 at 0.67 μm. The asymmetry parameter has a similar yet smaller enhancement. Moreover, the corresponding optical properties of shell-and-core model determined by using Lorenz -Mie solutions are presented for comparison. We found that the optical properties of internally mixed light absorbing carbon aerosol can differ fundamentally from those calculated for the Mie theory shell-and-core model, particularly for thinly coated light absorbing carbon aerosols. Our studies indicate that the complex morphology

  20. 2-D DIGE analysis of UV-C radiation-responsive proteins in globe artichoke leaves.

    PubMed

    Falvo, Sara; Di Carli, Mariasole; Desiderio, Angiola; Benvenuto, Eugenio; Moglia, Andrea; America, Twan; Lanteri, Sergio; Acquadro, Alberto

    2012-02-01

    Plants respond to ultraviolet stress inducing a self-defence through the regulation of specific gene family members. The UV acclimation is the result of biochemical and physiological processes, such as enhancement of the antioxidant enzymatic system and accumulation of UV-absorbing phenolic compounds (e.g. flavonoids). Globe artichoke is an attractive species for studying the protein network involved in UV stress response, being characterized by remarkable levels of inducible antioxidants. Proteomic tools can assist the evaluation of the expression patterns of UV-responsive proteins and we applied the difference in-gel electrophoresis (DIGE) technology for monitoring the globe artichoke proteome variation at four time points following an acute UV-C exposure. A total of 145 UV-C-modulated proteins were observed and 119 were identified by LC-MS/MS using a ∼144,000 customized Compositae protein database, which included about 19,000 globe artichoke unigenes. Proteins were Gene Ontology (GO) categorized, visualized on their pathways and their behaviour was discussed. A predicted protein interaction network was produced and highly connected hub-like proteins were highlighted. Most of the proteins differentially modulated were chloroplast located, involved in photosynthesis, sugar metabolisms, protein folding and abiotic stress. The identification of UV-C-responsive proteins may contribute to shed light on the molecular mechanisms underlying plant responses to UV stress.

  1. In vitro-assessment of putative antiprogestin activities of phytochemicals and synthetic UV absorbers in human endometrial Ishikawa cells.

    PubMed

    Yin, Qinan; Fischer, Lara; Noethling, Claudia; Schaefer, Wolfgang R

    2015-07-01

    Critical steps of embryo implantation are controlled by progesterone. These processes can be interrupted by progesterone receptor (PR) antagonists, e.g. drugs used for abortion. Antiprogestin effects induced by natural compounds and environmental chemicals have been rarely addressed. In our in vitro study, we investigated putative antiprogestin activities of the plant compounds apigenin (API) and trans-ferulic acid (t-FA) as well as the UV absorbers octyl methoxycinnamate (OMC) and 4-methylbenzylidene camphor (4-MBC). They were compared with the selective progesterone receptor modulators (SPRMs) mifepristone (RU486) and ulipristal acetate (UPA) as well as the full PR-antagonist ZK137316. Effects of test compounds in combination with progesterone on the progesterone-sensitive target gene estrogen sulfotransferase (SULT1E1) were characterized by sigmoidal concentration-response curves obtained by RT-qPCR. The agonistic effect of progesterone on SULT1E1 mRNA levels was concentration-dependently antagonized by RU486, UPA and ZK137316 as well as, with lower potency, apigenin. t-FA, OMC and 4-MBC had no effect on SULT1E1 mRNA levels. We demonstrated that apigenin, although at higher concentrations, exerts a similar effect as the well-characterized SPRMs RU486 and UPA or the progesterone antagonist ZK137316 in this model. Our endometrium-specific Ishikawa cell assay is a useful complement to artificial transactivation assays for the identification of environmental substances with antiprogestin activities.

  2. Profiling of Amatoxins and Phallotoxins in the Genus Lepiota by Liquid Chromatography Combined with UV Absorbance and Mass Spectrometry

    PubMed Central

    Sgambelluri, R. Michael; Epis, Sara; Sassera, Davide; Luo, Hong; Angelos, Evan R.; Walton, Jonathan D.

    2014-01-01

    Species in the mushroom genus Lepiota can cause fatal mushroom poisonings due to their content of amatoxins such as α-amanitin. Previous studies of the toxin composition of poisonous Lepiota species relied on analytical methods of low sensitivity or resolution. Using liquid chromatography coupled to UV absorbance and mass spectrometry, we analyzed the spectrum of peptide toxins present in six Italian species of Lepiota, including multiple samples of three of them collected in different locations. Field taxonomic identifications were confirmed by sequencing of the internal transcribed spacer (ITS) regions. For comparison, we also analyzed specimens of Amanita phalloides from Italy and California, a specimen of A. virosa from Italy, and a laboratory-grown sample of Galerina marginata. α-Amanitin, β-amanitin, amanin, and amaninamide were detected in all samples of L. brunneoincarnata, and α-amanitin and γ-amanitin were detected in all samples of L. josserandii. Phallotoxins were not detected in either species. No amatoxins or phallotoxins were detected in L. clypeolaria, L. cristata, L. echinacea, or L. magnispora. The Italian and California isolates of A. phalloides had similar profiles of amatoxins and phallotoxins, although the California isolate contained more β-amanitin relative to α-amanitin. Amaninamide was detected only in A. virosa. PMID:25098279

  3. Profiling of amatoxins and phallotoxins in the genus Lepiota by liquid chromatography combined with UV absorbance and mass spectrometry.

    PubMed

    Sgambelluri, R Michael; Epis, Sara; Sassera, Davide; Luo, Hong; Angelos, Evan R; Walton, Jonathan D

    2014-08-05

    Species in the mushroom genus Lepiota can cause fatal mushroom poisonings due to their content of amatoxins such as α-amanitin. Previous studies of the toxin composition of poisonous Lepiota species relied on analytical methods of low sensitivity or resolution. Using liquid chromatography coupled to UV absorbance and mass spectrometry, we analyzed the spectrum of peptide toxins present in six Italian species of Lepiota, including multiple samples of three of them collected in different locations. Field taxonomic identifications were confirmed by sequencing of the internal transcribed spacer (ITS) regions. For comparison, we also analyzed specimens of Amanita phalloides from Italy and California, a specimen of A. virosa from Italy, and a laboratory-grown sample of Galerina marginata. α-Amanitin, β-amanitin, amanin, and amaninamide were detected in all samples of L. brunneoincarnata, and α-amanitin and γ-amanitin were detected in all samples of L. josserandii. Phallotoxins were not detected in either species. No amatoxins or phallotoxins were detected in L. clypeolaria, L. cristata, L. echinacea, or L. magnispora. The Italian and California isolates of A. phalloides had similar profiles of amatoxins and phallotoxins, although the California isolate contained more β-amanitin relative to α-amanitin. Amaninamide was detected only in A. virosa.

  4. Verification of absorbed dose using diodes in cobalt-60 radiation therapy.

    PubMed

    Gadhi, Muhammad Asghar; Fatmi, Shahab; Chughtai, Gul M; Arshad, Muhammad; Shakil, Muhammad; Rahmani, Uzma Mahmood; Imran, Malik Younas; Buzdar, Saeed Ahmad

    2016-03-01

    The objective of this work was to enhance the quality and safety of dose delivery in the practice of radiation oncology. To achieve this goal, the absorbed dose verification program was initiated by using the diode in vivo dosimetry (IVD) system (for entrance and exit). This practice was implemented at BINO, Bahawalpur, Pakistan. Diodes were calibrated for making absorbed dose measurements. Various correction factors (SSD, dose non-linearity, field size, angle of incidence, and wedge) were determined for diode IVD system. The measurements were performed in phantom in order to validate the IVD procedure. One hundred and nineteen patients were monitored and 995 measurements were performed. For phantom, the percentage difference between measured and calculated dose for entrance setting remained within ±2% and for exit setting ±3%. For patient measurements, the percentage difference between measured and calculated dose remained within ±5% for entrance/open fields and ±7% for exit/wedge/oblique fields. One hundred and nineteen patients and 995 fields have been monitored during the period of 6 months. The analysis of all available measurements gave a mean percent deviation of ±1.19% and standard deviation of ±2.87%. Larger variations have been noticed in oblique, wedge and exit measurements. This investigation revealed that clinical dosimetry using diodes is simple, provides immediate results and is a useful quality assurance tool for dose delivery. It has enhanced the quality of radiation dose delivery and increased/improved the reliability of the radiation therapy practice in BINO.

  5. The mechanisms of protection of antioxidants on Nostoc sphaeroides against UV-B radiation

    NASA Astrophysics Data System (ADS)

    Wang, G. H.

    UV radiation is one of space harmful factor for earth organisms in space exploration In the present work we studied on the role of antioxidant system in Nostoc sphaeroides K u tz Cyanobacteria and the effects of exogenous antioxidant molecules on its photosynthetic rate under UV-B radiation It was found that UV-B radiation decreased the photosynthetic activity of cyanobacterium but promoted the activity of antioxidant system to protect photosystem II PSII and exogenous antioxidant sodium nitroprusside SNP N-acetylcysteine NAC had an obvious protection on PSII activity under UV-B radiation The activity of SOD Superoxide Dismutase EC 1 15 1 1 CAT Catalase EC 1 11 1 6 POD Peroxidase EC 1 11 1 7 and content of MDA and ASC were improved by 0 5mM and 1mM SNP but 0 1mM SNP decreased the activity of antioxide system Exogenous NAC addition decreased the activity of SOD POD CAT and the content MDA and ASC but exogenous NAC addition increased the content of GSH The results suggested that exogenous SNP and NAC may protect algae by different mechanisms in which SNP maybe play double roles as sources of reactive free radicals or ROS scavengers in formation of algae s protection of PSII under UV-B radiation while NAC does function as antioxidant reagent or precursor of glutathione which could protect PSII directly from UV-B radiation Keyword antioxidant system exogenous or endogenous antioxidant Nostoc sphaeroides photosynthesis UV-B radiation

  6. Two years comparative studies on biological effects of environmental UV radiation

    NASA Astrophysics Data System (ADS)

    Grof, P.; Ronto, Gyorgyi; Gaspar, S.; Berces, A.; Szabo, Laszlo D.

    1994-07-01

    A method has been developed for determination of the biologically effective UV dose based on T7 phage as biosensor. In field experiments clockwork driven telescope has been used for determining doses from direct and global (direct plus diffuse) solar radiation. On fine summer days at mid-latitude this arrangement allowed the following comparisons: measured doses from direct and global radiation obtained at the same time and measuring site reflecting the biological importance of diffuse radiation; direct and global radiation obtained at the same time and measuring site reflecting the biological importance of diffuse radiation; direct and global doses obtained at the same time on different measuring sites (downtown, suburb, outside the town) reflecting the differences caused by air quality; direct and global doses obtained on the same measuring place, in summertime of two different years reflecting the importance of the long-term measurements for estimating the biological risk caused by increased UV-B radiation; measured data and model calculations.

  7. Unidirectional radiative heat transfer with a spectrally selective planar absorber/emitter for high-efficiency solar thermophotovoltaic systems

    NASA Astrophysics Data System (ADS)

    Kohiyama, Asaka; Shimizu, Makoto; Yugami, Hiroo

    2016-11-01

    A high-efficiency solar thermophotovoltaic (STPV) system has been demonstrated using spectrally selective planar absorber/emitter systems and a GaSb TPV cell. In this study, a novel approach for designing the STPV system based on the efficiency of unidirectional radiative heat transfer has been introduced. To achieve high extraction and photovoltaic conversion efficiencies, the spectrally selective absorber/emitter based on a coherent perfect absorber composed of a thin molybdenum layer sandwiched between hafnium layers was applied. The extraction efficiency was further investigated with respect to the absorber/emitter area ratio. The experimental efficiency of STPV reached 5.1% with the area ratio of 2.3.

  8. UV-C Radiation as a Factor Reducing Microbiological Contamination of Fish Meal

    PubMed Central

    Dobrzański, Zbigniew; Skowron, Karolina Jadwiga

    2014-01-01

    Fish meals, added to feeds as a source of protein, may contain pathogenic bacteria. Therefore, effective methods for their sanitizing, such as UV-C radiation, are needed to minimize the epidemiological risk. The objective of this study was to evaluate the effect of UV-C radiation on the sanitary state of fish meals. The research materials included salmon and cod meals. Samples of the fish meals were inoculated with suspensions of Salmonella, E. coli, enterococci, and C. sporogenes spores and exposed to the following surface UV-C fluencies: 0–400 J·m−2 for bacteria and 0–5000 J·m−2 for spores. For the vegetative forms, the highest theoretical lethal UV-C dose, ranging from 670.99 to 688.36 J·m−2 depending on the meal type, was determined for Salmonella. The lowest UV-C fluency of 363.34–363.95 J·m−2 was needed for the inactivation of Enterococcus spp. Spores were considerably more resistant, and the UV-C doses necessary for inactivation were 159571.1 J·m−2 in salmon meal and 66836.9 J·m−2 in cod meal. The application of UV-C radiation for the sanitization of fish meals proved to be a relatively effective method for vegetative forms of bacteria but was practically ineffective for spores. PMID:24578670

  9. UV-C radiation as a factor reducing microbiological contamination of fish meal.

    PubMed

    Skowron, Krzysztof; Bauza-Kaszewska, Justyna; Dobrzański, Zbigniew; Paluszak, Zbigniew; Skowron, Karolina Jadwiga

    2014-01-01

    Fish meals, added to feeds as a source of protein, may contain pathogenic bacteria. Therefore, effective methods for their sanitizing, such as UV-C radiation, are needed to minimize the epidemiological risk. The objective of this study was to evaluate the effect of UV-C radiation on the sanitary state of fish meals. The research materials included salmon and cod meals. Samples of the fish meals were inoculated with suspensions of Salmonella, E. coli, enterococci, and C. sporogenes spores and exposed to the following surface UV-C fluencies: 0-400 J·m⁻² for bacteria and 0-5000 J·m⁻² for spores. For the vegetative forms, the highest theoretical lethal UV-C dose, ranging from 670.99 to 688.36 J·m⁻² depending on the meal type, was determined for Salmonella. The lowest UV-C fluency of 363.34-363.95 J·m⁻² was needed for the inactivation of Enterococcus spp. Spores were considerably more resistant, and the UV-C doses necessary for inactivation were 159571.1 J·m⁻² in salmon meal and 66836.9 J·m⁻² in cod meal. The application of UV-C radiation for the sanitization of fish meals proved to be a relatively effective method for vegetative forms of bacteria but was practically ineffective for spores.

  10. Effects of Aerosol Optical Depth on diffuse UV and visible radiation

    NASA Astrophysics Data System (ADS)

    Kim, Y.; Kim, J.; Cho, H.; Kim, Y.

    2007-12-01

    Ultraviolet radiation (UV, 300-367nm) was measured with a UV-multifilter rotating shadowband radiometer (UV- MFRSR) at Yonsei University, Seoul (37.57°N, 126.97°) for 7 months from January to July 2006 and visible irradiance (400-700 nm) also measured with a MFRSR for 12 months of 2006 at the same station. Spectral UV_AOD and vis_AOD were retrieved using the Langley method and Beer-Bouguer-Lambert's law, and compared with AOD obtained from Skyradiometer to validate their values. The diffuse and direct irradiance were analyzed to investigate the dependence on total optical depth (TOD) and aerosol optical depth (AOD). The direct-horizontal solar irradiance decreases exponentially as the optical depth increases according to the Beer- Bouguer-Lambert's Law. As the TOD and AOD increase, the diffuse-horizontal UV radiation gradually increases and shows a maximum value at some critical optical depth for a given SZA. Similar analysis was performed on the relation between the diffuse irradiance and AOD. RAF(radiation amplification factor) was used to correct the ozone effects on UV. These results provide empirical equations for the amount of diffuse irradiance in UV and visible wavelengths.

  11. Atlas of albedo and absorbed solar radiation derived from Nimbus 7 Earth radiation budget data set, November 1978 to October 1985

    NASA Technical Reports Server (NTRS)

    Smith, G. Louis; Rutan, David; Bess, T. Dale

    1990-01-01

    An atlas of monthly mean global contour maps of albedo and absorbed solar radiation is presented. This atlas contains 7 years of continuous data from November 1978 through October 1985. The data were retrieved from measurements made by the second Earth Radiation Budget (ERB) wide field-of-view instrument, which flew on the Nimbus 7 spacecraft in 1978. The deconvolution method used to produce these data is briefly discussed here so that the user may understand their generation and limitations. These geographical distributions of albedo and absorbed solar radiation are provided as a resource for researchers studying the radiation budget of the Earth. This atlas of albedo and absorbed solar radiation complements the atlases of outgoing longwave radiation by Bess and Smith, also based on the Nimbus 6 and 7 ERB data.

  12. Estimates of Surface Ultraviolet (UV) Radiation over North America from GOES Observations

    NASA Astrophysics Data System (ADS)

    Gadhavi, H. S.; Pinker, R. T.; Laszlo, I.

    2006-12-01

    Ultraviolet (UV) rays have harmful effects on living organisms and plants. Information on UV radiation is also needed for modeling chemical processes in the atmosphere. Therefore, there is a wide interest in estimating UV flux reaching the earth surface. This led to the establishment of world-wide UV monitoring networks, yet, only satellites can provide large scale and homogeneous information. In addition to ozone, clouds and aerosols affect the surface UV radiation. These are highly variable in space and time which limits the applicability of point measurements to wider areas. Several algorithms have been developed for estimating UV flux from space-borne observations. These vary from simple parameterizations to full radiative transfer calculations. The most common limitations of these algorithms are related to their local dependence, satellite specific assumptions and/or large computational time requirement. We present an algorithm for estimating UV flux from Geostationary Operational Environmental Satellite (GOES) data. The methodology will utilize information derived from independent satellites such as ozone. It relies on transmission table based on the Santa Barbara Discrete Ordinate Atmospheric Radiative Transfer (SBDART) model. The algorithm accounts for surface elevation variation, incorporates region dependent aerosol models and provides spectrally resolved output for UV flux at 5 nm interval. The algorithm is generic and can be adapted to different geographic regions. Initially, it will be implemented over North America for a period of about five years. The inferred UV values are being evaluated against ground observations as available from several networks over the United States and results will be presented at the meeting.

  13. INTERACTION OF LASER RADIATION WITH MATTER. LASER PLASMA: Plasma-mediated surface evaporation of an aluminium target in vacuum under UV laser irradiation

    NASA Astrophysics Data System (ADS)

    Mazhukin, V. I.; Nosov, V. V.

    2005-05-01

    Mathematical simulation is employed to investigate the dynamics of evaporation and condensation on the surface of a metal target under the conditions of plasma production in the vaporised material exposed to the 0.248-μm UV radiation of a KrF laser with the intensity G0= 2×108—109 W cm-2, and a pulse duration τ= 20 ns. A transient two-dimensional mathematical model is used, which includes, for the condensed medium, the heat conduction equation with the Stefan boundary condition and additional kinetic conditions at the evaporation surface and, for the vapour, the equations of radiative gas dynamics and laser radiation transfer supplemented with tabular data for the parameters of the equations of state and absorption coefficients. The target evaporation in vacuum induced by the UV radiation was found to occur during the laser pulse and is divided into two characteristic stages: initial evaporation with a sound velocity and subsonic evaporation after the plasma production. At the subsonic evaporation stage, one part of the laser radiation passes through the plasma and is absorbed by the target surface and another part is absorbed in a thin plasma layer near the surface to produce a high pressure, which significantly moderates the vapour ejection. After completion of the pulse, a part of the vaporised material is condensed on the surface, both in the evaporation region and some distance away from it due to the lateral expansion of the plasma cloud.

  14. Effects of Stratospheric Ozone Depletion, Solar UV Radiation, and Climate Change on Biogeochemical Cycling: Interactions and Feedbacks

    EPA Science Inventory

    Climate change modulates the effects of solar UV radiation on biogeochemical cycles in terrestrial and aquatic ecosystems, particularly for carbon cycling, resulting in UV-mediated positive or negative feedbacks on climate. Possible positive feedbacks discussed in this assessment...

  15. A study of fraction of absorbed photosynthetically active radiation characteristics based on SAIL model simulation

    NASA Astrophysics Data System (ADS)

    Li, Li; Du, Yongming; Tang, Yong; Liu, Qinhuo

    2012-10-01

    The photosynthetically Active Radiation reached to plant canopy could be divided into two parts that are direct radiation and diffuse radiation. The paths into the vegetation canopy are different of these two kinds of radiation. It makes Fraction of Absorbed Photosynthetically Active Radiation (FPAR) different. So this difference between direct FPAR and diffuse FPAR must be determined to decide whether it should be considered into the FPAR inversion model. In this study, the SAIL model was modified which could output direct FPAR and diffuse FPAR. Then with the change of input parameters such as solar zenith angle, visiblity and LAI, the direct FPAR and diffuse FPAR would be change. When the visibility is set as 5km, 15km and 30km, the contribution of scattering of FPAR on the total FPAR is 52.6%, 29.3% and 21.7%. The error between whole FPAR and direct FPAR is reduced with the increasing of visibility and increased with the reducing of LAI. The maximum relative error is 13.2%. From the simulation analyses, we could see that direct and diffuse FPAR are different with the changes of environment variables. So when modeling of FPAR, the diffuse part cannot be ignored. Direct FPAR and diffuse FPAR must be modeled respectively. This separation will help improve the accuracy of FPAR inversion.

  16. Ocean acidification mediates photosynthetic response to UV radiation and temperature increase in the diatom Phaeodactylum tricornutum

    NASA Astrophysics Data System (ADS)

    Li, Y.; Gao, K.; Villafañe, V. E.; Helbling, E. W.

    2012-06-01

    Increasing atmospheric CO2 concentration is responsible for progressive ocean acidification, ocean warming as well as decreased thickness of upper mixing layer (UML), thus exposing phytoplankton cells not only to lower pH and higher temperatures but also to higher levels of solar UV radiation. In order to evaluate the combined effects of ocean acidification, UV radiation and temperature, we used the diatom Phaeodactylum tricornutum as a model organism and examined its physiological performance after grown under two CO2 concentrations (390 and 1000 µatm) for more than 20 generations. Compared to the ambient CO2 level (390 µatm), growth at the elevated CO2 concentration increased non-photochemical quenching (NPQ) of cells and partially counteracted the harm to PSII caused by UV-A and UV-B. Such an effect was less pronounced under increased temperature levels. As for photosynthetic carbon fixation, the rate increased with increasing temperature from 15 to 25 °C, regardless of their growth CO2 levels. In addition, UV-induced inhibition of photosynthesis was inversely correlated to temperature. The ratio of repair to UV-induced damage showed inverse relationship with increased NPQ, showing higher values under the ocean acidification condition against UV-B, reflecting that the increased pCO2 and lowered pH counteracted UV-B induced harm.

  17. UV/PAR radiations and DOM properties in surface coastal waters of the Canadian shelf of the Beaufort Sea during summer 2009

    NASA Astrophysics Data System (ADS)

    Para, J.; Charrière, B.; Matsuoka, A.; Miller, W. L.; Rontani, J. F.; Sempéré, R.

    2012-11-01

    Water masses from the Beaufort Sea in the Arctic Ocean were evaluated for dissolved organic carbon (DOC), and optical characteristics including UV and PAR diffuse attenuation (Kd), and chromophoric and fluorescent dissolved organic matter (CDOM and FDOM) as part of the MALINA field campaign (30 July to 27 August). Even with relatively low mean daily solar radiation incident on the sea surface (0.12 ± 0.03, 8.46 ± 1.64 and 18.09 ± 4.20 kJ m-2 for UV-B (305 nm), UV-A (380 nm) and PAR, respectively), we report significant light penetration with 10% irradiance depths (Z10% (λ)) reaching 9.5 m for 340 nm (UV-A) radiation in the Eastern sector and 4.5 m in the Mackenzie River influenced area (Western sector). Spectral absorption coefficients (aCDOM (350 nm) (m-1)) were significantly correlated to both diffuse attenuation coefficients (Kd) in the UV-A and UV-B and to DOC concentrations. This indicates CDOM as the dominant attenuator of UV solar radiation and suggests its use as an optical proxy for DOC concentrations in this region. Extrapolating CDOM to DOC relationships, we estimate that ~ 16% of the DOC in the Mackenzie River does not absorb radiation at 350 nm. DOC and CDOM discharges by the Mackenzie River during the MALINA Cruise are estimated as ~ 0.22 TgC and 0.18 TgC, respectively. Three dissolved fluorescent components (C1-C3) were identified by fluorescence Excitation/Emission Matrix Spectroscopy (EEMS) and PARAFAC analysis. Our results showed an in-situ biological component (C1) that co-dominated with a terrestrial humic-like component (C2) in the Mackenzie Delta sector, whereas the protein-like (C3) component dominated in the saltiest waters of the North East sector.

  18. Effects of solar UV radiation and climate change on biogeochemical cycling: Interactions and feedbacks

    SciTech Connect

    Erickson III, David J

    2011-01-01

    Solar UV radiation, climate and other drivers of global change are undergoing significant changes and models forecast that these changes will continue for the remainder of this century. Here we assess the effects of solar UV radiation on biogeochemical cycles and the interactions of these effects with climate change, including feedbacks on climate. Such interactions occur in both terrestrial and aquatic ecosystems. While there is significant uncertainty in the quantification of these effects, they could accelerate the rate of atmospheric CO{sub 2} increase and subsequent climate change beyond current predictions. The effects of predicted changes in climate and solar UV radiation on carbon cycling in terrestrial and aquatic ecosystems are expected to vary significantly between regions. The balance of positive and negative effects on terrestrial carbon cycling remains uncertain, but the interactions between UV radiation and climate change are likely to contribute to decreasing sink strength in many oceanic regions. Interactions between climate and solar UV radiation will affect cycling of elements other than carbon, and so will influence the concentration of greenhouse and ozone-depleting gases. For example, increases in oxygen-deficient regions of the ocean caused by climate change are projected to enhance the emissions of nitrous oxide, an important greenhouse and ozone-depleting gas. Future changes in UV-induced transformations of aquatic and terrestrial contaminants could have both beneficial and adverse effects. Taken in total, it is clear that the future changes in UV radiation coupled with human-caused global change will have large impacts on biogeochemical cycles at local, regional and global scales.

  19. Effects of solar UV radiation and climate change on biogeochemical cycling: interactions and feedbacks.

    PubMed

    Zepp, R G; Erickson, D J; Paul, N D; Sulzberger, B

    2011-02-01

    Solar UV radiation, climate and other drivers of global change are undergoing significant changes and models forecast that these changes will continue for the remainder of this century. Here we assess the effects of solar UV radiation on biogeochemical cycles and the interactions of these effects with climate change, including feedbacks on climate. Such interactions occur in both terrestrial and aquatic ecosystems. While there is significant uncertainty in the quantification of these effects, they could accelerate the rate of atmospheric CO(2) increase and subsequent climate change beyond current predictions. The effects of predicted changes in climate and solar UV radiation on carbon cycling in terrestrial and aquatic ecosystems are expected to vary significantly between regions. The balance of positive and negative effects on terrestrial carbon cycling remains uncertain, but the interactions between UV radiation and climate change are likely to contribute to decreasing sink strength in many oceanic regions. Interactions between climate and solar UV radiation will affect cycling of elements other than carbon, and so will influence the concentration of greenhouse and ozone-depleting gases. For example, increases in oxygen-deficient regions of the ocean caused by climate change are projected to enhance the emissions of nitrous oxide, an important greenhouse and ozone-depleting gas. Future changes in UV-induced transformations of aquatic and terrestrial contaminants could have both beneficial and adverse effects. Taken in total, it is clear that the future changes in UV radiation coupled with human-caused global change will have large impacts on biogeochemical cycles at local, regional and global scales.

  20. Photocarcinogenesis by methoxypsoralen, neutral red, proflavine, and long UV radiation

    SciTech Connect

    Santamaria, L.; Bianchi, A.; Arnaboldi, A.; Daffara, P.; Andreoni, L.

    1985-01-01

    A study of the photosensitizing effects of 8-methoxypsoralen (MOP), neutral red (NR), and proflavine (PF) on the skin of female Swiss albino mice, strain 955, was carried out using fractionated exposure to long ultraviolet light (300-400 nm) and visible light (tungsten emission). The results (1) confirmed MOP photocarcinogenicity, (2) demonstrated that both NR and PF are photocarcinogens, and, further, (3) showed that the above UV light with 2.6% of fluence at 313 nm is a long-term carcinogenic agent even though the total dose of 313 nm was 100 times less than the minimal UV tumorigenic dose in mice. The tumors were mammary adenocarcinomas, carcinomas of skin appendages, carcino-mixo-sarcomas, lymphomas, and one case of thyroid adenocarcinoma. The implications of the above data regarding the controversy about oncogenic risks in photochemotherapy are discussed.

  1. UV radiation induced surface modulation time evolution in polymeric materials

    NASA Astrophysics Data System (ADS)

    Apostol, I.; Apostol, D.; Damian, V.; Iordache, I.; Hurduc, N.; Sava, I.; Sacarescu, L.; Stoica, I.

    2010-11-01

    The reorganization processes at submicron level of the polymeric materials have been investigated because of their applications in optoelectronics and bio-science. We have obtained surface relief modulation in single step processing on the photo resist and polysiloxane films. But for technical applications the time evolution and stability of the induced surface structure is an important parameter and is a problem to be discussed. In case of single step surface relief formation on polymeric materials the process is connected with the photochromic behavior of the materials. As it is known the UV light induced effects on the material structure are reversible under the action of visible light, but with different speeds. In this report is analyzed the time evolution of the surface modulation obtained under the action of the UV light for azopolymers with different structures.

  2. European standards for protective apparel against UV radiation.

    PubMed

    Laperre, Jan; Foubert, Fred

    2002-01-01

    The first European standard which describes the test procedure to determine the UV-protection factor of clothing is about to be completed. A second part of the same standard, dealing with labelling and marking aspects, is ready to be submitted to public enquiry. In this effort a group of experts from most EU member states have cooperated with a high degree of consensus. In this chapter we explain this European standard together with the standard developed in the UK.

  3. Space Evaporator Absorber Radiator (SEAR) for Thermal Storage on Manned Spacecraft

    NASA Technical Reports Server (NTRS)

    Izenson, Michael G.; Chen, Weibo; Chepko, Ariane; Bue, Grant; Quinn, Gregory

    2015-01-01

    Future manned exploration spacecraft will need to operate in challenging thermal environments. State-of-the-art technology for active thermal control relies on sublimating water ice and venting the vapor overboard in very hot environments, and or heavy phase change material heat exchangers for thermal storage. These approaches can lead to large loss of water and a significant mass penalties for the spacecraft. This paper describes an innovative thermal control system that uses a Space Evaporator Absorber Radiator (SEAR) to control spacecraft temperatures in highly variable environments without venting water. SEAR uses heat pumping and energy storage by LiCl/water absorption to enable effective cooling during hot periods and regeneration during cool periods. The LiCl absorber technology has the potential to absorb over 800 kJ per kg of system mass, compared to phase change heat sink systems that typically achieve approx. 50 kJ/kg. This paper describes analysis models to predict performance and optimize the size of the SEAR system, estimated size and mass of key components, and an assessment of potential mass savings compared with alternative thermal management approaches. We also describe a concept design for an ISS test package to demonstrate operation of a subscale system in zero gravity.

  4. Protection from radiation enteritis by an absorbable polyglycolic acid mesh sling

    SciTech Connect

    Devereux, D.F.; Thompson, D.; Sandhaus, L.; Sweeney, W.; Haas, A.

    1987-02-01

    Patients with malignant tumors of the pelvis who cannot be cured surgically often are treated with radiation after surgery. A devastating side effect of this treatment is radiation-associated small bowel injury (RASBI). The purpose of this study was to test the hypothesis that removal of the small bowel from the radiation field would protect it against RASBI. Twenty cebus monkeys underwent low anterior resection. In 10 animals an absorbable polyglycolic acid (PGA) mesh was sewn circumferentially around the interior of the abdominal cavity as a supporting apron, which prevented the small bowel's descent into the pelvis. The other 10 monkeys did not receive the mesh. All animals received 2000 rads by linear acceleration in a single dose. Twenty-four-hour stool fat, serum vitamin B12, and other serum values were obtained during the study. Animals were sacrificed after 1, 2, 3, 6, and 12 months, and the small bowel and rectum were examined histologically in a blind manner. Two monkeys who did not undergo surgery, or exposure to radiation served as controls. At all sacrifice periods, the animals with PGA mesh slings demonstrated normal small bowel function and histologic structure. Animals without mesh slings had abnormal stool and blood values at 1 month, and by 2 months all had died of small bowel necrosis. The animals that received the slings had no evidence of infection or obstruction, and by 6 months all evidence of the mesh was gone. Support of the small bowel out of the pelvis by an absorbable PGA mesh sling protects against RASBI and is without apparent complications.

  5. The interplay between assumed morphology and the direct radiative effect of light-absorbing organic aerosol

    NASA Astrophysics Data System (ADS)

    Saleh, Rawad; Adams, Peter J.; Donahue, Neil M.; Robinson, Allen L.

    2016-08-01

    Mie theory is widely employed in aerosol top-of-the-atmosphere direct radiative effect (DRE) calculations and to retrieve the absorptivity of light-absorbing organic aerosol (OA) from measurements. However, when OA is internally mixed with black carbon, it may exhibit complex morphologies whose optical behavior is imperfectly predicted by Mie theory, introducing bias in the retrieved absorptivities. We performed numerical experiments and global radiative transfer modeling (RTM) to investigate the effect of this bias on the calculated absorption and thus the DRE. We show that using true OA absorptivity, retrieved with a realistic representation of the complex morphology, leads to significant errors in DRE when the RTM employs the simplified Mie theory. On the other hand, when Mie theory is consistently applied in both OA absorptivity retrieval and the RTM, the errors largely cancel out, yielding accurate DRE. As long as global RTMs use Mie theory, they should implement parametrizations of light-absorbing OA derived from retrievals based on Mie theory.

  6. Verification of absorbed dose rates in reference beta radiation fields: Measurements with an extrapolation chamber and radiochromic film.

    PubMed

    Reynaldo, S R; Benavente, J A; Da Silva, T A

    2016-11-01

    Beta Secondary Standard 2 (BSS 2) provides beta radiation fields with certified values of absorbed dose to tissue and the derived operational radiation protection quantities. As part of the quality assurance, the reliability of the CDTN BSS2 system was verified through measurements in the (90)Sr/(90)Y and (85)Kr beta radiation fields. Absorbed dose rates and their angular variation were measured with a 23392 model PTW extrapolation chamber and with Gafchromic radiochromic films on a PMMA slab phantom. The feasibility of using both methods was analyzed.

  7. Responses of Crepis japonica induced by supplemental blue light and UV-A radiation.

    PubMed

    Constantino, L F da S; Nascimento, L B Dos S; Casanova, L M; Moreira, N Dos S; Menezes, E A; Esteves, R L; Costa, S S; Tavares, E S

    2017-02-15

    Crepis japonica (L.) D.C. (Asteraceae), a weed with antioxidant, antiallergenic, antiviral and antitumor properties displays both medicinal properties and nutritional value. This study aims to assess the effects of a supplementation of blue light and UV-A radiation on the growth, leaf anatomical structure and phenolic profile of the aerial parts of Crepis japonica. Plants were grown under two light treatments: W (control - white light), W + B (white light supplemented with blue light) and W + UV-A (white light supplemented with UV-A radiation). We recorded the length, width, and weight of fresh and dry leaves, the thickness of the epidermis and mesophyll, and stomata density. The phenolic profiles of the aqueous extracts of the aerial parts were analyzed by HPLC-DAD. There was an increase in the leaf size, stomatal density, and phenolic production, and a thickening of the mesophyll and epidermis. UV-A radiation increased the phenolic production more than blue light. Blue light and UV-A radiation both improved the production of caffeic acid by about 6 and 3 times, respectively, in comparison to control. This compound was first reported as a constituent of the extract from the aerial parts together with caftaric acid. UV-A also promoted the production of chlorogenic acid (about 1.5 times in comparison to the control). We observed that the morphological and chemical parameters of C. japonica are modified in response to blue light and UV-A radiation, which can be used as tools in the cultivation of this species in order to improve its medicinal properties and nutritional value.

  8. An assessment of ozone levels, UV radiation and their occupational health hazard estimation during photocopying operation.

    PubMed

    Singh, Bhupendra Pratap; Kumar, Amit; Singh, Deepak; Punia, Monika; Kumar, Krishan; Jain, Vinod Kumar

    2014-06-30

    This study investigates the levels of ozone concentration along with an ultraviolet (UV) and visible spectral radiation at eight photocopy centers in an academic institute, Delhi. Sampling was done in two types of locations, i.e., basement photocopy centers (BPC) and ground floor photocopy centers (GPC) for 8h. Measurements of levels of ozone, UV and visible radiation were done by ozone analyzer, UV radiometer and Field spectra instrument, respectively. Results show that the hourly mean concentration of ozone was observed to be in the range of 1.8-10.0 ppb and 5.3-45.8 ppb for BPC and GPC, respectively. In terms UV radiations, energy lies between 5.0×10(-3) and 7.0×10(-3) mW/cm(2) for ultraviolet A (UVA), 1.0×10(-3) and 2.0×10(-3) mW/cm(2) for ultraviolet B (UVB) and 6.0×10(-3) and 8.0×10(-3) mW/cm(2) for ultraviolet C (UVC). Correlation between the UV radiations and ozone production observed was statistically insignificant. To know the health hazard occurred to the workers, the standard erythema dose (SED) value was calculated for emitting UV radiation. The SED was estimated to be in the range of 0.02-0.04 and 0.02-0.32 for direct and indirect methods which is less than the guideline prescribed by Commission Internationale del' Eclairage (CIE). In nutshell, person involved in photocopy operation for their livelihood must be trained and should have knowledge for the long term gradual build up health problems due to ozone and UV production from photocopier. The manufactures should be ultimated with the significant ozone production, so that photocopier machine can be redesigned.

  9. The Preparation of a UV-Light-Absorbing Polymer: A Project-Oriented Laboratory Experiment for the Introductory Organic Chemistry Curriculum

    NASA Astrophysics Data System (ADS)

    Poon, Thomas; McIntyre, Jean P.; Dorigo, Andrea; Davis, Drew J.; Davis, Matthew A.; Eller, Crystal F.; Eller, Leah R.; Izumi, Heather K.; Jones, Kenya M.; Kelley, Kurt H.; Massello, William; Melamed, Megan L.; Norris, Cynthia M.; Oelrich, Jeffrey A.; Pluim, Thomas A.; Poplawski, Sarah E.; St. Clair, Jason M.; Stokes, Matthew P.; Wheeler, Wells C.; Wilkes, Erin E.

    1999-11-01

    A laboratory experiment is described that combines organic synthesis, spectroscopy, and polymer chemistry and is suitable for the sophomore organic chemistry curriculum. In this three-week sequence, students synthesize and characterize the UV-absorber 2-(2',4'-dimethylbenzoyl)benzoic acid and incorporate it into films of polymethylmethacrylate. The project exposes students to a variety of techniques and topics including UV-vis, nuclear magnetic resonance and IR spectroscopy, free radical polymerization, vacuum filtration, use of a separatory funnel for extraction and washing, melting point determination, recrystallization, reflux, and Friedel-Crafts acylation.

  10. Effects of solar UV-A and UV-B radiation on gene expression and phenolic accumulation in Betula pendula leaves.

    PubMed

    Morales, Luis O; Tegelberg, Riitta; Brosché, Mikael; Keinänen, Markku; Lindfors, Anders; Aphalo, Pedro J

    2010-07-01

    Ultraviolet (UV) radiation is an important environmental factor for plant communities; however, plant responses to solar UV are not fully understood. Here, we report differential effects of solar UV-A and UV-B radiation on the expression of flavonoid pathway genes and phenolic accumulation in leaves of Betula pendula Roth (silver birch) seedlings grown outdoors. Plants were exposed for 30 days to six UV treatments created using three types of plastic film. Epidermal flavonoids measured in vivo decreased when UV-B was excluded. In addition, the concentrations of six flavonoids determined by high-performance liquid chromatography-mass spectrometry declined linearly with UV-B exclusion, and transcripts of PAL and HYH measured by quantitative real-time polymerase chain reaction were expressed at lower levels. UV-A linearly regulated the accumulation of quercetin-3-galactoside and quercetin-3-arabinopyranoside and had a quadratic effect on HYH expression. Furthermore, there were strong positive correlations between PAL expression and accumulation of four flavonols under the UV treatments. Our findings in silver birch contribute to a more detailed understanding of plant responses to solar UV radiation at both molecular and metabolite levels.

  11. UV radiation effect towards mechanical properties of Natural Fibre Reinforced Composite material: A Review

    NASA Astrophysics Data System (ADS)

    Mahzan, Shahruddin; Fitri, Muhamad; Zaleha, M.

    2017-01-01

    The use of natural fibres as reinforcement material have become common in human applications. Many of them are used in composite materials especially in the polymer matrix composites. The use of natural fibres as reinforcement also provide alternative solution of usage instead of being a waste materials. In some applications, these natural reinforced polymer composites were used as the outer layer, making them exposed to ultra violet exposure, hence prone to UV radiation. This paper reviews the effect of UV radiation towards the mechanical properties of natural fibre reinforced polymer matrix composite material. The effect of chemical treatment towards the natural fibre is also investigated. One of the important features that was critically explored was the degradation of the composite materials. The influence of UV radiation on the degradation rate involve several parameters such as wavelength, intensity and exposure time. This review highlights the influence of these parameters in order to provide better solution for polymer matrix composite’s development.

  12. Absorbed photosynthetically active radiation of steppe vegetation and sun-view geometry effects on APAR estimates

    NASA Technical Reports Server (NTRS)

    Walter-Shea, E. A.; Blad, B. L.; Mesarch, M. A.; Hays, C. J.; Deering, D. W.; Eck, T. F.

    1992-01-01

    Instantaneous fractions of absorbed photosynthetically active radiation (APAR) were measured at the Streletskaya Steppe Reserve in conjunction with canopy bidirectional-reflected radiation measured at solar zenith angles ranging between 37 and 74 deg during the Kursk experiment (KUREX-91). APAR values were higher for KUREX-91 than those for the first ISLSCP field experiment (FIFE-89) and the amount of APAR of a canopy was a function of solar zenith angle, decreasing as solar zenith angle increased at the resrve. Differences in absorption are attributed to leaf area index (LAI) and leaf angle distribution and subsequently transmitted radiation interactions. LAIs were considerably higher at the reserve than those at the FIFE site. Leaf angle distributions of the reserve approach a uniform distribution while distributions at the FIFE site more closely approximate erectophile distributions. Reflected photosynthetically active radiation (PAR) components at KUREX-91 and FIFE-89 were similar in magnitude and in their response to solar zenith angle. Transmitted PAR increased with increasing solar zenith angle at KUREX-91 and decreased with increasing solar zenith angle at FIFE-89. Transmitted PAR at FIFE-89 was considerably larger than those at KUREX-91.

  13. Spatial and spectral distributions of thermal radiation emitted by a semi-infinite body and absorbed by a flat film

    SciTech Connect

    Blandre, Etienne Chapuis, Pierre-Olivier; Vaillon, Rodolphe; Francoeur, Mathieu

    2015-05-15

    We analyze the radiative power emitted by a semi-infinite medium and absorbed by a flat film located in its vicinity. In the near-field regime, if the film is thin enough, the surface waves at the rear interface of the film can contribute to the heat transfer. As a result, the absorbed power can be enhanced farther from the front surface. In the near-to-far field transition regime, temporal coherence of thermal radiation and the associated interferences can be used to shape the spectrum of the transferred radiative heat flux by selecting approriate geometrical parameters. These results highlight possibilities to control both the location where the radiative power is absorbed in the film and the spectral distribution, which are of paramount importance for applications such as near-field thermophotovoltaics.

  14. Effects of the novel poly(methyl methacrylate) (PMMA)-encapsulated organic ultraviolet (UV) filters on the UV absorbance and in vitro sun protection factor (SPF).

    PubMed

    Wu, Pey-Shiuan; Huang, Lan-Ni; Guo, Yi-Cing; Lin, Chih-Chien

    2014-02-05

    Sunscreens are thought to protect skin from many of the harmful effects of ultraviolet (UV) light and the photostability of sunscreens is thus an important concern in their application. Therefore, to discover new UV filters or to modify well-known UV filters are presents an important way for development of sunscreens. In this study, we presented several novel poly(methyl methacrylate) (PMMA) encapsulated organic UV filters, including encapsulated benzophenone-3 (TB-MS), avobenzone (TA-MS), octyl methoxycinnamate (TO-MS) and diethylamino hydroxybenzoyl hexyl benzoate (TD-MS). Our results have demonstrated that PMMA-encapsulated UV filters have improved safety, photoprotective ability and photostability. We proposed therefore that these PMMA-encapsulated UV filters can be used as ingredients for sunscreen products in the future.

  15. Effect of Elevated CO2, O3, and UV Radiation on Soils

    PubMed Central

    Rejšek, Klement; Vranová, Valerie

    2014-01-01

    In this work, we have attempted to review the current knowledge on the impact of elevated CO2, O3, and UV on soils. Elevated CO2 increases labile and stabile soil C pool as well as efficiency of organic pollutants rhizoremediation and phytoextraction of heavy metals. Conversely, both elevated O3 and UV radiation decrease inputs of assimilates to the rhizosphere being accompanied by inhibitory effects on decomposition processes, rhizoremediation, and heavy metals phytoextraction efficiency. Contrary to elevated CO2, O3, or UV-B decreases soil microbial biomass, metabolisable C, and soil Nt content leading to higher C/N of soil organic matter. Elevated UV-B radiation shifts soil microbial community and decreases populations of soil meso- and macrofauna via direct effect rather than by induced changes of litter quality and root exudation as in case of elevated CO2 or O3. CO2 enrichment or increased UV-B is hypothesised to stimulate or inhibit both plant and microbial competitiveness for soluble soil N, respectively, whereas O3 favours only microbial competitive efficiency. Understanding the consequences of elevated CO2, O3, and UV radiation for soils, especially those related to fertility, phytotoxins inputs, elements cycling, plant-microbe interactions, and decontamination of polluted sites, presents a knowledge gap for future research. PMID:24688424

  16. Effect of elevated CO2, O3, and UV radiation on soils.

    PubMed

    Formánek, Pavel; Rejšek, Klement; Vranová, Valerie

    2014-01-01

    In this work, we have attempted to review the current knowledge on the impact of elevated CO2, O3, and UV on soils. Elevated CO2 increases labile and stabile soil C pool as well as efficiency of organic pollutants rhizoremediation and phytoextraction of heavy metals. Conversely, both elevated O3 and UV radiation decrease inputs of assimilates to the rhizosphere being accompanied by inhibitory effects on decomposition processes, rhizoremediation, and heavy metals phytoextraction efficiency. Contrary to elevated CO2, O3, or UV-B decreases soil microbial biomass, metabolisable C, and soil N t content leading to higher C/N of soil organic matter. Elevated UV-B radiation shifts soil microbial community and decreases populations of soil meso- and macrofauna via direct effect rather than by induced changes of litter quality and root exudation as in case of elevated CO2 or O3. CO2 enrichment or increased UV-B is hypothesised to stimulate or inhibit both plant and microbial competitiveness for soluble soil N, respectively, whereas O3 favours only microbial competitive efficiency. Understanding the consequences of elevated CO2, O3, and UV radiation for soils, especially those related to fertility, phytotoxins inputs, elements cycling, plant-microbe interactions, and decontamination of polluted sites, presents a knowledge gap for future research.

  17. Impacts of long-term enhanced UV-B radiation on bryophytes in two sub-Arctic heathland sites of contrasting water availability

    PubMed Central

    Arróniz-Crespo, M.; Gwynn-Jones, D.; Callaghan, T. V.; Núñez-Olivera, E.; Martínez-Abaigar, J.; Horton, P.; Phoenix, G. K.

    2011-01-01

    Background and Aims Anthropogenic depletion of stratospheric ozone in Arctic latitudes has resulted in an increase of ultraviolet-B radiation (UV-B) reaching the biosphere. UV-B exposure is known to reduce above-ground biomass and plant height, to increase DNA damage and cause accumulation of UV-absorbing compounds in polar plants. However, many studies on Arctic mosses tended to be inconclusive. The importance of different water availability in influencing UV-B impacts on lower plants in the Arctic has been poorly explored and might partially explain the observed wide variation of responses, given the importance of water in controlling bryophyte physiology. This study aimed to assess the long-term responses of three common sub-Arctic bryophytes to enhanced UV-B radiation (+UV-B) and to elucidate the influence of water supply on those responses. Methods Responses of three sub-Arctic bryophytes (the mosses Hylocomium splendens and Polytrichum commune and the liverwort Barbilophozia lycopodioides) to +UV-B for 15 and 13 years were studied in two field experiments using lamps for UV-B enhancement with identical design and located in neighbouring areas with contrasting water availability (naturally mesic and drier sites). Responses evaluated included bryophyte abundance, growth, sporophyte production and sclerophylly; cellular protection by accumulation of UV-absorbing compounds, β-carotene, xanthophylls and development of non-photochemical quenching (NPQ); and impacts on photosynthesis performance by maximum quantum yield (Fv /Fm) and electron transport rate (ETR) through photosystem II (PSII) and chlorophyll concentrations. Results Responses were species specific: H. splendens responded most to +UV-B, with reduction in both annual growth (–22 %) and sporophyte production (–44 %), together with increased β-carotene, violaxanthin, total chlorophyll and NPQ, and decreased zeaxanthin and de-epoxidation of the xanthophyll cycle pool (DES). Barbilophozia

  18. The Martian and extraterrestrial UV radiation environment--1. Biological and closed-loop ecosystem considerations.

    PubMed

    Cockell, C S; Andrady, A L

    1999-01-01

    The Martian surface is exposed to both UVC radiation (<280 nm) and higher doses of UVB (280-315 nm) compared to the surface of the Earth. Terrestrial organisms have not evolved to cope with such high levels of UVC and UVB and thus any attempts to introduce organisms to Mars, particularly in closed-loop life support systems that use ambient sunlight, must address this problem. Here we examine the UV radiation environment of Mars with respect to biological systems. Action spectra and UV surface fluxes are used to estimate the UV stress that both DNA and chloroplasts would experience. From this vantage point it is possible to consider appropriate measures to address the problem of the Martian UV environment for future long term human exploration and settlement strategies. Some prospects for improving the UV tolerance of organisms are also discussed. Existing artificial ecosystems such as Biosphere 2 can provide some insights into design strategies pertinent to high UV environments. Some prospects for improving the UV tolerance of organisms are also discussed. The data also have implications for the establishment of closed-loop ecosystems using natural sunlight on the lunar surface and elsewhere in the Solar System.

  19. Ocean acidification mediates photosynthetic response to UV radiation and temperature increase in the diatom Phaeodactylum tricornutum

    NASA Astrophysics Data System (ADS)

    Li, Y.; Gao, K.; Villafañe, V. E.; Helbling, E. W.

    2012-10-01

    Increasing atmospheric CO2 concentration is responsible for progressive ocean acidification, ocean warming as well as decreased thickness of upper mixing layer (UML), thus exposing phytoplankton cells not only to lower pH and higher temperatures but also to higher levels of solar UV radiation. In order to evaluate the combined effects of ocean acidification, UV radiation and temperature, we used the diatom Phaeodactylum tricornutum as a model organism and examined its physiological performance after grown under two CO2 concentrations (390 and 1000 μatm) for more than 20 generations. Compared to the ambient CO2 level (390 μatm), growth at the elevated CO2 concentration increased non-photochemical quenching (NPQ) of cells and partially counteracted the harm to PS II (photosystem II) caused by UV-A and UV-B. Such an effect was less pronounced under increased temperature levels. The ratio of repair to UV-B induced damage decreased with increased NPQ, reflecting induction of NPQ when repair dropped behind the damage, and it was higher under the ocean acidification condition, showing that the increased pCO2 and lowered pH counteracted UV-B induced harm. As for photosynthetic carbon fixation rate which increased with increasing temperature from 15 to 25 °C, the elevated CO2 and temperature levels synergistically interacted to reduce the inhibition caused by UV-B and thus increase the carbon fixation.

  20. The effect of UV-B radiation on chloroplast translation in Pisum sativum

    SciTech Connect

    Raab, M.M.; Jagendorf, A.T. )

    1990-05-01

    UV-B radiation has previously been reported to reduce growth, flowering, and net photosynthesis. The present study examines the effect of UV-B radiation on isolated chloroplast of 7-10 day old pea seedlings. Amount of ({sup 3}H)-Leu incorporated into isolated chloroplasts was measured in the presence or absence of UV-B exposure. Preliminary experiments show a 30% inhibition of protein synthesis in isolated chloroplasts after only 20 mins of UV-B exposure (6.9 J/m{sup 2}/30 min). Percent inhibition of chloroplast translation is directly correlated with UV-B exposure over a 60 min time span. Preliminary studies also show no change in both cold and radiolabeled protein profiles as expressed on 1-D PAGE and autofluorography. Comparative studies on the sensitivity of e{sup {minus}} flow vs protein synthesis following UV-B exposure are underway. Further work on the role of oxygen free radicals and the specific site of action of UV-B damage to the translation machinery of chloroplasts will be discussed.

  1. Kinetics of avoidance of simulated solar uv radiation by two arthropods

    SciTech Connect

    Barcelo, J.A.; Calkins, J.

    1980-12-01

    There is an increasing likelihood that the solar uv-B radiation (lambda = 280-320 nm) reaching the earth's surface will increase due to depletion of the stratospheric ozone layer. It is recognized that many organisms are insufficiently resistant to solar uv-B to withstand full summer sunlight and thus mechanisms which facilitate avoidance of solar uv-B exposure may have significance for the survival of sensitive species. There are many alternative pathways which would lead to avoidance of solar uv-B. We have investigated the dynamics of biological reactions to simulated solar uv-B radiation in two small arthropods, the two-spotted spider mite Tetranychus urticae Koch and the aquatic copepod Cyclops serrulatus. Observations of positioning and rate of movement were made; a mathematical formalism was developed which assisted in interpretation of the observations. Our observations suggest that, although avoidance would mitigate increased solar uv-B effects, even organisms which specifically reduce their uv-B exposure would encounter additional stress if ozone depletion does occur.

  2. Action spectrum and mechanisms of UV radiation-induced injury in lupus erythematosus

    SciTech Connect

    Kochevar, I.E.

    1985-07-01

    Photosensitivity associated with lupus erythematosus (LE) is well established. The photobiologic basis for this abnormal response to ultraviolet radiation, however, has not been determined. This paper summarizes the criteria for elucidating possible photobiologic mechanisms and reviews the literature relevant to the mechanism of photosensitivity in LE. In patients with LE, photosensitivity to wavelengths shorter than 320 nm has been demonstrated; wavelengths longer than 320 nm have not been adequately evaluated. DNA is a possible chromophore for photosensitivity below 320 nm. UV irradiation of skin produces thymine photodimers in DNA. UV-irradiated DNA is more antigenic than native DNA and the antigenicity of UV-irradiated DNA has been proposed, but not proven, to be involved in the development of clinical lesions. UV irradiation of mice previously injected with anti-UV-DNA antibodies produces Ig deposition and complement fixation that appears to be similar to the changes seen in lupus lesions. Antibodies to UV-irradiated DNA occur in the serum of LE patients although a correlation between antibody titers and photosensitivity was not observed. Defective repair of UV-induced DNA damage does not appear to be a mechanism for the photosensitivity in LE. Other mechanisms must also be considered. The chromophore for photosensitivity induced by wavelengths longer than 320 nm has not been investigated in vivo. In vitro studies indicate that 360-400 nm radiation activates a photosensitizing compound in the lymphocytes and serum of LE patients and causes chromosomal aberrations and cell death. The mechanism appears to involve superoxide anion.

  3. Responses in the morphology, physiology and biochemistry of Taxus chinensis var. mairei grown under supplementary UV-B radiation.

    PubMed

    Zu, Yuan-gang; Pang, Hai-He; Yu, Jing-Hua; Li, De-Wen; Wei, Xiao-Xue; Gao, Yin-Xiang; Tong, Lu

    2010-02-12

    The effects of supplemental UV-B radiation on Taxus chinensis var. mairei were studied. Leaf traits, gas exchange parameters and the concentrations of photosynthetic pigments, cellular defense system products, secondary metabolites and ultrastructure were determined. UV-B radiation significantly decreased leaf area (p<0.05). Leaf number, secondary branch number, leaf weight per plant and leaf moisture all increased dramatically (p<0.05). Neither the leaf weight nor the specific leaf weight (SLW) exhibited significant differences between ambient and enhanced UV-B radiation. Gas exchange parameters were all dramatically reduced by enhanced UV-B radiation (p<0.05). The contents of chlorophyll and the chlorophyll a/b ratio were not distinctly affected by UV-B radiation, while carotenoids content significantly decreased (p<0.05). Supplemental UV-B treatment induced significant flavonoid accumulation (p<0.05), which was able to protect plant from radiation damage. Meanwhile, the appendage content, abaxial stomatal density, papilla density and particulate matter content in substomatic chambers increased noticeably by supplemental UV-B radiation, whereas the aperture size of single stomata was diminished. The number and area of plastoglobuli were apparently reduced by UV-B radiation, but stroma and grana lamellae were not destroyed. Our results demonstrated that T. chinensis var. mairei can activate several defense mechanisms against oxidative stress injury caused by supplemental UV-B radiation.

  4. Isoprene emission from a subarctic peatland under enhanced UV-B radiation.

    PubMed

    Tiiva, Päivi; Rinnan, Riikka; Faubert, Patrick; Räsänen, Janne; Holopainen, Toini; Kyrö, Esko; Holopainen, Jarmo K

    2007-01-01

    Isoprene is a reactive hydrocarbon with an important role in atmospheric chemistry, and emissions from vegetation contribute to atmospheric carbon fluxes. The magnitude of isoprene emissions from arctic peatlands is not known, and it may be altered by increasing UV-B radiation. Isoprene emission was measured with the dynamic chamber method from a subarctic peatland under long-term enhancement of UV-B radiation targeted to correspond to a 20% loss in the stratospheric ozone layer. The site type of the peatland was a flark fen dominated by the moss Warnstorfia exannulata and sedges Eriophorum russeolum and Carex limosa. The relationship between species densities and the emission was also assessed. Isoprene emissions were significantly increased by enhanced UV-B radiation during the second (2004) and the fourth (2006) growing seasons under the UV-B exposure. Emissions were related to the density of E. russeolum. The dominant moss, W. exannulata, proved to emit small amounts of isoprene in a laboratory trial. Subarctic fens, even without Sphagnum moss, are a significant source of isoprene to the atmosphere, especially under periods of warm weather. Warming of the Arctic together with enhanced UV-B radiation may substantially increase the emissions.

  5. [Effects of UV radiation on the aggregation performance of small molecular organic acids].

    PubMed

    Wang, Wen-Dong; Wang, Ya-Bo; Fan, Qing-Hai; Ding, Zhen-Zhen; Wang, Wen; Song, Shan; Zhang, Yin-Ting

    2014-10-01

    This study systematically investigated the effects of UV radiation on the aggregation of small molecular aliphatic carboxylic acids and phenolic acids by jar test. Experimental results show that solution pH has little effect on the coagulation of small molecular aliphatic carboxylic acids including citric acid, oxalic acid, tartaric acid, and succinic acid. For the solutions pretreated with UV light, the removal rates of the selected aliphatic carboxylic acids in coagulation are higher than that without UV radiation. Further study shows that photochemical reactions occur during UV radiation which decreases the negative charge in aliphatic carboxylic acids, and thereby increases their aggregation properties. Different from aliphatic carboxylic acids, phenol, salicylic acid, and benzoic acid have poor coagulation properties, and UV radiation does not have notable effects on their aggregation in the coagulation process. The coagulation performance of tannic acid is better than the other phenolic acids. At pH = 6, its removal rate is above 90%, which may be contributed to the aliphatic carboxylic acid structure in its molecular. Meanwhile, the large molecular of tannic acid is also easier to be adsorbed by the hydrolysis products of PAC1.

  6. Sudden exposure to solar UV-B radiation reduces net CO(2) uptake and photosystem I efficiency in shade-acclimated tropical tree seedlings.

    PubMed

    Krause, G Heinrich; Grube, Esther; Virgo, Aurelio; Winter, Klaus

    2003-02-01

    Tree seedlings developing in the understory of the tropical forest have to endure short periods of high-light stress when tree-fall gaps are formed, and direct solar radiation, including substantial UV light, reaches the leaves. In experiments simulating the opening of a tree-fall gap, the response of photosynthesis in leaves of shade-acclimated seedlings (Anacardium excelsum, Virola surinamensis, and Calophyllum longifolium) to exposure to direct sunlight (for 20-50 min) was investigated in Panama (9 degrees N). To assess the effects of solar UV-B radiation (280-320 nm), the sunlight was filtered through plastic films that selectively absorbed UV-B or transmitted the complete spectrum. The results document a strong inhibition of CO(2) assimilation by sun exposure. Light-limited and light-saturated rates of photosynthetic CO(2) uptake by the leaves were affected, which apparently occurred independently of a simultaneous inhibition of potential photosystem (PS) II efficiency. The ambient UV-B light substantially contributed to these effects. The photochemical capacity of PSI, measured as absorbance change at 810 nm in saturating far-red light, was not significantly affected by sun exposure of the seedlings. However, a decrease in the efficiency of P700 photooxidation by far-red light was observed, which was strongly promoted by solar UV-B radiation. The decrease in PSI efficiency may result from enhanced charge recombination in the reaction center, which might represent an incipient inactivation of PSI, but contributes to thermal dissipation of excessive light energy and thereby to photoprotection.

  7. Design of autotrack detecting instrument for solar UV radiation

    NASA Astrophysics Data System (ADS)

    Xia, Jiangtao; Mao, Xiaoli; Zhao, Jing

    2009-11-01

    In order to autotrack the object and detect the solar UV index, a reliable real-time high-precise instrument is proposed in this paper. This instrument involves two subsystems: the autotrack and detecting modules. The autotrack module consists of four-quadrant photo detector, multi-channel signal processing circuit and precise stepping system. The detecting module designed for dada measurement and acquisition is made up of the ultraviolet sensor UV460 and high precision A/D converter MAX1162. The key component of the entire instrument is ultralow-power microprocessor MSP430 which is used for entire system controlling and data processing. The lower system of autotracking and measurement is communicated with upper PC computer by RS232 module. In the experiment, the tracking precision of two-dimensional motion revolving stage is calibrated to be less than 0.05°. Experimental results indicate that the system designed could realize the precise autotracking and detecting function well, and the measure precision of system has reached the desirable target.

  8. Structural changes caused by radiation-induced reduction and radiolysis: the effect of X-ray absorbed dose in a fungal multicopper oxidase.

    PubMed

    De la Mora, Eugenio; Lovett, Janet E; Blanford, Christopher F; Garman, Elspeth F; Valderrama, Brenda; Rudino-Pinera, Enrique

    2012-05-01

    X-ray radiation induces two main effects at metal centres contained in protein crystals: radiation-induced reduction and radiolysis and a resulting decrease in metal occupancy. In blue multicopper oxidases (BMCOs), the geometry of the active centres and the metal-to-ligand distances change depending on the oxidation states of the Cu atoms, suggesting that these alterations are catalytically relevant to the binding, activation and reduction of O(2). In this work, the X-ray-determined three-dimensional structure of laccase from the basidiomycete Coriolopsis gallica (Cg L), a high catalytic potential BMCO, is described. By combining spectroscopic techniques (UV-Vis, EPR and XAS) and X-ray crystallography, structural changes at and around the active copper centres were related to pH and absorbed X-ray dose (energy deposited per unit mass). Depletion of two of the four active Cu atoms as well as low occupancies of the remaining Cu atoms, together with different conformations of the metal centres, were observed at both acidic pH and high absorbed dose, correlating with more reduced states of the active coppers. These observations provide additional evidence to support the role of flexibility of copper sites during O(2) reduction. This study supports previous observations indicating that interpretations regarding redox state and metal coordination need to take radiation effects explicitly into account.

  9. Reconstruction of past and prediction of future erythemal UV-radiation at two sites in Austria

    NASA Astrophysics Data System (ADS)

    Weihs, Philipp; Rieder, Harald; Wagner, Jochen; Simic, Stana; Dameris, Martin

    2010-05-01

    Since the discovery of anthropogenic ozone depletion more than 30 year ago, the scientific community has shown an increasing interest in UV-B radiation and started to monitor UV-radiation. However, difficulties involved in the routine operation and maintenance of the instruments have limited the length of reliable data records to about two decades. Further the number of places where they were measured, result in a set of observations too short and too sparse for a good understanding of past UV changes. Moreover state of the art climate models do not calculate future scenarios of UV-doses. Therefore detailed information about past and future UV-trends are lacking. Reconstruction techniques are indispensable to derive long-term time series of UV-radiation and fill this gap. Apart from the astronomical parameters, like solar zenith angle and sun-earth-distance, UV radiation is strongly influenced by clouds, ozone and surface albedo. We developed and evaluated a reconstruction technique for UV-doses (from regional climate model output) that first calculates the UV-doses under clear-sky condition and afterwards applies corrections in order to take cloud effects into account. Since the input parameters cloud cover, total ozone column and surface albedo are available from the Regional Climate Models REMO and E39/C (DLR-model), we applied our reconstruction technique for the past and for future scenarios using REMO and E39/C data as input. Hence we simulated a seamless UV long-term time series from the past to the future. Our method was applied for the high alpine station Hoher Sonnblick (3106m) situated in the Austrian Alps and for Vienna (170m) in the Eastern part of the Austrian territory. We first analyse the accuracy of the obtained backward reconstruction and intercompare the modelled and measured input parameters ozone, cloud modification factor, and ground albedo. Several approaches to improve the accuracy of the reconstruction are presented. Then we present the

  10. Inactivation of Single-Celled Ascaris suum Eggs by Low-Pressure UV Radiation

    PubMed Central

    Brownell, Sarah A.; Nelson, Kara L.

    2006-01-01

    Intact and decorticated single-celled Ascaris suum eggs were exposed to UV radiation from low-pressure, germicidal lamps at fluences (doses) ranging from 0 to 8,000 J/m2 for intact eggs and from 0 to 500 J/m2 for decorticated eggs. With a UV fluence of 500 J/m2, 0.44- ± 0.20-log inactivation (mean ± 95% confidence interval) (63.7%) of intact eggs was observed, while a fluence of 4,000 J/m2 resulted in 2.23- ± 0.49-log inactivation (99.4%). (The maximum quantifiable inactivation was 2.5 log units.) Thus, according to the methods used here, Ascaris eggs are the most UV-resistant water-related pathogen identified to date. For the range of fluences recommended for disinfecting drinking water and wastewater (200 to 2,000 J/m2), from 0- to 1.5-log inactivation can be expected, although at typical fluences (less than 1,000 J/m2), the inactivation may be less than 1 log. When the eggs were decorticated (the outer egg shell layers were removed with sodium hypochlorite, leaving only the lipoprotein ascaroside layer) before exposure to UV, 1.80- ± 0.32-log reduction (98.4%) was achieved with a fluence of 500 J/m2, suggesting that the outer eggshell layers protected A. suum eggs from inactivation by UV radiation. This protection may have been due to UV absorption by proteins in the outer layers of the 3- to 4-μm-thick eggshell. Stirring alone (without UV exposure) also inactivated some of the Ascaris eggs (∼20% after 75 min), which complicated determination of the inactivation caused by UV radiation alone. PMID:16517669

  11. Inactivation of single-celled Ascaris suum eggs by low-pressure UV radiation.

    PubMed

    Brownell, Sarah A; Nelson, Kara L

    2006-03-01

    Intact and decorticated single-celled Ascaris suum eggs were exposed to UV radiation from low-pressure, germicidal lamps at fluences (doses) ranging from 0 to 8,000 J/m2 for intact eggs and from 0 to 500 J/m2 for decorticated eggs. With a UV fluence of 500 J/m2, 0.44-+/-0.20-log inactivation (mean+/-95% confidence interval) (63.7%) of intact eggs was observed, while a fluence of 4,000 J/m2 resulted in 2.23-+/-0.49-log inactivation (99.4%). (The maximum quantifiable inactivation was 2.5 log units.) Thus, according to the methods used here, Ascaris eggs are the most UV-resistant water-related pathogen identified to date. For the range of fluences recommended for disinfecting drinking water and wastewater (200 to 2,000 J/m2), from 0- to 1.5-log inactivation can be expected, although at typical fluences (less than 1,000 J/m2), the inactivation may be less than 1 log. When the eggs were decorticated (the outer egg shell layers were removed with sodium hypochlorite, leaving only the lipoprotein ascaroside layer) before exposure to UV, 1.80-+/-0.32-log reduction (98.4%) was achieved with a fluence of 500 J/m2, suggesting that the outer eggshell layers protected A. suum eggs from inactivation by UV radiation. This protection may have been due to UV absorption by proteins in the outer layers of the 3- to 4-microm-thick eggshell. Stirring alone (without UV exposure) also inactivated some of the Ascaris eggs (approximately 20% after 75 min), which complicated determination of the inactivation caused by UV radiation alone.

  12. Interaction of metagalactic X-UV radiation with galactic hydrogen

    NASA Technical Reports Server (NTRS)

    Hill, J. K.

    1974-01-01

    Calculations show that the existence of a metagalactic X-UV flux of the intensity required to explain the high-latitude soft X-ray observations, plus a reasonable extrapolation toward lower energies, is consistent with the existence of neutral hydrogen in galaxies. Shielding by H II slabs can be effective both in the solar neighborhood and in the peripheries of galaxies out to a radius of 30 to 40 kpc. At earlier cosmological epochs shielding is less efficient. The soft X-ray spectrum as observed by Yentis et al. (1972) is difficult to reconcile with a purely extragalactic origin for the flux. A local source of ionization also may be necessary to explain the pulsar dispersion data.

  13. UV Radiation: a new first year physics/life sciences laboratory experiment

    NASA Astrophysics Data System (ADS)

    Petelina, S. V.; Siddaway, J. M.

    2010-12-01

    Unfortunately, Australia leads the world in the number of skin cancer cases per capita. Three major factors that contribute to this are: 1) the level of damaging ultraviolet (UV) radiation in Australia is higher than in many other countries. This is caused, among other factors, by the stratospheric ozone depletion and Antarctic ozone hole; 2) many people in Australia are of Irish-Scottish origin and their skin can not repair the damage caused by the UV radiation as effectively as the skin of people of other origins; 3) Australia is one of the world’s leaders in the outdoor activities where people tend to spend more time outside. As our experience has shown, most Australian University students, high school students, and even high school teachers were largely unaware of the UV damage details and effective safety measures. Therefore, a need for new ways to educate people became apparent. The general aim of this new 1st year laboratory experiment, developed and first offered at La Trobe University (Melbourne, Australia) in 2009, is to investigate how UV-B radiation levels change under various solar illumination conditions and how effective different types of protection are. After pre-lab readings on physical concepts and biological effects of UV radiation, and after solving all pre-lab problems, the students go outside and measure the actual change in UV-B and UV-A radiation levels under various conditions. Some of these conditions are: direct sun, shade from a building, shade under the roof, reflection from various surfaces, direct sun through cheap and expensive sunglasses and eyeglasses, direct sun through various types of cloth and hair. The equipment used is the UV-Probe manufactured by sglux SolGel Technologies GmbH. The students’ feedback on this new laboratory experiment was very positive. It was ranked top among all physics experiments offered as part of that subject (Physics for Life Sciences) in 2009 and top among all physics experiments presented for

  14. DSMC simulation of two-phase plume flow with UV radiation

    SciTech Connect

    Li, Jie; Liu, Ying; Wang, Ning; Jin, Ling

    2014-12-09

    Rarefied gas-particle two-phase plume in which the phase of particles is liquid or solid flows from a solid propellant rocket of hypersonic vehicle flying at high altitudes, the aluminum oxide particulates not only impact the rarefied gas flow properties, but also make a great difference to plume radiation signature, so the radiation prediction of the rarefied gas-particle two-phase plume flow is very important for space target detection of hypersonic vehicles. Accordingly, this project aims to study the rarefied gas-particle two-phase flow and ultraviolet radiation (UV) characteristics. Considering a two-way interphase coupling of momentum and energy, the direct simulation Monte Carlo (DSMC) method is developed for particle phase change and the particle flow, including particulate collision, coalescence as well as separation, and a Monte Carlo ray trace model is implemented for the particulate UV radiation. A program for the numerical simulation of the gas-particle two-phase flow and radiation in which the gas flow nonequilibrium is strong is implemented as well. Ultraviolet radiation characteristics of the particle phase is studied based on the calculation of the flow field coupled with the radiation calculation, the radiation model for different size particles is analyzed, focusing on the effects of particle emission, absorption, scattering as well as the searchlight emission of the nozzle. A new approach may be proposed to describe the rarefied gas-particle two-phase plume flow and radiation transfer characteristics in this project.

  15. Determination of the absorbed dose and the average LET of space radiation in dependence on shielding conditions.

    PubMed

    Vana, N; Schoner, W; Noll, M; Fugger, M; Akatov, Y; Shurshakov, V

    1999-01-01

    The HTR method, developed for determination of absorbed dose and average LET of mixed radiation fields in space, was applied during several space missions on space station MIR, space shuttles and satellites. The method utilises the changes of peak height ratios in the glow curves in dependence on the linear energy transfer LET. Due to the small size of the dosemeters the evaluation of the variation of absorbed dose and average LET in dependence on the position of the dosemeters inside the space station is possible. The dose and LET distribution was determined during the experiment ADLET where dosemeters were exposed in two positions with different shielding conditions and during two following experiments (MIR-95, MIR-96) using six positions inside the space station. The results were compared with the shielding conditions of the positions. Calculations of the absorbed dose were carried out for comparison. Results have shown that the average LET increases with increasing absorbing thickness while the absorbed dose decreases.

  16. Identification of Genes Responsive to Solar Simulated UV Radiation in Human Monocyte-Derived Dendritic Cells

    PubMed Central

    de la Fuente, Hortensia; Lamana, Amalia; Mittelbrunn, María; Perez-Gala, Silvia; Gonzalez, Salvador; García-Diez, Amaro; Vega, Miguel; Sanchez-Madrid, Francisco

    2009-01-01

    Ultraviolet (UV) irradiation has profound effects on the skin and the systemic immune system. Several effects of UV radiation on Dendritic cells (DCs) functions have been described. However, gene expression changes induced by UV radiation in DCs have not been addressed before. In this report, we irradiated human monocyte-derived DCs with solar-simulated UVA/UVB and analyzed regulated genes on human whole genome arrays. Results were validated by RT-PCR and further analyzed by Gene Set Enrichment Analysis (GSEA). Solar-simulated UV radiation up-regulated expression of genes involved in cellular stress and inflammation, and down-regulated genes involved in chemotaxis, vesicular transport and RNA processing. Twenty four genes were selected for comparison by RT-PCR with similarly treated human primary keratinocytes and human melanocytes. Several genes involved in the regulation of the immune response were differentially regulated in UVA/UVB irradiated human monocyte-derived DCs, such as protein tyrosine phosphatase, receptor type E (PTPRE), thrombospondin-1 (THBS1), inducible costimulator ligand (ICOSL), galectins, Src-like adapter protein (SLA), IL-10 and CCR7. These results indicate that UV-exposure triggers the regulation of a complex gene repertoire involved in human-DC–mediated immune responses. PMID:19707549

  17. Involvement of pnp in survival of UV radiation in Escherichia coli K-12.

    PubMed

    Rath, Devashish; Mangoli, Suhas H; Pagedar, Amruta R; Jawali, Narendra

    2012-05-01

    Polynucleotide phosphorylase (PNPase), a multifunctional protein, is a 3'→5' exoribonuclease or exoDNase in the presence of inorganic phosphate (P(i)), and extends a 3'-OH of RNA or ssDNA in the presence of ADP or dADP. In Escherichia coli, PNPase is known to protect against H(2)O(2)- and mitomycin C-induced damage. Recent reports show that Bacillus subtilis PNPase is required for repair of H(2)O(2)-induced double-strand breaks. Here we show that absence of PNPase makes E. coli cells sensitive to UV, indicating that PNPase has a role in survival of UV radiation damage. Analyses of various DNA repair pathways show that in the absence of nucleotide excision repair, survival of UV radiation depends critically on PNPase function. Consequently, uvrA pnp, uvrB pnp and uvrC pnp strains show hypersensitivity to UV radiation. Whereas the pnp mutation is non-epistatic to recJ, recQ and recG mutations with respect to the UV-sensitivity phenotype, it is epistatic to uvrD, recB and ruvA mutations, implicating it in the recombinational repair process.

  18. The PUR Experiment on the EXPOSE-R facility: biological dosimetry of solar extraterrestrial UV radiation

    NASA Astrophysics Data System (ADS)

    Bérces, A.; Egyeki, M.; Fekete, A.; Horneck, G.; Kovács, G.; Panitz, C.

    2015-01-01

    The aim of our experiment Phage and Uracil Response was to extend the use of bacteriophage T7 and uracil biological dosimeters for measuring the biologically effective ultraviolet (UV) dose in the harsh extraterrestrial radiation conditions. The biological detectors were exposed in vacuum-tightly cases in the European Space Agency (ESA) astrobiological exposure facility attached to the external platform of Zvezda (EXPOSE-R). EXPOSE-R took off to the International Space Station (ISS) in November 2008 and was installed on the External platform of the Russian module Zvezda of the ISS in March 2009. Our goal was to determine the dose-effect relation for the formation of photoproducts (i.e. damage to phage DNA and uracil, respectively). The extraterrestrial solar UV radiation ranges over the whole spectrum from vacuum-UV (λ<200 nm) to UVA (315 nm<λ<400 nm), which causes photolesions (photoproducts) in the nucleic acids/their components either by photoionization or excitation. However, these wavelengths cause not only photolesions but in a wavelength-dependent efficiency the reversion of some photolesions, too. Our biological detectors measured in situ conditions the resultant of both reactions induced by the extraterrestrial UV radiation. From this aspect the role of the photoreversion in the extension of the biological UV dosimetry are discussed.

  19. Measurement-based estimates of direct radiative effects of absorbing aerosols above clouds

    NASA Astrophysics Data System (ADS)

    Feng, Nan; Christopher, Sundar A.

    2015-07-01

    The elevated layers of absorbing smoke aerosols from western African (e.g., Gabon and Congo) biomass burning activities have been frequently observed above low-level stratocumulus clouds off the African coast, which presents an excellent natural laboratory for studying the effects of aerosols above clouds (AAC) on regional energy balance in tropical and subtropical environments. Using spatially and temporally collocated Moderate Resolution Imaging Spectroradiometer, Ozone Monitoring Instrument (OMI), and Clouds and the Earth's Radiant Energy System data sets, the top-of-atmosphere shortwave aerosol direct shortwave radiative effects (ARE) of absorbing aerosols above low-level water clouds in the southeast Atlantic Ocean was examined in this study. The regional averaged instantaneous ARE has been estimated to be 36.7 ± 20.5 Wm-2 (regional mean ± standard deviation) along with a mean positive OMI Aerosol Index at 1.3 in August 2006 based on multisensors measurements. The highest magnitude of instantaneous ARE can even reach 138.2 Wm-2. We assess that the 660 nm cloud optical depth (COD) values of 8-12 is the critical value above (below) which aerosol absorption (scattering) effect dominates and further produces positive (negative) ARE values. The results further show that ARE values are more sensitive to aerosols above lower COD values than cases for higher COD values. This is among the first studies to provide quantitative estimates of shortwave ARE due to AAC events from an observational perspective.

  20. Absorbed dose determination in kilovoltage X-ray synchrotron radiation using alanine dosimeters.

    PubMed

    Butler, D J; Lye, J E; Wright, T E; Crossley, D; Sharpe, P H G; Stevenson, A W; Livingstone, J; Crosbie, J C

    2016-12-01

    Alanine dosimeters from the National Physical Laboratory (NPL) in the UK were irradiated using kilovoltage synchrotron radiation at the imaging and medical beam line (IMBL) at the Australian Synchrotron. A 20 × 20 mm(2) area was irradiated by scanning the phantom containing the alanine through the 1 mm × 20 mm beam at a constant velocity. The polychromatic beam had an average energy of 95 keV and nominal absorbed dose to water rate of 250 Gy/s. The absorbed dose to water in the solid water phantom was first determined using a PTW Model 31014 PinPoint ionization chamber traceable to a graphite calorimeter. The alanine was read out at NPL using correction factors determined for (60)Co, traceable to NPL standards, and a published energy correction was applied to correct for the effect of the synchrotron beam quality. The ratio of the doses determined by alanine at NPL and those determined at the synchrotron was 0.975 (standard uncertainty 0.042) when alanine energy correction factors published by Waldeland et al. (Waldeland E, Hole E O, Sagstuen E and Malinen E, Med. Phys. 2010, 37, 3569) were used, and 0.996 (standard uncertainty 0.031) when factors by Anton et al. (Anton M, Büermann L., Phys Med Biol. 2015 60 6113-29) were used. The results provide additional verification of the IMBL dosimetry.

  1. Seasonality of UV-radiation and vitamin D status at 69 degrees north.

    PubMed

    Brustad, Magritt; Edvardsen, Kåre; Wilsgaard, Tom; Engelsen, Ola; Aksnes, Lage; Lund, Eiliv

    2007-08-01

    The main purpose with this study was to assess the seasonal variation in measured UV-radiation and its impact on vitamin D status throughout one year in subjects living at high latitude. Blood samples drawn from 60 volunteers (44 women, 16 men) living at Andenes (69 degrees N), Norway, were collected throughout one year, at two-month intervals. The blood samples were analysed for 25-hydroxy vitamin D [25(OH)D]. Data on dietary intakes of vitamin D, time spent in daylight, use of sun beds and sun seeking holidays were collected by using questionnaires. The ambient vitamin D effective UV-radiation was measured at a site near by Andenes, and the number of hours spent outdoors with sufficient radiation for cutaneous vitamin D production (UV-hours) was estimated for each day. The mean 25(OH)D values were significantly higher at the end of the summer and in December, 2004 and varied from 42.0 nmol L(-1) in October, 2004 and April, 2005 to around 47 nmol L(-1) in December, 2004 and September, 2005. For the whole group, a positive relationship between UV-hours and 25(OH)D was found at UV-hours>or=3.5. However, for subjects with lower 25(OH)D levels i.e. at least one blood measurement with 25(OH)D<37.5 nmol L(-1), the positive relationship were found at around 1.5 UV-hours and more, whereas for the group of subjects that had all their vitamin D values above 37.5 nmol L(-1), positive relationship was found at UV-hours>or=4.0, when adjusting for vitamin D intake, sun bed use and sun seeking holidays. The generally high dietary intakes of vitamin D, especially in winter, mask largely the effect of seasonal variation in UV-exposure, causing an atypical seasonal variation in vitamin D status. The UV-hour variable significantly predicted 25(OH)D levels in blood when adjusted for intakes and artificial UV-radiation exposure and sun holidays abroad.

  2. Combination of UV absorbance and electron donating capacity to assess degradation of micropollutants and formation of bromate during ozonation of wastewater effluents.

    PubMed

    Chon, Kangmin; Salhi, Elisabeth; von Gunten, Urs

    2015-09-15

    In this study, the changes in UV absorbance at 254 nm (UVA254) and electron donating capacity (EDC) were investigated as surrogate indicators for assessing removal of micropollutants and bromate formation during ozonation of wastewater effluents. To measure the EDC, a novel method based on size exclusion chromatography followed by a post-column reaction was developed and calibrated against an existing electrochemical method. Low specific ozone doses led to a more efficient abatement of EDC than of UVA254. This was attributed to the abatement of phenolic moieties in the dissolved organic matter (DOM), which lose their EDC upon oxidation, but are partially transformed into quinones, which still absorb in the measured UV range. For higher specific ozone doses, the relative EDC abatement was lower than the relative UVA abatement, which can be explained by the oxidation of UV absorbing moieties (e.g. non-activated aromatic compounds), which contribute less to EDC. The abatement of the selected micropollutants (i.e., 17α-ethinylestradiol (EE2), carbamazepine (CBZ), atenolol (ATE), bezafibrate (BZF), ibuprofen (IBU), and p-chlorobenzoic acid (pCBA)) varied significantly depending on their reactivity with ozone in the examined specific ozone dose range of 0-1.45 mgO3/mgDOC. The decrease of EE2 and CBZ with high ozone reactivity was linearly proportional to the reduction of the relative residuals of UVA254 and EDC. The abatement of ATE, BZF, IBU, and pCBA with intermediate to low ozone reactivities was not significant in a first phase (UVA254/UVA254,0 = 1.00-0.70; EDC/EDC0 = 1.00-0.56) while their abatement was more efficient than the degradation of the relative residual UVA254 and much more noticeable than the degradation of the relative residual EDC in a second phase (UVA254/UVA254,0 = 0.70-0.25; EDC/EDC0 = 0.56-0.25) because the partially destroyed UV absorbing and electron donating DOM moieties become recalcitrant to ozone attack. Bromate formation was

  3. Radiation absorbed doses from iron-52, iron-55, and iron-59 used to study ferrokinetics

    SciTech Connect

    Robertson, J.S.; Price, R.R.; Budinger, T.F.; Fairbanks, V.F.; Pollycove, M.

    1983-04-01

    Biological data obtained principally with Fe-59 citrate are used with physical data to calculate radiation absorbed doses for ionic or weak chelate forms of Fe-52, Fe-55, and Fe-59, administered by intravenous injection. Doses are calculated for normal subjects, primary hemochromatosis (also called idiopathic or hereditary hemochromatosis), pernicious anemia in relapse, iron-deficiency anemia, and polycythemia vera. The Fe-52 doses include the dose from the Mn-52m daughter generated after injection of Fe-52. Special attention has been given to the dose to the spleen, which has a relatively high concentration of RBCs and therefore of radioiron, and which varies significantly in size in both health and disease.

  4. A multi-satellite analysis of the direct radiative effects of absorbing aerosols above clouds

    NASA Astrophysics Data System (ADS)

    Chang, Y. Y.; Christopher, S. A.

    2015-12-01

    Radiative effects of absorbing aerosols above liquid water clouds in the southeast Atlantic as a function of fire sources are investigated using A-Train data coupled with the Visible Infrared Imaging Radiometer Suite (VIIRS) onboard Suomi National Polar-orbiting Partnership (Suomi NPP). Both the VIIRS Active Fire product and the Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) Thermal Anomalies product (MYD14) are used to identify the biomass burning fire origin in southern Africa. The Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) are used to assess the aerosol type, aerosol altitude, and cloud altitude. We use back trajectory information, wind data, and the Fire Locating and Modeling of Burning Emissions (FLAMBE) product to infer the transportation of aerosols from the fire source to the CALIOP swath in the southeast Atlantic during austral winter.

  5. Using UV-vis absorbance spectral parameters to characterize the fouling propensity of humic substances during ultrafiltration.

    PubMed

    Zhou, Minghao; Meng, Fangang

    2015-12-15

    Ultrafiltration (UF) can achieve excellent removal of natural organic matter (NOM), but the main challenge for this process is the limited understanding of membrane fouling. The objective of this study is to explore the potential of UV-vis spectroscopic analysis for the detection of membrane fouling caused by humic acids (HA) at different solution chemistries (i.e., calcium ions (Ca(2+)) and pH). In the presence of Ca(2+), several spectral parameters, including the DSlope(325-375) (the slope of the log-transformed absorbance spectra over 325-375 nm), S(275-295) (the slope of the absorption coefficient over 257-295 nm) and S(R) (the ratio of S(275-295) to S(350-400)) of various HA solutions, were correlated with the molecule aggregation and the membrane fouling potential. Interestingly, increased DSlope(325-375) and decreased S(275-295) and S(R) were observed for the HA-Ca(2+) interaction under alkaline conditions (i.e., pH = 9) relative to those in lower pH environments (i.e., pH = 7 or 6), suggesting that spectral parameters were able to predict HA-Ca(2+) interactions under varying pH conditions. The strong correlations between the spectral parameters and the unified membrane fouling index (UMFI) obtained from UF experiments further corroborated that the spectral parameters were able to predict the membrane fouling potential. Moreover, the spectral parameters were also found to well reveal the fouling extent of the mixture of HA and Suwannee River NOM (SRNOM) or the pure SRNOM added with varying calcium concentrations, implying that the spectroscopic analysis was also available for the indication of practical NOM fouling. In addition, the measurement of S(275-295) and S(R) of the permeate solution suggests an increasing proportion of small-molecule HA in the permeate during the UF process. This study not only expands our knowledge of NOM-Ca(2+) aggregates as well as their role in membrane fouling behavior but also provides an approach for the in situ

  6. Aluminum-induced changes in properties and fouling propensity of DOM solutions revealed by UV-vis absorbance spectral parameters.

    PubMed

    Zhou, Minghao; Meng, Fangang

    2016-04-15

    The integration of pre-coagulation with ultrafiltration (UF) is expected to not only reduce membrane fouling but also improve natural organic matter (NOM) removal. However, it is difficult to determine the proper coagulant dosage for different water qualities. The objective of this study was to probe the potential of UV-vis spectroscopic analysis to reveal the coagulant-induced changes in the fouling potentials of dissolved organic matter (DOM) and to determine the optimal coagulant dosage. The Zeta potentials (ZPs) and average particle size of the four DOM solutions (Aldrich humic acid (AHA), AHA-sodium alginate (SA), AHA-bovine serum albumin (BSA) and AHA-dextran (DEX)) coagulated with aluminum chloride (AlCl3) were measured. Results showed that increasing the aluminum coagulant dosage induced the aggregation of DOM. Meanwhile, the addition of aluminum coagulant resulted in an increase in DSlope(325-375) (the slope of the log-transformed absorbance spectra from 325 to 375 nm) and a decrease in S(275-295) (the slope of the log-transformed absorption coefficient from 275 to 295 nm) and SR (the ratio of Slope(275-295) and Slope(350-400)). The variations of these spectral parameters (i.e., DSlope(325-375), S(275-295) and SR) correlated well with the aluminum-caused changes in ZPs and average particle size. This implies that spectral parameters have the potential to indicate DOM aggregation. In addition, good correlations of spectral parameters and membrane fouling behaviors (i.e., unified membrane fouling index (UMFI)) suggest that the changes in DSlope(325-375), S(275-295) and SR were indicative of the aluminum-caused alterations of fouling potentials of all DOM solutions. Interestingly, the optimal dosage of aluminum (40 μM for AHA, AHA-BSA, and AHA-DEX) was obtained based on the relation between spectral parameters and fouling behaviors. Overall, the spectroscopic analysis, particularly for the utilization of spectral parameters, provided a convenient approach

  7. Radiation-damage-induced phasing: a case study using UV irradiation with light-emitting diodes.

    PubMed

    de Sanctis, Daniele; Zubieta, Chloe; Felisaz, Franck; Caserotto, Hugo; Nanao, Max H

    2016-03-01

    Exposure to X-rays, high-intensity visible light or ultraviolet radiation results in alterations to protein structure such as the breakage of disulfide bonds, the loss of electron density at electron-rich centres and the movement of side chains. These specific changes can be exploited in order to obtain phase information. Here, a case study using insulin to illustrate each step of the radiation-damage-induced phasing (RIP) method is presented. Unlike a traditional X-ray-induced damage step, specific damage is introduced via ultraviolet light-emitting diodes (UV-LEDs). In contrast to UV lasers, UV-LEDs have the advantages of small size, low cost and relative ease of use.

  8. Colour change evaluation on UV radiation exposure for Păun-Repedea calcareous geomaterial

    NASA Astrophysics Data System (ADS)

    Pelin, V.; Sandu, I.; Munteanu, M.; Iurcovschi, C. T.; Gurlui, S.; Sandu, AV; Vasilache, V.; Brȃnzilă, M.; Sandu, I. G.

    2016-06-01

    When talking about the preservation treatments that can be applied to natural stones used in different constructions, the surface hydrophobization plays an important part, especially when referring to porous surfaces like the calcareous oolithic stones specific to Repedea area, Iasi County, Romania. The present paper presents a method that evaluates the hydrophobization efficiency of two types of pellicles, involving UV artificial ageing and colorimetric analysis of the treated surfaces. The evaluation was done through continuous colorimetric monitoring and by comparing the evolution of the chromatic modifications of the two treated surfaces with the original colorimetric values and with the witness area, which was exposed to UV radiations under the same conditions, but left chemical untreated. The techniques used during this experiment were: CIE L*a*b* colorimetry, OM, SEM-EDX, UV radiation exposure and Spectrum Irradiance Measurement.

  9. Pr,Ce:YAlO3 crystal properties under UV-radiation exposure

    NASA Astrophysics Data System (ADS)

    Fibrich, Martin; Jelínková, Helena; Sulc, Jan; Nejezchleb, Karel; Skoda, Václav

    2012-06-01

    As came out in one of our past experiments concerning the Pr:YAlO3 (Pr:YAP) active material, UV-radiation had an adverse effect for lasing action due to the crystal solarization. So, co-doping of this material by Ce3+-ions having broad absorption-bands in the UV-region has been proposed for crystal property improvement in terms of color-center formation. The Pr,Ce:YAP absorption-spectrum investigation under UV-radiation exposure, in comparison to the Pr:YAP one, is reported in this contribution. Moreover, lasing properties of these two materials under the GaN-diode pumping are summarized.

  10. Radiative effects of absorbing aerosols over northeastern India: Observations and model simulations

    NASA Astrophysics Data System (ADS)

    Gogoi, Mukunda M.; Babu, S. Suresh; Moorthy, K. Krishna; Bhuyan, Pradip Kumar; Pathak, Binita; Subba, Tamanna; Chutia, Lakhima; Kundu, Shyam Sundar; Bharali, Chandrakala; Borgohain, Arup; Guha, Anirban; De, Barin Kumar; Singh, Brajamani; Chin, Mian

    2017-01-01

    Multiyear measurements of spectral properties of aerosol absorption are examined over four geographically distinct locations of northeastern India. Results indicated significant spatiotemporal variation in aerosol absorption coefficients (σabs) with highest values in winter and lowest in monsoon. The western parts of the region, close to the outflow of Indo-Gangetic Plains, showed higher values of σabs and black carbon (BC) concentration—mostly associated with fossil fuel combustion. But, the eastern parts showed higher contributions from biomass-burning aerosols, as much as 20-25% to the total aerosol absorption, conspicuously during premonsoon season. This is attributed to a large number of burning activities over the Southeast Asian region, as depicted from Moderate Resolution Imaging Spectroradiometer fire count maps, whose spatial extent and magnitude peaks during March/April. The nearly consistent high values of aerosol index (AI) and layer height from Ozone Monitoring Instrument indicate the presence of absorbing aerosols in the upper atmosphere. The observed seasonality has been captured fairly well by Goddard Chemistry Aerosol Radiation and Transport (GOCART) as well as Weather Research and Forecasting-Chemistry (WRF-Chem) model simulations. The ratio of column-integrated optical depths due to particulate organic matter and BC from GOCART showed good coincidence with satellite-based observations, indicating the increased vertical dispersion of absorbing aerosols, probably by the additional local convection due to higher fire radiative power caused by the intense biomass-burning activities. In the WRF-Chem though underperformed by different magnitude in winter, the values are closer or overestimated near the burnt areas. Atmospheric forcing due to BC was highest ( 30 Wm-2) over the western part associated with the fossil fuel combustion.

  11. Decomposition of 2-naphthalenesulfonate in electroplating solution by ozonation with UV radiation.

    PubMed

    Chen, Yi-Hung; Chang, Ching-Yuan; Huang, Shih-Fong; Shang, Neng-Chou; Chiu, Chun-Yu; Yu, Yue-Hwa; Chiang, Pen-Chi; Shie, Je-Lueng; Chiou, Chyow-San

    2005-02-14

    This study investigates the ozonation of 2-naphthalenesulfonate (2-NS) combined with UV radiation in the electroplating solution. 2-NS is commonly used as a brightening and stabilization agent in the electroplating solution. Semibatch ozonation experiments were conducted under various reaction conditions to study the effects of ozone dosage and UV radiation on the oxidation of 2-NS. The concentrations of 2-NS were analyzed at specified time intervals to elucidate the decomposition of 2-NS. Total organic carbon (TOC) is chosen as a mineralization index of the ozonation of 2-NS. In addition, values of pH and oxidation reduction potential were continuously measured in the course of experiments. As a result, the nearly complete mineralization of 2-NS via the ozonation treatment can be achieved. The mineralization of 2-NS is found accelerated by the introduction of UV radiation and has a distinct relationship with the consumption of applied ozone. These results can provide useful information for the proper removal of 2-NS in the electroplating solution by the ozonation with UV radiation.

  12. GROWTH RESPONSE OF SYMBODINIUM SPP. TO COMBINED TEMPERATURE AND UV RADIATION

    EPA Science Inventory

    Rogers, J.E. and D. Marcovich. In press. Growth Response of a Coral Symbiont, Symbiodinium sp., to Combined Temperature and UV Radiation Exposure (Abstract). To be presented at the ASLO 2004 Summer Meeting: The Changing Landscapes of Oceans and Freshwater, 13-18 June 2004, Savann...

  13. Effects of UV-B Radiation on the Structural and Physiological Diversity of Bacterioneuston and Bacterioplankton

    PubMed Central

    Santos, Ana L.; Oliveira, Vanessa; Baptista, Inês; Henriques, Isabel; Gomes, Newton C. M.; Almeida, Adelaide; Correia, António

    2012-01-01

    The effects of UV radiation (UVR) on estuarine bacterioneuston and bacterioplankton were assessed in microcosm experiments. Bacterial abundance and DNA synthesis were more affected in bacterioplankton. Protein synthesis was more inhibited in bacterioneuston. Community analysis indicated that UVR has the potential to select resistant bacteria (e.g., Gammaproteobacteria), particularly abundant in bacterioneuston. PMID:22247171

  14. ATTENUATION OF SOLAR UV RADIATION BY AEROSOLS DURING AIR POLLUTION EPISODES

    EPA Science Inventory

    Increase in the amount of solar UV radiation reaching the surface due to decrease in stratospheric ozone continues to be a major concern (WMO, 1998). However, recent studies show that absorption and smattering by aerosols during air pollution episode decreases the amount of radi...

  15. Photocatalytic ROS production and phototoxicity of titanium dioxide nanoparticles is dependent on solar UV radiation spectrum

    EPA Science Inventory

    Generation of reactive oxygen species (ROS) by titanium dioxide nanoparticles (nano-TiO2) and its consequent phototoxicity to Daphnia magna were measured under different solar UV radiation spectrum by applying a series of optical filters in a solar simulator. Removing UVB (280-32...

  16. Effects of solar UV radiation on alkaloid production in Erythroxylum novogranatense var. novogranatense

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cocaine-producing species of Erythroxylum have been cultivated in South America for centuries, yet little is know of environmental effects on alkaloid production in these species. Given the high incidence of UV radiation in the equatorial and high altitude environments in which cocaine-producing sp...

  17. The effect of UV radiation on the properties of diffraction gratings based on dichromated gelatin

    NASA Astrophysics Data System (ADS)

    Ganzherli, N. M.; Gulyaev, S. N.; Maurer, I. A.

    2016-10-01

    Results of experiments on the influence exerted by UV radiation on the height of the surface relief and on the diffraction efficiency of holographic diffraction gratings recorded on dichromated gelatin layers are reported. It is shown that the height of the surface relief substantially increases, which leads to a rise in the diffraction efficiency of the gratings to a value exceeding 25%.

  18. [Degradation of endocrine disruptor atrazine in drinking water by UV radiation].

    PubMed

    Wang, Li; Gao, Nai-yun; Wei, Hong-bin; Xia, Li-hua; Cui, Jing

    2006-06-01

    The degradation of atrazine with low concentration in drinking water by UV radiation was studied. The main influencing factors and degradation mechanism of this technology were discussed. Experimental results show that the photolytic degradation of atrazine by UV radiation alone is very efficient. Under 205 microW/cm2 irradiation intensity, atrazine removal ratio is 92.38% after 120 minutes. The rate of photodecomposition in aqueous solution follows first-order kinetics. The removal ratio of atrazine can be greatly enhanced by increasing the intensity of UV radiation. The initial concentration of atrazine has no effect on the oxidation reaction. The organic matter and various ion in tap water will decrease the degradation rate. The primary degradation pathway is dechlorination. The reaction rate is high. The hydroxylated compound is the major intermediate product. Hydroyatrazine can be further decomposed by UV radiation and form dealkylated derivatives. But the rate of dealkylated reaction is very low. There is intimate relationship between the change of pH in the solution and the formation of intermediate products.

  19. AMBIENT SOLAR UV RADIATION CAUSES MORTALITY IN LARVAE OF THREE SPECIES OF RANA

    EPA Science Inventory

    Recent reports concerning the lethal effects of solar ultraviolet-B (UV-B) radiation on amphibians suggest that this stressor has the potential to impact some amphibian populations. In this study embryos and larvae of three anuran species, Rana pipiens, R. clamitans, and R. septe...

  20. A simple convenient biological dosimeter for monitoring solar UV-B radiation

    SciTech Connect

    Wang, T.C. )

    1991-05-31

    The use of dry Bacillus subtilis spores as a biological dosimeter for the monitoring of solar UV-B (290-330 nm) radiation was described. Our field tests had supported the utility of this dosimeter as a reproducible and reliable sunlight dosimeter.

  1. Adsorbable organic halogens generation and reduction during degradation of phenol by UV radiation/sodium hypochlorite.

    PubMed

    Zeng, Qing-Fu; Fu, Jie; Shi, Yin-Tao; Xia, Dong-Sheng; Zhu, Hai-Liang

    2009-02-01

    The degradation of phenol by UV radiation/sodium hypochlorite (UV/NaClO) was investigated. The degradation processes were analyzed by a UV-visible spectrometer, total organic carbon analyzer, and gas chromatography-mass spectroscopy. The experimental results indicate that phenol can be photodegraded by UV/NaClO effectively. However, adsorbable organic halogens (AOX) were produced during the degradation process. Analysis of the mechanism of degradation indicates that the decrease in pH value would increase the formation of AOX. Also, dissolved oxygen greatly increased the rate of phenol degradation and reduced the formation of AOX. Therefore, appropriate conditions could increase degradation and inhibit chlorination. Adjusting the pH value and increasing the amount of oxygen were effective methods.

  2. NONO regulates the intra-S-phase checkpoint in response to UV radiation.

    PubMed

    Alfano, L; Costa, C; Caporaso, A; Altieri, A; Indovina, P; Macaluso, M; Giordano, A; Pentimalli, F

    2016-02-04

    The main risk factor for skin cancer is ultraviolet (UV) exposure, which causes DNA damage. Cells respond to UV-induced DNA damage by activating the intra-S-phase checkpoint, which prevents replication fork collapse, late origin firing and stabilizes fragile sites. Recently, the 54-kDa multifunctional protein NONO was found to be involved in the non-homologous end-joining DNA repair process and in poly ADP-ribose polymerase 1 activation. Interestingly, NONO is mutated in several tumour types and emerged as a crucial factor underlying both melanoma development and progression. Therefore, we set out to evaluate whether NONO could be involved in the DNA-damage response to UV radiations. We generated NONO-silenced HeLa cell clones and found that lack of NONO decreased cell growth rate. Then, we challenged NONO-silenced cells with exposure to UV radiations and found that NONO-silenced cells, compared with control cells, continued to synthesize DNA, failed to block new origin firing and impaired CHK1S345 phosphorylation showing a defective checkpoint activation. Consistently, NONO is present at the sites of UV-induced DNA damage where it localizes to RAD9 foci. To position NONO in the DNA-damage response cascade, we analysed the loading onto chromatin of various intra-S-phase checkpoint mediators and found that NONO favours the loading of topoisomerase II-binding protein 1 acting upstream of the ATM and Rad3-related kinase activity. Strikingly, re-expression of NONO, through an sh-resistant mRNA, rescued CHK1S345 phosphorylation in NONO-silenced cells. Interestingly, NONO silencing affected cell response to UV radiations also in a melanoma cell line. Overall, our data uncover a new role for NONO in mediating the cellular response to UV-induced DNA damage.

  3. Extremely high UV-C radiation resistant microorganisms from desert environments with different manganese concentrations.

    PubMed

    Paulino-Lima, Ivan Glaucio; Fujishima, Kosuke; Navarrete, Jesica Urbina; Galante, Douglas; Rodrigues, Fabio; Azua-Bustos, Armando; Rothschild, Lynn Justine

    2016-10-01

    Desiccation resistance and a high intracellular Mn/Fe ratio contribute to ionizing radiation resistance of Deinococcus radiodurans. We hypothesized that this was a general phenomenon and thus developed a strategy to search for highly radiation-resistant organisms based on their natural environment. While desiccation is a typical feature of deserts, the correlation between radiation resistance and the intracellular Mn/Fe ratio of indigenous microorganisms or the Mn/Fe ratio of the environment, has not yet been described. UV-C radiation is highly damaging to biomolecules including DNA. It was used in this study as a selective tool because of its relevance to early life on earth, high altitude aerobiology and the search for life beyond Earth. Surface soil samples were collected from the Sonoran Desert, Arizona (USA), from the Atacama Desert in Chile and from a manganese mine in northern Argentina. Microbial isolates were selected after exposure to UV-C irradiation and growth. The isolates comprised 28 genera grouped within six phyla, which we ranked according to their resistance to UV-C irradiation. Survival curves were performed for the most resistant isolates and correlated with their intracellular Mn/Fe ratio, which was determined by ICP-MS. Five percent of the isolates were highly resistant, including one more resistant than D. radiodurans, a bacterium generally considered the most radiation-resistant organism, thus used as a model for radiation resistance studies. No correlation was observed between the occurrence of resistant microorganisms and the Mn/Fe ratio in the soil samples. However, all resistant isolates showed an intracellular Mn/Fe ratio much higher than the sensitive isolates. Our findings could represent a new front in efforts to harness mechanisms of UV-C radiation resistance from extreme environments.

  4. Response of different crop growth and yield to enhanced UV-B radiation under field conditions

    NASA Astrophysics Data System (ADS)

    Zheng, Youfei; Gao, Wei; Slusser, James R.; Grant, Richard H.; Wang, Chuanhai

    2004-10-01

    Enhanced UV-B radiation due to stratospheric ozone depletion may have impacts on the productivity of agricultural crops. Which crop will be more sensitive to increased UV-B has received little attention. This paper presents a comparative study of the effects of supplemental UV-B on plant height, leaf area, biomass and yield among soybean, cotton, corn and wheat which were cultivated in fields in Nanjing, China. The experimental results showed that the four crops response to enhanced UV-B irradiation was shortened plant height, decreased leaf area and reduced biomass and yield of crops. Using the same criteria, the response of soybean and cotton to elevated UV-B is bigger than that of wheat and corn. RI (response index) is an integrated index which is the accumulation of relative change in plant height, leaf area, biomass and yield, reflecting general impact of increased UV-B on crops. The results suggested that the RI for the four crops was minus, demonstrating a negative impact of enhanced UV-B on the crops. According to the RI, the soybean and cotton belong to the sensitive plants category, wheat is a moderately sensitive plant and corn is a tolerant plant.

  5. UV radiation-induced immunosuppression is greater in men and prevented by topical nicotinamide.

    PubMed

    Damian, Diona L; Patterson, Clare R S; Stapelberg, Michael; Park, Joohong; Barnetson, Ross St C; Halliday, Gary M

    2008-02-01

    UV radiation-induced immunosuppression augments cutaneous carcinogenesis. The incidence of skin cancer continues to increase despite increased use of sunscreens, which are less effective at preventing immunosuppression than sunburn. Using the Mantoux reaction as a model of skin immunity, we investigated the effects of solar-simulated (ss) UV and its component UVA and UVB wavebands and tested the ability of topical nicotinamide to protect from UV-induced immunosuppression. Healthy, Mantoux-positive volunteers were UV-irradiated on their backs, with 5% nicotinamide or vehicle applied to different sites in a randomized, double-blinded manner. Subsequent Mantoux testing at irradiated and adjacent unirradiated sites enabled measurement of UV-induced immunosuppression with and without nicotinamide. Suberythemal ssUV caused significant immunosuppression, although component UVB and UVA doses delivered independently did not. Men were immunosuppressed by ssUV doses three times lower than those required to immunosuppress women. This may be an important cause of the higher skin cancer incidence and mortality observed in men. Topical nicotinamide prevented immunosuppression, with gene chip microarrays suggesting that the mechanisms of protection may include alterations in complement, energy metabolism and apoptosis pathways. Nicotinamide is a safe and inexpensive compound that could be added to sunscreens or after-sun lotions to improve protection from immunosuppression. immunosuppression.JID JOURNAL CLUB ARTICLE: For questions, answers, and open discussion about this article, please go to http://network.nature.com/group/jidclub

  6. Survival of Shewanella oneidensis MR-1 after UV radiation exposure.

    PubMed

    Qiu, Xiaoyun; Sundin, George W; Chai, Benli; Tiedje, James M

    2004-11-01

    We systematically investigated the physiological response as well as DNA damage repair and damage tolerance in Shewanella oneidensis MR-1 following UVC, UVB, UVA, and solar light exposure. MR-1 showed the highest UVC sensitivity among Shewanella strains examined, with D37 and D10 values of 5.6 and 16.5% of Escherichia coli K-12 values. Stationary cells did not show an increased UVA resistance compared to exponential-phase cells; instead, they were more sensitive at high UVA dose. UVA-irradiated MR-1 survived better on tryptic soy agar than Luria-Bertani plates regardless of the growth stage. A 20% survival rate of MR-1 was observed following doses of 3.3 J of UVC m(-2), 568 J of UVB m(-2), 25 kJ of UVA m(-2), and 558 J of solar UVB m(-2), respectively. Photoreactivation conferred an increased survival rate to MR-1 of as much as 177- to 365-fold, 11- to 23-fold, and 3- to 10-fold following UVC, UVB, and solar light irradiation, respectively. A significant UV mutability to rifampin resistance was detected in both UVC- and UVB-treated samples, with the mutation frequency in the range of 10(-5) to 10(-6). Unlike in E. coli, the expression levels of the nucleotide excision repair (NER) component genes uvrA, uvrB, and uvrD were not damage inducible in MR-1. Complementation of Pseudomonas aeruginosa UA11079 (uvrA deficient) with uvrA of MR-1 increased the UVC survival of this strain by more than 3 orders of magnitude. Loss of damage inducibility of the NER system appears to contribute to the high sensitivity of this bacterium to UVR as well as to other DNA-damaging agents.

  7. Rapid Enzymatic Response to Compensate UV Radiation in Copepods

    PubMed Central

    Souza, María Sol; Hansson, Lars-Anders; Hylander, Samuel; Modenutti, Beatriz; Balseiro, Esteban

    2012-01-01

    Ultraviolet radiation (UVR) causes physical damage to DNA, carboxylation of proteins and peroxidation of lipids in copepod crustaceans, ubiquitous and abundant secondary producers in most aquatic ecosystems. Copepod adaptations for long duration exposures include changes in behaviour, changes in pigmentation and ultimately changes in morphology. Adaptations to short-term exposures are little studied. Here we show that short-duration exposure to UVR causes the freshwater calanoid copepod, Eudiaptomus gracilis, to rapidly activate production of enzymes that prevent widespread collateral peroxidation (glutathione S-transferase, GST), that regulate apoptosis cell death (Caspase-3, Casp-3), and that facilitate neurotransmissions (cholinesterase-ChE). None of these enzyme systems is alone sufficient, but they act in concert to reduce the stress level of the organism. The interplay among enzymatic responses provides useful information on how organisms respond to environmental stressors acting on short time scales. PMID:22384136

  8. The effects of UV radiation, litter chemistry, and drought on desert litter decomposition

    NASA Astrophysics Data System (ADS)

    Lee, H.; Nieto, B.; Hewins, D. B.; Barnes, P. W.; McDowell, N. G.; Pockman, W.; Rahn, T.; Throop, H. L.

    2011-12-01

    Recent studies suggest that photodegradation by solar UV radiation can be a major driver of litter decomposition in dryland ecosystems. The importance of photodegradation in litter decomposition appears to decline with precipitation, suggesting that the relative importance of photodegradation may increase given current projections of future increases in drought severity in the southwestern USA. Several previous studies indicate that UV-B radiation (280-320 nm) is the most effective waveband in breaking chemical bonds forming organic material, but whether UV-B exposure may facilitate subsequent decomposition by microbes (i.e., photo-priming) has received little attention. In this study, we tested the effects of pre-exposure UV radiation (photo-priming), litter chemistry (lignin and cellulose content and nitrogen content), and drought on the rate of litter decomposition in a semi-arid ecosystem. To understand the effects of UV radiation on litter decomposition, we pre-exposed litter to three radiation treatments: control (no radiation), UV-A+visible, UV-A+UV-B+visible. Litter was exposed to the equivalent of three months' solar radiation of southern New Mexico prior to microbial decomposition. There were three litter types: basswood sheets (high lignin content), pure cellulose filter paper, and mesquite (Prosopis glandulosa) leaflets. Following radiation treatment, litter was placed in mesh litterbags that were buried within a large-scale precipitation manipulation experiment at the Sevilleta Long-Term Ecological Research site: control (ambient precipitation), elevated precipitation (x2 ambient precipitation), and drought (x0.5 ambient precipitation). We collected a subset of bags at 0, 1, 3, and 6 months and measured mass remaining and carbon (C) and nitrogen (N) content. After 6 months, mass remaining of filter paper and basswood sheets did not differ from the initial mass, but mesquite mass remaining declined over 30%. The pre-exposure UV effects had minimal

  9. Compression zone of a magnetoplasma compressor as a source of extreme UV radiation

    SciTech Connect

    Garkusha, I. E.; Chebotarev, V. V.; Solyakov, D. G.; Petrov, Yu. V.; Ladygina, M. S.; Marchenko, A. K.; Staltsov, V. V.; Yelisyeyev, D. V.

    2012-02-15

    Results from experimental studies of extreme UV (EUV) radiation from the compression zone of a magnetoplasma compressor (MPC) operating with xenon are presented. Two MPC operating modes that differ in the method of xenon injection into the discharge were studied. It is shown that EUV radiation in the wavelength range of 5-80 nm is emitted from the compression zone. In the MPC operating mode with local xenon injection directly into the compression zone surrounded by helium plasma, the radiation power reaches it peak value of 16-18 kW in the wavelength range of 12.2-15.8 nm.

  10. Past changes in Arctic terrestrial ecosystems, climate and UV radiation.

    PubMed

    Callaghan, Terry V; Björn, Lars Olof; Chernov, Yuri; Chapin, Terry; Christensen, Torben R; Huntley, Brian; Ims, Rolf A; Johansson, Margareta; Jolly, Dyanna; Jonasson, Sven; Matveyeva, Nadya; Panikov, Nicolai; Oechel, Walter; Shaver, Gus

    2004-11-01

    that are apparently without precedent during the Pleistocene is likely to be considerable, particularly as their exposure to co-occurring environmental changes (such as enhanced levels of UV-B, deposition of nitrogen compounds from the atmosphere, heavy metal and acidic pollution, radioactive contamination, increased habitat fragmentation) is also without precedent.

  11. Comparison of the effect of UV laser radiation and of a radiomimetic substance on chromatin

    NASA Astrophysics Data System (ADS)

    Radulescu, Irina; Radu, Liliana; Serbanescu, Ruxandra; Nelea, V. D.; Martin, C.; Mihailescu, Ion N.

    1998-07-01

    The damages of the complex of deoxyribonucleic acid (DNA) and proteins from chromatin, produced by the UV laser radiation and/or by treatment with a radiomimetic substance, bleomycin, were compared. The laser radiation and bleomycin effects on chromatin structure were determined by the static and dynamic fluorimetry of chromatin complexes with the DNA specific ligand-- proflavine and by the analysis of tryptophan chromatin intrinsic fluorescence. Time resolved spectroscopy is a sensitive technique which allows to determine the excited state lifetimes of chromatin--proflavine complexes. Also, the percentage contributions to the fluorescence of proflavine, bound and unbound to chromatin DNA, were evaluated. The damages produced by the UV laser radiation on chromatin are similar with those of radiomimetic substance action and consists in DNA and proteins destruction. The DNA damage degree has been determined. The obtained results may constitute some indications in the laser utilization in radiochimiotherapy.

  12. Distinct physiological and metabolic reprogramming by highbush blueberry (Vaccinium corymbosum) cultivars revealed during long-term UV-B radiation.

    PubMed

    Luengo Escobar, Ana; Alberdi, Miren; Acevedo, Patricio; Machado, Mariana; Nunes-Nesi, Adriano; Inostroza-Blancheteau, Claudio; Reyes-Díaz, Marjorie

    2016-12-10

    Despite the Montreal protocol and the eventual recovery of the ozone layer over Antarctica, there are still concerns about increased levels of ultraviolet-B (UV-B) radiation in the Southern Hemisphere. UV-B induces physiological, biochemical and morphological stress responses in plants, which are species-specific and different even for closely related cultivars. In woody plant species, understanding of long-term mechanisms to cope with UV-B-induced stress is limited. Therefore, a greenhouse UV-B daily course simulation was performed for 21 days with two blueberry cultivars (Legacy and Bluegold) under UV-BBE irradiance doses of 0, 0.07 and 0.19 W m(-2) . Morphological changes, photosynthetic performance, antioxidants, lipid peroxidation and metabolic features were evaluated. We found that both cultivars behaved differently under UV-B exposure, with Legacy being a UV-B-resistant cultivar. Interestingly, Legacy used a combined strategy: initially, in the first week of exposure its photoprotective compounds increased, coping with the intake of UV-B radiation (avoidance strategy), and then, increasing its antioxidant capacity. These strategies proved to be UV-B radiation dose dependent. The avoidance strategy is triggered early under high UV-B radiation in Legacy. Moreover, the rapid metabolic reprogramming capacity of this cultivar, in contrast to Bluegold, seems to be the most relevant contribution to its UV-B stress-coping strategy.

  13. Separate and combined responses to water deficit and UV-B radiation.

    PubMed

    Bandurska, Hanna; Niedziela, Justyna; Chadzinikolau, Tamara

    2013-12-01

    Crops and other plants in natural conditions are routinely affected by several stresses acting simultaneously or in sequence. In areas affected by drought, plants may also be exposed to enhanced UV-B radiation (280-315nm). Each of these stress factors differently affects cellular metabolism. A common consequence of plant exposure to the separate action of water deficit and UV-B radiation is the enhanced generation of reactive oxygen species (ROS) causing damage to proteins, lipids, carbohydrates and DNA. Despite this destructive activity, ROS also act as signalling molecules in cellular processes responsible for defence responses. Plants have evolved many physiological and biochemical mechanisms that avoid or tolerate the effects of stress factors. Water deficit avoidance leads to stomatal closure, stimulation of root growth, and accumulation of free proline and other osmolytes. Secondary metabolites (flavonols, flavones and anthocyanins) that accumulate in epidermal cells effectively screen UV-B irradiation and reduce its penetration to mesophyll tissue. The coordinated increased activity of the enzymatic antioxidant defence system such as up-regulation of superoxide dismutase, catalase, guaiacol peroxidase, ascorbate peroxidase and glutathione reductase is an important mechanism of tolerance to water deficit and UV-B radiation. The accumulation of low molecular antioxidants (proline, glycine betaine, ascorbate and glutathione) can also contribute to tolerance to water deficit. Polyamines, tocopherol, carotenoids, alkaloids, flavonoids and other secondary metabolites participate in the removal of ROS under conditions of increased UV-B radiation. The combination of water deficit and UV-B radiation induces responses that can be antagonistic, additive or synergistic in comparison with the action of single stresses. UV-B radiation may enhance resistance to water deficit and vice versa. Hydrogen peroxide, nitric oxide (NO), abscisic acid (ABA), jasmonic acid, ethylene

  14. The changes in quality ingredients of Qi chrysanthemum flowers treated with elevated UV-B radiation at different growth stages.

    PubMed

    Yao, Xiaoqin; Chu, Jianzhou; He, Xueli; Ma, Chunhui; Han, Chao; Shen, Haiyu

    2015-05-01

    The paper mainly reported the changes in quality ingredients of Qi chrysanthemum flowers treated with elevated UV-B radiation at different growth stages. The experiment included two levels of UV-B radiation (ambient UV-B, a 10% increase in ambient UV-B). Elevated UV-B radiation was carried out for 10-days during seedling, vigorous growth, bud and flower stages of Qi chrysanthemum, respectively. Elevated UV-B treatments applied during four development stages did not significantly affect flower yield, the rate of superoxide radical production and malondialdehyde concentration in flowers, while increased free amino acid concentration. The amino acid concentration induced by elevated UV-B radiation applied during bud stage was higher than that during the other stages. Elevated UV-B radiation applied during vigorous growth (except for flavone), bud and flower stages of chrysanthemum significantly increased hydrogen peroxide concentration, phenylalanine ammonia lyase enzyme activity, vitamin C, chlorogenic acid and flavone concentrations in flowers. These results suggested that active and nutritional ingredients in flowers of chrysanthemum could be increased by elevated UV-B radiation applied during the later growth stages of chrysanthemum. The paper supplied a simple and environmental-friendly method to improve quality of medicinal plants.

  15. UV radiation and freshwater zooplankton: damage, protection and recovery.

    PubMed

    Rautio, Milla; Tartarotti, Barbara

    2010-12-01

    While many laboratory and field studies show that zooplankton are negatively affected when exposed to high intensities of ultraviolet radiation (UVR), most studies also indicate that zooplankton are well adapted to cope with large variations in their UVR exposure in the pelagic zone of lakes. The response mechanisms of zooplankton are diverse and efficient and may explain the success and richness of freshwater zooplankton in optically variable waters. While no single behavioural or physiological protection mechanism seems to be superior, and while several unexplained and contradictory patterns exist in zooplankton UVR ecology, recent increases in our understanding are consistent with UVR playing an important role for zooplankton. This review examines the variability in freshwater zooplankton responses to UVR, with a focus on crustacean zooplankton (Cladocera and Copepoda). We present an overview of UVR-induced damages, and the protection and recovery mechanisms freshwater zooplankton use when exposed to UVR. We review the current knowledge of UVR impact on freshwater zooplankton at species and community levels, and discuss briefly how global change over the last three decades has influenced the UVR milieu in lakes.

  16. UV radiation and freshwater zooplankton: damage, protection and recovery

    PubMed Central

    Rautio, Milla; Tartarotti, Barbara

    2011-01-01

    While many laboratory and field studies show that zooplankton are negatively affected when exposed to high intensities of ultraviolet radiation (UVR), most studies also indicate that zooplankton are well adapted to cope with large variations in their UVR exposure in the pelagic zone of lakes. The response mechanisms of zooplankton are diverse and efficient and may explain the success and richness of freshwater zooplankton in optically variable waters. While no single behavioural or physiological protection mechanism seems to be superior, and while several unexplained and contradictory patterns exist in zooplankton UVR ecology, recent increases in our understanding are consistent with UVR playing an important role for zooplankton. This review examines the variability in freshwater zooplankton responses to UVR, with a focus on crustacean zooplankton (Cladocera and Copepoda). We present an overview of UVR-induced damages, and the protection and recovery mechanisms freshwater zooplankton use when exposed to UVR. We review the current knowledge of UVR impact on freshwater zooplankton at species and community levels, and discuss briefly how global change over the last three decades has influenced the UVR milieu in lakes. PMID:21516254

  17. Modeling the photodegradation of emerging contaminants in waters by UV radiation and UV/H2O2 system.

    PubMed

    Benitez, F Javier; Acero, Juan L; Real, Francisco J; Roldan, Gloria; Rodriguez, Elena

    2013-01-01

    Five emerging contaminants (1-H-Benzotriazole, N,N-diethyl-m-toluamide or DEET, Chlorophene, 3-Methylindole, and Nortriptyline HCl), frequently found in surface waters and wastewaters, were selected to be photooxidized in several water matrices. Previous degradation experiments of these compounds individually dissolved in ultra pure water were performed by using UV radiation at 254 nm and the Fenton's reagent. These oxidation systems allowed the determination of the quantum yields and the rate constants for the radical reaction between each compound and hydroxyl radicals. Later, the simultaneous photodegradation of mixtures of the selected ECs in several types of water (ultrapure water, reservoir water, and two effluents from WWTPs) was carried out and a kinetic study was conducted. A model is proposed for the ECs elimination, and the theoretically calculated concentrations with this model agreed well with the experimental results obtained, which confirmed that it constitutes an excellent tool to predict the elimination of these compounds in waters.

  18. Synergistic effects of ethanol and UV radiation to reduce levels of selected foodborne pathogenic bacteria.

    PubMed

    Ha, Ji-Hyoung; Ha, Sang-Do

    2010-03-01

    The purpose of this study was to determine whether combined treatments would produce synergistic disinfection effects on food products during food processing compared with single treatments. We investigated the bactericidal effects of a commercial chemical disinfectant (ethanol) and of UV radiation on Bacillus cereus F4810/72, Cronobacter sakazakii KCTC 2949, Staphylococcus aureus ATCC 35556, Escherichia coli ATCC 10536, and Salmonella enterica Typhimurium NO/NA in vitro. Various concentrations of ethanol (10, 30, 40, and 50%) were tested with various exposure doses of UV radiation (6, 96, 216, 360, and 504 mWs/cm(2)) with a UV lamp. The combined ethanol-UV treatments resulted in greater reductions in bacterial counts than did either treatment alone. The synergistic effect values for B. cereus, C. sakazakii, S. aureus, S. enterica Typhimurium NO/NA, and E. coli were 0.40 to 1.52, 0.52 to 1.74, 0.20 to 2.32, 0.07 to 1.14, and 0.02 to 1.75 log CFU/ml, respectively. The results of this study suggest that a significant synergistic benefit results from combining ethanol and UV treatments against foodborne pathogens in vitro.

  19. From ozone depletion to agriculture: understanding the role of UV radiation in sustainable crop production.

    PubMed

    Wargent, Jason J; Jordan, Brian R

    2013-03-01

    Largely because of concerns regarding global climate change, there is a burgeoning interest in the application of fundamental scientific knowledge in order to better exploit environmental cues in the achievement of desirable endpoints in crop production. Ultraviolet (UV) radiation is an energetic driver of a diverse range of plant responses and, despite historical concerns regarding the damaging consequences of UV-B radiation for global plant productivity as related to stratospheric ozone depletion, current developments representative of a range of organizational scales suggest that key plant responses to UV-B radiation may be exploitable in the context of a sustainable contribution towards the strengthening of global crop production, including alterations in secondary metabolism, enhanced photoprotection, up-regulation of the antioxidative response and modified resistance to pest and disease attack. Here, we discuss the prospect of this paradigm shift in photobiology, and consider the linkages between fundamental plant biology and crop-level outcomes that can be applied to the plant UV-B response, in addition to the consequences for related biota and many other facets of agro-ecosystem processes.

  20. Variations of metabolites and proteome in Lonicera japonica Thunb. buds and flowers under UV radiation.

    PubMed

    Zhu, Wei; Zheng, Wen; Hu, Xingjiang; Xu, Xiaobao; Zhang, Lin; Tian, Jingkui

    2017-04-01

    Lonicera japonica Thunb., also known as Jin Yin Hua and Japanese honeysuckle, is used as a herbal medicine in Asian countries. Its flowers have been used in folk medicine in the clinic and in making food or healthy beverages for over 1500years in China. To investigate the molecular processes involved in L. japonica development from buds to flowers exposed to UV radiation, a comparative proteomics analysis was performed. Fifty-four proteins were identified as differentially expressed, including 42 that had increased expression and 12 that had decreased expression. The levels of the proteins related to glycolysis, TCA/organic acid transformation, major carbohydrate metabolism, oxidative pentose phosphate, stress, secondary metabolism, hormone, and mitochondrial electron transport were increased during flower opening process after exposure to UV radiation. Six metabolites in L. japonica buds and flowers were identified and relatively quantified using LC-MS/MS. The antioxidant activity was performed using a 1,1-diphenyl-2-picrylhydrazyl assay, which revealed that L. japonica buds had more activity than the UV irradiated flowers. This suggests that UV-B radiation induces production of endogenous ethylene in L. japonica buds, thus facilitating blossoming of the buds and activating the antioxidant system. Additionally, the higher metabolite contents and antioxidant properties of L. japonica buds indicate that the L. japonica bud stage may be a more optimal time to harvest than the flower stage when using for medicinal properties.

  1. [Effects of UV Radiation on the Physicochemical Properties and Coagulation Properties of Humic Acid Solution].

    PubMed

    Wang, Wen-dong; Zhang, Ke; Fan, Qing-hai; Zheng, Dan

    2016-03-15

    To investigate the mechanism of UV light in promoting the removal of humic acid ( HA) by coagulation, the variations of the physical and chemical properties of the HA solution before and after UV light radiation were investigated. The effects of the changes in water quality conditions on the removal performance of HA in coagulation were also observed. Experimental results showed that except zeta potential, pH, chromaticity and viscosity of the HA solution exhibited varying degrees of decline after UV radiation. Further study showed that the impact of changes in viscosity of the solution on humic acid coagulation performance was relatively small. Under acidic conditions, the coagulation performance of HA significantly increased. The increase of zeta potential led to easy gathering of colloidal particles and improved the coagulation performance. Furthermore, except for HA with relative molecular mass of between (10-30) x 10³ and less than 10³, there was little variation in the proportion of low molecular weight HA, which may be an important reason that the coagulation performance of the humic acid solution increased after UV radiation.

  2. Radioimmunotherapy treatment planning based on radiation absorbed dose or patient size

    SciTech Connect

    Eary, J.F.; Krohn, K.A.; Press, O.W. |

    1996-05-01

    Several approaches have been used to plan treatment doses for patients undergoing radioimmunotherapy. Investigators often use fixed doses, or doses based on patient size (mCi/kg or mCi/m{sup 2}). Our treatment protocols for lymphoma and leukemia involved calculation of tissue radiation absorbed dose based on images from a trace labeled infusion of antibody prior to treatment. In a recent analysis of patients treated in the Phase I and II dose escalation trial for treatment of non-Hodgkin`s lymphoma with I-131 anti-CD20 antibody (B1), we investigated the relationship between our dosimetry based treatment and dose based on patient size. Tissue radiation dose for several normal organs and for tumors were plotted versus the mCi administered per kg or m{sup 2} of the patient to evaluate the relationship between the two treatment approaches. These graphs showed correlation coefficients ranging from 0.021 to 0.684, demonstrating the variability in antibody catabolism between patients. This means that fixed doses or administrations based on patient size do not deliver consistent radiation doses to normal organs or tumors. This finding was extrapolated to show that toxicity from doses based on patient size di not correlate with treatment dose; those based on calculated rad/organ did. Phase I clinical trials using treatment doses based on patient size where there are likely to be variations in patient antibody catabolism will result in confounding toxicities at apparently similar mCi dose levels. Use of pre-treatment scans for treatment dose planning are worth the additional effort by normalizing the normal tissue toxicity.

  3. [Is UV-A a cause of malignant melanoma?].

    PubMed

    Moan, J

    1994-03-20

    The first action spectrum for cutaneous malignant melanoma was published recently (2). This spectrum was obtained using the fish Xiphophorus. If the same action spectrum applies to humans, the following statements are true: Sunbathing products (agents to protect against the sun) that absorb UV-B radiation provide almost no protection against cutaneous malignant melanoma. UV-A-solaria are more dangerous than expected so far. If people are determined to use artificial sources of radiation for tanning, they should choose UV-B-solaria rather than UV-A-solaria. Fluorescent tubes and halogen lamps may have weak melanomagnetic effects. Ozone depletion has almost no effect on the incidence rates of CMM, since ozone absorbs very little UV-A radiation. Sunbathing products which contain UV-A-absorbing compounds or neutral filters (like titanium oxide) provide real protection against cutaneous malignant melanoma, at least if they are photochemically inert.

  4. Duality of solar UV-B radiation and relevant dosimetry: vitamin D synthesis versus skin erythema

    NASA Astrophysics Data System (ADS)

    Terenetskaya, Irina P.

    2003-06-01

    Solar ultraviolet radiation (UVR) gives rise to beneficial or adverse health effects depending on the dose. Excessive UV exposures are associated with acute and chronic health effect but in appropriate doses UV sunlight is advisable. Important biological function of UVR is initiation of endogenous synthesis of vitamin D in human skin. A useful method based on an in vitro model of vitamin D synthesis ('D-dosimeter') has been specially developed to measure the vitamin D synthetic capacity of sunlight in situ. For the first time laboratory and field tests have been performed to link commonly used erythemal units (MEDs) and previtamin D accumulation.

  5. Sensitivity of pathogenic and free-living Leptospira spp. to UV radiation and mitomycin C.

    PubMed Central

    Stamm, L V; Charon, N W

    1988-01-01

    The habitats for the two major Leptospira spp. differ. The main habitat of L. biflexa is soil and water, whereas L. interrogans primarily resides in the renal tubules of animals. We investigated whether these two species, along with L. illini (species incertae sedis), differ with respect to their sensitivity to UV radiation. The doses of UV resulting in 37, 10, and 1% survival were determined for representative serovars from each species. L. interrogans serovar pomona was 3.0 to 4.8 times more sensitive to UV than the other Leptospira species under the 37, 10, and 1% survival parameters. In comparison to other bacteria, L. interrogans serovar pomona is among the most sensitive to UV. In a qualitative UV sensitivity assay, L. interrogans serovars were found to be in general more sensitive than L. biflexa serovars. All three species were found to have a photoreactivation DNA repair mechanism. Since organisms that are resistant to UV are often resistant to the DNA cross-linking agent mitomycin C, we tested the relative sensitivity of several Leptospira serovars to this compound. With few exceptions, L. biflexa and L. illini serovars were considerably more resistant to mitomycin C than the L. interrogans serovars. The mitomycin C sensitivity assay could be a useful addition to current characterization tests used to differentiate the Leptospira species. PMID:3132098

  6. Sensitivity of pathogenic and free-living Leptospira spp. to UV radiation and mitomycin C

    SciTech Connect

    Stamm, L.V.; Charon, N.W.

    1988-03-01

    The habitats for the two major Leptospira spp. differ. The main habitat of L. biflexa is soil and water, whereas L. interrogans primarily resides in the renal tubules of animals. We investigated whether these two species, along with L. illini (species incertae sedis), differ with respect to their sensitivity to UV radiation. The doses of UV resulting in 37, 10 and 1% survival were determined for representive serovars from each species. L. interrogans serovar pomona was 3.0 to 4.8 times more sensitive to UV than the other Leptospira species under the 37, 10, and 1% survival parameters. In comparison to other bacteria, L. interrogans serovar pomona is among the most sensitive to UV. In a qualitative UV sensitivity assay., L. interrogans serovars were found to be in general more sensitive than L. biflexa serovars. All three species were found to have a photoreactivation DNA repair mechanism. Since organisms that are resistant to UV are often resistant to the DNA cross-linking agent mitomycin C, we tested the relative sensitivity of several Leptospira serovars to this compound. With few exceptions, L. biflexa and L. illini serovars were considerably more resistant to mitomycin C than the L. interrogans serovars. The mitomycin C sensitivity assay could be a useful addition to current characterization tests used to differentiate the Leptospira species.

  7. Transition from star-like to crew-cut micelles induced by UV radiation.

    PubMed

    Fayad, Samira Jamil; Minatti, Edson; Soldi, Valdir; Borsali, Redouane

    2014-02-15

    In the present article, the effect of UV on PS-b-PMMA micelles in solution is discussed. Micellar solutions of the amphiphilic poly(styrene-b-methylmethacrylate) block copolymer in selective solvent (methanol for the PMMA block) were exposed to UV radiation, which has simultaneously led to cross linking of the micellar core (PS) and degradation of the micellar corona (PMMA). The kinetics of such process were investigated in situ by means of dynamic light scattering, allowing the measurement of hydrodynamic radius as a function of UV exposure time. Results indicate that the size of micelles has decreased with UV exposure time down to a minimum value. Such reduced size resulted from PMMA degradation, which later promoted aggregation and coagulation because the micellar core was no longer well protected by PMMA. Addition of good solvent for both blocks (toluene) to non-UV exposed micelles has led to core swelling (PS) and, ultimately, system disassembly (free copolymer chain). The effect of adding toluene on the UV-exposed micelles has only caused core swelling as a consequence of the PS cross-linking.

  8. UV-B radiation arising from stratospheric ozone depletion influences the pigmentation of the Antarctic moss Andreaea regularis.

    PubMed

    Newsham, K K

    2003-05-01

    Changes to the radiative environment arising from stratospheric ozone (O(3)) depletion and subsequent associations between these changes and the pigmentation of the moss Andreaea regularis were measured in late austral spring and early summer 1998 at Rothera Point on the western Antarctic Peninsula (67 degrees S, 68 degrees W). A strong relationship between O(3) column depth and the ratio of UV-B to PAR irradiance ( F(uv-b)/ F(par)) was recorded at ground level ( r(2)=92%, P<0.001). Weaker, but significant, associations between O(3) column depth and ground level unweighted and biologically effective UV-B radiation (UV-B(be)) were also found. Regression analyses indicated that F(uv-b)/ F(par) was the best predictor for concentrations of UV-B screening pigments and total carotenoids extracted from plant tissues. Concentrations of these pigments were loosely ( r(2)= ca. 30%) but significantly ( P<0.01) positively associated with F(uv-b)/ F(par). Concentrations of UV-B screening pigments were also positively associated with irradiances and daily doses of unweighted UV-B and UV-B(be) radiation. The concentrations of chlorophylls a and b were apparently unaffected by O(3) depletion. The data derived from this study suggest that changes to the radiative environment associated with stratospheric O(3) depletion influence the pigmentation of A. regularis. As a corollary, flavonoids are shown to be present in tissues of A. regularis.

  9. Biological dosimetry to determine the UV radiation climate inside the MIR station and its role in vitamin D biosynthesis

    NASA Astrophysics Data System (ADS)

    Rettberg, P.; Horneck, G.; Zittermann, A.; Heer, M.

    1998-11-01

    The vitamin D synthesis in the human skin, is absolutely dependent on UVB radiation. Natural UVB from sunlight is normally absent in the closed environment of a space station like MIR. Therefore it was necessary to investigate the UV radiation climate inside the station resulting from different lamps as well as from occasional solar irradiation behind a UV-transparent quartz window. Biofilms, biologically weighting and integrating UV dosimeters successfully applied on Earth (e.g. in Antarctica) and in space (D-2, Biopan I) were used to determine the biological effectiveness of the UV radiation climate at different locations in the space station. Biofilms were also used to determine the personal UV dose of an individual cosmonaut. These UV data were correlated with the concentration of vitamin D in the cosmonaut's blood and the dietary vitamin D intake. The results showed that the UV radiation climate inside the Mir station is not sufficient for an adequate supply of vitamin D, which should therefore be secured either by vitamin D supplementat and/or by the regular exposure to special UV lamps like those in sun-beds. The use of natural solar UV radiation through the quartz window for `sunbathing' is dangerous and should be avoided even for short exposure periods.

  10. Photothermal evaluation of the influence of nicotine, antitumor drugs, and radiation on cellular absorbing structures

    NASA Astrophysics Data System (ADS)

    Zharov, Vladimir P.; Galitovsky, Valentin; Chowdhury, Parimal; Chambers, Timothy

    2004-07-01

    This short review presents findings from a recent evaluation of the diagnostic capabilities of a new experimental design of the advanced photothermal (PT) imaging system; specifically, its performance in studying the impact of nicotine, a combination of antitumor drugs, and radiation on the absorbing structures of various cells. We used this imaging system to test our hypothesis that low doses of chemicals or drugs lead to changes in cell metabolism, that these changes are accompanied by the shrinking of cellular absorbing zones (e.g. organelles), and that these reactions cause increased local absorption. Conversely, high (toxic) doses may lead to swelling of organelles or release of chromophores into the intracellular space, causing decreased local absorption. In this study, we compared PT images and PT responses of the pancreatic exocrine tumor cell line AR42J resulting from exposure to various concentrations of nicotine versus those of control cells. We found that responses were almost proportional to the drug concentration in concentrations ranging from 1 nM-100 μM, reached saturation at a maximum of approximately 100 μM-1 mM, and then fell rapidly at concentrations ranging from 1-50 mM. We also examined the influence of antitumor drugs (vinblastine and paclitaxel) on KB3 carcinoma cells, with drug concentrations ranging from 10-10 nM to 10 nM. In this instance, exposure initially led to slight cell activation, which was then followed by decreased cellular PT response. Drug administration led to corresponding changes in the amplitude and spatial intracellular localization of PT responses, including bubble formation, as an indicator of local absorption level. Additionally, it was shown that, depending on cell type, x-ray radiation may produce effects similar to those resulting from exposure to drugs. Independent verification with a combined PT-fluorescence assay and conventional staining kits (trypan blue, Annexin V-propidium iodide [PI]) revealed that this

  11. The UV-absorber benzophenone-4 alters transcripts of genes involved in hormonal pathways in zebrafish (Danio rerio) eleuthero-embryos and adult males

    SciTech Connect

    Zucchi, Sara; Bluethgen, Nancy; Ieronimo, Andrea; Fent, Karl

    2011-01-15

    Benzophenone-4 (BP-4) is frequently used as UV-absorber in cosmetics and materials protection. Despite its frequent detection in the aquatic environment potential effects on aquatic life are unknown. In this study, we evaluate the effects of BP-4 in eleuthero-embryos and in the liver, testis and brain of adult male fish on the transcriptional level by focusing on target genes involved in hormonal pathways to provide a more complete toxicological profile of this important UV-absorber. Eleuthero-embryos and males of zebrafish were exposed up to 3 days after hatching and for 14 days, respectively, to BP-4 concentrations between 30 and 3000 {mu}g/L. In eleuthero-embryos transcripts of vtg1, vtg3, esr1, esr2b, hsd17ss3, cyp19b cyp19a, hhex and pax8 were induced at 3000 {mu}g/L BP-4, which points to a low estrogenic activity and interference with early thyroid development, respectively. In adult males BP-4 displayed multiple effects on gene expression in different tissues. In the liver vtg1, vtg3, esr1 and esr2b were down-regulated, while in the brain, vtg1, vtg3 and cyp19b transcripts were up-regulated. In conclusion, the transcription profile revealed that BP-4 interferes with the expression of genes involved in hormonal pathways and steroidogenesis. The effects of BP-4 differ in life stages and adult tissues and point to an estrogenic activity in eleuthero-embryos and adult brain, and an antiestrogenic activity in the liver. The results indicate that BP-4 interferes with the sex hormone system of fish, which is important for the risk assessment of this UV-absorber.

  12. UV-B radiation-induced oxidative stress and p38 signaling pathway involvement in the benthic copepod Tigriopus japonicus.

    PubMed

    Kim, Bo-Mi; Rhee, Jae-Sung; Lee, Kyun-Woo; Kim, Min-Jung; Shin, Kyung-Hoon; Lee, Su-Jae; Lee, Young-Mi; Lee, Jae-Seong

    2015-01-01

    Ultraviolet B (UV-B) radiation presents an environmental hazard to aquatic organisms. To understand the molecular responses of the intertidal copepod Tigriopus japonicus to UV-B radiation, we measured the acute toxicity response to 96 h of UV-B radiation, and we also assessed the intracellular reactive oxygen species (ROS) levels, glutathione (GSH) content, and antioxidant enzyme (GST, GR, GPx, and SOD) activities after 24 h of exposure to UV-B with LD50 and half LD50 values. Also, expression patterns of p53 and hsp gene families with phosphorylation of p38 MAPK were investigated in UV-B-exposed copepods. We found that the ROS level, GSH content, and antioxidant enzyme activity levels were increased with the transcriptional upregulation of antioxidant-related genes, indicating that UV-B induces oxidative stress by generating ROS and stimulating antioxidant enzymatic activity as a defense mechanism. Additionally, we found that p53 expression was significantly increased after UV-B irradiation due to increases in the phosphorylation of the stress-responsive p38 MAPK, indicating that UV-B may be responsible for inducing DNA damage in T. japonicus. Of the hsp family genes, transcriptional levels of hsp20, hsp20.7, hsp70, and hsp90 were elevated in response to a low dose of UV-B radiation (9 kJ m(-2)), suggesting that these hsp genes may be involved in cellular protection against UV-B radiation. In this paper, we performed a pathway-oriented mechanistic analysis in response to UV-B radiation, and this analysis provides a better understanding of the effects of UV-B in the intertidal benthic copepod T. japonicus.

  13. Long-term variability and impact on human health of biologically active UV radiation in Moscow

    NASA Astrophysics Data System (ADS)

    Zhdanova, Ekaterina; Chubarova, Natalia

    2014-05-01

    Measurements of erythemally weighted UV irradiance (Qer) have been performed at the Meteorological Observatory of Moscow State University since 1999 with the UVB-1 YES pyranometers. These types of devices are broadband with a spectral sensitivity curve close to the action spectrum of erythema. Main uncertainties of UVB-1 YES measurements include the difference in spectral curves of the instrument and the action spectrum of erythema, as well as the deviation from the cosine law. These uncertainties were taken into account in the database of Qer measurements (Chubarova, 2008. Additional corrections of UVB-1 measurements at low ambient temperatures have been made. We analyze interannual, seasonal and diurnal Qer changes over the time period 1999-2012. In addition, the comparisons with the results of UV reconstruction model (Chubarova, 2008) are made. This model allows us to evaluate relative changes in Qer due to variations in total ozone, effective cloud amount transmission, aerosol and cloud optical thickness since 1968. It is important to note that the main reason for UV irradiance monitoring development is the strong influence of UV irradiance on the biosphere and especially on human health mainly on human skin (CIE, 1993, CIE, 2006) and eyes (Oriowo, M. et al., 2001). Based on the detailed studies we have shown the possibility of utilizing UVB-1 pyranometers for measuring the eye-damage UV radiation. Parallel measurements by the Bentham DTM-300 spectrometer and the UVB-1 YES pyranometer at the Innsbruck Medical University (Austria) have provided us the calibration factor in eye-damage units for this broadband instrument. Influence of main geophysical factors on different types of UV irradiance is estimated by means the RAF ideology (Booth, Madronich, 1994). We discuss the responses of different types of biologically active UV radiation to the impact of various atmospheric factors. The UV conditions (deficiency, optimum, excess for human) are analyzed according to

  14. Plant responses to current solar ultraviolet-B radiation and to supplemented solar ultraviolet-B radiation simulating ozone depletion: an experimental comparison.

    PubMed

    Rousseaux, M Cecilia; Flint, Stephan D; Searles, Peter S; Caldwell, Martyn M

    2004-01-01

    Field experiments assessing UV-B effects on plants have been conducted using two contrasting techniques: supplementation of solar UV-B with radiation from fluorescent UV lamps and the exclusion of solar UV-B with filters. We compared these two approaches by growing lettuce and oat simultaneously under three conditions: UV-B exclusion, near-ambient UV-B (control) and UV-B supplementation (simulating a 30% ozone depletion). This permitted computation of "solar UV-B" and "supplemental UV-B" effects. Microclimate and photosynthetically active radiation were the same under the two treatments and the control. Excluding UV-B changed total UV-B radiation more than did supplementing UV-B, but the UV-B supplementation contained more "biologically effective" shortwave radiation. For oat, solar UV-B had a greater effect than supplemental UV-B on main shoot leaf area and main shoot mass, but supplemental UV-B had a greater effect on leaf and tiller number and UV-B-absorbing compounds. For lettuce, growth and stomatal density generally responded similarly to both solar UV-B and supplemented UV-B radiation, but UV-absorbing compounds responded more to supplemental UV-B, as in oat. Because of the marked spectral differences between the techniques, experiments using UV-B exclusion are most suited to assessing effects of present-day UV-B radiation, whereas UV-B supplementation experiments are most appropriate for addressing the ozone depletion issue.

  15. Influence of UV-B radiation on photosynthesis near the sea-surface

    SciTech Connect

    Cullen, J.J.; MacIntyre, H.L. )

    1990-01-09

    Middle ultraviolet radiation (UV-B) is harmful to marine phytoplankton. This has been demonstrated repeatedly in the laboratory and in the field. In a typical field experiment, photosynthesis (uptake of [sup 14]C-biocarbonate) is reduced in samples exposed to the full range of environmental radiation as compared to samples from which UV-B has been screened. The nature of this inhibition of photosynthesis is not well documented. Specifically, it is not known how much of the effect is due to reduction of photosynthetic capacity and how much is due to destruction of photosynthetic pigment or disruption of sensitive cells. Experiments were performed to help resolve unanswered questions about the effects of UV-B on photosynthesis of phytoplankton near the sea-surface. Samples from the sea-surface microlayer (SSM), upper 10cm, and greater depths were exposed to different irradiance regimes for several hours and analyzed for changes in in vivo fluorescence, chlorophyll a concentration, and photosynthesis vs irradiance. Consistent with previous studies, exposure to environmental UV-B resulted in reduced rates of photosynthesis in confined samples. Samples from the SSM were less susceptible to solar irradiance that were those from the upper 10cm. Deeper samples were the most sensitive. The principal reason for reduced photosynthesis was destruction of chlorophyll, not inhibition of photosynthesis per unit chlorophyll. These results suggest that the increased resistance of near-surface populations to UV-B might be in part due to the fact that at the time of sampling, sensitive cells have already been damaged and their photosynthetic pigment destroyed. If this is true, simple measurements of chlorophyll concentration might be useful in assessing the effects of UV-B on phytoplankton.

  16. Influence of UV radiation on chlorophyll, and antioxidant enzymes of wetland plants in different types of constructed wetland.

    PubMed

    Xu, Defu; Wu, Yinjuan; Li, Yingxue; Howard, Alan; Jiang, Xiaodong; Guan, Yidong; Gao, Yongxia

    2014-09-01

    A surface- and vertical subsurface-flow-constructed wetland were designed to study the response of chlorophyll and antioxidant enzymes to elevated UV radiation in three types of wetland plants (Canna indica, Phragmites austrail, and Typha augustifolia). Results showed that (1) chlorophyll content of C. indica, P. austrail, and T. augustifolia in the constructed wetland was significantly lower where UV radiation was increased by 10 and 20 % above ambient solar level than in treatment with ambient solar UV radiation (p < 0.05). (2) The malondialdehyde (MDA) content, guaiacol peroxidase (POD), superoxide dismutase (SOD), and catalase (CAT) activities of wetland plants increased with elevated UV radiation intensity. (3) The increased rate of MDA, SOD, POD, and CAT activities of C. indica, P. australis, and T. angustifolia by elevated UV radiation of 10 % was higher in vertical subsurface-flow-constructed wetland than in surface-flow-constructed wetland. The sensitivity of MDA, SOD, POD, and CAT activities of C. indica, P. austrail, and T. augustifolia to the elevated UV radiation was lower in surface-flow-constructed wetland than in the vertical subsurface-flow-constructed wetland, which was related to a reduction in UV radiation intensity through the dissolved organic carbon and suspended matter in the water. C. indica had the highest SOD and POD activities, which implied it is more sensitive to enhanced UV radiation. Therefore, different wetland plants had different antioxidant enzymes by elevated UV radiation, which were more sensitive in vertical subsurface-flow-constructed wetland than in surface-flow-constructed wetland.

  17. Skin irritation and histopathologic alterations in rats exposed to lightstick contents, UV radiation and seawater.

    PubMed

    Ivar do Sul, Juliana A; Rodrigues, Obirajara; Santos, Isaac R; Fillmann, Gilberto; Matthiensen, Alexandre

    2009-10-01

    Lightsticks are fishing gadgets that provide fluorescent lighting when two organic solutions are mixed. In NE Brazil, low-income coastal residents ignore their conventional use and collect lightsticks stranded on beaches. The lightstick solution is then used for various purposes, including direct human skin exposure. We assessed the reactions and possible cell damages on the skin of Wistar rats. Animals were exposed to lightstick contents, UV radiation and/or seawater. Lightstick exposure led to erythemas, oedemas and vesicles. Histopathologic alterations included proliferation of the epidermis and inflammatory infiltrates. In spite of the short time of experimentation (4 days), the rats exposed to the lightstick content alone and together with UV radiation and/or seawater provided evidence of irritation/alteration reactions that may evolve into skin cancer. Our results demonstrated a few of the potential problems associated with lightstick dumping into the ocean and highlight the need for further investigations about this new type of marine pollutant.

  18. Visible emission in Sm3+ and Tb3+ doped phosphate glass excited by UV radiation

    NASA Astrophysics Data System (ADS)

    Zmojda, Jacek; Dorosz, Dominik; Kochanowicz, Marcin; Miluski, Piotr; Czajkowski, Karol; Ragin, Tomasz

    2013-10-01

    In the article analysis of UV absorption and visible fluorescence of Sm3+ and Tb3+ ions doped phosphate glass with molar composition: 65P2O5 + 8Al2O3 + 10BaO + 17(Na2O + MgO + ZnO) have been investigated. As a result of optical pumping fabricated glass with radiation from a deuterium lamp four luminescence bands were observed near to the wavelength of 600 nm for Sm3+ ions and 550 nm for Tb3+ ions. It was found that larger energy gap between laser and ground levels leads to the strongest emission in the visible range in terbium doped glasses than in glasses doped with samarium ions. Both fabricated glasses are characterized by the ability to selectively detect the radiation in the UV range.

  19. [Apoptosis and necrosis of lymphocytes induced by UV-radiation in the presence of autological plasma].

    PubMed

    Artiukhov, V G; Zemchenkova, O V; Basharina, O V; Riazantsev, S V; Pashkov, M V

    2014-01-01

    The influence of UV-light (240-390 nm) in doses 151-3020 J/m2 on the nature of the death of lymphocytes cells of donor's blood (using markers of apoptotic and necrotic death of cells) and on the level of expression of the marker of apoptotic pre-preparation--CD95-receptor has been investigated. We have shown that UV-radiation increases expression of CD95-receptors which is caused mainly by de novo synthesis of the receptors. It has been revealed that during daily incubation of photo-modified lymphocytes (151 and 755 J/m2) without autological blood cell death occurs by receptor-involved apoptosis. Exposure to high doses of radiation (1510 and 3020 J/m2) causes massive necrotic death of immunocytes. The use of autologous blood plasma during incubation of photo-modified lymphocytes allows decreasing the number of both apoptotic and necrotic cells.

  20. A Radiative Transfer Case Study for 3-d cloud effects in the UV

    NASA Astrophysics Data System (ADS)

    Meerkötter, Ralf; Degünther, Markus

    Satellite UV mapping is usually based on the independent pixel approximation (IPA) which neglects horizontal photon transport between adjacent columns. Horizontal inhomogeneity of cloud fields therefore causes uncertainties in the derived UV radiation fields. While these effects are small for large pixel satellites, the broken-cloud errors increase as the pixel size decreases. By comparing results of 1-d and 3-d UV radiative transfer calculations for three selected cloud scenes that cover a rather broad range of cloud inhomogeneity the main 3-d cloud effects on the atmospheric UV transmission are identified and quantified in their order of magnitude. With respect to the different spatial resolutions of satellite instruments it is further shown how 3-d cloud effects average out with increasing spatial scale. It turns out that locally the IPA cause maximum uncertainties up to ±100% for a spatial resolution of about 1 × 1 km² (e.g., AVHRR), they are reduced to ±10% for a resolution of about 15 × 15 km² and below 5% for a resolution greater than 30 km (e.g., TOMS).

  1. Effect of UV radiation on the expulsion of Symbiodinium from the coral Pocillopora damicornis.

    PubMed

    Zhou, Jie; Huang, Hui; Beardall, John; Gao, Kunshan

    2017-01-01

    The variation in density of the symbiotic dinoflagellate Symbiodinum in coral is a basic indicator of coral bleaching, i.e. loss of the symbiotic algae or their photosynthetic pigments. However, in the field corals constantly release their symbiotic algae to surrounding water. To explore the underlying mechanism, the rate of expulsion of zooxanthellae from the coral Pocillopora damicornis was studied over a three-day period under ultraviolet radiation (UVR, 280-400nm) stress. The results showed that the algal expulsion rate appeared 10-20% higher under exposure to UV-A (320-395nm) or UV-B (295-320nm), though the differences were not statistically significant. When corals were exposed to UV-A and UV-B radiation, the maximum expulsion of zooxanthellae occurred at noon (10:00-13:00), and this timing was 1h earlier than in the control without UVR. UVR stress led to obvious decreases in the concentrations of chl a and carotenoids in the coral nubbins after a three-day exposure. Therefore, our results suggested that although the UVR effect on algal expulsion rate was a chronic stress and was not significant within a time frame of only three days, the reduction in chl a and carotenoids may potentially enhance the possibility of coral bleaching over a longer period.

  2. Exposure limits: the underestimation of absorbed cell phone radiation, especially in children.

    PubMed

    Gandhi, Om P; Morgan, L Lloyd; de Salles, Alvaro Augusto; Han, Yueh-Ying; Herberman, Ronald B; Davis, Devra Lee

    2012-03-01

    The existing cell phone certification process uses a plastic model of the head called the Specific Anthropomorphic Mannequin (SAM), representing the top 10% of U.S. military recruits in 1989 and greatly underestimating the Specific Absorption Rate (SAR) for typical mobile phone users, especially children. A superior computer simulation certification process has been approved by the Federal Communications Commission (FCC) but is not employed to certify cell phones. In the United States, the FCC determines maximum allowed exposures. Many countries, especially European Union members, use the "guidelines" of International Commission on Non-Ionizing Radiation Protection (ICNIRP), a non governmental agency. Radiofrequency (RF) exposure to a head smaller than SAM will absorb a relatively higher SAR. Also, SAM uses a fluid having the average electrical properties of the head that cannot indicate differential absorption of specific brain tissue, nor absorption in children or smaller adults. The SAR for a 10-year old is up to 153% higher than the SAR for the SAM model. When electrical properties are considered, a child's head's absorption can be over two times greater, and absorption of the skull's bone marrow can be ten times greater than adults. Therefore, a new certification process is needed that incorporates different modes of use, head sizes, and tissue properties. Anatomically based models should be employed in revising safety standards for these ubiquitous modern devices and standards should be set by accountable, independent groups.

  3. Estimation of the absorbed dose in radiation-processed food. 4. EPR measurements on eggshell

    SciTech Connect

    Desrosiers, M.F.; Le, F.G. ); Harewood, P.M.; Josephson, E.S. ); Montesalvo, M. )

    1993-09-01

    Fresh whole eggs treated with ionizing radiation for Salmonellae control testing. The eggshell was then removed and examined by electron paramagnetic resonance (EPR) spectroscopy to determine if EPR could be used to (1) distinguish irradiated from unirradiated eggs and (2) assess the absorbed dose. No EPR signals were detected in unirradiated eggs, while strong signals were measurable for more than 200 days after irradiation. Although a number of EPR signals were measured, the most intense resonance (g = 2.0019) was used for dosimetry throughout the study. This signal was observed to increase linearly with dose (up to [approximately]6 kGy), which decayed [approximately]20% within the first 5 days after irradiation and remained relatively constant thereafter. The standard added-dose method was used to assess, retrospectively, the dose to eggs processed at 0.2, 0.7, and 1.4 kGy. Relatively good results were obtained when measurement was made on the day the shell was reirradiated; with this procedure estimates were better for shell processed at the lower doses.

  4. The use of high spectral resolution bands for estimating absorbed photosynthetically active radiation (A par)

    NASA Technical Reports Server (NTRS)

    Kim, Moon S.; Daughtry, C. S. T.; Chappelle, E. W.; Mcmurtrey, J. E.; Walthall, C. L.

    1994-01-01

    Most remote sensing estimations of vegetation variables such as Leaf Area Index (LAI), Absorbed Photosynthetically Active Radiation (APAR), and phytomass are made using broad band sensors with a bandwidth of approximately 100 nm. However, high resolution spectrometers are available and have not been fully exploited for the purpose of improving estimates of vegetation variables. A study directed to investigate the use of high spectral resolution spectroscopy for remote sensing estimates of APAR in vegetation canopies in the presence of nonphotosynthetic background materials such as soil and leaf litter is presented. A high spectral resolution method defined as the Chlorophyll Absorption Ratio Index (CARI) was developed for minimizing the effects of nonphotosynthetic materials in the remote estimates of APAR. CARI utilizes three bands at 550, 670, and 700 nm with bandwidth of 10 nm. Simulated canopy reflectance of a range of LAI were generated with the SAIL model using measurements of 42 different soil types as canopy background. CARI obtained from the simulated canopy reflectance was compared with the broad band vegetation indices (Normalized Difference Vegetation Index (NDVI), Soil Adjusted Vegetation Index (SAVI), and Simple Ratio (SR)). CARI reduced the effect of nonphotosynthetic background materials in the assessment of vegetation canopy APAR more effectively than broad band vegetation indices.

  5. Estimating solar radiation absorbed by live phytoplankton from satellite ocean-color data

    NASA Astrophysics Data System (ADS)

    Frouin, Robert J.; Ruddorff, Natalia M.; Kampel, Milton

    2014-11-01

    Primary production, PP, or the quantity of organic matter synthesized by phytoplankton per unit of surface and time, depends on the photo-synthetically available radiation absorbed by live phytoplankton, APAR. Computing APAR requires knowledge of the absorption coefficient of live phytoplankton and the total absorption coefficient, quantities that are difficult to retrieve accurately from satellite ocean-color data. In the proposed approach, APAR is estimated directly from a linear combination of marine reflectance in the PAR spectral range. Feasibility is demonstrated theoretically from simulations using a marine reflectance model, and experimentally using data collected at 19 biooptical stations during the February-March 2011 R/V Melville oceanographic cruise in the Southern Atlantic and Southeastern Pacific. Improvements in APAR accuracy are quantified in comparisons with estimates obtained from absorption coefficients or chlorophyll concentration determined from marine reflectance via standard satellite algorithms. The linear combination of marine reflectance is fairly robust to atmospheric correction errors. Due to the linear nature of the algorithm, their impact may be further reduced when using space- or time-averaged reflectance. The methodology is applied to actual MODIS imagery over the Southern Atlantic, and variability in the resulting APAR field is analyzed. The study suggests that determining APAR directly from marine reflectance has the potential to improve PP estimates from space.

  6. Backscattered UV radiation - Effects of multiple scattering and the lower boundary of the atmosphere

    NASA Technical Reports Server (NTRS)

    Aruga, T.; Heath, D. F.

    1982-01-01

    A method is proposed for the calculation of a multiple-scattering correction to the single-scattering calculation of the radiance of the terrestrial atmosphere resulting from backscattered ultraviolet solar radiation in the spectral region used in the ozone profile inversion. This method uses jointly the usual analytical and Monte Carlo methods. Effects of the lower boundary of the atmosphere, cloud tops, and ground surface are investigated both qualitatively and quantitatively. The ratio of multiple to single scattering is determined, and its importance in ozone profile inversion of backscattered UV solar radiation from the terrestrial atmosphere is evaluated. The polarization of the atmospheric radiance is treated briefly.

  7. Atlas of albedo and absorbed solar radiation derived from Nimbus 7 earth radiation budget data set, November 1985 to October 1987

    NASA Technical Reports Server (NTRS)

    Smith, G. Louis; Rutan, David; Bess, T. Dale

    1992-01-01

    An atlas of monthly mean global contour maps of albedo and absorbed solar radiation is presented for 21 months from Nov. 1985 to Oct. 1987. These data were retrieved from measurements made by the shortwave wide-field-of-view radiometer of the Earth Radiation Budget (ERB) instrument aboard the Nimbus 7 spacecraft. Profiles of zonal mean albedos and absorbed solar radiation were tabulated. These geographical distributions are provided as a resource for researchers studying the radiation budget of the Earth. The El Nino/Southern Oscillation event of 1986-1987 is included in this data set. This atlas of albedo and absorbed solar radiation extends to 12 years the period covered by two similar atlases: NASA RP-1230 (Jul. 1975 - Oct. 1978) and NASA RP-1231 (Nov. 1978 - Oct. 1985). These three compilations complement the atlases of outgoing longwave radiation by Bess and Smith in NASA RP-1185, RP-1186, and RP-1261, which were also based on the Nimbus 6 and 7 ERB data.

  8. The reduction of Chlorella vulgaris concentrations through UV-C radiation treatments: A nature-based solution (NBS).

    PubMed

    Chen, Erika S; Bridgeman, Thomas B

    2017-03-25

    Algal blooms have become a pressing issue in inland freshwater systems on local and global scales. A plausible approach to reducing algae without the use of chemical/biological agents is through the use of UV-C radiation from lamps potentially powered by in situ solar panels to eliminate algae. Yet, the quantitative scientific base has not been established. Our objective is to conduct a controlled experiment to quantify the effectiveness of UV-C radiation on the reduction of Chlorella vulgaris, a common algal species in the Great Lakes region. A full factorial design of three intensities of UV-C radiation (0, 15, and 30W) and three sources of C. vulgaris was constructed to test the corresponding hypotheses. Empirical models were constructed to predict the reductions. UV-C radiation effectively reduced the algal concentration with clear differences by radiation level and source of algal water. Algal concentration decreased exponentially over time, with distinct decreasing trends among the radiation intensities and the samples. With 15W UV-C radiation, algal concentration of three samples were reduced to 75.3%, 51.5%, and 70.0% of the initial level within an hour, respectively. We also found a clear density-dependent reduction rate by UV radiation. Using this information, more efficient treatment systems could be constructed and implemented for cleaning algae-contaminated water.

  9. Beneficial effects of solar UV-B radiation on soybean yield mediated by reduced insect herbivory under field conditions.

    PubMed

    Mazza, Carlos A; Giménez, Patricia I; Kantolic, Adriana G; Ballaré, Carlos L

    2013-03-01

    Ultraviolet-B radiation (UV-B: 280-315 nm) has damaging effects on cellular components and macromolecules. In plants, natural levels of UV-B can reduce leaf area expansion and growth, which can lead to reduced productivity and yield. UV-B can also have important effects on herbivorous insects. Owing to the successful implementation of the Montreal Protocol, current models predict that clear-sky levels of UV-B radiation will decline during this century in response to ozone recovery. However, because of climate change and changes in land use practices, future trends in UV doses are difficult to predict. In the experiments reported here, we used an exclusion approach to study the effects of solar UV-B radiation on soybean crops, which are extensively grown in many areas of the world that may be affected by future variations in UV-B radiation. In a first experiment, performed under normal management practices (which included chemical pest control), we found that natural levels of UV-B radiation reduced soybean yield. In a second experiment, where no pesticides were applied, we found that solar UV-B significantly reduced insect herbivory and, surprisingly, caused a concomitant increase in crop yield. Our data support the idea that UV-B effects on agroecosystems are the result of complex interactions involving multiple trophic levels. A better understanding of the mechanisms that mediate the anti-herbivore effect of UV-B radiation may be used to design crop varieties with improved adaptation to the cropping systems that are likely to prevail in the coming decades in response to agricultural intensification.

  10. In vitro model of vitamin D synthesis by UV radiation in an Australian urban environment.

    PubMed

    McKinley, Alex; Janda, Monika; Auster, Josephine; Kimlin, Michael

    2011-01-01

    Vitamin D, an important constituent of human health, is produced through the exposure of human skin to short wave (280-315 nm) ultraviolet radiation (UV). We aimed to establish whether an urbanized environment with tall buildings in close proximity (an "urban canyon") significantly reduced the capacity of sunlight to synthesize vitamin D, when compared with a typical suburban area (∼2.5 km away); and to investigate the association of UV and vitamin D production with pollution, temperature, and humidity. Measurements of ambient UV (295-400 nm) (using a portable photometer/radiometer and detector) and synthesized vitamin D (from an in vitro model) were taken regularly at urban and control sites over 3 months in Brisbane, Australia. During a typical 20 min measurement, urban and control sites received 0.26 and 1.03 W m(-2) mean total UV respectively (P < 0.001), and produced 0.12 and 0.53 μg mL(-1) mean vitamin D (P < 0.001). Pollution, temperature and humidity were not associated with UV or vitamin D production. This demonstrates a large difference in vitamin D synthesis between an urban canyon and a nearby control site. Although the results cannot be directly applied to humans, they emphasize the need for further study of human vitamin D production in urban environments.

  11. Kolmogorov Complexity Spectrum for Use in Analysis of Uv-B Radiation Time Series

    NASA Astrophysics Data System (ADS)

    Mihailović, Dragutin T.; Malinović-Milićević, Slavica; Arsenić, Ilija; Drešković, Nusret; Bukosa, Beata

    2013-10-01

    In this paper, we have used the Kolmogorov complexity and sample entropy measures to estimate the complexity of the UV-B radiation time series in the Vojvodina region (Serbia) for the period 1990-2007. We have defined the Kolmogorov complexity spectrum and have introduced the Kolmogorov complexity spectrum highest value (KCH). We have established the UV-B radiation time series on the basis of their daily sum (dose) for seven representative places in this region using: (i) measured data, (ii) data calculated via a derived empirical formula and (iii) data obtained by a parametric UV radiation model. We have calculated the Kolmogorov complexity (KC) based on the Lempel-Ziv algorithm (LZA), KCH and sample entropy (SE) values for each time series. We have divided the period 1990-2007 into two subintervals: (i) 1990-1998 and (ii) 1999-2007 and calculated the KC, KCH and SE values for the various time series in these subintervals. It is found that during the period 1999-2007, there is a decrease in the KC, KCH and SE, compared to the period 1990-1998. This complexity loss may be attributed to (i) the increased human intervention in the post civil war period causing increase of the air pollution and (ii) the increased cloudiness due to climate changes.

  12. Arctic microorganisms respond more to elevated UV-B radiation than CO2.

    PubMed

    Johnson, David; Campbell, Colin D; Lee, John A; Callaghan, Terry V; Gwynn-Jones, Dylan

    2002-03-07

    Surface ultraviolet-B radiation and atmospheric CO2 concentrations have increased as a result of ozone depletion and burning of fossil fuels. The effects are likely to be most apparent in polar regions where ozone holes have developed and ecosystems are particularly sensitive to disturbance. Polar plant communities are dependent on nutrient cycling by soil microorganisms, which represent a significant and highly labile portion of soil carbon (C) and nitrogen (N). It was thought that the soil microbial biomass was unlikely to be affected by exposure of their associated plant communities to increased UV-B. In contrast, increasing atmospheric CO2 concentrations were thought to have a strong effect as a result of greater below-ground C allocation. In addition, there is a growing belief that ozone depletion is of only minor environmental concern because the impacts of UV-B radiation on plant communities are often very subtle. Here we show that 5 years of exposure of a subarctic heath to enhanced UV-B radiation both alone and in combination with elevated CO2 resulted in significant changes in the C:N ratio and in the bacterial community structure of the soil microbial biomass.

  13. Improving radiation data quality of USDA UV-B monitoring and research program and evaluating UV decomposition in DayCent and its ecological impacts

    NASA Astrophysics Data System (ADS)

    Chen, Maosi

    Solar radiation impacts many aspects of the Earth's atmosphere and biosphere. The total solar radiation impacts the atmospheric temperature profile and the Earth's surface radiative energy budget. The solar visible (VIS) radiation is the energy source of photosynthesis. The solar ultraviolet (UV) radiation impacts plant's physiology, microbial activities, and human and animal health. Recent studies found that solar UV significantly shifts the mass loss and nitrogen patterns of plant litter decomposition in semi-arid and arid ecosystems. The potential mechanisms include the production of labile materials from direct and indirect photolysis of complex organic matters, the facilitation of microbial decomposition with more labile materials, and the UV inhibition of microbes' population. However, the mechanisms behind UV decomposition and its ecological impacts are still uncertain. Accurate and reliable ground solar radiation measurements help us better retrieve the atmosphere composition, validate satellite radiation products, and simulate ecosystem processes. Incorporating the UV decomposition into the DayCent biogeochemical model helps to better understand long-term ecological impacts. Improving the accuracy of UV irradiance data is the goal of the first part of this research and examining the importance of UV radiation in the biogeochemical model DayCent is the goal of the second part of the work. Thus, although the dissertation is separated into two parts, accurate UV irradiance measurement links them in what follows. In part one of this work the accuracy and reliability of the current operational calibration method for the (UV-) Multi-Filter Rotating Shadowband Radiometer (MFRSR), which is used by the U.S. Department of Agriculture UV-B Monitoring and Research Program (UVMRP), is improved. The UVMRP has monitored solar radiation in the 14 narrowband UV and VIS spectral channels at 37 sites across U.S. since 1992. The improvements in the quality of the data result

  14. Diurnal changes in epidermal UV transmittance of plants in naturally high UV environments.

    PubMed

    Barnes, Paul W; Flint, Stephan D; Slusser, James R; Gao, Wei; Ryel, Ronald J

    2008-06-01

    Studies were conducted on three herbaceous plant species growing in naturally high solar UV environments in the subalpine of Mauna Kea, Hawaii, USA, to determine if diurnal changes in epidermal UV transmittance (T(UV)) occur in these species, and to test whether manipulation of the solar radiation regime could alter these diurnal patterns. Additional field studies were conducted at Logan, Utah, USA, to determine if solar UV was causing diurnal T(UV) changes and to evaluate the relationship between diurnal changes in T(UV) and UV-absorbing pigments. Under clear skies, T(UV), as measured with a UV-A-pulse amplitude modulation fluorometer for leaves of Verbascum thapsus and Oenothera stricta growing in native soils and Vicia faba growing in pots, was highest at predawn and sunset and lowest at midday. These patterns in T(UV) closely tracked diurnal changes in solar radiation and were the result of correlated changes in fluorescence induced by UV-A and blue radiation but not photochemical efficiency (F(v)/F(m)) or initial fluorescence yield (F(o)). The magnitude of the midday reduction in T(UV) was greater for young leaves than for older leaves of Verbascum. Imposition of artificial shade eliminated the diurnal changes in T(UV) in Verbascum, but reduction in solar UV had no effect on diurnal T(UV) changes in Vicia. In Vicia, the diurnal changes in T(UV) occurred without detectable changes in the concentration of whole-leaf UV-absorbing compounds. Results suggest that plants actively control diurnal changes in UV shielding, and these changes occur in response to signals other than solar UV; however, the underlying mechanisms responsible for rapid changes in T(UV) remain unclear.

  15. Determination of phenylephrine hydrochloride, chlorpheniramine maleate, and methscopolamine nitrate in tablets or capsules by liquid chromatography with two UV absorbance detectors in series.

    PubMed

    Cieri, Uco R

    2006-01-01

    A procedure is presented for the simultaneous determination of phenylephrine HCI (PE), chlorpheniramine maleate (CM), and methscopolamine nitrate in commercial tablets or capsules by liquid chromatography (LC) with 2 UV absorbance detectors in series. Reference and sample solutions are prepared in methanol. LC separations are performed on a 7.5 cm Novapak silica column. The mobile phase is prepared by mixing 930 mL methanol with 70 mL of a 0.5% aqueous solution of 1-pentanesulfonic acid, sodium salt. The injection volume is 20 microL; the flow rate is approximately 1 mL/min. Retention times are approximately 1.5 min for PE, 3 min for CM, and 6 min for methscopolamine nitrate. One detector determines the first 2 compounds at 265 nm, but the third compound does not produce a detectable peak. The other detector set at 210 nm generates peaks for all 3 compounds, but only methscopolamine is within the recorder range; the other 2 compounds are exceedingly off scale. If it is not feasible or desirable to arrange 2 UV absorbance detectors in series, separate determinations can be made, one for the first 2 compounds and the other for the third component of the mixture. Two commercial samples of tablets and 2 commercial samples of capsules were analyzed by the proposed method. Recovery studies were also conducted with amounts of the 3 compounds ranging from 80 to 120% of the quantities present in the sample solutions.

  16. The impact of UV-B radiation and ozone on terrestrial vegetation.

    PubMed

    Runeckles, V C; Krupa, S V

    1994-01-01

    Although terrestrial vegetation has been exposed to UV-B radiation and ozone over the course of evolutionary history, it is essential to view the effects on vegetation of changing levels of these factors in the context of other features of climate change, such as increasing CO(2) levels and changes in temperature and precipitation patterns. Much of our understanding of the impacts of increased UV-B and ozone levels has come from studies of the effects of each individual factor. While such information may be relevant to a wider understanding of the roles that these factors may play in climate change, experience has shown that the interactions of environmental stresses on vegetation are rarely predictable. A further limitation on the applicability of such information results from the methodologies used for exposing plants to either factor. Much of our information comes from growth chamber, greenhouse or field studies using experimental protocols that made little or no provision for the stochastic nature of the changes in UV-B and ozone levels at the earth's surface, and hence excluded the roles of repair mechanisms. As a result, our knowledge of dose-response relationships under true field conditions is both limited and fragmentary, given the wide range of sensitivities among species and cultivars. Adverse effects of increased levels of either factor on vegetation are qualitatively well established, but the quantitative relationships are far from clear. In both cases, sensitivity varies with stage of plant development. At the population and community levels, differential responses of species to either factor has been shown to result in changes in competitiveness and community structure. At the mechanistic level, ozone generally inhibits photosynthetic gas exchange under both controlled and field conditions, and although UV-B is also inhibitory in some species under controlled conditions, others appear to be indifferent, particularly in the field. Both factors affect

  17. Development of New Fluorescence Instrument for extended Deep-UV to NIR Excitation-Emission Matrices with Simultaneous Absorbance and Inner-Filter Effect Correction

    NASA Astrophysics Data System (ADS)

    Gilmore, A. M.

    2013-12-01

    Characterization of dissolved organic matter components, including humic and fulvic acids, chlorophyll and algae, oils and proteins, among others, using fluorescence excitation-emission matrices (EEMs) is now widely accepted due to the rapidly afforded high-sensitivity and selectivity. However, to date no single instrument has been able to effectively cover the entire spectral range from 200 nm to over 800 nm and also facilitate the simultaneous absorbance spectral acquisition required for correcting the concentration dependent inner filter effects that can distort the quantification of the fluorescence signal. The new instrument uses a UV-enhanced light source coupled to a scanning double grating monochromator for the full UV-NIR absorbance and fluorescence excitation scanning as well as a UV to NIR sensitive CCD-spectrograph for rapid fluorescence emission detection. Both the absorbance and fluorescence detection are uniquely corrected using an optically and kinetically coordinated reference detector system. Other major problems solved for the long-range scanning for EEMs include 1) the removal of second order light from the excitation path which is accomplished using an automated filter wheel and 2) masking of the higher order emission bands which is accomplished by effective software masking. A key feature of the system is the facilitation of continuous ';on-the-fly' processing of the NIST traceable corrected fluorescence and absorbance data for immediate multivariate processing to support several commercially available packages for parallel factor analysis (PARAFAC) and principal component analysis (PCA). Several examples of qualitative and quantitative analyses with the system will be explained including: 1) measuring natural organic matter components associated with disinfection by-product formation in drinking water treatment and fouling permeates of filtration membranes, 2) measuring chlorophyll spectra associated with classification of algal species

  18. Development of Ultraviolet (UV) Radiation Protective Fabric Using Combined Electrospinning and Electrospraying Technique

    NASA Astrophysics Data System (ADS)

    Sinha, Mukesh Kumar; Das, B. R.; Kumar, Kamal; Kishore, Brij; Prasad, N. Eswara

    2017-03-01

    The article reports a novel technique for functionization of nanoweb to develop ultraviolet (UV) radiation protective fabric. UV radiation protection effect is produced by combination of electrospinning and electrospraying technique. A nanofibrous web of polyvinylidene difluoride (PVDF) coated on polypropylene nonwoven fabric is produced by latest nanospider technology. Subsequently, web is functionalized by titanium dioxide (TiO2). The developed web is characterized for evaluation of surface morphology and other functional properties; mechanical, chemical, crystalline and thermal. An optimal (judicious) nanofibre spinning condition is achieved and established. The produced web is uniformly coated by defect free functional nanofibres in a continuous form of useable textile structural membrane for ultraviolet (UV) protective clothing. This research initiative succeeds in preparation and optimization of various nanowebs for UV protection. Field Emission Scanning Electron Microscope (FESEM) result reveals that PVDF webs photo-degradative behavior is non-accelerated, as compared to normal polymeric grade fibres. Functionalization with TiO2 has enhanced the photo-stability of webs. The ultraviolet protection factor of functionalized and non-functionalized nanowebs empirically evaluated to be 65 and 24 respectively. The developed coated layer could be exploited for developing various defence, para-military and civilian UV protective light weight clothing (tent, covers and shelter segments, combat suit, snow bound camouflaging nets). This research therefore, is conducted in an attempt to develop a scientific understanding of PVDF fibre coated webs for photo-degradation and applications for defence protective textiles. This technological research in laboratory scale could be translated into bulk productionization.

  19. Tropical high-altitude Andean lakes located above the tree line attenuate UV-A radiation more strongly than typical temperate alpine lakes.

    PubMed

    Aguilera, Ximena; Lazzaro, Xavier; Coronel, Jorge S

    2013-09-01

    Tropical high-altitude Andean lakes are physically harsh ecosystems. Located above the treeline (≥4000 m a.s.l.), they share common features with temperate alpine lakes, which impose extreme conditions on their aquatic organisms: e.g., strong winds, broad diel variations in water temperature, and intense solar ultraviolet radiation (UVR). However, because of their latitude, they differ in two major ecological characteristics: they lack ice cover during the winter and they do not present summer water column stratification. We sampled 26 tropical high-altitude Andean lakes from three regions of the Bolivian Eastern Andes Cordillera during the wet period (austral summer). We performed an ordination to better describe the typology of Andean lakes in relation to the environmental variables, and we assessed the relationships among them, focussing on the UV-A transparency (360 nm) throughout the water column. We found a positive correlation between UV-A transparency calculated as Z(1%) (the depth which reaches 1% of the surface UV-A), the lake maximum depth and Secchi transparency (r = 0.61). Z(1%) of UV-A was smaller in shallow lakes than in deep lakes, indicating that shallow lakes are less transparent to UV-A than deep lakes. We hypothesize that, compared to shallow lakes, deep lakes (maximum depth > 10 m) may have lower dissolved organic carbon (DOC) concentrations (that absorb UV radiation) due to lower temperature and reduced macrophyte cover. Based on our data, tropical high-altitude Andean lakes are less transparent to UV-A (K(d) range = 1.4-11.0 m(-1); Z(1%) depth range = 0.4-3.2 m) than typical temperate alpine lakes (1-6 m(-1), 3-45 m, respectively). Moreover, they differ in vertical profiles of UV-A, chlorophyll-a, and temperature, suggesting that they may have a distinct ecological functioning. Such peculiarities justify treating tropical high-altitude Andean lakes as a separate category of alpine lakes. Tropical high-altitude Andean lakes have been poorly

  20. Preparation of inorganic crystalline compounds induced by ionizing, UV and laser radiations

    NASA Astrophysics Data System (ADS)

    Čuba, Václav; Pavelková, Tereza; Bárta, Jan; Gbur, Tomáš; Vlk, Martin; Zavadilová, Alena; Indrei, Jakub; Dočekalová, Zuzana; Pospíšil, Milan; Múčka, Viliam

    2012-09-01

    Results on preparation of nickel, zinc, yttrium, aluminum and cobalt oxides, zinc peroxide and hydroxide, yttrium and lutetium aluminum garnets and cobalt(II) aluminate via irradiation of aqueous solutions containing soluble metal salts and radical scavengers (formate anion or propan-2-ol) are summarized in this paper. Various physico-chemical and structural properties of prepared compounds (e.g. crystallinity, specific surface area, particle size) are also reported. All used variants of radiation method are rather convenient and simple, and yield nano-scale powder materials with interesting characteristics. Prepared materials generally have high chemical purity, high specific surface area and narrow distribution of particle size (ranging in tens of nm). Generally, accelerated electrons, gamma, and UV radiation yield materials with comparable properties and structural characteristics, but UV-radiation seems to be the most convenient for preparation of intricate compounds such as synthetic garnets and spinels, while ionizing radiation is better for preparation of compounds doped with foreign ions. Among discussed compounds, only zinc oxide, peroxide and hydroxide were prepared directly via irradiation. For preparation of other crystalline oxidic compounds, mild heat treatment of amorphous or weakly crystalline solid phase was necessary.

  1. [Effects of silicon supply on diurnal variations of physiological properties at rice heading stage under elevated UV-B radiation].

    PubMed

    Wu, Lei; Lou, Yun-sheng; Meng, Yan; Wang, Wei-qing; Cui, He-yang

    2015-01-01

    A pot experiment was conducted to investigate the effects of silicon (Si) supply on diurnal variations of photosynthesis and transpiration-related physiological parameters at rice heading stage under elevated UV-B radiation. The experiment was designed with two UV-B radiation levels, i.e. ambient UV-B. (ambient, A) and elevated UV-B (elevated by 20%, E), and four Si supply levels, i.e. Sio (control, 0 kg SiO2 . hm-2), Si, (sodium silicate, 100 kg SiO2 . hm-2), Si2 (sodium silicate, 200 kg SiO2 . hm2), Si3 (slag fertilizer, 200 kg SiO2 . hm-2). The results showed that, compared with ambient UV-B radiation, elevated UV-B radiation decreased the net photosynthesis rate (Pn) , intercellular CO2 concentration (Ci), transpiration rate (Tr), stomatal conductivity (gs) and water use efficiency (WUE) by 11.3%, 5.5%, 10.4%, 20.3% and 6.3%, respectively, in the treatment without Si supply (Si, level), and decreased the above parameters by 3.8%-5.5%, 0.7%-4.8%, 4.0%-8.7%, 7.4%-20.2% and 0.7%-5.9% in the treatments with Si supply (Si1, Si2 and Si3 levels) , respectively. Namely, elevated UV-B radiation decreased the photosynthesis and transpiration-related physiological parameters, but silicon supply could obviously mitigate the depressive effects of elevated UV-B radiation. Under elevated UV-B radiation, compared with control (Si0 level), silicon supply increased Pn, Ci, gs and WUE by 16.9%-28.0%, 3.5%-14.3%, 16.8% - 38.7% and 29.0% - 51.2%, respectively, but decreased Tr by 1.9% - 10.8% in the treatments with Si supply (Si1 , Si2 and Si3 levels). That is, silicon supply could mitigate the depressive effects of elevated UV-B radiation through significantly increasingnP., CigsgK and WUE, but decreasing T,. However, the difference existed in ameliorating the depressive effects of elevated UV-B radiation on diurnal variations of physiological parameters among the treatments of silicon supply, with the sequence of Si3>Si2>1i >Si0. This study suggested that fertilizing slag was

  2. The effects of UV radiation during the vegetative period on antioxidant compounds and postharvest quality of broccoli (Brassica oleracea L.).

    PubMed

    Topcu, Yasin; Dogan, Adem; Kasimoglu, Zehra; Sahin-Nadeem, Hilal; Polat, Ersin; Erkan, Mustafa

    2015-08-01

    In this study, the effects of supplementary UV radiation during the vegetative period on antioxidant compounds, antioxidant activity and postharvest quality of broccoli heads during long term storage was studied. The broccolis were grown under three different doses of supplementary UV radiation (2.2, 8.8 and 16.4 kJ/m(2)/day) in a soilless system in a glasshouse. Harvested broccoli heads were stored at 0 °C in modified atmosphere packaging for 60 days. The supplementary UV radiation (280-315 nm) during the vegetative period significantly decreased total carotenoid, the chlorophyll a and chlorophyll b content but increased the ascorbic acid, total phenolic and flavonoid contents of broccolis. All supplementary UV treatments slightly reduced the antioxidant activity of the broccolis, however, no remarkable change was observed between 2.2 and 8.8 kJ/m(2) radiation levels. The sinigrin and glucotropaeolin contents of the broccolis were substantially increased by UV treatments. The prolonged storage period resulted in decreased ascorbic acid, total phenolic and flavonoid contents, as well as antioxidant activity. Discoloration of the heads, due to decreased chlorophyll and carotenoid contents, was also observed with prolonged storage duration. Glucosinolates levels showed an increasing tendency till the 45th day of storage, and then their levels started to decline. The weight loss of broccoli heads during storage progressively increased with storage time in all treatments. Total soluble solids, solids content and titratable acidity decreased continuously during storage. Titratable acidity was not affected by UV radiation doses during the storage time whereas soluble solids and solids content (dry matter) were significantly affected by UV doses. Supplementary UV radiation increased the lightness (L*) and chroma (C*) values of the broccoli heads. Pre-harvest UV radiation during vegetative period seems to be a promising tool for increasing the beneficial health components

  3. Effects of UV radiation on hatching, lipid peroxidation, and fatty acid composition in the copepod Paracyclopina nana.

    PubMed

    Won, Eun-Ji; Lee, Yeonjung; Han, Jeonghoon; Hwang, Un-Ki; Shin, Kyung-Hoon; Park, Heum Gi; Lee, Jae-Seong

    2014-09-01

    To evaluate the effects of UV radiation on the reproductive physiology and macromolecules in marine zooplankton, several doses of UV radiation were used to treat the copepod Paracyclopina nana, and we analyzed in vivo endpoints of their life cycle such as mortality and reproductive parameters with in vitro biochemical biomarkers such as reactive oxygen species (ROS), the modulated enzyme activity of glutathione S-transferase (GST) and superoxide dismutase (SOD), and the production of a byproduct of peroxidation (e.g. malonedialdehyde, MDA). After UV radiation, the survival rate of P. nana was significantly reduced. Also, egg sac damage and a reduction in the hatching rate of offspring were observed in UV-irradiated ovigerous females. According to the assessed biochemical parameters, we found dose-dependent increases in ROS levels and high levels of the lipid peroxidation decomposition product by 2 kJ m(-2), implying that P. nana was under off-balanced status by oxidative stress-mediated cellular damage. Antioxidant enzyme activities of GST and SOD increased over different doses of UV radiation. To measure UV-induced lipid peroxidation, we found a slight reduction in the composition of essential fatty acids such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). These findings indicate that UV radiation can induce oxidative stress-triggered lipid peroxidation with modulation of antioxidant enzyme activity, leading to a significant effect on mortality and reproductive physiology (e.g. fecundity). These results demonstrate the involvement of UV radiation on essential fatty acids and its susceptibility to UV radiation in the copepod P. nana compared to other species.

  4. Effects of stratospheric ozone depletion, solar UV radiation, and climate change on biogeochemical cycling: interactions and feedbacks.

    PubMed

    Erickson, David J; Sulzberger, Barbara; Zepp, Richard G; Austin, Amy T

    2015-01-01

    Climate change modulates the effects of solar UV radiation on biogeochemical cycles in terrestrial and aquatic ecosystems, particularly for carbon cycling, resulting in UV-mediated positive or negative feedbacks on climate. Possible positive feedbacks discussed in this assessment include: (i) enhanced UV-induced mineralisation of above ground litter due to aridification; (ii) enhanced UV-induced mineralisation of photoreactive dissolved organic matter (DOM) in aquatic ecosystems due to changes in continental runoff and ice melting; (iii) reduced efficiency of the biological pump due to UV-induced bleaching of coloured dissolved organic matter (CDOM) in stratified aquatic ecosystems, where CDOM protects phytoplankton from the damaging solar UV-B radiation. Mineralisation of organic matter results in the production and release of CO2, whereas the biological pump is the main biological process for CO2 removal by aquatic ecosystems. This paper also assesses the interactive effects of solar UV radiation and climate change on the biogeochemical cycling of aerosols and trace gases other than CO2, as well as of chemical and biological contaminants. Interacting effects of solar UV radiation and climate change on biogeochemical cycles are particularly pronounced at terrestrial-aquatic interfaces.

  5. RESPONSE OF OXIDATIVE STRESS DEFENSE SYSTEMS IN RICE (ORYZA SATIVA) LEAVES WITH SUPPLEMENTAL UV-B RADIATION

    EPA Science Inventory

    The impact of elevated ultraviolet-B radiation (UV-B, 280-320 nm) on membrane systems and lipid peroxidation, and possible involvement of active oxygen radicals was investigated in leaves of two UV-B susceptible rice cultivars (Oryza sativa L. cvs IR74 and Dular). Rice seedlings ...

  6. Effects of stratospheric ozone depletion, solar UV radiation, and climate change on biogeochemical cycling: interactions and feedbacks

    SciTech Connect

    Erickson III, David J.; Sulzberger, Barbara; Zepp, Richard G.; Austin, Amy T.

    2014-11-07

    Climate change modulates the effects of solar UV radiation on biogeochemical cycles in terrestrial and aquatic ecosystems, particularly for carbon cycling, resulting in UV-mediated positive or negative feedbacks on climate. Possible positive feedbacks discussed in this assessment include: (i) enhanced UV-induced mineralisation of above ground litter due to aridification; (ii) enhanced UV-induced mineralisation of photoreactive dissolved organic matter (DOM) in aquatic ecosystems due to changes in continental runoff and ice melting; (iii) reduced efficiency of the biological pump due to UV-induced bleaching of coloured dissolved organic matter (CDOM) in stratified aquatic ecosystems, where CDOM protects phytoplankton from the damaging solar UV-B radiation. Mineralisation of organic matter results in the production and release of CO2, whereas the biological pump is the main biological process for CO2 removal by aquatic ecosystems. This research also assesses the interactive effects of solar UV radiation and climate change on the biogeochemical cycling of aerosols and trace gases other than CO2, as well as of chemical and biological contaminants. Lastly,, interacting effects of solar UV radiation and climate change on biogeochemical cycles are particularly pronounced at terrestrial-aquatic interfaces.

  7. Effects of stratospheric ozone depletion, solar UV radiation, and climate change on biogeochemical cycling: interactions and feedbacks

    DOE PAGES

    Erickson III, David J.; Sulzberger, Barbara; Zepp, Richard G.; ...

    2014-11-07

    Climate change modulates the effects of solar UV radiation on biogeochemical cycles in terrestrial and aquatic ecosystems, particularly for carbon cycling, resulting in UV-mediated positive or negative feedbacks on climate. Possible positive feedbacks discussed in this assessment include: (i) enhanced UV-induced mineralisation of above ground litter due to aridification; (ii) enhanced UV-induced mineralisation of photoreactive dissolved organic matter (DOM) in aquatic ecosystems due to changes in continental runoff and ice melting; (iii) reduced efficiency of the biological pump due to UV-induced bleaching of coloured dissolved organic matter (CDOM) in stratified aquatic ecosystems, where CDOM protects phytoplankton from the damaging solarmore » UV-B radiation. Mineralisation of organic matter results in the production and release of CO2, whereas the biological pump is the main biological process for CO2 removal by aquatic ecosystems. This research also assesses the interactive effects of solar UV radiation and climate change on the biogeochemical cycling of aerosols and trace gases other than CO2, as well as of chemical and biological contaminants. Lastly,, interacting effects of solar UV radiation and climate change on biogeochemical cycles are particularly pronounced at terrestrial-aquatic interfaces.« less

  8. Effect of increased UV-B radiation on carotenoid accumulation and total antioxidant capacity in tobacco (Nicotiana tabacum L.) leaves.

    PubMed

    Shen, J; Jiang, C Q; Yan, Y F; Liu, B R; Zu, C L

    2017-03-08

    Carotenoids are important components of plant antioxidant systems, which protect photosystems from photooxidative destruction during ultraviolet-B (UV-B) exposure. The influence of carotenoids on total antioxidant capacity (TAC) of plants has rarely been studied. In this study, tobacco (Nicotiana tabacum L., 'K326') seedlings exposed to UV-B radiation were used in order to evaluate the effects of ambient levels of UV-B radiation on carotenoid accumulation. The aim was to investigate whether carotenoids could enhance TAC as a means of UV protection. Our results showed that leaf carotenoid content in the low UV-B exposure (+9.75 μW/cm(2)) plants was approximately 8% higher than that observed in control plants at 2-8 days of exposure. At high UV-B exposure (+20.76 μW/cm(2)), the carotenoid content increased rapidly after 1 day's exposure (10.41% higher than the control), followed by a return to the content as in control plants. Furthermore, carotenoid content positively correlated with TAC (P = 0.024). These results suggest that carotenoids have antioxidant properties and play an important role in the antioxidant system. UV-B exposure increased the carotenoid synthesis capability of plants. The plants could deplete the carotenoids to scavenge excess ROS at high UV-B radiation levels, which protects the tobacco plant from oxidative damage caused by UV-B stress.

  9. Elevational differences in trait response to UV-B radiation by long-toed salamander populations.

    PubMed

    Thurman, Lindsey L; Garcia, Tiffany S; Hoffman, Peter D

    2014-07-01

    Amphibian species capable of optimizing trait response to environmental stressors may develop complex strategies for defending against rapid environmental change. Trait responses may differ between populations, particularly if stressor strength varies across spatial or temporal gradients. Ultraviolet-B (UV-B) radiation is one such stressor that poses a significant threat to amphibian species. We examined the ability of long-toed salamanders (Ambystoma macrodactylum) at high- and low-elevation breeding sites to cooperatively employ behavioral and physiological trait responses to mediate UV-B damage. We performed a microhabitat survey to examine differences in oviposition behavior and UV-B conditions among breeding populations at high- (n = 3; >1,500 m) and low-elevation (n = 3; <100 m) sites. We found significant differences in oviposition behavior across populations, with females at high-elevation sites selecting oviposition substrates in UV-B protected microhabitats. We also collected eggs (n = 633) from each of the breeding sites for analysis of photolyase activity, a photoreactivating enzyme that repairs UV-B damage to the DNA, using a photoproduct immunoassay. Our results revealed no significant differences in photolyase activity between long-toed salamander populations at high and low elevations. For high-elevation salamander populations, relatively low physiological repair capabilities in embryos appear to be buffered by extensive behavioral modifications to reduce UV-B exposure and standardize developmental temperatures. This study provides valuable insight into environmental stress responses via the assessment of multiple traits in allowing sensitive species to persist in rapidly changing landscapes.

  10. Development of statistical seasonal prediction models of Arctic Sea Ice concentration using CERES absorbed solar radiation

    NASA Astrophysics Data System (ADS)

    Kim, Yoojin; Kim, Ha-Rim; Choi, Yong-Sang; Kim, WonMoo; Kim, Hye-Sil

    2016-11-01

    Statistical seasonal prediction models for the Arctic sea ice concentration (SIC) were developed for the late summer (August-October) when the downward trend is dramatic. The absorbed solar radiation (ASR) at the top of the atmosphere in June has a significant seasonal leading role on the SIC. Based on the lagged ASR-SIC relationship, two simple statistical models were established: the Markovian stochastic and the linear regression models. Crossvalidated hindcasts of SIC from 1979 to 2014 by the two models were compared with each other and observation. The hindcasts showed general agreement between the models as they share a common predictor, ASR in June and the observed SIC was well reproduced, especially over the relatively thin-ice regions (of one- or multi-year sea ice). The robust predictability confirms the functional role of ASR in the prediction of SIC. In particular, the SIC prediction in October was quite promising probably due to the pronounced icealbedo feedback. The temporal correlation coefficients between the predicted SIC and the observed SIC were 0.79 and 0.82 by the Markovian and regression models, respectively. Small differences were observed between the two models; the regression model performed slightly better in August and September in terms of temporal correlation coefficients. Meanwhile, the prediction skills of the Markovian model in October were higher in the north of Chukchi, the East Siberian, and the Laptev Seas. A strong non-linear relationship between ASR in June and SIC in October in these areas would have increased the predictability of the Markovian model.

  11. INSTRUMENTS AND METHODS OF INVESTIGATION: Excilamps: efficient sources of spontaneous UV and VUV radiation

    NASA Astrophysics Data System (ADS)

    Lomaev, Mikhail I.; Skakun, V. S.; Sosnin, E. A.; Tarasenko, Viktor F.; Shitts, D. V.; Erofeev, M. V.

    2003-02-01

    The results of research into high-power, high-efficiency noble-gas-halide excilamps using glow, capacitive, and barrier discharges for the excitation sources are presented. The maximum radiation powers and minimum consumption are achieved with glow discharge lamps. An excilamp with an average radiation power of 1.6 kW on KrCl* molecules (λ = 222 nm) and 1.1 kW on XeCl* molecules (λ = 308 nm) is developed, whose energy conversion efficiency exceeds 10%. The use of an electrodeless capacitive discharge leads to sealed off excilamps with a simple emitter design, which have a power of 1 to 10 W and a service life of about 2500 h and more. Barrier-discharge excilamps possess both high energy parameters (> 100 W m-1) and a long service life. Excilamps can find wide practical applications as new powerful sources of UV and VUV radiation.

  12. The generation of short-wave UV light in cells under the action of ultrashort pulses of intense visible radiation

    NASA Astrophysics Data System (ADS)

    Kovarsky, V. A.; Philipp, B. S.; Kovarsky, E. V.

    1997-02-01

    The action of intense laser pulses ( λ = 0.53 μm) on E.coli cells is considered (the cells are transparent in this range). The transformation of laser radiation into UV light due to the high-harmonics generation on the protein molecules (the dipole moment is 100-1000 D) leads to the appearance of thymine dimers in bacterial DNA and results in a lethal effect for strains of E.coli which are highly sensitive to UV radiation.

  13. Characterization of an Escherichia coli mutant (radB101) sensitive to. gamma. and uv radiation, and methyl methanesulfonate

    SciTech Connect

    Sargentini, N.J.; Smith, K.C.

    1983-03-01

    After N-methyl-N'-nitro-N-nitrosoguanidine mutagenesis of Escherichia coli K-12 (xthA14), an X-ray-sensitive mutant was isolated. This sensitivity is due to a mutation, radB101, which is located at 56.5 min on the E.coli K-12 linkage map. The radB101 mutation sensitized wild-type cells to ..gamma.. and uv radiation, and to methyl methanesulfonate. When known DNA repair-deficient mutants were ranked for their ..gamma..-radiation sensitivity relative to their uv-radiation sensitivity, their order was (starting with the most selectively ..gamma..-radiation-sensitive strain): recB21, radB101, wild type, polA1, recF143, lexA101, recA56, uvrD3, and uvrA6. The radB mutant was normal for ..gamma..- and uv-radiation mutagenesis, it showed only a slight enhancement of ..gamma..- and uv-radiation-induced DNA degradation, and it was approx. 60% deficient in recombination ability. The radB gene is suggested to play a role in the recA gene-dependent (Type III) repair of DNA single-strand breaks after ..gamma.. irradiation and in postreplication repair after uv irradiation for the following reasons: the radB strain was normal for the host-cell reactivation of ..gamma..- and uv-irradiated bacteriophage lambda; the radB mutation did not sensitize a recA strain, but did sensitize a polA strain to ..gamma.. and uv radiation; the radB mutation sensitized a uvrB strain to uv radiation.

  14. The optical effect of a semiconductor laser on protecting wheat from UV-B radiation damage.

    PubMed

    Qiu, Zong-Bo; Zhu, Xin-Jun; Li, Fang-Min; Liu, Xiao; Yue, Ming

    2007-07-01

    Lasers have been widely used in the field of biology along with the development of laser technology, but the mechanism of the bio-effect of lasers is not explicit. The objective of this paper was to test the optical effect of a laser on protecting wheat from UV-B damage. A patent instrument was employed to emit semiconductor laser (wavelength 650 nm) and incoherent red light, which was transformed from the semiconductor laser. The wavelength, power and lightfleck diameter of the incoherent red light are the same as those of the semiconductor laser. The semiconductor laser (wavelength 650 nm, power density 3.97 mW mm(-2)) and incoherent red light (wavelength 650 nm, power density 3.97 mW mm(-2)) directly irradiated the embryo of wheat seeds for 3 min respectively, and when the seedlings were 12-day-old they were irradiated by UV-B radiation (10.08 kJ m(-2)) for 12 h in the dark. Changes in the concentration of malondialdehyde (MDA), hydrogen peroxide (H(2)O(2)), glutathione (GSH), ascorbate (AsA), carotenoids (CAR), the production rate of superoxide radical (O(2)(-)), the activities of peroxidase (POD), catalase (CAT), superoxide dismutase (SOD) and the growth parameters of seedlings (plant height, leaf area and fresh weight) were measured to test the optical effect of the laser. The results showed that the incoherent red light treatment could not enhance the activities of SOD, POD and CAT and the concentration of AsA and CAR. When the plant cells were irradiated by UV-B, the incoherent red light treatment could not eliminate active oxygen and prevent lipid peroxidation in wheat. The results also clearly demonstrate that the plant DNA was damaged by UV-B radiation and semiconductor laser irradiance had the capability to protect plants from UV-B-induced DNA damage, while the incoherent red light could not. This is the first investigation reporting the optical effect of a semiconductor laser on protecting wheat from UV-B radiation damage.

  15. Mediated modeling of the impacts of enhanced UV-B radiation on ecosystem services.

    PubMed

    van den Belt, Marjan; Bianciotto, Oscar A; Costanza, Robert; Demers, Serge; Diaz, Susana; Ferreyra, Gustavo A; Koch, Evamaria W; Momo, Fernando R; Vernet, Maria

    2006-01-01

    This article describes the use of group model building to facilitate interaction with stakeholders, synthesize research results and assist in the development of hypotheses about climate change at the global level in relation to UV-B radiation and ecosystem service valuation. The objective was to provide a platform for integration of the various research components within a multidisciplinary research project as a basis for interaction with stakeholders with backgrounds in areas other than science. An integrated summary of the scientific findings, along with stakeholder input, was intended to produce a bridge between science and policymaking. We used a mediated modeling approach that was implemented as a pilot project in Ushuaia, Argentina. The investigation was divided into two participatory workshops: data gathering and model evaluation. Scientists and the local stakeholders supported the valuation of ecosystem services as a useful common denominator for integrating the various scientific results. The concept of economic impacts in aquatic and marsh systems was represented by values for ecosystem services altered by UV-B radiation. In addition, direct local socioeconomic impacts of enhanced UV-B radiation were modeled, using data from Ushuaia. We worked with 5 global latitudinal regions, focusing on net primary production and biomass for the marine system and on 3 plant species for the marsh system. Ecosystem service values were calculated for both sectors. The synthesis model reflects the conclusions from the literature and from experimental research at the global level. UV-B is not a significant stress for the marshes, relative to the potential impact of increases in the sea level. Enhanced UV-B favors microbial dynamics in marine systems that could cause a significant shift from primary producers to bacteria at the community level. In addition, synergetic effects of UV-B and certain pollutants potentiate the shift to heterotrophs. This may impact the oceanic

  16. Surface-engineered nanomaterials as X-ray absorbing adjuvant agents for Auger-mediated chemo-radiation

    NASA Astrophysics Data System (ADS)

    Lee, Sang-Min; Tsai, De-Hao; Hackley, Vincent A.; Brechbiel, Martin W.; Cook, Robert F.

    2013-05-01

    We report a prototype approach to formulate gold nanoparticle-based X-ray absorbing agents through surface-engineering of a cisplatin pharmacophore with modified polyacrylate. The resulting agents exhibit both chemo-therapeutic potency to cancer cells and Auger-mediated secondary electron emission, showing great potential to improve the therapeutic efficacy of chemo-radiation.We report a prototype approach to formulate gold nanoparticle-based X-ray absorbing agents through surface-engineering of a cisplatin pharmacophore with modified polyacrylate. The resulting agents exhibit both chemo-therapeutic potency to cancer cells and Auger-mediated secondary electron emission, showing great potential to improve the therapeutic efficacy of chemo-radiation. Electronic supplementary information (ESI) available: Experimental procedure. See DOI: 10.1039/c3nr00333g

  17. Divergence in DNA photorepair efficiency among genotypes from contrasting UV radiation environments in nature.

    PubMed

    Miner, Brooks E; Kulling, Paige M; Beer, Karlyn D; Kerr, Benjamin

    2015-12-01

    Populations of organisms routinely face abiotic selection pressures, and a central goal of evolutionary biology is to understand the mechanistic underpinnings of adaptive phenotypes. Ultraviolet radiation (UVR) is one of earth's most pervasive environmental stressors, potentially damaging DNA in any organism exposed to solar radiation. We explored mechanisms underlying differential survival following UVR exposure in genotypes of the water flea Daphnia melanica derived from natural ponds of differing UVR intensity. The UVR tolerance of a D. melanica genotype from a high-UVR habitat depended on the presence of visible and UV-A light wavelengths necessary for photoenzymatic repair of DNA damage, a repair pathway widely shared across the tree of life. We then measured the acquisition and repair of cyclobutane pyrimidine dimers, the primary form of UVR-caused DNA damage, in D. melanica DNA following experimental UVR exposure. We demonstrate that genotypes from high-UVR habitats repair DNA damage faster than genotypes from low-UVR habitats in the presence of visible and UV-A radiation necessary for photoenzymatic repair, but not in dark treatments. Because differences in repair rate only occurred in the presence of visible and UV-A radiation, we conclude that differing rates of DNA repair, and therefore differential UVR tolerance, are a consequence of variation in photoenzymatic repair efficiency. We then rule out a simple gene expression hypothesis for the molecular basis of differing repair efficiency, as expression of the CPD photolyase gene photorepair did not differ among D. melanica lineages, in both the presence and absence of UVR.

  18. Biological responses to the simulated Martian UV radiation of bacteriophages and isolated DNA.

    PubMed

    Fekete, Andrea; Kovács, Gáspár; Hegedüs, Márton; Módos, Károly; Lammer, Helmut

    2008-08-21

    Mars is considered as a main target for astrobiologically relevant exploration programmes. In this work the effect of simulated Martian solar UV radiation was examined on bacteriophage T7 and on isolated T7 DNA. A decrease of the biological activity of phages, characteristic changes in the absorption spectrum and in the electrophoretic pattern of isolated DNA/phage and the decrease of the amount of PCR products were detected indicating damage of isolated and intraphage T7 DNA by UV radiation. Further mechanistic insights into the UV-induced formation of intraphage/isolated T7 DNA photoprodu