Science.gov

Sample records for absorbable gelatin sponge

  1. Effect on hemostasis of an absorbable hemostatic gelatin sponge after transrectal prostate needle biopsy

    PubMed Central

    Kobatake, Kohei; Mita, Koji; Kato, Masao

    2015-01-01

    Objectives To examine the usefulness of an absorbable hemostatic gelatin sponge for hemostasis after transrectal prostate needle biopsy. Subjects and Methods The subjects comprised 278 participants who underwent transrectal prostate needle biopsy. They were randomly allocated to the gelatin sponge insertion group (group A: 148 participants) and to the non-insertion group (group B: 130 participants). In group A, the gelatin sponge was inserted into the rectum immediately after biopsy. A biopsy-induced hemorrhage was defined as a case in which a subject complained of bleeding from the rectum, and excretion of blood clots was confirmed. A blood test was performed before and after biopsy, and a questionnaire survey was given after the biopsy. Results Significantly fewer participants in group A required hemostasis after biopsy compared to group B (3 (2.0%) vs. 11 (8.5%), P=0.029). The results of the blood tests and the responses from the questionnaire did not differ significantly between the two groups. In multivariate analysis, only “insertion of a gelatin sponge into the rectum” emerged as a significant predictor of hemostasis. Conclusion Insertion of a gelatin sponge into the rectum after transrectal prostate needle biopsy significantly increases hemostasis without increasing patient symptoms, such as pain and a sense of discomfort. PMID:26005977

  2. Hemostatic absorbable gelatin sponge loaded with 5-fluorouracil for treatment of tumors

    PubMed Central

    Sun, Wei; Chen, Yinghui; Yuan, Weien

    2013-01-01

    Background Surgical tumor resection is the main treatment for tumors however the treatment process often results in massive bleeding and tumor cell residue. The main aim of this research was to address problems such as bleeding, systemic chemotherapy side effects while enhancing quality of life, and increasing drug concentrations at the tumor site by developing a novel formulation with local long-term efficacy for treatment of tumors and to stop bleeding. Methods 5-Fluorouracil (5-FU) was suspended in an ethyl acetate solution of poly D,L-lactide-co-glycolic acid (PLGA) and a vacuum drying method was applied. The hemostatic gelatin sponge loaded with 5-FU was prepared by absorption of the suspension. The in vitro and in vivo characteristics of the hemostatic gelatin sponge loaded with 5-FU (5-FU-HAGS) were investigated. Results 5-FU-HAGS (hemostatic absorbable gelatin sponge loaded with 5-fluorouracil) was successfully produced with controlled release of the content and was reproducibly suitable for local tumor treatment as an implant to stop bleeding. The encapsulation efficiency of 5-FU-HAGS was above 98%. The in vitro 5-FU release kinetic profile matched a near zero-order equation for 20 days. The in vivo 5-FU plasma concentration was at a more stable level than when 5-FU solution was administered by subcutaneous injection. Bleeding can be stopped more effectively by coating a piece of blank gelatin sponge. The survival ratio of tumor-bearing mice using a 5-FU-HAGS subcutaneous implant was higher when compared to mice given a subcutaneous injection of 5-FU solution. Conclusion The 5-FU-HAGS system is a potential and effective way of enhancing the survival ratio and improving the quality of life of tumor-bearing mice. PMID:23626465

  3. Chitosan/gelatin composite sponge is an absorbable surgical hemostatic agent.

    PubMed

    Lan, Guangqian; Lu, Bitao; Wang, Tianyou; Wang, Lijuan; Chen, Jinghao; Yu, Kun; Liu, Jiawei; Dai, Fangying; Wu, Dayang

    2015-12-01

    Chitosan is a versatile biological material that is very well known for its hemostatic properties. The purpose of this study was to test the hemostatic properties of a chitosan composite obtained from silkworm pupae and gelatin. This spongy porous material was cross-linked with tannins and then freeze-dried under vacuum to obtain composites containing chitosan and gelatin in different proportions. Results showed that the best blood-clotting index (BCI) was achieved in vitro by a chitosan/gelatin sponge (CG) ratio of 5/5 (W/W). Furthermore, CG had the best hemostatic effect in rabbit artery bleeding and liver model tests compared to the two components separately. The better hemostatic effect of CG may be due to its ability to absorb blood platelets easily and to the higher liquid adsorption ratio. However, no obvious differences were observed in thrombin generation with both aPTT and PT tests. Cell toxicity tests with L929 cells showed that CG caused no obvious cytotoxicity. In addition, subcutaneous transplantation of CG into rabbits resulted in almost complete degradation of CG after 6 weeks, together with rich vascular generation and proliferation in the transplanted region. Thus, CG can be considered an effective absorbable hemostatic material.

  4. Chitosan/gelatin composite sponge is an absorbable surgical hemostatic agent.

    PubMed

    Lan, Guangqian; Lu, Bitao; Wang, Tianyou; Wang, Lijuan; Chen, Jinghao; Yu, Kun; Liu, Jiawei; Dai, Fangying; Wu, Dayang

    2015-12-01

    Chitosan is a versatile biological material that is very well known for its hemostatic properties. The purpose of this study was to test the hemostatic properties of a chitosan composite obtained from silkworm pupae and gelatin. This spongy porous material was cross-linked with tannins and then freeze-dried under vacuum to obtain composites containing chitosan and gelatin in different proportions. Results showed that the best blood-clotting index (BCI) was achieved in vitro by a chitosan/gelatin sponge (CG) ratio of 5/5 (W/W). Furthermore, CG had the best hemostatic effect in rabbit artery bleeding and liver model tests compared to the two components separately. The better hemostatic effect of CG may be due to its ability to absorb blood platelets easily and to the higher liquid adsorption ratio. However, no obvious differences were observed in thrombin generation with both aPTT and PT tests. Cell toxicity tests with L929 cells showed that CG caused no obvious cytotoxicity. In addition, subcutaneous transplantation of CG into rabbits resulted in almost complete degradation of CG after 6 weeks, together with rich vascular generation and proliferation in the transplanted region. Thus, CG can be considered an effective absorbable hemostatic material. PMID:26590895

  5. Retrospective study of absorbable gelatin sponge soaked in triamicinolone acetonide as interpositioning material in temporomandibular joint ankylosis in 350 patients

    PubMed Central

    Pal, U.S.; Singh, Nimisha; Malkunje, Laxman R.; Singh, R.K.; Dhasmana, Satish; Yadav, Arvind Kumar; Chand, Sharad

    2012-01-01

    Aim To evaluate the feasibility and usefulness of absorbable gelatin sponge soaked in triamcinolone acetonide as an interposition material in the treatment of temporomandibular joint (TMJ) ankylosis. Materials and methods This retrospective study was conducted in 350 patients of TMJ ankylosis who visited our outpatient department between 2000 and 2010, and were treated by the same surgeon. Patients were randomly divided into two groups, where in group 1, absorbable gelatin sponge soaked with triamcinolone acetonide was interposed in the surgical gap created after arthroplasty and in group 2, temporalis fascia was interposed. Preoperative assessment included history and physical examination, along with cause of ankylosis, Postoperative observation were undertaken for maximum mouth opening (MMO), facial nerve paralysis and recurrence. Results At one year follow-up, in group 1 MMO ranged from 35 to 45 mm with no case of re-ankylosis while in the other group 25–43 mm, with re-ankylosis in 20 patients (13.69%). Conclusion The findings of this study showed successful management of TMJ ankylosis using absorbable gelatin sponge soaked in triamcinolone acetonide in cases which did not require condylar reconstruction. PMID:25737875

  6. Synthesis and characterization of glutaraldehyde-based crosslinked gelatin as a local hemostat sponge in surgery: an in vitro study.

    PubMed

    Imani, Rana; Rafienia, Mohammad; Emami, Shahriar Hojjati

    2013-01-01

    In this study, preparation and characterization of soft crosslinked gelatin sponge for blood hemostasis application was considered. The effects of gelatin and crosslinker concentrations and altering freeze-drying temperature on sponges' density and structure, water absorption ability and biodegradation, cytotoxicity, mechanical properties and hemostatic effect were investigated. The density measurement indicated that the density of freeze-dried sponges increased when the freezing temperature was lowered. Scanning electron microscope and optical microscope images showed that gelatin sponges had uniform small pores (60 μm) after freezing at liquid nitrogen (-196°C). Biodegradation study demonstrated that the crosslinked sponges containing 1% and 2% gelatin lost respectively nearly 40 to 70% of their weight during 24 h. Prepared sponges showed desired water absorption ability (30-40 times of own dry weight) improved by lowering glutaraldehyde concentration. Cell toxicity was not detected in any of the samples. Compression modulus of sponges decreased four times (160 to 40 kPa) as the gelatin content varied from 2 to 1% w/v. Hemostasis study confirmed that the hemolytic ability of sponges increased through raising gelatin content and porosity of sponge. We suggest using gelatin sponges containing 1% w/v gelatin, 0.5% w/v glutaraldehyde frozen in liquid nitrogen, as a potential substitution for local hemostat absorbable sponge.

  7. Synthesis and characterization of glutaraldehyde-based crosslinked gelatin as a local hemostat sponge in surgery: an in vitro study.

    PubMed

    Imani, Rana; Rafienia, Mohammad; Emami, Shahriar Hojjati

    2013-01-01

    In this study, preparation and characterization of soft crosslinked gelatin sponge for blood hemostasis application was considered. The effects of gelatin and crosslinker concentrations and altering freeze-drying temperature on sponges' density and structure, water absorption ability and biodegradation, cytotoxicity, mechanical properties and hemostatic effect were investigated. The density measurement indicated that the density of freeze-dried sponges increased when the freezing temperature was lowered. Scanning electron microscope and optical microscope images showed that gelatin sponges had uniform small pores (60 μm) after freezing at liquid nitrogen (-196°C). Biodegradation study demonstrated that the crosslinked sponges containing 1% and 2% gelatin lost respectively nearly 40 to 70% of their weight during 24 h. Prepared sponges showed desired water absorption ability (30-40 times of own dry weight) improved by lowering glutaraldehyde concentration. Cell toxicity was not detected in any of the samples. Compression modulus of sponges decreased four times (160 to 40 kPa) as the gelatin content varied from 2 to 1% w/v. Hemostasis study confirmed that the hemolytic ability of sponges increased through raising gelatin content and porosity of sponge. We suggest using gelatin sponges containing 1% w/v gelatin, 0.5% w/v glutaraldehyde frozen in liquid nitrogen, as a potential substitution for local hemostat absorbable sponge. PMID:23629534

  8. Osteogenic differentiation of preosteoblasts on a hemostatic gelatin sponge.

    PubMed

    Kuo, Zong-Keng; Lai, Po-Liang; Toh, Elsie Khai-Woon; Weng, Cheng-Hsi; Tseng, Hsiang-Wen; Chang, Pei-Zen; Chen, Chih-Chen; Cheng, Chao-Min

    2016-01-01

    Bone tissue engineering provides many advantages for repairing skeletal defects. Although many different kinds of biomaterials have been used for bone tissue engineering, safety issues must be considered when using them in a clinical setting. In this study, we examined the effects of using a common clinical item, a hemostatic gelatin sponge, as a scaffold for bone tissue engineering. The use of such a clinically acceptable item may hasten the translational lag from laboratory to clinical studies. We performed both degradation and biocompatibility studies on the hemostatic gelatin sponge, and cultured preosteoblasts within the sponge scaffold to demonstrate its osteogenic differentiation potential. In degradation assays, the gelatin sponge demonstrated good stability after being immersed in PBS for 8 weeks (losing only about 10% of its net weight and about 54% decrease of mechanical strength), but pepsin and collagenases readily biodegraded it. The gelatin sponge demonstrated good biocompatibility to preosteoblasts as demonstrated by MTT assay, confocal microscopy, and scanning electron microscopy. Furthermore, osteogenic differentiation and the migration of preosteoblasts, elevated alkaline phosphatase activity, and in vitro mineralization were observed within the scaffold structure. Each of these results indicates that the hemostatic gelatin sponge is a suitable scaffold for bone tissue engineering. PMID:27616161

  9. Osteogenic differentiation of preosteoblasts on a hemostatic gelatin sponge

    PubMed Central

    Kuo, Zong-Keng; Lai, Po-Liang; Toh, Elsie Khai-Woon; Weng, Cheng-Hsi; Tseng, Hsiang-Wen; Chang, Pei-Zen; Chen, Chih-Chen; Cheng, Chao-Min

    2016-01-01

    Bone tissue engineering provides many advantages for repairing skeletal defects. Although many different kinds of biomaterials have been used for bone tissue engineering, safety issues must be considered when using them in a clinical setting. In this study, we examined the effects of using a common clinical item, a hemostatic gelatin sponge, as a scaffold for bone tissue engineering. The use of such a clinically acceptable item may hasten the translational lag from laboratory to clinical studies. We performed both degradation and biocompatibility studies on the hemostatic gelatin sponge, and cultured preosteoblasts within the sponge scaffold to demonstrate its osteogenic differentiation potential. In degradation assays, the gelatin sponge demonstrated good stability after being immersed in PBS for 8 weeks (losing only about 10% of its net weight and about 54% decrease of mechanical strength), but pepsin and collagenases readily biodegraded it. The gelatin sponge demonstrated good biocompatibility to preosteoblasts as demonstrated by MTT assay, confocal microscopy, and scanning electron microscopy. Furthermore, osteogenic differentiation and the migration of preosteoblasts, elevated alkaline phosphatase activity, and in vitro mineralization were observed within the scaffold structure. Each of these results indicates that the hemostatic gelatin sponge is a suitable scaffold for bone tissue engineering. PMID:27616161

  10. Periodontal tissue regeneration with PRP incorporated gelatin hydrogel sponges.

    PubMed

    Nakajima, Dai; Tabata, Yasuhiko; Sato, Soh

    2015-10-20

    Gelatin hydrogels have been designed and prepared for the controlled release of the transforming growth factor (TGF-b1) and the platelet-derived growth factor (PDGF-BB). PRP (Platelet rich plasma) contains many growth factors including the PDGF and TGF-b1. The objective of this study was to evaluate the regeneration of periodontal tissue following the controlled release of growth factors in PRP. For the periodontal ligament cells and osteoblast, PRP of different concentrations was added. The assessment of DNA, mitochondrial activity and ALP activity were measured. To evaluate the TGF-β1 release from PRP incorporated gelatin sponge, amounts of TGF-β1 in each supernatant sample were determined by the ELISA. Transplantation experiments to prepare a bone defect in a rat alveolar bone were an implanted gelatin sponge incorporated with different concentration PRP. In DNA assay and MTT assay, after the addition of PRP to the periodontal ligament cells and osteoblast, the cell count and mitochondrial activity had increased the most in the group with the addition of 5  ×  PRP. In the ALP assay, after the addition of PRP to the periodontal ligament cells, the cell activity had increased the most in the group with the addition of 3  ×  PRP. In the transplantation, the size of the bone regenerated in the defect with 3  ×  PRP incorporated gelatin sponge was larger than that of the other group.

  11. The Size of Gelatin Sponge Particles: Differences with Preparation Method

    SciTech Connect

    Katsumori, Tetsuya Kasahara, Toshiyuki

    2006-12-15

    Purpose. To assess whether the size distribution of gelatin sponge particles differed according to the method used to make them and the type of original sheet. Methods. Gelatin sponge particles of approximately 1-1.5 x 1-1.5 x 2 mm were made from either Spongel or Gelfoam sheets by cutting with a scalpel and scissors. Particles were also made of either Spongel or Gelfoam sheets by pumping with two syringes and a three-way stopcock. The size distribution of the particles in saline was compared among the groups. Results. (1) Cutting versus pumping: When Spongel was used, cutting produced lower rates of smaller particles {<=}500 {mu}m and larger particles >2000 {mu}m compared with pumping back and forth 30 times (1.1% vs 37.6%, p < 0.0001; 2.2% vs 14.4%, p = 0.008). When Gelfoam was used, cutting produced lower rates of smaller and larger particles compared with pumping (8.5% vs 20.4%, p = 0.1809; 0% vs 48.1%, p < 0.0001). (2) Spongel versus Gelfoam: There was no significant difference in the size distribution of the particles between Spongel and Gelfoam (p = 0.2002) when cutting was used. Conclusion. The size distribution of gelatin sponge particles differed according to the method used to make them. More uniform particle sizes can be achieved by cutting than by pumping.

  12. Local Application of Ibandronate/Gelatin Sponge Improves Osteotomy Healing in Rabbits

    PubMed Central

    Xia, Zhidao; Liu, Yueju; Peggrem, Shaun; Geng, Tao; Yang, Zhaoxu; Li, Han; Xu, Bin; Zhang, Chi; Triffitt, James T.; Zhang, Yingze

    2015-01-01

    Delayed healing or non-union of skeletal fractures are common clinical complications. Ibandronate is a highly potent anti-catabolic reagent used for treatment of osteopenia and fracture prevention. We hypothesized that local application of ibandronate after fracture fixation may improve and sustain callus formation and therefore prevent delayed healing or non-union. This study tested the effect of local application of an ibandronate/gelatin sponge composite on osteotomy healing. A right-side distal-femoral osteotomy was created surgically, with fixation using a k-wire, in forty adult male rabbits. The animals were divided into four groups of ten animals and treated by: (i) intravenous injection of normal saline (Control); (ii) local implantation of absorbable gelatin sponge (GS); (iii) local implantation of absorbable GS containing ibandronate (IB+GS), and (iv) intravenous injection of ibandronate (IB i.v.). At two and four weeks the affected femora were harvested for X-ray photography, computed tomography (CT), biomechanical testing and histopathology. At both time-points the results showed that the calluses in both the ibandronate-treated groups, but especially in the IB+GS group, were significantly larger than in the control and GS groups. At four weeks the cross sectional area (CSA) and mechanical test results of ultimate load and energy in the IB+GS group were significantly higher than in other groups. Histological procedures showed a significant reduction in osteoclast numbers in the IB+GS and IB i.v. groups at day 14. The results indicate that local application of an ibandronate/gelatin sponge biomaterial improved early osteotomy healing after surgical fixation and suggest that such treatment may be a valuable local therapy to enhance fracture repair and potentially prevent delayed or non-union. PMID:25951178

  13. Tumorigenicity assays in nude mice: analysis of an implanted gelatin-sponge method

    SciTech Connect

    Kraemer, P.M.; Travis, G.L.; Saunders, G.C.; Ray, F.A.; Stevenson, A.P.; Bame, K.; Cram, L.S.

    1982-01-01

    Gelatin sponges, preimplanted in nude mice for 10 days, were used for an improved assay for tumorigenicity of cultured cells. Cells inoculated through the skin into such sponges yielded tumors more rapidly and with greater frequency than with newly implanted sponges or into subcutaneous tissue. However, an unexpected loss of cells occurred in the first few days after implantation. This loss may be an important aspect of tumorigenicity assays of all kinds, and is readily studied with the sponge methods described.

  14. A New Soluble Gelatin Sponge for Transcatheter Hepatic Arterial Embolization

    SciTech Connect

    Takasaka, Isao; Kawai, Nobuyuki; Sato, Morio Sahara, Shinya; Minamiguchi, Hiroyuki; Nakai, Motoki; Ikoma, Akira; Nakata, Kouhei; Sonomura, Tetsuo

    2010-12-15

    To prepare a soluble gelatin sponge (GS) and to explore the GS particles (GSPs) that inhibit development of collateral pathways when transcatheter hepatic arterial embolization is performed. The approval of the Institutional Committee on Research Animal Care of our institution was obtained. By means of 50 and 100 kDa of regenerative medicine-gelatin (RM-G), RM-G sponges were prepared by freeze-drying and heating to temperatures of 110-150{sup o}C for cross-linkage. The soluble times of RM-GSPs were measured in vitro. Eight swine for transcatheter hepatic arterial embolization were assigned into two groups: six received 135{sup o}C/50RM-GSPs, 125{sup o}C/100RM-GSPs, and 138{sup o}C/50RM-GSPs, with soluble time of 48 h or more in vitro; two swine received Gelpart GSPs (G-GSPs) with insoluble time of 14 days as a control. Transarterial chemoembolization was performed on two branches of the hepatic artery per swine. RM-GSPs heated at temperatures of 110-138{sup o}C were soluble. Mean soluble times of the RM-GSPs increased with higher temperature. Hepatic branches embolized with G-GSP remained occluded after 6 days, and development of collateral pathways was observed after 3 days. Hepatic branches embolized with 135{sup o}C/50RM-GSP and 125{sup o}C/100RM-GSP remained occluded for 4 h, and recanalization was observed after 1 day. Hepatic branches embolized with 138{sup o}C/50RM-GS remained occluded for 1 day, and recanalization was observed after 2 days with no development of collateral pathways. In RM-GSs with various soluble times that were prepared by modulating the heating temperature, 138{sup o}C/50RM-GSP was the soluble GSP with the longest occlusion time without inducing development of collateral pathways.

  15. Studies on gelatin-containing artificial skin: II. Preparation and characterization of cross-linked gelatin-hyaluronate sponge.

    PubMed

    Choi, Y S; Hong, S R; Lee, Y M; Song, K W; Park, M H; Nam, Y S

    1999-01-01

    This study was conducted to develop a new sponge type of biomaterial to be used for either wound dressing or scaffold for tissue engineering. We were able to prepare an insoluble matrix composed of gelatin and sodium hyaluronate (HA) by dipping the soluble sponge into 90% (w/v) acetone/water mixture containing a small amount of cross-linking agent, 1-ethyl-3-3-dimethylaminoproplycarbodiimide hydrochloride, EDC. To characterize the sponge, Fourier-transformed infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and Instron analysis were performed. The obtained results indicate that the chemically cross-linked sponge shows a cross-linking degree of 10-35%, a mean pore size of 40-160 microm, porosity of 35-67%, and a tensile strength of 10-30 gf/cm(2). Especially, the porosity measured by image analysis showed a tendency to increase with HA content, resulting in an increased water uptake. The resistance to collagenase degradation in vitro increased for up to 2 days. Silver sulfadiazine (AgSD)-impregnated gelatin-HA sponge was also prepared and compared with conventional vaseline gauze by applying it onto a dorsal skin defect of wistar rat for 5, 12, and 21 days. Histological results showed an enhancement of wound healing in AgSD-impregnated gelatin-HA sponge.

  16. A superhydrophobic sponge with excellent absorbency and flame retardancy.

    PubMed

    Ruan, Changping; Ai, Kelong; Li, Xingbo; Lu, Lehui

    2014-05-26

    Frequent oil spillages and the industrial discharge of organic solvents have not only caused severe environmental and ecological damage, but also create a risk of fire and explosion. Therefore, it is imperative, but also challenging, to find high-performance absorbent materials that are both effective and less flammable. Here we present a superior superhydrophobic sponge that exhibits excellent absorption performance through a combination of its superhydrophobicity, high porosity, and robust stability. More importantly, it inherits the intrinsic flame-retardant nature of the raw melamine sponge, and is thus expected to reduce the risk of fire and explosion when being used as an absorbent for flammable oils and organic compounds. Moreover, the fabrication of this sponge is easy to scale up, since it does not use a complicated process or sophisticated equipment. These characteristics make the sponge a much more competitive product than the commercial absorbent, nonwoven polypropylene fabric. PMID:24711147

  17. A Comparison of Conventional Collagen Sponge and Collagen-Gelatin Sponge in Wound Healing

    PubMed Central

    Jinno, Chizuru; Morimoto, Naoki; Ito, Ran; Sakamoto, Michiharu; Ogino, Shuichi; Taira, Tsuguyoshi; Suzuki, Shigehiko

    2016-01-01

    The objective of this study was to compare the effectiveness of the collagen-gelatin sponge (CGS) with that of the collagen sponge (CS) in dermis-like tissue regeneration. CGS, which achieves the sustained release of basic fibroblast growth factor (bFGF), is a promising material in wound healing. In the present study, we evaluated and compared CGSs and conventional CSs. We prepared 8 mm full-thickness skin defects on the backs of rats. Either CGSs or CSs were impregnated with normal saline solution (NSS) or 7 μg/cm2 of bFGF solution and implanted into the defects. At 1 and 2 weeks after implantation, tissue specimens were obtained from the rats of each group (n = 3, total n = 24). The wound area, neoepithelial length, dermis-like tissue area, and the number and area of capillaries were evaluated at 1 and 2 weeks after implantation. There were no significant differences in the CGS without bFGF and CS groups. Significant improvements were observed in the neoepithelial length, the dermis-like tissue area, and the number of newly formed capillaries in the group of rats that received CGSs impregnated with bFGF. The effects on epithelialization, granulation, and vascularization of wound healing demonstrated that, as a scaffold, CGSs are equal or superior to conventional CSs. PMID:27218103

  18. Effect of composition on the physicochemical properties and active substance release from gelatin-alginate sponge.

    PubMed

    Haznar, Dorota; Pluta, Janusz

    2003-01-01

    The aim the study was physicochemically characterize and develop ability of the active substance (cefradine) from the implantable porous carriers. The drug delivery systems consisting of the gelatine and alginic acid sodium salt and glycerol (GL) or peanut oil (AO). Gelatin-alginate sponge was prepared by foamed components and next freeze-dried this foam. The composition of the sponges affected on the sorption ability and on the stability to proteolytic enzymes. Owing to porous structure obtained specific profile of active substance release.

  19. Highly efficient removal of lead and cadmium during wastewater irrigation using a polyethylenimine-grafted gelatin sponge.

    PubMed

    Li, Bingbing; Zhou, Feng; Huang, Kai; Wang, Yipei; Mei, Surong; Zhou, Yikai; Jing, Tao

    2016-01-01

    Wastewater irrigation is a very important resource for heavy metal pollution in soil and then accumulation in vegetable crops. In this study, a polyethylenimine (PEI)-grafted gelatin sponge was prepared to effectively adsorb heavy metals during wastewater irrigation. Based on the strong water adsorption ability, wastewater remained in the PEI-grafted gelatin sponge for a sufficient time for the heavy metals to interact with the sorbents. The binding capacities of Pb(II) ions and Cd(II) ions on the PEI-grafted gelatin sponge were 66 mg g(-1) and 65 mg g(-1), which were much more than those on the gelatin sponge (9.75 mg g(-1) and 9.35 mg g(-1)). Subsequently, the PEI-grafted gelatin sponge was spread on the surface of soil planted with garlic and then sprayed with synthetic wastewater. The concentrations of cadmium and lead in the garlic leaves were 1.59 mg kg(-1) and 5.69 mg kg(-1), respectively, which were much lower than those (15.78 mg kg(-1) and 27.98 mg kg(-1)) without the gelatin sponge, and the removal efficiencies were 89.9% and 79.7%. The PEI-grafting gelatin sponge could effectively remove heavy metals during wastewater irrigation, which improved the soil environment and reduced human exposure to heavy metals. PMID:27633732

  20. Highly efficient removal of lead and cadmium during wastewater irrigation using a polyethylenimine-grafted gelatin sponge

    NASA Astrophysics Data System (ADS)

    Li, Bingbing; Zhou, Feng; Huang, Kai; Wang, Yipei; Mei, Surong; Zhou, Yikai; Jing, Tao

    2016-09-01

    Wastewater irrigation is a very important resource for heavy metal pollution in soil and then accumulation in vegetable crops. In this study, a polyethylenimine (PEI)-grafted gelatin sponge was prepared to effectively adsorb heavy metals during wastewater irrigation. Based on the strong water adsorption ability, wastewater remained in the PEI-grafted gelatin sponge for a sufficient time for the heavy metals to interact with the sorbents. The binding capacities of Pb(II) ions and Cd(II) ions on the PEI-grafted gelatin sponge were 66 mg g‑1 and 65 mg g‑1, which were much more than those on the gelatin sponge (9.75 mg g‑1 and 9.35 mg g‑1). Subsequently, the PEI-grafted gelatin sponge was spread on the surface of soil planted with garlic and then sprayed with synthetic wastewater. The concentrations of cadmium and lead in the garlic leaves were 1.59 mg kg‑1 and 5.69 mg kg‑1, respectively, which were much lower than those (15.78 mg kg‑1 and 27.98 mg kg‑1) without the gelatin sponge, and the removal efficiencies were 89.9% and 79.7%. The PEI-grafting gelatin sponge could effectively remove heavy metals during wastewater irrigation, which improved the soil environment and reduced human exposure to heavy metals.

  1. Highly efficient removal of lead and cadmium during wastewater irrigation using a polyethylenimine-grafted gelatin sponge

    PubMed Central

    Li, Bingbing; Zhou, Feng; Huang, Kai; Wang, Yipei; Mei, Surong; Zhou, Yikai; Jing, Tao

    2016-01-01

    Wastewater irrigation is a very important resource for heavy metal pollution in soil and then accumulation in vegetable crops. In this study, a polyethylenimine (PEI)-grafted gelatin sponge was prepared to effectively adsorb heavy metals during wastewater irrigation. Based on the strong water adsorption ability, wastewater remained in the PEI-grafted gelatin sponge for a sufficient time for the heavy metals to interact with the sorbents. The binding capacities of Pb(II) ions and Cd(II) ions on the PEI-grafted gelatin sponge were 66 mg g−1 and 65 mg g−1, which were much more than those on the gelatin sponge (9.75 mg g−1 and 9.35 mg g−1). Subsequently, the PEI-grafted gelatin sponge was spread on the surface of soil planted with garlic and then sprayed with synthetic wastewater. The concentrations of cadmium and lead in the garlic leaves were 1.59 mg kg−1 and 5.69 mg kg−1, respectively, which were much lower than those (15.78 mg kg−1 and 27.98 mg kg−1) without the gelatin sponge, and the removal efficiencies were 89.9% and 79.7%. The PEI-grafting gelatin sponge could effectively remove heavy metals during wastewater irrigation, which improved the soil environment and reduced human exposure to heavy metals. PMID:27633732

  2. Magnetic Resonance Angiography of Uterine Artery: Changes with Embolization Using Gelatin Sponge Particles Alone for Fibroids

    SciTech Connect

    Katsumori, Tetsuya Kasahara, Toshiyuki; Kin, Yoko; Ichihashi, Shigeo

    2007-06-15

    Purpose. To assess uterine artery recanalization, together with tumor devascularization, after embolization using gelatin sponge particles alone for fibroids. Methods. Twenty-seven patients underwent uterine artery embolization (UAE) for fibroids using only gelatin sponge particles. The angiographic endpoint of embolization was defined as near stasis of contrast medium in the ascending segment of the uterine artery. All patients underwent contrast-enhanced magnetic resonance angiography (MRA) before and 4 months after UAE, and contrast-enhanced magnetic resonance imaging (CE-MRI) before, 1 week after, and 4 months after UAE. The visualization of the uterine arteries before and 4 months after UAE was assessed using MRA. The infarction rates of the largest tumor were assessed using CE-MRI 1 week after UAE. Results. MRA 4 months after UAE showed 100% (53/53) of the descending and transverse segments, and 88% (43/49) of the ascending segments that had been noted on baseline MRA. The visualization of the ascending segments on MRA 4 months after UAE was identical to that on baseline MRA in 20 of 27 patients (74%). CE-MRI showed complete infarction of the largest tumor in 22 of 27 patients (81%), and 90-99% infarction of the largest tumor in the remaining 5 of 27 patients (19%). Conclusion. Based on the MR study, in most cases uterine artery recanalization occurred, together with sufficient devascularization of fibroids, after UAE using gelatin sponge particles alone.

  3. Gelatine/PLLA sponge-like scaffolds: morphological and biological characterization.

    PubMed

    Lazzeri, Luigi; Cascone, Maria Grazia; Danti, Serena; Serino, Lorenzo Pio; Moscato, Stefania; Bernardini, Nunzia

    2006-12-01

    Biodegradable synthetic polymers such as poly(lactic acid) are widely used to prepare scaffolds for cell transplantation and tissue growth, using different techniques set up for the purpose. However the poor hydrophilicity of these polymers represents the main limitation to their use as scaffolds because it causes a low affinity for the cells. An effective way to solve this problem could be represented by the addition of biopolymers that are in general highly hydrophilic. The present work concerns porous biodegradable sponge-like systems based on poly(L-lactic acid) and gelatine. Morphology and porosity characteristics of the sponges were studied by scanning electron microscopy and mercury intrusion porosimetry respectively. Blood compatibility was investigated by bovine plasma fibrinogen adsorption test and platelet adhesion test. The cell culture method was used in order to evaluate the ability of the matrices to work as scaffolds for tissue regeneration. The obtained results indicate that the sponges have interesting porous characteristics, good blood compatibility and above all good ability to support cell adhesion and growth. In fact viable and metabolically active animal cells were found inside the sponges after 8 weeks in culture. On this basis the systems produced seem to be good candidates as scaffolds for tissue regeneration.

  4. Gelatine/PLLA sponge-like scaffolds: morphological and biological characterization.

    PubMed

    Lazzeri, Luigi; Cascone, Maria Grazia; Danti, Serena; Serino, Lorenzo Pio; Moscato, Stefania; Bernardini, Nunzia

    2007-07-01

    Biodegradable synthetic polymers such as poly(lactic acid) (PLA) are widely used to prepare scaffolds for cell transplantation and tissue growth, using different techniques set up for the purpose. However the poor hydrophilicity of these polymers represents the main limitation to their use as scaffolds because it causes a low affinity for the cells. An effective way to solve this problem could be represented by the addition of biopolymers that are in general highly hydrophilic. The present work concerns porous biodegradable sponge-like systems based on poly(L-lactic acid) (PLLA) and gelatine. Morphology and porosity characteristics of the sponges were studied by scanning electron microscopy and mercury intrusion porosimetry respectively. Blood compatibility was investigated by bovine plasma fibrinogen (BPF) adsorption test and platelet adhesion test (PAT). The cell culture method was used in order to evaluate the ability of the matrices to work as scaffolds for tissue regeneration. The obtained results indicate that the sponges have interesting porous characteristics, good blood compatibility and above all good ability to support cell adhesion and growth. In fact viable and metabolically active animal cells were found inside the sponges after 8 weeks in culture. On this basis the systems produced seem to be good candidates as scaffolds for tissue regeneration.

  5. Evaluation of the Role of Cisplatin-conjugated-soluble Gelatin Sponge: Feasibility Study in a Swine Model

    SciTech Connect

    Ikoma, Akira; Kawai, Nobuyuki; Sato, Morio Minamiguchi, Hiroyuki; Nakata, Kouhei; Nakai, Motoki; Sanda, Hiroki; Sonomura, Tetsuo; Kanayama, Yoshitaka; Sakai, Yasuo

    2013-08-01

    PurposeTo evaluate the safety and the delivery function of cisplatin-conjugated-soluble gelatin sponge in a swine model.MethodsFifteen healthy young swine were assigned into three groups: transarterial cisplatin infusion group, transarterial chemoembolization (TACE) with cisplatin-conjugated 120-min soluble gelatin sponge (TACE-120) group, and TACE with cisplatin-conjugated 360-min soluble gelatin sponge (TACE-360) group. A total volume of 0.8 mL/kg cisplatin in each group and 8 mg/kg soluble gelatin sponge in TACE-120 and TACE-360 groups were injected from the left hepatic artery in small increments for 10 min. Common hepatic angiography and whole-blood sampling via the left hepatic vein were conducted to explore recanalization immediately after the procedure and again at 10, 30, 60, 90, 120, 180, 240, 300, 360, and 420 min later. The area under the plasma concentration curve (AUC) of non-protein-bound platinum was compared among the three groups. Each liver was removed and cut into 10-cm-thick sections for calculating liver-damaged volume ratio.ResultsSequential angiography depicted gradual recanalization of the occluded hepatic artery and total recanalization at 120 and 360 min after embolization in the TACE-120 and TACE-360 groups, respectively. Of the three groups, AUC{sub 0-30}, AUC{sub 30-120}, and AUC{sub 120-420} were significantly highest in the transarterial cisplatin infusion group (p < 0.001), the TACE-120 group (p < 0.001), and the TACE-360 group (p < 0.001), respectively. The liver-damaged volume ratio in the TACE-360 group was small (8.20 %) but significantly higher than that in the TACE-120 group (2.67 %, p = 0.014).ConclusionCisplatin-conjugated soluble gelatin sponge functions as a cisplatin carrier and is associated with tolerable liver damage.

  6. Healing of skin wounds with a chitosan-gelatin sponge loaded with tannins and platelet-rich plasma.

    PubMed

    Lu, Bitao; Wang, Tianyou; Li, Zhiquan; Dai, Fangying; Lv, Lingmei; Tang, Fengling; Yu, Kun; Liu, Jiawei; Lan, Guangqian

    2016-01-01

    A chitosan-gelatin sponge (CSGT) was prepared using a chitosan/ascorbic acid solution blend containing gelatin, followed by crosslinking with tannin acid and freeze-drying, thereby combining the chitosan sponge and gelatin sponge. The structure of the CSGT was observed by scanning electron microscopy and was shown to have uniform and abundant pores measuring about 145-240μm in size. We also characterized the sponges by infrared spectroscopy, thermogravimetric analysis, mechanical property tests, swelling behavior analysis, water retention capacity tests, antibacterial property analysis, and cytotoxicity tests. Our data showed that the CSGT had good thermostability and mechanical properties as well as efficient water absorption and retention capacities. Moreover, the CSGT could effectively inhibit the growth of Escherichia coli and Staphylococcus aureus with low toxicity. In animal experiments, macroscopic observations and histological examinations showed that the wound covered by the CSGT healed quickly. Additionally, loading of the CSGT with platelet-rich plasma resulted in further acceleration of wound healing. Therefore, the CSGT and the CSGT with platelet-rich plasma were suitable for application as a wound dressing and may have potential for use in various biomedical applications.

  7. Orthotopic Osteogenecity Enhanced by a Porous Gelatin Sponge in a Critical-Sized Rat Calvaria Defect.

    PubMed

    Kanda, Naofumi; Anada, Takahisa; Handa, Takuto; Kobayashi, Kazuhito; Ezoe, Yushi; Takahashi, Tetsu; Suzuki, Osamu

    2015-12-01

    The gelatin (Gel) powders, derived from acidic and basic extractions of porcine dermis (referred to as AE and BE), were processed for the porous sponge preparation. The disks, which were less than or greater than 500 μm in diameter [small (S) and large (L) pores, respectively] in both extractions and had an interconnected structure respectively, were implanted in critical-sized defects (CSD) of rat calvaria for 4 and 8 weeks to analyze the bone repair capability. Only the AE-S disk induced bone formation (over 60%) histomorphometrically in the CSD after 8 weeks, although the collagen orientation of the regenerated bone was still immature. Osteoblastic cell culture until 14 days did not substantiate marked superiority of AE-S disk regarding the proliferation and the differentiation, although the initial attachment was enhanced on AE-S disk than BE-L disk. The results provide the findings that a Gel sponge with a specific porous structure is capable of inducing orthotopic bone formation in vivo environment.

  8. Combination of BMP-2-releasing gelatin/β-TCP sponges with autologous bone marrow for bone regeneration of X-ray-irradiated rabbit ulnar defects.

    PubMed

    Yamamoto, Masaya; Hokugo, Akishige; Takahashi, Yoshitake; Nakano, Takayoshi; Hiraoka, Masahiro; Tabata, Yasuhiko

    2015-07-01

    The objective of this study is to evaluate the feasibility of gelatin sponges incorporating β-tricalcium phosphate (β-TCP) granules (gelatin/β-TCP sponges) to enhance bone regeneration at a segmental ulnar defect of rabbits with X-ray irradiation. After X-ray irradiation of the ulnar bone, segmental critical-sized defects of 20-mm length were created, and bone morphogenetic protein-2 (BMP-2)-releasing gelatin/β-TCP sponges with or without autologous bone marrow were applied to the defects to evaluate bone regeneration. Both gelatin/β-TCP sponges containing autologous bone marrow and BMP-2-releasing sponges enhanced bone regeneration at the ulna defect to a significantly greater extent than the empty sponges (control). However, in the X-ray-irradiated bone, the bone regeneration either by autologous bone marrow or BMP-2 was inhibited. When combined with autologous bone marrow, the BMP-2 exhibited significantly high osteoinductivity, irrespective of the X-ray irradiation. The bone mineral content at the ulna defect was similar to that of the intact bone. It is concluded that the combination of bone marrow with the BMP-2-releasing gelatin/β-TCP sponge is a promising technique to induce bone regeneration at segmental bone defects after X-ray irradiation.

  9. Effects of gelatin sponge combined with moist wound-healing nursing intervention in the treatment of phase III bedsore

    PubMed Central

    LI, YANLING; YAO, MEIYING; WANG, XIA; ZHAO, YANQING

    2016-01-01

    Pressure sore pertains to tissue damage or necrosis that occurs due to lack of adequate nutrition following long-term exposure to pressure and decreased blood circulation. The aim of the study was to examine the effects of gelatin sponge combined with moist wound-healing nursing intervention in the treatment of phase III bedsore. In total, 50 patients with phase III bedsore were included in the present study. The patients were randomly divided into the control (n=25) and observation (n=25) groups. Patients in the control group received conventional nursing, while those in the observation group received gelatin sponge combined with moist wound healing nursing. The effects of the two nursing methods were compared and analyzed. The results showed that the improvement rate of the observation group was significantly higher than that of the control group (P<0.05). The Branden score and area of pressure sore of the observation group were significantly lower than those of the control group (P<0.05). The frequency and time of dressing change and the average cost of hospitalization of the observation group were significantly lower than those of the control group (P<0.001). In conclusion, gelatin sponge combined with moist wound-healing nursing intervention may significantly improve the treatment of phase III bedsore. PMID:27313666

  10. Process for separating and/or recovering hydrocarbon oils from water using biodegradable absorbent sponges

    SciTech Connect

    Mueller, M.B.; Mareau, K.J.

    1991-08-13

    This patent describes an improved process for absorbing oils selected from the group consisting of hydrocarbon oils and hydrocarbon fuels. It comprises the step of contacting the oils with an absorbent oleophilic biodegradable sponge material comprised of at least one essentially fat free, foamed, biodegradable natural product selected from the group consisting of animal proteins and plant polymaccharides, which material is capable of absorbing at least about thirty times its weight of oils.

  11. Bilayer porous scaffold based on poly-(ɛ-caprolactone) nanofibrous membrane and gelatin sponge for favoring cell proliferation

    NASA Astrophysics Data System (ADS)

    Zhou, Zhihua; Zhou, Yang; Chen, Yiwang; Nie, Huarong; Wang, Yang; Li, Fan; Zheng, Yan

    2011-12-01

    Electrospun poly-(ɛ-caprolactone) (PCL) nanofibers has been widely used in the medical prosthesis. However, poor hydrophilicity and the lack of natural recognition sites for covalent cell-recognition signal molecules to promote cell attachment have limited its utility as tissue scaffolds. In this study, Bilayer porous scaffolds based on PCL electrospun membranes and gelatin (GE) sponges were fabricated through soft hydrolysis of PCL electrospun followed by grafting gelatin onto the fiber surface, through crosslinking and freeze drying treatment of additional gelatin coat and grafted gelatin surface. GE sponges were stably anchored on PCL membrane surface with the aid of grafted GE molecules. The morphologies of bilayer porous scaffolds were observed through SEM. The contact angle of the scaffolds was 0°, the mechanical properties of scaffolds were measured by tensile test, Young's moduli of PCL scaffolds before and after hydrolysis are 66-77.3 MPa and 62.3-75.4 MPa, respectively. Thus, the bilayer porous scaffolds showed excellent hydrophilic surface and desirable mechanical strength due to the soft hydrolysis and GE coat. The cell culture results showed that the adipose derived mesenchymal stem cells did more favor to adhere and grow on the bilayer porous scaffolds than on PCL electrospun membranes. The better cell affinity of the final bilayer scaffolds not only attributed to the surface chemistry but also the introduction of bilayer porous structure.

  12. Translymphatic chemotherapy by intrapleural placement of gelatin sponge containing biodegradable Paclitaxel colloids controls lymphatic metastasis in lung cancer.

    PubMed

    Liu, Jiang; Meisner, Dale; Kwong, Elizabeth; Wu, Xiao Y; Johnston, Michael R

    2009-02-01

    As a means of treating lymphatic metastasis from lung cancer, the pharmacokinetics and therapeutic effects of an intrapleural (ipl) implantable drug delivery system consisting of a gelatin sponge impregnated with polylactide-co-glycolide paclitaxel (PLGA-PTX) microspheres were studied. PLGA-PTX with 7% (w/w) drug loading were incorporated into gelatin matrix. The pharmacokinetics were studied in rats with one of the following regimens: (a) Taxol 8 mg/kg by i.v. injection; (b) Taxol 8 mg/kg ipl; (c) PLGA-PTX (100 mg/kg) ipl; (d) sponge containing PLGA-PTX (100 mg/kg) ipl. PTX concentrations in lymph node and plasma were determined by liquid chromatography mass spectrometry, and the area under the curve (AUC) was calculated. Therapeutic efficacy was assessed in an orthotopic lung cancer model with tumor resection 14 days following tumor implantation. Animals were randomized to ipl placement of PLGA-PTX sponge, placebo sponge, or no treatment. Lymph node metastases were examined at 32 d. The results show that the mediastinal lymph node AUC was significantly higher with ipl. placement of PLGA-PTX sponge compared with i.v. and ipl administration of Taxol. This represents 100- to 400-fold increase of lymphatic drug exposure compared with i.v. dosing. Peak plasma concentration was significantly reduced in the PLGA-PTX sponge group compared with i.v. dosing. PLGA-PTX particles were microscopically identified in lymphatic tissue and resulted in an 80% reduction of lymphatic metastasis compared with controls. Translymphatic-targeted drug delivery significantly decreases lymphatic metastasis in an orthotopic lung cancer model. This effect may be attributable to the improved distribution of PTX to the lymphatic system.

  13. Dependency of tissue necrosis on gelatin sponge particle size after canine hepatic artery embolization

    SciTech Connect

    Sonomura, Tetsuo; Yamada, Ryusaku; Kishi, Kazushi; Nishida, Norifumi; Yang, Ren J.; Sato, Morio

    1997-01-15

    Purpose. To determine the optimal size of gelatin sponge particles (GSPs) to produce maximum tumor necrosis with minimum side effects after canine hepatic artery embolization (HAE). Methods. GSPs were separated into four size ranges: A, up to 200 {mu}m (mean 152) as Gelfoam powder; B, 200-500 {mu}m (mean 336) as Gelfoam powder; C, 500-1000 {mu}m (mean 649) as Spongel; and D, 1000-2000 {mu}m (mean 1382) as Spongel. Three mongrel dogs were assigned randomly to HAE with each particle size. On day 7 after HAE, the livers were removed and subjected to pathological examination. Results. The mean volume of liver necrosis was 11% after embolization, with particle size A, 36.3% with B, 0% with C, and 1% with D. Coagulation necrosis was found in all livers with particles of sizes A and B, and in 1 of 6 with sizes C and D. Bile duct injury was found in five of six dogs with sizes A and B and in none with sizes C and D. Gallbladder necrosis was found in one dog with size B and pancreas necrosis in one with size A. Conclusion. GSPs of 500 {mu}m are considered optimally effective for tissue necrosis according to this model.

  14. Efficacies of uterine artery embolization for symptomatic uterine fibroids using gelatin sponge: a single-center experience and literature review

    PubMed Central

    Toda, Aska; Sawada, Kenjiro; Osuga, Keigo; Maeda, Noboru; Higashihara, Hiroki; Sasano, Tomoyuki; Tomiyama, Noriyuki; Kimura, Tadashi

    2016-01-01

    Aim The aim of this study was to retrospectively analyze the efficacies of uterine artery embolization (UAE) using gelatin sponge for symptomatic uterine fibroids. Methods A series of 60 consecutive premenopausal women underwent UAE using gelatin sponge particles or porous gelatin particles. Patients were routinely followed up at 1, 3, 6, and 12 months after the procedure and asked to report any procedure-related complications. At each follow-up, an original clinical questionnaire was completed by the patients to evaluate changes in fibroid-related symptoms. Pelvic magnetic resonance imaging was performed before and at 3 and 12 months after the procedure, and the changes in volume of the dominant fibroid were calculated. Results Bilateral UAE was successfully performed in all the patients. Median age was 45 years (range 34–53 years), and median follow-up period was 25.2 months (range 1–116 months). At the 3- and 12-month follow-up, the dominant fibroid volumes were found to be significantly decreased by 33.4% (95% confidence interval [CI]: 24.9–41.1) and 48.4% (95% CI: 40.7–56.1) compared to baseline volumes, respectively. Excluding patients not having menorrhagia or bulk-related symptoms, at 12 months 49 of 50 (98%) women showed improvement in menorrhagia, and 45 of 47 (95.7%) women showed improvement in bulk-related symptoms. During the follow-up period, ten patients (16.7%) required further interventions including two patients who had undergone hysterectomy. No sequelae were experienced by any of the patients. Conclusion UAE using gelatin sponge was associated with a high clinical success rate and good fibroid volume reduction compared to UAE using other embolic agents. PMID:27574469

  15. Comparative evaluation of zinc oxide eugenol versus gelatin sponge soaked in plasma rich in growth factor in the treatment of dry socket: An initial study

    PubMed Central

    Pal, U. S.; Singh, Balendra Pratap; Verma, Vikas

    2013-01-01

    Purpose: The aim of this study was to report a comparison between the zinc oxide eugenol dressing and plasma rich in growth factor (PRGF) with gelatin sponge in the treatment of dry socket. Materials and Methods: This study comprised of 45 patients of dry socket in the span of one year. The patients were randomly divided into three groups on the basis of treatments: Group A (PRGF with gelatin sponge), group B (zinc oxide eugenol group), and group C (irrigation with sterile saline only). The clinical progress was noted at 1st, 2nd, 3rd, 7th, and 15th day after the treatment. Results: Patient's healing was better in group A than in group B but symptomatic pain relief was faster in group B. Group C fared worst in both aspects. Conclusion: We conclude that PRGF with gelatin sponge might be a treatment of choice in the management of dry socket. PMID:23853450

  16. Transcatheter Arterial Chemoembolization With Gelatin Sponge Microparticles Treated for BCLC Stage B Hepatocellular Carcinoma: A Single Center Retrospective Study.

    PubMed

    Kamran, Asad Ullah; Liu, Ying; Li, Feng E; Liu, Song; Wu, Jian Lin; Zhang, Yue Wei

    2015-12-01

    Gelatin sponge particles are commonly used in the conventional transarterial chemoembolization (c-TACE) as an adjuvant embolizing agent for hepatocellular carcinoma (HCC). However, there are few reports regarding the clinical applications of gelatin sponge microparticles (GSMs) as a main embolizing agent in the treatment of HCC. This retrospective study aim to evaluate the efficacy and safety of patients with Barcelona Clinic Liver Cancer (BCLC) stage B HCC treated with intra-arterial injection of 350 to 560 μm GSMs mixed with anticancer agents.Twenty-four patients with unresectable BCLC stage B HCC without any prior treatment underwent transarterial chemoembolization with gelatin sponge microparticles (GSMs-TACE) of diameter 350 to 560 μm mixed with lobaplatin. The mixture was injected into tumor-feeding arteries until the sluggish flow in selective artery. Safety was measured by assessing complication rate, and efficacy was reflected by assessing response to mRECIST therapy and overall survival. The survival rate was calculated using the Kaplan-Meier method.All 24 BCLC stage B HCC patients showed good tolerance to the procedure. The mean follow-up period was 27 months and mean number of TACE treatments per patient was 3.7 sessions (range 1-10) during the follow-up period. Postprocedure complications were mild and treated by symptomatic treatment. Six months and 1 year overall survival rates were 100% and 87.5%, respectively. Overall median survival time was 25 months (95%CI: 21.06-28.95 months).GSMs-TACE is a safe and effective method for BCLC stage B HCC patients.

  17. Transcatheter Arterial Chemoembolization With Gelatin Sponge Microparticles Treated for BCLC Stage B Hepatocellular Carcinoma: A Single Center Retrospective Study.

    PubMed

    Kamran, Asad Ullah; Liu, Ying; Li, Feng E; Liu, Song; Wu, Jian Lin; Zhang, Yue Wei

    2015-12-01

    Gelatin sponge particles are commonly used in the conventional transarterial chemoembolization (c-TACE) as an adjuvant embolizing agent for hepatocellular carcinoma (HCC). However, there are few reports regarding the clinical applications of gelatin sponge microparticles (GSMs) as a main embolizing agent in the treatment of HCC. This retrospective study aim to evaluate the efficacy and safety of patients with Barcelona Clinic Liver Cancer (BCLC) stage B HCC treated with intra-arterial injection of 350 to 560 μm GSMs mixed with anticancer agents.Twenty-four patients with unresectable BCLC stage B HCC without any prior treatment underwent transarterial chemoembolization with gelatin sponge microparticles (GSMs-TACE) of diameter 350 to 560 μm mixed with lobaplatin. The mixture was injected into tumor-feeding arteries until the sluggish flow in selective artery. Safety was measured by assessing complication rate, and efficacy was reflected by assessing response to mRECIST therapy and overall survival. The survival rate was calculated using the Kaplan-Meier method.All 24 BCLC stage B HCC patients showed good tolerance to the procedure. The mean follow-up period was 27 months and mean number of TACE treatments per patient was 3.7 sessions (range 1-10) during the follow-up period. Postprocedure complications were mild and treated by symptomatic treatment. Six months and 1 year overall survival rates were 100% and 87.5%, respectively. Overall median survival time was 25 months (95%CI: 21.06-28.95 months).GSMs-TACE is a safe and effective method for BCLC stage B HCC patients. PMID:26717358

  18. Gelatin

    MedlinePlus

    ... quality and to shorten recovery after exercise and sports-related injury. In manufacturing, gelatin is used for preparation of ... quality. Weight loss. Shortening recovery after exercise and sports-related injury. Other conditions. More evidence is needed to rate ...

  19. Gelatin sponge microparticles for the treatment of the spontaneous rupture of hepatocellular carcinoma hemorrhage

    PubMed Central

    Wu, Pu Zhao; Zhou, Jun; Zhang, Yue Wei

    2016-01-01

    Spontaneous rupture of hepatocellular carcinoma hemorrhage is life-threatening. The aim of the present study was to retrospectively analyze the effect of gelatin sponge microparticles (GSMs) of various diameters on the treatment of spontaneous rupture of hepatocellular carcinoma hemorrhage. GSMs serve as embolization agents by transcatheter arterial chemoembolization (TACE), and the current study analyzed their safety and efficacy. Data from a total of 13 cases of spontaneous rupture of hepatocellular carcinoma hemorrhage, who were treated with GSM-TACE at the Affiliated Zhongshan Hospital of Dalian University (Dalian, China) between August 2010 and June 2014, were collected. Post-operative complications were classified according to the National Cancer Institute Common Terminology Criteria. Review computed tomography was conducted 1, 3 and 6 months after GSM-TACE treatment in order to determine the occurrence of re-bleeding; the tumor response was evaluated based on the Modified Response Evaluation Criteria In Solid Tumors and the expression levels of α-feroprotein. The patients were followed-up for 1–6 months (average, 5.15±1.67 months). Following GSM-TACE treatment, 13 cases reached successful hemostasis without technical complications. The survival rates 1, 3 and 6 months after treatment were 76.9 (10/13), 61.5 (8/13) and 53.8% (7/13), respectively; the objective response rates were 61.6, 53.9 and 38.5%, respectively. The primary post-operative complications were pain (100%), nausea and vomiting (69.2%), and fever (53.8%). Among the 13 patients, 2 cases underwent surgical excision 10 and 30 days after GSM-TACE, and 1 case experienced re-bleeding 3 months after treatment, after which the patient received a second treatment with TACE and successful achieved hemostasis. In conclusion, GSM-TACE of various diameters is a safe and effective method in the treatment of spontaneous rupture of hepatocellular carcinoma hemorrhage. GSM-TACE is able to achieve immediate

  20. Gelatin sponge microparticles for the treatment of the spontaneous rupture of hepatocellular carcinoma hemorrhage

    PubMed Central

    Wu, Pu Zhao; Zhou, Jun; Zhang, Yue Wei

    2016-01-01

    Spontaneous rupture of hepatocellular carcinoma hemorrhage is life-threatening. The aim of the present study was to retrospectively analyze the effect of gelatin sponge microparticles (GSMs) of various diameters on the treatment of spontaneous rupture of hepatocellular carcinoma hemorrhage. GSMs serve as embolization agents by transcatheter arterial chemoembolization (TACE), and the current study analyzed their safety and efficacy. Data from a total of 13 cases of spontaneous rupture of hepatocellular carcinoma hemorrhage, who were treated with GSM-TACE at the Affiliated Zhongshan Hospital of Dalian University (Dalian, China) between August 2010 and June 2014, were collected. Post-operative complications were classified according to the National Cancer Institute Common Terminology Criteria. Review computed tomography was conducted 1, 3 and 6 months after GSM-TACE treatment in order to determine the occurrence of re-bleeding; the tumor response was evaluated based on the Modified Response Evaluation Criteria In Solid Tumors and the expression levels of α-feroprotein. The patients were followed-up for 1–6 months (average, 5.15±1.67 months). Following GSM-TACE treatment, 13 cases reached successful hemostasis without technical complications. The survival rates 1, 3 and 6 months after treatment were 76.9 (10/13), 61.5 (8/13) and 53.8% (7/13), respectively; the objective response rates were 61.6, 53.9 and 38.5%, respectively. The primary post-operative complications were pain (100%), nausea and vomiting (69.2%), and fever (53.8%). Among the 13 patients, 2 cases underwent surgical excision 10 and 30 days after GSM-TACE, and 1 case experienced re-bleeding 3 months after treatment, after which the patient received a second treatment with TACE and successful achieved hemostasis. In conclusion, GSM-TACE of various diameters is a safe and effective method in the treatment of spontaneous rupture of hepatocellular carcinoma hemorrhage. GSM-TACE is able to achieve immediate

  1. Improved in vitro biocompatibility of surface-modified hydroxyapatite sponge scaffold with gelatin and BMP-2 in comparison against a commercial bone allograft.

    PubMed

    Carpena, Nathaniel T; Min, Young-Ki; Lee, Byong-Taek

    2015-01-01

    This study aims to demonstrate the morphology and in vitro biocompatibility of neat and surface-modified hydroxyapatite sponge scaffold (SM-HASS) which was fabricated using a sponge replica method, and compared with the commercially available demineralized freeze-dried bone allograft (DFDBA). Surface-modifications were done by coating the surface area of the neat hydroxyapatite sponge scaffold (HASS) with either gelatin alone (HASS/G) or gelatin and BMP-2 growth factor (HASS/G+B). Scanning electron microscope (SEM), Fourier transform infrared (FTIR), porosity, pore size distribution, and compressive strength analyses showed that the addition of gelatin in HASS/G produced a morphologically and structurally similar scaffold to that of the allograft. The addition of BMP-2 improved the biocompatibility of the HASS/G+B in vitro using MC3T3-E1 cells which showed better cell viability, proliferation, and cell adhesion than on the allograft. Therefore, hydroxyapatite scaffold coated with gelatin polymer and gelatin with BMP-2 growth factor showed comparable performance against commercially available DFDBA from cadaver with regards to structure and in vitro biocompatibility.

  2. Complication rates in patients using absorbable collagen sponges in third molar extraction sockets: a retrospective study

    PubMed Central

    Cho, Hoon; Jung, Hwi-Dong; Kim, Bok-Joo; Kim, Chul-Hoon

    2015-01-01

    Objectives The purpose of this study is to retrospectively evaluate the postoperative complication rates for absorbable type-I collagen sponge (Ateloplug; Bioland) use in third molar extraction. Materials and Methods From January to August 2013, 2,697 total patients undergoing third molar extraction and type-I collagen sponge application in the Department of Oral and Maxillofacial Surgery at Yonsei University Dental Hospital (1,163 patients) and Dong-A University Hospital (1,534 patients) were evaluated in a retrospective study using their operation and medical records. Results A total of 3,869 third molars in 2,697 patients were extracted and the extraction sockets packed with type-I collagen sponges to prevent postoperative complications. As a result, the overall complication rate was 4.52%, with 3.00% experiencing surgical site infection (SSI), 1.14% showing alveolar osteitis, and 0.39% experiencing hematoma. Of the total number of complications, SSI accounted for more than a half at 66.29%. Conclusion Compared to previous studies, this study showed a relatively low incidence of complications. The use of type-I collagen sponges is recommended for the prevention of complications after third molar extraction. PMID:25741465

  3. Sponge

    SciTech Connect

    Pierre, Chris St.

    2011-11-15

    Sponge provides a web interface to Pulp (http://pulpproject.org/) that implements a particular workflow as described in the paper “Staging Package Deployment via Repository Management” (http://www.usenix.org/events/lisa11/tech/full_papers/Pierre.pdf). Namely, it implements a process for intensive management of software repositories to apply more deterministic updates to clients of those repositories.

  4. Initial Experience of Uterine Fibroid Embolization Using Porous Gelatin Sponge Particles

    SciTech Connect

    Katsumori, Tetsuya Kasahara, Toshiyuki; Oda, Minori; Kotani, Tomoya

    2011-06-15

    The purpose of this study was to prospectively assess the safety and effectiveness of uterine artery embolization (UAE) using porous gelatin particle (PGP; Gelpart; Asuterasu, Tokyo, Japan) for symptomatic uterine fibroids. Twenty-five consecutive premenopausal women underwent UAE with PGP. The angiographic end point of embolization was near stasis of the ascending uterine artery. Pelvic magnetic resonance imaging (MRI) was obtained before and after the procedure. Complications were assessed. The outcomes of technique, infarction rates of all fibroid tissue after UAE with contrast-enhanced MRI, change in symptoms and quality of life using serial Uterine Fibroid Symptom and Quality of Life (UFS-QOL) questionnaires, and additional interventions were evaluated. Bilateral UAE was successfully performed in all patients. Enhanced MRI 1 week after UAE showed that 100% infarction of all fibroid tissue was achieved in 65% (15 of 23) of patients; 90-99% infarction was achieved in 35% (8 of 23) of patients. Mean follow-up was 12 months (range 1-20). Symptom and QOL scores at baseline were 47.2 and 61.7, respectively. Both scores significantly improved to 26.3 (P < 0.001) and 82.4 (P < 0.001) at 4 months and to 20.4 (P < 0.001) and 77.6 (P < 0.001) at 1 year, respectively. No additional gynecologic interventions were performed in any patient. There were no major complications. Minor complications occurred in two patients. UAE using PGP is a safe and effective procedure and shows that outcomes after UAE, as measured with enhanced MRI and UFS-QOL questionnaires, seem comparable with those of UAE using other embolic agents. PGP is a promising embolic agent used for UAE to treat symptomatic uterine fibroids. Further comparative study between PGP and other established embolic agents is required.

  5. In vitro characterization of MG-63 osteoblast-like cells cultured on organic-inorganic lyophilized gelatin sponges for early bone healing.

    PubMed

    Rodriguez, Isaac A; Saxena, Gunjan; Hixon, Katherine R; Sell, Scott A; Bowlin, Gary L

    2016-08-01

    The development of three-dimensional porous scaffolds with enhanced osteogenic and angiogenic potential would be beneficial for inducing early-stage bone regeneration. Previous studies have demonstrated the advantages of mineralized and nonmineralized acellular 1-Ethyl-3-[3-dimethylaminopropyl]carbodiimide hydrochloride (EDC) cross-linked gelatin sponges enhanced with preparations rich in growth factors, hydroxyapatite, and chitin whiskers. In this study, those same scaffolds were mineralized and dynamically seeded with MG-63 cells. Cell proliferation, protein/cytokine secretion, and compressive mechanical properties of scaffolds were evaluated. It was found that mineralization and the addition of growth factors increased cell proliferation compared to gelatin controls. Cells on all scaffolds responded in an appropriate bone regenerative fashion as shown through osteocalcin secretion and little to no secretion of bone resorbing markers. However, compressive mechanical properties of cellularized scaffolds were not significantly different from acellular scaffolds. The combined results of increased cellular attachment, infiltration, and bone regenerative protein/cytokine secretion on scaffolds support the need for the addition of a bone-like mineral surface. Cellularized scaffolds containing growth factors reported similar advantages and mechanical values in the range of native tissues present in the early stages of bone healing. These results suggest that the developed composite sponges exhibited cellular responses and mechanical properties appropriate for promoting early bone healing in various applications. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2011-2019, 2016. PMID:27038217

  6. Bone morphogenetic protein-2 in biodegradable gelatin and β-tricalcium phosphate sponges enhances the in vivo bone-forming capability of bone marrow mesenchymal stem cells.

    PubMed

    Tadokoro, Mika; Matsushima, Asako; Kotobuki, Noriko; Hirose, Motohiro; Kimura, Yu; Tabata, Yasuhiko; Hattori, Koji; Ohgushi, Hajime

    2012-04-01

    Bone marrow mesenchymal stem cells (MSCs) have been used for bone tissue engineering due to their osteogenic differentiation capability, but their application is controversial. To enhance their capability, we prepared biodegradable gelatin sponges incorporating β-tricalcium phosphate ceramics (GT sponge), which has been shown to possess excellent controlled drug-release properties. The GT sponge was used as a carrier for both rat MSCs and bone morphogenetic protein-2 (BMP-2) and osteogenic differentiation was assessed by subcutaneous implantation of four different kinds of implants, i.e. GT-alone, MSC-GT composites, BMP-GT composites and BMP-GT composites supplemented with MSCs (BMP-MSC-GT) in rats. Two weeks after implantation, histological sections showed new bone formation in the peripheral parts of the BMP-GT and in almost the total volume of the BMP-MSC-GT implants. After 4 weeks, histology as well as microCT analyses demonstrated extensive bone formation in BMP-MSC-GT implants. Gene expression and biochemical analyses of both alkaline phosphatase and bone-specific osteocalcin confirmed the histological findings. These results indicate that the combination of MSCs, GT and BMP synergistically enhances osteogenic capability and provides a rational basis for their clinical application in bone reconstruction.

  7. Osteoinductivity of gelatin/β-tricalcium phosphate sponges loaded with different concentrations of mesenchymal stem cells and bone morphogenetic protein-2 in an equine bone defect model.

    PubMed

    Seo, Jong-Pil; Tsuzuki, Nao; Haneda, Shingo; Yamada, Kazutaka; Furuoka, Hidefumi; Tabata, Yasuhiko; Sasaki, Naoki

    2014-03-01

    Fracture is one of the most life-threatening injuries in horses. Fracture repair is often associated with unsatisfactory outcomes and is associated with a high incidence of complications. This study aimed to evaluate the osteogenic effects of gelatin/β-tricalcium phosphate (GT) sponges loaded with different concentrations/ratios of mesenchymal stem cells (MSCs) and bone morphogenetic protein-2 (BMP-2) in an equine bone defect model. Seven thoroughbred horses were used in this study. Eight bone defects were created in the third metatarsal bones of each horse. Then, eight treatments, namely control, GT, GT/M-5, GT/M-6, GT/M-5/B-1, GT/M-5/B-3, GT/M-6/B-1, and GT/M-6/B-3 were applied to the eight different sites in a randomized manner (M-5: 2 × 10(5) MSCs; M-6: 2 × 10(6) MSCs; B-1: 1 μg of BMP-2; B-3: 3 μg of BMP-2). Repair of bone defects was assessed by radiography, quantitative computed tomography (QCT), and histopathological evaluation. Radiographic scores and CT values were significantly lower in the control group than in the other groups, while they were significantly higher in the GT/M-5/B-3 and GT/M-6/B-3 groups than in the other groups. The amount of mature compact bone filling the defects was greater in the GT/M-5/B-3 and GT/M-6/B-3 groups than in the other groups. The present study demonstrated that the GT sponge loaded with MSCs and BMP-2 promoted bone regeneration in an equine bone defect model. The GT/MSC/BMP-2 described here may be useful for treating horses with bone injuries.

  8. The effect of a gelatin β-tricalcium phosphate sponge loaded with mesenchymal stem cells (MSC), bone morphogenic protein-2, and platelet-rich plasma (PRP) on equine articular cartilage defect

    PubMed Central

    Tsuzuki, Nao; Seo, Jong-pil; Yamada, Kazutaka; Haneda, Shingo; Furuoka, Hidefumi; Tabata, Yasuhiko; Sasaki, Naoki

    2013-01-01

    We evaluated the curative efficacy of a gelatin β-tricalcium phosphate (β-TCP) sponge loaded with mesenchymal stem cells (MSC), bone morphogenic protein-2 (BMP-2), and platelet-rich plasma (PRP) by insertion into an experimentally induced osteochondral defect. A hole of 10 mm diameter and depth was drilled in the bilateral medial femoral condyles of 7 thoroughbred horses, and into each either a loaded sponge (treatment) or a saline-infused β-TCP sponge (control) was inserted. After 16 weeks, defects were examined by computed tomography, macroscopic analyses, and histological analyses. The median subchondral bone density and macroscopic subscores for joint healing were significantly higher in the treatment legs (P < 0.05). Although there was no significant difference in total histological scores between groups, hyaline cartilaginous tissue was observed across a wider area in the treatment group. Equine joint healing can be enhanced by inserting a BMP-2-, MSC-, and PRP-impregnated β-TCP sponge at the lesion site. PMID:24155448

  9. Sponge coring apparatus with reinforced sponge

    SciTech Connect

    Park, A.; Wilson, B. T.

    1985-03-05

    A well coring apparatus includes an outer barrel and an inner barrel. A hollow sponge is disposed along a liner for insertion into the inner barrel. The sponge is operable to absorb subterranean fluid from a well core. A plurality of reinforcing members are disposed on the inner surface of the liner to prevent movement of the sponge with respect thereto. A plurality of orifices are disposed in the surface of the liner to allow gas and/or fluid to escape from the interior thereof when the subterranean fluid contained within the core bleeds into the sponge.

  10. 21 CFR 886.4790 - Ophthalmic sponge.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Ophthalmic sponge. 886.4790 Section 886.4790 Food... DEVICES OPHTHALMIC DEVICES Surgical Devices § 886.4790 Ophthalmic sponge. (a) Identification. An ophthalmic sponge is a device that is an absorbant sponge, pad, or spear made of folded gauze,...

  11. 21 CFR 886.4790 - Ophthalmic sponge.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Ophthalmic sponge. 886.4790 Section 886.4790 Food... DEVICES OPHTHALMIC DEVICES Surgical Devices § 886.4790 Ophthalmic sponge. (a) Identification. An ophthalmic sponge is a device that is an absorbant sponge, pad, or spear made of folded gauze,...

  12. 21 CFR 886.4790 - Ophthalmic sponge.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Ophthalmic sponge. 886.4790 Section 886.4790 Food... DEVICES OPHTHALMIC DEVICES Surgical Devices § 886.4790 Ophthalmic sponge. (a) Identification. An ophthalmic sponge is a device that is an absorbant sponge, pad, or spear made of folded gauze,...

  13. 21 CFR 886.4790 - Ophthalmic sponge.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ophthalmic sponge. 886.4790 Section 886.4790 Food... DEVICES OPHTHALMIC DEVICES Surgical Devices § 886.4790 Ophthalmic sponge. (a) Identification. An ophthalmic sponge is a device that is an absorbant sponge, pad, or spear made of folded gauze,...

  14. 21 CFR 886.4790 - Ophthalmic sponge.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Ophthalmic sponge. 886.4790 Section 886.4790 Food... DEVICES OPHTHALMIC DEVICES Surgical Devices § 886.4790 Ophthalmic sponge. (a) Identification. An ophthalmic sponge is a device that is an absorbant sponge, pad, or spear made of folded gauze,...

  15. Comparison of Hemostatic Durability between N-Butyl Cyanoacrylate and Gelatin Sponge Particles in Transcatheter Arterial Embolization for Acute Arterial Hemorrhage in a Coagulopathic Condition in a Swine Model

    SciTech Connect

    Yonemitsu, Takafumi; Kawai, Nobuyuki; Sato, Morio Sonomura, Tetsuo; Takasaka, Isao; Nakai, Motoki; Minamiguchi, Hiroki; Sahara, Shinya; Iwasaki, Yasuhiro; Naka, Toshio; Shinozaki, Masahiro

    2010-12-15

    This study was designed to compare the efficacy of transcatheter arterial embolization (TAE) with N-butyl cyanoacrylate (NBCA) or gelatin sponge particles (GSP) for acute arterial bleeding in a coagulopathic condition using a swine model. Four healthy swine were divided into two coagulopathic conditions: mild and severe. Five hemorrhages were created in each swine (10 hemorrhages per coagulopathy). Mild coagulopathy was achieved by bloodletting 10% of the total circulatory whole blood and preserving activated clotting time (ACT) less than 200 s (ACT < 200 s state); severe coagulopathy was achieved by bloodletting 30% and preserving ACT > 400 s (ACT > 400-second state). For each state, of ACT < 200 s or ACT > 400 s, TAE was conducted with GSP or NBCA to control five hemorrhages arising from artificially created renal and splenic injuries. Angiography immediately after TAE with GSP or NBCA showed complete occlusion in both coagulopathic conditions. In the ACT < 200-second state, follow-up angiography at 5-30 min after TAE with GSP or NBCA showed no evidence of recurrent hemorrhage. In the ACT > 400-second state, follow-up angiography showed recurrent hemorrhage in four (80%) of the five hemorrhages embolized with GSP and in one (20%) of the five hemorrhages embolized with NBCA. Microscopically, red thrombi were observed densely surrounding GSP in mild coagulopathy but were scarce in severe coagulopathy. In a condition with severe coagulopathy, TAE with NBCA was more effective in durability to cease active arterial bleeding than with GSP.

  16. The effects of crosslinkers on physical, mechanical, and cytotoxic properties of gelatin sponge prepared via in-situ gas foaming method as a tissue engineering scaffold.

    PubMed

    Poursamar, S Ali; Lehner, Alexander N; Azami, Mahmoud; Ebrahimi-Barough, Somayeh; Samadikuchaksaraei, Ali; Antunes, A P M

    2016-06-01

    In this study porous gelatin scaffolds were prepared using in-situ gas foaming, and four crosslinking agents were used to determine a biocompatible and effective crosslinker that is suitable for such a method. Crosslinkers used in this study included: hexamethylene diisocyanate (HMDI), poly(ethylene glycol) diglycidyl ether (epoxy), glutaraldehyde (GTA), and genipin. The prepared porous structures were analyzed using Fourier Transform Infrared Spectroscopy (FT-IR), thermal and mechanical analysis as well as water absorption analysis. The microstructures of the prepared samples were analyzed using Scanning Electron Microscopy (SEM). The effects of the crosslinking agents were studied on the cytotoxicity of the porous structure indirectly using MTT analysis. The affinity of L929 mouse fibroblast cells for attachment on the scaffold surfaces was investigated by direct cell seeding and DAPI-staining technique. It was shown that while all of the studied crosslinking agents were capable of stabilizing prepared gelatin scaffolds, there are noticeable differences among physical and mechanical properties of samples based on the crosslinker type. Epoxy-crosslinked scaffolds showed a higher capacity for water absorption and more uniform microstructures than the rest of crosslinked samples, whereas genipin and GTA-crosslinked scaffolds demonstrated higher mechanical strength. Cytotoxicity analysis showed the superior biocompatibility of the naturally occurring genipin in comparison with other synthetic crosslinking agents, in particular relative to GTA-crosslinked samples.

  17. Photosensitive gelatin.

    PubMed

    Vesperinas, Ana; Eastoe, Julian; Wyatt, Paul; Grillo, Isabelle; Heenan, Richard K

    2006-11-13

    Employing photodestructible surfactants in gelatin-based aqueous gels presents novel possibilities for controlling colloidal and aggregation properties of surfactant gelatin complexes. Light-triggered breakdown of the gelatin-bound photosurfactant aggregates causes dramatic changes in viscosity and aggregation. PMID:17057859

  18. Fish gelatin.

    PubMed

    Boran, Gokhan; Regenstein, Joe M

    2010-01-01

    Gelatin is a multifunctional ingredient used in foods, pharmaceuticals, cosmetics, and photographic films as a gelling agent, stabilizer, thickener, emulsifier, and film former. As a thermoreversible hydrocolloid with a narrower gap between its melting and gelling temperatures, both of which are below human body temperature, gelatin provides unique advantages over carbohydrate-based gelling agents. Gelatin is mostly produced from pig skin, and cattle hides and bones. Some alternative raw materials have recently gained attention from both researchers and the industry not just because they overcome religious concerns shared by Jews and Muslims but also because they provide, in some cases, technological advantages over mammalian gelatins. Fish skins from a number of fish species are among the other sources that have been comprehensively studied as sources for gelatin production. Fish skins have a significant potential for the production of high-quality gelatin with different melting and gelling temperatures over a much wider range than mammalian gelatins, yet still have a sufficiently high gel strength and viscosity. Gelatin quality is industrially determined by gel strength, viscosity, melting or gelling temperatures, the water content, and microbiological safety. For gelatin manufacturers, yield from a particular raw material is also important. Recent experimental studies have shown that these quality parameters vary greatly depending on the biochemical characteristics of the raw materials, the manufacturing processes applied, and the experimental settings used for quality control tests. In this review, the gelatin quality achieved from different fish species is reviewed along with the experimental procedures used to determine gelatin quality. In addition, the chemical structure of collagen and gelatin, the collagen-gelatin conversion, the gelation process, and the gelatin market are discussed.

  19. 21 CFR 880.2740 - Surgical sponge scale.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Surgical sponge scale. 880.2740 Section 880.2740... Devices § 880.2740 Surgical sponge scale. (a) Identification. A surgical sponge scale is a nonelectrically powered device used to weigh surgical sponges that have been used to absorb blood during surgery so...

  20. 21 CFR 880.2740 - Surgical sponge scale.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Surgical sponge scale. 880.2740 Section 880.2740... Devices § 880.2740 Surgical sponge scale. (a) Identification. A surgical sponge scale is a nonelectrically powered device used to weigh surgical sponges that have been used to absorb blood during surgery so...

  1. 21 CFR 880.2740 - Surgical sponge scale.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Surgical sponge scale. 880.2740 Section 880.2740... Devices § 880.2740 Surgical sponge scale. (a) Identification. A surgical sponge scale is a nonelectrically powered device used to weigh surgical sponges that have been used to absorb blood during surgery so...

  2. 21 CFR 880.2740 - Surgical sponge scale.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Surgical sponge scale. 880.2740 Section 880.2740... Devices § 880.2740 Surgical sponge scale. (a) Identification. A surgical sponge scale is a nonelectrically powered device used to weigh surgical sponges that have been used to absorb blood during surgery so...

  3. 21 CFR 880.2740 - Surgical sponge scale.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Surgical sponge scale. 880.2740 Section 880.2740... Devices § 880.2740 Surgical sponge scale. (a) Identification. A surgical sponge scale is a nonelectrically powered device used to weigh surgical sponges that have been used to absorb blood during surgery so...

  4. Terminating marine methane bubbles by superhydrophobic sponges.

    PubMed

    Chen, Xiao; Wu, Yuchen; Su, Bin; Wang, Jingming; Song, Yanlin; Jiang, Lei

    2012-11-14

    Marine methane bubbles are absorbed, steadily stored, and continuously transported based on the employment of superhydrophobic sponges. Antiwetting sponges are water-repellent in the atmosphere and absorb gas bubbles under water. Their capacity to store methane bubbles increases with enhanced submerged depth. Significantly, trapped methane bubbles can be continuously transported driven by differential pressure.

  5. Vaginal sponge and spermicides

    MedlinePlus

    ... counter; Contraceptives - over the counter; Family planning - vaginal sponge; Contraception - vaginal sponge ... Spermicides and vaginal sponges do not work as well at preventing pregnancy as some other forms of birth control. However, using a spermicide ...

  6. Magnetic, superhydrophobic and durable silicone sponges and their applications in removal of organic pollutants from water.

    PubMed

    Li, Lingxiao; Li, Bucheng; Wu, Lei; Zhao, Xia; Zhang, Junping

    2014-07-25

    Porous silicone sponges are fabricated by polymerization of organosilanes in the presence of Fe3O4@silica nanoparticles. The sponges feature fast magnetic responsivity, superhydrophobicity/superoleophilicity, high compressibility and stability. The sponges can selectively absorb floating oils on a water surface, heavy oils under water and even emulsified oils. PMID:24909778

  7. DYNAPHORE, INC. FORAGER™ SPONGE TECHNOLOGY - INNOVATIVE TECHNOLOGY EVALUATION REPORT

    EPA Science Inventory

    The Forager™ Sponge is an open-celled cellulose sponge incorporating an amine-containing chelating polymer that selectively absorbs dissolved heavy metals from aqueous waste streams. The Developer states that the technology can be utilized to remove and concentrate heavy metals f...

  8. The crystalline sponge method updated

    PubMed Central

    Hoshino, Manabu; Khutia, Anupam; Xing, Hongzhu; Inokuma, Yasuhide; Fujita, Makoto

    2016-01-01

    Crystalline sponges are porous metal complexes that can absorb and orient common organic molecules in their pores and make them observable by conventional X-ray structure analysis (crystalline sponge method). In this study, all of the steps in the crystalline sponge method, including sponge crystal preparation, pore–solvent exchange, guest soaking, data collection and crystallographic analysis, are carefully examined and thoroughly optimized to provide reliable and meaningful chemical information as chemical crystallography. Major improvements in the method have been made in the guest-soaking and data-collection steps. In the soaking step, obtaining a high site occupancy of the guest is particularly important, and dominant parameters for guest soaking (e.g. temperature, time, concentration, solvents) therefore have to be optimized for every sample compound. When standard conditions do not work, a high-throughput method is useful for efficiently optimizing the soaking conditions. The X-ray experiments are also carefully re-examined. Significant improvement of the guest data quality is achieved by complete data collection at high angle regions. The appropriate disorder treatment of the most flexible ZnI2 portions of the host framework and refinement of the solvents filling the remaining void are also particularly important for obtaining better data quality. A benchmark test for the crystalline sponge method toward an achiral molecule is proposed with a guaiazulene guest, in which the guest structure (with ∼ 100% site occupancy) is refined without applying any restraints or constraints. The obtained data quality with R int = 0.0279 and R 1 = 0.0379 is comparable with that of current conventional crystallographic analysis for small molecules. Another benchmark test for this method toward a chiral molecule is also proposed with a santonin guest. The crystallographic data obtained [R int = 0.0421, R 1 = 0.0312, Flack (Parsons) = −0.0071 (11)] represents the

  9. Highly recyclable superhydrophobic sponge suitable for the selective sorption of high viscosity oil from water.

    PubMed

    Wang, Jintao; Geng, Guihong

    2015-08-15

    Inspired by the adhesion of marine mussels, a kind of superhydrophobic oil sorbent was successfully fabricated by robustly immobilizing the micro/nanostructure layer onto the sponge skeleton. The as-prepared sponges possess excellent hydrophobicity with the water contact angle of 154°, which enables the sponge to selectively absorb various oils floating on water surface. The oil sorption capacities of as-prepared sponge for a series of oils can reach 18.3-46.8g/g. The absorbed oil can be recovered by mechanical squeezing and the resulting sponge can be recycled more than 70 cycles while still keeping high oil sorption capability. More importantly, the obtained sponge has excellent affinity to the high viscosity oils. Therefore, the as-prepared sponge might find practical applications in the large-scale removal of oils especially high viscosity oils from water surface.

  10. The characterisation of a genipin-gelatin gel dosimeter

    NASA Astrophysics Data System (ADS)

    Davies, J. B.; Bosi, S.; Baldock, C.

    2010-11-01

    Genipin cross links gelatin to slowly form a blue colour that bleaches upon irradiation. Spectrophotometric measurements of the absorbance change following irradiation to doses up to 100 Gy gives a linear dose response for certain concentrations of the gel ingredients; genipin, gelatin and sulphuric acid. Dose sensitivity increases with increasing concentrations of sulphuric acid and genipin and is also strongly dependent on the time allowed for the genipin-gelatin cross linking reaction (referred to here as blending) to take place. The optimum formulation of this gel was found for genipin concentration between 0.3 - 0.5 mM and blending time of at least 4 h.

  11. Experimental dermatoplasty of skin defects with an absorbable bioplastic preparation.

    PubMed

    Bornemisza, G; Ladányi, J; Mikó, I

    1979-01-01

    Experimental dermatoplasty was performed with fibrin sponge preparation in the rabbit, during the course of which the whole skin thickness was substituted. The fibrin sponge was fixed to the skin-edges with surgical adhesive. The gradually absorbed fibrin was replaced by the migrating epithelium such that epithelization developed gradually. In special cases this method can be recommended for clinical purposes.

  12. Bone Reconstruction following Application of Bone Matrix Gelatin to Alveolar Defects: A Randomized Clinical Trial

    PubMed Central

    Bayat, M.; Momen Heravi, F.; Mahmoudi, M.; Bahrami, N.

    2015-01-01

    Background: Conventional dentoalveolar osseous reconstruction often involves the use of graft materials with or without barrier membranes. Objective: To evaluate the efficacy of bone induction by bone matrix gelatin (BMG), delivered on an absorbable collagen sponge (ACS), compared to a placebo (ACS alone) in human alveolar socket defects. Methods: 20 alveolar sockets from 10 healthy adults were studied. In all cases, both the mandibular premolar area and the contralateral premolar area (as the control site) were involved. In each of the 10 patients, the extraction sites were filled randomly with BMG and ACS. The repair response was examined on day 90. Qualitative histological and quantitative histometric analysis, including the percentage of new-formed bone fill and density were done. Results: Assessment of the alveolar bone indicated that patients treated with BMG had significantly (p<0.05) better bone quality and quantity compared to the controls. In addition, bone density and histology revealed no differences between the newly induced and native bone. Conclusion: The data from this single-blind clinical trial demonstrated that the novel combination of BMG had a striking effect on de novo osseous formation for the bone regeneration. PMID:26576263

  13. Gelatin capsule in stomach (image)

    MedlinePlus

    ... detect the presence of intestinal parasites. A weighted gelatin capsule attached to a string is swallowed and left in place. After about 4 hours, the gelatin capsule is pulled out of the stomach by ...

  14. Fabrication and mechanical characterization of a polyvinyl alcohol sponge for tissue engineering applications.

    PubMed

    Karimi, A; Navidbakhsh, M; Faghihi, S

    2014-05-01

    Polyvinyl alcohol (PVA) sponges are widely used for clinical applications, including ophthalmic surgical treatments, wound healing and tissue engineering. There is, however, a lack of sufficient data on the mechanical properties of PVA sponges. In this study, a biomechanical method is used to characterize the elastic modulus, maximum stress and strain as well as the swelling ratio of a fabricated PVA sponge (P-sponge) and it is compared with two commercially available PVA sponges (CENEFOM and EYETEC). The results indicate that the elastic modulus of the P-sponge is 5.32% and 13.45% lower than that of the CENEFOM and EYETEC sponges, while it bears 4.11% more and 10.37% less stress compared to the CENEFOM and EYETEC sponges, respectively. The P-sponge shows a maximum strain of 32% more than the EYETEC sponge as well as a 26.78% higher swelling ratio, which is a significantly higher absorbency compared to the CENEFOM. It is believed that the results of this study would help for a better understanding of the extension, rupture and swelling mechanism of PVA sponges, which could lead to crucial improvement in the design and application of PVA-based materials in ophthalmic and plastic surgeries as well as wound healing and tissue engineering.

  15. Fabrication and mechanical characterization of a polyvinyl alcohol sponge for tissue engineering applications.

    PubMed

    Karimi, A; Navidbakhsh, M; Faghihi, S

    2014-05-01

    Polyvinyl alcohol (PVA) sponges are widely used for clinical applications, including ophthalmic surgical treatments, wound healing and tissue engineering. There is, however, a lack of sufficient data on the mechanical properties of PVA sponges. In this study, a biomechanical method is used to characterize the elastic modulus, maximum stress and strain as well as the swelling ratio of a fabricated PVA sponge (P-sponge) and it is compared with two commercially available PVA sponges (CENEFOM and EYETEC). The results indicate that the elastic modulus of the P-sponge is 5.32% and 13.45% lower than that of the CENEFOM and EYETEC sponges, while it bears 4.11% more and 10.37% less stress compared to the CENEFOM and EYETEC sponges, respectively. The P-sponge shows a maximum strain of 32% more than the EYETEC sponge as well as a 26.78% higher swelling ratio, which is a significantly higher absorbency compared to the CENEFOM. It is believed that the results of this study would help for a better understanding of the extension, rupture and swelling mechanism of PVA sponges, which could lead to crucial improvement in the design and application of PVA-based materials in ophthalmic and plastic surgeries as well as wound healing and tissue engineering. PMID:24259496

  16. The bioactive composite film prepared from bacterial cellulose and modified by hydrolyzed gelatin peptide.

    PubMed

    Lin, Shih-Bin; Chen, Chia-Che; Chen, Li-Chen; Chen, Hui-Huang

    2015-05-01

    The hydrolyzed gelatin peptides, obtained from the hydrolysis of Tilapia nilotica skin gelatin with alcalase and pronase E, were fractionated using an ultrafiltration system into hydrolyzed gelatin peptides-a (10 kDa membrane), hydrolyzed gelatin peptides-b1, and hydrolyzed gelatin peptides-b2 (5 kDa membrane) fractions. The highest oxygen radical absorbance capacity was observed in hydrolyzed gelatin peptides-b2, which contained more nonpolar amino acids than the other hydrolyzed gelatin peptides. Hydrolyzed gelatin peptides-b2 at a concentration of 12.5 mg/ml exhibited the highest proliferation ability and increased the expression of Type I procollagen mRNA, which indicated an enhanced collagen synthesis. Hydrolyzed gelatin peptides protected Detroit 551 cells from 2,2'-azobis(2-amidinopropane) dihydrochloride-induced oxidative damage and increased cell viability. Hydroxylpropylmethyl cellulose-modified bacterial cellulose and dried fabricated biofilm were less eligible for Detroit 551 cell proliferation than bacterial cellulose. The release of hydrolyzed gelatin peptides in bacterial cellulose film was slower than that in hydroxylpropylmethyl cellulose-modified bacterial cellulose and dried fabricated biofilm; thus, bacterial cellulose film and hydroxylpropylmethyl cellulose-modified bacterial cellulose and dried fabricated biofilm are suitable candidates for applications in delayed release type and rapid release type biofilms, respectively.

  17. An experimental-finite element analysis on the kinetic energy absorption capacity of polyvinyl alcohol sponge.

    PubMed

    Karimi, Alireza; Navidbakhsh, Mahdi; Razaghi, Reza

    2014-06-01

    Polyvinyl alcohol (PVA) sponge is in widespread use for biomedical and tissue engineering applications owing to its biocompatibility, availability, relative cheapness, and excellent mechanical properties. This study reports a novel concept of design in energy absorbing materials which consist in the use of PVA sponge as an alternative reinforcement material to enhance the energy loss of impact loads. An experimental study is carried out to measure the mechanical properties of the PVA sponge under uniaxial loading. The kinetic energy absorption capacity of the PVA sponge is computed by a hexahedral finite element (FE) model of the steel ball and bullet through the LS-DYNA code under impact load at three different thicknesses (5, 10, 15mm). The results show that a higher sponge thickness invokes a higher energy loss of the steel ball and bullet. The highest energy loss of the steel ball and bullet is observed for the thickest sponge with 160 and 35J, respectively. The most common type of traumatic brain injury in which the head subject to impact load causes the brain to move within the skull and consequently brain hemorrhaging. These results suggest the application of the PVA sponge as a great kinetic energy absorber material compared to commonly used expanded polystyrene foams (EPS) to absorb most of the impact energy and reduces the transmitted load. The results might have implications not only for understanding of the mechanical properties of PVA sponge but also for use as an alternative reinforcement material in helmet and packaging material design.

  18. An experimental-finite element analysis on the kinetic energy absorption capacity of polyvinyl alcohol sponge.

    PubMed

    Karimi, Alireza; Navidbakhsh, Mahdi; Razaghi, Reza

    2014-06-01

    Polyvinyl alcohol (PVA) sponge is in widespread use for biomedical and tissue engineering applications owing to its biocompatibility, availability, relative cheapness, and excellent mechanical properties. This study reports a novel concept of design in energy absorbing materials which consist in the use of PVA sponge as an alternative reinforcement material to enhance the energy loss of impact loads. An experimental study is carried out to measure the mechanical properties of the PVA sponge under uniaxial loading. The kinetic energy absorption capacity of the PVA sponge is computed by a hexahedral finite element (FE) model of the steel ball and bullet through the LS-DYNA code under impact load at three different thicknesses (5, 10, 15mm). The results show that a higher sponge thickness invokes a higher energy loss of the steel ball and bullet. The highest energy loss of the steel ball and bullet is observed for the thickest sponge with 160 and 35J, respectively. The most common type of traumatic brain injury in which the head subject to impact load causes the brain to move within the skull and consequently brain hemorrhaging. These results suggest the application of the PVA sponge as a great kinetic energy absorber material compared to commonly used expanded polystyrene foams (EPS) to absorb most of the impact energy and reduces the transmitted load. The results might have implications not only for understanding of the mechanical properties of PVA sponge but also for use as an alternative reinforcement material in helmet and packaging material design. PMID:24863223

  19. Global conservation status of sponges.

    PubMed

    Bell, James J; McGrath, Emily; Biggerstaff, Andrew; Bates, Tracey; Cárdenas, César A; Bennett, Holly

    2015-02-01

    Sponges are important for maintaining ecosystem function and integrity of marine and freshwater benthic communities worldwide. Despite this, there has been no assessment of their current global conservation status. We assessed their status, accounting for the distribution of research effort; patterns of temporal variation in sponge populations and assemblages; the number of sponges on threatened species lists; and the impact of environmental pressures. Sponge research effort has been variable; marine sponges in the northeastern Atlantic and Mediterranean and freshwater sponges in Europe and North America have received the most attention. Although sponge abundance has increased in some locations since 1990, these were typically on coral reefs, in response to declines in other benthic organisms, and restricted to a few species. Few data were available on temporal trends in freshwater sponge abundance. Despite over 8500 described sponge species, only 20 are on threatened species lists, and all are marine species from the northeastern Atlantic and Mediterranean. Of the 202 studies identified, the effects of temperature, suspended sediment, substratum loss, and microbial pathogens have been studied the most intensively for marine sponges, although responses appear to be variable. There were 20 studies examining environmental impacts on freshwater sponges, and most of these were on temperature and heavy metal contamination. We found that most sponges do not appear to be threatened globally. However, little information is available for most species and more data are needed on the impacts of anthropogenic-related pressures. This is a critical information gap in understanding sponge conservation status.

  20. Global conservation status of sponges.

    PubMed

    Bell, James J; McGrath, Emily; Biggerstaff, Andrew; Bates, Tracey; Cárdenas, César A; Bennett, Holly

    2015-02-01

    Sponges are important for maintaining ecosystem function and integrity of marine and freshwater benthic communities worldwide. Despite this, there has been no assessment of their current global conservation status. We assessed their status, accounting for the distribution of research effort; patterns of temporal variation in sponge populations and assemblages; the number of sponges on threatened species lists; and the impact of environmental pressures. Sponge research effort has been variable; marine sponges in the northeastern Atlantic and Mediterranean and freshwater sponges in Europe and North America have received the most attention. Although sponge abundance has increased in some locations since 1990, these were typically on coral reefs, in response to declines in other benthic organisms, and restricted to a few species. Few data were available on temporal trends in freshwater sponge abundance. Despite over 8500 described sponge species, only 20 are on threatened species lists, and all are marine species from the northeastern Atlantic and Mediterranean. Of the 202 studies identified, the effects of temperature, suspended sediment, substratum loss, and microbial pathogens have been studied the most intensively for marine sponges, although responses appear to be variable. There were 20 studies examining environmental impacts on freshwater sponges, and most of these were on temperature and heavy metal contamination. We found that most sponges do not appear to be threatened globally. However, little information is available for most species and more data are needed on the impacts of anthropogenic-related pressures. This is a critical information gap in understanding sponge conservation status. PMID:25599574

  1. Cryptochrome in Sponges

    PubMed Central

    Schröder, Heinz C.; Markl, Julia S.; Grebenjuk, Vlad A.; Korzhev, Michael; Steffen, Renate; Wang, Xiaohong

    2013-01-01

    Sponges (phylum: Porifera) react to external light or mechanical signals with contractile or metabolic reactions and are devoid of any nervous or muscular system. Furthermore, elements of a photoreception/phototransduction system exist in those animals. Recently, a cryptochrome-based photoreceptor system has been discovered in the demosponge. The assumption that in sponges the siliceous skeleton acts as a substitution for the lack of a nervous system and allows light signals to be transmitted through its glass fiber network is supported by the findings that the first spicules are efficient light waveguides and the second sponges have the enzymatic machinery for the generation of light. Now, we have identified/cloned in Suberites domuncula two additional potential molecules of the sponge cryptochrome photoreception system, the guanine nucleotide-binding protein β subunit, related to β-transducin, and the nitric oxide synthase (NOS)–interacting protein. Cryptochrome and NOSIP are light-inducible genes. The studies show that the NOS inhibitor L-NMMA impairs both morphogenesis and motility of the cells. Finally, we report that the function of primmorphs to produce reactive nitrogen species can be abolished by a NOS inhibitor. We propose that the sponge cryptochrome-based photoreception system, through which photon signals are converted into radicals, is coupled to the NOS apparatus. PMID:23920109

  2. Magnetic, durable, and superhydrophobic polyurethane@Fe3O4@SiO2@fluoropolymer sponges for selective oil absorption and oil/water separation.

    PubMed

    Wu, Lei; Li, Lingxiao; Li, Bucheng; Zhang, Junping; Wang, Aiqin

    2015-03-01

    Magnetic, durable, and superhydrophobic polyurethane (PU) sponges were fabricated by chemical vapor deposition (CVD) of tetraethoxysilane (TEOS) to bind the Fe3O4 nanoparticles tightly on the sponge and then dip-coating in a fluoropolymer (FP) aqueous solution. The sponges were characterized using scanning electron microscopy and other analytical techniques. The effects of CVD time of TEOS and FP concentration on wettability, mechanical properties, oil absorbency, and oil/water selectivity of the sponges were also investigated. The sponges exhibit fast magnetic responsivity and excellent superhydrophobicity/superoleophilicity (CAwater = 157° and CAoil ≈ 0°). The sponges also show very high efficiency in oil/water separation and could, driven by a magnet, quickly absorb floating oils on the water surface and heavy oils under water. Moreover, the PU@Fe3O4@SiO2@FP sponges could be used as membranes for oil/water separation and for continuous separation of large amounts of oil pollutants from the water surface with the help of a pump. The in turn binding of Fe3O4 nanoparticles, SiO2, and FP can also improve mechanical properties of the PU sponge. The sponges maintain the superhydrophobicity even when they are stretched with 200% strain or compressed with 50% strain. The sponges also show excellent mechanical stability, oil stability, and reusability in terms of superhydrophobicity and oil absorbency. The magnetic, durable, and superhydrophobic PU sponges are very promising materials for practical oil absorption and oil/water separation. PMID:25671386

  3. Polytetrafluoroethylene sponge syringosubarachnoid shunt.

    PubMed

    Chagla, Aadil S; Kansal, Ritesh; Srikant, Balasubramaniam

    2011-01-01

    Syringomyelia is condition in which a cyst or cavity forms inside the spinal cavity. Its management always remains a difficult. A variety of surgical techniques have been used in management of syringomyelia. Syringosubarachnoid shunt remains an effective method in management of syringomyelia. Shunt tube obstruction remains an important complication of shunt procedure. We describe a novel technique of use of polytetrafluoroethylene sponge shunt for syringosubarachnoid shunt in patient with large syrinx and Chiari 1 malformation. Polytetrafluoroethylene sponge is a non irritant material with multiple porosities that is less susceptible to blockages or kinking. It could provide a good alternative technique in syringosubarachnoid shunting.

  4. Anticancer agents from marine sponges.

    PubMed

    Ye, Jianjun; Zhou, Feng; Al-Kareef, Ammar M Q; Wang, Hong

    2015-01-01

    Marine sponges are currently one of the richest sources of anticancer active compounds found in the marine ecosystems. More than 5300 different known metabolites are from sponges and their associated microorganisms. To survive in the complicated marine environment, most of the sponge species have evolved chemical means to defend against predation. Such chemical adaptation produces many biologically active secondary metabolites including anticancer agents. This review highlights novel secondary metabolites in sponges which inhibited diverse cancer species in the recent 5 years. These natural products of marine sponges are categorized based on various chemical characteristics.

  5. Bubble template fabrication of chitosan/poly(vinyl alcohol) sponges for wound dressing applications.

    PubMed

    Chen, Changfeng; Liu, Li; Huang, Tao; Wang, Qiong; Fang, Yue'e

    2013-11-01

    The present investigation involves the synthesis of chitosan based composite sponges in view of their applications in wound dressing, antibacterial and haemostatic. A facile CO2 bubbles template freeze-drying method was developed for the fabrication of macroporous chitosan-poly(vinyl alcohol) (PVA) composite sponges with a typical porosity of 50% and pore size of 100-300 μm. Effects of the content of cross-linking agent and PVA on morphology, mechanical properties, water uptake and moisture permeability were examined. The macroporous chitosan/PVA composite sponges exhibited an enhanced water absorption capacity over those reported microporous chitosan sponges prepared using traditional free-drying methods. Improved strength and flexibility of the chitosan sponges were observed with the presence of PVA. Further, the antibacterial and haemostatic activities have been also demonstrated. The chitosan/PVA composite sponges showed higher haemostatic activity than pure chitosan sponges and solutions. Erythrocytes cells bind first to the surface of chitosan polymer in the sponges and then promote the binding with other cells in the solution. The chitosan/PVA sponges of high liquid absorbing, appropriate moisture permeability, antimicrobial property and unique haemostatic behavior can be used for wound dressing applications.

  6. Sediment impacts on marine sponges.

    PubMed

    Bell, James J; McGrath, Emily; Biggerstaff, Andrew; Bates, Tracey; Bennett, Holly; Marlow, Joseph; Shaffer, Megan

    2015-05-15

    Changes in sediment input to marine systems can influence benthic environments in many ways. Sponges are important components of benthic ecosystems world-wide and as sessile suspension feeders are likely to be impacted by changes in sediment levels. Despite this, little is known about how sponges respond to changes in settled and suspended sediment. Here we review the known impacts of sedimentation on sponges and their adaptive capabilities, whilst highlighting gaps in our understanding of sediment impacts on sponges. Although the literature clearly shows that sponges are influenced by sediment in a variety of ways, most studies confer that sponges are able to tolerate, and in some cases thrive, in sedimented environments. Critical gaps exist in our understanding of the physiological responses of sponges to sediment, adaptive mechanisms, tolerance limits, and the particularly the effect of sediment on early life history stages.

  7. SYNERESIS AND SWELLING OF GELATIN.

    PubMed

    Kunitz, M

    1928-11-20

    1. When solid blocks of isoelectric gelatin are placed in cold distilled water or dilute buffer of pH 4.7, only those of a gelatin content of more than 10 per cent swell, while those of a lower gelatin content not only do not swell but actually lose water. 2. The final quantity of water lost by blocks of dilute gelatin is the same whether the block is immersed in a large volume of water or whether syneresis has been initiated in the gel through mechanical forces such as shaking, pressure, etc., even in the absence of any outside liquid, thus showing that syneresis is identical with the process of negative swelling of dilute gels when placed in cold water, and may be used as a convenient term for it. 3. Acid- or alkali-containing gels give rise to greater syneresis than isoelectric gels, after the acid or alkali has been removed by dialysis. 4. Salt-containing gels show greater syneresis than salt-free gels of the same pH, after the salt has been washed away. 5. The acid and alkali and also the salt effect on syneresis of gels disappears at a gelatin concentration above 8 per cent. 6. The striking similarity in the behavior of gels with respect to syneresis and of gelatin solutions with respect to viscosity suggests the probability that both are due to the same mechanism, namely the mechanism of hydration of the micellae in gelatin by means of osmosis as brought about either by diffusible ions, as in the presence of acid or alkali, or by the soluble gelatin present in the micellae. The greater the pressures that caused swelling of the micellae while the gelatin was in the sol state, the greater is the loss of water from the gels when the pressures are removed. 7. A quantitative study of the loss of water by dilute gels of various gelatin content shows that the same laws which have been found by Northrop to hold for the swelling of gels of high concentrations apply also to the process of losing water by dilute gels, i.e. to the process of syneresis. The general

  8. Dynamic simulation and finite element analysis of the human mandible injury protected by polyvinyl alcohol sponge.

    PubMed

    Karimi, Alireza; Navidbakhsh, Mahdi; Razaghi, Reza

    2014-09-01

    There have been intensive efforts to find a suitable kinetic energy absorbing material for helmet and bulletproof vest design. Polyvinyl alcohol (PVA) sponge is currently in extensive use as scaffolding material for tissue engineering applications. PVA can also be employed instead of commonly use kinetic energy absorbing materials to increase the kinetic energy absorption capacity of current helmet and bulletproof vest materials owing to its excellent mechanical properties. In this study, a combined hexahedral finite element (FE) model is established to determine the potential protection ability of PVA sponge in controlling the level of injury for gunshot wounds to the human mandible. Digital computed tomography data for the human mandible are used to establish a three-dimensional FE model of the human mandible. The mechanism by which a gunshot injures the protected mandible by PVA sponge is dynamically simulated using the LS-DYNA code under two different shot angles. The stress distributions in different parts of the mandible and sponge after injury are also simulated. The modeling results regardless of shot angle reveal that the substantial amount of kinetic energy of the steel ball (67%) is absorbed by the PVA sponge and, consequently, injury severity of the mandible is significantly decreased. The highest energy loss (170 J) is observed for the impact at entry angle of 70°. The results suggest the application of the PVA sponge as an alternative reinforcement material in helmet and bulletproof vest design to absorb most of the impact energy and reduce the transmitted load.

  9. Medullary Sponge Kidney

    MedlinePlus

    ... Association of Kidney Patients National Kidney Foundation MedlinePlus Kidney and Urologic Disease Organizations Many organizations provide support ... PDF, 345 KB)​​​​​ Alternate Language URL Medullary Sponge Kidney Page Content On this page: What is Medullary ...

  10. The Sponge Hologenome

    PubMed Central

    Thomas, Torsten

    2016-01-01

    ABSTRACT A paradigm shift has recently transformed the field of biological science; molecular advances have revealed how fundamentally important microorganisms are to many aspects of a host’s phenotype and evolution. In the process, an era of “holobiont” research has emerged to investigate the intricate network of interactions between a host and its symbiotic microbial consortia. Marine sponges are early-diverging metazoa known for hosting dense, specific, and often highly diverse microbial communities. Here we synthesize current thoughts about the environmental and evolutionary forces that influence the diversity, specificity, and distribution of microbial symbionts within the sponge holobiont, explore the physiological pathways that contribute to holobiont function, and describe the molecular mechanisms that underpin the establishment and maintenance of these symbiotic partnerships. The collective genomes of the sponge holobiont form the sponge hologenome, and we highlight how the forces that define a sponge’s phenotype in fact act on the genomic interplay between the different components of the holobiont. PMID:27103626

  11. Particulate organic matter as a food source for a coral reef sponge.

    PubMed

    Hadas, E; Shpigel, M; Ilan, M

    2009-11-01

    The ability of sponges to feed in diverse (including oligotrophic) ecosystems significantly contributes to their ubiquitous aquatic distribution. It was hypothesized that sponges that harbour small amounts of symbiotic bacteria in their mass feed mainly on particulate organic matter (POM). We examined the nearly symbiont-free (by microscopic observation) filter-feeding Red Sea sponge Negombata magnifica in order to: (a) study removal efficiency of naturally occurring organic particles, (b) measure the total amount of absorbed particulate organic carbon (POC) and nitrogen (PON), and (c) estimate organic carbon and nitrogen flux in this sponge. Total amount of organic carbon and nitrogen in the Gulf of Aqaba was found to be 48.46+/-5.69 microg l(-1) and 6.45+/-0.7 microg l(-1), respectively. While detritus contributed 54% of POC, most PON (84%) came from planktonic microorganisms, mainly prokaryotes. Particle removal efficiency ranged from 99% (the cyanobacterium Synechococcus sp.) to 37% (for eukaryotic cells >8 microm). On average, N. magnifica ingested 480 microg C day(-1) g(-1) (wet mass, WM) sponge and 76.6 microg N day(-1) g(-1) sponge. Ingested POC balanced 85% of the sponge's energetic demand but more is needed for biomass production because it cannot digest all of the carbon. 54.4+/-16.1 microg N day(-1) g(-1) (WM) nitrogen was excreted as total ammonia nitrogen (TAN); however, nitrogen allowance should be higher because more nitrogen is deposited for sponge biomass during growth. It is hypothesized that the discrepancy in the nutritional requirements should be covered by the sponge absorbing carbon and nitrogen from sources that are not dealt with in the present research, such as dissolved organic carbon and nitrogen. This study highlights the significance of detritus as a carbon source, and prokaryotes as a PON source in sponge feeding.

  12. Genetics Home Reference: white sponge nevus

    MedlinePlus

    ... Genetics Home Health Conditions white sponge nevus white sponge nevus Enable Javascript to view the expand/collapse ... Download PDF Open All Close All Description White sponge nevus is a condition characterized by the formation ...

  13. Gelatin-layered and multi-sized porous β-tricalcium phosphate for tissue engineering scaffold

    PubMed Central

    2012-01-01

    The multi-sized porous β-tricalcium phosphate scaffolds were fabricated by freeze drying followed by slurry coating using a multi-sized porous sponge as a template. Then, gelatin was dip coated on the multi-sized porous β-tricalcium phosphate scaffolds under vacuum. The mechanical and biological properties of the fabricated scaffolds were evaluated and compared to the uniformly sized porous scaffolds and scaffolds that were not coated by gelatin. The compressive strength was tested by a universal testing machine, and the cell viability and differentiation behavior were measured using a cell counting kit and alkaline phosphatase activity using the MC3T3-E1 cells. In comparison, the gelatin-coated multi-sized porous β-tricalcium phosphate scaffold showed enhanced compressive strength. After 14 days, the multi-sized pores were shown to affect cell differentiation, and gelatin coatings were shown to affect the cell viability and differentiation. The results of this study demonstrated that the multi-sized porous β-tricalcium phosphate scaffold coated by gelatin enhanced the mechanical and biological strengths. PMID:22252276

  14. Process for purifying zirconium sponge

    SciTech Connect

    Abodishish, H.A.M.; Kimball, L.S.

    1992-03-31

    This patent describes a Kroll reduction process wherein a zirconium sponge contaminated with unreacted magnesium and by-product magnesium chloride is produced as a regulus, a process for purifying the zirconium sponge. It comprises: distilling magnesium and magnesium chloride from: a regulus containing a zirconium sponge and magnesium and magnesium chloride at a temperature above about 800{degrees} C and at an absolute pressure less than about 10 mmHg in a distillation vessel to purify the zirconium sponge; condensing the magnesium and the magnesium chloride distilled from the zirconium sponge in a condenser; and then backfilling the vessel containing the zirconium sponge and the condenser containing the magnesium and the magnesium chloride with a gas; recirculating the gas between the vessel and the condenser to cool the zirconium sponge from above about 800{degrees} C to below about 300{degrees} C; and cooling the recirculating gas in the condenser containing the condensed magnesium and the condensed magnesium chloride as the gas cools the zirconium sponge to below about 300{degrees} C.

  15. Sponge hybridomas: applications and implications.

    PubMed

    Pomponi, Shirley A; Jevitt, Allison; Patel, Jignasa; Diaz, M Cristina

    2013-09-01

    Many sponge-derived natural products with applications to human health have been discovered over the past three decades. In vitro production has been proposed as one biological alternative to ensure adequate supply of marine natural products for preclinical and clinical development of drugs. Although primary cell cultures have been established for many marine phyla, no cell lines with an extended life span have been established for marine invertebrates. Hybridoma technology has been used for production of monoclonal antibodies for application to human health. We hypothesized that a sponge cell line could be formed by fusing sponge cells of one species with those of another, or by fusing sponge cells with rapidly dividing, marine-derived, non-sponge cells. Using standard methods for formation of hybridomas, with appropriate modifications for temperature and salinity, cells from individuals of the same sponge species, as well as cells from individuals of two different sponge species were successfully fused. Research in progress is focused on optimizing fusion to produce a cell line and to stimulate expression of natural products with therapeutic relevance. Experimental hybridomas may also be used as models to test hypotheses related to naturally occurring sponge chimeras and hybridomas.

  16. Development of nanofibrous cellulose acetate/gelatin skin substitutes for variety wound treatment applications.

    PubMed

    Vatankhah, Elham; Prabhakaran, Molamma P; Jin, Guorui; Mobarakeh, Laleh Ghasemi; Ramakrishna, Seeram

    2014-02-01

    The major component of fibrous extracellular matrix of dermis is composed of a complex combination of proteins and polysaccharides. Electrospun cellulose acetate/gelatin might be an effective simulator of the structure and composition of native skin and during this study, we electrospun cellulose acetate/gelatin membranes in various compositions and their performance as a scaffold for either skin tissue engineering or as a wound dressing was evaluated. Skin treatment products, whether tissue-engineered scaffolds or wound dressings, should be sufficiently hydrophilic to allow for gas and fluid exchange and absorb excess exudates while controlling the fluid loss. However, a wound dressing should be easily removable without causing tissue damage and a tissue-engineered scaffold should be able to adhere to the wound, and support cell proliferation during skin regeneration. We showed that these distinct adherency features are feasible just by changing the composition of cellulose acetate and gelatin in composite cellulose acetate/gelatin scaffolds. High proliferation of human dermal fibroblasts on electrospun cellulose acetate/gelatin 25:75 confirmed the capability of cellulose acetate/gelatin 25:75 nanofibers as a tissue-engineered scaffold, while the electrospun cellulose acetate/gelatin 75:25 can be a potential low-adherent wound dressing.

  17. Radiation synthesis and characterization of nanosilver/gelatin/carboxymethyl chitosan hydrogel

    NASA Astrophysics Data System (ADS)

    Zhou, Ying; Zhao, Yinghui; Wang, Lu; Xu, Ling; Zhai, Maolin; Wei, Shicheng

    2012-05-01

    A series of antibacterial hydrogels were fabricated from an aqueous solution of AgNO3, gelatin and carboxymethyl chitosan (CM-chitosan) by radiation-induced reduction and crosslinking at ambient temperature. The nanosilver particles were in situ synthesized accompanying with the formation of gelatin/CM-chitosan hydrogel. Transmission Electron Microscope and UV-vis analysis have verified the formation and homogeneous distribution of nanosilver particles in the hydrogel matrix. The nanosilver/gelatin/CM-chitosan hydrogels possessed interconnected porous structure, had a compressive modulus of 44 to 56 kPa, and could absorb 62 to 108 times of deionized water to its dry weight. Furthermore, the hydrogels were found to have sound antibacterial effect on Escherichia coli (E. coli), and their antibacterial ability could be significantly enhanced by the increasing of AgNO3 content. The comprehensive results of this study suggest that nanosilver/gelatin/CM-chitosan hydrogels have potential as an antibacterial wound dressing.

  18. Analysis of sponge zones for computational fluid mechanics

    SciTech Connect

    Bodony, Daniel J. . E-mail: bodony@stanford.edu

    2006-03-01

    The use of sponge regions, or sponge zones, which add the forcing term -{sigma}(q - q {sub ref}) to the right-hand-side of the governing equations in computational fluid mechanics as an ad hoc boundary treatment is widespread. They are used to absorb and minimize reflections from computational boundaries and as forcing sponges to introduce prescribed disturbances into a calculation. A less common usage is as a means of extending a calculation from a smaller domain into a larger one, such as in computing the far-field sound generated in a localized region. By analogy to the penalty method of finite elements, the method is placed on a solid foundation, complete with estimates of convergence. The analysis generalizes the work of Israeli and Orszag [M. Israeli, S.A. Orszag, Approximation of radiation boundary conditions, J. Comp. Phys. 41 (1981) 115-135] and confirms their findings when applied as a special case to one-dimensional wave propagation in an absorbing sponge. It is found that the rate of convergence of the actual solution to the target solution, with an appropriate norm, is inversely proportional to the sponge strength. A detailed analysis for acoustic wave propagation in one-dimension verifies the convergence rate given by the general theory. The exponential point-wise convergence derived by Israeli and Orszag in the high-frequency limit is recovered and found to hold over all frequencies. A weakly nonlinear analysis of the method when applied to Burgers' equation shows similar convergence properties. Three numerical examples are given to confirm the analysis: the acoustic extension of a two-dimensional time-harmonic point source, the acoustic extension of a three-dimensional initial-value problem of a sound pulse, and the introduction of unstable eigenmodes from linear stability theory into a two-dimensional shear layer.

  19. Sponge systematics facing new challenges.

    PubMed

    Cárdenas, P; Pérez, T; Boury-Esnault, N

    2012-01-01

    Systematics is nowadays facing new challenges with the introduction of new concepts and new techniques. Compared to most other phyla, phylogenetic relationships among sponges are still largely unresolved. In the past 10 years, the classical taxonomy has been completely overturned and a review of the state of the art appears necessary. The field of taxonomy remains a prominent discipline of sponge research and studies related to sponge systematics were in greater number in the Eighth World Sponge Conference (Girona, Spain, September 2010) than in any previous world sponge conferences. To understand the state of this rapidly growing field, this chapter proposes to review studies, mainly from the past decade, in sponge taxonomy, nomenclature and phylogeny. In a first part, we analyse the reasons of the current success of this field. In a second part, we establish the current sponge systematics theoretical framework, with the use of (1) cladistics, (2) different codes of nomenclature (PhyloCode vs. Linnaean system) and (3) integrative taxonomy. Sponges are infamous for their lack of characters. However, by listing and discussing in a third part all characters available to taxonomists, we show how diverse characters are and that new ones are being used and tested, while old ones should be revisited. We then review the systematics of the four main classes of sponges (Hexactinellida, Calcispongiae, Homoscleromorpha and Demospongiae), each time focusing on current issues and case studies. We present a review of the taxonomic changes since the publication of the Systema Porifera (2002), and point to problems a sponge taxonomist is still faced with nowadays. To conclude, we make a series of proposals for the future of sponge systematics. In the light of recent studies, we establish a series of taxonomic changes that the sponge community may be ready to accept. We also propose a series of sponge new names and definitions following the PhyloCode. The issue of phantom species

  20. Sponge systematics facing new challenges.

    PubMed

    Cárdenas, P; Pérez, T; Boury-Esnault, N

    2012-01-01

    Systematics is nowadays facing new challenges with the introduction of new concepts and new techniques. Compared to most other phyla, phylogenetic relationships among sponges are still largely unresolved. In the past 10 years, the classical taxonomy has been completely overturned and a review of the state of the art appears necessary. The field of taxonomy remains a prominent discipline of sponge research and studies related to sponge systematics were in greater number in the Eighth World Sponge Conference (Girona, Spain, September 2010) than in any previous world sponge conferences. To understand the state of this rapidly growing field, this chapter proposes to review studies, mainly from the past decade, in sponge taxonomy, nomenclature and phylogeny. In a first part, we analyse the reasons of the current success of this field. In a second part, we establish the current sponge systematics theoretical framework, with the use of (1) cladistics, (2) different codes of nomenclature (PhyloCode vs. Linnaean system) and (3) integrative taxonomy. Sponges are infamous for their lack of characters. However, by listing and discussing in a third part all characters available to taxonomists, we show how diverse characters are and that new ones are being used and tested, while old ones should be revisited. We then review the systematics of the four main classes of sponges (Hexactinellida, Calcispongiae, Homoscleromorpha and Demospongiae), each time focusing on current issues and case studies. We present a review of the taxonomic changes since the publication of the Systema Porifera (2002), and point to problems a sponge taxonomist is still faced with nowadays. To conclude, we make a series of proposals for the future of sponge systematics. In the light of recent studies, we establish a series of taxonomic changes that the sponge community may be ready to accept. We also propose a series of sponge new names and definitions following the PhyloCode. The issue of phantom species

  1. Modelling genetic regulation of growth and form in a branching sponge.

    PubMed

    Kaandorp, Jaap A; Blom, Joke G; Verhoef, Jozef; Filatov, Max; Postma, M; Müller, Werner E G

    2008-11-22

    We present a mathematical model of the genetic regulation controlling skeletogenesis and the influence of the physical environment on a branching sponge with accretive growth (e.g. Haliclona oculata or Lubomirskia baikalensis). From previous work, it is known that high concentrations of silicate induce spicule formation and upregulate the silicatein gene. The upregulation of this gene activates locally the production of spicules in the sponge and the deposition of the skeleton. Furthermore, it is known that the expression of the gene Iroquois induces the formation of an aquiferous system, consisting of exhalant and inhalant pores. We propose a model of the regulatory network controlling the separation in time and space of the skeletogenesis and the formation of the aquiferous system. The regulatory network is closely linked with environmental influences. In building a skeleton, silicate is absorbed from the environment. In our model, silicate is transported by diffusion through the environment and absorbed at the surface of a geometric model of the sponge, resulting in silicate gradients emerging in the neighbourhood of the sponge. Our model simulations predict sponge morphology and the positioning of the exhalant pores over the surface of the sponge.

  2. Modelling genetic regulation of growth and form in a branching sponge

    PubMed Central

    Kaandorp, Jaap A; Blom, Joke G; Verhoef, Jozef; Filatov, Max; Postma, M; Müller, Werner E.G

    2008-01-01

    We present a mathematical model of the genetic regulation controlling skeletogenesis and the influence of the physical environment on a branching sponge with accretive growth (e.g. Haliclona oculata or Lubomirskia baikalensis). From previous work, it is known that high concentrations of silicate induce spicule formation and upregulate the silicatein gene. The upregulation of this gene activates locally the production of spicules in the sponge and the deposition of the skeleton. Furthermore, it is known that the expression of the gene Iroquois induces the formation of an aquiferous system, consisting of exhalant and inhalant pores. We propose a model of the regulatory network controlling the separation in time and space of the skeletogenesis and the formation of the aquiferous system. The regulatory network is closely linked with environmental influences. In building a skeleton, silicate is absorbed from the environment. In our model, silicate is transported by diffusion through the environment and absorbed at the surface of a geometric model of the sponge, resulting in silicate gradients emerging in the neighbourhood of the sponge. Our model simulations predict sponge morphology and the positioning of the exhalant pores over the surface of the sponge. PMID:18664436

  3. Assessment of the ribose-induced Maillard reaction as a means of gelatine powder identification and quality control.

    PubMed

    Tan, Thuan-Chew; AlKarkhi, Abbas F M; Easa, Azhar Mat

    2012-10-15

    The addition of ribose to bovine or porcine gelatine solutions followed by heating at 95 °C yielded brown solutions with different pH, colour (CIE L(*) and b(*)) and absorbance (A(420*) values. These differences were used for gelatine powder identification, differentiation and quality control. Differentiation analysis of the Maillard reaction parameters was conducted using cluster analysis (CA) and confidence intervals (CI). The potential use of the method as a quality control procedure was evaluated by using statistical process control (SPC). CA revealed that the two types of gelatine could be classified into two different groups. CI (95% confidence) revealed that the absorbance and colour values could be used as indicators for differentiation between the two types of gelatine because the intervals between the Maillard reaction parameters of the samples were far apart. The methodology demonstrated good reproducibility because it behaved predictably based on the X¯-S charts generated from the SPC charts. PMID:23442706

  4. Precambrian sponges with cellular structures

    PubMed

    Li; Chen; Hua

    1998-02-01

    Sponge remains have been identified in the Early Vendian Doushantuo phosphate deposit in central Guizhou (South China), which has an age of approximately 580 million years ago. Their skeletons consist of siliceous, monaxonal spicules. All are referred to as the Porifera, class Demospongiae. Preserved soft tissues include the epidermis, porocytes, amoebocytes, sclerocytes, and spongocoel. Among thousands of metazoan embryos is a parenchymella-type of sponge larvae having a shoe-shaped morphology and dense peripheral flagella. The presence of possible amphiblastula larva suggests that the calcareous sponges may have an extended history in the Late Precambrian. The fauna indicates that animals lived 40 to 50 million years before the Cambrian Explosion.

  5. 21 CFR 522.1020 - Gelatin solution.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Gelatin solution. 522.1020 Section 522.1020 Food... Gelatin solution. (a) Specifications. It is sterile and each 100 cubic centimeters contains 8 grams of gelatin in an 0.85 percent sodium chloride solution. (b) Sponsor. See No. 000856 in § 510.600(c) of...

  6. 21 CFR 522.1020 - Gelatin.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Gelatin. 522.1020 Section 522.1020 Food and Drugs..., AND RELATED PRODUCTS IMPLANTATION OR INJECTABLE DOSAGE FORM NEW ANIMAL DRUGS § 522.1020 Gelatin. (a) Specifications. Each 100 milliliters contains 8 grams of gelatin in a 0.85 percent sodium chloride solution....

  7. 21 CFR 522.1020 - Gelatin solution.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Gelatin solution. 522.1020 Section 522.1020 Food... Gelatin solution. (a) Specifications. It is sterile and each 100 cubic centimeters contains 8 grams of gelatin in an 0.85 percent sodium chloride solution. (b) Sponsor. See No. 000856 in § 510.600(c) of...

  8. Sound Absorbers

    NASA Astrophysics Data System (ADS)

    Fuchs, H. V.; Möser, M.

    Sound absorption indicates the transformation of sound energy into heat. It is, for instance, employed to design the acoustics in rooms. The noise emitted by machinery and plants shall be reduced before arriving at a workplace; auditoria such as lecture rooms or concert halls require a certain reverberation time. Such design goals are realised by installing absorbing components at the walls with well-defined absorption characteristics, which are adjusted for corresponding demands. Sound absorbers also play an important role in acoustic capsules, ducts and screens to avoid sound immission from noise intensive environments into the neighbourhood.

  9. Projectile penetration into ballistic gelatin.

    PubMed

    Swain, M V; Kieser, D C; Shah, S; Kieser, J A

    2014-01-01

    Ballistic gelatin is frequently used as a model for soft biological tissues that experience projectile impact. In this paper we investigate the response of a number of gelatin materials to the penetration of spherical steel projectiles (7 to 11mm diameter) with a range of lower impacting velocities (<120m/s). The results of sphere penetration depth versus projectile velocity are found to be linear for all systems above a certain threshold velocity required for initiating penetration. The data for a specific material impacted with different diameter spheres were able to be condensed to a single curve when the penetration depth was normalised by the projectile diameter. When the results are compared with a number of predictive relationships available in the literature, it is found that over the range of projectiles and compositions used, the results fit a simple relationship that takes into account the projectile diameter, the threshold velocity for penetration into the gelatin and a value of the shear modulus of the gelatin estimated from the threshold velocity for penetration. The normalised depth is found to fit the elastic Froude number when this is modified to allow for a threshold impact velocity. The normalised penetration data are found to best fit this modified elastic Froude number with a slope of 1/2 instead of 1/3 as suggested by Akers and Belmonte (2006). Possible explanations for this difference are discussed.

  10. Projectile penetration into ballistic gelatin.

    PubMed

    Swain, M V; Kieser, D C; Shah, S; Kieser, J A

    2014-01-01

    Ballistic gelatin is frequently used as a model for soft biological tissues that experience projectile impact. In this paper we investigate the response of a number of gelatin materials to the penetration of spherical steel projectiles (7 to 11mm diameter) with a range of lower impacting velocities (<120m/s). The results of sphere penetration depth versus projectile velocity are found to be linear for all systems above a certain threshold velocity required for initiating penetration. The data for a specific material impacted with different diameter spheres were able to be condensed to a single curve when the penetration depth was normalised by the projectile diameter. When the results are compared with a number of predictive relationships available in the literature, it is found that over the range of projectiles and compositions used, the results fit a simple relationship that takes into account the projectile diameter, the threshold velocity for penetration into the gelatin and a value of the shear modulus of the gelatin estimated from the threshold velocity for penetration. The normalised depth is found to fit the elastic Froude number when this is modified to allow for a threshold impact velocity. The normalised penetration data are found to best fit this modified elastic Froude number with a slope of 1/2 instead of 1/3 as suggested by Akers and Belmonte (2006). Possible explanations for this difference are discussed. PMID:24184862

  11. Heat Sponge: A Concept for Mass-Efficient Heat Storage

    NASA Technical Reports Server (NTRS)

    Splinter, Scott C.; Blosser, Max L.; Gifford, Andrew R.

    2008-01-01

    The heat sponge is a device for mass-efficient storage of heat. It was developed to be incorporated in the substructure of a re-entry vehicle to reduce thermal- protection-system requirements. The heat sponge consists of a liquid/vapor mixture contained within a number of miniature pressure vessels that can be embedded within a variety of different types of structures. As temperature is increased, pressure in the miniature pressure vessels also increases so that heat absorbed through vaporization of the liquid is spread over a relatively large temperature range. Using water as a working fluid, the heat-storage capacity of the liquid/vapor mixture is many times higher than that of typical structural materials and is well above that of common phase change materials over a temperature range of 200 F to 700 F. The use of pure ammonia as the working fluid provides a range of application between 432 deg R and 730 deg R, or the use of the more practical water-ammonia solution provides a range of application between 432 deg R and 1160 deg R or in between that of water and pure ammonia. Prototype heat sponges were fabricated and characterized. These heat sponges consisted of 1.0-inch-diameter, hollow, stainless-steel spheres with a wall thickness of 0.020 inches which had varying percentages of their interior volumes filled with water and a water-ammonia solution. An apparatus to measure the heat stored in these prototype heat sponges was designed, fabricated, and verified. The heat-storage capacity calculated from measured temperature histories is compared to numerical predictions.

  12. Martian 'Kitchen Sponge'

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This picture is illuminated by sunlight from the upper left. It shows a tiny 1 kilometer by 1 kilometer (0.62 x 0.62 mile) area of the martian north polar residual ice cap as it appears in summertime.

    The surface looks somewhat like that of a kitchen sponge--it is flat on top and has many closely-spaced pits of no more than 2 meters (5.5 ft) depth. The upper, flat surface in this image has a medium-gray tone, while the pit interiors are darker gray. Each pit is generally 10 to 20 meters (33-66 feet) across. The pits probably form as water ice sublimes--going directly from solid to vapor--during the martian northern summer seasons. The pits probably develop over thousands of years. This texture is very different from what is seen in the south polar cap, where considerably larger and more circular depressions are found to resemble slices of swiss cheese rather than a kitchen sponge.

    This picture was taken by the Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) during northern summer on March 8, 1999. It was one of the very last 'calibration' images taken before the start of the Mapping Phase of the MGS mission, and its goal was to determine whether the MOC was properly focused. The crisp appearance of the edges of the pits confirmed that the instrument was focused and ready for its 1-Mars Year mapping mission. The scene is located near 86.9oN, 207.5oW, and has a resolution of about 1.4 meters (4 ft, 7 in) per pixel.

    Malin Space Science Systems and the California Institute of Technology built the MOC using spare hardware from the Mars Observer mission. MSSS operates the camera from its facilities in San Diego, CA. The Jet Propulsion Laboratory's Mars Surveyor Operations Project operates the Mars Global Surveyor spacecraft with its industrial partner, Lockheed Martin Astronautics, from facilities in Pasadena, CA and Denver, CO.

  13. Nucleosides from the marine sponge Haliclona sp.

    PubMed

    Wang, Bin; Dong, Junde; Zhou, Xuefeng; Lee, Kyung Jin; Huang, Riming; Zhang, Si; Liu, Yonghong

    2009-01-01

    Three known nucleosides were isolated from the sponge Haliclona sp. The structures were established on the basis of NMR data and comparison with those reported, and chemotaxonomic relationships of the sponge nucleosides were discussed.

  14. Phase holograms in dichromated gelatin.

    PubMed

    Shankoff, T A

    1968-10-01

    The gelatin-dichromate photosensitive system has been shown to be very efficient as a recording medium for both two- and three-dimensional holographic gratings. Upon development, as much as 33% of incident reading light is diffracted into the first order for the unmodulated thin phase gratings and 95% for the thick holograms. The material can record a grating spacing at least as small as 2600 A, and gives reconstructions comparable with those obtained in 649F film. The air-gelatin index differential of 0.54 is considered responsible for the high diffracted powers found. Exposures vary from 3 mJ to 150 mJ at 4880 A. Certain films have speeds within two orders of magnitude of 649F holographic film. PMID:20068941

  15. Multilayered Magnetic Gelatin Membrane Scaffolds

    PubMed Central

    Samal, Sangram K.; Goranov, Vitaly; Dash, Mamoni; Russo, Alessandro; Shelyakova, Tatiana; Graziosi, Patrizio; Lungaro, Lisa; Riminucci, Alberto; Uhlarz, Marc; Bañobre-López, Manuel; Rivas, Jose; Herrmannsdörfer, Thomas; Rajadas, Jayakumar; De Smedt, Stefaan; Braeckmans, Kevin; Kaplan, David L.; Dediu, V. Alek

    2016-01-01

    A versatile approach for the design and fabrication of multilayer magnetic scaffolds with tunable magnetic gradients is described. Multilayer magnetic gelatin membrane scaffolds with intrinsic magnetic gradients were designed to encapsulate magnetized bioagents under an externally applied magnetic field for use in magnetic-field-assisted tissue engineering. The temperature of the individual membranes increased up to 43.7 °C under an applied oscillating magnetic field for 70 s by magnetic hyperthermia, enabling the possibility of inducing a thermal gradient inside the final 3D multilayer magnetic scaffolds. On the basis of finite element method simulations, magnetic gelatin membranes with different concentrations of magnetic nanoparticles were assembled into 3D multilayered scaffolds. A magnetic-gradient-controlled distribution of magnetically labeled stem cells was demonstrated in vitro. This magnetic biomaterial–magnetic cell strategy can be expanded to a number of different magnetic biomaterials for various tissue engineering applications. PMID:26451743

  16. DEMONSTRATION BULLETIN: FORAGER™ SPONGE TECHNOLOGY - DYNAPHORE, INC.

    EPA Science Inventory

    The Forager™ Sponge is an open-celled cellulose sponge incorporating an amine-containing chelating polymer that has selective affinity for dissolved heavy metals in both cationic and anionic states. The Forager™ Sponge technology can be utilized to remove and concentrate heavy me...

  17. Effective disinfection methods of kitchen sponges

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pathogenic foodborne bacteria can be disseminated in households through the use of contaminated sponges. Several household disinfecting treatments to kill bacteria, yeasts and molds on sponges were evaluated. Sponges were incubated in a suspension of ground beef and tryptic soy broth to develop bact...

  18. The properties of silica-gelatin composites

    NASA Astrophysics Data System (ADS)

    Stavinskaya, O. N.; Laguta, I. V.

    2010-06-01

    Silica-gelatin composites with various silica-to-gelatin ratios were obtained. The influence of high-dispersity silica on the swelling of composites in water and desorption of pyridoxine and thiamine vitamins incorporated into the material was studied. The addition of silica to gelatin was shown to increase the time of the dissolution of the materials in aqueous medium and decelerate the desorption of vitamins.

  19. The systematics of carnivorous sponges.

    PubMed

    Hestetun, Jon Thomassen; Vacelet, Jean; Boury-Esnault, Nicole; Borchiellini, Carole; Kelly, Michelle; Ríos, Pilar; Cristobo, Javier; Rapp, Hans Tore

    2016-01-01

    Carnivorous sponges are characterized by their unique method of capturing mesoplanktonic prey coupled with the complete or partial reduction of the aquiferous system characteristic of the phylum Porifera. Current systematics place the vast majority of carnivorous sponges within Cladorhizidae, with certain species assigned to Guitarridae and Esperiopsidae. Morphological characters have not been able to show whether this classification is evolutionary accurate, and whether carnivory has evolved once or in several lineages. In the present paper we present the first comprehensive molecular phylogeny of the carnivorous sponges, interpret these results in conjunction with morphological characters, and propose a revised classification of the group. Molecular phylogenies were inferred using 18S rDNA and a combined dataset of partial 28S rDNA, COI and ALG11 sequences. The results recovered carnivorous sponges as a clade closely related to the families Mycalidae and Guitarridae, showing family Cladorhizidae to be monophyletic and also including carnivorous species currently placed in other families. The genus Lycopodina is resurrected for species currently placed in the paraphyletic subgenus Asbestopluma (Asbestopluma) featuring forceps spicules and lacking sigmas or sigmancistras. The genera Chondrocladia and Cladorhiza are found to be monophyletic. However, results indicate that the subgenus Chondrocladia is polyphyletic with respect to the subgenera Meliiderma and Symmetrocladia. Euchelipluma, formerly Guitarridae, is retained, but transferred to Cladorhizidae. The four known carnivorous species currently in Esperiopsis are transferred to Abyssocladia. Neocladia is a junior homonym and is here renamed Koltunicladia. Our results provide strong evidence in support of the hypothesis that carnivory in sponges has evolved only once. While spicule characters mostly reflect monophyletic groups at the generic level, differences between genera represent evolution within family

  20. Compressive strain rate sensitivity of ballistic gelatin.

    PubMed

    Kwon, Jiwoon; Subhash, Ghatu

    2010-02-10

    Gelatin is a popular tissue simulant used in biomedical applications. The uniaxial compressive stress-strain response of gelatin was determined at a range of strain rates. In the quasistatic regime, gelatin strength remained relatively constant. With increase in loading rate, the compressive strength increased from 3kPa at a strain rate of around 0.0013/s to 6MPa at a strain rate of around 3200/s. This dramatic increase in strength of gelatin at high rates is attributed to its shear-thickening behavior and is argued on the basis of hydrocluster formation mechanism and differences in internal energy dissipation mechanism under static and dynamic loading. PMID:19863960

  1. Grating formation in diazo salt (sensitized) gelatin.

    PubMed

    Gladden, J W

    1980-05-01

    Diazo (sensitized) gelatins are photosensitive recording materials that, unlike dichromated gelatin, have a long shelf life. Because of their stability, the diazo emulsions have replaced the dichromated colloids used in the photolithographic field and enabled commercialization of presensitized printing plates. We have produced plane wave gratings with peak efficiencies near 67% at an exposure of 625 mJ/cm(2) and a recording wavelength of 488.0 nm in one diazo recording material. Called diazo salt (sensitized) gelatin, the photosensitive material produces gratings in gelatin by a complex process that we found not to be a function of exposure. The methods used are described. PMID:20221070

  2. Laser damage threshold of gelatin and a copper phthalocyanine doped gelatin optical limiter

    SciTech Connect

    Brant, M.C.; McLean, D.G.; Sutherland, R.L.

    1996-12-31

    The authors demonstrate optical limiting in a unique guest-host system which uses neither the typical liquid or solid host. Instead, they dope a gelatin gel host with a water soluble Copper (II) phthalocyaninetetrasulfonic acid, tetrasodium salt (CuPcTs). They report on the gelatin`s viscoelasticity, laser damage threshold, and self healing of this damage. The viscoelastic gelatin has mechanical properties quite different than a liquid or solid. The authors` laser measurements demonstrate that the single shot damage threshold of the undoped gelatin host increases with decreasing gelatin concentration. The gelatin also has a much higher laser damage threshold than a stiff acrylic. Unlike brittle solids, the soft gelatin self heals from laser induced damage. Optical limiting test also show the utility of a gelatin host doped with CuPcTs. The CuPcTs/gelatin matrix is not damaged at incident laser energies 5 times the single shot damage threshold of the gelatin host. However, at this high laser energy the CuPcTs is photo bleached at the beam waist. The authors repair photo bleached sites by annealing the CuPcTs/gelatin matrix.

  3. Bacteria associated with an encrusting sponge (Terpios hoshinota) and the corals partially covered by the sponge.

    PubMed

    Tang, Sen-Lin; Hong, Mei-Jhu; Liao, Ming-Hui; Jane, Wann-Neng; Chiang, Pei-Wen; Chen, Chung-Bin; Chen, Chaolun A

    2011-05-01

    Terpios hoshinota, a dark encrusting sponge, is known to be a competitor for space in coral reef environments, and facilitates the death of corals. Although numerous cyanobacteria have been detected in the sponge, little is known of the sponge-associated bacterial community. This study examined the sponge-associated bacterial community and the difference between the bacterial communities in the sponge and the coral partially covered by the sponge by analysis of 16S rRNA gene sequences of samples isolated from the sponge covering the corals Favia complanata, Isopora palifera, Millepora sp., Montipora efflorescens and Porites lutea. The sponge-associated bacterial community was mainly (61-98%) composed of cyanobacteria, with approximately 15% of these alphaproteobacteria and gammaproteobacteria, although the proportions varied in different sponge samples. The dominant cyanobacteria group was an isolated group closely related to Prochloron sp. The comparison of the bacterial communities isolated from sponge-free and the sponge-covered P. lutea showed that covering by the sponge caused changes in the coral-associated bacterial communities, with the presence of bacteria similar to those detected in black-band disease, suggesting the sponge might benefit from the presence of bacteria associated with unhealthy coral, particularly in the parts of the coral closest to the margin of the sponge. PMID:21265978

  4. Study of rheological, viscoelastic and vulcanization behavior of sponge EPDM/NR blended nano- composites

    NASA Astrophysics Data System (ADS)

    Arshad Bashir, M.; Shahid, M.; Ahmed, Riaz; Yahya, A. G.

    2014-06-01

    In this research paper the effect of blending ratio of natural rubber (NR) with Ethylene Propylene Diene Monomer (EPDM) were investigated. Different samples of EPDM/NR ratio were prepared to study the variation of NR in EPDM on rheology, curing characteristics, tangent δ, and viscosity variation during vulcanization of sponge nano composites.The main aim of present research is to develop elastomeric based sponge composites with the blending ratio of base elastomers along with the carbon nano particles for high energy absorbing and damping applications. The curing characteristics, rheology and viscoelastic nature of the composite is remarkably influenced with the progressive blending ratio of the base elastomeric matrix.

  5. Characterization Of Sponge-Associated Microbial Communities

    NASA Astrophysics Data System (ADS)

    Bailey, K. L.; Weisz, J.; Lindquist, N.

    2004-12-01

    To more fully understand the endosymbiotic relationship between sponges and microorganisms, it is necessary to characterize the microbial communities of the sponges. In this study, DNA was extracted from each of three individual sponges from four sponge species collected in a shallow mangrove cut in Florida Bay near Key Largo, Florida. A fragment of the 16S rRNA gene from sponge-associated bacteria was amplified using the polymerase chain reaction (PCR). The resulting PCR products were analyzed by denaturing gradient gel electrophoresis (DGGE), which separates DNA fragments based on their sequence differences. Some 16S sequences appeared to be shared by each of the four sponge species, while other fragments found in only particular species likely represent unique bacterial strains that play a role in sponge nutrition.

  6. Genomic insights into the marine sponge microbiome.

    PubMed

    Hentschel, Ute; Piel, Jörn; Degnan, Sandie M; Taylor, Michael W

    2012-09-01

    Marine sponges (phylum Porifera) often contain dense and diverse microbial communities, which can constitute up to 35% of the sponge biomass. The genome of one sponge, Amphimedon queenslandica, was recently sequenced, and this has provided new insights into the origins of animal evolution. Complementary efforts to sequence the genomes of uncultivated sponge symbionts have yielded the first glimpse of how these intimate partnerships are formed. The remarkable microbial and chemical diversity of the sponge-microorganism association, coupled with its postulated antiquity, makes sponges important model systems for the study of metazoan host-microorganism interactions, and their evolution, as well as for enabling access to biotechnologically important symbiont-derived natural products. In this Review, we discuss our current understanding of the interactions between marine sponges and their microbial symbiotic consortia, and highlight recent insights into these relationships from genomic studies.

  7. Effect of starch on the mechanical and in vitro properties of collagen-hydroxyapatite sponges for applications in dentistry.

    PubMed

    Castro-Ceseña, Ana B; Camacho-Villegas, Tanya A; Lugo-Fabres, Pavel H; Novitskaya, Ekaterina E; McKittrick, Joanna; Licea-Navarro, Alexei

    2016-09-01

    This study sought to improve the mechanical and blood-absorbing properties of collagen sponges, while keeping them compressible, by incorporating blended hydroxyapatite (HA)-starch. Results were compared with CollaPlug(®) (pure collagen). The elastic modulus increased from 1.5±0.2kPa for CollaPlug(®) to 49±8kPa for sponges with composition 1:4:10 (collagen:HA:starch, by weight). The modified microstructure and surface area provided by the starch granules on the sponges improved cell viability. Sponges with composition 1:4:10 maintained their blood-clotting capability with almost no change from 5 to 15min after contact with blood, while CollaPlug(®) diminished to about half its capacity to absorb blood and form clots. Incorporation of HA-starch into the sponges with composition of 1:4:10, increased the elastic modulus of the collagen-HA sponges, making them more structurally robust. The viability of cells and the blood-clotting capability increased with starch incorporation. PMID:27185118

  8. Effect of starch on the mechanical and in vitro properties of collagen-hydroxyapatite sponges for applications in dentistry.

    PubMed

    Castro-Ceseña, Ana B; Camacho-Villegas, Tanya A; Lugo-Fabres, Pavel H; Novitskaya, Ekaterina E; McKittrick, Joanna; Licea-Navarro, Alexei

    2016-09-01

    This study sought to improve the mechanical and blood-absorbing properties of collagen sponges, while keeping them compressible, by incorporating blended hydroxyapatite (HA)-starch. Results were compared with CollaPlug(®) (pure collagen). The elastic modulus increased from 1.5±0.2kPa for CollaPlug(®) to 49±8kPa for sponges with composition 1:4:10 (collagen:HA:starch, by weight). The modified microstructure and surface area provided by the starch granules on the sponges improved cell viability. Sponges with composition 1:4:10 maintained their blood-clotting capability with almost no change from 5 to 15min after contact with blood, while CollaPlug(®) diminished to about half its capacity to absorb blood and form clots. Incorporation of HA-starch into the sponges with composition of 1:4:10, increased the elastic modulus of the collagen-HA sponges, making them more structurally robust. The viability of cells and the blood-clotting capability increased with starch incorporation.

  9. Sputter Deposition of Metallic Sponges

    SciTech Connect

    Jankowski, A F; Hayes, J P

    2002-01-18

    Metallic films are grown with a sponge-like morphology in the as-deposited condition using planar magnetron sputtering. The morphology of the deposit is characterized by metallic continuity in three dimensions with continuous porosity on the sub-micron scale. The stabilization of the metallic sponge is directly correlated with a limited range for the sputter deposition parameters of working gas pressure and substrate temperature. This sponge-like morphology augments the features as generally understood in the classic zone models of growth for physical vapor deposits. Nickel coatings are deposited with working gas pressures up to 4 Pa and for substrate temperatures up to 1100 K. The morphology of the deposits is examined in plan and in cross-section with scanning electron microscopy. The parametric range of gas pressure and substrate temperature (relative to absolute melt point) for the deposition processing under which the metallic sponges are produced appear universal for many metals, as for example, including gold, silver, and aluminum.

  10. Preparation of fish gelatin and fish gelatin/poly(L-lactide) nanofibers by electrospinning.

    PubMed

    An, Kejing; Liu, Haiying; Guo, Shidong; Kumar, D N T; Wang, Qingqing

    2010-10-01

    Ultrafine fibers were successfully fabricated from Channel catfish skin-extracted gelatin via electrospinning (ES). Important ES parameters, such as concentration of aqueous acid and fish gelatin solutions, and electric field intensity were examined to investigate the effects on the morphology of the gelatin nanofibers. Due to the poor mechanical properties of the fish gelatin membranes, composite nanofibers made of fish gelatin and poly(L-lactide)(PLLA) were produced with a novel solution. The introduction of PLLA remarkably improved the mechanical properties of the gelatin membranes. With a combination of good biocompatibility and mechanical properties, fish gelatin/PLLA blending non-woven mats are considered to be very promising in tissue regeneration area.

  11. Ordnance gelatin for ballistic studies. Detrimental effect of excess heat used in gelatin preparation.

    PubMed

    Fackler, M L; Malinowski, J A

    1988-09-01

    Most users of ordnance gelatin for ballistics studies are apparently unaware of the detrimental effects on this tissue simulant's properties caused by excess heating in reconstitution of the gelatin powder. Material published by the Gelatin Manufacturers Institute of America states that heating gelatin above 40 degrees C can be detrimental to its properties. The manufacturer of type 250 A Ordnance Gelatin does not include directions for preparation with the gelatin powder. Directions that can be obtained by contacting the manufacturer fail to give any recommendations on the amount of heat applied during gelatin preparation and do not mention the detrimental effects of excess heat. These oversights are corrected in the revised set of directions included in this article. PMID:3177350

  12. Global diversity of sponges (Porifera).

    PubMed

    Van Soest, Rob W M; Boury-Esnault, Nicole; Vacelet, Jean; Dohrmann, Martin; Erpenbeck, Dirk; De Voogd, Nicole J; Santodomingo, Nadiezhda; Vanhoorne, Bart; Kelly, Michelle; Hooper, John N A

    2012-01-01

    With the completion of a single unified classification, the Systema Porifera (SP) and subsequent development of an online species database, the World Porifera Database (WPD), we are now equipped to provide a first comprehensive picture of the global biodiversity of the Porifera. An introductory overview of the four classes of the Porifera is followed by a description of the structure of our main source of data for this paper, the WPD. From this we extracted numbers of all 'known' sponges to date: the number of valid Recent sponges is established at 8,553, with the vast majority, 83%, belonging to the class Demospongiae. We also mapped for the first time the species richness of a comprehensive set of marine ecoregions of the world, data also extracted from the WPD. Perhaps not surprisingly, these distributions appear to show a strong bias towards collection and taxonomy efforts. Only when species richness is accumulated into large marine realms does a pattern emerge that is also recognized in many other marine animal groups: high numbers in tropical regions, lesser numbers in the colder parts of the world oceans. Preliminary similarity analysis of a matrix of species and marine ecoregions extracted from the WPD failed to yield a consistent hierarchical pattern of ecoregions into marine provinces. Global sponge diversity information is mostly generated in regional projects and resources: results obtained demonstrate that regional approaches to analytical biogeography are at present more likely to achieve insights into the biogeographic history of sponges than a global perspective, which appears currently too ambitious. We also review information on invasive sponges that might well have some influence on distribution patterns of the future.

  13. Global Diversity of Sponges (Porifera)

    PubMed Central

    Van Soest, Rob W. M.; Boury-Esnault, Nicole; Vacelet, Jean; Dohrmann, Martin; Erpenbeck, Dirk; De Voogd, Nicole J.; Santodomingo, Nadiezhda; Vanhoorne, Bart; Kelly, Michelle; Hooper, John N. A.

    2012-01-01

    With the completion of a single unified classification, the Systema Porifera (SP) and subsequent development of an online species database, the World Porifera Database (WPD), we are now equipped to provide a first comprehensive picture of the global biodiversity of the Porifera. An introductory overview of the four classes of the Porifera is followed by a description of the structure of our main source of data for this paper, the WPD. From this we extracted numbers of all ‘known’ sponges to date: the number of valid Recent sponges is established at 8,553, with the vast majority, 83%, belonging to the class Demospongiae. We also mapped for the first time the species richness of a comprehensive set of marine ecoregions of the world, data also extracted from the WPD. Perhaps not surprisingly, these distributions appear to show a strong bias towards collection and taxonomy efforts. Only when species richness is accumulated into large marine realms does a pattern emerge that is also recognized in many other marine animal groups: high numbers in tropical regions, lesser numbers in the colder parts of the world oceans. Preliminary similarity analysis of a matrix of species and marine ecoregions extracted from the WPD failed to yield a consistent hierarchical pattern of ecoregions into marine provinces. Global sponge diversity information is mostly generated in regional projects and resources: results obtained demonstrate that regional approaches to analytical biogeography are at present more likely to achieve insights into the biogeographic history of sponges than a global perspective, which appears currently too ambitious. We also review information on invasive sponges that might well have some influence on distribution patterns of the future. PMID:22558119

  14. An innovative bi-layered wound dressing made of silk and gelatin for accelerated wound healing.

    PubMed

    Kanokpanont, Sorada; Damrongsakkul, Siriporn; Ratanavaraporn, Juthamas; Aramwit, Pornanong

    2012-10-15

    In this study, the novel silk fibroin-based bi-layered wound dressing was developed. Wax-coated silk fibroin woven fabric was introduced as a non-adhesive layer while the sponge made of sericin and glutaraldehyde-crosslinked silk fibroin/gelatin was fabricated as a bioactive layer. Wax-coated silk fibroin fabrics showed improved mechanical properties compared with the non-coated fabrics, but less adhesive than the commercial wound dressing mesh. This confirmed by results of peel test on both the partial- and full-thickness wounds. The sericin-silk fibroin/gelatin spongy bioactive layers showed homogeneous porous structure and controllable biodegradation depending on the degree of crosslinking. The bi-layered wound dressings supported the attachment and proliferation of L929 mouse fibroblasts, particularly for the silk fibroin/gelatin ratio of 20/80 and 0.02% GA crosslinked. Furthermore, we proved that the bi-layered wound dressings promoted wound healing in full-thickness wounds, comparing with the clinically used wound dressing. The wounds treated with the bi-layered wound dressings showed the greater extent of wound size reduction, epithelialization, and collagen formation. The superior properties of the silk fibroin-based bi-layered wound dressings compared with those of the clinically used wound dressings were less adhesive and had improved biological functions to promote cell activities and wound healing. This novel bi-layered wound dressing should be a good candidate for the healing of full-thickness wounds.

  15. Rediscovering Chemical Gardens: Self-Assembling Cytocompatible Protein-Intercalated Silicate-Phosphate Sponge-Mimetic Tubules.

    PubMed

    Punia, Kamia; Bucaro, Michael; Mancuso, Andrew; Cuttitta, Christina; Marsillo, Alexandra; Bykov, Alexey; L'Amoreaux, William; Raja, Krishnaswami S

    2016-08-30

    The classic chemical garden experiment is reconstructed to produce protein-intercalated silicate-phosphate tubules that resemble tubular sponges. The constructs were synthesized by seeding calcium chloride into a solution of sodium silicate-potassium phosphate and gelatin. Sponge-mimetic tubules were fabricated with varying percentages of gelatin (0-15% w/v), in diameters ranging from 200 μm to 2 mm, characterized morphologically and compositionally, functionalized with biomolecules for cell adhesion, and evaluated for cytocompatibility. Scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy analysis (EDS) experiments showed that the external surface of the tubules was relatively more amorphous in texture and carbon/protein-rich in comparison to the interior surface. Transmission electron microscopy (TEM) images indicate a network composed of gelatin incorporated into the inorganic scaffold. The presence of gelatin in the constructs was confirmed by infrared spectroscopy. Powder X-ray diffraction (XRD) was used to identify inorganic crystalline phases in the scaffolds that are mainly composed of Ca(OH)2, NaCl, and Ca2SiO4 along with a band corresponding to amorphous gelatin. Bioconjugation and coating protocols were developed to program the scaffolds with cues for cell adhesion, and the resulting constructs were employed for 3D cell culture of marine (Pyrocystis lunula) and mammalian (HeLa and H9C2) cell lines. The cytocompatibility of the constructs was demonstrated by live cell assays. We have successfully shown that these biomimetic materials can indeed support life; they serve as scaffolds that facilitate the attachment and assembly of individual cells to form multicellular entities, thereby revisiting the 350-year-old effort to link chemical gardens with the origins of life. Hybrid chemical garden biomaterials are programmable, readily fabricated and could be employed in tissue engineering, biomolecular materials development, 3D mammalian

  16. Chitosan-aluminum monostearate composite sponge dressing containing asiaticoside for wound healing and angiogenesis promotion in chronic wound.

    PubMed

    Phaechamud, Thawatchai; Yodkhum, Kotchamon; Charoenteeraboon, Juree; Tabata, Yasuhiko

    2015-05-01

    There are many factors that delay healing in chronic wounds including lowering level of growth factors and increasing exudate level comprising high amount of tissue destructive enzymes. Asiaticoside possesses interesting wound healing and angiogenic activities that are employed to stimulate tissue regeneration in wound healing application. This study attempted to develop chitosan-aluminum monostearate (Alst) composite sponge containing asiaticoside for use as an absorbent medical dressing in chronic wound. N-methyl-2-pyrrolidone (NMP) was used to enhance homogeneity of asiaticoside in the polymer composite matrix. The sponge dressings were prepared by lyophilization and dehydrothermal treatment (DHT). Functional group interaction, crystallinity, and morphology of the prepared sponges were investigated using FT-IR, PXRD, and SEM, respectively. Physicochemical properties, porosity, hydrophilic/hydrophobic properties and mechanical property, were evaluated. Wound dressing properties, water vapor transmission rate (WVTR), fluid absorbency, oxygen permeation (OP), and bio-adhesive property, were investigated. In vitro asiaticoside release study was conducted using immersion method. Cytotoxicity was studied in normal human dermal fibroblast (NHDF) and normal human epidermal keratinocyte (NHEK). Angiogenic activity of asiaticoside was evaluated using chick-chorioallantoic membrane (CAM) assay. FT-IR and PXRD results revealed the amidation after DHT to enhance the crystallinity of the prepared sponges. The prepared sponges had high porosity comprising high Alst-loaded amount that exhibited more compact structure. Alst enhanced hydrophobicity therefore it reduced the fluid absorption and WVTR together with bio-adhesion of the prepared sponge dressings. Porosity of all sponges was more than 85% therefore resulting in their high OP. Enhancing hydrophobicity of the material by Alst and more homogeneity caused by NMP eventually retarded the asiaticoside release for 7 days. The

  17. Chitosan-aluminum monostearate composite sponge dressing containing asiaticoside for wound healing and angiogenesis promotion in chronic wound.

    PubMed

    Phaechamud, Thawatchai; Yodkhum, Kotchamon; Charoenteeraboon, Juree; Tabata, Yasuhiko

    2015-05-01

    There are many factors that delay healing in chronic wounds including lowering level of growth factors and increasing exudate level comprising high amount of tissue destructive enzymes. Asiaticoside possesses interesting wound healing and angiogenic activities that are employed to stimulate tissue regeneration in wound healing application. This study attempted to develop chitosan-aluminum monostearate (Alst) composite sponge containing asiaticoside for use as an absorbent medical dressing in chronic wound. N-methyl-2-pyrrolidone (NMP) was used to enhance homogeneity of asiaticoside in the polymer composite matrix. The sponge dressings were prepared by lyophilization and dehydrothermal treatment (DHT). Functional group interaction, crystallinity, and morphology of the prepared sponges were investigated using FT-IR, PXRD, and SEM, respectively. Physicochemical properties, porosity, hydrophilic/hydrophobic properties and mechanical property, were evaluated. Wound dressing properties, water vapor transmission rate (WVTR), fluid absorbency, oxygen permeation (OP), and bio-adhesive property, were investigated. In vitro asiaticoside release study was conducted using immersion method. Cytotoxicity was studied in normal human dermal fibroblast (NHDF) and normal human epidermal keratinocyte (NHEK). Angiogenic activity of asiaticoside was evaluated using chick-chorioallantoic membrane (CAM) assay. FT-IR and PXRD results revealed the amidation after DHT to enhance the crystallinity of the prepared sponges. The prepared sponges had high porosity comprising high Alst-loaded amount that exhibited more compact structure. Alst enhanced hydrophobicity therefore it reduced the fluid absorption and WVTR together with bio-adhesion of the prepared sponge dressings. Porosity of all sponges was more than 85% therefore resulting in their high OP. Enhancing hydrophobicity of the material by Alst and more homogeneity caused by NMP eventually retarded the asiaticoside release for 7 days. The

  18. Development of a silk cable-reinforced gelatin/silk fibroin hybrid scaffold for ligament tissue engineering.

    PubMed

    Fan, Hongbin; Liu, Haifeng; Wang, Yue; Toh, Siew Lok; Goh, James Cho Hong

    2008-01-01

    The objective of this study was to develop a silk cable-reinforced gelatin/silk fibroin hybrid scaffold for ligament tissue engineering. The scaffold was fabricated by lyophilizing the cross-linked gelatin and silk fibroin mixture with braided silk cables. Scanning electronic microscopy (SEM) observation showed that microporous gelatin/silk fibroin sponges formed around silk cables mimicked the microstructures of ligament extracellular matrix (ECM). The silk cables significantly increased the tensile strength of the scaffold to meet the mechanical requirements for ligament tissue engineering. The scaffold possessed good cell adhesion property, and when mesenchymal stem cells (MSCs) were seeded on it, cells proliferated profusely. After 2 weeks of culture, seeded MSCs were distributed uniformly throughout the scaffold and were highly viable. Occurrence of cell death during culture was not significant. Deposition of collagen on the scaffold was found to increase with time. Differentiation of MSCs into ligament fibroblasts was verified by expressions of ligament ECM specific genes including collagen type I, collagen type III, and tenascin-C in mRNA and protein level. Immunohistochemistry stains also confirmed the production of key ligament ECM components on the scaffold. The results demonstrate that silk cable-reinforced gelatin/silk fibroin scaffold possesses the appropriate mechanical properties and has enlarged surface area. It is also capable of supporting cell proliferation and differentiation for ligament tissue engineering.

  19. UV-responsive nano-sponge for oil absorption and desorption.

    PubMed

    Kim, Do Hyun; Jung, Min Chan; Cho, So-Hye; Kim, Sang Hoon; Kim, Ho-Young; Lee, Heon Ju; Oh, Kyu Hwan; Moon, Myoung-Woon

    2015-01-01

    Controlled surface wettability for oil has been intensively studied to remove industrial oil waste or oil spill pollution from seas or rivers. In particular, external stimuli-induced special wetting materials, such as photo-responsive TiO2, have attracted considerable attention for oil-water separation. In this study, a novel method is reported to fabricate a nano-sponge which is composed of hydrophobic hydrocarbon and hydrophilic TiO2 nanoparticles for oil absorption or desorption that are responsive to UV irradiation. The hydrocarbon in the nano-sponge could selectively absorb oil from water, whereas the absorbed oil is released into the water by TiO2 in response to UV irradiation. The nano-sponge functionalized porous polydimethylsiloxane released more than 98% of the absorbed crude oil with UV irradiation and air-bubbling. It could be continuously reused while maintaining a high absorption capacity and desorption efficiency without incurring secondary air or water pollution. This smart oil absorption/desorption methodology with excellent selectivity and recyclability with almost perfect removal of absorbed oil can be applied for oil-water separation, oil spill cleanup and reuse of spilled oil. PMID:26260470

  20. UV-responsive nano-sponge for oil absorption and desorption.

    PubMed

    Kim, Do Hyun; Jung, Min Chan; Cho, So-Hye; Kim, Sang Hoon; Kim, Ho-Young; Lee, Heon Ju; Oh, Kyu Hwan; Moon, Myoung-Woon

    2015-08-11

    Controlled surface wettability for oil has been intensively studied to remove industrial oil waste or oil spill pollution from seas or rivers. In particular, external stimuli-induced special wetting materials, such as photo-responsive TiO2, have attracted considerable attention for oil-water separation. In this study, a novel method is reported to fabricate a nano-sponge which is composed of hydrophobic hydrocarbon and hydrophilic TiO2 nanoparticles for oil absorption or desorption that are responsive to UV irradiation. The hydrocarbon in the nano-sponge could selectively absorb oil from water, whereas the absorbed oil is released into the water by TiO2 in response to UV irradiation. The nano-sponge functionalized porous polydimethylsiloxane released more than 98% of the absorbed crude oil with UV irradiation and air-bubbling. It could be continuously reused while maintaining a high absorption capacity and desorption efficiency without incurring secondary air or water pollution. This smart oil absorption/desorption methodology with excellent selectivity and recyclability with almost perfect removal of absorbed oil can be applied for oil-water separation, oil spill cleanup and reuse of spilled oil.

  1. UV-responsive nano-sponge for oil absorption and desorption

    NASA Astrophysics Data System (ADS)

    Kim, Do Hyun; Jung, Min Chan; Cho, So-Hye; Kim, Sang Hoon; Kim, Ho-Young; Lee, Heon Ju; Oh, Kyu Hwan; Moon, Myoung-Woon

    2015-08-01

    Controlled surface wettability for oil has been intensively studied to remove industrial oil waste or oil spill pollution from seas or rivers. In particular, external stimuli-induced special wetting materials, such as photo-responsive TiO2, have attracted considerable attention for oil-water separation. In this study, a novel method is reported to fabricate a nano-sponge which is composed of hydrophobic hydrocarbon and hydrophilic TiO2 nanoparticles for oil absorption or desorption that are responsive to UV irradiation. The hydrocarbon in the nano-sponge could selectively absorb oil from water, whereas the absorbed oil is released into the water by TiO2 in response to UV irradiation. The nano-sponge functionalized porous polydimethylsiloxane released more than 98% of the absorbed crude oil with UV irradiation and air-bubbling. It could be continuously reused while maintaining a high absorption capacity and desorption efficiency without incurring secondary air or water pollution. This smart oil absorption/desorption methodology with excellent selectivity and recyclability with almost perfect removal of absorbed oil can be applied for oil-water separation, oil spill cleanup and reuse of spilled oil.

  2. UV-responsive nano-sponge for oil absorption and desorption

    PubMed Central

    Kim, Do Hyun; Jung, Min Chan; Cho, So-Hye; Kim, Sang Hoon; Kim, Ho-Young; Lee, Heon Ju; Oh, Kyu Hwan; Moon, Myoung-Woon

    2015-01-01

    Controlled surface wettability for oil has been intensively studied to remove industrial oil waste or oil spill pollution from seas or rivers. In particular, external stimuli-induced special wetting materials, such as photo-responsive TiO2, have attracted considerable attention for oil-water separation. In this study, a novel method is reported to fabricate a nano-sponge which is composed of hydrophobic hydrocarbon and hydrophilic TiO2 nanoparticles for oil absorption or desorption that are responsive to UV irradiation. The hydrocarbon in the nano-sponge could selectively absorb oil from water, whereas the absorbed oil is released into the water by TiO2 in response to UV irradiation. The nano-sponge functionalized porous polydimethylsiloxane released more than 98% of the absorbed crude oil with UV irradiation and air-bubbling. It could be continuously reused while maintaining a high absorption capacity and desorption efficiency without incurring secondary air or water pollution. This smart oil absorption/desorption methodology with excellent selectivity and recyclability with almost perfect removal of absorbed oil can be applied for oil-water separation, oil spill cleanup and reuse of spilled oil. PMID:26260470

  3. Who Produces Ianthelline? The Arctic Sponge Stryphnus fortis or its Sponge Epibiont Hexadella dedritifera: a Probable Case of Sponge-Sponge Contamination.

    PubMed

    Cárdenas, Paco

    2016-04-01

    The bromotyrosine derivative ianthelline was isolated recently from the Atlantic boreo-arctic deep-sea sponge Stryphnus fortis, and shown to have clear antitumor and antifouling effects. However, chemosystematics, field observations, and targeted metabolic analyses (using UPLC-MS) suggest that ianthelline is not produced by S. fortis but by Hexadella dedritifera, a sponge that commonly grows on S. fortis. This case highlights the importance of combining taxonomic and ecological knowledge to the field of sponge natural products research. PMID:27091193

  4. SITE demonstration of the Dynaphore/Forager Sponge technology to remove dissolved metals from contaminated groundwater

    SciTech Connect

    Esposito, C.R.; Vaccaro, G.

    1995-10-01

    A Superfund Innovative Technology Evaluation (SITE) demonstration was conducted of the Dynaphore/Forager Sponge technology during the week of April 3, 1994 at the N.L. Industries Superfund Site in Pedricktown, New Jersey. The Forager Sponge is an open-celled cellulose sponge incorporating an amine-containing chelating polymer that selectively absorbs dissolved heavy metals in both cationic and anionic states. This technology is a volume reduction technology in which heavy metal contaminants from an aqueous medium are concentrated into a smaller volume for facilitated disposal. The developer states that the technology can be used to remove heavy metals from a wide variety of aqueous media, such as groundwater, surface waters and process waters. The sponge matrix can be directly disposed, or regenerated with chemical solutions. For this demonstration the sponge was set up as a mobile pump-and-treat system which treated groundwater contaminated with heavy metals. The demonstration focused on the system`s ability to remove lead, cadmium, chromium and copper from the contaminated groundwater over a continuous 72-hour test. The removal of heavy metals proceeded in the presence of significantly higher concentrations of innocuous cations such as calcium, magnesium, sodium, potassium and aluminum.

  5. The effect of benzo[a]pyrene on sponges as model organisms in marine pollution.

    PubMed

    Zahn, R K; Kurelec, B; Zahn-Daimler, G; Müller, W E; Rijavec, M; Batel, R; Given, R; Pondeljak, V; Beyer, R

    1982-03-15

    The majority of the investigations were performed with the marine sponge Tethya lyncurium at concentrations of 2 X 10(-8) to 1 X 10(-11) g/ml of benzo[a]pyrene (BaP). Sea-pollution was characterized as BaP equivalent activity in the Ames test. Increased activity of ornithine decarboxylase (ODC) was observed when sponges were artificially exposed at polluted marine areas for 3 weeks. In contrast to the situation in higher animals no ODC induction of the fast type was observed. Mixed function oxygenases (MFO) were not detected in sponges nor could they be induced as in vertebrates. BaP was absorbed by Tethya and concentrated 30--60-fold. In live, but not dead, artificially perfused sponges [3H]- and [14C]BaP-radiolabeled became firmly associated with DNA, RNA and protein of the sponges. The association persisted in isolated fractions, in nucleotides, in nucleosides and in protein hydrolysates. The BaP binding ratio to DNA was found to be strongly correlated to the concentration of BaP. Light modifies BaP and thus enables binding. In the dark only very low association, if any, is observed. The possible consequences of these findings are discussed.

  6. Ecology of antarctic marine sponges: an overview.

    PubMed

    McClintock, James B; Amsler, Charles D; Baker, Bill J; van Soest, Rob W M

    2005-04-01

    Sponges are important components of marine benthic communities of Antarctica. Numbers of species are high, within the lower range for tropical latitudes, similar to those in the Arctic, and comparable or higher than those of temperate marine environments. Many have circumpolar distributions and in some habitats hexactinellids dominate benthic biomass. Antarctic sponge assemblages contribute considerable structural heterogeneity for colonizing epibionts. They also represent a significant source of nutrients to prospective predators, including a suite of spongivorous sea stars whose selective foraging behaviors have important ramifications upon community structure. The highly seasonal plankton blooms that typify the Antarctic continental shelf are paradoxical when considering the planktivorous diets of sponges. Throughout much of the year Antarctic sponges must either exploit alternate sources of nutrition such as dissolved organic carbon or be physiologically adapted to withstand resource constraints. In contrast to predictions that global patterns of predation should select for an inverse correlation between latitude and chemical defenses in marine sponges, such defenses are not uncommon in Antarctic sponges. Some species sequester their defensive metabolites in the outermost layers where they are optimally effective against sea star predation. Secondary metabolites have also been shown to short-circuit molting in sponge-feeding amphipods and prevent fouling by diatoms. Coloration in Antarctic sponges may be the result of relict pigments originally selected for aposematism or UV screens yet conserved because of their defensive properties. This hypothesis is supported by the bioactive properties of pigments examined to date in a suite of common Antarctic sponges.

  7. CONDUCTIVITY TITRATION OF GELATIN SOLUTIONS WITH ACIDS.

    PubMed

    Hitchcock, D I

    1923-11-20

    Titrations have been made, by the conductivity method, of gelatin solutions with hydrochloric and sulphuric acids. The results indicate an end-point at about 8.6 cc. of N/10 acid per gm. of gelatin, or a combining weight of about 1,160. These results are in fair agreement with those previously obtained by the hydrogen electrode method. Better agreement between the two methods was found in the case of deaminized gelatin. The data are in accord with a purely chemical conception of the combination between protein and acid.

  8. Gelatin colloids in the resuscitation of trauma.

    PubMed

    Whitfield, C

    2006-12-01

    To date, the specific role of gelatins in trauma resuscitation remains under-investigated. Their adverse affects are well described and relate principally to the provocation of allergic responses whilst their influence upon haemostasis is relatively benign in comparison to the other colloids. However, their benefits are only sparsely documented and the evidence to choose one gelatin over another virtually non-existent. As knowledge of the microcirculatory dysfunction inherent in the shocked state increases, the role of the gelatins in trauma resuscitation is being increasing sidelined by other colloids--notably the starches. Their role beyond a basic resuscitation tool is now uncertain.

  9. Ultraviolet radiation absorbing compounds in marine organisms

    SciTech Connect

    Chalker, B.E.; Dunlap, W.C. )

    1990-01-09

    Studies on the biological effects of solar ultraviolet radiations are becoming increasingly common, in part due to recent interest in the Antarctic ozone hole and in the perceived potential for global climate change. Marine organisms possess many strategies for ameliorating the potentially damaging effects of UV-B (280-320 nm) and the shorter wavelengths of UV-A (320-400nm). One mechanism is the synthesis of bioaccumulation of ultraviolet radiation absorbing compounds. Several investigators have noted the presence of absorbing compounds in spectrophotometer scans of extracts from a variety of marine organisms, particularly algae and coelenterates containing endosymbiotic algae. The absorbing compounds are often mycosporine-like amino acids. Thirteen mycosporine-like amino acids have already been described, and several others have recently been detected. Although, the mycosporine-like amino acids are widely distributed. these compounds are by no means the only type of UV-B absorbing compounds which has been identified. Coumarins from green algae, quinones from sponges, and indoles from a variety of sources are laternative examples which are documented in the natural products literature. When the biological impact of solar ultraviolet radiation is assessed, adequate attention must be devoted to the process of photoadaptation, including the accumulation of ultraviolet radiation absorbing compounds.

  10. Sponge-specific clusters revisited: a comprehensive phylogeny of sponge-associated microorganisms.

    PubMed

    Simister, Rachel L; Deines, Peter; Botté, Emmanuelle S; Webster, Nicole S; Taylor, Michael W

    2012-02-01

    Marine sponges often contain diverse and abundant communities of microorganisms including bacteria, archaea and eukaryotic microbes. Numerous 16S rRNA-based studies have identified putative 'sponge-specific' microbes that are apparently absent from seawater and other (non-sponge) marine habitats. With more than 7500 sponge-derived rRNA sequences (from clone, isolate and denaturing gradient gel electrophoresis data) now publicly available, we sought to determine whether the current notion of sponge-specific sequence clusters remains valid. Comprehensive phylogenetic analyses were performed on the 7546 sponge-derived 16S and 18S rRNA sequences that were publicly available in early 2010. Overall, 27% of all sequences fell into monophyletic, sponge-specific sequence clusters. Such clusters were particularly well represented among the Chloroflexi, Cyanobacteria, 'Poribacteria', Betaproteobacteria and Acidobacteria, and in total were identified in at least 14 bacterial phyla, as well as the Archaea and fungi. The largest sponge-specific cluster, representing the cyanobacterium 'Synechococcus spongiarum', contained 245 sequences from 40 sponge species. These results strongly support the existence of sponge-specific microbes and provide a suitable framework for future studies of rare and abundant sponge symbionts, both of which can now be studied using next-generation sequencing technologies.

  11. Gelatin microcapsules for enhanced microwave tumor hyperthermia.

    PubMed

    Du, Qijun; Fu, Changhui; Tie, Jian; Liu, Tianlong; Li, Linlin; Ren, Xiangling; Huang, Zhongbing; Liu, Huiyu; Tang, Fangqiong; Li, Li; Meng, Xianwei

    2015-02-21

    Local and rapid heating by microwave (MW) irradiation is important in the clinical treatment of tumors using hyperthermia. We report here a new thermo-seed technique for the highly efficient MW irradiation ablation of tumors in vivo based on gelatin microcapsules. We achieved 100% tumor elimination in a mouse model at an ultralow power of 1.8 W without any side-effects. The results of MTT assays, a hemolysis test and the histological staining of organs indicated that the gelatin microcapsules showed excellent compatibility with the physiological environment. A possible mechanism is proposed for MW hyperthermia using gelatin microcapsules. We also used gelatin microcapsules capped with CdTe quantum dots for in vivo optical imaging. Our study suggests that these microcapsules may have potential applications in imaging-guided cancer treatment.

  12. Gelatin coated electrodes allow prolonged bioelectronic measurements

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Silver electrodes treated with an anodizing electrolyte containing gelatin are used for long term monitoring of bioelectronic potentials in humans. The electrodes do not interact with perspiration, cause skin irritation, or promote the growth of bacteria.

  13. Gelatin microcapsules for enhanced microwave tumor hyperthermia

    NASA Astrophysics Data System (ADS)

    Du, Qijun; Fu, Changhui; Tie, Jian; Liu, Tianlong; Li, Linlin; Ren, Xiangling; Huang, Zhongbing; Liu, Huiyu; Tang, Fangqiong; Li, Li; Meng, Xianwei

    2015-02-01

    Local and rapid heating by microwave (MW) irradiation is important in the clinical treatment of tumors using hyperthermia. We report here a new thermo-seed technique for the highly efficient MW irradiation ablation of tumors in vivo based on gelatin microcapsules. We achieved 100% tumor elimination in a mouse model at an ultralow power of 1.8 W without any side-effects. The results of MTT assays, a hemolysis test and the histological staining of organs indicated that the gelatin microcapsules showed excellent compatibility with the physiological environment. A possible mechanism is proposed for MW hyperthermia using gelatin microcapsules. We also used gelatin microcapsules capped with CdTe quantum dots for in vivo optical imaging. Our study suggests that these microcapsules may have potential applications in imaging-guided cancer treatment.Local and rapid heating by microwave (MW) irradiation is important in the clinical treatment of tumors using hyperthermia. We report here a new thermo-seed technique for the highly efficient MW irradiation ablation of tumors in vivo based on gelatin microcapsules. We achieved 100% tumor elimination in a mouse model at an ultralow power of 1.8 W without any side-effects. The results of MTT assays, a hemolysis test and the histological staining of organs indicated that the gelatin microcapsules showed excellent compatibility with the physiological environment. A possible mechanism is proposed for MW hyperthermia using gelatin microcapsules. We also used gelatin microcapsules capped with CdTe quantum dots for in vivo optical imaging. Our study suggests that these microcapsules may have potential applications in imaging-guided cancer treatment. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr07104b

  14. Metal sponge for cryosorption pumping applications

    DOEpatents

    Myneni, G.R.; Kneisel, P.

    1995-12-26

    A system has been developed for adsorbing gases at high vacuum in a closed area. The system utilizes large surface clean anodized metal surfaces at low temperatures to adsorb the gases. The large surface clean anodized metal is referred to as a metal sponge. The metal sponge generates or maintains the high vacuum by increasing the available active cryosorbing surface area. 4 figs.

  15. Metal sponge for cryosorption pumping applications

    DOEpatents

    Myneni, Ganapati R.; Kneisel, Peter

    1995-01-01

    A system has been developed for adsorbing gases at high vacuum in a closed area. The system utilizes large surface clean anodized metal surfaces at low temperatures to adsorb the gases. The large surface clean anodized metal is referred to as a metal sponge. The metal sponge generates or maintains the high vacuum by increasing the available active cryosorbing surface area.

  16. Effective household disinfection methods of kitchen sponges

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Several household disinfecting treatments to kill bacteria, yeasts and molds on kitchen sponges were evaluated. Sponges were soaked in 10 percent bleach for 3 min, lemon juice (pH 2.9) or deionized water for 1 min; placed in a microwave oven for 1 min; or placed in a dishwasher operating with a dryi...

  17. Halal authenticity of gelatin using species-specific PCR.

    PubMed

    Shabani, Hessam; Mehdizadeh, Mehrangiz; Mousavi, Seyed Mohammad; Dezfouli, Ehsan Ansari; Solgi, Tara; Khodaverdi, Mahdi; Rabiei, Maryam; Rastegar, Hossein; Alebouyeh, Mahmoud

    2015-10-01

    Consumption of food products derived from porcine sources is strictly prohibited in Islam. Gelatin, mostly derived from bovine and porcine sources, has many applications in the food and pharmaceutical industries. To ensure that food products comply with halal regulations, development of valid and reliable analytical methods is very much required. In this study, a species-specific polymerase chain reaction (PCR) assay using conserved regions of mitochondrial DNA (cytochrome b gene) was performed to evaluate the halal authenticity of gelatin. After isolation of DNA from gelatin powders with known origin, conventional PCR using species-specific primers was carried out on the extracted DNA. The amplified expected PCR products of 212 and 271 bp were observed for porcine and bovine gelatin, respectively. The sensitivity of the method was tested on binary gelatin mixtures containing 0.1%, 1%, 10%, and 100% (w/w) of porcine gelatin within bovine gelatin and vice versa. Although most of the DNA is degraded due to the severe processing steps of gelatin production, the minimum level of 0.1% w/w of both porcine and bovine gelatin was detected. Moreover, eight food products labeled as containing bovine gelatin and eight capsule shells were subjected to PCR examination. The results showed that all samples contained bovine gelatin, and the absence of porcine gelatin was verified. This method of species authenticity is very useful to verify whether gelatin and gelatin-containing food products are derived from halal ingredients.

  18. Thermal characterisation of gelatin extracted from yellowfin tuna skin and commercial mammalian gelatin.

    PubMed

    Rahman, Mohammad Shafiur; Al-Saidi, Ghalib Said; Guizani, Nejib

    2008-05-15

    Glass transition and other thermal characteristics of gelatin from different sources were studied by differential scanning calorimetry (DSC) and modulated DSC (MDSC). The initial glass transition temperatures of equilibrated gelatin samples at 11.3% relative humidity, determined from reversible heat flow thermogram of MDSC, were 23, 75 and 59°C, respectively, for tuna skin, bovine and porcine gelatin. When gelatin samples were equilibrated at higher relative humidity of 52.9%, glass transition temperature of fish skin and bovine gelatin decreased to -3 and 57°C, respectively. Further increase of equilibration relative humidity to 75.3% showed increased value in the case of tuna skin, whereas bovine and porcine did not show any significant change. DSC and MDSC results indicated that tuna gelatin showed lower glass transition compared to mammalian source gelatin equilibrated at the same constant relative humidity. In general glass transition measured by DSC was found lower than the values measured by MDSC. The results in this study showed that the degree of plasticization varied with the source of gelatin as well as their extraction methods. PMID:26059124

  19. Polarization properties of gelatin holograms

    NASA Astrophysics Data System (ADS)

    Rallison, Richard D.; Schicker, Scott R.

    1992-05-01

    Dichromated gelatin exhibits variable changes in effective refractive index (n) from 1.54 before exposure to less than 1.25 as it expands during processing. This aerogel like effects causes aberrations in diffractive optics and Kogelnik's theory predicts strong polarization separation in gratings at many different angles other than 90 degrees. The diffraction efficiency of both S and P polarizations at any angle is dependent on the product of thickness and index modulation while the angle inside the medium is dependent on n. We investigated predicted conditions where only one polarization would be diffracted and subsequently proved n varies from about 1.4 to 1.2 after processing and depends on the film thickness and processing procedures. Transmission gratings made at angles from 36 to 66 degrees were fit to mathematical models as proof of the phenomena, some performed with extinction ratios greater than 100:1. We were also able to demonstrate a similar range in conformal reflection structures and to design a novel polarizer. The calculation of exposure geometries for display holograms becomes more accurate when index change is included in the formulas but some results remain hard to explain.

  20. Medullary sponge kidney in childhood

    SciTech Connect

    Patriquin, H.B.; O'Regan, S.

    1985-08-01

    Medullary sponge kidney is reported in six children aged 2-18 years. One child was asymptomatic; the others had hematuria or a urine-concentrating defect. Renal function and size were otherwise normal, as was liver function. The diagnosis was made at excretory urography according to criteria established in adults. Sonography revealed hyperechogenic pyramids, at first at the periphery, later generalized. Computed tomography is very sensitive to the pyramidal nephrocalcinosis that complicates this disease and explains the frequent presenting symptom of hematuria in these children.

  1. Elements of a 'nervous system' in sponges.

    PubMed

    Leys, Sally P

    2015-02-15

    Genomic and transcriptomic analyses show that sponges possess a large repertoire of genes associated with neuronal processes in other animals, but what is the evidence these are used in a coordination or sensory context in sponges? The very different phylogenetic hypotheses under discussion today suggest very different scenarios for the evolution of tissues and coordination systems in early animals. The sponge genomic 'toolkit' either reflects a simple, pre-neural system used to protect the sponge filter or represents the remnants of a more complex signalling system and sponges have lost cell types, tissues and regionalization to suit their current suspension-feeding habit. Comparative transcriptome data can be informative but need to be assessed in the context of knowledge of sponge tissue structure and physiology. Here, I examine the elements of the sponge neural toolkit including sensory cells, conduction pathways, signalling molecules and the ionic basis of signalling. The elements described do not fit the scheme of a loss of sophistication, but seem rather to reflect an early specialization for suspension feeding, which fits with the presumed ecological framework in which the first animals evolved.

  2. Sponging up metals: bacteria associated with the marine sponge Spongia officinalis.

    PubMed

    Bauvais, Cléa; Zirah, Séverine; Piette, Laurie; Chaspoul, Florence; Domart-Coulon, Isabelle; Chapon, Virginie; Gallice, Philippe; Rebuffat, Sylvie; Pérez, Thierry; Bourguet-Kondracki, Marie-Lise

    2015-03-01

    The present study explored the bacteria of the sponge Spongia officinalis in a metal-polluted environment, using PCR-DGGE fingerprinting, culture-dependent approaches and in situ hybridization. The sponge samples collected over three consecutive years in the Western Mediterranean Sea contained high concentrations of zinc, nickel, lead and copper determined by ICP-MS. DGGE signatures indicated a sponge specific bacterial association and suggested spatial and temporal variations. The bacterial culturable fraction associated with S. officinalis and tolerant to heavy metals was isolated using metal-enriched microbiological media. The obtained 63 aerobic strains were phylogenetically affiliated to the phyla Proteobacteria, Actinobacteria, and Firmicutes. All isolates showed high tolerances to the selected heavy metals. The predominant genus Pseudovibrio was localized via CARD-FISH in the sponge surface tissue and validated as a sponge-associated epibiont. This study is the first step in understanding the potential involvement of the associated bacteria in sponge's tolerance to heavy metals.

  3. Dextran and gelatin based photocrosslinkable tissue adhesive.

    PubMed

    Wang, Tao; Nie, Jun; Yang, Dongzhi

    2012-11-01

    A two-component tissue adhesive based on biocompatible and bio-degradable polymers (oxidized urethane dextran (Dex-U-AD) and gelatin) was prepared and photocrosslinked under the ultraviolet (UV) irradiation. The adhesive could adhere to surface of gelatin, which simulated the human tissue steadily. The structures of above Dex-U-AD were characterized by FTIR, (1)H NMR spectroscopy and XRD. The adhesion property of result products was evaluated by lap-shear test. The maximum adhesion strength could reach to 4.16±0.72 MPa which was significantly higher than that of fibrin glue. The photopolymerization process of Dex-U-AD/gelatin was monitored by real time infrared spectroscopy (RTIR). It took less than 5 min to complete the curing process. The cytotoxicity of Dex-U-AD/gelatin also was evaluated which indicated that Dex-U-AD/gelatin gels were nontoxic to L929 cell. The relationship between all the above-mentioned properties and degree of oxidization of Dex-U-AD was assessed. The obtained products have the potential to serve as tissue adhesive in the future.

  4. Assessing the complex sponge microbiota: core, variable and species-specific bacterial communities in marine sponges

    PubMed Central

    Schmitt, Susanne; Tsai, Peter; Bell, James; Fromont, Jane; Ilan, Micha; Lindquist, Niels; Perez, Thierry; Rodrigo, Allen; Schupp, Peter J; Vacelet, Jean; Webster, Nicole; Hentschel, Ute; Taylor, Michael W

    2012-01-01

    Marine sponges are well known for their associations with highly diverse, yet very specific and often highly similar microbiota. The aim of this study was to identify potential bacterial sub-populations in relation to sponge phylogeny and sampling sites and to define the core bacterial community. 16S ribosomal RNA gene amplicon pyrosequencing was applied to 32 sponge species from eight locations around the world's oceans, thereby generating 2567 operational taxonomic units (OTUs at the 97% sequence similarity level) in total and up to 364 different OTUs per sponge species. The taxonomic richness detected in this study comprised 25 bacterial phyla with Proteobacteria, Chloroflexi and Poribacteria being most diverse in sponges. Among these phyla were nine candidate phyla, six of them found for the first time in sponges. Similarity comparison of bacterial communities revealed no correlation with host phylogeny but a tropical sub-population in that tropical sponges have more similar bacterial communities to each other than to subtropical sponges. A minimal core bacterial community consisting of very few OTUs (97%, 95% and 90%) was found. These microbes have a global distribution and are probably acquired via environmental transmission. In contrast, a large species-specific bacterial community was detected, which is represented by OTUs present in only a single sponge species. The species-specific bacterial community is probably mainly vertically transmitted. It is proposed that different sponges contain different bacterial species, however, these bacteria are still closely related to each other explaining the observed similarity of bacterial communities in sponges in this and previous studies. This global analysis represents the most comprehensive study of bacterial symbionts in sponges to date and provides novel insights into the complex structure of these unique associations. PMID:21993395

  5. In vitro evaluation of electrospun gelatin-glutaraldehyde nanofibers

    NASA Astrophysics Data System (ADS)

    Zhan, Jianchao; Morsi, Yosry; Ei-Hamshary, Hany; Al-Deyab, Salem S.; Mo, Xiumei

    2016-03-01

    The gelatin-glutaraldehyde (gelatin-GA) nanofibers were electrospun in order to overcome the defects of ex-situ crosslinking process such as complex process, destruction of fiber morphology and decrease of porosity. The morphological structure, porosity, thermal property, moisture absorption and moisture retention performance, hydrolytic resistance, mechanical property and biocompatibility of nanofiber scaffolds were tested and characterized. The gelatin-GA nanofiber has nice uniform diameter and more than 80% porosity. The hydrolytic resistance and mechanical property of the gelatin-GA nanofiber scaffolds are greatly improved compared with that of gelatin nanofibers. The contact angle, moisture absorption, hydrolysis resistance, thermal resistance and mechanical property of gelatin-GA nanofiber scaffolds could be adjustable by varying the gelatin solution concentration and GA content. The gelatin-GA nanofibers had excellent properties, which are expected to be an ideal scaffold for biomedical and tissue engineering applications.

  6. Understanding starch gelatinization: The phase diagram approach.

    PubMed

    Carlstedt, Jonas; Wojtasz, Joanna; Fyhr, Peter; Kocherbitov, Vitaly

    2015-09-20

    By constructing a detailed phase diagram for the potato starch-water system based on data from optical microscopy, synchrotron X-ray scattering and differential scanning calorimetry, we show that gelatinization can be interpreted in analogy with a eutectic transition. The phase rule explains why the temperature of the gelatinization transition (G) is independent on water content. Furthermore, the melting (M1) endotherm observed in DSC represents a liquidus line; the temperature for this event increases with increasing starch concentration. Both the lamellar spacing and the inter-helix distance were observed to decrease with increasing starch content for starch concentrations between approximately 65 wt% and 75 wt%, while the inter-helix distance continued decreasing upon further dehydration. Understanding starch gelatinization has been a longstanding challenge. The novel approach presented here shows interpretation of this phenomenon from a phase equilibria perspective.

  7. Effects of powder from white cabbage outer leaves on sponge cake quality

    NASA Astrophysics Data System (ADS)

    Prokopov, Tsvetko; Goranova, Zhivka; Baeva, Marianna; Slavov, Anton; Galanakis, Charis M.

    2015-10-01

    The main objective of this study was to develop high fibre cakes utilizing and valorising cabbage by-products - cabbage outer leaves. Cabbage outer leaves were dried and milled in order to produce cabbage leaf powder. The cabbage leaf powder was added at 0, 10, 20% into sponge cake. All of the samples were subjected to physicochemical analysis and sensory evaluation. Methods of descriptive sensory analysis were used for a comparative analysis of the sponge cakes with cabbage leaf powder and the cake without cabbage leaf powder. Addition of cabbage leaf powder in sponge cakes significantly affected the cake volume and textural properties. Springiness of cakes with cabbage leaf powder and crumb tenderness were lower, while the structure was stable at high loads, as expressed by lower shrinkage in comparison with the control cake. The nutritional value of the sponge cakes with cabbage leaf powder was lower than the control cake. The cells cakes modified by cabbage leaf powder were smaller and almost equal, uniformly distributed in the crumb, and at the same time had thicker walls. The cakes with addition of cabbage leaf powder showed the springiness and their crumb tenderness were lower, while their structure was stable at high loads. Control cake showed higher water-absorbing capacity compared to the cakes with 10 and 20% cabbage leaf powder.

  8. Pulsed electromembrane extraction for analysis of derivatized amino acids: A powerful technique for determination of animal source of gelatin samples.

    PubMed

    Rezazadeh, Maryam; Yamini, Yadollah; Seidi, Shahram; Aghaei, Ali

    2015-05-01

    Differentiation of animal sources of gelatin is required for many reasons such as some anxieties about bovine spongiform encephalopathy or a ban on consuming porcine gelatin in some religions. In the present work, an efficient method is introduced for determination of animal origin of gelatin samples. The basis of this procedure is the application of pulsed electric field for extraction, preconcentration, and analysis of derivatized amino acids in gelatin. To this end, after derivatization of amino acids of interest by means of o-phthalaldehyde (OPA) for enhancing their ultraviolet (UV) absorbance as well as increasing their lipophilicities, a 137V electric field was applied for 20min with 10min(-1) frequency to make the analytes migrate through a 200µm organic liquid membrane into an aqueous acceptor phase. Finally, the acceptor phase was analyzed by HPLC-UV. The proposed technique offered a high efficiency for analysis of amino acids, regarding 43% and 79% as extraction recoveries and 25ng mL(-1) and 50ng mL(-1) as limits of detection (LODs) for asparagine and glutamine, respectively. Therefore, due to sample cleanup ability of the proposed method and obtained preconcentration factors (29 and 53 for asparagine and glutamine, respectively), it could be carried out for differentiation of animal origins of gelatin samples, even if only small amounts of samples are available or in complicated media of foodstuffs and medicament.

  9. Electron paramagnetic resonance in human fingernails: the sponge model implication.

    PubMed

    Reyes, R A; Romanyukha, A; Trompier, F; Mitchell, C A; Clairand, I; De, T; Benevides, L A; Swartz, H M

    2008-11-01

    The most significant problem of electron paramagnetic resonance (EPR) fingernail dosimetry is the presence of two signals of non-radiation origin that overlap the radiation-induced signal (RIS), making it almost impossible to perform dose measurements below 5 Gy. Historically, these two non-radiation components were named mechanically induced signal (MIS) and background signal (BKS). In order to investigate them in detail, three different methods of MIS and BKS mutual isolation have been developed and implemented. After applying these methods, it is shown here that fingernail tissue, after cut, can be modeled as a deformed sponge, where the MIS and BKS are associated with the stress from elastic and plastic deformations, respectively. A sponge has a unique mechanism of mechanical stress absorption, which is necessary for fingernails in order to perform its everyday function of protecting the fingertips from hits and trauma. Like a sponge, fingernails are also known to be an effective water absorber. When a sponge is saturated with water, it tends to restore to its original shape, and when it loses water, it becomes deformed again. The same happens to fingernail tissue. It is proposed that the MIS and BKS signals of mechanical origin be named MIS1 and MIS2 for MISs 1 and 2, respectively. Our suggested interpretation of the mechanical deformation in fingernails gives also a way to distinguish between the MIS and RIS. The results obtained show that the MIS in irradiated fingernails can be almost completely eliminated without a significant change to the RIS by soaking the sample for 10 min in water. The proposed method to measure porosity (the fraction of void space in spongy material) of the fingernails gave values of 0.46-0.48 for three of the studied samples. Existing results of fingernail dosimetry have been obtained on mechanically stressed samples and are not related to the "real" in vivo dosimetric properties of fingernails. A preliminary study of these

  10. PLLA-collagen and PLLA-gelatin hybrid scaffolds with funnel-like porous structure for skin tissue engineering

    NASA Astrophysics Data System (ADS)

    Lu, Hongxu; Oh, Hwan Hee; Kawazoe, Naoki; Yamagishi, Kozo; Chen, Guoping

    2012-12-01

    In skin tissue engineering, a three-dimensional porous scaffold is necessary to support cell adhesion and proliferation and to guide cells moving into the repair area in the wound healing process. Structurally, the porous scaffold should have an open and interconnected porous architecture to facilitate homogenous cell distribution. Moreover, the scaffolds should be mechanically strong to protect deformation during the formation of new skin. In this study, the hybrid scaffolds were prepared by forming funnel-like collagen or gelatin sponge on a woven poly(l-lactic acid) (PLLA) mesh. The hybrid scaffolds combined the advantages of both collagen or gelatin (good cell-interactions) and PLLA mesh (high mechanical strength). The hybrid scaffolds were used to culture dermal fibroblasts for dermal tissue engineering. The funnel-like porous structure promoted homogeneous cell distribution and extracellular matrix production. The PLLA mesh reinforced the scaffold to avoid deformation. Subcutaneous implantation showed that the PLLA-collagen and PLLA-gelatin scaffolds promoted the regeneration of dermal tissue and epidermis and reduced contraction during the formation of new tissue. These results indicate that funnel-like hybrid scaffolds can be used for skin tissue regeneration.

  11. Development of electrospun beaded fibers from Thai silk fibroin and gelatin for controlled release application.

    PubMed

    Somvipart, Siraporn; Kanokpanont, Sorada; Rangkupan, Rattapol; Ratanavaraporn, Juthamas; Damrongsakkul, Siriporn

    2013-04-01

    Thai silk fibroin and gelatin are attractive biomaterials for tissue engineering and controlled release applications due to their biocompatibility, biodegradability, and bioactive properties. The development of electrospun fiber mats from silk fibroin and gelatin were reported previously. However, burst drug release from such fiber mats remained the problem. In this study, the formation of beads on the fibers aiming to be used for the sustained release of drug was of our interest. The beaded fiber mats were fabricated using electrospinning technique by controlling the solution concentration, weight blending ratio of Thai silk fibroin/gelatin blend, and applied voltage. It was found that the optimal conditions including the solution concentration and the weight blending ratio of Thai silk fibroin/gelatin at 8-10% (w/v) and 70/30, respectively, with the applied voltage at 18 kV provided the fibers with homogeneous formation of beads. Then, the beaded fiber mats obtained were crosslinked by the reaction of carbodiimide hydrochloride (EDC)/N-hydroxysuccinimide (NHS). Methylene blue as a model active compound was loaded on the fiber mats. The release test of methylene blue from the beaded fiber mats was carried out in comparison to that of the smooth fiber mats without beads. It was found that the beaded fiber mats could prolong the release of methylene blue, comparing to the smooth fiber mats without beads. This was possibly due to the beaded fiber mats that would absorb and retain higher amount of methylene blue than the fiber mats without beads. Thai silk fibroin/gelatin beaded fiber mats were established as an effective carrier for the controlled release applications.

  12. Cellularized Bilayer Pullulan-Gelatin Hydrogel for Skin Regeneration.

    PubMed

    Nicholas, Mathew N; Jeschke, Marc G; Amini-Nik, Saeid

    2016-05-01

    Skin substitutes significantly reduce the morbidity and mortality of patients with burn injuries and chronic wounds. However, current skin substitutes have disadvantages related to high costs and inadequate skin regeneration due to highly inflammatory wounds. Thus, new skin substitutes are needed. By combining two polymers, pullulan, an inexpensive polysaccharide with antioxidant properties, and gelatin, a derivative of collagen with high water absorbency, we created a novel inexpensive hydrogel-named PG-1 for "pullulan-gelatin first generation hydrogel"-suitable for skin substitutes. After incorporating human fibroblasts and keratinocytes onto PG-1 using centrifugation over 5 days, we created a cellularized bilayer skin substitute. Cellularized PG-1 was compared to acellular PG-1 and no hydrogel (control) in vivo in a mouse excisional skin biopsy model using newly developed dome inserts to house the skin substitutes and prevent mouse skin contraction during wound healing. PG-1 had an average pore size of 61.69 μm with an ideal elastic modulus, swelling behavior, and biodegradability for use as a hydrogel for skin substitutes. Excellent skin cell viability, proliferation, differentiation, and morphology were visualized through live/dead assays, 5-bromo-2'-deoxyuridine proliferation assays, and confocal microscopy. Trichrome and immunohistochemical staining of excisional wounds treated with the cellularized skin substitute revealed thicker newly formed skin with a higher proportion of actively proliferating cells and incorporation of human cells compared to acellular PG-1 or control. Excisional wounds treated with acellular or cellularized hydrogels showed significantly less macrophage infiltration and increased angiogenesis 14 days post skin biopsy compared to control. These results show that PG-1 has ideal mechanical characteristics and allows ideal cellular characteristics. In vivo evidence suggests that cellularized PG-1 promotes skin regeneration and may

  13. Characterization of poly(butylene succinate)/glycerol co-plasticized thermoplastic gelatin prepared by melt blending

    NASA Astrophysics Data System (ADS)

    Oliviero, Maria; Sorrentino, Andrea; Iannace, Salvatore

    2015-12-01

    Biodegradable thermoplastic poly(butylene succinate)/gelatin (PBS/TPG) blends with various blending ratios were prepared by melt mixing technique. The main goal of these blends is to improve the water sensitivity of thermoplastic gelatin by blending it with a hydrophobic biodegradable polymer obtained also from renewable resources. The incorporation of PBS yielded a decrease in absorbed moisture. Under the relative humidity 50 and 100%, the absorbed moisture obtained values were 19 and 229% for pure TPG, 12.3 and 127% for TPG/PBS(80/20), and 1.7 and 37% for TPG/PBS(20/80), respectively. The water resistance increased only for the samples containing a high value of PBS (>40%wt). Furthermore, mechanical properties and morphological analyses revealed that PBS/TPG blends were immiscible.

  14. Composition for absorbing hydrogen

    DOEpatents

    Heung, Leung K.; Wicks, George G.; Enz, Glenn L.

    1995-01-01

    A hydrogen absorbing composition. The composition comprises a porous glass matrix, made by a sol-gel process, having a hydrogen-absorbing material dispersed throughout the matrix. A sol, made from tetraethyl orthosilicate, is mixed with a hydrogen-absorbing material and solidified to form a porous glass matrix with the hydrogen-absorbing material dispersed uniformly throughout the matrix. The glass matrix has pores large enough to allow gases having hydrogen to pass through the matrix, yet small enough to hold the particles dispersed within the matrix so that the hydrogen-absorbing particles are not released during repeated hydrogen absorption/desorption cycles.

  15. Composition for absorbing hydrogen

    DOEpatents

    Heung, L.K.; Wicks, G.G.; Enz, G.L.

    1995-05-02

    A hydrogen absorbing composition is described. The composition comprises a porous glass matrix, made by a sol-gel process, having a hydrogen-absorbing material dispersed throughout the matrix. A sol, made from tetraethyl orthosilicate, is mixed with a hydrogen-absorbing material and solidified to form a porous glass matrix with the hydrogen-absorbing material dispersed uniformly throughout the matrix. The glass matrix has pores large enough to allow gases having hydrogen to pass through the matrix, yet small enough to hold the particles dispersed within the matrix so that the hydrogen-absorbing particles are not released during repeated hydrogen absorption/desorption cycles.

  16. State of water in gelatin Gels

    SciTech Connect

    Naryshkina, E.P.; Izmailova, V.N.; Polinnyi, A.I.

    1986-03-01

    It has been shown on the basis of the variation of the linewidth of water with time in high-resolution NMR spectra of gelatin gels in D/sub 2/O that there is a decrease in the mobility of the water molecules during the formation of the collagen-like helix in the initial stages of gelation. As the concentration of the protein is increased, the linewidth of the water signal ..delta.. increases, and the spin-spin (T/sub 2/) and spin-lattice (T/sub 1/) relaxation times and the self-diffusion coefficient of the water molecules D /SUB S/ in the fully formed gels of gelatin in H/sub 2/O decreases as a result of the immobilization of water by the gelatin macromolecules and the presence of a three-dimensional gel network. The aforementioned parameters vary as a function of the gelatin concentration in parallel with the value of the Flory-Huggins parameter /CHI/.

  17. Sponge-specific unknown bacterial groups detected in marine sponges collected from Korea through barcoded pyrosequencing.

    PubMed

    Jeong, Jong-Bin; Kim, Kyoung-Ho; Park, Jin-Sook

    2015-01-01

    The bacterial diversity of 10 marine sponges belonging to the species Cliona celata, an unidentified Cliona species, Haliclona cinerea, Halichondria okadai, Hymeniacidon sinapium, Lissodendoryx isodictyalis, Penares incrustans, Spirastrella abata, and Spirastrella panis collected from Jeju Island and Chuja Island was investigated using amplicon pyrosequencing of the 16S rRNA genes. The microbial diversity of these sponges has as of yet rarely or never been investigated. All sponges, except Cliona celata, Lissodendoryx isodictyalis, and Penares incrustans, showed simple bacterial diversity, in which one or two bacterial OTUs occupied more than 50% of the pyrosequencing reads and their OTU rank abundance curves saturated quickly. Most of the predominant OTUs belonged to Alpha-, Beta-, or Gammaproteobacteria. Some of the OTUs from the sponges with low diversity were distantly (88%~89%) or moderately (93%~97%) related to known sequences in the GenBank nucleotide database. Phylogenetic analysis showed that many of the representative sequences of the OTUs were related to the sequences originating from sponges and corals, and formed sponge-specific or -related clades. The marine sponges investigated herein harbored unexplored bacterial diversity, and further studies should be done to understand the microbes present in sponges.

  18. Schlieren photography to study sound interaction with highly absorbing materials.

    PubMed

    Declercq, Nico F; Degrieck, Joris; Leroy, Oswald

    2005-06-01

    Strong absorption of sound is often caused by the conversion of sound energy into heat. When this happens, it is not possible to study the interaction of sound with the absorbing material by means of reflected sound characteristics, because there is no reflected sound. Detecting for example the distance that sound travels in a strongly absorbing material, can be done by heat detection systems. However, the presence of temperature detectors in such materials interferes with the sound field and is therefore not really suitable. Infrared measurements are a possible option. Another option is the use of Schlieren photography for simultaneous visualization of sound and heat. This technique is briefly outlined with a 3 MHz sound beam incident on a highly absorbing sponge. PMID:15950023

  19. Black hemostatic sponge based on facile prepared cross-linked graphene.

    PubMed

    Quan, Kecheng; Li, Guofeng; Luan, Di; Yuan, Qipeng; Tao, Lei; Wang, Xing

    2015-08-01

    In this study, we demonstrate for the first time the remarkable hemostatic performance of a cross-linked graphene sponge (CGS) as a superb hemostat. The CGS can absorb plasma immediately (<40 ms) to form a blood cell layer and promotes subsequent clotting. The interaction between the interface of the CGS and blood cells reveals that the fast blood coagulation is primarily attributed to the enrichment of hemocytes and platelets on the wound surface. An in vitro dynamic whole-blood clotting test further highlights the effectiveness of the CGS. Considering the facile preparation, low cost, nontoxicity, and long shelf life of the portable black sponge, the CGS has great potential for trauma treatment. PMID:26001799

  20. Application of thermal model for pan evaporation to the hydrology of a defined medium, the sponge

    NASA Technical Reports Server (NTRS)

    Trenchard, M. H.; Artley, J. A. (Principal Investigator)

    1981-01-01

    A technique is presented which estimates pan evaporation from the commonly observed values of daily maximum and minimum air temperatures. These two variables are transformed to saturation vapor pressure equivalents which are used in a simple linear regression model. The model provides reasonably accurate estimates of pan evaporation rates over a large geographic area. The derived evaporation algorithm is combined with precipitation to obtain a simple moisture variable. A hypothetical medium with a capacity of 8 inches of water is initialized at 4 inches. The medium behaves like a sponge: it absorbs all incident precipitation, with runoff or drainage occurring only after it is saturated. Water is lost from this simple system through evaporation just as from a Class A pan, but at a rate proportional to its degree of saturation. The contents of the sponge is a moisture index calculated from only the maximum and minium temperatures and precipitation.

  1. Seasonal variation of Fatty acids and stable carbon isotopes in sponges as indicators for nutrition: biomarkers in sponges identified.

    PubMed

    Koopmans, Marieke; van Rijswijk, Pieter; Boschker, Henricus T S; Marco, Houtekamer; Martens, Dirk; Wijffels, Rene H

    2015-02-01

    To get a better understanding of sponge feeding biology and efficiencies, the fatty acid (FA) composition and (13)C natural abundance of sponges and of suspended particulate matter (SPM) from surrounding seawater was studied in different seasons at three locations. Haliclona oculata and Haliclona xena from the Oosterschelde, the Netherlands, Halichondria panicea and H. xena from Lake Veere, the Netherlands, and Aplysina aerophoba and Dysidea avara from the Mediterranean, Spain, were studied. Several FA biomarkers for different algal groups, bacteria and sponge biomass were identified in all sponges. The FA concentration variation in sponges was related to changes in fatty acid concentration in SPM. Stable carbon isotopic ratios (δ(13)C) in sponge specific FAs showed very limited seasonal variation at all sites. Algal FAs in sponges were mainly acquired from the SPM through active filtration in all seasons. At the two sites in the Netherlands only in May (spring), the sponge specific FAs had similar δ(13)C ratios as algal FAs, suggesting that sponges were mainly growing during spring and probably summer. During autumn and winter, they were still actively filtering, but the food collected during this period had little effect on sponge δ(13)C values suggesting limited incorporation of filtered material into the sponge body. The sponge A. aerophoba relied mostly on the symbiotic bacteria. In conclusion, fatty acid composition in combination with stable carbon isotope analysis can be used to analyze the food source of sponges.

  2. Modelling Absorbent Phenomena of Absorbent Structure

    NASA Astrophysics Data System (ADS)

    Sayeb, S.; Ladhari, N.; Ben Hassen, M.; Sakli, F.

    Absorption, retention and strike through time, as evaluating criteria of absorbent structures quality were studied. Determination of influent parameters on these criteria were realized by using the design method of experimental sets. In this study, the studied parameters are: Super absorbent polymer (SAP)/fluff ratio, compression and the porosity of the non woven used as a cover stock. Absorption capacity and retention are mostly influenced by SAP/fluff ratio. However, strike through time is affected by compression. Thus, a modelling of these characteristics in function of the important parameter was established.

  3. Methods for absorbing neutrons

    DOEpatents

    Guillen, Donna P.; Longhurst, Glen R.; Porter, Douglas L.; Parry, James R.

    2012-07-24

    A conduction cooled neutron absorber may include a metal matrix composite that comprises a metal having a thermal neutron cross-section of at least about 50 barns and a metal having a thermal conductivity of at least about 1 W/cmK. Apparatus for providing a neutron flux having a high fast-to-thermal neutron ratio may include a source of neutrons that produces fast neutrons and thermal neutrons. A neutron absorber positioned adjacent the neutron source absorbs at least some of the thermal neutrons so that a region adjacent the neutron absorber has a fast-to-thermal neutron ratio of at least about 15. A coolant in thermal contact with the neutron absorber removes heat from the neutron absorber.

  4. Externally tuned vibration absorber

    DOEpatents

    Vincent, Ronald J.

    1987-09-22

    A vibration absorber unit or units are mounted on the exterior housing of a hydraulic drive system of the type that is powered from a pressure wave generated, e.g., by a Stirling engine. The hydraulic drive system employs a piston which is hydraulically driven to oscillate in a direction perpendicular to the axis of the hydraulic drive system. The vibration absorbers each include a spring or other resilient member having one side affixed to the housing and another side to which an absorber mass is affixed. In a preferred embodiment, a pair of vibration absorbers is employed, each absorber being formed of a pair of leaf spring assemblies, between which the absorber mass is suspended.

  5. Holographic volume gratings in dye-doped jelly-like gelatin

    NASA Astrophysics Data System (ADS)

    Efendiev, T. Sh.; Katarkevich, V. M.; Rubinov, A. N.

    2007-06-01

    Holographic characteristics of a thick self-developing photosensitive medium - dye-doped jelly-like gelatin are investigated by means of pulsed laser exposure. The experiments were performed using aqueous gelatin solutions of Rhodamin 6G with a layer thickness of 1 mm. The slanted holographic gratings were written with two crossed beams from a frequency-doubled (λ = 532 nm) and Q-switched YAG:Nd laser (τ 0.5 ~ 17 ns, f <= 50 Hz). In the course of recording the hologram was read with the beam from a single-mode He-Ne laser (λ = 632.8 nm) which was not absorbed by the photosensitive medium. The real-time evolution of the grating diffraction efficiency was studied in dependence of the dye and gelatin concentration as well as the writing pulse fluence. It is shown that under appropriate choice of the medium composition and parameters of the recording radiation, it is possible to obtain phase volume holographic gratings with a diffraction efficiency of ~ 87 % and an angular selectivity of ~ 20'.

  6. 16 CFR 501.6 - Cellulose sponges, irregular dimensions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 16 Commercial Practices 1 2014-01-01 2014-01-01 false Cellulose sponges, irregular dimensions. 501... REQUIREMENTS AND PROHIBITIONS UNDER PART 500 § 501.6 Cellulose sponges, irregular dimensions. Variety packages of cellulose sponges of irregular dimensions, are exempted from the requirements of § 500.25 of...

  7. Solvent disperser for removing oil from sponge core

    SciTech Connect

    Di Foggio, R.

    1988-09-20

    This patent describes method for dispersing solvent for use in determining the oil saturation of an earth formation by means of sponge coring, comprising: (a) receiving solvent dripping downwardly, and (b) conducting the received solvent by means of capillary action to an application zone located and dimensioned for passing such solvent to the sponge in a sponge core barrel.

  8. 16 CFR 501.6 - Cellulose sponges, irregular dimensions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 16 Commercial Practices 1 2012-01-01 2012-01-01 false Cellulose sponges, irregular dimensions. 501... REQUIREMENTS AND PROHIBITIONS UNDER PART 500 § 501.6 Cellulose sponges, irregular dimensions. Variety packages of cellulose sponges of irregular dimensions, are exempted from the requirements of § 500.25 of...

  9. 16 CFR 501.6 - Cellulose sponges, irregular dimensions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 16 Commercial Practices 1 2013-01-01 2013-01-01 false Cellulose sponges, irregular dimensions. 501... REQUIREMENTS AND PROHIBITIONS UNDER PART 500 § 501.6 Cellulose sponges, irregular dimensions. Variety packages of cellulose sponges of irregular dimensions, are exempted from the requirements of § 500.25 of...

  10. 16 CFR 501.6 - Cellulose sponges, irregular dimensions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 1 2010-01-01 2010-01-01 false Cellulose sponges, irregular dimensions. 501... REQUIREMENTS AND PROHIBITIONS UNDER PART 500 § 501.6 Cellulose sponges, irregular dimensions. Variety packages of cellulose sponges of irregular dimensions, are exempted from the requirements of § 500.25 of...

  11. 16 CFR 501.6 - Cellulose sponges, irregular dimensions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 1 2011-01-01 2011-01-01 false Cellulose sponges, irregular dimensions. 501... REQUIREMENTS AND PROHIBITIONS UNDER PART 500 § 501.6 Cellulose sponges, irregular dimensions. Variety packages of cellulose sponges of irregular dimensions, are exempted from the requirements of § 500.25 of...

  12. Pyrosequencing reveals diverse and distinct sponge-specific microbial communities in sponges from a single geographical location in Irish waters.

    PubMed

    Jackson, Stephen A; Kennedy, Jonathan; Morrissey, John P; O'Gara, Fergal; Dobson, Alan D W

    2012-07-01

    Marine sponges are host to numerically vast and phylogenetically diverse bacterial communities, with 26 major phyla to date having been found in close association with sponge species worldwide. Analyses of these microbial communities have revealed many sponge-specific novel genera and species. These endosymbiotic microbes are believed to play significant roles in sponge physiology including the production of an array of bioactive secondary metabolites. Here, we report on the use of culture-based and culture-independent (pyrosequencing) techniques to elucidate the bacterial community profiles associated with the marine sponges Raspailia ramosa and Stelligera stuposa sampled from a single geographical location in Irish waters and with ambient seawater. To date, little is known about the microbial ecology of sponges of these genera. Culture isolation grossly underestimated sponge-associated bacterial diversity. Four bacterial phyla (Actinobacteria, Bacteroidetes, Firmicutes, Proteobacteria) were represented amongst ~200 isolates, compared with ten phyla found using pyrosequencing. Long average read lengths of ~430 bp (V1-V3 region of 16S rRNA gene) allowed for robust resolution of sequences to genus level. Bacterial OTUs (2,109 total), at 95% sequence similarity, from ten bacterial phyla were recovered from R. ramosa, 349 OTUs were identified in S. stuposa representing eight phyla, while 533 OTUs from six phyla were found in surrounding seawater. Bacterial communities differed significantly between sponge species and the seawater. Analysis of the data for sponge-specific taxa revealed that 2.8% of classified reads from the sponge R. ramosa can be defined as sponge-specific, while 26% of S. stuposa sequences represent sponge-specific bacteria. Novel sponge-specific clusters were identified, whereas the majority of previously reported sponge-specific clusters (e.g. Poribacteria) were absent from these sponge species. This deep and robust analysis provides further

  13. Measurement of kinetic energy dissipation with gelatine fissure formation with special reference to gelatine validation.

    PubMed

    Jussila, Jorma

    2005-05-28

    Various methods for calculating the amount of kinetic energy dissipated by a bullet into ballistic gelatine have been suggested in literature. These methods were compared using the results of thirteen 9 mmx19 mm pistol and five 7.62 mmx 39 mm rifle bullets shot into 10% ballistic gelatine. The Wound Profile Method gave the highest correlation, 0.89, with the measured amounts of dissipated kinetic energy. The Fissure surface area and total crack length method gained 0.51 and 0.52, respectively. The experimental results were also compared with those from pig tests with the same bullet types. Using the z-test at 95% level of confidence no difference between impact velocity normalized bullet decelerations could be determined for the 9 mm bullet used. The same test showed significant difference for 7.62 mm bullets. That, however, can be considered to be the result of the bullet's tendency to tumble in non-homogenous living tissue causing significant dispersion of observed deceleration values. The results add further evidence supporting the validity of 10% gelatine at +4 degrees C as wound ballistic tissue simulant. The study also introduces the use of an elastic "shroud" to hold the gelatine in place, to some extent reduce the effects of asymmetric expansion of the gelatine and to simulate the expansion suppression effect of surrounding tissues. PMID:15837008

  14. Simplified dichromated gelatin hologram recording process

    NASA Technical Reports Server (NTRS)

    Georgekutty, Tharayil G.; Liu, Hua-Kuang

    1987-01-01

    A simplified method for making dichromated gelatin (DCG) holographic optical elements (HOE) has been discovered. The method is much less tedious and it requires a period of processing time comparable with that for processing a silver halide hologram. HOE characteristics including diffraction efficiency (DE), linearity, and spectral sensitivity have been quantitatively investigated. The quality of the holographic grating is very high. Ninety percent or higher diffraction efficiency has been achieved in simple plane gratings made by this process.

  15. The Development of Novel Recombinant Human Gelatins as Replacements for Animal-Derived Gelatin in Pharmaceutical Applications

    NASA Astrophysics Data System (ADS)

    Olsen, David; Chang, Robert; Williams, Kim E.; Polarek, James W.

    We have developed a recombinant expression system to produce a series of novel recombinant human gelatins that can substitute for animal sourced gelatin preparations currently used in pharmaceutical and nutraceutical applications. This system allows the production of human sequence gelatins, or, if desired, gelatins from any other species depending on the availability of the cloned gene. The gelatins produced with this recombinant system are of defined molecular weight, unlike the animal-sourced gelatins, which consist of numerous polypeptides of varying size. The fermentation and purification process used to prepare these recombinant gelatins does not use any human- or animal-derived components and thus this recombinant material should be free from viruses and agents that cause transmissible spongiform encephalopathies. The recombinant gelatins exhibit lot-to-lot reproducibility and we have performed extensive analytical testing on them. We have demonstrated the utility of these novel gelatins as biological stabilizers and plasma expanders, and we have shown they possess qualities that are important in applications where gel formation is critical. Finally, we provide examples of how our system allows the engineering of these recombinant gelatins to optimize the production process.

  16. Diversity and abundance of photosynthetic sponges in temperate Western Australia

    PubMed Central

    Lemloh, Marie-Louise; Fromont, Jane; Brümmer, Franz; Usher, Kayley M

    2009-01-01

    Background Photosynthetic sponges are important components of reef ecosystems around the world, but are poorly understood. It is often assumed that temperate regions have low diversity and abundance of photosynthetic sponges, but to date no studies have investigated this question. The aim of this study was to compare the percentages of photosynthetic sponges in temperate Western Australia (WA) with previously published data on tropical regions, and to determine the abundance and diversity of these associations in a range of temperate environments. Results We sampled sponges on 5 m belt transects to determine the percentage of photosynthetic sponges and identified at least one representative of each group of symbionts using 16S rDNA sequencing together with microscopy techniques. Our results demonstrate that photosynthetic sponges are abundant in temperate WA, with an average of 63% of sponge individuals hosting high levels of photosynthetic symbionts and 11% with low to medium levels. These percentages of photosynthetic sponges are comparable to those found on tropical reefs and may have important implications for ecosystem function on temperate reefs in other areas of the world. A diverse range of symbionts sometimes occurred within a small geographic area, including the three "big" cyanobacterial clades, Oscillatoria spongeliae, "Candidatus Synechococcus spongiarum" and Synechocystis species, and it appears that these clades all occur in a wide range of sponges. Additionally, spongin-permeating red algae occurred in at least 7 sponge species. This study provides the first investigation of the molecular phylogeny of rhodophyte symbionts in sponges. Conclusion Photosynthetic sponges are abundant and diverse in temperate WA, with comparable percentages of photosynthetic to non-photosynthetic sponges to tropical zones. It appears that there are three common generalist clades of cyanobacterial symbionts of sponges which occur in a wide range of sponges in a wide range

  17. Photocrosslinkable Gelatin Hydrogel for Epidermal Tissue Engineering.

    PubMed

    Zhao, Xin; Lang, Qi; Yildirimer, Lara; Lin, Zhi Yuan; Cui, Wenguo; Annabi, Nasim; Ng, Kee Woei; Dokmeci, Mehmet R; Ghaemmaghami, Amir M; Khademhosseini, Ali

    2016-01-01

    Natural hydrogels are promising scaffolds to engineer epidermis. Currently, natural hydrogels used to support epidermal regeneration are mainly collagen- or gelatin-based, which mimic the natural dermal extracellular matrix but often suffer from insufficient and uncontrollable mechanical and degradation properties. In this study, a photocrosslinkable gelatin (i.e., gelatin methacrylamide (GelMA)) with tunable mechanical, degradation, and biological properties is used to engineer the epidermis for skin tissue engineering applications. The results reveal that the mechanical and degradation properties of the developed hydrogels can be readily modified by varying the hydrogel concentration, with elastic and compressive moduli tuned from a few kPa to a few hundred kPa, and the degradation times varied from a few days to several months. Additionally, hydrogels of all concentrations displayed excellent cell viability (>90%) with increasing cell adhesion and proliferation corresponding to increases in hydrogel concentrations. Furthermore, the hydrogels are found to support keratinocyte growth, differentiation, and stratification into a reconstructed multilayered epidermis with adequate barrier functions. The robust and tunable properties of GelMA hydrogels suggest that the keratinocyte laden hydrogels can be used as epidermal substitutes, wound dressings, or substrates to construct various in vitro skin models.

  18. Advanced neutron absorber materials

    DOEpatents

    Branagan, Daniel J.; Smolik, Galen R.

    2000-01-01

    A neutron absorbing material and method utilizing rare earth elements such as gadolinium, europium and samarium to form metallic glasses and/or noble base nano/microcrystalline materials, the neutron absorbing material having a combination of superior neutron capture cross sections coupled with enhanced resistance to corrosion, oxidation and leaching.

  19. Polycyclic Guanidine Alkaloids from Poecilosclerida Marine Sponges

    PubMed Central

    Sfecci, Estelle; Lacour, Thierry; Amade, Philippe; Mehiri, Mohamed

    2016-01-01

    Sessile marine sponges provide an abundance of unique and diversified scaffolds. In particular, marine guanidine alkaloids display a very wide range of biological applications. A large number of cyclic guanidine alkaloids, including crambines, crambescins, crambescidins, batzelladines or netamins have been isolated from Poecilosclerida marine sponges. In this review, we will explore the chemodiversity of tri- and pentacyclic guanidine alkaloids. NMR and MS data tools will also be provided, and an overview of the wide range of bioactivities of crambescidins and batzelladines derivatives will be given. PMID:27070629

  20. Norisoprenoids from the marine sponge Spheciospongia sp.

    PubMed

    Liu, Dong; Xu, Min-Juang; Wu, Li-Jun; Deng, Zhi-Wei; Lin, Wen-Han

    2009-09-01

    Chemical examination of a marine sponge Spheciospongia sp. collected from South China Sea resulted in the isolation of five norisoprenoid derivatives (1-5), of which two new compounds were designated with trivial names of spheciospongones A (1) and B (2). Their structures were determined on the basis of extensive 1D and 2D NMR, and MS spectroscopic data analysis in association with circular dichroism. Norisoprenoids were found from the sponge genus Spheciospongia for the first time, and were suggested to be the chemical marks for chemical taxonomy.

  1. Absorbing Outflows in AGN

    NASA Technical Reports Server (NTRS)

    Mathur, Smita

    2002-01-01

    The goal of this program was a comprehensive multiwavelength study of absorption phenomena in active galactic nuclei (AGN). These include a variety of associated absorption systems: X-ray warm absorbers, X-ray cold absorbers. UV absorbers with high ionization lines, MgII absorbers, red quasars and BALQSOs. The aim is to determine the physical conditions in the absorbing outflows, study their inter-relations and their role in AGN. We designed several observing programs to achieve this goal: X-ray spectroscopy, UV spectroscopy, FLAY spectroscopy and X-ray imaging. We were very successful towards achieving the goal over the five year period as shown through following observing programs and papers. Copies of a few papers are attached with this report.

  2. Photoelastic gelatin spheres for investigation of locomotion in granular media

    NASA Astrophysics Data System (ADS)

    Mirbagheri, Seyed Amir; Ceniceros, Ericson; Jabbarzadeh, Mehdi; McCormick, Zephyr; Fu, Henry

    2014-11-01

    We describe a force measurement method in granular media which uses highly-sensitive photoelastic gelatin spheres and its application to measuring forces exerted as animals burrow through granular media. The method is applicable to both freshwater and marine organisms. We fabricate sensitively photoelastic gelatin spheres and describe a calibration method which relates forces applied to gelatin spheres with photoelastic signal. We show that photoelastic gelatin spheres can detect forces as small as 1 microNewton, and quantitatively measure forces with up to 60 microNewton precision, a two order of magnitude improvement compared to methods using plastic disks. Gelatin spheres can be fabricated with a range of sizes to investigate a variety of granular media. Finally, we used the calibrated gelatin spheres in a proof-of-principle experiment to measure forces during earthworm locomotion.

  3. Formation of dentin-like particles in dentin defects above exposed pulp by controlled release of fibroblast growth factor 2 from gelatin hydrogels.

    PubMed

    Kikuchi, Naoki; Kitamura, Chiaki; Morotomi, Takahiko; Inuyama, Yoshio; Ishimatsu, Hirotaka; Tabata, Yashuhiko; Nishihara, Tatsuji; Terashita, Masamichi

    2007-10-01

    The induction of dentin formation on exposed dental pulp is a major challenge in research on the regeneration of the dentin-pulp complex. We examined the effects of fibroblast growth factor 2 (FGF2), which was delivered in either a collagen sponge (noncontrolled release) or incorporated into gelatin hydrogels (controlled release), on the formation of dentin in exposed rat molar pulps. During the early phase of pulp wound healing, pulp cell proliferation and invasion of vessels into dentin defects above exposed pulp were induced in both groups. In the late phase, the induction of dentin formation was distinctly different between the 2 types of FGF2 release. The noncontrolled release of free FGF2 from collagen sponge induced excessive reparative dentin formation in the residual dental pulp, although dentin defects were not noted. In contrast, controlled release of FGF2 from gelatin hydrogels induced the formation of dentin-like particles with dentin defects above exposed pulp. These results suggest the possibility of a novel therapeutic approach for dentin-pulp complex by controlled release of bioactive FGF2.

  4. Postoperative complications due to a retained surgical sponge.

    PubMed

    Sarda, A K; Pandey, D; Neogi, S; Dhir, U

    2007-06-01

    Retained surgical sponge or glossypiboma is a relatively common occurrence; however, surgeons may not report these events for fear of litigation and adverse publicity. We report postoperative complications in three cases due to retained surgical sponges. The first case, a 26-year-old woman, presented with gastric outlet obstruction due to the sponge obstructing the pyloric canal three weeks following cholecystectomy, which was completely relieved following endoscopical removal of the sponge. The second case, a 32-year-old woman, presented with repeated attacks of intestinal obstruction following cholecystectomy and tubal ligation and was treated with surgical removal of the sponge. The third patient, a 40-year-old woman, presented with features of colonic obstruction following hysterectomy. Colonoscopy revealed a partial migration of the sponge through the colonic wall and on laparotomy, she was found to have multiple internal fistulae between the small and large intestines, all occurring around the inflammation caused by the retained sponge.

  5. Properties of gelatin film from horse mackerel (Trachurus japonicus) scale.

    PubMed

    Le, Thuy; Maki, Hiroki; Takahashi, Kigen; Okazaki, Emiko; Osako, Kazufumi

    2015-04-01

    Optimal conditions for extracting gelatin and preparing gelatin film from horse mackerel scale, such as extraction temperature and time, as well as the protein concentration of film-forming solutions were investigated. Yields of extracted gelatin at 70 °C, 80 °C, and 90 °C for 15 min to 3 h were 1.08% to 3.45%, depending on the extraction conditions. Among the various extraction times and temperatures, the film from gelatin extracted at 70 °C for 1 h showed the highest tensile strength and elongation at break. Horse mackerel scale gelatin film showed the greatly low water vapor permeability (WVP) compared with mammalian or fish gelatin films, maybe due to its containing a slightly higher level of hydrophobic amino acids (total 653 residues per 1000 residues) than that of mammalian, cold-water fish and warm-water fish gelatins. Gelatin films from different preparation conditions showed excellent UV barrier properties at wavelength of 200 nm, although the films were transparent at visible wavelength. As a consequence, it can be suggested that gelatin film from horse mackerel scale extracted at 70 °C for 1 h can be applied to food packaging material due to its lowest WVP value and excellent UV barrier properties.

  6. Internal absorber solar collector

    DOEpatents

    Sletten, Carlyle J.; Herskovitz, Sheldon B.; Holt, F. S.; Sletten, E. J.

    1981-01-01

    Thin solar collecting panels are described made from arrays of small rod collectors consisting of a refracting dielectric rod lens with an absorber imbedded within it and a reflecting mirror coated on the back side of the dielectric rod. Non-tracking collector panels on vertical walls or roof tops receive approximately 90% of solar radiation within an acceptance zone 60.degree. in elevation angle by 120.degree. or more in the azimuth sectors with a collector concentration ratio of approximately 3.0. Miniaturized construction of the circular dielectric rods with internal absorbers reduces the weight per area of glass, plastic and metal used in the collector panels. No external parts or insulation are needed as heat losses are low due to partial vacuum or low conductivity gas surrounding heated portions of the collector. The miniature internal absorbers are generally made of solid copper with black selective surface and the collected solar heat is extracted at the collector ends by thermal conductivity along the absorber rods. Heat is removed from end fittings by use of liquid circulants. Several alternate constructions are provided for simplifying collector panel fabrication and for preventing the thermal expansion and contraction of the heated absorber or circulant tubes from damaging vacuum seals. In a modified version of the internal absorber collector, oil with temperature dependent viscosity is pumped through a segmented absorber which is now composed of closely spaced insulated metal tubes. In this way the circulant is automatically diverted through heated portions of the absorber giving higher collector concentration ratios than theoretically possible for an unsegmented absorber.

  7. Sponging up metals: bacteria associated with the marine sponge Spongia officinalis.

    PubMed

    Bauvais, Cléa; Zirah, Séverine; Piette, Laurie; Chaspoul, Florence; Domart-Coulon, Isabelle; Chapon, Virginie; Gallice, Philippe; Rebuffat, Sylvie; Pérez, Thierry; Bourguet-Kondracki, Marie-Lise

    2015-03-01

    The present study explored the bacteria of the sponge Spongia officinalis in a metal-polluted environment, using PCR-DGGE fingerprinting, culture-dependent approaches and in situ hybridization. The sponge samples collected over three consecutive years in the Western Mediterranean Sea contained high concentrations of zinc, nickel, lead and copper determined by ICP-MS. DGGE signatures indicated a sponge specific bacterial association and suggested spatial and temporal variations. The bacterial culturable fraction associated with S. officinalis and tolerant to heavy metals was isolated using metal-enriched microbiological media. The obtained 63 aerobic strains were phylogenetically affiliated to the phyla Proteobacteria, Actinobacteria, and Firmicutes. All isolates showed high tolerances to the selected heavy metals. The predominant genus Pseudovibrio was localized via CARD-FISH in the sponge surface tissue and validated as a sponge-associated epibiont. This study is the first step in understanding the potential involvement of the associated bacteria in sponge's tolerance to heavy metals. PMID:25575352

  8. Lipid-absorbing Polymers

    NASA Technical Reports Server (NTRS)

    Marsh, H. E., Jr.; Wallace, C. J.

    1973-01-01

    The removal of bile acids and cholesterol by polymeric absorption is discussed in terms of micelle-polymer interaction. The results obtained with a polymer composed of 75 parts PEO and 25 parts PB plus curing ingredients show an absorption of 305 to 309%, based on original polymer weight. Particle size effects on absorption rate are analyzed. It is concluded that crosslinked polyethylene oxide polymers will absorb water, crosslinked polybutadiene polymers will absorb lipids; neither polymer will absorb appreciable amounts of lipids from micellar solutions of lipids in water.

  9. Origin of Metazoa: sponges as living fossils.

    PubMed

    Müller, W E

    1998-01-01

    The phylogenetic position of the phylum Porifera (sponges) is at the base of the kingdom Metazoa. During the past few years not only rDNA sequences but--and this was a major advance--even cDNAs/genes have been isolated and characterized from sponges, especially from the marine demosponge Geodia cydonium, which code for proteins. The analyses of their deduced amino acid sequences allowed a molecular biological approach to solve the problem of monophyly of Metazoa. Molecules of the extracellular matrix/basal lamina, with the integrin receptor, fibronectin, and galectin as prominent examples, cell-surface receptors (tyrosine kinase receptor), elements of sensory systems (crystallin, metabotropic glutamate receptor), and homologs/modules of an immune system (immunoglobulin like molecules, scavenger receptor cysteine-rich, and short consensus repeats, rhesus system) classify the Porifera as true Metazoa. As living fossils, provided with simple, primordial molecules allowing cell-cell and cell-matrix adhesion as well as processes of signal transduction as known in a more complex manner from higher Metazoa, they also show peculiarities not known in other metazoan phyla. Tissues of sponges are rich in telomerase activity, suggesting a high plasticity in the determination of cell lineages. It is concluded that molecular biological studies with sponges as model will not only help to understand the evolution of Protoctista to Metazoa but also the complex, hierarchial regulatory network of cells in higher Metazoa.

  10. Origin of Metazoa: sponges as living fossils.

    PubMed

    Müller, W E

    1998-01-01

    The phylogenetic position of the phylum Porifera (sponges) is at the base of the kingdom Metazoa. During the past few years not only rDNA sequences but--and this was a major advance--even cDNAs/genes have been isolated and characterized from sponges, especially from the marine demosponge Geodia cydonium, which code for proteins. The analyses of their deduced amino acid sequences allowed a molecular biological approach to solve the problem of monophyly of Metazoa. Molecules of the extracellular matrix/basal lamina, with the integrin receptor, fibronectin, and galectin as prominent examples, cell-surface receptors (tyrosine kinase receptor), elements of sensory systems (crystallin, metabotropic glutamate receptor), and homologs/modules of an immune system (immunoglobulin like molecules, scavenger receptor cysteine-rich, and short consensus repeats, rhesus system) classify the Porifera as true Metazoa. As living fossils, provided with simple, primordial molecules allowing cell-cell and cell-matrix adhesion as well as processes of signal transduction as known in a more complex manner from higher Metazoa, they also show peculiarities not known in other metazoan phyla. Tissues of sponges are rich in telomerase activity, suggesting a high plasticity in the determination of cell lineages. It is concluded that molecular biological studies with sponges as model will not only help to understand the evolution of Protoctista to Metazoa but also the complex, hierarchial regulatory network of cells in higher Metazoa. PMID:9484707

  11. Morphology, orientation, and mechanical properties of gelatin films

    SciTech Connect

    Blanton, T.N.; Tsou, A.H.

    1996-12-31

    Gelatin is a polypeptide derived from degradation and disorganization of collagen fibers and is the primary binder in photographic emulsions. Gelatin provides the mechanical integrity and strength to the photographic emulsion allowing for packaging, handling, and photofinishing operations. Gelatin films generated from aqueous-solution casting can exist in a semicrystalline or an amorphous state. When a gelatin solution is cooled below its helix-coil transition temperature, partial renaturation of gelatin to form triple helices can occur. The degree of renaturation in a coated film is dependent upon the drying temperature and the drying rate. During the drying process, gelatin crystals can be formed by lateral association of the triple helices through a mechanism of nucleation and growth of a fringed micelle structure. X-ray scattering techniques have been utilized to examine the morphology and orientation of gelatin films. Based on X-ray diffraction data, it is observed that aggregates of triple-helix rods lie parallel to the film plane but are symmetrically distributed within the film plane. Since a material`s physical and mechanical properties are related to its structure, it is necessary to understand and to characterize the morphological development in gelatin film formation. In this study, an X-ray diffractometer and pole figure goniometer were utilized to examine the structural development and orientation anisotropy in solid-state gelatin films. Also, in this study, the in-plane mechanical properties of a gelatin film were determined from a uniaxial tensile test, and the gelatin film properties in the thickness direction were extracted from an indentation test based on the finite element analysis of the indentation results using a viscoelastic material model.

  12. Oxygen consumption by a coral reef sponge.

    PubMed

    Hadas, Eran; Ilan, Micha; Shpigel, Muki

    2008-07-01

    Oxygen consumption of the Red Sea coral reef sponge Negombata magnifica was measured using both incubation and steady-state methods. The latter method was found to be the more reliable because sponge activity remained stable over time. Oxygen consumption rate was measured during three levels of sponge activity: full activity, reduced activity and basal activity (starved). It was found that the active oxygen consumption rate of N. magnifica averaged 37.3+/-4.6 nmol O2 min(-1) g(-1) wet mass, which is within the upper range reported for other tropical marine sponges. Fully active N. magnifica individuals consumed an average of 41.8+/-3.2 nmol O2 min(-1) g(-1) wet mass. The mean basal respiration rate was 20.2+/-1.2 nmol O2 min(-1) g(-1) wet mass, which is 51.6+/-2.5% of the active respiration rate. Therefore, the oxygen used for water pumping was calculated to be at most 10.6+/-1.8 nmol O2 min(-1) g(-1) wet mass, which is 25.1+/-3.6% of the total respiration. Combined oxygen used for maintenance and water pumping activity was calculated to be 30.8 nmol O2 min(-1) g(-1) wet mass, which is approximately 74% of the sponge's total oxygen requirement. The remaining oxygen is directed to other physiological activities, mainly the energy requirement of growth. These findings suggest that only a relatively minor amount of energy is potentially available for growth, and thus might be a factor in controlling the growth rate of N. magnifica in oligotrophic coral reefs.

  13. Sponge-Associated Microorganisms: Evolution, Ecology, and Biotechnological Potential†

    PubMed Central

    Taylor, Michael W.; Radax, Regina; Steger, Doris; Wagner, Michael

    2007-01-01

    Summary: Marine sponges often contain diverse and abundant microbial communities, including bacteria, archaea, microalgae, and fungi. In some cases, these microbial associates comprise as much as 40% of the sponge volume and can contribute significantly to host metabolism (e.g., via photosynthesis or nitrogen fixation). We review in detail the diversity of microbes associated with sponges, including extensive 16S rRNA-based phylogenetic analyses which support the previously suggested existence of a sponge-specific microbiota. These analyses provide a suitable vantage point from which to consider the potential evolutionary and ecological ramifications of these widespread, sponge-specific microorganisms. Subsequently, we examine the ecology of sponge-microbe associations, including the establishment and maintenance of these sometimes intimate partnerships, the varied nature of the interactions (ranging from mutualism to host-pathogen relationships), and the broad-scale patterns of symbiont distribution. The ecological and evolutionary importance of sponge-microbe associations is mirrored by their enormous biotechnological potential: marine sponges are among the animal kingdom's most prolific producers of bioactive metabolites, and in at least some cases, the compounds are of microbial rather than sponge origin. We review the status of this important field, outlining the various approaches (e.g., cultivation, cell separation, and metagenomics) which have been employed to access the chemical wealth of sponge-microbe associations. PMID:17554047

  14. Epizoic zoanthids reduce pumping in two Caribbean vase sponges

    NASA Astrophysics Data System (ADS)

    Lewis, T. B.; Finelli, C. M.

    2015-03-01

    Sponges are common sessile benthic suspension feeders that play a critical role in carbon and nitrogen cycling within reef ecosystems via their filtration capabilities. Due to the contribution of sponges in benthic-pelagic coupling, it is critical to assess factors that may affect their role in the healthy function of coral reefs. Several factors can influence the rate at which an individual sponge pumps water, including body size, environmental conditions, mechanical blockage, and reduction of inhalant pores (ostia). Symbiotic zoanthid colonization is a common occurrence on Caribbean sponges, and the presence of zoanthids on the surface of a sponge may occlude or displace the inhalant ostia. We quantified pumping rates of the giant barrel sponge, Xestospongia muta ( N = 22 uncolonized, 37 colonized) and the common vase sponge, Niphates digitalis ( N = 21 uncolonized, 17 colonized), with and without zoanthid symbionts, Parazoanthus catenularis and Parazoanthus parasiticus, respectively. For X. muta, biovolume-normalized pumping rates of individuals colonized by zoanthids were approximately 75 % lower than those of uncolonized sponges. Moreover, colonization with zoanthids was related to a difference in morphology relative to uncolonized individuals: Colonized sponges exhibited an osculum area to biovolume ratio that was nearly 65 % less than uncolonized sponges. In contrast, the presence of zoanthids on N. digitalis resulted in only a marginal decrease in pumping rates and no detectable difference in morphology. The difference in zoanthid effects between X. muta and N. digitalis is likely due to the differences in wall thickness and architecture between the two species. The probable cause of reduced pumping in affected sponges is occupation of the sponge surface that leads to blockage or displacement of inhalant ostia. To partially test this hypothesis, zoanthid colonization on specimens of X. muta was simulated by wrapping sponges with plastic mesh of varying

  15. Gelatine-Based Antioxidant Packaging Containing Caesalpinia decapetala and Tara as a Coating for Ground Beef Patties.

    PubMed

    Gallego, María Gabriela; Gordon, Michael H; Segovia, Francisco; Almajano Pablos, María Pilar

    2016-01-01

    The development of antioxidant-active packaging has numerous advantages, such as the reduction of synthetic additives in food, the reduction of plastic waste and food protection against oxidation reactions. Different concentrations of extracts of the plants Caesalpinia decapetala (CD) and Caesalpinia spinosa "Tara" (CS) were incorporated into gelatine films as natural antioxidants. The physical, mechanical and antioxidant properties of these films were studied. Films containing plant extracts at a high concentration had lower tensile strength with higher elongation at break points, compared to the control film (p < 0.05). Films exhibited antioxidant activity in the oxygen radical absorbance capacity (ORAC) and Trolox equivalence antioxidant capacity (TEAC) assays when added at 0.2%. The application of gelatine film containing CD and CS was found to be effective in delaying lipid oxidation and deterioration of beef patty quality during storage. Therefore, the films prepared in this study offered an alternative edible coating for the preservation of fresh food. PMID:27043638

  16. Gelatine-Based Antioxidant Packaging Containing Caesalpinia decapetala and Tara as a Coating for Ground Beef Patties.

    PubMed

    Gallego, María Gabriela; Gordon, Michael H; Segovia, Francisco; Almajano Pablos, María Pilar

    2016-03-31

    The development of antioxidant-active packaging has numerous advantages, such as the reduction of synthetic additives in food, the reduction of plastic waste and food protection against oxidation reactions. Different concentrations of extracts of the plants Caesalpinia decapetala (CD) and Caesalpinia spinosa "Tara" (CS) were incorporated into gelatine films as natural antioxidants. The physical, mechanical and antioxidant properties of these films were studied. Films containing plant extracts at a high concentration had lower tensile strength with higher elongation at break points, compared to the control film (p < 0.05). Films exhibited antioxidant activity in the oxygen radical absorbance capacity (ORAC) and Trolox equivalence antioxidant capacity (TEAC) assays when added at 0.2%. The application of gelatine film containing CD and CS was found to be effective in delaying lipid oxidation and deterioration of beef patty quality during storage. Therefore, the films prepared in this study offered an alternative edible coating for the preservation of fresh food.

  17. Gelatine-Based Antioxidant Packaging Containing Caesalpinia decapetala and Tara as a Coating for Ground Beef Patties

    PubMed Central

    Gallego, María Gabriela; Gordon, Michael H.; Segovia, Francisco; Almajano Pablos, María Pilar

    2016-01-01

    The development of antioxidant-active packaging has numerous advantages, such as the reduction of synthetic additives in food, the reduction of plastic waste and food protection against oxidation reactions. Different concentrations of extracts of the plants Caesalpinia decapetala (CD) and Caesalpinia spinosa “Tara” (CS) were incorporated into gelatine films as natural antioxidants. The physical, mechanical and antioxidant properties of these films were studied. Films containing plant extracts at a high concentration had lower tensile strength with higher elongation at break points, compared to the control film (p < 0.05). Films exhibited antioxidant activity in the oxygen radical absorbance capacity (ORAC) and Trolox equivalence antioxidant capacity (TEAC) assays when added at 0.2%. The application of gelatine film containing CD and CS was found to be effective in delaying lipid oxidation and deterioration of beef patty quality during storage. Therefore, the films prepared in this study offered an alternative edible coating for the preservation of fresh food. PMID:27043638

  18. Porous, Water-Resistant Multifilament Yarn Spun from Gelatin.

    PubMed

    Stoessel, Philipp R; Krebs, Urs; Hufenus, Rudolf; Halbeisen, Marcel; Zeltner, Martin; Grass, Robert N; Stark, Wendelin J

    2015-07-13

    Sustainability, renewability, and biodegradability of polymeric material constantly gain in importance. A plausible approach is the recycling of agricultural waste proteins such as keratin, wheat gluten, casein or gelatin. The latter is abundantly available from animal byproducts and may well serve as building block for novel polymeric products. In this work, a procedure for the dry-wet spinning of multifilament gelatin yarns was developed. The process stands out as precipitated gelatin from a ternary mixture (gelatin/solvent/nonsolvent) was spun into porous filaments. About 1000 filaments were twisted into 2-ply yarns with good tenacity (4.7 cN tex(-1)). The gelatin yarns, per se susceptible to water, were cross-linked by different polyfunctional epoxides and examined in terms of free lysyl amino groups and swelling degree in water. Ethylene glycol diglycidyl ether exhibited the highest cross-linking efficiency. Further post-treatments with gaseous formaldehyde and wool grease (lanolin) rendered the gelatin yarns water-resistant, allowing for multiple swelling cycles in water or in detergent solution. However, the swelling caused a decrease in filament porosity from ∼30% to just below 10%. To demonstrate the applicability of gelatin yarn in a consumer good, a gelatin glove with good thermal insulation capacity was fabricated.

  19. Gelatin-Pectin Composite Films from Polyion Complex Hydrogels

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Composite films from gelatin and low-methoxyl pectin were prepared by either ionic complexation or covalent cross-linking. The ionic interactions between positively charged gelatin and negatively charged pectin produced physically reversible hydrogels. The resultant homogeneous gels had improved mec...

  20. Pluronic/gelatin composites for controlled release of actives.

    PubMed

    Tatini, Duccio; Tempesti, Paolo; Ridi, Francesca; Fratini, Emiliano; Bonini, Massimo; Baglioni, Piero

    2015-11-01

    This paper describes the preparation and the release properties of composite materials based on Pluronic F127 and gelatin hydrogels, which could be of interest in the field of enteral nutrition or drug administration. The composites were prepared by exploiting the opposite responsivity to temperature of a 20% w/w Pluronic F127 aqueous solution (critical gelation temperature around 23 °C) and gelatin (gel-sol temperature transition around 30 °C). Pluronic domains dispersed within a gelatin matrix were obtained by injecting cold Pluronic F127 solutions inside hot gelatin solutions, while homogenizing either with a magnetic stirrer or a high-energy mechanical disperser. Calorimetry indicates that the composites retain the individual gelling properties of Pluronic and gelatin. Different releasing properties were obtained as a function of the preparation protocol, the temperature and the pH. The release profiles have been studied by a Weibull analysis that clearly points out the dominating role of gelatin at 25 °C. At 37 °C the release accounts for a combined effect from both Pluronic F127 and gelatin, showing a more sustained profile with respect to gelatin hydrogels. This behavior, together with the ability of Pluronic F127 to upload both hydrophilic and hydrophobic drugs and flavors, makes these innovative composite materials very good candidates as FDA-approved carriers for enteral administration.

  1. Dehydration of pollock skins prior to gelatin production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Alaska pollock is the USA’s largest commercial fishery, with an annual catch of over one million tons. During pollock processing, the skins are discarded or made into fish meal, despite their value for gelatin production. The absence of gelatin processing facilities in Alaska necessitates drying of ...

  2. Dehydration of pollock skin prior to gelatin production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Alaska pollock (Theragra chalcogramma) is the U.S.A.'s largest commercial fishery, with an annual catch of over 1 million tons. During pollock processing, the skins are discarded or made into fish meal, despite their value for gelatin production. The absence of gelatin-processing facilities in Alask...

  3. Dehydration of pollock skins prior to gelatin production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Alaska pollock (Theragra chahogramma) is the USA's largest commercial fishery, with an annual catch of over one million tons. During pollock processing, the skins are discarded or made into fish meal, despite their value for gelatin production. The absence of gelatin processing facilities in Alaska ...

  4. Porous, Water-Resistant Multifilament Yarn Spun from Gelatin.

    PubMed

    Stoessel, Philipp R; Krebs, Urs; Hufenus, Rudolf; Halbeisen, Marcel; Zeltner, Martin; Grass, Robert N; Stark, Wendelin J

    2015-07-13

    Sustainability, renewability, and biodegradability of polymeric material constantly gain in importance. A plausible approach is the recycling of agricultural waste proteins such as keratin, wheat gluten, casein or gelatin. The latter is abundantly available from animal byproducts and may well serve as building block for novel polymeric products. In this work, a procedure for the dry-wet spinning of multifilament gelatin yarns was developed. The process stands out as precipitated gelatin from a ternary mixture (gelatin/solvent/nonsolvent) was spun into porous filaments. About 1000 filaments were twisted into 2-ply yarns with good tenacity (4.7 cN tex(-1)). The gelatin yarns, per se susceptible to water, were cross-linked by different polyfunctional epoxides and examined in terms of free lysyl amino groups and swelling degree in water. Ethylene glycol diglycidyl ether exhibited the highest cross-linking efficiency. Further post-treatments with gaseous formaldehyde and wool grease (lanolin) rendered the gelatin yarns water-resistant, allowing for multiple swelling cycles in water or in detergent solution. However, the swelling caused a decrease in filament porosity from ∼30% to just below 10%. To demonstrate the applicability of gelatin yarn in a consumer good, a gelatin glove with good thermal insulation capacity was fabricated. PMID:26035474

  5. Graphene oxide decorated electrospun gelatin nanofibers: Fabrication, properties and applications.

    PubMed

    Jalaja, K; Sreehari, V S; Kumar, P R Anil; Nirmala, R James

    2016-07-01

    Gelatin nanofiber fabricated by electrospinning process is found to mimic the complex structural and functional properties of natural extracellular matrix for tissue regeneration. In order to improve the physico-chemical and biological properties of the nanofibers, graphene oxide is incorporated in the gelatin to form graphene oxide decorated gelatin nanofibers. The current research effort is focussed on the fabrication and evaluation of physico-chemical and biological properties of graphene oxide-gelatin composite nanofibers. The presence of graphene oxide in the nanofibers was established by transmission electron microscopy (TEM). We report the effect of incorporation of graphene oxide on the mechanical, thermal and biological performance of the gelatin nanofibers. The tensile strength of gelatin nanofibers was increased from 8.29±0.53MPa to 21±2.03MPa after the incorporation of GO. In order to improve the water resistance of nanofibers, natural based cross-linking agent, namely, dextran aldehyde was employed. The cross-linked composite nanofibers showed further increase in the tensile strength up to 56.4±2.03MPa. Graphene oxide incorporated gelatin nanofibers are evaluated for bacterial activity against gram positive (Staphylococcus aureus) and gram negative (Escherichia coli) bacteria and cyto compatibility using mouse fibroblast cells (L-929 cells). The results indicate that the graphene oxide incorporated gelatin nanofibers do not prevent bacterial growth, nevertheless support the L-929 cell adhesion and proliferation.

  6. Cationized gelatin hydrogels mixed with plasmid DNA induce stronger and more sustained gene expression than atelocollagen at calvarial bone defects in vivo.

    PubMed

    Komatsu, K; Shibata, T; Shimada, A; Ideno, H; Nakashima, K; Tabata, Y; Nifuji, A

    2016-01-01

    Gene transduction of exogenous factors at local sites in vivo is a promising approach to promote regeneration of tissue defects owing to its simplicity and capacity for expression of a variety of genes. Gene transduction by viral vectors is highly efficient; however, there are safety concerns associated with viruses. As a method for nonviral gene transduction, plasmid DNA delivery is safer and simpler, but requires an efficient carrier substance. Here, we aimed to develop a simple, efficient method for bone regeneration by gene transduction and to identify optimal conditions for plasmid DNA delivery at bone defect sites. We focused on carrier substances and compared the efficiencies of two collagen derivatives, atelocollagen, and gelatin hydrogel, as substrates for plasmid DNA delivery in vivo. To assess the efficiencies of these substrates, we examined exogenous expression of green fluorescence protein (GFP) by fluorescence microscopy, polymerase chain reaction, and immunohistochemistry. GFP expression at the bone defect site was higher when gelatin hydrogel was used as a substrate to deliver plasmids than when atelocollagen was used. Moreover, the gelatin hydrogel was almost completely absorbed at the defect site, whereas some atelocollagen remained. When a plasmid harboring bone morphogenic protein 2 was delivered with the substrate to bony defect sites, more new bone formation was observed in the gelatin group than in the atelocollagen group. These results suggested that the gelatin hydrogel was more efficient than atelocollagen as a substrate for local gene delivery and may be a superior material for induction of bone regeneration. PMID:26848778

  7. Fabrication and characterisation of biomimetic, electrospun gelatin fibre scaffolds for tunica media-equivalent, tissue engineered vascular grafts.

    PubMed

    Elsayed, Y; Lekakou, C; Labeed, F; Tomlins, P

    2016-04-01

    It is increasingly recognised that biomimetic, natural polymers mimicking the extracellular matrix (ECM) have low thrombogenicity and functional motifs that regulate cell-matrix interactions, with these factors being critical for tissue engineered vascular grafts especially grafts of small diameter. Gelatin constitutes a low cost substitute of soluble collagen but gelatin scaffolds so far have shown generally low strength and suture retention strength. In this study, we have devised the fabrication of novel, electrospun, multilayer, gelatin fibre scaffolds, with controlled fibre layer orientation, and optimised gelatin crosslinking to achieve not only compliance equivalent to that of coronary artery but also for the first time strength of the wet tubular acellular scaffold (swollen with absorbed water) same as that of the tunica media of coronary artery in both circumferential and axial directions. Most importantly, for the first time for natural scaffolds and in particular gelatin, high suture retention strength was achieved in the range of 1.8-1.94 N for wet acellular scaffolds, same or better than that for fresh saphenous vein. The study presents the investigations to relate the electrospinning process parameters to the microstructural parameters of the scaffold, which are further related to the mechanical performance data of wet, crosslinked, electrospun scaffolds in both circumferential and axial tubular directions. The scaffolds exhibited excellent performance in human smooth muscle cell (SMC) proliferation, with SMCs seeded on the top surface adhering, elongating and aligning along the local fibres, migrating through the scaffold thickness and populating a transverse distance of 186 μm and 240 μm 9 days post-seeding for scaffolds of initial dry porosity of 74 and 83%, respectively. PMID:26838874

  8. Sponge-Associated Bacteria Are Strictly Maintained in Two Closely Related but Geographically Distant Sponge Hosts ▿ † ‡ §

    PubMed Central

    Montalvo, Naomi F.; Hill, Russell T.

    2011-01-01

    The giant barrel sponges Xestospongia muta and Xestospongia testudinaria are ubiquitous in tropical reefs of the Atlantic and Pacific Oceans, respectively. They are key species in their respective environments and are hosts to diverse assemblages of bacteria. These two closely related sponges from different oceans provide a unique opportunity to examine the evolution of sponge-associated bacterial communities. Mitochondrial cytochrome oxidase subunit I gene sequences from X. muta and X. testudinaria showed little divergence between the two species. A detailed analysis of the bacterial communities associated with these sponges, comprising over 900 full-length 16S rRNA gene sequences, revealed remarkable similarity in the bacterial communities of the two species. Both sponge-associated communities include sequences found only in the two Xestospongia species, as well as sequences found also in other sponge species and are dominated by three bacterial groups, Chloroflexi, Acidobacteria, and Actinobacteria. While these groups consistently dominate the bacterial communities revealed by 16S rRNA gene-based analysis of sponge-associated bacteria, the depth of sequencing undertaken in this study revealed clades of bacteria specifically associated with each of the two Xestospongia species, and also with the genus Xestospongia, that have not been found associated with other sponge species or other ecosystems. This study, comparing the bacterial communities associated with closely related but geographically distant sponge hosts, gives new insight into the intimate relationships between marine sponges and some of their bacterial symbionts. PMID:21856832

  9. Phase holograms formed by silver halide /sensitized/ gelatin processing

    NASA Astrophysics Data System (ADS)

    Graver, W. R.; Gladden, J. W.; Eastes, J. W.

    1980-05-01

    A novel recording process for the formation of phase volume holograms at up to 1500 cycles/mm is described. The term silver halide (sensitized) gelatin or SHG denotes an all-gelatin phase material, which records the initial image information through photon absorption by the silver halide. Our process uses a reversal bleach that dissolves the developed silver image and cross-links the gelatin molecules in the vicinity of the developed image. Experiments have determined the stored image as refractive-index differences within the remaining gelatin. The major attributes of SHG holograms are (1) panchromatic response, (2) 100:1 greater light sensitivity than dichromate (sensitized) gelatin, and (3) elimination of darkening (printout) effects.

  10. Impact of electron beam irradiation on fish gelatin film properties.

    PubMed

    Benbettaïeb, Nasreddine; Karbowiak, Thomas; Brachais, Claire-Hélène; Debeaufort, Frédéric

    2016-03-15

    The objective of this work was to display the effect of electron beam accelerator doses on properties of plasticized fish gelatin film. Electron spin resonance indicates free radical formation during irradiation, which might induce intermolecular cross-linking. Tensile strength for gelatin film significantly increases after irradiation (improved by 30% for 60 kGy). The vapour permeability is weakly affected by irradiation. Surface tension and its polar component increase significantly and are in accordance with the increase of wettability. So, irradiation may change the orientation of polar groups of gelatin at the film surface and crosslink the hydrophobic amino acids. No modification of the crystallinity of the film is observed. These findings suggest that if structure changes, it only occurs in the amorphous phase of the gelatin matrix. It is also observed that irradiation enhances the thermal stability of the gelatin film, by increasing the glass transition temperature and the degradation temperature.

  11. The Dynamic Behaviour of Ballistic Gelatin

    NASA Astrophysics Data System (ADS)

    Shepherd, C. J.; Appleby-Thomas, G. J.; Hazell, P. J.; Allsop, D. F.

    2009-12-01

    In order to characterise the effect of projectiles it is necessary to understand the mechanism of both penetration and resultant wounding in biological systems. Porcine gelatin is commonly used as a tissue simulant in ballistic tests because it elastically deforms in a similar manner to muscular tissue. Bullet impacts typically occur in the 350-850 m/s range; thus knowledge of the high strain-rate dynamic properties of both the projectile and target materials are desirable to simulate wounds. Unlike projectile materials, relatively little data exists on the dynamic response of flesh simulants. The Hugoniot for a 20 wt.% porcine gelatin, which exhibits a ballistic response similar to that of human tissues at room temperature, was determined using the plate-impact technique at impact velocities of 75-860 m/s. This resulted in impact stresses around three times higher than investigated elsewhere. In US-uP space the Hugoniot had the form US = 1.57+1.77 uP, while in P-uP space it was essentially hydrodynamic. In both cases this was in good agreement with the limited available data from the literature.

  12. Effect of aggregation behavior of gelatin in aqueous solution on the grafting density of gelatin modified with glycidol.

    PubMed

    Xu, Jing; Li, Tian-Duo; Tang, Xiao-Long; Qiao, Cong-De; Jiang, Qing-Wei

    2012-06-15

    The effect of aggregation behavior of gelatin in aqueous solution on the grafting density of glycidol grafted gelatin polymers (GGG polymers) was investigated. The grafting density was measured using the Van Slyke method by calculating the conversion rate of free - NH(2) groups of gelatin. The conversion rate reached peak values at 6% and 14% of the gelatin aqueous solution. SEM micrographs displayed a series of structural transitions (i.e., spherical, spindle, butterfly, irregular and dendritic aggregates) at varying concentrations from 2% to 16% (w/w) at an interval of 2% (w/w). The spindle aggregates reappeared at the concentrations of 6% and 14%. Viscosity measurements indicated that the physicochemical properties of the gelatin solution had changed with increasing concentration. UV and CD analysis indicated that hydrophobic interactions competed with hydrogen bonding, and the random coils partly transformed to β-sheet structure by changing the concentration. Zeta potential and pH data confirmed the increasing electrostatic repulsion associated with increasing the hydrophobic region. XPS analysis revealed that the elemental composition of the gelatin particle surface changed with variation in the aggregate structure, determining the monotonic variation of the grafting density with increasing concentration. Results demonstrate that aggregation behavior of gelatin in aqueous solution plays a crucial role in deciding the grafting density of gelatin modified products.

  13. Properties of electrospun pollock gelatin/poly(vinyl alcohol) and pollock gelatin/poly(lactic acid) fibers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pollock gelatin/poly(vinyl alcohol) (PVA) fibers were electrospun using deionized water as the solvent and pollock gelatin/poly(lactic acid) (PLA) fibers were electrospun using 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) as the solvent. The chemical, thermal, and thermal stability properties were exami...

  14. Modeling the Distribution of Geodia Sponges and Sponge Grounds in the Northwest Atlantic

    PubMed Central

    Knudby, Anders; Kenchington, Ellen; Murillo, Francisco Javier

    2013-01-01

    Deep-sea sponge grounds provide structurally complex habitat for fish and invertebrates and enhance local biodiversity. They are also vulnerable to bottom-contact fisheries and prime candidates for Vulnerable Marine Ecosystem designation and related conservation action. This study uses species distribution modeling, based on presence and absence observations of Geodia spp. and sponge grounds derived from research trawl catches, as well as spatially continuous data on the physical and biological ocean environment derived from satellite data and oceanographic models, to model the distribution of Geodia sponges and sponge grounds in the Northwest Atlantic. Most models produce excellent fits with validation data although fits are reduced when models are extrapolated to new areas, especially when oceanographic regimes differ between areas. Depth and minimum bottom salinity were important predictors in most models, and a Geodia spp. minimum bottom salinity tolerance threshold in the 34.3-34.8 psu range was hypothesized on the basis of model structure. The models indicated two currently unsampled regions within the study area, the deeper parts of Baffin Bay and the Newfoundland and Labrador slopes, where future sponge grounds are most likely to be found. PMID:24324768

  15. Unidirectional perfect absorber

    PubMed Central

    Jin, L.; Wang, P.; Song, Z.

    2016-01-01

    This study proposes a unidirectional perfect absorber (UPA), which we realized with a two-arm Aharonov-Bohm interferometer, that consists of a dissipative resonator side-coupled to a uniform resonator array. The UPA has reflection-less full absorption on one direction, and reflectionless full transmission on the other, with an appropriate magnetic flux and coupling, detuning, and loss of the side-coupled resonator. The magnetic flux controls the transmission, the left transmission is larger for magnetic flux less than one-half flux quantum; and the right transmission is larger for magnetic flux between one-half and one flux quantum. Besides, a perfect absorber (PA) can be realized based on the UPA, in which light waves from both sides, with arbitrary superposition of the ampli- tude and phase, are perfectly absorbed. The UPA is expected to be useful in the design of novel optical devices. PMID:27615125

  16. Unidirectional perfect absorber

    NASA Astrophysics Data System (ADS)

    Jin, L.; Wang, P.; Song, Z.

    2016-09-01

    This study proposes a unidirectional perfect absorber (UPA), which we realized with a two-arm Aharonov-Bohm interferometer, that consists of a dissipative resonator side-coupled to a uniform resonator array. The UPA has reflection-less full absorption on one direction, and reflectionless full transmission on the other, with an appropriate magnetic flux and coupling, detuning, and loss of the side-coupled resonator. The magnetic flux controls the transmission, the left transmission is larger for magnetic flux less than one-half flux quantum; and the right transmission is larger for magnetic flux between one-half and one flux quantum. Besides, a perfect absorber (PA) can be realized based on the UPA, in which light waves from both sides, with arbitrary superposition of the ampli- tude and phase, are perfectly absorbed. The UPA is expected to be useful in the design of novel optical devices.

  17. Unidirectional perfect absorber.

    PubMed

    Jin, L; Wang, P; Song, Z

    2016-01-01

    This study proposes a unidirectional perfect absorber (UPA), which we realized with a two-arm Aharonov-Bohm interferometer, that consists of a dissipative resonator side-coupled to a uniform resonator array. The UPA has reflection-less full absorption on one direction, and reflectionless full transmission on the other, with an appropriate magnetic flux and coupling, detuning, and loss of the side-coupled resonator. The magnetic flux controls the transmission, the left transmission is larger for magnetic flux less than one-half flux quantum; and the right transmission is larger for magnetic flux between one-half and one flux quantum. Besides, a perfect absorber (PA) can be realized based on the UPA, in which light waves from both sides, with arbitrary superposition of the ampli- tude and phase, are perfectly absorbed. The UPA is expected to be useful in the design of novel optical devices. PMID:27615125

  18. Mechanical energy absorber

    NASA Technical Reports Server (NTRS)

    Wesselski, Clarence J. (Inventor)

    1993-01-01

    An energy absorbing system for controlling the force where a moving object engages a stationary stop and where the system utilized telescopic tubular members, energy absorbing diaphragm elements, force regulating disc springs, and a return spring to return the telescoping member to its start position after stroking is presented. The energy absorbing system has frusto-conical diaphragm elements frictionally engaging the shaft and are opposed by a force regulating set of disc springs. In principle, this force feedback mechanism serves to keep the stroking load at a reasonable level even if the friction coefficient increases greatly. This force feedback device also serves to desensitize the singular and combined effects of manufacturing tolerances, sliding surface wear, temperature changes, dynamic effects, and lubricity.

  19. Unidirectional perfect absorber.

    PubMed

    Jin, L; Wang, P; Song, Z

    2016-09-12

    This study proposes a unidirectional perfect absorber (UPA), which we realized with a two-arm Aharonov-Bohm interferometer, that consists of a dissipative resonator side-coupled to a uniform resonator array. The UPA has reflection-less full absorption on one direction, and reflectionless full transmission on the other, with an appropriate magnetic flux and coupling, detuning, and loss of the side-coupled resonator. The magnetic flux controls the transmission, the left transmission is larger for magnetic flux less than one-half flux quantum; and the right transmission is larger for magnetic flux between one-half and one flux quantum. Besides, a perfect absorber (PA) can be realized based on the UPA, in which light waves from both sides, with arbitrary superposition of the ampli- tude and phase, are perfectly absorbed. The UPA is expected to be useful in the design of novel optical devices.

  20. Deep phylogeny and evolution of sponges (phylum Porifera).

    PubMed

    Wörheide, G; Dohrmann, M; Erpenbeck, D; Larroux, C; Maldonado, M; Voigt, O; Borchiellini, C; Lavrov, D V

    2012-01-01

    Sponges (phylum Porifera) are a diverse taxon of benthic aquatic animals of great ecological, commercial, and biopharmaceutical importance. They are arguably the earliest-branching metazoan taxon, and therefore, they have great significance in the reconstruction of early metazoan evolution. Yet, the phylogeny and systematics of sponges are to some extent still unresolved, and there is an on-going debate about the exact branching pattern of their main clades and their relationships to the other non-bilaterian animals. Here, we review the current state of the deep phylogeny of sponges. Several studies have suggested that sponges are paraphyletic. However, based on recent phylogenomic analyses, we suggest that the phylum Porifera could well be monophyletic, in accordance with cladistic analyses based on morphology. This finding has many implications for the evolutionary interpretation of early animal traits and sponge development. We further review the contribution that mitochondrial genes and genomes have made to sponge phylogenetics and explore the current state of the molecular phylogenies of the four main sponge lineages (Classes), that is, Demospongiae, Hexactinellida, Calcarea, and Homoscleromorpha, in detail. While classical systematic systems are largely congruent with molecular phylogenies in the class Hexactinellida and in certain parts of Demospongiae and Homoscleromorpha, the high degree of incongruence in the class Calcarea still represents a challenge. We highlight future areas of research to fill existing gaps in our knowledge. By reviewing sponge development in an evolutionary and phylogenetic context, we support previous suggestions that sponge larvae share traits and complexity with eumetazoans and that the simple sedentary adult lifestyle of sponges probably reflects some degree of secondary simplification. In summary, while deep sponge phylogenetics has made many advances in the past years, considerable efforts are still required to achieve a

  1. Complex nitrogen cycling in the sponge Geodia barretti.

    PubMed

    Hoffmann, Friederike; Radax, Regina; Woebken, Dagmar; Holtappels, Moritz; Lavik, Gaute; Rapp, Hans Tore; Schläppy, Marie-Lise; Schleper, Christa; Kuypers, Marcel M M

    2009-09-01

    Marine sponges constitute major parts of coral reefs and deep-water communities. They often harbour high amounts of phylogenetically and physiologically diverse microbes, which are so far poorly characterized. Many of these sponges regulate their internal oxygen concentration by modulating their ventilation behaviour providing a suitable habitat for both aerobic and anaerobic microbes. In the present study, both aerobic (nitrification) and anaerobic (denitrification, anammox) microbial processes of the nitrogen cycle were quantified in the sponge Geodia barretti and possible involved microbes were identified by molecular techniques. Nitrification rates of 566 nmol N cm(-3) sponge day(-1) were obtained when monitoring the production of nitrite and nitrate. In support of this finding, ammonia-oxidizing Archaea (crenarchaeotes) were found by amplification of the amoA gene, and nitrite-oxidizing bacteria of the genus Nitrospira were detected based on rRNA gene analyses. Incubation experiments with stable isotopes ((15)NO(3)(-) and (15)NH(4)(+)) revealed denitrification and anaerobic ammonium oxidation (anammox) rates of 92 nmol N cm(-3) sponge day(-1) and 3 nmol N cm(-3) sponge day(-1) respectively. Accordingly, sequences closely related to 'Candidatus Scalindua sorokinii' and 'Candidatus Scalindua brodae' were detected in 16S rRNA gene libraries. The amplification of the nirS gene revealed the presence of denitrifiers, likely belonging to the Betaproteobacteria. This is the first proof of anammox and denitrification in the same animal host, and the first proof of anammox and denitrification in sponges. The close and complex interactions of aerobic, anaerobic, autotrophic and heterotrophic microbial processes are fuelled by metabolic waste products of the sponge host, and enable efficient utilization and recirculation of nutrients within the sponge-microbe system. Since denitrification and anammox remove inorganic nitrogen from the environment, sponges may function as

  2. Sponge-rhodolith interactions in a subtropical estuarine system

    NASA Astrophysics Data System (ADS)

    Ávila, Enrique; Riosmena-Rodríguez, Rafael; Hinojosa-Arango, Gustavo

    2013-06-01

    The interactions between sponges and red macroalgae have been widely documented in tropical and subtropical environments worldwide, and many of them have been documented as mutualistic associations. Sponges, however, have also been frequently described as part of the associated fauna of rhodolith habitats (aggregations of free-living non-geniculated coralline macroalgae). Nonetheless, the types of interaction they establish as well as the role of sponges in these habitats remain unknown. In this study, the associations between sponges and rhodoliths were investigated in an estuarine ecosystem of the Mexican Pacific based on qualitative and quantitative data. A total of 13 sponge species were identified in five newly discovered rhodolith beds dominated by the non-geniculate coralline macroalga Lithophyllum margaritae. The sponge assemblages were strongly restricted to rhodolith habitats. The best predictor of sponge abundance (from 5.1 to 51.7 ind m-2) and species richness (from 2.6 to 6.1 sponge species m-2) was the rhodolith density rather than other population descriptors assessed (e.g., average size, branch density and sphericity). The identified sponges included a variety of forms: massive (46 %), encrusting (23 %), excavating (15 %), cushion-shape (8 %) and digitate (8 %). Moreover, more than 50 % of sponge species recorded (mainly massive and encrusting forms) were frequently found overgrowing and binding rhodoliths. Halichondria cf. semitubulosa and Mycale cecilia were the most common binding agents; these species bind an average of 3.1 and 6.6 rhodoliths per sponge individual, respectively. These findings reveal the importance of rhodoliths as habitat forming species, since these seaweed beds notably increased the substrate complexity in soft bottom environments. In addition, the relatively high abundance of sponges and their capability to bind rhodoliths suggest that these associated organisms could have an important contribution to rhodolith bed stability.

  3. Tactile texture and friction of soft sponge surfaces.

    PubMed

    Takahashi, Akira; Suzuki, Makoto; Imai, Yumi; Nonomura, Yoshimune

    2015-06-01

    We evaluated the tactile texture and frictional properties of five soft sponges with various cell sizes. The frictional forces were measured by a friction meter containing a contact probe with human-finger-like geometry and mechanical properties. When the subjects touched these sponges with their fingers, hard-textured sponges were deemed unpleasant. This tactile feeling changed with friction factors including friction coefficients, their temporal patterns, as well as mechanical and shape factors. These findings provide useful information on how to control the tactile textures of various sponges.

  4. Collagen sponge: theory and practice of medical applications.

    PubMed

    Chvapil, M

    1977-09-01

    Theoretical as well as practical-clinical applications of one form of collagen (collagen sponge) as a biodegradable material is reviewed. The role of porosity of the sponge and surface characteristics of the meshwork in relation to cell ingrowth are considered essential features of collagen sponge. Rate of resorption and antigenicity could be controlled by graded crosslinking of collagenous framework. Four basic examples of clinical use of collagen sponge are presented: as wound (burn) dressing material, as a matrix, for bone and cartilage repair, as an intravaginal contraceptive diaphragm, and as surgical tampons.

  5. Hyperaldosteronism, hyperparathyroidism, medullary sponge kidneys, and hypertension.

    PubMed

    Hellman, D E; Kartchner, M; Komar, N; Mayes, D; Pitt, M

    1980-09-19

    Hyperparathyroidism and hyperaldosteronism coexisted in association with medullary sponge kidneys in a 27-year-old woman with severe hypertension. A modest fall in systolic and diastolic pressure followed removal of a parathyroid adenoma. Blood pressure was controlled with spironolactone therapy and restored to normal after removal of an aldosterone-secreting adrenal tumor. Elevated levels of aldosterone may have been responsible for the severe hypertension, while hypercalcemia may have had a synergistic effect on the arteriolar response to circulating vasoactive peptides.

  6. The pathology of sponge orange band disease affecting the Caribbean barrel sponge Xestospongia muta.

    PubMed

    Angermeier, Hilde; Kamke, Janine; Abdelmohsen, Usama R; Krohne, Georg; Pawlik, Joseph R; Lindquist, Niels L; Hentschel, Ute

    2011-02-01

    The aim of this study was to examine sponge orange band (SOB) disease affecting the prominent Caribbean sponge Xestospongia muta. Scanning and transmission electron microscopy revealed that SOB is accompanied by the massive destruction of the pinacoderm. Chlorophyll a content and the main secondary metabolites, tetrahydrofurans, characteristic of X. muta, were significantly lower in bleached than in healthy tissues. Denaturing gradient gel electrophoresis using cyanobacteria-specific 16S rRNA gene primers revealed a distinct shift from the Synechococcus/Prochlorococcus clade of sponge symbionts towards several clades of unspecific cyanobacteria, including lineages associated with coral disease (i.e. Leptolyngbya sp.). Underwater infection experiments were conducted by transplanting bleached cores into healthy individuals, but revealed no signs of SOB development. This study provided no evidence for the involvement of a specific microbial pathogen as an etiologic agent of disease; hence, the cause of SOB disease in X. muta remains unidentified.

  7. Neutron Absorbing Alloys

    DOEpatents

    Mizia, Ronald E.; Shaber, Eric L.; DuPont, John N.; Robino, Charles V.; Williams, David B.

    2004-05-04

    The present invention is drawn to new classes of advanced neutron absorbing structural materials for use in spent nuclear fuel applications requiring structural strength, weldability, and long term corrosion resistance. Particularly, an austenitic stainless steel alloy containing gadolinium and less than 5% of a ferrite content is disclosed. Additionally, a nickel-based alloy containing gadolinium and greater than 50% nickel is also disclosed.

  8. Solar concentrator/absorber

    NASA Technical Reports Server (NTRS)

    Von Tiesenhausen, G. F.

    1976-01-01

    Collector/energy converter, consisting of dual-slope optical concentrator and counterflow thermal energy absorber, is attached to multiaxis support structure. Efficient over wide range of illumination levels, device may be used to generate high temperature steam, serve as solar powered dryer, or power absorption cycle cooler.

  9. Gelatin Effects on the Physicochemical and Hemocompatible Properties of Gelatin/PAAm/Laponite Nanocomposite Hydrogels.

    PubMed

    Li, Changpeng; Mu, Changdao; Lin, Wei; Ngai, To

    2015-08-26

    In recent years, inorganic nanoparticles such as Laponite have frequently been incorporated into polymer matrixes to obtain nanocomposite hydrogels with hierarchical structures, ultrastrong tensibilities, and high transparencies. Despite their unique physical and chemical properties, only a few reports have evaluated Laponite-based nanocomposite hydrogels for biomedical applications. This article presents the synthesis and characterization of a novel, hemocompatible nanocomposite hydrogels by in situ polymerization of acrylamide (AAm) in a mixed suspension containing Laponite and gelatin. The compatibility, structure, thermal stability, and mechanical properties of the resulting NC gels with varied gel compositions were investigated. Our results show that the prepared nanocomposite hydrogels exhibit good thermal stability and mechanical properties. The introduction of a biocompatible polymer, gelatin, into the polymer matrix did not change the transparency and homogeneity of the resulting nanocomposite hydrogels, but it significantly decreased the hydrogel's pH-responsive properties. More importantly, gelatins that were incorporated into the PAAm network resisted nonspecific protein adsorption, improved the degree of hemolysis, and eventually prolonged the clotting time, indicating that the in vitro hemocompatibility of the resulting nanocomposite hydrogels had been substantially enhanced. Therefore, these nanocomposite hydrogels provide opportunities for potential use in various biomedical applications.

  10. Gelatin Effects on the Physicochemical and Hemocompatible Properties of Gelatin/PAAm/Laponite Nanocomposite Hydrogels.

    PubMed

    Li, Changpeng; Mu, Changdao; Lin, Wei; Ngai, To

    2015-08-26

    In recent years, inorganic nanoparticles such as Laponite have frequently been incorporated into polymer matrixes to obtain nanocomposite hydrogels with hierarchical structures, ultrastrong tensibilities, and high transparencies. Despite their unique physical and chemical properties, only a few reports have evaluated Laponite-based nanocomposite hydrogels for biomedical applications. This article presents the synthesis and characterization of a novel, hemocompatible nanocomposite hydrogels by in situ polymerization of acrylamide (AAm) in a mixed suspension containing Laponite and gelatin. The compatibility, structure, thermal stability, and mechanical properties of the resulting NC gels with varied gel compositions were investigated. Our results show that the prepared nanocomposite hydrogels exhibit good thermal stability and mechanical properties. The introduction of a biocompatible polymer, gelatin, into the polymer matrix did not change the transparency and homogeneity of the resulting nanocomposite hydrogels, but it significantly decreased the hydrogel's pH-responsive properties. More importantly, gelatins that were incorporated into the PAAm network resisted nonspecific protein adsorption, improved the degree of hemolysis, and eventually prolonged the clotting time, indicating that the in vitro hemocompatibility of the resulting nanocomposite hydrogels had been substantially enhanced. Therefore, these nanocomposite hydrogels provide opportunities for potential use in various biomedical applications. PMID:26202134

  11. High-Surface-Area CO2 Sponge: High Performance CO2 Scrubbing Based on Hollow Fiber-Supported Designer Ionic Liquid Sponges

    SciTech Connect

    2010-09-01

    IMPACCT Project: The team from ORNL and Georgia Tech is developing a new technology that will act like a sponge, integrating a new, alcohol-based ionic liquid into hollow fibers (magnified image, right) to capture CO2 from the exhaust produced by coal-fired power plants. Ionic liquids, or salts that exist in liquid form, are promising materials for carbon capture and storage, but their tendency to thicken when combined with CO2 limits their efficiency and poses a challenge for their development as a cost-effective alternative to current-generation solutions. Adding alcohol to the mix limits this tendency to thicken in the presence of CO2 but can also make the liquid more likely to evaporate, which would add significantly to the cost of CO2 capture. To solve this problem, ORNL is developing new classes of ionic liquids with high capacity for absorbing CO2. ORNL’s sponge would reduce the cost associated with the energy that would need to be diverted from power plants to capture CO2 and release it for storage.

  12. Influence of time, temperature, moisture, ingredients, and processing conditions on starch gelatinization.

    PubMed

    Lund, D

    1984-01-01

    Starch gelatinization phenomena is extremely important in many food systems. This review focuses on factors affecting gelatinization characteristics of starch. Important variables which must be considered in design of processes in which starch undergoes gelatinization are heat of gelatinization and temperature of gelatinization. Major interactions are reviewed for the effects of lipids, moisture content, nonionic constituents and electrolytes on these characteristics. Furthermore, treatment of starch-containing systems prior to heating into the gelatinization temperature range can have a significant effect on ultimate gelatinization characteristics. PMID:6386335

  13. Treatment of well tubulars with gelatin

    SciTech Connect

    Lowther, F.E.

    1992-08-04

    This patent describes a method for treating a tubular in a well. It comprises: passing a mass of gelatin downward through the tubular; and passing the mass of gelating, upward in the well tubular toward the surface. This patent also describes a method of treating tubulars in a cased well having at least one string of tubing therein. It comprises positioning a mass in the annulus formed between the casing and the at least one string of tubing; and passing the mass downward in the annulus and in contact with both the inner wall of the casing and the outer wall of the tubing to deposit a protective layer on each of the walls.

  14. Gelatin/graphene systems for low cost energy storage

    SciTech Connect

    Landi, Giovanni; Fedi, Filippo; Sorrentino, Andrea; Iannace, Salvatore; Neitzert, Heinz C.

    2014-05-15

    In this work, we introduce the possibility to use a low cost, biodegradable material for temporary energy storage devices. Here, we report the use of biologically derived organic electrodes composed of gelatin ad graphene. The graphene was obtained by mild sonication in a mixture of volatile solvents of natural graphite flakes and subsequent centrifugation. The presence of exfoliated graphene sheets was detected by atomic force microscopy (AFM) and Raman spectroscopy. The homogeneous dispersion in gelatin demonstrates a good compatibility between the gelatin molecules and the graphene particles. The electrical characterization of the resulting nanocomposites suggests the possible applications as materials for transient, low cost energy storage device.

  15. Gelatin/graphene systems for low cost energy storage

    NASA Astrophysics Data System (ADS)

    Landi, Giovanni; Fedi, Filippo; Sorrentino, Andrea; Neitzert, Heinz C.; Iannace, Salvatore

    2014-05-01

    In this work, we introduce the possibility to use a low cost, biodegradable material for temporary energy storage devices. Here, we report the use of biologically derived organic electrodes composed of gelatin ad graphene. The graphene was obtained by mild sonication in a mixture of volatile solvents of natural graphite flakes and subsequent centrifugation. The presence of exfoliated graphene sheets was detected by atomic force microscopy (AFM) and Raman spectroscopy. The homogeneous dispersion in gelatin demonstrates a good compatibility between the gelatin molecules and the graphene particles. The electrical characterization of the resulting nanocomposites suggests the possible applications as materials for transient, low cost energy storage device.

  16. Phylogenetically and Spatially Close Marine Sponges Harbour Divergent Bacterial Communities

    PubMed Central

    Hardoim, Cristiane C. P.; Esteves, Ana I. S.; Pires, Francisco R.; Gonçalves, Jorge M. S.; Cox, Cymon J.; Xavier, Joana R.; Costa, Rodrigo

    2012-01-01

    Recent studies have unravelled the diversity of sponge-associated bacteria that may play essential roles in sponge health and metabolism. Nevertheless, our understanding of this microbiota remains limited to a few host species found in restricted geographical localities, and the extent to which the sponge host determines the composition of its own microbiome remains a matter of debate. We address bacterial abundance and diversity of two temperate marine sponges belonging to the Irciniidae family - Sarcotragus spinosulus and Ircinia variabilis – in the Northeast Atlantic. Epifluorescence microscopy revealed that S. spinosulus hosted significantly more prokaryotic cells than I. variabilis and that prokaryotic abundance in both species was about 4 orders of magnitude higher than in seawater. Polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) profiles of S. spinosulus and I. variabilis differed markedly from each other – with higher number of ribotypes observed in S. spinosulus – and from those of seawater. Four PCR-DGGE bands, two specific to S. spinosulus, one specific to I. variabilis, and one present in both sponge species, affiliated with an uncultured sponge-specific phylogenetic cluster in the order Acidimicrobiales (Actinobacteria). Two PCR-DGGE bands present exclusively in S. spinosulus fingerprints affiliated with one sponge-specific phylogenetic cluster in the phylum Chloroflexi and with sponge-derived sequences in the order Chromatiales (Gammaproteobacteria), respectively. One Alphaproteobacteria band specific to S. spinosulus was placed in an uncultured sponge-specific phylogenetic cluster with a close relationship to the genus Rhodovulum. Our results confirm the hypothesized host-specific composition of bacterial communities between phylogenetically and spatially close sponge species in the Irciniidae family, with S. spinosulus displaying higher bacterial community diversity and distinctiveness than I. variabilis. These

  17. Two distinct microbial communities revealed in the sponge Cinachyrella.

    PubMed

    Cuvelier, Marie L; Blake, Emily; Mulheron, Rebecca; McCarthy, Peter J; Blackwelder, Patricia; Thurber, Rebecca L Vega; Lopez, Jose V

    2014-01-01

    Marine sponges are vital components of benthic and coral reef ecosystems, providing shelter and nutrition for many organisms. In addition, sponges act as an essential carbon and nutrient link between the pelagic and benthic environment by filtering large quantities of seawater. Many sponge species harbor a diverse microbial community (including Archaea, Bacteria and Eukaryotes), which can constitute up to 50% of the sponge biomass. Sponges of the genus Cinachyrella are common in Caribbean and Floridian reefs and their archaeal and bacterial microbiomes were explored here using 16S rRNA gene tag pyrosequencing. Cinachyrella specimens and seawater samples were collected from the same South Florida reef at two different times of year. In total, 639 OTUs (12 archaeal and 627 bacterial) belonging to 2 archaeal and 21 bacterial phyla were detected in the sponges. Based on their microbiomes, the six sponge samples formed two distinct groups, namely sponge group 1 (SG1) with lower diversity (Shannon-Weiner index: 3.73 ± 0.22) and SG2 with higher diversity (Shannon-Weiner index: 5.95 ± 0.25). Hosts' 28S rRNA gene sequences further confirmed that the sponge specimens were composed of two taxa closely related to Cinachyrella kuekenthalli. Both sponge groups were dominated by Proteobacteria, but Alphaproteobacteria were significantly more abundant in SG1. SG2 harbored many bacterial phyla (>1% of sequences) present in low abundance or below detection limits (<0.07%) in SG1 including: Acidobacteria, Chloroflexi, Gemmatimonadetes, Nitrospirae, PAUC34f, Poribacteria, and Verrucomicrobia. Furthermore, SG1 and SG2 only had 95 OTUs in common, representing 30.5 and 22.4% of SG1 and SG2's total OTUs, respectively. These results suggest that the sponge host may exert a pivotal influence on the nature and structure of the microbial community and may only be marginally affected by external environment parameters. PMID:25408689

  18. Two distinct microbial communities revealed in the sponge Cinachyrella

    PubMed Central

    Cuvelier, Marie L.; Blake, Emily; Mulheron, Rebecca; McCarthy, Peter J.; Blackwelder, Patricia; Thurber, Rebecca L. Vega; Lopez, Jose V.

    2014-01-01

    Marine sponges are vital components of benthic and coral reef ecosystems, providing shelter and nutrition for many organisms. In addition, sponges act as an essential carbon and nutrient link between the pelagic and benthic environment by filtering large quantities of seawater. Many sponge species harbor a diverse microbial community (including Archaea, Bacteria and Eukaryotes), which can constitute up to 50% of the sponge biomass. Sponges of the genus Cinachyrella are common in Caribbean and Floridian reefs and their archaeal and bacterial microbiomes were explored here using 16S rRNA gene tag pyrosequencing. Cinachyrella specimens and seawater samples were collected from the same South Florida reef at two different times of year. In total, 639 OTUs (12 archaeal and 627 bacterial) belonging to 2 archaeal and 21 bacterial phyla were detected in the sponges. Based on their microbiomes, the six sponge samples formed two distinct groups, namely sponge group 1 (SG1) with lower diversity (Shannon-Weiner index: 3.73 ± 0.22) and SG2 with higher diversity (Shannon-Weiner index: 5.95 ± 0.25). Hosts' 28S rRNA gene sequences further confirmed that the sponge specimens were composed of two taxa closely related to Cinachyrella kuekenthalli. Both sponge groups were dominated by Proteobacteria, but Alphaproteobacteria were significantly more abundant in SG1. SG2 harbored many bacterial phyla (>1% of sequences) present in low abundance or below detection limits (<0.07%) in SG1 including: Acidobacteria, Chloroflexi, Gemmatimonadetes, Nitrospirae, PAUC34f, Poribacteria, and Verrucomicrobia. Furthermore, SG1 and SG2 only had 95 OTUs in common, representing 30.5 and 22.4% of SG1 and SG2's total OTUs, respectively. These results suggest that the sponge host may exert a pivotal influence on the nature and structure of the microbial community and may only be marginally affected by external environment parameters. PMID:25408689

  19. Evaluation of bone matrix gelatin/fibrin glue and chitosan/gelatin composite scaffolds for cartilage tissue engineering.

    PubMed

    Wang, Z H; Zhang, J; Zhang, Q; Gao, Y; Yan, J; Zhao, X Y; Yang, Y Y; Kong, D M; Zhao, J; Shi, Y X; Li, X L

    2016-01-01

    This study was designed to evaluate bone matrix gelatin (BMG)/fibrin glue and chitosan/gelatin composite scaffolds for cartilage tissue engineering. Chondrocytes were isolated from costal cartilage of Sprague-Dawley rats and seeded on BMG/fibrin glue or chitosan/gelatin composite scaffolds. After different in vitro culture durations, the scaffolds were subjected to hematoxylin and eosin, Masson's trichrome, and toluidine blue staining, anti-collagen II and anti-aggrecan immunohistochemistry, and scanning electronic microscopy (SEM) analysis. After 2 weeks of culture, chondrocytes were distributed evenly on the surfaces of both scaffolds. Cell numbers and the presence of extracellular matrix components were markedly increased after 8 weeks of culture, and to a greater extent on the chitosan/gelatin scaffold. The BMG/fibrin glue scaffold showed signs of degradation after 8 weeks. Immunofluorescence analysis confirmed higher levels of collagen II and aggrecan using the chitosan/gelatin scaffold. SEM revealed that the majority of cells on the surface of the BMG/fibrin glue scaffold demonstrated a round morphology, while those in the chitosan/gelatin group had a spindle-like shape, with pseudopodia. Chitosan/gelatin scaffolds appear to be superior to BMG/ fibrin glue constructs in supporting chondrocyte attachment, proliferation, and biosynthesis of cartilaginous matrix components. PMID:27525846

  20. Pyrosequencing reveals highly diverse and species-specific microbial communities in sponges from the Red Sea.

    PubMed

    Lee, On On; Wang, Yong; Yang, Jiangke; Lafi, Feras F; Al-Suwailem, Abdulaziz; Qian, Pei-Yuan

    2011-04-01

    Marine sponges are associated with a remarkable array of microorganisms. Using a tag pyrosequencing technology, this study was the first to investigate in depth the microbial communities associated with three Red Sea sponges, Hyrtios erectus, Stylissa carteri and Xestospongia testudinaria. We revealed highly diverse sponge-associated bacterial communities with up to 1000 microbial operational taxonomic units (OTUs) and richness estimates of up to 2000 species. Altogether, 26 bacterial phyla were detected from the Red Sea sponges, 11 of which were absent from the surrounding sea water and 4 were recorded in sponges for the first time. Up to 100 OTUs with richness estimates of up to 300 archaeal species were revealed from a single sponge species. This is by far the highest archaeal diversity ever recorded for sponges. A non-negligible proportion of unclassified reads was observed in sponges. Our results demonstrated that the sponge-associated microbial communities remained highly consistent in the same sponge species from different locations, although they varied at different degrees among different sponge species. A significant proportion of the tag sequences from the sponges could be assigned to one of the sponge-specific clusters previously defined. In addition, the sponge-associated microbial communities were consistently divergent from those present in the surrounding sea water. Our results suggest that the Red Sea sponges possess highly sponge-specific or even sponge-species-specific microbial communities that are resistant to environmental disturbance, and much of their microbial diversity remains to be explored. PMID:21085196

  1. Barium hydrogen phosphate/gelatin composites versus gelatin-free barium hydrogen phosphate: synthesis and characterization of properties.

    PubMed

    Gashti, Mazeyar Parvinzadeh; Burgener, Matthias; Stir, Manuela; Hulliger, Jürg

    2014-10-01

    Recently, attention has been spent on crystal growth of phosphate compounds in gels for studying the mechanism of in vitro crystallization processes. Here, we present a gel-based approach for the synthesis of barium hydrogen phosphate (BHP) crystals using single and double diffusion techniques in gelatin. The composite crystals were compared with analytical grade BHP powder, single and polycrystalline BHP materials using Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), scanning pyroelectric microscopy (SPEM), optical microscopy (OM), thermal gravimetric analysis (TGA) and X-ray diffraction (XRD). FTIR spectra showed surface adsorption of gelatin molecules by using BHP stacked sheets due to CH2 stretching, CH2 bending and amide I vibrations are found in a gelatin content of about 2% determined by dissolution. SEM shows various crystal morphologies of the BHP/gelatin composites forming bundled micro-flakes to irregular bundled needles and spheres different from gel-free crystals. The variety in morphology depends on the ion concentration, pH of gel as well as the method of crystal growth. SPEM investigation of BHP/gelatin aggregates revealed polar domains showing alteration of the polarization. Moreover, BHP/gelatin composite crystals showed a higher thermal stability in comparison with analytical grade BHP or/and BHP single crystals due to strong interactions between gelatin and BHP. The XRD diffraction analysis demonstrated that the single and double diffusion techniques in gelatin led to the formation of orthorhombic BHP. This study demonstrates that gelatin is a useful high molecular weight biomacromolecule for controlling the crystallization of a composite material by producing a variety of morphological forms. PMID:24996024

  2. The Sponge Pump: The Role of Current Induced Flow in the Design of the Sponge Body Plan

    PubMed Central

    Leys, Sally P.; Yahel, Gitai; Reidenbach, Matthew A.; Tunnicliffe, Verena; Shavit, Uri; Reiswig, Henry M.

    2011-01-01

    Sponges are suspension feeders that use flagellated collar-cells (choanocytes) to actively filter a volume of water equivalent to many times their body volume each hour. Flow through sponges is thought to be enhanced by ambient current, which induces a pressure gradient across the sponge wall, but the underlying mechanism is still unknown. Studies of sponge filtration have estimated the energetic cost of pumping to be <1% of its total metabolism implying there is little adaptive value to reducing the cost of pumping by using “passive” flow induced by the ambient current. We quantified the pumping activity and respiration of the glass sponge Aphrocallistes vastus at a 150 m deep reef in situ and in a flow flume; we also modeled the glass sponge filtration system from measurements of the aquiferous system. Excurrent flow from the sponge osculum measured in situ and in the flume were positively correlated (r>0.75) with the ambient current velocity. During short bursts of high ambient current the sponges filtered two-thirds of the total volume of water they processed daily. Our model indicates that the head loss across the sponge collar filter is 10 times higher than previously estimated. The difference is due to the resistance created by a fine protein mesh that lines the collar, which demosponges also have, but was so far overlooked. Applying our model to the in situ measurements indicates that even modest pumping rates require an energetic expenditure of at least 28% of the total in situ respiration. We suggest that due to the high cost of pumping, current-induced flow is highly beneficial but may occur only in thin walled sponges living in high flow environments. Our results call for a new look at the mechanisms underlying current-induced flow and for reevaluation of the cost of biological pumping and its evolutionary role, especially in sponges. PMID:22180779

  3. The sponge pump: the role of current induced flow in the design of the sponge body plan.

    PubMed

    Leys, Sally P; Yahel, Gitai; Reidenbach, Matthew A; Tunnicliffe, Verena; Shavit, Uri; Reiswig, Henry M

    2011-01-01

    Sponges are suspension feeders that use flagellated collar-cells (choanocytes) to actively filter a volume of water equivalent to many times their body volume each hour. Flow through sponges is thought to be enhanced by ambient current, which induces a pressure gradient across the sponge wall, but the underlying mechanism is still unknown. Studies of sponge filtration have estimated the energetic cost of pumping to be <1% of its total metabolism implying there is little adaptive value to reducing the cost of pumping by using "passive" flow induced by the ambient current. We quantified the pumping activity and respiration of the glass sponge Aphrocallistes vastus at a 150 m deep reef in situ and in a flow flume; we also modeled the glass sponge filtration system from measurements of the aquiferous system. Excurrent flow from the sponge osculum measured in situ and in the flume were positively correlated (r>0.75) with the ambient current velocity. During short bursts of high ambient current the sponges filtered two-thirds of the total volume of water they processed daily. Our model indicates that the head loss across the sponge collar filter is 10 times higher than previously estimated. The difference is due to the resistance created by a fine protein mesh that lines the collar, which demosponges also have, but was so far overlooked. Applying our model to the in situ measurements indicates that even modest pumping rates require an energetic expenditure of at least 28% of the total in situ respiration. We suggest that due to the high cost of pumping, current-induced flow is highly beneficial but may occur only in thin walled sponges living in high flow environments. Our results call for a new look at the mechanisms underlying current-induced flow and for reevaluation of the cost of biological pumping and its evolutionary role, especially in sponges.

  4. The sponge pump: the role of current induced flow in the design of the sponge body plan.

    PubMed

    Leys, Sally P; Yahel, Gitai; Reidenbach, Matthew A; Tunnicliffe, Verena; Shavit, Uri; Reiswig, Henry M

    2011-01-01

    Sponges are suspension feeders that use flagellated collar-cells (choanocytes) to actively filter a volume of water equivalent to many times their body volume each hour. Flow through sponges is thought to be enhanced by ambient current, which induces a pressure gradient across the sponge wall, but the underlying mechanism is still unknown. Studies of sponge filtration have estimated the energetic cost of pumping to be <1% of its total metabolism implying there is little adaptive value to reducing the cost of pumping by using "passive" flow induced by the ambient current. We quantified the pumping activity and respiration of the glass sponge Aphrocallistes vastus at a 150 m deep reef in situ and in a flow flume; we also modeled the glass sponge filtration system from measurements of the aquiferous system. Excurrent flow from the sponge osculum measured in situ and in the flume were positively correlated (r>0.75) with the ambient current velocity. During short bursts of high ambient current the sponges filtered two-thirds of the total volume of water they processed daily. Our model indicates that the head loss across the sponge collar filter is 10 times higher than previously estimated. The difference is due to the resistance created by a fine protein mesh that lines the collar, which demosponges also have, but was so far overlooked. Applying our model to the in situ measurements indicates that even modest pumping rates require an energetic expenditure of at least 28% of the total in situ respiration. We suggest that due to the high cost of pumping, current-induced flow is highly beneficial but may occur only in thin walled sponges living in high flow environments. Our results call for a new look at the mechanisms underlying current-induced flow and for reevaluation of the cost of biological pumping and its evolutionary role, especially in sponges. PMID:22180779

  5. Keratin sponge/hydrogel part 1. fabrication and characterization

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Keratin sponge/hydrogel products formed by either the oxidation or reduction of U.S. domestic fine- or coarse-grade wool exhibited distinctively different topologies and molecular weights of 6- 8 kDa and 40-60 kDa, each with unique macro-porous structure and microstructural behaviors. The sponge/ ...

  6. The Dimension of the Pore Space in Sponges

    ERIC Educational Resources Information Center

    Silva, L. H. F.; Yamashita, M. T.

    2009-01-01

    A simple experiment to reveal the dimension of the pore space in sponges is proposed. This experiment is suitable for the first year of a physics or engineering course. The calculated dimension of the void space in a sponge of density 16 mg cm[superscript -3] was 2.948 [plus or minus] 0.008. (Contains 2 figures.)

  7. Prevalence and Mechanisms of Dynamic Chemical Defenses in Tropical Sponges

    PubMed Central

    Rohde, Sven; Nietzer, Samuel; Schupp, Peter J.

    2015-01-01

    Sponges and other sessile invertebrates are lacking behavioural escape or defense mechanisms and rely therefore on morphological or chemical defenses. Studies from terrestrial systems and marine algae demonstrated facultative defenses like induction and activation to be common, suggesting that sessile marine organisms also evolved mechanisms to increase the efficiency of their chemical defense. However, inducible defenses in sponges have not been investigated so far and studies on activated defenses are rare. We investigated whether tropical sponge species induce defenses in response to artificial predation and whether wounding triggers defense activation. Additionally, we tested if these mechanisms are also used to boost antimicrobial activity to avoid bacterial infection. Laboratory experiments with eight pacific sponge species showed that 87% of the tested species were chemically defended. Two species, Stylissa massa and Melophlus sarasinorum, induced defenses in response to simulated predation, which is the first demonstration of induced antipredatory defenses in marine sponges. One species, M. sarasinorum, also showed activated defense in response to wounding. Interestingly, 50% of the tested sponge species demonstrated induced antimicrobial defense. Simulated predation increased the antimicrobial defenses in Aplysinella sp., Cacospongia sp., M. sarasinorum, and S. massa. Our results suggest that wounding selects for induced antimicrobial defenses to protect sponges from pathogens that could otherwise invade the sponge tissue via feeding scars. PMID:26154741

  8. Prevalence and Mechanisms of Dynamic Chemical Defenses in Tropical Sponges.

    PubMed

    Rohde, Sven; Nietzer, Samuel; Schupp, Peter J

    2015-01-01

    Sponges and other sessile invertebrates are lacking behavioural escape or defense mechanisms and rely therefore on morphological or chemical defenses. Studies from terrestrial systems and marine algae demonstrated facultative defenses like induction and activation to be common, suggesting that sessile marine organisms also evolved mechanisms to increase the efficiency of their chemical defense. However, inducible defenses in sponges have not been investigated so far and studies on activated defenses are rare. We investigated whether tropical sponge species induce defenses in response to artificial predation and whether wounding triggers defense activation. Additionally, we tested if these mechanisms are also used to boost antimicrobial activity to avoid bacterial infection. Laboratory experiments with eight pacific sponge species showed that 87% of the tested species were chemically defended. Two species, Stylissa massa and Melophlus sarasinorum, induced defenses in response to simulated predation, which is the first demonstration of induced antipredatory defenses in marine sponges. One species, M. sarasinorum, also showed activated defense in response to wounding. Interestingly, 50% of the tested sponge species demonstrated induced antimicrobial defense. Simulated predation increased the antimicrobial defenses in Aplysinella sp., Cacospongia sp., M. sarasinorum, and S. massa. Our results suggest that wounding selects for induced antimicrobial defenses to protect sponges from pathogens that could otherwise invade the sponge tissue via feeding scars.

  9. Metasurface Broadband Solar Absorber

    PubMed Central

    Azad, Abul K.; Kort-Kamp, Wilton J. M.; Sykora, Milan; Weisse-Bernstein, Nina R.; Luk, Ting S.; Taylor, Antoinette J.; Dalvit, Diego A. R.; Chen, Hou-Tong

    2016-01-01

    We demonstrate a broadband, polarization independent, wide-angle absorber based on a metallic metasurface architecture, which accomplishes greater than 90% absorptance in the visible and near-infrared range of the solar spectrum, and exhibits low absorptivity (emissivity) at mid- and far-infrared wavelengths. The complex unit cell of the metasurface solar absorber consists of eight pairs of gold nano-resonators that are separated from a gold ground plane by a thin silicon dioxide spacer. Our experimental measurements reveal high-performance absorption over a wide range of incidence angles for both s- and p-polarizations. We also investigate numerically the frequency-dependent field and current distributions to elucidate how the absorption occurs within the metasurface structure. PMID:26828999

  10. Metasurface Broadband Solar Absorber.

    PubMed

    Azad, Abul K; Kort-Kamp, Wilton J M; Sykora, Milan; Weisse-Bernstein, Nina R; Luk, Ting S; Taylor, Antoinette J; Dalvit, Diego A R; Chen, Hou-Tong

    2016-01-01

    We demonstrate a broadband, polarization independent, wide-angle absorber based on a metallic metasurface architecture, which accomplishes greater than 90% absorptance in the visible and near-infrared range of the solar spectrum, and exhibits low absorptivity (emissivity) at mid- and far-infrared wavelengths. The complex unit cell of the metasurface solar absorber consists of eight pairs of gold nano-resonators that are separated from a gold ground plane by a thin silicon dioxide spacer. Our experimental measurements reveal high-performance absorption over a wide range of incidence angles for both s- and p-polarizations. We also investigate numerically the frequency-dependent field and current distributions to elucidate how the absorption occurs within the metasurface structure.

  11. Metasurface Broadband Solar Absorber

    DOE PAGES

    Azad, Abul K.; Kort-Kamp, Wilton J. M.; Sykora, Milan; Weisse-Bernstein, Nina R.; Luk, Ting S.; Taylor, Antoinette J.; Dalvit, Diego A. R.; Chen, Hou-Tong

    2016-02-01

    Here, we demonstrate a broadband, polarization independent, wide-angle absorber based on a metallic metasurface architecture, which accomplishes greater than 90% absorptance in the visible and near-infrared range of the solar spectrum, and exhibits low absorptivity (emissivity) at mid- and far-infrared wavelengths. The complex unit cell of the metasurface solar absorber consists of eight pairs of gold nano-resonators that are separated from a gold ground plane by a thin silicon dioxide spacer. Moreover, our experimental measurements reveal high-performance absorption over a wide range of incidence angles for both s- and p-polarizations. We also investigate numerically the frequency-dependent field and current distributionsmore » to elucidate how the absorption occurs within the metasurface structure.« less

  12. Metasurface Broadband Solar Absorber.

    PubMed

    Azad, Abul K; Kort-Kamp, Wilton J M; Sykora, Milan; Weisse-Bernstein, Nina R; Luk, Ting S; Taylor, Antoinette J; Dalvit, Diego A R; Chen, Hou-Tong

    2016-01-01

    We demonstrate a broadband, polarization independent, wide-angle absorber based on a metallic metasurface architecture, which accomplishes greater than 90% absorptance in the visible and near-infrared range of the solar spectrum, and exhibits low absorptivity (emissivity) at mid- and far-infrared wavelengths. The complex unit cell of the metasurface solar absorber consists of eight pairs of gold nano-resonators that are separated from a gold ground plane by a thin silicon dioxide spacer. Our experimental measurements reveal high-performance absorption over a wide range of incidence angles for both s- and p-polarizations. We also investigate numerically the frequency-dependent field and current distributions to elucidate how the absorption occurs within the metasurface structure. PMID:26828999

  13. Absorbed dose water calorimeter

    SciTech Connect

    Domen, S.R.

    1982-01-26

    An absorbed dose water calorimeter that takes advantage of the low thermal diffusivity of water and the water-imperviousness of polyethylene film. An ultra-small bead thermistor is sandwiched between two thin polyethylene films stretched between insulative supports in a water bath. The polyethylene films insulate the thermistor and its leads, the leads being run out from between the films in insulated sleeving and then to junctions to form a wheatstone bridge circuit. Convection barriers may be provided to reduce the effects of convection from the point of measurement. Controlled heating of different levels in the water bath is accomplished by electrical heater circuits provided for controlling temperature drift and providing adiabatic operation of the calorimeter. The absorbed dose is determined from the known specific heat of water and the measured temperature change.

  14. Ionized Absorbers in AGN

    NASA Technical Reports Server (NTRS)

    Mathur, S.

    1999-01-01

    As a part of this program, we observed three AGN:PKS2251 + 113, PG0043 = 039 and PLH909. Two objects show signatures of absorbtion in their UV spectra. Based on our earlier modeling of X-ray warm absorbents, we expected to observe X-ray observation in these objects. The third, PLH909, is known to have soft excess in EINSTEIN data. Attachment: "Exploratory ASCA observation of broad absorption line quasi-stellar objects".

  15. Dichromated-gelatin hologram process for improved optical quality

    NASA Technical Reports Server (NTRS)

    Stewart, W. C.

    1975-01-01

    Optical distortions are eliminated by use of wetting agency followed by sequential immersion in several alcohol-water baths of increasing alcohol concentration. Dehydration proceeds uniformly over surface of gelatin. Dried plate is free of optically-distorting thickness variations.

  16. Starvation marrow – gelatinous transformation of bone marrow

    PubMed Central

    Osgood, Eric; Muddassir, Salman; Jaju, Minal; Moser, Robert; Farid, Farwa; Mewada, Nishith

    2014-01-01

    Gelatinous bone marrow transformation (GMT), also known as starvation marrow, represents a rare pathological entity of unclear etiology, in which bone marrow histopathology demonstrates hypoplasia, fat atrophy, and gelatinous infiltration. The finding of gelatinous marrow transformation lacks disease specificity; rather, it is an indicator of severe illness and a marker of poor nutritional status, found in patients with eating disorders, acute febrile illnesses, acquired immunodeficiency syndrome, alcoholism, malignancies, and congestive heart failure. We present a middle-aged woman with a history of alcoholism, depression, and anorexia nervosa who presented with failure to thrive and macrocytic anemia, with bone marrow examination demonstrative of gelatinous transformation, all of which resolved with appropriate treatment. To our knowledge, there are very few cases of GMT which have been successfully treated; thus, our case highlights the importance of proper supportive management. PMID:25317270

  17. Photocopy of original blackandwhite silver gelatin print, VIEW FROM WASHINGTON ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of original black-and-white silver gelatin print, VIEW FROM WASHINGTON MONUMENT, October 3, 1929, photography Commercial Photo - Internal Revenue Service Headquarters Building, 1111 Constitution Avenue Northwest, Washington, District of Columbia, DC

  18. Photocopy of original blackandwhite silver gelatin print, VIEW FROM NORTHWEST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of original black-and-white silver gelatin print, VIEW FROM NORTHWEST CORNER, April 1, 1929, photographer Commercial Photo Company - Internal Revenue Service Headquarters Building, 1111 Constitution Avenue Northwest, Washington, District of Columbia, DC

  19. Photocopy of original blackandwhite silver gelatin print, C STREET FACADE, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of original black-and-white silver gelatin print, C STREET FACADE, October 3, 1929, photographer Commercial Photo Company - Internal Revenue Service Headquarters Building, 1111 Constitution Avenue Northwest, Washington, District of Columbia, DC

  20. Recent advances in the use of gelatin in biomedical research.

    PubMed

    Su, Kai; Wang, Chunming

    2015-11-01

    The biomacromolecule, gelatin, has increasingly been used in biomedicine-beyond its traditional use in food and cosmetics. The appealing advantages of gelatin, such as its cell-adhesive structure, low cost, off-the-shelf availability, high biocompatibility, biodegradability and low immunogenicity, among others, have made it a desirable candidate for the development of biomaterials for tissue engineering and drug delivery. Gelatin can be formulated in the form of nanoparticles, employed as size-controllable porogen, adopted as surface coating agent and mixed with synthetic or natural biopolymers forming composite scaffolds. In this article, we review recent advances in the versatile applications of gelatin within biomedical context and attempt to draw upon its advantages and potential challenges.

  1. Photocopy of original blackandwhite silver gelatin print, WEST END OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of original black-and-white silver gelatin print, WEST END OF PENNSYLVANIA AVENUE ELL SHOWING TEMPORARY BRICK WALL, March 1, 1935, photographer Reni - Internal Revenue Service Headquarters Building, 1111 Constitution Avenue Northwest, Washington, District of Columbia, DC

  2. Photocopy of original blackandwhite silver gelatin print, TWELFTH STREET DRIVEWAY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of original black-and-white silver gelatin print, TWELFTH STREET DRIVEWAY ENTRANCE, August 31, 1929, photographer Commercial Photo Company - Internal Revenue Service Headquarters Building, 1111 Constitution Avenue Northwest, Washington, District of Columbia, DC

  3. Photocopy of original blackandwhite silver gelatin print, C STREET AT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of original black-and-white silver gelatin print, C STREET AT TWELFTH STREET, May 1, 1930, photographer Commercial Photo Company - Internal Revenue Service Headquarters Building, 1111 Constitution Avenue Northwest, Washington, District of Columbia, DC

  4. Photocopy of original blackandwhite silver gelatin print, WEST END OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of original black-and-white silver gelatin print, WEST END OF PENNSYLVANIA AVENUE ELL SHOWING TEMPORARY BRICK WALL, May 1, 1935, photographer Reni - Internal Revenue Service Headquarters Building, 1111 Constitution Avenue Northwest, Washington, District of Columbia, DC

  5. Photocopy of original blackandwhite silver gelatin print, LOOKING SOUTHEAST FOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of original black-and-white silver gelatin print, LOOKING SOUTHEAST FOR NORTHEAST CORNER OF WING, November 1, 1934, photographer Reni - Internal Revenue Service Headquarters Building, 1111 Constitution Avenue Northwest, Washington, District of Columbia, DC

  6. Photocopy of original blackandwhite silver gelatin print, VIEW FROM SOUTHEAST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of original black-and-white silver gelatin print, VIEW FROM SOUTHEAST CORNER, April 1, 1929, photographer Commercial Photo Company - Internal Revenue Service Headquarters Building, 1111 Constitution Avenue Northwest, Washington, District of Columbia, DC

  7. Photocopy of original blackandwhite silver gelatin print, VIEW OF NORTH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of original black-and-white silver gelatin print, VIEW OF NORTH WALL OF MAIN COURT, May 1, 1935, photographer Reni - Internal Revenue Service Headquarters Building, 1111 Constitution Avenue Northwest, Washington, District of Columbia, DC

  8. Injectable, porous, and cell-responsive gelatin cryogels

    PubMed Central

    Koshy, Sandeep T.; Ferrante, Thomas C.; Lewin, Sarah A.; Mooney, David J.

    2014-01-01

    The performance of biomaterials-based therapies can be hindered by complications associated with surgical implant, motivating the development of materials systems that allow minimally invasive introduction into the host. In this study, we created cell-adhesive and degradable gelatin scaffolds that could be injected through a conventional needle while maintaining a predefined geometry and architecture. These scaffolds supported attachment, proliferation, and survival of cells in vitro and could be degraded by recombinant matrix metalloproteinase-2 and -9. Prefabricated gelatin cryogels rapidly reassumed their original shape when injected subcutaneously into mice and elicited only a minor host response following injection. Controlled release of granulocyte-macrophage colony-stimulating factor from gelatin cryogels resulted in complete infiltration of the scaffold by immune cells and promoted matrix metalloproteinase production leading to cell-mediated degradation of the cryogel matrix. These findings suggest that gelatin cryogels could serve as a cell-responsive platform for biomaterial-based therapy. PMID:24345735

  9. Recent advances in the use of gelatin in biomedical research.

    PubMed

    Su, Kai; Wang, Chunming

    2015-11-01

    The biomacromolecule, gelatin, has increasingly been used in biomedicine-beyond its traditional use in food and cosmetics. The appealing advantages of gelatin, such as its cell-adhesive structure, low cost, off-the-shelf availability, high biocompatibility, biodegradability and low immunogenicity, among others, have made it a desirable candidate for the development of biomaterials for tissue engineering and drug delivery. Gelatin can be formulated in the form of nanoparticles, employed as size-controllable porogen, adopted as surface coating agent and mixed with synthetic or natural biopolymers forming composite scaffolds. In this article, we review recent advances in the versatile applications of gelatin within biomedical context and attempt to draw upon its advantages and potential challenges. PMID:26160110

  10. Photocopy of original blackandwhite silver gelatin print, VIEW FROM JUSTICE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of original black-and-white silver gelatin print, VIEW FROM JUSTICE BUILDING LOOKING WEST, June 4, 1934, photographer Reni - Internal Revenue Service Headquarters Building, 1111 Constitution Avenue Northwest, Washington, District of Columbia, DC

  11. Direct Oil Recovery from Saturated Carbon Nanotube Sponges.

    PubMed

    Li, Xiying; Xue, Yahui; Zou, Mingchu; Zhang, Dongxiao; Cao, Anyuan; Duan, Huiling

    2016-05-18

    Oil adsorption by porous materials is a major strategy for water purification and industrial spill cleanup; it is of great interest if the adsorbed oil can be safely recovered from those porous media. Here, direct oil recovery from fully saturated bulk carbon nanotube (CNT) sponges by displacing oil with water in controlled manner is shown. Surfactant-assisted electrocapillary imbibition is adopted to drive aqueous electrolyte into the sponge and extrude organic oil out continuously at low potentials (up to -1.2 V). More than 95 wt % of oil adsorbed within the sponge can be recovered, via a single electrocapillary process. Recovery of different oils with a wide range of viscosities is demonstrated, and the remaining CNT sponge can be reused with similar recovery capacity. A direct and efficient method is provided to recover oil from CNT sponges by water imbibition, which has many potential environmental and energy applications.

  12. Advancement into the Arctic region for bioactive sponge secondary metabolites.

    PubMed

    Abbas, Samuel; Kelly, Michelle; Bowling, John; Sims, James; Waters, Amanda; Hamann, Mark

    2011-01-01

    Porifera have long been a reservoir for the discovery of bioactive compounds and drug discovery. Most research in the area has focused on sponges from tropical and temperate waters, but more recently the focus has shifted to the less accessible colder waters of the Antarctic and, to a lesser extent, the Arctic. The Antarctic region in particular has been a more popular location for natural products discovery and has provided promising candidates for drug development. This article reviews groups of bioactive compounds that have been isolated and reported from the southern reaches of the Arctic Circle, surveys the known sponge diversity present in the Arctic waters, and details a recent sponge collection by our group in the Aleutian Islands, Alaska. The collection has yielded previously undescribed sponge species along with primary activity against opportunistic infectious diseases, malaria, and HCV. The discovery of new sponge species and bioactive crude extracts gives optimism for the isolation of new bioactive compounds from a relatively unexplored source.

  13. Potential of sponges and microalgae for marine biotechnology.

    PubMed

    Wijffels, René H

    2008-01-01

    Marine organisms can be used to produce several novel products that have applications in new medical technologies, in food and feed ingredients and as biofuels. In this paper two examples are described: the development of marine drugs from sponges and the use of microalgae to produce bulk chemicals and biofuels. Many sponges produce bioactive compounds with important potential applications as medical drugs. Recent developments in metagenomics, in the culturing of associated microorganisms from sponges and in the development of sponge cell-lines have the potential to solve the issue of supply, which is the main limitation for sponge exploitation. For the production of microalgal products at larger scales and the production of biofuels, major technological breakthroughs need to be realized to increase the product yield.

  14. Preparation, characterization, and antibacterial activity of γ-irradiated silver nanoparticles in aqueous gelatin

    NASA Astrophysics Data System (ADS)

    Darroudi, Majid; Ahmad, Mansor B.; Hakimi, Mohammad; Zamiri, Reza; Zak, Ali Khorsand; Hosseini, Hasan Ali; Zargar, Mohsen

    2013-04-01

    Colloidal silver nanoparticles (Ag-NPs) were obtained through γ-irradiation of aqueous solutions containing AgNO3 and gelatin as a silver source and stabilizer, respectively. The absorbed dose of γ-irradiation influences the particle diameter of the Ag-NPs, as evidenced from surface plasmon resonance (SPR) and transmission electron microscopy (TEM) images. When the γ-irradiation dose was increased (from 2 to 50 kGy), the mean particle size was decreased continuously as a result of γ-induced Ag-NPs fragmentation. The antibacterial properties of the Ag-NPs were tested against Methicillinresistant Staphylococcus aureus (MRSA) (Gram-positive) and Pseudomonas aeruginosa (P.a) (Gram-negative) bacteria. This approach reveals that the γ-irradiation-mediated method is a promising simple route for synthesizing highly stable Ag-NPs in aqueous solutions with good antibacterial properties for different applications.

  15. Enzymatic regulation of functional vascular networks using gelatin hydrogels.

    PubMed

    Chuang, Chia-Hui; Lin, Ruei-Zeng; Tien, Han-Wen; Chu, Ya-Chun; Li, Yen-Cheng; Melero-Martin, Juan M; Chen, Ying-Chieh

    2015-06-01

    To manufacture tissue engineering-based functional tissues, scaffold materials that can be sufficiently vascularized to mimic the functionality and complexity of native tissues are needed. Currently, vascular network bioengineering is largely carried out using natural hydrogels as embedding scaffolds, but most natural hydrogels have poor mechanical stability and durability, factors that critically limit their widespread use. In this study, we examined the suitability of gelatin-phenolic hydroxyl (gelatin-Ph) hydrogels that can be enzymatically crosslinked, allowing tuning of the storage modulus and the proteolytic degradation rate, for use as injectable hydrogels to support the human progenitor cell-based formation of a stable and mature vascular network. Porcine gelatin-Ph hydrogels were found to be cytocompatible with human blood-derived endothelial colony-forming cells and white adipose tissue-derived mesenchymal stem cells, resulting in >87% viability, and cell proliferation and spreading could be modulated by using hydrogels with different proteolytic degradability and stiffness. In addition, gelatin was extracted from mouse dermis and murine gelatin-Ph hydrogels were prepared. Importantly, implantation of human cell-laden porcine or murine gelatin-Ph hydrogels into immunodeficient mice resulted in the rapid formation of functional anastomoses between the bioengineered human vascular network and the mouse vasculature. Furthermore, the degree of enzymatic crosslinking of the gelatin-Ph hydrogels could be used to modulate cell behavior and the extent of vascular network formation in vivo. Our report details a technique for the synthesis of gelatin-Ph hydrogels from allogeneic or xenogeneic dermal skin and suggests that these hydrogels can be used for biomedical applications that require the formation of microvascular networks, including the development of complex engineered tissues.

  16. Enzymatic regulation of functional vascular networks using gelatin hydrogels

    PubMed Central

    Chuang, Chia-Hui; Lin, Ruei-Zeng; Tien, Han-Wen; Chu, Ya-Chun; Li, Yen-Cheng; Melero-Martin, Juan M.; Chen, Ying-Chieh

    2015-01-01

    To manufacture tissue engineering-based functional tissues, scaffold materials that can be sufficiently vascularized to mimic the functionality and complexity of native tissues are needed. Currently, vascular network bioengineering is largely carried out using natural hydrogels as embedding scaffolds, but most natural hydrogels have poor mechanical stability and durability, factors that critically limit their widespread use. In this study, we examined the suitability of gelatin-phenolic hydroxyl (gelatin-Ph) hydrogels that can be enzymatically crosslinked, allowing tuning of the storage modulus and the proteolytic degradation rate, for use as injectable hydrogels to support the human progenitor cell-based formation of a stable and mature vascular network. Porcine gelatin-Ph hydrogels were found to be cytocompatible with human blood-derived endothelial colony-forming cells and white adipose tissue-derived mesenchymal stem cells, resulting in >87% viability, and cell proliferation and spreading could be modulated by using hydrogels with different proteolytic degradability and stiffness. In addition, gelatin was extracted from mouse dermis and murine gelatin-Ph hydrogels were prepared. Importantly, implantation of human cell-laden porcine or murine gelatin-Ph hydrogels into immunodeficient mice resulted in the rapid formation of functional anastomoses between the bioengineered human vascular network and the mouse vasculature. Furthermore, the degree of enzymatic crosslinking of the gelatin-Ph hydrogels could be used to modulate cell behavior and the extent of vascular network formation in vivo. Our report details a technique for the synthesis of gelatin-Ph hydrogels from allogeneic or xenogeneic dermal skin and suggests that these hydrogels can be used for biomedical applications that require the formation of microvascular networks, including the development of complex engineered tissues. PMID:25749296

  17. Carbon conversion and metabolic rate in two marine sponges.

    PubMed

    Koopmans, M; van Rijswijk, P; Martens, D; Egorova-Zachernyuk, T A; Middelburg, J J; Wijffels, R H

    2011-01-01

    The carbon metabolism of two marine sponges, Haliclona oculata and Dysidea avara, has been studied using a (13)C isotope pulse-chase approach. The sponges were fed (13)C-labeled diatoms (Skeletonema costatum) for 8 h and they took up between 75 and 85%. At different times, sponges were sampled for total (13)C enrichment, and fatty acid (FA) composition and (13)C enrichment. Algal biomarkers present in the sponges were highly labeled after feeding but their labeling levels decreased until none was left 10 days after enrichment. The sponge-specific FAs incorporated (13)C label already during the first day and the amount of (13)C label inside these FAs kept increasing until 3 weeks after labeling. The algal-derived carbon captured by the sponges during the 8-h feeding period was thus partly respired and partly metabolized during the weeks following. Apparently, sponges are able to capture enough food during short periods to sustain longer-term metabolism. The change of carbon metabolic rate of fatty acid synthesis due to mechanical damage of sponge tissue was studied by feeding sponges with (13)C isotope-labeled diatom (Pheaodactylum tricornutum) either after or before damaging and tracing back the (13)C content in the damaged and healthy tissue. The filtration and respiration in both sponges responded quickly to damage. The rate of respiration in H. oculata reduced immediately after damage, but returned to its initial level after 6 h. The (13)C data revealed that H. oculata has a higher metabolic rate in the tips where growth occurs compared to the rest of the tissue and that the metabolic rate is increased after damage of the tissue. For D. avara, no differences were found between damaged and non-damaged tissue. However, the filtration rate decreased directly after damage. PMID:24489407

  18. Preparation and stabilization of heparin/gelatin complex coacervate microcapsules.

    PubMed

    Tsung, M; Burgess, D J

    1997-05-01

    The aims of this study are to optimize conditions for the preparation, stabilization, and harvesting of heparin/gelatin microcapsules prepared by complex coacervation. Microelectrophoresis and dry coacervate weight were used to determine the optimum conditions of pH and ionic strength for maximum heparin/gelatin coacervate yield. Heparin/gelatin microcapsules were formed by complex coacervation in the presence and absence of poly(1-vinyl-2-pyrrolidone) (PVP), which was used as a stabilizer. The microcapsules were collected using a spray-drying technique. Microcapsule particle size was analyzed using an AccuSizer optical sizer. Optimized conditions for maximum coacervate yield were pH 2.6, ionic strength 10 mM, and a 1:2 heparin/gelatin A ratio. PVP stabilized the heparin/gelatin coacervate droplets and reduced droplet aggregation during spray-drying. The mean particle diameter of the spray-dried coacervate droplets was lower in the presence of PVP and was unaffected by PVP concentration (in the range 0.5-2.0% w/w). Heparin/gelatin microcapsules, prepared under conditions optimized for maximum coacervate yield, were stabilized without the use of chemical cross-linking agents. Stabilization was achieved by a combination of the addition of PVP and spray-drying.

  19. Microchannel emulsification using gelatin and surfactant-free coacervate microencapsulation.

    PubMed

    Nakagawa, Kei; Iwamoto, Satoshi; Nakajima, Mitsutoshi; Shono, Atsushi; Satoh, Kazumi

    2004-10-01

    In this study, we investigated the use of microchannel (MC) emulsifications in producing monodisperse gelatin/acacia complex coacervate microcapsules of soybean oil. This is considered to be a novel method for preparing monodisperse O/W and W/O emulsions. Generally, surfactants are necessary for MC emulsification, but they can also inhibit the coacervation process. In this study, we investigated a surfactant-free system. First, MC emulsification using gelatin was compared with that using decaglycerol monolaurate. The results demonstrated the potential use of gelatin for MC emulsification. MC emulsification experiments conducted over a range of conditions revealed that the pH of the continuous phase should be maintained above the isoelectric point of the gelatin. A high concentration of gelatin was found to inhibit the production of irregular-sized droplets. Low-bloom gelatin was found to be suitable for obtaining monodisperse emulsions. Finally, surfactant-free monodisperse droplets prepared by MC emulsification were microencapsulated with coacervate. The microcapsules produced by this technique were observed with a confocal laser scanning microscope. Average diameters of the inner cores and outer shells were 37.8 and 51.5 microm; their relative standard deviations were 4.9 and 8.4%.

  20. Nonlinear Behavior of Gelatin Networks Reveals a Hierarchical Structure.

    PubMed

    Yang, Zhi; Hemar, Yacine; Hilliou, Loic; Gilbert, Elliot P; McGillivray, Duncan J; Williams, Martin A K; Chaieb, Sahraoui

    2016-02-01

    We investigate the strain hardening behavior of various gelatin networks-namely physical gelatin gel, chemically cross-linked gelatin gel, and a hybrid gel made of a combination of the former two-under large shear deformations using the pre-stress, strain ramp, and large amplitude oscillations shear protocols. Further, the internal structures of physical gelatin gels and chemically cross-linked gelatin gels were characterized by small angle neutron scattering (SANS) to enable their internal structures to be correlated with their nonlinear rheology. The Kratky plots of SANS data demonstrate the presence of small cross-linked aggregates within the chemically cross-linked network whereas, in the physical gelatin gels, a relatively homogeneous structure is observed. Through model fitting to the scattering data, we were able to obtain structural parameters, such as the correlation length (ξ), the cross-sectional polymer chain radius (R(c)) and the fractal dimension (d(f)) of the gel networks. The fractal dimension d(f) obtained from the SANS data of the physical and chemically cross-linked gels is 1.31 and 1.53, respectively. These values are in excellent agreement with the ones obtained from a generalized nonlinear elastic theory that has been used to fit the stress-strain curves. The chemical cross-linking that generates coils and aggregates hinders the free stretching of the triple helix bundles in the physical gels. PMID:26667303

  1. Preparation and Characterization of Gelatin Nanofibers Containing Silver Nanoparticles

    PubMed Central

    Jeong, Lim; Park, Won Ho

    2014-01-01

    Ag nanoparticles (NPs) were synthesized in formic acid aqueous solutions through chemical reduction. Formic acid was used for a reducing agent of Ag precursor and solvent of gelatin. Silver acetate, silver tetrafluoroborate, silver nitrate, and silver phosphate were used as Ag precursors. Ag+ ions were reduced into Ag NPs by formic acid. The formation of Ag NPs was characterized by a UV-Vis spectrophotometer. Ag NPs were quickly generated within a few minutes in silver nitrate (AgNO3)/formic acid solution. As the water content of formic acid aqueous solution increased, more Ag NPs were generated, at a higher rate and with greater size. When gelatin was added to the AgNO3/formic acid solution, the Ag NPs were stabilized, resulting in smaller particles. Moreover, gelatin limits further aggregation of Ag NPs, which were effectively dispersed in solution. The amount of Ag NPs formed increased with increasing concentration of AgNO3 and aging time. Gelatin nanofibers containing Ag NPs were fabricated by electrospinning. The average diameters of gelatin nanofibers were 166.52 ± 32.72 nm, but these decreased with the addition of AgNO3. The average diameters of the Ag NPs in gelatin nanofibers ranged between 13 and 25 nm, which was confirmed by transmission electron microscopy (TEM). PMID:24758929

  2. Viscoelastic shock wave in ballistic gelatin behind soft body armor.

    PubMed

    Liu, Li; Fan, Yurun; Li, Wei

    2014-06-01

    Ballistic gelatins are widely used as a surrogate of biological tissue in blunt trauma tests. Non-penetration impact tests of handgun bullets on the 10wt% ballistic gelatin block behind soft armor were carried out in which a high-speed camera recorded the crater׳s movement and pressure sensors imbedded in the gelatin block recorded the pressure waves at different locations. The observed shock wave attenuation indicates the necessity of considering the gelatin׳s viscoelasticity. A three-element viscoelastic constitutive model was adopted, in which the relevant parameters were obtained via fitting the damping free oscillations at the beginning of the creep-mode of rheological measurement, and by examining the data of published split Hopkinson pressure bar (SHPB) experiments. The viscoelastic model is determined by a retardation time of 5.5×10(-5)s for high oscillation frequencies and a stress relaxation time of 2.0-4.5×10(-7)s for shock wave attenuation. Using the characteristic-line method and the spherical wave assumption, the propagation of impact pressure wave front and the subsequent unloading profile can be simulated using the experimental velocity boundary condition. The established viscoelastic model considerably improves the prediction of shock wave attenuation in the ballistic gelatin. PMID:24607758

  3. Nonlinear Behavior of Gelatin Networks Reveals a Hierarchical Structure.

    PubMed

    Yang, Zhi; Hemar, Yacine; Hilliou, Loic; Gilbert, Elliot P; McGillivray, Duncan J; Williams, Martin A K; Chaieb, Sahraoui

    2016-02-01

    We investigate the strain hardening behavior of various gelatin networks-namely physical gelatin gel, chemically cross-linked gelatin gel, and a hybrid gel made of a combination of the former two-under large shear deformations using the pre-stress, strain ramp, and large amplitude oscillations shear protocols. Further, the internal structures of physical gelatin gels and chemically cross-linked gelatin gels were characterized by small angle neutron scattering (SANS) to enable their internal structures to be correlated with their nonlinear rheology. The Kratky plots of SANS data demonstrate the presence of small cross-linked aggregates within the chemically cross-linked network whereas, in the physical gelatin gels, a relatively homogeneous structure is observed. Through model fitting to the scattering data, we were able to obtain structural parameters, such as the correlation length (ξ), the cross-sectional polymer chain radius (R(c)) and the fractal dimension (d(f)) of the gel networks. The fractal dimension d(f) obtained from the SANS data of the physical and chemically cross-linked gels is 1.31 and 1.53, respectively. These values are in excellent agreement with the ones obtained from a generalized nonlinear elastic theory that has been used to fit the stress-strain curves. The chemical cross-linking that generates coils and aggregates hinders the free stretching of the triple helix bundles in the physical gels.

  4. Viscoelastic shock wave in ballistic gelatin behind soft body armor.

    PubMed

    Liu, Li; Fan, Yurun; Li, Wei

    2014-06-01

    Ballistic gelatins are widely used as a surrogate of biological tissue in blunt trauma tests. Non-penetration impact tests of handgun bullets on the 10wt% ballistic gelatin block behind soft armor were carried out in which a high-speed camera recorded the crater׳s movement and pressure sensors imbedded in the gelatin block recorded the pressure waves at different locations. The observed shock wave attenuation indicates the necessity of considering the gelatin׳s viscoelasticity. A three-element viscoelastic constitutive model was adopted, in which the relevant parameters were obtained via fitting the damping free oscillations at the beginning of the creep-mode of rheological measurement, and by examining the data of published split Hopkinson pressure bar (SHPB) experiments. The viscoelastic model is determined by a retardation time of 5.5×10(-5)s for high oscillation frequencies and a stress relaxation time of 2.0-4.5×10(-7)s for shock wave attenuation. Using the characteristic-line method and the spherical wave assumption, the propagation of impact pressure wave front and the subsequent unloading profile can be simulated using the experimental velocity boundary condition. The established viscoelastic model considerably improves the prediction of shock wave attenuation in the ballistic gelatin.

  5. 46 CFR 148.275 - Iron oxide, spent; iron sponge, spent.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Iron oxide, spent; iron sponge, spent. 148.275 Section... § 148.275 Iron oxide, spent; iron sponge, spent. (a) Before spent iron oxide or spent iron sponge is... been cooled and weathered for at least eight weeks. (b) Both spent iron oxide and spent iron sponge...

  6. 21 CFR 878.4014 - Nonresorbable gauze/sponge for external use.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Nonresorbable gauze/sponge for external use. 878... Nonresorbable gauze/sponge for external use. (a) Identification. A nonresorbable gauze/sponge for external use... include a nonresorbable gauze/sponge for external use that contains added drugs such as...

  7. 21 CFR 878.4014 - Nonresorbable gauze/sponge for external use.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Nonresorbable gauze/sponge for external use. 878... Nonresorbable gauze/sponge for external use. (a) Identification. A nonresorbable gauze/sponge for external use... include a nonresorbable gauze/sponge for external use that contains added drugs such as...

  8. 21 CFR 878.4014 - Nonresorbable gauze/sponge for external use.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Nonresorbable gauze/sponge for external use. 878... Nonresorbable gauze/sponge for external use. (a) Identification. A nonresorbable gauze/sponge for external use... include a nonresorbable gauze/sponge for external use that contains added drugs such as...

  9. 21 CFR 878.4014 - Nonresorbable gauze/sponge for external use.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Nonresorbable gauze/sponge for external use. 878... Nonresorbable gauze/sponge for external use. (a) Identification. A nonresorbable gauze/sponge for external use... include a nonresorbable gauze/sponge for external use that contains added drugs such as...

  10. 21 CFR 878.4014 - Nonresorbable gauze/sponge for external use.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Nonresorbable gauze/sponge for external use. 878... Nonresorbable gauze/sponge for external use. (a) Identification. A nonresorbable gauze/sponge for external use... include a nonresorbable gauze/sponge for external use that contains added drugs such as...

  11. Lifestyle Evolution in Cyanobacterial Symbionts of Sponges

    PubMed Central

    Burgsdorf, Ilia; Slaby, Beate M.; Handley, Kim M.; Haber, Markus; Blom, Jochen; Marshall, Christopher W.; Gilbert, Jack A.; Hentschel, Ute

    2015-01-01

    ABSTRACT The “Candidatus Synechococcus spongiarum” group includes different clades of cyanobacteria with high 16S rRNA sequence identity (~99%) and is the most abundant and widespread cyanobacterial symbiont of marine sponges. The first draft genome of a “Ca. Synechococcus spongiarum” group member was recently published, providing evidence of genome reduction by loss of genes involved in several nonessential functions. However, “Ca. Synechococcus spongiarum” includes a variety of clades that may differ widely in genomic repertoire and consequently in physiology and symbiotic function. Here, we present three additional draft genomes of “Ca. Synechococcus spongiarum,” each from a different clade. By comparing all four symbiont genomes to those of free-living cyanobacteria, we revealed general adaptations to life inside sponges and specific adaptations of each phylotype. Symbiont genomes shared about half of their total number of coding genes. Common traits of “Ca. Synechococcus spongiarum” members were a high abundance of DNA modification and recombination genes and a reduction in genes involved in inorganic ion transport and metabolism, cell wall biogenesis, and signal transduction mechanisms. Moreover, these symbionts were characterized by a reduced number of antioxidant enzymes and low-weight peptides of photosystem II compared to their free-living relatives. Variability within the “Ca. Synechococcus spongiarum” group was mostly related to immune system features, potential for siderophore-mediated iron transport, and dependency on methionine from external sources. The common absence of genes involved in synthesis of residues, typical of the O antigen of free-living Synechococcus species, suggests a novel mechanism utilized by these symbionts to avoid sponge predation and phage attack. PMID:26037118

  12. Lifestyle Evolution in Cyanobacterial Symbionts of Sponges

    SciTech Connect

    Burgsdorf, Ilia; Slaby, Beate M.; Handley, Kim M.; Haber, Markus; Blom, Jochen; Marshall, Christopher W.; Gilbert, Jack A.; Hentschel, Ute; Steindler, Laura

    2015-06-02

    The “Candidatus Synechococcus spongiarum” group includes different clades of cyanobacteria with high 16S rRNA sequence identity (~99%) and is the most abundant and widespread cyanobacterial symbiont of marine sponges. The first draft genome of a “Ca. Synechococcus spongiarum” group member was recently published, providing evidence of genome reduction by loss of genes involved in several nonessential functions. However, “Ca. Synechococcus spongiarum” includes a variety of clades that may differ widely in genomic repertoire and consequently in physiology and symbiotic function. Here, we present three additional draft genomes of “Ca. Synechococcus spongiarum,” each from a different clade. By comparing all four symbiont genomes to those of free-living cyanobacteria, we revealed general adaptations to life inside sponges and specific adaptations of each phylotype. Symbiont genomes shared about half of their total number of coding genes. Common traits of “Ca. Synechococcus spongiarum” members were a high abundance of DNA modification and recombination genes and a reduction in genes involved in inorganic ion transport and metabolism, cell wall biogenesis, and signal transduction mechanisms. Moreover, these symbionts were characterized by a reduced number of antioxidant enzymes and low-weight peptides of photosystem II compared to their free-living relatives. Variability within the “Ca. Synechococcus spongiarum” group was mostly related to immune system features, potential for siderophore-mediated iron transport, and dependency on methionine from external sources. The common absence of genes involved in synthesis of residues, typical of the O antigen of free-living Synechococcus species, suggests a novel mechanism utilized by these symbionts to avoid sponge predation and phage attack.

  13. Lifestyle Evolution in Cyanobacterial Symbionts of Sponges

    DOE PAGES

    Burgsdorf, Ilia; Slaby, Beate M.; Handley, Kim M.; Haber, Markus; Blom, Jochen; Marshall, Christopher W.; Gilbert, Jack A.; Hentschel, Ute; Steindler, Laura

    2015-06-02

    The “Candidatus Synechococcus spongiarum” group includes different clades of cyanobacteria with high 16S rRNA sequence identity (~99%) and is the most abundant and widespread cyanobacterial symbiont of marine sponges. The first draft genome of a “Ca. Synechococcus spongiarum” group member was recently published, providing evidence of genome reduction by loss of genes involved in several nonessential functions. However, “Ca. Synechococcus spongiarum” includes a variety of clades that may differ widely in genomic repertoire and consequently in physiology and symbiotic function. Here, we present three additional draft genomes of “Ca. Synechococcus spongiarum,” each from a different clade. By comparing all fourmore » symbiont genomes to those of free-living cyanobacteria, we revealed general adaptations to life inside sponges and specific adaptations of each phylotype. Symbiont genomes shared about half of their total number of coding genes. Common traits of “Ca. Synechococcus spongiarum” members were a high abundance of DNA modification and recombination genes and a reduction in genes involved in inorganic ion transport and metabolism, cell wall biogenesis, and signal transduction mechanisms. Moreover, these symbionts were characterized by a reduced number of antioxidant enzymes and low-weight peptides of photosystem II compared to their free-living relatives. Variability within the “Ca. Synechococcus spongiarum” group was mostly related to immune system features, potential for siderophore-mediated iron transport, and dependency on methionine from external sources. The common absence of genes involved in synthesis of residues, typical of the O antigen of free-living Synechococcus species, suggests a novel mechanism utilized by these symbionts to avoid sponge predation and phage attack.« less

  14. Silica Synthesis by Sponges: Unanticipated Molecular Mechanism

    NASA Astrophysics Data System (ADS)

    Morse, D. E.; Weaver, J. C.

    2001-12-01

    Oceanic diatoms, sponges and other organisms synthesize gigatons per year of silica from silicic acid, ultimately obtained from the weathering of rock. This biogenic silica exhibits a remarkable diversity of structures, many of which reveal a precision of nanoarchitectural control that exceeds the capabilities of human engineering. In contrast to the conditions of anthropogenic and industrial manufacture, the biological synthesis of silica occurs under mild physiological conditions of low temperatures and pressures and near-neutral pH. In addition to the differentiation between biological and abiotic processes governing silica formation, the biomolecular mechanisms controlling synthesis of these materials may offer insights for the development of new, environmentally benign routes for synthesis of nanostructurally controlled silicas and high-performance polysiloxane composites. We found that the needle-like silica spicules made by the marine sponge, Tethya aurantia, each contain an occluded axial filament of protein composed predominantly of repeating assemblies of three similar subunits we named "silicateins." To our surprise, analysis of the purified protein subunits and the cloned silicatein DNAs revealed that the silicateins are highly homologous to a family of hydrolytic enzymes. As predicted from this finding, we discovered that the silicatein filaments are more than simple, passive templates; they actively catalyze and spatially direct polycondensation to form silica, (as well as the phenyl- and methyl-silsesquioxane) from the corresponding silicon alkoxides at neutral pH and low temperature. Catalytic activity also is exhibited by the silicatein subunits obtained by disaggregation of the protein filaments and those produced from recombinant DNA templates cloned in bacteria. This catalytic activity accelerates the rate-limiting hydrolysis of the silicon alkoxide precursors. Genetic engineering, used to produce variants of the silicatein molecule with

  15. Absorber for terahertz radiation management

    DOEpatents

    Biallas, George Herman; Apeldoorn, Cornelis; Williams, Gwyn P.; Benson, Stephen V.; Shinn, Michelle D.; Heckman, John D.

    2015-12-08

    A method and apparatus for minimizing the degradation of power in a free electron laser (FEL) generating terahertz (THz) radiation. The method includes inserting an absorber ring in the FEL beam path for absorbing any irregular THz radiation and thus minimizes the degradation of downstream optics and the resulting degradation of the FEL output power. The absorber ring includes an upstream side, a downstream side, and a plurality of wedges spaced radially around the absorber ring. The wedges form a scallop-like feature on the innermost edges of the absorber ring that acts as an apodizer, stopping diffractive focusing of the THz radiation that is not intercepted by the absorber. Spacing between the scallop-like features and the shape of the features approximates the Bartlett apodization function. The absorber ring provides a smooth intensity distribution, rather than one that is peaked on-center, thereby eliminating minor distortion downstream of the absorber.

  16. Evidence of nitrification and denitrification in high and low microbial abundance sponges.

    PubMed

    Schläppy, Marie-Lise; Schöttner, Sandra I; Lavik, Gaute; Kuypers, Marcel M M; de Beer, Dirk; Hoffmann, Friederike

    2010-01-01

    Aerobic and anaerobic microbial key processes were quantified and compared to microbial numbers and morphological structure in Mediterranean sponges. Direct counts on histological sections stained with DAPI showed that sponges with high microbial abundances (HMA sponges) have a denser morphological structure with a reduced aquiferous system compared to low microbial abundance (LMA) sponges. In Dysidea avara, the LMA sponge, rates of nitrification and denitrification were higher than in the HMA sponge Chondrosia reniformis, while anaerobic ammonium oxidation and sulfate reduction were below detection in both species. This study shows that LMA sponges may host physiologically similar microbes with comparable or even higher metabolic rates than HMA sponges, and that anaerobic processes such as denitrification can be found both in HMA and LMA sponges. A higher concentration of microorganisms in the mesohyl of HMA compared to LMA sponges may indicate a stronger retention of and, hence, a possible benefit from associated microbes.

  17. Robotic deposition and in vitro characterization of 3D gelatin-bioactive glass hybrid scaffolds for biomedical applications.

    PubMed

    Gao, Chunxia; Rahaman, Mohamed N; Gao, Qiang; Teramoto, Akira; Abe, Koji

    2013-07-01

    The development of inorganic-organic hybrid scaffolds with controllable degradation and bioactive properties is receiving considerable interest for bone and tissue regeneration. The objective of this study was to create hybrid scaffolds of gelatin and bioactive glass (BG) with a controlled, three-dimensional (3D) architecture by a combined sol-gel and robotic deposition (robocasting) method and evaluate their mechanical response, bioactivity, and response to cells in vitro. Inks for robotic deposition of the scaffolds were prepared by dissolving gelatin in a sol-gel precursor solution of the bioactive glass (70SiO2 -25CaO-5P2 O5 ; mol%) and aging the solution to form a gel with the requisite viscosity. After drying and crosslinking, the gelatin-BG scaffolds, with a grid-like architecture (filament diameter ∼350 µm; pore width ∼550 µm), showed an elasto-plastic response, with a compressive strength of 5.1 ± 0.6 MPa, in the range of values for human trabecular bone (2-12 MPa). When immersed in phosphate-buffered saline, the crosslinked scaffolds rapidly absorbed water (∼440% of its dry weight after 2 h) and showed an elastic response at deformations up to ∼60%. Immersion of the scaffolds in a simulated body fluid resulted in the formation of a hydroxyapatite-like surface layer within 5 days, indicating their bioactivity in vitro. The scaffolds supported the proliferation, alkaline phosphatase activity, and mineralization of osteogenic MC3T3-E1 cells in vitro, showing their biocompatibility. Altogether, the results indicate that these gelatin-BG hybrid scaffolds with a controlled, 3D architecture of inter-connected pores have potential for use as implants for bone regeneration.

  18. Corrosion resistant neutron absorbing coatings

    DOEpatents

    Choi, Jor-Shan; Farmer, Joseph C; Lee, Chuck K; Walker, Jeffrey; Russell, Paige; Kirkwood, Jon; Yang, Nancy; Champagne, Victor

    2013-11-12

    A method of forming a corrosion resistant neutron absorbing coating comprising the steps of spray or deposition or sputtering or welding processing to form a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material. Also a corrosion resistant neutron absorbing coating comprising a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material.

  19. Corrosion resistant neutron absorbing coatings

    DOEpatents

    Choi, Jor-Shan; Farmer, Joseph C.; Lee, Chuck K.; Walker, Jeffrey; Russell, Paige; Kirkwood, Jon; Yang, Nancy; Champagne, Victor

    2012-05-29

    A method of forming a corrosion resistant neutron absorbing coating comprising the steps of spray or deposition or sputtering or welding processing to form a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material. Also a corrosion resistant neutron absorbing coating comprising a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material.

  20. Comparison of water gel desserts from fish skin and pork gelatins using instrumental measurements.

    PubMed

    Zhou, Peng; Regenstein, Joe M

    2007-05-01

    The objective of this study was to compare water gel desserts from various gelatins using instrumental measurements. The puncture test and texture profile analysis (TPA) with compression were determined at 25% and 75% deformation; the melting properties were determined rheologically by monitoring the change of storage modulus (G') with increasing temperature. The measurements with 25% deformation were always nondestructive, while measurements with 75% deformation were mostly destructive. Desserts made from Alaska pollock gelatin (AG) or gelatin mixtures containing AG were more resistant to the destruction caused by the large deformation than tilapia gelatin and pork gelatins. In addition, the gel dessert made from AG melted at a lower temperature than those from tilapia skin gelatin and pork gelatins, while desserts made from gelatin mixtures reflected the melting properties of the separate gelatins.

  1. Effect of cooling rate and gelatin concentration on the microstructural and mechanical properties of ice template gelatin scaffolds.

    PubMed

    Arabi, Neda; Zamanian, Ali

    2013-01-01

    In the current study, a controlled unidirectional freeze casting method was employed to fabricate highly porous gelatin scaffolds. Different gelatin concentrations of 1, 3, and 5 wt% were dissolved in distilled water, and the constant value of glutaraldehyde cross-linking agent (0.5 wt%) was added to the solution. Then, the solutions freeze casted at different cooling rates of 1, 3, and 6°C/Min and freeze dried. Finally, pore morphology, mechanical properties, and water adsorption characteristics of scaffolds were assessed. Results showed that the increase in gelatin concentration caused the pore shapes to change from oblate and polygon to almost round but the cooling rate had no obvious effect on pore morphology. Compressive strength of the scaffolds improved as a function of increase in cooling rate and gelatin concentration from 20 to 1,150 kPa. The value of water adsorption was decreased with augmentation in gelatin concentration and cooling rate in the range of 2,000%-500%. Therefore, this study suggests that the use of a controllable freeze casting method and cooling rate can tailor the pore morphology, mechanical properties, and water adsorption of gelatin scaffolds and could be a novel approach to avoid the use of a toxic dose of a cross-linking agent like glutaraldehyde.

  2. Underwater acoustic omnidirectional absorber

    NASA Astrophysics Data System (ADS)

    Naify, Christina J.; Martin, Theodore P.; Layman, Christopher N.; Nicholas, Michael; Thangawng, Abel L.; Calvo, David C.; Orris, Gregory J.

    2014-02-01

    Gradient index media, which are designed by varying local element properties in given geometry, have been utilized to manipulate acoustic waves for a variety of devices. This study presents a cylindrical, two-dimensional acoustic "black hole" design that functions as an omnidirectional absorber for underwater applications. The design features a metamaterial shell that focuses acoustic energy into the shell's core. Multiple scattering theory was used to design layers of rubber cylinders with varying filling fractions to produce a linearly graded sound speed profile through the structure. Measured pressure intensity agreed with predicted results over a range of frequencies within the homogenization limit.

  3. Solar radiation absorbing material

    DOEpatents

    Googin, John M.; Schmitt, Charles R.; Schreyer, James M.; Whitehead, Harlan D.

    1977-01-01

    Solar energy absorbing means in solar collectors are provided by a solar selective carbon surface. A solar selective carbon surface is a microporous carbon surface having pores within the range of 0.2 to 2 micrometers. Such a surface is provided in a microporous carbon article by controlling the pore size. A thermally conductive substrate is provided with a solar selective surface by adhering an array of carbon particles in a suitable binder to the substrate, a majority of said particles having diameters within the range of about 0.2-10 microns.

  4. Cell-laden microengineered gelatin methacrylate hydrogels

    PubMed Central

    Nichol, Jason W.; Koshy, Sandeep; Bae, Hojae; Hwang, Chang Mo; Yamanlar, Seda; Khademhosseini, Ali

    2010-01-01

    The cellular microenvironment plays an integral role in improving the function of microengineered tissues. Control of the microarchitecture in engineered tissues can be achieved through photopatterning of cell-laden hydrogels. However, despite high pattern fidelity of photopolymerizable hydrogels, many such materials are not cell-responsive and have limited biodegradability. Here we demonstrate gelatin methacrylate (GelMA) as an inexpensive, cell-responsive hydrogel platform for creating cell-laden microtissues and microfluidic devices. Cells readily bound to, proliferated, elongated and migrated both when seeded on micropatterned GelMA substrates as well as when encapsulated in microfabricated GelMA hydrogels. The hydration and mechanical properties of GelMA were demonstrated to be tunable for various applications through modification to the methacrylation degree and gel concentration. Pattern fidelity and resolution of GelMA was high and it could be patterned to create perfusable microfluidic channels. Furthermore, GelMA micropatterns could be used to create cellular micropatterns for in vitro cell studies or 3D microtissue fabrication. These data suggest that GelMA hydrogels could be useful for creating complex, cell-responsive microtissues, such as endothelialized microvasculature, or for other applications that requires cell-responsive microengineered hydrogels. PMID:20417964

  5. Cell-laden microengineered gelatin methacrylate hydrogels.

    PubMed

    Nichol, Jason W; Koshy, Sandeep T; Bae, Hojae; Hwang, Chang M; Yamanlar, Seda; Khademhosseini, Ali

    2010-07-01

    The cellular microenvironment plays an integral role in improving the function of microengineered tissues. Control of the microarchitecture in engineered tissues can be achieved through photopatterning of cell-laden hydrogels. However, despite high pattern fidelity of photopolymerizable hydrogels, many such materials are not cell-responsive and have limited biodegradability. Here, we demonstrate gelatin methacrylate (GelMA) as an inexpensive, cell-responsive hydrogel platform for creating cell-laden microtissues and microfluidic devices. Cells readily bound to, proliferated, elongated, and migrated both when seeded on micropatterned GelMA substrates as well as when encapsulated in microfabricated GelMA hydrogels. The hydration and mechanical properties of GelMA were demonstrated to be tunable for various applications through modification of the methacrylation degree and gel concentration. The pattern fidelity and resolution of GelMA were high and it could be patterned to create perfusable microfluidic channels. Furthermore, GelMA micropatterns could be used to create cellular micropatterns for in vitro cell studies or 3D microtissue fabrication. These data suggest that GelMA hydrogels could be useful for creating complex, cell-responsive microtissues, such as endothelialized microvasculature, or for other applications that require cell-responsive microengineered hydrogels.

  6. Mesoscale elastic properties of marine sponge spicules.

    PubMed

    Zhang, Yaqi; Reed, Bryan W; Chung, Frank R; Koski, Kristie J

    2016-01-01

    Marine sponge spicules are silicate fibers with an unusual combination of fracture toughness and optical light propagation properties due to their micro- and nano-scale hierarchical structure. We present optical measurements of the elastic properties of Tethya aurantia and Euplectella aspergillum marine sponge spicules using non-invasive Brillouin and Raman laser light scattering, thus probing the hierarchical structure on two very different scales. On the scale of single bonds, as probed by Raman scattering, the spicules resemble a combination of pure silica and mixed organic content. On the mesoscopic scale probed by Brillouin scattering, we show that while some properties (Young's moduli, shear moduli, one of the anisotropic Poisson ratios and refractive index) are nearly the same as those of artificial optical fiber, other properties (uniaxial moduli, bulk modulus and a distinctive anisotropic Poisson ratio) are significantly smaller. Thus this natural composite of largely isotropic materials yields anisotropic elastic properties on the mesoscale. We show that the spicules' optical waveguide properties lead to pronounced spontaneous Brillouin backscattering, a process related to the stimulated Brillouin backscattering process well known in artificial glass fibers. These measurements provide a clearer picture of the interplay of flexibility, strength, and material microstructure for future functional biomimicry.

  7. Thermodynamics of a nonionic sponge phase.

    PubMed

    Le, T D; Olsson, U; Wennerström, H; Schurtenberger, P

    1999-10-01

    Different suggestions for the mechanism governing the narrow stability of the L(3) (sponge) phase have led to a series of debates in recent years. There have been several models developed to describe such a mechanism via thermodynamics. To date, experimental data are insufficient to test present theories. In this study, we revisit the sponge phase with two series of thermodynamic data performed on the well-characterized C(12)E(5)-n-decane-H(2)O system. These thermodynamic data sets stem from phase equilibrium and static light scattering experiments designed to link system-specific parameters such as the temperature dependence of the spontaneous curvature H(o) and the two bending moduli kappa and (-)kappa, which have only been loosely connected in earlier experiments. The use of a well-characterized system is important in that it allows usage of molecular descriptors from earlier studies to reduce fit parameters. Another advantage for using this system is that its phase behavior is analogous to a two-component system which, from an experimental standpoint, is more practical to perform accurate measurements and, from a theoretical standpoint, more simple to model. In the present investigation, we use these tools to quantitatively test parameters obtained by different experimental techniques and assumptions inherited in theoretical models designed to interpret them. PMID:11970283

  8. Origin of Metazoa: Sponges as Living Fossils

    NASA Astrophysics Data System (ADS)

    Müller, Werner E. G.

    1998-01-01

    , which code for proteins. The analyses of their deduced amino acid sequences allowed a molecular biological approach to solve the problem of monophyly of Metazoa. Molecules of the extracellular matrix/basal lamina, with the integrin receptor, fibronectin, and galectin as prominent examples, cell-surface receptors (tyrosine kinase receptor), elements of sensory systems (crystallin, metabotropic glutamate receptor), and homologs/modules of an immune system (immunoglobulin like molecules, scavenger receptor cysteine-rich, and short consensus repeats, rhesus system) classify the Porifera as true Metazoa. As living fossils, provided with simple, primordial molecules allowing cell-cell and cell-matrix adhesion as well as processes of signal transduction as known in a more complex manner from higher Metazoa, they also show peculiarities not known in other metazoan phyla. Tissues of sponges are rich in telomerase activity, suggesting a high plasticity in the determination of cell lineages. It is concluded that molecular biological studies with sponges as model will not only help to understand the evolution of Protoctista to Metazoa but also the complex, hierarchial regulatory network of cells in higher Metazoa.

  9. The sterols of calcareous sponges (Calcarea, Porifera).

    PubMed

    Hagemann, Andrea; Voigt, Oliver; Wörheide, Gert; Thiel, Volker

    2008-11-01

    Sponges are sessile suspension-feeding organisms whose internal phylogenetic relationships are still the subject of intense debate. Sterols may have the potential to be used as independent markers to test phylogenetic hypotheses. Twenty representative specimens of calcareous sponges (class Calcarea, phylum Porifera) with a broad coverage within both subclasses Calcinea and Calcaronea were analysed for their sterol content. Two major pseudohomologous series were found, accompanied by some additional sterols. The first series encompassing conventional C(27) to C(29)Delta(5,7,22) sterols represented the major sterols, with ergosterol (ergosta-5,7,22-trien-3beta-ol, C(28)Delta(5,7,22)) being most prominent in many species. The second series consisted of unusual C(27) to C(29)Delta(5,7,9(11),22) sterols. Cholesterol occurred sporadically, mostly in trace amounts. The sterol patterns did not resolve intraclass phylogenetic relationships, namely the distinction between the subclasses, Calcinea and Calcaronea. This pointed towards major calcarean lipid traits being established prior to the separation of subclasses. Furthermore, calcarean sterol patterns clearly differ from those found in Hexactinellida, whereas partial overlap occurred with some Demospongiae. Hence, sterols only partly reflect the phylogenetic separation of Calcarea from both of the other poriferan classes that was proposed by recent molecular work and fatty acid analyses.

  10. Marine Sponges as a Drug Treasure

    PubMed Central

    Anjum, Komal; Abbas, Syed Qamar; Shah, Sayed Asmat Ali; Akhter, Najeeb; Batool, Sundas; Hassan, Syed Shams ul

    2016-01-01

    Marine sponges have been considered as a drug treasure house with respect to great potential regarding their secondary metabolites. Most of the studies have been conducted on sponge’s derived compounds to examine its pharmacological properties. Such compounds proved to have antibacterial, antiviral, antifungal, antimalarial, antitumor, immunosuppressive, and cardiovascular activity. Although, the mode of action of many compounds by which they interfere with human pathogenesis have not been clear till now, in this review not only the capability of the medicinal substances have been examined in vitro and in vivo against serious pathogenic microbes but, the mode of actions of medicinal compounds were explained with diagrammatic illustrations. This knowledge is one of the basic components to be known especially for transforming medicinal molecules to medicines. Sponges produce a different kind of chemical substances with numerous carbon skeletons, which have been found to be the main component interfering with human pathogenesis at different sites. The fact that different diseases have the capability to fight at different sites inside the body can increase the chances to produce targeted medicines. PMID:27350338

  11. Mesoscale elastic properties of marine sponge spicules.

    PubMed

    Zhang, Yaqi; Reed, Bryan W; Chung, Frank R; Koski, Kristie J

    2016-01-01

    Marine sponge spicules are silicate fibers with an unusual combination of fracture toughness and optical light propagation properties due to their micro- and nano-scale hierarchical structure. We present optical measurements of the elastic properties of Tethya aurantia and Euplectella aspergillum marine sponge spicules using non-invasive Brillouin and Raman laser light scattering, thus probing the hierarchical structure on two very different scales. On the scale of single bonds, as probed by Raman scattering, the spicules resemble a combination of pure silica and mixed organic content. On the mesoscopic scale probed by Brillouin scattering, we show that while some properties (Young's moduli, shear moduli, one of the anisotropic Poisson ratios and refractive index) are nearly the same as those of artificial optical fiber, other properties (uniaxial moduli, bulk modulus and a distinctive anisotropic Poisson ratio) are significantly smaller. Thus this natural composite of largely isotropic materials yields anisotropic elastic properties on the mesoscale. We show that the spicules' optical waveguide properties lead to pronounced spontaneous Brillouin backscattering, a process related to the stimulated Brillouin backscattering process well known in artificial glass fibers. These measurements provide a clearer picture of the interplay of flexibility, strength, and material microstructure for future functional biomimicry. PMID:26672719

  12. Ankyrin-repeat proteins from sponge symbionts modulate amoebal phagocytosis.

    PubMed

    Nguyen, Mary T H D; Liu, Michael; Thomas, Torsten

    2014-03-01

    Bacteria-eukaryote symbiosis occurs in all stages of evolution, from simple amoebae to mammals, and from facultative to obligate associations. Sponges are ancient metazoans that form intimate symbiotic interactions with complex communities of bacteria. The basic nutritional requirements of the sponge are in part satisfied by the phagocytosis of bacterial food particles from the surrounding water. How bacterial symbionts, which are permanently associated with the sponge, survive in the presence of phagocytic cells is largely unknown. Here, we present the discovery of a genomic fragment from an uncultured gamma-proteobacterial sponge symbiont that encodes for four proteins, whose closest known relatives are found in a sponge genome. Through recombinant approaches, we show that these four eukaryotic-like, ankyrin-repeat proteins (ARP) when expressed in Eschericha coli can modulate phagocytosis of amoebal cells and lead to accumulation of bacteria in the phagosome. Mechanistically, two ARPs appear to interfere with phagosome development in a similar way to reduced vacuole acidification, by blocking the fusion of the early phagosome with the lysosome and its digestive enzymes. Our results show that ARP from sponge symbionts can function to interfere with phagocytosis, and we postulate that this might be one mechanism by which symbionts can escape digestion in a sponge host.

  13. First report on chitinous holdfast in sponges (Porifera).

    PubMed

    Ehrlich, Hermann; Kaluzhnaya, Oksana V; Tsurkan, Mikhail V; Ereskovsky, Alexander; Tabachnick, Konstantin R; Ilan, Micha; Stelling, Allison; Galli, Roberta; Petrova, Olga V; Nekipelov, Serguei V; Sivkov, Victor N; Vyalikh, Denis; Born, René; Behm, Thomas; Ehrlich, Andre; Chernogor, Lubov I; Belikov, Sergei; Janussen, Dorte; Bazhenov, Vasilii V; Wörheide, Gert

    2013-07-01

    A holdfast is a root- or basal plate-like structure of principal importance that anchors aquatic sessile organisms, including sponges, to hard substrates. There is to date little information about the nature and origin of sponges' holdfasts in both marine and freshwater environments. This work, to our knowledge, demonstrates for the first time that chitin is an important structural component within holdfasts of the endemic freshwater demosponge Lubomirskia baicalensis. Using a variety of techniques (near-edge X-ray absorption fine structure, Raman, electrospray ionization mas spectrometry, Morgan-Elson assay and Calcofluor White staining), we show that chitin from the sponge holdfast is much closer to α-chitin than to β-chitin. Most of the three-dimensional fibrous skeleton of this sponge consists of spicule-containing proteinaceous spongin. Intriguingly, the chitinous holdfast is not spongin-based, and is ontogenetically the oldest part of the sponge body. Sequencing revealed the presence of four previously undescribed genes encoding chitin synthases in the L. baicalensis sponge. This discovery of chitin within freshwater sponge holdfasts highlights the novel and specific functions of this biopolymer within these ancient sessile invertebrates.

  14. In vitro testing of Today vaginal contraceptive sponge with bacteria.

    PubMed

    Hammill, H A; Ford, L C; Suzuki, F; Mickus, K; Yip, D; Finegold, S

    1986-01-01

    In vitro methods were used to test Today vaginal contraceptive sponges for sterility, contamination by handling, and inhibition of bacterial growth. Also tested was an in vitro vaginal model surrounded by growth medium that continually seeded the dialysis tubing with nutrient in an attempt to replicate vaginal secretions. A goal of this research was to investigate manufacturer claims of hostility of the sponge in the presence of Staph aureus. Sponges added in a sterile manner to brain-heart infusion broth produced no growth under aerobic or anaerobic conditions when no organisms were added. However, the experiments that involved contamination of the sponges by hadling in a nonsterile fashion resulted in 10.8 colony forming units of Staph epidermidis and Staph aureus, coagulese negative. In the in vitro vaginal model, 16 hours after an inoculum of Staph aureus colony forming units was placed on a sponge, 3.5 x 10.10 colony forming units were cultured and there was a similar profusion of E coli sludge. These results fail to confirm claims of hostility of the vaginal sponge to the bacteria tested. There is concern that the technique recommended by the manufacturer involves adding water and then inserting the sponge with 1 hand and leaving it in place for 24 hours. This procedure may facilitate the enhancement of vaginitis and perhaps pelvic inflammatory disease.

  15. Preliminary Assessment of Sponge Biodiversity on Saba Bank, Netherlands Antilles

    PubMed Central

    Thacker, Robert W.; Díaz, M. Cristina; de Voogd, Nicole J.; van Soest, Rob W. M.; Freeman, Christopher J.; Mobley, Andrew S.; LaPietra, Jessica; Cope, Kevin; McKenna, Sheila

    2010-01-01

    Background Saba Bank Atoll, Netherlands Antilles, is one of the three largest atolls on Earth and provides habitat for an extensive coral reef community. To improve our knowledge of this vast marine resource, a survey of biodiversity at Saba Bank included a multi-disciplinary team that sampled fishes, mollusks, crustaceans, macroalgae, and sponges. Methodology/Principal Findings A single member of the dive team conducted surveys of sponge biodiversity during eight dives at six locations, at depths ranging from 15 to 30 m. This preliminary assessment documented the presence of 45 species pooled across multiple locations. Rarefaction analysis estimated that only 48 to 84% of species diversity was sampled by this limited effort, clearly indicating a need for additional surveys. An analysis of historical collections from Saba and Saba Bank revealed an additional 36 species, yielding a total of 81 sponge species recorded from this area. Conclusions/Significance This observed species composition is similar to that found on widespread Caribbean reefs, indicating that the sponge fauna of Saba Bank is broadly representative of the Caribbean as a whole. A robust population of the giant barrel sponge, Xestospongia muta, appeared healthy with none of the signs of disease or bleaching reported from other Caribbean reefs; however, more recent reports of anchor chain damage to these sponges suggests that human activities can have dramatic impacts on these communities. Opportunities to protect this extremely large habitat should be pursued, as Saba Bank may serve as a significant reservoir of sponge species diversity. PMID:20502643

  16. Bioprospecting Sponge-Associated Microbes for Antimicrobial Compounds

    PubMed Central

    Indraningrat, Anak Agung Gede; Smidt, Hauke; Sipkema, Detmer

    2016-01-01

    Sponges are the most prolific marine organisms with respect to their arsenal of bioactive compounds including antimicrobials. However, the majority of these substances are probably not produced by the sponge itself, but rather by bacteria or fungi that are associated with their host. This review for the first time provides a comprehensive overview of antimicrobial compounds that are known to be produced by sponge-associated microbes. We discuss the current state-of-the-art by grouping the bioactive compounds produced by sponge-associated microorganisms in four categories: antiviral, antibacterial, antifungal and antiprotozoal compounds. Based on in vitro activity tests, identified targets of potent antimicrobial substances derived from sponge-associated microbes include: human immunodeficiency virus 1 (HIV-1) (2-undecyl-4-quinolone, sorbicillactone A and chartarutine B); influenza A (H1N1) virus (truncateol M); nosocomial Gram positive bacteria (thiopeptide YM-266183, YM-266184, mayamycin and kocurin); Escherichia coli (sydonic acid), Chlamydia trachomatis (naphthacene glycoside SF2446A2); Plasmodium spp. (manzamine A and quinolone 1); Leishmania donovani (manzamine A and valinomycin); Trypanosoma brucei (valinomycin and staurosporine); Candida albicans and dermatophytic fungi (saadamycin, 5,7-dimethoxy-4-p-methoxylphenylcoumarin and YM-202204). Thirty-five bacterial and 12 fungal genera associated with sponges that produce antimicrobials were identified, with Streptomyces, Pseudovibrio, Bacillus, Aspergillus and Penicillium as the prominent producers of antimicrobial compounds. Furthemore culture-independent approaches to more comprehensively exploit the genetic richness of antimicrobial compound-producing pathways from sponge-associated bacteria are addressed. PMID:27144573

  17. Characterization and cytological effects of a novel glycated gelatine substrate.

    PubMed

    Boonkaew, Benjawan; Tompkins, Kevin; Manokawinchoke, Jeeranan; Pavasant, Prasit; Supaphol, Pitt

    2014-04-01

    Hyperglycemia in diabetes results in the glycation of long-lived proteins. Protein glycation leads to the formation of advanced glycation end products (AGEs), which are implicated in delayed wound healing and other diabetes-associated pathologies, one of which is periodontal disease. Research into the mechanisms by which glycated long-lived proteins such as collagen exert their effects can allow for the understanding of diabetic pathologies and the development of appropriate treatments. However, the high cost of purified protein can be a limitation for many laboratories around the world. The objective of this study was to develop a low-cost in vitro model of glycated gelatine as an alternative to the glycated collagen model. We investigated the glycation of gelatine type A, a denatured form of collagen, which is low-cost and abundantly available. In this study, gelatine was incubated for 7 days with ribose or methylglyoxal (MG). Cross-linking, autofluorescence and UV-Vis spectrophotometry assays were performed and indicated a dose-dependent linear increase in cross-linking and autofluorescence of gelatine by ribose and MG. MG produced more cross-linking compared to ribose at the same concentrations. The UV-Vis spectra of the glycated gelatines confirmed the presence of AGE fluorophores. Because diabetes is a risk factor for periodontal disease, the effect of the glycated substrates on the basic behaviour of human periodontal ligament (HPDL) cells was evaluated. Glycation dose dependently reduced HPDL attachment and cell spreading, indicating that the novel glycated gelatine substrate affects cell behaviour. These results show that gelatine glycated with ribose or MG can be used as low-cost in vitro models to study the effects of protein glycation on cell behaviour in diabetes and ageing.

  18. Embolization Materials Made of Gelatin: Comparison Between Gelpart and Gelatin Microspheres

    SciTech Connect

    Ohta, Shinichi Nitta, Norihisa; Sonoda, Akinaga; Seko, Ayumi; Tanaka, Toyohiko; Takazakura, Ryutaro; Furukawa, Akira; Takahashi, Masashi; Sakamoto, Tsutomu; Tabata, Yasuhiko; Murata, Kiyoshi

    2010-02-15

    Purpose:The object of this study was to assess the level of embolization in the embolized artery and the degradation period of these two embolic agents in the renal arteries using rabbit models.Materials and Methods: The renal artery was embolized using 5 mg of gelatin microspheres (GMSs; diameter, 35-100 {mu}m; group 1) or 1 mg of Gelpart (diameter, 1 mm; group 2). For each group, angiographies were performed on two kidneys immediately after the embolic procedure and on days 3, 7, and 14 after embolization. This was followed by histopathological examinations of the kidneys.Results:Follow-up angiograms on each day revealed the persistence of poorly enhanced wedge-shaped areas in the parenchymal phase in all cases. In group 1, four of six cases showed poorly enhanced small areas in the follow-up angiograms. In group 2, all cases showed poorly enhanced large areas. In the histopathological specimens, it was observed that immediately after embolization, the particles reached the interlobular arteries in group 1 and the interlobar arteries in group 2. In all cases in group 1, the particles were histologically identified even on day 14. In one case in group 2 on day 14, the particles were not identified.Conclusion:In conclusion, although GMSs and Gelpart were similar in the point of gelatin particles, the level of embolization and the degradation period were different between GMSs and Gelpart.

  19. Liquid Cryogen Absorber for MICE

    SciTech Connect

    Baynham, D.E.; Bish, P.; Bradshaw, T.W.; Cummings, M.A.; Green,M.A.; Ishimoto, S.; Ivaniouchenkov, I.; Lau, W.; Yang, S.Q.; Zisman, M.S.

    2005-08-20

    The Muon Ionization Cooling Experiment (MICE) will test ionization cooling of muons. In order to have effective ionization cooling, one must use an absorber that is made from a low-z material. The most effective low z materials for ionization cooling are hydrogen, helium, lithium hydride, lithium and beryllium, in that order. In order to measure the effect of material on cooling, several absorber materials must be used. This report describes a liquid-hydrogen absorber that is within a pair of superconducting focusing solenoids. The absorber must also be suitable for use with liquid helium. The following absorber components are discussed in this report; the absorber body, its heat exchanger, the hydrogen system, and the hydrogen safety. Absorber cooling and the thin windows are not discussed here.

  20. Three-Dimensional Porous Sponges from Collagen Biowastes.

    PubMed

    Ashokkumar, Meiyazhagan; Cristian Chipara, Alin; Tharangattu Narayanan, Narayanan; Anumary, Ayyappan; Sruthi, Radhakrishnan; Thanikaivelan, Palanisamy; Vajtai, Robert; Mani, Sendurai A; Ajayan, Pulickel M

    2016-06-15

    Three-dimensional, functional, and porous scaffolds can find applications in a variety of fields. Here we report the synthesis of hierarchical and interconnected porous sponges using a simple freeze-drying technique, employing collagen extracted from animal skin wastes and superparamagnetic iron oxide nanoparticles. The ultralightweight, high-surface-area sponges exhibit excellent mechanical stability and enhanced absorption of organic contaminants such as oils and dye molecules. Additionally, these biocomposite sponges display significant cellular biocompatibility, which opens new prospects in biomedical uses. The approach highlights innovative ways of transforming biowastes into advanced hybrid materials using simple and scalable synthesis techniques. PMID:27219483

  1. Dual broadband metamaterial absorber.

    PubMed

    Kim, Young Ju; Yoo, Young Joon; Kim, Ki Won; Rhee, Joo Yull; Kim, Yong Hwan; Lee, YoungPak

    2015-02-23

    We propose polarization-independent and dual-broadband metamaterial absorbers at microwave frequencies. This is a periodic meta-atom array consisting of metal-dielectric-multilayer truncated cones. We demonstrate not only one broadband absorption from the fundamental magnetic resonances but additional broadband absorption in high-frequency range using the third-harmonic resonance, by both simulation and experiment. In simulation, the absorption was over 90% in 3.93-6.05 GHz, and 11.64-14.55 GHz. The corresponding experimental absorption bands over 90% were 3.88-6.08 GHz, 9.95-10.46 GHz and 11.86-13.84 GHz, respectively. The origin of absorption bands was elucidated. Furthermore, it is independent of polarization angle owing to the multilayered circular structures. The design is scalable to smaller size for the infrared and the visible ranges.

  2. Absorber coatings' degradation

    SciTech Connect

    Moore, S.W.

    1984-01-01

    This report is intended to document some of the Los Alamos efforts that have been carried out under the Department of Energy (DOE) Active Heating and Cooling Materials Reliability, Maintainability, and Exposure Testing program. Funding for these activities is obtained directly from DOE although they represent a variety of projects and coordination with other agencies. Major limitations to the use of solar energy are the uncertain reliability and lifetimes of solar systems. This program is aimed at determining material operating limitations, durabilities, and failure modes such that materials improvements can be made and lifetimes can be extended. Although many active and passive materials and systems are being studied at Los Alamos, this paper will concentrate on absorber coatings and degradation of these coatings.

  3. Analysis of the dielectric relaxation of a gelatin solution.

    PubMed

    Iwamoto, S; Kumagai, H

    1998-07-01

    The behavior of the dielectric properties of gelatin in the frequency range from 10(3) Hz to 10(7) Hz was investigated and compared with that of the globule protein, bovine serum albumin (BSA), desalted gelatin and BSA being used. Dielectric relaxation was observed for both the gelatin and BSA solutions. The relaxation data were fitted well by the Cole-Cole equation; the Cole-Cole parameter (beta) and the relaxation time (tau) were obtained. For the BSA solutions, tau was proportional to the solution viscosity (eta) at 40 degrees C and 25 degrees C, and the values of beta at 40 degrees C were similar to those at 25 degrees C. For gelatin solution, tau was proportional to eta at 40 degrees C, but was not proportional to eta at 25 degrees C. In addition, the values of beta at 25 degrees C were smaller than those at 40 degrees C. These results indicate that the rotation of gelatin and/or polarization of submolecular groups in the coil state greatly contributed to the dielectric relaxation at 40 degrees C; on the other hand, the formation of cross-linking junctions consisting of helix structures would have affected the dielectric relaxation at 25 degrees C.

  4. Using glucosamine to improve the properties of photocrosslinked gelatin scaffolds.

    PubMed

    Suo, Hairui; Xu, Kedi; Zheng, Xiaoxiang

    2015-02-01

    The use of hydrogel-based cell transport scaffolds holds great promise in regenerative medicine, such as treating osteoarthritis. Gelatin and glucosamine are the ideal materials to be used in the hydrogel scaffolds for cartilage regeneration for they could act as compositions of cartilage. To overcome the weak strength of traditional gelatin hydrogels and down-regulate cell toxicity of glucosamine, gelatin and glucosamine molecules were grafted with acrylate groups and covalently crosslinked under photo-radiation to form hydrogels. Hydrogels with tuning physiochemical properties were produced according to different proportions of methacrylate gelatin (GelMA) and N-acryloyl glucosamine (AGA). The process of photocrosslinking was elaborated, and the hypothesis of increasing AGA concentration leading to higher strength of hydrogels was corroborated by testing rheological property and scanning micro-morphological features. A serial of properties, including smaller swelling ratio, lower gelatin dissolution and slower degradation of GelMA/AGA hydrogels with higher AGA concentration further proved our hypothesis. Moreover, AGA molecules showed less cytotoxicity than unmodified glucosamine molecules and the incorporation of AGA molecules in GelMA/AGA hydrogels upregulated cell adhesion and spreading on the hydrogel surface. All of these results indicated that addition of AGA molecules could significantly alter the physiochemical properties of GelMA/AGA hydrogels, which may have broad application prospects in the future.

  5. Gelatin-Modified Polyurethanes for Soft Tissue Scaffold

    PubMed Central

    Kucińska-Lipka, Justyna; Janik, Helena

    2013-01-01

    Recently, in the field of biomaterials for soft tissue scaffolds, the interest of their modification with natural polymersis growing. Synthetic polymers are often tough, and many of them do not possess fine biocompatibility. On the other hand, natural polymers are biocompatible but weak when used alone. The combination of natural and synthetic polymers gives the suitable properties for tissue engineering requirements. In our study, we modified gelatin synthetic polyurethanes prepared from polyester poly(ethylene-butylene adipate) (PEBA), aliphatic 1,6-hexamethylene diisocyanate (HDI), and two different chain extenders 1,4-butanediol (BDO) or 1-ethoxy-2-(2-hydroxyethoxy)ethanol (EHEE). From a chemical point of view, we replaced expensive components for building PU, such as 2,6-diisocyanato methyl caproate (LDI) and 1,4-diisocyanatobutane (BDI), with cost-effective HDI. The gelatin was added in situ (in the first step of synthesis) to polyurethane to increase biocompatibility and biodegradability of the obtained material. It appeared that the obtained gelatin-modified PU foams, in which chain extender was BDO, had enhanced interactions with media and their hydrolytic degradation profile was also improved for tissue engineering application. Furthermore, the gelatin introduction had positive impact on gelatin-modified PU foams by increasing their hemocompatibility. PMID:24363617

  6. Massive Consumption of Gelatinous Plankton by Mediterranean Apex Predators

    PubMed Central

    Cardona, Luis; Álvarez de Quevedo, Irene; Borrell, Assumpció; Aguilar, Alex

    2012-01-01

    Stable isotopes of carbon and nitrogen were used to test the hypothesis that stomach content analysis has systematically overlooked the consumption of gelatinous zooplankton by pelagic mesopredators and apex predators. The results strongly supported a major role of gelatinous plankton in the diet of bluefin tuna (Thunnus thynnus), little tunny (Euthynnus alletteratus), spearfish (Tetrapturus belone) and swordfish (Xiphias gladius). Loggerhead sea turtles (Caretta caretta) in the oceanic stage and ocean sunfish (Mola mola) also primarily relied on gelatinous zooplankton. In contrast, stable isotope ratios ruled out any relevant consumption of gelatinous plankton by bluefish (Pomatomus saltatrix), blue shark (Prionace glauca), leerfish (Lichia amia), bonito (Sarda sarda), striped dolphin (Stenella caerueloalba) and loggerhead sea turtles (Caretta caretta) in the neritic stage, all of which primarily relied on fish and squid. Fin whales (Balaenoptera physalus) were confirmed as crustacean consumers. The ratios of stable isotopes in albacore (Thunnus alalunga), amberjack (Seriola dumerili), blue butterfish (Stromaeus fiatola), bullet tuna (Auxis rochei), dolphinfish (Coryphaena hyppurus), horse mackerel (Trachurus trachurus), mackerel (Scomber scombrus) and pompano (Trachinotus ovatus) were consistent with mixed diets revealed by stomach content analysis, including nekton and crustaceans, but the consumption of gelatinous plankton could not be ruled out completely. In conclusion, the jellyvorous guild in the Mediterranean integrates two specialists (ocean sunfish and loggerhead sea turtles in the oceanic stage) and several opportunists (bluefin tuna, little tunny, spearfish, swordfish and, perhaps, blue butterfish), most of them with shrinking populations due to overfishing. PMID:22470416

  7. Micromolded Gelatin Hydrogels for Extended Culture of Engineered Cardiac Tissues

    PubMed Central

    McCain, Megan L.; Agarwal, Ashutosh; Nesmith, Haley W.; Nesmith, Alexander P.; Parker, Kevin Kit

    2014-01-01

    Defining the chronic cardiotoxic effects of drugs during preclinical screening is hindered by the relatively short lifetime of functional cardiac tissues in vitro, which are traditionally cultured on synthetic materials that do not recapitulate the cardiac microenvironment. Because collagen is the primary extracellular matrix protein in the heart, we hypothesized that micromolded gelatin hydrogel substrates tuned to mimic the elastic modulus of the heart would extend the lifetime of engineered cardiac tissues by better matching the native chemical and mechanical microenvironment. To measure tissue stress, we used tape casting, micromolding, and laser engraving to fabricate gelatin hydrogel muscular thin film cantilevers. Neonatal rat cardiac myocytes adhered to gelatin hydrogels and formed aligned tissues as defined by the microgrooves. Cardiac tissues could be cultured for over three weeks without declines in contractile stress. Myocytes on gelatin had higher spare respiratory capacity compared to those on fibronectin-coated PDMS, suggesting that improved metabolic function could be contributing to extended culture lifetime. Lastly, human induced pluripotent stem cell-derived cardiac myocytes adhered to micromolded gelatin surfaces and formed aligned tissues that remained functional for four weeks, highlighting their potential for human-relevant chronic studies. PMID:24731714

  8. Massive consumption of gelatinous plankton by Mediterranean apex predators.

    PubMed

    Cardona, Luis; Álvarez de Quevedo, Irene; Borrell, Assumpció; Aguilar, Alex

    2012-01-01

    Stable isotopes of carbon and nitrogen were used to test the hypothesis that stomach content analysis has systematically overlooked the consumption of gelatinous zooplankton by pelagic mesopredators and apex predators. The results strongly supported a major role of gelatinous plankton in the diet of bluefin tuna (Thunnus thynnus), little tunny (Euthynnus alletteratus), spearfish (Tetrapturus belone) and swordfish (Xiphias gladius). Loggerhead sea turtles (Caretta caretta) in the oceanic stage and ocean sunfish (Mola mola) also primarily relied on gelatinous zooplankton. In contrast, stable isotope ratios ruled out any relevant consumption of gelatinous plankton by bluefish (Pomatomus saltatrix), blue shark (Prionace glauca), leerfish (Lichia amia), bonito (Sarda sarda), striped dolphin (Stenella caerueloalba) and loggerhead sea turtles (Caretta caretta) in the neritic stage, all of which primarily relied on fish and squid. Fin whales (Balaenoptera physalus) were confirmed as crustacean consumers. The ratios of stable isotopes in albacore (Thunnus alalunga), amberjack (Seriola dumerili), blue butterfish (Stromaeus fiatola), bullet tuna (Auxis rochei), dolphinfish (Coryphaena hyppurus), horse mackerel (Trachurus trachurus), mackerel (Scomber scombrus) and pompano (Trachinotus ovatus) were consistent with mixed diets revealed by stomach content analysis, including nekton and crustaceans, but the consumption of gelatinous plankton could not be ruled out completely. In conclusion, the jellyvorous guild in the Mediterranean integrates two specialists (ocean sunfish and loggerhead sea turtles in the oceanic stage) and several opportunists (bluefin tuna, little tunny, spearfish, swordfish and, perhaps, blue butterfish), most of them with shrinking populations due to overfishing. PMID:22470416

  9. Massive consumption of gelatinous plankton by Mediterranean apex predators.

    PubMed

    Cardona, Luis; Álvarez de Quevedo, Irene; Borrell, Assumpció; Aguilar, Alex

    2012-01-01

    Stable isotopes of carbon and nitrogen were used to test the hypothesis that stomach content analysis has systematically overlooked the consumption of gelatinous zooplankton by pelagic mesopredators and apex predators. The results strongly supported a major role of gelatinous plankton in the diet of bluefin tuna (Thunnus thynnus), little tunny (Euthynnus alletteratus), spearfish (Tetrapturus belone) and swordfish (Xiphias gladius). Loggerhead sea turtles (Caretta caretta) in the oceanic stage and ocean sunfish (Mola mola) also primarily relied on gelatinous zooplankton. In contrast, stable isotope ratios ruled out any relevant consumption of gelatinous plankton by bluefish (Pomatomus saltatrix), blue shark (Prionace glauca), leerfish (Lichia amia), bonito (Sarda sarda), striped dolphin (Stenella caerueloalba) and loggerhead sea turtles (Caretta caretta) in the neritic stage, all of which primarily relied on fish and squid. Fin whales (Balaenoptera physalus) were confirmed as crustacean consumers. The ratios of stable isotopes in albacore (Thunnus alalunga), amberjack (Seriola dumerili), blue butterfish (Stromaeus fiatola), bullet tuna (Auxis rochei), dolphinfish (Coryphaena hyppurus), horse mackerel (Trachurus trachurus), mackerel (Scomber scombrus) and pompano (Trachinotus ovatus) were consistent with mixed diets revealed by stomach content analysis, including nekton and crustaceans, but the consumption of gelatinous plankton could not be ruled out completely. In conclusion, the jellyvorous guild in the Mediterranean integrates two specialists (ocean sunfish and loggerhead sea turtles in the oceanic stage) and several opportunists (bluefin tuna, little tunny, spearfish, swordfish and, perhaps, blue butterfish), most of them with shrinking populations due to overfishing.

  10. Synthesis and characterization of hybrid hyaluronic acid-gelatin hydrogels.

    PubMed

    Camci-Unal, Gulden; Cuttica, Davide; Annabi, Nasim; Demarchi, Danilo; Khademhosseini, Ali

    2013-04-01

    Biomimetic hybrid hydrogels have generated broad interest in tissue engineering and regenerative medicine. Hyaluronic acid (HA) and gelatin (hydrolyzed collagen) are naturally derived polymers and biodegradable under physiological conditions. Moreover, collagen and HA are major components of the extracellular matrix (ECM) in most of the tissues (e.g., cardiovascular, cartilage, neural). When used as a hybrid material, HA-gelatin hydrogels may enable mimicking the ECM of native tissues. Although HA-gelatin hybrid hydrogels are promising biomimetic substrates, their material properties have not been thoroughly characterized in the literature. Herein, we generated hybrid hydrogels with tunable physical and biological properties by using different concentrations of HA and gelatin. The physical properties of the fabricated hydrogels including swelling ratio, degradation, and mechanical properties were investigated. In addition, in vitro cellular responses in both two and three-dimensional culture conditions were assessed. It was found that the addition of gelatin methacrylate (GelMA) into HA methacrylate (HAMA) promoted cell spreading in the hybrid hydogels. Moreover, the hybrid hydrogels showed significantly improved mechanical properties compared to their single component analogs. The HAMA-GelMA hydrogels exhibited remarkable tunability behavior and may be useful for cardiovascular tissue engineering applications.

  11. Synthesis and Characterization of Hybrid Hyaluronic Acid-Gelatin Hydrogels

    PubMed Central

    Camci-Unal, Gulden; Cuttica, Davide; Annabi, Nasim; Demarchi, Danilo; Khademhosseini, Ali

    2013-01-01

    Biomimetic hybrid hydrogels have generated broad interest in tissue engineering and regenerative medicine. Hyaluronic acid (HA) and gelatin (hydrolyzed collagen) are naturally derived polymers and biodegradable under physiological conditions. Moreover, collagen and HA are major components of the extracellular matrix (ECM) in most of the tissues (e.g. cardiovascular, cartilage, neural). When used as a hybrid material, HA-gelatin hydrogels may enable mimicking the ECM of native tissues. Although HA-gelatin hybrid hydrogels are promising biomimetic substrates, their material properties have not been thoroughly characterized in the literature. Herein, we generated hybrid hydrogels with tunable physical and biological properties by using different concentrations of HA and gelatin. The physical properties of the fabricated hydrogels including swelling ratio, degradation, and mechanical properties were investigated. In addition, in vitro cellular responses in both two and three dimensional (2D and 3D) culture conditions were assessed. It was found that the addition of gelatin methacrylate (GelMA) into HA methacrylate (HAMA) promoted cell spreading in the hybrid hydogels. Moreover, the hybrid hydrogels showed significantly improved mechanical properties compared to their single component analogs. The HAMA-GelMA hydrogels exhibited remarkable tunability behavior and may be useful for cardiovascular tissue engineering applications. PMID:23419055

  12. Thermally controlled protein release from gelatin dextran hydrogels

    NASA Astrophysics Data System (ADS)

    Aso, Y.; Yoshioka, S.; Nakai, Y.; Kojima, S.

    1999-06-01

    Biodegradable hydrogels in which drug release was controlled by sol-gel transition were prepared. Gelatin was used as a component because it exhibits sol-gel transition in response to temperature changes. Glycidyl methacrylated (GMA) dextran was crosslinked by low dose γ-irradiation in the presence of gelatin and the model drugs, β-galactosidase ( β-GA), bovine serum albumin (BSA) or 5-fluorouracil (5-FU). The enzyme activity of β-GA remained greater than 95% after irradiation. Temperature-responsive release of β-GA and BSA resulted from the sol-gel transition of gelatin. Sol-gel transition was confirmed by the temperature dependence of the spin-spin relaxation time of the gel polymer protons. The protein release rate was affected by both the degree of GMA substitution and the gelatin concentration. Desired release rate could be achieved by adjusting these factors. The release rate of 5-FU was not affected by the sol-gel transition of gelatin.

  13. Recent advancement of gelatin nanoparticles in drug and vaccine delivery.

    PubMed

    Sahoo, Nityananda; Sahoo, Ranjan Ku; Biswas, Nikhil; Guha, Arijit; Kuotsu, Ketousetuo

    2015-11-01

    Novel drug delivery system using nanoscale materials with a broad spectrum of applications provides a new therapeutic foundation for technological integration and innovation. Nanoparticles are suitable drug carrier for various routes of administration as well as rapid recognition by the immune system. Gelatin, the biological macromolecule is a versatile drug/vaccine delivery carrier in pharmaceutical field due to its biodegradable, biocompatible, non-antigenicity and low cost with easy availability. The surface of gelatin nanoparticles can be modified with site-specific ligands, cationized with amine derivatives or, coated with polyethyl glycols to achieve targeted and sustained release drug delivery. Compared to other colloidal carriers, gelatin nanoparticles are better stable in biological fluids to provide the desired controlled and sustained release of entrapped drug molecules. The current review highlights the different formulation aspects of gelatin nanoparticles which affect the particle characteristics like zeta potential, polydispersity index, entrapment efficacy and drug release properties. It has also given emphasis on the major applications of gelatin nanoparticles in drug and vaccine delivery, gene delivery to target tissues and nutraceutical delivery for improving the poor bioavailabity of bioactive phytonutrients.

  14. Dynamic finite element simulation of the gunshot injury to the human forehead protected by polyvinyl alcohol sponge.

    PubMed

    Karimi, Alireza; Razaghi, Reza; Navidbakhsh, Mahdi; Sera, Toshihiro; Kudo, Susumu

    2016-04-01

    Although there are some traditional models of the gunshot wounds, there is still a need for more modeling analyses due to the difficulties related to the gunshot wounds to the forehead region of the human skull. In this study, the degree of damage as a consequence of penetrating head injuries due to gunshot wounds was determined using a preliminary finite element (FE) model of the human skull. In addition, the role of polyvinyl alcohol (PVA) sponge, which can be used as an alternative to reinforce the kinetic energy absorption capacity of bulletproof vest and helmet materials, to minimize the amount of skull injury due to penetrating processes was investigated through the FE model. Digital computed tomography along with magnetic resonance imaging data of the human head were employed to launch a three-dimensional (3D) FE model of the skull. Two geometrical shapes of projectiles (steel ball and bullet) were simulated for penetrating with an initial impact velocity of 734 m/s using nonlinear dynamic modeling code, namely LS-DYNA. The role of the damaged/distorted elements were removed during computation when the stress or strain reached their thresholds. The stress distributions in various parts of the forehead and sponge after injury were also computed. The results revealed the same amount of stress for both the steel ball and bullet after hitting the skull. The modeling results also indicated the time that steel ball takes to penetrate into the skull is lower than that of the bullet. In addition, more than 21% of the steel ball's kinetic energy was absorbed by the PVA sponge and, subsequently, injury sternness of the forehead was considerably minimized. The findings advise the application of the PVA sponge as a substitute strengthening material to be able to diminish the energy of impact as well as the load transmitted to the object. PMID:26886822

  15. Comparative study of texture of normal and energy reduced sponge cakes.

    PubMed

    Baeva, M R; Panchev, I N; Terzieva, V V

    2000-08-01

    The complete sucrose elimination and its replacement by microencapsulated aspartame (Nutra Sweet) and bulking agents (sorbitol, wheat starch and wheat germ) on the physical and textural sensory characteristics of two diabetic sponge cakes against a control sponge cake was studied. Mathematical and statistical methods were used and regression models worked out, describing the physical and textural characteristics of the three sponge cakes and their values were optimized. The effect on the porosity, springiness, volume and shrinkage of sponge takes was substantial and depended on the amount of the added ingredients. The diabetic sponge cake containing wheat germ showed the least physical and sensory deviations against the control sponge cake. The energy value of the diabetic sponge cakes against the control one was reduced with 25% for the ordinary sponge cake without sucrose and with 29% for sponge cake without sucrose containing wheat germ.

  16. Hydration of gelatin molecules in glycerol-water solvent and phase diagram of gelatin organogels.

    PubMed

    Sanwlani, Shilpa; Kumar, Pradip; Bohidar, H B

    2011-06-01

    We present a systematic investigation of hydration and gelation of the polypeptide gelatin in water-glycerol mixed solvent (glycerol solutions). Raman spectroscopy results indicated enhancement in water structure in glycerol solutions and the depletion of glycerol density close to hydration sheath of the protein molecule. Gelation concentration (c(g)) was observed to decrease from 1.92 to 1.15% (w/v) while the gelation temperature (T(g)) was observed to increase from 31.4 to 40.7 °C with increase in glycerol concentration. Data on hand established the formation of organogels having interconnected networks, and the universal gelation mechanism could be described through an anomalous percolation model. The viscosity of sol diverged as η ∼ (1 - c(g)/c)(-k) as c(g) was approached from below (c < c(g)), while the elastic storage modulus grew as G' ∼ (c/c(g) - 1)(t) (for c > c(g)). It is important to note that values determined for critical exponents k and t were universal; that is, they did not depend on the microscopic details. The measured values were k = 0.38 ± 0.10 and t = 0.92 ± 0.17 whereas the percolation model predicts k = 0.7-1.3 and t = 1.9. Isothermal frequency sweep studies showed power-law dependence of gel storage modulus (G') and loss modulus (G'') on oscillation frequency ω given as G'(ω) ∼ ω(n') and G''(ω) ∼ ω(n''), and consistent with percolation model prediction it was found that n' ≈ n'' ≈ δ ≈ 0.73 close to gelation concentration. We propose a unique 3D phase diagram for the gelatin organogels. Circular dichroism data revealed that the gelatin molecules retained their biological activity in these solvents. Thus, it is shown that the thermomechanical properties of these organogels could be systematically tuned and customized as per application requirement.

  17. The Preparation of Chitosan Oligosaccharide/Alginate Sodium/Gelatin Nanofibers by Spiral-Electrospinning.

    PubMed

    Lu, Weipeng; Xu, Haitao; Zhang, Bing; Ma, Ming; Guo, Yanchuan

    2016-03-01

    A spiral-electrospinning was used to mass-produce gelatin nanofibers with a content of chitosan oligosaccharide (COS) and alginate sodium (AS). Multiple jets were observed to form on the edges of the helix slice-spinneret simultaneously. Important electrospinning parameters, such as concentration of COS/gelatin aqueous solution, rotational velocity of spinneret and spinning distance, were examined to investigate the electrospinnability of COS/gelatin solution and the morphology of COS/gelatin nanofiber membranes. Due to the poor miscibility between COS and AS, COS/AS/gelatin nanofiber membranes were obtained from COS/gelatin solution and AS/gelatin solution by mixing electrospinning with multi-spinnerets. The novel needleless electrospinning not only avoided the possibility of nozzle-clogging, but also prepared COS/AS/gelatin nanofibers on a large scale for a wide variety of applications. PMID:27455641

  18. Rheology and viscosity scaling of gelatin/1-allyl-3-methylimidazolium chloride solution

    NASA Astrophysics Data System (ADS)

    Qiao, Congde; Li, Tianduo; Zhang, Ling; Yang, Xiaodeng; Xu, Jing

    2014-05-01

    Gelatin/1-allyl-3-methylimidazolium chloride solutions are prepared by using the ionic liquid 1-allyl-3-methylimidazolium chloride as solvent. The rheological properties of the gelatin solutions have been investigated by steady shear and oscillatory shear measurements. In the steady shear measurements, the gelatin solutions with high concentration show a shear-thinning flow behavior at high shear rates, while another shear thinning region can be found in the dilute gelatin solutions at low shear rates. The overlap concentration of gelatin in [amim]Cl is 1.0 wt% and the entanglement concentration is a factor of 4 larger (4.0 wt%). The high intrinsic viscosity (295 mL/g) indicates that the gelatin chains dispersed freely in the ionic liquid and no aggregation phenomenon occurs in dilute gelatin solution. The frequency dependences of modulus changed obviously with an increase in gelatin concentration. The empirical time-temperature superposition principle holds true at the experimental temperatures.

  19. Mineralization, biodegradation, and drug release behavior of gelatin/apatite composite microspheres for bone regeneration.

    PubMed

    Leeuwenburgh, Sander C G; Jo, Junichiro; Wang, Huanan; Yamamoto, Masaya; Jansen, John A; Tabata, Yasuhiko

    2010-10-11

    Gelatin microspheres are well-known for their capacity to release growth factors in a controlled manner, but gelatin microspheres do not calcify in the absence of so-called bioactive substances that induce deposition of calcium phosphate (CaP) bone mineral. This study has investigated if CaP nanocrystals can be incorporated into gelatin microspheres to render these inert microspheres bioactive without compromising the drug releasing properties of gelatin microspheres. Incorporation of CaP nanocrystals into gelatin microspheres resulted into reduced biodegradation and drug release rates, whereas their calcifying capacity increased strongly compared to inert gelatin microspheres. The reduced drug release rate was correlated to the reduced degradation rate as caused by a physical cross-linking effect of CaP nanocrystals dispersed in the gelatin matrix. Consequently, these composite microspheres combine beneficial drug-releasing properties of organic gelatin with the calcifying capacity of a dispersed CaP phase. PMID:20804200

  20. The Preparation of Chitosan Oligosaccharide/Alginate Sodium/Gelatin Nanofibers by Spiral-Electrospinning.

    PubMed

    Lu, Weipeng; Xu, Haitao; Zhang, Bing; Ma, Ming; Guo, Yanchuan

    2016-03-01

    A spiral-electrospinning was used to mass-produce gelatin nanofibers with a content of chitosan oligosaccharide (COS) and alginate sodium (AS). Multiple jets were observed to form on the edges of the helix slice-spinneret simultaneously. Important electrospinning parameters, such as concentration of COS/gelatin aqueous solution, rotational velocity of spinneret and spinning distance, were examined to investigate the electrospinnability of COS/gelatin solution and the morphology of COS/gelatin nanofiber membranes. Due to the poor miscibility between COS and AS, COS/AS/gelatin nanofiber membranes were obtained from COS/gelatin solution and AS/gelatin solution by mixing electrospinning with multi-spinnerets. The novel needleless electrospinning not only avoided the possibility of nozzle-clogging, but also prepared COS/AS/gelatin nanofibers on a large scale for a wide variety of applications.

  1. Diversity, structure and convergent evolution of the global sponge microbiome

    PubMed Central

    Thomas, Torsten; Moitinho-Silva, Lucas; Lurgi, Miguel; Björk, Johannes R.; Easson, Cole; Astudillo-García, Carmen; Olson, Julie B.; Erwin, Patrick M.; López-Legentil, Susanna; Luter, Heidi; Chaves-Fonnegra, Andia; Costa, Rodrigo; Schupp, Peter J.; Steindler, Laura; Erpenbeck, Dirk; Gilbert, Jack; Knight, Rob; Ackermann, Gail; Victor Lopez, Jose; Taylor, Michael W.; Thacker, Robert W.; Montoya, Jose M.; Hentschel, Ute; Webster, Nicole S.

    2016-01-01

    Sponges (phylum Porifera) are early-diverging metazoa renowned for establishing complex microbial symbioses. Here we present a global Porifera microbiome survey, set out to establish the ecological and evolutionary drivers of these host–microbe interactions. We show that sponges are a reservoir of exceptional microbial diversity and major contributors to the total microbial diversity of the world's oceans. Little commonality in species composition or structure is evident across the phylum, although symbiont communities are characterized by specialists and generalists rather than opportunists. Core sponge microbiomes are stable and characterized by generalist symbionts exhibiting amensal and/or commensal interactions. Symbionts that are phylogenetically unique to sponges do not disproportionally contribute to the core microbiome, and host phylogeny impacts complexity rather than composition of the symbiont community. Our findings support a model of independent assembly and evolution in symbiont communities across the entire host phylum, with convergent forces resulting in analogous community organization and interactions. PMID:27306690

  2. Diversity, structure and convergent evolution of the global sponge microbiome.

    PubMed

    Thomas, Torsten; Moitinho-Silva, Lucas; Lurgi, Miguel; Björk, Johannes R; Easson, Cole; Astudillo-García, Carmen; Olson, Julie B; Erwin, Patrick M; López-Legentil, Susanna; Luter, Heidi; Chaves-Fonnegra, Andia; Costa, Rodrigo; Schupp, Peter J; Steindler, Laura; Erpenbeck, Dirk; Gilbert, Jack; Knight, Rob; Ackermann, Gail; Victor Lopez, Jose; Taylor, Michael W; Thacker, Robert W; Montoya, Jose M; Hentschel, Ute; Webster, Nicole S

    2016-01-01

    Sponges (phylum Porifera) are early-diverging metazoa renowned for establishing complex microbial symbioses. Here we present a global Porifera microbiome survey, set out to establish the ecological and evolutionary drivers of these host-microbe interactions. We show that sponges are a reservoir of exceptional microbial diversity and major contributors to the total microbial diversity of the world's oceans. Little commonality in species composition or structure is evident across the phylum, although symbiont communities are characterized by specialists and generalists rather than opportunists. Core sponge microbiomes are stable and characterized by generalist symbionts exhibiting amensal and/or commensal interactions. Symbionts that are phylogenetically unique to sponges do not disproportionally contribute to the core microbiome, and host phylogeny impacts complexity rather than composition of the symbiont community. Our findings support a model of independent assembly and evolution in symbiont communities across the entire host phylum, with convergent forces resulting in analogous community organization and interactions. PMID:27306690

  3. Diversity, structure and convergent evolution of the global sponge microbiome.

    PubMed

    Thomas, Torsten; Moitinho-Silva, Lucas; Lurgi, Miguel; Björk, Johannes R; Easson, Cole; Astudillo-García, Carmen; Olson, Julie B; Erwin, Patrick M; López-Legentil, Susanna; Luter, Heidi; Chaves-Fonnegra, Andia; Costa, Rodrigo; Schupp, Peter J; Steindler, Laura; Erpenbeck, Dirk; Gilbert, Jack; Knight, Rob; Ackermann, Gail; Victor Lopez, Jose; Taylor, Michael W; Thacker, Robert W; Montoya, Jose M; Hentschel, Ute; Webster, Nicole S

    2016-01-01

    Sponges (phylum Porifera) are early-diverging metazoa renowned for establishing complex microbial symbioses. Here we present a global Porifera microbiome survey, set out to establish the ecological and evolutionary drivers of these host-microbe interactions. We show that sponges are a reservoir of exceptional microbial diversity and major contributors to the total microbial diversity of the world's oceans. Little commonality in species composition or structure is evident across the phylum, although symbiont communities are characterized by specialists and generalists rather than opportunists. Core sponge microbiomes are stable and characterized by generalist symbionts exhibiting amensal and/or commensal interactions. Symbionts that are phylogenetically unique to sponges do not disproportionally contribute to the core microbiome, and host phylogeny impacts complexity rather than composition of the symbiont community. Our findings support a model of independent assembly and evolution in symbiont communities across the entire host phylum, with convergent forces resulting in analogous community organization and interactions.

  4. Protonated Melamine Sponge for Effective Oil/Water Separation

    PubMed Central

    Wang, Chih-Feng; Huang, Hsiang-Ching; Chen, Liang-Ting

    2015-01-01

    In this study, we fabricated a superhydrophilic and underwater superoleophobic protonated melamine sponge for effective separation of water-rich immiscible oil/water mixtures with extremely high separation efficiency. This protonated melamine sponge exhibited excellent antifouling properties and could be used to separate oil/water mixtures continuously for up to 12 h without any increase in the oil content in filtrate. Moreover, our compressed protonated melamine sponge could separate both surfactant-free and -stabilized oil-in-water emulsions with high separation efficiencies. The high performance of this protonated melamine sponge and its efficient, energy- and cost-effective preparation suggest that it has great potential for use in practical applications. PMID:26399444

  5. New cyclitol derivative from a sponge Sarcotragus species.

    PubMed

    Liu, Yonghong; Jung, Jee H; Xu, Tunhai; Long, Lijuan; Lin, Xiuping; Yin, Hao; Yang, Bin; Zhou, Xue-Feng; Yang, Xianwen

    2011-03-01

    Guided by the brine shrimp lethality assay, a new cyclitol derivative, sarcotride D (1), was isolated from a marine sponge Sarcotragus species. The structure was established based on NMR and MS analyses.

  6. Two new alkaloids from marine sponge Callyspongia sp.

    PubMed

    Yang, Bin; Tao, Huaming; Zhou, Xuefeng; Lin, Xiu-Ping; Liu, Yonghong

    2013-03-01

    Two new alkaloids, callylactam A (1) and callyimine A (4), along with three known ones (2, 3 and 5), were isolated from the marine sponge Callyspongia sp. The structures were determined on the basis of NMR and MS analysis.

  7. Detection of porcine DNA in gelatine and gelatine-containing processed food products-Halal/Kosher authentication.

    PubMed

    Demirhan, Yasemin; Ulca, Pelin; Senyuva, Hamide Z

    2012-03-01

    A commercially available real-time PCR, based on a multi-copy target cytochrome b (cyt b) using porcine specific primers, has been validated for the Halal/Kosher authentication of gelatine. Extraction and purification of DNA from gelatine were successfully achieved using the SureFood® PREP Animal system, and real-time PCR was carried out using SureFood® Animal ID Pork Sens kit. The minimum level of adulteration that could be detected was 1.0% w/w for marshmallows and gum drops. A small survey was undertaken of processed food products such as gum drops, marshmallows and Turkish delight, believed to contain gelatine. Of fourteen food products from Germany, two samples were found to contain porcine gelatine, whereas of twenty-nine samples from Turkey twenty-eight were negative. However, one product from Turkey contained porcine DNA and thus was not Halal, and neither was the use of porcine gelatine indicated on the product label.

  8. Meroterpenoids from a Tropical Dysidea sp. Sponge.

    PubMed

    Kim, Chang-Kwon; Woo, Jung-Kyun; Kim, Seong-Hwan; Cho, Eunji; Lee, Yeon-Ju; Lee, Hyi-Seung; Sim, Chung J; Oh, Dong-Chan; Oh, Ki-Bong; Shin, Jongheon

    2015-11-25

    Six new meroterpenoids (1-6), along with arenarol (7), a known rearranged drimane sesquiterpene hydroquinone, were isolated from a Dysidea sp. sponge collected from the Federated States of Micronesia. On the basis of the results of combined spectroscopic analysis, compound 1 was determined to be the cyclic ether derivative of 7, whereas 2 and 3 were assigned as the corresponding sesquiterpene quinones containing taurine-derived substituents. Compounds 4-6 possess a novel tetracyclic skeleton formed by a direct linkage between the quinone and sesquiterpene moieties. The configurations of these new compounds were assigned on the basis of combined NOESY and ECD analysis. These compounds exhibited cytotoxic and antimicrobial activities and weak inhibition against Na(+)/K(+)-ATPase. PMID:26551342

  9. Elastic, Conductive, Polymeric Hydrogels and Sponges

    PubMed Central

    Lu, Yun; He, Weina; Cao, Tai; Guo, Haitao; Zhang, Yongyi; Li, Qingwen; Shao, Ziqiang; Cui, Yulin; Zhang, Xuetong

    2014-01-01

    As a result of inherent rigidity of the conjugated macromolecular chains resulted from the delocalized π-electron system along the polymer backbone, it has been a huge challenge to make conducting polymer hydrogels elastic by far. Herein elastic and conductive polypyrrole hydrogels with only conducting polymer as the continuous phase have been simply synthesized in the indispensable conditions of 1) mixed solvent, 2) deficient oxidant, and 3) monthly secondary growth. The elastic mechanism and oxidative polymerization mechanism on the resulting PPy hydrogels have been discussed. The resulting hydrogels show some novel properties, e.g., shape memory elasticity, fast functionalization with various guest objects, and fast removal of organic infectants from aqueous solutions, all of which cannot be observed from traditional non-elastic conducting polymer counterparts. What's more, light-weight, elastic, and conductive organic sponges with excellent stress-sensing behavior have been successfully achieved via using the resulting polypyrrole hydrogels as precursors. PMID:25052015

  10. Novel formulations of ballistic gelatin. 1. Rheological properties.

    PubMed

    Zecheru, Teodora; Său, Ciprian; Lăzăroaie, Claudiu; Zaharia, Cătălin; Rotariu, Traian; Stănescu, Paul-Octavian

    2016-06-01

    Ballistic gelatin is the simulant of the human body during field tests in forensics and other related fields, due to its physical and mechanical similarities to human trunk and organs. Since the ballistic gelatin used in present has important issues to overcome, an alternative approach is the use of gelatin-polymer composites, where a key factor is the insertion of biocompatible materials, which replicate accurately the human tissues. In order to be able to obtain an improved material in terms of mechanical performances by an easy industrial-scale technology, before the verification of the ballistic parameters by shooting in agreement with military standards, one of the best and cheapest solutions is to perform a thorough check of their rheological properties, in standard conditions. PMID:27139038

  11. Fabrication and calibration of sensitively photoelastic biocompatible gelatin spheres

    NASA Astrophysics Data System (ADS)

    Fu, Henry; Ceniceros, Ericson; McCormick, Zephyr

    2013-11-01

    Photoelastic gelatin can be used to measure forces generated by organisms in complex environments. We describe manufacturing, storage, and calibration techniques for sensitive photoelastic gelatin spheres to be used in aqueous environments. Calibration yields a correlation between photoelastic signal and applied force to be used in future studies. Images for calibration were collected with a digital camera attached to a linear polariscope. The images were then processed in Matlab to determine the photoelastic response of each sphere. The effect of composition, gelatin concentration, glycerol concentration, sphere size, and temperature were all examined for their effect on signal response. The minimum detectable force and the repeatability of our calibration technique were evaluated for the same sphere, different spheres from the same fabrication batch, and spheres from different batches. The minimum force detectable is 10 μN or less depending on sphere size. Factors which significantly contribute to errors in the calibration were explored in detail and minimized.

  12. Scaling laws of gelatin hydrogels for steady dynamic friction

    NASA Astrophysics Data System (ADS)

    Gupta, Vinit; Singh, Arun K.

    2016-09-01

    In this article, we use population balance based dynamic friction model for steady sliding to develop scaling laws in the terms of mesh size of gelatin hydrogels. First of all, it is observed in the sliding experiments that shear modulus of gelatin hydrogels depends on sliding velocity. This dependence is more evident in the case of low sliding velocity. Moreover, relaxation time constant of a dangling chain at the sliding interface scales with the same exponent as its stiffness. The scaling law is also developed for chain density and viscous retardation at the sliding interface. It is also established that the Hookean-based dynamic friction model is sufficient to study frictional behaviour of hydrogels. The reason for this observation is attributed to the weak bonding between a gelatin hydrogel and glass interface.

  13. Broadband patterned magnetic microwave absorber

    SciTech Connect

    Li, Wei; Wu, Tianlong; Wang, Wei; Guan, Jianguo; Zhai, Pengcheng

    2014-07-28

    It is a tough task to greatly improve the working bandwidth for the traditional flat microwave absorbers because of the restriction of available material parameters. In this work, a simple patterning method is proposed to drastically broaden the absorption bandwidth of a conventional magnetic absorber. As a demonstration, an ultra-broadband microwave absorber with more than 90% absorption in the frequency range of 4–40 GHz is designed and experimentally realized, which has a thin thickness of 3.7 mm and a light weight equivalent to a 2-mm-thick flat absorber. In such a patterned absorber, the broadband strong absorption is mainly originated from the simultaneous incorporation of multiple λ/4 resonances and edge diffraction effects. This work provides a facile route to greatly extend the microwave absorption bandwidth for the currently available absorbing materials.

  14. Liquid Hydrogen Absorber for MICE

    SciTech Connect

    Ishimoto, S.; Suzuki, S.; Yoshida, M.; Green, Michael A.; Kuno, Y.; Lau, Wing

    2010-05-30

    Liquid hydrogen absorbers for the Muon Ionization Cooling Experiment (MICE) have been developed, and the first absorber has been tested at KEK. In the preliminary test at KEK we have successfully filled the absorber with {approx}2 liters of liquid hydrogen. The measured hydrogen condensation speed was 2.5 liters/day at 1.0 bar. No hydrogen leakage to vacuum was found between 300 K and 20 K. The MICE experiment includes three AFC (absorber focusing coil) modules, each containing a 21 liter liquid hydrogen absorber made of aluminum. The AFC module has safety windows to separate its vacuum from that of neighboring modules. Liquid hydrogen is supplied from a cryocooler with cooling power 1.5 W at 4.2 K. The first absorber will be assembled in the AFC module and installed in MICE at RAL.

  15. Electrochemically regenerable carbon dioxide absorber

    NASA Technical Reports Server (NTRS)

    Woods, R. R.; Marshall, R. D.; Schubert, F. H.; Heppner, D. B.

    1979-01-01

    Preliminary designs were generated for two electrochemically regenerable carbon dioxide absorber concepts. Initially, an electrochemically regenerable absorption bed concept was designed. This concept incorporated the required electrochemical regeneration components in the absorber design, permitting the absorbent to be regenerated within the absorption bed. This hardware was identified as the electrochemical absorber hardware. The second hardware concept separated the functional components of the regeneration and absorption process. This design approach minimized the extravehicular activity component volume by eliminating regeneration hardware components within the absorber. The electrochemical absorber hardware was extensively characterized for major operating parameters such as inlet carbon dioxide partial pressure, process air flow rate, operational pressure, inlet relative humidity, regeneration current density and absorption/regeneration cycle endurance testing.

  16. Molecular biodiversity. Case study: Porifera (sponges).

    PubMed

    Müller, Werner E G; Brümmer, Franz; Batel, Renato; Müller, Isabel M; Schröder, Heinz C

    2003-03-01

    Biological diversity--or biodiversity--is the term given to the variety of life on Earth and the natural patterns it forms. The biodiversity we see today is the fruit of billions of years of evolution, shaped by natural processes and, increasingly, by the influence of humans. It forms the web of life of which we are an integral part and upon which we so fully depend. The research on molecular biodiversity tries to lay the scientific foundation of a rational conservation policy that has its roots in various disciplines including systematics/taxonomy (species richness), present day ecology (diversity of ecological systems), and functional genetics (genetic diversity). The results of ongoing genome analyses (genome projects and expressed sequence tag projects) and the achievements of molecular evolution may allow us not only to quantitate the diversity of the present biota but also to extrapolate to their diversification in the future. A link between biodiversity and genomics/molecular evolution will create a platform which we hope may facilitate a sustainable management of organismic life and ensure its exploitation for human benefit. In the present review we outline possible strategies, using the Porifera (sponges) as a prominent example. On the basis of solid taxonomy and ecological data, the high value of this phylum for human application becomes obvious, especially with regard to the field of chemical ecology and the desire to find novel potential drugs for clinical use. In addition, the benefit of trying to make sense of molecular biodiversity using sponges as an example can be seen in the fact that the study of these animals, which are "living fossils", gives us a good insight into the history of our planet, especially with respect to the evolution of Metazoa.

  17. Genomics of "Candidatus Synechococcus spongiarium", a Cyanobacterial Sponge Symbiont

    SciTech Connect

    Slaby, Beate M.; Copeland, Alex; Woyke, Tanja; Hentschel, Ute

    2014-03-21

    Marine sponges (Porifera): ancient metazoans of ecological importance, that produce bioactive secondary metabolites and interact with various microorganisms including cyanobacteria1: Marine Synechococcus spp.: cyanobacteria, important contributors to the global carbon cycle and major primary producers in the oceans2 Ca. S. spongiarum: an ecotype of this genus, widespread and abundant symbiont of various marine sponges around the world3, e.g. Aplysina aerophoba

  18. THE COMBINATION OF GELATIN WITH HYDROCHLORIC ACID : II. NEW DETERMINATIONS OF THE ISOELECTRIC POINT AND COMBINING CAPACITY OF A PURIFIED GELATIN.

    PubMed

    Hitchcock, D I

    1929-03-20

    1. Cooper's gelatin purified according to Northrop and Kunitz exhibited a minimum of osmotic pressure and a maximum of opacity at pH 5.05 +/-0.05. The pH of solutions of this gelatin in water was also close to this value. It is inferred that such gelatin is isoelectric at this pH and not at pH 4.70. 2. Hydrogen electrode measurements with KCl-agar junctions were made with concentrated solutions of this gelatin in HCl up to 0.1 M. The combination curve calculated from these data is quite exactly horizontal between pH 2 and 1, indicating that 1 gm. of this gelatin can combine with a maximum of 9.35 x 10(-4) equivalents of H(+). 3. Conductivity titrations of this gelatin with HCl gave an endpoint at 9.41 (+/-0.05) x 10(-4) equivalents of HCl per gram gelatin. 4. E.M.F. measurements of the cell without liquid junction, Ag, AgCl, HCl + gelatin, H(2), lead to the conclusion that this gelatin in 0.1 M HCl combines with a maximum of 9.4 x 10(-4) equivalents of H(+) and 1.7 x 10(-4) equivalents of Cl(-) per gram gelatin.

  19. Interpreting environmental signals from the coralline sponge Astrosclera willeyana

    SciTech Connect

    Fallon, S J; McCulloch, M T; Guilderson, T P

    2004-06-30

    Coralline sponges (sclerosponges) have been proposed as a new source for paleo subsurface temperature reconstructions by utilizing methods developed for reef-building corals. However unlike corals, coralline sponges do not have density variations making age determination difficult. In this study we examined multiple elemental rations (B, Mg, Sr, Ba, U) in the coralline sponge Astrosclera willeyana. We also measured skeletal density profiles along the outer ''living'' edge of the sponges and this data indicates significant thickening of skeletal material over intervals of 2-3 mm or 2-3 years. This suggests that any skeletal recovered environmental record from Astrosclera willeyana is an integration of signals over a 2-3 year period. Sponge Sr/Ca seemed to hold the most promise as a recorder of water temperature and we compared Sr/Ca from 2 sponges in the Great Barrier Reef and one from Truk in Micronesia to their respective sea surface temperature record. The correlations were not that strong ({approx} r=-0.5) but they were significant. It appears that the signal smoothing due to thickening or perhaps even some biologic control on Sr skeletal partitioning limits the use of Sr/Ca as an indicator of water temperature in Astrosclera willeyana.

  20. Trophic transfer of radioisotopes in Mediterranean sponges through bacteria consumption.

    PubMed

    Lacoue-Labarthe, Thomas; Warnau, Michel; Beaugeard, Laureen; Pascal, Pierre-Yves

    2016-02-01

    Numerous field studies highlighted the capacities of marine sponges to bioaccumulate trace elements and assessed their potential as biomonitors of the marine environment. Experimental works demonstrated that dissolved metals and radionuclides can be taken up directly by sponge tissues but, to the best of our knowledge, little is known on the contribution of the dietary pathway through the consumption of contaminated bacteria considered as one of the trophic source in sponge diet. Objectives of this work are to study trophic transfer of radiotracers (110m)Ag, (241)Am, (109)Cd, (57)Co, (134)Cs, (54)Mn and (65)Zn from the marine bacteria Pseudomonas stutzeri to the Mediterranean sponges Aplysina cavernicola and Ircinia oros. P. stutzeri efficiently bioaccumulated trace elements in our culture experimental conditions with CF comprised between 10(5) and 10(7) after 48 h of growth in radiolabeled medium. When fed with these radiolabelled bacteria, A. cavernicola took up around 60% of radiotracers accumulated in trophic source except (134)Cs for which only 8% has been transferred from bacteria to sponge. Contrasting to this, I. oros retained only 7% of (110m)Ag, (109)Cd and (65)Zn counted in bacteria, but retained 2-fold longer accumulated metals in its tissues. The sponge inter-specific differences of accumulation and depuration following a trophic exposure are discussed with respect to the structure and the clearance capacities of each species.

  1. Gene Expression Dynamics Accompanying the Sponge Thermal Stress Response

    PubMed Central

    Guzman, Christine; Conaco, Cecilia

    2016-01-01

    Marine sponges are important members of coral reef ecosystems. Thus, their responses to changes in ocean chemistry and environmental conditions, particularly to higher seawater temperatures, will have potential impacts on the future of these reefs. To better understand the sponge thermal stress response, we investigated gene expression dynamics in the shallow water sponge, Haliclona tubifera (order Haplosclerida, class Demospongiae), subjected to elevated temperature. Using high-throughput transcriptome sequencing, we show that these conditions result in the activation of various processes that interact to maintain cellular homeostasis. Short-term thermal stress resulted in the induction of heat shock proteins, antioxidants, and genes involved in signal transduction and innate immunity pathways. Prolonged exposure to thermal stress affected the expression of genes involved in cellular damage repair, apoptosis, signaling and transcription. Interestingly, exposure to sublethal temperatures may improve the ability of the sponge to mitigate cellular damage under more extreme stress conditions. These insights into the potential mechanisms of adaptation and resilience of sponges contribute to a better understanding of sponge conservation status and the prediction of ecosystem trajectories under future climate conditions. PMID:27788197

  2. Bacterial diversity in the breadcrumb sponge Halichondria panicea (Pallas).

    PubMed

    Wichels, Antje; Würtz, Sven; Döpke, Hilke; Schütt, Christian; Gerdts, Gunnar

    2006-04-01

    The aim of this study was to investigate the diversity and variability of bacterial communities associated with the marine sponge Halichondria panicea with respect to tissue compartmentalization as well as seasonal and small-scale geographic variation. Diversity of microorganisms in sponges was investigated recently, but work on the variability and succession of associated bacterial communities is rare. Despite some information on Pacific and Mediterranean sponges, it is still uncertain whether bacteria and sponges are specifically associated. In this study, H. panicea specimens were sampled throughout the year at different stations around the island of Helgoland (North Sea) and investigated using molecular tools. The bacterial community associated with H. panicea was diverse, consisting of one denaturing gradient gel electrophoresis (DGGE) band occurring in most 'tissue' samples and additional variable bands. Variability was observed between different sponge fractions (i.e. the aquiferous system and the 'tissue'), sampling locations, and sampling dates. A PCR-DGGE specific for the Roseobacter group of marine Alphaproteobacteria displayed low diversity and a marked similarity between all samples. Phylogenetic analysis also pointed to specific Alphaproteobacteria of the Roseobacter group, which was predominant in most sponge 'tissue' samples. We conclude that H. panicea harbour a specific Roseobacter population with varying bacterial co-populations occurring seasonally or on a small-scale geographically, sometimes even dominating the bacterial community.

  3. First report on chitinous holdfast in sponges (Porifera)

    PubMed Central

    Ehrlich, Hermann; Kaluzhnaya, Oksana V.; Tsurkan, Mikhail V.; Ereskovsky, Alexander; Tabachnick, Konstantin R.; Ilan, Micha; Stelling, Allison; Galli, Roberta; Petrova, Olga V.; Nekipelov, Serguei V.; Sivkov, Victor N.; Vyalikh, Denis; Born, René; Behm, Thomas; Ehrlich, Andre; Chernogor, Lubov I.; Belikov, Sergei; Janussen, Dorte; Bazhenov, Vasilii V.; Wörheide, Gert

    2013-01-01

    A holdfast is a root- or basal plate-like structure of principal importance that anchors aquatic sessile organisms, including sponges, to hard substrates. There is to date little information about the nature and origin of sponges’ holdfasts in both marine and freshwater environments. This work, to our knowledge, demonstrates for the first time that chitin is an important structural component within holdfasts of the endemic freshwater demosponge Lubomirskia baicalensis. Using a variety of techniques (near-edge X-ray absorption fine structure, Raman, electrospray ionization mas spectrometry, Morgan–Elson assay and Calcofluor White staining), we show that chitin from the sponge holdfast is much closer to α-chitin than to β-chitin. Most of the three-dimensional fibrous skeleton of this sponge consists of spicule-containing proteinaceous spongin. Intriguingly, the chitinous holdfast is not spongin-based, and is ontogenetically the oldest part of the sponge body. Sequencing revealed the presence of four previously undescribed genes encoding chitin synthases in the L. baicalensis sponge. This discovery of chitin within freshwater sponge holdfasts highlights the novel and specific functions of this biopolymer within these ancient sessile invertebrates. PMID:23677340

  4. Temperature-dependent dielectric properties of a thermoplastic gelatin

    NASA Astrophysics Data System (ADS)

    Landi, Giovanni; Neitzert, Heinz C.; Sorrentino, Andrea

    2016-05-01

    The frequency and the temperature dependence of the dielectric properties of a thermoplastic gelatin based bio-material have been investigated. At lower frequencies the dielectric response is strongly affected by charge carrier accumulation at the electrodes which modifies the dominating hopping conduction mechanism. The variation of the ac conductivity with frequency obeys a Jonscher type power law except for a small deviation in the low frequency range due to the electrode polarization effect. The master curve of the ac conductivity data shows that the conductivity relaxation of the gelatin is temperature independent.

  5. Clinical effects of stings by sponges of the genus Tedania and a review of sponge stings worldwide.

    PubMed

    Isbister, Geoffrey K; Hooper, John N A

    2005-12-01

    Contact with sponges (Phylum Porifera) usually results in minimal effects or abrasions, except for species that produce crinitoxins and can cause irritation and dermatitis. There are few reports of sponge stings, mainly in divers or collectors. We report a group of sponge stings from handling flame red/orange sponges on the beach, confirmed to be Tedania anhelans in five cases. All seven patients suffered immediate effects ranging from mild to severe pain, and local inflammation. A 38-year-old female and three children had delayed skin involvement including itchiness, pain, swelling and redness. Blistering and desquamation occurred in the female adult and limited desquamation in one child. Similar delayed effects have been reported in Tedania spp. stings previously.

  6. Extraction and characterization of gelatin from two edible Sudanese insects and its applications in ice cream making.

    PubMed

    Mariod, Abdalbasit Adam; Fadul, Hadia

    2015-07-01

    Three methods were used for extraction of gelatin from two insects, melon bug (Coridius viduatus) and sorghum bug (Agonoscelis versicoloratus versicoloratus). Extraction of insect gelatin using hot water gave higher yield reached up to 3.0%, followed by mild acid extraction which gave 1.5% and distilled water extraction which gave only 1.0%, respectively. The obtained gelatins were characterized by FTIR and the spectra of insect's gelatin seem to be similar when compared with commercial gelatin. Amide II bands of gelatins from melon and sorghum bug appeared around at 1542-1537 cm(-1). Slight differences in the amino acid composition of gelatin extracted from the two insects were observed. Ice cream was made by using 0.5% insect's gelatin and compared with that made using 0.5% commercial gelatin as stabilizing agent. The properties of the obtained ice cream produced using insects gelatin were significantly different when compared with that made using commercial gelatin.

  7. Hydrophilic PCU scaffolds prepared by grafting PEGMA and immobilizing gelatin to enhance cell adhesion and proliferation.

    PubMed

    Shi, Changcan; Yuan, Wenjie; Khan, Musammir; Li, Qian; Feng, Yakai; Yao, Fanglian; Zhang, Wencheng

    2015-05-01

    Gelatin contains many functional motifs which can modulate cell specific adhesion, so we modified polycarbonate urethane (PCU) scaffold surface by immobilization of gelatin. PCU-g-gelatin scaffolds were prepared by direct immobilizing gelatins onto the surface of aminated PCU scaffolds. To increase the immobilization amount of gelatin, poly(ethylene glycol) methacrylate (PEGMA) was grafted onto PCU scaffolds by surface initiated atom transfer radical polymerization. Then, following amination and immobilization, PCU-g-PEGMA-g-gelatin scaffolds were obtained. Both modified scaffolds were characterized by chemical and biological methods. After immobilization of gelatin, the microfiber surface became rough, but the original morphology of scaffolds was maintained successfully. PCU-g-PEGMA-g-gelatin scaffolds were more hydrophilic than PCU-g-gelatin scaffolds. Because hydrophilic PEGMA and gelatin were grafted and immobilized onto the surface, the PCU-g-PEGMA-g-gelatin scaffolds showed low platelet adhesion, perfect anti-hemolytic activity and excellent cell growth and proliferation capacity. It could be envisioned that PCU-g-PEGMA-g-gelatin scaffolds might have potential applications in tissue engineering artificial scaffolds.

  8. Treatment of wet blue with fillers produced from quebracho-modified gelatin

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Gelatin modified with quebracho to produce high molecular weight, high viscosity products was investigated as a filler in leather processing. The uptake of quebracho/gelatin product by the wet blue was on the average about 55% of the 10% gelatin/quebracho product offered; the reaction appeared to be...

  9. Plants absorb heavy metals

    SciTech Connect

    Parry, J.

    1995-02-01

    Decontamination of heavy metals-polluted soils remains one of the most intractable problems of cleanup technology. Currently available techniques include extraction of the metals by physical and chemical means, such as acid leaching and electroosmosis, or immobilization by vitrification. There are presently no techniques for cleanup which are low cost and retain soil fertility after metals removal. But a solution to the problem could be on the horizon. A small but growing number of plants native to metalliferous soils are known to be capable of accumulating extremely high concentrations of metals in their aboveground portions. These hyperaccumulators, as they are called, contain up to 1,000 times larger metal concentrations in their aboveground parts than normal species. Their distribution is global, including many different families of flowering plants of varying growth forms, from herbaceous plants to trees. Hyperaccumulators absorb metals they do not need for their own nutrition. The metals are accumulated in the leaf and stem vacuoles, and to a lesser extent in the roots.

  10. Deposition of shallow water sponges in response to seasonal changes

    NASA Astrophysics Data System (ADS)

    Ávila, Enrique; Carballo, José Luis; Vega, Cristina; Camacho, Leonardo; Barrón-Álvarez, José J.; Padilla-Verdín, Claudia; Yáñez-Chávez, Benjamín

    2011-08-01

    Removal of organisms from the subtidal zone plays an important role in shaping benthic communities in shallow bays. The main objective of this research was to quantify the biomass of sponges washed up on the beach at Mazatlan Bay (Mexico, eastern Pacific Ocean), and to determine its relationship with local weather and oceanographic conditions. To know whether this process has a significant effect on the sponge populations, changes in abundance of the species washed into the beach were also quantified in adjoining sublittoral areas. The sponges that were washed ashore were mainly branching ( Mycale ramulosa), massive ( Haliclona caerulea) and cushion-shaped ( Callyspongia californica) species. Species with high content of spongin in their structure (e.g. Hyattella intestinalis) were common in the subtidal zone but were rarely found on the beach. Encrusting species were never found. Four-year data of sponge deposition on the beach showed that the total annual sponge biomass ranged from 30 to 60 g DW m - 2 with an inter-annual range from 0.1 to 17.3 g DW m - 2 . The highest deposition of sponges was during the spring-summer transition (from April to July), which was associated with a change in wind direction (from NW to WSW). This change also matched with low tides and a high resuspension of bottom sediments, suggesting a high-energy environment during this transition. The increase in sponge biomass washed on the beach coincided with a decrease in the density of adjacent sponge populations. A multiple regression analysis showed that 68.48% of the variation on sponge biomass on the beach could be statistically explained using a combination of environmental factors (wind speed, sediment resuspension and tides). Thus, seasonal changes in wind direction combined with the effect of low tides and sediment resuspension could serve to predict fragmentation/detachment events of benthic organisms in shallow sublittoral areas worldwide. This study also provides insights to

  11. Pezizomycotina dominates the fungal communities of South China Sea sponges Theonella swinhoei and Xestospongia testudinaria.

    PubMed

    Jin, Liling; Liu, Fang; Sun, Wei; Zhang, Fengli; Karuppiah, Valliappan; Li, Zhiyong

    2014-12-01

    Compared with the knowledge of sponge-associated bacterial diversity and ecological roles, the fungal diversity and ecological roles of sponges remain largely unknown. In this study, the fungal diversity and protein synthesis potential in two South China Sea sponges Theonella swinhoei and Xestospongia testudinaria were investigated by rRNA vs. rRNA gene analysis. EF4/fung5 was chosen after a series of PCR tests to target fungal 18S rRNA and 18S rRNA gene. Altogether, 283 high-quality sequences were obtained, which resulted in 26 Operational taxonomic units (OTUs) that were assigned to Ascomycota, Basidiomycota, and Blastocladiomycota. At subphylum level, 77.3% of sponge-derived sequences were affiliated with Pezizomycotina. The fungal compositions of T. swinhoei and X. testudinaria were different from that of ambient seawater. The predominant OTU shared between two sponges was rare in seawater, whereas the most abundant OTUs in seawater were not found in sponges. Additionally, the major OTUs of sponge cDNA datasets were shared in two sponges. The fungal diversity illustrated by sponge cDNA datasets correlated well with that derived from sponge DNA datasets, indicating that the major members of sponge-associated fungi had protein synthesis potential. This study highlighted the diversity of Pezizomycotina in marine sponge-fungi symbioses and the necessity of investigating ecological roles of sponge-associated fungi. PMID:25348120

  12. Pezizomycotina dominates the fungal communities of South China Sea sponges Theonella swinhoei and Xestospongia testudinaria.

    PubMed

    Jin, Liling; Liu, Fang; Sun, Wei; Zhang, Fengli; Karuppiah, Valliappan; Li, Zhiyong

    2014-12-01

    Compared with the knowledge of sponge-associated bacterial diversity and ecological roles, the fungal diversity and ecological roles of sponges remain largely unknown. In this study, the fungal diversity and protein synthesis potential in two South China Sea sponges Theonella swinhoei and Xestospongia testudinaria were investigated by rRNA vs. rRNA gene analysis. EF4/fung5 was chosen after a series of PCR tests to target fungal 18S rRNA and 18S rRNA gene. Altogether, 283 high-quality sequences were obtained, which resulted in 26 Operational taxonomic units (OTUs) that were assigned to Ascomycota, Basidiomycota, and Blastocladiomycota. At subphylum level, 77.3% of sponge-derived sequences were affiliated with Pezizomycotina. The fungal compositions of T. swinhoei and X. testudinaria were different from that of ambient seawater. The predominant OTU shared between two sponges was rare in seawater, whereas the most abundant OTUs in seawater were not found in sponges. Additionally, the major OTUs of sponge cDNA datasets were shared in two sponges. The fungal diversity illustrated by sponge cDNA datasets correlated well with that derived from sponge DNA datasets, indicating that the major members of sponge-associated fungi had protein synthesis potential. This study highlighted the diversity of Pezizomycotina in marine sponge-fungi symbioses and the necessity of investigating ecological roles of sponge-associated fungi.

  13. Leaf absorbance and photosynthesis

    NASA Technical Reports Server (NTRS)

    Schurer, Kees

    1994-01-01

    The absorption spectrum of a leaf is often thought to contain some clues to the photosynthetic action spectrum of chlorophyll. Of course, absorption of photons is needed for photosynthesis, but the reverse, photosynthesis when there is absorption, is not necessarily true. As a check on the existence of absorption limits we measured spectra for a few different leaves. Two techniques for measuring absorption have been used, viz. the separate determination of the diffuse reflectance and the diffuse transmittance with the leaf at a port of an integrating sphere and the direct determination of the non-absorbed fraction with the leaf in the sphere. In a cross-check both methods yielded the same results for the absorption spectrum. The spectrum of a Fuchsia leaf, covering the short-wave region from 350 to 2500 nm, shows a high absorption in UV, blue and red, the well known dip in the green and a steep fall-off at 700 nm. Absorption drops to virtually zero in the near infrared, with subsequent absorptions, corresponding to the water absorption bands. In more detailed spectra, taken at 5 nm intervals with a 5 nm bandwidth, differences in chlorophyll content show in the different depths of the dip around 550 nm and in a small shift of the absorption edge at 700 nm. Spectra for Geranium (Pelargonium zonale) and Hibiscus (with a higher chlorophyll content) show that the upper limit for photosynthesis can not be much above 700 nm. No evidence, however, is to be seen of a lower limit for photosynthesis and, in fact, some experiments down to 300 nm still did not show a decrease of the absorption although it is well recognized that no photosynthesis results with 300 nm wavelengths.

  14. Hydraulic shock absorber

    SciTech Connect

    Tanaka, T.

    1987-03-03

    This patent describes a hydraulic shock absorber including a piston reciprocating in a cylinder, a piston upper chamber and a piston lower chamber which are oil-tightly separated by the piston, piston ports formed through the piston in a circle for communicating the piston upper chamber with the piston lower chamber, and return ports formed outside of the piston ports in a circle for communicating the piston upper chamber with the piston lower chamber. It also includes a sheet ring-like non-return valve provided above the piston and fitted to a piston rod, valve holes formed through the non-return valve in opposed relation with the piston ports. A ring-like non-return valve stopper fixed to the piston rod on an upper side of the non-return valve with a small spaced defined between the non-return valve and the non-return valve stopper, and a spring is interposed between the non-return valve and the non-return valve stopper for normally urging the non-return valve to an upper surface of the piston. Movement of the piston to the piston upper chamber allows oil to flow from the piston upper chamber through the piston ports to the piston lower chamber, while the return ports are closed by the non-return valve to generate a vibration damping force by resistance upon pass of the oil through the piston parts. The improvement described here comprises a groove formed in an upper surface of the piston facing the non-return valve and aligned with the valve holes, the groove being in the circle where the piston ports lie and being in communication with the piston ports.

  15. Metal-shearing energy absorber

    NASA Technical Reports Server (NTRS)

    Fay, R. J.; Wittrock, E. P.

    1971-01-01

    Device, consisting of tongue of thin aluminum alloy strip, pull tab, slotted steel plate which serves as cutter, and steel buckle, absorbs mechanical energy when its ends are subjected to tensile loading. Device is applicable as auxiliary shock absorbing anchor for automobile and airplane safety belts.

  16. The broadband dynamic vibration absorber

    NASA Astrophysics Data System (ADS)

    Hunt, J. B.; Nissen, J.-C.

    1982-08-01

    The limited effectiveness of the linear passive dynamic vibration absorber is described. This is followed by an analysis producing the response of a primary system when a non-linear softening Belleville spring is used in the absorber. It is shown that the suppression bandwidth can be doubled by this means.

  17. Effect of sterilization and crosslinking on gelatin films.

    PubMed

    Amadori, Sofia; Torricelli, Paola; Rubini, Katia; Fini, Milena; Panzavolta, Silvia; Bigi, Adriana

    2015-02-01

    Sterilization through γ-irradiation has been reported to affect collagen mechanical properties, but its possible effects on gelatin based materials have not been investigated up to now. Herein we report the results of a mechanical, chemical and thermal study performed on gelatin films before and after γ-irradiation. The investigation was performed on uncrosslinked films as well as on crosslinked films. To this aim, two common crosslinking agents, glutaraldehyde and genipin, at different concentration (0.15, 0.30 and 0.67%) were used. The results indicate that sterilization significantly affects the mechanical properties of uncrosslinked films, whereas it displays a modest effect on gelatin swelling, release in solution, thermal stability and molecular structure. Both glutaraldehyde and genipin enhance the mechanical properties and stability in solution of the gelatin films. In particular, the values of Young modulus increase as a function of crosslinker concentration up to about 10 and 18 MPa for genipin and glutaraldehyde treated samples respectively. The results of in vitro study demonstrate that the films crosslinked with genipin do not display any cytotoxic reaction, whereas glutaraldehyde crosslinking provokes an acute and dose dependent cytotoxic effect.

  18. Cold Water Fish Gelatin Methacryloyl Hydrogel for Tissue Engineering Application

    PubMed Central

    Yoon, Hee Jeong; Shin, Su Ryon; Cha, Jae Min; Lee, Soo-Hong; Kim, Jin-Hoi; Do, Jeong Tae; Song, Hyuk

    2016-01-01

    Gelatin methacryloyl (GelMA) is a versatile biomaterial that has been used in various biomedical fields. Thus far, however, GelMA is mostly obtained from mammalian sources, which are associated with a risk of transmission of diseases, such as mad cow disease, as well as certain religious restrictions. In this study, we synthesized GelMA using fish-derived gelatin by a conventional GelMA synthesis method, and evaluated its physical properties and cell responses. The lower melting point of fish gelatin compared to porcine gelatin allowed larger-scale synthesis of GelMA and enabled hydrogel fabrication at room temperature. The properties (mechanical strength, water swelling degree and degradation rate) of fish GelMA differed from those of porcine GelMA, and could be tuned to suit diverse applications. Cells adhered, proliferated, and formed networks with surrounding cells on fish GelMA, and maintained high initial cell viability. These data suggest that fish GelMA could be utilized in a variety of biomedical fields as a substitute for mammalian-derived materials. PMID:27723807

  19. A study of a tissue equivalent gelatine based tissue substitute

    SciTech Connect

    Spence, J.L.

    1992-11-01

    A study of several tissue substitutes for use as volumetric dosimeters was performed. The tissue substitutes studied included tissue substitutes from previous studies and from ICRU 44. The substitutes were evaluated for an overall match to Reference Man which was used as a basis for this study. The evaluation was based on the electron stopping power, the mass attenuation coefficient, the electron density, and the specific gravity. The tissue substitute chosen also had to be capable of changing from a liquid into a solid form to maintain an even distribution of thermoluminesent dosimetry (TLD) powder and then back to a liquid for recovery of the TLD powder without adversely effecting the TLD powder. The gelatine mixture provided the closest match to the data from Reference Man tissue. The gelatine mixture was put through a series of test to determine it`s usefulness as a reliable tissue substitute. The TLD powder was cast in the gelatine mixture and recovered to determine if the TLD powder was adversely effected. The distribution of the TLD powder after being cast into the gelatin mixture was tested in insure an even was maintained.

  20. A study of a tissue equivalent gelatine based tissue substitute

    SciTech Connect

    Spence, J.L.

    1992-11-01

    A study of several tissue substitutes for use as volumetric dosimeters was performed. The tissue substitutes studied included tissue substitutes from previous studies and from ICRU 44. The substitutes were evaluated for an overall match to Reference Man which was used as a basis for this study. The evaluation was based on the electron stopping power, the mass attenuation coefficient, the electron density, and the specific gravity. The tissue substitute chosen also had to be capable of changing from a liquid into a solid form to maintain an even distribution of thermoluminesent dosimetry (TLD) powder and then back to a liquid for recovery of the TLD powder without adversely effecting the TLD powder. The gelatine mixture provided the closest match to the data from Reference Man tissue. The gelatine mixture was put through a series of test to determine it's usefulness as a reliable tissue substitute. The TLD powder was cast in the gelatine mixture and recovered to determine if the TLD powder was adversely effected. The distribution of the TLD powder after being cast into the gelatin mixture was tested in insure an even was maintained.

  1. Dichromated Gelatine as a Material of Optical Element

    NASA Astrophysics Data System (ADS)

    Lee, Hyuk-Soo; Cho, Dong-Hyun; Choi, Yong-Jin; Son, Jung-Young; Park, Seung-Han

    1999-04-01

    In the fabrication process of optical elements (OEs) by the laser scanning method using a dichromated gelatin (DCG) photoplate, the expansion and drying stress of gelatine caused by inhomogeneous liquid flow inside the gelatine affects the shape of OEs. The reason this inhomogeneous liquid flow exists in the energy oversaturated parts of OEs is the presence of surplus energy. In order to obtain the OEs of desired spherical lens shape, the drying stress should be reduced and therefore the maximum energy of the illuminating laser should be defined not to cause the surplus energy. The maximum energy is investigated according to the relative concentrations of (NH4)2Cr2O7 to DCG. The use of photoplates with a relative concentration of (NH4)2Cr2O7 to gelatin of more than 20% has some advantages when making the lens raster, especially a short-focal-length lens raster. It is also very important to increase the drying time to reduce the total drying stress by maintaining high humidity during the drying process.

  2. Prolonged Culture of Aligned Skeletal Myotubes on Micromolded Gelatin Hydrogels

    NASA Astrophysics Data System (ADS)

    Bettadapur, Archana; Suh, Gio C.; Geisse, Nicholas A.; Wang, Evelyn R.; Hua, Clara; Huber, Holly A.; Viscio, Alyssa A.; Kim, Joon Young; Strickland, Julie B.; McCain, Megan L.

    2016-06-01

    In vitro models of skeletal muscle are critically needed to elucidate disease mechanisms, identify therapeutic targets, and test drugs pre-clinically. However, culturing skeletal muscle has been challenging due to myotube delamination from synthetic culture substrates approximately one week after initiating differentiation from myoblasts. In this study, we successfully maintained aligned skeletal myotubes differentiated from C2C12 mouse skeletal myoblasts for three weeks by utilizing micromolded (μmolded) gelatin hydrogels as culture substrates, which we thoroughly characterized using atomic force microscopy (AFM). Compared to polydimethylsiloxane (PDMS) microcontact printed (μprinted) with fibronectin (FN), cell adhesion on gelatin hydrogel constructs was significantly higher one week and three weeks after initiating differentiation. Delamination from FN-μprinted PDMS precluded robust detection of myotubes. Compared to a softer blend of PDMS μprinted with FN, myogenic index, myotube width, and myotube length on μmolded gelatin hydrogels was similar one week after initiating differentiation. However, three weeks after initiating differentiation, these parameters were significantly higher on μmolded gelatin hydrogels compared to FN-μprinted soft PDMS constructs. Similar results were observed on isotropic versions of each substrate, suggesting that these findings are independent of substrate patterning. Our platform enables novel studies into skeletal muscle development and disease and chronic drug testing in vitro.

  3. Prolonged Culture of Aligned Skeletal Myotubes on Micromolded Gelatin Hydrogels

    PubMed Central

    Bettadapur, Archana; Suh, Gio C.; Geisse, Nicholas A.; Wang, Evelyn R.; Hua, Clara; Huber, Holly A.; Viscio, Alyssa A.; Kim, Joon Young; Strickland, Julie B.; McCain, Megan L.

    2016-01-01

    In vitro models of skeletal muscle are critically needed to elucidate disease mechanisms, identify therapeutic targets, and test drugs pre-clinically. However, culturing skeletal muscle has been challenging due to myotube delamination from synthetic culture substrates approximately one week after initiating differentiation from myoblasts. In this study, we successfully maintained aligned skeletal myotubes differentiated from C2C12 mouse skeletal myoblasts for three weeks by utilizing micromolded (μmolded) gelatin hydrogels as culture substrates, which we thoroughly characterized using atomic force microscopy (AFM). Compared to polydimethylsiloxane (PDMS) microcontact printed (μprinted) with fibronectin (FN), cell adhesion on gelatin hydrogel constructs was significantly higher one week and three weeks after initiating differentiation. Delamination from FN-μprinted PDMS precluded robust detection of myotubes. Compared to a softer blend of PDMS μprinted with FN, myogenic index, myotube width, and myotube length on μmolded gelatin hydrogels was similar one week after initiating differentiation. However, three weeks after initiating differentiation, these parameters were significantly higher on μmolded gelatin hydrogels compared to FN-μprinted soft PDMS constructs. Similar results were observed on isotropic versions of each substrate, suggesting that these findings are independent of substrate patterning. Our platform enables novel studies into skeletal muscle development and disease and chronic drug testing in vitro. PMID:27350122

  4. Photocopy of original blackandwhite silver gelatin print, AERIAL VIEW OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of original black-and-white silver gelatin print, AERIAL VIEW OF FEDERAL TRIANGLE, IRS BUILDING EAST SIDE OF THE OLD POST OFFICE BUILDING, 1936, photographer unknown - Internal Revenue Service Headquarters Building, 1111 Constitution Avenue Northwest, Washington, District of Columbia, DC

  5. Biopolymers produced from gelatin and other sustainable resources using polyphenols

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Several researchers have recently demonstrated the feasibility of producing biopolymers from the reaction of polyphenolics with gelatin in combination with other proteins (e.g. whey) or with carbohydrates (e.g. chitosan and pectin). These combinations would take advantage of the unique properties o...

  6. Differences in cytocompatibility between collagen, gelatin and keratin.

    PubMed

    Wang, Yanfang; Zhang, Weiwei; Yuan, Jiang; Shen, Jian

    2016-02-01

    Keratins are cysteine-rich intermediate filament proteins found in the cytoskeleton of the epithelial cells and in the matrix of hair, feathers, wool, nails and horns. The natural abundance of cell adhesion sequences, RGD (Arg-Gly-Asp) and LDV (Leu-Asp-Val), makes them suitable for tissue engineering applications. The purpose of our study is to evaluate their cytocompatibility as compared to well-known collagen and gelatin proteins. Herein, collagen, gelatin and keratin were blended with poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) and electrospun to afford nanofibrous mats, respectively. These PHBV/protein composite mats were characterized by field emission scanning electron microscopy (FE-SEM), attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), and dynamic mechanical analysis (DMA). The cytocompatibility was evaluated with cell adhesion, cell viability and cell proliferation. The data from MTT and BrDU revealed that collagen had significantly superior cytocompatibility as compared to gelatin and keratin. Gelatin showed a better cytocompatibility than keratin without statistical significance difference. Finally, we gave the reasons to account for the above conclusions.

  7. Topological Analysis, Modeling, and Imaging of Gelatin-Based Hydrogels

    NASA Astrophysics Data System (ADS)

    Koga, Maho; Marmorat, Clement; Rafailovich, Miriam; Talmon, Yishai; Zussman, Eyal; Arinstein, Arkadii

    Gelatin is a component of natural biocompatible scaffolds used in tissue engineering constructs. However, due its supra-molecular structure, the mesh size is drastically larger compared to synthetic polymers having the same moduli, and therefore the Rubber Elastic Theory cannot be used to describe properties of gelatin. Gelatin forms distinct fibrils, bundles of triple helix chains, which form rigid areas. We experimented with two different gel moduli, made possible by varying the concentration of microbial transglutaminase (mTG). mTG forms permanent cross links and affects the morphology of the gelatin by changing the number of fibrils formed. Thus, the mesh size calculated from the Rubber Elastic Theory was much smaller than the actual size of the mesh, as measured from cryoscanning electron microscopy images and fluorescent bead particle migration. We also observed the en-mass migration behavior of dermal fibroblast cells as a function of the substrate rheological response. Our results will present the ability of the cells to sense the structure of the underlying substrate, as well as the absolute value of the modulus. Furthermore, the data will be interpreted in terms of a modified theoretical model, which takes into account the structure and mesh size of the gel.

  8. Dehydration of pollock skins prior to gelatin production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Alaska pollock (Theragra chalcogramma) is the USA’s largest commercial fishery, with an annual catch of over one million tons. During processing the pollock skins are typically discarded, despite their high value for gelatin production. Hot-air drying is an effective method for decreasing the moistu...

  9. Gelatin functionalised porous titanium alloy implants for orthopaedic applications.

    PubMed

    Vanderleyden, E; Van Bael, S; Chai, Y C; Kruth, J-P; Schrooten, J; Dubruel, P

    2014-09-01

    In the present work, we studied the immobilisation of the biopolymer gelatin onto the surface of three dimensional (3D) regular Ti6Al4V porous implants to improve their surface bio-activity. The successful immobilisation of the gelatin coating was made possible by a polydopamine interlayer, a polymer coating inspired by the adhesive nature of mussels. The presence of both coatings was first optimised on two dimensional titanium (2D Ti) substrates and confirmed by different techniques including X-ray photelectron spectroscopy, contact angle measurements, atomic force microscopy and fluorescence microscopy. Results showed homogeneous coatings that are stable for at least 24h in phosphate buffer at 37°C. In a next step, the coating procedure was successfully transferred to 3D Ti6Al4V porous implants, which indicates the versatility of the applied coating procedure with regard to complex surface morphologies. Furthermore, the bio-activity of these stable gelatin coatings was enhanced by applying a third and final coating using the cell-attractive protein fibronectin. The reproducible immobilisation process allowed for a controlled biomolecule presentation to the surrounding tissue. This newly developed coating procedure outperformed the previously reported silanisation procedure for immobilising gelatin. In vitro cell adhesion and culture studies with human periosteum-derived cells showed that the investigated coatings did not compromise the biocompatible nature of Ti6Al4V porous implants, but no distinct biological differences between the coatings were found.

  10. Gelatin induces trophectoderm differentiation of mouse embryonic stem cells.

    PubMed

    Peng, Sha; Hua, Jinlian; Cao, Xuanhong; Wang, Huayan

    2011-06-01

    In this study, we selected gelatin as ECM (extracellular matrix) to support differentiation of mES (mouse embryonic stem) cells into TE (trophectoderm), as gelatin was less expensive and widely used. We found that 0.2% and 1.5% gelatin were the suitable concentrations to induce TE differentiation by means of detecting Cdx2 expression using real-time PCR. Moreover, about 15% cells were positive for Cdx2 staining after 6 days differentiation. We discovered that the expressions of specific markers for TE, such as Cdx2, Eomes, Hand1 and Esx1 were prominently increased after gelatin induction. Meanwhile, the expression of Oct4 was significantly decreased. We also found that inhibition of the BMP (bone morphogenetic protein) signalling by Noggin could promote mES cells differentiation into TE, whereas inhibition of the Wnt signalling by Dkk1 had the contrary effect. This could be used as a tool to study the differentiation and function of early trophoblasts as well as further elucidating the molecular mechanism during abnormal placental development.

  11. Lecithin, gelatin and hydrolyzed collagen orally disintegrating films: functional properties.

    PubMed

    Borges, J G; Silva, A G; Cervi-Bitencourt, C M; Vanin, F M; Carvalho, R A

    2016-05-01

    Orally disintegrating films (ODFs) can transport natural active compounds such as ethanol extract of propolis (EEP). This paper aimed to investigate the effect of lecithin on different gelatin and hydrolyzed collagen (HC) polymeric matrices with addition of EEP. ODFs were prepared by casting technique and were characterized (color parameters, water content, mechanical properties, microstructure, disintegration time (DT), infrared spectroscopy (FTIR), contact angle (CA), swelling degree and total phenolic content). The mechanical properties were influenced by HC. The microstructure demonstrated increased porosity and roughness in films with EEP, and the addition of lecithin resulted in an increase in the number of pores. Lecithin-gelatin and lecithin-EEP-gelatin interactions were observed by FTIR. The addition of HC and EEP reduced the DT and CA, and HC and lecithin reduced the swelling capacity. However, the swelling capacity was not affected by presence of EEP. The addition of lecithin to gelatin and HC ODFs may improve the incorporation and the oral transport of active compounds such as EEP. PMID:26826291

  12. Potential application for genipin-modified gelatin in leather processing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genipin is an iridoid compound extracted from gardenia fruits. Because of its low cytotoxicity, genipin can be used to replace both glutaraldehyde and formaldehyde as a crosslinking reagent. In recent years, research into the utilization of genipin for the modification of gelatin, particularly in ...

  13. Gelatin functionalised porous titanium alloy implants for orthopaedic applications.

    PubMed

    Vanderleyden, E; Van Bael, S; Chai, Y C; Kruth, J-P; Schrooten, J; Dubruel, P

    2014-09-01

    In the present work, we studied the immobilisation of the biopolymer gelatin onto the surface of three dimensional (3D) regular Ti6Al4V porous implants to improve their surface bio-activity. The successful immobilisation of the gelatin coating was made possible by a polydopamine interlayer, a polymer coating inspired by the adhesive nature of mussels. The presence of both coatings was first optimised on two dimensional titanium (2D Ti) substrates and confirmed by different techniques including X-ray photelectron spectroscopy, contact angle measurements, atomic force microscopy and fluorescence microscopy. Results showed homogeneous coatings that are stable for at least 24h in phosphate buffer at 37°C. In a next step, the coating procedure was successfully transferred to 3D Ti6Al4V porous implants, which indicates the versatility of the applied coating procedure with regard to complex surface morphologies. Furthermore, the bio-activity of these stable gelatin coatings was enhanced by applying a third and final coating using the cell-attractive protein fibronectin. The reproducible immobilisation process allowed for a controlled biomolecule presentation to the surrounding tissue. This newly developed coating procedure outperformed the previously reported silanisation procedure for immobilising gelatin. In vitro cell adhesion and culture studies with human periosteum-derived cells showed that the investigated coatings did not compromise the biocompatible nature of Ti6Al4V porous implants, but no distinct biological differences between the coatings were found. PMID:25063133

  14. Synthesis and Characterization of Gelatin-Based Magnetic Hydrogels

    PubMed Central

    Helminger, Maria; Wu, Baohu; Kollmann, Tina; Benke, Dominik; Schwahn, Dietmar; Pipich, Vitaliy; Faivre, Damien; Zahn, Dirk; Cölfen, Helmut

    2014-01-01

    A simple preparation of thermoreversible gelatin-based ferrogels in water provides a constant structure defined by the crosslinking degree for gelatin contents between 6 and 18 wt%. The possibility of varying magnetite nanoparticle concentration between 20 and 70 wt% is also reported. Simulation studies hint at the suitability of collagen to bind iron and hydroxide ions, suggesting that collagen acts as a nucleation seed to iron hydroxide aggregation, and thus the intergrowth of collagen and magnetite nanoparticles already at the precursor stage. The detailed structure of the individual ferrogel components is characterized by small-angle neutron scattering (SANS) using contrast matching. The magnetite structure characterization is supplemented by small-angle X-ray scattering and microscopy only visualizing magnetite. SANS shows an unchanged gelatin structure of average mesh size larger than the nanoparticles with respect to gel concentration while the magnetite nanoparticles size of around 10 nm seems to be limited by the gel mesh size. Swelling measurements underline that magnetite acts as additional crosslinker and therefore varying the magnetic and mechanical properties of the ferrogels. Overall, the simple and variable synthesis protocol, the cheap and easy accessibility of the components as well as the biocompatibility of the gelatin-based materials suggest them for a number of applications including actuators. PMID:25844086

  15. Sterol and genomic analyses validate the sponge biomarker hypothesis.

    PubMed

    Gold, David A; Grabenstatter, Jonathan; de Mendoza, Alex; Riesgo, Ana; Ruiz-Trillo, Iñaki; Summons, Roger E

    2016-03-01

    Molecular fossils (or biomarkers) are key to unraveling the deep history of eukaryotes, especially in the absence of traditional fossils. In this regard, the sterane 24-isopropylcholestane has been proposed as a molecular fossil for sponges, and could represent the oldest evidence for animal life. The sterane is found in rocks ∼650-540 million y old, and its sterol precursor (24-isopropylcholesterol, or 24-ipc) is synthesized today by certain sea sponges. However, 24-ipc is also produced in trace amounts by distantly related pelagophyte algae, whereas only a few close relatives of sponges have been assayed for sterols. In this study, we analyzed the sterol and gene repertoires of four taxa (Salpingoeca rosetta, Capsaspora owczarzaki, Sphaeroforma arctica, and Creolimax fragrantissima), which collectively represent the major living animal outgroups. We discovered that all four taxa lack C30 sterols, including 24-ipc. By building phylogenetic trees for key enzymes in 24-ipc biosynthesis, we identified a candidate gene (carbon-24/28 sterol methyltransferase, or SMT) responsible for 24-ipc production. Our results suggest that pelagophytes and sponges independently evolved C30 sterol biosynthesis through clade-specific SMT duplications. Using a molecular clock approach, we demonstrate that the relevant sponge SMT duplication event overlapped with the appearance of 24-isopropylcholestanes in the Neoproterozoic, but that the algal SMT duplication event occurred later in the Phanerozoic. Subsequently, pelagophyte algae and their relatives are an unlikely alternative to sponges as a source of Neoproterozoic 24-isopropylcholestanes, consistent with growing evidence that sponges evolved long before the Cambrian explosion ∼542 million y ago.

  16. Sterol and genomic analyses validate the sponge biomarker hypothesis

    PubMed Central

    Gold, David A.; Grabenstatter, Jonathan; de Mendoza, Alex; Riesgo, Ana; Ruiz-Trillo, Iñaki

    2016-01-01

    Molecular fossils (or biomarkers) are key to unraveling the deep history of eukaryotes, especially in the absence of traditional fossils. In this regard, the sterane 24-isopropylcholestane has been proposed as a molecular fossil for sponges, and could represent the oldest evidence for animal life. The sterane is found in rocks ∼650–540 million y old, and its sterol precursor (24-isopropylcholesterol, or 24-ipc) is synthesized today by certain sea sponges. However, 24-ipc is also produced in trace amounts by distantly related pelagophyte algae, whereas only a few close relatives of sponges have been assayed for sterols. In this study, we analyzed the sterol and gene repertoires of four taxa (Salpingoeca rosetta, Capsaspora owczarzaki, Sphaeroforma arctica, and Creolimax fragrantissima), which collectively represent the major living animal outgroups. We discovered that all four taxa lack C30 sterols, including 24-ipc. By building phylogenetic trees for key enzymes in 24-ipc biosynthesis, we identified a candidate gene (carbon-24/28 sterol methyltransferase, or SMT) responsible for 24-ipc production. Our results suggest that pelagophytes and sponges independently evolved C30 sterol biosynthesis through clade-specific SMT duplications. Using a molecular clock approach, we demonstrate that the relevant sponge SMT duplication event overlapped with the appearance of 24-isopropylcholestanes in the Neoproterozoic, but that the algal SMT duplication event occurred later in the Phanerozoic. Subsequently, pelagophyte algae and their relatives are an unlikely alternative to sponges as a source of Neoproterozoic 24-isopropylcholestanes, consistent with growing evidence that sponges evolved long before the Cambrian explosion ∼542 million y ago. PMID:26903629

  17. Sterol and genomic analyses validate the sponge biomarker hypothesis.

    PubMed

    Gold, David A; Grabenstatter, Jonathan; de Mendoza, Alex; Riesgo, Ana; Ruiz-Trillo, Iñaki; Summons, Roger E

    2016-03-01

    Molecular fossils (or biomarkers) are key to unraveling the deep history of eukaryotes, especially in the absence of traditional fossils. In this regard, the sterane 24-isopropylcholestane has been proposed as a molecular fossil for sponges, and could represent the oldest evidence for animal life. The sterane is found in rocks ∼650-540 million y old, and its sterol precursor (24-isopropylcholesterol, or 24-ipc) is synthesized today by certain sea sponges. However, 24-ipc is also produced in trace amounts by distantly related pelagophyte algae, whereas only a few close relatives of sponges have been assayed for sterols. In this study, we analyzed the sterol and gene repertoires of four taxa (Salpingoeca rosetta, Capsaspora owczarzaki, Sphaeroforma arctica, and Creolimax fragrantissima), which collectively represent the major living animal outgroups. We discovered that all four taxa lack C30 sterols, including 24-ipc. By building phylogenetic trees for key enzymes in 24-ipc biosynthesis, we identified a candidate gene (carbon-24/28 sterol methyltransferase, or SMT) responsible for 24-ipc production. Our results suggest that pelagophytes and sponges independently evolved C30 sterol biosynthesis through clade-specific SMT duplications. Using a molecular clock approach, we demonstrate that the relevant sponge SMT duplication event overlapped with the appearance of 24-isopropylcholestanes in the Neoproterozoic, but that the algal SMT duplication event occurred later in the Phanerozoic. Subsequently, pelagophyte algae and their relatives are an unlikely alternative to sponges as a source of Neoproterozoic 24-isopropylcholestanes, consistent with growing evidence that sponges evolved long before the Cambrian explosion ∼542 million y ago. PMID:26903629

  18. A Superamphiphobic Sponge with Mechanical Durability and a Self-Cleaning Effect.

    PubMed

    Kim, Daewon; Im, Hwon; Kwak, Moo Jin; Byun, Eunkyoung; Im, Sung Gap; Choi, Yang-Kyu

    2016-07-20

    A robust superamphiphobic sponge (SA-sponge) is proposed by using a single initiated chemical vapor deposition (i-CVD) process. Poly(3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-heptadecafluorodecyl methacrylate) (PFDMA) is deposited on a commercial sponge by the polymerization of fluoroalkyl acrylates during the i-CVD process. This PFDMA is conformally coated onto both the exterior and interior of the sponge structure by a single step of the i-CVD process at nearly room temperature. Due to the inherent porous structure of the sponge and the hydrophobic property of the fluorine-based PFDMA, the demonstrated SA-sponge shows not only superhydrophobicity but also superoleophobicity. Furthermore, the fabricated SA-sponge is robust with regard to physical and chemical damage. The fabricated SA-sponge can be utilized for multi-purpose applications such as gas-permeable liquid separators.

  19. A Superamphiphobic Sponge with Mechanical Durability and a Self-Cleaning Effect

    NASA Astrophysics Data System (ADS)

    Kim, Daewon; Im, Hwon; Kwak, Moo Jin; Byun, Eunkyoung; Im, Sung Gap; Choi, Yang-Kyu

    2016-07-01

    A robust superamphiphobic sponge (SA-sponge) is proposed by using a single initiated chemical vapor deposition (i-CVD) process. Poly(3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-heptadecafluorodecyl methacrylate) (PFDMA) is deposited on a commercial sponge by the polymerization of fluoroalkyl acrylates during the i-CVD process. This PFDMA is conformally coated onto both the exterior and interior of the sponge structure by a single step of the i-CVD process at nearly room temperature. Due to the inherent porous structure of the sponge and the hydrophobic property of the fluorine-based PFDMA, the demonstrated SA-sponge shows not only superhydrophobicity but also superoleophobicity. Furthermore, the fabricated SA-sponge is robust with regard to physical and chemical damage. The fabricated SA-sponge can be utilized for multi-purpose applications such as gas-permeable liquid separators.

  20. A Superamphiphobic Sponge with Mechanical Durability and a Self-Cleaning Effect.

    PubMed

    Kim, Daewon; Im, Hwon; Kwak, Moo Jin; Byun, Eunkyoung; Im, Sung Gap; Choi, Yang-Kyu

    2016-01-01

    A robust superamphiphobic sponge (SA-sponge) is proposed by using a single initiated chemical vapor deposition (i-CVD) process. Poly(3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-heptadecafluorodecyl methacrylate) (PFDMA) is deposited on a commercial sponge by the polymerization of fluoroalkyl acrylates during the i-CVD process. This PFDMA is conformally coated onto both the exterior and interior of the sponge structure by a single step of the i-CVD process at nearly room temperature. Due to the inherent porous structure of the sponge and the hydrophobic property of the fluorine-based PFDMA, the demonstrated SA-sponge shows not only superhydrophobicity but also superoleophobicity. Furthermore, the fabricated SA-sponge is robust with regard to physical and chemical damage. The fabricated SA-sponge can be utilized for multi-purpose applications such as gas-permeable liquid separators. PMID:27435167

  1. A Superamphiphobic Sponge with Mechanical Durability and a Self-Cleaning Effect

    PubMed Central

    Kim, Daewon; Im, Hwon; Kwak, Moo Jin; Byun, Eunkyoung; Im, Sung Gap; Choi, Yang-Kyu

    2016-01-01

    A robust superamphiphobic sponge (SA-sponge) is proposed by using a single initiated chemical vapor deposition (i-CVD) process. Poly(3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-heptadecafluorodecyl methacrylate) (PFDMA) is deposited on a commercial sponge by the polymerization of fluoroalkyl acrylates during the i-CVD process. This PFDMA is conformally coated onto both the exterior and interior of the sponge structure by a single step of the i-CVD process at nearly room temperature. Due to the inherent porous structure of the sponge and the hydrophobic property of the fluorine-based PFDMA, the demonstrated SA-sponge shows not only superhydrophobicity but also superoleophobicity. Furthermore, the fabricated SA-sponge is robust with regard to physical and chemical damage. The fabricated SA-sponge can be utilized for multi-purpose applications such as gas-permeable liquid separators. PMID:27435167

  2. Effects of Pressure-shift Freezing on the Structural and Physical Properties of Gelatin Hydrogel Matrices

    PubMed Central

    Kim, Byeongsoo; Gil, Hyung Bae; Min, Sang-Gi; Lee, Si-Kyung; Choi, Mi-Jung

    2014-01-01

    This study investigates the effects of the gelatin concentration (10-40%, w/v), freezing temperatures (from -20℃ to -50℃) and freezing methods on the structural and physical properties of gelatin matrices. To freeze gelatin, the pressure-shift freezing (PSF) is being applied at 0.1 (under atmospheric control), 50 and 100 MPa, respectively. The freezing point of gelatin solutions decrease with increasing gelatin concentrations, from -0.2℃ (10% gelatin) to -6.7℃ (40% gelatin), while the extent of supercooling did not show any specific trends. The rheological properties of the gelatin indicate that both the storage (G') and loss (G") moduli were steady in the strain amplitude range of 0.1-10%. To characterize gelatin matrices formed by the various freezing methods, the ice crystal sizes which were being determined by the scanning electron microscopy (SEM) are affected by the gelatin concentrations. The ice crystal sizes are affected by gelatin concentrations and freezing temperature, while the size distributions of ice crystals depend on the freezing methods. Smaller ice crystals are being formed with PSF rather than under the atmospheric control where the freezing temperature is above -40℃. Thus, the results of this study indicate that the PSF processing at a very low freezing temperature (-50℃) offers a potential advantage over commercial atmospheric freezing points for the formation of small ice crystals. PMID:26760743

  3. Gelatin Nanofiber Matrices Derived from Schiff Base Derivative for Tissue Engineering Applications.

    PubMed

    Jaiswal, Devina; James, Roshan; Shelke, Namdev B; Harmon, Matthew D; Brown, Justin L; Hussain, Fazle; Kumbar, Sangamesh G

    2015-11-01

    Electrospinning of water-soluble polymers and retaining their mechanical strength and bioactivity remain challenging. Volatile organic solvent soluble polymers and their derivatives are preferred for fabricating electrospun nanofibers. We report the synthesis and characterization of 2-nitrobenzyl-gelatin (N-Gelatin)--a novel gelatin Schiff base derivative--and the resulting electrospun nanofiber matrices. The 2-nitrobenzyl group is a photoactivatable-caged compound and can be cleaved from the gelatin nanofiber matrices following UV exposure. Such hydrophobic modification allowed the fabrication of gelatin and blend nanofibers with poly(caprolactone) (PCL) having significantly improved tensile properties. Neat gelatin and their PCL blend nanofiber matrices showed a modulus of 9.08 ± 1.5 MPa and 27.61 ± 4.3 MPa, respectively while the modified gelatin and their blends showed 15.63 ± 2.8 MPa and 24.47 ± 8.7 MPa, respectively. The characteristic infrared spectroscopy band for gelatin Schiff base derivative at 1560 cm(-1) disappeared following exposure to UV light indicating the regeneration of free NH2 group and gelatin. These nanofiber matrices supported cell attachment and proliferation with a well spread morphology as evidenced through cell proliferation assay and microscopic techniques. Modified gelatin fiber matrices showed a 73% enhanced cell attachment and proliferation rate compared to pure gelatin. This polymer modification methodology may offer a promising way to fabricate electrospun nanofiber matrices using a variety of proteins and peptides without loss of bioactivity and mechanical strength.

  4. Quantitative detection of bovine and porcine gelatin difference using surface plasmon resonance based biosensor

    NASA Astrophysics Data System (ADS)

    Wardani, Devy P.; Arifin, Muhammad; Suharyadi, Edi; Abraha, Kamsul

    2015-05-01

    Gelatin is a biopolymer derived from collagen that is widely used in food and pharmaceutical products. Due to some religion restrictions and health issues regarding the gelatin consumption which is extracted from certain species, it is necessary to establish a robust, reliable, sensitive and simple quantitative method to detect gelatin from different parent collagen species. To the best of our knowledge, there has not been a gelatin differentiation method based on optical sensor that could detect gelatin from different species quantitatively. Surface plasmon resonance (SPR) based biosensor is known to be a sensitive, simple and label free optical method for detecting biomaterials that is able to do quantitative detection. Therefore, we have utilized SPR-based biosensor to detect the differentiation between bovine and porcine gelatin in various concentration, from 0% to 10% (w/w). Here, we report the ability of SPR-based biosensor to detect difference between both gelatins, its sensitivity toward the gelatin concentration change, its reliability and limit of detection (LOD) and limit of quantification (LOQ) of the sensor. The sensor's LOD and LOQ towards bovine gelatin concentration are 0.38% and 1.26% (w/w), while towards porcine gelatin concentration are 0.66% and 2.20% (w/w), respectively. The results show that SPR-based biosensor is a promising tool for detecting gelatin from different raw materials quantitatively.

  5. Technique to optimize magnetic response of gelatin coated magnetic nanoparticles.

    PubMed

    Parikh, Nidhi; Parekh, Kinnari

    2015-07-01

    The paper describes the results of optimization of magnetic response for highly stable bio-functionalize magnetic nanoparticles dispersion. Concentration of gelatin during in situ co-precipitation synthesis was varied from 8, 23 and 48 mg/mL to optimize magnetic properties. This variation results in a change in crystallite size from 10.3 to 7.8 ± 0.1 nm. TEM measurement of G3 sample shows highly crystalline spherical nanoparticles with a mean diameter of 7.2 ± 0.2 nm and diameter distribution (σ) of 0.27. FTIR spectra shows a shift of 22 cm(-1) at C=O stretching with absence of N-H stretching confirming the chemical binding of gelatin on magnetic nanoparticles. The concept of lone pair electron of the amide group explains the mechanism of binding. TGA shows 32.8-25.2% weight loss at 350 °C temperature substantiating decomposition of chemically bind gelatin. The magnetic response shows that for 8 mg/mL concentration of gelatin, the initial susceptibility and saturation magnetization is the maximum. The cytotoxicity of G3 sample was assessed in Normal Rat Kidney Epithelial Cells (NRK Line) by MTT assay. Results show an increase in viability for all concentrations, the indicative probability of a stimulating action of these particles in the nontoxic range. This shows the potential of this technique for biological applications as the coated particles are (i) superparamagnetic (ii) highly stable in physiological media (iii) possibility of attaching other drug with free functional group of gelatin and (iv) non-toxic.

  6. Synthesis of mucoadhesive thiolated gelatin using a two-step reaction process.

    PubMed

    Duggan, Sarah; O'Donovan, Orla; Owens, Eleanor; Cummins, Wayne; Hughes, Helen

    2015-04-01

    Using a novel two-step approach, the thiolation of gelatin for mucoadhesive drug delivery has been achieved. The initial step involved the amination of native gelatin via an amine to carboxylic acid coupling reaction with ethylene diamine, followed by thiolation with Traut's reagent. The resulting thiolated product showed an increase in thiol content of up to 10-fold in comparison with control gelatin samples. Improved cohesion and mucoadhesion in comparison with unmodified and control gelatin samples was also observed. This reaction process was observed to be influenced by both the temperature and the pH of the amination reaction, affecting both amine content and product yield. Swelling ability, cohesion and mucoadhesion were all observed to be strongly dependent on the thiol content of the samples but also, importantly, the molecular weight (MW) of the gelatin used. Gelatin with a MW of 20-25 kDa proved to be optimal in creating this novel mucoadhesive gelatin material.

  7. UV treatments on the physicochemical properties of tilapia skin and pig skin gelatin.

    PubMed

    Wu, C K; Tsai, J S; Chen, Z Y; Sung, W C

    2015-06-01

    Tilapia skin gelatin, pig skin gelatin, and their mousse premixes were exposed to UV irradiation for 103, 206, and 309 kJ/cm(2). All samples after 309 kJ/cm(2) exposure exhibited a significant increase in gel strength, gel forming ability as well as viscosity of solutions. It was shown that UV treatment could also improve the pig skin gelatin foam stability and foam formation ability compared to those of tilapia skin gelatin. Nevertheless, the panelists gave the lowest scores to mousse made with 309 kJ/cm(2) UV-irradiated premix mousse pig skin gelatin. Tilapia skin gelatin could be used as a substitute ingredient for premix mousse made from pig skin gelatin.

  8. Antioxidant and cryoprotective effects of Amur sturgeon skin gelatin hydrolysate in unwashed fish mince.

    PubMed

    Nikoo, Mehdi; Benjakul, Soottawat; Xu, Xueming

    2015-08-15

    Antioxidant and cryoprotective effects of Amur sturgeon skin gelatin hydrolysates prepared using different commercial proteases in unwashed fish mince were investigated. Gelatin hydrolysates prepared using either Alcalase or Flavourzyme, were effective in preventing lipid oxidation as evidenced by the lower thiobarbituric acid-reactive substances formation. Gelatin hydrolysates were able to retard protein oxidation as indicated by the retarded protein carbonyl formation and lower loss in sulfhydryl content. In the presence of gelatin hydrolysates, unwashed mince had higher transition temperature of myosin and higher enthalpy of myosin and actin as determined by differential scanning calorimetry. Based on low field proton nuclear magnetic resonance analysis, gelatin hydrolysates prevented the displacement of water molecules between the different compartments, thus stabilizing the water associated with myofibrils in unwashed mince induced by repeated freeze-thawing. Oligopeptides in gelatin hydrolysates more likely contributed to the cryoprotective effect. Thus, gelatin hydrolysate could act as both antioxidant and cryoprotectant in unwashed fish mince.

  9. Absorbent product to absorb fluids. [for collection of human wastes

    NASA Technical Reports Server (NTRS)

    Dawn, F. S.; Correale, J. V. (Inventor)

    1982-01-01

    A multi-layer absorbent product for use in contact with the skin to absorb fluids is discussed. The product utilizes a water pervious facing layer for contacting the skin, overlayed by a first fibrous wicking layer, the wicking layer preferably being of the one-way variety in which fluid or liquid is moved away from the facing layer. The product further includes a first container section defined by inner and outer layer of a water pervious wicking material between which is disposed a first absorbent mass. A second container section defined by inner and outer layers between which is disposed a second absorbent mass and a liquid impermeable/gas permeable layer. Spacesuit applications are discussed.

  10. Archaea Appear to Dominate the Microbiome of Inflatella pellicula Deep Sea Sponges

    PubMed Central

    Jackson, Stephen A.; Flemer, Burkhardt; McCann, Angela; Kennedy, Jonathan; Morrissey, John P.; O’Gara, Fergal; Dobson, Alan D. W.

    2013-01-01

    Microbes associated with marine sponges play significant roles in host physiology. Remarkable levels of microbial diversity have been observed in sponges worldwide through both culture-dependent and culture-independent studies. Most studies have focused on the structure of the bacterial communities in sponges and have involved sponges sampled from shallow waters. Here, we used pyrosequencing of 16S rRNA genes to compare the bacterial and archaeal communities associated with two individuals of the marine sponge Inflatella pellicula from the deep-sea, sampled from a depth of 2,900 m, a depth which far exceeds any previous sequence-based report of sponge-associated microbial communities. Sponge-microbial communities were also compared to the microbial community in the surrounding seawater. Sponge-associated microbial communities were dominated by archaeal sequencing reads with a single archaeal OTU, comprising ∼60% and ∼72% of sequences, being observed from Inflatella pellicula. Archaeal sequencing reads were less abundant in seawater (∼11% of sequences). Sponge-associated microbial communities were less diverse and less even than any other sponge-microbial community investigated to date with just 210 and 273 OTUs (97% sequence identity) identified in sponges, with 4 and 6 dominant OTUs comprising ∼88% and ∼89% of sequences, respectively. Members of the candidate phyla, SAR406, NC10 and ZB3 are reported here from sponges for the first time, increasing the number of bacterial phyla or candidate divisions associated with sponges to 43. A minor cohort from both sponge samples (∼0.2% and ∼0.3% of sequences) were not classified to phylum level. A single OTU, common to both sponge individuals, dominates these unclassified reads and shares sequence homology with a sponge associated clone which itself has no known close relative and may represent a novel taxon. PMID:24386380

  11. Contact sponge water absorption test implemented for in situ measures

    NASA Astrophysics Data System (ADS)

    Gaggero, Laura; Scrivano, Simona

    2016-04-01

    The contact sponge method is a non-destructive in-situ methodology used to estimate a water uptake coefficient. The procedure, unlike other in-situ measurement was proven to be directly comparable to the water uptake laboratory measurements, and was registered as UNI 11432:2011. The UNI Normal procedure requires to use a sponge with known density, soaked in water, weighed, placed on the material for 1 minute (UNI 11432, 2011; Pardini & Tiano, 2004), then weighed again. Difficulties arise in operating on test samples or on materials with porosity varied for decay. While carrying on the test, fluctuations in the bearing of the environmental parameters were negligible, but not the pressure applied to the surface, that induced the release of different water amounts towards the material. For this reason we designed a metal piece of the same diameter of the plate carrying the sponge, to be screwed at the tip of a pocket penetrometer. With this instrument the sponge was kept in contact with the surface for 1 minute applying two different loads, at first pushed with 0.3 kg/cm2 in order to press the sponge, but not its holder, against the surface. Then, a load of 1.1 kg/ cm2 was applied, still avoiding deviating the load to the sponge holder. We applied both the current and our implemented method to determine the water absorption by contact sponge on 5 fresh rock types (4 limestones: Fine - and Coarse grained Pietra di Vicenza, Rosso Verona, Breccia Aurora, and the silicoclastic Macigno sandstone). The results show that 1) the current methodology imply manual skill and experience to produce a coherent set of data; the variable involved are in fact not only the imposed pressure but also the compression mechanics. 2) The control on the applied pressure allowed reproducible measurements. Moreover, 3) the use of a thicker sponge enabled to apply the method even on rougher surfaces, as the device holding the sponge is not in contact with the tested object. Finally, 4) the

  12. Self-Regulating Shock Absorber

    NASA Technical Reports Server (NTRS)

    Wesselski, Clarence J.

    1995-01-01

    Mechanical shock absorber keeps frictional damping force within tolerable limit. Its damping force does not increase with coefficient of friction between energy-absorbing components; rather, frictional damping force varies only slightly. Relatively insensitive to manufacturing variations and environmental conditions altering friction. Does not exhibit high breakaway friction and consequent sharp increase followed by sharp decrease in damping force at beginning of stroking. Damping force in absorber does not vary appreciably with speed of stroking. In addition, not vulnerable to leakage of hydraulic fluid.

  13. Advancement into the Arctic Region for Bioactive Sponge Secondary Metabolites

    PubMed Central

    Abbas, Samuel; Kelly, Michelle; Bowling, John; Sims, James; Waters, Amanda; Hamann, Mark

    2011-01-01

    Porifera have long been a reservoir for the discovery of bioactive compounds and drug discovery. Most research in the area has focused on sponges from tropical and temperate waters, but more recently the focus has shifted to the less accessible colder waters of the Antarctic and, to a lesser extent, the Arctic. The Antarctic region in particular has been a more popular location for natural products discovery and has provided promising candidates for drug development. This article reviews groups of bioactive compounds that have been isolated and reported from the southern reaches of the Arctic Circle, surveys the known sponge diversity present in the Arctic waters, and details a recent sponge collection by our group in the Aleutian Islands, Alaska. The collection has yielded previously undescribed sponge species along with primary activity against opportunistic infectious diseases, malaria, and HCV. The discovery of new sponge species and bioactive crude extracts gives optimism for the isolation of new bioactive compounds from a relatively unexplored source. PMID:22163194

  14. First insights into the microbiome of a carnivorous sponge.

    PubMed

    Dupont, Samuel; Corre, Erwan; Li, Yanyan; Vacelet, Jean; Bourguet-Kondracki, Marie-Lise

    2013-12-01

    Using 454 pyrosequencing, we characterized for the first time the associated microbial community of the deep-sea carnivorous Demosponge Asbestopluma hypogea (Cladorhizidae). Targeting the 16S rRNA gene V3 and V6 hypervariable regions, we compared the diversity and composition of associated microbes of two individual sponges of A. hypogea freshly collected in the cave with surrounding seawater and with one sponge sample maintained 1 year in an aquarium after collection. With more than 22 961 high quality sequences from sponge samples, representing c. 800 operational taxonomic units per sponge sample at 97% sequence similarities, the phylogenetic affiliation of A. hypogea-associated microbes was assigned to 20 bacterial and two archaeal phyla, distributed into 45 classes and 95 orders. Several differences between the sponge and seawater microbes were observed, highlighting a specific and stable A. hypogea microbial community dominated by Proteobacteria and Bacteroidetes and Thaumarchaeota phyla. A high relative abundance of ammonia-oxidizing archaea and a dominance of sulfate oxidizing/reducing bacteria were observed. Our findings shed lights on the potential roles of associated microbial community in the lifestyle of A. hypogea.

  15. Green strength of zirconium sponge and uranium dioxide powder compacts

    SciTech Connect

    Balakrishna, Palanki Murty, B. Narasimha; Sahoo, P.K.; Gopalakrishna, T.

    2008-07-15

    Zirconium metal sponge is compacted into rectangular or cylindrical shapes using hydraulic presses. These shapes are stacked and electron beam welded to form a long electrode suitable for vacuum arc melting and casting into solid ingots. The compact electrodes should be sufficiently strong to prevent breakage in handling as well as during vacuum arc melting. Usually, the welds are strong and the electrode strength is limited by the green strength of the compacts, which constitute the electrode. Green strength is also required in uranium dioxide (UO{sub 2}) powder compacts, to withstand stresses during de-tensioning after compaction as well as during ejection from the die and for subsequent handling by man and machine. The strengths of zirconium sponge and UO{sub 2} powder compacts have been determined by bending and crushing respectively, and Weibul moduli evaluated. The green density of coarse sponge compact was found to be larger than that from finer sponge. The green density of compacts from lightly attrited UO{sub 2} powder was higher than that from unattrited category, accompanied by an improvement in UO{sub 2} green crushing strength. The factors governing green strength have been examined in the light of published literature and experimental evidence. The methodology and results provide a basis for quality control in metal sponge and ceramic powder compaction in the manufacture of nuclear fuel.

  16. Immunotoxicity of washing soda in a freshwater sponge of India.

    PubMed

    Mukherjee, Soumalya; Ray, Mitali; Ray, Sajal

    2015-03-01

    The natural habitat of sponge, Eunapius carteri faces an ecotoxicological threat of contamination by washing soda, a common household cleaning agent of India. Washing soda is chemically known as sodium carbonate and is reported to be toxic to aquatic organisms. Domestic effluent, drain water and various human activities in ponds and lakes have been identified as the major routes of washing soda contamination of water. Phagocytosis and generation of cytotoxic molecules are important immunological responses offered by the cells of sponges against environmental toxins and pathogens. Present study involves estimation of phagocytic response and generation of cytotoxic molecules like superoxide anion, nitric oxide and phenoloxidase in E. carteri under the environmentally realistic concentrations of washing soda. Sodium carbonate exposure resulted in a significant decrease in the phagocytic response of sponge cells under 4, 8, 16 mg/l of the toxin for 96h and all experimental concentrations of the toxin for 192h. Washing soda exposure yielded an initial increase in the generation of the superoxide anion and nitric oxide followed by a significant decrease in generation of these cytotoxic agents. Sponge cell generated a high degree of phenoloxidase activity under the experimental exposure of 2, 4, 8, 16 mg/l of sodium carbonate for 96 and 192 h. Washing soda induced alteration of phagocytic and cytotoxic responses of E. carteri was indicative to an undesirable shift in their immune status leading to the possible crises of survival and propagation of sponges in their natural habitat.

  17. First insights into the microbiome of a carnivorous sponge.

    PubMed

    Dupont, Samuel; Corre, Erwan; Li, Yanyan; Vacelet, Jean; Bourguet-Kondracki, Marie-Lise

    2013-12-01

    Using 454 pyrosequencing, we characterized for the first time the associated microbial community of the deep-sea carnivorous Demosponge Asbestopluma hypogea (Cladorhizidae). Targeting the 16S rRNA gene V3 and V6 hypervariable regions, we compared the diversity and composition of associated microbes of two individual sponges of A. hypogea freshly collected in the cave with surrounding seawater and with one sponge sample maintained 1 year in an aquarium after collection. With more than 22 961 high quality sequences from sponge samples, representing c. 800 operational taxonomic units per sponge sample at 97% sequence similarities, the phylogenetic affiliation of A. hypogea-associated microbes was assigned to 20 bacterial and two archaeal phyla, distributed into 45 classes and 95 orders. Several differences between the sponge and seawater microbes were observed, highlighting a specific and stable A. hypogea microbial community dominated by Proteobacteria and Bacteroidetes and Thaumarchaeota phyla. A high relative abundance of ammonia-oxidizing archaea and a dominance of sulfate oxidizing/reducing bacteria were observed. Our findings shed lights on the potential roles of associated microbial community in the lifestyle of A. hypogea. PMID:23845054

  18. Evolutionary origin of gastrulation: insights from sponge development

    PubMed Central

    2014-01-01

    Background The evolutionary origin of gastrulation—defined as a morphogenetic event that leads to the establishment of germ layers—remains a vexing question. Central to this debate is the evolutionary relationship between the cell layers of sponges (poriferans) and eumetazoan germ layers. Despite considerable attention, it remains unclear whether sponge cell layers undergo progressive fate determination akin to eumetazoan primary germ layer formation during gastrulation. Results Here we show by cell-labelling experiments in the demosponge Amphimedon queenslandica that the cell layers established during embryogenesis have no relationship to the cell layers of the juvenile. In addition, juvenile epithelial cells can transdifferentiate into a range of cell types and move between cell layers. Despite the apparent lack of cell layer and fate determination and stability in this sponge, the transcription factor GATA, a highly conserved eumetazoan endomesodermal marker, is expressed consistently in the inner layer of A. queenslandica larvae and juveniles. Conclusions Our results are compatible with sponge cell layers not undergoing progressive fate determination and thus not being homologous to eumetazoan germ layers. Nonetheless, the expression of GATA in the sponge inner cell layer suggests a shared ancestry with the eumetazoan endomesoderm, and that the ancestral role of GATA in specifying internalised cells may antedate the origin of germ layers. Together, these results support germ layers and gastrulation evolving early in eumetazoan evolution from pre-existing developmental programs used for the simple patterning of cells in the first multicellular animals. PMID:24678663

  19. Cultivable psychrotolerant yeasts associated with Antarctic marine sponges.

    PubMed

    Vaca, Inmaculada; Faúndez, Carolina; Maza, Felipe; Paillavil, Braulio; Hernández, Valentina; Acosta, Fermín; Levicán, Gloria; Martínez, Claudio; Chávez, Renato

    2013-01-01

    Unlike filamentous fungi and bacteria, very little is known about cultivable yeasts associated with marine sponges, especially those from Antarctic seas. During an expedition to King George Island, in the Antarctica, samples of 11 marine sponges were collected by scuba-diving. From these sponges, 20 psychrotolerant yeast isolates were obtained. Phylogenetic analyses of D1/D2 and ITS rRNA gene sequences revealed that the marine ascomycetous yeast Metschnikowia australis is the predominant organism associated with these invertebrates. Other species found belonged to the Basidiomycota phylum: Cystofilobasidium infirmominiatum, Rhodotorula pinicola, Leucosporidiella creatinivora and a new yeast from the Leucosporidiella genus. None of these yeasts have been previously associated with marine sponges. A screening to estimate the ability of these yeasts as producers of extracellular enzymatic activities at several pH and temperature conditions was performed. Several yeast isolates demonstrated amylolytic, proteolytic, lipolytic or cellulolytic activity, but none of them showed xylanolytic activity under the conditions assayed. To our knowledge, this work is the first description of cultivable yeasts associated with marine sponges from the Antarctic sea.

  20. Effect of collagen sponge and fibrin glue on bone repair

    PubMed Central

    SANTOS, Thiago de Santana; ABUNA, Rodrigo Paolo Flores; de ALMEIDA, Adriana Luisa Gonçalves; BELOTI, Marcio Mateus; ROSA, Adalberto Luiz

    2015-01-01

    ABSTRACT The ability of hemostatic agents to promote bone repair has been investigated using in vitro and in vivo models but, up to now, the results are inconclusive. Objective In this context, the aim of this study was to compare the potential of bone repair of collagen sponge with fibrin glue in a rat calvarial defect model. Material and Methods Defects of 5 mm in diameter were created in rat calvariae and treated with either collagen sponge or fibrin glue; untreated defects were used as control. At 4 and 8 weeks, histological analysis and micro-CT-based histomorphometry were carried out and data were compared by two-way ANOVA followed by Student-Newman-Keuls test when appropriated (p≤0.05). Results Three-dimensional reconstructions showed increased bone formation in defects treated with either collagen sponge or fibrin glue compared with untreated defects, which was confirmed by the histological analysis. Morphometric parameters indicated the progression of bone formation from 4 to 8 weeks. Additionally, fibrin glue displayed slightly higher bone formation rate when compared with collagen sponge. Conclusion Our results have shown the benefits of using collagen sponge and fibrin glue to promote new bone formation in rat calvarial bone defects, the latter being discreetly more advantageous. PMID:26814464

  1. Silicon isotopes in sponge spicules: the story of a proxy

    NASA Astrophysics Data System (ADS)

    Hendry, K. R.; Maldonado, M.; Goodwin, C.; Berman, J.; De La Rocha, C. L.

    2014-12-01

    The silicon isotope composition of deep-sea sponges has been shown to reflect the concentration of dissolved silicon, silicic acid, in seawater. This discovery has lead to the development of a novel geochemical proxy for past deep water nutrient status, which has already been applied to a wide range of palaeoceanographic questions ranging from Southern Ocean silicic acid leakage on glacial-interglacial and millennial timescales, to the proliferation of diatoms at the Eocene-Oligocene boundary. The initial calibrations based on modern sponge samples showed some scatter in the relationship between sponge silicon isotopes and silicic acid concentration, but without any apparent systematic influence from other environmental factors (temperature, pH, or other nutrients), morphology or species. However, a silicon isotope calibration of core top spicules, based on measurements made on a large number of spicules extracted from sediments, shows a tighter relationship with silicic acid concentrations, indicating that there are variations between and within individuals that are "averaged out" during palaeoceanographic studies. As is the case for all novel geochemical proxies, there is a need to test the proxy rigorously to ensure robust interpretation of any downcore signal. Here, we will present new studies of modern sponge specimens that have been carried out to shed light on the processes that could result in differences in silicon isotopic fractionation between and within individual sponges. Our findings highlight where caution is required in order to produce robust downcore records of past ocean silicic acid concentrations.

  2. Sponges as sentinels: Metal accumulation using transplanted sponges across a metal gradient.

    PubMed

    Davis, Andrew R; de Mestre, Corrine; Maher, William; Krikowa, Frank; Broad, Allison

    2014-12-01

    To be effective sentinels, organisms must be able to be readily translocated to contamination hotspots. The authors sought to assess metal accumulation in genetically identical explants of a relatively common estuarine sponge, Suberites cf. diversicolor. Explants were transplanted to 7 locations across a metal contamination gradient in a large coastal estuary in southeastern Australia to establish, first, that explants of this species could be successfully translocated; second, that explants accumulated metals (cadmium, copper, lead, selenium, and zinc) sufficiently rapidly to be effective sentinels; third, that rates of metal accumulation in explants were in agreement with metal concentrations within sediments (<63-µm fraction) at each of the transplant locations; and finally, that changes in explant biomass correlated with overall metal load. Suberites were readily transplanted, with no mortality observed for the 2 mo of transplantation. Metal accumulation for lead, cadmium, and zinc was in close agreement with sediment metal concentrations, and explants showed dramatic increases in these metals in the heavily contaminated northern sections of the estuarine lake. No striking patterns were apparent for copper and selenium. Finally, growth was negatively correlated with total metal load and standardized total metal load in our explants. Taken together, these outcomes confirm that explants of this sponge are amenable to translocation and show considerable promise as biomonitors.

  3. Sponges as sentinels: Metal accumulation using transplanted sponges across a metal gradient.

    PubMed

    Davis, Andrew R; de Mestre, Corrine; Maher, William; Krikowa, Frank; Broad, Allison

    2014-12-01

    To be effective sentinels, organisms must be able to be readily translocated to contamination hotspots. The authors sought to assess metal accumulation in genetically identical explants of a relatively common estuarine sponge, Suberites cf. diversicolor. Explants were transplanted to 7 locations across a metal contamination gradient in a large coastal estuary in southeastern Australia to establish, first, that explants of this species could be successfully translocated; second, that explants accumulated metals (cadmium, copper, lead, selenium, and zinc) sufficiently rapidly to be effective sentinels; third, that rates of metal accumulation in explants were in agreement with metal concentrations within sediments (<63-µm fraction) at each of the transplant locations; and finally, that changes in explant biomass correlated with overall metal load. Suberites were readily transplanted, with no mortality observed for the 2 mo of transplantation. Metal accumulation for lead, cadmium, and zinc was in close agreement with sediment metal concentrations, and explants showed dramatic increases in these metals in the heavily contaminated northern sections of the estuarine lake. No striking patterns were apparent for copper and selenium. Finally, growth was negatively correlated with total metal load and standardized total metal load in our explants. Taken together, these outcomes confirm that explants of this sponge are amenable to translocation and show considerable promise as biomonitors. PMID:25208806

  4. Optimizing the formation of in vitro sponge primmorphs from the Chinese sponge Stylotella agminata (Ridley).

    PubMed

    Zhang, Wei; Zhang, Xiaoying; Cao, Xupeng; Xu, Junyi; Zhao, Quanyu; Yu, Xingju; Jin, Meifang; Deng, Maicun

    2003-01-23

    The establishment and optimization of in vitro primmorph formation from a Chinese sponge, Stylotella agminata (Ridley), collected from the South China Sea, were investigated. Our aims were to identify the key factors affecting primmorph formation in this species and to optimize the technique for developing an in vitro primmorph culture system. The size of dissociated cells from S. agminata is relatively small, in the range between 5 and 10 microm. Round-shaped primmorphs of less than 100 microm were formed 3 days after transferring the dissociated cells into seawater containing Ca(2+) and Mg(2+). The effect of various cell dissociation conditions, inoculum cell density, concentration of antibiotics, pH, and temperature was further investigated upon the formation of primmorphs. The time required for primmorph formation, primmorph size distribution, and the proliferating capability were microscopically documented. Healthy sponge S. agminata, inoculum cell density and culture temperature play a critical role for the successful formation of primmorphs and that the microbial contamination will have to be controlled.

  5. A novel filtering mutualism between a sponge host and its endosymbiotic bivalves.

    PubMed

    Tsubaki, Remi; Kato, Makoto

    2014-01-01

    Sponges, porous filter-feeding organisms consisting of vast canal systems, provide unique substrates for diverse symbiotic organisms. The Spongia (Spongia) sp. massive sponge is obligately inhabited by the host-specific endosymbiotic bivalve Vulsella vulsella, which benefits from this symbiosis by receiving protection from predators. However, whether the host sponge gains any benefit from this association is unclear. Considering that the bivalves exhale filtered water into the sponge body rather than the ambient environment, the sponge is hypothesized to utilize water exhaled by the bivalves to circulate water around its body more efficiently. We tested this hypothesis by observing the sponge aquiferous structure and comparing the pumping rates of sponges and bivalves. Observations of water currents and the sponge aquiferous structure revealed that the sponge had a unique canal system enabling it to inhale water exhaled from bivalves, indicating that the host sponge adapted morphologically to receive water from the bivalves. In addition, the volume of water circulating in the sponge body was dramatically increased by the water exhaled from bivalves. Therefore, this sponge-bivalve association can be regarded as a novel mutualism in which two filter-feeding symbionts promote mutual filtering rates. This symbiotic association should be called a "filtering mutualism".

  6. 21 CFR 529.1003 - Flurogestone acetate-impregnated vaginal sponge.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Flurogestone acetate-impregnated vaginal sponge... § 529.1003 Flurogestone acetate-impregnated vaginal sponge. (a) Specifications. Each vaginal sponge... ewes during their normal breeding season. (2) Limitations. Using applicator provided, insert...

  7. 21 CFR 529.1003 - Flurogestone acetate-impregnated vaginal sponge.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Flurogestone acetate-impregnated vaginal sponge... § 529.1003 Flurogestone acetate-impregnated vaginal sponge. (a) Specifications. Each vaginal sponge... ewes during their normal breeding season. (2) Limitations. Using applicator provided, insert...

  8. 21 CFR 529.1003 - Flurogestone acetate-impregnated vaginal sponge.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Flurogestone acetate-impregnated vaginal sponge... § 529.1003 Flurogestone acetate-impregnated vaginal sponge. (a) Specifications. Each vaginal sponge... ewes during their normal breeding season. (2) Limitations. Using applicator provided, insert...

  9. Evidence of a putative deep sea specific microbiome in marine sponges.

    PubMed

    Kennedy, Jonathan; Flemer, Burkhardt; Jackson, Stephen A; Morrissey, John P; O'Gara, Fergal; O'Gara, Ferghal; Dobson, Alan D W

    2014-01-01

    The microbiota of four individual deep water sponges, Lissodendoryx diversichela, Poecillastra compressa, Inflatella pellicula, and Stelletta normani, together with surrounding seawater were analysed by pyrosequencing of a region of the 16S rRNA gene common to Bacteria and Archaea. Due to sampling constraints at depths below 700 m duplicate samples were not collected. The microbial communities of L. diversichela, P. compressa and I. pellicula were typical of low microbial abundance (LMA) sponges while S. normani had a community more typical of high microbial abundance (HMA) sponges. Analysis of the deep sea sponge microbiota revealed that the three LMA-like sponges shared a set of abundant OTUs that were distinct from those associated with sponges from shallow waters. Comparison of the pyrosequencing data with that from shallow water sponges revealed that the microbial communities of all sponges analysed have similar archaeal populations but that the bacterial populations of the deep sea sponges were distinct. Further analysis of the common and abundant OTUs from the three LMA-like sponges placed them within the groups of ammonia oxidising Archaea (Thaumarchaeota) and sulphur oxidising γ-Proteobacteria (Chromatiales). Reads from these two groups made up over 70% of all 16S rRNA genes detected from the three LMA-like sponge samples, providing evidence of a putative common microbial assemblage associated with deep sea LMA sponges.

  10. A Novel Filtering Mutualism between a Sponge Host and Its Endosymbiotic Bivalves

    PubMed Central

    Tsubaki, Remi; Kato, Makoto

    2014-01-01

    Sponges, porous filter-feeding organisms consisting of vast canal systems, provide unique substrates for diverse symbiotic organisms. The Spongia (Spongia) sp. massive sponge is obligately inhabited by the host-specific endosymbiotic bivalve Vulsella vulsella, which benefits from this symbiosis by receiving protection from predators. However, whether the host sponge gains any benefit from this association is unclear. Considering that the bivalves exhale filtered water into the sponge body rather than the ambient environment, the sponge is hypothesized to utilize water exhaled by the bivalves to circulate water around its body more efficiently. We tested this hypothesis by observing the sponge aquiferous structure and comparing the pumping rates of sponges and bivalves. Observations of water currents and the sponge aquiferous structure revealed that the sponge had a unique canal system enabling it to inhale water exhaled from bivalves, indicating that the host sponge adapted morphologically to receive water from the bivalves. In addition, the volume of water circulating in the sponge body was dramatically increased by the water exhaled from bivalves. Therefore, this sponge-bivalve association can be regarded as a novel mutualism in which two filter-feeding symbionts promote mutual filtering rates. This symbiotic association should be called a “filtering mutualism”. PMID:25330073

  11. Evidence of a Putative Deep Sea Specific Microbiome in Marine Sponges

    PubMed Central

    Kennedy, Jonathan; Flemer, Burkhardt; Jackson, Stephen A.; Morrissey, John P.; O'Gara, Ferghal; Dobson, Alan D. W.

    2014-01-01

    The microbiota of four individual deep water sponges, Lissodendoryx diversichela, Poecillastra compressa, Inflatella pellicula, and Stelletta normani, together with surrounding seawater were analysed by pyrosequencing of a region of the 16S rRNA gene common to Bacteria and Archaea. Due to sampling constraints at depths below 700 m duplicate samples were not collected. The microbial communities of L. diversichela, P. compressa and I. pellicula were typical of low microbial abundance (LMA) sponges while S. normani had a community more typical of high microbial abundance (HMA) sponges. Analysis of the deep sea sponge microbiota revealed that the three LMA-like sponges shared a set of abundant OTUs that were distinct from those associated with sponges from shallow waters. Comparison of the pyrosequencing data with that from shallow water sponges revealed that the microbial communities of all sponges analysed have similar archaeal populations but that the bacterial populations of the deep sea sponges were distinct. Further analysis of the common and abundant OTUs from the three LMA-like sponges placed them within the groups of ammonia oxidising Archaea (Thaumarchaeota) and sulphur oxidising γ-Proteobacteria (Chromatiales). Reads from these two groups made up over 70% of all 16S rRNA genes detected from the three LMA-like sponge samples, providing evidence of a putative common microbial assemblage associated with deep sea LMA sponges. PMID:24670421

  12. Three-dimensional periodic supramolecular organic framework ion sponge in water and microcrystals

    SciTech Connect

    Tian, Jia; Zhou, Tian-You; Zhang, Shao-Chen; Aloni, Shaul; Altoe, Maria Virginia; Xie, Song-Hai; Wang, Hui; Zhang, Dan-Wei; Zhao, Xin; Liu, Yi; Li, Zhan-Ting

    2014-12-02

    Self-assembly has emerged as a powerful approach to generating complex supramolecular architectures. Despite there being many crystalline frameworks reported in the solid state, the construction of highly soluble periodic supramolecular networks in a three-dimensional space is still a challenge. In this paper we demonstrate that the encapsulation motif, which involves the dimerization of two aromatic units within cucurbit[8]uril, can be used to direct the co-assembly of a tetratopic molecular block and cucurbit[8]uril into a periodic three-dimensional supramolecular organic framework in water. The periodicity of the supramolecular organic framework is supported by solution-phase small-angle X-ray-scattering and diffraction experiments. Upon evaporating the solvent, the periodicity of the framework is maintained in porous microcrystals. Lastly, as a supramolecular 'ion sponge', the framework can absorb different kinds of anionic guests, including drugs, in both water and microcrystals, and drugs absorbed in microcrystals can be released to water with selectivity.

  13. Compressible and monolithic microporous polymer sponges prepared via one-pot synthesis

    PubMed Central

    Lim, Yoonbin; Cha, Min Chul; Chang, Ji Young

    2015-01-01

    Compressible and monolithic microporous polymers (MPs) are reported. MPs were prepared as monoliths via a Sonogashira–Hagihara coupling reaction of 1,3,5-triethynylbenzene (TEB) with the bis(bromothiophene) monomer (PBT-Br). The polymers were reversibly compressible, and were easily cut into any form using a knife. Microscopy studies on the MPs revealed that the polymers had tubular microstructures, resembling those often found in marine sponges. Under compression, elastic buckling of the tube bundles was observed using an optical microscope. MP-0.8, which was synthesized using a 0.8:1 molar ratio of PBT-Br to TEB, showed microporosity with a BET surface area as high as 463 m2g–1. The polymer was very hydrophobic, with a water contact angle of 145° and absorbed 7–17 times its own weight of organic liquids. The absorbates were released by simple compression, allowing recyclable use of the polymer. MPs are potential precursors of structured carbon materials; for example, a partially graphitic material was obtained by pyrolysis of MP-0.8, which showed a similar tubular structure to that of MP-0.8. PMID:26534834

  14. Three-dimensional periodic supramolecular organic framework ion sponge in water and microcrystals

    DOE PAGES

    Tian, Jia; Zhou, Tian-You; Zhang, Shao-Chen; Aloni, Shaul; Altoe, Maria Virginia; Xie, Song-Hai; Wang, Hui; Zhang, Dan-Wei; Zhao, Xin; Liu, Yi; et al

    2014-12-02

    Self-assembly has emerged as a powerful approach to generating complex supramolecular architectures. Despite there being many crystalline frameworks reported in the solid state, the construction of highly soluble periodic supramolecular networks in a three-dimensional space is still a challenge. In this paper we demonstrate that the encapsulation motif, which involves the dimerization of two aromatic units within cucurbit[8]uril, can be used to direct the co-assembly of a tetratopic molecular block and cucurbit[8]uril into a periodic three-dimensional supramolecular organic framework in water. The periodicity of the supramolecular organic framework is supported by solution-phase small-angle X-ray-scattering and diffraction experiments. Upon evaporating themore » solvent, the periodicity of the framework is maintained in porous microcrystals. Lastly, as a supramolecular 'ion sponge', the framework can absorb different kinds of anionic guests, including drugs, in both water and microcrystals, and drugs absorbed in microcrystals can be released to water with selectivity.« less

  15. Investigation of dodecane in three-dimensional porous graphene sponge by Raman mapping

    NASA Astrophysics Data System (ADS)

    Guo, Xitao; Bi, Hengchang; Zafar, Amina; Liang, Zheng; Shi, Zhixiang; Sun, Litao; Ni, Zhenhua

    2016-02-01

    Three-dimensional (3D) carbon nano-materials, e.g. a graphene sponge (GS) are promising candidates for the removal of pollutants and the separation of oil and water. A systematic study on how oils or organic solvents disperse in the porous structures of 3D carbon nano-materials, and the factors affecting their sorption process, would be beneficial for designing a superior sorbent with desirable porous structures. Here, confocal Raman spectroscopic imaging was utilized to explore the absorption and desorption processes of dodecane (a constituent in petroleum products) in 3D porous GS with different pore size. It was found that dodecane predominately locates within the interior pores composed of reduced graphene oxide (rGO) sheets, which provide storage spaces for the absorbed molecules. The larger pore GS has a higher absorption capacity and faster desorption rate compared to the smaller one, which is due to the higher pore volume and weaker interaction with the absorbed molecules. A possible mechanism was also proposed to explain the role of porous macrostructures on the absorption and desorption properties of GSs.

  16. Countercurrent flow absorber and desorber

    DOEpatents

    Wilkinson, William H.

    1984-01-01

    Countercurrent flow absorber and desorber devices are provided for use in absorption cycle refrigeration systems and thermal boosting systems. The devices have increased residence time and surface area resulting in improved heat and mass transfer characteristics. The apparatuses may be incorporated into open cycle thermal boosting systems in which steam serves both as the refrigerant vapor which is supplied to the absorber section and as the supply of heat to drive the desorber section of the system.

  17. Countercurrent flow absorber and desorber

    DOEpatents

    Wilkinson, W.H.

    1984-10-16

    Countercurrent flow absorber and desorber devices are provided for use in absorption cycle refrigeration systems and thermal boosting systems. The devices have increased residence time and surface area resulting in improved heat and mass transfer characteristics. The apparatuses may be incorporated into open cycle thermal boosting systems in which steam serves both as the refrigerant vapor which is supplied to the absorber section and as the supply of heat to drive the desorber section of the system. 9 figs.

  18. In situ natural product discovery via an artificial marine sponge.

    PubMed

    La Clair, James J; Loveridge, Steven T; Tenney, Karen; O'Neil-Johnson, Mark; Chapman, Eli; Crews, Phillip

    2014-01-01

    There is continuing international interest in exploring and developing the therapeutic potential of marine-derived small molecules. Balancing the strategies for ocean based sampling of source organisms versus the potential to endanger fragile ecosystems poses a substantial challenge. In order to mitigate such environmental impacts, we have developed a deployable artificial sponge. This report provides details on its design followed by evidence that it faithfully recapitulates traditional natural product collection protocols. Retrieving this artificial sponge from a tropical ecosystem after deployment for 320 hours afforded three actin-targeting jasplakinolide depsipeptides that had been discovered two decades earlier using traditional sponge specimen collection and isolation procedures. The successful outcome achieved here could reinvigorate marine natural products research, by producing new environmentally innocuous sources of natural products and providing a means to probe the true biosynthetic origins of complex marine-derived scaffolds. PMID:25004127

  19. In Situ Natural Product Discovery via an Artificial Marine Sponge

    PubMed Central

    La Clair, James J.; Loveridge, Steven T.; Tenney, Karen; O'Neil–Johnson, Mark; Chapman, Eli; Crews, Phillip

    2014-01-01

    There is continuing international interest in exploring and developing the therapeutic potential of marine–derived small molecules. Balancing the strategies for ocean based sampling of source organisms versus the potential to endanger fragile ecosystems poses a substantial challenge. In order to mitigate such environmental impacts, we have developed a deployable artificial sponge. This report provides details on its design followed by evidence that it faithfully recapitulates traditional natural product collection protocols. Retrieving this artificial sponge from a tropical ecosystem after deployment for 320 hours afforded three actin–targeting jasplakinolide depsipeptides that had been discovered two decades earlier using traditional sponge specimen collection and isolation procedures. The successful outcome achieved here could reinvigorate marine natural products research, by producing new environmentally innocuous sources of natural products and providing a means to probe the true biosynthetic origins of complex marine–derived scaffolds. PMID:25004127

  20. Diversity and Distribution Patterns in High Southern Latitude Sponges

    PubMed Central

    Downey, Rachel V.; Griffiths, Huw J.; Linse, Katrin; Janussen, Dorte

    2012-01-01

    Sponges play a key role in Antarctic marine benthic community structure and dynamics and are often a dominant component of many Southern Ocean benthic communities. Understanding the drivers of sponge distribution in Antarctica enables us to understand many of general benthic biodiversity patterns in the region. The sponges of the Antarctic and neighbouring oceanographic regions were assessed for species richness and biogeographic patterns using over 8,800 distribution records. Species-rich regions include the Antarctic Peninsula, South Shetland Islands, South Georgia, Eastern Weddell Sea, Kerguelen Plateau, Falkland Islands and north New Zealand. Sampling intensity varied greatly within the study area, with sampling hotspots found at the Antarctic Peninsula, South Georgia, north New Zealand and Tierra del Fuego, with limited sampling in the Bellingshausen and Amundsen seas in the Southern Ocean. In contrast to previous studies we found that eurybathy and circumpolar distributions are important but not dominant characteristics in Antarctic sponges. Overall Antarctic sponge species endemism is ∼43%, with a higher level for the class Hexactinellida (68%). Endemism levels are lower than previous estimates, but still indicate the importance of the Polar Front in isolating the Southern Ocean fauna. Nineteen distinct sponge distribution patterns were found, ranging from regional endemics to cosmopolitan species. A single, distinct Antarctic demosponge fauna is found to encompass all areas within the Polar Front, and the sub-Antarctic regions of the Kerguelen Plateau and Macquarie Island. Biogeographical analyses indicate stronger faunal links between Antarctica and South America, with little evidence of links between Antarctica and South Africa, Southern Australia or New Zealand. We conclude that the biogeographic and species distribution patterns observed are largely driven by the Antarctic Circumpolar Current and the timing of past continent connectivity. PMID

  1. Controlled iodine release from polyurethane sponges for water decontamination.

    PubMed

    Aviv, Oren; Laout, Natalia; Ratner, Stanislav; Harik, Oshrat; Kunduru, Konda Reddy; Domb, Abraham J

    2013-12-28

    Iodinated polyurethane (IPU) sponges were prepared by immersing sponges in aqueous/organic solutions of iodine or exposing sponges to iodine vapors. Iodine was readily adsorbed into the polymers up to 100% (w/w). The adsorption of iodine on the surface was characterized by XPS and SEM analyses. The iodine loaded IPU sponges were coated with ethylene vinyl acetate (EVA), in order to release iodine in a controlled rate for water decontamination combined with active carbon cartridge, which adsorbs the iodine residues after the microbial inactivation. The EVA coated IPU were incorporated in a water purifier and tested for iodine release to water and for microbial inactivation efficiency according to WQA certification program against P231/EPA for 250l, using 25l a day with flow rate of 6-8min/1l. The antimicrobial activity was also studied against Escherichia coli and MS2 phage. Bacterial results exceeded the minimal requirement for bacterial removal of 6log reduction throughout the entire lifespan. At any testing point, no bacteria was detected in the outlet achieving more than 7.1 to more than 8log reduction as calculated upon the inlet concentration. Virus surrogate, MS2, reduction results varied from 4.11log reduction under tap water, and 5.11log reduction under basic water (pH9) to 1.32 for acidic water (pH5). Controlled and stable iodine release was observed with the EVA coated IPU sponges and was effective in deactivating the bacteria and virus present in the contaminated water and thus, these iodinated PU systems could be used in water purification to provide safe drinking water. These sponges may find applications as disinfectants in medicine. PMID:24096017

  2. Controlled iodine release from polyurethane sponges for water decontamination.

    PubMed

    Aviv, Oren; Laout, Natalia; Ratner, Stanislav; Harik, Oshrat; Kunduru, Konda Reddy; Domb, Abraham J

    2013-12-28

    Iodinated polyurethane (IPU) sponges were prepared by immersing sponges in aqueous/organic solutions of iodine or exposing sponges to iodine vapors. Iodine was readily adsorbed into the polymers up to 100% (w/w). The adsorption of iodine on the surface was characterized by XPS and SEM analyses. The iodine loaded IPU sponges were coated with ethylene vinyl acetate (EVA), in order to release iodine in a controlled rate for water decontamination combined with active carbon cartridge, which adsorbs the iodine residues after the microbial inactivation. The EVA coated IPU were incorporated in a water purifier and tested for iodine release to water and for microbial inactivation efficiency according to WQA certification program against P231/EPA for 250l, using 25l a day with flow rate of 6-8min/1l. The antimicrobial activity was also studied against Escherichia coli and MS2 phage. Bacterial results exceeded the minimal requirement for bacterial removal of 6log reduction throughout the entire lifespan. At any testing point, no bacteria was detected in the outlet achieving more than 7.1 to more than 8log reduction as calculated upon the inlet concentration. Virus surrogate, MS2, reduction results varied from 4.11log reduction under tap water, and 5.11log reduction under basic water (pH9) to 1.32 for acidic water (pH5). Controlled and stable iodine release was observed with the EVA coated IPU sponges and was effective in deactivating the bacteria and virus present in the contaminated water and thus, these iodinated PU systems could be used in water purification to provide safe drinking water. These sponges may find applications as disinfectants in medicine.

  3. 3D cell entrapment in crosslinked thiolated gelatin-poly(ethylene glycol) diacrylate hydrogels.

    PubMed

    Fu, Yao; Xu, Kedi; Zheng, Xiaoxiang; Giacomin, Alan J; Mix, Adam W; Kao, Weiyuan J

    2012-01-01

    The combined use of natural ECM components and synthetic materials offers an attractive alternative to fabricate hydrogel-based tissue engineering scaffolds to study cell-matrix interactions in three-dimensions (3D). A facile method was developed to modify gelatin with cysteine via a bifunctional PEG linker, thus introducing free thiol groups to gelatin chains. A covalently crosslinked gelatin hydrogel was fabricated using thiolated gelatin and poly(ethylene glycol) diacrylate (PEGdA) via thiol-ene reaction. Unmodified gelatin was physically incorporated in a PEGdA-only matrix for comparison. We sought to understand the effect of crosslinking modality on hydrogel physicochemical properties and the impact on 3D cell entrapment. Compared to physically incorporated gelatin hydrogels, covalently crosslinked gelatin hydrogels displayed higher maximum weight swelling ratio (Q(max)), higher water content, significantly lower cumulative gelatin dissolution up to 7 days, and lower gel stiffness. Furthermore, fibroblasts encapsulated within covalently crosslinked gelatin hydrogels showed extensive cytoplasmic spreading and the formation of cellular networks over 28 days. In contrast, fibroblasts encapsulated in the physically incorporated gelatin hydrogels remained spheroidal. Hence, crosslinking ECM protein with synthetic matrix creates a stable scaffold with tunable mechanical properties and with long-term cell anchorage points, thus supporting cell attachment and growth in the 3D environment.

  4. Increasing Mechanical Strength of Gelatin Hydrogels by Divalent Metal Ion Removal

    PubMed Central

    Xing, Qi; Yates, Keegan; Vogt, Caleb; Qian, Zichen; Frost, Megan C.; Zhao, Feng

    2014-01-01

    The usage of gelatin hydrogel is limited due to its instability and poor mechanical properties, especially under physiological conditions. Divalent metal ions present in gelatin such as Ca2+ and Fe2+ play important roles in the gelatin molecule interactions. The objective of this study was to determine the impact of divalent ion removal on the stability and mechanical properties of gelatin gels with and without chemical crosslinking. The gelatin solution was purified by Chelex resin to replace divalent metal ions with sodium ions. The gel was then chemically crosslinked by 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC). Results showed that the removal of divalent metal ions significantly impacted the formation of the gelatin network. The purified gelatin hydrogels had less interactions between gelatin molecules and form larger-pore network which enabled EDC to penetrate and crosslink the gel more efficiently. The crosslinked purified gels showed small swelling ratio, higher crosslinking density and dramatically increased storage and loss moduli. The removal of divalent ions is a simple yet effective method that can significantly improve the stability and strength of gelatin hydrogels. The in vitro cell culture demonstrated that the purified gelatin maintained its ability to support cell attachment and spreading. PMID:24736500

  5. Increasing Mechanical Strength of Gelatin Hydrogels by Divalent Metal Ion Removal

    NASA Astrophysics Data System (ADS)

    Xing, Qi; Yates, Keegan; Vogt, Caleb; Qian, Zichen; Frost, Megan C.; Zhao, Feng

    2014-04-01

    The usage of gelatin hydrogel is limited due to its instability and poor mechanical properties, especially under physiological conditions. Divalent metal ions present in gelatin such as Ca2+ and Fe2+ play important roles in the gelatin molecule interactions. The objective of this study was to determine the impact of divalent ion removal on the stability and mechanical properties of gelatin gels with and without chemical crosslinking. The gelatin solution was purified by Chelex resin to replace divalent metal ions with sodium ions. The gel was then chemically crosslinked by 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC). Results showed that the removal of divalent metal ions significantly impacted the formation of the gelatin network. The purified gelatin hydrogels had less interactions between gelatin molecules and form larger-pore network which enabled EDC to penetrate and crosslink the gel more efficiently. The crosslinked purified gels showed small swelling ratio, higher crosslinking density and dramatically increased storage and loss moduli. The removal of divalent ions is a simple yet effective method that can significantly improve the stability and strength of gelatin hydrogels. The in vitro cell culture demonstrated that the purified gelatin maintained its ability to support cell attachment and spreading.

  6. Increasing mechanical strength of gelatin hydrogels by divalent metal ion removal.

    PubMed

    Xing, Qi; Yates, Keegan; Vogt, Caleb; Qian, Zichen; Frost, Megan C; Zhao, Feng

    2014-01-01

    The usage of gelatin hydrogel is limited due to its instability and poor mechanical properties, especially under physiological conditions. Divalent metal ions present in gelatin such as Ca(2+) and Fe(2+) play important roles in the gelatin molecule interactions. The objective of this study was to determine the impact of divalent ion removal on the stability and mechanical properties of gelatin gels with and without chemical crosslinking. The gelatin solution was purified by Chelex resin to replace divalent metal ions with sodium ions. The gel was then chemically crosslinked by 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC). Results showed that the removal of divalent metal ions significantly impacted the formation of the gelatin network. The purified gelatin hydrogels had less interactions between gelatin molecules and form larger-pore network which enabled EDC to penetrate and crosslink the gel more efficiently. The crosslinked purified gels showed small swelling ratio, higher crosslinking density and dramatically increased storage and loss moduli. The removal of divalent ions is a simple yet effective method that can significantly improve the stability and strength of gelatin hydrogels. The in vitro cell culture demonstrated that the purified gelatin maintained its ability to support cell attachment and spreading. PMID:24736500

  7. Using Liquid Smoke to Improve Mechanical and Water Resistance Properties of Gelatin Films.

    PubMed

    Wang, Wenwang; Li, Cong; Zhang, Hongjie; Ni, Yonghao

    2016-05-01

    Improvement of mechanical and water barrier properties is critical for gelatin films when applied to edible food packaging. A liquid smoke (LS) obtained from hawthorn nucleus was used to improve the performance of gelatin film based on its abundant compounds. Through SPME-GC-MS analysis, 86 volatile and semi-volatile chemical compounds was detected in LS, in which the total carbonyl compounds were 27.60%, with the main aldehyde as 2-furaldehyde (9.83%). For gelatin films, an observable influence of LS on film transparency was observed in gelatin films, but not for its thickness and microstructure. Desirably, adding LS into gelatin solution increased the tensile strength of the films, with a better value of 16.38 MPa as 3 wt% LS added, compared with the control (10.30 MPa). Accordingly, film elongation decreased with a LS dependent manner. Furthermore, the water resistance properties of gelatin film were improved by the LS addition, which was supported by the results of water contact angle, water vapor permeability. Moreover, the addition of LS also led to a higher insolubility for gelatin films. Also, thermal stability of the LS treated gelatin films was slightly enhanced with the DSC analysis. According to the FTIR spectra and crosslinking degree detection results, all the above enhancing of gelatin film should be attributed to the crosslinking between carbonyl groups in LS and amide functionalities in gelatin based on nucleophilic reaction. PMID:27061211

  8. Characteristics and Gel Properties of Gelatin from Goat Skin as Influenced by Alkaline-pretreatment Conditions

    PubMed Central

    Mad-Ali, Sulaiman; Benjakul, Soottawat; Prodpran, Thummanoon; Maqsood, Sajid

    2016-01-01

    Characteristics and properties of gelatin from goat skin pretreated with NaOH solutions (0.50 and 0.75 M) for various times (1 to 4 days) were investigated. All gelatins contained α-chains as the predominant component, followed by β-chain. Gelling and melting temperatures of those gelatins were 23.02°C to 24.16°C and 33.07°C to 34.51°C, respectively. Gel strength of gelatins increased as NaOH concentration and pretreatment time increased (p<0.05). Pretreatment for a longer time yielded gelatin with a decrease in L*-value but an increase in b*-value. Pretreatment of goat skin using 0.75 M NaOH for 2 days rendered the highest yield (15.95%, wet weight basis) as well as high gel strength (222.42 g), which was higher than bovine gelatin (199.15 g). Gelatin obtained had the imino acid content of 226 residues/1,000 residues and the gelatin gel had a fine and ordered structure. Therefore, goat skin gelatin could be used as a potential replacer of commercial gelatin. PMID:26954127

  9. Using Liquid Smoke to Improve Mechanical and Water Resistance Properties of Gelatin Films.

    PubMed

    Wang, Wenwang; Li, Cong; Zhang, Hongjie; Ni, Yonghao

    2016-05-01

    Improvement of mechanical and water barrier properties is critical for gelatin films when applied to edible food packaging. A liquid smoke (LS) obtained from hawthorn nucleus was used to improve the performance of gelatin film based on its abundant compounds. Through SPME-GC-MS analysis, 86 volatile and semi-volatile chemical compounds was detected in LS, in which the total carbonyl compounds were 27.60%, with the main aldehyde as 2-furaldehyde (9.83%). For gelatin films, an observable influence of LS on film transparency was observed in gelatin films, but not for its thickness and microstructure. Desirably, adding LS into gelatin solution increased the tensile strength of the films, with a better value of 16.38 MPa as 3 wt% LS added, compared with the control (10.30 MPa). Accordingly, film elongation decreased with a LS dependent manner. Furthermore, the water resistance properties of gelatin film were improved by the LS addition, which was supported by the results of water contact angle, water vapor permeability. Moreover, the addition of LS also led to a higher insolubility for gelatin films. Also, thermal stability of the LS treated gelatin films was slightly enhanced with the DSC analysis. According to the FTIR spectra and crosslinking degree detection results, all the above enhancing of gelatin film should be attributed to the crosslinking between carbonyl groups in LS and amide functionalities in gelatin based on nucleophilic reaction.

  10. Effect of Duck Feet Gelatin Concentration on Physicochemical, Textural, and Sensory Properties of Duck Meat Jellies

    PubMed Central

    2014-01-01

    This study was conducted to determine the effect of duck feet gelatin concentration on the physicochemical, textural and sensory properties of duck meat jellies. Duck feet gelatin was prepared with acidic swelling and hot water extraction. In this study, four duck meat jellies were formulated with 3, 4, 5, and 6% duck feet gelatin, respectively. In the preliminary experiment, the increase in duck feet gelatin ranged from 5 to 20%, resulting in a significant (p<0.001) increase in the color score, but a decline in the hardness and dispersibility satisfaction scores. An increase in the added amount of duck feet gelatin contributed to decreased lightness and increased protein content in duck meat jellies. Regarding the textural properties, increase in the added amount of duck feet gelatin highly correlated with the hardness in the center (p<0.01, R2=0.91), and edge (p<0.01, R2=0.89), of duck meat jellies. Meanwhile, the increase in duck feet gelatin decreased the score for textural satisfaction; duck meat jellies containing 6% duck feet gelatin had a significantly lower textural satisfaction score, than those containing 3% duck feet gelatin (p<0.05). Furthermore, a significant difference in the overall acceptance of duck meat jellies formulated with 5% duck feet gelatin was observed, as compared to those prepared with 3% duck feet gelatin. Therefore, this study suggested that duck feet gelatin is a useful ingredient for manufacturing cold-cut meat products. In consideration of the sensory acceptance, the optimal level of duck feet gelatin in duck meat jellies was determined to be 5%. PMID:26761181

  11. Distribution and Abundance of Archaea in South China Sea Sponge Holoxea sp. and the Presence of Ammonia-Oxidizing Archaea in Sponge Cells.

    PubMed

    Liu, Fang; Han, Minqi; Zhang, Fengli; Zhang, Baohua; Li, Zhiyong

    2011-01-01

    Compared with bacterial symbionts, little is known about archaea in sponges especially about their spatial distribution and abundance. Understanding the distribution and abundance of ammonia-oxidizing archaea will help greatly in elucidating the potential function of symbionts in nitrogen cycling in sponges. In this study, gene libraries of 16S rRNA gene and ammonia monooxygenase subunit A (amoA) genes and quantitative real-time PCR were used to study the spatial distribution and abundance of archaea in the South China Sea sponge Holoxea sp. As a result, Holoxea sp. specific AOA, mainly group C1a (marine group I: Crenarchaeota) were identified. The presence of ammonia-oxidizing crenarchaea was observed for the first time within sponge cells. This study suggested a close relationship between sponge host and its archaeal symbionts as well as the archaeal potential contribution to sponge host in the ammonia-oxidizing process of nitrification.

  12. A tactile sensor using a conductive graphene-sponge composite.

    PubMed

    Chun, Sungwoo; Hong, Ahyoung; Choi, Yeonhoi; Ha, Chunho; Park, Wanjun

    2016-04-28

    For sensors that emulate human tactile perception, we suggest a simple method for fabricating a highly sensitive force sensor using a conductive polyurethane sponge where graphene flakes are self-assembled into the porous structure of the sponge. The complete sensor device shows a sensitive and reliable detection response for a broad range of pressure and dynamic pressure that correspond to human tactile perception. Sensitivity of the sensor to detect vibration is also confirmed with vertical actuations due to slipping over micro-scale ridge structures attached on the sensors. Based on the sensor's ability to detect both pressure and vibration, the sensor can be utilized as a flexible tactile sensor. PMID:27076360

  13. Sintering of sponge and hydride-dehydride titanium powders

    SciTech Connect

    Alman, David E.; Gerdemann, Stephen J.

    2004-04-01

    The sintering behavior of compacts produced from sponge and hydride-dehydride (HDH) Ti powders was examined. Compacts were vacuum sintered at 1200 or 1300 deg C for 30, 60, 120, 240, 480 or 960 minutes. The porosity decreased with sintering time and/or temperature in compacts produced from the HDH powders. Compacts produced from these powders could be sintered to essentially full density. However, the sintering condition did not influence the amount of porosity present in compacts produced from the sponge powders. These samples could only be sintered to a density of 97% theoretical. The sintering behavior was attributed to the chemical impurities in the powders.

  14. A tactile sensor using a conductive graphene-sponge composite.

    PubMed

    Chun, Sungwoo; Hong, Ahyoung; Choi, Yeonhoi; Ha, Chunho; Park, Wanjun

    2016-04-28

    For sensors that emulate human tactile perception, we suggest a simple method for fabricating a highly sensitive force sensor using a conductive polyurethane sponge where graphene flakes are self-assembled into the porous structure of the sponge. The complete sensor device shows a sensitive and reliable detection response for a broad range of pressure and dynamic pressure that correspond to human tactile perception. Sensitivity of the sensor to detect vibration is also confirmed with vertical actuations due to slipping over micro-scale ridge structures attached on the sensors. Based on the sensor's ability to detect both pressure and vibration, the sensor can be utilized as a flexible tactile sensor.

  15. Air quality impact of sponge iron industries in central India.

    PubMed

    Rao, Padma S; Kumar, A; Ansari, M F; Pipalatkar, P; Chakrabarti, T

    2009-02-01

    Emission load of particulate matter from 42 sponge iron industrial units located in clusters in the Indian State of Chhattisgarh was estimated to be 1,361 TPD. US EPA air pollution dispersion model ISCST-3 applied to predict the impact of the sponge iron industry emissions on ambient air quality showed contribution up to 546 microg/m(3) to the surrounding air basin causing the air quality exceeding the national ambient air quality standards. Electrostatic precipitator (ESP) has been suggested to all the above industrial units that would bring down the contribution to as low as 27 microg/m(3). PMID:18784898

  16. Analytical methods and apparatus for measuring the oil content of sponge core

    SciTech Connect

    Vinegar, H.J.; DiFoggio, R.; Tutunjian, P.N.

    1989-09-19

    This patent describes a method for use in determining the oil saturation of an earth formation by means of sponge coring, using polyurethane sponge. It comprises: dissolving substantially all of the oil and substantially none of the sponge, in a sponge core sample, into a solvent having a Hansen solubility parameter of different than that of the sponge and selected from the class consisting of: solvents having no protons in their structure, deuterated solvents, and solvents having no C-H bonds in their structure; extracting the solvent and solutes from the core sample; and measuring the resultant oil concentration in the solvent and solutes extracted from the core sample.

  17. Silver halide sensitized gelatin derived from BB-640 holographic emulsion.

    PubMed

    Neipp, C; Pascual, I; Beléndez, A

    1999-03-10

    Silver halide sensitized gelatin (SHSG) is one of the most interesting techniques for the production of holographic optical elements, achieving relatively high sensitivity of photographic material with a low scattering of dichromated gelatin. Here we present experimental results for SHSG derived from the novel BB-640, a red-sensitive ultra-fine-grain emulsion from Holographic Recording Technologies (Steinau, Germany). The material is characterized before recording and after processing, and information about the thickness, absorption, and refractive-index modulation of the final holograms is obtained. The influence of the developer is analyzed, and diffraction efficiencies as great as 96.2% (after allowing for reflections) with a transmission of 1% and absorption and scatter losses of 2.8% are obtained with AAC developer. Our investigations reveal that high-quality SHSG transmission holograms may be obtained with the new BB-640 plates.

  18. Gelatin-Methacryloyl Hydrogels: Towards Biofabrication-Based Tissue Repair.

    PubMed

    Klotz, Barbara J; Gawlitta, Debby; Rosenberg, Antoine J W P; Malda, Jos; Melchels, Ferry P W

    2016-05-01

    Research over the past decade on the cell-biomaterial interface has shifted to the third dimension. Besides mimicking the native extracellular environment by 3D cell culture, hydrogels offer the possibility to generate well-defined 3D biofabricated tissue analogs. In this context, gelatin-methacryloyl (gelMA) hydrogels have recently gained increased attention. This interest is sparked by the combination of the inherent bioactivity of gelatin and the physicochemical tailorability of photo-crosslinkable hydrogels. GelMA is a versatile matrix that can be used to engineer tissue analogs ranging from vasculature to cartilage and bone. Convergence of biological and biofabrication approaches is necessary to progress from merely proving cell functionality or construct shape fidelity towards regenerating tissues. GelMA has a critical pioneering role in this process and could be used to accelerate the development of clinically relevant applications. PMID:26867787

  19. Gelation kinetics of gelatin using particle tracking microrheology

    NASA Astrophysics Data System (ADS)

    Hardcastle, Joseph; Bansil, Rama

    2012-02-01

    Previous studies with gelatin have observed four distinct stages during the physical gelation process [Normand et al. Macromolecules, 2000, 33, 1063]. In this presentation we report measurements of microrheology in an effort to examine the time evolution of the gel on short length scales and time scales. By tracking latex particles in gelatin solution at different temperatures we can follow the microrheological changes and kinetics of the gelation process. Using the generalized Stokes-Einstein relation viscoelastic properties of these quasi-static gel states the evolution of the storage and loss moduli, G' and G'', are examined as functions of both time and temperature. The data show that both G' and G'' exhibit power law scaling versus frequency with the same exponent. The temperature and concentration dependence of the frequency at which the system crosses over from viscous to elastic behavior will be presented.

  20. Heterogeneities in gelatin film formation using single-sided NMR.

    PubMed

    Ghoshal, Sushanta; Mattea, Carlos; Denner, Paul; Stapf, Siegfried

    2010-12-16

    Gelatin solutions were prepared in D(2)O. The drying process of cast solutions was followed with a single-sided nuclear magnetic resonance (NMR) scanner until complete solidification occurred. Spin-spin relaxation times (T(2)) were measured at different layers with microscopic resolution and were correlated with the drying process during film formation. Additionally, the evaporation of the gelatin solution was observed optically from the reduction of the sample thickness, revealing that at the macroscopic level, the rate of evaporation is not uniform throughout the experiment. A crossover in the spatial evolution of the drying process is observed from the NMR results. At the early stages, the gel appears to be drier in the upper layers near the evaporation front, while this tendency is inverted at the later stages, when drying is faster from the bottom. XRD (X-ray diffraction) data showed that a structural heterogeneity persists in the final film.

  1. Doubly slanted layer structures in holographic gelatin emulsions: solar concentrators

    NASA Astrophysics Data System (ADS)

    Hung, Jenny; Chan, Po Shan; Sun, Caiming; Wing Ho, Choi; Tam, Wing Yim

    2010-04-01

    We have fabricated doubly slanted layer structures in holographic gelatin emulsions using a double-exposure two-beam interference from two light sources with different wavelengths. The doubly slanted layers, with different spacings and overlapping with each other, are fabricated such that they are slanted in opposite directions making a 30° angle with the holographic plate. The doubly slanted layer structures exhibit photonic stop bands corresponding to the two layered structures. More importantly, diffracted light beams from the slanted layers travel in different directions and emerge, through internal reflections, at the opposite edges of the gelatin plate. The doubly slanted layer structures could be used as solar concentrators such that sunlight is separated into different components and steered directly to photovoltaics with the corresponding wavelength sensitivities to enhance energy conversion efficiency.

  2. Gelatin-Methacryloyl Hydrogels: Towards Biofabrication-Based Tissue Repair.

    PubMed

    Klotz, Barbara J; Gawlitta, Debby; Rosenberg, Antoine J W P; Malda, Jos; Melchels, Ferry P W

    2016-05-01

    Research over the past decade on the cell-biomaterial interface has shifted to the third dimension. Besides mimicking the native extracellular environment by 3D cell culture, hydrogels offer the possibility to generate well-defined 3D biofabricated tissue analogs. In this context, gelatin-methacryloyl (gelMA) hydrogels have recently gained increased attention. This interest is sparked by the combination of the inherent bioactivity of gelatin and the physicochemical tailorability of photo-crosslinkable hydrogels. GelMA is a versatile matrix that can be used to engineer tissue analogs ranging from vasculature to cartilage and bone. Convergence of biological and biofabrication approaches is necessary to progress from merely proving cell functionality or construct shape fidelity towards regenerating tissues. GelMA has a critical pioneering role in this process and could be used to accelerate the development of clinically relevant applications.

  3. Non-hydroscopic vanilla doped dichromated gelatin holographic material

    NASA Astrophysics Data System (ADS)

    Pinto-Iguanero, B.; Olivares-Pérez, A.; Méndez-Alvarado, A. W.; Fuentes-Tapia, I.; Treviño-Palacios, C. G.

    2003-06-01

    Dichromate gelatins are well-known holographic materials. By doping this material with synthetic vanilla a change in the spectral response from regular dichromate gelatin is observed as an increase in optical density. This mixture presents an unusual high humidity resistance. It was possible to record holographic diffraction gratings using an argon ion laser ( λ=488 nm). These gratings exhibit good diffraction efficiency in transmission, on the order of 60% at Bragg angle, with more than 1700 lines/mm spatial resolution. The material development process consists simply of dipping it into using a solution of water and isopropyl alcohol. A hypothesis on the hydroscopic response of this new photosensitive material is also presented.

  4. Anisotropic silk fibroin/gelatin scaffolds from unidirectional freezing.

    PubMed

    Asuncion, Maria Christine Tankeh; Goh, James Cho-Hong; Toh, Siew-Lok

    2016-10-01

    Recent studies have underlined the importance of matching scaffold properties to the biological milieu. Tissue, and thus scaffold, anisotropy is one such property that is important yet sometimes overlooked. Methods that have been used to achieve anisotropic scaffolds present challenges such as complicated fabrication steps, harsh processing conditions and toxic chemicals involved. In this study, unidirectional freezing was employed to fabricate anisotropic silk fibroin/gelatin scaffolds in a simple and mild manner. Morphological, mechanical, chemical and cellular compatibility properties were investigated, as well as the effect of the addition of gelatin to certain properties of the scaffold. It was shown that scaffold properties were suitable for cell proliferation and that mesenchymal stem cells were able to align themselves along the directed fibers. The fabricated scaffolds present a platform that can be used for anisotropic tissue engineering applications such as cardiac patches. PMID:27287164

  5. Electrochemical performance of Si anode modified with carbonized gelatin binder

    NASA Astrophysics Data System (ADS)

    Jiang, Ying; Mu, Daobin; Chen, Shi; Wu, Borong; Cheng, Kailin; Li, Luyu; Wu, Feng

    2016-09-01

    Gelatin is alternatively adopted as the binder to modify Si anode coupling with its carbonization treatment. The binder can provide good bonding and uniform dispersion of the particles besides its environmental benignancy. Importantly, the carbonized binder containing nitrogen will be advantageous to the electrical conductivity of the electrode. In addition, some spaces are formed in the electrode due to the decomposition and shrinkage of the gelatin binder during heat-treatment, which may facilitate electrolyte penetration and accommodate volume change during cycling. All these merits make contribution to the good electrochemical performance of the modified Si electrode. It exhibits a reversible capacity of 990.3 mA h g-1 after 70 cycles at a current density of 100 mA g-1 and 904 mA h g-1 after 100 cycles at 400 mA g-1.

  6. Thermal analysis of microlens formation on a sensitized gelatin layer

    SciTech Connect

    Muric, Branka; Pantelic, Dejan; Vasiljevic, Darko; Panic, Bratimir; Jelenkovic, Branislav

    2009-07-01

    We analyze a mechanism of direct laser writing of microlenses. We find that thermal effects and photochemical reactions are responsible for microlens formation on a sensitized gelatin layer. An infrared camera was used to assess the temperature distribution during the microlens formation, while the diffraction pattern produced by the microlens itself was used to estimate optical properties. The study of thermal processes enabled us to establish the correlation between thermal and optical parameters.

  7. Gelatin as a new humidity sensing material: Characterization and limitations

    SciTech Connect

    Shapardanis, Steven; Hudpeth, Mathew; Kaya, Tolga

    2014-12-15

    The goal of this work is to assert the utility of collagen and its denatured counterpart gelatin as cost-effective alternatives to existing sensing layers comprised of polymers. Rather than producing a material that will need to be discarded or recycled, collagen, as a by-product of the meat and leather industry, could be repurposed. This work examines the feasibility of using collagen as a sensing layer. Planar electrodes were patterned with lift-off process to work with the natural characteristics of gelatin by utilizing metal vapor deposition, spin coating, and photolithography. Characterization methods have also been optimized through the creation of specialized humidity chambers that isolate specific characteristics such as response time, accuracy, and hysteresis. Collagen-based sensors are found to have a sensitivity to moisture in the range of 0.065 pF/%RH. Diffusion characteristics were also analyzed with the diffusion coefficient found to be 2.5 × 10{sup −5} cm{sup 2}/s. Absorption and desorption times were found to be 20 seconds and 8 seconds, respectively. Hysteresis present in the data is attributed to temperature cross-sensitivity. Ultimately, the utility of collagen as a dielectric sensing material is, in part, due to its fibrous macrostructures as well its hydrophilic sites along the peptide chains. Gelatin was patterned between and below interdigitated copper electrodes and tested as a relative humidity sensor. This work shows that gelatin, which is inexpensive, widely available, and easy to process, can be an effective dielectric sensing polymer for capacitive-type relative humidity sensors.

  8. Gelatin as a new humidity sensing material: Characterization and limitations

    NASA Astrophysics Data System (ADS)

    Shapardanis, Steven; Hudpeth, Mathew; Kaya, Tolga

    2014-12-01

    The goal of this work is to assert the utility of collagen and its denatured counterpart gelatin as cost-effective alternatives to existing sensing layers comprised of polymers. Rather than producing a material that will need to be discarded or recycled, collagen, as a by-product of the meat and leather industry, could be repurposed. This work examines the feasibility of using collagen as a sensing layer. Planar electrodes were patterned with lift-off process to work with the natural characteristics of gelatin by utilizing metal vapor deposition, spin coating, and photolithography. Characterization methods have also been optimized through the creation of specialized humidity chambers that isolate specific characteristics such as response time, accuracy, and hysteresis. Collagen-based sensors are found to have a sensitivity to moisture in the range of 0.065 pF/%RH. Diffusion characteristics were also analyzed with the diffusion coefficient found to be 2.5 × 10-5 cm2/s. Absorption and desorption times were found to be 20 seconds and 8 seconds, respectively. Hysteresis present in the data is attributed to temperature cross-sensitivity. Ultimately, the utility of collagen as a dielectric sensing material is, in part, due to its fibrous macrostructures as well its hydrophilic sites along the peptide chains. Gelatin was patterned between and below interdigitated copper electrodes and tested as a relative humidity sensor. This work shows that gelatin, which is inexpensive, widely available, and easy to process, can be an effective dielectric sensing polymer for capacitive-type relative humidity sensors.

  9. First evidence of the presence of chitin in skeletons of marine sponges. Part II. Glass sponges (Hexactinellida: Porifera).

    PubMed

    Ehrlich, Hermann; Krautter, Manfred; Hanke, Thomas; Simon, Paul; Knieb, Christiane; Heinemann, Sascha; Worch, Hartmut

    2007-07-15

    Sponges (Porifera) are presently gaining increased scientific attention because of their secondary metabolites and specific skeleton structures. In contrast to demosponges, whose skeletons are formed from biopolymer spongin, glass sponges (hexactinellids) possess silica-organic composites as the main natural material for their skeletal fibres. Chitin has a crystalline structure and it constitutes a network of organized fibres. This structure confers rigidity and resistance to organisms that contain it, including monocellular (yeast, amoeba, diatoms) and multicellular (higher fungi, arthropods, nematodes, molluscs) organisms. In contrast to different marine invertebrates whose exoskeletons are built of chitin, this polysaccharide has not been found previously as an endogenous biopolymer within glass sponges (Hexactinellida). We hypothesized that glass sponges, which are considered to be the most basal lineage of multicellular animals, must possess chitin. Here, we present a detailed study of the structural and physico-chemical properties of skeletal fragments of the glass sponge Farrea occa. We show that these fibres have a layered design with specific compositional variations in the chitin/silica composite. We applied an effective approach for the demineralization of glass sponge skeletal formations based on an etching procedure using alkali solutions. The results show unambiguously that alpha-chitin is an essential component of the skeletal structures of Hexactinellida. This is the first report of a silica-chitin's composite biomaterial found in nature. From this perspective, the view that silica-chitin scaffolds may be key templates for skeleton formation also in ancestral unicellular organisms, rather than silica-protein composites, emerges as a viable alternative hypothesis.

  10. Reproduction in a carnivorous sponge: the significance of the absence of an aquiferous system to the sponge body plan.

    PubMed

    Riesgo, Ana; Taylor, Chantel; Leys, Sally P

    2007-01-01

    Sponges usually produce, release, and capture gametes via the aquiferous system, and so the absence of both choanocytes and an aquiferous system in the carnivorous sponge Asbestopluma occidentalis has led to unusual characteristics of development for this Phylum. Sperm are highly specialized elongate cells tightly packed into spermatic cysts in the peripheral tissue of the sponge. Mature spermatozoa have proacrosomal vesicles at the anterior end and a ciliary pit surrounding the flagellum. Clusters of four to five oocytes are in synchronous stages of cleavage, suggesting that fertilization is synchronous. All stages of embryos occur in the same individual. Early cleavage was holoblastic and equal; blastomeres in two-, four- and eight-cell embryos were compact and 16-cell stage embryos were bi-layered. Late-stage embryos show three cellular regions along the anterior-posterior axis: the anterior hemisphere with heterogeneous cells, a mid-region with cells lying perpendicular to the A-P axis in a collagenous matrix, and small cells at the posterior pole. Unusually for Porifera, multiciliated cells cover all but the posterior pole. It is inferred that fertilization occurs by capture of intact spermatic cysts whose surrounding forceps spicules become trapped in the anisochelae of neighboring sponges. The elongate shape of sperm may be designed to penetrate the loose collagenous mesohyl, such that the arrival of a packet of sperm would lead to simultaneous fertilization of oocytes in a cluster. Loss of the water canal system in carnivorous sponges has allowed the evolution of features that are highly specialized for the habitat of this animal, but such modifications were not necessarily a prerequisite for the subsequent evolution of metazoans. Given the extremely versatile mechanisms of gametogenesis, embryogenesis, and tissue/body structure in sponges, generalizations regarding basal metazoan reproduction, development, and structure must be approached with caution.

  11. Response of sponges with autotrophic endosymbionts during the coral-bleaching episode in Puerto Rico

    NASA Astrophysics Data System (ADS)

    Vicente, V. P.

    1990-04-01

    An updated list of sponges with algal endosymbionts including new records for Puerto Rico and the Caribbean, indicates that thirty-five species of common Caribbean sponges possess photosynthetic endosymbionts. Of these, 23 (67.6%) species in seven orders, were found with unicellular chroococcoid cyanobacteria ( Aphanocapsa-like) and 5 (14.7%) hadromerid species were found with zooxanthellae. Sponges with other algae as symbionts occur less frequently (≦6%). Thirty-one common sponge species were inspected for bleaching during coral-bleaching months (July-September 1987; January 1988) in Puerto Rico. Anthosigmella varians, Xestospongia muta and Petrosia pellasarca bleached partially, but only few individuals within any given population became bleached and the bleaching of sponges was very localized. Adaptations between cyanobacterial symbionts and sponges, acquired during the long evolutionary history of these two taxa may explain the paucity of bleached sponges when compared to the high incidence of bleached corals reported.

  12. Phosphorus sequestration in the form of polyphosphate by microbial symbionts in marine sponges.

    PubMed

    Zhang, Fan; Blasiak, Leah C; Karolin, Jan O; Powell, Ryan J; Geddes, Chris D; Hill, Russell T

    2015-04-01

    Marine sponges are major habitat-forming organisms in coastal benthic communities and have an ancient origin in evolution history. Here, we report significant accumulation of polyphosphate (polyP) granules in three common sponge species of the Caribbean coral reef. The identity of the polyP granules was confirmed by energy-dispersive spectroscopy (EDS) and by the fluorescence properties of the granules. Microscopy images revealed that a large proportion of microbial cells associated with sponge hosts contained intracellular polyP granules. Cyanobacterial symbionts cultured from sponges were shown to accumulate polyP. We also amplified polyphosphate kinase (ppk) genes from sponge DNA and confirmed that the gene was expressed. Based on these findings, we propose here a potentially important phosphorus (P) sequestration pathway through symbiotic microorganisms of marine sponges. Considering the widespread sponge population and abundant microbial cells associated with them, this pathway is likely to have a significant impact on the P cycle in benthic ecosystems.

  13. In vitro evaluation of crosslinked electrospun fish gelatin scaffolds.

    PubMed

    Gomes, S R; Rodrigues, G; Martins, G G; Henriques, C M R; Silva, J C

    2013-04-01

    Gelatin from cold water fish skin was electrospun, crosslinked and investigated as a substrate for the adhesion and proliferation of cells. Gelatin was first dissolved in either water or concentrated acetic acid and both solutions were successfully electrospun. Cross-linking was achieved via three different routes: glutaraldehyde vapor, genipin and dehydrothermal treatment. Solution's properties (surface tension, electrical conductivity and viscosity) and scaffold's properties (chemical bonds, weight loss and fiber diameters) were measured. Cellular viability was analyzed culturing 3T3 fibroblasts plated on the scaffolds and grown up to 7 days. The cells were fixed and observed with SEM or stained for DNA and F-actin and observed with confocal microscopy. In all scaffolds, the cells attached and spread with varying degrees. The evaluation of cell viability showed proliferation of cells until confluence in scaffolds crosslinked by glutaraldehyde and genipin; however the rate of growth in genipin crosslinked scaffolds was slow, recovering only by day five. The results using the dehydrothermal treatment were the less satisfactory. Our results show that glutaraldehyde treated fish gelatin is the most suitable substrate, of the three studied, for fibroblast adhesion and proliferation.

  14. Lecithin-Linker Microemulsion Gelatin Gels for Extended Drug Delivery

    PubMed Central

    Xuan, Xiao-Yue; Cheng, Yu-Ling; Acosta, Edgar

    2012-01-01

    This article introduces the formulation of alcohol-free, lecithin microemulsion-based gels (MBGs) prepared with gelatin as gelling agent. The influence of oil, water, lecithin and hydrophilic and lipophilic additives (linkers) on the rheological properties and appearance of these gels was systematically explored using ternary phase diagrams. Clear MBGs were obtained in regions of single phase microemulsions (μEs) at room temperature. Increasing the water content in the formulation increased the elastic modulus of the gels, while increasing the oil content had the opposite effect. The hydrophilic additive (PEG-6-caprylic/capric glycerides) was shown to reduce the elastic modulus of gelatin gels, particularly at high temperatures. In contrast to anionic (AOT) μEs, the results suggest that in lecithin (nonionic) μEs, the introduction of gelatin “dehydrates” the μE. Finally, when the transdermal transport of lidocaine formulated in the parent μE and the resulting MBG were compared, only a minor retardation in the loading and release of lidocaine was observed. PMID:24300183

  15. Proteolytically stabilizing fibronectin without compromising cell and gelatin binding activity.

    PubMed

    Zhang, Chen; Ramanathan, Anand; Karuri, Nancy Wangechi

    2015-01-01

    Excessive proteolytic degradation of fibronectin (FN) has been implicated in impaired tissue repair in chronic wounds. We previously reported two strategies for stabilizing FN against proteolytic degradation; the first conjugated polyethylene glycol (PEG) through cysteine residues and the second conjugated PEG chains of varying molecular weight on lysine residues. PEGylation of FN via lysine residues resulted in increased resistance to proteolysis with increasing PEG size, but an overall decrease in biological activity, as characterized by cell and gelatin binding. Our latest method to stabilize FN against proteolysis masks functional regions in the protein during lysine PEGylation. FN is PEGylated while it is bound to gelatin Sepharose beads with 2, 5, and 10 kDa PEG precursors. This results in partially PEGylated FN that is more stable than native FN and whose proteolytic stability increases with PEG molecular weight. Unlike completely PEGylated FN, partially PEGylated FN has cell adhesion, gelatin binding, and matrix assembly responses that are comparable to native FN. This is new evidence of how PEGylation variables can be used to stabilize FN while retaining its activity. The conjugates developed herein can be used to dissect molecular mechanisms mediated by FN stability and functionality, and address the problem of FN degradation in chronic wounds.

  16. Cosmetic textiles with biological benefits: gelatin microcapsules containing vitamin C.

    PubMed

    Cheng, Shuk Yan; Yuen, Marcus Chun Wah; Kan, Chi Wai; Cheuk, Kevin Ka Leung; Chui, Chung Hin; Lam, Kim Hung

    2009-10-01

    In recent years, textile materials with special applications in the cosmetic field have been developed. A new sector of cosmetic textiles is opened up and several cosmetic textile products are currently available in the market. Microencapsulation technology is an effective technique to control the release properties of active ingredients that prolong the functionality of cosmetic textiles. This study discusses the development of cosmetic textiles and addresses microencapsulation technology with respect to its historical background, significant advantages, microencapsulation methods and recent applications in the textile industry. Gelatin microcapsules containing vitamin C were prepared using emulsion hardening technique. Both the optical microscopy and scanning electron microscopy demonstrated that the newly developed microcapsules were in the form of core-shell spheres with relatively smooth surface. The particle size of microcapsules ranged from 5.0 to 44.1 microm with the average particle size being 24.6 microm. The gelatin microcapsules were proved to be non-cytotoxic based on the research findings of the toxicity studies conducted on human liver and breast cell lines as well as primary bone marrow culture obtained from patient with non-malignant haematological disorder. The gelatin microcapsules were successfully grafted into textile materials for the development of cosmetic textiles.

  17. Viscoelasticity of gelatin surfaces probed by AFM noise analysis.

    PubMed

    Benmouna, Farida; Johannsmann, Diethelm

    2004-01-01

    The viscoelastic properties of surfaces of swollen gelatin were investigated by analyzing the Brownian motion of an atomic force microscopy (AFM) cantilever in contact with the gel surface. A micron-sized glass sphere attached to the AFM cantilever is used as the dynamic probe. When the sphere approaches the gelatin surface, there is a static repulsive force without a jump into contact. The cantilever's Brownian movement is monitored in parallel, providing access to the dynamic sphere-surface interaction as quantified by the dynamic spring constant, kappa, and the drag coefficient, xi. Gelatin is used as a model substance for a variety of other soft surfaces, where the stiffness of the gel can be varied via the solvent quality, the bloom number, and the pH. The modulus derived from the static force-distance curve is in the kPa range, consistent with the literature. However, the dynamic spring constant as derived from the Brownian motion is much larger than the static differential spring constant dF/dz. On retraction, one observes a rather strong adhesion hysteresis. The strength of the bridge (as given by the dynamic spring constant and the drag coefficient) is very small. PMID:15745019

  18. Gelatin nanoparticles as gene carriers for transgenic chicken applications.

    PubMed

    Tseng, Ching-Li; Peng, Chu-Li; Huang, Jian-Yuan; Chen, Jung-Chih; Lin, Feng-Huei

    2013-05-01

    To develop a safe and effective nonviral gene delivery system for transgenic chicken manipulation, we developed gelatin nanocarriers using a reporter plasmid (pEGFP-C1; enhanced green fluorescence protein, EGFP) that expressed EGFP. pEGFP-C1-containing gelatin nanoparticles (GP/pEGFP) were prepared using a water-ethanol solvent displacement method and characterized by size, surface charge, DNA loading, and DNA protection ability. For gene delivery, pEGFP-C1 was stably and efficiently encapsulated in GPs that were approximately 300 nm in diameter with a slight negative surface charge, which was prepared from gelatin solution at pH 8.0. Approximately, 85% of the plasmid DNA was encapsulated in the GPs. Electrophoresis results showed that the GPs provided protection against DNase I digestion. We used the GP/pEGFP as a vector to transfect cells and chicken embryos. The vector was nontoxic to cells, and GFP expression was effectively expressed 24 h after HeLa cell transfection. Direct injection was adapted for vector transport to the chicken embryo; injection in the area opaca (Ao) of the egg resulted in the highest hatching rate without affecting embryo development. GFP gene expression in embryo sections was observed 4 days after injection. The results of this study demonstrate that GPs are a suitable nonviral vector for delivering exogenous genes for transgenic chicken manipulation.

  19. An NMR Study of Biomimetic Fluorapatite – Gelatine Mesocrystals

    PubMed Central

    Vyalikh, Anastasia; Simon, Paul; Rosseeva, Elena; Buder, Jana; Scheler, Ulrich; Kniep, Rüdiger

    2015-01-01

    The mesocrystal system fluoroapatite—gelatine grown by double-diffusion is characterized by hierarchical composite structure on a mesoscale. In the present work we apply solid state NMR to characterize its structure on the molecular level and provide a link between the structural organisation on the mesoscale and atomistic computer simulations. Thus, we find that the individual nanocrystals are composed of crystalline fluorapatite domains covered by a thin boundary apatite-like layer. The latter is in contact with an amorphous layer, which fills the interparticle space. The amorphous layer is comprised of the organic matrix impregnated by isolated phosphate groups, Ca3F motifs and water molecules. Our NMR data provide clear evidence for the existence of precursor complexes in the gelatine phase, which were not involved in the formation of apatite crystals, proving hence theoretical predictions on the structural pre-treatment of gelatine by ion impregnation. The interfacial interactions, which may be described as the glue holding the composite materials together, comprise hydrogen bond interactions with the apatite PO43− groups. The reported results are in a good agreement with molecular dynamics simulations, which address the mechanisms of a growth control by collagen fibers, and with experimental observations of an amorphous cover layer in biominerals. PMID:26515127

  20. An NMR Study of Biomimetic Fluorapatite - Gelatine Mesocrystals

    NASA Astrophysics Data System (ADS)

    Vyalikh, Anastasia; Simon, Paul; Rosseeva, Elena; Buder, Jana; Scheler, Ulrich; Kniep, Rüdiger

    2015-10-01

    The mesocrystal system fluoroapatite—gelatine grown by double-diffusion is characterized by hierarchical composite structure on a mesoscale. In the present work we apply solid state NMR to characterize its structure on the molecular level and provide a link between the structural organisation on the mesoscale and atomistic computer simulations. Thus, we find that the individual nanocrystals are composed of crystalline fluorapatite domains covered by a thin boundary apatite-like layer. The latter is in contact with an amorphous layer, which fills the interparticle space. The amorphous layer is comprised of the organic matrix impregnated by isolated phosphate groups, Ca3F motifs and water molecules. Our NMR data provide clear evidence for the existence of precursor complexes in the gelatine phase, which were not involved in the formation of apatite crystals, proving hence theoretical predictions on the structural pre-treatment of gelatine by ion impregnation. The interfacial interactions, which may be described as the glue holding the composite materials together, comprise hydrogen bond interactions with the apatite PO43- groups. The reported results are in a good agreement with molecular dynamics simulations, which address the mechanisms of a growth control by collagen fibers, and with experimental observations of an amorphous cover layer in biominerals.