Science.gov

Sample records for absorbable gelatin sponge

  1. Suspected Intraoperative Anaphylaxis to Gelatin Absorbable Hemostatic Sponge

    PubMed Central

    Ji, Joonyoung; Barrett, Edward J.

    2015-01-01

    Anaphylaxis under anesthesia is a life-threatening medical emergency that requires rapid identification and treatment. Allergies to agents with which the general population are likely to come into contact are usually identified, but patients are exposed to uncommon agents during anesthesia and surgery. Here, we describe a case of anaphylaxis under anesthesia implicating Gelfoam sponges. PMID:25849471

  2. Chitosan/gelatin composite sponge is an absorbable surgical hemostatic agent.

    PubMed

    Lan, Guangqian; Lu, Bitao; Wang, Tianyou; Wang, Lijuan; Chen, Jinghao; Yu, Kun; Liu, Jiawei; Dai, Fangying; Wu, Dayang

    2015-12-01

    Chitosan is a versatile biological material that is very well known for its hemostatic properties. The purpose of this study was to test the hemostatic properties of a chitosan composite obtained from silkworm pupae and gelatin. This spongy porous material was cross-linked with tannins and then freeze-dried under vacuum to obtain composites containing chitosan and gelatin in different proportions. Results showed that the best blood-clotting index (BCI) was achieved in vitro by a chitosan/gelatin sponge (CG) ratio of 5/5 (W/W). Furthermore, CG had the best hemostatic effect in rabbit artery bleeding and liver model tests compared to the two components separately. The better hemostatic effect of CG may be due to its ability to absorb blood platelets easily and to the higher liquid adsorption ratio. However, no obvious differences were observed in thrombin generation with both aPTT and PT tests. Cell toxicity tests with L929 cells showed that CG caused no obvious cytotoxicity. In addition, subcutaneous transplantation of CG into rabbits resulted in almost complete degradation of CG after 6 weeks, together with rich vascular generation and proliferation in the transplanted region. Thus, CG can be considered an effective absorbable hemostatic material. PMID:26590895

  3. Osteogenic differentiation of preosteoblasts on a hemostatic gelatin sponge.

    PubMed

    Kuo, Zong-Keng; Lai, Po-Liang; Toh, Elsie Khai-Woon; Weng, Cheng-Hsi; Tseng, Hsiang-Wen; Chang, Pei-Zen; Chen, Chih-Chen; Cheng, Chao-Min

    2016-01-01

    Bone tissue engineering provides many advantages for repairing skeletal defects. Although many different kinds of biomaterials have been used for bone tissue engineering, safety issues must be considered when using them in a clinical setting. In this study, we examined the effects of using a common clinical item, a hemostatic gelatin sponge, as a scaffold for bone tissue engineering. The use of such a clinically acceptable item may hasten the translational lag from laboratory to clinical studies. We performed both degradation and biocompatibility studies on the hemostatic gelatin sponge, and cultured preosteoblasts within the sponge scaffold to demonstrate its osteogenic differentiation potential. In degradation assays, the gelatin sponge demonstrated good stability after being immersed in PBS for 8 weeks (losing only about 10% of its net weight and about 54% decrease of mechanical strength), but pepsin and collagenases readily biodegraded it. The gelatin sponge demonstrated good biocompatibility to preosteoblasts as demonstrated by MTT assay, confocal microscopy, and scanning electron microscopy. Furthermore, osteogenic differentiation and the migration of preosteoblasts, elevated alkaline phosphatase activity, and in vitro mineralization were observed within the scaffold structure. Each of these results indicates that the hemostatic gelatin sponge is a suitable scaffold for bone tissue engineering. PMID:27616161

  4. Periodontal tissue regeneration with PRP incorporated gelatin hydrogel sponges.

    PubMed

    Nakajima, Dai; Tabata, Yasuhiko; Sato, Soh

    2015-09-01

    Gelatin hydrogels have been designed and prepared for the controlled release of the transforming growth factor (TGF-b1) and the platelet-derived growth factor (PDGF-BB). PRP (Platelet rich plasma) contains many growth factors including the PDGF and TGF-b1. The objective of this study was to evaluate the regeneration of periodontal tissue following the controlled release of growth factors in PRP. For the periodontal ligament cells and osteoblast, PRP of different concentrations was added. The assessment of DNA, mitochondrial activity and ALP activity were measured. To evaluate the TGF-β1 release from PRP incorporated gelatin sponge, amounts of TGF-β1 in each supernatant sample were determined by the ELISA. Transplantation experiments to prepare a bone defect in a rat alveolar bone were an implanted gelatin sponge incorporated with different concentration PRP. In DNA assay and MTT assay, after the addition of PRP to the periodontal ligament cells and osteoblast, the cell count and mitochondrial activity had increased the most in the group with the addition of 5  ×  PRP. In the ALP assay, after the addition of PRP to the periodontal ligament cells, the cell activity had increased the most in the group with the addition of 3  ×  PRP. In the transplantation, the size of the bone regenerated in the defect with 3  ×  PRP incorporated gelatin sponge was larger than that of the other group. PMID:26481592

  5. The Size of Gelatin Sponge Particles: Differences with Preparation Method

    SciTech Connect

    Katsumori, Tetsuya Kasahara, Toshiyuki

    2006-12-15

    Purpose. To assess whether the size distribution of gelatin sponge particles differed according to the method used to make them and the type of original sheet. Methods. Gelatin sponge particles of approximately 1-1.5 x 1-1.5 x 2 mm were made from either Spongel or Gelfoam sheets by cutting with a scalpel and scissors. Particles were also made of either Spongel or Gelfoam sheets by pumping with two syringes and a three-way stopcock. The size distribution of the particles in saline was compared among the groups. Results. (1) Cutting versus pumping: When Spongel was used, cutting produced lower rates of smaller particles {<=}500 {mu}m and larger particles >2000 {mu}m compared with pumping back and forth 30 times (1.1% vs 37.6%, p < 0.0001; 2.2% vs 14.4%, p = 0.008). When Gelfoam was used, cutting produced lower rates of smaller and larger particles compared with pumping (8.5% vs 20.4%, p = 0.1809; 0% vs 48.1%, p < 0.0001). (2) Spongel versus Gelfoam: There was no significant difference in the size distribution of the particles between Spongel and Gelfoam (p = 0.2002) when cutting was used. Conclusion. The size distribution of gelatin sponge particles differed according to the method used to make them. More uniform particle sizes can be achieved by cutting than by pumping.

  6. Local Application of Ibandronate/Gelatin Sponge Improves Osteotomy Healing in Rabbits

    PubMed Central

    Xia, Zhidao; Liu, Yueju; Peggrem, Shaun; Geng, Tao; Yang, Zhaoxu; Li, Han; Xu, Bin; Zhang, Chi; Triffitt, James T.; Zhang, Yingze

    2015-01-01

    Delayed healing or non-union of skeletal fractures are common clinical complications. Ibandronate is a highly potent anti-catabolic reagent used for treatment of osteopenia and fracture prevention. We hypothesized that local application of ibandronate after fracture fixation may improve and sustain callus formation and therefore prevent delayed healing or non-union. This study tested the effect of local application of an ibandronate/gelatin sponge composite on osteotomy healing. A right-side distal-femoral osteotomy was created surgically, with fixation using a k-wire, in forty adult male rabbits. The animals were divided into four groups of ten animals and treated by: (i) intravenous injection of normal saline (Control); (ii) local implantation of absorbable gelatin sponge (GS); (iii) local implantation of absorbable GS containing ibandronate (IB+GS), and (iv) intravenous injection of ibandronate (IB i.v.). At two and four weeks the affected femora were harvested for X-ray photography, computed tomography (CT), biomechanical testing and histopathology. At both time-points the results showed that the calluses in both the ibandronate-treated groups, but especially in the IB+GS group, were significantly larger than in the control and GS groups. At four weeks the cross sectional area (CSA) and mechanical test results of ultimate load and energy in the IB+GS group were significantly higher than in other groups. Histological procedures showed a significant reduction in osteoclast numbers in the IB+GS and IB i.v. groups at day 14. The results indicate that local application of an ibandronate/gelatin sponge biomaterial improved early osteotomy healing after surgical fixation and suggest that such treatment may be a valuable local therapy to enhance fracture repair and potentially prevent delayed or non-union. PMID:25951178

  7. A New Soluble Gelatin Sponge for Transcatheter Hepatic Arterial Embolization

    SciTech Connect

    Takasaka, Isao; Kawai, Nobuyuki; Sato, Morio Sahara, Shinya; Minamiguchi, Hiroyuki; Nakai, Motoki; Ikoma, Akira; Nakata, Kouhei; Sonomura, Tetsuo

    2010-12-15

    To prepare a soluble gelatin sponge (GS) and to explore the GS particles (GSPs) that inhibit development of collateral pathways when transcatheter hepatic arterial embolization is performed. The approval of the Institutional Committee on Research Animal Care of our institution was obtained. By means of 50 and 100 kDa of regenerative medicine-gelatin (RM-G), RM-G sponges were prepared by freeze-drying and heating to temperatures of 110-150{sup o}C for cross-linkage. The soluble times of RM-GSPs were measured in vitro. Eight swine for transcatheter hepatic arterial embolization were assigned into two groups: six received 135{sup o}C/50RM-GSPs, 125{sup o}C/100RM-GSPs, and 138{sup o}C/50RM-GSPs, with soluble time of 48 h or more in vitro; two swine received Gelpart GSPs (G-GSPs) with insoluble time of 14 days as a control. Transarterial chemoembolization was performed on two branches of the hepatic artery per swine. RM-GSPs heated at temperatures of 110-138{sup o}C were soluble. Mean soluble times of the RM-GSPs increased with higher temperature. Hepatic branches embolized with G-GSP remained occluded after 6 days, and development of collateral pathways was observed after 3 days. Hepatic branches embolized with 135{sup o}C/50RM-GSP and 125{sup o}C/100RM-GSP remained occluded for 4 h, and recanalization was observed after 1 day. Hepatic branches embolized with 138{sup o}C/50RM-GS remained occluded for 1 day, and recanalization was observed after 2 days with no development of collateral pathways. In RM-GSs with various soluble times that were prepared by modulating the heating temperature, 138{sup o}C/50RM-GSP was the soluble GSP with the longest occlusion time without inducing development of collateral pathways.

  8. A Comparison of Conventional Collagen Sponge and Collagen-Gelatin Sponge in Wound Healing

    PubMed Central

    Jinno, Chizuru; Morimoto, Naoki; Ito, Ran; Sakamoto, Michiharu; Ogino, Shuichi; Taira, Tsuguyoshi; Suzuki, Shigehiko

    2016-01-01

    The objective of this study was to compare the effectiveness of the collagen-gelatin sponge (CGS) with that of the collagen sponge (CS) in dermis-like tissue regeneration. CGS, which achieves the sustained release of basic fibroblast growth factor (bFGF), is a promising material in wound healing. In the present study, we evaluated and compared CGSs and conventional CSs. We prepared 8 mm full-thickness skin defects on the backs of rats. Either CGSs or CSs were impregnated with normal saline solution (NSS) or 7 μg/cm2 of bFGF solution and implanted into the defects. At 1 and 2 weeks after implantation, tissue specimens were obtained from the rats of each group (n = 3, total n = 24). The wound area, neoepithelial length, dermis-like tissue area, and the number and area of capillaries were evaluated at 1 and 2 weeks after implantation. There were no significant differences in the CGS without bFGF and CS groups. Significant improvements were observed in the neoepithelial length, the dermis-like tissue area, and the number of newly formed capillaries in the group of rats that received CGSs impregnated with bFGF. The effects on epithelialization, granulation, and vascularization of wound healing demonstrated that, as a scaffold, CGSs are equal or superior to conventional CSs. PMID:27218103

  9. Preventive effect of dexamethasone gelatin sponge on the lumbosacral epidural adhesion

    PubMed Central

    Tian, Fuming; Dou, Changwu; Qi, Songtao; Zhao, Liqun; Chen, Bo; Yan, Haicheng; Zhang, Li

    2015-01-01

    Objective: This study aims to explore the preventive effect of dexamethasone gelatin sponge on the lumbosacral epidural adhesion in the laminectomy. Methods: A total of 36 Wista rats were divided into A, B, C and D groups randomly. Dexamethasone was not used in group A, Dexamethasone was used in group B, Dexamethasone was not used in group C but covered with gelatin sponge, dexamethasone gelatin sponge was used in group D. 3 rats in each group were sacrificed at 4, 8 and 12 weeks after operation respectively and the wound was opened to observe the dural scar formation and the dura adhesion. Immunohistochemical technique was used for histology observation. The expressions of VEGF and VEGFR2 in the epidural scar and surrounding tissues were detected with western blotting and immunohistochemical methods. Results: According to the Rydell score standard, there were different degree of adhesion formation in A, B and C groups while there was no obvious adhesion formation in D group. It was confirmed that the expressions of VEGF and VEGFR2 in group D were lower than that of the other groups. Conclusions: Dexamethasone gelatin sponge could significantly reduce the occurrence of epidural scar tissue hyperplasia and adhesion after laminectomy in rats, and its mechanism may be related to the decreased expression of VEGF and VEGFR2. PMID:26131126

  10. Malignant progression of a mouse fibrosarcoma by host cells reactive to a foreign body (gelatin sponge).

    PubMed Central

    Okada, F.; Hosokawa, M.; Hamada, J. I.; Hasegawa, J.; Kato, M.; Mizutani, M.; Ren, J.; Takeichi, N.; Kobayashi, H.

    1992-01-01

    The QR regressor tumour (QR-32), a fibrosarcoma which is unable to grow progressively in normal syngeneic C57BL/6 mice, was able to grow progressively in 13 out of 22 mice (59%) when it was subcutaneously coimplanted with gelatin sponge. We established four culture tumour lines from the resultant tumours (QRsP tumour lines). These QRsP tumour lines were able to grow progressively in mice even in the absence of gelatin sponge. The ability of QRsP tumour cells to colonise the lungs after intravenous injection and to produce high amounts of prostaglandin E2 (PGE2) during in vitro cell culture was much greater than that of parent QR-32 cells. These biological characteristics of QR-32 cells and QRsP tumour cells were found to be stable for at least 6 months when they were maintained in culture. We also observed that QR-32 cells were able to grow progressively in five out of 12 (42%) mice after coimplantation with plastic non-adherent peritoneal cells obtained from mice which had been intraperitoneally implanted with gelatin sponge. These host cells reactive to gelatin sponge increased the production of high amounts of PGE2 by QR-32 cells during 48 h coculture. Preliminary in vitro studies implicated the involvement of hydrogen peroxide and hydroxyl radical as some of the factors necessary to induce QR-32 cells to produce high amounts of PGE2 and to accelerate tumour progression. PMID:1419599

  11. Using absorbable chitosan hemostatic sponges as a promising surgical dressing.

    PubMed

    Huang, Xiaofei; Sun, Yongfu; Nie, Jingyi; Lu, Wentao; Yang, Ling; Zhang, Zhiliang; Yin, Hongping; Wang, Zhengke; Hu, Qiaoling

    2015-04-01

    As absorbable hemostatic dressings, chitosan with a deacetylation degree of 40% (CS-40) and 73% (CS-73) have been fabricated into sponges via a modified method. The hemostatic, biocompatible and biodegradable properties were evaluated through in vivo assays. In a hepatic hemorrhage model, the chitosan sponges, with excellent blood compatibility, achieved less blood loss than the gelation sponge (GS). In addition, CS-40 showed better hemostatic capability and biodegradability than CS-73. After implantation, a histological analysis indicated that CS-40 exhibited the best biodegradability, tissue regeneration and least tissue adhesion. By contrasting CS-40 and CS-73, the deacetylation degree is confirmed to be a key factor for the hemostatic effect, biodegradability, biocompatibility and tissue regeneration. Our overall results demonstrated the potential application of CS-40 for use in absorbable hemostatic dressings. PMID:25661881

  12. Implantable biodegradable sponges: effect of interpolymer complex formation of chitosan with gelatin on the release behavior of tramadol hydrochloride.

    PubMed

    Foda, Nagwa H; El-laithy, Hanan M; Tadros, Mina I

    2007-01-01

    The effect of interpolymer complex formation between positively charged chitosan and negatively charged gelatin (Type B) on the release behavior of tramadol hydrochloride from biodegradable chitosan-gelatin sponges was studied. Mixed sponges were prepared by freeze-drying the cross-linked homogenous stable foams produced from chitosan and gelatin solutions where gelatin acts as a foam builder. Generation of stable foams was optimized where concentration, pH of gelatin solution, temperature, speed and duration of whipping process, and, chitosan-gelatin ratio drastically affect the properties and the stability of the produced foams. The prepared sponges were evaluated for their morphology, drug content, and microstructure using scanning electron microscopy, mechanical properties, uptake capacity, drug release profile, and their pharmacodynamic activity in terms of the analgesic effect after implantation in Wistar rats. It was revealed that whipping 7% (w/w) gelatin solution, of pH 5.5, for 15 min at 25 degrees C with a stirring speed of 1000 rpm was the optimum conditions for stable gelatin foam generation. Moreover, homogenous, uniform chitosan-gelatin foam with small air bubbles were produced by mixing 2.5% w/w chitosan solution with 7% w/w gelatin solution in 1:5 ratio. Indeed, polyionic complexation between chitosan and gelatin overcame the drawbacks of chitosan sponge mechanical properties where, pliable, soft, and compressible sponge with high fluid uptake capacity was produced at 25 degrees C and 65% relative humidity without any added plasticizer. Drug release studies showed a successful retardation of the incorporated drug where the t50% values of the dissolution profiles were 0.55, 3.03, and 4.73 hr for cross-linked gelatin, un-cross-linked chitosan-gelatin, and cross-linked chitosan-gelatin sponges, respectively. All the release experiments followed Higuchi's diffusion mechanism over 12 hr. The achieved drug prolongation was a result of a combined effect

  13. Magnetic Resonance Angiography of Uterine Artery: Changes with Embolization Using Gelatin Sponge Particles Alone for Fibroids

    SciTech Connect

    Katsumori, Tetsuya Kasahara, Toshiyuki; Kin, Yoko; Ichihashi, Shigeo

    2007-06-15

    Purpose. To assess uterine artery recanalization, together with tumor devascularization, after embolization using gelatin sponge particles alone for fibroids. Methods. Twenty-seven patients underwent uterine artery embolization (UAE) for fibroids using only gelatin sponge particles. The angiographic endpoint of embolization was defined as near stasis of contrast medium in the ascending segment of the uterine artery. All patients underwent contrast-enhanced magnetic resonance angiography (MRA) before and 4 months after UAE, and contrast-enhanced magnetic resonance imaging (CE-MRI) before, 1 week after, and 4 months after UAE. The visualization of the uterine arteries before and 4 months after UAE was assessed using MRA. The infarction rates of the largest tumor were assessed using CE-MRI 1 week after UAE. Results. MRA 4 months after UAE showed 100% (53/53) of the descending and transverse segments, and 88% (43/49) of the ascending segments that had been noted on baseline MRA. The visualization of the ascending segments on MRA 4 months after UAE was identical to that on baseline MRA in 20 of 27 patients (74%). CE-MRI showed complete infarction of the largest tumor in 22 of 27 patients (81%), and 90-99% infarction of the largest tumor in the remaining 5 of 27 patients (19%). Conclusion. Based on the MR study, in most cases uterine artery recanalization occurred, together with sufficient devascularization of fibroids, after UAE using gelatin sponge particles alone.

  14. Evaluation of the Role of Cisplatin-conjugated-soluble Gelatin Sponge: Feasibility Study in a Swine Model

    SciTech Connect

    Ikoma, Akira; Kawai, Nobuyuki; Sato, Morio Minamiguchi, Hiroyuki; Nakata, Kouhei; Nakai, Motoki; Sanda, Hiroki; Sonomura, Tetsuo; Kanayama, Yoshitaka; Sakai, Yasuo

    2013-08-01

    PurposeTo evaluate the safety and the delivery function of cisplatin-conjugated-soluble gelatin sponge in a swine model.MethodsFifteen healthy young swine were assigned into three groups: transarterial cisplatin infusion group, transarterial chemoembolization (TACE) with cisplatin-conjugated 120-min soluble gelatin sponge (TACE-120) group, and TACE with cisplatin-conjugated 360-min soluble gelatin sponge (TACE-360) group. A total volume of 0.8 mL/kg cisplatin in each group and 8 mg/kg soluble gelatin sponge in TACE-120 and TACE-360 groups were injected from the left hepatic artery in small increments for 10 min. Common hepatic angiography and whole-blood sampling via the left hepatic vein were conducted to explore recanalization immediately after the procedure and again at 10, 30, 60, 90, 120, 180, 240, 300, 360, and 420 min later. The area under the plasma concentration curve (AUC) of non-protein-bound platinum was compared among the three groups. Each liver was removed and cut into 10-cm-thick sections for calculating liver-damaged volume ratio.ResultsSequential angiography depicted gradual recanalization of the occluded hepatic artery and total recanalization at 120 and 360 min after embolization in the TACE-120 and TACE-360 groups, respectively. Of the three groups, AUC{sub 0-30}, AUC{sub 30-120}, and AUC{sub 120-420} were significantly highest in the transarterial cisplatin infusion group (p < 0.001), the TACE-120 group (p < 0.001), and the TACE-360 group (p < 0.001), respectively. The liver-damaged volume ratio in the TACE-360 group was small (8.20 %) but significantly higher than that in the TACE-120 group (2.67 %, p = 0.014).ConclusionCisplatin-conjugated soluble gelatin sponge functions as a cisplatin carrier and is associated with tolerable liver damage.

  15. Biomimetic interconnected porous keratin-fibrin-gelatin 3D sponge for tissue engineering application.

    PubMed

    Singaravelu, Sivakumar; Ramanathan, Giriprasath; Raja, M D; Nagiah, Naveen; Padmapriya, P; Kaveri, Krishnasamy; Sivagnanam, Uma Tiruchirapalli

    2016-05-01

    The medicated wound dressing material with highly interconnected pores, mimicking the function of the extracellular matrix was fabricated for the promotion of cell growth. In this study, keratin (K), fibrin (F) and gelatin (G) composite scaffold (KFG-SPG) was fabricated by freeze drying technique and the mupirocin (D) drug was successfully incorporated with KFG-SPG (KFG-SPG-D) intended for tissue engineering applications. The fabrication of scaffold was performed without the use of any strong chemical solvents, and the solid sponge scaffold was obtained with well interconnected pores. The porous morphology of the scaffold was confirmed by SEM analysis and exhibited competent mechanical properties. KFG-SPG and KFG-SPG-D possess high level of biocompatibility, cell proliferation and cell adhesion of NIH 3T3 fibroblast and human keratinocytes (HaCaT) cell lines thereby indicating the scaffolds potential as a suitable medicated dressing for wound healing. PMID:26875534

  16. Effects of gelatin sponge combined with moist wound-healing nursing intervention in the treatment of phase III bedsore

    PubMed Central

    LI, YANLING; YAO, MEIYING; WANG, XIA; ZHAO, YANQING

    2016-01-01

    Pressure sore pertains to tissue damage or necrosis that occurs due to lack of adequate nutrition following long-term exposure to pressure and decreased blood circulation. The aim of the study was to examine the effects of gelatin sponge combined with moist wound-healing nursing intervention in the treatment of phase III bedsore. In total, 50 patients with phase III bedsore were included in the present study. The patients were randomly divided into the control (n=25) and observation (n=25) groups. Patients in the control group received conventional nursing, while those in the observation group received gelatin sponge combined with moist wound healing nursing. The effects of the two nursing methods were compared and analyzed. The results showed that the improvement rate of the observation group was significantly higher than that of the control group (P<0.05). The Branden score and area of pressure sore of the observation group were significantly lower than those of the control group (P<0.05). The frequency and time of dressing change and the average cost of hospitalization of the observation group were significantly lower than those of the control group (P<0.001). In conclusion, gelatin sponge combined with moist wound-healing nursing intervention may significantly improve the treatment of phase III bedsore. PMID:27313666

  17. Bilayer porous scaffold based on poly-(ɛ-caprolactone) nanofibrous membrane and gelatin sponge for favoring cell proliferation

    NASA Astrophysics Data System (ADS)

    Zhou, Zhihua; Zhou, Yang; Chen, Yiwang; Nie, Huarong; Wang, Yang; Li, Fan; Zheng, Yan

    2011-12-01

    Electrospun poly-(ɛ-caprolactone) (PCL) nanofibers has been widely used in the medical prosthesis. However, poor hydrophilicity and the lack of natural recognition sites for covalent cell-recognition signal molecules to promote cell attachment have limited its utility as tissue scaffolds. In this study, Bilayer porous scaffolds based on PCL electrospun membranes and gelatin (GE) sponges were fabricated through soft hydrolysis of PCL electrospun followed by grafting gelatin onto the fiber surface, through crosslinking and freeze drying treatment of additional gelatin coat and grafted gelatin surface. GE sponges were stably anchored on PCL membrane surface with the aid of grafted GE molecules. The morphologies of bilayer porous scaffolds were observed through SEM. The contact angle of the scaffolds was 0°, the mechanical properties of scaffolds were measured by tensile test, Young's moduli of PCL scaffolds before and after hydrolysis are 66-77.3 MPa and 62.3-75.4 MPa, respectively. Thus, the bilayer porous scaffolds showed excellent hydrophilic surface and desirable mechanical strength due to the soft hydrolysis and GE coat. The cell culture results showed that the adipose derived mesenchymal stem cells did more favor to adhere and grow on the bilayer porous scaffolds than on PCL electrospun membranes. The better cell affinity of the final bilayer scaffolds not only attributed to the surface chemistry but also the introduction of bilayer porous structure.

  18. Dependency of tissue necrosis on gelatin sponge particle size after canine hepatic artery embolization

    SciTech Connect

    Sonomura, Tetsuo; Yamada, Ryusaku; Kishi, Kazushi; Nishida, Norifumi; Yang, Ren J.; Sato, Morio

    1997-01-15

    Purpose. To determine the optimal size of gelatin sponge particles (GSPs) to produce maximum tumor necrosis with minimum side effects after canine hepatic artery embolization (HAE). Methods. GSPs were separated into four size ranges: A, up to 200 {mu}m (mean 152) as Gelfoam powder; B, 200-500 {mu}m (mean 336) as Gelfoam powder; C, 500-1000 {mu}m (mean 649) as Spongel; and D, 1000-2000 {mu}m (mean 1382) as Spongel. Three mongrel dogs were assigned randomly to HAE with each particle size. On day 7 after HAE, the livers were removed and subjected to pathological examination. Results. The mean volume of liver necrosis was 11% after embolization, with particle size A, 36.3% with B, 0% with C, and 1% with D. Coagulation necrosis was found in all livers with particles of sizes A and B, and in 1 of 6 with sizes C and D. Bile duct injury was found in five of six dogs with sizes A and B and in none with sizes C and D. Gallbladder necrosis was found in one dog with size B and pancreas necrosis in one with size A. Conclusion. GSPs of 500 {mu}m are considered optimally effective for tissue necrosis according to this model.

  19. Gelatin

    MedlinePlus

    ... recovery after exercise and sports-related injury. In manufacturing, gelatin is used for preparation of foods, cosmetics, ... animal sources. Some people are worried that unsafe manufacturing practices might lead to contamination of gelatin products ...

  20. Efficacies of uterine artery embolization for symptomatic uterine fibroids using gelatin sponge: a single-center experience and literature review

    PubMed Central

    Toda, Aska; Sawada, Kenjiro; Osuga, Keigo; Maeda, Noboru; Higashihara, Hiroki; Sasano, Tomoyuki; Tomiyama, Noriyuki; Kimura, Tadashi

    2016-01-01

    Aim The aim of this study was to retrospectively analyze the efficacies of uterine artery embolization (UAE) using gelatin sponge for symptomatic uterine fibroids. Methods A series of 60 consecutive premenopausal women underwent UAE using gelatin sponge particles or porous gelatin particles. Patients were routinely followed up at 1, 3, 6, and 12 months after the procedure and asked to report any procedure-related complications. At each follow-up, an original clinical questionnaire was completed by the patients to evaluate changes in fibroid-related symptoms. Pelvic magnetic resonance imaging was performed before and at 3 and 12 months after the procedure, and the changes in volume of the dominant fibroid were calculated. Results Bilateral UAE was successfully performed in all the patients. Median age was 45 years (range 34–53 years), and median follow-up period was 25.2 months (range 1–116 months). At the 3- and 12-month follow-up, the dominant fibroid volumes were found to be significantly decreased by 33.4% (95% confidence interval [CI]: 24.9–41.1) and 48.4% (95% CI: 40.7–56.1) compared to baseline volumes, respectively. Excluding patients not having menorrhagia or bulk-related symptoms, at 12 months 49 of 50 (98%) women showed improvement in menorrhagia, and 45 of 47 (95.7%) women showed improvement in bulk-related symptoms. During the follow-up period, ten patients (16.7%) required further interventions including two patients who had undergone hysterectomy. No sequelae were experienced by any of the patients. Conclusion UAE using gelatin sponge was associated with a high clinical success rate and good fibroid volume reduction compared to UAE using other embolic agents. PMID:27574469

  1. Transcatheter Arterial Chemoembolization With Gelatin Sponge Microparticles Treated for BCLC Stage B Hepatocellular Carcinoma: A Single Center Retrospective Study.

    PubMed

    Kamran, Asad Ullah; Liu, Ying; Li, Feng E; Liu, Song; Wu, Jian Lin; Zhang, Yue Wei

    2015-12-01

    Gelatin sponge particles are commonly used in the conventional transarterial chemoembolization (c-TACE) as an adjuvant embolizing agent for hepatocellular carcinoma (HCC). However, there are few reports regarding the clinical applications of gelatin sponge microparticles (GSMs) as a main embolizing agent in the treatment of HCC. This retrospective study aim to evaluate the efficacy and safety of patients with Barcelona Clinic Liver Cancer (BCLC) stage B HCC treated with intra-arterial injection of 350 to 560 μm GSMs mixed with anticancer agents.Twenty-four patients with unresectable BCLC stage B HCC without any prior treatment underwent transarterial chemoembolization with gelatin sponge microparticles (GSMs-TACE) of diameter 350 to 560 μm mixed with lobaplatin. The mixture was injected into tumor-feeding arteries until the sluggish flow in selective artery. Safety was measured by assessing complication rate, and efficacy was reflected by assessing response to mRECIST therapy and overall survival. The survival rate was calculated using the Kaplan-Meier method.All 24 BCLC stage B HCC patients showed good tolerance to the procedure. The mean follow-up period was 27 months and mean number of TACE treatments per patient was 3.7 sessions (range 1-10) during the follow-up period. Postprocedure complications were mild and treated by symptomatic treatment. Six months and 1 year overall survival rates were 100% and 87.5%, respectively. Overall median survival time was 25 months (95%CI: 21.06-28.95 months).GSMs-TACE is a safe and effective method for BCLC stage B HCC patients. PMID:26717358

  2. Gelatin

    MedlinePlus

    Gelatin contains collagen, which is one of the materials that make up cartilage and bone. This is why some people think ... Collagen Hydrolysate, Collagène Dénaturé, Collagène Hydrolysé, Collagène Marin Hydrolysé, Denatured Collagen, Gelatina, Gelatine, Gélatine, Gélatine Hydrolysée, Hydrolised ...

  3. Improved in vitro biocompatibility of surface-modified hydroxyapatite sponge scaffold with gelatin and BMP-2 in comparison against a commercial bone allograft.

    PubMed

    Carpena, Nathaniel T; Min, Young-Ki; Lee, Byong-Taek

    2015-01-01

    This study aims to demonstrate the morphology and in vitro biocompatibility of neat and surface-modified hydroxyapatite sponge scaffold (SM-HASS) which was fabricated using a sponge replica method, and compared with the commercially available demineralized freeze-dried bone allograft (DFDBA). Surface-modifications were done by coating the surface area of the neat hydroxyapatite sponge scaffold (HASS) with either gelatin alone (HASS/G) or gelatin and BMP-2 growth factor (HASS/G+B). Scanning electron microscope (SEM), Fourier transform infrared (FTIR), porosity, pore size distribution, and compressive strength analyses showed that the addition of gelatin in HASS/G produced a morphologically and structurally similar scaffold to that of the allograft. The addition of BMP-2 improved the biocompatibility of the HASS/G+B in vitro using MC3T3-E1 cells which showed better cell viability, proliferation, and cell adhesion than on the allograft. Therefore, hydroxyapatite scaffold coated with gelatin polymer and gelatin with BMP-2 growth factor showed comparable performance against commercially available DFDBA from cadaver with regards to structure and in vitro biocompatibility. PMID:25248041

  4. Fabrication and in vitro evaluation of a sponge-like bioactive-glass/gelatin composite scaffold for bone tissue engineering.

    PubMed

    Nadeem, Danish; Kiamehr, Mostafa; Yang, Xuebin; Su, Bo

    2013-07-01

    In this work a bioactive composite scaffold, comprised of bioactive-glass and gelatin, is introduced. Through direct foaming a sponge-like composite of a sol-gel derived bioactive-glass (70S30C; 70% SiO2, 30% CaO) and porcine gelatin was developed for use as a biodegradable scaffold for bone tissue engineering. The composite was developed to provide a suitable alternative to synthetic polymer based scaffolds, allowing directed regeneration of bone tissue. The fabricated scaffold was characterised through X-ray microtomography, scanning electron and light microscopy demonstrating a three dimensionally porous and interconnected structure, with an average pore size (170 μm) suitable for successful cell proliferation and tissue ingrowth. Acellular bioactivity was assessed through apatite formation during submersion in simulated body fluid (SBF) whereby the rate and onset of apatite nucleation was found to be comparable to that of bioactive-glass. Modification of dehydrothermal treatment parameters induced varying degrees of crosslinking, allowing the degradation of the composite to be tailored to suit specific applications and establishing its potential for a wide range of applications. Use of genipin to supplement crosslinking by dehydrothermal treatment provided further means of modifying degradability. Biocompatibility of the composite was qualified through successful cultures of human dental pulp stem cells (HDPSCs) on samples of the composite scaffold. Osteogenic differentiation of HDPSCs and extracellular matrix deposition were confirmed through positive alkaline phosphatase staining and immunohistochemistry. PMID:23623083

  5. Sponge

    2011-11-15

    Sponge provides a web interface to Pulp (http://pulpproject.org/) that implements a particular workflow as described in the paper “Staging Package Deployment via Repository Management” (http://www.usenix.org/events/lisa11/tech/full_papers/Pierre.pdf). Namely, it implements a process for intensive management of software repositories to apply more deterministic updates to clients of those repositories.

  6. Initial Experience of Uterine Fibroid Embolization Using Porous Gelatin Sponge Particles

    SciTech Connect

    Katsumori, Tetsuya Kasahara, Toshiyuki; Oda, Minori; Kotani, Tomoya

    2011-06-15

    The purpose of this study was to prospectively assess the safety and effectiveness of uterine artery embolization (UAE) using porous gelatin particle (PGP; Gelpart; Asuterasu, Tokyo, Japan) for symptomatic uterine fibroids. Twenty-five consecutive premenopausal women underwent UAE with PGP. The angiographic end point of embolization was near stasis of the ascending uterine artery. Pelvic magnetic resonance imaging (MRI) was obtained before and after the procedure. Complications were assessed. The outcomes of technique, infarction rates of all fibroid tissue after UAE with contrast-enhanced MRI, change in symptoms and quality of life using serial Uterine Fibroid Symptom and Quality of Life (UFS-QOL) questionnaires, and additional interventions were evaluated. Bilateral UAE was successfully performed in all patients. Enhanced MRI 1 week after UAE showed that 100% infarction of all fibroid tissue was achieved in 65% (15 of 23) of patients; 90-99% infarction was achieved in 35% (8 of 23) of patients. Mean follow-up was 12 months (range 1-20). Symptom and QOL scores at baseline were 47.2 and 61.7, respectively. Both scores significantly improved to 26.3 (P < 0.001) and 82.4 (P < 0.001) at 4 months and to 20.4 (P < 0.001) and 77.6 (P < 0.001) at 1 year, respectively. No additional gynecologic interventions were performed in any patient. There were no major complications. Minor complications occurred in two patients. UAE using PGP is a safe and effective procedure and shows that outcomes after UAE, as measured with enhanced MRI and UFS-QOL questionnaires, seem comparable with those of UAE using other embolic agents. PGP is a promising embolic agent used for UAE to treat symptomatic uterine fibroids. Further comparative study between PGP and other established embolic agents is required.

  7. In vitro characterization of MG-63 osteoblast-like cells cultured on organic-inorganic lyophilized gelatin sponges for early bone healing.

    PubMed

    Rodriguez, Isaac A; Saxena, Gunjan; Hixon, Katherine R; Sell, Scott A; Bowlin, Gary L

    2016-08-01

    The development of three-dimensional porous scaffolds with enhanced osteogenic and angiogenic potential would be beneficial for inducing early-stage bone regeneration. Previous studies have demonstrated the advantages of mineralized and nonmineralized acellular 1-Ethyl-3-[3-dimethylaminopropyl]carbodiimide hydrochloride (EDC) cross-linked gelatin sponges enhanced with preparations rich in growth factors, hydroxyapatite, and chitin whiskers. In this study, those same scaffolds were mineralized and dynamically seeded with MG-63 cells. Cell proliferation, protein/cytokine secretion, and compressive mechanical properties of scaffolds were evaluated. It was found that mineralization and the addition of growth factors increased cell proliferation compared to gelatin controls. Cells on all scaffolds responded in an appropriate bone regenerative fashion as shown through osteocalcin secretion and little to no secretion of bone resorbing markers. However, compressive mechanical properties of cellularized scaffolds were not significantly different from acellular scaffolds. The combined results of increased cellular attachment, infiltration, and bone regenerative protein/cytokine secretion on scaffolds support the need for the addition of a bone-like mineral surface. Cellularized scaffolds containing growth factors reported similar advantages and mechanical values in the range of native tissues present in the early stages of bone healing. These results suggest that the developed composite sponges exhibited cellular responses and mechanical properties appropriate for promoting early bone healing in various applications. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2011-2019, 2016. PMID:27038217

  8. Osteoinductivity of gelatin/β-tricalcium phosphate sponges loaded with different concentrations of mesenchymal stem cells and bone morphogenetic protein-2 in an equine bone defect model.

    PubMed

    Seo, Jong-Pil; Tsuzuki, Nao; Haneda, Shingo; Yamada, Kazutaka; Furuoka, Hidefumi; Tabata, Yasuhiko; Sasaki, Naoki

    2014-03-01

    Fracture is one of the most life-threatening injuries in horses. Fracture repair is often associated with unsatisfactory outcomes and is associated with a high incidence of complications. This study aimed to evaluate the osteogenic effects of gelatin/β-tricalcium phosphate (GT) sponges loaded with different concentrations/ratios of mesenchymal stem cells (MSCs) and bone morphogenetic protein-2 (BMP-2) in an equine bone defect model. Seven thoroughbred horses were used in this study. Eight bone defects were created in the third metatarsal bones of each horse. Then, eight treatments, namely control, GT, GT/M-5, GT/M-6, GT/M-5/B-1, GT/M-5/B-3, GT/M-6/B-1, and GT/M-6/B-3 were applied to the eight different sites in a randomized manner (M-5: 2 × 10(5) MSCs; M-6: 2 × 10(6) MSCs; B-1: 1 μg of BMP-2; B-3: 3 μg of BMP-2). Repair of bone defects was assessed by radiography, quantitative computed tomography (QCT), and histopathological evaluation. Radiographic scores and CT values were significantly lower in the control group than in the other groups, while they were significantly higher in the GT/M-5/B-3 and GT/M-6/B-3 groups than in the other groups. The amount of mature compact bone filling the defects was greater in the GT/M-5/B-3 and GT/M-6/B-3 groups than in the other groups. The present study demonstrated that the GT sponge loaded with MSCs and BMP-2 promoted bone regeneration in an equine bone defect model. The GT/MSC/BMP-2 described here may be useful for treating horses with bone injuries. PMID:24442646

  9. Graft of the NT-3 persistent delivery gelatin sponge scaffold promotes axon regeneration, attenuates inflammation, and induces cell migration in rat and canine with spinal cord injury.

    PubMed

    Li, Ge; Che, Ming-Tian; Zhang, Ke; Qin, Li-Na; Zhang, Yu-Ting; Chen, Rui-Qiang; Rong, Li-Min; Liu, Shu; Ding, Ying; Shen, Hui-Yong; Long, Si-Mei; Wu, Jin-Lang; Ling, Eng-Ang; Zeng, Yuan-Shan

    2016-03-01

    Persistent neurotrophic factor delivery is crucial to create a microenvironment for cell survival and nerve regeneration in spinal cord injury (SCI). This study aimed to develop a NT-3/fibroin coated gelatin sponge scaffold (NF-GS) as a novel controlled artificial release therapy for SCI. In vitro, bone marrow-derived mesenchymal stem cells (MSCs) were planted into the NF-GS and release test showed that NF-GS was capable to generate a sustainable NT-3 release up to 28 days. MSCs in NF-GS had high cell activity with excellent cell distribution and phenotype. Then, the NF-GS was transplanted into the injury site of spinal cord of rat and canine in vivo, which exhibited strong biocompatibility during post-transplantation period. Four weeks following transplantation, the concentration of NT-3 was much higher than that in control groups. Cavity areas in the injury/graft site were significantly reduced due to tissue regeneration and axonal extensions associated with myelin sheath through the glial scar into the NF-GS. Additionally, the NF-GS decreased the inflammation by reducing the CD68 positive cells and TNF-α. A striking feature was the occurrence of some cells and myelin-like structure that appeared to traverse the NF-GS. The present results demonstrate that the NF-GS has the property to control the release of NT-3 from the NT-3/fibroin complex thus facilitating regeneration of injured spinal cord. PMID:26774562

  10. Graft of the gelatin sponge scaffold containing genetically-modified neural stem cells promotes cell differentiation, axon regeneration, and functional recovery in rat with spinal cord transection.

    PubMed

    Du, Bao-Ling; Zeng, Xiang; Ma, Yuan-Huan; Lai, Bi-Qin; Wang, Jun-Mei; Ling, Eng-Ang; Wu, Jin-Lang; Zeng, Yuan-Shan

    2015-04-01

    Biological materials combined with genetically-modified neural stem cells (NSCs) are candidate therapy targeting spinal cord injury (SCI). Based on our previous studies, here we performed gelatin sponge (GS) scaffold seeded with neurotrophin-3 (NT-3) and its receptor TrkC gene modifying NSCs for repairing SCI. Eight weeks later, compared with other groups, neurofilament-200 and 5-hydroxytryptamine positive nerve fibers were more in the injury site of the N+T-NSCs group. Immunofluorescence staining showed the grafted NSCs could differentiate into microtubule associated protein (Map2), postsynaptic density (PSD95), and mouse oligodendrocyte special protein (MOSP) positive cells. The percentage of the Map2, PSD95, and MOSP positive cells in the N+T-NSCs group was higher than the other groups. Immuno-electron microscopy showed the grafted NSCs making contact with each other in the injury site. Behavioral analysis indicated the recovery of hindlimbs locomotion was better in the groups receiving cell transplant, the best recovery was found in the N+T-NSCs group. Electrophysiology revealed the amplitude of cortical motor evoked potentials was increased significantly in the N+T-NSCs group, but the latency remained long. These findings suggest the GS scaffold containing genetically-modified NSCs may bridge the injury site, promote axon regeneration and partial functional recovery in SCI rats. PMID:25046856

  11. Long-term maintenance of liver-specific functions in three-dimensional culture of adult rat hepatocytes with a porous gelatin sponge support.

    PubMed

    Lin, K H; Maeda, S; Saito, T

    1995-02-01

    The three-dimensional culture of adult rat hepatocytes with a porous gelatin sponge (gelfoam) support was investigated. Hepatocytes were immobilized on the surface as well as within the pores of the support. The morphology of the hepatocytes immobilized on the support was close to that observed in vivo. In some parts of the support the spheroids of hepatocytes could be observed. To examine the liver-specific functions of the hepatocytes in the culture, the levels of serum albumin and bile acids secreted into the medium were assessed. The secretion of albumin and bile acids was stable over the course of 12 days, longer than that in collagen-gel culture. To elucidate further the function of hepatocytes immobilized on gelfoam, the metabolic activities of the hepatocytes, as measured by the competency of removal of NH4+ and the synthesis of urea nitrogen, were determined. The rates of ammonium removal and urea nitrogen synthesis were comparable with those in conventional monolayer culture. Albumin secretion was enhanced by the treatment of gelfoam with either heparin or acidic fibroblast growth factor (aFGF), the gelfoam having a high affinity for these substances. DNA synthesis was also enhanced by aFGF. These results demonstrate that gelfoam is a suitable support for the in vitro culture of hepatocytes. Combined with its easy manipulation, it is suggested that the culture system described could be used for both basic and applied studies. PMID:7536008

  12. Effects of bilayer gelatin/β-tricalcium phosphate sponges loaded with mesenchymal stem cells, chondrocytes, bone morphogenetic protein-2, and platelet rich plasma on osteochondral defects of the talus in horses.

    PubMed

    Seo, Jong-Pil; Tanabe, Takafumi; Tsuzuki, Nao; Haneda, Shingo; Yamada, Kazutaka; Furuoka, Hidefumi; Tabata, Yasuhiko; Sasaki, Naoki

    2013-12-01

    Osteochondrosis (OC) is a common and clinically important joint disorder in horses. However, repair of the OC region is difficult because of the avascular nature of cartilage. This study aimed to evaluate the efficacy of bilayer gelatin/β-tricalcium phosphate (GT) sponges loaded with mesenchymal stem cells (MSCs), chondrocytes, bone morphogenetic protein-2 (BMP-2), and platelet rich plasma (PRP) for the repair of osteochondral defects of the talus in horses. Full-thickness osteochondral defects were created on both the lateral trochlear ridges of the talus (n = 6). In the test group, a basic GT sponge loaded with MSCs and BMP-2 (MSC/BMP2/GT) was inserted into the lower part of the defect, and an acidic GT sponge loaded with chondrocyte, MSCs, and PRP (Ch/MSC/PRP/GT) was inserted into the upper part of the defect. In the control group, the defect was treated only with bilayer GT sponges. Repair of osteochondral defects was assessed by radiography, quantitative computed tomography (QCT), and macroscopic and histological evaluation. The test group showed significantly higher radiographic, QCT, macroscopic, and histological scores than the control group. This study demonstrated that the bilayer scaffolds consisting of Ch/MSC/PRP/GT for the chondrogenic layer and MSC/BMP2/GT for the osteogenic layer promoted osteochondral regeneration in an equine model. The bilayer scaffolds described here may be useful for treating horses with OC. PMID:24054973

  13. The effect of a gelatin β-tricalcium phosphate sponge loaded with mesenchymal stem cells (MSC), bone morphogenic protein-2, and platelet-rich plasma (PRP) on equine articular cartilage defect.

    PubMed

    Tsuzuki, Nao; Seo, Jong-pil; Yamada, Kazutaka; Haneda, Shingo; Furuoka, Hidefumi; Tabata, Yasuhiko; Sasaki, Naoki

    2013-06-01

    We evaluated the curative efficacy of a gelatin β-tricalcium phosphate (β-TCP) sponge loaded with mesenchymal stem cells (MSC), bone morphogenic protein-2 (BMP-2), and platelet-rich plasma (PRP) by insertion into an experimentally induced osteochondral defect. A hole of 10 mm diameter and depth was drilled in the bilateral medial femoral condyles of 7 thoroughbred horses, and into each either a loaded sponge (treatment) or a saline-infused β-TCP sponge (control) was inserted. After 16 weeks, defects were examined by computed tomography, macroscopic analyses, and histological analyses. The median subchondral bone density and macroscopic subscores for joint healing were significantly higher in the treatment legs (P < 0.05). Although there was no significant difference in total histological scores between groups, hyaline cartilaginous tissue was observed across a wider area in the treatment group. Equine joint healing can be enhanced by inserting a BMP-2-, MSC-, and PRP-impregnated β-TCP sponge at the lesion site. PMID:24155448

  14. Effects of a synovial flap and gelatin/β-tricalcium phosphate sponges loaded with mesenchymal stem cells, bone morphogenetic protein-2, and platelet rich plasma on equine osteochondral defects.

    PubMed

    Seo, Jong-Pil; Kambayashi, Yoshinori; Itho, Megumi; Haneda, Shingo; Yamada, Kazutaka; Furuoka, Hidefumi; Tabata, Yasuhiko; Sasaki, Naoki

    2015-08-01

    This study aimed to evaluate the efficacy of a synovial flap and gelatin/β-tricalcium phosphate (GT) sponge loaded with mesenchymal stem cells (MSCs), bone morphogenetic protein-2 (BMP-2), and platelet rich plasma (PRP) for repairing of osteochondral defects in horses. Osteochondral defects were created on the medial condyle of both femurs (n=5). In the test group, a GT sponge loaded with MSCs, BMP-2, and PRP (GT/MSCs/BMP-2/PRP) was inserted into the defect and then covered with a synovial flap. In the control group, the defect was treated only with the GT/MSCs/BMP-2/PRP. The test group showed significantly higher macroscopic scores than the control group. In addition, hyaline cartilaginous tissue was detected in the test group in areas larger than those in the control group. This study demonstrated that the combination of a synovial flap and GT sponge loaded with MSCs, BMP-2, and PRP promoted osteochondral regeneration in an equine model. PMID:26267104

  15. Bone formation around rhBMP-2-coated implants in rabbit sinuses with or without absorbable collagen sponge grafting

    PubMed Central

    2015-01-01

    Purpose The purpose of this study was to evaluate bone formation around recombinant human bone morphogenetic protein (rhBMP-2)-coated implants placed with or without absorbable collagen sponge (ACS) in rabbit maxillary sinuses. Methods The Schneiderian membrane was elevated and an implant was placed in 24 sinuses in 12 rabbits. The space created beneath the elevated membrane was filled with either blood (n=6) or ACS (n=6). In the rabbits in which this space was filled with blood, rhBMP-2-coated and non-coated implants were alternately placed on different sides. The resulting groups were referred to as the BC and BN groups, respectively. The AC and AN groups were produced in ACS-grafted rabbits in the same manner. Radiographic and histomorphometric analyses were performed after eight weeks of healing. Results In micro-computed tomography analysis, the total augmented volume and new bone volume were significantly greater in the ACS-grafted sinuses than in the blood-filled sinuses (P<0.05). The histometric analysis showed that the areas of new bone and bone-to-implant contact were significantly larger in the AC group than in the AN group (P<0.05). In contrast, none of the parameters differed significantly between the BC and BN groups. Conclusions The results of this pilot study indicate that the insertion of ACS after elevating the Schneiderian membrane, simultaneously with implant placement, can significantly increase the volume of the augmentation. However, in the present study, the rhBMP-2 coating exhibited limited effectiveness in enhancing the quantity and quality of regenerated bone. PMID:26734494

  16. Sponge coring apparatus with reinforced sponge

    SciTech Connect

    Park, A.; Wilson, B. T.

    1985-03-05

    A well coring apparatus includes an outer barrel and an inner barrel. A hollow sponge is disposed along a liner for insertion into the inner barrel. The sponge is operable to absorb subterranean fluid from a well core. A plurality of reinforcing members are disposed on the inner surface of the liner to prevent movement of the sponge with respect thereto. A plurality of orifices are disposed in the surface of the liner to allow gas and/or fluid to escape from the interior thereof when the subterranean fluid contained within the core bleeds into the sponge.

  17. 21 CFR 886.4790 - Ophthalmic sponge.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Ophthalmic sponge. 886.4790 Section 886.4790 Food... DEVICES OPHTHALMIC DEVICES Surgical Devices § 886.4790 Ophthalmic sponge. (a) Identification. An ophthalmic sponge is a device that is an absorbant sponge, pad, or spear made of folded gauze,...

  18. 21 CFR 886.4790 - Ophthalmic sponge.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Ophthalmic sponge. 886.4790 Section 886.4790 Food... DEVICES OPHTHALMIC DEVICES Surgical Devices § 886.4790 Ophthalmic sponge. (a) Identification. An ophthalmic sponge is a device that is an absorbant sponge, pad, or spear made of folded gauze,...

  19. 21 CFR 886.4790 - Ophthalmic sponge.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ophthalmic sponge. 886.4790 Section 886.4790 Food... DEVICES OPHTHALMIC DEVICES Surgical Devices § 886.4790 Ophthalmic sponge. (a) Identification. An ophthalmic sponge is a device that is an absorbant sponge, pad, or spear made of folded gauze,...

  20. 21 CFR 886.4790 - Ophthalmic sponge.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Ophthalmic sponge. 886.4790 Section 886.4790 Food... DEVICES OPHTHALMIC DEVICES Surgical Devices § 886.4790 Ophthalmic sponge. (a) Identification. An ophthalmic sponge is a device that is an absorbant sponge, pad, or spear made of folded gauze,...

  1. 21 CFR 886.4790 - Ophthalmic sponge.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Ophthalmic sponge. 886.4790 Section 886.4790 Food... DEVICES OPHTHALMIC DEVICES Surgical Devices § 886.4790 Ophthalmic sponge. (a) Identification. An ophthalmic sponge is a device that is an absorbant sponge, pad, or spear made of folded gauze,...

  2. Comparison of Hemostatic Durability between N-Butyl Cyanoacrylate and Gelatin Sponge Particles in Transcatheter Arterial Embolization for Acute Arterial Hemorrhage in a Coagulopathic Condition in a Swine Model

    SciTech Connect

    Yonemitsu, Takafumi; Kawai, Nobuyuki; Sato, Morio Sonomura, Tetsuo; Takasaka, Isao; Nakai, Motoki; Minamiguchi, Hiroki; Sahara, Shinya; Iwasaki, Yasuhiro; Naka, Toshio; Shinozaki, Masahiro

    2010-12-15

    This study was designed to compare the efficacy of transcatheter arterial embolization (TAE) with N-butyl cyanoacrylate (NBCA) or gelatin sponge particles (GSP) for acute arterial bleeding in a coagulopathic condition using a swine model. Four healthy swine were divided into two coagulopathic conditions: mild and severe. Five hemorrhages were created in each swine (10 hemorrhages per coagulopathy). Mild coagulopathy was achieved by bloodletting 10% of the total circulatory whole blood and preserving activated clotting time (ACT) less than 200 s (ACT < 200 s state); severe coagulopathy was achieved by bloodletting 30% and preserving ACT > 400 s (ACT > 400-second state). For each state, of ACT < 200 s or ACT > 400 s, TAE was conducted with GSP or NBCA to control five hemorrhages arising from artificially created renal and splenic injuries. Angiography immediately after TAE with GSP or NBCA showed complete occlusion in both coagulopathic conditions. In the ACT < 200-second state, follow-up angiography at 5-30 min after TAE with GSP or NBCA showed no evidence of recurrent hemorrhage. In the ACT > 400-second state, follow-up angiography showed recurrent hemorrhage in four (80%) of the five hemorrhages embolized with GSP and in one (20%) of the five hemorrhages embolized with NBCA. Microscopically, red thrombi were observed densely surrounding GSP in mild coagulopathy but were scarce in severe coagulopathy. In a condition with severe coagulopathy, TAE with NBCA was more effective in durability to cease active arterial bleeding than with GSP.

  3. The effects of crosslinkers on physical, mechanical, and cytotoxic properties of gelatin sponge prepared via in-situ gas foaming method as a tissue engineering scaffold.

    PubMed

    Poursamar, S Ali; Lehner, Alexander N; Azami, Mahmoud; Ebrahimi-Barough, Somayeh; Samadikuchaksaraei, Ali; Antunes, A P M

    2016-06-01

    In this study porous gelatin scaffolds were prepared using in-situ gas foaming, and four crosslinking agents were used to determine a biocompatible and effective crosslinker that is suitable for such a method. Crosslinkers used in this study included: hexamethylene diisocyanate (HMDI), poly(ethylene glycol) diglycidyl ether (epoxy), glutaraldehyde (GTA), and genipin. The prepared porous structures were analyzed using Fourier Transform Infrared Spectroscopy (FT-IR), thermal and mechanical analysis as well as water absorption analysis. The microstructures of the prepared samples were analyzed using Scanning Electron Microscopy (SEM). The effects of the crosslinking agents were studied on the cytotoxicity of the porous structure indirectly using MTT analysis. The affinity of L929 mouse fibroblast cells for attachment on the scaffold surfaces was investigated by direct cell seeding and DAPI-staining technique. It was shown that while all of the studied crosslinking agents were capable of stabilizing prepared gelatin scaffolds, there are noticeable differences among physical and mechanical properties of samples based on the crosslinker type. Epoxy-crosslinked scaffolds showed a higher capacity for water absorption and more uniform microstructures than the rest of crosslinked samples, whereas genipin and GTA-crosslinked scaffolds demonstrated higher mechanical strength. Cytotoxicity analysis showed the superior biocompatibility of the naturally occurring genipin in comparison with other synthetic crosslinking agents, in particular relative to GTA-crosslinked samples. PMID:27040189

  4. Photosensitive gelatin.

    PubMed

    Vesperinas, Ana; Eastoe, Julian; Wyatt, Paul; Grillo, Isabelle; Heenan, Richard K

    2006-11-13

    Employing photodestructible surfactants in gelatin-based aqueous gels presents novel possibilities for controlling colloidal and aggregation properties of surfactant gelatin complexes. Light-triggered breakdown of the gelatin-bound photosurfactant aggregates causes dramatic changes in viscosity and aggregation. PMID:17057859

  5. 21 CFR 880.2740 - Surgical sponge scale.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Surgical sponge scale. 880.2740 Section 880.2740... Devices § 880.2740 Surgical sponge scale. (a) Identification. A surgical sponge scale is a nonelectrically powered device used to weigh surgical sponges that have been used to absorb blood during surgery so...

  6. 21 CFR 880.2740 - Surgical sponge scale.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Surgical sponge scale. 880.2740 Section 880.2740... Devices § 880.2740 Surgical sponge scale. (a) Identification. A surgical sponge scale is a nonelectrically powered device used to weigh surgical sponges that have been used to absorb blood during surgery so...

  7. 21 CFR 880.2740 - Surgical sponge scale.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Surgical sponge scale. 880.2740 Section 880.2740... Devices § 880.2740 Surgical sponge scale. (a) Identification. A surgical sponge scale is a nonelectrically powered device used to weigh surgical sponges that have been used to absorb blood during surgery so...

  8. 21 CFR 880.2740 - Surgical sponge scale.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Surgical sponge scale. 880.2740 Section 880.2740... Devices § 880.2740 Surgical sponge scale. (a) Identification. A surgical sponge scale is a nonelectrically powered device used to weigh surgical sponges that have been used to absorb blood during surgery so...

  9. 21 CFR 880.2740 - Surgical sponge scale.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Surgical sponge scale. 880.2740 Section 880.2740... Devices § 880.2740 Surgical sponge scale. (a) Identification. A surgical sponge scale is a nonelectrically powered device used to weigh surgical sponges that have been used to absorb blood during surgery so...

  10. Synergy between IL-6 and soluble IL-6 receptor enhances bone morphogenetic protein-2/absorbable collagen sponge-induced bone regeneration via regulation of BMPRIA distribution and degradation.

    PubMed

    Huang, Ru-Lin; Chen, Gang; Wang, Wenjin; Herller, Tanja; Xie, Yun; Gu, Bin; Li, Qingfeng

    2015-10-01

    Bone morphogenetic protein-2/absorbable collagen sponge (BMP-2/ACS) implants have been approved for clinical use to induce bone regeneration. We previously showed that exaggerated inflammation characterized by elevated level of inflammatory cytokines including TNF-α, IL-1β, and IL-6 has been shown to inhibit BMP-2/ACS-induced bone regeneration. Furthermore, unlike the negative effects of TNF-α and IL-1β, IL-6 seemed not to affect BMP-2-induced osteoblastic differentiation of bone marrow mesenchymal stem cells (BMSCs). We hypothesized that there may be a regulatory loop between IL-6 and BMP-2 singling to affect BMP-2/ACS-induced bone regeneration. Here, we established a BMP-2/ACS-induced ectopic bone formation model in rats and fund that IL-6 injection significantly increased BMP-2/ACS-induced bone mass. Consistent with this animal model, an in vitro study demonstrated that synergy between IL-6 and soluble IL-6 receptor (IL-6/sIL-6R) promotes BMP-2-induced osteoblastic differentiation of human BMSCs through amplification of BMP/Smad signaling. Strikingly, IL-6 injection did not activate osteoclast-mediated bone resorption in the ectopic bone formation model, and IL-6/sIL-6R treatment did not affect receptor activator of NF-κB ligand (RANKL)-induced osteoclastic differentiation of human peripheral blood mononuclear cells (PBMCs) in vitro. Furthermore, IL-6/sIL-6R treatment did not affect expression of BMP receptors, but enhanced the cell surface translocation of BMP receptor IA (BMPRIA) and inhibited the degradation of BMPRIA. Collectively, these findings indicate that synergy between IL-6 and sIL-6R promotes the cell surface translocation of BMPRIA and maintains the stability of BMPRIA expression, leading to enhanced BMP-2/ACS-induced bone regeneration. PMID:26232880

  11. In vitro mitomycin C absorption and delivery with different sponge materials used in filtering surgery

    PubMed Central

    Urbaneja, Diana; Morilla-Grasa, Antonio; Jimenez, Elisa; Montemayor, Judith; Marcobal, Nuria; Aragay, Carme; Gurdiel, Celia; Armillas, Marta; Ortiz, Pere; Antón, Alfonso

    2016-01-01

    Purpose The purpose of this study is to evaluate and compare mitomycin C (MMC) absorption and delivery in different materials used in filtering surgery. Methods This is an in vitro study comparing polyvinyl alcohol triangular sponges (TS6, TS8), polyvinyl alcohol fluid wicks (EFW), and absorbable gelatin sponges (AGS3, AGS5), from which five different types of transport units were obtained. Seven pieces of sponge of each transport unit type were obtained as follows: two transverse strips were obtained at 6 and 8 mm from the apex of TS and divided into three equal pieces; 4×4 mm pieces of EFW; 3×3 and 5×5 mm pieces of absorbable gelatin sponges were cut. Filter paper was placed on a precision scale (0.01 mg). The seven sponge pieces of each type were weighed three times consecutively in dry and wet states, the latter after immersion for 15 seconds in 0.2 mg/mL MMC. The difference between the weights of the dry and wet filter paper at the end of each measurement sequence was also calculated and considered as an estimate of the amount of mitomycin delivered. Results The amounts of MMC absorbed by each transport unit were as follows: (mean ± standard deviation) 27.43±5.13 for TS6, 31.91±6.63 for TS8, 15.96±2.23 for EFW, 17.96±2.05 for AGS3, and 33.81±2.05 for AGS5. The amounts of MMC delivered to the filter paper were as follows: 21.70±2.84 for TS6, 23.83±4.03 for TS8, 12.93±1.75 for EFW, 14.69±1.79 for AGS3, and 27.30±1.58 for AGS5. Conclusion Percentage MMC delivered was similar for all materials, but there was a tendency for greater delivery using larger sponges and greater homogeneity in delivery with AGS5. No statistical differences were found in percentage delivered by the different transport materials. PMID:27143843

  12. Vaginal sponge and spermicides

    MedlinePlus

    Birth control - over the counter; Contraceptives - over the counter ... include irritation and allergic reactions. VAGINAL SPONGE Vaginal contraceptive sponges are soft sponges covered with a spermicide. ...

  13. The pro-angiogenic characteristics of a cross-linked gelatin matrix.

    PubMed

    Dreesmann, Lars; Ahlers, Michael; Schlosshauer, Burkhard

    2007-12-01

    To overcome limitations on regeneration in the nervous system and other organs caused by insufficient blood supply, we have developed a gelatin sponge material which stimulates blood vessel formation, i.e. angiogenesis. Controlled chemical cross-linking was employed to slow down enzymatic degradation of the gelatin matrix. Four different in vitro assays using L929 fibroblasts and purified endothelial cells indicated that the sponge material did not release toxic components, but provided a permissive substratum for cell attachment, cell migration and pronounced cell proliferation, all of which are crucial for the formation of vasculature. Two in vivo models were employed to directly monitor the pro-angiogenic impact of the sponge material. Implantation of gelatin sponges onto the chorioallantoic membrane of fertilized chicken eggs induced robust attraction of endothelial cells and formation of blood vessels. Angiogenesis inside gelatin implants occurred more than 200 times faster than in a commercial collagen sponge. Similarly, after subcutaneous implantation of tube-like sponges into mice, an increasing immigration of cells and subsequent formation of functional vasculature became evident. Immunocytochemistry revealed no fibronection accumulation and no scarring. In summary, our matrix based on cross-linked gelatin promises to be a valuable component of future implants, improving neuronal and non-neuronal regeneration by concomitant pro-angiogenic stimulation. PMID:17889331

  14. Magnetic, superhydrophobic and durable silicone sponges and their applications in removal of organic pollutants from water.

    PubMed

    Li, Lingxiao; Li, Bucheng; Wu, Lei; Zhao, Xia; Zhang, Junping

    2014-07-25

    Porous silicone sponges are fabricated by polymerization of organosilanes in the presence of Fe3O4@silica nanoparticles. The sponges feature fast magnetic responsivity, superhydrophobicity/superoleophilicity, high compressibility and stability. The sponges can selectively absorb floating oils on a water surface, heavy oils under water and even emulsified oils. PMID:24909778

  15. DYNAPHORE, INC. FORAGER™ SPONGE TECHNOLOGY - INNOVATIVE TECHNOLOGY EVALUATION REPORT

    EPA Science Inventory

    The Forager™ Sponge is an open-celled cellulose sponge incorporating an amine-containing chelating polymer that selectively absorbs dissolved heavy metals from aqueous waste streams. The Developer states that the technology can be utilized to remove and concentrate heavy metals f...

  16. DYNAPHORE, INC., FORAGER SPONGE TECHNOLOGY - INNOVATIVE TECHNOLOGY EVALUATION REPORT

    EPA Science Inventory

    The Forager Sponge is a volume reduction technology in which heavy metal contaminants from an aqueous medium are selectively concentrated into a smaller volume for facilitated disposal. he technology treats contaminated groundwater, surface voters and porous waters by absorbing d...

  17. SITE TECHNOLOGY CAPSULE: DYNAPHORE, INC., FORAGER SPONGE TECHNOLOGY

    EPA Science Inventory

    The Forager Sponge is a volume reduction technology in which heavy metal contaminants from an aqueous medium are selectively concentrated into a smaller volume for facilitated disposal. he technology treats contaminated groundwater, surface waters and porous waters by absorbing d...

  18. The crystalline sponge method updated

    PubMed Central

    Hoshino, Manabu; Khutia, Anupam; Xing, Hongzhu; Inokuma, Yasuhide; Fujita, Makoto

    2016-01-01

    Crystalline sponges are porous metal complexes that can absorb and orient common organic molecules in their pores and make them observable by conventional X-ray structure analysis (crystalline sponge method). In this study, all of the steps in the crystalline sponge method, including sponge crystal preparation, pore–solvent exchange, guest soaking, data collection and crystallographic analysis, are carefully examined and thoroughly optimized to provide reliable and meaningful chemical information as chemical crystallography. Major improvements in the method have been made in the guest-soaking and data-collection steps. In the soaking step, obtaining a high site occupancy of the guest is particularly important, and dominant parameters for guest soaking (e.g. temperature, time, concentration, solvents) therefore have to be optimized for every sample compound. When standard conditions do not work, a high-throughput method is useful for efficiently optimizing the soaking conditions. The X-ray experiments are also carefully re-examined. Significant improvement of the guest data quality is achieved by complete data collection at high angle regions. The appropriate disorder treatment of the most flexible ZnI2 portions of the host framework and refinement of the solvents filling the remaining void are also particularly important for obtaining better data quality. A benchmark test for the crystalline sponge method toward an achiral molecule is proposed with a guaiazulene guest, in which the guest structure (with ∼ 100% site occupancy) is refined without applying any restraints or constraints. The obtained data quality with R int = 0.0279 and R 1 = 0.0379 is comparable with that of current conventional crystallographic analysis for small molecules. Another benchmark test for this method toward a chiral molecule is also proposed with a santonin guest. The crystallographic data obtained [R int = 0.0421, R 1 = 0.0312, Flack (Parsons) = −0.0071 (11)] represents the

  19. The crystalline sponge method updated.

    PubMed

    Hoshino, Manabu; Khutia, Anupam; Xing, Hongzhu; Inokuma, Yasuhide; Fujita, Makoto

    2016-03-01

    Crystalline sponges are porous metal complexes that can absorb and orient common organic molecules in their pores and make them observable by conventional X-ray structure analysis (crystalline sponge method). In this study, all of the steps in the crystalline sponge method, including sponge crystal preparation, pore-solvent exchange, guest soaking, data collection and crystallographic analysis, are carefully examined and thoroughly optimized to provide reliable and meaningful chemical information as chemical crystallography. Major improvements in the method have been made in the guest-soaking and data-collection steps. In the soaking step, obtaining a high site occupancy of the guest is particularly important, and dominant parameters for guest soaking (e.g. temperature, time, concentration, solvents) therefore have to be optimized for every sample compound. When standard conditions do not work, a high-throughput method is useful for efficiently optimizing the soaking conditions. The X-ray experiments are also carefully re-examined. Significant improvement of the guest data quality is achieved by complete data collection at high angle regions. The appropriate disorder treatment of the most flexible ZnI2 portions of the host framework and refinement of the solvents filling the remaining void are also particularly important for obtaining better data quality. A benchmark test for the crystalline sponge method toward an achiral molecule is proposed with a guaiazulene guest, in which the guest structure (with ∼ 100% site occupancy) is refined without applying any restraints or constraints. The obtained data quality with R int = 0.0279 and R 1 = 0.0379 is comparable with that of current conventional crystallographic analysis for small molecules. Another benchmark test for this method toward a chiral molecule is also proposed with a santonin guest. The crystallographic data obtained [R int = 0.0421, R 1 = 0.0312, Flack (Parsons) = -0.0071 (11)] represents the

  20. Vaginal sponge and spermicides

    MedlinePlus

    ... page: //medlineplus.gov/ency/article/004003.htm Vaginal sponge and spermicides To use the sharing features on this page, please enable JavaScript. Spermicides and vaginal sponges are two over-the-counter birth control methods ...

  1. Highly recyclable superhydrophobic sponge suitable for the selective sorption of high viscosity oil from water.

    PubMed

    Wang, Jintao; Geng, Guihong

    2015-08-15

    Inspired by the adhesion of marine mussels, a kind of superhydrophobic oil sorbent was successfully fabricated by robustly immobilizing the micro/nanostructure layer onto the sponge skeleton. The as-prepared sponges possess excellent hydrophobicity with the water contact angle of 154°, which enables the sponge to selectively absorb various oils floating on water surface. The oil sorption capacities of as-prepared sponge for a series of oils can reach 18.3-46.8g/g. The absorbed oil can be recovered by mechanical squeezing and the resulting sponge can be recycled more than 70 cycles while still keeping high oil sorption capability. More importantly, the obtained sponge has excellent affinity to the high viscosity oils. Therefore, the as-prepared sponge might find practical applications in the large-scale removal of oils especially high viscosity oils from water surface. PMID:26092604

  2. The characterisation of a genipin-gelatin gel dosimeter

    NASA Astrophysics Data System (ADS)

    Davies, J. B.; Bosi, S.; Baldock, C.

    2010-11-01

    Genipin cross links gelatin to slowly form a blue colour that bleaches upon irradiation. Spectrophotometric measurements of the absorbance change following irradiation to doses up to 100 Gy gives a linear dose response for certain concentrations of the gel ingredients; genipin, gelatin and sulphuric acid. Dose sensitivity increases with increasing concentrations of sulphuric acid and genipin and is also strongly dependent on the time allowed for the genipin-gelatin cross linking reaction (referred to here as blending) to take place. The optimum formulation of this gel was found for genipin concentration between 0.3 - 0.5 mM and blending time of at least 4 h.

  3. Collagen and gelatin.

    PubMed

    Liu, Dasong; Nikoo, Mehdi; Boran, Gökhan; Zhou, Peng; Regenstein, Joe M

    2015-01-01

    Collagen and gelatin have been widely used in the food, pharmaceutical, and cosmetic industries due to their excellent biocompatibility, easy biodegradability, and weak antigenicity. Fish collagen and gelatin are of renewed interest, owing to the safety and religious concerns of their mammalian counterparts. The structure of collagen has been studied using various modern technologies, and interpretation of the raw data should be done with caution. The structure of collagen may vary with sources and seasons, which may affect its applications and optimal extraction conditions. Numerous studies have investigated the bioactivities and biological effects of collagen, gelatin, and their hydrolysis peptides, using both in vitro and in vivo assay models. In addition to their established nutritional value as a protein source, collagen and collagen-derived products may exert various potential biological activities on cells in the extracellular matrix through the corresponding food-derived peptides after ingestion, and this might justify their applications in dietary supplements and pharmaceutical preparations. Moreover, an increasing number of novel applications have been found for collagen and gelatin. Therefore, this review covers the current understanding of the structure, bioactivities, and biological effects of collagen, gelatin, and gelatin hydrolysates as well as their most recent applications. PMID:25884286

  4. Bone Reconstruction following Application of Bone Matrix Gelatin to Alveolar Defects: A Randomized Clinical Trial

    PubMed Central

    Bayat, M.; Momen Heravi, F.; Mahmoudi, M.; Bahrami, N.

    2015-01-01

    Background: Conventional dentoalveolar osseous reconstruction often involves the use of graft materials with or without barrier membranes. Objective: To evaluate the efficacy of bone induction by bone matrix gelatin (BMG), delivered on an absorbable collagen sponge (ACS), compared to a placebo (ACS alone) in human alveolar socket defects. Methods: 20 alveolar sockets from 10 healthy adults were studied. In all cases, both the mandibular premolar area and the contralateral premolar area (as the control site) were involved. In each of the 10 patients, the extraction sites were filled randomly with BMG and ACS. The repair response was examined on day 90. Qualitative histological and quantitative histometric analysis, including the percentage of new-formed bone fill and density were done. Results: Assessment of the alveolar bone indicated that patients treated with BMG had significantly (p<0.05) better bone quality and quantity compared to the controls. In addition, bone density and histology revealed no differences between the newly induced and native bone. Conclusion: The data from this single-blind clinical trial demonstrated that the novel combination of BMG had a striking effect on de novo osseous formation for the bone regeneration. PMID:26576263

  5. Fish gelatin: Material properties and applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The main difference between fish gelatin and mammalian gelatin is fish gelatin’s lower gelation temperature. This property limits the use of fish gelatin in applications that currently utilize mammalian gelatin. However, fish gelatin remains an attractive alterative to mammalian gelatin due to relig...

  6. Gelatin capsule in stomach (image)

    MedlinePlus

    ... detect the presence of intestinal parasites. A weighted gelatin capsule attached to a string is swallowed and left in place. After about 4 hours, the gelatin capsule is pulled out of the stomach by ...

  7. The retained surgical sponge.

    PubMed Central

    Kaiser, C W; Friedman, S; Spurling, K P; Slowick, T; Kaiser, H A

    1996-01-01

    OBJECTIVE. A review was performed to investigate the frequency of occurrence and outcome of patients who have retained surgical sponges. METHODS. Closed case records from the files of the Medical Professional Mutual Insurance Company (ProMutual, Boston, MA) involving a claim of retained surgical sponges were reviewed for a 7-year period. RESULTS. Retained sponges occurred in 40 patients, comprising 48% of all closed claims for retained foreign bodies. A falsely correct sponge count after an abdominal procedure was documented in 76% of these claims. Ten percent of claims involved vaginal deliveries and minor non-body cavity procedures, for which no sponge count was performed. Total indemnity payments were $2,072,319, and defense costs were $572,079. In three cases, the surgeon was deemed responsible by the court despite the nursing staff's admitting liability and evidence presented that the surgeon complied completely with the standard of care. A wide range of indemnity payments was made despite a remarkable similarity of outcome in the patients studied. CONCLUSIONS. Despite the rarity of the reporting of a retained surgical sponge, this occurrence appears to be encountered more commonly than generally is appreciated. Operating teams should ensure that sponges be counted for all vaginal and any incisional procedures at risk for retaining a sponge. In addition, the surgeon should not unquestioningly accept correct count reports, but should develop the habit of performing a brief but thorough routine postprocedure wound/body cavity exploration before wound closure. The strikingly similar outcome for most patients would argue for a standardized indemnity payment being made without the need for adversarial legal procedures. PMID:8678622

  8. An experimental-finite element analysis on the kinetic energy absorption capacity of polyvinyl alcohol sponge.

    PubMed

    Karimi, Alireza; Navidbakhsh, Mahdi; Razaghi, Reza

    2014-06-01

    Polyvinyl alcohol (PVA) sponge is in widespread use for biomedical and tissue engineering applications owing to its biocompatibility, availability, relative cheapness, and excellent mechanical properties. This study reports a novel concept of design in energy absorbing materials which consist in the use of PVA sponge as an alternative reinforcement material to enhance the energy loss of impact loads. An experimental study is carried out to measure the mechanical properties of the PVA sponge under uniaxial loading. The kinetic energy absorption capacity of the PVA sponge is computed by a hexahedral finite element (FE) model of the steel ball and bullet through the LS-DYNA code under impact load at three different thicknesses (5, 10, 15mm). The results show that a higher sponge thickness invokes a higher energy loss of the steel ball and bullet. The highest energy loss of the steel ball and bullet is observed for the thickest sponge with 160 and 35J, respectively. The most common type of traumatic brain injury in which the head subject to impact load causes the brain to move within the skull and consequently brain hemorrhaging. These results suggest the application of the PVA sponge as a great kinetic energy absorber material compared to commonly used expanded polystyrene foams (EPS) to absorb most of the impact energy and reduces the transmitted load. The results might have implications not only for understanding of the mechanical properties of PVA sponge but also for use as an alternative reinforcement material in helmet and packaging material design. PMID:24863223

  9. Synthesis of a Novel Highly Oleophilic and Highly Hydrophobic Sponge for Rapid Oil Spill Cleanup.

    PubMed

    Khosravi, Maryam; Azizian, Saeid

    2015-11-18

    A highly hydrophobic and highly oleophilic sponge was synthesized by simple vapor-phase deposition followed by polymerization of polypyrrole followed by modification with palmitic acid. The prepared sponge shows high absorption capacity in the field of separation and removal of different oil spills from water surface and was able to emulsify oil/water mixtures. The sponge can be compressed repeatedly without collapsing. Therefore, absorbed oils can be readily collected by simple mechanical squeezing of the sponge. The prepared hydrophobic sponge can collect oil from water in both static and turbulent conditions. The proposed method is simple and low cost for the manufacture of highly oleophilic and highly hydrophobic sponges, which can be successfully used for effective oil-spill cleanup and water filtration. PMID:26496649

  10. The bioactive composite film prepared from bacterial cellulose and modified by hydrolyzed gelatin peptide.

    PubMed

    Lin, Shih-Bin; Chen, Chia-Che; Chen, Li-Chen; Chen, Hui-Huang

    2015-05-01

    The hydrolyzed gelatin peptides, obtained from the hydrolysis of Tilapia nilotica skin gelatin with alcalase and pronase E, were fractionated using an ultrafiltration system into hydrolyzed gelatin peptides-a (10 kDa membrane), hydrolyzed gelatin peptides-b1, and hydrolyzed gelatin peptides-b2 (5 kDa membrane) fractions. The highest oxygen radical absorbance capacity was observed in hydrolyzed gelatin peptides-b2, which contained more nonpolar amino acids than the other hydrolyzed gelatin peptides. Hydrolyzed gelatin peptides-b2 at a concentration of 12.5 mg/ml exhibited the highest proliferation ability and increased the expression of Type I procollagen mRNA, which indicated an enhanced collagen synthesis. Hydrolyzed gelatin peptides protected Detroit 551 cells from 2,2'-azobis(2-amidinopropane) dihydrochloride-induced oxidative damage and increased cell viability. Hydroxylpropylmethyl cellulose-modified bacterial cellulose and dried fabricated biofilm were less eligible for Detroit 551 cell proliferation than bacterial cellulose. The release of hydrolyzed gelatin peptides in bacterial cellulose film was slower than that in hydroxylpropylmethyl cellulose-modified bacterial cellulose and dried fabricated biofilm; thus, bacterial cellulose film and hydroxylpropylmethyl cellulose-modified bacterial cellulose and dried fabricated biofilm are suitable candidates for applications in delayed release type and rapid release type biofilms, respectively. PMID:25614493

  11. Global conservation status of sponges.

    PubMed

    Bell, James J; McGrath, Emily; Biggerstaff, Andrew; Bates, Tracey; Cárdenas, César A; Bennett, Holly

    2015-02-01

    Sponges are important for maintaining ecosystem function and integrity of marine and freshwater benthic communities worldwide. Despite this, there has been no assessment of their current global conservation status. We assessed their status, accounting for the distribution of research effort; patterns of temporal variation in sponge populations and assemblages; the number of sponges on threatened species lists; and the impact of environmental pressures. Sponge research effort has been variable; marine sponges in the northeastern Atlantic and Mediterranean and freshwater sponges in Europe and North America have received the most attention. Although sponge abundance has increased in some locations since 1990, these were typically on coral reefs, in response to declines in other benthic organisms, and restricted to a few species. Few data were available on temporal trends in freshwater sponge abundance. Despite over 8500 described sponge species, only 20 are on threatened species lists, and all are marine species from the northeastern Atlantic and Mediterranean. Of the 202 studies identified, the effects of temperature, suspended sediment, substratum loss, and microbial pathogens have been studied the most intensively for marine sponges, although responses appear to be variable. There were 20 studies examining environmental impacts on freshwater sponges, and most of these were on temperature and heavy metal contamination. We found that most sponges do not appear to be threatened globally. However, little information is available for most species and more data are needed on the impacts of anthropogenic-related pressures. This is a critical information gap in understanding sponge conservation status. PMID:25599574

  12. Cryptochrome in Sponges

    PubMed Central

    Schröder, Heinz C.; Markl, Julia S.; Grebenjuk, Vlad A.; Korzhev, Michael; Steffen, Renate; Wang, Xiaohong

    2013-01-01

    Sponges (phylum: Porifera) react to external light or mechanical signals with contractile or metabolic reactions and are devoid of any nervous or muscular system. Furthermore, elements of a photoreception/phototransduction system exist in those animals. Recently, a cryptochrome-based photoreceptor system has been discovered in the demosponge. The assumption that in sponges the siliceous skeleton acts as a substitution for the lack of a nervous system and allows light signals to be transmitted through its glass fiber network is supported by the findings that the first spicules are efficient light waveguides and the second sponges have the enzymatic machinery for the generation of light. Now, we have identified/cloned in Suberites domuncula two additional potential molecules of the sponge cryptochrome photoreception system, the guanine nucleotide-binding protein β subunit, related to β-transducin, and the nitric oxide synthase (NOS)–interacting protein. Cryptochrome and NOSIP are light-inducible genes. The studies show that the NOS inhibitor L-NMMA impairs both morphogenesis and motility of the cells. Finally, we report that the function of primmorphs to produce reactive nitrogen species can be abolished by a NOS inhibitor. We propose that the sponge cryptochrome-based photoreception system, through which photon signals are converted into radicals, is coupled to the NOS apparatus. PMID:23920109

  13. Magnetic, durable, and superhydrophobic polyurethane@Fe3O4@SiO2@fluoropolymer sponges for selective oil absorption and oil/water separation.

    PubMed

    Wu, Lei; Li, Lingxiao; Li, Bucheng; Zhang, Junping; Wang, Aiqin

    2015-03-01

    Magnetic, durable, and superhydrophobic polyurethane (PU) sponges were fabricated by chemical vapor deposition (CVD) of tetraethoxysilane (TEOS) to bind the Fe3O4 nanoparticles tightly on the sponge and then dip-coating in a fluoropolymer (FP) aqueous solution. The sponges were characterized using scanning electron microscopy and other analytical techniques. The effects of CVD time of TEOS and FP concentration on wettability, mechanical properties, oil absorbency, and oil/water selectivity of the sponges were also investigated. The sponges exhibit fast magnetic responsivity and excellent superhydrophobicity/superoleophilicity (CAwater = 157° and CAoil ≈ 0°). The sponges also show very high efficiency in oil/water separation and could, driven by a magnet, quickly absorb floating oils on the water surface and heavy oils under water. Moreover, the PU@Fe3O4@SiO2@FP sponges could be used as membranes for oil/water separation and for continuous separation of large amounts of oil pollutants from the water surface with the help of a pump. The in turn binding of Fe3O4 nanoparticles, SiO2, and FP can also improve mechanical properties of the PU sponge. The sponges maintain the superhydrophobicity even when they are stretched with 200% strain or compressed with 50% strain. The sponges also show excellent mechanical stability, oil stability, and reusability in terms of superhydrophobicity and oil absorbency. The magnetic, durable, and superhydrophobic PU sponges are very promising materials for practical oil absorption and oil/water separation. PMID:25671386

  14. Anticancer agents from marine sponges.

    PubMed

    Ye, Jianjun; Zhou, Feng; Al-Kareef, Ammar M Q; Wang, Hong

    2015-01-01

    Marine sponges are currently one of the richest sources of anticancer active compounds found in the marine ecosystems. More than 5300 different known metabolites are from sponges and their associated microorganisms. To survive in the complicated marine environment, most of the sponge species have evolved chemical means to defend against predation. Such chemical adaptation produces many biologically active secondary metabolites including anticancer agents. This review highlights novel secondary metabolites in sponges which inhibited diverse cancer species in the recent 5 years. These natural products of marine sponges are categorized based on various chemical characteristics. PMID:25402340

  15. Medullary Sponge Kidney

    MedlinePlus

    ... Association of Kidney Patients National Kidney Foundation MedlinePlus Kidney and Urologic Disease Organizations Many organizations provide support ... PDF, 345 KB)​​​​​ Alternate Language URL Medullary Sponge Kidney Page Content On this page: What is Medullary ...

  16. The Sponge Hologenome

    PubMed Central

    Thomas, Torsten

    2016-01-01

    ABSTRACT A paradigm shift has recently transformed the field of biological science; molecular advances have revealed how fundamentally important microorganisms are to many aspects of a host’s phenotype and evolution. In the process, an era of “holobiont” research has emerged to investigate the intricate network of interactions between a host and its symbiotic microbial consortia. Marine sponges are early-diverging metazoa known for hosting dense, specific, and often highly diverse microbial communities. Here we synthesize current thoughts about the environmental and evolutionary forces that influence the diversity, specificity, and distribution of microbial symbionts within the sponge holobiont, explore the physiological pathways that contribute to holobiont function, and describe the molecular mechanisms that underpin the establishment and maintenance of these symbiotic partnerships. The collective genomes of the sponge holobiont form the sponge hologenome, and we highlight how the forces that define a sponge’s phenotype in fact act on the genomic interplay between the different components of the holobiont. PMID:27103626

  17. Genetics Home Reference: white sponge nevus

    MedlinePlus

    ... Genetics Home Health Conditions white sponge nevus white sponge nevus Enable Javascript to view the expand/collapse ... Download PDF Open All Close All Description White sponge nevus is a condition characterized by the formation ...

  18. Gelatin-layered and multi-sized porous β-tricalcium phosphate for tissue engineering scaffold

    NASA Astrophysics Data System (ADS)

    Kim, Sung-Min; Yi, Soon-Aei; Choi, Seong-Ho; Kim, Kwang-Mahn; Lee, Yong-Keun

    2012-01-01

    The multi-sized porous β-tricalcium phosphate scaffolds were fabricated by freeze drying followed by slurry coating using a multi-sized porous sponge as a template. Then, gelatin was dip coated on the multi-sized porous β-tricalcium phosphate scaffolds under vacuum. The mechanical and biological properties of the fabricated scaffolds were evaluated and compared to the uniformly sized porous scaffolds and scaffolds that were not coated by gelatin. The compressive strength was tested by a universal testing machine, and the cell viability and differentiation behavior were measured using a cell counting kit and alkaline phosphatase activity using the MC3T3-E1 cells. In comparison, the gelatin-coated multi-sized porous β-tricalcium phosphate scaffold showed enhanced compressive strength. After 14 days, the multi-sized pores were shown to affect cell differentiation, and gelatin coatings were shown to affect the cell viability and differentiation. The results of this study demonstrated that the multi-sized porous β-tricalcium phosphate scaffold coated by gelatin enhanced the mechanical and biological strengths.

  19. Process for purifying zirconium sponge

    SciTech Connect

    Abodishish, H.A.M.; Kimball, L.S.

    1992-03-31

    This patent describes a Kroll reduction process wherein a zirconium sponge contaminated with unreacted magnesium and by-product magnesium chloride is produced as a regulus, a process for purifying the zirconium sponge. It comprises: distilling magnesium and magnesium chloride from: a regulus containing a zirconium sponge and magnesium and magnesium chloride at a temperature above about 800{degrees} C and at an absolute pressure less than about 10 mmHg in a distillation vessel to purify the zirconium sponge; condensing the magnesium and the magnesium chloride distilled from the zirconium sponge in a condenser; and then backfilling the vessel containing the zirconium sponge and the condenser containing the magnesium and the magnesium chloride with a gas; recirculating the gas between the vessel and the condenser to cool the zirconium sponge from above about 800{degrees} C to below about 300{degrees} C; and cooling the recirculating gas in the condenser containing the condensed magnesium and the condensed magnesium chloride as the gas cools the zirconium sponge to below about 300{degrees} C.

  20. Sponge systematics facing new challenges.

    PubMed

    Cárdenas, P; Pérez, T; Boury-Esnault, N

    2012-01-01

    Systematics is nowadays facing new challenges with the introduction of new concepts and new techniques. Compared to most other phyla, phylogenetic relationships among sponges are still largely unresolved. In the past 10 years, the classical taxonomy has been completely overturned and a review of the state of the art appears necessary. The field of taxonomy remains a prominent discipline of sponge research and studies related to sponge systematics were in greater number in the Eighth World Sponge Conference (Girona, Spain, September 2010) than in any previous world sponge conferences. To understand the state of this rapidly growing field, this chapter proposes to review studies, mainly from the past decade, in sponge taxonomy, nomenclature and phylogeny. In a first part, we analyse the reasons of the current success of this field. In a second part, we establish the current sponge systematics theoretical framework, with the use of (1) cladistics, (2) different codes of nomenclature (PhyloCode vs. Linnaean system) and (3) integrative taxonomy. Sponges are infamous for their lack of characters. However, by listing and discussing in a third part all characters available to taxonomists, we show how diverse characters are and that new ones are being used and tested, while old ones should be revisited. We then review the systematics of the four main classes of sponges (Hexactinellida, Calcispongiae, Homoscleromorpha and Demospongiae), each time focusing on current issues and case studies. We present a review of the taxonomic changes since the publication of the Systema Porifera (2002), and point to problems a sponge taxonomist is still faced with nowadays. To conclude, we make a series of proposals for the future of sponge systematics. In the light of recent studies, we establish a series of taxonomic changes that the sponge community may be ready to accept. We also propose a series of sponge new names and definitions following the PhyloCode. The issue of phantom species

  1. Analysis of sponge zones for computational fluid mechanics

    SciTech Connect

    Bodony, Daniel J. . E-mail: bodony@stanford.edu

    2006-03-01

    The use of sponge regions, or sponge zones, which add the forcing term -{sigma}(q - q {sub ref}) to the right-hand-side of the governing equations in computational fluid mechanics as an ad hoc boundary treatment is widespread. They are used to absorb and minimize reflections from computational boundaries and as forcing sponges to introduce prescribed disturbances into a calculation. A less common usage is as a means of extending a calculation from a smaller domain into a larger one, such as in computing the far-field sound generated in a localized region. By analogy to the penalty method of finite elements, the method is placed on a solid foundation, complete with estimates of convergence. The analysis generalizes the work of Israeli and Orszag [M. Israeli, S.A. Orszag, Approximation of radiation boundary conditions, J. Comp. Phys. 41 (1981) 115-135] and confirms their findings when applied as a special case to one-dimensional wave propagation in an absorbing sponge. It is found that the rate of convergence of the actual solution to the target solution, with an appropriate norm, is inversely proportional to the sponge strength. A detailed analysis for acoustic wave propagation in one-dimension verifies the convergence rate given by the general theory. The exponential point-wise convergence derived by Israeli and Orszag in the high-frequency limit is recovered and found to hold over all frequencies. A weakly nonlinear analysis of the method when applied to Burgers' equation shows similar convergence properties. Three numerical examples are given to confirm the analysis: the acoustic extension of a two-dimensional time-harmonic point source, the acoustic extension of a three-dimensional initial-value problem of a sound pulse, and the introduction of unstable eigenmodes from linear stability theory into a two-dimensional shear layer.

  2. Microbial diversity of marine sponges.

    PubMed

    Hentschel, U; Fieseler, L; Wehrl, M; Gernert, C; Steinert, M; Hacker, J; Horn, M

    2003-01-01

    The recent application of molecular microbial ecology tools to sponge-microbe associations has revealed a glimpse into the biodiversity of these microbial communities, that is considered just 'the tip of the iceberg'. This chapter provides an overview over these new findings with regard to identity, diversity and distribution patterns of sponge-associated microbial consortia. The sponges Aplysina aerophoba (Verongida), Rhopaloeides odorabile (Dicytoceratida) and Theonella swinhoei (Lithistida) were chosen as model systems for this review because they have been subject to both, cultivation-dependent and cultivation-independent approaches. A discussion of the microbial assemblages of Halichondriapanicea is presented in the accompanying chapter by Imhoff and Stöhr. Considering that a large fraction of sponge-associated microbes is not yet amenable to cultivation, an emphasis has been placed on the techniques centering around the 16S rRNA gene. A section has been included that covers the potential of sponge microbial communities for drug discovery. Finally, a 'sponge-microbe interaction model' is presented that summarizes our current understanding of the processes that might have shaped the community structure of the microbial assemblages within sponges. PMID:15825640

  3. Development of nanofibrous cellulose acetate/gelatin skin substitutes for variety wound treatment applications.

    PubMed

    Vatankhah, Elham; Prabhakaran, Molamma P; Jin, Guorui; Mobarakeh, Laleh Ghasemi; Ramakrishna, Seeram

    2014-02-01

    The major component of fibrous extracellular matrix of dermis is composed of a complex combination of proteins and polysaccharides. Electrospun cellulose acetate/gelatin might be an effective simulator of the structure and composition of native skin and during this study, we electrospun cellulose acetate/gelatin membranes in various compositions and their performance as a scaffold for either skin tissue engineering or as a wound dressing was evaluated. Skin treatment products, whether tissue-engineered scaffolds or wound dressings, should be sufficiently hydrophilic to allow for gas and fluid exchange and absorb excess exudates while controlling the fluid loss. However, a wound dressing should be easily removable without causing tissue damage and a tissue-engineered scaffold should be able to adhere to the wound, and support cell proliferation during skin regeneration. We showed that these distinct adherency features are feasible just by changing the composition of cellulose acetate and gelatin in composite cellulose acetate/gelatin scaffolds. High proliferation of human dermal fibroblasts on electrospun cellulose acetate/gelatin 25:75 confirmed the capability of cellulose acetate/gelatin 25:75 nanofibers as a tissue-engineered scaffold, while the electrospun cellulose acetate/gelatin 75:25 can be a potential low-adherent wound dressing. PMID:23640859

  4. Radiation synthesis and characterization of nanosilver/gelatin/carboxymethyl chitosan hydrogel

    NASA Astrophysics Data System (ADS)

    Zhou, Ying; Zhao, Yinghui; Wang, Lu; Xu, Ling; Zhai, Maolin; Wei, Shicheng

    2012-05-01

    A series of antibacterial hydrogels were fabricated from an aqueous solution of AgNO3, gelatin and carboxymethyl chitosan (CM-chitosan) by radiation-induced reduction and crosslinking at ambient temperature. The nanosilver particles were in situ synthesized accompanying with the formation of gelatin/CM-chitosan hydrogel. Transmission Electron Microscope and UV-vis analysis have verified the formation and homogeneous distribution of nanosilver particles in the hydrogel matrix. The nanosilver/gelatin/CM-chitosan hydrogels possessed interconnected porous structure, had a compressive modulus of 44 to 56 kPa, and could absorb 62 to 108 times of deionized water to its dry weight. Furthermore, the hydrogels were found to have sound antibacterial effect on Escherichia coli (E. coli), and their antibacterial ability could be significantly enhanced by the increasing of AgNO3 content. The comprehensive results of this study suggest that nanosilver/gelatin/CM-chitosan hydrogels have potential as an antibacterial wound dressing.

  5. Isolation of gelatin from ancient bones.

    PubMed

    SINEX, F M; FARIS, B

    1959-04-10

    The isolation and characterization of gelatin from 12,000-year-old deer antlers is described. Use of gelatin from ancient bones for carbon-14 dating may improve the accuracy of the dating procedure because gelatin is not likely to be contaminated by extraneous carbon. PMID:13646631

  6. 21 CFR 522.1020 - Gelatin solution.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Gelatin solution. 522.1020 Section 522.1020 Food... Gelatin solution. (a) Specifications. It is sterile and each 100 cubic centimeters contains 8 grams of gelatin in an 0.85 percent sodium chloride solution. (b) Sponsor. See No. 000856 in § 510.600(c) of...

  7. 21 CFR 522.1020 - Gelatin solution.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Gelatin solution. 522.1020 Section 522.1020 Food... Gelatin solution. (a) Specifications. It is sterile and each 100 cubic centimeters contains 8 grams of gelatin in an 0.85 percent sodium chloride solution. (b) Sponsor. See No. 000856 in § 510.600(c) of...

  8. 21 CFR 522.1020 - Gelatin solution.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Gelatin solution. 522.1020 Section 522.1020 Food... Gelatin solution. (a) Specifications. It is sterile and each 100 cubic centimeters contains 8 grams of gelatin in an 0.85 percent sodium chloride solution. (b) Sponsor. See No. 000856 in § 510.600(c) of...

  9. Assessment of the ribose-induced Maillard reaction as a means of gelatine powder identification and quality control.

    PubMed

    Tan, Thuan-Chew; AlKarkhi, Abbas F M; Easa, Azhar Mat

    2012-10-15

    The addition of ribose to bovine or porcine gelatine solutions followed by heating at 95 °C yielded brown solutions with different pH, colour (CIE L(*) and b(*)) and absorbance (A(420*) values. These differences were used for gelatine powder identification, differentiation and quality control. Differentiation analysis of the Maillard reaction parameters was conducted using cluster analysis (CA) and confidence intervals (CI). The potential use of the method as a quality control procedure was evaluated by using statistical process control (SPC). CA revealed that the two types of gelatine could be classified into two different groups. CI (95% confidence) revealed that the absorbance and colour values could be used as indicators for differentiation between the two types of gelatine because the intervals between the Maillard reaction parameters of the samples were far apart. The methodology demonstrated good reproducibility because it behaved predictably based on the X¯-S charts generated from the SPC charts. PMID:23442706

  10. Determination of the Absolute Configuration of the Pseudo-Symmetric Natural Product Elatenyne by the Crystalline Sponge Method.

    PubMed

    Urban, Sylvia; Brkljača, Robert; Hoshino, Manabu; Lee, Shoukou; Fujita, Makoto

    2016-02-01

    Elatenyne is a marine natural product that was isolated in 1986. Despite its simple 2,2'-bifuranyl backbone, its relative structure was only recently determined. The absolute configuration of elatenyne has still not been unequivocally confirmed because of its pseudo-meso core structure, which results in a specific rotation, [α]D  , of almost zero. In this work, the structure of natural elatenyne was determined by the crystalline sponge method and the use of a porous coordination network (a crystalline sponge) capable of absorbing organic guests; in the sponge, the absorbed guests are ordered and crystallographically observable. The crystalline sponge could differentiate between the two very similar alkyl side chains, and the absolute structure of elatenyne was thus reliably determined. The total amount required for the experiments was only approximately 100 μg, and the majority (95 μg) could be recovered after the experiments. PMID:26880368

  11. Projectile penetration into ballistic gelatin.

    PubMed

    Swain, M V; Kieser, D C; Shah, S; Kieser, J A

    2014-01-01

    Ballistic gelatin is frequently used as a model for soft biological tissues that experience projectile impact. In this paper we investigate the response of a number of gelatin materials to the penetration of spherical steel projectiles (7 to 11mm diameter) with a range of lower impacting velocities (<120m/s). The results of sphere penetration depth versus projectile velocity are found to be linear for all systems above a certain threshold velocity required for initiating penetration. The data for a specific material impacted with different diameter spheres were able to be condensed to a single curve when the penetration depth was normalised by the projectile diameter. When the results are compared with a number of predictive relationships available in the literature, it is found that over the range of projectiles and compositions used, the results fit a simple relationship that takes into account the projectile diameter, the threshold velocity for penetration into the gelatin and a value of the shear modulus of the gelatin estimated from the threshold velocity for penetration. The normalised depth is found to fit the elastic Froude number when this is modified to allow for a threshold impact velocity. The normalised penetration data are found to best fit this modified elastic Froude number with a slope of 1/2 instead of 1/3 as suggested by Akers and Belmonte (2006). Possible explanations for this difference are discussed. PMID:24184862

  12. Martian 'Kitchen Sponge'

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This picture is illuminated by sunlight from the upper left. It shows a tiny 1 kilometer by 1 kilometer (0.62 x 0.62 mile) area of the martian north polar residual ice cap as it appears in summertime.

    The surface looks somewhat like that of a kitchen sponge--it is flat on top and has many closely-spaced pits of no more than 2 meters (5.5 ft) depth. The upper, flat surface in this image has a medium-gray tone, while the pit interiors are darker gray. Each pit is generally 10 to 20 meters (33-66 feet) across. The pits probably form as water ice sublimes--going directly from solid to vapor--during the martian northern summer seasons. The pits probably develop over thousands of years. This texture is very different from what is seen in the south polar cap, where considerably larger and more circular depressions are found to resemble slices of swiss cheese rather than a kitchen sponge.

    This picture was taken by the Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) during northern summer on March 8, 1999. It was one of the very last 'calibration' images taken before the start of the Mapping Phase of the MGS mission, and its goal was to determine whether the MOC was properly focused. The crisp appearance of the edges of the pits confirmed that the instrument was focused and ready for its 1-Mars Year mapping mission. The scene is located near 86.9oN, 207.5oW, and has a resolution of about 1.4 meters (4 ft, 7 in) per pixel.

    Malin Space Science Systems and the California Institute of Technology built the MOC using spare hardware from the Mars Observer mission. MSSS operates the camera from its facilities in San Diego, CA. The Jet Propulsion Laboratory's Mars Surveyor Operations Project operates the Mars Global Surveyor spacecraft with its industrial partner, Lockheed Martin Astronautics, from facilities in Pasadena, CA and Denver, CO.

  13. Heat Sponge: A Concept for Mass-Efficient Heat Storage

    NASA Technical Reports Server (NTRS)

    Splinter, Scott C.; Blosser, Max L.; Gifford, Andrew R.

    2008-01-01

    The heat sponge is a device for mass-efficient storage of heat. It was developed to be incorporated in the substructure of a re-entry vehicle to reduce thermal- protection-system requirements. The heat sponge consists of a liquid/vapor mixture contained within a number of miniature pressure vessels that can be embedded within a variety of different types of structures. As temperature is increased, pressure in the miniature pressure vessels also increases so that heat absorbed through vaporization of the liquid is spread over a relatively large temperature range. Using water as a working fluid, the heat-storage capacity of the liquid/vapor mixture is many times higher than that of typical structural materials and is well above that of common phase change materials over a temperature range of 200 F to 700 F. The use of pure ammonia as the working fluid provides a range of application between 432 deg R and 730 deg R, or the use of the more practical water-ammonia solution provides a range of application between 432 deg R and 1160 deg R or in between that of water and pure ammonia. Prototype heat sponges were fabricated and characterized. These heat sponges consisted of 1.0-inch-diameter, hollow, stainless-steel spheres with a wall thickness of 0.020 inches which had varying percentages of their interior volumes filled with water and a water-ammonia solution. An apparatus to measure the heat stored in these prototype heat sponges was designed, fabricated, and verified. The heat-storage capacity calculated from measured temperature histories is compared to numerical predictions.

  14. Effect of sterilization on contaminated sponges.

    PubMed

    Kuritani, R H; McDonald, N J; Sydiskis, R J

    1993-02-01

    Sponges are routinely used as a storage medium for endodontic files during clinical practice; however, very little research has been done to determine the effectiveness of sterilization procedures for these contaminated sponges. The purpose of this in vitro study was to determine the efficacy of chemical vapor sterilizers (chemiclaves), steam pressure sterilizers (autoclaves), and dry heat sterilizers on laboratory contaminated sponges. Four different types of sponges were used in this study: a black, relatively nonporous sponge; a red, semiporous stationary sponge; a blue, endodontic sponge, and a yellow, common household sponge. Natural sponges were eliminated from the study, because their large pore size made them unsuitable as a storage medium for endodontic instruments. The sponges were divided into three groups: chemiclave, autoclave, and dry heat. Five samples of each sponge type were impregnated with biological indicating strips containing spores of Bacillus stearothermophilus. Each sponge was subjected to 25 cycles of sterilization. The spore strip indicator was inserted into the sponges at 1, 5, 10, 15, 20, and 25 cycles. The spore strip was cultivated in trypticase soy broth medium solution at 55 +/- 1 degree C for 7 days. At 7 days the culture vials were read for turbidity; its presence indicating a positive culture. The samples that were subjected to chemiclaving demonstrated positive cultures of 0.00%, 0.00%, and 30.00% and those to autoclaving 3.33%, 0.00%, and 0.00% positive cultures for the black, red, and blue sponge types, respectively. None of the sponges survived dry heat sterilization. The O-Cell-O sponges become unusable when subjected to all of the sterilization methods used in this study. PMID:8509738

  15. DEMONSTRATION BULLETIN: FORAGER™ SPONGE TECHNOLOGY - DYNAPHORE, INC.

    EPA Science Inventory

    The Forager™ Sponge is an open-celled cellulose sponge incorporating an amine-containing chelating polymer that has selective affinity for dissolved heavy metals in both cationic and anionic states. The Forager™ Sponge technology can be utilized to remove and concentrate heavy me...

  16. Effective disinfection methods of kitchen sponges

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pathogenic foodborne bacteria can be disseminated in households through the use of contaminated sponges. Several household disinfecting treatments to kill bacteria, yeasts and molds on sponges were evaluated. Sponges were incubated in a suspension of ground beef and tryptic soy broth to develop bact...

  17. Advances in the production of sponge biomass Aplysina aerophoba--a model sponge for ex situ sponge biomass production.

    PubMed

    Hausmann, Rudolf; Vitello, Marco P; Leitermann, Frank; Syldatk, Christoph

    2006-06-25

    Sponges are a promising source of organic compounds of potential interest regarding industrial and medical applications. For detailed studies on such compounds, large amounts of sponge biomass are required. Obtaining that is at present extremely difficult because most sponges are relatively rare in nature and their mass cultivation in the laboratory has not yet been accomplished. In this study the possibility of culturing Aplysina aerophoba fragments in laboratory was examined. While a substantial biomass increase was not yet observed, we achieved fragmented sponge tissue to develop into a functional sponge as a first success. PMID:16697067

  18. Precambrian sponges with cellular structures

    PubMed

    Li; Chen; Hua

    1998-02-01

    Sponge remains have been identified in the Early Vendian Doushantuo phosphate deposit in central Guizhou (South China), which has an age of approximately 580 million years ago. Their skeletons consist of siliceous, monaxonal spicules. All are referred to as the Porifera, class Demospongiae. Preserved soft tissues include the epidermis, porocytes, amoebocytes, sclerocytes, and spongocoel. Among thousands of metazoan embryos is a parenchymella-type of sponge larvae having a shoe-shaped morphology and dense peripheral flagella. The presence of possible amphiblastula larva suggests that the calcareous sponges may have an extended history in the Late Precambrian. The fauna indicates that animals lived 40 to 50 million years before the Cambrian Explosion. PMID:9452391

  19. The systematics of carnivorous sponges.

    PubMed

    Hestetun, Jon Thomassen; Vacelet, Jean; Boury-Esnault, Nicole; Borchiellini, Carole; Kelly, Michelle; Ríos, Pilar; Cristobo, Javier; Rapp, Hans Tore

    2016-01-01

    Carnivorous sponges are characterized by their unique method of capturing mesoplanktonic prey coupled with the complete or partial reduction of the aquiferous system characteristic of the phylum Porifera. Current systematics place the vast majority of carnivorous sponges within Cladorhizidae, with certain species assigned to Guitarridae and Esperiopsidae. Morphological characters have not been able to show whether this classification is evolutionary accurate, and whether carnivory has evolved once or in several lineages. In the present paper we present the first comprehensive molecular phylogeny of the carnivorous sponges, interpret these results in conjunction with morphological characters, and propose a revised classification of the group. Molecular phylogenies were inferred using 18S rDNA and a combined dataset of partial 28S rDNA, COI and ALG11 sequences. The results recovered carnivorous sponges as a clade closely related to the families Mycalidae and Guitarridae, showing family Cladorhizidae to be monophyletic and also including carnivorous species currently placed in other families. The genus Lycopodina is resurrected for species currently placed in the paraphyletic subgenus Asbestopluma (Asbestopluma) featuring forceps spicules and lacking sigmas or sigmancistras. The genera Chondrocladia and Cladorhiza are found to be monophyletic. However, results indicate that the subgenus Chondrocladia is polyphyletic with respect to the subgenera Meliiderma and Symmetrocladia. Euchelipluma, formerly Guitarridae, is retained, but transferred to Cladorhizidae. The four known carnivorous species currently in Esperiopsis are transferred to Abyssocladia. Neocladia is a junior homonym and is here renamed Koltunicladia. Our results provide strong evidence in support of the hypothesis that carnivory in sponges has evolved only once. While spicule characters mostly reflect monophyletic groups at the generic level, differences between genera represent evolution within family

  20. Phase holograms in dichromated gelatin.

    PubMed

    Shankoff, T A

    1968-10-01

    The gelatin-dichromate photosensitive system has been shown to be very efficient as a recording medium for both two- and three-dimensional holographic gratings. Upon development, as much as 33% of incident reading light is diffracted into the first order for the unmodulated thin phase gratings and 95% for the thick holograms. The material can record a grating spacing at least as small as 2600 A, and gives reconstructions comparable with those obtained in 649F film. The air-gelatin index differential of 0.54 is considered responsible for the high diffracted powers found. Exposures vary from 3 mJ to 150 mJ at 4880 A. Certain films have speeds within two orders of magnitude of 649F holographic film. PMID:20068941

  1. Multilayered Magnetic Gelatin Membrane Scaffolds.

    PubMed

    Samal, Sangram K; Goranov, Vitaly; Dash, Mamoni; Russo, Alessandro; Shelyakova, Tatiana; Graziosi, Patrizio; Lungaro, Lisa; Riminucci, Alberto; Uhlarz, Marc; Bañobre-López, Manuel; Rivas, Jose; Herrmannsdörfer, Thomas; Rajadas, Jayakumar; De Smedt, Stefaan; Braeckmans, Kevin; Kaplan, David L; Dediu, V Alek

    2015-10-21

    A versatile approach for the design and fabrication of multilayer magnetic scaffolds with tunable magnetic gradients is described. Multilayer magnetic gelatin membrane scaffolds with intrinsic magnetic gradients were designed to encapsulate magnetized bioagents under an externally applied magnetic field for use in magnetic-field-assisted tissue engineering. The temperature of the individual membranes increased up to 43.7 °C under an applied oscillating magnetic field for 70 s by magnetic hyperthermia, enabling the possibility of inducing a thermal gradient inside the final 3D multilayer magnetic scaffolds. On the basis of finite element method simulations, magnetic gelatin membranes with different concentrations of magnetic nanoparticles were assembled into 3D multilayered scaffolds. A magnetic-gradient-controlled distribution of magnetically labeled stem cells was demonstrated in vitro. This magnetic biomaterial-magnetic cell strategy can be expanded to a number of different magnetic biomaterials for various tissue engineering applications. PMID:26451743

  2. Bacteria associated with an encrusting sponge (Terpios hoshinota) and the corals partially covered by the sponge.

    PubMed

    Tang, Sen-Lin; Hong, Mei-Jhu; Liao, Ming-Hui; Jane, Wann-Neng; Chiang, Pei-Wen; Chen, Chung-Bin; Chen, Chaolun A

    2011-05-01

    Terpios hoshinota, a dark encrusting sponge, is known to be a competitor for space in coral reef environments, and facilitates the death of corals. Although numerous cyanobacteria have been detected in the sponge, little is known of the sponge-associated bacterial community. This study examined the sponge-associated bacterial community and the difference between the bacterial communities in the sponge and the coral partially covered by the sponge by analysis of 16S rRNA gene sequences of samples isolated from the sponge covering the corals Favia complanata, Isopora palifera, Millepora sp., Montipora efflorescens and Porites lutea. The sponge-associated bacterial community was mainly (61-98%) composed of cyanobacteria, with approximately 15% of these alphaproteobacteria and gammaproteobacteria, although the proportions varied in different sponge samples. The dominant cyanobacteria group was an isolated group closely related to Prochloron sp. The comparison of the bacterial communities isolated from sponge-free and the sponge-covered P. lutea showed that covering by the sponge caused changes in the coral-associated bacterial communities, with the presence of bacteria similar to those detected in black-band disease, suggesting the sponge might benefit from the presence of bacteria associated with unhealthy coral, particularly in the parts of the coral closest to the margin of the sponge. PMID:21265978

  3. Sound Absorbers

    NASA Astrophysics Data System (ADS)

    Fuchs, H. V.; Möser, M.

    Sound absorption indicates the transformation of sound energy into heat. It is, for instance, employed to design the acoustics in rooms. The noise emitted by machinery and plants shall be reduced before arriving at a workplace; auditoria such as lecture rooms or concert halls require a certain reverberation time. Such design goals are realised by installing absorbing components at the walls with well-defined absorption characteristics, which are adjusted for corresponding demands. Sound absorbers also play an important role in acoustic capsules, ducts and screens to avoid sound immission from noise intensive environments into the neighbourhood.

  4. Characterization Of Sponge-Associated Microbial Communities

    NASA Astrophysics Data System (ADS)

    Bailey, K. L.; Weisz, J.; Lindquist, N.

    2004-12-01

    To more fully understand the endosymbiotic relationship between sponges and microorganisms, it is necessary to characterize the microbial communities of the sponges. In this study, DNA was extracted from each of three individual sponges from four sponge species collected in a shallow mangrove cut in Florida Bay near Key Largo, Florida. A fragment of the 16S rRNA gene from sponge-associated bacteria was amplified using the polymerase chain reaction (PCR). The resulting PCR products were analyzed by denaturing gradient gel electrophoresis (DGGE), which separates DNA fragments based on their sequence differences. Some 16S sequences appeared to be shared by each of the four sponge species, while other fragments found in only particular species likely represent unique bacterial strains that play a role in sponge nutrition.

  5. The properties of silica-gelatin composites

    NASA Astrophysics Data System (ADS)

    Stavinskaya, O. N.; Laguta, I. V.

    2010-06-01

    Silica-gelatin composites with various silica-to-gelatin ratios were obtained. The influence of high-dispersity silica on the swelling of composites in water and desorption of pyridoxine and thiamine vitamins incorporated into the material was studied. The addition of silica to gelatin was shown to increase the time of the dissolution of the materials in aqueous medium and decelerate the desorption of vitamins.

  6. Laser damage threshold of gelatin and a copper phthalocyanine doped gelatin optical limiter

    SciTech Connect

    Brant, M.C.; McLean, D.G.; Sutherland, R.L.

    1996-12-31

    The authors demonstrate optical limiting in a unique guest-host system which uses neither the typical liquid or solid host. Instead, they dope a gelatin gel host with a water soluble Copper (II) phthalocyaninetetrasulfonic acid, tetrasodium salt (CuPcTs). They report on the gelatin`s viscoelasticity, laser damage threshold, and self healing of this damage. The viscoelastic gelatin has mechanical properties quite different than a liquid or solid. The authors` laser measurements demonstrate that the single shot damage threshold of the undoped gelatin host increases with decreasing gelatin concentration. The gelatin also has a much higher laser damage threshold than a stiff acrylic. Unlike brittle solids, the soft gelatin self heals from laser induced damage. Optical limiting test also show the utility of a gelatin host doped with CuPcTs. The CuPcTs/gelatin matrix is not damaged at incident laser energies 5 times the single shot damage threshold of the gelatin host. However, at this high laser energy the CuPcTs is photo bleached at the beam waist. The authors repair photo bleached sites by annealing the CuPcTs/gelatin matrix.

  7. Preservation and storage of prepared ballistic gelatine.

    PubMed

    Mattijssen, E J A T; Alberink, I; Jacobs, B; van den Boogaard, Y

    2016-02-01

    The use of ballistic gelatine, generally accepted as a human muscle tissue simulant in wound ballistic studies, might be improved by adding a preservative (Methyl 4-hydroxybenzoate) which inhibits microbial growth. This study shows that replacing a part of the gelatine powder by the preservative does not significantly alter the penetration depth of projectiles. Storing prepared blocks of ballistic gelatine over time decreased the penetration depth of projectiles. Storage of prepared gelatine for 4 week already showed a significant effect on the penetration depth of projectiles. PMID:26773228

  8. Grating formation in diazo salt (sensitized) gelatin.

    PubMed

    Gladden, J W

    1980-05-01

    Diazo (sensitized) gelatins are photosensitive recording materials that, unlike dichromated gelatin, have a long shelf life. Because of their stability, the diazo emulsions have replaced the dichromated colloids used in the photolithographic field and enabled commercialization of presensitized printing plates. We have produced plane wave gratings with peak efficiencies near 67% at an exposure of 625 mJ/cm(2) and a recording wavelength of 488.0 nm in one diazo recording material. Called diazo salt (sensitized) gelatin, the photosensitive material produces gratings in gelatin by a complex process that we found not to be a function of exposure. The methods used are described. PMID:20221070

  9. Study of rheological, viscoelastic and vulcanization behavior of sponge EPDM/NR blended nano- composites

    NASA Astrophysics Data System (ADS)

    Arshad Bashir, M.; Shahid, M.; Ahmed, Riaz; Yahya, A. G.

    2014-06-01

    In this research paper the effect of blending ratio of natural rubber (NR) with Ethylene Propylene Diene Monomer (EPDM) were investigated. Different samples of EPDM/NR ratio were prepared to study the variation of NR in EPDM on rheology, curing characteristics, tangent δ, and viscosity variation during vulcanization of sponge nano composites.The main aim of present research is to develop elastomeric based sponge composites with the blending ratio of base elastomers along with the carbon nano particles for high energy absorbing and damping applications. The curing characteristics, rheology and viscoelastic nature of the composite is remarkably influenced with the progressive blending ratio of the base elastomeric matrix.

  10. Sputter Deposition of Metallic Sponges

    SciTech Connect

    Jankowski, A F; Hayes, J P

    2002-01-18

    Metallic films are grown with a sponge-like morphology in the as-deposited condition using planar magnetron sputtering. The morphology of the deposit is characterized by metallic continuity in three dimensions with continuous porosity on the sub-micron scale. The stabilization of the metallic sponge is directly correlated with a limited range for the sputter deposition parameters of working gas pressure and substrate temperature. This sponge-like morphology augments the features as generally understood in the classic zone models of growth for physical vapor deposits. Nickel coatings are deposited with working gas pressures up to 4 Pa and for substrate temperatures up to 1100 K. The morphology of the deposits is examined in plan and in cross-section with scanning electron microscopy. The parametric range of gas pressure and substrate temperature (relative to absolute melt point) for the deposition processing under which the metallic sponges are produced appear universal for many metals, as for example, including gold, silver, and aluminum.

  11. Why do dolphins carry sponges?

    PubMed

    Mann, Janet; Sargeant, Brooke L; Watson-Capps, Jana J; Gibson, Quincy A; Heithaus, Michael R; Connor, Richard C; Patterson, Eric

    2008-01-01

    Tool use is rare in wild animals, but of widespread interest because of its relationship to animal cognition, social learning and culture. Despite such attention, quantifying the costs and benefits of tool use has been difficult, largely because if tool use occurs, all population members typically exhibit the behavior. In Shark Bay, Australia, only a subset of the bottlenose dolphin population uses marine sponges as tools, providing an opportunity to assess both proximate and ultimate costs and benefits and document patterns of transmission. We compared sponge-carrying (sponger) females to non-sponge-carrying (non-sponger) females and show that spongers were more solitary, spent more time in deep water channel habitats, dived for longer durations, and devoted more time to foraging than non-spongers; and, even with these potential proximate costs, calving success of sponger females was not significantly different from non-spongers. We also show a clear female-bias in the ontogeny of sponging. With a solitary lifestyle, specialization, and high foraging demands, spongers used tools more than any non-human animal. We suggest that the ecological, social, and developmental mechanisms involved likely (1) help explain the high intrapopulation variation in female behaviour, (2) indicate tradeoffs (e.g., time allocation) between ecological and social factors and, (3) constrain the spread of this innovation to primarily vertical transmission. PMID:19066625

  12. Two cell surface proteins bind the sponge Microciona prolifera aggregation factor.

    PubMed

    Varner, J A; Burger, M M; Kaufman, J F

    1988-06-15

    dot blot and denaturing Western blot assays. Although neither protein bound to heparin, gelatin, hexosamine, or uronic acid-Sepharose resins, their affinity for an invertebrate proteoglycan, their roles in sponge cell adhesion, and their peripheral membrane protein natures suggest that they may represent early invertebrate analogs of cell-associated vertebrate extracellular matrix adhesion proteins, such as fibronectin or vitronectin, or else an entirely novel set of cell adhesion molecules. PMID:3372540

  13. Effect of starch on the mechanical and in vitro properties of collagen-hydroxyapatite sponges for applications in dentistry.

    PubMed

    Castro-Ceseña, Ana B; Camacho-Villegas, Tanya A; Lugo-Fabres, Pavel H; Novitskaya, Ekaterina E; McKittrick, Joanna; Licea-Navarro, Alexei

    2016-09-01

    This study sought to improve the mechanical and blood-absorbing properties of collagen sponges, while keeping them compressible, by incorporating blended hydroxyapatite (HA)-starch. Results were compared with CollaPlug(®) (pure collagen). The elastic modulus increased from 1.5±0.2kPa for CollaPlug(®) to 49±8kPa for sponges with composition 1:4:10 (collagen:HA:starch, by weight). The modified microstructure and surface area provided by the starch granules on the sponges improved cell viability. Sponges with composition 1:4:10 maintained their blood-clotting capability with almost no change from 5 to 15min after contact with blood, while CollaPlug(®) diminished to about half its capacity to absorb blood and form clots. Incorporation of HA-starch into the sponges with composition of 1:4:10, increased the elastic modulus of the collagen-HA sponges, making them more structurally robust. The viability of cells and the blood-clotting capability increased with starch incorporation. PMID:27185118

  14. Global Diversity of Sponges (Porifera)

    PubMed Central

    Van Soest, Rob W. M.; Boury-Esnault, Nicole; Vacelet, Jean; Dohrmann, Martin; Erpenbeck, Dirk; De Voogd, Nicole J.; Santodomingo, Nadiezhda; Vanhoorne, Bart; Kelly, Michelle; Hooper, John N. A.

    2012-01-01

    With the completion of a single unified classification, the Systema Porifera (SP) and subsequent development of an online species database, the World Porifera Database (WPD), we are now equipped to provide a first comprehensive picture of the global biodiversity of the Porifera. An introductory overview of the four classes of the Porifera is followed by a description of the structure of our main source of data for this paper, the WPD. From this we extracted numbers of all ‘known’ sponges to date: the number of valid Recent sponges is established at 8,553, with the vast majority, 83%, belonging to the class Demospongiae. We also mapped for the first time the species richness of a comprehensive set of marine ecoregions of the world, data also extracted from the WPD. Perhaps not surprisingly, these distributions appear to show a strong bias towards collection and taxonomy efforts. Only when species richness is accumulated into large marine realms does a pattern emerge that is also recognized in many other marine animal groups: high numbers in tropical regions, lesser numbers in the colder parts of the world oceans. Preliminary similarity analysis of a matrix of species and marine ecoregions extracted from the WPD failed to yield a consistent hierarchical pattern of ecoregions into marine provinces. Global sponge diversity information is mostly generated in regional projects and resources: results obtained demonstrate that regional approaches to analytical biogeography are at present more likely to achieve insights into the biogeographic history of sponges than a global perspective, which appears currently too ambitious. We also review information on invasive sponges that might well have some influence on distribution patterns of the future. PMID:22558119

  15. Global diversity of sponges (Porifera).

    PubMed

    Van Soest, Rob W M; Boury-Esnault, Nicole; Vacelet, Jean; Dohrmann, Martin; Erpenbeck, Dirk; De Voogd, Nicole J; Santodomingo, Nadiezhda; Vanhoorne, Bart; Kelly, Michelle; Hooper, John N A

    2012-01-01

    With the completion of a single unified classification, the Systema Porifera (SP) and subsequent development of an online species database, the World Porifera Database (WPD), we are now equipped to provide a first comprehensive picture of the global biodiversity of the Porifera. An introductory overview of the four classes of the Porifera is followed by a description of the structure of our main source of data for this paper, the WPD. From this we extracted numbers of all 'known' sponges to date: the number of valid Recent sponges is established at 8,553, with the vast majority, 83%, belonging to the class Demospongiae. We also mapped for the first time the species richness of a comprehensive set of marine ecoregions of the world, data also extracted from the WPD. Perhaps not surprisingly, these distributions appear to show a strong bias towards collection and taxonomy efforts. Only when species richness is accumulated into large marine realms does a pattern emerge that is also recognized in many other marine animal groups: high numbers in tropical regions, lesser numbers in the colder parts of the world oceans. Preliminary similarity analysis of a matrix of species and marine ecoregions extracted from the WPD failed to yield a consistent hierarchical pattern of ecoregions into marine provinces. Global sponge diversity information is mostly generated in regional projects and resources: results obtained demonstrate that regional approaches to analytical biogeography are at present more likely to achieve insights into the biogeographic history of sponges than a global perspective, which appears currently too ambitious. We also review information on invasive sponges that might well have some influence on distribution patterns of the future. PMID:22558119

  16. Rediscovering Chemical Gardens: Self-Assembling Cytocompatible Protein-Intercalated Silicate-Phosphate Sponge-Mimetic Tubules.

    PubMed

    Punia, Kamia; Bucaro, Michael; Mancuso, Andrew; Cuttitta, Christina; Marsillo, Alexandra; Bykov, Alexey; L'Amoreaux, William; Raja, Krishnaswami S

    2016-08-30

    The classic chemical garden experiment is reconstructed to produce protein-intercalated silicate-phosphate tubules that resemble tubular sponges. The constructs were synthesized by seeding calcium chloride into a solution of sodium silicate-potassium phosphate and gelatin. Sponge-mimetic tubules were fabricated with varying percentages of gelatin (0-15% w/v), in diameters ranging from 200 μm to 2 mm, characterized morphologically and compositionally, functionalized with biomolecules for cell adhesion, and evaluated for cytocompatibility. Scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy analysis (EDS) experiments showed that the external surface of the tubules was relatively more amorphous in texture and carbon/protein-rich in comparison to the interior surface. Transmission electron microscopy (TEM) images indicate a network composed of gelatin incorporated into the inorganic scaffold. The presence of gelatin in the constructs was confirmed by infrared spectroscopy. Powder X-ray diffraction (XRD) was used to identify inorganic crystalline phases in the scaffolds that are mainly composed of Ca(OH)2, NaCl, and Ca2SiO4 along with a band corresponding to amorphous gelatin. Bioconjugation and coating protocols were developed to program the scaffolds with cues for cell adhesion, and the resulting constructs were employed for 3D cell culture of marine (Pyrocystis lunula) and mammalian (HeLa and H9C2) cell lines. The cytocompatibility of the constructs was demonstrated by live cell assays. We have successfully shown that these biomimetic materials can indeed support life; they serve as scaffolds that facilitate the attachment and assembly of individual cells to form multicellular entities, thereby revisiting the 350-year-old effort to link chemical gardens with the origins of life. Hybrid chemical garden biomaterials are programmable, readily fabricated and could be employed in tissue engineering, biomolecular materials development, 3D mammalian

  17. Fractal lattice of gelatin nanoglobules

    NASA Astrophysics Data System (ADS)

    Novikov, D. V.; Krasovskii, A. N.

    2012-11-01

    The globular structure of polymer coatings on a glass, which were obtained from micellar solutions of gelatin in the isooctane-water-sodium (bis-2-ethylhexyl) sulfosuccinate system, has been studied using electron microscopy. It has been shown that an increase in the average globule size is accompanied by the formation of a fractal lattice of nanoglobules and a periodic physical network of macromolecules in the coating. The stability of such system of the "liquid-in-a-solid" type is limited by the destruction of globules and the formation of a homogeneous network structure of the coating.

  18. Gelatin Plasticized with a Biodiesel Coproduct Stream

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cast gelatin films were plasticized with a biodiesel coproduct stream (BCS). Gelatin was found to be compatible with the non-glycerol components of BCS. Films were well formed and appeared homogeneous on the macroscopic level. A BCS content of 18–34% resulted in elongations of 35–182%, with correspo...

  19. 21 CFR 522.1020 - Gelatin.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Gelatin. 522.1020 Section 522.1020 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS IMPLANTATION OR INJECTABLE DOSAGE FORM NEW ANIMAL DRUGS § 522.1020 Gelatin. (a) Specifications. Each 100 milliliters...

  20. Chitosan-aluminum monostearate composite sponge dressing containing asiaticoside for wound healing and angiogenesis promotion in chronic wound.

    PubMed

    Phaechamud, Thawatchai; Yodkhum, Kotchamon; Charoenteeraboon, Juree; Tabata, Yasuhiko

    2015-05-01

    There are many factors that delay healing in chronic wounds including lowering level of growth factors and increasing exudate level comprising high amount of tissue destructive enzymes. Asiaticoside possesses interesting wound healing and angiogenic activities that are employed to stimulate tissue regeneration in wound healing application. This study attempted to develop chitosan-aluminum monostearate (Alst) composite sponge containing asiaticoside for use as an absorbent medical dressing in chronic wound. N-methyl-2-pyrrolidone (NMP) was used to enhance homogeneity of asiaticoside in the polymer composite matrix. The sponge dressings were prepared by lyophilization and dehydrothermal treatment (DHT). Functional group interaction, crystallinity, and morphology of the prepared sponges were investigated using FT-IR, PXRD, and SEM, respectively. Physicochemical properties, porosity, hydrophilic/hydrophobic properties and mechanical property, were evaluated. Wound dressing properties, water vapor transmission rate (WVTR), fluid absorbency, oxygen permeation (OP), and bio-adhesive property, were investigated. In vitro asiaticoside release study was conducted using immersion method. Cytotoxicity was studied in normal human dermal fibroblast (NHDF) and normal human epidermal keratinocyte (NHEK). Angiogenic activity of asiaticoside was evaluated using chick-chorioallantoic membrane (CAM) assay. FT-IR and PXRD results revealed the amidation after DHT to enhance the crystallinity of the prepared sponges. The prepared sponges had high porosity comprising high Alst-loaded amount that exhibited more compact structure. Alst enhanced hydrophobicity therefore it reduced the fluid absorption and WVTR together with bio-adhesion of the prepared sponge dressings. Porosity of all sponges was more than 85% therefore resulting in their high OP. Enhancing hydrophobicity of the material by Alst and more homogeneity caused by NMP eventually retarded the asiaticoside release for 7 days. The

  1. Enzymatic degradation of polycaprolactone-gelatin blend

    NASA Astrophysics Data System (ADS)

    Banerjee, Aditi; Chatterjee, Kaushik; Madras, Giridhar

    2015-04-01

    Blends of polycaprolactone (PCL), a synthetic polymer and gelatin, natural polymer offer a optimal combination of strength, water wettability and cytocompatibility for use as a resorbable biomaterial. The enzymatic degradation of PCL, gelatin and PCL-gelatin blended films was studied in the presence of lipase (Novozym 435, immobilized) and lysozyme. Novozym 435 degraded the PCL films whereas lysozyme degraded the gelatin. Though Novozym 435 and lysozyme individually could degrade PCL-gelatin blended films, the combination of these enzymes showed the highest degradation of these blended films. Moreover, the enzymatic degradation was much faster when fresh enzymes were added at regular intervals. The changes in physico-chemical properties of polymer films due to degradation were studied by scanning electron microscopy, Fourier transform infrared spectroscopy and differential scanning calorimetry. These results have important implications for designing resorbable biomedical implants.

  2. Who Produces Ianthelline? The Arctic Sponge Stryphnus fortis or its Sponge Epibiont Hexadella dedritifera: a Probable Case of Sponge-Sponge Contamination.

    PubMed

    Cárdenas, Paco

    2016-04-01

    The bromotyrosine derivative ianthelline was isolated recently from the Atlantic boreo-arctic deep-sea sponge Stryphnus fortis, and shown to have clear antitumor and antifouling effects. However, chemosystematics, field observations, and targeted metabolic analyses (using UPLC-MS) suggest that ianthelline is not produced by S. fortis but by Hexadella dedritifera, a sponge that commonly grows on S. fortis. This case highlights the importance of combining taxonomic and ecological knowledge to the field of sponge natural products research. PMID:27091193

  3. SITE demonstration of the Dynaphore/Forager Sponge technology to remove dissolved metals from contaminated groundwater

    SciTech Connect

    Esposito, C.R.; Vaccaro, G.

    1995-10-01

    A Superfund Innovative Technology Evaluation (SITE) demonstration was conducted of the Dynaphore/Forager Sponge technology during the week of April 3, 1994 at the N.L. Industries Superfund Site in Pedricktown, New Jersey. The Forager Sponge is an open-celled cellulose sponge incorporating an amine-containing chelating polymer that selectively absorbs dissolved heavy metals in both cationic and anionic states. This technology is a volume reduction technology in which heavy metal contaminants from an aqueous medium are concentrated into a smaller volume for facilitated disposal. The developer states that the technology can be used to remove heavy metals from a wide variety of aqueous media, such as groundwater, surface waters and process waters. The sponge matrix can be directly disposed, or regenerated with chemical solutions. For this demonstration the sponge was set up as a mobile pump-and-treat system which treated groundwater contaminated with heavy metals. The demonstration focused on the system`s ability to remove lead, cadmium, chromium and copper from the contaminated groundwater over a continuous 72-hour test. The removal of heavy metals proceeded in the presence of significantly higher concentrations of innocuous cations such as calcium, magnesium, sodium, potassium and aluminum.

  4. UV-responsive nano-sponge for oil absorption and desorption

    NASA Astrophysics Data System (ADS)

    Kim, Do Hyun; Jung, Min Chan; Cho, So-Hye; Kim, Sang Hoon; Kim, Ho-Young; Lee, Heon Ju; Oh, Kyu Hwan; Moon, Myoung-Woon

    2015-08-01

    Controlled surface wettability for oil has been intensively studied to remove industrial oil waste or oil spill pollution from seas or rivers. In particular, external stimuli-induced special wetting materials, such as photo-responsive TiO2, have attracted considerable attention for oil-water separation. In this study, a novel method is reported to fabricate a nano-sponge which is composed of hydrophobic hydrocarbon and hydrophilic TiO2 nanoparticles for oil absorption or desorption that are responsive to UV irradiation. The hydrocarbon in the nano-sponge could selectively absorb oil from water, whereas the absorbed oil is released into the water by TiO2 in response to UV irradiation. The nano-sponge functionalized porous polydimethylsiloxane released more than 98% of the absorbed crude oil with UV irradiation and air-bubbling. It could be continuously reused while maintaining a high absorption capacity and desorption efficiency without incurring secondary air or water pollution. This smart oil absorption/desorption methodology with excellent selectivity and recyclability with almost perfect removal of absorbed oil can be applied for oil-water separation, oil spill cleanup and reuse of spilled oil.

  5. UV-responsive nano-sponge for oil absorption and desorption

    PubMed Central

    Kim, Do Hyun; Jung, Min Chan; Cho, So-Hye; Kim, Sang Hoon; Kim, Ho-Young; Lee, Heon Ju; Oh, Kyu Hwan; Moon, Myoung-Woon

    2015-01-01

    Controlled surface wettability for oil has been intensively studied to remove industrial oil waste or oil spill pollution from seas or rivers. In particular, external stimuli-induced special wetting materials, such as photo-responsive TiO2, have attracted considerable attention for oil-water separation. In this study, a novel method is reported to fabricate a nano-sponge which is composed of hydrophobic hydrocarbon and hydrophilic TiO2 nanoparticles for oil absorption or desorption that are responsive to UV irradiation. The hydrocarbon in the nano-sponge could selectively absorb oil from water, whereas the absorbed oil is released into the water by TiO2 in response to UV irradiation. The nano-sponge functionalized porous polydimethylsiloxane released more than 98% of the absorbed crude oil with UV irradiation and air-bubbling. It could be continuously reused while maintaining a high absorption capacity and desorption efficiency without incurring secondary air or water pollution. This smart oil absorption/desorption methodology with excellent selectivity and recyclability with almost perfect removal of absorbed oil can be applied for oil-water separation, oil spill cleanup and reuse of spilled oil. PMID:26260470

  6. Molecular spectroscopic analyses of gelatin

    NASA Astrophysics Data System (ADS)

    Ibrahim, Medhat; Mahmoud, Abdel Aziz; Osman, Osama; Abd El-Aal, Mohamed; Eid, May

    2011-10-01

    The molecular structure of gelatin was studied using Fourier transform infrared spectroscopy FTIR. The spectrum is subjected to deconvolution in order to elucidate the constituents of the molecular structure. B3LYP/6-31g** was used to study 13 amino acids then the scaled spectrum was compared to those of protein in order to describe the contribution of each amino acid into protein structure. A special interest was paid to the NH and C dbnd O region. The reactivity of each amino acid was studied in terms of some important physical parameters like total dipole moment and HOMO/LUMO which describe the interaction of amino acid with their surrounding molecules. Results indicated that B3LYP/6-31g** model is a suitable and precise method for studying molecular structure of protein.

  7. Metal sponge for cryosorption pumping applications

    DOEpatents

    Myneni, Ganapati R.; Kneisel, Peter

    1995-01-01

    A system has been developed for adsorbing gases at high vacuum in a closed area. The system utilizes large surface clean anodized metal surfaces at low temperatures to adsorb the gases. The large surface clean anodized metal is referred to as a metal sponge. The metal sponge generates or maintains the high vacuum by increasing the available active cryosorbing surface area.

  8. Metal sponge for cryosorption pumping applications

    DOEpatents

    Myneni, G.R.; Kneisel, P.

    1995-12-26

    A system has been developed for adsorbing gases at high vacuum in a closed area. The system utilizes large surface clean anodized metal surfaces at low temperatures to adsorb the gases. The large surface clean anodized metal is referred to as a metal sponge. The metal sponge generates or maintains the high vacuum by increasing the available active cryosorbing surface area. 4 figs.

  9. Effective household disinfection methods of kitchen sponges

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Several household disinfecting treatments to kill bacteria, yeasts and molds on kitchen sponges were evaluated. Sponges were soaked in 10 percent bleach for 3 min, lemon juice (pH 2.9) or deionized water for 1 min; placed in a microwave oven for 1 min; or placed in a dishwasher operating with a dryi...

  10. Starvation marrow - gelatinous transformation of bone marrow.

    PubMed

    Osgood, Eric; Muddassir, Salman; Jaju, Minal; Moser, Robert; Farid, Farwa; Mewada, Nishith

    2014-01-01

    Gelatinous bone marrow transformation (GMT), also known as starvation marrow, represents a rare pathological entity of unclear etiology, in which bone marrow histopathology demonstrates hypoplasia, fat atrophy, and gelatinous infiltration. The finding of gelatinous marrow transformation lacks disease specificity; rather, it is an indicator of severe illness and a marker of poor nutritional status, found in patients with eating disorders, acute febrile illnesses, acquired immunodeficiency syndrome, alcoholism, malignancies, and congestive heart failure. We present a middle-aged woman with a history of alcoholism, depression, and anorexia nervosa who presented with failure to thrive and macrocytic anemia, with bone marrow examination demonstrative of gelatinous transformation, all of which resolved with appropriate treatment. To our knowledge, there are very few cases of GMT which have been successfully treated; thus, our case highlights the importance of proper supportive management. PMID:25317270

  11. Gelatin coated electrodes allow prolonged bioelectronic measurements

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Silver electrodes treated with an anodizing electrolyte containing gelatin are used for long term monitoring of bioelectronic potentials in humans. The electrodes do not interact with perspiration, cause skin irritation, or promote the growth of bacteria.

  12. Gelatin microcapsules for enhanced microwave tumor hyperthermia.

    PubMed

    Du, Qijun; Fu, Changhui; Tie, Jian; Liu, Tianlong; Li, Linlin; Ren, Xiangling; Huang, Zhongbing; Liu, Huiyu; Tang, Fangqiong; Li, Li; Meng, Xianwei

    2015-02-21

    Local and rapid heating by microwave (MW) irradiation is important in the clinical treatment of tumors using hyperthermia. We report here a new thermo-seed technique for the highly efficient MW irradiation ablation of tumors in vivo based on gelatin microcapsules. We achieved 100% tumor elimination in a mouse model at an ultralow power of 1.8 W without any side-effects. The results of MTT assays, a hemolysis test and the histological staining of organs indicated that the gelatin microcapsules showed excellent compatibility with the physiological environment. A possible mechanism is proposed for MW hyperthermia using gelatin microcapsules. We also used gelatin microcapsules capped with CdTe quantum dots for in vivo optical imaging. Our study suggests that these microcapsules may have potential applications in imaging-guided cancer treatment. PMID:25613756

  13. Halal authenticity of gelatin using species-specific PCR.

    PubMed

    Shabani, Hessam; Mehdizadeh, Mehrangiz; Mousavi, Seyed Mohammad; Dezfouli, Ehsan Ansari; Solgi, Tara; Khodaverdi, Mahdi; Rabiei, Maryam; Rastegar, Hossein; Alebouyeh, Mahmoud

    2015-10-01

    Consumption of food products derived from porcine sources is strictly prohibited in Islam. Gelatin, mostly derived from bovine and porcine sources, has many applications in the food and pharmaceutical industries. To ensure that food products comply with halal regulations, development of valid and reliable analytical methods is very much required. In this study, a species-specific polymerase chain reaction (PCR) assay using conserved regions of mitochondrial DNA (cytochrome b gene) was performed to evaluate the halal authenticity of gelatin. After isolation of DNA from gelatin powders with known origin, conventional PCR using species-specific primers was carried out on the extracted DNA. The amplified expected PCR products of 212 and 271 bp were observed for porcine and bovine gelatin, respectively. The sensitivity of the method was tested on binary gelatin mixtures containing 0.1%, 1%, 10%, and 100% (w/w) of porcine gelatin within bovine gelatin and vice versa. Although most of the DNA is degraded due to the severe processing steps of gelatin production, the minimum level of 0.1% w/w of both porcine and bovine gelatin was detected. Moreover, eight food products labeled as containing bovine gelatin and eight capsule shells were subjected to PCR examination. The results showed that all samples contained bovine gelatin, and the absence of porcine gelatin was verified. This method of species authenticity is very useful to verify whether gelatin and gelatin-containing food products are derived from halal ingredients. PMID:25872445

  14. Thermal characterisation of gelatin extracted from yellowfin tuna skin and commercial mammalian gelatin.

    PubMed

    Rahman, Mohammad Shafiur; Al-Saidi, Ghalib Said; Guizani, Nejib

    2008-05-15

    Glass transition and other thermal characteristics of gelatin from different sources were studied by differential scanning calorimetry (DSC) and modulated DSC (MDSC). The initial glass transition temperatures of equilibrated gelatin samples at 11.3% relative humidity, determined from reversible heat flow thermogram of MDSC, were 23, 75 and 59°C, respectively, for tuna skin, bovine and porcine gelatin. When gelatin samples were equilibrated at higher relative humidity of 52.9%, glass transition temperature of fish skin and bovine gelatin decreased to -3 and 57°C, respectively. Further increase of equilibration relative humidity to 75.3% showed increased value in the case of tuna skin, whereas bovine and porcine did not show any significant change. DSC and MDSC results indicated that tuna gelatin showed lower glass transition compared to mammalian source gelatin equilibrated at the same constant relative humidity. In general glass transition measured by DSC was found lower than the values measured by MDSC. The results in this study showed that the degree of plasticization varied with the source of gelatin as well as their extraction methods. PMID:26059124

  15. Activated chemical defense in aplysina sponges revisited.

    PubMed

    Thoms, Carsten; Ebel, Rainer; Proksch, Peter

    2006-01-01

    Sponges of the genus Aplysina accumulate brominated isoxazoline alkaloids in concentrations that sometimes exceed 10% of their dry weight. We previously reported a decrease in concentrations of these compounds and a concomitant increase in concentrations of the monocyclic nitrogenous compounds aeroplysinin-1 and dienone in Aplysina aerophoba following injury of the sponge tissue. Further investigations indicated a wound-induced enzymatic cleavage of the former compounds into the latter, and demonstrated that these reactions also occur in other Aplysina sponges. A recent study on Caribbean Aplysina species, however, introduced doubt regarding the presence of a wound-induced bioconversion in sponges of this genus. This discrepancy motivated us to reinvestigate carefully the fate of brominated alkaloids in A. aerophoba and in other Aplysina sponges following mechanical injury. As a result of this study we conclude that (1) tissue damage induces a bioconversion of isoxazoline alkaloids into aeroplysinin-1 and dienone in Aplysina sponges, (2) this reaction is likely catalyzed by enzymes, and (3) it may be ecologically relevant as the bioconversion products possibly protect the wounded sponge tissue from invasion of bacterial pathogens. PMID:16525873

  16. Diversity of fungal isolates from three Hawaiian marine sponges.

    PubMed

    Li, Quanzi; Wang, Guangyi

    2009-01-01

    Sponges harbor diverse prokaryotic and eukaryotic microbes. However, the nature of sponge-fungal association and diversity of sponge-derived fungi have barely been addressed. In this study, the cultivation-dependent approach was applied to study fungal diversity in the Hawaiian sponges Gelliodes fibrosa, Haliclona caerulea, and Mycale armata. The cultivated fungal isolates were representatives of 8 taxonomic orders, belonging to at least 25 genera of Ascomycota and 1 of Basidiomycota. A portion of these isolates (n=15, 17%) were closely affiliated with fungal isolates isolated from other marine habitats; the rest of the isolates had affiliation with terrestrial fungal strains. Cultivated fungal isolates were classified into 3 groups: 'sponge-generalists'-found in all sponge species, 'sponge-associates'-found in more than one sponge species, and 'sponge-specialists'-found only in one sponge species. Individuals of G. fibrosa collected at two different locations shared the same group of 'sponge-specialists'. Also, representatives of 15 genera were identified for the first time in marine sponges. Large-scale phylogenetic analysis of sponge-derived fungi may provide critical information to distinguish between 'resident fungi' and 'transient fungi' in sponges as it has been done in other marine microbial groups. This is the first report of the host specificity analysis of culturable fungal communities in marine sponges. PMID:17681460

  17. New self developed holographic media-dichromated gelatin with isopropanol

    NASA Astrophysics Data System (ADS)

    Malov, Alexander N.; Neupokoeva, Anna V.

    2007-01-01

    The gel-colloidal dichromated gelatin emulsions properties doped by different multyatoms spirits are investigated. The highest diffraction efficiency results turn out at use isopropanol spirit (IPS) for dichromated gelatin (DG) gel. Influence of the IPS on holographic properties of such layers is investigated. Optimum IPS concentration depends on gelatin concentration and makes 5 vol % for 3 % gelatin water emulsion and 10 vol % for 10 % gelatin one. Optimum IPS concentration is approximately 100 % on dry gelatin weight. DG gel with IPS photoreaction speed is increased in 5-6 times in comparison with a layer without spirit and done approximately identical to layers with glycerin.

  18. Assessing the complex sponge microbiota: core, variable and species-specific bacterial communities in marine sponges

    PubMed Central

    Schmitt, Susanne; Tsai, Peter; Bell, James; Fromont, Jane; Ilan, Micha; Lindquist, Niels; Perez, Thierry; Rodrigo, Allen; Schupp, Peter J; Vacelet, Jean; Webster, Nicole; Hentschel, Ute; Taylor, Michael W

    2012-01-01

    Marine sponges are well known for their associations with highly diverse, yet very specific and often highly similar microbiota. The aim of this study was to identify potential bacterial sub-populations in relation to sponge phylogeny and sampling sites and to define the core bacterial community. 16S ribosomal RNA gene amplicon pyrosequencing was applied to 32 sponge species from eight locations around the world's oceans, thereby generating 2567 operational taxonomic units (OTUs at the 97% sequence similarity level) in total and up to 364 different OTUs per sponge species. The taxonomic richness detected in this study comprised 25 bacterial phyla with Proteobacteria, Chloroflexi and Poribacteria being most diverse in sponges. Among these phyla were nine candidate phyla, six of them found for the first time in sponges. Similarity comparison of bacterial communities revealed no correlation with host phylogeny but a tropical sub-population in that tropical sponges have more similar bacterial communities to each other than to subtropical sponges. A minimal core bacterial community consisting of very few OTUs (97%, 95% and 90%) was found. These microbes have a global distribution and are probably acquired via environmental transmission. In contrast, a large species-specific bacterial community was detected, which is represented by OTUs present in only a single sponge species. The species-specific bacterial community is probably mainly vertically transmitted. It is proposed that different sponges contain different bacterial species, however, these bacteria are still closely related to each other explaining the observed similarity of bacterial communities in sponges in this and previous studies. This global analysis represents the most comprehensive study of bacterial symbionts in sponges to date and provides novel insights into the complex structure of these unique associations. PMID:21993395

  19. Superoxide radical production by sponges Sycon sp.

    PubMed

    Peskin, A V; Labas, Y A; Tikhonov, A N

    1998-08-28

    Using the catechol Tiron as an O2-. scavenger, we showed that sea sponges (Sycon sp.) produce superoxide radicals in sea water at a high rate without any stimuli added. The rate of O2-. outflow from sponges to their water surroundings reaches a value of 0.5 nmol/min per sponge at pH 6.5. The generation of O2-. was inhibited by Cu,Zn-superoxide dismutase, and restored by the addition of KCN. We also confirmed the abiotic production of O2-. in sea water, detected earlier with a different method by Petasne and Zika [Nature 325 (1987) 516-518]. PMID:9738478

  20. Effects of powder from white cabbage outer leaves on sponge cake quality

    NASA Astrophysics Data System (ADS)

    Prokopov, Tsvetko; Goranova, Zhivka; Baeva, Marianna; Slavov, Anton; Galanakis, Charis M.

    2015-10-01

    The main objective of this study was to develop high fibre cakes utilizing and valorising cabbage by-products - cabbage outer leaves. Cabbage outer leaves were dried and milled in order to produce cabbage leaf powder. The cabbage leaf powder was added at 0, 10, 20% into sponge cake. All of the samples were subjected to physicochemical analysis and sensory evaluation. Methods of descriptive sensory analysis were used for a comparative analysis of the sponge cakes with cabbage leaf powder and the cake without cabbage leaf powder. Addition of cabbage leaf powder in sponge cakes significantly affected the cake volume and textural properties. Springiness of cakes with cabbage leaf powder and crumb tenderness were lower, while the structure was stable at high loads, as expressed by lower shrinkage in comparison with the control cake. The nutritional value of the sponge cakes with cabbage leaf powder was lower than the control cake. The cells cakes modified by cabbage leaf powder were smaller and almost equal, uniformly distributed in the crumb, and at the same time had thicker walls. The cakes with addition of cabbage leaf powder showed the springiness and their crumb tenderness were lower, while their structure was stable at high loads. Control cake showed higher water-absorbing capacity compared to the cakes with 10 and 20% cabbage leaf powder.

  1. GELATIN CARRIERS FOR DRUG AND CELL DELIVERY IN TISSUE ENGINEERING

    PubMed Central

    Santoro, Marco; Tatara, Alexander M.; Mikos, Antonios G.

    2014-01-01

    The ability of gelatin to form complexes with different drugs has been investigated for controlled release applications. Gelatin parameters, such as crosslinking density and isoelectric point, have been tuned in order to optimize gelatin degradation and drug delivery kinetics. In recent years, focus has shifted away from the use of gelatin in isolation towards the modification of gelatin with functional groups and the fabrication of material composites with embedded gelatin carriers. In this review, we highlight some of the latest work being performed in these areas and comment on trends in the field. Specifically, we discuss gelatin modifications for immune system evasion, drug stabilization, and targeted delivery, as well as gelatin composite systems based on ceramics, naturally-occurring polymers, and synthetic polymers. PMID:24746627

  2. In vitro evaluation of electrospun gelatin-glutaraldehyde nanofibers

    NASA Astrophysics Data System (ADS)

    Zhan, Jianchao; Morsi, Yosry; Ei-Hamshary, Hany; Al-Deyab, Salem S.; Mo, Xiumei

    2016-03-01

    The gelatin-glutaraldehyde (gelatin-GA) nanofibers were electrospun in order to overcome the defects of ex-situ crosslinking process such as complex process, destruction of fiber morphology and decrease of porosity. The morphological structure, porosity, thermal property, moisture absorption and moisture retention performance, hydrolytic resistance, mechanical property and biocompatibility of nanofiber scaffolds were tested and characterized. The gelatin-GA nanofiber has nice uniform diameter and more than 80% porosity. The hydrolytic resistance and mechanical property of the gelatin-GA nanofiber scaffolds are greatly improved compared with that of gelatin nanofibers. The contact angle, moisture absorption, hydrolysis resistance, thermal resistance and mechanical property of gelatin-GA nanofiber scaffolds could be adjustable by varying the gelatin solution concentration and GA content. The gelatin-GA nanofibers had excellent properties, which are expected to be an ideal scaffold for biomedical and tissue engineering applications.

  3. Soft chemistry based sponge-like indium tin oxide (ITO) — a prospective component of photoanode for solar cell application

    NASA Astrophysics Data System (ADS)

    Biswas, Prasanta Kumar; Das, Nilanjana

    2015-04-01

    Previously we reported the synthesis of novel organic-inorganic composite indium tin oxide (ITO) foam precursor leading to the formation of "sponge-like" ITO by burning away the organics. This newly made sponge-like ITO possesses relatively high electrical conductivity due to phonon confinement with reasonable pore structure and may have potential application as functional materials in semiconducting dye absorbing layer in dye-sensitized solar cell (DSSC) and also as the receptor of electrons injected from the quantum dots (QDs) of organic-inorganic hybrid QD based solar cell. This report is a short review of "sponge-like" ITO described as a lecture note on its future use as an alternative new prospective material for photoanode of solar cell in the domain of sustainable energy.

  4. PLLA-collagen and PLLA-gelatin hybrid scaffolds with funnel-like porous structure for skin tissue engineering

    NASA Astrophysics Data System (ADS)

    Lu, Hongxu; Oh, Hwan Hee; Kawazoe, Naoki; Yamagishi, Kozo; Chen, Guoping

    2012-12-01

    In skin tissue engineering, a three-dimensional porous scaffold is necessary to support cell adhesion and proliferation and to guide cells moving into the repair area in the wound healing process. Structurally, the porous scaffold should have an open and interconnected porous architecture to facilitate homogenous cell distribution. Moreover, the scaffolds should be mechanically strong to protect deformation during the formation of new skin. In this study, the hybrid scaffolds were prepared by forming funnel-like collagen or gelatin sponge on a woven poly(l-lactic acid) (PLLA) mesh. The hybrid scaffolds combined the advantages of both collagen or gelatin (good cell-interactions) and PLLA mesh (high mechanical strength). The hybrid scaffolds were used to culture dermal fibroblasts for dermal tissue engineering. The funnel-like porous structure promoted homogeneous cell distribution and extracellular matrix production. The PLLA mesh reinforced the scaffold to avoid deformation. Subcutaneous implantation showed that the PLLA-collagen and PLLA-gelatin scaffolds promoted the regeneration of dermal tissue and epidermis and reduced contraction during the formation of new tissue. These results indicate that funnel-like hybrid scaffolds can be used for skin tissue regeneration.

  5. Pulsed electromembrane extraction for analysis of derivatized amino acids: A powerful technique for determination of animal source of gelatin samples.

    PubMed

    Rezazadeh, Maryam; Yamini, Yadollah; Seidi, Shahram; Aghaei, Ali

    2015-05-01

    Differentiation of animal sources of gelatin is required for many reasons such as some anxieties about bovine spongiform encephalopathy or a ban on consuming porcine gelatin in some religions. In the present work, an efficient method is introduced for determination of animal origin of gelatin samples. The basis of this procedure is the application of pulsed electric field for extraction, preconcentration, and analysis of derivatized amino acids in gelatin. To this end, after derivatization of amino acids of interest by means of o-phthalaldehyde (OPA) for enhancing their ultraviolet (UV) absorbance as well as increasing their lipophilicities, a 137V electric field was applied for 20min with 10min(-1) frequency to make the analytes migrate through a 200µm organic liquid membrane into an aqueous acceptor phase. Finally, the acceptor phase was analyzed by HPLC-UV. The proposed technique offered a high efficiency for analysis of amino acids, regarding 43% and 79% as extraction recoveries and 25ng mL(-1) and 50ng mL(-1) as limits of detection (LODs) for asparagine and glutamine, respectively. Therefore, due to sample cleanup ability of the proposed method and obtained preconcentration factors (29 and 53 for asparagine and glutamine, respectively), it could be carried out for differentiation of animal origins of gelatin samples, even if only small amounts of samples are available or in complicated media of foodstuffs and medicament. PMID:25703002

  6. Cellularized Bilayer Pullulan-Gelatin Hydrogel for Skin Regeneration.

    PubMed

    Nicholas, Mathew N; Jeschke, Marc G; Amini-Nik, Saeid

    2016-05-01

    Skin substitutes significantly reduce the morbidity and mortality of patients with burn injuries and chronic wounds. However, current skin substitutes have disadvantages related to high costs and inadequate skin regeneration due to highly inflammatory wounds. Thus, new skin substitutes are needed. By combining two polymers, pullulan, an inexpensive polysaccharide with antioxidant properties, and gelatin, a derivative of collagen with high water absorbency, we created a novel inexpensive hydrogel-named PG-1 for "pullulan-gelatin first generation hydrogel"-suitable for skin substitutes. After incorporating human fibroblasts and keratinocytes onto PG-1 using centrifugation over 5 days, we created a cellularized bilayer skin substitute. Cellularized PG-1 was compared to acellular PG-1 and no hydrogel (control) in vivo in a mouse excisional skin biopsy model using newly developed dome inserts to house the skin substitutes and prevent mouse skin contraction during wound healing. PG-1 had an average pore size of 61.69 μm with an ideal elastic modulus, swelling behavior, and biodegradability for use as a hydrogel for skin substitutes. Excellent skin cell viability, proliferation, differentiation, and morphology were visualized through live/dead assays, 5-bromo-2'-deoxyuridine proliferation assays, and confocal microscopy. Trichrome and immunohistochemical staining of excisional wounds treated with the cellularized skin substitute revealed thicker newly formed skin with a higher proportion of actively proliferating cells and incorporation of human cells compared to acellular PG-1 or control. Excisional wounds treated with acellular or cellularized hydrogels showed significantly less macrophage infiltration and increased angiogenesis 14 days post skin biopsy compared to control. These results show that PG-1 has ideal mechanical characteristics and allows ideal cellular characteristics. In vivo evidence suggests that cellularized PG-1 promotes skin regeneration and may

  7. Environmental Shaping of Sponge Associated Archaeal Communities

    PubMed Central

    Turque, Aline S.; Batista, Daniela; Silveira, Cynthia B.; Cardoso, Alexander M.; Vieira, Ricardo P.; Moraes, Fernando C.; Clementino, Maysa M.; Albano, Rodolpho M.; Paranhos, Rodolfo; Martins, Orlando B.; Muricy, Guilherme

    2010-01-01

    Background Archaea are ubiquitous symbionts of marine sponges but their ecological roles and the influence of environmental factors on these associations are still poorly understood. Methodology/Principal Findings We compared the diversity and composition of archaea associated with seawater and with the sponges Hymeniacidon heliophila, Paraleucilla magna and Petromica citrina in two distinct environments: Guanabara Bay, a highly impacted estuary in Rio de Janeiro, Brazil, and the nearby Cagarras Archipelago. For this we used metagenomic analyses of 16S rRNA and ammonia monooxygenase (amoA) gene libraries. Hymeniacidon heliophila was more abundant inside the bay, while P. magna was more abundant outside and P. citrina was only recorded at the Cagarras Archipelago. Principal Component Analysis plots (PCA) generated using pairwise unweighted UniFrac distances showed that the archaeal community structure of inner bay seawater and sponges was different from that of coastal Cagarras Archipelago. Rarefaction analyses showed that inner bay archaeaoplankton were more diverse than those from the Cagarras Archipelago. Only members of Crenarchaeota were found in sponge libraries, while in seawater both Crenarchaeota and Euryarchaeota were observed. Although most amoA archaeal genes detected in this study seem to be novel, some clones were affiliated to known ammonia oxidizers such as Nitrosopumilus maritimus and Cenarchaeum symbiosum. Conclusion/Significance The composition and diversity of archaeal communities associated with pollution-tolerant sponge species can change in a range of few kilometers, probably influenced by eutrophication. The presence of archaeal amoA genes in Porifera suggests that Archaea are involved in the nitrogen cycle within the sponge holobiont, possibly increasing its resistance to anthropogenic impacts. The higher diversity of Crenarchaeota in the polluted area suggests that some marine sponges are able to change the composition of their associated

  8. Seasonal variation of Fatty acids and stable carbon isotopes in sponges as indicators for nutrition: biomarkers in sponges identified.

    PubMed

    Koopmans, Marieke; van Rijswijk, Pieter; Boschker, Henricus T S; Marco, Houtekamer; Martens, Dirk; Wijffels, Rene H

    2015-02-01

    To get a better understanding of sponge feeding biology and efficiencies, the fatty acid (FA) composition and (13)C natural abundance of sponges and of suspended particulate matter (SPM) from surrounding seawater was studied in different seasons at three locations. Haliclona oculata and Haliclona xena from the Oosterschelde, the Netherlands, Halichondria panicea and H. xena from Lake Veere, the Netherlands, and Aplysina aerophoba and Dysidea avara from the Mediterranean, Spain, were studied. Several FA biomarkers for different algal groups, bacteria and sponge biomass were identified in all sponges. The FA concentration variation in sponges was related to changes in fatty acid concentration in SPM. Stable carbon isotopic ratios (δ(13)C) in sponge specific FAs showed very limited seasonal variation at all sites. Algal FAs in sponges were mainly acquired from the SPM through active filtration in all seasons. At the two sites in the Netherlands only in May (spring), the sponge specific FAs had similar δ(13)C ratios as algal FAs, suggesting that sponges were mainly growing during spring and probably summer. During autumn and winter, they were still actively filtering, but the food collected during this period had little effect on sponge δ(13)C values suggesting limited incorporation of filtered material into the sponge body. The sponge A. aerophoba relied mostly on the symbiotic bacteria. In conclusion, fatty acid composition in combination with stable carbon isotope analysis can be used to analyze the food source of sponges. PMID:25107690

  9. Application of thermal model for pan evaporation to the hydrology of a defined medium, the sponge

    NASA Technical Reports Server (NTRS)

    Trenchard, M. H.; Artley, J. A. (Principal Investigator)

    1981-01-01

    A technique is presented which estimates pan evaporation from the commonly observed values of daily maximum and minimum air temperatures. These two variables are transformed to saturation vapor pressure equivalents which are used in a simple linear regression model. The model provides reasonably accurate estimates of pan evaporation rates over a large geographic area. The derived evaporation algorithm is combined with precipitation to obtain a simple moisture variable. A hypothetical medium with a capacity of 8 inches of water is initialized at 4 inches. The medium behaves like a sponge: it absorbs all incident precipitation, with runoff or drainage occurring only after it is saturated. Water is lost from this simple system through evaporation just as from a Class A pan, but at a rate proportional to its degree of saturation. The contents of the sponge is a moisture index calculated from only the maximum and minium temperatures and precipitation.

  10. State of water in gelatin Gels

    SciTech Connect

    Naryshkina, E.P.; Izmailova, V.N.; Polinnyi, A.I.

    1986-03-01

    It has been shown on the basis of the variation of the linewidth of water with time in high-resolution NMR spectra of gelatin gels in D/sub 2/O that there is a decrease in the mobility of the water molecules during the formation of the collagen-like helix in the initial stages of gelation. As the concentration of the protein is increased, the linewidth of the water signal ..delta.. increases, and the spin-spin (T/sub 2/) and spin-lattice (T/sub 1/) relaxation times and the self-diffusion coefficient of the water molecules D /SUB S/ in the fully formed gels of gelatin in H/sub 2/O decreases as a result of the immobilization of water by the gelatin macromolecules and the presence of a three-dimensional gel network. The aforementioned parameters vary as a function of the gelatin concentration in parallel with the value of the Flory-Huggins parameter /CHI/.

  11. Characterization of poly(butylene succinate)/glycerol co-plasticized thermoplastic gelatin prepared by melt blending

    NASA Astrophysics Data System (ADS)

    Oliviero, Maria; Sorrentino, Andrea; Iannace, Salvatore

    2015-12-01

    Biodegradable thermoplastic poly(butylene succinate)/gelatin (PBS/TPG) blends with various blending ratios were prepared by melt mixing technique. The main goal of these blends is to improve the water sensitivity of thermoplastic gelatin by blending it with a hydrophobic biodegradable polymer obtained also from renewable resources. The incorporation of PBS yielded a decrease in absorbed moisture. Under the relative humidity 50 and 100%, the absorbed moisture obtained values were 19 and 229% for pure TPG, 12.3 and 127% for TPG/PBS(80/20), and 1.7 and 37% for TPG/PBS(20/80), respectively. The water resistance increased only for the samples containing a high value of PBS (>40%wt). Furthermore, mechanical properties and morphological analyses revealed that PBS/TPG blends were immiscible.

  12. 16 CFR 501.6 - Cellulose sponges, irregular dimensions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 1 2011-01-01 2011-01-01 false Cellulose sponges, irregular dimensions. 501... REQUIREMENTS AND PROHIBITIONS UNDER PART 500 § 501.6 Cellulose sponges, irregular dimensions. Variety packages of cellulose sponges of irregular dimensions, are exempted from the requirements of § 500.25 of...

  13. 16 CFR 501.6 - Cellulose sponges, irregular dimensions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 1 2010-01-01 2010-01-01 false Cellulose sponges, irregular dimensions. 501... REQUIREMENTS AND PROHIBITIONS UNDER PART 500 § 501.6 Cellulose sponges, irregular dimensions. Variety packages of cellulose sponges of irregular dimensions, are exempted from the requirements of § 500.25 of...

  14. Solvent disperser for removing oil from sponge core

    SciTech Connect

    Di Foggio, R.

    1988-09-20

    This patent describes method for dispersing solvent for use in determining the oil saturation of an earth formation by means of sponge coring, comprising: (a) receiving solvent dripping downwardly, and (b) conducting the received solvent by means of capillary action to an application zone located and dimensioned for passing such solvent to the sponge in a sponge core barrel.

  15. 16 CFR 501.6 - Cellulose sponges, irregular dimensions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 16 Commercial Practices 1 2014-01-01 2014-01-01 false Cellulose sponges, irregular dimensions. 501... REQUIREMENTS AND PROHIBITIONS UNDER PART 500 § 501.6 Cellulose sponges, irregular dimensions. Variety packages of cellulose sponges of irregular dimensions, are exempted from the requirements of § 500.25 of...

  16. 16 CFR 501.6 - Cellulose sponges, irregular dimensions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 16 Commercial Practices 1 2013-01-01 2013-01-01 false Cellulose sponges, irregular dimensions. 501... REQUIREMENTS AND PROHIBITIONS UNDER PART 500 § 501.6 Cellulose sponges, irregular dimensions. Variety packages of cellulose sponges of irregular dimensions, are exempted from the requirements of § 500.25 of...

  17. 16 CFR 501.6 - Cellulose sponges, irregular dimensions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 16 Commercial Practices 1 2012-01-01 2012-01-01 false Cellulose sponges, irregular dimensions. 501... REQUIREMENTS AND PROHIBITIONS UNDER PART 500 § 501.6 Cellulose sponges, irregular dimensions. Variety packages of cellulose sponges of irregular dimensions, are exempted from the requirements of § 500.25 of...

  18. Oil/water separation performances of superhydrophobic and superoleophilic sponges.

    PubMed

    Ke, Qingping; Jin, Yangxin; Jiang, Peng; Yu, Jian

    2014-11-11

    Superhydrophobic and superoleophilic sponges were fabricated by immersion in an ethanol solution of octadecyltrichlorosilane. The resulting coating strongly adheres to the sponges after curing at 45 °C for 24 h. Absorption capacities of 42-68 times the polymerized octadecylsiloxane sponge weight were obtained for toluene, light petroleum, and methylsilicone oil. These adsorption capacities were maintained after 50 cycles. PMID:25340643

  19. A saccharide-based crystalline sponge for hydrophilic guests.

    PubMed

    Ning, Guo-Hong; Matsumura, Kazuki; Inokuma, Yasuhide; Fujita, Makoto

    2016-05-19

    A coordination network composed of a mannose-based organic ligand and a sodium ion, 'sugar sponge', was synthesized for the crystalline sponge analysis of hydrophilic compounds. Owing to multiple hydrogen-bonding interactions, hydrophilic guests are firmly trapped in the 1-dimensional channel. The sugar sponge was utilized to analyze the structures of flexible alcohol and absolute configurations of chiral epoxides. PMID:27157794

  20. Development of in vivo sponge cultures: particle feeding by the tropical sponge Pseudosuberites aff. andrewsi.

    PubMed

    Osinga, R; Kleijn, R; Groenendijk, E; Niesink, P; Tramper, J; Wijffels, R H

    2001-11-01

    The rate of food particle uptake of the tropical sponge Pseudosuberites aff. andrewsi was studied in relation to particle concentrations and particle size. A range of different concentrations of either the marine microalga Dunaliella tertiolecta (approximately 5-8 microm) or the marine cyanobacterium Synechococcus sp. (approximately 1 microm) was supplied to the sponges. D. tertiolecta had a pronounced effect on the filtration activity of the sponges: at concentrations higher than approximately 4 x 10(5) cells/cm(3), the filtration rates dropped dramatically. Such a clear effect was not found for Synechococcus sp. The results further showed that the maximal amount of food (when expressed in organic carbon) that can be taken up per cubic centimeter of sponge volume per unit of time should in principle be sufficient to enable growth (irrespective of the food particle type). At the maximal food particle concentration that did not affect the filtration rates, the uptake of organic carbon is already highly in excess of the amount of organic carbon that the sponges need to cope with their respiratory demand. Based on these findings, a series of growth experiments was carried out in which the sponges were subjected to a constant concentration of different types of food particles (Synechococcus sp. and the microalgae Chlorella sorokiniana and Nannochloropsis sp). Although initial growth was sometimes observed, continuous growth at a constant rate could not be obtained. It is concluded that qualitative aspects of feeding rather than quantitative aspects are the key to successful in vivo sponge culture. PMID:14961327

  1. Oxygen dynamics and transport in the Mediterranean sponge Aplysina aerophoba.

    PubMed

    Hoffmann, Friederike; Røy, Hans; Bayer, Kristina; Hentschel, Ute; Pfannkuchen, Martin; Brümmer, Franz; de Beer, Dirk

    2008-01-01

    The Mediterranean sponge Aplysina aerophoba kept in aquaria or cultivation tanks can stop pumping for several hours or even days. To investigate changes in the chemical microenvironments, we measured oxygen profiles over the surface and into the tissue of pumping and non-pumping A. aerophoba specimens with Clark-type oxygen microelectrodes (tip diameters 18-30 μm). Total oxygen consumption rates of whole sponges were measured in closed chambers. These rates were used to back-calculate the oxygen distribution in a finite-element model. Combining direct measurements with calculations of diffusive flux and modeling revealed that the tissue of non-pumping sponges turns anoxic within 15 min, with the exception of a 1 mm surface layer where oxygen intrudes due to molecular diffusion over the sponge surface. Molecular diffusion is the only transport mechanism for oxygen into non-pumping sponges, which allows total oxygen consumption rates of 6-12 μmol cm(-3) sponge day(-1). Sponges of different sizes had similar diffusional uptake rates, which is explained by their similar surface/volume ratios. In pumping sponges, oxygen consumption rates were between 22 and 37 μmol cm(-3) sponge day(-1), and the entire tissue was oxygenated. Combining different approaches of direct oxygen measurement in living sponges with a dynamic model, we can show that tissue anoxia is a direct function of the pumping behavior. The sponge-microbe system of A. aerophoba thus has the possibility to switch actively between aerobic and anaerobic metabolism by stopping the water flow for more than 15 min. These periods of anoxia will greatly influence physiological variety and activity of the sponge microbes. Detailed knowledge about the varying chemical microenvironments in sponges will help to develop protocols to cultivate sponge-associated microbial lineages and improve our understanding of the sponge-microbe-system. PMID:24391232

  2. Polycyclic Guanidine Alkaloids from Poecilosclerida Marine Sponges

    PubMed Central

    Sfecci, Estelle; Lacour, Thierry; Amade, Philippe; Mehiri, Mohamed

    2016-01-01

    Sessile marine sponges provide an abundance of unique and diversified scaffolds. In particular, marine guanidine alkaloids display a very wide range of biological applications. A large number of cyclic guanidine alkaloids, including crambines, crambescins, crambescidins, batzelladines or netamins have been isolated from Poecilosclerida marine sponges. In this review, we will explore the chemodiversity of tri- and pentacyclic guanidine alkaloids. NMR and MS data tools will also be provided, and an overview of the wide range of bioactivities of crambescidins and batzelladines derivatives will be given. PMID:27070629

  3. The physiology and molecular biology of sponge tissues.

    PubMed

    Leys, Sally P; Hill, April

    2012-01-01

    Sponges have become the focus of studies on molecular evolution and the evolution of animal body plans due to their ancient branching point in the metazoan lineage. Whereas our former understanding of sponge function was largely based on a morphological perspective, the recent availability of the first full genome of a sponge (Amphimedon queenslandica), and of the transcriptomes of other sponges, provides a new way of understanding sponges by their molecular components. This wealth of genetic information not only confirms some long-held ideas about sponge form and function but also poses new puzzles. For example, the Amphimedon sponge genome tells us that sponges possess a repertoire of genes involved in control of cell proliferation and in regulation of development. In vitro expression studies with genes involved in stem cell maintenance confirm that archaeocytes are the main stem cell population and are able to differentiate into many cell types in the sponge including pinacocytes and choanocytes. Therefore, the diverse roles of archaeocytes imply differential gene expression within a single cell ontogenetically, and gene expression is likely also different in different species; but what triggers cells to enter one pathway and not another and how each archaeocyte cell type can be identified based on this gene knowledge are new challenges. Whereas molecular data provide a powerful new tool for interpreting sponge form and function, because sponges are suspension feeders, their body plan and physiology are very much dependent on their physical environment, and in particular on flow. Therefore, in order to integrate new knowledge of molecular data into a better understanding the sponge body plan, it is important to use an organismal approach. In this chapter, we give an account of sponge body organization as it relates to the physiology of the sponge in light of new molecular data. We focus, in particular, on the structure of sponge tissues and review descriptive as

  4. Policy for prevention of a retained sponge after vaginal delivery.

    PubMed

    Garry, David J; Asanjarani, Sandra; Geiss, Donna M

    2012-01-01

    Background. Policies for sponge count are not routine practice in most labor and delivery rooms. Ignored or hidden retained vaginal foreign bodies has potentially significant health care morbidity. Case. This was a case of a retained vaginal sponge following an uncomplicated spontaneous vaginal delivery. Delivery room policy resulted in the discovery of the sponge on X-ray when an incorrect sponge count occurred and physical exam did not find the sponge. Conclusion. This emphasizes the use of protocols to enhance patient safety and prevent medical error. PMID:22312370

  5. Policy for Prevention of a Retained Sponge after Vaginal Delivery

    PubMed Central

    Garry, David J.; Asanjarani, Sandra; Geiss, Donna M.

    2012-01-01

    Background. Policies for sponge count are not routine practice in most labor and delivery rooms. Ignored or hidden retained vaginal foreign bodies has potentially significant health care morbidity. Case. This was a case of a retained vaginal sponge following an uncomplicated spontaneous vaginal delivery. Delivery room policy resulted in the discovery of the sponge on X-ray when an incorrect sponge count occurred and physical exam did not find the sponge. Conclusion. This emphasizes the use of protocols to enhance patient safety and prevent medical error. PMID:22312370

  6. An evaluation of sterilization of endodontic instruments in artificial sponges.

    PubMed

    Vélez, A E; Thomas, D D; del Río, C E

    1998-01-01

    The ability to sterilize endodontic files inserted into synthetic sponges was tested. Sponges were subjected to 5 cycles of either dry heat (Driclave) or steam under pressure (autoclave) sterilization. Sterilization was corroborated by microbiological tests. The sponges and files were pre-sterilized separately using steam under pressure. One hundred eighty files contaminated with Bacillus stearothermophilus spores (experimental and positive control) and 60 noncontaminated files (negative control), were inserted into 60 sponges. After each cycle, each file and a portion of sponge surrounding the file were transferred aseptically to tubes containing trypticase soy broth culture medium for bacteriological analysis. None of the tubes containing files and portions of sponges that were subjected to autoclave grew Bacillus stearothermophilus spores. Two of 60 (3.33%) of the tubes that were subjected to sterilization by Driclave demonstrated bacterial growth. Although the sponges tolerated the dry heat cycles well physically, sterilization was achieved in only 96.67% of the cases. PMID:9487869

  7. Schlieren photography to study sound interaction with highly absorbing materials.

    PubMed

    Declercq, Nico F; Degrieck, Joris; Leroy, Oswald

    2005-06-01

    Strong absorption of sound is often caused by the conversion of sound energy into heat. When this happens, it is not possible to study the interaction of sound with the absorbing material by means of reflected sound characteristics, because there is no reflected sound. Detecting for example the distance that sound travels in a strongly absorbing material, can be done by heat detection systems. However, the presence of temperature detectors in such materials interferes with the sound field and is therefore not really suitable. Infrared measurements are a possible option. Another option is the use of Schlieren photography for simultaneous visualization of sound and heat. This technique is briefly outlined with a 3 MHz sound beam incident on a highly absorbing sponge. PMID:15950023

  8. The Development of Novel Recombinant Human Gelatins as Replacements for Animal-Derived Gelatin in Pharmaceutical Applications

    NASA Astrophysics Data System (ADS)

    Olsen, David; Chang, Robert; Williams, Kim E.; Polarek, James W.

    We have developed a recombinant expression system to produce a series of novel recombinant human gelatins that can substitute for animal sourced gelatin preparations currently used in pharmaceutical and nutraceutical applications. This system allows the production of human sequence gelatins, or, if desired, gelatins from any other species depending on the availability of the cloned gene. The gelatins produced with this recombinant system are of defined molecular weight, unlike the animal-sourced gelatins, which consist of numerous polypeptides of varying size. The fermentation and purification process used to prepare these recombinant gelatins does not use any human- or animal-derived components and thus this recombinant material should be free from viruses and agents that cause transmissible spongiform encephalopathies. The recombinant gelatins exhibit lot-to-lot reproducibility and we have performed extensive analytical testing on them. We have demonstrated the utility of these novel gelatins as biological stabilizers and plasma expanders, and we have shown they possess qualities that are important in applications where gel formation is critical. Finally, we provide examples of how our system allows the engineering of these recombinant gelatins to optimize the production process.

  9. Simplified dichromated gelatin hologram recording process

    NASA Technical Reports Server (NTRS)

    Georgekutty, Tharayil G.; Liu, Hua-Kuang

    1987-01-01

    A simplified method for making dichromated gelatin (DCG) holographic optical elements (HOE) has been discovered. The method is much less tedious and it requires a period of processing time comparable with that for processing a silver halide hologram. HOE characteristics including diffraction efficiency (DE), linearity, and spectral sensitivity have been quantitatively investigated. The quality of the holographic grating is very high. Ninety percent or higher diffraction efficiency has been achieved in simple plane gratings made by this process.

  10. Photocrosslinkable Gelatin Hydrogel for Epidermal Tissue Engineering.

    PubMed

    Zhao, Xin; Lang, Qi; Yildirimer, Lara; Lin, Zhi Yuan; Cui, Wenguo; Annabi, Nasim; Ng, Kee Woei; Dokmeci, Mehmet R; Ghaemmaghami, Amir M; Khademhosseini, Ali

    2016-01-01

    Natural hydrogels are promising scaffolds to engineer epidermis. Currently, natural hydrogels used to support epidermal regeneration are mainly collagen- or gelatin-based, which mimic the natural dermal extracellular matrix but often suffer from insufficient and uncontrollable mechanical and degradation properties. In this study, a photocrosslinkable gelatin (i.e., gelatin methacrylamide (GelMA)) with tunable mechanical, degradation, and biological properties is used to engineer the epidermis for skin tissue engineering applications. The results reveal that the mechanical and degradation properties of the developed hydrogels can be readily modified by varying the hydrogel concentration, with elastic and compressive moduli tuned from a few kPa to a few hundred kPa, and the degradation times varied from a few days to several months. Additionally, hydrogels of all concentrations displayed excellent cell viability (>90%) with increasing cell adhesion and proliferation corresponding to increases in hydrogel concentrations. Furthermore, the hydrogels are found to support keratinocyte growth, differentiation, and stratification into a reconstructed multilayered epidermis with adequate barrier functions. The robust and tunable properties of GelMA hydrogels suggest that the keratinocyte laden hydrogels can be used as epidermal substitutes, wound dressings, or substrates to construct various in vitro skin models. PMID:25880725

  11. Sponging up metals: bacteria associated with the marine sponge Spongia officinalis.

    PubMed

    Bauvais, Cléa; Zirah, Séverine; Piette, Laurie; Chaspoul, Florence; Domart-Coulon, Isabelle; Chapon, Virginie; Gallice, Philippe; Rebuffat, Sylvie; Pérez, Thierry; Bourguet-Kondracki, Marie-Lise

    2015-03-01

    The present study explored the bacteria of the sponge Spongia officinalis in a metal-polluted environment, using PCR-DGGE fingerprinting, culture-dependent approaches and in situ hybridization. The sponge samples collected over three consecutive years in the Western Mediterranean Sea contained high concentrations of zinc, nickel, lead and copper determined by ICP-MS. DGGE signatures indicated a sponge specific bacterial association and suggested spatial and temporal variations. The bacterial culturable fraction associated with S. officinalis and tolerant to heavy metals was isolated using metal-enriched microbiological media. The obtained 63 aerobic strains were phylogenetically affiliated to the phyla Proteobacteria, Actinobacteria, and Firmicutes. All isolates showed high tolerances to the selected heavy metals. The predominant genus Pseudovibrio was localized via CARD-FISH in the sponge surface tissue and validated as a sponge-associated epibiont. This study is the first step in understanding the potential involvement of the associated bacteria in sponge's tolerance to heavy metals. PMID:25575352

  12. Photoelastic gelatin spheres for investigation of locomotion in granular media

    NASA Astrophysics Data System (ADS)

    Mirbagheri, Seyed Amir; Ceniceros, Ericson; Jabbarzadeh, Mehdi; McCormick, Zephyr; Fu, Henry

    2014-11-01

    We describe a force measurement method in granular media which uses highly-sensitive photoelastic gelatin spheres and its application to measuring forces exerted as animals burrow through granular media. The method is applicable to both freshwater and marine organisms. We fabricate sensitively photoelastic gelatin spheres and describe a calibration method which relates forces applied to gelatin spheres with photoelastic signal. We show that photoelastic gelatin spheres can detect forces as small as 1 microNewton, and quantitatively measure forces with up to 60 microNewton precision, a two order of magnitude improvement compared to methods using plastic disks. Gelatin spheres can be fabricated with a range of sizes to investigate a variety of granular media. Finally, we used the calibrated gelatin spheres in a proof-of-principle experiment to measure forces during earthworm locomotion.

  13. Origin of Metazoa: sponges as living fossils.

    PubMed

    Müller, W E

    1998-01-01

    The phylogenetic position of the phylum Porifera (sponges) is at the base of the kingdom Metazoa. During the past few years not only rDNA sequences but--and this was a major advance--even cDNAs/genes have been isolated and characterized from sponges, especially from the marine demosponge Geodia cydonium, which code for proteins. The analyses of their deduced amino acid sequences allowed a molecular biological approach to solve the problem of monophyly of Metazoa. Molecules of the extracellular matrix/basal lamina, with the integrin receptor, fibronectin, and galectin as prominent examples, cell-surface receptors (tyrosine kinase receptor), elements of sensory systems (crystallin, metabotropic glutamate receptor), and homologs/modules of an immune system (immunoglobulin like molecules, scavenger receptor cysteine-rich, and short consensus repeats, rhesus system) classify the Porifera as true Metazoa. As living fossils, provided with simple, primordial molecules allowing cell-cell and cell-matrix adhesion as well as processes of signal transduction as known in a more complex manner from higher Metazoa, they also show peculiarities not known in other metazoan phyla. Tissues of sponges are rich in telomerase activity, suggesting a high plasticity in the determination of cell lineages. It is concluded that molecular biological studies with sponges as model will not only help to understand the evolution of Protoctista to Metazoa but also the complex, hierarchial regulatory network of cells in higher Metazoa. PMID:9484707

  14. Composition for absorbing hydrogen

    DOEpatents

    Heung, L.K.; Wicks, G.G.; Enz, G.L.

    1995-05-02

    A hydrogen absorbing composition is described. The composition comprises a porous glass matrix, made by a sol-gel process, having a hydrogen-absorbing material dispersed throughout the matrix. A sol, made from tetraethyl orthosilicate, is mixed with a hydrogen-absorbing material and solidified to form a porous glass matrix with the hydrogen-absorbing material dispersed uniformly throughout the matrix. The glass matrix has pores large enough to allow gases having hydrogen to pass through the matrix, yet small enough to hold the particles dispersed within the matrix so that the hydrogen-absorbing particles are not released during repeated hydrogen absorption/desorption cycles.

  15. Composition for absorbing hydrogen

    DOEpatents

    Heung, Leung K.; Wicks, George G.; Enz, Glenn L.

    1995-01-01

    A hydrogen absorbing composition. The composition comprises a porous glass matrix, made by a sol-gel process, having a hydrogen-absorbing material dispersed throughout the matrix. A sol, made from tetraethyl orthosilicate, is mixed with a hydrogen-absorbing material and solidified to form a porous glass matrix with the hydrogen-absorbing material dispersed uniformly throughout the matrix. The glass matrix has pores large enough to allow gases having hydrogen to pass through the matrix, yet small enough to hold the particles dispersed within the matrix so that the hydrogen-absorbing particles are not released during repeated hydrogen absorption/desorption cycles.

  16. Properties of gelatin film from horse mackerel (Trachurus japonicus) scale.

    PubMed

    Le, Thuy; Maki, Hiroki; Takahashi, Kigen; Okazaki, Emiko; Osako, Kazufumi

    2015-04-01

    Optimal conditions for extracting gelatin and preparing gelatin film from horse mackerel scale, such as extraction temperature and time, as well as the protein concentration of film-forming solutions were investigated. Yields of extracted gelatin at 70 °C, 80 °C, and 90 °C for 15 min to 3 h were 1.08% to 3.45%, depending on the extraction conditions. Among the various extraction times and temperatures, the film from gelatin extracted at 70 °C for 1 h showed the highest tensile strength and elongation at break. Horse mackerel scale gelatin film showed the greatly low water vapor permeability (WVP) compared with mammalian or fish gelatin films, maybe due to its containing a slightly higher level of hydrophobic amino acids (total 653 residues per 1000 residues) than that of mammalian, cold-water fish and warm-water fish gelatins. Gelatin films from different preparation conditions showed excellent UV barrier properties at wavelength of 200 nm, although the films were transparent at visible wavelength. As a consequence, it can be suggested that gelatin film from horse mackerel scale extracted at 70 °C for 1 h can be applied to food packaging material due to its lowest WVP value and excellent UV barrier properties. PMID:25716323

  17. Antiviral Lead Compounds from Marine Sponges

    PubMed Central

    Sagar, Sunil; Kaur, Mandeep; Minneman, Kenneth P.

    2010-01-01

    Marine sponges are currently one of the richest sources of pharmacologically active compounds found in the marine environment. These bioactive molecules are often secondary metabolites, whose main function is to enable and/or modulate cellular communication and defense. They are usually produced by functional enzyme clusters in sponges and/or their associated symbiotic microorganisms. Natural product lead compounds from sponges have often been found to be promising pharmaceutical agents. Several of them have successfully been approved as antiviral agents for clinical use or have been advanced to the late stages of clinical trials. Most of these drugs are used for the treatment of human immunodeficiency virus (HIV) and herpes simplex virus (HSV). The most important antiviral lead of marine origin reported thus far is nucleoside Ara-A (vidarabine) isolated from sponge Tethya crypta. It inhibits viral DNA polymerase and DNA synthesis of herpes, vaccinica and varicella zoster viruses. However due to the discovery of new types of viruses and emergence of drug resistant strains, it is necessary to develop new antiviral lead compounds continuously. Several sponge derived antiviral lead compounds which are hopedto be developed as future drugs are discussed in this review. Supply problems are usually the major bottleneck to the development of these compounds as drugs during clinical trials. However advances in the field of metagenomics and high throughput microbial cultivation has raised the possibility that these techniques could lead to the cost-effective large scale production of such compounds. Perspectives on biotechnological methods with respect to marine drug development are also discussed. PMID:21116410

  18. Sponge-Associated Microorganisms: Evolution, Ecology, and Biotechnological Potential†

    PubMed Central

    Taylor, Michael W.; Radax, Regina; Steger, Doris; Wagner, Michael

    2007-01-01

    Summary: Marine sponges often contain diverse and abundant microbial communities, including bacteria, archaea, microalgae, and fungi. In some cases, these microbial associates comprise as much as 40% of the sponge volume and can contribute significantly to host metabolism (e.g., via photosynthesis or nitrogen fixation). We review in detail the diversity of microbes associated with sponges, including extensive 16S rRNA-based phylogenetic analyses which support the previously suggested existence of a sponge-specific microbiota. These analyses provide a suitable vantage point from which to consider the potential evolutionary and ecological ramifications of these widespread, sponge-specific microorganisms. Subsequently, we examine the ecology of sponge-microbe associations, including the establishment and maintenance of these sometimes intimate partnerships, the varied nature of the interactions (ranging from mutualism to host-pathogen relationships), and the broad-scale patterns of symbiont distribution. The ecological and evolutionary importance of sponge-microbe associations is mirrored by their enormous biotechnological potential: marine sponges are among the animal kingdom's most prolific producers of bioactive metabolites, and in at least some cases, the compounds are of microbial rather than sponge origin. We review the status of this important field, outlining the various approaches (e.g., cultivation, cell separation, and metagenomics) which have been employed to access the chemical wealth of sponge-microbe associations. PMID:17554047

  19. Epizoic zoanthids reduce pumping in two Caribbean vase sponges

    NASA Astrophysics Data System (ADS)

    Lewis, T. B.; Finelli, C. M.

    2015-03-01

    Sponges are common sessile benthic suspension feeders that play a critical role in carbon and nitrogen cycling within reef ecosystems via their filtration capabilities. Due to the contribution of sponges in benthic-pelagic coupling, it is critical to assess factors that may affect their role in the healthy function of coral reefs. Several factors can influence the rate at which an individual sponge pumps water, including body size, environmental conditions, mechanical blockage, and reduction of inhalant pores (ostia). Symbiotic zoanthid colonization is a common occurrence on Caribbean sponges, and the presence of zoanthids on the surface of a sponge may occlude or displace the inhalant ostia. We quantified pumping rates of the giant barrel sponge, Xestospongia muta ( N = 22 uncolonized, 37 colonized) and the common vase sponge, Niphates digitalis ( N = 21 uncolonized, 17 colonized), with and without zoanthid symbionts, Parazoanthus catenularis and Parazoanthus parasiticus, respectively. For X. muta, biovolume-normalized pumping rates of individuals colonized by zoanthids were approximately 75 % lower than those of uncolonized sponges. Moreover, colonization with zoanthids was related to a difference in morphology relative to uncolonized individuals: Colonized sponges exhibited an osculum area to biovolume ratio that was nearly 65 % less than uncolonized sponges. In contrast, the presence of zoanthids on N. digitalis resulted in only a marginal decrease in pumping rates and no detectable difference in morphology. The difference in zoanthid effects between X. muta and N. digitalis is likely due to the differences in wall thickness and architecture between the two species. The probable cause of reduced pumping in affected sponges is occupation of the sponge surface that leads to blockage or displacement of inhalant ostia. To partially test this hypothesis, zoanthid colonization on specimens of X. muta was simulated by wrapping sponges with plastic mesh of varying

  20. Morphology, orientation, and mechanical properties of gelatin films

    SciTech Connect

    Blanton, T.N.; Tsou, A.H.

    1996-12-31

    Gelatin is a polypeptide derived from degradation and disorganization of collagen fibers and is the primary binder in photographic emulsions. Gelatin provides the mechanical integrity and strength to the photographic emulsion allowing for packaging, handling, and photofinishing operations. Gelatin films generated from aqueous-solution casting can exist in a semicrystalline or an amorphous state. When a gelatin solution is cooled below its helix-coil transition temperature, partial renaturation of gelatin to form triple helices can occur. The degree of renaturation in a coated film is dependent upon the drying temperature and the drying rate. During the drying process, gelatin crystals can be formed by lateral association of the triple helices through a mechanism of nucleation and growth of a fringed micelle structure. X-ray scattering techniques have been utilized to examine the morphology and orientation of gelatin films. Based on X-ray diffraction data, it is observed that aggregates of triple-helix rods lie parallel to the film plane but are symmetrically distributed within the film plane. Since a material`s physical and mechanical properties are related to its structure, it is necessary to understand and to characterize the morphological development in gelatin film formation. In this study, an X-ray diffractometer and pole figure goniometer were utilized to examine the structural development and orientation anisotropy in solid-state gelatin films. Also, in this study, the in-plane mechanical properties of a gelatin film were determined from a uniaxial tensile test, and the gelatin film properties in the thickness direction were extracted from an indentation test based on the finite element analysis of the indentation results using a viscoelastic material model.

  1. Modelling Absorbent Phenomena of Absorbent Structure

    NASA Astrophysics Data System (ADS)

    Sayeb, S.; Ladhari, N.; Ben Hassen, M.; Sakli, F.

    Absorption, retention and strike through time, as evaluating criteria of absorbent structures quality were studied. Determination of influent parameters on these criteria were realized by using the design method of experimental sets. In this study, the studied parameters are: Super absorbent polymer (SAP)/fluff ratio, compression and the porosity of the non woven used as a cover stock. Absorption capacity and retention are mostly influenced by SAP/fluff ratio. However, strike through time is affected by compression. Thus, a modelling of these characteristics in function of the important parameter was established.

  2. Methods for absorbing neutrons

    DOEpatents

    Guillen, Donna P.; Longhurst, Glen R.; Porter, Douglas L.; Parry, James R.

    2012-07-24

    A conduction cooled neutron absorber may include a metal matrix composite that comprises a metal having a thermal neutron cross-section of at least about 50 barns and a metal having a thermal conductivity of at least about 1 W/cmK. Apparatus for providing a neutron flux having a high fast-to-thermal neutron ratio may include a source of neutrons that produces fast neutrons and thermal neutrons. A neutron absorber positioned adjacent the neutron source absorbs at least some of the thermal neutrons so that a region adjacent the neutron absorber has a fast-to-thermal neutron ratio of at least about 15. A coolant in thermal contact with the neutron absorber removes heat from the neutron absorber.

  3. Externally tuned vibration absorber

    DOEpatents

    Vincent, Ronald J.

    1987-09-22

    A vibration absorber unit or units are mounted on the exterior housing of a hydraulic drive system of the type that is powered from a pressure wave generated, e.g., by a Stirling engine. The hydraulic drive system employs a piston which is hydraulically driven to oscillate in a direction perpendicular to the axis of the hydraulic drive system. The vibration absorbers each include a spring or other resilient member having one side affixed to the housing and another side to which an absorber mass is affixed. In a preferred embodiment, a pair of vibration absorbers is employed, each absorber being formed of a pair of leaf spring assemblies, between which the absorber mass is suspended.

  4. Modeling the Distribution of Geodia Sponges and Sponge Grounds in the Northwest Atlantic

    PubMed Central

    Knudby, Anders; Kenchington, Ellen; Murillo, Francisco Javier

    2013-01-01

    Deep-sea sponge grounds provide structurally complex habitat for fish and invertebrates and enhance local biodiversity. They are also vulnerable to bottom-contact fisheries and prime candidates for Vulnerable Marine Ecosystem designation and related conservation action. This study uses species distribution modeling, based on presence and absence observations of Geodia spp. and sponge grounds derived from research trawl catches, as well as spatially continuous data on the physical and biological ocean environment derived from satellite data and oceanographic models, to model the distribution of Geodia sponges and sponge grounds in the Northwest Atlantic. Most models produce excellent fits with validation data although fits are reduced when models are extrapolated to new areas, especially when oceanographic regimes differ between areas. Depth and minimum bottom salinity were important predictors in most models, and a Geodia spp. minimum bottom salinity tolerance threshold in the 34.3-34.8 psu range was hypothesized on the basis of model structure. The models indicated two currently unsampled regions within the study area, the deeper parts of Baffin Bay and the Newfoundland and Labrador slopes, where future sponge grounds are most likely to be found. PMID:24324768

  5. Gelatin Facial Skin Simulator for Cutaneous Reconstruction.

    PubMed

    Taylor, Steven R; Chang, C W David

    2016-02-01

    Reconstruction of facial defects can be an intimidating endeavor, especially to resident physicians. When local flap reconstruction is preferred, design of the optimal flap can be a difficult choice. Poor selection can lead to unsightly scarring as well as increased morbidity. A low-cost, easy-to-fabricate gelatin prosthetic facial skin simulator is presented to offer training experience in wound closure, local tissue rearrangement, and facial defect reconstruction for resident instruction. In conjunction with a didactic lecture, 10 participants were asked to perform a Z-plasty, bilobed, rhomboid, and paramedian forehead flap, followed by an 18-question survey. While initial impressions are favorable, further validation studies are warranted. PMID:26645528

  6. Dehydration of pollock skins prior to gelatin production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Alaska pollock (Theragra chahogramma) is the USA's largest commercial fishery, with an annual catch of over one million tons. During pollock processing, the skins are discarded or made into fish meal, despite their value for gelatin production. The absence of gelatin processing facilities in Alaska ...

  7. Dehydration of pollock skin prior to gelatin production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Alaska pollock (Theragra chalcogramma) is the U.S.A.'s largest commercial fishery, with an annual catch of over 1 million tons. During pollock processing, the skins are discarded or made into fish meal, despite their value for gelatin production. The absence of gelatin-processing facilities in Alask...

  8. Dehydration of pollock skins prior to gelatin production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Alaska pollock is the USA’s largest commercial fishery, with an annual catch of over one million tons. During pollock processing, the skins are discarded or made into fish meal, despite their value for gelatin production. The absence of gelatin processing facilities in Alaska necessitates drying of ...

  9. Gelatin-Pectin Composite Films from Polyion Complex Hydrogels

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Composite films from gelatin and low-methoxyl pectin were prepared by either ionic complexation or covalent cross-linking. The ionic interactions between positively charged gelatin and negatively charged pectin produced physically reversible hydrogels. The resultant homogeneous gels had improved mec...

  10. Graphene oxide decorated electrospun gelatin nanofibers: Fabrication, properties and applications.

    PubMed

    Jalaja, K; Sreehari, V S; Kumar, P R Anil; Nirmala, R James

    2016-07-01

    Gelatin nanofiber fabricated by electrospinning process is found to mimic the complex structural and functional properties of natural extracellular matrix for tissue regeneration. In order to improve the physico-chemical and biological properties of the nanofibers, graphene oxide is incorporated in the gelatin to form graphene oxide decorated gelatin nanofibers. The current research effort is focussed on the fabrication and evaluation of physico-chemical and biological properties of graphene oxide-gelatin composite nanofibers. The presence of graphene oxide in the nanofibers was established by transmission electron microscopy (TEM). We report the effect of incorporation of graphene oxide on the mechanical, thermal and biological performance of the gelatin nanofibers. The tensile strength of gelatin nanofibers was increased from 8.29±0.53MPa to 21±2.03MPa after the incorporation of GO. In order to improve the water resistance of nanofibers, natural based cross-linking agent, namely, dextran aldehyde was employed. The cross-linked composite nanofibers showed further increase in the tensile strength up to 56.4±2.03MPa. Graphene oxide incorporated gelatin nanofibers are evaluated for bacterial activity against gram positive (Staphylococcus aureus) and gram negative (Escherichia coli) bacteria and cyto compatibility using mouse fibroblast cells (L-929 cells). The results indicate that the graphene oxide incorporated gelatin nanofibers do not prevent bacterial growth, nevertheless support the L-929 cell adhesion and proliferation. PMID:27127023

  11. Porous, Water-Resistant Multifilament Yarn Spun from Gelatin.

    PubMed

    Stoessel, Philipp R; Krebs, Urs; Hufenus, Rudolf; Halbeisen, Marcel; Zeltner, Martin; Grass, Robert N; Stark, Wendelin J

    2015-07-13

    Sustainability, renewability, and biodegradability of polymeric material constantly gain in importance. A plausible approach is the recycling of agricultural waste proteins such as keratin, wheat gluten, casein or gelatin. The latter is abundantly available from animal byproducts and may well serve as building block for novel polymeric products. In this work, a procedure for the dry-wet spinning of multifilament gelatin yarns was developed. The process stands out as precipitated gelatin from a ternary mixture (gelatin/solvent/nonsolvent) was spun into porous filaments. About 1000 filaments were twisted into 2-ply yarns with good tenacity (4.7 cN tex(-1)). The gelatin yarns, per se susceptible to water, were cross-linked by different polyfunctional epoxides and examined in terms of free lysyl amino groups and swelling degree in water. Ethylene glycol diglycidyl ether exhibited the highest cross-linking efficiency. Further post-treatments with gaseous formaldehyde and wool grease (lanolin) rendered the gelatin yarns water-resistant, allowing for multiple swelling cycles in water or in detergent solution. However, the swelling caused a decrease in filament porosity from ∼30% to just below 10%. To demonstrate the applicability of gelatin yarn in a consumer good, a gelatin glove with good thermal insulation capacity was fabricated. PMID:26035474

  12. Cost to Benefit - Fish Skin Yields Unique Gelatin Products

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Gelatin is traditionally produced by hydrolysis of bones and skins from cattle and pigs. This can create problems for people with kosher and halal dietary restrictions, and also carries the potential of health hazards associated with outbreaks of bovine spongiform encephalopathy. The gelatins of col...

  13. Complex nitrogen cycling in the sponge Geodia barretti.

    PubMed

    Hoffmann, Friederike; Radax, Regina; Woebken, Dagmar; Holtappels, Moritz; Lavik, Gaute; Rapp, Hans Tore; Schläppy, Marie-Lise; Schleper, Christa; Kuypers, Marcel M M

    2009-09-01

    Marine sponges constitute major parts of coral reefs and deep-water communities. They often harbour high amounts of phylogenetically and physiologically diverse microbes, which are so far poorly characterized. Many of these sponges regulate their internal oxygen concentration by modulating their ventilation behaviour providing a suitable habitat for both aerobic and anaerobic microbes. In the present study, both aerobic (nitrification) and anaerobic (denitrification, anammox) microbial processes of the nitrogen cycle were quantified in the sponge Geodia barretti and possible involved microbes were identified by molecular techniques. Nitrification rates of 566 nmol N cm(-3) sponge day(-1) were obtained when monitoring the production of nitrite and nitrate. In support of this finding, ammonia-oxidizing Archaea (crenarchaeotes) were found by amplification of the amoA gene, and nitrite-oxidizing bacteria of the genus Nitrospira were detected based on rRNA gene analyses. Incubation experiments with stable isotopes ((15)NO(3)(-) and (15)NH(4)(+)) revealed denitrification and anaerobic ammonium oxidation (anammox) rates of 92 nmol N cm(-3) sponge day(-1) and 3 nmol N cm(-3) sponge day(-1) respectively. Accordingly, sequences closely related to 'Candidatus Scalindua sorokinii' and 'Candidatus Scalindua brodae' were detected in 16S rRNA gene libraries. The amplification of the nirS gene revealed the presence of denitrifiers, likely belonging to the Betaproteobacteria. This is the first proof of anammox and denitrification in the same animal host, and the first proof of anammox and denitrification in sponges. The close and complex interactions of aerobic, anaerobic, autotrophic and heterotrophic microbial processes are fuelled by metabolic waste products of the sponge host, and enable efficient utilization and recirculation of nutrients within the sponge-microbe system. Since denitrification and anammox remove inorganic nitrogen from the environment, sponges may function as

  14. Sponge-rhodolith interactions in a subtropical estuarine system

    NASA Astrophysics Data System (ADS)

    Ávila, Enrique; Riosmena-Rodríguez, Rafael; Hinojosa-Arango, Gustavo

    2013-06-01

    The interactions between sponges and red macroalgae have been widely documented in tropical and subtropical environments worldwide, and many of them have been documented as mutualistic associations. Sponges, however, have also been frequently described as part of the associated fauna of rhodolith habitats (aggregations of free-living non-geniculated coralline macroalgae). Nonetheless, the types of interaction they establish as well as the role of sponges in these habitats remain unknown. In this study, the associations between sponges and rhodoliths were investigated in an estuarine ecosystem of the Mexican Pacific based on qualitative and quantitative data. A total of 13 sponge species were identified in five newly discovered rhodolith beds dominated by the non-geniculate coralline macroalga Lithophyllum margaritae. The sponge assemblages were strongly restricted to rhodolith habitats. The best predictor of sponge abundance (from 5.1 to 51.7 ind m-2) and species richness (from 2.6 to 6.1 sponge species m-2) was the rhodolith density rather than other population descriptors assessed (e.g., average size, branch density and sphericity). The identified sponges included a variety of forms: massive (46 %), encrusting (23 %), excavating (15 %), cushion-shape (8 %) and digitate (8 %). Moreover, more than 50 % of sponge species recorded (mainly massive and encrusting forms) were frequently found overgrowing and binding rhodoliths. Halichondria cf. semitubulosa and Mycale cecilia were the most common binding agents; these species bind an average of 3.1 and 6.6 rhodoliths per sponge individual, respectively. These findings reveal the importance of rhodoliths as habitat forming species, since these seaweed beds notably increased the substrate complexity in soft bottom environments. In addition, the relatively high abundance of sponges and their capability to bind rhodoliths suggest that these associated organisms could have an important contribution to rhodolith bed stability.

  15. Bacterial uptake by the marine sponge Aplysina aerophoba.

    PubMed

    Wehrl, Markus; Steinert, Michael; Hentschel, Ute

    2007-02-01

    Sponges (Porifera) are filter feeders that take up microorganisms from seawater and digest them by phagocytosis. At the same time, many sponges are known to harbor massive consortia of symbiotic microorganisms, which are phylogenetically distinct from those in seawater, within the mesohyl matrix. In the present study, feeding experiments were performed to investigate whether phylogenetically different bacterial isolates, hereafter termed "food bacteria," microbial seawater consortia, and sponge symbiont consortia are taken up and processed differently by the host sponge. Aplysina aerophoba retained high numbers of bacterial isolates and microbial seawater consortia with rates of up to 2.76 x 10(6) bacteria (g sponge wet weight)(-1) h(-1), whereas the retention of sponge symbionts was lower by nearly two orders of magnitude [5.37 x 10(4) bacteria (g sponge wet weight)(-1) h(-1)]. In order to visualize the processing of a food bacterium within sponge tissues, the green fluorescent protein-labeled Vibrio strain MMW1, which had originally been isolated from A. aerophoba, was constructed. Incubation of this strain with A. aerophoba and subsequent visualization in tissue cryosections showed its presence in the choanocytes and/or endopinacocytes lining the canals but, unlike latex beads, not in deeper regions of the mesohyl, which suggests digestion of the bacteria upon contact with the host. Denaturing gradient gel electrophoresis (DGGE) was performed on the incubation seawater to monitor the changes in phylogenetic composition after incubation of the sponge with either seawater or sponge symbiont consortia. However, the DGGE experiment provided no evidence for selective processing of individual lineages by the host sponge. In conclusion, this study extends early studies by Wilkinson et al. (Proc R Soc London B 220:519-528, 1984) that sponges, here A. aerophoba, are able to differentiate between food bacteria and their own bacterial symbionts. PMID:17265004

  16. Deep phylogeny and evolution of sponges (phylum Porifera).

    PubMed

    Wörheide, G; Dohrmann, M; Erpenbeck, D; Larroux, C; Maldonado, M; Voigt, O; Borchiellini, C; Lavrov, D V

    2012-01-01

    Sponges (phylum Porifera) are a diverse taxon of benthic aquatic animals of great ecological, commercial, and biopharmaceutical importance. They are arguably the earliest-branching metazoan taxon, and therefore, they have great significance in the reconstruction of early metazoan evolution. Yet, the phylogeny and systematics of sponges are to some extent still unresolved, and there is an on-going debate about the exact branching pattern of their main clades and their relationships to the other non-bilaterian animals. Here, we review the current state of the deep phylogeny of sponges. Several studies have suggested that sponges are paraphyletic. However, based on recent phylogenomic analyses, we suggest that the phylum Porifera could well be monophyletic, in accordance with cladistic analyses based on morphology. This finding has many implications for the evolutionary interpretation of early animal traits and sponge development. We further review the contribution that mitochondrial genes and genomes have made to sponge phylogenetics and explore the current state of the molecular phylogenies of the four main sponge lineages (Classes), that is, Demospongiae, Hexactinellida, Calcarea, and Homoscleromorpha, in detail. While classical systematic systems are largely congruent with molecular phylogenies in the class Hexactinellida and in certain parts of Demospongiae and Homoscleromorpha, the high degree of incongruence in the class Calcarea still represents a challenge. We highlight future areas of research to fill existing gaps in our knowledge. By reviewing sponge development in an evolutionary and phylogenetic context, we support previous suggestions that sponge larvae share traits and complexity with eumetazoans and that the simple sedentary adult lifestyle of sponges probably reflects some degree of secondary simplification. In summary, while deep sponge phylogenetics has made many advances in the past years, considerable efforts are still required to achieve a

  17. Cationized gelatin hydrogels mixed with plasmid DNA induce stronger and more sustained gene expression than atelocollagen at calvarial bone defects in vivo.

    PubMed

    Komatsu, K; Shibata, T; Shimada, A; Ideno, H; Nakashima, K; Tabata, Y; Nifuji, A

    2016-01-01

    Gene transduction of exogenous factors at local sites in vivo is a promising approach to promote regeneration of tissue defects owing to its simplicity and capacity for expression of a variety of genes. Gene transduction by viral vectors is highly efficient; however, there are safety concerns associated with viruses. As a method for nonviral gene transduction, plasmid DNA delivery is safer and simpler, but requires an efficient carrier substance. Here, we aimed to develop a simple, efficient method for bone regeneration by gene transduction and to identify optimal conditions for plasmid DNA delivery at bone defect sites. We focused on carrier substances and compared the efficiencies of two collagen derivatives, atelocollagen, and gelatin hydrogel, as substrates for plasmid DNA delivery in vivo. To assess the efficiencies of these substrates, we examined exogenous expression of green fluorescence protein (GFP) by fluorescence microscopy, polymerase chain reaction, and immunohistochemistry. GFP expression at the bone defect site was higher when gelatin hydrogel was used as a substrate to deliver plasmids than when atelocollagen was used. Moreover, the gelatin hydrogel was almost completely absorbed at the defect site, whereas some atelocollagen remained. When a plasmid harboring bone morphogenic protein 2 was delivered with the substrate to bony defect sites, more new bone formation was observed in the gelatin group than in the atelocollagen group. These results suggested that the gelatin hydrogel was more efficient than atelocollagen as a substrate for local gene delivery and may be a superior material for induction of bone regeneration. PMID:26848778

  18. Gelatine-Based Antioxidant Packaging Containing Caesalpinia decapetala and Tara as a Coating for Ground Beef Patties

    PubMed Central

    Gallego, María Gabriela; Gordon, Michael H.; Segovia, Francisco; Almajano Pablos, María Pilar

    2016-01-01

    The development of antioxidant-active packaging has numerous advantages, such as the reduction of synthetic additives in food, the reduction of plastic waste and food protection against oxidation reactions. Different concentrations of extracts of the plants Caesalpinia decapetala (CD) and Caesalpinia spinosa “Tara” (CS) were incorporated into gelatine films as natural antioxidants. The physical, mechanical and antioxidant properties of these films were studied. Films containing plant extracts at a high concentration had lower tensile strength with higher elongation at break points, compared to the control film (p < 0.05). Films exhibited antioxidant activity in the oxygen radical absorbance capacity (ORAC) and Trolox equivalence antioxidant capacity (TEAC) assays when added at 0.2%. The application of gelatine film containing CD and CS was found to be effective in delaying lipid oxidation and deterioration of beef patty quality during storage. Therefore, the films prepared in this study offered an alternative edible coating for the preservation of fresh food. PMID:27043638

  19. Gelatine-Based Antioxidant Packaging Containing Caesalpinia decapetala and Tara as a Coating for Ground Beef Patties.

    PubMed

    Gallego, María Gabriela; Gordon, Michael H; Segovia, Francisco; Almajano Pablos, María Pilar

    2016-01-01

    The development of antioxidant-active packaging has numerous advantages, such as the reduction of synthetic additives in food, the reduction of plastic waste and food protection against oxidation reactions. Different concentrations of extracts of the plants Caesalpinia decapetala (CD) and Caesalpinia spinosa "Tara" (CS) were incorporated into gelatine films as natural antioxidants. The physical, mechanical and antioxidant properties of these films were studied. Films containing plant extracts at a high concentration had lower tensile strength with higher elongation at break points, compared to the control film (p < 0.05). Films exhibited antioxidant activity in the oxygen radical absorbance capacity (ORAC) and Trolox equivalence antioxidant capacity (TEAC) assays when added at 0.2%. The application of gelatine film containing CD and CS was found to be effective in delaying lipid oxidation and deterioration of beef patty quality during storage. Therefore, the films prepared in this study offered an alternative edible coating for the preservation of fresh food. PMID:27043638

  20. Fabrication and characterisation of biomimetic, electrospun gelatin fibre scaffolds for tunica media-equivalent, tissue engineered vascular grafts.

    PubMed

    Elsayed, Y; Lekakou, C; Labeed, F; Tomlins, P

    2016-04-01

    It is increasingly recognised that biomimetic, natural polymers mimicking the extracellular matrix (ECM) have low thrombogenicity and functional motifs that regulate cell-matrix interactions, with these factors being critical for tissue engineered vascular grafts especially grafts of small diameter. Gelatin constitutes a low cost substitute of soluble collagen but gelatin scaffolds so far have shown generally low strength and suture retention strength. In this study, we have devised the fabrication of novel, electrospun, multilayer, gelatin fibre scaffolds, with controlled fibre layer orientation, and optimised gelatin crosslinking to achieve not only compliance equivalent to that of coronary artery but also for the first time strength of the wet tubular acellular scaffold (swollen with absorbed water) same as that of the tunica media of coronary artery in both circumferential and axial directions. Most importantly, for the first time for natural scaffolds and in particular gelatin, high suture retention strength was achieved in the range of 1.8-1.94 N for wet acellular scaffolds, same or better than that for fresh saphenous vein. The study presents the investigations to relate the electrospinning process parameters to the microstructural parameters of the scaffold, which are further related to the mechanical performance data of wet, crosslinked, electrospun scaffolds in both circumferential and axial tubular directions. The scaffolds exhibited excellent performance in human smooth muscle cell (SMC) proliferation, with SMCs seeded on the top surface adhering, elongating and aligning along the local fibres, migrating through the scaffold thickness and populating a transverse distance of 186 μm and 240 μm 9 days post-seeding for scaffolds of initial dry porosity of 74 and 83%, respectively. PMID:26838874

  1. Impact of electron beam irradiation on fish gelatin film properties.

    PubMed

    Benbettaïeb, Nasreddine; Karbowiak, Thomas; Brachais, Claire-Hélène; Debeaufort, Frédéric

    2016-03-15

    The objective of this work was to display the effect of electron beam accelerator doses on properties of plasticized fish gelatin film. Electron spin resonance indicates free radical formation during irradiation, which might induce intermolecular cross-linking. Tensile strength for gelatin film significantly increases after irradiation (improved by 30% for 60 kGy). The vapour permeability is weakly affected by irradiation. Surface tension and its polar component increase significantly and are in accordance with the increase of wettability. So, irradiation may change the orientation of polar groups of gelatin at the film surface and crosslink the hydrophobic amino acids. No modification of the crystallinity of the film is observed. These findings suggest that if structure changes, it only occurs in the amorphous phase of the gelatin matrix. It is also observed that irradiation enhances the thermal stability of the gelatin film, by increasing the glass transition temperature and the degradation temperature. PMID:26575707

  2. Tactile texture and friction of soft sponge surfaces.

    PubMed

    Takahashi, Akira; Suzuki, Makoto; Imai, Yumi; Nonomura, Yoshimune

    2015-06-01

    We evaluated the tactile texture and frictional properties of five soft sponges with various cell sizes. The frictional forces were measured by a friction meter containing a contact probe with human-finger-like geometry and mechanical properties. When the subjects touched these sponges with their fingers, hard-textured sponges were deemed unpleasant. This tactile feeling changed with friction factors including friction coefficients, their temporal patterns, as well as mechanical and shape factors. These findings provide useful information on how to control the tactile textures of various sponges. PMID:25884490

  3. Marine Sponges as a Drug Treasure.

    PubMed

    Anjum, Komal; Abbas, Syed Qamar; Shah, Sayed Asmat Ali; Akhter, Najeeb; Batool, Sundas; Hassan, Syed Shams Ul

    2016-07-01

    Marine sponges have been considered as a drug treasure house with respect to great potential regarding their secondary metabolites. Most of the studies have been conducted on sponge's derived compounds to examine its pharmacological properties. Such compounds proved to have antibacterial, antiviral, antifungal, antimalarial, antitumor, immunosuppressive, and cardiovascular activity. Although, the mode of action of many compounds by which they interfere with human pathogenesis have not been clear till now, in this review not only the capability of the medicinal substances have been examined in vitro and in vivo against serious pathogenic microbes but, the mode of actions of medicinal compounds were explained with diagrammatic illustrations. This knowledge is one of the basic components to be known especially for transforming medicinal molecules to medicines. Sponges produce a different kind of chemical substances with numerous carbon skeletons, which have been found to be the main component interfering with human pathogenesis at different sites. The fact that different diseases have the capability to fight at different sites inside the body can increase the chances to produce targeted medicines. PMID:27350338

  4. The Sponge Implant Model of Angiogenesis.

    PubMed

    Andrade, Silvia Passos; Ferreira, Mônica Alves Neves Diniz

    2016-01-01

    The host response observed after the application of an appropriate stimulus, such as mechanical injury or injection of neoplastic or normal tissue implants, has allowed the cataloging of a number of molecules and cells involved in the vascularization of normal repair or neoplastic tissue. Implantation of sponge matrices has been adopted as a model for the accurate quantification of angiogenic and fibrogenic responses, as they may occur during wound healing, in vivo. Such implants are particularly useful because they offer scope for modulating the environment within which angiogenesis occurs. Sponge implantation model has been optimized and adapted to characterize essential components and their roles in blood vessels formation in a variety of physiological and pathological conditions. As a direct consequence of advances in genetic manipulation, mouse models (i.e., knockouts, SCID, nude) have provided resources to delineate the mechanisms regulating the healing associated with implants. Here we outline the usefulness of the sponge implant model of angiogenesis and detailed description of the methodology. PMID:27172965

  5. Properties of electrospun pollock gelatin/poly(vinyl alcohol) and pollock gelatin/poly(lactic acid) fibers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pollock gelatin/poly(vinyl alcohol) (PVA) fibers were electrospun using deionized water as the solvent and pollock gelatin/poly(lactic acid) (PLA) fibers were electrospun using 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) as the solvent. The chemical, thermal, and thermal stability properties were exami...

  6. Optimization of biodegradable sponges as controlled release drug matrices. I. Effect of moisture level on chitosan sponge mechanical properties.

    PubMed

    Foda, Nagwa H; El-laithy, Hanan M; Tadros, Mina I

    2004-04-01

    Cross-linked chitosan sponges as controlled release drug carrier systems were developed. Tramadol hydrochloride, a centrally acting analgesic, was used as a model drug. The sponges were prepared by freeze-drying 1.25% and 2.5% (w/w) high and low M.wt. chitosan solutions, respectively, using glutaraldehyde as a cross-linking agent. The hardness of the prepared sponges was a function of glutaraldehyde concentration and volume where the optimum concentration that offered accepted sponge consistency was 5%. Below or above 5%, very soft or very hard and brittle sponges were obtained, respectively. The determined drug content in the prepared sponges was uniform and did not deviate markedly from the calculated amount. Scanning electron microscopy (SEM) was used to characterize the internal structures of the sponges. The SEM photos revealed that cross-linked high M.wt. chitosan sponges have larger size surface pores that form connections (channels) with the interior of the sponge than cross-linked low M.wt. ones. Moreover, crystals of the incorporated Tramadol hydrochloride were detected on the lamellae and within pores in both chitosan sponges. Differences in pore size and dissolution medium uptake capacity were crucial factors for the more delayed drug release from cross-linked low M.wt. chitosan sponges over high M.wt. ones at pH 7.4. Kinetic analysis of the release data using linear regression followed the Higuchi diffusion model over 12 hours. Setting storage conditions at room temperature under 80-92% relative humidity resulted in soft, elastic, and compressible sponges. PMID:15132179

  7. The Dynamic Behaviour of Ballistic Gelatin

    NASA Astrophysics Data System (ADS)

    Shepherd, C. J.; Appleby-Thomas, G. J.; Hazell, P. J.; Allsop, D. F.

    2009-12-01

    In order to characterise the effect of projectiles it is necessary to understand the mechanism of both penetration and resultant wounding in biological systems. Porcine gelatin is commonly used as a tissue simulant in ballistic tests because it elastically deforms in a similar manner to muscular tissue. Bullet impacts typically occur in the 350-850 m/s range; thus knowledge of the high strain-rate dynamic properties of both the projectile and target materials are desirable to simulate wounds. Unlike projectile materials, relatively little data exists on the dynamic response of flesh simulants. The Hugoniot for a 20 wt.% porcine gelatin, which exhibits a ballistic response similar to that of human tissues at room temperature, was determined using the plate-impact technique at impact velocities of 75-860 m/s. This resulted in impact stresses around three times higher than investigated elsewhere. In US-uP space the Hugoniot had the form US = 1.57+1.77 uP, while in P-uP space it was essentially hydrodynamic. In both cases this was in good agreement with the limited available data from the literature.

  8. Advanced neutron absorber materials

    DOEpatents

    Branagan, Daniel J.; Smolik, Galen R.

    2000-01-01

    A neutron absorbing material and method utilizing rare earth elements such as gadolinium, europium and samarium to form metallic glasses and/or noble base nano/microcrystalline materials, the neutron absorbing material having a combination of superior neutron capture cross sections coupled with enhanced resistance to corrosion, oxidation and leaching.

  9. Multispectral metamaterial absorber.

    PubMed

    Grant, J; McCrindle, I J H; Li, C; Cumming, D R S

    2014-03-01

    We present the simulation, implementation, and measurement of a multispectral metamaterial absorber (MSMMA) and show that we can realize a simple absorber structure that operates in the mid-IR and terahertz (THz) bands. By embedding an IR metamaterial absorber layer into a standard THz metamaterial absorber stack, a narrowband resonance is induced at a wavelength of 4.3 μm. This resonance is in addition to the THz metamaterial absorption resonance at 109 μm (2.75 THz). We demonstrate the inherent scalability and versatility of our MSMMA by describing a second device whereby the MM-induced IR absorption peak frequency is tuned by varying the IR absorber geometry. Such a MSMMA could be coupled with a suitable sensor and formed into a focal plane array, enabling multispectral imaging. PMID:24690713

  10. Two distinct microbial communities revealed in the sponge Cinachyrella

    PubMed Central

    Cuvelier, Marie L.; Blake, Emily; Mulheron, Rebecca; McCarthy, Peter J.; Blackwelder, Patricia; Thurber, Rebecca L. Vega; Lopez, Jose V.

    2014-01-01

    Marine sponges are vital components of benthic and coral reef ecosystems, providing shelter and nutrition for many organisms. In addition, sponges act as an essential carbon and nutrient link between the pelagic and benthic environment by filtering large quantities of seawater. Many sponge species harbor a diverse microbial community (including Archaea, Bacteria and Eukaryotes), which can constitute up to 50% of the sponge biomass. Sponges of the genus Cinachyrella are common in Caribbean and Floridian reefs and their archaeal and bacterial microbiomes were explored here using 16S rRNA gene tag pyrosequencing. Cinachyrella specimens and seawater samples were collected from the same South Florida reef at two different times of year. In total, 639 OTUs (12 archaeal and 627 bacterial) belonging to 2 archaeal and 21 bacterial phyla were detected in the sponges. Based on their microbiomes, the six sponge samples formed two distinct groups, namely sponge group 1 (SG1) with lower diversity (Shannon-Weiner index: 3.73 ± 0.22) and SG2 with higher diversity (Shannon-Weiner index: 5.95 ± 0.25). Hosts' 28S rRNA gene sequences further confirmed that the sponge specimens were composed of two taxa closely related to Cinachyrella kuekenthalli. Both sponge groups were dominated by Proteobacteria, but Alphaproteobacteria were significantly more abundant in SG1. SG2 harbored many bacterial phyla (>1% of sequences) present in low abundance or below detection limits (<0.07%) in SG1 including: Acidobacteria, Chloroflexi, Gemmatimonadetes, Nitrospirae, PAUC34f, Poribacteria, and Verrucomicrobia. Furthermore, SG1 and SG2 only had 95 OTUs in common, representing 30.5 and 22.4% of SG1 and SG2's total OTUs, respectively. These results suggest that the sponge host may exert a pivotal influence on the nature and structure of the microbial community and may only be marginally affected by external environment parameters. PMID:25408689

  11. Phylogenetically and Spatially Close Marine Sponges Harbour Divergent Bacterial Communities

    PubMed Central

    Hardoim, Cristiane C. P.; Esteves, Ana I. S.; Pires, Francisco R.; Gonçalves, Jorge M. S.; Cox, Cymon J.; Xavier, Joana R.; Costa, Rodrigo

    2012-01-01

    Recent studies have unravelled the diversity of sponge-associated bacteria that may play essential roles in sponge health and metabolism. Nevertheless, our understanding of this microbiota remains limited to a few host species found in restricted geographical localities, and the extent to which the sponge host determines the composition of its own microbiome remains a matter of debate. We address bacterial abundance and diversity of two temperate marine sponges belonging to the Irciniidae family - Sarcotragus spinosulus and Ircinia variabilis – in the Northeast Atlantic. Epifluorescence microscopy revealed that S. spinosulus hosted significantly more prokaryotic cells than I. variabilis and that prokaryotic abundance in both species was about 4 orders of magnitude higher than in seawater. Polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) profiles of S. spinosulus and I. variabilis differed markedly from each other – with higher number of ribotypes observed in S. spinosulus – and from those of seawater. Four PCR-DGGE bands, two specific to S. spinosulus, one specific to I. variabilis, and one present in both sponge species, affiliated with an uncultured sponge-specific phylogenetic cluster in the order Acidimicrobiales (Actinobacteria). Two PCR-DGGE bands present exclusively in S. spinosulus fingerprints affiliated with one sponge-specific phylogenetic cluster in the phylum Chloroflexi and with sponge-derived sequences in the order Chromatiales (Gammaproteobacteria), respectively. One Alphaproteobacteria band specific to S. spinosulus was placed in an uncultured sponge-specific phylogenetic cluster with a close relationship to the genus Rhodovulum. Our results confirm the hypothesized host-specific composition of bacterial communities between phylogenetically and spatially close sponge species in the Irciniidae family, with S. spinosulus displaying higher bacterial community diversity and distinctiveness than I. variabilis. These

  12. Two distinct microbial communities revealed in the sponge Cinachyrella.

    PubMed

    Cuvelier, Marie L; Blake, Emily; Mulheron, Rebecca; McCarthy, Peter J; Blackwelder, Patricia; Thurber, Rebecca L Vega; Lopez, Jose V

    2014-01-01

    Marine sponges are vital components of benthic and coral reef ecosystems, providing shelter and nutrition for many organisms. In addition, sponges act as an essential carbon and nutrient link between the pelagic and benthic environment by filtering large quantities of seawater. Many sponge species harbor a diverse microbial community (including Archaea, Bacteria and Eukaryotes), which can constitute up to 50% of the sponge biomass. Sponges of the genus Cinachyrella are common in Caribbean and Floridian reefs and their archaeal and bacterial microbiomes were explored here using 16S rRNA gene tag pyrosequencing. Cinachyrella specimens and seawater samples were collected from the same South Florida reef at two different times of year. In total, 639 OTUs (12 archaeal and 627 bacterial) belonging to 2 archaeal and 21 bacterial phyla were detected in the sponges. Based on their microbiomes, the six sponge samples formed two distinct groups, namely sponge group 1 (SG1) with lower diversity (Shannon-Weiner index: 3.73 ± 0.22) and SG2 with higher diversity (Shannon-Weiner index: 5.95 ± 0.25). Hosts' 28S rRNA gene sequences further confirmed that the sponge specimens were composed of two taxa closely related to Cinachyrella kuekenthalli. Both sponge groups were dominated by Proteobacteria, but Alphaproteobacteria were significantly more abundant in SG1. SG2 harbored many bacterial phyla (>1% of sequences) present in low abundance or below detection limits (<0.07%) in SG1 including: Acidobacteria, Chloroflexi, Gemmatimonadetes, Nitrospirae, PAUC34f, Poribacteria, and Verrucomicrobia. Furthermore, SG1 and SG2 only had 95 OTUs in common, representing 30.5 and 22.4% of SG1 and SG2's total OTUs, respectively. These results suggest that the sponge host may exert a pivotal influence on the nature and structure of the microbial community and may only be marginally affected by external environment parameters. PMID:25408689

  13. High-Surface-Area CO2 Sponge: High Performance CO2 Scrubbing Based on Hollow Fiber-Supported Designer Ionic Liquid Sponges

    SciTech Connect

    2010-09-01

    IMPACCT Project: The team from ORNL and Georgia Tech is developing a new technology that will act like a sponge, integrating a new, alcohol-based ionic liquid into hollow fibers (magnified image, right) to capture CO2 from the exhaust produced by coal-fired power plants. Ionic liquids, or salts that exist in liquid form, are promising materials for carbon capture and storage, but their tendency to thicken when combined with CO2 limits their efficiency and poses a challenge for their development as a cost-effective alternative to current-generation solutions. Adding alcohol to the mix limits this tendency to thicken in the presence of CO2 but can also make the liquid more likely to evaporate, which would add significantly to the cost of CO2 capture. To solve this problem, ORNL is developing new classes of ionic liquids with high capacity for absorbing CO2. ORNL’s sponge would reduce the cost associated with the energy that would need to be diverted from power plants to capture CO2 and release it for storage.

  14. Internal absorber solar collector

    DOEpatents

    Sletten, Carlyle J.; Herskovitz, Sheldon B.; Holt, F. S.; Sletten, E. J.

    1981-01-01

    Thin solar collecting panels are described made from arrays of small rod collectors consisting of a refracting dielectric rod lens with an absorber imbedded within it and a reflecting mirror coated on the back side of the dielectric rod. Non-tracking collector panels on vertical walls or roof tops receive approximately 90% of solar radiation within an acceptance zone 60.degree. in elevation angle by 120.degree. or more in the azimuth sectors with a collector concentration ratio of approximately 3.0. Miniaturized construction of the circular dielectric rods with internal absorbers reduces the weight per area of glass, plastic and metal used in the collector panels. No external parts or insulation are needed as heat losses are low due to partial vacuum or low conductivity gas surrounding heated portions of the collector. The miniature internal absorbers are generally made of solid copper with black selective surface and the collected solar heat is extracted at the collector ends by thermal conductivity along the absorber rods. Heat is removed from end fittings by use of liquid circulants. Several alternate constructions are provided for simplifying collector panel fabrication and for preventing the thermal expansion and contraction of the heated absorber or circulant tubes from damaging vacuum seals. In a modified version of the internal absorber collector, oil with temperature dependent viscosity is pumped through a segmented absorber which is now composed of closely spaced insulated metal tubes. In this way the circulant is automatically diverted through heated portions of the absorber giving higher collector concentration ratios than theoretically possible for an unsegmented absorber.

  15. Metal shearing energy absorber

    NASA Technical Reports Server (NTRS)

    Fay, R. J.; Wittrock, E. P. (Inventor)

    1973-01-01

    A metal shearing energy absorber is described. The absorber is composed of a flat thin strip of metal which is pulled through a slot in a cutter member of a metal, harder than the metal of the strip. The slot's length, in the direction perpendicular to the pull direction, is less than the strip's width so that as the strip is pulled through the slot, its edges are sheared off, thereby absorbing some of the pulling energy. In one embodiment the cutter member is a flat plate of steel, while in another embodiment the cutter member is U-shaped with the slot at its base.

  16. Lipid-absorbing Polymers

    NASA Technical Reports Server (NTRS)

    Marsh, H. E., Jr.; Wallace, C. J.

    1973-01-01

    The removal of bile acids and cholesterol by polymeric absorption is discussed in terms of micelle-polymer interaction. The results obtained with a polymer composed of 75 parts PEO and 25 parts PB plus curing ingredients show an absorption of 305 to 309%, based on original polymer weight. Particle size effects on absorption rate are analyzed. It is concluded that crosslinked polyethylene oxide polymers will absorb water, crosslinked polybutadiene polymers will absorb lipids; neither polymer will absorb appreciable amounts of lipids from micellar solutions of lipids in water.

  17. The Sponge Pump: The Role of Current Induced Flow in the Design of the Sponge Body Plan

    PubMed Central

    Leys, Sally P.; Yahel, Gitai; Reidenbach, Matthew A.; Tunnicliffe, Verena; Shavit, Uri; Reiswig, Henry M.

    2011-01-01

    Sponges are suspension feeders that use flagellated collar-cells (choanocytes) to actively filter a volume of water equivalent to many times their body volume each hour. Flow through sponges is thought to be enhanced by ambient current, which induces a pressure gradient across the sponge wall, but the underlying mechanism is still unknown. Studies of sponge filtration have estimated the energetic cost of pumping to be <1% of its total metabolism implying there is little adaptive value to reducing the cost of pumping by using “passive” flow induced by the ambient current. We quantified the pumping activity and respiration of the glass sponge Aphrocallistes vastus at a 150 m deep reef in situ and in a flow flume; we also modeled the glass sponge filtration system from measurements of the aquiferous system. Excurrent flow from the sponge osculum measured in situ and in the flume were positively correlated (r>0.75) with the ambient current velocity. During short bursts of high ambient current the sponges filtered two-thirds of the total volume of water they processed daily. Our model indicates that the head loss across the sponge collar filter is 10 times higher than previously estimated. The difference is due to the resistance created by a fine protein mesh that lines the collar, which demosponges also have, but was so far overlooked. Applying our model to the in situ measurements indicates that even modest pumping rates require an energetic expenditure of at least 28% of the total in situ respiration. We suggest that due to the high cost of pumping, current-induced flow is highly beneficial but may occur only in thin walled sponges living in high flow environments. Our results call for a new look at the mechanisms underlying current-induced flow and for reevaluation of the cost of biological pumping and its evolutionary role, especially in sponges. PMID:22180779

  18. Influence of time, temperature, moisture, ingredients, and processing conditions on starch gelatinization.

    PubMed

    Lund, D

    1984-01-01

    Starch gelatinization phenomena is extremely important in many food systems. This review focuses on factors affecting gelatinization characteristics of starch. Important variables which must be considered in design of processes in which starch undergoes gelatinization are heat of gelatinization and temperature of gelatinization. Major interactions are reviewed for the effects of lipids, moisture content, nonionic constituents and electrolytes on these characteristics. Furthermore, treatment of starch-containing systems prior to heating into the gelatinization temperature range can have a significant effect on ultimate gelatinization characteristics. PMID:6386335

  19. Keratin sponge/hydrogel part 1. fabrication and characterization

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Keratin sponge/hydrogel products formed by either the oxidation or reduction of U.S. domestic fine- or coarse-grade wool exhibited distinctively different topologies and molecular weights of 6- 8 kDa and 40-60 kDa, each with unique macro-porous structure and microstructural behaviors. The sponge/ ...

  20. Prevalence and Mechanisms of Dynamic Chemical Defenses in Tropical Sponges

    PubMed Central

    Rohde, Sven; Nietzer, Samuel; Schupp, Peter J.

    2015-01-01

    Sponges and other sessile invertebrates are lacking behavioural escape or defense mechanisms and rely therefore on morphological or chemical defenses. Studies from terrestrial systems and marine algae demonstrated facultative defenses like induction and activation to be common, suggesting that sessile marine organisms also evolved mechanisms to increase the efficiency of their chemical defense. However, inducible defenses in sponges have not been investigated so far and studies on activated defenses are rare. We investigated whether tropical sponge species induce defenses in response to artificial predation and whether wounding triggers defense activation. Additionally, we tested if these mechanisms are also used to boost antimicrobial activity to avoid bacterial infection. Laboratory experiments with eight pacific sponge species showed that 87% of the tested species were chemically defended. Two species, Stylissa massa and Melophlus sarasinorum, induced defenses in response to simulated predation, which is the first demonstration of induced antipredatory defenses in marine sponges. One species, M. sarasinorum, also showed activated defense in response to wounding. Interestingly, 50% of the tested sponge species demonstrated induced antimicrobial defense. Simulated predation increased the antimicrobial defenses in Aplysinella sp., Cacospongia sp., M. sarasinorum, and S. massa. Our results suggest that wounding selects for induced antimicrobial defenses to protect sponges from pathogens that could otherwise invade the sponge tissue via feeding scars. PMID:26154741

  1. The Dimension of the Pore Space in Sponges

    ERIC Educational Resources Information Center

    Silva, L. H. F.; Yamashita, M. T.

    2009-01-01

    A simple experiment to reveal the dimension of the pore space in sponges is proposed. This experiment is suitable for the first year of a physics or engineering course. The calculated dimension of the void space in a sponge of density 16 mg cm[superscript -3] was 2.948 [plus or minus] 0.008. (Contains 2 figures.)

  2. Chemistry of verongida sponges. 9.1 secondary metabolite composition of the caribbean sponge aplysina cauliformis

    PubMed

    Ciminiello; Dell'Aversano; Fattorusso; Magno; Pansini

    1999-04-01

    A detailed analysis of the secondary metabolites of the sponge Aplysina cauliformis has been performed. Eight compounds were identified, two of which (13 and 14) are new bromotyrosine derivatives whose structures were determinated from spectroscopic evidence, including 2D NMR. The new compounds were analyzed for cytotoxic activity, and compound 14 was shown to inhibit mammalian protein synthesis and cell proliferation. PMID:10217716

  3. Gelatin/graphene systems for low cost energy storage

    SciTech Connect

    Landi, Giovanni; Fedi, Filippo; Sorrentino, Andrea; Iannace, Salvatore; Neitzert, Heinz C.

    2014-05-15

    In this work, we introduce the possibility to use a low cost, biodegradable material for temporary energy storage devices. Here, we report the use of biologically derived organic electrodes composed of gelatin ad graphene. The graphene was obtained by mild sonication in a mixture of volatile solvents of natural graphite flakes and subsequent centrifugation. The presence of exfoliated graphene sheets was detected by atomic force microscopy (AFM) and Raman spectroscopy. The homogeneous dispersion in gelatin demonstrates a good compatibility between the gelatin molecules and the graphene particles. The electrical characterization of the resulting nanocomposites suggests the possible applications as materials for transient, low cost energy storage device.

  4. Aminosilane as an effective binder for hydroxyapatite-gelatin nanocomposites.

    PubMed

    Luo, Tzy-Jiun M; Ko, Ching-Chang; Chiu, Chi-Kai; Llyod, Jacob; Huh, Uk

    2010-02-01

    Aminosilane has been explored as an alternative chemical linker to facilitate the binding and solidification of hydroxyapatite-gelatin nanocomposite at room temperature, which was synthesized using co-precipitation method in the presence of gelatin. This aminosilane treatment was found effective at low concentration (~25 μL/mL) and the solidification and dehydration of hydroxyapatite-gelatin slurry completes within hours depending on the amount of aminosilane. The resulting sample exhibits compressive strength of 133 MPa, about 40% higher than glutaraldehyde treated samples, and shows good biocompatibility based on cell adhesion, proliferation, alkaline phosphate synthesis, and mineralization studies. PMID:23833395

  5. Aminosilane as an effective binder for hydroxyapatite-gelatin nanocomposites

    PubMed Central

    Luo, Tzy-Jiun M.; Ko, Ching-Chang; Chiu, Chi-Kai; Llyod, Jacob; Huh, Uk

    2013-01-01

    Aminosilane has been explored as an alternative chemical linker to facilitate the binding and solidification of hydroxyapatite-gelatin nanocomposite at room temperature, which was synthesized using co-precipitation method in the presence of gelatin. This aminosilane treatment was found effective at low concentration (~25 μL/mL) and the solidification and dehydration of hydroxyapatite-gelatin slurry completes within hours depending on the amount of aminosilane. The resulting sample exhibits compressive strength of 133 MPa, about 40% higher than glutaraldehyde treated samples, and shows good biocompatibility based on cell adhesion, proliferation, alkaline phosphate synthesis, and mineralization studies. PMID:23833395

  6. Treatment of well tubulars with gelatin

    SciTech Connect

    Lowther, F.E.

    1992-08-04

    This patent describes a method for treating a tubular in a well. It comprises: passing a mass of gelatin downward through the tubular; and passing the mass of gelating, upward in the well tubular toward the surface. This patent also describes a method of treating tubulars in a cased well having at least one string of tubing therein. It comprises positioning a mass in the annulus formed between the casing and the at least one string of tubing; and passing the mass downward in the annulus and in contact with both the inner wall of the casing and the outer wall of the tubing to deposit a protective layer on each of the walls.

  7. [Defect replacement with osteogenin containing gelatin].

    PubMed

    Thielemann, F W; Feller, A M; Schmidt, K

    1984-01-01

    In order to demonstrate an alternative way to correct diaphyseal defects allogenic cortical bone prepared as "osteogenin containing gelatine (OCG)" was used in sheep. Animals without any implants served as controls. Healing was assessed by radiological examination after 3, 6, 9 and 12 weeks and histological examination after 12 weeks. In the control group there was no bridging of the defect in all of the four animals. Out of the six animals of the OCG-group one animal suffered from a postoperative infection and one animal failed because of a breakdown of the osteosynthesis. The other four animals exhibited a complete reconstruction of the former defect roentgenologically after 9 weeks. Histologically a new formed spongious bone could be demonstrated in the former defective site. The OCG-implants were completely resorbed after 12 weeks. PMID:6395536

  8. Direct Oil Recovery from Saturated Carbon Nanotube Sponges.

    PubMed

    Li, Xiying; Xue, Yahui; Zou, Mingchu; Zhang, Dongxiao; Cao, Anyuan; Duan, Huiling

    2016-05-18

    Oil adsorption by porous materials is a major strategy for water purification and industrial spill cleanup; it is of great interest if the adsorbed oil can be safely recovered from those porous media. Here, direct oil recovery from fully saturated bulk carbon nanotube (CNT) sponges by displacing oil with water in controlled manner is shown. Surfactant-assisted electrocapillary imbibition is adopted to drive aqueous electrolyte into the sponge and extrude organic oil out continuously at low potentials (up to -1.2 V). More than 95 wt % of oil adsorbed within the sponge can be recovered, via a single electrocapillary process. Recovery of different oils with a wide range of viscosities is demonstrated, and the remaining CNT sponge can be reused with similar recovery capacity. A direct and efficient method is provided to recover oil from CNT sponges by water imbibition, which has many potential environmental and energy applications. PMID:27120687

  9. Evaluation of bone matrix gelatin/fibrin glue and chitosan/gelatin composite scaffolds for cartilage tissue engineering.

    PubMed

    Wang, Z H; Zhang, J; Zhang, Q; Gao, Y; Yan, J; Zhao, X Y; Yang, Y Y; Kong, D M; Zhao, J; Shi, Y X; Li, X L

    2016-01-01

    This study was designed to evaluate bone matrix gelatin (BMG)/fibrin glue and chitosan/gelatin composite scaffolds for cartilage tissue engineering. Chondrocytes were isolated from costal cartilage of Sprague-Dawley rats and seeded on BMG/fibrin glue or chitosan/gelatin composite scaffolds. After different in vitro culture durations, the scaffolds were subjected to hematoxylin and eosin, Masson's trichrome, and toluidine blue staining, anti-collagen II and anti-aggrecan immunohistochemistry, and scanning electronic microscopy (SEM) analysis. After 2 weeks of culture, chondrocytes were distributed evenly on the surfaces of both scaffolds. Cell numbers and the presence of extracellular matrix components were markedly increased after 8 weeks of culture, and to a greater extent on the chitosan/gelatin scaffold. The BMG/fibrin glue scaffold showed signs of degradation after 8 weeks. Immunofluorescence analysis confirmed higher levels of collagen II and aggrecan using the chitosan/gelatin scaffold. SEM revealed that the majority of cells on the surface of the BMG/fibrin glue scaffold demonstrated a round morphology, while those in the chitosan/gelatin group had a spindle-like shape, with pseudopodia. Chitosan/gelatin scaffolds appear to be superior to BMG/ fibrin glue constructs in supporting chondrocyte attachment, proliferation, and biosynthesis of cartilaginous matrix components. PMID:27525846

  10. "Smart" Electromechanical Shock Absorber

    NASA Technical Reports Server (NTRS)

    Stokes, Lebarian; Glenn, Dean C.; Carroll, Monty B.

    1989-01-01

    Shock-absorbing apparatus includes electromechanical actuator and digital feedback control circuitry rather than springs and hydraulic damping as in conventional shock absorbers. Device not subject to leakage and requires little or no maintenance. Attenuator parameters adjusted in response to sensory feedback and predictive algorithms to obtain desired damping characteristic. Device programmed to decelerate slowly approaching vehicle or other large object according to prescribed damping characteristic.

  11. Iron Chalcogenide Photovoltaic Absorbers

    SciTech Connect

    Yu, Liping; Lany, Stephan; Kykyneshi, Robert; Jieratum, Vorranutch; Ravichandran, Ram; Pelatt, Brian; Altschul, Emmeline; Platt, Heather A. S.; Wager, John F.; Keszler, Douglas A.; Zunger, Alex

    2011-08-10

    An integrated computational and experimental study of FeS₂ pyrite reveals that phase coexistence is an important factor limiting performance as a thin-film solar absorber. This phase coexistence is suppressed with the ternary materials Fe₂SiS₄ and Fe₂GeS₄, which also exhibit higher band gaps than FeS₂. Thus, the ternaries provide a new entry point for development of thin-film absorbers and high-efficiency photovoltaics.

  12. Barium hydrogen phosphate/gelatin composites versus gelatin-free barium hydrogen phosphate: synthesis and characterization of properties.

    PubMed

    Gashti, Mazeyar Parvinzadeh; Burgener, Matthias; Stir, Manuela; Hulliger, Jürg

    2014-10-01

    Recently, attention has been spent on crystal growth of phosphate compounds in gels for studying the mechanism of in vitro crystallization processes. Here, we present a gel-based approach for the synthesis of barium hydrogen phosphate (BHP) crystals using single and double diffusion techniques in gelatin. The composite crystals were compared with analytical grade BHP powder, single and polycrystalline BHP materials using Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), scanning pyroelectric microscopy (SPEM), optical microscopy (OM), thermal gravimetric analysis (TGA) and X-ray diffraction (XRD). FTIR spectra showed surface adsorption of gelatin molecules by using BHP stacked sheets due to CH2 stretching, CH2 bending and amide I vibrations are found in a gelatin content of about 2% determined by dissolution. SEM shows various crystal morphologies of the BHP/gelatin composites forming bundled micro-flakes to irregular bundled needles and spheres different from gel-free crystals. The variety in morphology depends on the ion concentration, pH of gel as well as the method of crystal growth. SPEM investigation of BHP/gelatin aggregates revealed polar domains showing alteration of the polarization. Moreover, BHP/gelatin composite crystals showed a higher thermal stability in comparison with analytical grade BHP or/and BHP single crystals due to strong interactions between gelatin and BHP. The XRD diffraction analysis demonstrated that the single and double diffusion techniques in gelatin led to the formation of orthorhombic BHP. This study demonstrates that gelatin is a useful high molecular weight biomacromolecule for controlling the crystallization of a composite material by producing a variety of morphological forms. PMID:24996024

  13. Carbon conversion and metabolic rate in two marine sponges.

    PubMed

    Koopmans, M; van Rijswijk, P; Martens, D; Egorova-Zachernyuk, T A; Middelburg, J J; Wijffels, R H

    2011-01-01

    The carbon metabolism of two marine sponges, Haliclona oculata and Dysidea avara, has been studied using a (13)C isotope pulse-chase approach. The sponges were fed (13)C-labeled diatoms (Skeletonema costatum) for 8 h and they took up between 75 and 85%. At different times, sponges were sampled for total (13)C enrichment, and fatty acid (FA) composition and (13)C enrichment. Algal biomarkers present in the sponges were highly labeled after feeding but their labeling levels decreased until none was left 10 days after enrichment. The sponge-specific FAs incorporated (13)C label already during the first day and the amount of (13)C label inside these FAs kept increasing until 3 weeks after labeling. The algal-derived carbon captured by the sponges during the 8-h feeding period was thus partly respired and partly metabolized during the weeks following. Apparently, sponges are able to capture enough food during short periods to sustain longer-term metabolism. The change of carbon metabolic rate of fatty acid synthesis due to mechanical damage of sponge tissue was studied by feeding sponges with (13)C isotope-labeled diatom (Pheaodactylum tricornutum) either after or before damaging and tracing back the (13)C content in the damaged and healthy tissue. The filtration and respiration in both sponges responded quickly to damage. The rate of respiration in H. oculata reduced immediately after damage, but returned to its initial level after 6 h. The (13)C data revealed that H. oculata has a higher metabolic rate in the tips where growth occurs compared to the rest of the tissue and that the metabolic rate is increased after damage of the tissue. For D. avara, no differences were found between damaged and non-damaged tissue. However, the filtration rate decreased directly after damage. PMID:24489407

  14. 21 CFR 878.4014 - Nonresorbable gauze/sponge for external use.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Nonresorbable gauze/sponge for external use. 878... Nonresorbable gauze/sponge for external use. (a) Identification. A nonresorbable gauze/sponge for external use... include a nonresorbable gauze/sponge for external use that contains added drugs such as...

  15. 21 CFR 878.4014 - Nonresorbable gauze/sponge for external use.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Nonresorbable gauze/sponge for external use. 878... Nonresorbable gauze/sponge for external use. (a) Identification. A nonresorbable gauze/sponge for external use... include a nonresorbable gauze/sponge for external use that contains added drugs such as...

  16. 21 CFR 878.4014 - Nonresorbable gauze/sponge for external use.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Nonresorbable gauze/sponge for external use. 878... Nonresorbable gauze/sponge for external use. (a) Identification. A nonresorbable gauze/sponge for external use... include a nonresorbable gauze/sponge for external use that contains added drugs such as...

  17. 21 CFR 878.4014 - Nonresorbable gauze/sponge for external use.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Nonresorbable gauze/sponge for external use. 878... Nonresorbable gauze/sponge for external use. (a) Identification. A nonresorbable gauze/sponge for external use... include a nonresorbable gauze/sponge for external use that contains added drugs such as...

  18. 21 CFR 878.4014 - Nonresorbable gauze/sponge for external use.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Nonresorbable gauze/sponge for external use. 878... Nonresorbable gauze/sponge for external use. (a) Identification. A nonresorbable gauze/sponge for external use... include a nonresorbable gauze/sponge for external use that contains added drugs such as...

  19. 46 CFR 148.275 - Iron oxide, spent; iron sponge, spent.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Iron oxide, spent; iron sponge, spent. 148.275 Section... § 148.275 Iron oxide, spent; iron sponge, spent. (a) Before spent iron oxide or spent iron sponge is... been cooled and weathered for at least eight weeks. (b) Both spent iron oxide and spent iron sponge...

  20. 46 CFR 148.275 - Iron oxide, spent; iron sponge, spent.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Iron oxide, spent; iron sponge, spent. 148.275 Section... § 148.275 Iron oxide, spent; iron sponge, spent. (a) Before spent iron oxide or spent iron sponge is... been cooled and weathered for at least eight weeks. (b) Both spent iron oxide and spent iron sponge...

  1. 46 CFR 148.275 - Iron oxide, spent; iron sponge, spent.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Iron oxide, spent; iron sponge, spent. 148.275 Section... § 148.275 Iron oxide, spent; iron sponge, spent. (a) Before spent iron oxide or spent iron sponge is... been cooled and weathered for at least eight weeks. (b) Both spent iron oxide and spent iron sponge...

  2. 46 CFR 148.275 - Iron oxide, spent; iron sponge, spent.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Iron oxide, spent; iron sponge, spent. 148.275 Section... § 148.275 Iron oxide, spent; iron sponge, spent. (a) Before spent iron oxide or spent iron sponge is... been cooled and weathered for at least eight weeks. (b) Both spent iron oxide and spent iron sponge...

  3. Lifestyle Evolution in Cyanobacterial Symbionts of Sponges

    PubMed Central

    Burgsdorf, Ilia; Slaby, Beate M.; Handley, Kim M.; Haber, Markus; Blom, Jochen; Marshall, Christopher W.; Gilbert, Jack A.; Hentschel, Ute

    2015-01-01

    ABSTRACT The “Candidatus Synechococcus spongiarum” group includes different clades of cyanobacteria with high 16S rRNA sequence identity (~99%) and is the most abundant and widespread cyanobacterial symbiont of marine sponges. The first draft genome of a “Ca. Synechococcus spongiarum” group member was recently published, providing evidence of genome reduction by loss of genes involved in several nonessential functions. However, “Ca. Synechococcus spongiarum” includes a variety of clades that may differ widely in genomic repertoire and consequently in physiology and symbiotic function. Here, we present three additional draft genomes of “Ca. Synechococcus spongiarum,” each from a different clade. By comparing all four symbiont genomes to those of free-living cyanobacteria, we revealed general adaptations to life inside sponges and specific adaptations of each phylotype. Symbiont genomes shared about half of their total number of coding genes. Common traits of “Ca. Synechococcus spongiarum” members were a high abundance of DNA modification and recombination genes and a reduction in genes involved in inorganic ion transport and metabolism, cell wall biogenesis, and signal transduction mechanisms. Moreover, these symbionts were characterized by a reduced number of antioxidant enzymes and low-weight peptides of photosystem II compared to their free-living relatives. Variability within the “Ca. Synechococcus spongiarum” group was mostly related to immune system features, potential for siderophore-mediated iron transport, and dependency on methionine from external sources. The common absence of genes involved in synthesis of residues, typical of the O antigen of free-living Synechococcus species, suggests a novel mechanism utilized by these symbionts to avoid sponge predation and phage attack. PMID:26037118

  4. Lifestyle Evolution in Cyanobacterial Symbionts of Sponges

    DOE PAGESBeta

    Burgsdorf, Ilia; Slaby, Beate M.; Handley, Kim M.; Haber, Markus; Blom, Jochen; Marshall, Christopher W.; Gilbert, Jack A.; Hentschel, Ute; Steindler, Laura

    2015-06-02

    The “Candidatus Synechococcus spongiarum” group includes different clades of cyanobacteria with high 16S rRNA sequence identity (~99%) and is the most abundant and widespread cyanobacterial symbiont of marine sponges. The first draft genome of a “Ca. Synechococcus spongiarum” group member was recently published, providing evidence of genome reduction by loss of genes involved in several nonessential functions. However, “Ca. Synechococcus spongiarum” includes a variety of clades that may differ widely in genomic repertoire and consequently in physiology and symbiotic function. Here, we present three additional draft genomes of “Ca. Synechococcus spongiarum,” each from a different clade. By comparing all fourmore » symbiont genomes to those of free-living cyanobacteria, we revealed general adaptations to life inside sponges and specific adaptations of each phylotype. Symbiont genomes shared about half of their total number of coding genes. Common traits of “Ca. Synechococcus spongiarum” members were a high abundance of DNA modification and recombination genes and a reduction in genes involved in inorganic ion transport and metabolism, cell wall biogenesis, and signal transduction mechanisms. Moreover, these symbionts were characterized by a reduced number of antioxidant enzymes and low-weight peptides of photosystem II compared to their free-living relatives. Variability within the “Ca. Synechococcus spongiarum” group was mostly related to immune system features, potential for siderophore-mediated iron transport, and dependency on methionine from external sources. The common absence of genes involved in synthesis of residues, typical of the O antigen of free-living Synechococcus species, suggests a novel mechanism utilized by these symbionts to avoid sponge predation and phage attack.« less

  5. Lifestyle Evolution in Cyanobacterial Symbionts of Sponges

    SciTech Connect

    Burgsdorf, Ilia; Slaby, Beate M.; Handley, Kim M.; Haber, Markus; Blom, Jochen; Marshall, Christopher W.; Gilbert, Jack A.; Hentschel, Ute; Steindler, Laura

    2015-06-02

    The “Candidatus Synechococcus spongiarum” group includes different clades of cyanobacteria with high 16S rRNA sequence identity (~99%) and is the most abundant and widespread cyanobacterial symbiont of marine sponges. The first draft genome of a “Ca. Synechococcus spongiarum” group member was recently published, providing evidence of genome reduction by loss of genes involved in several nonessential functions. However, “Ca. Synechococcus spongiarum” includes a variety of clades that may differ widely in genomic repertoire and consequently in physiology and symbiotic function. Here, we present three additional draft genomes of “Ca. Synechococcus spongiarum,” each from a different clade. By comparing all four symbiont genomes to those of free-living cyanobacteria, we revealed general adaptations to life inside sponges and specific adaptations of each phylotype. Symbiont genomes shared about half of their total number of coding genes. Common traits of “Ca. Synechococcus spongiarum” members were a high abundance of DNA modification and recombination genes and a reduction in genes involved in inorganic ion transport and metabolism, cell wall biogenesis, and signal transduction mechanisms. Moreover, these symbionts were characterized by a reduced number of antioxidant enzymes and low-weight peptides of photosystem II compared to their free-living relatives. Variability within the “Ca. Synechococcus spongiarum” group was mostly related to immune system features, potential for siderophore-mediated iron transport, and dependency on methionine from external sources. The common absence of genes involved in synthesis of residues, typical of the O antigen of free-living Synechococcus species, suggests a novel mechanism utilized by these symbionts to avoid sponge predation and phage attack.

  6. Cytotoxic Terpene Quinones from Marine Sponges

    PubMed Central

    Gordaliza, Marina

    2010-01-01

    The 1,4-benzoquinone moiety is a common structural feature in a large number of compounds that have received considerable attention owing to their broad spectrum of biological activities. The cytotoxic and antiproliferative properties of many natural sesquiterpene quinones and hydroquinones from sponges of the order Dictyoceratida, such as avarol, avarone, illimaquinone, nakijiquinone and bolinaquinone, offer promising opportunities for the development of new antitumor agents. The present review summarizes the structure and cytotoxicity of natural terpenequinones/hydroquinones and their bioactive analogues and derivatives. PMID:21339953

  7. Silica Synthesis by Sponges: Unanticipated Molecular Mechanism

    NASA Astrophysics Data System (ADS)

    Morse, D. E.; Weaver, J. C.

    2001-12-01

    Oceanic diatoms, sponges and other organisms synthesize gigatons per year of silica from silicic acid, ultimately obtained from the weathering of rock. This biogenic silica exhibits a remarkable diversity of structures, many of which reveal a precision of nanoarchitectural control that exceeds the capabilities of human engineering. In contrast to the conditions of anthropogenic and industrial manufacture, the biological synthesis of silica occurs under mild physiological conditions of low temperatures and pressures and near-neutral pH. In addition to the differentiation between biological and abiotic processes governing silica formation, the biomolecular mechanisms controlling synthesis of these materials may offer insights for the development of new, environmentally benign routes for synthesis of nanostructurally controlled silicas and high-performance polysiloxane composites. We found that the needle-like silica spicules made by the marine sponge, Tethya aurantia, each contain an occluded axial filament of protein composed predominantly of repeating assemblies of three similar subunits we named "silicateins." To our surprise, analysis of the purified protein subunits and the cloned silicatein DNAs revealed that the silicateins are highly homologous to a family of hydrolytic enzymes. As predicted from this finding, we discovered that the silicatein filaments are more than simple, passive templates; they actively catalyze and spatially direct polycondensation to form silica, (as well as the phenyl- and methyl-silsesquioxane) from the corresponding silicon alkoxides at neutral pH and low temperature. Catalytic activity also is exhibited by the silicatein subunits obtained by disaggregation of the protein filaments and those produced from recombinant DNA templates cloned in bacteria. This catalytic activity accelerates the rate-limiting hydrolysis of the silicon alkoxide precursors. Genetic engineering, used to produce variants of the silicatein molecule with

  8. Injectable, porous, and cell-responsive gelatin cryogels

    PubMed Central

    Koshy, Sandeep T.; Ferrante, Thomas C.; Lewin, Sarah A.; Mooney, David J.

    2014-01-01

    The performance of biomaterials-based therapies can be hindered by complications associated with surgical implant, motivating the development of materials systems that allow minimally invasive introduction into the host. In this study, we created cell-adhesive and degradable gelatin scaffolds that could be injected through a conventional needle while maintaining a predefined geometry and architecture. These scaffolds supported attachment, proliferation, and survival of cells in vitro and could be degraded by recombinant matrix metalloproteinase-2 and -9. Prefabricated gelatin cryogels rapidly reassumed their original shape when injected subcutaneously into mice and elicited only a minor host response following injection. Controlled release of granulocyte-macrophage colony-stimulating factor from gelatin cryogels resulted in complete infiltration of the scaffold by immune cells and promoted matrix metalloproteinase production leading to cell-mediated degradation of the cryogel matrix. These findings suggest that gelatin cryogels could serve as a cell-responsive platform for biomaterial-based therapy. PMID:24345735

  9. Dichromated-gelatin hologram process for improved optical quality

    NASA Technical Reports Server (NTRS)

    Stewart, W. C.

    1975-01-01

    Optical distortions are eliminated by use of wetting agency followed by sequential immersion in several alcohol-water baths of increasing alcohol concentration. Dehydration proceeds uniformly over surface of gelatin. Dried plate is free of optically-distorting thickness variations.

  10. Photocopy of original blackandwhite silver gelatin print, VIEW FROM NORTHWEST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of original black-and-white silver gelatin print, VIEW FROM NORTHWEST CORNER, April 1, 1929, photographer Commercial Photo Company - Internal Revenue Service Headquarters Building, 1111 Constitution Avenue Northwest, Washington, District of Columbia, DC

  11. Photocopy of original blackandwhite silver gelatin print, VIEW FROM SOUTHEAST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of original black-and-white silver gelatin print, VIEW FROM SOUTHEAST CORNER, April 1, 1929, photographer Commercial Photo Company - Internal Revenue Service Headquarters Building, 1111 Constitution Avenue Northwest, Washington, District of Columbia, DC

  12. Photocopy of original blackandwhite silver gelatin print, TWELFTH STREET DRIVEWAY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of original black-and-white silver gelatin print, TWELFTH STREET DRIVEWAY ENTRANCE, August 31, 1929, photographer Commercial Photo Company - Internal Revenue Service Headquarters Building, 1111 Constitution Avenue Northwest, Washington, District of Columbia, DC

  13. Photocopy of original blackandwhite silver gelatin print, LOOKING SOUTHEAST FOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of original black-and-white silver gelatin print, LOOKING SOUTHEAST FOR NORTHEAST CORNER OF WING, November 1, 1934, photographer Reni - Internal Revenue Service Headquarters Building, 1111 Constitution Avenue Northwest, Washington, District of Columbia, DC

  14. Photocopy of original blackandwhite silver gelatin print, WEST END OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of original black-and-white silver gelatin print, WEST END OF PENNSYLVANIA AVENUE ELL SHOWING TEMPORARY BRICK WALL, March 1, 1935, photographer Reni - Internal Revenue Service Headquarters Building, 1111 Constitution Avenue Northwest, Washington, District of Columbia, DC

  15. Photocopy of original blackandwhite silver gelatin print, C STREET FACADE, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of original black-and-white silver gelatin print, C STREET FACADE, October 3, 1929, photographer Commercial Photo Company - Internal Revenue Service Headquarters Building, 1111 Constitution Avenue Northwest, Washington, District of Columbia, DC

  16. Photocopy of original blackandwhite silver gelatin print, VIEW FROM WASHINGTON ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of original black-and-white silver gelatin print, VIEW FROM WASHINGTON MONUMENT, October 3, 1929, photography Commercial Photo - Internal Revenue Service Headquarters Building, 1111 Constitution Avenue Northwest, Washington, District of Columbia, DC

  17. Photocopy of original blackandwhite silver gelatin print, VIEW FROM JUSTICE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of original black-and-white silver gelatin print, VIEW FROM JUSTICE BUILDING LOOKING WEST, June 4, 1934, photographer Reni - Internal Revenue Service Headquarters Building, 1111 Constitution Avenue Northwest, Washington, District of Columbia, DC

  18. Photocopy of original blackandwhite silver gelatin print, WEST END OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of original black-and-white silver gelatin print, WEST END OF PENNSYLVANIA AVENUE ELL SHOWING TEMPORARY BRICK WALL, May 1, 1935, photographer Reni - Internal Revenue Service Headquarters Building, 1111 Constitution Avenue Northwest, Washington, District of Columbia, DC

  19. Photocopy of original blackandwhite silver gelatin print, VIEW OF NORTH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of original black-and-white silver gelatin print, VIEW OF NORTH WALL OF MAIN COURT, May 1, 1935, photographer Reni - Internal Revenue Service Headquarters Building, 1111 Constitution Avenue Northwest, Washington, District of Columbia, DC

  20. Photocopy of original blackandwhite silver gelatin print, C STREET AT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of original black-and-white silver gelatin print, C STREET AT TWELFTH STREET, May 1, 1930, photographer Commercial Photo Company - Internal Revenue Service Headquarters Building, 1111 Constitution Avenue Northwest, Washington, District of Columbia, DC

  1. Starvation marrow – gelatinous transformation of bone marrow

    PubMed Central

    Osgood, Eric; Muddassir, Salman; Jaju, Minal; Moser, Robert; Farid, Farwa; Mewada, Nishith

    2014-01-01

    Gelatinous bone marrow transformation (GMT), also known as starvation marrow, represents a rare pathological entity of unclear etiology, in which bone marrow histopathology demonstrates hypoplasia, fat atrophy, and gelatinous infiltration. The finding of gelatinous marrow transformation lacks disease specificity; rather, it is an indicator of severe illness and a marker of poor nutritional status, found in patients with eating disorders, acute febrile illnesses, acquired immunodeficiency syndrome, alcoholism, malignancies, and congestive heart failure. We present a middle-aged woman with a history of alcoholism, depression, and anorexia nervosa who presented with failure to thrive and macrocytic anemia, with bone marrow examination demonstrative of gelatinous transformation, all of which resolved with appropriate treatment. To our knowledge, there are very few cases of GMT which have been successfully treated; thus, our case highlights the importance of proper supportive management. PMID:25317270

  2. Enzymatic regulation of functional vascular networks using gelatin hydrogels

    PubMed Central

    Chuang, Chia-Hui; Lin, Ruei-Zeng; Tien, Han-Wen; Chu, Ya-Chun; Li, Yen-Cheng; Melero-Martin, Juan M.; Chen, Ying-Chieh

    2015-01-01

    To manufacture tissue engineering-based functional tissues, scaffold materials that can be sufficiently vascularized to mimic the functionality and complexity of native tissues are needed. Currently, vascular network bioengineering is largely carried out using natural hydrogels as embedding scaffolds, but most natural hydrogels have poor mechanical stability and durability, factors that critically limit their widespread use. In this study, we examined the suitability of gelatin-phenolic hydroxyl (gelatin-Ph) hydrogels that can be enzymatically crosslinked, allowing tuning of the storage modulus and the proteolytic degradation rate, for use as injectable hydrogels to support the human progenitor cell-based formation of a stable and mature vascular network. Porcine gelatin-Ph hydrogels were found to be cytocompatible with human blood-derived endothelial colony-forming cells and white adipose tissue-derived mesenchymal stem cells, resulting in >87% viability, and cell proliferation and spreading could be modulated by using hydrogels with different proteolytic degradability and stiffness. In addition, gelatin was extracted from mouse dermis and murine gelatin-Ph hydrogels were prepared. Importantly, implantation of human cell-laden porcine or murine gelatin-Ph hydrogels into immunodeficient mice resulted in the rapid formation of functional anastomoses between the bioengineered human vascular network and the mouse vasculature. Furthermore, the degree of enzymatic crosslinking of the gelatin-Ph hydrogels could be used to modulate cell behavior and the extent of vascular network formation in vivo. Our report details a technique for the synthesis of gelatin-Ph hydrogels from allogeneic or xenogeneic dermal skin and suggests that these hydrogels can be used for biomedical applications that require the formation of microvascular networks, including the development of complex engineered tissues. PMID:25749296

  3. Enzymes in the dissolution testing of gelatin capsules.

    PubMed

    Marques, Margareth R C

    2014-12-01

    Gelatin capsules are a widely used dosage form both for pharmaceutical drug products as well as dietary supplements. Gelatin in the presence of certain compounds, mainly aldehydes, or in high humidity and high temperature conditions can cross-link. Cross-linking involves covalent bonding of the amine group of a lysine side chain of one gelatin molecule to a similar amine group on another molecule. The covalent bonding is, for practical purposes, irreversible. Cross-linking results in the formation of a pellicle on the internal or external surface of the gelatin capsule shell that prevents the capsule fill from being released. In vitro dissolution testing of cross-linked gelatin capsules can result in slower release of the drug or no release at all. The data obtained by the Gelatin Capsule Working Group, created in the early 90s to investigate noncompliance of gelatin capsules, was used to establish the type and amounts of enzymes that can be added to the dissolution medium in the case of test failure to the presence of cross-linking in the gelatin. The two-tier dissolution testing was included in the US Pharmacopeia and it recommends the addition of pepsin (pH below 6.8) or pancreatin (pH above 6.8) to the medium depending on its pH. Pepsin shows good protease activity up to pH 4 and pancreatin above pH 6 leaving a gap where neither one has good activity. Possible proteolytic enzymes that could be used for the pH range 4-6.8 could be papain or bromelain. PMID:24942315

  4. Nonlinear Behavior of Gelatin Networks Reveals a Hierarchical Structure.

    PubMed

    Yang, Zhi; Hemar, Yacine; Hilliou, Loic; Gilbert, Elliot P; McGillivray, Duncan J; Williams, Martin A K; Chaieb, Sahraoui

    2016-02-01

    We investigate the strain hardening behavior of various gelatin networks-namely physical gelatin gel, chemically cross-linked gelatin gel, and a hybrid gel made of a combination of the former two-under large shear deformations using the pre-stress, strain ramp, and large amplitude oscillations shear protocols. Further, the internal structures of physical gelatin gels and chemically cross-linked gelatin gels were characterized by small angle neutron scattering (SANS) to enable their internal structures to be correlated with their nonlinear rheology. The Kratky plots of SANS data demonstrate the presence of small cross-linked aggregates within the chemically cross-linked network whereas, in the physical gelatin gels, a relatively homogeneous structure is observed. Through model fitting to the scattering data, we were able to obtain structural parameters, such as the correlation length (ξ), the cross-sectional polymer chain radius (R(c)) and the fractal dimension (d(f)) of the gel networks. The fractal dimension d(f) obtained from the SANS data of the physical and chemically cross-linked gels is 1.31 and 1.53, respectively. These values are in excellent agreement with the ones obtained from a generalized nonlinear elastic theory that has been used to fit the stress-strain curves. The chemical cross-linking that generates coils and aggregates hinders the free stretching of the triple helix bundles in the physical gels. PMID:26667303

  5. Preparation and Characterization of Gelatin Nanofibers Containing Silver Nanoparticles

    PubMed Central

    Jeong, Lim; Park, Won Ho

    2014-01-01

    Ag nanoparticles (NPs) were synthesized in formic acid aqueous solutions through chemical reduction. Formic acid was used for a reducing agent of Ag precursor and solvent of gelatin. Silver acetate, silver tetrafluoroborate, silver nitrate, and silver phosphate were used as Ag precursors. Ag+ ions were reduced into Ag NPs by formic acid. The formation of Ag NPs was characterized by a UV-Vis spectrophotometer. Ag NPs were quickly generated within a few minutes in silver nitrate (AgNO3)/formic acid solution. As the water content of formic acid aqueous solution increased, more Ag NPs were generated, at a higher rate and with greater size. When gelatin was added to the AgNO3/formic acid solution, the Ag NPs were stabilized, resulting in smaller particles. Moreover, gelatin limits further aggregation of Ag NPs, which were effectively dispersed in solution. The amount of Ag NPs formed increased with increasing concentration of AgNO3 and aging time. Gelatin nanofibers containing Ag NPs were fabricated by electrospinning. The average diameters of gelatin nanofibers were 166.52 ± 32.72 nm, but these decreased with the addition of AgNO3. The average diameters of the Ag NPs in gelatin nanofibers ranged between 13 and 25 nm, which was confirmed by transmission electron microscopy (TEM). PMID:24758929

  6. Developing gelatin-starch blends for use as capsule materials.

    PubMed

    Zhang, Nuozi; Liu, Hongsheng; Yu, Long; Liu, Xingxun; Zhang, Liang; Chen, Ling; Shanks, Robert

    2013-01-30

    Blends of gelatin with up to 50% hydroxypropylated high amylose (80%) corn starch were developed as capsule materials. Poly(ethylene glycol) (PEG) was used as both a plasticizer and a compatibilizer in the blends. In order to prepare hard capsules for pharmaceutical applications using the well-established method of dipping stainless steel mold pins into solution, solutions with higher solids concentrations (up to 30%) were developed. The solutions, films and capsules of the different gelatin-starch blends were characterized by viscosity, transparency, tensile testing, water contact angle and SEM. The linear microstructure of the high amylose starch, and the flexible and more hydrophilic hydroxylpropylene groups grafted onto the starch improved the compatibility between the gelatin and starch. SEM revealed a continuous phase of gelatin on the surface of films from all blends. The water contact angle of pure gelatin and the different blends were similar, indicating a continuous phase of gelatin. By optimizing temperature and incubation time to control viscosity, capsules of various blends were successfully developed. PEG increased the transparency and toughness of the various blends. PMID:23218320

  7. Preparation, characterization, and antibacterial activity of γ-irradiated silver nanoparticles in aqueous gelatin

    NASA Astrophysics Data System (ADS)

    Darroudi, Majid; Ahmad, Mansor B.; Hakimi, Mohammad; Zamiri, Reza; Zak, Ali Khorsand; Hosseini, Hasan Ali; Zargar, Mohsen

    2013-04-01

    Colloidal silver nanoparticles (Ag-NPs) were obtained through γ-irradiation of aqueous solutions containing AgNO3 and gelatin as a silver source and stabilizer, respectively. The absorbed dose of γ-irradiation influences the particle diameter of the Ag-NPs, as evidenced from surface plasmon resonance (SPR) and transmission electron microscopy (TEM) images. When the γ-irradiation dose was increased (from 2 to 50 kGy), the mean particle size was decreased continuously as a result of γ-induced Ag-NPs fragmentation. The antibacterial properties of the Ag-NPs were tested against Methicillinresistant Staphylococcus aureus (MRSA) (Gram-positive) and Pseudomonas aeruginosa (P.a) (Gram-negative) bacteria. This approach reveals that the γ-irradiation-mediated method is a promising simple route for synthesizing highly stable Ag-NPs in aqueous solutions with good antibacterial properties for different applications.

  8. Marine Sponges as a Drug Treasure

    PubMed Central

    Anjum, Komal; Abbas, Syed Qamar; Shah, Sayed Asmat Ali; Akhter, Najeeb; Batool, Sundas; Hassan, Syed Shams ul

    2016-01-01

    Marine sponges have been considered as a drug treasure house with respect to great potential regarding their secondary metabolites. Most of the studies have been conducted on sponge’s derived compounds to examine its pharmacological properties. Such compounds proved to have antibacterial, antiviral, antifungal, antimalarial, antitumor, immunosuppressive, and cardiovascular activity. Although, the mode of action of many compounds by which they interfere with human pathogenesis have not been clear till now, in this review not only the capability of the medicinal substances have been examined in vitro and in vivo against serious pathogenic microbes but, the mode of actions of medicinal compounds were explained with diagrammatic illustrations. This knowledge is one of the basic components to be known especially for transforming medicinal molecules to medicines. Sponges produce a different kind of chemical substances with numerous carbon skeletons, which have been found to be the main component interfering with human pathogenesis at different sites. The fact that different diseases have the capability to fight at different sites inside the body can increase the chances to produce targeted medicines. PMID:27350338

  9. Origin of Metazoa: Sponges as Living Fossils

    NASA Astrophysics Data System (ADS)

    Müller, Werner E. G.

    1998-01-01

    , which code for proteins. The analyses of their deduced amino acid sequences allowed a molecular biological approach to solve the problem of monophyly of Metazoa. Molecules of the extracellular matrix/basal lamina, with the integrin receptor, fibronectin, and galectin as prominent examples, cell-surface receptors (tyrosine kinase receptor), elements of sensory systems (crystallin, metabotropic glutamate receptor), and homologs/modules of an immune system (immunoglobulin like molecules, scavenger receptor cysteine-rich, and short consensus repeats, rhesus system) classify the Porifera as true Metazoa. As living fossils, provided with simple, primordial molecules allowing cell-cell and cell-matrix adhesion as well as processes of signal transduction as known in a more complex manner from higher Metazoa, they also show peculiarities not known in other metazoan phyla. Tissues of sponges are rich in telomerase activity, suggesting a high plasticity in the determination of cell lineages. It is concluded that molecular biological studies with sponges as model will not only help to understand the evolution of Protoctista to Metazoa but also the complex, hierarchial regulatory network of cells in higher Metazoa.

  10. Mesoscale elastic properties of marine sponge spicules.

    PubMed

    Zhang, Yaqi; Reed, Bryan W; Chung, Frank R; Koski, Kristie J

    2016-01-01

    Marine sponge spicules are silicate fibers with an unusual combination of fracture toughness and optical light propagation properties due to their micro- and nano-scale hierarchical structure. We present optical measurements of the elastic properties of Tethya aurantia and Euplectella aspergillum marine sponge spicules using non-invasive Brillouin and Raman laser light scattering, thus probing the hierarchical structure on two very different scales. On the scale of single bonds, as probed by Raman scattering, the spicules resemble a combination of pure silica and mixed organic content. On the mesoscopic scale probed by Brillouin scattering, we show that while some properties (Young's moduli, shear moduli, one of the anisotropic Poisson ratios and refractive index) are nearly the same as those of artificial optical fiber, other properties (uniaxial moduli, bulk modulus and a distinctive anisotropic Poisson ratio) are significantly smaller. Thus this natural composite of largely isotropic materials yields anisotropic elastic properties on the mesoscale. We show that the spicules' optical waveguide properties lead to pronounced spontaneous Brillouin backscattering, a process related to the stimulated Brillouin backscattering process well known in artificial glass fibers. These measurements provide a clearer picture of the interplay of flexibility, strength, and material microstructure for future functional biomimicry. PMID:26672719

  11. Sterols from the Madagascar sponge Fascaplysinopsis sp.

    PubMed

    Aknin, Maurice; Gros, Emmanuelle; Vacelet, Jean; Kashman, Yoel; Gauvin-Bialecki, Anne

    2010-01-01

    The sponge Fascaplysinopsis sp. (order Dictyoceratida, Family Thorectidae) from the west coast of Madagascar (Indian Ocean) is a particularly rich source of bioactive nitrogenous macrolides. The previous studies on this organism led to the suggestion that the latter should originate from associated microsymbionts. In order to evaluate the influence of microsymbionts on lipid content, 10 samples of Fascaplysinopsis sp. were investigated for their sterol composition. Contrary to the secondary metabolites, the sterol patterns established were qualitatively and quantitatively stable: 14 sterols with different unsaturated nuclei, Δ(5), Δ(7) and Δ(5,7), were identified; the last ones being the main sterols of the investigated sponges. The chemotaxonomic significance of these results for the order Dictyoceratida is also discussed in the context of the literature. The conjugated diene system in Δ(5,7) sterols is known to be unstable and easily photo-oxidized during storage and/or experiments to produce 5α,8α-epidioxy sterols. However, in this study, no 5α,8α-epidioxysterols (or only trace amounts) were observed. Thus, it was supposed that photo-oxidation was avoided thanks to the natural antioxidants detected in Fascaplysinopsis sp. by both the DPPH and β-caroten bleaching assays. PMID:21339959

  12. Preliminary Assessment of Sponge Biodiversity on Saba Bank, Netherlands Antilles

    PubMed Central

    Thacker, Robert W.; Díaz, M. Cristina; de Voogd, Nicole J.; van Soest, Rob W. M.; Freeman, Christopher J.; Mobley, Andrew S.; LaPietra, Jessica; Cope, Kevin; McKenna, Sheila

    2010-01-01

    Background Saba Bank Atoll, Netherlands Antilles, is one of the three largest atolls on Earth and provides habitat for an extensive coral reef community. To improve our knowledge of this vast marine resource, a survey of biodiversity at Saba Bank included a multi-disciplinary team that sampled fishes, mollusks, crustaceans, macroalgae, and sponges. Methodology/Principal Findings A single member of the dive team conducted surveys of sponge biodiversity during eight dives at six locations, at depths ranging from 15 to 30 m. This preliminary assessment documented the presence of 45 species pooled across multiple locations. Rarefaction analysis estimated that only 48 to 84% of species diversity was sampled by this limited effort, clearly indicating a need for additional surveys. An analysis of historical collections from Saba and Saba Bank revealed an additional 36 species, yielding a total of 81 sponge species recorded from this area. Conclusions/Significance This observed species composition is similar to that found on widespread Caribbean reefs, indicating that the sponge fauna of Saba Bank is broadly representative of the Caribbean as a whole. A robust population of the giant barrel sponge, Xestospongia muta, appeared healthy with none of the signs of disease or bleaching reported from other Caribbean reefs; however, more recent reports of anchor chain damage to these sponges suggests that human activities can have dramatic impacts on these communities. Opportunities to protect this extremely large habitat should be pursued, as Saba Bank may serve as a significant reservoir of sponge species diversity. PMID:20502643

  13. Bioprospecting Sponge-Associated Microbes for Antimicrobial Compounds.

    PubMed

    Indraningrat, Anak Agung Gede; Smidt, Hauke; Sipkema, Detmer

    2016-05-01

    Sponges are the most prolific marine organisms with respect to their arsenal of bioactive compounds including antimicrobials. However, the majority of these substances are probably not produced by the sponge itself, but rather by bacteria or fungi that are associated with their host. This review for the first time provides a comprehensive overview of antimicrobial compounds that are known to be produced by sponge-associated microbes. We discuss the current state-of-the-art by grouping the bioactive compounds produced by sponge-associated microorganisms in four categories: antiviral, antibacterial, antifungal and antiprotozoal compounds. Based on in vitro activity tests, identified targets of potent antimicrobial substances derived from sponge-associated microbes include: human immunodeficiency virus 1 (HIV-1) (2-undecyl-4-quinolone, sorbicillactone A and chartarutine B); influenza A (H1N1) virus (truncateol M); nosocomial Gram positive bacteria (thiopeptide YM-266183, YM-266184, mayamycin and kocurin); Escherichia coli (sydonic acid), Chlamydia trachomatis (naphthacene glycoside SF2446A2); Plasmodium spp. (manzamine A and quinolone 1); Leishmania donovani (manzamine A and valinomycin); Trypanosoma brucei (valinomycin and staurosporine); Candida albicans and dermatophytic fungi (saadamycin, 5,7-dimethoxy-4-p-methoxylphenylcoumarin and YM-202204). Thirty-five bacterial and 12 fungal genera associated with sponges that produce antimicrobials were identified, with Streptomyces, Pseudovibrio, Bacillus, Aspergillus and Penicillium as the prominent producers of antimicrobial compounds. Furthemore culture-independent approaches to more comprehensively exploit the genetic richness of antimicrobial compound-producing pathways from sponge-associated bacteria are addressed. PMID:27144573

  14. Reproductive patterns in three species of large coral reef sponges

    NASA Astrophysics Data System (ADS)

    Hoppe, Wilfried F.

    1988-05-01

    The type and frequency of reproduction of three common sponge species was monitored histologically and by direct field observations of spawning events over 2 successive years at the reefs of Curaçao. Ircinia strobilina showed year round reproductive activity by the production of spermatic cysts in varying intensities in a major part of the population. Production of oocytes and larvae were only observed in the period from September through April, indicating an actual breeding season of 8 months a year. The sexes in this viviparous sponge seem to be separate, but protandry cannot be ruled out. Less than 10% of the sponge tissue was found to consist of reproductive elements. Neofibularia nolitangere is a gonochoristic oviparous sponge with a short annual breeding season of 2 months, in which two successive, highly predictable, short spawning periods occurred synchronously for the whole population. Up to half of the sponge tissue was transformed to reproductive elements. Agelas clathrodes showed low reproductive activity. Field observation suggests that this sponge is an oviparous hermaphrodite, probably annually releasing male and female gametes synchronously in a varying number of individuals of its population during a short breeding period. The variation in reproductive patterns in this small group of large massive coral reef sponges spans a range similar to that found in the morphologically highly variable group of stony corals and illustrates their ecological differentiation on the reef.

  15. First report on chitinous holdfast in sponges (Porifera).

    PubMed

    Ehrlich, Hermann; Kaluzhnaya, Oksana V; Tsurkan, Mikhail V; Ereskovsky, Alexander; Tabachnick, Konstantin R; Ilan, Micha; Stelling, Allison; Galli, Roberta; Petrova, Olga V; Nekipelov, Serguei V; Sivkov, Victor N; Vyalikh, Denis; Born, René; Behm, Thomas; Ehrlich, Andre; Chernogor, Lubov I; Belikov, Sergei; Janussen, Dorte; Bazhenov, Vasilii V; Wörheide, Gert

    2013-07-01

    A holdfast is a root- or basal plate-like structure of principal importance that anchors aquatic sessile organisms, including sponges, to hard substrates. There is to date little information about the nature and origin of sponges' holdfasts in both marine and freshwater environments. This work, to our knowledge, demonstrates for the first time that chitin is an important structural component within holdfasts of the endemic freshwater demosponge Lubomirskia baicalensis. Using a variety of techniques (near-edge X-ray absorption fine structure, Raman, electrospray ionization mas spectrometry, Morgan-Elson assay and Calcofluor White staining), we show that chitin from the sponge holdfast is much closer to α-chitin than to β-chitin. Most of the three-dimensional fibrous skeleton of this sponge consists of spicule-containing proteinaceous spongin. Intriguingly, the chitinous holdfast is not spongin-based, and is ontogenetically the oldest part of the sponge body. Sequencing revealed the presence of four previously undescribed genes encoding chitin synthases in the L. baicalensis sponge. This discovery of chitin within freshwater sponge holdfasts highlights the novel and specific functions of this biopolymer within these ancient sessile invertebrates. PMID:23677340

  16. Bioprospecting Sponge-Associated Microbes for Antimicrobial Compounds

    PubMed Central

    Indraningrat, Anak Agung Gede; Smidt, Hauke; Sipkema, Detmer

    2016-01-01

    Sponges are the most prolific marine organisms with respect to their arsenal of bioactive compounds including antimicrobials. However, the majority of these substances are probably not produced by the sponge itself, but rather by bacteria or fungi that are associated with their host. This review for the first time provides a comprehensive overview of antimicrobial compounds that are known to be produced by sponge-associated microbes. We discuss the current state-of-the-art by grouping the bioactive compounds produced by sponge-associated microorganisms in four categories: antiviral, antibacterial, antifungal and antiprotozoal compounds. Based on in vitro activity tests, identified targets of potent antimicrobial substances derived from sponge-associated microbes include: human immunodeficiency virus 1 (HIV-1) (2-undecyl-4-quinolone, sorbicillactone A and chartarutine B); influenza A (H1N1) virus (truncateol M); nosocomial Gram positive bacteria (thiopeptide YM-266183, YM-266184, mayamycin and kocurin); Escherichia coli (sydonic acid), Chlamydia trachomatis (naphthacene glycoside SF2446A2); Plasmodium spp. (manzamine A and quinolone 1); Leishmania donovani (manzamine A and valinomycin); Trypanosoma brucei (valinomycin and staurosporine); Candida albicans and dermatophytic fungi (saadamycin, 5,7-dimethoxy-4-p-methoxylphenylcoumarin and YM-202204). Thirty-five bacterial and 12 fungal genera associated with sponges that produce antimicrobials were identified, with Streptomyces, Pseudovibrio, Bacillus, Aspergillus and Penicillium as the prominent producers of antimicrobial compounds. Furthemore culture-independent approaches to more comprehensively exploit the genetic richness of antimicrobial compound-producing pathways from sponge-associated bacteria are addressed. PMID:27144573

  17. In vitro testing of Today vaginal contraceptive sponge with bacteria.

    PubMed

    Hammill, H A; Ford, L C; Suzuki, F; Mickus, K; Yip, D; Finegold, S

    1986-01-01

    In vitro methods were used to test Today vaginal contraceptive sponges for sterility, contamination by handling, and inhibition of bacterial growth. Also tested was an in vitro vaginal model surrounded by growth medium that continually seeded the dialysis tubing with nutrient in an attempt to replicate vaginal secretions. A goal of this research was to investigate manufacturer claims of hostility of the sponge in the presence of Staph aureus. Sponges added in a sterile manner to brain-heart infusion broth produced no growth under aerobic or anaerobic conditions when no organisms were added. However, the experiments that involved contamination of the sponges by hadling in a nonsterile fashion resulted in 10.8 colony forming units of Staph epidermidis and Staph aureus, coagulese negative. In the in vitro vaginal model, 16 hours after an inoculum of Staph aureus colony forming units was placed on a sponge, 3.5 x 10.10 colony forming units were cultured and there was a similar profusion of E coli sludge. These results fail to confirm claims of hostility of the vaginal sponge to the bacteria tested. There is concern that the technique recommended by the manufacturer involves adding water and then inserting the sponge with 1 hand and leaving it in place for 24 hours. This procedure may facilitate the enhancement of vaginitis and perhaps pelvic inflammatory disease. PMID:12341136

  18. Unidirectional perfect absorber.

    PubMed

    Jin, L; Wang, P; Song, Z

    2016-01-01

    This study proposes a unidirectional perfect absorber (UPA), which we realized with a two-arm Aharonov-Bohm interferometer, that consists of a dissipative resonator side-coupled to a uniform resonator array. The UPA has reflection-less full absorption on one direction, and reflectionless full transmission on the other, with an appropriate magnetic flux and coupling, detuning, and loss of the side-coupled resonator. The magnetic flux controls the transmission, the left transmission is larger for magnetic flux less than one-half flux quantum; and the right transmission is larger for magnetic flux between one-half and one flux quantum. Besides, a perfect absorber (PA) can be realized based on the UPA, in which light waves from both sides, with arbitrary superposition of the ampli- tude and phase, are perfectly absorbed. The UPA is expected to be useful in the design of novel optical devices. PMID:27615125

  19. Preparation and characterisation of gelatine from the skin of harp seal (Phoca groendlandica).

    PubMed

    Arnesen, Jan A; Gildberg, Asbjørn

    2002-04-01

    This paper describes a method for extraction of gelatine from the skin of harp seal at mild acid conditions and gives a chemical and physical comparison of this gelatine with other mammalian and cod-skin gelatines. As compared to the wet weight of unhaired skin, a recovery of 11% dry gelatine was achieved after acid treatment and a two step water extraction at 60 and 75 degrees C. The chemical and physical properties of the gelatine were similar to the properties of commercial gelatines made from bovine and porcine skin, but significantly different from the properties of Atlantic cod-skin gelatine. The results indicated that seal skin gelatine can be used as a substitute for standard commercial gelatines for food technology applications. PMID:12003322

  20. Electrospun Blends of Gelatin and Gelatin-dendrimer Conjugates as a Wound Dressing and Drug Delivery Platform

    PubMed Central

    Dongargaonkar, Alpana A.; Bowlin, Gary L.; Yang, Hu

    2013-01-01

    In this work, we report a new nanofiber construct based on electrospun blends of gelatin and gelatin-dendrimer conjugates. Highly branched star-shaped polyamidoamine (PAMAM) dendrimer G3.5 was covalently conjugated to gelatin via EDC/NHS chemistry. Blends of gelatin and gelatin-dendrimer conjugates mixed with various loading levels of silver acetate (0, 0.83, 1.65, and 3.30% w/w) were successfully electrospun into nanofiber constructs (NCs). The NCs were further converted into semi-interpenetrating networks (sIPNs) with photoreactive polyethylene glycol diacrylate (Mn=575 gmol-1) (PEG DA575). They were characterized in terms of fiber morphology, diameter, pore size, permeability, degradation, and mechanical properties. The resulting sIPN NCs retained nanofiber morphology, possessed similar fiber diameters to counterpart NCs, and gained improved structural stability. The sIPN NCs also showed good swelling capacity owing to porous structures and were permeable to aqueous solutions. Silvercontaining sIPN NCs allowed sustained silver release and showed antimicrobial activity against two common types of pathogens—Staphylococcus aureus and Pseudomonas aeruginosa. Incorporation of dendrimers into the gelatin nanofibers through covalent conjugation not only expands drug loading capacity of nanofiber constructs but provides tremendous flexibility for developing multifunctional electrospun dressing materials. PMID:24127747

  1. Three-Dimensional Porous Sponges from Collagen Biowastes.

    PubMed

    Ashokkumar, Meiyazhagan; Cristian Chipara, Alin; Tharangattu Narayanan, Narayanan; Anumary, Ayyappan; Sruthi, Radhakrishnan; Thanikaivelan, Palanisamy; Vajtai, Robert; Mani, Sendurai A; Ajayan, Pulickel M

    2016-06-15

    Three-dimensional, functional, and porous scaffolds can find applications in a variety of fields. Here we report the synthesis of hierarchical and interconnected porous sponges using a simple freeze-drying technique, employing collagen extracted from animal skin wastes and superparamagnetic iron oxide nanoparticles. The ultralightweight, high-surface-area sponges exhibit excellent mechanical stability and enhanced absorption of organic contaminants such as oils and dye molecules. Additionally, these biocomposite sponges display significant cellular biocompatibility, which opens new prospects in biomedical uses. The approach highlights innovative ways of transforming biowastes into advanced hybrid materials using simple and scalable synthesis techniques. PMID:27219483

  2. Depth-related alkaloid variation in Mediterranean Aplysina sponges.

    PubMed

    Putz, Annika; Kloeppel, Anne; Pfannkuchen, Martin; Brümmer, Franz; Proksch, Peter

    2009-01-01

    Total amounts and patterns of bromoisoxazoline alkaloids of Aplysina sponges from Croatia (Mediterranean Sea) were analyzed along an underwater slope ranging from 1.8 to 38.5 m. Total amounts of alkaloids varied from sample to sample and showed no correlation with depth. In contrast, striking differences of alkaloid patterns were found between sponges from shallow sites (1.8-11.8 m) and those collected from deeper sites (11.8-38.5 m). Sponges from shallow depths consistently exhibited alkaloid patterns typical for Aplysina aerophoba with aerophobin-2 (2) and isofistularin-3 (3) as main constituents. Sponges from deeper sites (below 11.8 m) resembled Aplysina cavernicola with aerothionin (4) and aplysinamisin-1 (1) as major compounds. The typical A. cavernicola pigment 3,4-dihydroxyquinoline-2-carboxylic acid (6), however, could not be detected in A. aerophoba sponges but was replaced by the A. aerophoba pigment uranidine (5) which appeared to be present in all sponge samples analyzed. During transplantation experiments sponges from sites below 30 m featuring the A. cavernicola chemotype of bromoisoxazoline alkaloids were translocated to shallower habitats (10 m). The alkaloid patterns in transplanted sponges were found to be stable over a period of 12 months and unaffected by this change in depth. In a further experiment, clones of Aplysina sponges from shallow depths of 5-6 m resembling the A. aerophoba chemotype were either kept in situ under natural light conditions or artificially shaded by excluding photosynthetically active radiation (PAR). Neither 4 nor 1 were detected in artificially shaded sponges over an observation period of 12 months. In summary, two chemically distinct types of Aplysina sponges were discovered in this study that proved to be remarkably stable with regard to the bromoisoxazoline patterns and unaffected either by changing the light conditions or depth. It is not clear presently whether the Aplysina sponges collected from depths < 11.8 m

  3. Multiple-layer Radiation Absorber

    NASA Astrophysics Data System (ADS)

    Baker, Robert M. L.; Baker, Bonnie Sue

    A structure is discussed for absorbing incident radiation, either electromagnetic (EM) or sound. Such a surface structure is needed, for example, in a highly sensitive high-frequency gravitational wave or HFGW detector such as the Li-Baker. The multi-layer absorber, which is discussed, is constructed with metamaterial [MM] layer or layers on top. This MM is configured for a specific EM or sound radiation frequency band, which absorbs incident EM or sound radiation without reflection. Below these top MM layers is a substrate of conventional EM-radiation absorbing or acoustical absorbing reflective material, such as an array of pyramidal foam absorbers. Incident radiation is partially absorbed by the MM layer or layers, and then it is more absorbed by the lower absorbing and reflecting substrate. The remaining reflected radiation is even further absorbed by the MM layers on its "way out_ so that essentially all of the incident radiation is absorbed _ a nearly perfect black-body absorber. In a HFGW detector a substrate, such as foam absorbers, may outgas into a high vacuum and reduce the capability of the vacuum-producing equipment, however, the layers above this lowest substrate will seal the absorbing and reflecting substrate from any external vacuum. The layers also serve to seal the absorbing material against air or water flow past the surfaces of aircraft, watercraft or submarines. Other applications for such a multiple-level radiation absorber include stealth aircraft, missiles and submarines.

  4. Cell-laden microengineered gelatin methacrylate hydrogels.

    PubMed

    Nichol, Jason W; Koshy, Sandeep T; Bae, Hojae; Hwang, Chang M; Yamanlar, Seda; Khademhosseini, Ali

    2010-07-01

    The cellular microenvironment plays an integral role in improving the function of microengineered tissues. Control of the microarchitecture in engineered tissues can be achieved through photopatterning of cell-laden hydrogels. However, despite high pattern fidelity of photopolymerizable hydrogels, many such materials are not cell-responsive and have limited biodegradability. Here, we demonstrate gelatin methacrylate (GelMA) as an inexpensive, cell-responsive hydrogel platform for creating cell-laden microtissues and microfluidic devices. Cells readily bound to, proliferated, elongated, and migrated both when seeded on micropatterned GelMA substrates as well as when encapsulated in microfabricated GelMA hydrogels. The hydration and mechanical properties of GelMA were demonstrated to be tunable for various applications through modification of the methacrylation degree and gel concentration. The pattern fidelity and resolution of GelMA were high and it could be patterned to create perfusable microfluidic channels. Furthermore, GelMA micropatterns could be used to create cellular micropatterns for in vitro cell studies or 3D microtissue fabrication. These data suggest that GelMA hydrogels could be useful for creating complex, cell-responsive microtissues, such as endothelialized microvasculature, or for other applications that require cell-responsive microengineered hydrogels. PMID:20417964

  5. Efficient Absorption of X-Hydroxyproline (Hyp)-Gly after Oral Administration of a Novel Gelatin Hydrolysate Prepared Using Ginger Protease.

    PubMed

    Taga, Yuki; Kusubata, Masashi; Ogawa-Goto, Kiyoko; Hattori, Shunji

    2016-04-13

    Recent studies have reported that oral intake of gelatin hydrolysate has various beneficial effects, such as reduction of joint pain and lowering of blood sugar levels. In this study, we produced a novel gelatin hydrolysate using a cysteine-type ginger protease having unique substrate specificity with preferential peptide cleavage with Pro at the P2 position. Substantial amounts of X-hydroxyproline (Hyp)-Gly-type tripeptides were generated up to 2.5% (w/w) concomitantly with Gly-Pro-Y-type tripeptides (5%; w/w) using ginger powder. The in vivo absorption of the ginger-degraded gelatin hydrolysate was estimated using mice. The plasma levels of collagen-derived oligopeptides, especially X-Hyp-Gly, were significantly high (e.g., 2.3-fold for Glu-Hyp-Gly, p < 0.05) compared with those of the control gelatin hydrolysate, which was prepared using gastrointestinal proteases and did not contain detectable X-Hyp-Gly. This study demonstrated that orally administered X-Hyp-Gly was effectively absorbed into the blood, probably due to the high protease resistance of this type of tripeptide. PMID:26978646

  6. Neutron Absorbing Alloys

    DOEpatents

    Mizia, Ronald E.; Shaber, Eric L.; DuPont, John N.; Robino, Charles V.; Williams, David B.

    2004-05-04

    The present invention is drawn to new classes of advanced neutron absorbing structural materials for use in spent nuclear fuel applications requiring structural strength, weldability, and long term corrosion resistance. Particularly, an austenitic stainless steel alloy containing gadolinium and less than 5% of a ferrite content is disclosed. Additionally, a nickel-based alloy containing gadolinium and greater than 50% nickel is also disclosed.

  7. Managing and sharing the escalating number of sponge "unknowns": the SpongeMaps project.

    PubMed

    Hooper, J N A; Hall, K A; Ekins, M; Erpenbeck, D; Wörheide, G; Jolley-Rogers, G

    2013-09-01

    Contemporary collections of sponges in the Indo-west Pacific have escalated substantially due to pharmaceutical discovery, national bioregional planning, and compliance with international conventions on the seabed and its marine genetic resources beyond national jurisdictions. These partially processed operational taxonomic unit (OTU) collections now vastly outweigh the expertise available to make them better "known" via complete taxonomy, yet for many bioregions they represent the most significant body of currently available knowledge. Increasing numbers of cryptic species, previously undetected morphologically, are now being discovered by molecular and chemical analyses. The uncoordinated and fragmented nature of many previous collections, however, means that knowledge and expertise gained from a particular project are often lost to future projects without a biodiversity informatics legacy. Integrating these diverse data (GIS; OTUs; images; molecular, chemical, and other datasets) required a two-way iterative process so far unavailable for sponges with existing biodiversity informatics tools. SpongeMaps arose from the initial need for online collaboration to integrate morphometric data with molecular barcodes, including the Porifera Tree of Life (PorTol) project. It provides interrogation of existing data to better process new collections; capacity to create new OTUs; publication of online pages for individual species, so as to interpret GIS and other data for online biodiversity databases and services; and automatic links to external datasets for taxonomic hierarchy, specimen GIS and mapping, DNA sequence data, chemical structures, and images. PMID:23652200

  8. Electrospinning polyaniline-contained gelatin nanofibers for tissue engineering applications.

    PubMed

    Li, Mengyan; Guo, Yi; Wei, Yen; MacDiarmid, Alan G; Lelkes, Peter I

    2006-05-01

    Polyaniline (PANi), a conductive polymer, was blended with a natural protein, gelatin, and co-electrospun into nanofibers to investigate the potential application of such a blend as conductive scaffold for tissue engineering purposes. Electrospun PANi-contained gelatin fibers were characterized using scanning electron microscopy (SEM), electrical conductivity measurement, mechanical tensile testing, and differential scanning calorimetry (DSC). SEM analysis of the blend fibers containing less than 3% PANi in total weight, revealed uniform fibers with no evidence for phase segregation, as also confirmed by DSC. Our data indicate that with increasing the amount of PANi (from 0 to approximately 5%w/w), the average fiber size was reduced from 803+/-121 nm to 61+/-13 nm (p<0.01) and the tensile modulus increased from 499+/-207 MPa to 1384+/-105 MPa (p<0.05). The results of the DSC study further strengthen our notion that the doping of gelatin with a few % PANi leads to an alteration of the physicochemical properties of gelatin. To test the usefulness of PANi-gelatin blends as a fibrous matrix for supporting cell growth, H9c2 rat cardiac myoblast cells were cultured on fiber-coated glass cover slips. Cell cultures were evaluated in terms of cell proliferation and morphology. Our results indicate that all PANi-gelatin blend fibers supported H9c2 cell attachment and proliferation to a similar degree as the control tissue culture-treated plastic (TCP) and smooth glass substrates. Depending on the concentrations of PANi, the cells initially displayed different morphologies on the fibrous substrates, but after 1 week all cultures reached confluence of similar densities and morphology. Taken together these results suggest that PANi-gelatin blend nanofibers might provide a novel conductive material well suited as biocompatible scaffolds for tissue engineering. PMID:16352335

  9. Embolization Materials Made of Gelatin: Comparison Between Gelpart and Gelatin Microspheres

    SciTech Connect

    Ohta, Shinichi Nitta, Norihisa; Sonoda, Akinaga; Seko, Ayumi; Tanaka, Toyohiko; Takazakura, Ryutaro; Furukawa, Akira; Takahashi, Masashi; Sakamoto, Tsutomu; Tabata, Yasuhiko; Murata, Kiyoshi

    2010-02-15

    Purpose:The object of this study was to assess the level of embolization in the embolized artery and the degradation period of these two embolic agents in the renal arteries using rabbit models.Materials and Methods: The renal artery was embolized using 5 mg of gelatin microspheres (GMSs; diameter, 35-100 {mu}m; group 1) or 1 mg of Gelpart (diameter, 1 mm; group 2). For each group, angiographies were performed on two kidneys immediately after the embolic procedure and on days 3, 7, and 14 after embolization. This was followed by histopathological examinations of the kidneys.Results:Follow-up angiograms on each day revealed the persistence of poorly enhanced wedge-shaped areas in the parenchymal phase in all cases. In group 1, four of six cases showed poorly enhanced small areas in the follow-up angiograms. In group 2, all cases showed poorly enhanced large areas. In the histopathological specimens, it was observed that immediately after embolization, the particles reached the interlobular arteries in group 1 and the interlobar arteries in group 2. In all cases in group 1, the particles were histologically identified even on day 14. In one case in group 2 on day 14, the particles were not identified.Conclusion:In conclusion, although GMSs and Gelpart were similar in the point of gelatin particles, the level of embolization and the degradation period were different between GMSs and Gelpart.

  10. Dynamic finite element simulation of the gunshot injury to the human forehead protected by polyvinyl alcohol sponge.

    PubMed

    Karimi, Alireza; Razaghi, Reza; Navidbakhsh, Mahdi; Sera, Toshihiro; Kudo, Susumu

    2016-04-01

    Although there are some traditional models of the gunshot wounds, there is still a need for more modeling analyses due to the difficulties related to the gunshot wounds to the forehead region of the human skull. In this study, the degree of damage as a consequence of penetrating head injuries due to gunshot wounds was determined using a preliminary finite element (FE) model of the human skull. In addition, the role of polyvinyl alcohol (PVA) sponge, which can be used as an alternative to reinforce the kinetic energy absorption capacity of bulletproof vest and helmet materials, to minimize the amount of skull injury due to penetrating processes was investigated through the FE model. Digital computed tomography along with magnetic resonance imaging data of the human head were employed to launch a three-dimensional (3D) FE model of the skull. Two geometrical shapes of projectiles (steel ball and bullet) were simulated for penetrating with an initial impact velocity of 734 m/s using nonlinear dynamic modeling code, namely LS-DYNA. The role of the damaged/distorted elements were removed during computation when the stress or strain reached their thresholds. The stress distributions in various parts of the forehead and sponge after injury were also computed. The results revealed the same amount of stress for both the steel ball and bullet after hitting the skull. The modeling results also indicated the time that steel ball takes to penetrate into the skull is lower than that of the bullet. In addition, more than 21% of the steel ball's kinetic energy was absorbed by the PVA sponge and, subsequently, injury sternness of the forehead was considerably minimized. The findings advise the application of the PVA sponge as a substitute strengthening material to be able to diminish the energy of impact as well as the load transmitted to the object. PMID:26886822

  11. New and extraordinary Early Cambrian sponge spicule assemblage from China

    NASA Astrophysics Data System (ADS)

    Zhang, Xi-Guang; Pratt, Brian R.

    1994-01-01

    The fossil record of siliceous sponges, compared with that of other skeleton- secreting Metazoa, is poorly known, based as it is on disarticulated spicules and sporadically preserved body fossils. Abundant spicules recovered from Lower Cambrian strata in Shaanxi, China, essentially double the known morphological diversity of siliceous sponges for that interval of geologic time. These fossils, along with a comparable coeval fauna from South Australia, have a remarkably modern aspect, thereby demonstrating that the principal siliceous sponge groups and styles of body architecture were established quickly in the earliest Phanerozoic as part of the Cambrian "explosion" and that they inhabited a variety of low-energy, relatively deep water settings. The similarity of spicule shape and variation to that of younger assemblages reflects a conservative architecture for the siliceous sponges.

  12. Protonated Melamine Sponge for Effective Oil/Water Separation

    PubMed Central

    Wang, Chih-Feng; Huang, Hsiang-Ching; Chen, Liang-Ting

    2015-01-01

    In this study, we fabricated a superhydrophilic and underwater superoleophobic protonated melamine sponge for effective separation of water-rich immiscible oil/water mixtures with extremely high separation efficiency. This protonated melamine sponge exhibited excellent antifouling properties and could be used to separate oil/water mixtures continuously for up to 12 h without any increase in the oil content in filtrate. Moreover, our compressed protonated melamine sponge could separate both surfactant-free and -stabilized oil-in-water emulsions with high separation efficiencies. The high performance of this protonated melamine sponge and its efficient, energy- and cost-effective preparation suggest that it has great potential for use in practical applications. PMID:26399444

  13. Diversity, structure and convergent evolution of the global sponge microbiome.

    PubMed

    Thomas, Torsten; Moitinho-Silva, Lucas; Lurgi, Miguel; Björk, Johannes R; Easson, Cole; Astudillo-García, Carmen; Olson, Julie B; Erwin, Patrick M; López-Legentil, Susanna; Luter, Heidi; Chaves-Fonnegra, Andia; Costa, Rodrigo; Schupp, Peter J; Steindler, Laura; Erpenbeck, Dirk; Gilbert, Jack; Knight, Rob; Ackermann, Gail; Victor Lopez, Jose; Taylor, Michael W; Thacker, Robert W; Montoya, Jose M; Hentschel, Ute; Webster, Nicole S

    2016-01-01

    Sponges (phylum Porifera) are early-diverging metazoa renowned for establishing complex microbial symbioses. Here we present a global Porifera microbiome survey, set out to establish the ecological and evolutionary drivers of these host-microbe interactions. We show that sponges are a reservoir of exceptional microbial diversity and major contributors to the total microbial diversity of the world's oceans. Little commonality in species composition or structure is evident across the phylum, although symbiont communities are characterized by specialists and generalists rather than opportunists. Core sponge microbiomes are stable and characterized by generalist symbionts exhibiting amensal and/or commensal interactions. Symbionts that are phylogenetically unique to sponges do not disproportionally contribute to the core microbiome, and host phylogeny impacts complexity rather than composition of the symbiont community. Our findings support a model of independent assembly and evolution in symbiont communities across the entire host phylum, with convergent forces resulting in analogous community organization and interactions. PMID:27306690

  14. Aplyzanzine A, a new dibromotyrosine derivative from a Verongida sponge.

    PubMed

    Evan, T; Rudi, A; Ilan, M; Kashman, Y

    2001-02-01

    Aplyzanzine A (1), a novel bisdibromotyrosine derivative, has been isolated from the Indo-Pacific sponge Aplysina sp. Its structure was elucidated mainly on the basis of 1D and 2D NMR and MS spectroscopic data. PMID:11430007

  15. Calafianin, a bromotyrosine derivative from the marine sponge Aplysina gerardogreeni.

    PubMed

    Encarnación, R D; Sandoval, E; Malmstrøm, J; Christophersen, C

    2000-06-01

    Calafianin (1) and two known compounds, aerothionin and (3, 5-dibromo-2-hydroxy-4-methoxyphenyl)acetic acid, were isolated from the marine sponge Aplysina gerardogreeni. The structure of 1 was determined by NMR analysis and mass spectrometry. PMID:10869226

  16. Protonated Melamine Sponge for Effective Oil/Water Separation.

    PubMed

    Wang, Chih-Feng; Huang, Hsiang-Ching; Chen, Liang-Ting

    2015-01-01

    In this study, we fabricated a superhydrophilic and underwater superoleophobic protonated melamine sponge for effective separation of water-rich immiscible oil/water mixtures with extremely high separation efficiency. This protonated melamine sponge exhibited excellent antifouling properties and could be used to separate oil/water mixtures continuously for up to 12 h without any increase in the oil content in filtrate. Moreover, our compressed protonated melamine sponge could separate both surfactant-free and -stabilized oil-in-water emulsions with high separation efficiencies. The high performance of this protonated melamine sponge and its efficient, energy- and cost-effective preparation suggest that it has great potential for use in practical applications. PMID:26399444

  17. Protonated Melamine Sponge for Effective Oil/Water Separation

    NASA Astrophysics Data System (ADS)

    Wang, Chih-Feng; Huang, Hsiang-Ching; Chen, Liang-Ting

    2015-09-01

    In this study, we fabricated a superhydrophilic and underwater superoleophobic protonated melamine sponge for effective separation of water-rich immiscible oil/water mixtures with extremely high separation efficiency. This protonated melamine sponge exhibited excellent antifouling properties and could be used to separate oil/water mixtures continuously for up to 12 h without any increase in the oil content in filtrate. Moreover, our compressed protonated melamine sponge could separate both surfactant-free and -stabilized oil-in-water emulsions with high separation efficiencies. The high performance of this protonated melamine sponge and its efficient, energy- and cost-effective preparation suggest that it has great potential for use in practical applications.

  18. Diversity, structure and convergent evolution of the global sponge microbiome

    PubMed Central

    Thomas, Torsten; Moitinho-Silva, Lucas; Lurgi, Miguel; Björk, Johannes R.; Easson, Cole; Astudillo-García, Carmen; Olson, Julie B.; Erwin, Patrick M.; López-Legentil, Susanna; Luter, Heidi; Chaves-Fonnegra, Andia; Costa, Rodrigo; Schupp, Peter J.; Steindler, Laura; Erpenbeck, Dirk; Gilbert, Jack; Knight, Rob; Ackermann, Gail; Victor Lopez, Jose; Taylor, Michael W.; Thacker, Robert W.; Montoya, Jose M.; Hentschel, Ute; Webster, Nicole S.

    2016-01-01

    Sponges (phylum Porifera) are early-diverging metazoa renowned for establishing complex microbial symbioses. Here we present a global Porifera microbiome survey, set out to establish the ecological and evolutionary drivers of these host–microbe interactions. We show that sponges are a reservoir of exceptional microbial diversity and major contributors to the total microbial diversity of the world's oceans. Little commonality in species composition or structure is evident across the phylum, although symbiont communities are characterized by specialists and generalists rather than opportunists. Core sponge microbiomes are stable and characterized by generalist symbionts exhibiting amensal and/or commensal interactions. Symbionts that are phylogenetically unique to sponges do not disproportionally contribute to the core microbiome, and host phylogeny impacts complexity rather than composition of the symbiont community. Our findings support a model of independent assembly and evolution in symbiont communities across the entire host phylum, with convergent forces resulting in analogous community organization and interactions. PMID:27306690

  19. Meroterpenoids from a Tropical Dysidea sp. Sponge.

    PubMed

    Kim, Chang-Kwon; Woo, Jung-Kyun; Kim, Seong-Hwan; Cho, Eunji; Lee, Yeon-Ju; Lee, Hyi-Seung; Sim, Chung J; Oh, Dong-Chan; Oh, Ki-Bong; Shin, Jongheon

    2015-11-25

    Six new meroterpenoids (1-6), along with arenarol (7), a known rearranged drimane sesquiterpene hydroquinone, were isolated from a Dysidea sp. sponge collected from the Federated States of Micronesia. On the basis of the results of combined spectroscopic analysis, compound 1 was determined to be the cyclic ether derivative of 7, whereas 2 and 3 were assigned as the corresponding sesquiterpene quinones containing taurine-derived substituents. Compounds 4-6 possess a novel tetracyclic skeleton formed by a direct linkage between the quinone and sesquiterpene moieties. The configurations of these new compounds were assigned on the basis of combined NOESY and ECD analysis. These compounds exhibited cytotoxic and antimicrobial activities and weak inhibition against Na(+)/K(+)-ATPase. PMID:26551342

  20. Elastic, Conductive, Polymeric Hydrogels and Sponges

    NASA Astrophysics Data System (ADS)

    Lu, Yun; He, Weina; Cao, Tai; Guo, Haitao; Zhang, Yongyi; Li, Qingwen; Shao, Ziqiang; Cui, Yulin; Zhang, Xuetong

    2014-07-01

    As a result of inherent rigidity of the conjugated macromolecular chains resulted from the delocalized π-electron system along the polymer backbone, it has been a huge challenge to make conducting polymer hydrogels elastic by far. Herein elastic and conductive polypyrrole hydrogels with only conducting polymer as the continuous phase have been simply synthesized in the indispensable conditions of 1) mixed solvent, 2) deficient oxidant, and 3) monthly secondary growth. The elastic mechanism and oxidative polymerization mechanism on the resulting PPy hydrogels have been discussed. The resulting hydrogels show some novel properties, e.g., shape memory elasticity, fast functionalization with various guest objects, and fast removal of organic infectants from aqueous solutions, all of which cannot be observed from traditional non-elastic conducting polymer counterparts. What's more, light-weight, elastic, and conductive organic sponges with excellent stress-sensing behavior have been successfully achieved via using the resulting polypyrrole hydrogels as precursors.

  1. Elastic, Conductive, Polymeric Hydrogels and Sponges

    PubMed Central

    Lu, Yun; He, Weina; Cao, Tai; Guo, Haitao; Zhang, Yongyi; Li, Qingwen; Shao, Ziqiang; Cui, Yulin; Zhang, Xuetong

    2014-01-01

    As a result of inherent rigidity of the conjugated macromolecular chains resulted from the delocalized π-electron system along the polymer backbone, it has been a huge challenge to make conducting polymer hydrogels elastic by far. Herein elastic and conductive polypyrrole hydrogels with only conducting polymer as the continuous phase have been simply synthesized in the indispensable conditions of 1) mixed solvent, 2) deficient oxidant, and 3) monthly secondary growth. The elastic mechanism and oxidative polymerization mechanism on the resulting PPy hydrogels have been discussed. The resulting hydrogels show some novel properties, e.g., shape memory elasticity, fast functionalization with various guest objects, and fast removal of organic infectants from aqueous solutions, all of which cannot be observed from traditional non-elastic conducting polymer counterparts. What's more, light-weight, elastic, and conductive organic sponges with excellent stress-sensing behavior have been successfully achieved via using the resulting polypyrrole hydrogels as precursors. PMID:25052015

  2. Sustainable production of bioactive compounds from sponges: primmorphs as bioreactors.

    PubMed

    Schröder, H C; Brümmer, F; Fattorusso, E; Aiello, A; Menna, M; de Rosa, S; Batel, R; Müller, W E G

    2003-01-01

    Sponges [phylum Porifera] are a rich source for the isolation of biologically active and pharmacologically valuable compounds with a high potential to become effective drugs for therapeutic use. However, until now, only one compound has been introduced into clinics because of the limited amounts of starting material available for extraction. To overcome this serious problem in line with the rules for a sustainable use of marine resources, the following routes can be pursued; first, chemical synthesis, second, cultivation of sponges in the sea (mariculture), third, growth of sponge specimens in a bioreactor, and fourth, cultivation of sponge cells in vitro in a bioreactor. The main efforts to follow the latter strategy have been undertaken with the marine sponge Suberites domuncula. This species produces compounds that affect neuronal cells, such as quinolinic acid, a well-known neurotoxin, and phospholipids. A sponge cell culture was established after finding that single sponge cells require cell-cell contact in order to retain their telomerase activity, one prerequisite for continuous cell proliferation. The sponge cell culture system, the primmorphs, comprises proliferating cells that have the potency to differentiate. While improving the medium it was found that, besides growth factors, certain ions (e.g. silicate and iron) are essential. In the presence of silicate several genes required for the formation of the extracellular matrix are expressed (silicatein, collagen and myotrophin). Fe3+ is essential for the synthesis of the spicules, and causes an increased expression of the ferritin-, septin- and scavenger receptor genes. Furthermore, high water current is required for growth and canal formation in the primmorphs. The primmorph system has already been successfully used for the production of pharmacologically useful, bioactive compounds, such as avarol or (2'-5')oligoadenylates. Future strategies to improve the sponge cell culture are discussed; these

  3. Molecular biodiversity. Case study: Porifera (sponges).

    PubMed

    Müller, Werner E G; Brümmer, Franz; Batel, Renato; Müller, Isabel M; Schröder, Heinz C

    2003-03-01

    Biological diversity--or biodiversity--is the term given to the variety of life on Earth and the natural patterns it forms. The biodiversity we see today is the fruit of billions of years of evolution, shaped by natural processes and, increasingly, by the influence of humans. It forms the web of life of which we are an integral part and upon which we so fully depend. The research on molecular biodiversity tries to lay the scientific foundation of a rational conservation policy that has its roots in various disciplines including systematics/taxonomy (species richness), present day ecology (diversity of ecological systems), and functional genetics (genetic diversity). The results of ongoing genome analyses (genome projects and expressed sequence tag projects) and the achievements of molecular evolution may allow us not only to quantitate the diversity of the present biota but also to extrapolate to their diversification in the future. A link between biodiversity and genomics/molecular evolution will create a platform which we hope may facilitate a sustainable management of organismic life and ensure its exploitation for human benefit. In the present review we outline possible strategies, using the Porifera (sponges) as a prominent example. On the basis of solid taxonomy and ecological data, the high value of this phylum for human application becomes obvious, especially with regard to the field of chemical ecology and the desire to find novel potential drugs for clinical use. In addition, the benefit of trying to make sense of molecular biodiversity using sponges as an example can be seen in the fact that the study of these animals, which are "living fossils", gives us a good insight into the history of our planet, especially with respect to the evolution of Metazoa. PMID:12649752

  4. Genomics of "Candidatus Synechococcus spongiarium", a Cyanobacterial Sponge Symbiont

    SciTech Connect

    Slaby, Beate M.; Copeland, Alex; Woyke, Tanja; Hentschel, Ute

    2014-03-21

    Marine sponges (Porifera): ancient metazoans of ecological importance, that produce bioactive secondary metabolites and interact with various microorganisms including cyanobacteria1: Marine Synechococcus spp.: cyanobacteria, important contributors to the global carbon cycle and major primary producers in the oceans2 Ca. S. spongiarum: an ecotype of this genus, widespread and abundant symbiont of various marine sponges around the world3, e.g. Aplysina aerophoba

  5. Epidermabrasion for acne: the polyester fiber web sponge.

    PubMed

    Durr, N P; Orentreich, N

    1976-03-01

    Physical-mechanical exfoliation with the nonwoven polyester fiber web sponge is an effective adjunct to the treatment of comedonal and pustular acne. Precisely controlled epidermabrasion is achieved by varying pressure, velocity, duration and frequency of use. Side effects are negligible and patient acceptance is high. Effectiveness is not dependent upon erythema and scaling since the web sponge mechanically removes keratin excrescences and trapped hairs in pilosebaceous ducts. PMID:138554

  6. Chemical defense of Mediterranean sponges Aplysina cavernicola and Aplysina aerophoba.

    PubMed

    Thoms, Carsten; Wolff, Matthias; Padmakumar, K; Ebel, Rainer; Proksch, Peter

    2004-01-01

    The Mediterranean sponges Aplysina aerophoba and A. cavernicola accumulate brominated isoxazoline alkaloids including aplysinamisin-1 (1), aerophobin-2 (2), isofistularin-3 (3) or aerothionin (4) at concentrations up to 10% of their respective dry weights. In laboratory feeding experiments employing the polyphagous Mediterranean fish Blennius sphinx crude extracts of both Aplysina sponges were incorporated into artificial fish food at their physiological concentrations (based on volume) and offered to B. sphinx in choice feeding experiments against untreated control food. In addition to the Aplysina sponges, extracts from nine other frequently occurring Mediterranean sponges were likewise included into the experiments. Both Aplysina species elicited strong feeding deterrence compared to the other sponges tested. Bioassay-guided fractionation of A. cavernicola yielded the isoxazoline alkaloids aerothionin (4) and aplysinamisin-1 (1) as well as the 3,4-dihydroxyquinoline-2-carboxylic acid (8) as major deterrent constituents when tested at their physiological concentrations as present in sponges. Aeroplysinin-1 (5) and dienone (6), however, which are formed in A. aerophoba and A. cavernicola from isoxazoline precursors through bioconversion reactions upon tissue injury showed no or only little deterrent activity. Fractionation of a crude extract of A. aerophoba yielded aerophobin-2 (2) and isofistularin-3 (3) as major deterrent constituents against B. sphinx. We propose that the isoxazoline alkaloids 1-4 of Mediterranean Aplysina sponges as well as the 3,4-dihydroxyquinoline-2-carboxylic acid (8) (in the case of A. cavernicola) act as defensive metabolites against B. sphinx and possibly also against other predators while the antibiotically active bioconversion products aeroplysinin-1 (5) and dienone (6) may protect sponges from invasion of bacterial pathogens. PMID:15018063

  7. Electrospun gelatin/polyurethane blended nanofibers for wound healing.

    PubMed

    Kim, Sung Eun; Heo, Dong Nyoung; Lee, Jung Bok; Kim, Jong Ryul; Park, Sang Hyuk; Jeon, Seong Ho; Kwon, Il Keun

    2009-08-01

    In this study, we prepared a blended nanofiber scaffold using synthetic and natural polymers, polyurethane (PU) and gelatin respectively, using the electrospinning method to prepare a material for wound dressing. In order to confirm the properties of this gelatin/PU blended nanofiber scaffold, we performed scanning electron microscopy, atomic force microscopy, attenuated total reflectance Fourier-transform infrared spectroscopy, thermal gravimetric analysis, contact angle, water uptake, mechanical property, recovery, and degradation tests, and cellular response. The results obtained indicate that the mean diameter of these nanofibers was uniformly electrospun and ranged from 0.4 to 2.1 microm. According to the results, when the amount of gelatin in the blended solution decreased, the contact angle increased and water uptake of the scaffold decreased concurrently. In the mechanical tests, the blended nanofibrous scaffolds were elastic, and elasticity increased as the total amount of PU increased. Moreover, as the total amount of gelatin increased, the cell proliferation increased with the same amount of culture time. Therefore, this gelatin/PU blended nanofiber scaffold has potential application for use as a wound dressing. PMID:19671952

  8. Massive Consumption of Gelatinous Plankton by Mediterranean Apex Predators

    PubMed Central

    Cardona, Luis; Álvarez de Quevedo, Irene; Borrell, Assumpció; Aguilar, Alex

    2012-01-01

    Stable isotopes of carbon and nitrogen were used to test the hypothesis that stomach content analysis has systematically overlooked the consumption of gelatinous zooplankton by pelagic mesopredators and apex predators. The results strongly supported a major role of gelatinous plankton in the diet of bluefin tuna (Thunnus thynnus), little tunny (Euthynnus alletteratus), spearfish (Tetrapturus belone) and swordfish (Xiphias gladius). Loggerhead sea turtles (Caretta caretta) in the oceanic stage and ocean sunfish (Mola mola) also primarily relied on gelatinous zooplankton. In contrast, stable isotope ratios ruled out any relevant consumption of gelatinous plankton by bluefish (Pomatomus saltatrix), blue shark (Prionace glauca), leerfish (Lichia amia), bonito (Sarda sarda), striped dolphin (Stenella caerueloalba) and loggerhead sea turtles (Caretta caretta) in the neritic stage, all of which primarily relied on fish and squid. Fin whales (Balaenoptera physalus) were confirmed as crustacean consumers. The ratios of stable isotopes in albacore (Thunnus alalunga), amberjack (Seriola dumerili), blue butterfish (Stromaeus fiatola), bullet tuna (Auxis rochei), dolphinfish (Coryphaena hyppurus), horse mackerel (Trachurus trachurus), mackerel (Scomber scombrus) and pompano (Trachinotus ovatus) were consistent with mixed diets revealed by stomach content analysis, including nekton and crustaceans, but the consumption of gelatinous plankton could not be ruled out completely. In conclusion, the jellyvorous guild in the Mediterranean integrates two specialists (ocean sunfish and loggerhead sea turtles in the oceanic stage) and several opportunists (bluefin tuna, little tunny, spearfish, swordfish and, perhaps, blue butterfish), most of them with shrinking populations due to overfishing. PMID:22470416

  9. Using glucosamine to improve the properties of photocrosslinked gelatin scaffolds.

    PubMed

    Suo, Hairui; Xu, Kedi; Zheng, Xiaoxiang

    2015-02-01

    The use of hydrogel-based cell transport scaffolds holds great promise in regenerative medicine, such as treating osteoarthritis. Gelatin and glucosamine are the ideal materials to be used in the hydrogel scaffolds for cartilage regeneration for they could act as compositions of cartilage. To overcome the weak strength of traditional gelatin hydrogels and down-regulate cell toxicity of glucosamine, gelatin and glucosamine molecules were grafted with acrylate groups and covalently crosslinked under photo-radiation to form hydrogels. Hydrogels with tuning physiochemical properties were produced according to different proportions of methacrylate gelatin (GelMA) and N-acryloyl glucosamine (AGA). The process of photocrosslinking was elaborated, and the hypothesis of increasing AGA concentration leading to higher strength of hydrogels was corroborated by testing rheological property and scanning micro-morphological features. A serial of properties, including smaller swelling ratio, lower gelatin dissolution and slower degradation of GelMA/AGA hydrogels with higher AGA concentration further proved our hypothesis. Moreover, AGA molecules showed less cytotoxicity than unmodified glucosamine molecules and the incorporation of AGA molecules in GelMA/AGA hydrogels upregulated cell adhesion and spreading on the hydrogel surface. All of these results indicated that addition of AGA molecules could significantly alter the physiochemical properties of GelMA/AGA hydrogels, which may have broad application prospects in the future. PMID:25248323

  10. Synthesis and Characterization of Hybrid Hyaluronic Acid-Gelatin Hydrogels

    PubMed Central

    Camci-Unal, Gulden; Cuttica, Davide; Annabi, Nasim; Demarchi, Danilo; Khademhosseini, Ali

    2013-01-01

    Biomimetic hybrid hydrogels have generated broad interest in tissue engineering and regenerative medicine. Hyaluronic acid (HA) and gelatin (hydrolyzed collagen) are naturally derived polymers and biodegradable under physiological conditions. Moreover, collagen and HA are major components of the extracellular matrix (ECM) in most of the tissues (e.g. cardiovascular, cartilage, neural). When used as a hybrid material, HA-gelatin hydrogels may enable mimicking the ECM of native tissues. Although HA-gelatin hybrid hydrogels are promising biomimetic substrates, their material properties have not been thoroughly characterized in the literature. Herein, we generated hybrid hydrogels with tunable physical and biological properties by using different concentrations of HA and gelatin. The physical properties of the fabricated hydrogels including swelling ratio, degradation, and mechanical properties were investigated. In addition, in vitro cellular responses in both two and three dimensional (2D and 3D) culture conditions were assessed. It was found that the addition of gelatin methacrylate (GelMA) into HA methacrylate (HAMA) promoted cell spreading in the hybrid hydogels. Moreover, the hybrid hydrogels showed significantly improved mechanical properties compared to their single component analogs. The HAMA-GelMA hydrogels exhibited remarkable tunability behavior and may be useful for cardiovascular tissue engineering applications. PMID:23419055

  11. Synthesis and characterization of hybrid hyaluronic acid-gelatin hydrogels.

    PubMed

    Camci-Unal, Gulden; Cuttica, Davide; Annabi, Nasim; Demarchi, Danilo; Khademhosseini, Ali

    2013-04-01

    Biomimetic hybrid hydrogels have generated broad interest in tissue engineering and regenerative medicine. Hyaluronic acid (HA) and gelatin (hydrolyzed collagen) are naturally derived polymers and biodegradable under physiological conditions. Moreover, collagen and HA are major components of the extracellular matrix (ECM) in most of the tissues (e.g., cardiovascular, cartilage, neural). When used as a hybrid material, HA-gelatin hydrogels may enable mimicking the ECM of native tissues. Although HA-gelatin hybrid hydrogels are promising biomimetic substrates, their material properties have not been thoroughly characterized in the literature. Herein, we generated hybrid hydrogels with tunable physical and biological properties by using different concentrations of HA and gelatin. The physical properties of the fabricated hydrogels including swelling ratio, degradation, and mechanical properties were investigated. In addition, in vitro cellular responses in both two and three-dimensional culture conditions were assessed. It was found that the addition of gelatin methacrylate (GelMA) into HA methacrylate (HAMA) promoted cell spreading in the hybrid hydogels. Moreover, the hybrid hydrogels showed significantly improved mechanical properties compared to their single component analogs. The HAMA-GelMA hydrogels exhibited remarkable tunability behavior and may be useful for cardiovascular tissue engineering applications. PMID:23419055

  12. Interfacial layers of complex-forming ionic surfactants with gelatin.

    PubMed

    Derkach, Svetlana R

    2015-08-01

    This review is devoted to discussing the results of studies of the influence of low-molecular weight surfactant additions on the composition and properties of gelatin adsorbed layers which are spontaneously created at water/air and water/non-polar-liquid interfaces. The interaction of surfactant with gelatin leads to the formation of complexes of variable content in the bulk of the aqueous phase. The composition content is determined by the component ratio and concentration of the added surfactant. The role of surfactants (anionic, cationic, non-ionic) capable of forming complexes with gelatin due to electrostatic and hydrophobic interactions is considered. Analysis of the interfacial layer properties is based on literature information, as well as the own author's data. These data include the results of measuring thermodynamic properties (interface tension), laws of formation (adsorption kinetics and thickness), and rheological properties of the layers, which are considered to be dependent on gelatin and surfactant concentration, pH, and temperature. The evolution of the interfacial layers' properties (with increasing surfactant concentration) is discussed in connection with the properties and content of gelatin-surfactant complexes appearing in the aqueous phase. Such an approach allows us to explain the main peculiarities of the layers' behavior including their stabilizing activity in relation to bilateral foam and emulsion films. PMID:24970019

  13. Massive consumption of gelatinous plankton by Mediterranean apex predators.

    PubMed

    Cardona, Luis; Álvarez de Quevedo, Irene; Borrell, Assumpció; Aguilar, Alex

    2012-01-01

    Stable isotopes of carbon and nitrogen were used to test the hypothesis that stomach content analysis has systematically overlooked the consumption of gelatinous zooplankton by pelagic mesopredators and apex predators. The results strongly supported a major role of gelatinous plankton in the diet of bluefin tuna (Thunnus thynnus), little tunny (Euthynnus alletteratus), spearfish (Tetrapturus belone) and swordfish (Xiphias gladius). Loggerhead sea turtles (Caretta caretta) in the oceanic stage and ocean sunfish (Mola mola) also primarily relied on gelatinous zooplankton. In contrast, stable isotope ratios ruled out any relevant consumption of gelatinous plankton by bluefish (Pomatomus saltatrix), blue shark (Prionace glauca), leerfish (Lichia amia), bonito (Sarda sarda), striped dolphin (Stenella caerueloalba) and loggerhead sea turtles (Caretta caretta) in the neritic stage, all of which primarily relied on fish and squid. Fin whales (Balaenoptera physalus) were confirmed as crustacean consumers. The ratios of stable isotopes in albacore (Thunnus alalunga), amberjack (Seriola dumerili), blue butterfish (Stromaeus fiatola), bullet tuna (Auxis rochei), dolphinfish (Coryphaena hyppurus), horse mackerel (Trachurus trachurus), mackerel (Scomber scombrus) and pompano (Trachinotus ovatus) were consistent with mixed diets revealed by stomach content analysis, including nekton and crustaceans, but the consumption of gelatinous plankton could not be ruled out completely. In conclusion, the jellyvorous guild in the Mediterranean integrates two specialists (ocean sunfish and loggerhead sea turtles in the oceanic stage) and several opportunists (bluefin tuna, little tunny, spearfish, swordfish and, perhaps, blue butterfish), most of them with shrinking populations due to overfishing. PMID:22470416

  14. Gelatin-Modified Polyurethanes for Soft Tissue Scaffold

    PubMed Central

    Kucińska-Lipka, Justyna; Janik, Helena

    2013-01-01

    Recently, in the field of biomaterials for soft tissue scaffolds, the interest of their modification with natural polymersis growing. Synthetic polymers are often tough, and many of them do not possess fine biocompatibility. On the other hand, natural polymers are biocompatible but weak when used alone. The combination of natural and synthetic polymers gives the suitable properties for tissue engineering requirements. In our study, we modified gelatin synthetic polyurethanes prepared from polyester poly(ethylene-butylene adipate) (PEBA), aliphatic 1,6-hexamethylene diisocyanate (HDI), and two different chain extenders 1,4-butanediol (BDO) or 1-ethoxy-2-(2-hydroxyethoxy)ethanol (EHEE). From a chemical point of view, we replaced expensive components for building PU, such as 2,6-diisocyanato methyl caproate (LDI) and 1,4-diisocyanatobutane (BDI), with cost-effective HDI. The gelatin was added in situ (in the first step of synthesis) to polyurethane to increase biocompatibility and biodegradability of the obtained material. It appeared that the obtained gelatin-modified PU foams, in which chain extender was BDO, had enhanced interactions with media and their hydrolytic degradation profile was also improved for tissue engineering application. Furthermore, the gelatin introduction had positive impact on gelatin-modified PU foams by increasing their hemocompatibility. PMID:24363617

  15. Micromolded Gelatin Hydrogels for Extended Culture of Engineered Cardiac Tissues

    PubMed Central

    McCain, Megan L.; Agarwal, Ashutosh; Nesmith, Haley W.; Nesmith, Alexander P.; Parker, Kevin Kit

    2014-01-01

    Defining the chronic cardiotoxic effects of drugs during preclinical screening is hindered by the relatively short lifetime of functional cardiac tissues in vitro, which are traditionally cultured on synthetic materials that do not recapitulate the cardiac microenvironment. Because collagen is the primary extracellular matrix protein in the heart, we hypothesized that micromolded gelatin hydrogel substrates tuned to mimic the elastic modulus of the heart would extend the lifetime of engineered cardiac tissues by better matching the native chemical and mechanical microenvironment. To measure tissue stress, we used tape casting, micromolding, and laser engraving to fabricate gelatin hydrogel muscular thin film cantilevers. Neonatal rat cardiac myocytes adhered to gelatin hydrogels and formed aligned tissues as defined by the microgrooves. Cardiac tissues could be cultured for over three weeks without declines in contractile stress. Myocytes on gelatin had higher spare respiratory capacity compared to those on fibronectin-coated PDMS, suggesting that improved metabolic function could be contributing to extended culture lifetime. Lastly, human induced pluripotent stem cell-derived cardiac myocytes adhered to micromolded gelatin surfaces and formed aligned tissues that remained functional for four weeks, highlighting their potential for human-relevant chronic studies. PMID:24731714

  16. Bio-inspired Aloe vera sponges for biomedical applications.

    PubMed

    Silva, S S; Oliveira, M B; Mano, J F; Reis, R L

    2014-11-01

    Chemical composition and biological properties of Aloe vera (AV), a tropical plant, explain its potential use for cosmetic, nutritional and biomedical applications. AV gel present in AV leaves is rich in several compounds, nutrients and polysaccharides. This work proposes using AV gel complex structure and chemical composition, associated with freeze-drying, to produce sponges. To increase the structures stability in aqueous media, a thin coating of gellan gum (GG), was applied onto AV gel. AV-based sponges showed a heterogeneous porous formation, interconnected pores and good porosity (72-77%). The coating with a GG layer onto AV influenced the stability, swelling behavior and mechanical properties of the resulting sponges. Moreover, sponges provided the sustained release of BSA-FTIC, used as a model protein, over 3 weeks. Also, in vitro cell culture studies evidenced that sponges are not cytotoxic for a mouse fibroblast-like cell line. Therefore, developed AV-based sponges have potential use in biomedical applications. PMID:25129743

  17. First report on chitinous holdfast in sponges (Porifera)

    PubMed Central

    Ehrlich, Hermann; Kaluzhnaya, Oksana V.; Tsurkan, Mikhail V.; Ereskovsky, Alexander; Tabachnick, Konstantin R.; Ilan, Micha; Stelling, Allison; Galli, Roberta; Petrova, Olga V.; Nekipelov, Serguei V.; Sivkov, Victor N.; Vyalikh, Denis; Born, René; Behm, Thomas; Ehrlich, Andre; Chernogor, Lubov I.; Belikov, Sergei; Janussen, Dorte; Bazhenov, Vasilii V.; Wörheide, Gert

    2013-01-01

    A holdfast is a root- or basal plate-like structure of principal importance that anchors aquatic sessile organisms, including sponges, to hard substrates. There is to date little information about the nature and origin of sponges’ holdfasts in both marine and freshwater environments. This work, to our knowledge, demonstrates for the first time that chitin is an important structural component within holdfasts of the endemic freshwater demosponge Lubomirskia baicalensis. Using a variety of techniques (near-edge X-ray absorption fine structure, Raman, electrospray ionization mas spectrometry, Morgan–Elson assay and Calcofluor White staining), we show that chitin from the sponge holdfast is much closer to α-chitin than to β-chitin. Most of the three-dimensional fibrous skeleton of this sponge consists of spicule-containing proteinaceous spongin. Intriguingly, the chitinous holdfast is not spongin-based, and is ontogenetically the oldest part of the sponge body. Sequencing revealed the presence of four previously undescribed genes encoding chitin synthases in the L. baicalensis sponge. This discovery of chitin within freshwater sponge holdfasts highlights the novel and specific functions of this biopolymer within these ancient sessile invertebrates. PMID:23677340

  18. Trophic transfer of radioisotopes in Mediterranean sponges through bacteria consumption.

    PubMed

    Lacoue-Labarthe, Thomas; Warnau, Michel; Beaugeard, Laureen; Pascal, Pierre-Yves

    2016-02-01

    Numerous field studies highlighted the capacities of marine sponges to bioaccumulate trace elements and assessed their potential as biomonitors of the marine environment. Experimental works demonstrated that dissolved metals and radionuclides can be taken up directly by sponge tissues but, to the best of our knowledge, little is known on the contribution of the dietary pathway through the consumption of contaminated bacteria considered as one of the trophic source in sponge diet. Objectives of this work are to study trophic transfer of radiotracers (110m)Ag, (241)Am, (109)Cd, (57)Co, (134)Cs, (54)Mn and (65)Zn from the marine bacteria Pseudomonas stutzeri to the Mediterranean sponges Aplysina cavernicola and Ircinia oros. P. stutzeri efficiently bioaccumulated trace elements in our culture experimental conditions with CF comprised between 10(5) and 10(7) after 48 h of growth in radiolabeled medium. When fed with these radiolabelled bacteria, A. cavernicola took up around 60% of radiotracers accumulated in trophic source except (134)Cs for which only 8% has been transferred from bacteria to sponge. Contrasting to this, I. oros retained only 7% of (110m)Ag, (109)Cd and (65)Zn counted in bacteria, but retained 2-fold longer accumulated metals in its tissues. The sponge inter-specific differences of accumulation and depuration following a trophic exposure are discussed with respect to the structure and the clearance capacities of each species. PMID:26544727

  19. Aplysina red band syndrome: a new threat to Caribbean sponges.

    PubMed

    Olson, J B; Gochfeld, D J; Slattery, M

    2006-07-25

    A substantial and increasing number of reports have documented dramatic changes and continuing declines in Caribbean coral reef communities over the past 2 decades. To date, the majority of disease reports have focused on scleractinian corals, whereas sponge diseases have been less frequently documented. In this study, we describe Aplysina red band syndrome (ARBS) affecting Caribbean rope sponges of the genus Aplysina observed on shallow reefs in the Bahamas. Visible signs of disease presence included 1 or more rust-colored leading edges, with or without a trailing area of necrotic tissue, such that the lesion forms a contiguous band around part or all of the sponge branch. Microscopic examination of the leading edge of the disease margin indicated that a cyanobacterium was consistently responsible for the coloration. Although the presence of this distinctive coloration was used to characterize the diseased state, it is not yet known whether this cyanobacterium is directly responsible for disease causation. The prevalence of ARBS declined significantly from July to October 2004 before increasing above July levels in January 2005. Transmission studies in the laboratory demonstrated that contact with the leading edge of an active lesion was sufficient to spread ARBS to a previously healthy sponge, suggesting that the etiologic agent, currently undescribed, is contagious. Studies to elucidate the etiologic agent of ARBS are ongoing. Sponges are an essential component of coral reef communities and emerging sponge diseases clearly have the potential to impact benthic community structure on coral reefs. PMID:16956064

  20. Interpreting environmental signals from the coralline sponge Astrosclera willeyana

    SciTech Connect

    Fallon, S J; McCulloch, M T; Guilderson, T P

    2004-06-30

    Coralline sponges (sclerosponges) have been proposed as a new source for paleo subsurface temperature reconstructions by utilizing methods developed for reef-building corals. However unlike corals, coralline sponges do not have density variations making age determination difficult. In this study we examined multiple elemental rations (B, Mg, Sr, Ba, U) in the coralline sponge Astrosclera willeyana. We also measured skeletal density profiles along the outer ''living'' edge of the sponges and this data indicates significant thickening of skeletal material over intervals of 2-3 mm or 2-3 years. This suggests that any skeletal recovered environmental record from Astrosclera willeyana is an integration of signals over a 2-3 year period. Sponge Sr/Ca seemed to hold the most promise as a recorder of water temperature and we compared Sr/Ca from 2 sponges in the Great Barrier Reef and one from Truk in Micronesia to their respective sea surface temperature record. The correlations were not that strong ({approx} r=-0.5) but they were significant. It appears that the signal smoothing due to thickening or perhaps even some biologic control on Sr skeletal partitioning limits the use of Sr/Ca as an indicator of water temperature in Astrosclera willeyana.

  1. Metasurface Broadband Solar Absorber

    DOE PAGESBeta

    Azad, Abul K.; Kort-Kamp, Wilton J. M.; Sykora, Milan; Weisse-Bernstein, Nina R.; Luk, Ting S.; Taylor, Antoinette J.; Dalvit, Diego A. R.; Chen, Hou-Tong

    2016-02-01

    Here, we demonstrate a broadband, polarization independent, wide-angle absorber based on a metallic metasurface architecture, which accomplishes greater than 90% absorptance in the visible and near-infrared range of the solar spectrum, and exhibits low absorptivity (emissivity) at mid- and far-infrared wavelengths. The complex unit cell of the metasurface solar absorber consists of eight pairs of gold nano-resonators that are separated from a gold ground plane by a thin silicon dioxide spacer. Moreover, our experimental measurements reveal high-performance absorption over a wide range of incidence angles for both s- and p-polarizations. We also investigate numerically the frequency-dependent field and current distributionsmore » to elucidate how the absorption occurs within the metasurface structure.« less

  2. Metasurface Broadband Solar Absorber

    PubMed Central

    Azad, Abul K.; Kort-Kamp, Wilton J. M.; Sykora, Milan; Weisse-Bernstein, Nina R.; Luk, Ting S.; Taylor, Antoinette J.; Dalvit, Diego A. R.; Chen, Hou-Tong

    2016-01-01

    We demonstrate a broadband, polarization independent, wide-angle absorber based on a metallic metasurface architecture, which accomplishes greater than 90% absorptance in the visible and near-infrared range of the solar spectrum, and exhibits low absorptivity (emissivity) at mid- and far-infrared wavelengths. The complex unit cell of the metasurface solar absorber consists of eight pairs of gold nano-resonators that are separated from a gold ground plane by a thin silicon dioxide spacer. Our experimental measurements reveal high-performance absorption over a wide range of incidence angles for both s- and p-polarizations. We also investigate numerically the frequency-dependent field and current distributions to elucidate how the absorption occurs within the metasurface structure. PMID:26828999

  3. Metasurface Broadband Solar Absorber

    NASA Astrophysics Data System (ADS)

    Azad, Abul K.; Kort-Kamp, Wilton J. M.; Sykora, Milan; Weisse-Bernstein, Nina R.; Luk, Ting S.; Taylor, Antoinette J.; Dalvit, Diego A. R.; Chen, Hou-Tong

    2016-02-01

    We demonstrate a broadband, polarization independent, wide-angle absorber based on a metallic metasurface architecture, which accomplishes greater than 90% absorptance in the visible and near-infrared range of the solar spectrum, and exhibits low absorptivity (emissivity) at mid- and far-infrared wavelengths. The complex unit cell of the metasurface solar absorber consists of eight pairs of gold nano-resonators that are separated from a gold ground plane by a thin silicon dioxide spacer. Our experimental measurements reveal high-performance absorption over a wide range of incidence angles for both s- and p-polarizations. We also investigate numerically the frequency-dependent field and current distributions to elucidate how the absorption occurs within the metasurface structure.

  4. Metasurface Broadband Solar Absorber.

    PubMed

    Azad, Abul K; Kort-Kamp, Wilton J M; Sykora, Milan; Weisse-Bernstein, Nina R; Luk, Ting S; Taylor, Antoinette J; Dalvit, Diego A R; Chen, Hou-Tong

    2016-01-01

    We demonstrate a broadband, polarization independent, wide-angle absorber based on a metallic metasurface architecture, which accomplishes greater than 90% absorptance in the visible and near-infrared range of the solar spectrum, and exhibits low absorptivity (emissivity) at mid- and far-infrared wavelengths. The complex unit cell of the metasurface solar absorber consists of eight pairs of gold nano-resonators that are separated from a gold ground plane by a thin silicon dioxide spacer. Our experimental measurements reveal high-performance absorption over a wide range of incidence angles for both s- and p-polarizations. We also investigate numerically the frequency-dependent field and current distributions to elucidate how the absorption occurs within the metasurface structure. PMID:26828999

  5. Ionized Absorbers in AGN

    NASA Astrophysics Data System (ADS)

    Mathur, S.

    1999-08-01

    As a part of this program, we observed three AGN:PKS2251 + 113, PG0043 = 039 and PLH909. Two objects show signatures of absorbtion in their UV spectra. Based on our earlier modeling of X-ray warm absorbents, we expected to observe X-ray observation in these objects. The third, PLH909, is known to have soft excess in EINSTEIN data. Attachment: "Exploratory ASCA observation of broad absorption line quasi-stellar objects".

  6. Ionized Absorbers in AGN

    NASA Technical Reports Server (NTRS)

    Mathur, S.

    1999-01-01

    As a part of this program, we observed three AGN:PKS2251 + 113, PG0043 = 039 and PLH909. Two objects show signatures of absorbtion in their UV spectra. Based on our earlier modeling of X-ray warm absorbents, we expected to observe X-ray observation in these objects. The third, PLH909, is known to have soft excess in EINSTEIN data. Attachment: "Exploratory ASCA observation of broad absorption line quasi-stellar objects".

  7. The Preparation of Chitosan Oligosaccharide/Alginate Sodium/Gelatin Nanofibers by Spiral-Electrospinning.

    PubMed

    Lu, Weipeng; Xu, Haitao; Zhang, Bing; Ma, Ming; Guo, Yanchuan

    2016-03-01

    A spiral-electrospinning was used to mass-produce gelatin nanofibers with a content of chitosan oligosaccharide (COS) and alginate sodium (AS). Multiple jets were observed to form on the edges of the helix slice-spinneret simultaneously. Important electrospinning parameters, such as concentration of COS/gelatin aqueous solution, rotational velocity of spinneret and spinning distance, were examined to investigate the electrospinnability of COS/gelatin solution and the morphology of COS/gelatin nanofiber membranes. Due to the poor miscibility between COS and AS, COS/AS/gelatin nanofiber membranes were obtained from COS/gelatin solution and AS/gelatin solution by mixing electrospinning with multi-spinnerets. The novel needleless electrospinning not only avoided the possibility of nozzle-clogging, but also prepared COS/AS/gelatin nanofibers on a large scale for a wide variety of applications. PMID:27455641

  8. Rheology and viscosity scaling of gelatin/1-allyl-3-methylimidazolium chloride solution

    NASA Astrophysics Data System (ADS)

    Qiao, Congde; Li, Tianduo; Zhang, Ling; Yang, Xiaodeng; Xu, Jing

    2014-05-01

    Gelatin/1-allyl-3-methylimidazolium chloride solutions are prepared by using the ionic liquid 1-allyl-3-methylimidazolium chloride as solvent. The rheological properties of the gelatin solutions have been investigated by steady shear and oscillatory shear measurements. In the steady shear measurements, the gelatin solutions with high concentration show a shear-thinning flow behavior at high shear rates, while another shear thinning region can be found in the dilute gelatin solutions at low shear rates. The overlap concentration of gelatin in [amim]Cl is 1.0 wt% and the entanglement concentration is a factor of 4 larger (4.0 wt%). The high intrinsic viscosity (295 mL/g) indicates that the gelatin chains dispersed freely in the ionic liquid and no aggregation phenomenon occurs in dilute gelatin solution. The frequency dependences of modulus changed obviously with an increase in gelatin concentration. The empirical time-temperature superposition principle holds true at the experimental temperatures.

  9. Mineralization, biodegradation, and drug release behavior of gelatin/apatite composite microspheres for bone regeneration.

    PubMed

    Leeuwenburgh, Sander C G; Jo, Junichiro; Wang, Huanan; Yamamoto, Masaya; Jansen, John A; Tabata, Yasuhiko

    2010-10-11

    Gelatin microspheres are well-known for their capacity to release growth factors in a controlled manner, but gelatin microspheres do not calcify in the absence of so-called bioactive substances that induce deposition of calcium phosphate (CaP) bone mineral. This study has investigated if CaP nanocrystals can be incorporated into gelatin microspheres to render these inert microspheres bioactive without compromising the drug releasing properties of gelatin microspheres. Incorporation of CaP nanocrystals into gelatin microspheres resulted into reduced biodegradation and drug release rates, whereas their calcifying capacity increased strongly compared to inert gelatin microspheres. The reduced drug release rate was correlated to the reduced degradation rate as caused by a physical cross-linking effect of CaP nanocrystals dispersed in the gelatin matrix. Consequently, these composite microspheres combine beneficial drug-releasing properties of organic gelatin with the calcifying capacity of a dispersed CaP phase. PMID:20804200

  10. Improving the cellular invasion into PHEMA sponges by incorporation of the RGD peptide ligand: the use of copolymerization as a means to functionalize PHEMA sponges.

    PubMed

    Paterson, Stefan M; Shadforth, Audra M A; Shaw, Jeremy A; Brown, David H; Chirila, Traian V; Baker, Murray V

    2013-12-01

    A monomer that contained the RGD ligand motif was synthesized and copolymerized with 2-hydroxyethyl methacrylate using polymerization-induced phase separation methods to form poly(2-hydroxyethyl methacrylate)-based hydrogel sponges. The sponges had morphologies of aggregated polymer droplets and interconnected pores, the pores having dimensions in the order of 10 μm typical of PHEMA sponges. RGD-containing moieties appeared to be evenly distributed through the polymer droplets. Compared to PHEMA sponges that were not functionalized with RGD, the new sponges containing RGD allowed greater invasion by human corneal epithelial cells, by advancing the attachment of cells to the surface of the polymer droplets. PMID:24094205

  11. Femtosecond laser printing of living cells using absorbing film-assisted laser-induced forward transfer

    NASA Astrophysics Data System (ADS)

    Hopp, Béla; Smausz, Tomi; Szabó, Gábor; Kolozsvári, Lajos; Kafetzopoulos, Dimitris; Fotakis, Costas; Nógrádi, Antal

    2012-01-01

    The applicability of a femtosecond KrF laser in absorbing film-assisted, laser-induced forward transfer of living cells was studied. The absorbing materials were 50-nm-thick metal films and biomaterials (gelatine, Matrigel, each 50 μm thick, and polyhydroxybutyrate, 2 μm). The used cell types were human neuroblastoma, chronic myeloid leukemia, and osteogenic sarcoma cell lines, and primary astroglial rat cells. Pulses of a 500-fs KrF excimer laser focused onto the absorbing layer in a 250-μm diameter spot with 225 mJ/cm2 fluence were used to transfer the cells to the acceptor plate placed at 0.6 mm distance, which was a glass slide either pure or covered with biomaterials. While the low-absorptivity biomaterial absorbing layers proved to be ineffective in transfer of cells, when applied on the surface of acceptor plate, the wet gelatine and Matrigel layers successfully ameliorated the impact of the cells, which otherwise did not survive the arrival onto a hard surface. The best short- and long-term survival rate was between 65% and 70% for neuroblastoma and astroglial cells. The long-term survival of the transferred osteosarcoma cells was low, while the myeloid leukemia cells did not tolerate the procedure under the applied experimental conditions.

  12. Fabrication and calibration of sensitively photoelastic biocompatible gelatin spheres

    NASA Astrophysics Data System (ADS)

    Fu, Henry; Ceniceros, Ericson; McCormick, Zephyr

    2013-11-01

    Photoelastic gelatin can be used to measure forces generated by organisms in complex environments. We describe manufacturing, storage, and calibration techniques for sensitive photoelastic gelatin spheres to be used in aqueous environments. Calibration yields a correlation between photoelastic signal and applied force to be used in future studies. Images for calibration were collected with a digital camera attached to a linear polariscope. The images were then processed in Matlab to determine the photoelastic response of each sphere. The effect of composition, gelatin concentration, glycerol concentration, sphere size, and temperature were all examined for their effect on signal response. The minimum detectable force and the repeatability of our calibration technique were evaluated for the same sphere, different spheres from the same fabrication batch, and spheres from different batches. The minimum force detectable is 10 μN or less depending on sphere size. Factors which significantly contribute to errors in the calibration were explored in detail and minimized.

  13. Hair follicles stimulation effects of gelatin nanofibers containing silver nanoparticles.

    PubMed

    Tura, V; Hagiu, B A; Mangalagiu, I I

    2010-04-01

    In the present work we studied gelatin nanofibers containing silver nanoparticles of 14 +/- 6 nm mean diameter, prepared by electrospinning. The electrospinnable solution was obtained by drop-wise adding a AgNO3/acetic acid solution to gelatin which had previously been dissolved in a mixture of formic acid and acetic acid. The silver metallic nanoparticles were formed due to the reducing action of the formic acid. The resulted material was characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) and X-ray diffraction (XRD). Subcutaneous implants in rabbits demonstrated that the gelatin nanofibers containing silver nanoparticles were resorbed with no inflammatory reactions. An increased number of secondary hair follicles developed in tissue regions close to implants, suggesting the existence of a stimulation effect of silver nanoparticles on hair follicles. PMID:20738075

  14. Novel formulations of ballistic gelatin. 1. Rheological properties.

    PubMed

    Zecheru, Teodora; Său, Ciprian; Lăzăroaie, Claudiu; Zaharia, Cătălin; Rotariu, Traian; Stănescu, Paul-Octavian

    2016-06-01

    Ballistic gelatin is the simulant of the human body during field tests in forensics and other related fields, due to its physical and mechanical similarities to human trunk and organs. Since the ballistic gelatin used in present has important issues to overcome, an alternative approach is the use of gelatin-polymer composites, where a key factor is the insertion of biocompatible materials, which replicate accurately the human tissues. In order to be able to obtain an improved material in terms of mechanical performances by an easy industrial-scale technology, before the verification of the ballistic parameters by shooting in agreement with military standards, one of the best and cheapest solutions is to perform a thorough check of their rheological properties, in standard conditions. PMID:27139038

  15. Reinforcement of injectable calcium phosphate cement by gelatinized starches.

    PubMed

    Liu, Huiling; Guan, Ying; Wei, Donglei; Gao, Chunxia; Yang, Huilin; Yang, Lei

    2016-04-01

    Current injectable calcium phosphate bone cements (CPC) encounter the problems of low strength, high brittleness, and low cohesion in aqueous environment, which greatly hinder their clinical applications for loading-bearing bone substitution and minimally invasive orthopedic surgeries. Here, a strategy of using gelatinized starches to reinforce injectable CPC was investigated. Four types of starches, namely corn starch, crosslinked starch, cationic starch, and Ca-modified starch, were studied for their influence on CPC mechanical properties, injectability, setting times, anticollapsibility, and cytocompatibility. Gelatinized starch significantly improved compressive strength and modulus as well as strain energy density of CPC to different extents. Specifically, both corn starch and Ca-modified starch revealed sixfold and more than twofold increases in the compressive strength and modulus of CPC, respectively. The addition of gelatinized starches with proper contents increased the injectability and anticollapsibility of CPC. In addition, osteoblast proliferation tests on leaching solution of modified cements showed that gelatinized starches had no adverse effect on cell proliferation, and all cement samples resulted in better osteoblast proliferation compared to phosphate-buffered solution control. The mechanisms behind the reinforcing effect of different starches were preliminarily studied. Two possible mechanisms, reinforcement by the second phase of gelatinized starch and strong interlocking of apatite crystals, were proposed based on the results of starch zeta potential and viscosity, cement microstructure, and resultant mechanical properties. In conclusion, incorporating gelatinized starches could be an effective, facile, and bio-friendly strategy to reinforce injectable CPC and improve its mechanical stability, and thus, should be further studied and developed. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 615-625, 2016. PMID

  16. Diisocyanate mediated polyether modified gelatin drug carrier for controlled release

    PubMed Central

    Vijayakumar, Vediappan; Subramanian, Kaliappagounder

    2013-01-01

    Gelatin is an extensively studied biopolymer hydrogel drug carrier due to its biocompatibility, biodegradability and non-toxicity of its biodegraded products formed in vivo. But with the pristine gelatin it is difficult to achieve a controlled and desirable drug release characteristics due to its structural and thermal lability and high solubility in aqueous biofluids. Hence it is necessary to modify its solubility and structural stability in biofluids to achieve controlled release features with improved drug efficacy and broader carrier applications. In the present explorations an effort is made in this direction by cross linking gelatin to different extents using hitherto not studied isocyanate terminated poly(ether) as a macrocrosslinker prepared from poly(ethylene glycol) and isophorone diisocyanate in dimethyl sulfoxide. The crosslinked samples were analyzed for structure by Fourier transform-infrared spectroscopy, thermal behavior through thermogravimetric analysis and differential scanning calorimetry. The cross linked gelatins were biodegradable, insoluble and swellable in biofluids. They were evaluated as a carrier for in vitro drug delivery taking theophylline as a model drug used in asthma therapy. The crosslinking of gelatin decreased the drug release rate by 10–20% depending upon the extent of crosslinking. The modeled drug release characteristics revealed an anomalous transport mechanism. The release rates for ampicillin sodium, 5-fluorouracil and theophylline drugs in a typical crosslinked gelatin carrier were found to depend on the solubility and hydrophobicity of the drugs, and the pH of the fluid. The observed results indicated that this material can prove its mettle as a viable carrier matrix in drug delivery applications. PMID:24493973

  17. Pezizomycotina dominates the fungal communities of South China Sea sponges Theonella swinhoei and Xestospongia testudinaria.

    PubMed

    Jin, Liling; Liu, Fang; Sun, Wei; Zhang, Fengli; Karuppiah, Valliappan; Li, Zhiyong

    2014-12-01

    Compared with the knowledge of sponge-associated bacterial diversity and ecological roles, the fungal diversity and ecological roles of sponges remain largely unknown. In this study, the fungal diversity and protein synthesis potential in two South China Sea sponges Theonella swinhoei and Xestospongia testudinaria were investigated by rRNA vs. rRNA gene analysis. EF4/fung5 was chosen after a series of PCR tests to target fungal 18S rRNA and 18S rRNA gene. Altogether, 283 high-quality sequences were obtained, which resulted in 26 Operational taxonomic units (OTUs) that were assigned to Ascomycota, Basidiomycota, and Blastocladiomycota. At subphylum level, 77.3% of sponge-derived sequences were affiliated with Pezizomycotina. The fungal compositions of T. swinhoei and X. testudinaria were different from that of ambient seawater. The predominant OTU shared between two sponges was rare in seawater, whereas the most abundant OTUs in seawater were not found in sponges. Additionally, the major OTUs of sponge cDNA datasets were shared in two sponges. The fungal diversity illustrated by sponge cDNA datasets correlated well with that derived from sponge DNA datasets, indicating that the major members of sponge-associated fungi had protein synthesis potential. This study highlighted the diversity of Pezizomycotina in marine sponge-fungi symbioses and the necessity of investigating ecological roles of sponge-associated fungi. PMID:25348120

  18. Temperature-dependent dielectric properties of a thermoplastic gelatin

    NASA Astrophysics Data System (ADS)

    Landi, Giovanni; Neitzert, Heinz C.; Sorrentino, Andrea

    2016-05-01

    The frequency and the temperature dependence of the dielectric properties of a thermoplastic gelatin based bio-material have been investigated. At lower frequencies the dielectric response is strongly affected by charge carrier accumulation at the electrodes which modifies the dominating hopping conduction mechanism. The variation of the ac conductivity with frequency obeys a Jonscher type power law except for a small deviation in the low frequency range due to the electrode polarization effect. The master curve of the ac conductivity data shows that the conductivity relaxation of the gelatin is temperature independent.

  19. Microfabrication of gelatin-polycaprolactone composites for customized drug delivery.

    PubMed

    Kanungo, Ivy; Chellappa, Nisha; Fathima, Nishter Nishad

    2015-04-01

    Dynamic properties of water molecules present in the vicinity of protein are sensitive to its local conformational motions. Water mobility at the protein surface/interfaces is affected by its polar and charged groups, which are capable of anchoring water molecules through H-bonds. Differential scanning calorimetry, ATR-FTIR spectroscopy and circular dichroic analysis have been employed to substantiate the changes in hydration of gelatin, interacting with polycaprolactone. Enthalpy of denaturation and decrease in melting temperature indicate alteration in water-bridges around gelatin. In vitro drug release studies substantiate the influence of hydration on its release kinetics. These studies would aid in exploration of potential drug carrier. PMID:25686988

  20. Gelatin manipulation of latent macropores formation in brushite cement.

    PubMed

    Yin, Yuji; Ye, Fen; Cai, Shu; Yao, Kangde; Cui, Junfeng; Song, Xuefeng

    2003-03-01

    Macroporous brushite cement was prepared from a mixture of beta-tricalcium phosphate (beta-TCP) and monocalcium phosphate monohydrate (MCPM) using gelatin powder as a latent templates. In a setting reaction coexisting with gelatin, closed packed, open-pore structure with 100-200 microm macropores are obtained after immersion of the set cement into PBS buffer (pH 7.4) at 37 degrees C for 1-4 weeks. The macroporous brushite cement has compressive strength of 15 MPa originally, which reducing to 5.5 MPa with macropore formation gradually in comparison to that of cancellous bone (5-10 MPa). PMID:15348472

  1. Treatment of wet blue with fillers produced from quebracho-modified gelatin

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Gelatin modified with quebracho to produce high molecular weight, high viscosity products was investigated as a filler in leather processing. The uptake of quebracho/gelatin product by the wet blue was on the average about 55% of the 10% gelatin/quebracho product offered; the reaction appeared to be...

  2. Hydrophilic PCU scaffolds prepared by grafting PEGMA and immobilizing gelatin to enhance cell adhesion and proliferation.

    PubMed

    Shi, Changcan; Yuan, Wenjie; Khan, Musammir; Li, Qian; Feng, Yakai; Yao, Fanglian; Zhang, Wencheng

    2015-05-01

    Gelatin contains many functional motifs which can modulate cell specific adhesion, so we modified polycarbonate urethane (PCU) scaffold surface by immobilization of gelatin. PCU-g-gelatin scaffolds were prepared by direct immobilizing gelatins onto the surface of aminated PCU scaffolds. To increase the immobilization amount of gelatin, poly(ethylene glycol) methacrylate (PEGMA) was grafted onto PCU scaffolds by surface initiated atom transfer radical polymerization. Then, following amination and immobilization, PCU-g-PEGMA-g-gelatin scaffolds were obtained. Both modified scaffolds were characterized by chemical and biological methods. After immobilization of gelatin, the microfiber surface became rough, but the original morphology of scaffolds was maintained successfully. PCU-g-PEGMA-g-gelatin scaffolds were more hydrophilic than PCU-g-gelatin scaffolds. Because hydrophilic PEGMA and gelatin were grafted and immobilized onto the surface, the PCU-g-PEGMA-g-gelatin scaffolds showed low platelet adhesion, perfect anti-hemolytic activity and excellent cell growth and proliferation capacity. It could be envisioned that PCU-g-PEGMA-g-gelatin scaffolds might have potential applications in tissue engineering artificial scaffolds. PMID:25746263

  3. Evaluation of Polymers Prepared from Gelatin and Casein or Whey as Potential Fillers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We recently demonstrated that fillers could be formed inside leather when gelatins alone or mixed proteins, such as gelatin and casein or gelatin and whey, were added to wet blue that had been pretreated with microbial transglutaminase. To monitor these reactions, we had added fluorescently labeled...

  4. Absorber for terahertz radiation management

    DOEpatents

    Biallas, George Herman; Apeldoorn, Cornelis; Williams, Gwyn P.; Benson, Stephen V.; Shinn, Michelle D.; Heckman, John D.

    2015-12-08

    A method and apparatus for minimizing the degradation of power in a free electron laser (FEL) generating terahertz (THz) radiation. The method includes inserting an absorber ring in the FEL beam path for absorbing any irregular THz radiation and thus minimizes the degradation of downstream optics and the resulting degradation of the FEL output power. The absorber ring includes an upstream side, a downstream side, and a plurality of wedges spaced radially around the absorber ring. The wedges form a scallop-like feature on the innermost edges of the absorber ring that acts as an apodizer, stopping diffractive focusing of the THz radiation that is not intercepted by the absorber. Spacing between the scallop-like features and the shape of the features approximates the Bartlett apodization function. The absorber ring provides a smooth intensity distribution, rather than one that is peaked on-center, thereby eliminating minor distortion downstream of the absorber.

  5. Microencapsulation of sulforaphane from broccoli seed extracts by gelatin/gum arabic and gelatin/pectin complexes.

    PubMed

    García-Saldaña, Jesús S; Campas-Baypoli, Olga N; López-Cervantes, Jaime; Sánchez-Machado, Dalia I; Cantú-Soto, Ernesto U; Rodríguez-Ramírez, Roberto

    2016-06-15

    Sulforaphane is a phytochemical that has received attention in recent years due to its chemopreventive properties. However, the uses and applications of this compound are very limited, because is an unstable molecule that is degraded mainly by changes in temperature and pH. In this research, the use of food grade polymers for microencapsulation of sulforaphane was studied by a complex coacervation method using the interaction of oppositely charged polymers as gelatin/gum arabic and gelatin/pectin. The polymers used were previously characterized in moisture content, ash and nitrogen. The encapsulation yield was over 80%. The gelatin/pectin complex had highest encapsulation efficiency with 17.91%. The presence of sulforaphane in the complexes was confirmed by FTIR and UV/visible spectroscopy. The materials used in this work could be a new and attractive option for the protection of sulforaphane. PMID:26868553

  6. Corrosion resistant neutron absorbing coatings

    SciTech Connect

    Choi, Jor-Shan; Farmer, Joseph C.; Lee, Chuck K.; Walker, Jeffrey; Russell, Paige; Kirkwood, Jon; Yang, Nancy; Champagne, Victor

    2012-05-29

    A method of forming a corrosion resistant neutron absorbing coating comprising the steps of spray or deposition or sputtering or welding processing to form a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material. Also a corrosion resistant neutron absorbing coating comprising a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material.

  7. Corrosion resistant neutron absorbing coatings

    SciTech Connect

    Choi, Jor-Shan; Farmer, Joseph C; Lee, Chuck K; Walker, Jeffrey; Russell, Paige; Kirkwood, Jon; Yang, Nancy; Champagne, Victor

    2013-11-12

    A method of forming a corrosion resistant neutron absorbing coating comprising the steps of spray or deposition or sputtering or welding processing to form a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material. Also a corrosion resistant neutron absorbing coating comprising a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material.

  8. Sterol and genomic analyses validate the sponge biomarker hypothesis.

    PubMed

    Gold, David A; Grabenstatter, Jonathan; de Mendoza, Alex; Riesgo, Ana; Ruiz-Trillo, Iñaki; Summons, Roger E

    2016-03-01

    Molecular fossils (or biomarkers) are key to unraveling the deep history of eukaryotes, especially in the absence of traditional fossils. In this regard, the sterane 24-isopropylcholestane has been proposed as a molecular fossil for sponges, and could represent the oldest evidence for animal life. The sterane is found in rocks ∼650-540 million y old, and its sterol precursor (24-isopropylcholesterol, or 24-ipc) is synthesized today by certain sea sponges. However, 24-ipc is also produced in trace amounts by distantly related pelagophyte algae, whereas only a few close relatives of sponges have been assayed for sterols. In this study, we analyzed the sterol and gene repertoires of four taxa (Salpingoeca rosetta, Capsaspora owczarzaki, Sphaeroforma arctica, and Creolimax fragrantissima), which collectively represent the major living animal outgroups. We discovered that all four taxa lack C30 sterols, including 24-ipc. By building phylogenetic trees for key enzymes in 24-ipc biosynthesis, we identified a candidate gene (carbon-24/28 sterol methyltransferase, or SMT) responsible for 24-ipc production. Our results suggest that pelagophytes and sponges independently evolved C30 sterol biosynthesis through clade-specific SMT duplications. Using a molecular clock approach, we demonstrate that the relevant sponge SMT duplication event overlapped with the appearance of 24-isopropylcholestanes in the Neoproterozoic, but that the algal SMT duplication event occurred later in the Phanerozoic. Subsequently, pelagophyte algae and their relatives are an unlikely alternative to sponges as a source of Neoproterozoic 24-isopropylcholestanes, consistent with growing evidence that sponges evolved long before the Cambrian explosion ∼542 million y ago. PMID:26903629

  9. Sterol and genomic analyses validate the sponge biomarker hypothesis

    PubMed Central

    Gold, David A.; Grabenstatter, Jonathan; de Mendoza, Alex; Riesgo, Ana; Ruiz-Trillo, Iñaki

    2016-01-01

    Molecular fossils (or biomarkers) are key to unraveling the deep history of eukaryotes, especially in the absence of traditional fossils. In this regard, the sterane 24-isopropylcholestane has been proposed as a molecular fossil for sponges, and could represent the oldest evidence for animal life. The sterane is found in rocks ∼650–540 million y old, and its sterol precursor (24-isopropylcholesterol, or 24-ipc) is synthesized today by certain sea sponges. However, 24-ipc is also produced in trace amounts by distantly related pelagophyte algae, whereas only a few close relatives of sponges have been assayed for sterols. In this study, we analyzed the sterol and gene repertoires of four taxa (Salpingoeca rosetta, Capsaspora owczarzaki, Sphaeroforma arctica, and Creolimax fragrantissima), which collectively represent the major living animal outgroups. We discovered that all four taxa lack C30 sterols, including 24-ipc. By building phylogenetic trees for key enzymes in 24-ipc biosynthesis, we identified a candidate gene (carbon-24/28 sterol methyltransferase, or SMT) responsible for 24-ipc production. Our results suggest that pelagophytes and sponges independently evolved C30 sterol biosynthesis through clade-specific SMT duplications. Using a molecular clock approach, we demonstrate that the relevant sponge SMT duplication event overlapped with the appearance of 24-isopropylcholestanes in the Neoproterozoic, but that the algal SMT duplication event occurred later in the Phanerozoic. Subsequently, pelagophyte algae and their relatives are an unlikely alternative to sponges as a source of Neoproterozoic 24-isopropylcholestanes, consistent with growing evidence that sponges evolved long before the Cambrian explosion ∼542 million y ago. PMID:26903629

  10. Solar radiation absorbing material

    DOEpatents

    Googin, John M.; Schmitt, Charles R.; Schreyer, James M.; Whitehead, Harlan D.

    1977-01-01

    Solar energy absorbing means in solar collectors are provided by a solar selective carbon surface. A solar selective carbon surface is a microporous carbon surface having pores within the range of 0.2 to 2 micrometers. Such a surface is provided in a microporous carbon article by controlling the pore size. A thermally conductive substrate is provided with a solar selective surface by adhering an array of carbon particles in a suitable binder to the substrate, a majority of said particles having diameters within the range of about 0.2-10 microns.

  11. Absorber for solar power.

    PubMed

    Powell, W R

    1974-10-01

    A simple, economical absorber utilizing a new principle of operation to achieve very low reradiation losses while generating temperatures limited by material properties of quartz is described. Its performance is analyzed and indicates approximately 90% thermal efficiency and 73% conversion efficiency for an earth based unit with moderately concentrated (~tenfold) sunlight incident. It is consequently compatible with the most economic of concentrator mirrors (stamped) or mirrors deployable in space. Space applications are particularly attractive, as temperatures significantly below 300 K are possible and permit even higher conversion efficiency. PMID:20134700

  12. 21 CFR 529.1003 - Flurogestone acetate-impregnated vaginal sponge.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... into ewe's vagina 13 days before desired start of breeding. For intravaginal use in sheep only. Do not... sponges to minimize exposure to drug. Do not leave sponge in the vagina for more than 21 days. Ewes...

  13. A Superamphiphobic Sponge with Mechanical Durability and a Self-Cleaning Effect

    NASA Astrophysics Data System (ADS)

    Kim, Daewon; Im, Hwon; Kwak, Moo Jin; Byun, Eunkyoung; Im, Sung Gap; Choi, Yang-Kyu

    2016-07-01

    A robust superamphiphobic sponge (SA-sponge) is proposed by using a single initiated chemical vapor deposition (i-CVD) process. Poly(3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-heptadecafluorodecyl methacrylate) (PFDMA) is deposited on a commercial sponge by the polymerization of fluoroalkyl acrylates during the i-CVD process. This PFDMA is conformally coated onto both the exterior and interior of the sponge structure by a single step of the i-CVD process at nearly room temperature. Due to the inherent porous structure of the sponge and the hydrophobic property of the fluorine-based PFDMA, the demonstrated SA-sponge shows not only superhydrophobicity but also superoleophobicity. Furthermore, the fabricated SA-sponge is robust with regard to physical and chemical damage. The fabricated SA-sponge can be utilized for multi-purpose applications such as gas-permeable liquid separators.

  14. A Superamphiphobic Sponge with Mechanical Durability and a Self-Cleaning Effect.

    PubMed

    Kim, Daewon; Im, Hwon; Kwak, Moo Jin; Byun, Eunkyoung; Im, Sung Gap; Choi, Yang-Kyu

    2016-01-01

    A robust superamphiphobic sponge (SA-sponge) is proposed by using a single initiated chemical vapor deposition (i-CVD) process. Poly(3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-heptadecafluorodecyl methacrylate) (PFDMA) is deposited on a commercial sponge by the polymerization of fluoroalkyl acrylates during the i-CVD process. This PFDMA is conformally coated onto both the exterior and interior of the sponge structure by a single step of the i-CVD process at nearly room temperature. Due to the inherent porous structure of the sponge and the hydrophobic property of the fluorine-based PFDMA, the demonstrated SA-sponge shows not only superhydrophobicity but also superoleophobicity. Furthermore, the fabricated SA-sponge is robust with regard to physical and chemical damage. The fabricated SA-sponge can be utilized for multi-purpose applications such as gas-permeable liquid separators. PMID:27435167

  15. A Superamphiphobic Sponge with Mechanical Durability and a Self-Cleaning Effect

    PubMed Central

    Kim, Daewon; Im, Hwon; Kwak, Moo Jin; Byun, Eunkyoung; Im, Sung Gap; Choi, Yang-Kyu

    2016-01-01

    A robust superamphiphobic sponge (SA-sponge) is proposed by using a single initiated chemical vapor deposition (i-CVD) process. Poly(3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-heptadecafluorodecyl methacrylate) (PFDMA) is deposited on a commercial sponge by the polymerization of fluoroalkyl acrylates during the i-CVD process. This PFDMA is conformally coated onto both the exterior and interior of the sponge structure by a single step of the i-CVD process at nearly room temperature. Due to the inherent porous structure of the sponge and the hydrophobic property of the fluorine-based PFDMA, the demonstrated SA-sponge shows not only superhydrophobicity but also superoleophobicity. Furthermore, the fabricated SA-sponge is robust with regard to physical and chemical damage. The fabricated SA-sponge can be utilized for multi-purpose applications such as gas-permeable liquid separators. PMID:27435167

  16. Contact sponge water absorption test implemented for in situ measures

    NASA Astrophysics Data System (ADS)

    Gaggero, Laura; Scrivano, Simona

    2016-04-01

    The contact sponge method is a non-destructive in-situ methodology used to estimate a water uptake coefficient. The procedure, unlike other in-situ measurement was proven to be directly comparable to the water uptake laboratory measurements, and was registered as UNI 11432:2011. The UNI Normal procedure requires to use a sponge with known density, soaked in water, weighed, placed on the material for 1 minute (UNI 11432, 2011; Pardini & Tiano, 2004), then weighed again. Difficulties arise in operating on test samples or on materials with porosity varied for decay. While carrying on the test, fluctuations in the bearing of the environmental parameters were negligible, but not the pressure applied to the surface, that induced the release of different water amounts towards the material. For this reason we designed a metal piece of the same diameter of the plate carrying the sponge, to be screwed at the tip of a pocket penetrometer. With this instrument the sponge was kept in contact with the surface for 1 minute applying two different loads, at first pushed with 0.3 kg/cm2 in order to press the sponge, but not its holder, against the surface. Then, a load of 1.1 kg/ cm2 was applied, still avoiding deviating the load to the sponge holder. We applied both the current and our implemented method to determine the water absorption by contact sponge on 5 fresh rock types (4 limestones: Fine - and Coarse grained Pietra di Vicenza, Rosso Verona, Breccia Aurora, and the silicoclastic Macigno sandstone). The results show that 1) the current methodology imply manual skill and experience to produce a coherent set of data; the variable involved are in fact not only the imposed pressure but also the compression mechanics. 2) The control on the applied pressure allowed reproducible measurements. Moreover, 3) the use of a thicker sponge enabled to apply the method even on rougher surfaces, as the device holding the sponge is not in contact with the tested object. Finally, 4) the

  17. Enhancement of recovery of Neisseria meningitidis by gelatin in blood culture media.

    PubMed Central

    Pai, C H; Sorger, S

    1981-01-01

    The efficacy of gelatin for the recovery of Neisseria meningitidis from blood cultures was evaluated in a clinical setting. The organism was isolated from seven patients with meningococcal infections in blood culture media containing 1% gelatin. In contrast, only two blood cultures from these patients were positive in media without gelatin (P less than 0.05). Gelatin did not influence the recovery of other organisms isolated during this study. Conventional blood culture media may be supplemented with gelatin when meningococcemia is suspected. PMID:6790567

  18. Green strength of zirconium sponge and uranium dioxide powder compacts

    SciTech Connect

    Balakrishna, Palanki Murty, B. Narasimha; Sahoo, P.K.; Gopalakrishna, T.

    2008-07-15

    Zirconium metal sponge is compacted into rectangular or cylindrical shapes using hydraulic presses. These shapes are stacked and electron beam welded to form a long electrode suitable for vacuum arc melting and casting into solid ingots. The compact electrodes should be sufficiently strong to prevent breakage in handling as well as during vacuum arc melting. Usually, the welds are strong and the electrode strength is limited by the green strength of the compacts, which constitute the electrode. Green strength is also required in uranium dioxide (UO{sub 2}) powder compacts, to withstand stresses during de-tensioning after compaction as well as during ejection from the die and for subsequent handling by man and machine. The strengths of zirconium sponge and UO{sub 2} powder compacts have been determined by bending and crushing respectively, and Weibul moduli evaluated. The green density of coarse sponge compact was found to be larger than that from finer sponge. The green density of compacts from lightly attrited UO{sub 2} powder was higher than that from unattrited category, accompanied by an improvement in UO{sub 2} green crushing strength. The factors governing green strength have been examined in the light of published literature and experimental evidence. The methodology and results provide a basis for quality control in metal sponge and ceramic powder compaction in the manufacture of nuclear fuel.

  19. First insights into the microbiome of a carnivorous sponge.

    PubMed

    Dupont, Samuel; Corre, Erwan; Li, Yanyan; Vacelet, Jean; Bourguet-Kondracki, Marie-Lise

    2013-12-01

    Using 454 pyrosequencing, we characterized for the first time the associated microbial community of the deep-sea carnivorous Demosponge Asbestopluma hypogea (Cladorhizidae). Targeting the 16S rRNA gene V3 and V6 hypervariable regions, we compared the diversity and composition of associated microbes of two individual sponges of A. hypogea freshly collected in the cave with surrounding seawater and with one sponge sample maintained 1 year in an aquarium after collection. With more than 22 961 high quality sequences from sponge samples, representing c. 800 operational taxonomic units per sponge sample at 97% sequence similarities, the phylogenetic affiliation of A. hypogea-associated microbes was assigned to 20 bacterial and two archaeal phyla, distributed into 45 classes and 95 orders. Several differences between the sponge and seawater microbes were observed, highlighting a specific and stable A. hypogea microbial community dominated by Proteobacteria and Bacteroidetes and Thaumarchaeota phyla. A high relative abundance of ammonia-oxidizing archaea and a dominance of sulfate oxidizing/reducing bacteria were observed. Our findings shed lights on the potential roles of associated microbial community in the lifestyle of A. hypogea. PMID:23845054

  20. Advancement into the Arctic Region for Bioactive Sponge Secondary Metabolites

    PubMed Central

    Abbas, Samuel; Kelly, Michelle; Bowling, John; Sims, James; Waters, Amanda; Hamann, Mark

    2011-01-01

    Porifera have long been a reservoir for the discovery of bioactive compounds and drug discovery. Most research in the area has focused on sponges from tropical and temperate waters, but more recently the focus has shifted to the less accessible colder waters of the Antarctic and, to a lesser extent, the Arctic. The Antarctic region in particular has been a more popular location for natural products discovery and has provided promising candidates for drug development. This article reviews groups of bioactive compounds that have been isolated and reported from the southern reaches of the Arctic Circle, surveys the known sponge diversity present in the Arctic waters, and details a recent sponge collection by our group in the Aleutian Islands, Alaska. The collection has yielded previously undescribed sponge species along with primary activity against opportunistic infectious diseases, malaria, and HCV. The discovery of new sponge species and bioactive crude extracts gives optimism for the isolation of new bioactive compounds from a relatively unexplored source. PMID:22163194

  1. Effect of collagen sponge and fibrin glue on bone repair

    PubMed Central

    SANTOS, Thiago de Santana; ABUNA, Rodrigo Paolo Flores; de ALMEIDA, Adriana Luisa Gonçalves; BELOTI, Marcio Mateus; ROSA, Adalberto Luiz

    2015-01-01

    ABSTRACT The ability of hemostatic agents to promote bone repair has been investigated using in vitro and in vivo models but, up to now, the results are inconclusive. Objective In this context, the aim of this study was to compare the potential of bone repair of collagen sponge with fibrin glue in a rat calvarial defect model. Material and Methods Defects of 5 mm in diameter were created in rat calvariae and treated with either collagen sponge or fibrin glue; untreated defects were used as control. At 4 and 8 weeks, histological analysis and micro-CT-based histomorphometry were carried out and data were compared by two-way ANOVA followed by Student-Newman-Keuls test when appropriated (p≤0.05). Results Three-dimensional reconstructions showed increased bone formation in defects treated with either collagen sponge or fibrin glue compared with untreated defects, which was confirmed by the histological analysis. Morphometric parameters indicated the progression of bone formation from 4 to 8 weeks. Additionally, fibrin glue displayed slightly higher bone formation rate when compared with collagen sponge. Conclusion Our results have shown the benefits of using collagen sponge and fibrin glue to promote new bone formation in rat calvarial bone defects, the latter being discreetly more advantageous. PMID:26814464

  2. Immunotoxicity of washing soda in a freshwater sponge of India.

    PubMed

    Mukherjee, Soumalya; Ray, Mitali; Ray, Sajal

    2015-03-01

    The natural habitat of sponge, Eunapius carteri faces an ecotoxicological threat of contamination by washing soda, a common household cleaning agent of India. Washing soda is chemically known as sodium carbonate and is reported to be toxic to aquatic organisms. Domestic effluent, drain water and various human activities in ponds and lakes have been identified as the major routes of washing soda contamination of water. Phagocytosis and generation of cytotoxic molecules are important immunological responses offered by the cells of sponges against environmental toxins and pathogens. Present study involves estimation of phagocytic response and generation of cytotoxic molecules like superoxide anion, nitric oxide and phenoloxidase in E. carteri under the environmentally realistic concentrations of washing soda. Sodium carbonate exposure resulted in a significant decrease in the phagocytic response of sponge cells under 4, 8, 16 mg/l of the toxin for 96h and all experimental concentrations of the toxin for 192h. Washing soda exposure yielded an initial increase in the generation of the superoxide anion and nitric oxide followed by a significant decrease in generation of these cytotoxic agents. Sponge cell generated a high degree of phenoloxidase activity under the experimental exposure of 2, 4, 8, 16 mg/l of sodium carbonate for 96 and 192 h. Washing soda induced alteration of phagocytic and cytotoxic responses of E. carteri was indicative to an undesirable shift in their immune status leading to the possible crises of survival and propagation of sponges in their natural habitat. PMID:25497767

  3. Screening for Methicillin-Resistant Staphylococcus aureus Colonization Using Sponges

    PubMed Central

    Lee, Chang-Seop; Montalmont, Bianca; O’Hara, Jessica A.; Syed, Alveena; Chaussard, Charma; McGaha, Traci L.; Pakstis, Diana L.; Lee, Ju-Hyung; Shutt, Kathleen A.; Doi, Yohei

    2015-01-01

    OBJECTIVE Nasal swab culture is the standard method for identifying methicillin-resistant Staphylococcus aureus (MRSA) carriers. However, this method is known to miss a substantial portion of those carrying MRSA elsewhere. We hypothesized that the additional use of a sponge to collect skin culture samples would significantly improve the sensitivity of MRSA detection. DESIGN Hospitalized patients with recent MRSA infection were enrolled and underwent MRSA screening of the forehead, nostrils, pharynx, axilla, and groin with separate swabs and the forehead, axilla, and groin with separate sponges. Staphylococcal cassette chromosome mec (SCCmec) typing was conducted by polymerase chain reaction (PCR). PATIENTS A total of 105 MRSA patients were included in the study. RESULTS At least 1 specimen from 56.2% of the patients grew MRSA. Among patients with at least 1 positive specimen, the detection sensitivities were 79.7% for the swabs and 64.4% for the sponges. Notably, 86.4% were detected by a combination of sponges and nasal swab, and 72.9% were detected by a combination of pharyngeal and nasal swabs, whereas only 50.9% were detected by nasal swab alone (P < 0.0001 and P = 0.0003, respectively). Most isolates had SCCmec type II (59.9%) and IV (35.7%). No correlation was observed between the SCCmec types and collection sites. CONCLUSION Screening using a sponge significantly improves MRSA detection when used in addition to screening with the standard nasal swab. PMID:25627758

  4. Silicon isotopes in sponge spicules: the story of a proxy

    NASA Astrophysics Data System (ADS)

    Hendry, K. R.; Maldonado, M.; Goodwin, C.; Berman, J.; De La Rocha, C. L.

    2014-12-01

    The silicon isotope composition of deep-sea sponges has been shown to reflect the concentration of dissolved silicon, silicic acid, in seawater. This discovery has lead to the development of a novel geochemical proxy for past deep water nutrient status, which has already been applied to a wide range of palaeoceanographic questions ranging from Southern Ocean silicic acid leakage on glacial-interglacial and millennial timescales, to the proliferation of diatoms at the Eocene-Oligocene boundary. The initial calibrations based on modern sponge samples showed some scatter in the relationship between sponge silicon isotopes and silicic acid concentration, but without any apparent systematic influence from other environmental factors (temperature, pH, or other nutrients), morphology or species. However, a silicon isotope calibration of core top spicules, based on measurements made on a large number of spicules extracted from sediments, shows a tighter relationship with silicic acid concentrations, indicating that there are variations between and within individuals that are "averaged out" during palaeoceanographic studies. As is the case for all novel geochemical proxies, there is a need to test the proxy rigorously to ensure robust interpretation of any downcore signal. Here, we will present new studies of modern sponge specimens that have been carried out to shed light on the processes that could result in differences in silicon isotopic fractionation between and within individual sponges. Our findings highlight where caution is required in order to produce robust downcore records of past ocean silicic acid concentrations.

  5. Preparation of astaxanthin nanodispersions using gelatin-based stabilizer systems.

    PubMed

    Anarjan, Navideh; Nehdi, Imededdine Arbi; Sbihi, Hassen Mohamed; Al-Resayes, Saud Ibrahim; Malmiri, Hoda Jafarizadeh; Tan, Chin Ping

    2014-01-01

    The incorporation of lipophilic nutrients, such as astaxanthin (a fat soluble carotenoid) in nanodispersion systems can either increase the water solubility, stability and bioavailability or widen their applications in aqueous food and pharmaceutical formulations. In this research, gelatin and its combinations with sucrose oleate as a small molecular emulsifier, sodium caseinate (SC) as a protein and gum Arabic as a polysaccharide were used as stabilizer systems in the formation of astaxanthin nanodispersions via an emulsification-evaporation process. The results indicated that the addition of SC to gelatin in the stabilizer system could increase the chemical stability of astaxanthin nanodispersions significantly, while using a mixture of gelatin and sucrose oleate as a stabilizer led to production of nanodispersions with the smallest particle size (121.4±8.6 nm). It was also shown that a combination of gelatin and gum Arabic could produce optimal astaxanthin nanodispersions in terms of physical stability (minimum polydispersity index (PDI) and maximum zeta-potential). This study demonstrated that the mixture of surface active compounds showed higher emulsifying and stabilizing functionality compared to using them individually in the preparation of astaxanthin nanodispersions. PMID:25211006

  6. A study of a tissue equivalent gelatine based tissue substitute

    SciTech Connect

    Spence, J.L.

    1992-11-01

    A study of several tissue substitutes for use as volumetric dosimeters was performed. The tissue substitutes studied included tissue substitutes from previous studies and from ICRU 44. The substitutes were evaluated for an overall match to Reference Man which was used as a basis for this study. The evaluation was based on the electron stopping power, the mass attenuation coefficient, the electron density, and the specific gravity. The tissue substitute chosen also had to be capable of changing from a liquid into a solid form to maintain an even distribution of thermoluminesent dosimetry (TLD) powder and then back to a liquid for recovery of the TLD powder without adversely effecting the TLD powder. The gelatine mixture provided the closest match to the data from Reference Man tissue. The gelatine mixture was put through a series of test to determine it`s usefulness as a reliable tissue substitute. The TLD powder was cast in the gelatine mixture and recovered to determine if the TLD powder was adversely effected. The distribution of the TLD powder after being cast into the gelatin mixture was tested in insure an even was maintained.

  7. A study of a tissue equivalent gelatine based tissue substitute

    SciTech Connect

    Spence, J.L.

    1992-11-01

    A study of several tissue substitutes for use as volumetric dosimeters was performed. The tissue substitutes studied included tissue substitutes from previous studies and from ICRU 44. The substitutes were evaluated for an overall match to Reference Man which was used as a basis for this study. The evaluation was based on the electron stopping power, the mass attenuation coefficient, the electron density, and the specific gravity. The tissue substitute chosen also had to be capable of changing from a liquid into a solid form to maintain an even distribution of thermoluminesent dosimetry (TLD) powder and then back to a liquid for recovery of the TLD powder without adversely effecting the TLD powder. The gelatine mixture provided the closest match to the data from Reference Man tissue. The gelatine mixture was put through a series of test to determine it's usefulness as a reliable tissue substitute. The TLD powder was cast in the gelatine mixture and recovered to determine if the TLD powder was adversely effected. The distribution of the TLD powder after being cast into the gelatin mixture was tested in insure an even was maintained.

  8. Topological Analysis, Modeling, and Imaging of Gelatin-Based Hydrogels

    NASA Astrophysics Data System (ADS)

    Koga, Maho; Marmorat, Clement; Rafailovich, Miriam; Talmon, Yishai; Zussman, Eyal; Arinstein, Arkadii

    Gelatin is a component of natural biocompatible scaffolds used in tissue engineering constructs. However, due its supra-molecular structure, the mesh size is drastically larger compared to synthetic polymers having the same moduli, and therefore the Rubber Elastic Theory cannot be used to describe properties of gelatin. Gelatin forms distinct fibrils, bundles of triple helix chains, which form rigid areas. We experimented with two different gel moduli, made possible by varying the concentration of microbial transglutaminase (mTG). mTG forms permanent cross links and affects the morphology of the gelatin by changing the number of fibrils formed. Thus, the mesh size calculated from the Rubber Elastic Theory was much smaller than the actual size of the mesh, as measured from cryoscanning electron microscopy images and fluorescent bead particle migration. We also observed the en-mass migration behavior of dermal fibroblast cells as a function of the substrate rheological response. Our results will present the ability of the cells to sense the structure of the underlying substrate, as well as the absolute value of the modulus. Furthermore, the data will be interpreted in terms of a modified theoretical model, which takes into account the structure and mesh size of the gel.

  9. Lecithin, gelatin and hydrolyzed collagen orally disintegrating films: functional properties.

    PubMed

    Borges, J G; Silva, A G; Cervi-Bitencourt, C M; Vanin, F M; Carvalho, R A

    2016-05-01

    Orally disintegrating films (ODFs) can transport natural active compounds such as ethanol extract of propolis (EEP). This paper aimed to investigate the effect of lecithin on different gelatin and hydrolyzed collagen (HC) polymeric matrices with addition of EEP. ODFs were prepared by casting technique and were characterized (color parameters, water content, mechanical properties, microstructure, disintegration time (DT), infrared spectroscopy (FTIR), contact angle (CA), swelling degree and total phenolic content). The mechanical properties were influenced by HC. The microstructure demonstrated increased porosity and roughness in films with EEP, and the addition of lecithin resulted in an increase in the number of pores. Lecithin-gelatin and lecithin-EEP-gelatin interactions were observed by FTIR. The addition of HC and EEP reduced the DT and CA, and HC and lecithin reduced the swelling capacity. However, the swelling capacity was not affected by presence of EEP. The addition of lecithin to gelatin and HC ODFs may improve the incorporation and the oral transport of active compounds such as EEP. PMID:26826291

  10. Antibacterial and wound healing analysis of gelatin/zeolite scaffolds.

    PubMed

    Ninan, Neethu; Muthiah, Muthunarayanan; Bt Yahaya, Nur Aliza; Park, In-Kyu; Elain, Anne; Wong, Tin Wui; Thomas, Sabu; Grohens, Yves

    2014-03-01

    In this article, gelatin/copper activated faujasites (CAF) composite scaffolds were fabricated by lyophilisation technique for promoting partial thickness wound healing. The optimised scaffold with 0.5% (w/w) of CAF, G (0.5%), demonstrated pore size in the range of 10-350 μm. Agar disc diffusion tests verified the antibacterial role of G (0.5%) and further supported that bacterial lysis was due to copper released from the core of CAF embedded in the gelatin matrix. The change in morphology of bacteria as a function of CAF content in gelatin scaffold was studied using SEM analysis. The confocal images revealed the increase in mortality rate of bacteria with increase in concentration of incorporated CAF in gelatin matrix. Proficient oxygen supply to needy cells is a continuing hurdle faced by tissue engineering scaffolds. The dissolved oxygen measurements revealed that CAF embedded in the scaffold were capable of increasing oxygen supply and thereby promote cell proliferation. Also, G (0.5%) exhibited highest cell viability on NIH 3T3 fibroblast cells which was mainly attributed to the highly porous architecture and its ability to enhance oxygen supply to cells. In vivo studies conducted on Sprague Dawley rats revealed the ability of G (0.5%) to promote skin regeneration in 20 days. Thus, the obtained data suggest that G (0.5%) is an ideal candidate for wound healing applications. PMID:24362063

  11. Gelatin films plasticized with a simulated biodiesel coproduct stream

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cast gelatin films were plasticized with glycerol to which compounds found in an unrefined biodiesel coproduct stream (BCS) had been added, including linoleic acid, methyl linoleate, oleic acid, and methyl oleate, in various amounts. The tensile properties of the films were measured as a function of...

  12. Synthesis and Characterization of Gelatin-Based Magnetic Hydrogels

    PubMed Central

    Helminger, Maria; Wu, Baohu; Kollmann, Tina; Benke, Dominik; Schwahn, Dietmar; Pipich, Vitaliy; Faivre, Damien; Zahn, Dirk; Cölfen, Helmut

    2014-01-01

    A simple preparation of thermoreversible gelatin-based ferrogels in water provides a constant structure defined by the crosslinking degree for gelatin contents between 6 and 18 wt%. The possibility of varying magnetite nanoparticle concentration between 20 and 70 wt% is also reported. Simulation studies hint at the suitability of collagen to bind iron and hydroxide ions, suggesting that collagen acts as a nucleation seed to iron hydroxide aggregation, and thus the intergrowth of collagen and magnetite nanoparticles already at the precursor stage. The detailed structure of the individual ferrogel components is characterized by small-angle neutron scattering (SANS) using contrast matching. The magnetite structure characterization is supplemented by small-angle X-ray scattering and microscopy only visualizing magnetite. SANS shows an unchanged gelatin structure of average mesh size larger than the nanoparticles with respect to gel concentration while the magnetite nanoparticles size of around 10 nm seems to be limited by the gel mesh size. Swelling measurements underline that magnetite acts as additional crosslinker and therefore varying the magnetic and mechanical properties of the ferrogels. Overall, the simple and variable synthesis protocol, the cheap and easy accessibility of the components as well as the biocompatibility of the gelatin-based materials suggest them for a number of applications including actuators. PMID:25844086

  13. Recombinant gelatin microspheres: novel formulations for tissue repair?

    PubMed

    Tuin, Annemarie; Kluijtmans, Sebastiaan G; Bouwstra, Jan B; Harmsen, Martin C; Van Luyn, Marja J A

    2010-06-01

    Microspheres (MSs) can function as multifunctional scaffolds in different approaches of tissue repair (TR), as a filler, a slow-release depot for growth factors, or a delivery vehicle for cells. Natural cell adhesion-supporting extracellular matrix components like gelatin are good materials for these purposes. Recombinant production of gelatin allows for on-demand design of gelatins, which is why we aim at developing recombinant gelatin (RG) MSs for TR. Two types of MSs (50 < Ø < 100 microm) were prepared by crosslinking two RGs, Syn-RG, and the arginine-glycine-aspartate-containing Hu-RG. The MSs were characterized, and their tissue reaction and degradation in rats was examined. Histological analysis of the explants after 14 and 28 days in vivo also showed that Syn-RG was degraded slower than Hu-RG, which correlated with the in vitro degradation assay. Hu-RG explants displayed more cellular ingrowth (60% vs. 15% for Syn-RG at day 14), which was associated with extracellular matrix deposition and vascularization. The infiltrating cells consisted of mainly macrophages, part of which fused to giant cells locally, and fibroblasts. No differences were found in matrix metalloproteinase mRNA levels, whereas gelatinase activity was clearly higher in Hu-RG explants. In conclusion, the in vitro and in vivo results of these novel formulations pave the way for cell- and/or factor-driven TR by these RG MSs. PMID:20102269

  14. Prolonged Culture of Aligned Skeletal Myotubes on Micromolded Gelatin Hydrogels

    PubMed Central

    Bettadapur, Archana; Suh, Gio C.; Geisse, Nicholas A.; Wang, Evelyn R.; Hua, Clara; Huber, Holly A.; Viscio, Alyssa A.; Kim, Joon Young; Strickland, Julie B.; McCain, Megan L.

    2016-01-01

    In vitro models of skeletal muscle are critically needed to elucidate disease mechanisms, identify therapeutic targets, and test drugs pre-clinically. However, culturing skeletal muscle has been challenging due to myotube delamination from synthetic culture substrates approximately one week after initiating differentiation from myoblasts. In this study, we successfully maintained aligned skeletal myotubes differentiated from C2C12 mouse skeletal myoblasts for three weeks by utilizing micromolded (μmolded) gelatin hydrogels as culture substrates, which we thoroughly characterized using atomic force microscopy (AFM). Compared to polydimethylsiloxane (PDMS) microcontact printed (μprinted) with fibronectin (FN), cell adhesion on gelatin hydrogel constructs was significantly higher one week and three weeks after initiating differentiation. Delamination from FN-μprinted PDMS precluded robust detection of myotubes. Compared to a softer blend of PDMS μprinted with FN, myogenic index, myotube width, and myotube length on μmolded gelatin hydrogels was similar one week after initiating differentiation. However, three weeks after initiating differentiation, these parameters were significantly higher on μmolded gelatin hydrogels compared to FN-μprinted soft PDMS constructs. Similar results were observed on isotropic versions of each substrate, suggesting that these findings are independent of substrate patterning. Our platform enables novel studies into skeletal muscle development and disease and chronic drug testing in vitro. PMID:27350122

  15. Photocopy of original blackandwhite silver gelatin print, AERIAL VIEW OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of original black-and-white silver gelatin print, AERIAL VIEW OF FEDERAL TRIANGLE, IRS BUILDING EAST SIDE OF THE OLD POST OFFICE BUILDING, 1936, photographer unknown - Internal Revenue Service Headquarters Building, 1111 Constitution Avenue Northwest, Washington, District of Columbia, DC

  16. Dehydration of pollock skins prior to gelatin production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Alaska pollock (Theragra chalcogramma) is the USA’s largest commercial fishery, with an annual catch of over one million tons. During processing the pollock skins are typically discarded, despite their high value for gelatin production. Hot-air drying is an effective method for decreasing the moistu...

  17. Differences in cytocompatibility between collagen, gelatin and keratin.

    PubMed

    Wang, Yanfang; Zhang, Weiwei; Yuan, Jiang; Shen, Jian

    2016-02-01

    Keratins are cysteine-rich intermediate filament proteins found in the cytoskeleton of the epithelial cells and in the matrix of hair, feathers, wool, nails and horns. The natural abundance of cell adhesion sequences, RGD (Arg-Gly-Asp) and LDV (Leu-Asp-Val), makes them suitable for tissue engineering applications. The purpose of our study is to evaluate their cytocompatibility as compared to well-known collagen and gelatin proteins. Herein, collagen, gelatin and keratin were blended with poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) and electrospun to afford nanofibrous mats, respectively. These PHBV/protein composite mats were characterized by field emission scanning electron microscopy (FE-SEM), attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), and dynamic mechanical analysis (DMA). The cytocompatibility was evaluated with cell adhesion, cell viability and cell proliferation. The data from MTT and BrDU revealed that collagen had significantly superior cytocompatibility as compared to gelatin and keratin. Gelatin showed a better cytocompatibility than keratin without statistical significance difference. Finally, we gave the reasons to account for the above conclusions. PMID:26652345

  18. Prolonged Culture of Aligned Skeletal Myotubes on Micromolded Gelatin Hydrogels.

    PubMed

    Bettadapur, Archana; Suh, Gio C; Geisse, Nicholas A; Wang, Evelyn R; Hua, Clara; Huber, Holly A; Viscio, Alyssa A; Kim, Joon Young; Strickland, Julie B; McCain, Megan L

    2016-01-01

    In vitro models of skeletal muscle are critically needed to elucidate disease mechanisms, identify therapeutic targets, and test drugs pre-clinically. However, culturing skeletal muscle has been challenging due to myotube delamination from synthetic culture substrates approximately one week after initiating differentiation from myoblasts. In this study, we successfully maintained aligned skeletal myotubes differentiated from C2C12 mouse skeletal myoblasts for three weeks by utilizing micromolded (μmolded) gelatin hydrogels as culture substrates, which we thoroughly characterized using atomic force microscopy (AFM). Compared to polydimethylsiloxane (PDMS) microcontact printed (μprinted) with fibronectin (FN), cell adhesion on gelatin hydrogel constructs was significantly higher one week and three weeks after initiating differentiation. Delamination from FN-μprinted PDMS precluded robust detection of myotubes. Compared to a softer blend of PDMS μprinted with FN, myogenic index, myotube width, and myotube length on μmolded gelatin hydrogels was similar one week after initiating differentiation. However, three weeks after initiating differentiation, these parameters were significantly higher on μmolded gelatin hydrogels compared to FN-μprinted soft PDMS constructs. Similar results were observed on isotropic versions of each substrate, suggesting that these findings are independent of substrate patterning. Our platform enables novel studies into skeletal muscle development and disease and chronic drug testing in vitro. PMID:27350122

  19. Potential application for genipin-modified gelatin in leather processing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genipin is an iridoid compound extracted from gardenia fruits. Because of its low cytotoxicity, genipin can be used to replace both glutaraldehyde and formaldehyde as a crosslinking reagent. In recent years, research into the utilization of genipin for the modification of gelatin, particularly in ...

  20. Gelatinous Fibers are Widespread in Coiling Tendrils and Twining Vines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although tendrils coil and vines twine has been investigated since Darwin’s time, a full understanding of the mechanism(s) of tendril coiling and twining of vines has not yet been accomplished. In a previous study, it was observed that in tendrils of redvine, gelatinous fibers occurred concomitantl...

  1. Distribution and emission of chloropicrin applied as gelatin capsules

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chloropicrin (CP) is a potential methyl bromide alternative for controlling soil-borne pests. However, the compound is highly volatile that poses strong exposure risks for humans and the environment because of volatile organic compound (VOC) emissions. A gelatin capsule formulation was developed as...

  2. Biopolymers produced from gelatin and other sustainable resources using polyphenols

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Several researchers have recently demonstrated the feasibility of producing biopolymers from the reaction of polyphenolics with gelatin in combination with other proteins (e.g. whey) or with carbohydrates (e.g. chitosan and pectin). These combinations would take advantage of the unique properties o...

  3. Prolonged Culture of Aligned Skeletal Myotubes on Micromolded Gelatin Hydrogels

    NASA Astrophysics Data System (ADS)

    Bettadapur, Archana; Suh, Gio C.; Geisse, Nicholas A.; Wang, Evelyn R.; Hua, Clara; Huber, Holly A.; Viscio, Alyssa A.; Kim, Joon Young; Strickland, Julie B.; McCain, Megan L.

    2016-06-01

    In vitro models of skeletal muscle are critically needed to elucidate disease mechanisms, identify therapeutic targets, and test drugs pre-clinically. However, culturing skeletal muscle has been challenging due to myotube delamination from synthetic culture substrates approximately one week after initiating differentiation from myoblasts. In this study, we successfully maintained aligned skeletal myotubes differentiated from C2C12 mouse skeletal myoblasts for three weeks by utilizing micromolded (μmolded) gelatin hydrogels as culture substrates, which we thoroughly characterized using atomic force microscopy (AFM). Compared to polydimethylsiloxane (PDMS) microcontact printed (μprinted) with fibronectin (FN), cell adhesion on gelatin hydrogel constructs was significantly higher one week and three weeks after initiating differentiation. Delamination from FN-μprinted PDMS precluded robust detection of myotubes. Compared to a softer blend of PDMS μprinted with FN, myogenic index, myotube width, and myotube length on μmolded gelatin hydrogels was similar one week after initiating differentiation. However, three weeks after initiating differentiation, these parameters were significantly higher on μmolded gelatin hydrogels compared to FN-μprinted soft PDMS constructs. Similar results were observed on isotropic versions of each substrate, suggesting that these findings are independent of substrate patterning. Our platform enables novel studies into skeletal muscle development and disease and chronic drug testing in vitro.

  4. Liquid Cryogen Absorber for MICE

    SciTech Connect

    Baynham, D.E.; Bish, P.; Bradshaw, T.W.; Cummings, M.A.; Green,M.A.; Ishimoto, S.; Ivaniouchenkov, I.; Lau, W.; Yang, S.Q.; Zisman, M.S.

    2005-08-20

    The Muon Ionization Cooling Experiment (MICE) will test ionization cooling of muons. In order to have effective ionization cooling, one must use an absorber that is made from a low-z material. The most effective low z materials for ionization cooling are hydrogen, helium, lithium hydride, lithium and beryllium, in that order. In order to measure the effect of material on cooling, several absorber materials must be used. This report describes a liquid-hydrogen absorber that is within a pair of superconducting focusing solenoids. The absorber must also be suitable for use with liquid helium. The following absorber components are discussed in this report; the absorber body, its heat exchanger, the hydrogen system, and the hydrogen safety. Absorber cooling and the thin windows are not discussed here.

  5. 21 CFR 529.1003 - Flurogestone acetate-impregnated vaginal sponge.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Flurogestone acetate-impregnated vaginal sponge... § 529.1003 Flurogestone acetate-impregnated vaginal sponge. (a) Specifications. Each vaginal sponge... ewes during their normal breeding season. (2) Limitations. Using applicator provided, insert...

  6. 21 CFR 529.1003 - Flurogestone acetate-impregnated vaginal sponge.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Flurogestone acetate-impregnated vaginal sponge... § 529.1003 Flurogestone acetate-impregnated vaginal sponge. (a) Specifications. Each vaginal sponge... ewes during their normal breeding season. (2) Limitations. Using applicator provided, insert...

  7. A Novel Filtering Mutualism between a Sponge Host and Its Endosymbiotic Bivalves

    PubMed Central

    Tsubaki, Remi; Kato, Makoto

    2014-01-01

    Sponges, porous filter-feeding organisms consisting of vast canal systems, provide unique substrates for diverse symbiotic organisms. The Spongia (Spongia) sp. massive sponge is obligately inhabited by the host-specific endosymbiotic bivalve Vulsella vulsella, which benefits from this symbiosis by receiving protection from predators. However, whether the host sponge gains any benefit from this association is unclear. Considering that the bivalves exhale filtered water into the sponge body rather than the ambient environment, the sponge is hypothesized to utilize water exhaled by the bivalves to circulate water around its body more efficiently. We tested this hypothesis by observing the sponge aquiferous structure and comparing the pumping rates of sponges and bivalves. Observations of water currents and the sponge aquiferous structure revealed that the sponge had a unique canal system enabling it to inhale water exhaled from bivalves, indicating that the host sponge adapted morphologically to receive water from the bivalves. In addition, the volume of water circulating in the sponge body was dramatically increased by the water exhaled from bivalves. Therefore, this sponge-bivalve association can be regarded as a novel mutualism in which two filter-feeding symbionts promote mutual filtering rates. This symbiotic association should be called a “filtering mutualism”. PMID:25330073

  8. Diversity of the candidate phylum Poribacteria in the marine sponge Aplysina fulva.

    PubMed

    Hardoim, C C P; Cox, C J; Peixoto, R S; Rosado, A S; Costa, R; van Elsas, J D

    2013-01-01

    Poribacterial clone libraries constructed for Aplysina fulva sponge specimens were analysed with respect to diversity and phylogeny. Results imply the coexistence of several, prevalently "intra-specific" poribacterial genotypes in a single sponge host, and suggest quantitative analysis as a desirable approach in studies of the diversity and distribution of poribacterial cohorts in marine sponges. PMID:24159324

  9. Evidence of a Putative Deep Sea Specific Microbiome in Marine Sponges

    PubMed Central

    Kennedy, Jonathan; Flemer, Burkhardt; Jackson, Stephen A.; Morrissey, John P.; O'Gara, Ferghal; Dobson, Alan D. W.

    2014-01-01

    The microbiota of four individual deep water sponges, Lissodendoryx diversichela, Poecillastra compressa, Inflatella pellicula, and Stelletta normani, together with surrounding seawater were analysed by pyrosequencing of a region of the 16S rRNA gene common to Bacteria and Archaea. Due to sampling constraints at depths below 700 m duplicate samples were not collected. The microbial communities of L. diversichela, P. compressa and I. pellicula were typical of low microbial abundance (LMA) sponges while S. normani had a community more typical of high microbial abundance (HMA) sponges. Analysis of the deep sea sponge microbiota revealed that the three LMA-like sponges shared a set of abundant OTUs that were distinct from those associated with sponges from shallow waters. Comparison of the pyrosequencing data with that from shallow water sponges revealed that the microbial communities of all sponges analysed have similar archaeal populations but that the bacterial populations of the deep sea sponges were distinct. Further analysis of the common and abundant OTUs from the three LMA-like sponges placed them within the groups of ammonia oxidising Archaea (Thaumarchaeota) and sulphur oxidising γ-Proteobacteria (Chromatiales). Reads from these two groups made up over 70% of all 16S rRNA genes detected from the three LMA-like sponge samples, providing evidence of a putative common microbial assemblage associated with deep sea LMA sponges. PMID:24670421

  10. Quantitative detection of bovine and porcine gelatin difference using surface plasmon resonance based biosensor

    NASA Astrophysics Data System (ADS)

    Wardani, Devy P.; Arifin, Muhammad; Suharyadi, Edi; Abraha, Kamsul

    2015-05-01

    Gelatin is a biopolymer derived from collagen that is widely used in food and pharmaceutical products. Due to some religion restrictions and health issues regarding the gelatin consumption which is extracted from certain species, it is necessary to establish a robust, reliable, sensitive and simple quantitative method to detect gelatin from different parent collagen species. To the best of our knowledge, there has not been a gelatin differentiation method based on optical sensor that could detect gelatin from different species quantitatively. Surface plasmon resonance (SPR) based biosensor is known to be a sensitive, simple and label free optical method for detecting biomaterials that is able to do quantitative detection. Therefore, we have utilized SPR-based biosensor to detect the differentiation between bovine and porcine gelatin in various concentration, from 0% to 10% (w/w). Here, we report the ability of SPR-based biosensor to detect difference between both gelatins, its sensitivity toward the gelatin concentration change, its reliability and limit of detection (LOD) and limit of quantification (LOQ) of the sensor. The sensor's LOD and LOQ towards bovine gelatin concentration are 0.38% and 1.26% (w/w), while towards porcine gelatin concentration are 0.66% and 2.20% (w/w), respectively. The results show that SPR-based biosensor is a promising tool for detecting gelatin from different raw materials quantitatively.

  11. Antioxidant and cryoprotective effects of Amur sturgeon skin gelatin hydrolysate in unwashed fish mince.

    PubMed

    Nikoo, Mehdi; Benjakul, Soottawat; Xu, Xueming

    2015-08-15

    Antioxidant and cryoprotective effects of Amur sturgeon skin gelatin hydrolysates prepared using different commercial proteases in unwashed fish mince were investigated. Gelatin hydrolysates prepared using either Alcalase or Flavourzyme, were effective in preventing lipid oxidation as evidenced by the lower thiobarbituric acid-reactive substances formation. Gelatin hydrolysates were able to retard protein oxidation as indicated by the retarded protein carbonyl formation and lower loss in sulfhydryl content. In the presence of gelatin hydrolysates, unwashed mince had higher transition temperature of myosin and higher enthalpy of myosin and actin as determined by differential scanning calorimetry. Based on low field proton nuclear magnetic resonance analysis, gelatin hydrolysates prevented the displacement of water molecules between the different compartments, thus stabilizing the water associated with myofibrils in unwashed mince induced by repeated freeze-thawing. Oligopeptides in gelatin hydrolysates more likely contributed to the cryoprotective effect. Thus, gelatin hydrolysate could act as both antioxidant and cryoprotectant in unwashed fish mince. PMID:25794753

  12. The Effect of Physical Aging on the Deformation Behavior of Gelatin Films

    NASA Astrophysics Data System (ADS)

    Dai, Chi-An; Tsou, Andy H.

    1998-03-01

    Deformation behavior of gelatin as a function of its relaxation enthalpy (resulted from physical aging), its gel structure, and its hardener level is evaluated based on the uniaxial tensile testing of gelatin films. Optical microscopy examination of the fracture samples from the tensile testing at 20C and 50%RH (relative humidity) revealed that both brittle frature of crazing or cracking and shear yielding of shear cracking or shear banding are present in gelatin films. We have found that these deformation mechanisms are strongly dependent on the extent of physical aging and gel structure, but are not dependent on the hardener level. For low gel structure, gelatin deforms exclusively by crazing. For medium gel structure, there is a critical aging enthalpy above which gelatin deforms by craing and below which gelatin deforms by shear. For high gel structure, gelatin deforms exclusively by shear mechanism.

  13. Technique to optimize magnetic response of gelatin coated magnetic nanoparticles.

    PubMed

    Parikh, Nidhi; Parekh, Kinnari

    2015-07-01

    The paper describes the results of optimization of magnetic response for highly stable bio-functionalize magnetic nanoparticles dispersion. Concentration of gelatin during in situ co-precipitation synthesis was varied from 8, 23 and 48 mg/mL to optimize magnetic properties. This variation results in a change in crystallite size from 10.3 to 7.8 ± 0.1 nm. TEM measurement of G3 sample shows highly crystalline spherical nanoparticles with a mean diameter of 7.2 ± 0.2 nm and diameter distribution (σ) of 0.27. FTIR spectra shows a shift of 22 cm(-1) at C=O stretching with absence of N-H stretching confirming the chemical binding of gelatin on magnetic nanoparticles. The concept of lone pair electron of the amide group explains the mechanism of binding. TGA shows 32.8-25.2% weight loss at 350 °C temperature substantiating decomposition of chemically bind gelatin. The magnetic response shows that for 8 mg/mL concentration of gelatin, the initial susceptibility and saturation magnetization is the maximum. The cytotoxicity of G3 sample was assessed in Normal Rat Kidney Epithelial Cells (NRK Line) by MTT assay. Results show an increase in viability for all concentrations, the indicative probability of a stimulating action of these particles in the nontoxic range. This shows the potential of this technique for biological applications as the coated particles are (i) superparamagnetic (ii) highly stable in physiological media (iii) possibility of attaching other drug with free functional group of gelatin and (iv) non-toxic. PMID:26152511

  14. Metamaterial electromagnetic wave absorbers.

    PubMed

    Watts, Claire M; Liu, Xianliang; Padilla, Willie J

    2012-06-19

    The advent of negative index materials has spawned extensive research into metamaterials over the past decade. Metamaterials are attractive not only for their exotic electromagnetic properties, but also their promise for applications. A particular branch-the metamaterial perfect absorber (MPA)-has garnered interest due to the fact that it can achieve unity absorptivity of electromagnetic waves. Since its first experimental demonstration in 2008, the MPA has progressed significantly with designs shown across the electromagnetic spectrum, from microwave to optical. In this Progress Report we give an overview of the field and discuss a selection of examples and related applications. The ability of the MPA to exhibit extreme performance flexibility will be discussed and the theory underlying their operation and limitations will be established. Insight is given into what we can expect from this rapidly expanding field and future challenges will be addressed. PMID:22627995

  15. Absorber coatings' degradation

    SciTech Connect

    Moore, S.W.

    1984-01-01

    This report is intended to document some of the Los Alamos efforts that have been carried out under the Department of Energy (DOE) Active Heating and Cooling Materials Reliability, Maintainability, and Exposure Testing program. Funding for these activities is obtained directly from DOE although they represent a variety of projects and coordination with other agencies. Major limitations to the use of solar energy are the uncertain reliability and lifetimes of solar systems. This program is aimed at determining material operating limitations, durabilities, and failure modes such that materials improvements can be made and lifetimes can be extended. Although many active and passive materials and systems are being studied at Los Alamos, this paper will concentrate on absorber coatings and degradation of these coatings.

  16. Preparation and characterization of hydroxyapatite/gelatin composite membranes for immunoisolation

    NASA Astrophysics Data System (ADS)

    Chen, Jyh-Ping; Chang, Feng-Nian

    2012-12-01

    Composite membranes are fabricated from hydroxyapatite (HAP) and gelatin for immunoisolation of cells. The films were fabricated by crosslinking 5 wt%, 10 wt%, and 20 wt% gelatin with 1 wt% glutaraldehyde (GA) in the presence of HAP. Fourier transform infrared spectroscopy analysis confirms imide bond formation between GA and gelatin, while the crystal structure of HAP powder remains unchanged from X-ray diffraction analysis. The degree of crosslinking depends on crosslinking time and gelatin concentration. For 5% and 10% gelatin, the degree of crosslinking levels off at 90% within 48 h. From scanning electron microscopy micrographs, the microstructure of the composite membrane depends on the amount of gelatin used in the crosslinking reaction. The mechanical strength of the composite membrane could be enhanced by increasing the gelatin concentration. BET analysis indicates that pore size of the micropores on the surface HAP/gelatin agglomerates decreases with increasing gelatin concentration. However, the macropore, through which diffusion of molecules occurs, is larger at higher gelatin concentrations. The permeability coefficients of different molecules through a HAP/gelatin composite membrane increase with increasing gelatin concentration and is inversely correlated with the molecular weight of the molecule. For immunoisolation of cells, the diffusion of large molecules stimulated by the immune system can be rejected by a chamber constructed from the HAP/gelatin membrane. Insulinoma cells were encapsulated in alginate-poly-L-lysine-alginate microcapsules and enclosed in a HAP/gelatin chamber. The chamber did not impair the viability and function of insulinoma cells and cells can secrete insulin in response to glucose concentration change. The chamber is therefore useful for the physiologically controlled secretion of insulin in response to the blood glucose level. Intraperitoneal transplantation of the chamber into streptozotocin-induced diabetic SD rats could

  17. In Situ Natural Product Discovery via an Artificial Marine Sponge

    PubMed Central

    La Clair, James J.; Loveridge, Steven T.; Tenney, Karen; O'Neil–Johnson, Mark; Chapman, Eli; Crews, Phillip

    2014-01-01

    There is continuing international interest in exploring and developing the therapeutic potential of marine–derived small molecules. Balancing the strategies for ocean based sampling of source organisms versus the potential to endanger fragile ecosystems poses a substantial challenge. In order to mitigate such environmental impacts, we have developed a deployable artificial sponge. This report provides details on its design followed by evidence that it faithfully recapitulates traditional natural product collection protocols. Retrieving this artificial sponge from a tropical ecosystem after deployment for 320 hours afforded three actin–targeting jasplakinolide depsipeptides that had been discovered two decades earlier using traditional sponge specimen collection and isolation procedures. The successful outcome achieved here could reinvigorate marine natural products research, by producing new environmentally innocuous sources of natural products and providing a means to probe the true biosynthetic origins of complex marine–derived scaffolds. PMID:25004127

  18. Bioactive natural products from Papua New Guinea marine sponges.

    PubMed

    Noro, Jeffery C; Kalaitzis, John A; Neilan, Brett A

    2012-10-01

    The discovery of novel natural products for drug development relies heavily upon a rich biodiversity, of which the marine environment is an obvious example. Marine natural product research has spawned several drugs and many other candidates, some of which are the focus of current clinical trials. The sponge megadiversity of Papua New Guinea is a rich but underexplored source of bioactive natural products. Here, we review some of the many natural products derived from PNG sponges with an emphasis on those with interesting biological activity and, therefore, drug potential. Many bioactive natural products discussed here appear to be derived from non-ribosomal peptide and polyketide biosynthesis pathways, strongly suggesting a microbial origin of these compounds. With this in mind, we also explore the notion of sponge-symbiont biosynthesis of these bioactive compounds and present examples to support the working hypothesis. PMID:23081914

  19. Cyclodepsipeptides from marine sponges: natural agents for drug research.

    PubMed

    Andavan, Gowri Shankar Bagavananthem; Lemmens-Gruber, Rosa

    2010-01-01

    A number of natural products from marine sponges, such as cyclodepsipeptides, have been identified. The structural characteristics of this family of cyclic peptides include various unusual amino acid residues and unique N-terminal polyketide-derived moieties. Papuamides are representatives of a class of marine sponge derived cyclic depsipeptides, including callipeltin A, celebesides A and B, homophymine A, mirabamides, microspinosamide, neamphamide A and theopapuamides. They are thought to have cytoprotective activity against HIV-1 in vitro by inhibiting viral entry. Jasplakinolide, a representative member of marine sponge-derived cyclodepsipeptides that include arenastatin A, geodiamolides, homophymines, spongidepsin and theopapuamides, is a potent inducer of actin polymerization in vitro. Although actin dynamics is essential for tumor metasasis, no actin targeting drugs have been used in clinical trials due to their severe cytotoxicity. Nonetheless, the actin cytoskeleton remains a potential target for anti-cancer drug development. These features imply the use of cyclodepsipeptides as molecular models in drug research. PMID:20411126

  20. Calyculin: Nature's way of making the sponge-derived cytotoxin.

    PubMed

    Wakimoto, Toshiyuki; Egami, Yoko; Abe, Ikuro

    2016-06-01

    Covering: up to 2015.Calyculin A is a major cytotoxic compound isolated from the Japanese marine sponge Discodermia calyx. Its potent cytotoxicity is attributable to the specific inhibition of protein phosphatases 1 and 2A, as in the case of okadaic acid and the microcystins. Its chemical structure is well-designed not only for enzyme inhibition but also for higher membrane permeability in order to impart its potent cytotoxicity. The biosynthetic gene cluster of this densely functionalized polyketide and nonribosomal peptide hybrid molecule was recently identified from the sponge-microbe association. The producer organism and the dynamic bioconversion process were also revealed. In this highlight, we focus on the recent studies addressing nature's design and biogenesis of the sponge-derived cytotoxin, calyculin A. PMID:26923942

  1. In situ natural product discovery via an artificial marine sponge.

    PubMed

    La Clair, James J; Loveridge, Steven T; Tenney, Karen; O'Neil-Johnson, Mark; Chapman, Eli; Crews, Phillip

    2014-01-01

    There is continuing international interest in exploring and developing the therapeutic potential of marine-derived small molecules. Balancing the strategies for ocean based sampling of source organisms versus the potential to endanger fragile ecosystems poses a substantial challenge. In order to mitigate such environmental impacts, we have developed a deployable artificial sponge. This report provides details on its design followed by evidence that it faithfully recapitulates traditional natural product collection protocols. Retrieving this artificial sponge from a tropical ecosystem after deployment for 320 hours afforded three actin-targeting jasplakinolide depsipeptides that had been discovered two decades earlier using traditional sponge specimen collection and isolation procedures. The successful outcome achieved here could reinvigorate marine natural products research, by producing new environmentally innocuous sources of natural products and providing a means to probe the true biosynthetic origins of complex marine-derived scaffolds. PMID:25004127

  2. Three-dimensional periodic supramolecular organic framework ion sponge in water and microcrystals

    SciTech Connect

    Tian, Jia; Zhou, Tian-You; Zhang, Shao-Chen; Aloni, Shaul; Altoe, Maria Virginia; Xie, Song-Hai; Wang, Hui; Zhang, Dan-Wei; Zhao, Xin; Liu, Yi; Li, Zhan-Ting

    2014-12-02

    Self-assembly has emerged as a powerful approach to generating complex supramolecular architectures. Despite there being many crystalline frameworks reported in the solid state, the construction of highly soluble periodic supramolecular networks in a three-dimensional space is still a challenge. In this paper we demonstrate that the encapsulation motif, which involves the dimerization of two aromatic units within cucurbit[8]uril, can be used to direct the co-assembly of a tetratopic molecular block and cucurbit[8]uril into a periodic three-dimensional supramolecular organic framework in water. The periodicity of the supramolecular organic framework is supported by solution-phase small-angle X-ray-scattering and diffraction experiments. Upon evaporating the solvent, the periodicity of the framework is maintained in porous microcrystals. Lastly, as a supramolecular 'ion sponge', the framework can absorb different kinds of anionic guests, including drugs, in both water and microcrystals, and drugs absorbed in microcrystals can be released to water with selectivity.

  3. Investigation of dodecane in three-dimensional porous graphene sponge by Raman mapping

    NASA Astrophysics Data System (ADS)

    Guo, Xitao; Bi, Hengchang; Zafar, Amina; Liang, Zheng; Shi, Zhixiang; Sun, Litao; Ni, Zhenhua

    2016-02-01

    Three-dimensional (3D) carbon nano-materials, e.g. a graphene sponge (GS) are promising candidates for the removal of pollutants and the separation of oil and water. A systematic study on how oils or organic solvents disperse in the porous structures of 3D carbon nano-materials, and the factors affecting their sorption process, would be beneficial for designing a superior sorbent with desirable porous structures. Here, confocal Raman spectroscopic imaging was utilized to explore the absorption and desorption processes of dodecane (a constituent in petroleum products) in 3D porous GS with different pore size. It was found that dodecane predominately locates within the interior pores composed of reduced graphene oxide (rGO) sheets, which provide storage spaces for the absorbed molecules. The larger pore GS has a higher absorption capacity and faster desorption rate compared to the smaller one, which is due to the higher pore volume and weaker interaction with the absorbed molecules. A possible mechanism was also proposed to explain the role of porous macrostructures on the absorption and desorption properties of GSs.

  4. Investigation of dodecane in three-dimensional porous graphene sponge by Raman mapping.

    PubMed

    Guo, Xitao; Bi, Hengchang; Zafar, Amina; Liang, Zheng; Shi, Zhixiang; Sun, Litao; Ni, Zhenhua

    2016-02-01

    Three-dimensional (3D) carbon nano-materials, e.g. a graphene sponge (GS) are promising candidates for the removal of pollutants and the separation of oil and water. A systematic study on how oils or organic solvents disperse in the porous structures of 3D carbon nano-materials, and the factors affecting their sorption process, would be beneficial for designing a superior sorbent with desirable porous structures. Here, confocal Raman spectroscopic imaging was utilized to explore the absorption and desorption processes of dodecane (a constituent in petroleum products) in 3D porous GS with different pore size. It was found that dodecane predominately locates within the interior pores composed of reduced graphene oxide (rGO) sheets, which provide storage spaces for the absorbed molecules. The larger pore GS has a higher absorption capacity and faster desorption rate compared to the smaller one, which is due to the higher pore volume and weaker interaction with the absorbed molecules. A possible mechanism was also proposed to explain the role of porous macrostructures on the absorption and desorption properties of GSs. PMID:26669216

  5. Three-dimensional periodic supramolecular organic framework ion sponge in water and microcrystals

    DOE PAGESBeta

    Tian, Jia; Zhou, Tian-You; Zhang, Shao-Chen; Aloni, Shaul; Altoe, Maria Virginia; Xie, Song-Hai; Wang, Hui; Zhang, Dan-Wei; Zhao, Xin; Liu, Yi; et al

    2014-12-02

    Self-assembly has emerged as a powerful approach to generating complex supramolecular architectures. Despite there being many crystalline frameworks reported in the solid state, the construction of highly soluble periodic supramolecular networks in a three-dimensional space is still a challenge. In this paper we demonstrate that the encapsulation motif, which involves the dimerization of two aromatic units within cucurbit[8]uril, can be used to direct the co-assembly of a tetratopic molecular block and cucurbit[8]uril into a periodic three-dimensional supramolecular organic framework in water. The periodicity of the supramolecular organic framework is supported by solution-phase small-angle X-ray-scattering and diffraction experiments. Upon evaporating themore » solvent, the periodicity of the framework is maintained in porous microcrystals. Lastly, as a supramolecular 'ion sponge', the framework can absorb different kinds of anionic guests, including drugs, in both water and microcrystals, and drugs absorbed in microcrystals can be released to water with selectivity.« less

  6. Compressible and monolithic microporous polymer sponges prepared via one-pot synthesis

    PubMed Central

    Lim, Yoonbin; Cha, Min Chul; Chang, Ji Young

    2015-01-01

    Compressible and monolithic microporous polymers (MPs) are reported. MPs were prepared as monoliths via a Sonogashira–Hagihara coupling reaction of 1,3,5-triethynylbenzene (TEB) with the bis(bromothiophene) monomer (PBT-Br). The polymers were reversibly compressible, and were easily cut into any form using a knife. Microscopy studies on the MPs revealed that the polymers had tubular microstructures, resembling those often found in marine sponges. Under compression, elastic buckling of the tube bundles was observed using an optical microscope. MP-0.8, which was synthesized using a 0.8:1 molar ratio of PBT-Br to TEB, showed microporosity with a BET surface area as high as 463 m2g–1. The polymer was very hydrophobic, with a water contact angle of 145° and absorbed 7–17 times its own weight of organic liquids. The absorbates were released by simple compression, allowing recyclable use of the polymer. MPs are potential precursors of structured carbon materials; for example, a partially graphitic material was obtained by pyrolysis of MP-0.8, which showed a similar tubular structure to that of MP-0.8. PMID:26534834

  7. Controlled iodine release from polyurethane sponges for water decontamination.

    PubMed

    Aviv, Oren; Laout, Natalia; Ratner, Stanislav; Harik, Oshrat; Kunduru, Konda Reddy; Domb, Abraham J

    2013-12-28

    Iodinated polyurethane (IPU) sponges were prepared by immersing sponges in aqueous/organic solutions of iodine or exposing sponges to iodine vapors. Iodine was readily adsorbed into the polymers up to 100% (w/w). The adsorption of iodine on the surface was characterized by XPS and SEM analyses. The iodine loaded IPU sponges were coated with ethylene vinyl acetate (EVA), in order to release iodine in a controlled rate for water decontamination combined with active carbon cartridge, which adsorbs the iodine residues after the microbial inactivation. The EVA coated IPU were incorporated in a water purifier and tested for iodine release to water and for microbial inactivation efficiency according to WQA certification program against P231/EPA for 250l, using 25l a day with flow rate of 6-8min/1l. The antimicrobial activity was also studied against Escherichia coli and MS2 phage. Bacterial results exceeded the minimal requirement for bacterial removal of 6log reduction throughout the entire lifespan. At any testing point, no bacteria was detected in the outlet achieving more than 7.1 to more than 8log reduction as calculated upon the inlet concentration. Virus surrogate, MS2, reduction results varied from 4.11log reduction under tap water, and 5.11log reduction under basic water (pH9) to 1.32 for acidic water (pH5). Controlled and stable iodine release was observed with the EVA coated IPU sponges and was effective in deactivating the bacteria and virus present in the contaminated water and thus, these iodinated PU systems could be used in water purification to provide safe drinking water. These sponges may find applications as disinfectants in medicine. PMID:24096017

  8. Diversity and distribution patterns in high southern latitude sponges.

    PubMed

    Downey, Rachel V; Griffiths, Huw J; Linse, Katrin; Janussen, Dorte

    2012-01-01

    Sponges play a key role in Antarctic marine benthic community structure and dynamics and are often a dominant component of many Southern Ocean benthic communities. Understanding the drivers of sponge distribution in Antarctica enables us to understand many of general benthic biodiversity patterns in the region. The sponges of the Antarctic and neighbouring oceanographic regions were assessed for species richness and biogeographic patterns using over 8,800 distribution records. Species-rich regions include the Antarctic Peninsula, South Shetland Islands, South Georgia, Eastern Weddell Sea, Kerguelen Plateau, Falkland Islands and north New Zealand. Sampling intensity varied greatly within the study area, with sampling hotspots found at the Antarctic Peninsula, South Georgia, north New Zealand and Tierra del Fuego, with limited sampling in the Bellingshausen and Amundsen seas in the Southern Ocean. In contrast to previous studies we found that eurybathy and circumpolar distributions are important but not dominant characteristics in Antarctic sponges. Overall Antarctic sponge species endemism is ∼43%, with a higher level for the class Hexactinellida (68%). Endemism levels are lower than previous estimates, but still indicate the importance of the Polar Front in isolating the Southern Ocean fauna. Nineteen distinct sponge distribution patterns were found, ranging from regional endemics to cosmopolitan species. A single, distinct Antarctic demosponge fauna is found to encompass all areas within the Polar Front, and the sub-Antarctic regions of the Kerguelen Plateau and Macquarie Island. Biogeographical analyses indicate stronger faunal links between Antarctica and South America, with little evidence of links between Antarctica and South Africa, Southern Australia or New Zealand. We conclude that the biogeographic and species distribution patterns observed are largely driven by the Antarctic Circumpolar Current and the timing of past continent connectivity. PMID

  9. Diversity and Distribution Patterns in High Southern Latitude Sponges

    PubMed Central

    Downey, Rachel V.; Griffiths, Huw J.; Linse, Katrin; Janussen, Dorte

    2012-01-01

    Sponges play a key role in Antarctic marine benthic community structure and dynamics and are often a dominant component of many Southern Ocean benthic communities. Understanding the drivers of sponge distribution in Antarctica enables us to understand many of general benthic biodiversity patterns in the region. The sponges of the Antarctic and neighbouring oceanographic regions were assessed for species richness and biogeographic patterns using over 8,800 distribution records. Species-rich regions include the Antarctic Peninsula, South Shetland Islands, South Georgia, Eastern Weddell Sea, Kerguelen Plateau, Falkland Islands and north New Zealand. Sampling intensity varied greatly within the study area, with sampling hotspots found at the Antarctic Peninsula, South Georgia, north New Zealand and Tierra del Fuego, with limited sampling in the Bellingshausen and Amundsen seas in the Southern Ocean. In contrast to previous studies we found that eurybathy and circumpolar distributions are important but not dominant characteristics in Antarctic sponges. Overall Antarctic sponge species endemism is ∼43%, with a higher level for the class Hexactinellida (68%). Endemism levels are lower than previous estimates, but still indicate the importance of the Polar Front in isolating the Southern Ocean fauna. Nineteen distinct sponge distribution patterns were found, ranging from regional endemics to cosmopolitan species. A single, distinct Antarctic demosponge fauna is found to encompass all areas within the Polar Front, and the sub-Antarctic regions of the Kerguelen Plateau and Macquarie Island. Biogeographical analyses indicate stronger faunal links between Antarctica and South America, with little evidence of links between Antarctica and South Africa, Southern Australia or New Zealand. We conclude that the biogeographic and species distribution patterns observed are largely driven by the Antarctic Circumpolar Current and the timing of past continent connectivity. PMID

  10. Sintering of sponge and hydride-dehydride titanium powders

    SciTech Connect

    Alman, David E.; Gerdemann, Stephen J.

    2004-04-01

    The sintering behavior of compacts produced from sponge and hydride-dehydride (HDH) Ti powders was examined. Compacts were vacuum sintered at 1200 or 1300 deg C for 30, 60, 120, 240, 480 or 960 minutes. The porosity decreased with sintering time and/or temperature in compacts produced from the HDH powders. Compacts produced from these powders could be sintered to essentially full density. However, the sintering condition did not influence the amount of porosity present in compacts produced from the sponge powders. These samples could only be sintered to a density of 97% theoretical. The sintering behavior was attributed to the chemical impurities in the powders.

  11. Photosensitivity in sponge due to cytochrome c oxidase?

    PubMed

    Björn, Lars Olof; Rasmusson, Allan G

    2009-06-01

    An action spectrum for photosensitivity in sponge larvae published by Leys et al. [J. Comp. Physiol., A, 2002, 188, 199-202] was interpreted by the authors as being due to a combination of light absorption by flavin or carotenoid in the blue region, and another pigment such as pterin in the long-wavelength region. Here we show here that their action spectrum closely matches the absorption spectrum of reduced cytochrome c oxidase that is present in sponges, and compare with other photoreactions which are thought to be due to this chromoprotein. PMID:19492101

  12. A tactile sensor using a conductive graphene-sponge composite.

    PubMed

    Chun, Sungwoo; Hong, Ahyoung; Choi, Yeonhoi; Ha, Chunho; Park, Wanjun

    2016-04-28

    For sensors that emulate human tactile perception, we suggest a simple method for fabricating a highly sensitive force sensor using a conductive polyurethane sponge where graphene flakes are self-assembled into the porous structure of the sponge. The complete sensor device shows a sensitive and reliable detection response for a broad range of pressure and dynamic pressure that correspond to human tactile perception. Sensitivity of the sensor to detect vibration is also confirmed with vertical actuations due to slipping over micro-scale ridge structures attached on the sensors. Based on the sensor's ability to detect both pressure and vibration, the sensor can be utilized as a flexible tactile sensor. PMID:27076360

  13. Analytical methods and apparatus for measuring the oil content of sponge core

    SciTech Connect

    Vinegar, H.J.; DiFoggio, R.; Tutunjian, P.N.

    1989-09-19

    This patent describes a method for use in determining the oil saturation of an earth formation by means of sponge coring, using polyurethane sponge. It comprises: dissolving substantially all of the oil and substantially none of the sponge, in a sponge core sample, into a solvent having a Hansen solubility parameter of different than that of the sponge and selected from the class consisting of: solvents having no protons in their structure, deuterated solvents, and solvents having no C-H bonds in their structure; extracting the solvent and solutes from the core sample; and measuring the resultant oil concentration in the solvent and solutes extracted from the core sample.

  14. Electrochemically regenerable carbon dioxide absorber

    NASA Technical Reports Server (NTRS)

    Woods, R. R.; Marshall, R. D.; Schubert, F. H.; Heppner, D. B.

    1979-01-01

    Preliminary designs were generated for two electrochemically regenerable carbon dioxide absorber concepts. Initially, an electrochemically regenerable absorption bed concept was designed. This concept incorporated the required electrochemical regeneration components in the absorber design, permitting the absorbent to be regenerated within the absorption bed. This hardware was identified as the electrochemical absorber hardware. The second hardware concept separated the functional components of the regeneration and absorption process. This design approach minimized the extravehicular activity component volume by eliminating regeneration hardware components within the absorber. The electrochemical absorber hardware was extensively characterized for major operating parameters such as inlet carbon dioxide partial pressure, process air flow rate, operational pressure, inlet relative humidity, regeneration current density and absorption/regeneration cycle endurance testing.

  15. Liquid Hydrogen Absorber for MICE

    SciTech Connect

    Ishimoto, S.; Suzuki, S.; Yoshida, M.; Green, Michael A.; Kuno, Y.; Lau, Wing

    2010-05-30

    Liquid hydrogen absorbers for the Muon Ionization Cooling Experiment (MICE) have been developed, and the first absorber has been tested at KEK. In the preliminary test at KEK we have successfully filled the absorber with {approx}2 liters of liquid hydrogen. The measured hydrogen condensation speed was 2.5 liters/day at 1.0 bar. No hydrogen leakage to vacuum was found between 300 K and 20 K. The MICE experiment includes three AFC (absorber focusing coil) modules, each containing a 21 liter liquid hydrogen absorber made of aluminum. The AFC module has safety windows to separate its vacuum from that of neighboring modules. Liquid hydrogen is supplied from a cryocooler with cooling power 1.5 W at 4.2 K. The first absorber will be assembled in the AFC module and installed in MICE at RAL.

  16. Broadband patterned magnetic microwave absorber

    SciTech Connect

    Li, Wei; Wu, Tianlong; Wang, Wei; Guan, Jianguo; Zhai, Pengcheng

    2014-07-28

    It is a tough task to greatly improve the working bandwidth for the traditional flat microwave absorbers because of the restriction of available material parameters. In this work, a simple patterning method is proposed to drastically broaden the absorption bandwidth of a conventional magnetic absorber. As a demonstration, an ultra-broadband microwave absorber with more than 90% absorption in the frequency range of 4–40 GHz is designed and experimentally realized, which has a thin thickness of 3.7 mm and a light weight equivalent to a 2-mm-thick flat absorber. In such a patterned absorber, the broadband strong absorption is mainly originated from the simultaneous incorporation of multiple λ/4 resonances and edge diffraction effects. This work provides a facile route to greatly extend the microwave absorption bandwidth for the currently available absorbing materials.

  17. Increasing Mechanical Strength of Gelatin Hydrogels by Divalent Metal Ion Removal

    PubMed Central

    Xing, Qi; Yates, Keegan; Vogt, Caleb; Qian, Zichen; Frost, Megan C.; Zhao, Feng

    2014-01-01

    The usage of gelatin hydrogel is limited due to its instability and poor mechanical properties, especially under physiological conditions. Divalent metal ions present in gelatin such as Ca2+ and Fe2+ play important roles in the gelatin molecule interactions. The objective of this study was to determine the impact of divalent ion removal on the stability and mechanical properties of gelatin gels with and without chemical crosslinking. The gelatin solution was purified by Chelex resin to replace divalent metal ions with sodium ions. The gel was then chemically crosslinked by 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC). Results showed that the removal of divalent metal ions significantly impacted the formation of the gelatin network. The purified gelatin hydrogels had less interactions between gelatin molecules and form larger-pore network which enabled EDC to penetrate and crosslink the gel more efficiently. The crosslinked purified gels showed small swelling ratio, higher crosslinking density and dramatically increased storage and loss moduli. The removal of divalent ions is a simple yet effective method that can significantly improve the stability and strength of gelatin hydrogels. The in vitro cell culture demonstrated that the purified gelatin maintained its ability to support cell attachment and spreading. PMID:24736500

  18. Characteristics and Gel Properties of Gelatin from Goat Skin as Influenced by Alkaline-pretreatment Conditions.

    PubMed

    Mad-Ali, Sulaiman; Benjakul, Soottawat; Prodpran, Thummanoon; Maqsood, Sajid

    2016-06-01

    Characteristics and properties of gelatin from goat skin pretreated with NaOH solutions (0.50 and 0.75 M) for various times (1 to 4 days) were investigated. All gelatins contained α-chains as the predominant component, followed by β-chain. Gelling and melting temperatures of those gelatins were 23.02°C to 24.16°C and 33.07°C to 34.51°C, respectively. Gel strength of gelatins increased as NaOH concentration and pretreatment time increased (p<0.05). Pretreatment for a longer time yielded gelatin with a decrease in L*-value but an increase in b*-value. Pretreatment of goat skin using 0.75 M NaOH for 2 days rendered the highest yield (15.95%, wet weight basis) as well as high gel strength (222.42 g), which was higher than bovine gelatin (199.15 g). Gelatin obtained had the imino acid content of 226 residues/1,000 residues and the gelatin gel had a fine and ordered structure. Therefore, goat skin gelatin could be used as a potential replacer of commercial gelatin. PMID:26954127

  19. Increasing Mechanical Strength of Gelatin Hydrogels by Divalent Metal Ion Removal

    NASA Astrophysics Data System (ADS)

    Xing, Qi; Yates, Keegan; Vogt, Caleb; Qian, Zichen; Frost, Megan C.; Zhao, Feng

    2014-04-01

    The usage of gelatin hydrogel is limited due to its instability and poor mechanical properties, especially under physiological conditions. Divalent metal ions present in gelatin such as Ca2+ and Fe2+ play important roles in the gelatin molecule interactions. The objective of this study was to determine the impact of divalent ion removal on the stability and mechanical properties of gelatin gels with and without chemical crosslinking. The gelatin solution was purified by Chelex resin to replace divalent metal ions with sodium ions. The gel was then chemically crosslinked by 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC). Results showed that the removal of divalent metal ions significantly impacted the formation of the gelatin network. The purified gelatin hydrogels had less interactions between gelatin molecules and form larger-pore network which enabled EDC to penetrate and crosslink the gel more efficiently. The crosslinked purified gels showed small swelling ratio, higher crosslinking density and dramatically increased storage and loss moduli. The removal of divalent ions is a simple yet effective method that can significantly improve the stability and strength of gelatin hydrogels. The in vitro cell culture demonstrated that the purified gelatin maintained its ability to support cell attachment and spreading.

  20. Characteristics and Gel Properties of Gelatin from Goat Skin as Influenced by Alkaline-pretreatment Conditions

    PubMed Central

    Mad-Ali, Sulaiman; Benjakul, Soottawat; Prodpran, Thummanoon; Maqsood, Sajid

    2016-01-01

    Characteristics and properties of gelatin from goat skin pretreated with NaOH solutions (0.50 and 0.75 M) for various times (1 to 4 days) were investigated. All gelatins contained α-chains as the predominant component, followed by β-chain. Gelling and melting temperatures of those gelatins were 23.02°C to 24.16°C and 33.07°C to 34.51°C, respectively. Gel strength of gelatins increased as NaOH concentration and pretreatment time increased (p<0.05). Pretreatment for a longer time yielded gelatin with a decrease in L*-value but an increase in b*-value. Pretreatment of goat skin using 0.75 M NaOH for 2 days rendered the highest yield (15.95%, wet weight basis) as well as high gel strength (222.42 g), which was higher than bovine gelatin (199.15 g). Gelatin obtained had the imino acid content of 226 residues/1,000 residues and the gelatin gel had a fine and ordered structure. Therefore, goat skin gelatin could be used as a potential replacer of commercial gelatin. PMID:26954127

  1. Using Liquid Smoke to Improve Mechanical and Water Resistance Properties of Gelatin Films.

    PubMed

    Wang, Wenwang; Li, Cong; Zhang, Hongjie; Ni, Yonghao

    2016-05-01

    Improvement of mechanical and water barrier properties is critical for gelatin films when applied to edible food packaging. A liquid smoke (LS) obtained from hawthorn nucleus was used to improve the performance of gelatin film based on its abundant compounds. Through SPME-GC-MS analysis, 86 volatile and semi-volatile chemical compounds was detected in LS, in which the total carbonyl compounds were 27.60%, with the main aldehyde as 2-furaldehyde (9.83%). For gelatin films, an observable influence of LS on film transparency was observed in gelatin films, but not for its thickness and microstructure. Desirably, adding LS into gelatin solution increased the tensile strength of the films, with a better value of 16.38 MPa as 3 wt% LS added, compared with the control (10.30 MPa). Accordingly, film elongation decreased with a LS dependent manner. Furthermore, the water resistance properties of gelatin film were improved by the LS addition, which was supported by the results of water contact angle, water vapor permeability. Moreover, the addition of LS also led to a higher insolubility for gelatin films. Also, thermal stability of the LS treated gelatin films was slightly enhanced with the DSC analysis. According to the FTIR spectra and crosslinking degree detection results, all the above enhancing of gelatin film should be attributed to the crosslinking between carbonyl groups in LS and amide functionalities in gelatin based on nucleophilic reaction. PMID:27061211

  2. Plants absorb heavy metals

    SciTech Connect

    Parry, J.

    1995-02-01

    Decontamination of heavy metals-polluted soils remains one of the most intractable problems of cleanup technology. Currently available techniques include extraction of the metals by physical and chemical means, such as acid leaching and electroosmosis, or immobilization by vitrification. There are presently no techniques for cleanup which are low cost and retain soil fertility after metals removal. But a solution to the problem could be on the horizon. A small but growing number of plants native to metalliferous soils are known to be capable of accumulating extremely high concentrations of metals in their aboveground portions. These hyperaccumulators, as they are called, contain up to 1,000 times larger metal concentrations in their aboveground parts than normal species. Their distribution is global, including many different families of flowering plants of varying growth forms, from herbaceous plants to trees. Hyperaccumulators absorb metals they do not need for their own nutrition. The metals are accumulated in the leaf and stem vacuoles, and to a lesser extent in the roots.

  3. Effect of Duck Feet Gelatin Concentration on Physicochemical, Textural, and Sensory Properties of Duck Meat Jellies

    PubMed Central

    2014-01-01

    This study was conducted to determine the effect of duck feet gelatin concentration on the physicochemical, textural and sensory properties of duck meat jellies. Duck feet gelatin was prepared with acidic swelling and hot water extraction. In this study, four duck meat jellies were formulated with 3, 4, 5, and 6% duck feet gelatin, respectively. In the preliminary experiment, the increase in duck feet gelatin ranged from 5 to 20%, resulting in a significant (p<0.001) increase in the color score, but a decline in the hardness and dispersibility satisfaction scores. An increase in the added amount of duck feet gelatin contributed to decreased lightness and increased protein content in duck meat jellies. Regarding the textural properties, increase in the added amount of duck feet gelatin highly correlated with the hardness in the center (p<0.01, R2=0.91), and edge (p<0.01, R2=0.89), of duck meat jellies. Meanwhile, the increase in duck feet gelatin decreased the score for textural satisfaction; duck meat jellies containing 6% duck feet gelatin had a significantly lower textural satisfaction score, than those containing 3% duck feet gelatin (p<0.05). Furthermore, a significant difference in the overall acceptance of duck meat jellies formulated with 5% duck feet gelatin was observed, as compared to those prepared with 3% duck feet gelatin. Therefore, this study suggested that duck feet gelatin is a useful ingredient for manufacturing cold-cut meat products. In consideration of the sensory acceptance, the optimal level of duck feet gelatin in duck meat jellies was determined to be 5%. PMID:26761181

  4. A multiscale study on the structural and mechanical properties of the luffa sponge from Luffa cylindrica plant.

    PubMed

    Chen, Qiang; Shi, Quan; Gorb, Stanislav N; Li, Zhiyong

    2014-04-11

    Cellular materials that are often observed in biological systems exhibit excellent mechanical properties at remarkably low densities. Luffa sponge is one of such materials with a complex interconnecting porous structure. In this paper, we studied the relationship between its structural and mechanical properties at different levels of its hierarchical organization from a single fiber to a segment of whole sponge. The tensile mechanical behaviors of three single fibers were examined by an Instron testing machine and the ultrastructure of a fractured single fiber was observed in a scanning electronic microscope. Moreover, the compressive mechanical behaviors of the foam-like blocks from different locations of the sponge were examined. The difference of the compressive stress-strain responses of four sets of segmental samples were also compared. The result shows that the single fiber is a porous composite material mainly consisting of cellulose fibrils and lignin/hemicellulose matrix, and its Young's modulus and strength are comparable to wood. The mechanical behavior of the block samples from the hoop wall is superior to that from the core part. Furthermore, it shows that the influence of the inner surface on the mechanical property of the segmental sample is stronger than that of the core part; in particular, the former's Young's modulus, strength and strain energy absorbed are about 1.6 times higher. The present work can improve our understanding of the structure-function relationship of the natural material, which may inspire fabrication of new biomimetic foams with desirable mechanical efficiency for further applications in anti-crushing devices and super-light sandwich panels. PMID:24636532

  5. Predictors of the distribution and abundance of a tube sponge and its resident goby

    NASA Astrophysics Data System (ADS)

    D'Aloia, C. C.; Majoris, J. E.; Buston, P. M.

    2011-09-01

    Microhabitat specialists offer tractable systems for studying the role of habitat in determining species' distribution and abundance patterns. While factors underlying the distribution patterns of these specialists have been studied for decades, few papers have considered factors influencing both the microhabitat and the inhabitant. On the Belizean barrier reef, the obligate sponge-dwelling goby Elacatinus lori inhabits the yellow tube sponge Aplysina fistularis. We used field data and multivariate analyses to simultaneously consider factors influencing sponge and goby distributions. Sponges were non-randomly distributed across the reef with density peaking at a depth of 10-20 m. Sponge morphology also varied with depth: sponges tended to be larger and have fewer tubes with increasing depth. Knowing these patterns of sponge distribution and morphology, we considered how they influenced the distribution of two categories of gobies: residents (≥18 mm SL) and settlers (<18 mm SL). Maximum tube length, number of sponge tubes, and depth were significant predictors of resident distribution. Residents were most abundant in large sponges with multiple tubes, and were virtually absent from sponges shallower than 10 m. Similarly, maximum tube length and number of sponge tubes were significant predictors of settler distribution, with settlers most abundant in large sponges with multiple tubes. The presence or absence of residents in a sponge was not a significant predictor of settler distribution. These results provide us with a clear understanding of where sponges and gobies are found on the reef and support the hypothesis that microhabitat characteristics are good predictors of fish abundance for species that are tightly linked to microhabitat.

  6. Gelatin-Methacryloyl Hydrogels: Towards Biofabrication-Based Tissue Repair.

    PubMed

    Klotz, Barbara J; Gawlitta, Debby; Rosenberg, Antoine J W P; Malda, Jos; Melchels, Ferry P W

    2016-05-01

    Research over the past decade on the cell-biomaterial interface has shifted to the third dimension. Besides mimicking the native extracellular environment by 3D cell culture, hydrogels offer the possibility to generate well-defined 3D biofabricated tissue analogs. In this context, gelatin-methacryloyl (gelMA) hydrogels have recently gained increased attention. This interest is sparked by the combination of the inherent bioactivity of gelatin and the physicochemical tailorability of photo-crosslinkable hydrogels. GelMA is a versatile matrix that can be used to engineer tissue analogs ranging from vasculature to cartilage and bone. Convergence of biological and biofabrication approaches is necessary to progress from merely proving cell functionality or construct shape fidelity towards regenerating tissues. GelMA has a critical pioneering role in this process and could be used to accelerate the development of clinically relevant applications. PMID:26867787

  7. Lifting shoeprints using gelatin lifters and a hydraulic press.

    PubMed

    Shor, Yaron; Tsach, Tsadok; Vinokurov, Asya; Glattstein, Baruch; Landau, Eliezer; Levin, Nadav

    2003-03-01

    A method for lifting two-dimensional dust footwear marks on rough or porous surfaces, such as cardboard or cloth, using a hydraulic press, was examined. It was found that exerting pressure on the lifter by the press usually improves the quality of the results. When the shoeprints were on rough or soft surfaces, the prints transferred to the gelatin lifters were better than those obtained by the conventional method. In other cases, using the press did not improve the results but was much simpler to apply. Based on the results of this study, the hydraulic press/gelatin lifter method (the "press method") is used at the authors' laboratory, depending on the surface from which the shoeprint is to be lifted. It is the authors' intention to apply the method to other surfaces after finding the optimal pressure for surfaces with loose fibers. PMID:12664996

  8. Doubly slanted layer structures in holographic gelatin emulsions: solar concentrators

    NASA Astrophysics Data System (ADS)

    Hung, Jenny; Chan, Po Shan; Sun, Caiming; Wing Ho, Choi; Tam, Wing Yim

    2010-04-01

    We have fabricated doubly slanted layer structures in holographic gelatin emulsions using a double-exposure two-beam interference from two light sources with different wavelengths. The doubly slanted layers, with different spacings and overlapping with each other, are fabricated such that they are slanted in opposite directions making a 30° angle with the holographic plate. The doubly slanted layer structures exhibit photonic stop bands corresponding to the two layered structures. More importantly, diffracted light beams from the slanted layers travel in different directions and emerge, through internal reflections, at the opposite edges of the gelatin plate. The doubly slanted layer structures could be used as solar concentrators such that sunlight is separated into different components and steered directly to photovoltaics with the corresponding wavelength sensitivities to enhance energy conversion efficiency.

  9. Anisotropic silk fibroin/gelatin scaffolds from unidirectional freezing.

    PubMed

    Asuncion, Maria Christine Tankeh; Goh, James Cho-Hong; Toh, Siew-Lok

    2016-10-01

    Recent studies have underlined the importance of matching scaffold properties to the biological milieu. Tissue, and thus scaffold, anisotropy is one such property that is important yet sometimes overlooked. Methods that have been used to achieve anisotropic scaffolds present challenges such as complicated fabrication steps, harsh processing conditions and toxic chemicals involved. In this study, unidirectional freezing was employed to fabricate anisotropic silk fibroin/gelatin scaffolds in a simple and mild manner. Morphological, mechanical, chemical and cellular compatibility properties were investigated, as well as the effect of the addition of gelatin to certain properties of the scaffold. It was shown that scaffold properties were suitable for cell proliferation and that mesenchymal stem cells were able to align themselves along the directed fibers. The fabricated scaffolds present a platform that can be used for anisotropic tissue engineering applications such as cardiac patches. PMID:27287164

  10. Electrochemical performance of Si anode modified with carbonized gelatin binder

    NASA Astrophysics Data System (ADS)

    Jiang, Ying; Mu, Daobin; Chen, Shi; Wu, Borong; Cheng, Kailin; Li, Luyu; Wu, Feng

    2016-09-01

    Gelatin is alternatively adopted as the binder to modify Si anode coupling with its carbonization treatment. The binder can provide good bonding and uniform dispersion of the particles besides its environmental benignancy. Importantly, the carbonized binder containing nitrogen will be advantageous to the electrical conductivity of the electrode. In addition, some spaces are formed in the electrode due to the decomposition and shrinkage of the gelatin binder during heat-treatment, which may facilitate electrolyte penetration and accommodate volume change during cycling. All these merits make contribution to the good electrochemical performance of the modified Si electrode. It exhibits a reversible capacity of 990.3 mA h g-1 after 70 cycles at a current density of 100 mA g-1 and 904 mA h g-1 after 100 cycles at 400 mA g-1.

  11. Non-hydroscopic vanilla doped dichromated gelatin holographic material

    NASA Astrophysics Data System (ADS)

    Pinto-Iguanero, B.; Olivares-Pérez, A.; Méndez-Alvarado, A. W.; Fuentes-Tapia, I.; Treviño-Palacios, C. G.

    2003-06-01

    Dichromate gelatins are well-known holographic materials. By doping this material with synthetic vanilla a change in the spectral response from regular dichromate gelatin is observed as an increase in optical density. This mixture presents an unusual high humidity resistance. It was possible to record holographic diffraction gratings using an argon ion laser ( λ=488 nm). These gratings exhibit good diffraction efficiency in transmission, on the order of 60% at Bragg angle, with more than 1700 lines/mm spatial resolution. The material development process consists simply of dipping it into using a solution of water and isopropyl alcohol. A hypothesis on the hydroscopic response of this new photosensitive material is also presented.

  12. Gelation kinetics of gelatin using particle tracking microrheology

    NASA Astrophysics Data System (ADS)

    Hardcastle, Joseph; Bansil, Rama

    2012-02-01

    Previous studies with gelatin have observed four distinct stages during the physical gelation process [Normand et al. Macromolecules, 2000, 33, 1063]. In this presentation we report measurements of microrheology in an effort to examine the time evolution of the gel on short length scales and time scales. By tracking latex particles in gelatin solution at different temperatures we can follow the microrheological changes and kinetics of the gelation process. Using the generalized Stokes-Einstein relation viscoelastic properties of these quasi-static gel states the evolution of the storage and loss moduli, G' and G'', are examined as functions of both time and temperature. The data show that both G' and G'' exhibit power law scaling versus frequency with the same exponent. The temperature and concentration dependence of the frequency at which the system crosses over from viscous to elastic behavior will be presented.

  13. Occurrence of a taurine derivative in an antarctic glass sponge.

    PubMed

    Carbone, Marianna; Núñez-Pons, Laura; Ciavatta, M Letizia; Castelluccio, Francesco; Avila, Conxita; Gavagnin, Margherita

    2014-04-01

    The n-butanol extract of an Antarctic hexactinellid sponge, Anoxycalyx (Scolymastra) joubini, was found to contain a taurine-conjugated anthranilic acid, never reported so far either as a natural product or by synthesis. The compound was inactive against human cancer cells in an in vitro growth inhibitory test, and also showed no antibacterial activity. PMID:24868857

  14. Significance of starch properties and quantity on sponge cake volume

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We evaluated the qualitative and quantitative effects of wheat starch on sponge cake (SC) baking quality. Twenty wheat flours, including soft white and club wheat of normal, partial waxy and waxy endosperm, and hard wheat, were tested for amylose content, pasting properties, and SC baking quality. S...

  15. A tactile sensor using a conductive graphene-sponge composite

    NASA Astrophysics Data System (ADS)

    Chun, Sungwoo; Hong, Ahyoung; Choi, Yeonhoi; Ha, Chunho; Park, Wanjun

    2016-04-01

    For sensors that emulate human tactile perception, we suggest a simple method for fabricating a highly sensitive force sensor using a conductive polyurethane sponge where graphene flakes are self-assembled into the porous structure of the sponge. The complete sensor device shows a sensitive and reliable detection response for a broad range of pressure and dynamic pressure that correspond to human tactile perception. Sensitivity of the sensor to detect vibration is also confirmed with vertical actuations due to slipping over micro-scale ridge structures attached on the sensors. Based on the sensor's ability to detect both pressure and vibration, the sensor can be utilized as a flexible tactile sensor.For sensors that emulate human tactile perception, we suggest a simple method for fabricating a highly sensitive force sensor using a conductive polyurethane sponge where graphene flakes are self-assembled into the porous structure of the sponge. The complete sensor device shows a sensitive and reliable detection response for a broad range of pressure and dynamic pressure that correspond to human tactile perception. Sensitivity of the sensor to detect vibration is also confirmed with vertical actuations due to slipping over micro-scale ridge structures attached on the sensors. Based on the sensor's ability to detect both pressure and vibration, the sensor can be utilized as a flexible tactile sensor. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr00774k

  16. Keratin sponge/hydrogel II, active agent delivery

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Keratin sponge/hydrogels from oxidation and reduction hydrolysis of fine and coarse wool fibers were formed to behave as cationic hydrogels to swell and release active agents in the specific region of the gastro-intestinal (GI) tract. Their porous, interpenetrating networks (IPN) were effective for...

  17. SITE TECHNOLOGY CAPSULE: DYNAPHORE, INC., FORAGER™ SPONGE TECHNOLOGY

    EPA Science Inventory

    The Forager™ Sponge is a volume reduction technology in which heavy metal contaminants from an aqueous medium are selectively concentrated into a smaller volume for facilitated disposal. The technology treats contaminated groundwater, surface waters, and process waters by absorbi...

  18. Antiepileptic Ceramides from the Red Sea Sponge Negombata corticata

    PubMed Central

    Ahmed, Safwat A.; Khalifa, Sherief I.; Hamann, Mark T.

    2016-01-01

    A new antiepileptic ceramide mixture 1 was isolated from the Red Sea sponge Negombata corticata. The structures of the metabolites were determined by extensive spectroscopic analysis. The anticonvulsant activity of 1 was measured in vivo using the pentylenetetrazole-induced seizure model. This finding has important implications for biological studies with this class of compounds. PMID:18355032

  19. Animals of the Sea: Coelenterates, Protozoa, and Sponges.

    ERIC Educational Resources Information Center

    Awkerman, Gary L.

    These three units are designed for use with standard science curricula. These publications, relating to animals of the sea, are: Protozoa, Sponges, and Coelenterates. Included are teacher guides, student activities, and demonstrations designed to impart ocean science understanding to high school students. Objectives to be attained from the unit on…

  20. Seasonal Growth Rate of the Sponge Haliclona oculata (Demospongiae: Haplosclerida)

    PubMed Central

    Wijffels, René H.

    2008-01-01

    The interest in sponges has increased rapidly since the discovery of potential new pharmaceutical compounds produced by many sponges. A good method to produce these compounds by using aquaculture of sponges is not yet available, because there is insufficient knowledge about the nutritional needs of sponges. To gain more insight in the nutritional needs for growth, we studied the growth rate of Haliclona oculata in its natural environment and monitored environmental parameters in parallel. A stereo photogrammetry approach was used for measuring growth rates. Stereo pictures were taken and used to measure volumetric changes monthly during 1 year. Volumetric growth rate of Haliclona oculata showed a seasonal trend with the highest average specific growth rate measured in May: 0.012 ± 0.004 day−1. In our study a strong positive correlation (p < 0.01) was found for growth rate with temperature, algal biomass (measured as chlorophyll a), and carbon and nitrogen content in suspended particulate matter. A negative correlation (p < 0.05) was found for growth rate with salinity, ammonium, nitrate, nitrite, and phosphate. No correlation was found with dissolved organic carbon, suggesting that Haliclona oculata is more dependent on particulate organic carbon. PMID:18293037

  1. Cytotoxic dibromotyrosine-derived metabolites from the sponge Aplysina gerardogreeni.

    PubMed

    Hernández-Guerrero, Claudia J; Zubía, Eva; Ortega, María J; Carballo, J Luis

    2007-08-01

    The chemical study of the sponge Aplysina gerardogreeni collected at the Gulf of California has led to the isolation of four new dibromotyrosine-derived metabolites, aplysinones A-D, whose structures were determined by spectroscopic analysis and chemical methods. The new compounds and four semisynthetic analogues prepared in this study have shown cytotoxic activity against human tumor cell lines. PMID:17512741

  2. New Scalarane Sesterterpenoids from the Formosan Sponge Ircinia felix

    PubMed Central

    Lai, Ya-Yuan; Lu, Mei-Chin; Wang, Li-Hsueh; Chen, Jih-Jung; Fang, Lee-Shing; Wu, Yang-Chang; Sung, Ping-Jyun

    2015-01-01

    Five new scalarane sesterterpenoids, felixins A–E (1–5), were isolated from the Formosan sponge Ircinia felix. The structures of scalaranes 1–5 were elucidated on the basis of spectroscopic analysis. Cytotoxicity of scalaranes 1–5 against the proliferation of a limited panel of tumor cell lines was evaluated. PMID:26184237

  3. Tactile device utilizing a single magnetorheological sponge: experimental investigation

    NASA Astrophysics Data System (ADS)

    Kim, Soomin; Kim, Pyunghwa; Choi, Seung-Hyun; Oh, Jong-Seok; Choi, Seung-Bok

    2015-04-01

    In the field of medicine, several new areas have been currently introduced such as robot-assisted surgery. However, the major drawback of these systems is that there is no tactile communication between doctors and surgical sites. When the tactile system is brought up, telemedicine including telerobotic surgery can be enhanced much more than now. In this study, a new tactile device is designed using a single magnetorhological (MR) sponge cell to realize the sensation of human organs. MR fluids and an open celled polyurethane foam are used to propose the MR sponge cell. The viscous and elastic sensational behaviors of human organs are realized by the MR sponge cell. Before developing the tactile device, tactile sensation according to touch of human fingers are quantified in advance. The finger is then treated as a reduced beam bundle model (BBM) in which the fingertip is comprised of an elastic beam virtually. Under the reduced BBM, when people want to sense an object, the fingertip is investigated by pushing and sliding. Accordingly, while several magnitudes of magnetic fields are applied to the tactile device, normal and tangential reaction forces and bending moment are measured by 6-axis force/torque sensor instead of the fingertip. These measured data are used to compare with soft tissues. It is demonstrated that the proposed MR sponge cell can realize any part of the organ based on the obtained data.

  4. Gelatin as a new humidity sensing material: Characterization and limitations

    SciTech Connect

    Shapardanis, Steven; Hudpeth, Mathew; Kaya, Tolga

    2014-12-15

    The goal of this work is to assert the utility of collagen and its denatured counterpart gelatin as cost-effective alternatives to existing sensing layers comprised of polymers. Rather than producing a material that will need to be discarded or recycled, collagen, as a by-product of the meat and leather industry, could be repurposed. This work examines the feasibility of using collagen as a sensing layer. Planar electrodes were patterned with lift-off process to work with the natural characteristics of gelatin by utilizing metal vapor deposition, spin coating, and photolithography. Characterization methods have also been optimized through the creation of specialized humidity chambers that isolate specific characteristics such as response time, accuracy, and hysteresis. Collagen-based sensors are found to have a sensitivity to moisture in the range of 0.065 pF/%RH. Diffusion characteristics were also analyzed with the diffusion coefficient found to be 2.5 × 10{sup −5} cm{sup 2}/s. Absorption and desorption times were found to be 20 seconds and 8 seconds, respectively. Hysteresis present in the data is attributed to temperature cross-sensitivity. Ultimately, the utility of collagen as a dielectric sensing material is, in part, due to its fibrous macrostructures as well its hydrophilic sites along the peptide chains. Gelatin was patterned between and below interdigitated copper electrodes and tested as a relative humidity sensor. This work shows that gelatin, which is inexpensive, widely available, and easy to process, can be an effective dielectric sensing polymer for capacitive-type relative humidity sensors.

  5. Gelatin as a new humidity sensing material: Characterization and limitations

    NASA Astrophysics Data System (ADS)

    Shapardanis, Steven; Hudpeth, Mathew; Kaya, Tolga

    2014-12-01

    The goal of this work is to assert the utility of collagen and its denatured counterpart gelatin as cost-effective alternatives to existing sensing layers comprised of polymers. Rather than producing a material that will need to be discarded or recycled, collagen, as a by-product of the meat and leather industry, could be repurposed. This work examines the feasibility of using collagen as a sensing layer. Planar electrodes were patterned with lift-off process to work with the natural characteristics of gelatin by utilizing metal vapor deposition, spin coating, and photolithography. Characterization methods have also been optimized through the creation of specialized humidity chambers that isolate specific characteristics such as response time, accuracy, and hysteresis. Collagen-based sensors are found to have a sensitivity to moisture in the range of 0.065 pF/%RH. Diffusion characteristics were also analyzed with the diffusion coefficient found to be 2.5 × 10-5 cm2/s. Absorption and desorption times were found to be 20 seconds and 8 seconds, respectively. Hysteresis present in the data is attributed to temperature cross-sensitivity. Ultimately, the utility of collagen as a dielectric sensing material is, in part, due to its fibrous macrostructures as well its hydrophilic sites along the peptide chains. Gelatin was patterned between and below interdigitated copper electrodes and tested as a relative humidity sensor. This work shows that gelatin, which is inexpensive, widely available, and easy to process, can be an effective dielectric sensing polymer for capacitive-type relative humidity sensors.

  6. Thermal analysis of microlens formation on a sensitized gelatin layer

    SciTech Connect

    Muric, Branka; Pantelic, Dejan; Vasiljevic, Darko; Panic, Bratimir; Jelenkovic, Branislav

    2009-07-01

    We analyze a mechanism of direct laser writing of microlenses. We find that thermal effects and photochemical reactions are responsible for microlens formation on a sensitized gelatin layer. An infrared camera was used to assess the temperature distribution during the microlens formation, while the diffraction pattern produced by the microlens itself was used to estimate optical properties. The study of thermal processes enabled us to establish the correlation between thermal and optical parameters.

  7. Microlens fabrication on tot’hema sensitized gelatin

    NASA Astrophysics Data System (ADS)

    Murić, Branka; Pantelić, Dejan; Vasiljević, Darko; Panić, Bratimir

    2008-03-01

    Photosensitivity of tot'hema and eosin sensitized gelatin layer (TESG) is analyzed. Tot'hema is a trade name of a drinkable solution used in medicine for treatment of anemia, while eosin is an organic dye, used in medicine too. The resulting material is cheap, easy to use, nonpoisoneous and photosensitive in the green part of spectrum. Microlenses, arrays of microlenses and sinusoidal transmission diffraction gratings were recorded using Nd:YAG laser operating at 532 nm.

  8. Energy absorber for the CETA

    NASA Astrophysics Data System (ADS)

    Wesselski, Clarence J.

    1994-05-01

    The energy absorber that was developed for the CETA (Crew Equipment and Translation Aid) on Space Station Freedom is a metal on metal frictional type and has a load regulating feature that prevents excessive stroking loads from occurring while in operation. This paper highlights some of the design and operating aspects and the testing of this energy absorber.

  9. Energy absorber for the CETA

    NASA Technical Reports Server (NTRS)

    Wesselski, Clarence J.

    1994-01-01

    The energy absorber that was developed for the CETA (Crew Equipment and Translation Aid) on Space Station Freedom is a metal on metal frictional type and has a load regulating feature that prevents excessive stroking loads from occurring while in operation. This paper highlights some of the design and operating aspects and the testing of this energy absorber.

  10. Metal-shearing energy absorber

    NASA Technical Reports Server (NTRS)

    Fay, R. J.; Wittrock, E. P.

    1971-01-01

    Device, consisting of tongue of thin aluminum alloy strip, pull tab, slotted steel plate which serves as cutter, and steel buckle, absorbs mechanical energy when its ends are subjected to tensile loading. Device is applicable as auxiliary shock absorbing anchor for automobile and airplane safety belts.

  11. Leaf absorbance and photosynthesis

    NASA Technical Reports Server (NTRS)

    Schurer, Kees

    1994-01-01

    The absorption spectrum of a leaf is often thought to contain some clues to the photosynthetic action spectrum of chlorophyll. Of course, absorption of photons is needed for photosynthesis, but the reverse, photosynthesis when there is absorption, is not necessarily true. As a check on the existence of absorption limits we measured spectra for a few different leaves. Two techniques for measuring absorption have been used, viz. the separate determination of the diffuse reflectance and the diffuse transmittance with the leaf at a port of an integrating sphere and the direct determination of the non-absorbed fraction with the leaf in the sphere. In a cross-check both methods yielded the same results for the absorption spectrum. The spectrum of a Fuchsia leaf, covering the short-wave region from 350 to 2500 nm, shows a high absorption in UV, blue and red, the well known dip in the green and a steep fall-off at 700 nm. Absorption drops to virtually zero in the near infrared, with subsequent absorptions, corresponding to the water absorption bands. In more detailed spectra, taken at 5 nm intervals with a 5 nm bandwidth, differences in chlorophyll content show in the different depths of the dip around 550 nm and in a small shift of the absorption edge at 700 nm. Spectra for Geranium (Pelargonium zonale) and Hibiscus (with a higher chlorophyll content) show that the upper limit for photosynthesis can not be much above 700 nm. No evidence, however, is to be seen of a lower limit for photosynthesis and, in fact, some experiments down to 300 nm still did not show a decrease of the absorption although it is well recognized that no photosynthesis results with 300 nm wavelengths.

  12. Lecithin-Linker Microemulsion Gelatin Gels for Extended Drug Delivery

    PubMed Central

    Xuan, Xiao-Yue; Cheng, Yu-Ling; Acosta, Edgar

    2012-01-01

    This article introduces the formulation of alcohol-free, lecithin microemulsion-based gels (MBGs) prepared with gelatin as gelling agent. The influence of oil, water, lecithin and hydrophilic and lipophilic additives (linkers) on the rheological properties and appearance of these gels was systematically explored using ternary phase diagrams. Clear MBGs were obtained in regions of single phase microemulsions (μEs) at room temperature. Increasing the water content in the formulation increased the elastic modulus of the gels, while increasing the oil content had the opposite effect. The hydrophilic additive (PEG-6-caprylic/capric glycerides) was shown to reduce the elastic modulus of gelatin gels, particularly at high temperatures. In contrast to anionic (AOT) μEs, the results suggest that in lecithin (nonionic) μEs, the introduction of gelatin “dehydrates” the μE. Finally, when the transdermal transport of lidocaine formulated in the parent μE and the resulting MBG were compared, only a minor retardation in the loading and release of lidocaine was observed. PMID:24300183

  13. An NMR Study of Biomimetic Fluorapatite - Gelatine Mesocrystals

    NASA Astrophysics Data System (ADS)

    Vyalikh, Anastasia; Simon, Paul; Rosseeva, Elena; Buder, Jana; Scheler, Ulrich; Kniep, Rüdiger

    2015-10-01

    The mesocrystal system fluoroapatite—gelatine grown by double-diffusion is characterized by hierarchical composite structure on a mesoscale. In the present work we apply solid state NMR to characterize its structure on the molecular level and provide a link between the structural organisation on the mesoscale and atomistic computer simulations. Thus, we find that the individual nanocrystals are composed of crystalline fluorapatite domains covered by a thin boundary apatite-like layer. The latter is in contact with an amorphous layer, which fills the interparticle space. The amorphous layer is comprised of the organic matrix impregnated by isolated phosphate groups, Ca3F motifs and water molecules. Our NMR data provide clear evidence for the existence of precursor complexes in the gelatine phase, which were not involved in the formation of apatite crystals, proving hence theoretical predictions on the structural pre-treatment of gelatine by ion impregnation. The interfacial interactions, which may be described as the glue holding the composite materials together, comprise hydrogen bond interactions with the apatite PO43- groups. The reported results are in a good agreement with molecular dynamics simulations, which address the mechanisms of a growth control by collagen fibers, and with experimental observations of an amorphous cover layer in biominerals.

  14. Viscoelasticity of gelatin surfaces probed by AFM noise analysis.

    PubMed

    Benmouna, Farida; Johannsmann, Diethelm

    2004-01-01

    The viscoelastic properties of surfaces of swollen gelatin were investigated by analyzing the Brownian motion of an atomic force microscopy (AFM) cantilever in contact with the gel surface. A micron-sized glass sphere attached to the AFM cantilever is used as the dynamic probe. When the sphere approaches the gelatin surface, there is a static repulsive force without a jump into contact. The cantilever's Brownian movement is monitored in parallel, providing access to the dynamic sphere-surface interaction as quantified by the dynamic spring constant, kappa, and the drag coefficient, xi. Gelatin is used as a model substance for a variety of other soft surfaces, where the stiffness of the gel can be varied via the solvent quality, the bloom number, and the pH. The modulus derived from the static force-distance curve is in the kPa range, consistent with the literature. However, the dynamic spring constant as derived from the Brownian motion is much larger than the static differential spring constant dF/dz. On retraction, one observes a rather strong adhesion hysteresis. The strength of the bridge (as given by the dynamic spring constant and the drag coefficient) is very small. PMID:15745019

  15. An NMR Study of Biomimetic Fluorapatite – Gelatine Mesocrystals

    PubMed Central

    Vyalikh, Anastasia; Simon, Paul; Rosseeva, Elena; Buder, Jana; Scheler, Ulrich; Kniep, Rüdiger

    2015-01-01

    The mesocrystal system fluoroapatite—gelatine grown by double-diffusion is characterized by hierarchical composite structure on a mesoscale. In the present work we apply solid state NMR to characterize its structure on the molecular level and provide a link between the structural organisation on the mesoscale and atomistic computer simulations. Thus, we find that the individual nanocrystals are composed of crystalline fluorapatite domains covered by a thin boundary apatite-like layer. The latter is in contact with an amorphous layer, which fills the interparticle space. The amorphous layer is comprised of the organic matrix impregnated by isolated phosphate groups, Ca3F motifs and water molecules. Our NMR data provide clear evidence for the existence of precursor complexes in the gelatine phase, which were not involved in the formation of apatite crystals, proving hence theoretical predictions on the structural pre-treatment of gelatine by ion impregnation. The interfacial interactions, which may be described as the glue holding the composite materials together, comprise hydrogen bond interactions with the apatite PO43− groups. The reported results are in a good agreement with molecular dynamics simulations, which address the mechanisms of a growth control by collagen fibers, and with experimental observations of an amorphous cover layer in biominerals. PMID:26515127

  16. Newly designed hemostatic technology based on photocurable gelatin.

    PubMed

    Nakayama, Y; Matsuda, T

    1995-01-01

    In this article, the authors present a novel photochemically driven hemostatic technology using photocurable gelatins partially derivatized with photoreactive xanthene dyes (fluorescein, eosin, and rose bengal) and a hydrophilic difunctional macromer. The developed hemostatic glue consisted of dye derivatized gelatin (20 wt%), poly(ethylene glycol) diacrylate (10 wt%), and ascorbid acid (0.3 wt%), all of which were dissolved in a saline solution. Irradiation of the hemostatic glue by visible light produced a swollen gel within a few tenths of a second due to dye sensitized photo-crosslinking and photograft polymerization. An increase in irradiation time resulted in an increased gel yield and reduced water swellability. A rat liver injured on laparotomy was coated with the hemostatic glue. Upon visible light irradiation through an optical fiber, the coated viscous solution was immediately converted to a swollen gel and, concomitantly, hemostasis was completed. Histologic examination showed that, at 7 days after surgery, little gelatin remained in the injured region, scarring with little necrosis occurred, and inflammatory cells infiltrated from the surrounding tissue and tissue regeneration proceeded well. During laparoscopic surgery, in situ gelation of the hemostatic glue on the liver surface was demonstrated using a specially designed fiberscope. PMID:8573828

  17. Gelatin yarns inspired by tendons--structural and mechanical perspectives.

    PubMed

    Selle, Hila Klein; Bar-On, Benny; Marom, Gad; Wagner, H Daniel

    2015-02-01

    Tendons are among the most robust structures in nature. Using the structural properties of natural tendon as a foundation for the development of micro-yarns may lead to innovative composite materials. Gelatin monofilaments were prepared by casting and spinning and small yarns--with up to ten filaments--were assembled into either parallel or 15° twisted yarns. The latter were intended as an attempt to generate mechanical effects similar to those arising from the crimp pattern in tendon. The mechanical properties of parallel and 15° twisted gelatin yarns were compared. The effect of an increasing number of filaments per yarn was also examined. The mechanical properties were mostly affected by the increasing number of filaments, and no benefit arose from twisting small yarns by 15°. However, since gelatin filaments are elasto-plastic rather than fully elastic, much increased toughness (by up to a factor of five for a ten filament yarn) can be achieved with yarns made of elasto-plastic filaments, as demonstrated by experiments and numerical simulations. The resulting effect shows some resemblance to the effect of crimp in tendons. Finally, we developed a dependable procedure to measure the toughness of single filaments based on the test of a yarn rather than on a large number of individual filament tests. PMID:25492166

  18. Visible light broadband perfect absorbers

    NASA Astrophysics Data System (ADS)

    Jia, X. L.; Meng, Q. X.; Yuan, C. X.; Zhou, Z. X.; Wang, X. O.

    2016-03-01

    The visible light broadband perfect absorbers based on the silver (Ag) nano elliptical disks and holes array are studied using finite difference time domain simulations. The semiconducting indium silicon dioxide thin film is introduced as the space layer in this sandwiched structure. Utilizing the asymmetrical geometry of the structures, polarization sensitivity for transverse electric wave (TE)/transverse magnetic wave (TM) and left circular polarization wave (LCP)/right circular polarization wave (RCP) of the broadband absorption are gained. The absorbers with Ag nano disks and holes array show several peaks absorbance of 100% by numerical simulation. These simple and flexible perfect absorbers are particularly desirable for various potential applications including the solar energy absorber.

  19. Selective Toxicity of Persian Gulf Sea Cucumber (Holothuria parva) and Sponge (Haliclona oculata) Methanolic Extracts on Liver Mitochondria Isolated from an Animal Model of Hepatocellular Carcinoma

    PubMed Central

    Seydi, Enayatollah; Motallebi, Abbasali; Dastbaz, Maryam; Dehghan, Sahar; Salimi, Ahmad; Nazemi, Melika; Pourahmad, Jalal

    2015-01-01

    Background: Natural products isolated from marine environments are well known for their pharmacodynamic potential in diverse disease treatments, such as for cancer or inflammatory conditions. Sea cucumbers are marine animals of the phylum Echinoderm and the class Holothuroidea, with leathery skin and gelatinous bodies. Sponges are important components of Persian Gulf animal communities, and the marine sponges of the genus Haliclona have been known to display broad-spectrum biological activity. Many studies have shown that sea cucumbers and sponges contain antioxidants and anti-cancer compounds. Objectives: This study was designed to determine the selective toxicity of Persian Gulf sea cucumber (Holothuria parva) and sponge (Haliclona oculata) methanolic extracts on liver mitochondria isolated from an animal model of hepatocellular carcinoma, as part of a national project that hopes to identify novel potential anticancer candidates among Iranian Persian Gulf flora and fauna. Materials and Methods: To induce hepatocarcinogenesis, rats were given diethylnitrosamine (DEN) injections (200 mg/kg i.p. by a single dose), and then the cancer was promoted with 2-acetylaminofluorene (2-AAF) (0.02 w/w) for two weeks. Histopathological evaluations were performed, and levels of liver injury markers and a specific liver cancer marker (alpha-fetoprotein), were determined for confirmation of hepatocellular carcinoma induction. Finally, mitochondria were isolated from cancerous and non-cancerous hepatocytes. Results: Our results showed that H. parva methanolic extracts (250, 500, and 1000 µg/mL) and H. oculata methanolic extracts (200, 400, and 800 µg/mL) increased reactive oxygen species (ROS) formation, mitochondrial membrane potential (MMP), mitochondrial swelling, and cytochrome c release in the mitochondria obtained from cancerous hepatocytes, but not in mitochondria obtained from non-cancerous liver hepatocytes. These extracts also induced caspase-3 activation, which is

  20. A facile synthesis of three dimensional graphene sponge composited with sulfur nanoparticles for flexible Li-S cathodes.

    PubMed

    Lin, Chao; Niu, Chaojiang; Xu, Xu; Li, Ke; Cai, Zhengyang; Zhang, Yonglai; Wang, Xuanpeng; Qu, Longbing; Xu, Yuxi; Mai, Liqiang

    2016-08-10

    Compared with a two dimensional graphene sheet, a three dimensional (3D) graphene sponge has a continuous conductive structure and numerous pores, which are beneficial for sulfur utilization and anchoring. However, strategies for the construction of 3D graphene sponges composited with sulfur nanoparticles (3DGS) are either energy consuming or involve toxic reagents. Herein, a 3DGS is fabricated via a reduction induced self-assembly method, which is simple but facile and scalable. The structural design of this 3DGS promises fast Li(+) transport, superior electrolyte absorbability and effective electrochemical redox reactions of sulfur. As a result, this 3DGS achieves a stable capacity of 580 mA h g(-1) after 500 cycles at a high rate of 1.5 A g(-1), which corresponds to a low fading rate of 0.043% per cycle. The present study effectively demonstrates that the 3D construction strategy is propitious for obtaining flexible high performance Li-S batteries. PMID:27443983

  1. Fabrication of photo-crosslinked chitosan- gelatin scaffold in sodium alginate hydrogel for chondrocyte culture.

    PubMed

    Zhao, Peng; Deng, Cuijun; Xu, Hongzhen; Tang, Xing; He, Hailong; Lin, Chao; Su, Jiansheng

    2014-01-01

    Photo-crosslinked chitosan-gelatin scaffolds were fabricated and applied for chondrocyte culture in vitro. Photocurable methacryloyl chitosan was synthesized and characterized by FTIR and 1H NMR, respectively. Microstructure and mechanical properties of the chitosan-gelatin scaffold treated with or without EDC as crosslinking agent were analyzed by scanning electronic microscopy (SEM), compression and viscoelastic measurement. It is demonstrated that EDC-treated chitosan-gelatin scaffold possesses better porous structure and improved mechanical properties. Photo-crosslinked chitosan-gelatin scaffold could be further integrated in sodium alginate hydrogel using calcium chloride to support proliferation of chondrocytes for over 21 days and maintain spherical phenotype, as evaluated by AlamarBlue assay and SEM, respectively, implying that the chitosan-gelatin-hydrogel system exhibits great cyto-biocompatibility. Results of this study show that photo-crosslinked chitosan-gelatin scaffold in sodium alginate hydrogel is suited as a scaffold candidate for cartilage tissue engineering. PMID:24211948

  2. FTIR techniques applied to the detection of gelatine in paper artifacts: from macroscopic to microscopic approach

    NASA Astrophysics Data System (ADS)

    Rouchon, Véronique; Pellizzi, Eleonora; Janssens, Koen

    2010-09-01

    In order to render paper hydrophobic for ink and thus adequate for writing, gelatine has been largely used. To this day, it is still employed in conservation workshops as an adhesive or a sizing agent, for instance, during the treatment of iron gall ink manuscripts. Various types and concentrations of gelatine are recommended, depending on the desired effect, but little information is available regarding to the physical distribution of gelatine in the paper. This aspect is however determinant for a better control of conservation treatments. In this work, we investigate the possibilities offered by FTIR microscopy for the measurement of the gelatine distribution in paper. Laboratory papers were preliminary treated with different types of gelatine and then embedded in a resin and cut in thin slices. Mapping techniques enable to compare the penetration of different types of gelatine in a semiquantitative way. The performance of conventional laboratory equipment and synchrotron radiation experimental setup are discussed.

  3. Transglutaminase-induced crosslinking of gelatin-calcium carbonate composite films.

    PubMed

    Wang, Yuemeng; Liu, Anjun; Ye, Ran; Wang, Wenhang; Li, Xin

    2015-01-01

    The effects of transglutaminase (TGase) on the rheological profiles and interactions of gelatin-calcium carbonate solutions were studied. In addition, mechanical properties, water vapour permeability and microstructures of gelatin-calcium carbonate films were also investigated and compared. Fluorescence data suggested that the interaction of TGase and gelation-calcium carbonate belonged to a static quenching mechanism, and merely one binding site between TGase and gelatin-calcium carbonate was identified. Moreover, differential scanning calorimetry (DSC), the mechanical properties and the water vapour permeability studies revealed that TGase favoured the strong intramolecular polymerisation of the peptides in gelatin. The microstructures of the surfaces and cross sections in gelatin-calcium carbonate films were shown by scanning electron microscope (SEM) micrographs. The results of the fourier transform infrared spectroscopy (FTIR) indicated that TGase caused conformational changes in the proteins films. Therefore, TGase successfully facilitated the formation of gelatin-calcium carbonate composite films. PMID:25053075

  4. Extraction and characterization of gelatin biopolymer from black tilapia (Oreochromis mossambicus) scales

    SciTech Connect

    Sockalingam, K. Abdullah, H. Z.

    2015-07-22

    Black tilapia (Oreochromis mossambicus) fish wastes (scales) were evaluated for its suitability as sources of gelatin. Scales were subjected to acid treatment for demineralization before it undergoes thermal extraction process. The raw scales were characterized via Scanning Electron Microscopy (SEM), which demarcated the cycloid pattern of the scales. SEM images also reveal the presence of collagen fiber in the fish scale. The black tilapia fish scales yields 11.88 % of gelatin, indicating the possibility of this fish species as sources of gelatin. Further characterizations were done on both raw scale and extracted gelatin through Fourier Transform Infrared Spectroscopy (FTIR) and proximate analysis. The scale gelatin shows high protein content (86.9 %) with low moisture (8.2 %) and ash (1.4 %). This further proves the effectiveness of the demineralization and extraction method used. The black tilapia fish scale is found to be a prospective source of gelatin with good chemical and functional properties.

  5. Extraction and characterization of gelatin biopolymer from black tilapia (Oreochromis mossambicus) scales

    NASA Astrophysics Data System (ADS)

    Sockalingam, K.; Abdullah, H. Z.

    2015-07-01

    Black tilapia (Oreochromis mossambicus) fish wastes (scales) were evaluated for its suitability as sources of gelatin. Scales were subjected to acid treatment for demineralization before it undergoes thermal extraction process. The raw scales were characterized via Scanning Electron Microscopy (SEM), which demarcated the cycloid pattern of the scales. SEM images also reveal the presence of collagen fiber in the fish scale. The black tilapia fish scales yields 11.88 % of gelatin, indicating the possibility of this fish species as sources of gelatin. Further characterizations were done on both raw scale and extracted gelatin through Fourier Transform Infrared Spectroscopy (FTIR) and proximate analysis. The scale gelatin shows high protein content (86.9 %) with low moisture (8.2 %) and ash (1.4 %). This further proves the effectiveness of the demineralization and extraction method used. The black tilapia fish scale is found to be a prospective source of gelatin with good chemical and functional properties.

  6. Sponge bioerosion accelerated by ocean acidification across species and latitudes?

    NASA Astrophysics Data System (ADS)

    Wisshak, M.; Schönberg, C. H. L.; Form, A.; Freiwald, A.

    2014-06-01

    In many marine biogeographic realms, bioeroding sponges dominate the internal bioerosion of calcareous substrates such as mollusc beds and coral reef framework. They biochemically dissolve part of the carbonate and liberate so-called sponge chips, a process that is expected to be facilitated and accelerated in a more acidic environment inherent to the present global change. The bioerosion capacity of the demosponge Cliona celata Grant, 1826 in subfossil oyster shells was assessed via alkalinity anomaly technique based on 4 days of experimental exposure to three different levels of carbon dioxide partial pressure ( pCO2) at ambient temperature in the cold-temperate waters of Helgoland Island, North Sea. The rate of chemical bioerosion at present-day pCO2 was quantified with 0.08-0.1 kg m-2 year-1. Chemical bioerosion was positively correlated with increasing pCO2, with rates more than doubling at carbon dioxide levels predicted for the end of the twenty-first century, clearly confirming that C. celata bioerosion can be expected to be enhanced with progressing ocean acidification (OA). Together with previously published experimental evidence, the present results suggest that OA accelerates sponge bioerosion (1) across latitudes and biogeographic areas, (2) independent of sponge growth form, and (3) for species with or without photosymbionts alike. A general increase in sponge bioerosion with advancing OA can be expected to have a significant impact on global carbonate (re)cycling and may result in widespread negative effects, e.g. on the stability of wild and farmed shellfish populations, as well as calcareous framework builders in tropical and cold-water coral reef ecosystems.

  7. Giving the early fossil record of sponges a squeeze.

    PubMed

    Antcliffe, Jonathan B; Callow, Richard H T; Brasier, Martin D

    2014-11-01

    Twenty candidate fossils with claim to be the oldest representative of the Phylum Porifera have been re-analysed. Three criteria are used to assess each candidate: (i) the diagnostic criteria needed to categorize sponges in the fossil record; (ii) the presence, or absence, of such diagnostic features in the putative poriferan fossils; and (iii) the age constraints for the candidate fossils. All three criteria are critical to the correct interpretation of any fossil and its placement within an evolutionary context. Our analysis shows that no Precambrian fossil candidate yet satisfies all three of these criteria to be a reliable sponge fossil. The oldest widely accepted candidate, Mongolian silica hexacts from c. 545 million years ago (Ma), are here shown to be cruciform arsenopyrite crystals. The oldest reliable sponge remains are siliceous spicules from the basal Cambrian (Protohertzina anabarica Zone) Soltanieh Formation, Iran, which are described and analysed here in detail for the first time. Extensive archaeocyathan sponge reefs emerge and radiate as late as the middle of the Fortunian Stage of the Cambrian and demonstrate a gradual assembly of their skeletal structure through this time coincident with the evolution of other metazoan groups. Since the Porifera are basal in the Metazoa, their presence within the late Proterozoic has been widely anticipated. Molecular clock calibration for the earliest Porifera and Metazoa should now be based on the Iranian hexactinellid material dated to c. 535 Ma. The earliest convincing fossil sponge remains appeared at around the time of the Precambrian-Cambrian boundary, associated with the great radiation events of that interval. PMID:24779547

  8. Sponge-Microbe Associations Survive High Nutrients and Temperatures

    PubMed Central

    Simister, Rachel; Taylor, Michael W.; Tsai, Peter; Webster, Nicole

    2012-01-01

    Coral reefs are under considerable pressure from global stressors such as elevated sea surface temperature and ocean acidification, as well as local factors including eutrophication and poor water quality. Marine sponges are diverse, abundant and ecologically important components of coral reefs in both coastal and offshore environments. Due to their exceptionally high filtration rates, sponges also form a crucial coupling point between benthic and pelagic habitats. Sponges harbor extensive microbial communities, with many microbial phylotypes found exclusively in sponges and thought to contribute to the health and survival of their hosts. Manipulative experiments were undertaken to ascertain the impact of elevated nutrients and seawater temperature on health and microbial community dynamics in the Great Barrier Reef sponge Rhopaloeides odorabile. R. odorabile exposed to elevated nutrient levels including 10 µmol/L total nitrogen at 31°C appeared visually similar to those maintained under ambient seawater conditions after 7 days. The symbiotic microbial community, analyzed by 16S rRNA gene pyrotag sequencing, was highly conserved for the duration of the experiment at both phylum and operational taxonomic unit (OTU) (97% sequence similarity) levels with 19 bacterial phyla and 1743 OTUs identified across all samples. Additionally, elevated nutrients and temperatures did not alter the archaeal associations in R. odorabile, with sequencing of 16S rRNA gene libraries revealing similar Thaumarchaeota diversity and denaturing gradient gel electrophoresis (DGGE) revealing consistent amoA gene patterns, across all experimental treatments. A conserved eukaryotic community was also identified across all nutrient and temperature treatments by DGGE. The highly stable microbial associations indicate that R. odorabile symbionts are capable of withstanding short-term exposure to elevated nutrient concentrations and sub-lethal temperatures. PMID:23284943

  9. Sponge-microbe associations survive high nutrients and temperatures.

    PubMed

    Simister, Rachel; Taylor, Michael W; Tsai, Peter; Webster, Nicole

    2012-01-01

    Coral reefs are under considerable pressure from global stressors such as elevated sea surface temperature and ocean acidification, as well as local factors including eutrophication and poor water quality. Marine sponges are diverse, abundant and ecologically important components of coral reefs in both coastal and offshore environments. Due to their exceptionally high filtration rates, sponges also form a crucial coupling point between benthic and pelagic habitats. Sponges harbor extensive microbial communities, with many microbial phylotypes found exclusively in sponges and thought to contribute to the health and survival of their hosts. Manipulative experiments were undertaken to ascertain the impact of elevated nutrients and seawater temperature on health and microbial community dynamics in the Great Barrier Reef sponge Rhopaloeides odorabile. R. odorabile exposed to elevated nutrient levels including 10 µmol/L total nitrogen at 31°C appeared visually similar to those maintained under ambient seawater conditions after 7 days. The symbiotic microbial community, analyzed by 16S rRNA gene pyrotag sequencing, was highly conserved for the duration of the experiment at both phylum and operational taxonomic unit (OTU) (97% sequence similarity) levels with 19 bacterial phyla and 1743 OTUs identified across all samples. Additionally, elevated nutrients and temperatures did not alter the archaeal associations in R. odorabile, with sequencing of 16S rRNA gene libraries revealing similar Thaumarchaeota diversity and denaturing gradient gel electrophoresis (DGGE) revealing consistent amoA gene patterns, across all experimental treatments. A conserved eukaryotic community was also identified across all nutrient and temperature treatments by DGGE. The highly stable microbial associations indicate that R. odorabile symbionts are capable of withstanding short-term exposure to elevated nutrient concentrations and sub-lethal temperatures. PMID:23284943

  10. thin films as absorber

    NASA Astrophysics Data System (ADS)

    González, J. O.; Shaji, S.; Avellaneda, D.; Castillo, G. A.; Das Roy, T. K.; Krishnan, B.

    2014-09-01

    Photovoltaic structures were prepared using AgSb(S x Se1- x )2 as absorber and CdS as window layer at various conditions via a hybrid technique of chemical bath deposition and thermal evaporation followed by heat treatments. Silver antimony sulfo selenide thin films [AgSb(S x Se1- x )2] were prepared by heating multilayers of sequentially deposited Sb2S3/Ag dipped in Na2SeSO3 solution, glass/Sb2S3/Ag/Se. For this, Sb2S3 thin films were deposited from a chemical bath containing SbCl3 and Na2S2O3. Then, Ag thin films were thermally evaporated on glass/Sb2S3, followed by selenization by dipping in an acidic solution of Na2SeSO3. The duration of dipping was varied as 3, 4 and 5 h. Two different heat treatments, one at 350 °C for 20 min in vacuum followed by a post-heat treatment at 325 °C for 2 h in Ar, and the other at 350 °C for 1 h in Ar, were applied to the multilayers of different configurations. X-ray diffraction results showed the formation of AgSb(S x Se1- x )2 thin films as the primary phase and AgSb(S,Se)2 and Sb2S3 as secondary phases. Morphology and elemental detection were done by scanning electron microscopy and energy dispersive X-ray analysis. X-ray photoelectron spectroscopic studies showed the depthwise composition of the films. Optical properties were determined by UV-vis-IR transmittance and reflection spectral analysis. AgSb(S x Se1- x )2 formed at different conditions was incorporated in PV structures glass/FTO/CdS/AgSb(S x Se1- x )2/C/Ag. Chemically deposited post-annealed CdS thin films of various thicknesses were used as window layer. J- V characteristics of the cells were measured under dark and AM1.5 illumination. Analysis of the J- V characteristics resulted in the best solar cell parameters of V oc = 520 mV, J sc = 9.70 mA cm-2, FF = 0.50 and η = 2.7 %.

  11. Formulation, process development and evaluation of artemether and lumefantrine soft gelatin capsule.

    PubMed

    Patel, A; Lodha, A; Chaudhuri, J; Jadia, P; Joshi, T; Dalal, J

    2012-03-01

    Artemether and Lumefantrine capsules are indicated for the treatment of P. falciparum malaria cases resistant to both chloroquine and sulphadoxine, pyrimethamine combination. Both artemether and lumefantrine act as blood schizontocides. Artemether is a sesquiterpene lactone derived from artemisinin. Artemisinin is a compound derived from the sweet wormwood plant and has been used for centuries in traditional Chinese medicine to treat fever. Lumefantrine is a synthetic aryl-amino alcohol antimalarial (quinine, mefloquine and halofantrine are members of the same group). Artemether is absorbed fairly rapidly with peak plasma concentrations reached about 2 hours after dosing. Absorption of lumefantrine, a highly lipophilic compound, starts after a lag period of up to 2 hours, with peak plasma concentration about 6-8 hours after dosing. In order to overcome this problem, we have observed that when the drug is given in the soft gelatin dosage form, the bioavailability of the drug is increased. Thus, increasing the absorption of the drug and peak plasma concentration is reached earlier then the conventional dosage form. PMID:23066225

  12. Could some coral reefs become sponge reefs as our climate changes?

    PubMed

    Bell, James J; Davy, Simon K; Jones, Timothy; Taylor, Michael W; Webster, Nicole S

    2013-09-01

    Coral reefs across the world have been seriously degraded and have a bleak future in response to predicted global warming and ocean acidification (OA). However, this is not the first time that biocalcifying organisms, including corals, have faced the threat of extinction. The end-Triassic mass extinction (200 million years ago) was the most severe biotic crisis experienced by modern marine invertebrates, which selected against biocalcifiers; this was followed by the proliferation of another invertebrate group, sponges. The duration of this sponge-dominated period far surpasses that of alternative stable-ecosystem or phase-shift states reported on modern day coral reefs and, as such, a shift to sponge-dominated reefs warrants serious consideration as one future trajectory of coral reefs. We hypothesise that some coral reefs of today may become sponge reefs in the future, as sponges and corals respond differently to changing ocean chemistry and environmental conditions. To support this hypothesis, we discuss: (i) the presence of sponge reefs in the geological record; (ii) reported shifts from coral- to sponge-dominated systems; and (iii) direct and indirect responses of the sponge holobiont and its constituent parts (host and symbionts) to changes in temperature and pH. Based on this evidence, we propose that sponges may be one group to benefit from projected climate change and ocean acidification scenarios, and that increased sponge abundance represents a possible future trajectory for some coral reefs, which would have important implications for overall reef functioning. PMID:23553821

  13. Sponge-associated bacteria: general overview and special aspects of bacteria associated with Halichondria panicea.

    PubMed

    Imhoff, J F; Stöhr, R

    2003-01-01

    Increasing evidence is accumulating that highlights the important role of bacteria in bacteria-sponge associations. It appears to be equally important to analyse the specific association of bacteria with sponges, to realise the biological function of biologically active substances produced by sponge-associated bacteria, and to consider the relationship between bacteria and sponges in the search for new pharmaceutical products. In this chapter the current knowledge on bacteria-sponge associations is briefly reviewed. Results are summarised that were obtained by three major methodological approaches: (1) classical microscope observations, (2) investigations attempting to characterise sponge-associated bacteria by describing pure culture isolates, and (3) the rapidly growing evidence from genetic analyses of sponge-associated bacteria. Special emphasis is given to the evidence of possible symbiotic interactions between bacteria and sponges and to the synthesis of natural products by bacteria isolated from or associated with marine sponges. Case studies including morphological and genetic studies together with results from pure culture studies have been performed with bacteria from the sponges Rhodopaloeides odorabile, Aplysina cavernicola, and Halichondria panicea. In addition, new results on bacteria associated with Halichondria panicea are also presented. PMID:15825639

  14. Culturable heterotrophic bacteria from the marine sponge Dendrilla nigra: isolation and phylogenetic diversity of actinobacteria

    NASA Astrophysics Data System (ADS)

    Selvin, Joseph; Gandhimathi, R.; Kiran, G. Seghal; Priya, S. Shanmugha; Ravji, T. Rajeetha; Hema, T. A.

    2009-09-01

    Culturable heterotrophic bacterial composition of marine sponge Dendrilla nigra was analysed using different enrichments. Five media compositions including without enrichment (control), enriched with sponge extract, with growth regulator (antibiotics), with autoinducers, and complete enrichment containing sponge extract, antibiotics, and autoinducers were developed. DNA hybridization assay was performed to explore host specific bacteria and ecotypes of culturable sponge-associated bacteria. Enrichment with selective inducers (AHLs and sponge extract) and regulators (antibiotics) considerably enhanced the cultivation potential of sponge-associated bacteria. It was found that Marinobacter (MSI032), Micromonospora (MSI033), Streptomyces (MSI051), and Pseudomonas (MSI057) were sponge-associated obligate symbionts. The present findings envisaged that “ Micromonospora-Saccharomonospora-Streptomyces” group was the major culturable actinobacteria in the marine sponge D. nigra. The DNA hybridization assay was a reliable method for the analysis of culturable bacterial community in marine sponges. Based on the culturable community structure, the sponge-associated bacteria can be grouped (ecotypes) as general symbionts, specific symbionts, habitat flora, and antagonists.

  15. Coral mucus fuels the sponge loop in warm- and cold-water coral reef ecosystems

    PubMed Central

    Rix, Laura; de Goeij, Jasper M.; Mueller, Christina E.; Struck, Ulrich; Middelburg, Jack J.; van Duyl, Fleur C.; Al-Horani, Fuad A.; Wild, Christian; Naumann, Malik S.; van Oevelen, Dick

    2016-01-01

    Shallow warm-water and deep-sea cold-water corals engineer the coral reef framework and fertilize reef communities by releasing coral mucus, a source of reef dissolved organic matter (DOM). By transforming DOM into particulate detritus, sponges play a key role in transferring the energy and nutrients in DOM to higher trophic levels on Caribbean reefs via the so-called sponge loop. Coral mucus may be a major DOM source for the sponge loop, but mucus uptake by sponges has not been demonstrated. Here we used laboratory stable isotope tracer experiments to show the transfer of coral mucus into the bulk tissue and phospholipid fatty acids of the warm-water sponge Mycale fistulifera and cold-water sponge Hymedesmia coriacea, demonstrating a direct trophic link between corals and reef sponges. Furthermore, 21–40% of the mucus carbon and 32–39% of the nitrogen assimilated by the sponges was subsequently released as detritus, confirming a sponge loop on Red Sea warm-water and north Atlantic cold-water coral reefs. The presence of a sponge loop in two vastly different reef environments suggests it is a ubiquitous feature of reef ecosystems contributing to the high biogeochemical cycling that may enable coral reefs to thrive in nutrient-limited (warm-water) and energy-limited (cold-water) environments. PMID:26740019

  16. Coral mucus fuels the sponge loop in warm- and cold-water coral reef ecosystems.

    PubMed

    Rix, Laura; de Goeij, Jasper M; Mueller, Christina E; Struck, Ulrich; Middelburg, Jack J; van Duyl, Fleur C; Al-Horani, Fuad A; Wild, Christian; Naumann, Malik S; van Oevelen, Dick

    2016-01-01

    Shallow warm-water and deep-sea cold-water corals engineer the coral reef framework and fertilize reef communities by releasing coral mucus, a source of reef dissolved organic matter (DOM). By transforming DOM into particulate detritus, sponges play a key role in transferring the energy and nutrients in DOM to higher trophic levels on Caribbean reefs via the so-called sponge loop. Coral mucus may be a major DOM source for the sponge loop, but mucus uptake by sponges has not been demonstrated. Here we used laboratory stable isotope tracer experiments to show the transfer of coral mucus into the bulk tissue and phospholipid fatty acids of the warm-water sponge Mycale fistulifera and cold-water sponge Hymedesmia coriacea, demonstrating a direct trophic link between corals and reef sponges. Furthermore, 21-40% of the mucus carbon and 32-39% of the nitrogen assimilated by the sponges was subsequently released as detritus, confirming a sponge loop on Red Sea warm-water and north Atlantic cold-water coral reefs. The presence of a sponge loop in two vastly different reef environments suggests it is a ubiquitous feature of reef ecosystems contributing to the high biogeochemical cycling that may enable coral reefs to thrive in nutrient-limited (warm-water) and energy-limited (cold-water) environments. PMID:26740019

  17. Shifts in microbial and chemical patterns within the marine sponge Aplysina aerophoba during a disease outbreak.

    PubMed

    Webster, Nicole S; Xavier, Joana R; Freckelton, Marnie; Motti, Cherie A; Cobb, Rose

    2008-12-01

    The microbial community composition in affected and unaffected portions of diseased sponges and healthy control sponges of Aplysina aerophoba was assessed to ascertain the role of microbes in the disease process. Sponge secondary metabolites were also examined to assess chemical shifts in response to infection. The microbial profile and aplysinimine levels in unaffected tissue near the lesions closely reflected those of healthy sponge tissue, indicating a highly localized disease process. DGGE detected multiple sequences that were exclusively present in diseased sponges. Most notably, a Deltaproteobacteria sequence with high homology to a coral black band disease strain was detected in all sponge lesions and was absent from all healthy and unaffected regions of diseased sponges. Other potential pathogens identified by DGGE include an environmental Cytophaga strain and a novel Epsilonproteobacteria strain with no known close relatives. The disease process also caused a major shift in prokaryote community structure at a very high taxonomic level. Using 16S rRNA gene sequence analysis, only the diseased sponges were found to contain sequences belonging to the Epsilonproteobacteria and Firmicutes, and there was a much greater number of Bacteroidetes sequences within the diseased sponges. In contrast, only the healthy sponges contained sequences corresponding to the cyanobacteria and 'OP1' candidate division, and the healthy sponges were dominated by Chloroflexi and Gammaproteobacteria sequences. Overall bacterial diversity was found to be considerably higher in diseased sponges than in healthy sponges. These results provide a platform for future cultivation-based experiments to isolate the putative pathogens from A. aerophoba and perform re-infection trials to define the disease aetiology. PMID:18783385

  18. Trade-offs in defensive metabolite production but not ecological function in healthy and diseased sponges.

    PubMed

    Gochfeld, Deborah J; Kamel, Haidy N; Olson, Julie B; Thacker, Robert W

    2012-05-01

    Diseases of marine organisms, and sponges in particular, are increasingly reported worldwide. Prior research indicates that the survival of sponges on reefs is due largely to their production of biologically active secondary metabolites that provide protection from a diversity of stressors. Aplysina Red Band Syndrome (ARBS) is an emerging disease affecting Caribbean rope sponges (Aplysina spp.), but it is not known whether secondary metabolites play a role in disease susceptibility and resistance. To investigate whether differences in secondary metabolites may explain variability in susceptibility to ARBS in Aplysina cauliformis, we used high performance liquid chromatography (HPLC) to generate chemical profiles from healthy tissue in both healthy and diseased sponges, and quantified peak areas for 15 metabolites. Analyses of healthy and diseased sponges revealed qualitative and quantitative differences in their chemical profiles. Aplysamine-1 and fistularin-3 were produced in significantly higher concentrations by healthy sponges, whereas aerothionin and 11-oxoaerothionin were found only in diseased sponges. At natural concentrations, extracts from both healthy and diseased sponges deterred feeding by an omnivorous reef fish. Fistularin-3 deterred feeding at concentrations found in healthy sponges, but not at concentrations found in diseased sponges. Aerothionin deterred feeding at concentrations found in diseased sponges, and may at least partially replace the loss of fistularin-3 as a feeding deterrent compound following pathogenesis, suggesting a trade-off in the production of feeding deterrent compounds. Extracts from healthy and diseased sponges inhibited bacterial growth, and both aplysamine-1 and fistularin-3 displayed selective antibacterial activity. Despite differences in secondary metabolite production between healthy and diseased sponges, the stress associated with ARBS does not appear to compromise the ability of A. cauliformis to maintain defenses

  19. A Au nanoparticle-incorporated sponge as a versatile transmission surface-enhanced Raman scattering substrate.

    PubMed

    Shin, Kayeong; Chung, Hoeil

    2015-08-01

    We report a sponge-based transmission surface-enhanced Raman scattering (TSERS) substrate that combines the bulk sampling capabilities of a transmission measurement to improve the quantitative representation of sample concentration with several sponge properties useful for analysis such as fast sample uptake, easy sample enrichment, and a stable polymeric structure. Among nine commercially available sponges made of different materials, a melamine sponge was ultimately selected for this study because it provided the fastest sample uptake and a low background Raman signal. Simultaneously, the amino groups and three-nitrogen hybrid rings in its structure could easily hold Au nanoparticles (AuNPs) inside the sponge. AuNP-incorporated sponges (AuNP sponges) were prepared by simply soaking a melamine sponge in a AuNP solution; these sponges were initially used to measure 4-nitrobenzenethiol (4-NBT) samples with different concentrations in order to evaluate their ability as TSERS substrates. The intensities of the 4-NBT peaks clearly varied according to changes in the concentration, and the relative standard deviation (RSD) of the peak intensity estimated by the measurements of five independently prepared AuNP sponges was 10.0%. Sample enrichment was easily completed by repeated suctioning of the sample into the AuNP sponges followed by depletion of the solvent, so three-time enrichment doubled the intensity. Furthermore, paraquat samples were prepared in diverse matrices (de-ionized water, tap water, river water, and orange juice) and measured using the AuNP sponges. The paraquat peaks were clearly observed from these samples and their peak intensities became smaller with the increased compositional complexity of the matrices. Our overall results demonstrate that the TSERS sponge substrates are easy to prepare and practically versatile for SERS analysis of diverse samples. PMID:26079472

  20. These Squatters Are Not Innocent: The Evidence of Parasitism in Sponge-Inhabiting Shrimps

    PubMed Central

    Ďuriš, Zdeněk; Horká, Ivona; Juračka, Petr Jan; Petrusek, Adam; Sandford, Floyd

    2011-01-01

    Marine sponges are frequently inhabited by a wide range of associated invertebrates, including caridean shrimps. Symbiotic shrimps are often considered to be commensals; however, in most cases, the relationship with sponge hosts remains unclear. Here we demonstrate that sponge-inhabiting shrimps are often parasites adapted to consumption of sponge tissues. First, we provide detailed examination of morphology and stomach contents of Typton carneus (Decapoda: Palaemonidae: Pontoniinae), a West Atlantic tropical shrimp living in fire sponges of the genus Tedania. Remarkable shear-like claws of T. carneus show evidence of intensive shearing, likely the result of crushing siliceous sponge spicules. Examination of stomach contents revealed that the host sponge tissue is a major source of food for T. carneus. A parasitic mode of life is also reflected in adaptations of mouth appendages, in the reproduction strategy, and in apparent sequestration of host pigments by shrimp. Consistent results were obtained also for congeneric species T. distinctus (Western Atlantic) and T. spongicola (Mediterranean). The distribution of shrimps among sponge hosts (mostly solitary individuals or heterosexual pairs) suggests that Typton shrimps actively prevent colonisation of their sponge by additional conspecifics, thus protecting their resource and reducing the damage to the hosts. We also demonstrate feeding on host tissues by sponge-associated shrimps of the genera Onycocaris, Periclimenaeus, and Thaumastocaris (Pontoniinae) and Synalpheus (Alpheidae). The parasitic mode of life appears to be widely distributed among sponge-inhabiting shrimps. However, it is possible that under some circumstances, the shrimps provide a service to the host sponge by preventing a penetration by potentially more damaging associated animals. The overall nature of interspecific shrimp-sponge relationships thus warrants further investigation. PMID:21814564

  1. Gelatin nanoparticles for use as a vaccine adjuvant in intranasal immunizations

    NASA Astrophysics Data System (ADS)

    Washington, Tara D.

    Vaccine adjuvants are used to increase the immune response in the delivery of subunit antigens. Currently the only FDA approved adjuvants are aluminum based and must be delivered parenterally. Nasal mucoadhesive vaccine administration can decrease cost, increase efficiency and increase patient compliance. The purpose of this study was to develop a mucoadhesive gelatin nanoparticle >500 nm in diameter that can be used to encapsulate a model protein antigen. The particles were prepared by nanoprecipitation of a gelatin solution with acetone. Thiol groups were incubated with gelatin to increase mucoadhesivness at 20, 40, and 80 mg per 1 gram of gelatin. The thiolation chemistry was characterized using UV-Vis and x-ray photoelectron spectroscopy (XPS). The total amount of sulfur present in the gelatin was determined to be 7.48, 30.53, and 46.75 mmol/gram respectively. However XPS analysis revealed that there was no substantial difference between surface sulfur content of the unmodified gelatin nanoparticles and the gelatin nanoparticles modified with 80 mg of iminothiolane. Particle size, charge and morphology were determined using laser light diffraction, atomic force microscopy microscopy and electron microscopy. The average diameter of the unmodified gelatin was 171 nm. The average diameter of the thiolated gelatin nanoparticles was 275 nm. The polydispersity index was approximately 0.61 +/- 0 .04 for all nanoparticles. The zeta (zeta) potential of the unmodified gelatin nanoparticles was -21.5 +/- 2.0 mV and the zeta-potential of the modified gelatin nanoparticles was -25.2 +/- 1.5, -27.3 +/- 0.8, and -28.6 +/- 3.0 mV for the 20, 40, and 80 thiolated gelatin nanoparticles. Particle encapsulation efficiency (EE) and release kinetics were conducted using fluorescein isothiocyanate-bovine serum albumin (FITC-BSA) as a model antigen. The EE of the nanoparticles increased from 35.0% (unmodified gelatin) to 82.5% (highest modified gelatin). Particles encapsulated with

  2. Protein/polysaccharide cogel formation based on gelatin and chemically modified schizophyllan.

    PubMed

    Fang, Yapeng; Takahashi, Rheo; Nishinari, Katsuyoshi

    2005-01-01

    In the work, aldehyde groups were quantitatively introduced into schizophyllan (SPG) side chains through periodate oxidation. The periodate-oxidized SPG (POSPG) forms an elastic gel with gelatin. The cogel formation is based on the Schiff-base reaction between the amino groups of gelatin chains and the aldehyde groups of POSPG chains. The POSPG/gelatin cogel has an elastomeric character with a very small value of loss tangent. The gelation kinetics and gel properties were discussed as a function of POSPG concentration, gelatin concentration, oxidation degree, temperature, and pH. This method can be used to design a large variety of cogels between SPG and proteins. PMID:16283747

  3. Growth of gold nanoparticles at gelatin-silica bio-interfaces

    NASA Astrophysics Data System (ADS)

    Bensaid, Imen; Masse, Sylvie; Selmane, Mohamed; Fessi, Shemseddine; Coradin, Thibaud

    2016-01-01

    The growth of gold nanoparticles via chemical reduction of HAuCl4 dispersed in gelatin-silicate mixtures was studied. Gelatin leads to densely packed nanoparticles whereas open colloidal aggregates with tight boundaries are formed within silica. Within the bio-hybrid systems, gold species are located within the gelatin-silicate particles and/or within the gelatin phase, depending on the preparation conditions. These various localizations and their impact on the final nanoparticle structure are discussed considering attractive and repulsive electrostatic interactions existing between the three components. These data suggest that bio-hybrid systems are interesting and versatile interfaces to study crystallization processes in confined environments.

  4. Effect of ultrasonic pretreatment on kinetics of gelatin hydrolysis by collagenase and its mechanism.

    PubMed

    Yu, Zhi-Long; Zeng, Wei-Cai; Zhang, Wen-Hua; Liao, Xue-Pin; Shi, Bi

    2016-03-01

    Gelatin is a mixture of soluble proteins prepared by partial hydrolysis of native collagen. Gelatin can be enzymatically hydrolyzed to produce bioactive hydrolysates. However, the preparation of gelatin peptide with expected activity is usually a time-consuming process. The production efficiency of gelatin hydrolysates needs to be improved. In present work, effect of ultrasonic pretreatment on kinetic parameters of gelatin hydrolysis by collagenase was investigated based on an established kinetic model. With ultrasonic pretreatment, reaction rate constant and enzyme inactivation constant were increased by 27.5% and 27.8%, respectively. Meanwhile, hydrolysis activation energy and enzyme inactivation energy were reduced by 36.3% and 43.0%, respectively. In order to explore its possible mechanism, influence of sonication on structural properties of gelatin was determined using atomic force microscopy, particle size analyzer, fluorescence spectroscopy, protein solubility test and Fourier transform infrared spectroscopy. Moreover, hydrogen peroxide was used as a positive control for potential sonochemical effect. It was found that reduction of gelatin particle size was mainly caused by physical effect of ultrasound. Increased solubility and variation in β-sheet and random coil elements of gelatin were due to sonochemical effect. Both physical and chemical effects of sonication contributed to the change in α-helix and β-turn structures. The current results suggest that ultrasound can be potentially applied to stimulate the production efficiency of gelatin peptides, mainly due to its effects on modification of protein structures. PMID:26558996

  5. Gelatinization kinetic of waxy starches under pressure according to ionic strength

    NASA Astrophysics Data System (ADS)

    Simonin, Hélène; Guyon, Claire; de Lamballerie, Marie; Lebail, Alain

    2010-12-01

    High pressure is a potential technology for the texturization of food products at ambient temperature. In this area, waxy starches are particularly interesting because they gelatinize quickly under sufficient pressure. However, gelatinization may be influenced by other components in the food matrix. Here, we investigate the influence of increasing ionic strength on gelatinization rate and kinetics at 500 MPa for waxy corn and waxy rice starches. We show that increasing ionic strength strongly retards and inhibits starch gelatinization under pressure and leads to heterogeneous gels with remnant granules.

  6. Nanolayer formation on titanium by phosphonated gelatin for cell adhesion and growth enhancement

    PubMed Central

    Zhou, Xiaoyue; Park, Shin-Hye; Mao, Hongli; Isoshima, Takashi; Wang, Yi; Ito, Yoshihiro

    2015-01-01

    Phosphonated gelatin was prepared for surface modification of titanium to stimulate cell functions. The modified gelatin was synthesized by coupling with 3-aminopropylphosphonic acid using water-soluble carbodiimide and characterized by 31P nuclear magnetic resonance and gel permeation chromatography. Circular dichroism revealed no differences in the conformations of unmodified and phosphonated gelatin. However, the gelation temperature was changed by the modification. Even a high concentration of modified gelatin did not form a gel at room temperature. Time-of-flight secondary ion mass spectrometry showed direct bonding between the phosphonated gelatin and the titanium surface after binding. The binding behavior of phosphonated gelatin on the titanium surface was quantitatively analyzed by a quartz crystal microbalance. Ellipsometry showed the formation of a several nanometer layer of gelatin on the surface. Contact angle measurement indicated that the modified titanium surface was hydrophobic. Enhancement of the attachment and spreading of MC-3T3L1 osteoblastic cells was observed on the phosphonated gelatin-modified titanium. These effects on cell adhesion also led to growth enhancement. Phosphonation of gelatin was effective for preparation of a cell-stimulating titanium surface. PMID:26366080

  7. Comparison of porcine thorax to gelatine blocks for wound ballistics studies.

    PubMed

    Mabbott, A; Carr, D J; Champion, S; Malbon, C

    2016-09-01

    Tissue simulants are typically used in ballistic testing as substitutes for biological tissues. Many simulants have been used, with gelatine amongst the most common. While two concentrations of gelatine (10 and 20 %) have been used extensively, no agreed standard exists for the preparation of either. Comparison of ballistic damage produced in both concentrations is lacking. The damage produced in gelatine is also questioned, with regards to what it would mean for specific areas of living tissue. The aim of the work discussed in this paper was to consider how damage caused by selected pistol and rifle ammunition varied in different simulants. Damage to gelatine blocks 10 and 20 % in concentration were tested with 9 mm Luger (9 × 19 full metal jacket; FMJ) rounds, while damage produced by .223 Remington (5.56 × 45 Federal Premium® Tactical® Bonded®) rounds to porcine thorax sections (skin, underlying tissue, ribs, lungs, ribs, underlying tissue, skin; backed by a block of 10 % gelatine) were compared to 10 and 20 % gelatine blocks. Results from the .223 Remington rifle round, which is one that typically expands on impact, revealed depths of penetration in the thorax arrangement were significantly different to 20 % gelatine, but not 10 % gelatine. The level of damage produced in the simulated thoraxes was smaller in scale to that witnessed in both gelatine concentrations, though greater debris was produced in the thoraxes. PMID:26846765

  8. Absorbent product to absorb fluids. [for collection of human wastes

    NASA Technical Reports Server (NTRS)

    Dawn, F. S.; Correale, J. V. (Inventor)

    1982-01-01

    A multi-layer absorbent product for use in contact with the skin to absorb fluids is discussed. The product utilizes a water pervious facing layer for contacting the skin, overlayed by a first fibrous wicking layer, the wicking layer preferably being of the one-way variety in which fluid or liquid is moved away from the facing layer. The product further includes a first container section defined by inner and outer layer of a water pervious wicking material between which is disposed a first absorbent mass. A second container section defined by inner and outer layers between which is disposed a second absorbent mass and a liquid impermeable/gas permeable layer. Spacesuit applications are discussed.

  9. Metabolic profiles of prokaryotic and eukaryotic communities in deep-sea sponge Lamellomorpha sp. indicated by metagenomics

    NASA Astrophysics Data System (ADS)

    Li, Zhi-Yong; Wang, Yue-Zhu; He, Li-Ming; Zheng, Hua-Jun

    2014-01-01

    The whole metabolism of a sponge holobiont and the respective contributions of prokaryotic and eukaryotic symbionts and their associations with the sponge host remain largely unclear. Meanwhile, compared with shallow water sponges, deep-sea sponges are rarely understood. Here we report the metagenomic exploration of deep-sea sponge Lamellomorpha sp. at the whole community level. Metagenomic data showed phylogenetically diverse prokaryotes and eukaryotes in Lamellomorpha sp.. MEGAN and gene enrichment analyses indicated different metabolic potentials of prokaryotic symbionts from eukaryotic symbionts, especially in nitrogen and carbon metabolisms, and their molecular interactions with the sponge host. These results supported the hypothesis that prokaryotic and eukaryotic symbionts have different ecological roles and relationships with sponge host. Moreover, vigorous denitrification, and CO2 fixation by chemoautotrophic prokaryotes were suggested for this deep-sea sponge. The study provided novel insights into the respective potentials of prokaryotic and eukaryotic symbionts and their associations with deep-sea sponge Lamellomorpha sp..

  10. Polyketide genes in the marine sponge Plakortis simplex: a new group of mono-modular type I polyketide synthases from sponge symbionts

    PubMed Central

    Della Sala, Gerardo; Hochmuth, Thomas; Costantino, Valeria; Teta, Roberta; Gerwick, William; Gerwick, Lena; Piel, Jörn; Mangoni, Alfonso

    2013-01-01

    Summary Sponge symbionts are a largely unexplored source of new and unusual metabolic pathways. Insights into the distribution and function of metabolic genes of sponge symbionts are crucial to dissect and exploit their biotechnological potential. Screening of the metagenome of the marine sponge Plakortis simplex led to the discovery of the swf family, a new group of mono-modular type I polyketide synthase/fatty acid synthase (PKS/FAS) specifically associated with sponge symbionts. Two different examples of the swf cluster were present in the metagenome of P. simplex. A third example of the cluster is present in the previously sequenced genome of a poribacterium from the sponge Aplysina aerophoba but was formerly considered orthologous to the wcb/rkp cluster. The swf cluster was also found in six additional species of sponges. Therefore, the swf cluster represents the second group of mono-modular PKS, after the supA family, to be widespread in marine sponges. The putative swf operon consists of swfA (type I PKS/FAS), swfB (reductase and sulphotransferase domains) and swfC (radical S-adenosylmethionine, or radical SAM). Activation of the acyl carrier protein (ACP) domain of the SwfA protein to its holo-form by co-expression with Svp is the first functional proof of swf type genes in marine sponges. However, the precise biosynthetic role of the swf clusters remains unknown. PMID:24249289

  11. Polyketide genes in the marine sponge Plakortis simplex: a new group of mono-modular type I polyketide synthases from sponge symbionts.

    PubMed

    Della Sala, Gerardo; Hochmuth, Thomas; Costantino, Valeria; Teta, Roberta; Gerwick, William; Gerwick, Lena; Piel, Jörn; Mangoni, Alfonso

    2013-12-01

    Sponge symbionts are a largely unexplored source of new and unusual metabolic pathways. Insights into the distribution and function of metabolic genes of sponge symbionts are crucial to dissect and exploit their biotechnological potential. Screening of the metagenome of the marine sponge Plakortis simplex led to the discovery of the swf family, a new group of mono-modular type I polyketide synthase/fatty acid synthase (PKS/FAS) specifically associated with sponge symbionts. Two different examples of the swf cluster were present in the metagenome of P. simplex. A third example of the cluster is present in the previously sequenced genome of a poribacterium from the sponge Aplysina aerophoba but was formerly considered orthologous to the wcb/rkp cluster. The swf cluster was also found in six additional species of sponges. Therefore, the swf cluster represents the second group of mono-modular PKS, after the supA family, to be widespread in marine sponges. The putative swf operon consists of swfA (type I PKS/FAS), swfB (reductase and sulphotransferase domains) and swfC (radical S-adenosylmethionine, or radical SAM). Activation of the acyl carrier protein (ACP) domain of the SwfA protein to its holo-form by co-expression with Svp is the first functional proof of swf type genes in marine sponges. However, the precise biosynthetic role of the swf clusters remains unknown. PMID:24249289

  12. Protection of biomass from snail overgrazing in a trickling filter using sponge media as a biomass carrier: down-flow hanging sponge system.

    PubMed

    Onodera, Takashi; Syutsubo, Kazuaki; Yoochatchaval, Wilasinee; Sumino, Haruhiko; Mizuochi, Motoyuki; Harada, Hideki

    2015-01-01

    This study investigated down-flow hanging sponge (DHS) technology as a promising trickling filter (TF) using sponge media as a biomass carrier with an emphasis on protection of the biomass against macrofauna overgrazing. A pilot-scale DHS reactor fed with low-strength municipal sewage was operated under ambient temperature conditions for 1 year at a sewage treatment plant in Bangkok, Thailand. The results showed that snails (macrofauna) were present on the surface of the sponge media, but could not enter into it, because the sponge media with smaller pores physically protected the biomass from the snails. As a result, the sponge media maintained a dense biomass, with an average value of 22.3 gVSS/L sponge (58.1 gTSS/L sponge) on day 370. The snails could graze biomass on the surface of the sponge media. The DHS reactor process performance was also successful. The DHS reactor requires neither chemical treatments nor specific operations such as flooding for snail control. Overall, the results of this study indicate that the DHS reactor is able to protect biomass from snail overgrazing. PMID:25746642

  13. Graphene/polyaniline composite sponge of three-dimensional porous network structure as supercapacitor electrode

    NASA Astrophysics Data System (ADS)

    Jiu-Xing, Jiang; Xu-Zhi, Zhang; Zhen-Hua, Wang; Jian-Jun, Xu

    2016-04-01

    As a supercapacitor electrode, the graphene/polyaniline (PANI) composite sponge with a three-dimensional (3D) porous network structure is synthesized by a simple three-step method. The three steps include an in situ polymerization, freeze-drying and reduction by hydrazine vapor. The prepared sponge has a large specific surface area and porous network structure, so it is in favor of spreading the electrolyte ion and increasing the charge transfer efficiency of the system. The process of preparation is simple, easy to operate and low cost. The composite sponge shows better electrochemical performance than the pure individual graphene sponge while PANI cannot keep the shape of a sponge. Such a composite sponge exhibits specific capacitances of 487 F·g‑1 at 2 mV/s compared to pristine PANI of 397 F·g‑1. Project supported by the Natural Science Foundation from Harbin University of Science and Technology and Harbin Institute of Technology.

  14. Breathing Demulsification: A Three-Dimensional (3D) Free-Standing Superhydrophilic Sponge.

    PubMed

    Xu, Liangxin; Chen, Yuning; Liu, Na; Zhang, Weifeng; Yang, Yang; Cao, Yingze; Lin, Xin; Wei, Yen; Feng, Lin

    2015-10-14

    A novel three-dimensional (3D) free-standing superhydrophilic sponge for industrial wastewater treatment was formed by combining chitosan and linear polyacrylamide (PAM). When the chitosan-PAM sponge is immersed into an oil-in-water emulsion, the milky white emulsion containing surfactant turns clear and clarified. Demulsification efficiency, capacity, and recyclability of this positively charged chitosan-PAM sponge to oil-in-water emulsions stabilized by different types of surfactants including anionic, nonionic, and cationic surfactants, has been investigated for further practical evaluation. A "breathing demulsification" mechanism is presented to explain this attractive demulsified process. The effective contact area between emulsion and sponge is increased by the microcomposite and nanocomposite hierarchical structure of the chitosan-PAM free-standing sponge. Then, interfacial interactions, size effect, and strain act as the driving force for the demulsification of the emulsified droplets at the surface of the sponge. PMID:26389668

  15. Countercurrent flow absorber and desorber

    DOEpatents

    Wilkinson, William H.

    1984-01-01

    Countercurrent flow absorber and desorber devices are provided for use in absorption cycle refrigeration systems and thermal boosting systems. The devices have increased residence time and surface area resulting in improved heat and mass transfer characteristics. The apparatuses may be incorporated into open cycle thermal boosting systems in which steam serves both as the refrigerant vapor which is supplied to the absorber section and as the supply of heat to drive the desorber section of the system.

  16. Hyperuniformity of critical absorbing states.

    PubMed

    Hexner, Daniel; Levine, Dov

    2015-03-20

    The properties of the absorbing states of nonequilibrium models belonging to the conserved directed percolation universality class are studied. We find that, at the critical point, the absorbing states are hyperuniform, exhibiting anomalously small density fluctuations. The exponent characterizing the fluctuations is measured numerically, a scaling relation to other known exponents is suggested, and a new correlation length relating to this ordering is proposed. These results may have relevance to photonic band-gap materials. PMID:25839254

  17. Hyperuniformity of Critical Absorbing States

    NASA Astrophysics Data System (ADS)

    Hexner, Daniel; Levine, Dov

    2015-03-01

    The properties of the absorbing states of nonequilibrium models belonging to the conserved directed percolation universality class are studied. We find that, at the critical point, the absorbing states are hyperuniform, exhibiting anomalously small density fluctuations. The exponent characterizing the fluctuations is measured numerically, a scaling relation to other known exponents is suggested, and a new correlation length relating to this ordering is proposed. These results may have relevance to photonic band-gap materials.

  18. Packed Alumina Absorbs Hypergolic Vapors

    NASA Technical Reports Server (NTRS)

    Thomas, J. J.; Mauro, D. M.

    1984-01-01

    Beds of activated alumina effective as filters to remove hypergolic vapors from gas streams. Beds absorb such substances as nitrogen oxides and hydrazines and may also absorb acetylene, ethylene, hydrogen sulfide, benzene, butadiene, butene, styrene, toluene, and xoylene. Bed has no moving parts such as pumps, blowers and mixers. Reliable and energy-conservative. Bed readily adapted to any size from small portable units for use where little vapor release is expected to large stationary units for extensive transfer operations.

  19. Countercurrent flow absorber and desorber

    DOEpatents

    Wilkinson, W.H.

    1984-10-16

    Countercurrent flow absorber and desorber devices are provided for use in absorption cycle refrigeration systems and thermal boosting systems. The devices have increased residence time and surface area resulting in improved heat and mass transfer characteristics. The apparatuses may be incorporated into open cycle thermal boosting systems in which steam serves both as the refrigerant vapor which is supplied to the absorber section and as the supply of heat to drive the desorber section of the system. 9 figs.

  20. Novel collagen/gelatin scaffold with sustained release of basic fibroblast growth factor: clinical trial for chronic skin ulcers.

    PubMed

    Morimoto, Naoki; Yoshimura, Kenichi; Niimi, Miyuki; Ito, Tatsuya; Aya, Rino; Fujitaka, Junpei; Tada, Harue; Teramukai, Satoshi; Murayama, Toshinori; Toyooka, Chikako; Miura, Kazumi; Takemoto, Satoru; Kanda, Norikazu; Kawai, Katsuya; Yokode, Masayuki; Shimizu, Akira; Suzuki, Shigehiko

    2013-09-01

    Chronic skin ulcers such as diabetic ulcers and venous leg ulcers are increasing and are a costly problem in healthcare. We have developed a novel artificial dermis, collagen/gelatin sponge (CGS), which is capable of sustained release of basic fibroblast growth factor (bFGF) for more than 10 days. The objective of this study was to investigate the safety and efficacy of CGS impregnated with bFGF in the treatment of chronic skin ulcers. Patients with chronic skin ulcers that had not healed in at least 4 weeks were treated with CGS impregnated with bFGF at 7 or 14 μg/cm(2) after debridement, and the wound bed improvement was assessed 14 days after application. Wound bed improvement was defined as a granulated and epithelialized area on day 14 with a proportion to the baseline wound area after debridement of 50% or higher. The wound area, the wound area on day 14, and the granulation area on day 14 were independently measured by blinded reviewers in a central review using digital images of wounds taken with a calibrator. Patients were followed up until 28 days after application to observe the adverse reactions related to the application of CGS. From May 2010 to June 2011, 17 patients were enrolled and, in 16 patients, the wound bed improved. Among the randomized patients in step 2, no significant difference was seen between the low-dose group and the high-dose group. No serious adverse reactions were observed. Adverse reactions with a clear causal relationship to the study treatment were mild and patients quickly recovered from them. This study is the first-in-man clinical trial of CGS and showed the safety and efficacy of CGS impregnated with bFGF in the treatment of chronic skin ulcers. This combination therapy could be a promising therapy for chronic skin ulcers. PMID:23541061