Science.gov

Sample records for absorbable organic halides

  1. Transition metal-substituted lead halide perovskite absorbers

    DOE PAGES

    Sampson, M. D.; Park, J. S.; Schaller, R. D.; ...

    2017-01-27

    Here, lead halide perovskites have proven to be a versatile class of visible light absorbers that allow rapid access to the long minority carrier lifetimes and diffusion lengths desirable for traditional single-junction photovoltaics. We explore the extent to which the attractive features of these semiconductors may be extended to include an intermediate density of states for future application in multi-level solar energy conversion systems capable of exceeding the Shockley–Queisser limit. We computationally and experimentally explore the substitution of transition metals on the Pb site of MAPbX3 (MA = methylammonium, X = Br or Cl) to achieve a tunable density ofmore » states within the parent gap. Computational screening identified both Fe- and Co-substituted MAPbBr3 as promising absorbers with a mid-gap density of states, and the later films were synthesized via conventional solution-based processing techniques. First-principles density functional theory (DFT) calculations support the existence of mid-gap states upon Co incorporation and enhanced sub-gap absorption, which are consistent with UV-visible-NIR absorption spectroscopy. Strikingly, steady state and time-resolved PL studies reveal no sign of self-quenching for Co-substitution up to 25%, which suggest this class of materials to be a worthy candidate for future application in intermediate band photovoltaics.« less

  2. Nanoscale investigation of organic - inorganic halide perovskites

    NASA Astrophysics Data System (ADS)

    Cacovich, S.; Divitini, G.; Vrućinić, M.; Sadhanala, A.; Friend, R. H.; Sirringhaus, H.; Deschler, F.; Ducati, C.

    2015-10-01

    Over the last few years organic - inorganic halide perovskite-based solar cells have exhibited a rapid evolution, reaching certified power conversion efficiencies now surpassing 20%. Nevertheless the understanding of the optical and electronic properties of such systems on the nanoscale is still an open problem. In this work we investigate two model perovskite systems (based on iodine - CH3NH3PbI3 and bromine - CH3NH3PbBr3), analysing the local elemental composition and crystallinity and identifying chemical inhomogeneities.

  3. High-Q plasmonic infrared absorber for sensing of molecular resonances in hybrid lead halide perovskites

    NASA Astrophysics Data System (ADS)

    Dayal, Govind; Solanki, Ankur; Yu Chin, Xin; Sum, Tze Chien; Soci, Cesare; Singh, Ranjan

    2017-08-01

    Plasmonic resonances in sub-wavelength metal-dielectric-metal cavities have been shown to exhibit strong optical field enhancement. The large field enhancements that occur in sub-wavelength regions of the cavity can drastically boost the performance of microcavity based detectors, electromagnetic wave absorbers, metasurface hologram, and nonlinear response of the material in a cavity. The performance efficiencies of these plasmonic devices can be further improved by designing tunable narrow-band high-Q cavities. Here, we experimentally and numerically demonstrate high-Q resonances in metal-dielectric-metal cavity consisting of an array of conductively coupled annular and rectangular apertures separated from the bottom continuous metal film by a thin dielectric spacer. Both, the in-plane and out of plane coupling between the resonators and the continuous metal film have been shown to support fundamental and higher order plasmonic resonances which result in high-Q response at mid-infrared frequencies. As a sensor application of the high-Q cavity, we sense the vibrational resonances of an ultrathin layer of solution-processed organic-inorganic hybrid lead halide perovskites.

  4. Unraveling the Role of Monovalent Halides in Mixed-Halide Organic-Inorganic Perovskites.

    PubMed

    Deepa, Melepurath; Ramos, F Javier; Shivaprasad, S M; Ahmad, Shahzada

    2016-03-16

    The performance of perovskite solar cells is strongly influenced by the composition and microstructure of the perovskite. A recent approach to improve the power conversion efficiencies utilized mixed-halide perovskites, but the halide ions and their roles were not directly studied. Unraveling their precise location in the perovskite layer is of paramount importance. Here, we investigated four different perovskites by using X-ray photoelectron spectroscopy, and found that among the three studied mixed-halide perovskites, CH3 NH3 Pb(I0.74 Br0.26 )3 and CH3 NH3 PbBr3-x Clx show peaks that unambiguously demonstrate the presence of iodide and bromide in the former, and bromide and chloride in the latter. The CH3 NH3 PbI3-x Clx perovskite shows anomalous behavior, the iodide content far outweighs that of the chloride; a small proportion of chloride, in all likelihood, resides deep within the TiO2 /absorber layer. Our study reveals that there are many distinguishable structural differences between these perovskites, and that these directly impact the photovoltaic performances.

  5. Students' Understanding of Alkyl Halide Reactions in Undergraduate Organic Chemistry

    ERIC Educational Resources Information Center

    Cruz-Ramirez de Arellano, Daniel

    2013-01-01

    Organic chemistry is an essential subject for many undergraduate students completing degrees in science, engineering, and pre-professional programs. However, students often struggle with the concepts and skills required to successfully solve organic chemistry exercises. Since alkyl halides are traditionally the first functional group that is…

  6. Students' Understanding of Alkyl Halide Reactions in Undergraduate Organic Chemistry

    ERIC Educational Resources Information Center

    Cruz-Ramirez de Arellano, Daniel

    2013-01-01

    Organic chemistry is an essential subject for many undergraduate students completing degrees in science, engineering, and pre-professional programs. However, students often struggle with the concepts and skills required to successfully solve organic chemistry exercises. Since alkyl halides are traditionally the first functional group that is…

  7. Kinetic Studies of the Solvolysis of Two Organic Halides

    ERIC Educational Resources Information Center

    Duncan, J. A.; Pasto, D. J.

    1975-01-01

    Describes an undergraduate organic chemistry laboratory experiment which utilizes the solvolysis of organic halides to demonstrate first and second order reaction kinetics. The experiment also investigates the effect of a change of solvent polarity on reaction rate, common-ion and noncommon-ion salt effects, and the activation parameters of a…

  8. Students' understanding of alkyl halide reactions in undergraduate organic chemistry

    NASA Astrophysics Data System (ADS)

    Cruz-Ramirez de Arellano, Daniel

    Organic chemistry is an essential subject for many undergraduate students completing degrees in science, engineering, and pre-professional programs. However, students often struggle with the concepts and skills required to successfully solve organic chemistry exercises. Since alkyl halides are traditionally the first functional group that is studied in undergraduate organic chemistry courses, establishing a robust understanding of the concepts and reactions related to them can be beneficial in assuring students' success in organic chemistry courses. Therefore, the purpose of this study was to elucidate and describe students' understanding of alkyl halide reactions in an undergraduate organic chemistry course. Participants were interviewed using a think-aloud protocol in which they were given a set of exercises dealing with reactions and mechanisms of alkyl halide molecules in order to shed light on the students' understanding of these reactions and elucidate any gaps in understanding and incorrect warrants that may be present. These interviews were transcribed and analyzed using qualitative inquiry approaches. In general, the findings from this study show that the students exhibited gaps in understanding and incorrect warrants dealing with: (1) classifying substances as bases and/or nucleophiles, (2) assessing the basic or nucleophilic strength of substances, (3) accurately describing the electron movement of the steps that take place during alkyl halide reaction mechanisms, and (4) assessing the viability of their proposed reactive intermediates and breakage of covalent bonds. In addition, implications for teaching and future research are proposed.

  9. Fluorescent Properties of Manganese Halide Benzothiazole Inorganic-Organic Hybrids.

    PubMed

    Yu, Hui; Mei, YingXuan; Wei, ZhenHong; Mei, GuangQuan; Cai, Hu

    2016-11-01

    The reaction of manganese (II) halides MnX2 and benzothiazole (btz) in the concentrated acids HX (X = Cl, Br) at 80 °C resulted in the formation of two inorganic-organic hybrid complexes: [(btz)2(MnX4)]·2H2O (X = Cl, 1; X = Br, 2). Both compounds showed green luminescence and exhibited moderate quantum yields of 43.17 % for 1 and 26.18 % for 2, which were directly originated from the tetrahedral coordination of Mn(2+) ion. Two organic - inorganic hybrids [(btz)2(MnX4)]·2H2O based on MnCl2, benzothiazole and halide acids emitted green light with the moderate quantum efficiencies when excited by 365 nm light. Graphical abstract Two organic-inorganic hybrids [(btz)2(MnX4)]·2H2O based on MnCl2, benzothiazole and halide acids emitted green light with the moderate quantum efficiencies when excited by 365 nm light.

  10. THE DETERMINATION OF TOTAL ORGANIC HALIDE IN WATER: AN INTERLABORATORY COMPARATIVE STUDY OF TWO METHODS

    EPA Science Inventory

    Total organic halide (TOX) analyzers are commonly used to measure the amount of dissolved halogenated organic byproducts in disinfected waters. Because of the lack of information on the identity of disinfection byproducts, rigorous testing of the dissolved organic halide (DOX) pr...

  11. THE DETERMINATION OF TOTAL ORGANIC HALIDE IN WATER: AN INTERLABORATORY COMPARATIVE STUDY OF TWO METHODS

    EPA Science Inventory

    Total organic halide (TOX) analyzers are commonly used to measure the amount of dissolved halogenated organic byproducts in disinfected waters. Because of the lack of information on the identity of disinfection byproducts, rigorous testing of the dissolved organic halide (DOX) pr...

  12. Giant photostriction in organic-inorganic lead halide perovskites

    NASA Astrophysics Data System (ADS)

    Zhou, Yang; You, Lu; Wang, Shiwei; Ku, Zhiliang; Fan, Hongjin; Schmidt, Daniel; Rusydi, Andrivo; Chang, Lei; Wang, Le; Ren, Peng; Chen, Liufang; Yuan, Guoliang; Chen, Lang; Wang, Junling

    2016-04-01

    Among the many materials investigated for next-generation photovoltaic cells, organic-inorganic lead halide perovskites have demonstrated great potential thanks to their high power conversion efficiency and solution processability. Within a short period of about 5 years, the efficiency of solar cells based on these materials has increased dramatically from 3.8 to over 20%. Despite the tremendous progress in device performance, much less is known about the underlying photophysics involving charge-orbital-lattice interactions and the role of the organic molecules in this hybrid material remains poorly understood. Here, we report a giant photostrictive response, that is, light-induced lattice change, of >1,200 p.p.m. in methylammonium lead iodide, which could be the key to understand its superior optical properties. The strong photon-lattice coupling also opens up the possibility of employing these materials in wireless opto-mechanical devices.

  13. First examples of hybrids based on polyoxometalates, metal halide clusters and organic ligands

    SciTech Connect

    Wang Lamei; Fan Yong; Wang Yan; Xiao Lina; Hu Yangyang; Peng Yu; Wang Tiegang; Gao Zhongmin; Zheng Dafang; Cui Xiaobing; Xu Jiqing

    2012-07-15

    Two new organic-inorganic compounds based on polyoxometalates, metal halide clusters and organic ligands: [BW{sub 12}O{sub 40}]{sub 2}[Cu{sub 2}(Phen){sub 4}Cl](H{sub 2}4, 4 Prime -bpy){sub 4}{center_dot}H{sub 3}O{center_dot}5H{sub 2}O (1) and [HPW{sub 12}O{sub 40}][Cd{sub 2}(Phen){sub 4}Cl{sub 2}](4, 4 Prime -bpy) (2) (Phen=1, 10-phenanthroline, bpy=bipyridine), have been prepared and characterized by IR, UV-vis, XPS, XRD and single crystal X-ray diffraction analyses. Crystal structure analyses reveal that compound 1 is constructed from [BW{sub 12}O{sub 40}]{sup 5-}, metal halide clusters [Cu{sub 2}(Phen){sub 4}Cl]{sup +}and 4, 4 Prime -bpy ligands, while compound 2 is constructed from [PW{sub 12}O{sub 40}]{sup 3-}, metal halide cluster [Cd{sub 2}(Phen){sub 4}Cl{sub 2}]{sup 2+} and 4, 4 Prime -bpy ligands. Compound 1 and compound 2 are not common hybrids based on polyoxometalates and metal halide clusters, they also contain dissociated organic ligands, therefore, compound 1 and 2 are the first examples of hybrids based on polyoxometalates, metal halide clusters and organic ligands. - Graphical Abstract: Two new compounds have been synthesized and characterized. Structure analyses revealed that the two compounds are the first examples of hybrids based on polyoxometalates, metal halide clusters and organic ligands. Highlights: Black-Right-Pointing-Pointer First examples of hybrids based on polyoxometalates, metal halide clusters and organic ligands. Black-Right-Pointing-Pointer Two different kinds of metal halide clusters. Black-Right-Pointing-Pointer Supramolecular structures based on polyoxometalates, metal halide clusters and organic ligands. Black-Right-Pointing-Pointer Hybridization of three different of building blocks.

  14. Theory of hydrogen migration in organic-inorganic halide perovskites.

    PubMed

    Egger, David A; Kronik, Leeor; Rappe, Andrew M

    2015-10-12

    Solar cells based on organic-inorganic halide perovskites have recently been proven to be remarkably efficient. However, they exhibit hysteresis in their current-voltage curves, and their stability in the presence of water is problematic. Both issues are possibly related to a diffusion of defects in the perovskite material. By using first-principles calculations based on density functional theory, we study the properties of an important defect in hybrid perovskites-interstitial hydrogen. We show that differently charged defects occupy different crystal sites, which may allow for ionization-enhanced defect migration following the Bourgoin-Corbett mechanism. Our analysis highlights the structural flexibility of organic-inorganic perovskites: successive iodide displacements, combined with hydrogen bonding, enable proton diffusion with low migration barriers. These findings indicate that hydrogen defects can be mobile and thus highly relevant for the performance of perovskite solar cells. © 2015 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

  15. The effect of low solublility organic acids on the hygroscopicity of sodium halide aerosols

    NASA Astrophysics Data System (ADS)

    Miñambres, L.; Méndez, E.; Sánchez, M. N.; Castaño, F.; Basterretxea, F. J.

    2014-02-01

    In order to accurately assess the influence of fatty acids on the hygroscopic and other physicochemical properties of sea salt aerosols, hexanoic, octanoic or lauric acid together with sodium halide salts (NaCl, NaBr and NaI) have been chosen to be performed in this study. The hygroscopic properties of sodium halide submicrometer particles covered with organic acids have been examined by Fourier-transform infrared spectroscopy in an aerosol flow cell. Covered particles were generated by flowing atomized sodium halide particles (either dry or aqueous) through a heated oven containing the gaseous acid. The obtained results indicate that gaseous organic acids easily nucleate onto dry and aqueous sodium halide particles. On the other hand, Scanning Electron Microscopy (SEM) images indicate that lauric acid coating on NaCl particles makes them to aggregate in small clusters. The hygroscopic behaviour of covered sodium halide particles in deliquescence mode shows different features with the exchange of the halide ion: whereas the organic covering has little effect in NaBr particles, NaCl and NaI covered particles change their deliquescence relative humidities, with different trends observed for each of the acids studied. In efflorescence mode, the overall effect of the organic covering is to retard the loss of water in the particles. It has been observed that the presence of gaseous water in heterogeneously nucleated particles tends to displace the cover of hexanoic acid to energetically stabilize the system.

  16. The effect of low solubility organic acids on the hygroscopicity of sodium halide aerosols

    NASA Astrophysics Data System (ADS)

    Miñambres, L.; Méndez, E.; Sánchez, M. N.; Castaño, F.; Basterretxea, F. J.

    2014-10-01

    In order to accurately assess the influence of fatty acids on the hygroscopic and other physicochemical properties of sea salt aerosols, hexanoic, octanoic or lauric acid together with sodium halide salts (NaCl, NaBr and NaI) have been chosen to be investigated in this study. The hygroscopic properties of sodium halide sub-micrometre particles covered with organic acids have been examined by Fourier-transform infrared spectroscopy in an aerosol flow cell. Covered particles were generated by flowing atomized sodium halide particles (either dry or aqueous) through a heated oven containing the gaseous acid. The obtained results indicate that gaseous organic acids easily nucleate onto dry and aqueous sodium halide particles. On the other hand, scanning electron microscopy (SEM) images indicate that lauric acid coating on NaCl particles makes them to aggregate in small clusters. The hygroscopic behaviour of covered sodium halide particles in deliquescence mode shows different features with the exchange of the halide ion, whereas the organic surfactant has little effect in NaBr particles, NaCl and NaI covered particles experience appreciable shifts in their deliquescence relative humidities, with different trends observed for each of the acids studied. In efflorescence mode, the overall effect of the organic covering is to retard the loss of water in the particles. It has been observed that the presence of gaseous water in heterogeneously nucleated particles tends to displace the cover of hexanoic acid to energetically stabilize the system.

  17. A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells.

    PubMed

    McMeekin, David P; Sadoughi, Golnaz; Rehman, Waqaas; Eperon, Giles E; Saliba, Michael; Hörantner, Maximilian T; Haghighirad, Amir; Sakai, Nobuya; Korte, Lars; Rech, Bernd; Johnston, Michael B; Herz, Laura M; Snaith, Henry J

    2016-01-08

    Metal halide perovskite photovoltaic cells could potentially boost the efficiency of commercial silicon photovoltaic modules from ∼20 toward 30% when used in tandem architectures. An optimum perovskite cell optical band gap of ~1.75 electron volts (eV) can be achieved by varying halide composition, but to date, such materials have had poor photostability and thermal stability. Here we present a highly crystalline and compositionally photostable material, [HC(NH2)2](0.83)Cs(0.17)Pb(I(0.6)Br(0.4))3, with an optical band gap of ~1.74 eV, and we fabricated perovskite cells that reached open-circuit voltages of 1.2 volts and power conversion efficiency of over 17% on small areas and 14.7% on 0.715 cm(2) cells. By combining these perovskite cells with a 19%-efficient silicon cell, we demonstrated the feasibility of achieving >25%-efficient four-terminal tandem cells. Copyright © 2016, American Association for the Advancement of Science.

  18. First examples of hybrids based on polyoxometalates, metal halide clusters and organic ligands

    NASA Astrophysics Data System (ADS)

    Wang, La-Mei; Fan, Yong; Wang, Yan; Xiao, Li-Na; Hu, Yang-Yang; Peng, Yu; Wang, Tie-Gang; Gao, Zhong-Min; Zheng, Da-Fang; Cui, Xiao-Bing; Xu, Ji-Qing

    2012-07-01

    Two new organic-inorganic compounds based on polyoxometalates, metal halide clusters and organic ligands: [BW12O40]2[Cu2(Phen)4Cl](H24, 4'-bpy)4·H3O·5H2O (1) and [HPW12O40][Cd2(Phen)4Cl2](4, 4'-bpy) (2) (Phen=1, 10-phenanthroline, bpy=bipyridine), have been prepared and characterized by IR, UV-vis, XPS, XRD and single crystal X-ray diffraction analyses. Crystal structure analyses reveal that compound 1 is constructed from [BW12O40]5-, metal halide clusters [Cu2(Phen)4Cl]+and 4, 4'-bpy ligands, while compound 2 is constructed from [PW12O40]3-, metal halide cluster [Cd2(Phen)4Cl2]2+ and 4, 4'-bpy ligands. Compound 1 and compound 2 are not common hybrids based on polyoxometalates and metal halide clusters, they also contain dissociated organic ligands, therefore, compound 1 and 2 are the first examples of hybrids based on polyoxometalates, metal halide clusters and organic ligands.

  19. Optical Description of Mesostructured Organic-Inorganic Halide Perovskite Solar Cells.

    PubMed

    Anaya, Miguel; Lozano, Gabriel; Calvo, Mauricio E; Zhang, Wei; Johnston, Michael B; Snaith, Henry J; Míguez, Hernán

    2015-01-02

    Herein we describe both theoretically and experimentally the optical response of solution-processed organic-inorganic halide perovskite solar cells based on mesostructured scaffolds. We develop a rigorous theoretical model using a method based on the propagation of waves in layered media, which allows visualizing the way in which light is spatially distributed across the device and serves to quantify the fraction of light absorbed by each medium comprising the cell. The discrimination between productive and parasitic absorption yields an accurate determination of the internal quantum efficiency. State-of-the-art devices integrating mesoporous scaffolds infiltrated with perovskite are manufactured and characterized to support the calculations. This combined experimental and theoretical analysis provides a rational understanding of the optical behavior of perovskite cells and can be beneficial for the judicious design of devices with improved performance. Notably, our model justifies the presence of a solid perovskite capping layer in all of the highest efficiency perovskite solar cells based on thinner mesoporous scaffolds.

  20. Purcell effect in an organic-inorganic halide perovskite semiconductor microcavity system

    SciTech Connect

    Wang, Jun; Wang, Yafeng; Hu, Tao; Wu, Lin; Shen, Xuechu; Chen, Zhanghai E-mail: zhanghai@fudan.edu.cn; Cao, Runan; Xu, Fei; Da, Peimei; Zheng, Gengfeng; Lu, Jian E-mail: zhanghai@fudan.edu.cn

    2016-01-11

    Organic-inorganic halide perovskite semiconductors with the attractive physics properties, including strong photoluminescence (PL), huge oscillator strengths, and low nonradiative recombination losses, are ideal candidates for studying the light-matter interaction in nanostructures. Here, we demonstrate the coupling of the exciton state and the cavity mode in the lead halide perovskite microcavity system at room temperature. The Purcell effect in the coupling system is clearly observed by using angle-resolved photoluminescence spectra. Kinetic analysis based on time-resolved PL reveals that the spontaneous emission rate of the halide perovskite semiconductor is significantly enhanced at resonance of the exciton energy and the cavity mode. Our results provide the way for developing electrically driven organic polariton lasers, optical devices, and on-chip coherent quantum light sources.

  1. Cusps, self-organization, and absorbing states.

    PubMed

    Bonachela, Juan A; Alava, Mikko; Muñoz, Miguel A

    2009-05-01

    Elastic interfaces embedded in (quenched) random media exhibit metastability and stick-slip dynamics. These nontrivial dynamical features have been shown to be associated with cusp singularities of the coarse-grained disorder correlator. Here we show that annealed systems with many absorbing states and a conservation law but no quenched disorder exhibit identical cusps. On the other hand, similar nonconserved systems in the directed percolation class are also shown to exhibit cusps but of a different type. These results are obtained both by a recent method to explicitly measure disorder correlators and by defining an alternative new protocol inspired by self-organized criticality, which opens the door to easily accessible experimental realizations.

  2. Reduction of benzyl halides by liver microsomes. Formation of 478 NM-absorbing sigma-alkyl-ferric cytochrome P-450 complexes.

    PubMed

    Mansuy, D; Fontecave, M

    1983-06-15

    The benzyl halides benzyl bromide and 4-nitrobenzyl chloride are reduced anaerobically by NADPH and rat liver microsomes to yield toluene and 4-nitrotoluene, respectively. These reductions and cytochrome P-450-dependent since they are inhibited by CO and metyrapone, and are increased after pretreatment of rats by phenobarbital and 3-methylcholanthrene. During benzyl halide reduction, cytochrome P-450 complexes, which are very unstable to O2 and characterized by a Soret peak at 478 nm, are formed in steady-state concentrations. These concentrations are very dependent on pretreatment of rats and on the nature of the reducing agent (NADPH or dithionite) and the benzyl halide:4-methylbenzyl bromide and benzyl bromide lead to 478 nm absorbing complexes in the presence of NADPH whereas 4-nitrobenzyl chloride and benzyl chloride lead to such completes only in the presence of dithionite. Microsomal reductions of 4-nitrobenzyl chloride and benzyl bromide in D2O lead to partially deuterated 4-nitrotoluene and toluene. From these results, we propose a mechanism for anaerobic microsomal reduction of benzyl halides involving the intermediate formation of sigma-alkyl cytochrome P-450-Fe(III)-CH2Ar complexes which exhibit red-shifted Soret peaks around 478 nm. Toluenes, ArCH3, are formed either by protonation of the sigma-alkyl complexes or by hydrogen abstraction by the intermediate free radical ArCH2.

  3. Exciton Binding Energy in Organic-Inorganic Tri-Halide Perovskites.

    PubMed

    Askar, Abdelrahman M; Shankar, Karthik

    2016-06-01

    The recent dramatic increase in the power conversion efficiencies of organic-inorganic tri-halide perovskite solar cells has triggered intense research worldwide and created a paradigm shift in the photovoltaics field. It is crucial to develop a solid understanding of the photophysical processes underlying solar cell operation in order to both further improve the photovoltaic performance of perovskite solar cells as well as to exploit the broader optoelectronic applications of the tri-halide perovskites. In this short review, we summarize the main research findings about the binding energy of excitons in tri-halide perovskite materials and find that a value in the range of 2-22 meV at room temperature would be a safe estimate. Spontaneous free carrier generation is the dominant process taking place directly after photoexcitation in organic-inorganic tri-halide perovskites at room temperature, which eliminates the exciton diffusion bottleneck present in organic solar cells and constitutes a major contributing factor to the high photovoltaic performance of this material.

  4. Effect of halide-mixing on the switching behaviors of organic-inorganic hybrid perovskite memory

    NASA Astrophysics Data System (ADS)

    Hwang, Bohee; Gu, Chungwan; Lee, Donghwa; Lee, Jang-Sik

    2017-03-01

    Mixed halide perovskite materials are actively researched for solar cells with high efficiency. Their hysteresis which originates from the movement of defects make perovskite a candidate for resistive switching memory devices. We demonstrate the resistive switching device based on mixed-halide organic-inorganic hybrid perovskite CH3NH3PbI3-xBrx (x = 0, 1, 2, 3). Solvent engineering is used to deposit the homogeneous CH3NH3PbI3-xBrx layer on the indium-tin oxide-coated glass substrates. The memory device based on CH3NH3PbI3-xBrx exhibits write endurance and long retention, which indicate reproducible and reliable memory properties. According to the increase in Br contents in CH3NH3PbI3-xBrx the set electric field required to make the device from low resistance state to high resistance state decreases. This result is in accord with the theoretical calculation of migration barriers, that is the barrier to ionic migration in perovskites is found to be lower for Br- (0.23 eV) than for I- (0.29-0.30 eV). The resistive switching may be the result of halide vacancy defects and formation of conductive filaments under electric field in the mixed perovskite layer. It is observed that enhancement in operating voltage can be achieved by controlling the halide contents in the film.

  5. High-Performance CH3NH3PbI3-Inverted Planar Perovskite Solar Cells with Fill Factor Over 83% via Excess Organic/Inorganic Halide.

    PubMed

    Jahandar, Muhammad; Khan, Nasir; Lee, Hang Ken; Lee, Sang Kyu; Shin, Won Suk; Lee, Jong-Cheol; Song, Chang Eun; Moon, Sang-Jin

    2017-10-04

    The reduction of charge carrier recombination and intrinsic defect density in organic-inorganic halide perovskite absorber materials is a prerequisite to achieving high-performance perovskite solar cells with good efficiency and stability. Here, we fabricated inverted planar perovskite solar cells by incorporation of a small amount of excess organic/inorganic halide (methylammonium iodide (CH3NH3I; MAI), formamidinium iodide (CH(NH2)2I; FAI), and cesium iodide (CsI)) in CH3NH3PbI3 perovskite film. Larger crystalline grains and enhanced crystallinity in CH3NH3PbI3 perovskite films with excess organic/inorganic halide reduce the charge carrier recombination and defect density, leading to enhanced device efficiency (MAI+: 14.49 ± 0.30%, FAI+: 16.22 ± 0.38% and CsI+: 17.52 ± 0.56%) compared to the efficiency of a control MAPbI3 device (MAI: 12.63 ± 0.64%) and device stability. Especially, the incorporation of a small amount of excess CsI in MAPbI3 perovskite film leads to a highly reproducible fill factor of over 83%, increased open-circuit voltage (from 0.946 to 1.042 V), and short-circuit current density (from 18.43 to 20.89 mA/cm(2)).

  6. Promotion of Organic Reactions by Ultrasound: Coupling of Alkyl and Aryl Halides in the Presence of Lithium Metal and Ultrasound.

    ERIC Educational Resources Information Center

    Lash, Timothy D.; Berry, Donna

    1985-01-01

    Experiments involving the coupling of alkyl and aryl halides in the presence of lithium metal and ultrasound are described. The experiments illustrate classical Wurtz and Fittig reactions in addition to being a convenient application of organic sonochemistry. (JN)

  7. Promotion of Organic Reactions by Ultrasound: Coupling of Alkyl and Aryl Halides in the Presence of Lithium Metal and Ultrasound.

    ERIC Educational Resources Information Center

    Lash, Timothy D.; Berry, Donna

    1985-01-01

    Experiments involving the coupling of alkyl and aryl halides in the presence of lithium metal and ultrasound are described. The experiments illustrate classical Wurtz and Fittig reactions in addition to being a convenient application of organic sonochemistry. (JN)

  8. Energetics and dynamics in organic-inorganic halide perovskite photovoltaics and light emitters

    NASA Astrophysics Data System (ADS)

    Chien Sum, Tze; Chen, Shi; Xing, Guichuan; Liu, Xinfeng; Wu, Bo

    2015-08-01

    The rapid transcendence of organic-inorganic metal halide perovskite solar cells to above the 20% efficiency mark has captivated the broad photovoltaic community. As the efficiency race continues unabated, it is essential that fundamental studies keep pace with these developments. Further gains in device efficiencies are expected to be increasingly arduous and harder to come by. The key to driving the perovskite solar cell efficiencies towards their Shockley-Queisser limit is through a clear understanding of the interfacial energetics and dynamics between perovskites and other functional materials in nanostructured- and heterojunction-type devices. In this review, we focus on the current progress in basic characterization studies to elucidate the interfacial energetics (energy-level alignment and band bending) and dynamical processes (from the ultrafast to the ultraslow) in organic-inorganic metal halide perovskite photovoltaics and light emitters. Major findings from these studies will be distilled. Open questions and scientific challenges will also be highlighted.

  9. Metal-Catalyzed Carboxylation of Organic (Pseudo)halides with CO2

    PubMed Central

    2016-01-01

    The recent years have witnessed the development of metal-catalyzed reductive carboxylation of organic (pseudo)halides with CO2 as C1 source, representing potential powerful alternatives to existing methodologies for preparing carboxylic acids, privileged motifs in a myriad of pharmaceuticals and molecules displaying significant biological properties. While originally visualized as exotic cross-coupling reactions, a close look into the literature data indicates that these processes have become a fertile ground, allowing for the utilization of a variety of coupling partners, even with particularly challenging substrate combinations. As for other related cross-electrophile scenarios, the vast majority of reductive carboxylation of organic (pseudo)halides are characterized by their simplicity, mild conditions, and a broad functional group compatibility, suggesting that these processes could be implemented in late-stage diversification. This perspective describes the evolution of metal-catalyzed reductive carboxylation of organic (pseudo)halides from its inception in the pioneering stoichiometric work of Osakada to the present. Specific emphasis is devoted to the reactivity of these coupling processes, with substrates ranging from aryl-, vinyl-, benzyl- to unactivated alkyl (pseudo)halides. Despite the impressive advances realized, a comprehensive study detailing the mechanistic intricacies of these processes is still lacking. Some recent empirical evidence reveal an intriguing dichotomy exerted by the substitution pattern on the ligands utilized; still, however, some elementary steps within the catalytic cycle of these reactions remain speculative, in many instances invoking a canonical cross-coupling process. Although tentative, we anticipate that these processes might fall into more than one distinct mechanistic category depending on the substrate utilized, suggesting that investigations aimed at unraveling the mechanistic underpinnings of these processes will likely

  10. Effect of halide-mixing on the switching behaviors of organic-inorganic hybrid perovskite memory

    PubMed Central

    Hwang, Bohee; Gu, Chungwan; Lee, Donghwa; Lee, Jang-Sik

    2017-01-01

    Mixed halide perovskite materials are actively researched for solar cells with high efficiency. Their hysteresis which originates from the movement of defects make perovskite a candidate for resistive switching memory devices. We demonstrate the resistive switching device based on mixed-halide organic-inorganic hybrid perovskite CH3NH3PbI3−xBrx (x = 0, 1, 2, 3). Solvent engineering is used to deposit the homogeneous CH3NH3PbI3−xBrx layer on the indium-tin oxide-coated glass substrates. The memory device based on CH3NH3PbI3−xBrx exhibits write endurance and long retention, which indicate reproducible and reliable memory properties. According to the increase in Br contents in CH3NH3PbI3−xBrx the set electric field required to make the device from low resistance state to high resistance state decreases. This result is in accord with the theoretical calculation of migration barriers, that is the barrier to ionic migration in perovskites is found to be lower for Br− (0.23 eV) than for I− (0.29–0.30 eV). The resistive switching may be the result of halide vacancy defects and formation of conductive filaments under electric field in the mixed perovskite layer. It is observed that enhancement in operating voltage can be achieved by controlling the halide contents in the film. PMID:28272547

  11. Trihalomethane and nonpurgeable total organic-halide formation potentials of the Mississippi river

    USGS Publications Warehouse

    Rathbun, R.E.

    1996-01-01

    Trihalomethane and nonpurgeable total organic-hallide formation potentials were determined for water samples from 12 sites along the Mississippi River from Minneapolis, MN, to New Orleans, LA, for the summer and fall of 1991 and the spring of 1992. The formation potentials increased with distance upstream, approximately paralleling the increase of the dissolved organic- carbon concentration. The pH and the dissolved organic-carbon and free- chlorine concentrations were significant variables in the prediction of the formation potentials. The trihalomethane formation potential increased as the pH increased, whereas the nonpurgeable total organic-halide formation potential decreased. All formation potentials increased as the dissolved organic-carbon and free-chlorine concentrations increased, with the dissolved organic-carbon concentration having a much greater effect.

  12. Size-Dependent Photon Emission from Organometal Halide Perovskite Nanocrystals Embedded in an Organic Matrix

    PubMed Central

    2015-01-01

    In recent years, organometal halide perovskite materials have attracted significant research interest in the field of optoelectronics. Here, we introduce a simple and low-temperature route for the formation of self-assembled perovskite nanocrystals in a solid organic matrix. We demonstrate that the size and photoluminescence peak of the perovskite nanocrystals can be tuned by varying the concentration of perovskite in the matrix material. The physical origin of the blue shift of the perovskite nanocrystals’ emission compared to its bulk phase is also discussed. PMID:25949773

  13. Ultrafast pulse generation from erbium-doped fiber laser modulated by hybrid organic-inorganic halide perovskites

    NASA Astrophysics Data System (ADS)

    Jiang, Guobao; Miao, Lili; Yi, Jun; Huang, Bin; Peng, Wei; Zou, Yanhong; Huang, Huihui; Hu, Wei; Zhao, Chujun; Wen, Shuangchun

    2017-04-01

    We report the nonlinear optical responses of organic-inorganic halide perovskite CH3NH3PbI3 and its application in ultrafast pulse generation from an erbium-doped fiber laser in the optical communication band. By adopting the Z-scan technique, the third-order nonlinear optical responses of the organic-inorganic halide perovskites have been characterized. An ultrafast optical pulse with a pulse width of 661 fs centered at a wavelength of 1555 nm has been delivered via the nonlinear optical material introduced into the fiber laser cavity. Our experimental results confirm that the organic-inorganic halide perovskite possesses obvious third-order nonlinear optical responses in the C-band window and manifests its application potential in nonlinear optoelectronic devices.

  14. Organic-inorganic interactions of single crystalline organolead halide perovskites studied by Raman spectroscopy.

    PubMed

    Xie, Li-Qiang; Zhang, Tai-Yang; Chen, Liang; Guo, Nanjie; Wang, Yu; Liu, Guo-Kun; Wang, Jia-Rui; Zhou, Jian-Zhang; Yan, Jia-Wei; Zhao, Yi-Xin; Mao, Bing-Wei; Tian, Zhong-Qun

    2016-07-21

    Organolead halide perovskites exhibit superior photoelectric properties, which have given rise to the perovskite-based solar cells whose power conversion efficiency has rapidly reached above 20% in the past few years. However, perovskite-based solar cells have also encountered problems such as current-voltage hysteresis and degradation under practical working conditions. Yet investigations into the intrinsic chemical nature of the perovskite material and its role on the performance of the solar cells are relatively rare. In this work, Raman spectroscopy is employed together with CASTEP calculations to investigate the organic-inorganic interactions in CH3NH3PbI3 and CH3NH3PbBr3-xClx perovskite single crystals with comparison to those having ammonic acid as the cations. For Raman measurements of CH3NH3PbI3, a low energy line of 1030 nm is used to avoid excitation of strong photoluminescence of CH3NH3PbI3. Raman spectra covering a wide range of wavenumbers are obtained, and the restricted rotation modes of CH3-NH3(+) embedded in CH3NH3PbBr3 (325 cm(-1)) are overwhelmingly stronger over the other vibrational bands of the cations. However, the band intensity diminishes dramatically in CH3NH3PbBr3-xClx and most of the bands shift towards high frequency, indicating the interaction with the halides. The details of such an interaction are further revealed by inspecting the band shift of the restricted rotation mode as well as the C-N, NH3(+) and CH3 stretching of the CH3NH3(+) as a function of Cl composition and length of the cationic ammonic acids. The results show that the CH3NH3(+) interacts with the PbX3(-) octahedral framework via the NH3(+) end through N(+)-HX hydrogen bonding whose strength can be tuned by the composition of halides but is insensitive to the size of the organic cations. Moreover, an increase of the Cl content strengthens the hydrogen bonding and thus blueshifts the C-N stretching bands. This is due to the fact that Cl is more electronegative than Br

  15. Inferring Absorbing Organic Carbon Content from AERONET Data

    NASA Technical Reports Server (NTRS)

    Arola, A.; Schuster, G.; Myhre, G.; Kazadzis, S.; Dey, S.; Tripathi, S. N.

    2011-01-01

    Black carbon, light-absorbing organic carbon (often called brown carbon) and mineral dust are the major light-absorbing aerosols. Currently the sources and formation of brown carbon aerosol in particular are not well understood. In this study we estimated globally the amount of light absorbing organic carbon and black carbon from AERONET measurements. We find that the columnar absorbing organic carbon (brown carbon) levels in biomass burning regions of South-America and Africa are relatively high (about 15-20 magnesium per square meters during biomass burning season), while the concentrations are significantly lower in urban areas in US and Europe. However, we estimated significant absorbing organic carbon amounts from the data of megacities of newly industrialized countries, particularly in India and China, showing also clear seasonality with peak values up to 30-35 magnesium per square meters during the coldest season, likely caused by the coal and biofuel burning used for heating. We also compared our retrievals with the modeled organic carbon by global Oslo CTM for several sites. Model values are higher in biomass burning regions than AERONET-based retrievals, while opposite is true in urban areas in India and China.

  16. Enhanced photoluminescence and solar cell performance via Lewis base passivation of organic-inorganic lead halide perovskites.

    PubMed

    Noel, Nakita K; Abate, Antonio; Stranks, Samuel D; Parrott, Elizabeth S; Burlakov, Victor M; Goriely, Alain; Snaith, Henry J

    2014-10-28

    Organic-inorganic metal halide perovskites have recently emerged as a top contender to be used as an absorber material in highly efficient, low-cost photovoltaic devices. Solution-processed semiconductors tend to have a high density of defect states and exhibit a large degree of electronic disorder. Perovskites appear to go against this trend, and despite relatively little knowledge of the impact of electronic defects, certified solar-to-electrical power conversion efficiencies of up to 17.9% have been achieved. Here, through treatment of the crystal surfaces with the Lewis bases thiophene and pyridine, we demonstrate significantly reduced nonradiative electron-hole recombination within the CH(3)NH(3)PbI(3-x)Cl(x) perovskite, achieving photoluminescence lifetimes which are enhanced by nearly an order of magnitude, up to 2 μs. We propose that this is due to the electronic passivation of under-coordinated Pb atoms within the crystal. Through this method of Lewis base passivation, we achieve power conversion efficiencies for solution-processed planar heterojunction solar cells enhanced from 13% for the untreated solar cells to 15.3% and 16.5% for the thiophene and pyridine-treated solar cells, respectively.

  17. A First-Principles Study on the Structural and Electronic Properties of Sn-Based Organic-Inorganic Halide Perovskites

    NASA Astrophysics Data System (ADS)

    Ma, Zi-Qian; Pan, Hui; Wong, Pak Kin

    2016-11-01

    Organic-inorganic halide perovskites have attracted increasing interest on solar-energy harvesting because of their outstanding electronic properties. In this work, we systematically investigate the structural and electronic properties of Sn-based hybrid perovskites MASnX3 and FASnX3 (X = I, Br) based on density-functional-theory calculations. We find that their electronic properties strongly depend on the organic molecules, halide atoms, and structures. We show that there is a general rule to predict the band gap of the Sn-based hybrid perovskite: its band gap increases as the size of halide atom decreases as well as that of organic molecule increase. The band gap of high temperature phase (cubic structure) is smaller than that of low temperature phase (orthorhombic structure). The band gap of tetragonal structure (medium-temperature phase) may be larger or smaller than that of cubic phase, depending on the orientation of the molecule. Tunable band gap within a range of 0.73-1.53 eV can be achieved by choosing halide atom and organic molecule, and controlling structure. We further show that carrier effective mass also reduces as the size of halide atom increases and that of molecule decreases. By comparing with Pb-based hybrid perovskites, the Sn-based systems show enhanced visible-light absorption and carrier mobility due to narrowed band gap and reduced carrier effective mass. These Sn-based organic-inorganic halide perovskites may find applications in solar energy harvesting with improved performance.

  18. Role of Dispersive Interactions in Determining Structural Properties of Organic-Inorganic Halide Perovskites: Insights from First-Principles Calculations.

    PubMed

    Egger, David A; Kronik, Leeor

    2014-08-07

    A microscopic picture of structure and bonding in organic-inorganic perovskites is imperative to understanding their remarkable semiconducting and photovoltaic properties. On the basis of a density functional theory treatment that includes both spin-orbit coupling and dispersive interactions, we provide detailed insight into the crystal binding of lead-halide perovskites and quantify the effect of different types of interactions on the structural properties. Our analysis reveals that cohesion in these materials is characterized by a variety of interactions that includes important contributions from both van der Waals interactions among the halide atoms and hydrogen bonding. We also assess the role of spin-orbit coupling and show that it causes slight changes in lead-halide bonding that do not significantly affect the lattice parameters. Our results establish that consideration of dispersive effects is essential for understanding the structure and bonding in organic-inorganic perovskites in general and for providing reliable theoretical predictions of structural parameters in particular.

  19. Photo-induced halide redistribution in organic-inorganic perovskite films.

    PubMed

    deQuilettes, Dane W; Zhang, Wei; Burlakov, Victor M; Graham, Daniel J; Leijtens, Tomas; Osherov, Anna; Bulović, Vladimir; Snaith, Henry J; Ginger, David S; Stranks, Samuel D

    2016-05-24

    Organic-inorganic perovskites such as CH3NH3PbI3 are promising materials for a variety of optoelectronic applications, with certified power conversion efficiencies in solar cells already exceeding 21%. Nevertheless, state-of-the-art films still contain performance-limiting non-radiative recombination sites and exhibit a range of complex dynamic phenomena under illumination that remain poorly understood. Here we use a unique combination of confocal photoluminescence (PL) microscopy and chemical imaging to correlate the local changes in photophysics with composition in CH3NH3PbI3 films under illumination. We demonstrate that the photo-induced 'brightening' of the perovskite PL can be attributed to an order-of-magnitude reduction in trap state density. By imaging the same regions with time-of-flight secondary-ion-mass spectrometry, we correlate this photobrightening with a net migration of iodine. Our work provides visual evidence for photo-induced halide migration in triiodide perovskites and reveals the complex interplay between charge carrier populations, electronic traps and mobile halides that collectively impact optoelectronic performance.

  20. Photo-induced halide redistribution in organic-inorganic perovskite films

    NASA Astrophysics Data System (ADS)

    Dequilettes, Dane W.; Zhang, Wei; Burlakov, Victor M.; Graham, Daniel J.; Leijtens, Tomas; Osherov, Anna; Bulović, Vladimir; Snaith, Henry J.; Ginger, David S.; Stranks, Samuel D.

    2016-05-01

    Organic-inorganic perovskites such as CH3NH3PbI3 are promising materials for a variety of optoelectronic applications, with certified power conversion efficiencies in solar cells already exceeding 21%. Nevertheless, state-of-the-art films still contain performance-limiting non-radiative recombination sites and exhibit a range of complex dynamic phenomena under illumination that remain poorly understood. Here we use a unique combination of confocal photoluminescence (PL) microscopy and chemical imaging to correlate the local changes in photophysics with composition in CH3NH3PbI3 films under illumination. We demonstrate that the photo-induced `brightening' of the perovskite PL can be attributed to an order-of-magnitude reduction in trap state density. By imaging the same regions with time-of-flight secondary-ion-mass spectrometry, we correlate this photobrightening with a net migration of iodine. Our work provides visual evidence for photo-induced halide migration in triiodide perovskites and reveals the complex interplay between charge carrier populations, electronic traps and mobile halides that collectively impact optoelectronic performance.

  1. Zero-Dimensional Hybrid Organic-Inorganic Halide Perovskite Modeling: Insights from First Principles.

    PubMed

    Giorgi, Giacomo; Yamashita, Koichi

    2016-03-03

    We discuss the properties of zero dimensional (cluster) hybrid organic-inorganic halide perovskite in view of their possible applicability in photovoltaics, light-emitting, and lasing devices. To support the need of theoretical investigations of such systems and pave the way for future investigations of clusters with different orientations, terminations, and compositions, we have assembled and characterized some zero dimensional models of methylammonium lead iodide, MAPbI3, by "cutting" its bulk. Interesting properties of such clusters that have been here theoretically investigated include their charge distribution, bandgap, wave function localization, and reduced effective mass. The surface orientation/termination and the organic/inorganic cation ratios have been discussed together with the roles they play in determining the electronic properties of such clusters. Also in agreement with experiments, it emerges that surface termination is crucial in determining the structural and optoelectronic properties of this largely overlooked, dimensionally reduced class of materials. Analogies and differences between clusters and bulk are discussed.

  2. Hydrophobic Organic Hole Transporters for Improved Moisture Resistance in Metal Halide Perovskite Solar Cells.

    PubMed

    Leijtens, Tomas; Giovenzana, Tommaso; Habisreutinger, Severin N; Tinkham, Jonathan S; Noel, Nakita K; Kamino, Brett A; Sadoughi, Golnaz; Sellinger, Alan; Snaith, Henry J

    2016-03-09

    Solar cells based on organic-inorganic perovskite semiconductor materials have recently made rapid improvements in performance, with the best cells performing at over 20% efficiency. With such rapid progress, questions such as cost and solar cell stability are becoming increasingly important to address if this new technology is to reach commercial deployment. The moisture sensitivity of commonly used organic-inorganic metal halide perovskites has especially raised concerns. Here, we demonstrate that the hygroscopic lithium salt commonly used as a dopant for the hole transport material in perovskite solar cells makes the top layer of the devices hydrophilic and causes the solar cells to rapidly degrade in the presence of moisture. By using novel, low cost, and hydrophobic hole transporters in conjunction with a doping method incorporating a preoxidized salt of the respective hole transporters, we are able to prepare efficient perovskite solar cells with greatly enhanced water resistance.

  3. Strong and Selective Halide Anion Binding by Neutral Halogen-Bonding [2]Rotaxanes in Wet Organic Solvents.

    PubMed

    Lim, Jason Y C; Bunchuay, Thanthapatra; Beer, Paul D

    2017-04-03

    The design and construction of neutral interlocked host molecules for anion recognition are rare. Using an active-metal template approach, the preparation of a family of neutral halogen bonding (XB) rotaxanes containing two, three and four iodotriazole groups integrated into the macrocycle and axle components is achieved. In spite of the interlocked hosts' neutrality, such rotaxane systems are capable of binding halide anions strongly and selectively in wet organic solvent mixtures. Importantly, halide-binding strength and selectivity can be modulated by varying the number and position of the halogen bond donor iodotriazole groups within the interlocked cavity; the rotaxane containing the largest number of halogen bond donor groups exhibits the highest halide anion-binding affinities. By varying the percentage of water content in the solvent, neutral XB donor-mediated anion-binding strength is also demonstrated to be highly sensitive to solvent polarity. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Iron-catalysed cross-coupling of organolithium compounds with organic halides

    PubMed Central

    Jia, Zhenhua; Liu, Qiang; Peng, Xiao-Shui; Wong, Henry N. C.

    2016-01-01

    In past decades, catalytic cross-coupling reactions between organic halides and organometallic reagents to construct carbon–carbon bond have achieved a tremendous progress. However, organolithium reagents have rarely been used in cross-coupling reactions, due mainly to their high reactivity. Another limitation of this transformation using organolithium reagents is how to control reactivity with excellent selectivity. Although palladium catalysis has been applied in this field recently, the development of an approach to replace catalytic systems of noble metals with nonprecious metals is currently in high demand. Herein, we report an efficient synthetic protocol involving iron-catalysed cross-coupling reactions employing organolithium compounds as key coupling partners to unite aryl, alkyl and benzyl fragments and also disclose an efficient iron-catalysed release-capture ethylene coupling with isopropyllithium. PMID:26847602

  5. DFT +U Modeling of Hole Polarons in Organic Lead Halide Perovskites

    NASA Astrophysics Data System (ADS)

    Welch, Eric; Erhart, Paul; Scolfaro, Luisa; Zakhidov, Alex

    Due to the ever present drive towards improved efficiencies in solar cell technology, new and improved materials are emerging rapidly. Organic halide perovskites are a promising prospect, yet a fundamental understanding of the organic perovskite structure and electronic properties is missing. Particularly, explanations of certain physical phenomena, specifically a low recombination rate and high mobility of charge carriers still remain controversial. We theoretically investigate possible formation of hole polarons adopting methodology used for oxide perovskites. The perovskite studied here is the ABX3structure, with A being an organic cation, B lead and C a halogen; the combinations studied allow for A1,xA2 , 1 - xBX1,xX2 , 3 - xwhere the alloy convention is used to show mixtures of the organic cations and/or the halogens. Two organic cations, methylammonium and formamidinium, and three halogens, iodine, chlorine and bromine are studied. Electronic structures and polaron behavior is studied through first principle density functional theory (DFT) calculations using the Vienna Ab Initio Simulation Package (VASP). Local density approximation (LDA) pseudopotentials are used and a +U Hubbard correction of 8 eV is added; this method was shown to work with oxide perovskites. It is shown that a localized state is realized with the Hubbard correction in systems with an electron removed, residing in the band gap of each different structure. Thus, hole polarons are expected to be seen in these perovskites.

  6. Impact of the organic halide salt on final perovskite composition for photovoltaic applications

    SciTech Connect

    Moore, David T.; Sai, Hiroaki; Wee Tan, Kwan; Estroff, Lara A.; Wiesner, Ulrich

    2014-08-01

    The methylammonium lead halide perovskites have shown significant promise as a low-cost, second generation, photovoltaic material. Despite recent advances, however, there are still a number of fundamental aspects of their formation as well as their physical and electronic behavior that are not well understood. In this letter we explore the mechanism by which these materials crystallize by testing the outcome of each of the reagent halide salts. We find that components of both salts, lead halide and methylammonium halide, are relatively mobile and can be readily exchanged during the crystallization process when the reaction is carried out in solution or in the solid state. We exploit this fact by showing that the perovskite structure is formed even when the lead salt's anion is a non-halide, leading to lower annealing temperature and time requirements for film formation. Studies into these behaviors may ultimately lead to improved processing conditions for photovoltaic films.

  7. One-dimensional organic lead halide perovskites with efficient bluish white-light emission

    NASA Astrophysics Data System (ADS)

    Yuan, Zhao; Zhou, Chenkun; Tian, Yu; Shu, Yu; Messier, Joshua; Wang, Jamie C.; van de Burgt, Lambertus J.; Kountouriotis, Konstantinos; Xin, Yan; Holt, Ethan; Schanze, Kirk; Clark, Ronald; Siegrist, Theo; Ma, Biwu

    2017-01-01

    Organic-inorganic hybrid metal halide perovskites, an emerging class of solution processable photoactive materials, welcome a new member with a one-dimensional structure. Herein we report the synthesis, crystal structure and photophysical properties of one-dimensional organic lead bromide perovskites, C4N2H14PbBr4, in which the edge sharing octahedral lead bromide chains [PbBr4 2-]∞ are surrounded by the organic cations C4N2H14 2+ to form the bulk assembly of core-shell quantum wires. This unique one-dimensional structure enables strong quantum confinement with the formation of self-trapped excited states that give efficient bluish white-light emissions with photoluminescence quantum efficiencies of approximately 20% for the bulk single crystals and 12% for the microscale crystals. This work verifies once again that one-dimensional systems are favourable for exciton self-trapping to produce highly efficient below-gap broadband luminescence, and opens up a new route towards superior light emitters based on bulk quantum materials.

  8. One-dimensional organic lead halide perovskites with efficient bluish white-light emission

    PubMed Central

    Yuan, Zhao; Zhou, Chenkun; Tian, Yu; Shu, Yu; Messier, Joshua; Wang, Jamie C.; van de Burgt, Lambertus J.; Kountouriotis, Konstantinos; Xin, Yan; Holt, Ethan; Schanze, Kirk; Clark, Ronald; Siegrist, Theo; Ma, Biwu

    2017-01-01

    Organic-inorganic hybrid metal halide perovskites, an emerging class of solution processable photoactive materials, welcome a new member with a one-dimensional structure. Herein we report the synthesis, crystal structure and photophysical properties of one-dimensional organic lead bromide perovskites, C4N2H14PbBr4, in which the edge sharing octahedral lead bromide chains [PbBr4 2−]∞ are surrounded by the organic cations C4N2H14 2+ to form the bulk assembly of core-shell quantum wires. This unique one-dimensional structure enables strong quantum confinement with the formation of self-trapped excited states that give efficient bluish white-light emissions with photoluminescence quantum efficiencies of approximately 20% for the bulk single crystals and 12% for the microscale crystals. This work verifies once again that one-dimensional systems are favourable for exciton self-trapping to produce highly efficient below-gap broadband luminescence, and opens up a new route towards superior light emitters based on bulk quantum materials. PMID:28051092

  9. Anaerobic degradation of adsorbable organic halides (AOX) from pulp and paper industry wastewater.

    PubMed

    Savant, D V; Abdul-Rahman, R; Ranade, D R

    2006-06-01

    Adsorbable organic halides (AOX) are generated in the pulp and paper industry during the bleaching process. These compounds are formed as a result of reaction between residual lignin from wood fibres and chlorine/chlorine compounds used for bleaching. Many of these compounds are recalcitrant and have long half-life periods. Some of them show a tendency to bioaccumulate while some are proven carcinogens and mutagens. Hence, it is necessary to remove or degrade these compounds from wastewater. Physical, chemical and electrochemical methods reported to remove AOX compounds are not economically viable. Different types of aerobic, anaerobic and combined biological treatment processes have been developed for treatment of pulp and paper industry wastewater. Maximum dechlorination is found to occur under anaerobic conditions. However, as these processes are designed specifically for reducing COD and BOD of wastewater, they do not ensure complete removal of AOX. This paper reviews the anaerobic biological treatments developed for pulp and paper industry wastewater and also reviews the specific micro-organisms reported to degrade AOX compounds under anaerobic conditions, their nutritional and biochemical requirements. It is imperative to consider these specific micro-organisms while designing an anaerobic treatment for efficient removal of AOX.

  10. Optical Properties and Aging of Light Absorbing Secondary Organic Aerosol

    NASA Astrophysics Data System (ADS)

    Liu, J.; Lin, P.; Laskin, A.; Laskin, J.; Kathmann, S. M.; Wise, M.; Caylor, R.; Imholt, F.; Selimovic, V.; Shilling, J.

    2016-12-01

    The light-absorbing organic aerosol (OA), commonly referred to as "brown carbon (BrC)", has attracted considerable attention in recent years because of its potential to affect atmospheric radiation balance, especially in the ultraviolet region and thus impact photochemical processes. A growing amount of data has indicated that BrC is prevalent in the atmosphere, which has motivated numerous laboratory and field studies; however, our understanding of the relationship between the chemical composition and optical properties of BrC remains limited. We conducted chamber experiments to investigate the effect of various VOC precursors, NOx concentrations, photolysis time and relative humidity (RH) on the light absorption of selected secondary organic aerosols (SOA). Light absorption of chamber generated SOA samples, especially aromatic SOA, was found to increase with NOx concentration, at moderate RH, and for the shortest photolysis aging times. The highest mass absorption coefficients (MAC) value is observed from toluene SOA products formed under high NOx conditions at moderate RH, in which nitro-aromatics were previously identified as the major light absorbing compounds. BrC light absorption is observed to decrease with photolysis time, correlated with a decline of the organonitrate fraction of SOA. SOA formed from mixtures of aromatics and isoprene absorb less visible and UV light than SOA formed from aromatic precursors alone on a mass basis. The inherent changes in chemical compositions and the relationship with the light absorption will be discussed in detail.

  11. Predicting total organic halide formation from drinking water chlorination using quantitative structure-property relationships.

    PubMed

    Luilo, G B; Cabaniss, S E

    2011-10-01

    Chlorinating water which contains dissolved organic matter (DOM) produces disinfection byproducts, the majority of unknown structure. Hence, the total organic halide (TOX) measurement is used as a surrogate for toxic disinfection byproducts. This work derives a robust quantitative structure-property relationship (QSPR) for predicting the TOX formation potential of model compounds. Literature data for 49 compounds were used to train the QSPR in moles of chlorine per mole of compound (Cp) (mol-Cl/mol-Cp). The resulting QSPR has four descriptors, calibration [Formula: see text] of 0.72 and standard deviation of estimation of 0.43 mol-Cl/mol-Cp. Internal and external validation indicate that the QSPR has good predictive power and low bias (‰<‰1%). Applying this QSPR to predict TOX formation by DOM surrogates - tannic acid, two model fulvic acids and two agent-based model assemblages - gave a predicted TOX range of 136-184 µg-Cl/mg-C, consistent with experimental data for DOM, which ranged from 78 to 192 µg-Cl/mg-C. However, the limited structural variation in the training data may limit QSPR applicability; studies of more sulfur-containing compounds, heterocyclic compounds and high molecular weight compounds could lead to a more widely applicable QSPR.

  12. Organic-inorganic hybrid lead halide perovskites for optoelectronic and electronic applications.

    PubMed

    Zhao, Yixin; Zhu, Kai

    2016-02-07

    Organic and inorganic hybrid perovskites (e.g., CH(3)NH(3)PbI(3)), with advantages of facile processing, tunable bandgaps, and superior charge-transfer properties, have emerged as a new class of revolutionary optoelectronic semiconductors promising for various applications. Perovskite solar cells constructed with a variety of configurations have demonstrated unprecedented progress in efficiency, reaching about 20% from multiple groups after only several years of active research. A key to this success is the development of various solution-synthesis and film-deposition techniques for controlling the morphology and composition of hybrid perovskites. The rapid progress in material synthesis and device fabrication has also promoted the development of other optoelectronic applications including light-emitting diodes, photodetectors, and transistors. Both experimental and theoretical investigations on organic-inorganic hybrid perovskites have enabled some critical fundamental understandings of this material system. Recent studies have also demonstrated progress in addressing the potential stability issue, which has been identified as a main challenge for future research on halide perovskites. Here, we review recent progress on hybrid perovskites including basic chemical and crystal structures, chemical synthesis of bulk/nanocrystals and thin films with their chemical and physical properties, device configurations, operation principles for various optoelectronic applications (with a focus on solar cells), and photophysics of charge-carrier dynamics. We also discuss the importance of further understanding of the fundamental properties of hybrid perovskites, especially those related to chemical and structural stabilities.

  13. Passive Q-switching of a Tm:YLF laser with a Co2+ doped silver halide saturable absorber

    NASA Astrophysics Data System (ADS)

    Hecht, Harel; Burshtein, Zeev; Katzir, Abraham; Noach, Salman; Sokol, Maxim; Frumker, Eugene; Galun, Ehud; Ishaaya, Amiel A.

    2017-02-01

    We report a successful passive Q-switching of a Tm:YLF laser operating at λ = 1.9 μm, using a Co2+:AgCl0.5Br0.5 saturable absorber. Approximately 200-ns long, 150 μJ pulses were obtained. Increase in pump energy resulted in repetitive pulsing, with a repetition rate approximately proportional to the pump pulse energy. Room-temperature optical transmission saturation curves measured in ∼1-mm thick Co2+:AgCl0.5Br0.5 plates yielded a ground state absorption cross section σgs =(7.8 ± 0.5) ×10-18 cm2 , and an excited state absorption cross section σes =(3.3 ± 0.3) ×10-18 cm2 , at λ = 1.9 μm. The lifetime of the A2(4F) second excited-state of the octahedral O symmetry was τ∗ =(0.6 ± 0.06) ns .

  14. Optical Generation of Ballistic and Diffusive Spin Currents in Organic-Inorganic Lead Halide Perovskites

    NASA Astrophysics Data System (ADS)

    Li, Junwen; Haney, Paul

    Organic-inorganic halide perovskite solar cells have attracted enormous attention in recent years due to their remarkable photovoltaic power conversion efficiency. These materials should exhibit interesting spin-dependent properties as well, owing to the strong spin-orbit coupling and the broken inversion symmetry present at room temperature. In this work, we consider the spin-dependent optical response of CH3NH3PbI3 on two distinct time scales. We first use density functional theory to compute the ballistic spin current injected by absorption of linearly polarized light. This spin current persists on a time scale of the momentum relaxation time. We then consider diffusive transport of photogenerated charge and spin for a thin perovskite layer with a passivated surface and an Ohmic, non-selective back contact. The spin densities and spin currents are evaluated by solving the drift-diffusion equations for a 3-dimensional Rashba model. We comment on the applications of optically excited spin densities and spin currents in these materials.

  15. Ionic behavior of organic-inorganic metal halide perovskite based metal-oxide-semiconductor capacitors.

    PubMed

    Wang, Yucheng; Zhang, Yuming; Pang, Tiqiang; Xu, Jie; Hu, Ziyang; Zhu, Yuejin; Tang, Xiaoyan; Luan, Suzhen; Jia, Renxu

    2017-05-24

    Organic-inorganic metal halide perovskites are promising semiconductors for optoelectronic applications. Despite the achievements in device performance, the electrical properties of perovskites have stagnated. Ion migration is speculated to be the main contributing factor for the many unusual electrical phenomena in perovskite-based devices. Here, to understand the intrinsic electrical behavior of perovskites, we constructed metal-oxide-semiconductor (MOS) capacitors based on perovskite films and performed capacitance-voltage (C-V) and current-voltage (I-V) measurements of the capacitors. The results provide direct evidence for the mixed ionic-electronic transport behavior within perovskite films. In the dark, there is electrical hysteresis in both the C-V and I-V curves because the mobile negative ions take part in charge transport despite frequency modulation. However, under illumination, the large amount of photoexcited free carriers screens the influence of the mobile ions with a low concentration, which is responsible for the normal C-V properties. Validation of ion migration for the gate-control ability of MOS capacitors is also helpful for the investigation of perovskite MOS transistors and other gate-control photovoltaic devices.

  16. Optical tomograph optimized for tumor detection inside highly absorbent organs

    NASA Astrophysics Data System (ADS)

    Boutet, Jérôme; Koenig, Anne; Hervé, Lionel; Berger, Michel; Dinten, Jean-Marc; Josserand, Véronique; Coll, Jean-Luc

    2011-05-01

    This paper presents a tomograph for small animal fluorescence imaging. The compact and cost-effective system described in this article was designed to address the problem of tumor detection inside highly absorbent heterogeneous organs, such as lungs. To validate the tomograph's ability to detect cancerous nodules inside lungs, in vivo tumor growth was studied on seven cancerous mice bearing murine mammary tumors marked with Alexa Fluor 700. They were successively imaged 10, 12, and 14 days after the primary tumor implantation. The fluorescence maps were compared over this time period. As expected, the reconstructed fluorescence increases with the tumor growth stage.

  17. Porphyrin Based Near Infrared-Absorbing Materials for Organic Photovoltaics

    NASA Astrophysics Data System (ADS)

    Zhong, Qiwen

    The conservation and transformation of energy is essential to the survival of mankind, and thus concerns every modern society. Solar energy, as an everlasting source of energy, holds one of the key solutions to some of the most urgent problems the world now faces, such as global warming and the oil crisis. Advances in technologies utilizing clean, abundant solar energy, could be the steering wheel of our societies. Solar cells, one of the major advances in converting solar energy into electricity, are now capturing people's interest all over the globe. While solar cells have been commercially available for many years, the manufacturing of solar cells is quite expensive, limiting their broad based implementation. The cost of solar cell based electricity is 15-50 cents per kilowatt hour (¢/kwh), depending on the type of solar cell, compared to 0.7 ¢/kwh for fossil fuel based electricity. Clearly, decreasing the cost of electricity from solar cells is critical for their wide spread deployment. This will require a decrease in the cost of light absorbing materials and material processing used in fabricating the cells. Organic photovoltaics (OPVs) utilize organic materials such as polymers and small molecules. These devices have the advantage of being flexible and lower cost than conventional solar cells built from inorganic semiconductors (e.g. silicon). The low cost of OPVs is tied to lower materials and fabrication costs of organic cells. However, the current power conversion efficiencies of OPVs are still below 15%, while convention crystalline Si cells have efficiencies of 20-25%. A key limitation in OPVs today is their inability to utilize the near infrared (NIR) portion of the solar spectrum. This part of the spectrum comprises nearly half of the energy in sunlight that could be used to make electricity. The first and foremost step in conversion solar energy conversion is the absorption of light, which nature has provided us optimal model of, which is

  18. How Important Is the Organic Part of Lead Halide Perovskite Photovoltaic Cells? Efficient CsPbBr3 Cells.

    PubMed

    Kulbak, Michael; Cahen, David; Hodes, Gary

    2015-07-02

    Hybrid organic-inorganic lead halide perovskite photovoltaic cells have already surpassed 20% conversion efficiency in the few years that they have been seriously studied. However, many fundamental questions still remain unanswered as to why they are so good. One of these is "Is the organic cation really necessary to obtain high quality cells?" In this study, we show that an all-inorganic version of the lead bromide perovskite material works equally well as the organic one, in particular generating the high open circuit voltages that are an important feature of these cells.

  19. Band Gap Tuning and Defect Tolerance of Atomically Thin Two-Dimensional Organic-Inorganic Halide Perovskites.

    PubMed

    Pandey, Mohnish; Jacobsen, Karsten W; Thygesen, Kristian S

    2016-11-03

    Organic-inorganic halide perovskites have proven highly successful for photovoltaics but suffer from low stability, which deteriorates their performance over time. Recent experiments have demonstrated that low dimensional phases of the hybrid perovskites may exhibit improved stability. Here we report first-principles calculations for isolated monolayers of the organometallic halide perovskites (C4H9NH3)2MX2Y2, where M = Pb, Ge, Sn and X,Y = Cl, Br, I. The band gaps computed using the GLLB-SC functional are found to be in excellent agreement with experimental photoluminescence data for the already synthesized perovskites. Finally, we study the effect of different defects on the band structure. We find that the most common defects only introduce shallow or no states in the band gap, indicating that these atomically thin 2D perovskites are likely to be defect tolerant.

  20. Optical Properties and Aging of Light Absorbing Secondary Organic Aerosol

    SciTech Connect

    Liu, Jiumeng; Lin, Peng; Laskin, Alexander; Laskin, Julia; Kathmann, Shawn M.; Wise, Matthew E.; Caylor, Ryan; Imholt, Felisha; Selimovic, Vanessa; Shilling, John E.

    2016-10-14

    The light-absorbing organic aerosol (OA), commonly referred to as “brown carbon (BrC)”, has attracted considerable attention in recent years because of its potential to affect atmospheric radiation balance, especially in the ultraviolet region and thus impact photochemical processes. A growing amount of data has indicated that BrC is prevalent in the atmosphere, which has motivated numerous laboratory and field studies; however, our understanding of the relationship between the chemical composition and optical properties of BrC remains limited. We conducted chamber experiments to investigate the effect of various VOC precursors, NOx concentrations, photolysis time and relative humidity (RH) on the light absorption of selected secondary organic aerosols (SOA). Light absorption of chamber generated SOA samples, especially aromatic SOA, was found to increase with NOx concentration, at moderate RH, and for the shortest photolysis aging times. The highest mass absorption coefficients (MAC) value is observed from toluene SOA products formed under high NOx conditions at moderate RH, in which nitro-aromatics were previously identified as the major light absorbing compounds. BrC light absorption is observed to decrease with photolysis time, correlated with a decline of the organonitrate fraction of SOA. SOA formed from mixtures of aromatics and isoprene absorb less visible and UV light than SOA formed from aromatic precursors alone on a mass basis. However, the mixed-SOA absorption was underestimated when optical properties were predicted using a two-product SOA formation model, as done in many current climate models. Further investigation, including analysis on detailed mechanisms, are required to explain the discrepancy.

  1. Tuning Organic Carbon Dioxide Absorbents for Carbonation and Decarbonation

    PubMed Central

    Rajamanickam, Ramachandran; Kim, Hyungsoo; Park, Ji-Woong

    2015-01-01

    The reaction of carbon dioxide with a mixture of a superbase and alcohol affords a superbase alkylcarbonate salt via a process that can be reversed at elevated temperatures. To utilize the unique chemistry of superbases for carbon capture technology, it is essential to facilitate carbonation and decarbonation at desired temperatures in an easily controllable manner. Here, we demonstrate that the thermal stabilities of the alkylcarbonate salts of superbases in organic solutions can be tuned by adjusting the compositions of hydroxylic solvent and polar aprotic solvent mixtures, thereby enabling the best possible performances to be obtained from the various carbon dioxide capture agents based on these materials. The findings provides valuable insights into the design and optimization of organic carbon dioxide absorbents. PMID:26033537

  2. Interface Engineering and Morphology Study of Thin Film Organic-Inorganic Halide Perovskite Optoelectronic Devices

    NASA Astrophysics Data System (ADS)

    Meng, Lei

    significantly improved compared with cells made with organic layers. Degradation mechanisms were investigated and important guidelines were derived for future device design with a view to achieving both highly efficient and stable solar devices. Organometal halide based perovskite material has great optoelectronic proprieties, for example, shallow traps, benign grain boundaries and high diffusion length. The perovskite LEDs show pure electroluminescence (EL) with narrow full width at half maximum (FWHM), which is an advantage for display, lighting or lasing applications. In chapter five, perovskite LEDs are demonstrated employing solution processed charge injection layers with a quantum efficiency of 1.16% with a very low driving voltage.

  3. Understanding the Slow Transient Optoelectronic Response of Hybrid Organic-Inorganic Halide Perovskites

    NASA Astrophysics Data System (ADS)

    Jacobs, Daniel Louis

    Hybrid organic-inorganic halide perovskites, particularly methylammonium lead triiodide (MAPbI3), have emerged within the past decade as an exciting class of photovoltaic materials. In less than ten years, MAPbI3-based photovoltaic devices have seen unprecedented performance growth, with photoconversion efficiency increasing from 3% to over 22%, making it competitive with traditional high-efficiency solar cells. Furthermore, the fabrication of MAPbI3 devices utilize low-temperature solution processing, which could facilitate ultra low cost manufacturing. However, MAPbI3 suffers from significant instabilities under working conditions that have limited their applications outside of the laboratory. The instability of the MAPbI3 material can be generalized as a complex, slow transient optoelectronic response (STOR). The mechanism of the generalized STOR is dependent on the native defects of MAPbI3, but detailed understanding of the material defect properties is complicated by the complex ionic bonding of MAPbI3. Furthermore, characterization of the intrinsic material's response is complicated by the diverse approach to material processing and device architecture across laboratories around the world. In order to understand and mitigate the significant problems of MAPbI3 devices, a new approach focused on the material response, rather than the full device response, must be pursued. This dissertation highlights the work to analyze and mitigate the STOR intrinsic to MAPbI3. An experimental platform was developed based on lateral interdigitated electrode (IDE) arrays capable of monitoring the current and photoluminescence response simultaneously. By correlating the dynamics of the current and photoluminescence (PL) responses, both charge trapping and ion migration mechanisms were identified to contribute to the STOR. Next, a novel fabrication technique is introduced that is capable of reliably depositing MAPbI3 thin films with grain sizes at least an order of magnitude

  4. Ternary Silver Halide Nanocrystals.

    PubMed

    Abeyweera, Sasitha C; Rasamani, Kowsalya D; Sun, Yugang

    2017-07-18

    Nanocrystalline silver halides (AgX) such as AgCl, AgBr, and AgI, a class of semiconductor materials with characteristics of both direct and indirect band gaps, represent the most crucial components in traditional photographic processing. The nanocrystal surfaces provide sensitivity specks that can turn into metallic silver, forming an invisible latent image, upon exposure to light. The photographic processing implies that the AgX nanoparticles possess unique properties. First, pristine AgX nanoparticles absorb light only at low efficiency to convert surface AgX into tiny clusters of silver atoms. Second, AgX nanoparticles represent an excellent class of materials to capture electrons efficiently. Third, small metallic silver clusters can catalyze the reduction of AgX nanoparticles to Ag nanoparticles in the presence of mild reducing reagents, known as self-catalytic reduction. These properties indicate that AgX nanoparticles can be partially converted to metallic silver with high precision, leading to the formation of hybrid AgX/Ag nanoparticles. The nanosized metallic Ag usually exhibit intense absorption bands in the visible spectral region due to their strong surface plasmon resonances, which make the AgX/Ag nanoparticles a class of promising visible-light-driven photocatalysts for environmental remediation and CO2 reduction. Despite the less attention paid to their ability of capturing electrons, AgX nanoparticles might be a class of ideal electron shuttle materials to bridge light absorbers and catalysts on which electrons can drive chemical transformations. In this Account, we focus on ternary silver halide alloy (TSHA) nanoparticles, containing two types of halide ions, which increase the composition complexity of the silver halide nanoparticles. Interdiffusion of halide ions between two types of AgX at elevated temperatures has been developed for fabricating ternary silver halide alloy crystals, such as silver chlorobromide optical fibers for infrared

  5. Radiochemical synthesis of pure anhydrous metal halides

    NASA Technical Reports Server (NTRS)

    Philipp, W. H.; Marsik, S. J.; May, C. E.

    1973-01-01

    Method uses radiation chemistry as practical tool for inorganic preparations and in particular deposition of metals by irradiation of their aqueous metal salt solutions with high energy electrons. Higher valence metal halide is dissolved in organic liquid and exposed to high energy electrons. This causes metal halide to be reduced to a lower valence metal halide.

  6. A biomimetic absorbent for removal of trace level persistent organic pollutants from water.

    PubMed

    Liu, Huijuan; Qu, Jiuhui; Dai, Ruihua; Ru, Jia; Wang, Zijian

    2007-05-01

    A novel biomimetic absorbent containing the lipid triolein was developed for removing persistent organic pollutants (POPs) from water. The structural characteristics of the absorbent were obtained by SEM and a photoluminescence method. Under optimum preparation conditions, triolein was perfectly embedded in the cellulose acetate (CA) spheres, the absorbent was stable and no triolein leaked into the water. Dieldrin, endrin, aldrin and heptachlor epoxide were effectively removed by the CA--triolein absorbent in laboratory batch experiments. This suggests that CA-triolein absorbent may serve as a good absorbent for those selected POPs. Triolein in the absorbent significantly increased the absorption capacity, and lower residual concentrations of POPs were achieved when compared to the use of cellulose acetate absorbent. The absorption rate for lipophilic pollutants was very fast and exhibited some relationship with the octanol--water partition coefficient of the analyte. The absorption mechanism is discussed in detail.

  7. Visible-Light-Promoted Nickel- and Organic-Dye-Cocatalyzed Formylation Reaction of Aryl Halides and Triflates and Vinyl Bromides with Diethoxyacetic Acid as a Formyl Equivalent.

    PubMed

    Huang, He; Li, Xiangmin; Yu, Chenguang; Zhang, Yueteng; Mariano, Patrick S; Wang, Wei

    2017-02-01

    A simple formylation reaction of aryl halides, aryl triflates, and vinyl bromides under synergistic nickel- and organic-dye-mediated photoredox catalysis is reported. Distinct from widely used palladium-catalyzed formylation processes, this reaction proceeds by a two-step mechanistic sequence involving initial in situ generation of the diethoxymethyl radical from diethoxyacetic acid by a 4CzIPN-mediated photoredox reaction. The formyl-radical equivalent then undergoes nickel-catalyzed substitution reactions with aryl halides and triflates and vinyl bromides to form the corresponding aldehyde products. Significantly, besides aryl bromides, less reactive aryl chlorides and triflates and vinyl halides serve as effective substrates for this process. Since the mild conditions involved in this reaction tolerate a plethora of functional groups, the process can be applied to the efficient preparation of diverse aromatic aldehydes. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Is There a Need to Discuss Atomic Orbital Overlap When Teaching Hydrogen-Halide Bond Strength and Acidity Trends in Organic Chemistry?

    ERIC Educational Resources Information Center

    Devarajan, Deepa; Gustafson, Samantha J.; Bickelhaupt, F. Matthias; Ess, Daniel H.

    2015-01-01

    Undergraduate organic chemistry textbooks and Internet websites use a variety of approaches for presenting and explaining the impact of halogen atom size on trends in bond strengths and/or acidity of hydrogen halides. In particular, several textbooks and Internet websites explain these trends by invoking decreasing orbital overlap between the…

  9. Is There a Need to Discuss Atomic Orbital Overlap When Teaching Hydrogen-Halide Bond Strength and Acidity Trends in Organic Chemistry?

    ERIC Educational Resources Information Center

    Devarajan, Deepa; Gustafson, Samantha J.; Bickelhaupt, F. Matthias; Ess, Daniel H.

    2015-01-01

    Undergraduate organic chemistry textbooks and Internet websites use a variety of approaches for presenting and explaining the impact of halogen atom size on trends in bond strengths and/or acidity of hydrogen halides. In particular, several textbooks and Internet websites explain these trends by invoking decreasing orbital overlap between the…

  10. Removal of hexenuronic acid by xylanase to reduce adsorbable organic halides formation in chlorine dioxide bleaching of bagasse pulp.

    PubMed

    Nie, Shuangxi; Wang, Shuangfei; Qin, Chengrong; Yao, Shuangquan; Ebonka, Johnbull Friday; Song, Xueping; Li, Kecheng

    2015-11-01

    Xylanase-aided chlorine dioxide bleaching of bagasse pulp was investigated. The pulp was pretreated with xylanase and followed a chlorine dioxide bleaching stage. The ATR-FTIR and XPS were employed to determine the surface chemistry of the control pulp, xylanase treated and chlorine dioxide treated pulps. The hexenuronic acid (HexA) could obviously be reduced after xylanase pretreatment, and the adsorbable organic halides (AOX) were reduced after chlorine dioxide bleaching. Compared to the control pulp, AOX could be reduced by 21.4-26.6% with xylanase treatment. Chlorine dioxide demand could be reduced by 12.5-22% to achieve the same brightness. The ATR-FTIR and XPS results showed that lignin and hemicellulose (mainly HexA) were the main source for AOX formation. Xylanase pretreatment could remove HexA and expose more lignin, which decreased the chlorine dioxide demand and thus reduced formation of AOX.

  11. Mechanism for rapid growth of organic-inorganic halide perovskite crystals

    NASA Astrophysics Data System (ADS)

    Nayak, Pabitra K.; Moore, David T.; Wenger, Bernard; Nayak, Simantini; Haghighirad, Amir A.; Fineberg, Adam; Noel, Nakita K.; Reid, Obadiah G.; Rumbles, Garry; Kukura, Philipp; Vincent, Kylie A.; Snaith, Henry J.

    2016-11-01

    Optoelectronic devices based on hybrid halide perovskites have shown remarkable progress to high performance. However, despite their apparent success, there remain many open questions about their intrinsic properties. Single crystals are often seen as the ideal platform for understanding the limits of crystalline materials, and recent reports of rapid, high-temperature crystallization of single crystals should enable a variety of studies. Here we explore the mechanism of this crystallization and find that it is due to reversible changes in the solution where breaking up of colloids, and a change in the solvent strength, leads to supersaturation and subsequent crystallization. We use this knowledge to demonstrate a broader range of processing parameters and show that these can lead to improved crystal quality. Our findings are therefore of central importance to enable the continued advancement of perovskite optoelectronics and to the improved reproducibility through a better understanding of factors influencing and controlling crystallization.

  12. The interaction between hybrid organic-inorganic halide perovskite and selective contacts in perovskite solar cells: an infrared spectroscopy study.

    PubMed

    Idígoras, J; Todinova, A; Sánchez-Valencia, J R; Barranco, A; Borrás, A; Anta, J A

    2016-05-11

    The interaction of hybrid organic-inorganic halide perovskite and selective contacts is crucial to get efficient, stable and hysteresis-free perovskite-based solar cells. In this report, we analyze the vibrational properties of methylammonium lead halide perovskites deposited on different substrates by infrared absorption (IR) measurements (4000-500 cm(-1)). The materials employed as substrates are not only characterized by different chemical natures (TiO2, ZnO and Al2O3), but also by different morphologies. For all of them, we have investigated the influence of these substrate properties on perovskite formation and its degradation by humidity. The effect of selective-hole contact (Spiro-OmeTad and P3HT) layers on the degradation rate by moisture has also been studied. Our IR results reveal the existence of a strong interaction between perovskite and all ZnO materials considered, evidenced by a shift of the peaks related to the N-H vibrational modes. The interaction even induces a morphological change in ZnO nanoparticles after perovskite deposition, pointing to an acid-base reaction that takes place through the NH3(+) groups of the methylammonium cation. Our IR and X-ray diffraction results also indicate that this specific interaction favors perovskite decomposition and PbI2 formation for ZnO/perovskite films subjected to humid conditions. Although no interaction is observed for TiO2, Al2O3, and the hole selective contact, the morphology and chemical nature of both contacts appear to play an important role in the rate of degradation upon exposure to moisture.

  13. Hot-carrier cooling and photoinduced refractive index changes in organic-inorganic lead halide perovskites

    NASA Astrophysics Data System (ADS)

    Price, Michael B.; Butkus, Justinas; Jellicoe, Tom C.; Sadhanala, Aditya; Briane, Anouk; Halpert, Jonathan E.; Broch, Katharina; Hodgkiss, Justin M.; Friend, Richard H.; Deschler, Felix

    2015-09-01

    Metal-halide perovskites are at the frontier of optoelectronic research due to solution processability and excellent semiconductor properties. Here we use transient absorption spectroscopy to study hot-carrier distributions in CH3NH3PbI3 and quantify key semiconductor parameters. Above bandgap, non-resonant excitation creates quasi-thermalized carrier distributions within 100 fs. During carrier cooling, a sub-bandgap transient absorption signal arises at ~1.6 eV, which is explained by the interplay of bandgap renormalization and hot-carrier distributions. At higher excitation densities, a `phonon bottleneck' substantially slows carrier cooling. This effect indicates a low contribution from inelastic carrier-impurity or phonon-impurity scattering in these polycrystalline materials, which supports high charge-carrier mobilities. Photoinduced reflectivity changes distort the shape of transient absorption spectra and must be included to extract physical constants. Using a simple band-filling model that accounts for these changes, we determine a small effective mass of mr=0.14 mo, which agrees with band structure calculations and high photovoltaic performance.

  14. Hot-carrier cooling and photoinduced refractive index changes in organic-inorganic lead halide perovskites.

    PubMed

    Price, Michael B; Butkus, Justinas; Jellicoe, Tom C; Sadhanala, Aditya; Briane, Anouk; Halpert, Jonathan E; Broch, Katharina; Hodgkiss, Justin M; Friend, Richard H; Deschler, Felix

    2015-09-25

    Metal-halide perovskites are at the frontier of optoelectronic research due to solution processability and excellent semiconductor properties. Here we use transient absorption spectroscopy to study hot-carrier distributions in CH3NH3PbI3 and quantify key semiconductor parameters. Above bandgap, non-resonant excitation creates quasi-thermalized carrier distributions within 100 fs. During carrier cooling, a sub-bandgap transient absorption signal arises at ∼ 1.6 eV, which is explained by the interplay of bandgap renormalization and hot-carrier distributions. At higher excitation densities, a 'phonon bottleneck' substantially slows carrier cooling. This effect indicates a low contribution from inelastic carrier-impurity or phonon-impurity scattering in these polycrystalline materials, which supports high charge-carrier mobilities. Photoinduced reflectivity changes distort the shape of transient absorption spectra and must be included to extract physical constants. Using a simple band-filling model that accounts for these changes, we determine a small effective mass of mr=0.14 mo, which agrees with band structure calculations and high photovoltaic performance.

  15. Anion-π interaction in metal-organic networks formed by metal halides and tetracyanopyrazine

    NASA Astrophysics Data System (ADS)

    Rosokha, Sergiy V.; Kumar, Amar

    2017-06-01

    Co-crystallization of tetracyanopyrazine, TCP, with the tetraalkylammonium salts of linear [CuBr2]-, planar [PtCl4]2- or [Pt2Br6]2-, or octahedral [PtBr6]2- complexes resulted in formation of the alternating [MlXn]m-/TCP stacks separated by the Alk4N+ cations. These hybrid stacks showed multiple short contacts between halide ligands of the [MlXn]m- complexes and carbon atoms of the TCP acceptor indicating strong anion-π bonding between these species. It confirmed that the anion-π interaction is sufficiently strong to bring together such disparate components as ionic metal complexes and neutral aromatic molecules regardless of the geometry of the coordination compound. Structural features of the solid-state stacks and [MlXn]m-·TCP dyads resulted from the quantum-mechanical computations suggests that the molecular-orbital (weakly-covalent) component play an important role in association of the [MlXn]m- complexes with the TCP acceptor.

  16. Estimates of absorbed dose in different organs in children treated with radium for skin hemangiomas

    SciTech Connect

    Lundell, M.

    1994-12-01

    Between 1930 and 1959, more than 10,000 infants were treated at Radiumhemmet, Stockholm, with radium ({sup 226}Ra) needles and/or tubes for hemangioma of the skin. Absorbed dose to the brain, eye lenses, parotid glands, thyroid gland, breast enlarge, lungs, stomach, intestine, ovaries, testicles and bone marrow were calculated for each individual. The mean absorbed dose to the different organs ranged from 0.06 to 0.48 Gy. The highest absorbed dose was given to the breast (maximum 47.7 Gy). There was a wide dose range for each organ which was due mainly to differences in the distance between the applicator and the organ. The absorbed dose to all organs decreased on average by 32% during the study period. This was due to a 25% decrease in the treatment time and a change in the distribution of the treatment sites. 17 refs., 4 figs., 4 tabs.

  17. Origin of unusual bandgap shift and dual emission in organic-inorganic lead halide perovskites.

    PubMed

    Dar, M Ibrahim; Jacopin, Gwénolé; Meloni, Simone; Mattoni, Alessandro; Arora, Neha; Boziki, Ariadni; Zakeeruddin, Shaik Mohammed; Rothlisberger, Ursula; Grätzel, Michael

    2016-10-01

    Emission characteristics of metal halide perovskites play a key role in the current widespread investigations into their potential uses in optoelectronics and photonics. However, a fundamental understanding of the molecular origin of the unusual blueshift of the bandgap and dual emission in perovskites is still lacking. In this direction, we investigated the extraordinary photoluminescence behavior of three representatives of this important class of photonic materials, that is, CH3NH3PbI3, CH3NH3PbBr3, and CH(NH2)2PbBr3, which emerged from our thorough studies of the effects of temperature on their bandgap and emission decay dynamics using time-integrated and time-resolved photoluminescence spectroscopy. The low-temperature (<100 K) photoluminescence of CH3NH3PbI3 and CH3NH3PbBr3 reveals two distinct emission peaks, whereas that of CH(NH2)2PbBr3 shows a single emission peak. Furthermore, irrespective of perovskite composition, the bandgap exhibits an unusual blueshift by raising the temperature from 15 to 300 K. Density functional theory and classical molecular dynamics simulations allow for assigning the additional photoluminescence peak to the presence of molecularly disordered orthorhombic domains and also rationalize that the unusual blueshift of the bandgap with increasing temperature is due to the stabilization of the valence band maximum. Our findings provide new insights into the salient emission properties of perovskite materials, which define their performance in solar cells and light-emitting devices.

  18. Origin of unusual bandgap shift and dual emission in organic-inorganic lead halide perovskites

    PubMed Central

    Dar, M. Ibrahim; Jacopin, Gwénolé; Meloni, Simone; Mattoni, Alessandro; Arora, Neha; Boziki, Ariadni; Zakeeruddin, Shaik Mohammed; Rothlisberger, Ursula; Grätzel, Michael

    2016-01-01

    Emission characteristics of metal halide perovskites play a key role in the current widespread investigations into their potential uses in optoelectronics and photonics. However, a fundamental understanding of the molecular origin of the unusual blueshift of the bandgap and dual emission in perovskites is still lacking. In this direction, we investigated the extraordinary photoluminescence behavior of three representatives of this important class of photonic materials, that is, CH3NH3PbI3, CH3NH3PbBr3, and CH(NH2)2PbBr3, which emerged from our thorough studies of the effects of temperature on their bandgap and emission decay dynamics using time-integrated and time-resolved photoluminescence spectroscopy. The low-temperature (<100 K) photoluminescence of CH3NH3PbI3 and CH3NH3PbBr3 reveals two distinct emission peaks, whereas that of CH(NH2)2PbBr3 shows a single emission peak. Furthermore, irrespective of perovskite composition, the bandgap exhibits an unusual blueshift by raising the temperature from 15 to 300 K. Density functional theory and classical molecular dynamics simulations allow for assigning the additional photoluminescence peak to the presence of molecularly disordered orthorhombic domains and also rationalize that the unusual blueshift of the bandgap with increasing temperature is due to the stabilization of the valence band maximum. Our findings provide new insights into the salient emission properties of perovskite materials, which define their performance in solar cells and light-emitting devices. PMID:27819049

  19. Revealing the role of organic cations in hybrid halide perovskite CH3NH3PbI3

    PubMed Central

    Motta, Carlo; El-Mellouhi, Fedwa; Kais, Sabre; Tabet, Nouar; Alharbi, Fahhad; Sanvito, Stefano

    2015-01-01

    The hybrid halide perovskite CH3NH3PbI3 has enabled solar cells to reach an efficiency of about 20%, demonstrating a pace for improvements with no precedents in the solar energy arena. Despite such explosive progress, the microscopic origin behind the success of such material is still debated, with the role played by the organic cations in the light-harvesting process remaining unclear. Here van der Waals-corrected density functional theory calculations reveal that the orientation of the organic molecules plays a fundamental role in determining the material electronic properties. For instance, if CH3NH3 orients along a (011)-like direction, the PbI6 octahedral cage will distort and the bandgap will become indirect. Our results suggest that molecular rotations, with the consequent dynamical change of the band structure, might be at the origin of the slow carrier recombination and the superior conversion efficiency of CH3NH3PbI3. PMID:25912782

  20. Detection of Organic Compounds in Water by an Optical Absorbance Method

    PubMed Central

    Kim, Chihoon; Eom, Joo Beom; Jung, Soyoun; Ji, Taeksoo

    2016-01-01

    This paper proposes an optical method which allows determination of the organic compound concentration in water by measurement of the UV (ultraviolet) absorption at a wavelength of 250 nm~300 nm. The UV absorbance was analyzed by means of a multiple linear regression model for estimation of the total organic carbon contents in water, which showed a close correlation with the UV absorbance, demonstrating a high adjusted coefficient of determination, 0.997. The comparison of the TOC (total organic carbon) concentrations for real samples (tab water, sea, and river) calculated from the UV absorbance spectra, and those measured by a conventional TOC analyzer indicates that the higher the TOC value the better the agreement. This UV absorbance method can be easily configured for real-time monitoring water pollution, and built into a compact system applicable to industry areas. PMID:26742043

  1. Structure and Growth Control of Organic-Inorganic Halide Perovskites for Optoelectronics: From Polycrystalline Films to Single Crystals.

    PubMed

    Chen, Yani; He, Minhong; Peng, Jiajun; Sun, Yong; Liang, Ziqi

    2016-04-01

    Recently, organic-inorganic halide perovskites have sparked tremendous research interest because of their ground-breaking photovoltaic performance. The crystallization process and crystal shape of perovskites have striking impacts on their optoelectronic properties. Polycrystalline films and single crystals are two main forms of perovskites. Currently, perovskite thin films have been under intensive investigation while studies of perovskite single crystals are just in their infancy. This review article is concentrated upon the control of perovskite structures and growth, which are intimately correlated for improvements of not only solar cells but also light-emitting diodes, lasers, and photodetectors. We begin with the survey of the film formation process of perovskites including deposition methods and morphological optimization avenues. Strategies such as the use of additives, thermal annealing, solvent annealing, atmospheric control, and solvent engineering have been successfully employed to yield high-quality perovskite films. Next, we turn to summarize the shape evolution of perovskites single crystals from three-dimensional large sized single crystals, two-dimensional nanoplates, one-dimensional nanowires, to zero-dimensional quantum dots. Siginificant functions of perovskites single crystals are highlighted, which benefit fundamental studies of intrinsic photophysics. Then, the growth mechanisms of the previously mentioned perovskite crystals are unveiled. Lastly, perspectives for structure and growth control of perovskites are outlined towards high-performance (opto)electronic devices.

  2. Effect of cuprous halide interlayers on the device performance of ZnPc/C{sub 60} organic solar cells

    SciTech Connect

    Lee, Jinho; Park, Dasom; Heo, Ilsu; Yim, Sanggyu

    2014-10-15

    Highlights: • Effect of CuX interlayers on subsequently deposited films and devices was studied. • CuI is the most effective for the performance of ZnPc/C{sub 60}-based solar cells. • Results were related to the molecular geometry of ZnPc and HOMO level of interlayers. - Abstract: The effect of various cuprous halide (CuX) interlayers introduced between a poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) layer and zinc phthalocyanine (ZnPc) layer on the physical properties of the ZnPc thin films and device performances of ZnPc/C{sub 60}-based small-molecule organic solar cells was studied. Strong substrate–molecule interaction between the CuX and ZnPc partly converted surface-perpendicular stacking geometry of ZnPc molecules into surface-parallel one. This flat-lying geometry led to an enhancement in electronic absorption and charge transport within the ZnPc films. As a result, the overall power conversion efficiency of the cell with CuI interlayer increased by ∼37%. In the case of the cells with CuBr and CuCl interlayer, however, the enhancement in device performances was limited because of the reduced conversion of the molecular geometry and increased energy barrier for hole extraction due to the low highest occupied molecular orbital level of the interlayer.

  3. [Sources of error in the European Pharmacopoeia assay of halide salts of organic bases by titration with alkali].

    PubMed

    Kószeginé, S H; Ráfliné, R Z; Paál, T; Török, I

    2000-01-01

    A short overview has been given by the authors on the titrimetric assay methods of halide salts of organic bases in the pharmacopoeias of greatest importance. The alternative procedures introduced by the European Pharmacopoeia Commission some years ago to replace the non-aqueous titration with perchloric acid in the presence of mercuric acetate have also been presented and evaluated. The authors investigated the limits of applicability and the sources of systematic errors (bias) of the strongly preferred titration with sodium hydroxide in an alcoholic medium. To assess the bias due to the differences between the results calculated from the two inflexion points of the titration curves and the two real endpoints corresponding to the strong and weak acids, respectively, the mathematical analysis of the titration curve function was carried out. This bias, generally negligible when the pH change near the endpoint of the titration is more than 1 unit, is the function of the concentration, the apparent pK of the analyte and the ionic product of water (ethanol) in the alcohol-water mixtures. Using the validation data gained for the method with the titration of ephedrine hydrochloride the authors analysed the impact of carbon dioxide in the titration medium on the additive and proportional systematic errors of the method. The newly introduced standardisation procedure of the European Pharmacopoeia for the sodium hydroxide titrant to decrease the systematic errors caused by carbon dioxide has also been evaluated.

  4. Organic-inorganic halide perovskite solar cell with CH3NH3PbI2Br as hole conductor

    NASA Astrophysics Data System (ADS)

    Zhang, Shufang; Zhang, Chenming; Bi, Enbing; Miao, Xiaoliang; Zeng, Haibo; Han, Liyuan

    2017-01-01

    Perovskite solar cells (PSCs) have attracted enormous interest as the most remarkably growing photovoltaic devices. With the power conversion efficiencies of PSCs excessing 20%, great challenges have been focused on the issues of cost and long-term stability which are majorly related to the hole transport materials. In contrast, the PSCs without special hole conductors show great potential for commercial applications due to their cost-effective and fairly stable features. However, the inferior charge separation at the CH3NH3PbI3 (MAPbI3) and back electrode interface limits the cells for high efficiency. Our strategy is to arrange suitable energy band alignment at the interface to enhance the charge separation. We herein report a MAPbI3/MAPbI2Br cascade structured PSC with MAPbI2Br majorly acting as a hole conductor. The conversion efficiency of the PSCs is greatly improved and a high efficiency of 15.83% is achieved. This new design of using organic-inorganic halide perovskites as hole conductors provides an efficient approach for improving the performance of low-cost PSCs.

  5. Quantum confinement and dielectric profiles of colloidal nanoplatelets of halide inorganic and hybrid organic-inorganic perovskites

    NASA Astrophysics Data System (ADS)

    Sapori, Daniel; Kepenekian, Mikaël; Pedesseau, Laurent; Katan, Claudine; Even, Jacky

    2016-03-01

    Quantum confinement as well as high frequency ε∞ and static εs dielectric profiles are described for nanoplatelets of halide inorganic perovskites CsPbX3 (X = I, Br, Cl) and hybrid organic-inorganic perovskites (HOP) in two-dimensional (2D) and three-dimensional (3D) structures. 3D HOP are currently being sought for their impressive photovoltaic ability. Prior to this sudden popularity, 2D HOP materials were driving intense activity in the field of optoelectronics. Such developments have been enriched by the recent ability to synthesize colloidal nanostructures of controlled sizes of 2D and 3D HOP. This raises the need to achieve a thorough description of the electronic structure and dielectric properties of these systems. In this work, we go beyond the abrupt dielectric interface model and reach the atomic scale description. We examine the influence of the nature of the halogen and of the cation on the band structure and dielectric constants. Similarly, we survey the effect of dimensionality and shape of the perovskite. In agreement with recent experimental results, we show an increase of the band gap and a decrease of ε∞ when the size of a nanoplatelet reduces. By inspecting 2D HOP, we find that it cannot be described as a simple superposition of independent inorganic and organic layers. Finally, the dramatic impact of ionic contributions on the dielectric constant εs is analysed.Quantum confinement as well as high frequency ε∞ and static εs dielectric profiles are described for nanoplatelets of halide inorganic perovskites CsPbX3 (X = I, Br, Cl) and hybrid organic-inorganic perovskites (HOP) in two-dimensional (2D) and three-dimensional (3D) structures. 3D HOP are currently being sought for their impressive photovoltaic ability. Prior to this sudden popularity, 2D HOP materials were driving intense activity in the field of optoelectronics. Such developments have been enriched by the recent ability to synthesize colloidal nanostructures of controlled

  6. Intriguing Optoelectronic Properties of Metal Halide Perovskites.

    PubMed

    Manser, Joseph S; Christians, Jeffrey A; Kamat, Prashant V

    2016-11-09

    A new chapter in the long and distinguished history of perovskites is being written with the breakthrough success of metal halide perovskites (MHPs) as solution-processed photovoltaic (PV) absorbers. The current surge in MHP research has largely arisen out of their rapid progress in PV devices; however, these materials are potentially suitable for a diverse array of optoelectronic applications. Like oxide perovskites, MHPs have ABX3 stoichiometry, where A and B are cations and X is a halide anion. Here, the underlying physical and photophysical properties of inorganic (A = inorganic) and hybrid organic-inorganic (A = organic) MHPs are reviewed with an eye toward their potential application in emerging optoelectronic technologies. Significant attention is given to the prototypical compound methylammonium lead iodide (CH3NH3PbI3) due to the preponderance of experimental and theoretical studies surrounding this material. We also discuss other salient MHP systems, including 2-dimensional compounds, where relevant. More specifically, this review is a critical account of the interrelation between MHP electronic structure, absorption, emission, carrier dynamics and transport, and other relevant photophysical processes that have propelled these materials to the forefront of modern optoelectronics research.

  7. Intriguing optoelectronic properties of metal halide perovskites

    DOE PAGES

    Manser, Joseph S.; Christians, Jeffrey A.; Kamat, Prashant V.

    2016-06-21

    Here, a new chapter in the long and distinguished history of perovskites is being written with the breakthrough success of metal halide perovskites (MHPs) as solution-processed photovoltaic (PV) absorbers. The current surge in MHP research has largely arisen out of their rapid progress in PV devices; however, these materials are potentially suitable for a diverse array of optoelectronic applications. Like oxide perovskites, MHPs have ABX3 stoichiometry, where A and B are cations and X is a halide anion. Here, the underlying physical and photophysical properties of inorganic (A = inorganic) and hybrid organic-inorganic (A = organic) MHPs are reviewed withmore » an eye toward their potential application in emerging optoelectronic technologies. Significant attention is given to the prototypical compound methylammonium lead iodide (CH3NH3PbI3) due to the preponderance of experimental and theoretical studies surrounding this material. We also discuss other salient MHP systems, including 2- dimensional compounds, where relevant. More specifically, this review is a critical account of the interrelation between MHP electronic structure, absorption, emission, carrier dynamics and transport, and other relevant photophysical processes that have propelled these materials to the forefront of modern optoelectronics research.« less

  8. Source apportionment of organic and light-absorbing carbon using receptor modeling techniques

    NASA Astrophysics Data System (ADS)

    Malm, William C.; Gebhart, Kristi A.

    An intensive field-monitoring program designed to attribute visibility reducing aerosols to their sources or source regions was carried out in the western half of Washington state. Because of the perceived concern over the contribution of carbonaceous material from prescribed and wildfires to visibility impairment, this paper focuses on attribution of organic and light-absorbing carbon to known sources and source regions. A variety of receptor-oriented models was successfully exercised and reconciled with each other. It is shown that much of the organic and light-absorbing carbon is associated with urban emissions of the Seattle-Tacoma area. Fire tracers were not strongly linked to either organic or light-absorbing carbon; however, the fire-related tracers were shown to be primarily associated with transport from south of the Washington-Oregon state border.

  9. Applicability of Fluorescence and Absorbance Spectroscopy to Estimate Organic Pollution in Rivers.

    PubMed

    Knapik, Heloise Garcia; Fernandes, Cristovão Vicente Scapulatempo; de Azevedo, Júlio Cesar Rodrigues; do Amaral Porto, Monica Ferreira

    2014-12-01

    This article explores the applicability of fluorescence and absorbance spectroscopy for estimating organic pollution in polluted rivers. The relationship between absorbance, fluorescence intensity, dissolved organic carbon, biochemical oxygen demand (BOD), chemical oxygen demand (COD), and other water quality parameters were used to characterize and identify the origin and the spatial variability of the organic pollution in a highly polluted watershed. Analyses were performed for the Iguassu River, located in southern Brazil, with area about 2,700 km(2) and ∼3 million inhabitants. Samples were collect at six monitoring sites covering 107 km of the main river. BOD, COD, nitrogen, and phosphorus concentration indicates a high input of sewage to the river. Specific absorbance at 254 and 285 nm (SUVA254 and A285/COD) did not show significant variation between sites monitored, indicating the presence of both dissolved compounds found in domestic effluents and humic and fulvic compounds derived from allochthonous organic matter. Correlations between BOD and tryptophan-like fluorescence peak (peak T2, r=0.7560, and peak T1, r=0.6949) and tyrosine-like fluorescence peak (peak B, r=0.7321) indicated the presence of labile organic matter and thus confirmed the presence of sewage in the river. Results showed that fluorescence and absorbance spectroscopy provide useful information on pollution in rivers from critical watersheds and together are a robust method that is simpler and more rapid than traditional methods employed by regulatory agencies.

  10. Applicability of Fluorescence and Absorbance Spectroscopy to Estimate Organic Pollution in Rivers

    PubMed Central

    Knapik, Heloise Garcia; Fernandes, Cristovão Vicente Scapulatempo; de Azevedo, Júlio Cesar Rodrigues; do Amaral Porto, Monica Ferreira

    2014-01-01

    Abstract This article explores the applicability of fluorescence and absorbance spectroscopy for estimating organic pollution in polluted rivers. The relationship between absorbance, fluorescence intensity, dissolved organic carbon, biochemical oxygen demand (BOD), chemical oxygen demand (COD), and other water quality parameters were used to characterize and identify the origin and the spatial variability of the organic pollution in a highly polluted watershed. Analyses were performed for the Iguassu River, located in southern Brazil, with area about 2,700 km2 and ∼3 million inhabitants. Samples were collect at six monitoring sites covering 107 km of the main river. BOD, COD, nitrogen, and phosphorus concentration indicates a high input of sewage to the river. Specific absorbance at 254 and 285 nm (SUVA254 and A285/COD) did not show significant variation between sites monitored, indicating the presence of both dissolved compounds found in domestic effluents and humic and fulvic compounds derived from allochthonous organic matter. Correlations between BOD and tryptophan-like fluorescence peak (peak T2, r=0.7560, and peak T1, r=0.6949) and tyrosine-like fluorescence peak (peak B, r=0.7321) indicated the presence of labile organic matter and thus confirmed the presence of sewage in the river. Results showed that fluorescence and absorbance spectroscopy provide useful information on pollution in rivers from critical watersheds and together are a robust method that is simpler and more rapid than traditional methods employed by regulatory agencies. PMID:25469076

  11. Halide Welding for Silver Nanowire Network Electrode.

    PubMed

    Kang, Hyungseok; Kim, Yeontae; Cheon, Siuk; Yi, Gi-Ra; Cho, Jeong Ho

    2017-09-13

    We developed a method of chemically welding silver nanowires (AgNWs) using an aqueous solution containing sodium halide salts (NaF, NaCl, NaBr, or NaI). The halide welding was performed simply by immersing the as-coated AgNW film into the sodium halide solution, and the resulting material was compared with those obtained using two typical thermal and plasmonic welding techniques. The halide welding dramatically reduced the sheet resistance of the AgNW electrode because of the strong fusion among nanowires at each junction while preserving the optical transmittance. The dramatic decrease in the sheet resistance was attributed to the autocatalytic addition of dissolved silver ions to the nanowire junction. Unlike thermal and plasmonic welding methods, the halide welding could be applied to AgNW films with a variety of deposition densities because the halide ions uniformly contacted the surface or junction regions. The optimized AgNW electrodes exhibited a sheet resistance of 9.3 Ω/sq at an optical transmittance of 92%. The halide welding significantly enhanced the mechanical flexibility of the electrode compared with the as-coated AgNWs. The halide-welded AgNWs were successfully used as source-drain electrodes in a transparent and flexible organic field-effect transistor (OFET). This simple, low-cost, and low-power consumption halide welding technique provides an innovative approach to preparing transparent electrodes for use in next-generation flexible optoelectronic devices.

  12. Spatially separated charge densities of electrons and holes in organic-inorganic halide perovskites

    SciTech Connect

    Li, Dan; Liang, Chunjun E-mail: zhqhe@bjtu.edu.cn; Zhang, Huimin; You, Fangtian; He, Zhiqun E-mail: zhqhe@bjtu.edu.cn; Zhang, Chunxiu

    2015-02-21

    Solution-processable methylammonium lead trihalide perovskites exhibit remarkable high-absorption and low-loss properties for solar energy conversion. Calculation from density functional theory indicates the presence of non-equivalent halogen atoms in the unit cell because of the specific orientation of the organic cation. Considering the 〈100〉 orientation as an example, I{sub 1}, one of the halogen atoms, differs from the other iodine atoms (I{sub 2} and I{sub 3}) in terms of its interaction with the organic cation. The valance-band-maximum (VBM) and conduction-band-minimum (CBM) states are derived mainly from 5p orbital of I{sub 1} atom and 6p orbital of Pb atom, respectively. The spatially separated charge densities of the electrons and holes justify the low recombination rate of the pure iodide perovskite. Chlorine substitution further strengthens the unique position of the I{sub 1} atom, leading to more localized charge density around the I{sub 1} atom and less charge density around the other atoms at the VBM state. The less overlap of charge densities between the VBM and CBM states explains the relatively lower carrier recombination rate of the iodine-chlorine mixed perovskite. Chlorine substitution significantly reduces the effective mass at a direction perpendicular to the Pb-Cl bond and organic axis, enhancing the carrier transport property of the mixed perovskite in this direction.

  13. Low-Dimensional Organic-Inorganic Halide Perovskite: Structure, Properties, and Applications.

    PubMed

    Misra, Ravi K; Cohen, Bat-El; Iagher, Lior; Etgar, Lioz

    2017-07-13

    Three-dimensional (3 D) perovskite has attracted a lot of attention owing to its success in photovoltaic (PV) solar cells. However, one of its major crucial issues lies in its stability, which has limited its commercialization. An important property of organic-inorganic perovskite is the possibility of forming a layered material by using long organic cations that do not fit into the octahedral cage. These long organic cations act as a "barrier" that "caps" 3 D perovskite to form the layered material. Controlling the number of perovskite layers could provide a confined structure with chemical and physical properties that are different from those of 3 D perovskite. This opens up a whole new batch of interesting materials with huge potential for optoelectronic applications. This Minireview presents the synthesis, properties, and structural orientation of low-dimensional perovskite. It also discusses the progress of low-dimensional perovskite in PV solar cells, which, to date, have performance comparable to that of 3 D perovskite but with enhanced stability. Finally, the use of low-dimensional perovskite in light-emitting diodes (LEDs) and photodetectors is discussed. The low-dimensional perovskites are promising candidates for LED devices, mainly because of their high radiative recombination as a result of the confined low-dimensional quantum well. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Effect of halide ions and carbonates on organic contaminant degradation by hydroxyl radical-based advanced oxidation processes in saline waters.

    PubMed

    Grebel, Janel E; Pignatello, Joseph J; Mitch, William A

    2010-09-01

    Advanced oxidation processes (AOPs) generating nonselective hydroxyl radicals (HO*) provide a broad-spectrum contaminant destruction option for the decontamination of waters. Halide ions are scavengers of HO* during AOP treatment, such that treatment of saline waters would be anticipated to be ineffective. However, HO* scavenging by halides converts HO* to radical reactive halogen species (RHS) that participate in contaminant destruction but react more selectively with electron-rich organic compounds. The effects of Cl-, Br-, and carbonates (H2CO3+HCO3-+CO3(2-)) on the UV/H2O2 treatment of model compounds in saline waters were evaluated. For single target organic contaminants, the impact of these constituents on contaminant destruction rate suppression at circumneutral pH followed the order Br->carbonates>Cl-. Traces of Br- in the NaCl stock had a greater effect than Cl- itself. Kinetic modeling of phenol destruction demonstrated that RHS contributed significantly to phenol destruction, mitigating the impact of HO* scavenging. The extent of treatment efficiency reduction in the presence of halides varied dramatically among different target organic compounds. Destruction of contaminants containing electron-poor reaction centers in seawater was nearly halted, while 17beta-estradiol removal declined by only 3%. Treatment of mixtures of contaminants with each other and with natural organic matter (NOM) was evaluated. Although NOM served as an oxidant scavenger, conversion of nonselective HO* to selective radicals due to the presence of anions enhanced the efficiency of electron-rich contaminant removal in saline waters by focusing the oxidizing power of the system away from the NOM toward the target contaminant. Despite the importance of contaminant oxidation by halogen radicals, the formation of halogenated byproducts was minimal.

  15. Removal of fluorescence and ultraviolet absorbance of dissolved organic matter in reclaimed water by solar light.

    PubMed

    Wu, Qianyuan; Li, Chao; Wang, Wenlong; He, Tao; Hu, Hongying; Du, Ye; Wang, Ting

    2016-05-01

    Storing reclaimed water in lakes is a widely used method of accommodating changes in the consumption of reclaimed water during wastewater reclamation and reuse. Solar light serves as an important function in degrading pollutants during storage, and its effect on dissolved organic matter (DOM) was investigated in this study. Solar light significantly decreased the UV254 absorbance and fluorescence (FLU) intensity of reclaimed water. However, its effect on the dissolved organic carbon (DOC) value of reclaimed water was very limited. The decrease in the UV254 absorbance intensity and FLU excitation-emission matrix regional integration volume (FLU volume) of reclaimed water during solar light irradiation was fit with pseudo-first order reaction kinetics. The decrease of UV254 absorbance was much slower than that of the FLU volume. Ultraviolet light in solar light had a key role in decreasing the UV254 absorbance and FLU intensity during solar light irradiation. The light fluence-based removal kinetic constants of the UV254 and FLU intensity were independent of light intensity. The peaks of the UV254 absorbance and FLU intensity with an apparent molecular weight (AMW) of 100Da to 2000Da decreased after solar irradiation, whereas the DOC value of the major peaks did not significantly change. Copyright © 2015. Published by Elsevier B.V.

  16. Palladium-catalyzed cross-coupling reactions of arylsiloxanes with aryl halides: application to solid-supported organic synthesis.

    PubMed

    Traficante, Carla I; Delpiccolo, Carina M L; Mata, Ernesto G

    2014-05-12

    The solid-phase version of the Pd-catalyzed Hiyama reaction between a variety of aryltriethoxysilanes and immobilized aryl halides was developed. Smooth cross-coupling was achieved to afford the corresponding biaryl products in moderate to excellent yields. The described protocol would be particularly useful for the construction of 4'-substituted 1,1'-biphenyl derivatives.

  17. Organic Cations Might Not Be Essential to the Remarkable Properties of Band Edge Carriers in Lead Halide Perovskites.

    PubMed

    Zhu, Haiming; Trinh, M Tuan; Wang, Jue; Fu, Yongping; Joshi, Prakriti P; Miyata, Kiyoshi; Jin, Song; Zhu, X-Y

    2017-01-01

    A charge carrier in a lead halide perovskite lattice is protected as a large polaron responsible for the remarkable photophysical properties, irrespective of the cation type. All-inorganic-based APbX3 perovskites may mitigate the stability problem for their applications in solar cells and other optoelectronics. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Electrochemical Transformation of Trace Organic Contaminants in the Presence of Halide and Carbonate Ions.

    PubMed

    Barazesh, James M; Prasse, Carsten; Sedlak, David L

    2016-09-20

    Electrochemical treatment on anodes shows promise for the oxidation of organic contaminants in industrial wastewater and reverse osmosis concentrate from municipal wastewater recycling due to the high conductivity of the matrix and the concomitant low energy demand. The effect of background electrolyte composition (Cl(-), HCO3(-), and NH4(+)) on the formation and fate of electrochemically produced heterogeneous (HO(•)ads and Cl(•)ads) and homogeneous (HOCl and HOBr) oxidants was evaluated on Ti-IrO2 and boron-doped diamond (BDD) electrodes using a suite of trace organic contaminants that exhibited varying reactivity with HO(•), CO3(•-), HOCl, and HOBr. The contributions of adsorbed and bulk oxidants to contaminant degradation were investigated. Results show that transformation rates for most contaminants increased in the presence of chloride and trace amounts of bromide; however, elevated concentrations of HCO3(-) often altered transformation rates due to formation of selective oxidants, with decreases in reactivity observed for electron-poor contaminants and increases in reactivity observed for compounds with amine and phenolic moieties. Using this information, rates of reactions on anode surfaces and measured production and loss rates for reactive homogeneous species were used to predict contaminant removal in municipal wastewater effluent. Despite some uncertainty in the reaction mechanisms, the model accurately predicted rates of removal of electron-rich contaminants but underestimated the transformation rates of compounds that exhibited low reactivity with HOCl and HOBr, possibly due to the formation of halogen radicals. The approach employed in this study provides a means of identifying key reactions for different classes of contaminants and for predicting the conditions under which anodic treatment of wastewater will be practical.

  19. Electrochemical Transformation of Trace Organic Contaminants in the Presence of Halide and Carbonate Ions

    PubMed Central

    2016-01-01

    Electrochemical treatment on anodes shows promise for the oxidation of organic contaminants in industrial wastewater and reverse osmosis concentrate from municipal wastewater recycling due to the high conductivity of the matrix and the concomitant low energy demand. The effect of background electrolyte composition (Cl–, HCO3–, and NH4+) on the formation and fate of electrochemically produced heterogeneous (HO•ads and Cl•ads) and homogeneous (HOCl and HOBr) oxidants was evaluated on Ti–IrO2 and boron-doped diamond (BDD) electrodes using a suite of trace organic contaminants that exhibited varying reactivity with HO•, CO3•–, HOCl, and HOBr. The contributions of adsorbed and bulk oxidants to contaminant degradation were investigated. Results show that transformation rates for most contaminants increased in the presence of chloride and trace amounts of bromide; however, elevated concentrations of HCO3– often altered transformation rates due to formation of selective oxidants, with decreases in reactivity observed for electron-poor contaminants and increases in reactivity observed for compounds with amine and phenolic moieties. Using this information, rates of reactions on anode surfaces and measured production and loss rates for reactive homogeneous species were used to predict contaminant removal in municipal wastewater effluent. Despite some uncertainty in the reaction mechanisms, the model accurately predicted rates of removal of electron-rich contaminants but underestimated the transformation rates of compounds that exhibited low reactivity with HOCl and HOBr, possibly due to the formation of halogen radicals. The approach employed in this study provides a means of identifying key reactions for different classes of contaminants and for predicting the conditions under which anodic treatment of wastewater will be practical. PMID:27599127

  20. Structural tunability and switchable exciton emission in inorganic-organic hybrids with mixed halides

    SciTech Connect

    Ahmad, Shahab; Vijaya Prakash, G.; Baumberg, Jeremy J.

    2013-12-21

    Room-temperature tunable excitonic photoluminescence is demonstrated in alloy-tuned layered Inorganic-Organic (IO) hybrids, (C{sub 12}H{sub 25}NH{sub 3}){sub 2}PbI{sub 4(1−y)}Br{sub 4y} (y = 0 to 1). These perovskite IO hybrids adopt structures with alternating stacks of low-dimensional inorganic and organic layers, considered to be naturally self-assembled multiple quantum wells. These systems resemble stacked monolayer 2D semiconductors since no interlayer coupling exists. Thin films of IO hybrids exhibit sharp and strong photoluminescence (PL) at room-temperature due to stable excitons formed within the low-dimensional inorganic layers. Systematic variation in the observed exciton PL from 510 nm to 350 nm as the alloy composition is changed, is attributed to the structural readjustment of crystal packing upon increase of the Br content in the Pb-I inorganic network. The energy separation between exciton absorption and PL is attributed to the modified exciton density of states and diffusion of excitons from relatively higher energy states corresponding to bromine rich sites towards the lower energy iodine sites. Apart from compositional fluctuations, these excitons show remarkable reversible flips at temperature-induced phase transitions. All the results are successfully correlated with thermal and structural studies. Such structural engineering flexibility in these hybrids allows selective tuning of desirable exciton properties within suitable operating temperature ranges. Such wide-range PL tunability and reversible exciton switching in these novel IO hybrids paves the way to potential applications in new generation of optoelectronic devices.

  1. Structural tunability and switchable exciton emission in inorganic-organic hybrids with mixed halides

    NASA Astrophysics Data System (ADS)

    Ahmad, Shahab; Baumberg, Jeremy J.; Vijaya Prakash, G.

    2013-12-01

    Room-temperature tunable excitonic photoluminescence is demonstrated in alloy-tuned layered Inorganic-Organic (IO) hybrids, (C12H25NH3)2PbI4(1-y)Br4y (y = 0 to 1). These perovskite IO hybrids adopt structures with alternating stacks of low-dimensional inorganic and organic layers, considered to be naturally self-assembled multiple quantum wells. These systems resemble stacked monolayer 2D semiconductors since no interlayer coupling exists. Thin films of IO hybrids exhibit sharp and strong photoluminescence (PL) at room-temperature due to stable excitons formed within the low-dimensional inorganic layers. Systematic variation in the observed exciton PL from 510 nm to 350 nm as the alloy composition is changed, is attributed to the structural readjustment of crystal packing upon increase of the Br content in the Pb-I inorganic network. The energy separation between exciton absorption and PL is attributed to the modified exciton density of states and diffusion of excitons from relatively higher energy states corresponding to bromine rich sites towards the lower energy iodine sites. Apart from compositional fluctuations, these excitons show remarkable reversible flips at temperature-induced phase transitions. All the results are successfully correlated with thermal and structural studies. Such structural engineering flexibility in these hybrids allows selective tuning of desirable exciton properties within suitable operating temperature ranges. Such wide-range PL tunability and reversible exciton switching in these novel IO hybrids paves the way to potential applications in new generation of optoelectronic devices.

  2. Zero-dipole molecular organic cations in mixed organic-inorganic halide perovskites: possible chemical solution for the reported anomalous hysteresis in the current-voltage curve measurements.

    PubMed

    Giorgi, Giacomo; Yamashita, Koichi

    2015-11-06

    Starting from a brief description of the main architectures characterizing the novel solar technology of perovskite-based solar cells, we focus our attention on the anomalous hysteresis experimentally found to affect the measurement of the current-voltage curve of such devices. This detrimental effect, associated with slow dynamic reorganization processes, depends on several parameters; among them, the scan rate of the measurements, the architecture of the cell, and the perovskite deposition rate are crucial. Even if a conclusive explanation of the origin of the hysteresis has not been provided so far, several experimental findings ascribe its origin to ionic migration at an applied bias and dielectric polarization that occurs in the perovskite layer. Consistently, a dipole-moment-reduced cation such as formamidinium ion is experimentally reported to quantitatively reduce the hysteresis from perovskite-based devices. By means of a density-functional theory-based set of calculations, we have predicted and characterized guanidinium ion (GA = (+)[C(NH2)3], a zero-dipole moment cation by symmetry)-based organic-inorganic halide perovskite's structural and electronic properties, speculating that such a cation and the alloys it may form with other organic cations can represent a possible chemical solution for the puzzling issue of the hysteresis.

  3. Modeling of catalytically active metal complex species and intermediates in reactions of organic halides electroreduction.

    PubMed

    Lytvynenko, Anton S; Kolotilov, Sergey V; Kiskin, Mikhail A; Eremenko, Igor L; Novotortsev, Vladimir M

    2015-02-28

    The results of quantum chemical modeling of organic and metal-containing intermediates that occur in electrocatalytic dehalogenation reactions of organic chlorides are presented. Modeling of processes that take place in successive steps of the electrochemical reduction of representative C1 and C2 chlorides - CHCl3 and Freon R113 (1,1,2-trifluoro-1,2,2-trichloroethane) - was carried out by density functional theory (DFT) and second-order Møller-Plesset perturbation theory (MP2). It was found that taking solvation into account using an implicit solvent model (conductor-like screening model, COSMO) or considering explicit solvent molecules gave similar results. In addition to modeling of simple non-catalytic dehalogenation, processes with a number of complexes and their reduced forms, some of which were catalytically active, were investigated by DFT. Complexes M(L1)2 (M = Fe, Co, Ni, Cu, Zn, L1H = Schiff base from 2-pyridinecarbaldehyde and the hydrazide of 4-pyridinecarboxylic acid), Ni(L2) (H2L2 is the Schiff base from salicylaldehyde and 1,2-ethylenediamine, known as salen) and Co(L3)2Cl2, representing a fragment of a redox-active coordination polymer [Co(L3)Cl2]n (L3 is the dithioamide of 1,3-benzenedicarboxylic acid), were considered. Gradual changes in electronic structure in a series of compounds M(L1)2 were observed, and correlations between [M(L1)2](0) spin-up and spin-down LUMO energies and the relative energies of the corresponding high-spin and low-spin reduced forms, as well as the shape of the orbitals, were proposed. These results can be helpful for determination of the nature of redox-processes in similar systems by DFT. No specific covalent interactions between [M(L1)2](-) and the R113 molecule (M = Fe, Co, Ni, Zn) were found, which indicates that M(L1)2 electrocatalysts act rather like electron transfer mediators via outer-shell electron transfer. A relaxed surface scan of the adducts {M(L1)2·R113}(-) (M = Ni or Co) versus the distance between the

  4. Lipophilic polyelectrolyte gels as super-absorbent polymers for nonpolar organic solvents.

    PubMed

    Ono, Toshikazu; Sugimoto, Takahiro; Shinkai, Seiji; Sada, Kazuki

    2007-06-01

    Polyelectrolyte gels that are known as super-absorbent polymers swell and absorb water up to several hundred times their dried weights and have become ubiquitous and indispensable materials in many applications. Their superior swelling abilities originate from the electrostatic repulsion between the charges on the polymer chains and the osmotic imbalance between the interior and exterior of the gels. However, no super-absorbent polymers for volatile organic compounds (VOCs), and especially for nonpolar organic solvents (epsilon<10) have been reported, because common polyelectrolyte gels collapse in such solvents owing to the formation of a higher number of aggregates of ions and ion pairs. Here, we report that a novel class of polyelectrolyte gels bearing tetra-alkylammonium tetraphenylborate as a lipophilic and bulky ionic group swell in some nonpolar organic solvents up to 500 times their dry size. Dissociation of the ionic groups even in low-dielectric media (3absorbents for waste oil.

  5. Lipophilic polyelectrolyte gels as super-absorbent polymers for nonpolar organic solvents

    NASA Astrophysics Data System (ADS)

    Ono, Toshikazu; Sugimoto, Takahiro; Shinkai, Seiji; Sada, Kazuki

    2007-06-01

    Polyelectrolyte gels that are known as super-absorbent polymers swell and absorb water up to several hundred times their dried weights and have become ubiquitous and indispensable materials in many applications. Their superior swelling abilities originate from the electrostatic repulsion between the charges on the polymer chains and the osmotic imbalance between the interior and exterior of the gels. However, no super-absorbent polymers for volatile organic compounds (VOCs), and especially for nonpolar organic solvents (ɛ<10) have been reported, because common polyelectrolyte gels collapse in such solvents owing to the formation of a higher number of aggregates of ions and ion pairs. Here, we report that a novel class of polyelectrolyte gels bearing tetra-alkylammonium tetraphenylborate as a lipophilic and bulky ionic group swell in some nonpolar organic solvents up to 500 times their dry size. Dissociation of the ionic groups even in low-dielectric media (3<ɛ<10) enhances the swelling ability by expansion of the polymer networks. This expands the potential of polyelectrolytes that have been used only in aqueous solutions or highly polar solvents, and provides soft materials that swell in a variety of media. These materials could find applications as protective barriers for VOCs spilled in the environment and as absorbents for waste oil.

  6. Mesoporous silicate MCM-41 containing organic ultraviolet ray absorbents: Preparation, photostability and in vitro release

    NASA Astrophysics Data System (ADS)

    Ambrogi, V.; Perioli, L.; Marmottini, F.; Latterini, L.; Rossi, C.; Costantino, U.

    2007-05-01

    The mesoporous silicate MCM-41 was studied for its properties to adsorb and to influence the photostability and the release of three organic ultraviolet (UV) ray absorbents, namely benzophenone-3 (B3), benzophenone-2 (B2) and p-aminobenzoic acid (PABA). MCM-41 microcrystals have been loaded with the UV absorbents obtaining a good loading w/w percentage. The loaded samples have been characterized by chemical and thermal analyses, X-ray diffraction, N2 adsorption isotherms. Photochemical studies demonstrated that the UV-shielding properties of B2 were maintained whereas in other cases a small reduction of sunscreen protection range was noticed. B3 and B2 release from loaded MCM-41 formulations were studied and compared to those obtained from formulations containing free UV ray absorbent; no remarkable differences were observed in the release profiles.

  7. Removal of persistent organic pollutants from micro-polluted drinking water by triolein embedded absorbent.

    PubMed

    Liu, Huijuan; Ru, Jia; Qu, Jiuhui; Dai, Ruihua; Wang, Zijian; Hu, Chun

    2009-06-01

    A new biomimetic absorbent, cellulose acetate (CA) embedded with triolein (CA-triolein), was prepared and applied for the removal of persistent organic pollutants (POPs) from micro-polluted aqueous solution. The comparison of CA-triolein, CA and granular activated carbon (GAC) for dieldrin removal was investigated. Results showed that CA-triolein absorbent gave a lowest residual concentration after 24 h although GAC had high removal rate in the first 4 h adsorption. Then the removal efficiency of mixed POPs (e.g. aldrin, dieldrin, endrin and heptachlor epoxide), absorption isotherm, absorbent regeneration and initial column experiments of CA-triolein were studied in detail. The linear absorption isotherm and the independent absorption in binary isotherm indicated that the selected POPs are mainly absorbed onto CA-triolein absorbent by a partition mechanism. The absorption constant, K, was closely related to the hydrophobic property of the compound. Thermodynamic calculations showed that the absorption was spontaneous, with a high affinity and the absorption was an endothermic reaction. Rinsing with hexane the CA-triolein absorbent can be regenerated after absorption of POPs. No significant decrease in the dieldrin removal efficiency was observed even when the absorption-regeneration process was repeated for five times. The results of initial column experiments showed that the CA-triolein absorbent did not reach the breakthrough point at a breakthrough empty-bed volume (BV) of 3200 when the influent concentration was 1-1.5 microg/L and the empty-bed contact time (EBCT) was 20 min.

  8. Uncertainties of organ-absorbed doses to patients from 18f-choline

    NASA Astrophysics Data System (ADS)

    Li, W. B.; Janzen, T.; Zankl, M.; Giussani, A.; Hoeschen, C.

    2011-03-01

    Radiation doses of radiopharmaceuticals to patients in nuclear medicine are, as the standard method, estimated by the administered activity, medical imaging (e.g. PET imaging), compartmental modeling and Monte Carlo simulation of radiation with reference digital human phantoms. However, in each of the contributing terms, individual uncertainty due to measurement techniques, patient variability and computation methods may propagate to the uncertainties of the calculated organ doses to the individual patient. To evaluate the overall uncertainties and the quality assurance of internal absorbed doses, a method was developed within the framework of the MADEIRA Project (Minimizing Activity and Dose with Enhanced Image quality by Radiopharmaceutical Administrations) to quantitatively analyze the uncertainties in each component of the organ absorbed doses after administration of 18F-choline to prostate cancer patients undergoing nuclear medicine diagnostics. First, on the basis of the organ PET and CT images of the patients as well as blood and urine samples, a model structure of 18F-choline was developed and the uncertainties of the model parameters were determined. Second, the model parameter values were sampled and biokinetic modeling using these sampled parameter values were performed. Third, the uncertainties of the new specific absorbed fraction (SAF) values derived with different phantoms representing individual patients were presented. Finally, the uncertainties of absorbed doses to the patients were calculated by applying the ICRP/ICRU adult male reference computational phantom. In addition to the uncertainty analysis, the sensitivity of the model parameters on the organ PET images and absorbed doses was indicated by coupling the model input and output using regression and partial correlation analysis. The results showed that the uncertainty factors of absorbed dose to patients are in most cases less than a factor of 2 without taking into account the uncertainties

  9. Resonant halide perovskite nanoparticles

    NASA Astrophysics Data System (ADS)

    Tiguntseva, Ekaterina Y.; Ishteev, Arthur R.; Komissarenko, Filipp E.; Zuev, Dmitry A.; Ushakova, Elena V.; Milichko, Valentin A.; Nesterov-Mueller, Alexander; Makarov, Sergey V.; Zakhidov, Anvar A.

    2017-09-01

    The hybrid halide perovskites is a prospective material for fabrication of cost-effective optical devices. Unique perovskites properties are used for solar cells and different photonic applications. Recently, perovskite-based nanophotonics has emerged. Here, we consider perovskite like a high-refractive index dielectric material, which can be considered to be a basis for nanoparticles fabrication with Mie resonances. As a result, we fabricate and study resonant perovskite nanoparticles with different sizes. We reveal, that spherical nanoparticles show enhanced photoluminescence signal. The achieved results lay a cornerstone in the field of novel types of organic-inorganic nanophotonics devices with optical properties improved by Mie resonances.

  10. The Silver Halides

    ERIC Educational Resources Information Center

    Sahyun, M. R. V.

    1977-01-01

    Illustrates the type of fractional bonding for solid silver halides. Treats the silver halides as electron excess compounds, and develops a model of a localized bonding unit that may be iterated in three dimensions to describe the bulk phase. (MLH)

  11. PRESSURE DEPENDENCE OF THE DIELECTRIC PROPERTIES OF SOME ORGANIC LIQUIDS AND OF FIFTEEN OF THE ALKALI HALIDES.

    DTIC Science & Technology

    eugenol , glycerol, diethyl ether, LiF, LiCl, NaF, NaCl, NaBr, NaI, KF, KCl, KBr, KI, RbBr, RbI, CsBr, CsI (single crystals). Temperature range 0-100...deg C., pressure range 1-4,000 kgf/sq. cm, frequency range 20-8 million Hz. Temperature dependence of the permittivity of alkali halides measured and dielectric dispersion in glycerol and eugenol investigated. (Author)

  12. Characterisation of ultraviolet-absorbing recalcitrant organics in landfill leachate for treatment process optimisation.

    PubMed

    Keen, Olya S

    2017-03-01

    Organics in leachate from municipal solid waste landfills are notoriously difficult to treat by biological processes. These organics have high ultraviolet absorbance and can interfere with the ultraviolet disinfection process at the wastewater treatment plant that receives leachate if the leachate flow contribution is large enough. With more wastewater treatment plants switching to ultraviolet disinfection, landfills face increased pressure to treat leachate further. This study used size exclusion chromatography, fluorescence spectroscopy and ultraviolet/Vis spectrophotometry to characterise the bulk organic matter in raw landfill leachate and the biorecalcitrant organic matter in biologically treated leachate from the same site. The results indicate that biorecalcitrant organics have the polyphenolic absorbance peak at 280 nm, fluorescence peak at 280 nm excitation and 315 nm emission, and molecular size range of 1000-7000 Da, all of which are consistent with lignin. The lignin-like nature of biorecalcitrant leachate organics is supported by the fact that 30%-50% of municipal solid waste consists of plant debris and paper products. These findings shed light on the nature of biorecalcitrant organics in leachate and will be useful for the design of leachate treatment processes and further research on leachate treatment methods.

  13. Optical properties and aging of light-absorbing secondary organic aerosol

    DOE PAGES

    Liu, Jiumeng; Lin, Peng; Laskin, Alexander; ...

    2016-10-14

    The light-absorbing organic aerosol (OA) commonly referred to as “brown carbon” (BrC) has attracted considerable attention in recent years because of its potential to affect atmospheric radiation balance, especially in the ultraviolet region and thus impact photochemical processes. A growing amount of data has indicated that BrC is prevalent in the atmosphere, which has motivated numerous laboratory and field studies; however, our understanding of the relationship between the chemical composition and optical properties of BrC remains limited. We conducted chamber experiments to investigate the effect of various volatile organic carbon (VOC) precursors, NOx concentrations, photolysis time, and relative humidity (RH) on the light absorptionmore » of selected secondary organic aerosols (SOA). Light absorption of chamber-generated SOA samples, especially aromatic SOA, was found to increase with NOx concentration, at moderate RH, and for the shortest photolysis aging times. The highest mass absorption coefficient (MAC) value is observed from toluene SOA products formed under high-NOx conditions at moderate RH, in which nitro-aromatics were previously identified as the major light-absorbing compounds. BrC light absorption is observed to decrease with photolysis time, correlated with a decline of the organic nitrate fraction of SOA. SOA formed from mixtures of aromatics and isoprene absorb less visible (Vis) and ultraviolet (UV) light than SOA formed from aromatic precursors alone on a mass basis. However, the mixed SOA absorption was underestimated when optical properties were predicted using a two-product SOA formation model, as done in many current climate models. Further investigation, including analysis on detailed mechanisms, are required to explain the discrepancy.« less

  14. Optical properties and aging of light-absorbing secondary organic aerosol

    NASA Astrophysics Data System (ADS)

    Liu, Jiumeng; Lin, Peng; Laskin, Alexander; Laskin, Julia; Kathmann, Shawn M.; Wise, Matthew; Caylor, Ryan; Imholt, Felisha; Selimovic, Vanessa; Shilling, John E.

    2016-10-01

    The light-absorbing organic aerosol (OA) commonly referred to as "brown carbon" (BrC) has attracted considerable attention in recent years because of its potential to affect atmospheric radiation balance, especially in the ultraviolet region and thus impact photochemical processes. A growing amount of data has indicated that BrC is prevalent in the atmosphere, which has motivated numerous laboratory and field studies; however, our understanding of the relationship between the chemical composition and optical properties of BrC remains limited. We conducted chamber experiments to investigate the effect of various volatile organic carbon (VOC) precursors, NOx concentrations, photolysis time, and relative humidity (RH) on the light absorption of selected secondary organic aerosols (SOA). Light absorption of chamber-generated SOA samples, especially aromatic SOA, was found to increase with NOx concentration, at moderate RH, and for the shortest photolysis aging times. The highest mass absorption coefficient (MAC) value is observed from toluene SOA products formed under high-NOx conditions at moderate RH, in which nitro-aromatics were previously identified as the major light-absorbing compounds. BrC light absorption is observed to decrease with photolysis time, correlated with a decline of the organic nitrate fraction of SOA. SOA formed from mixtures of aromatics and isoprene absorb less visible (Vis) and ultraviolet (UV) light than SOA formed from aromatic precursors alone on a mass basis. However, the mixed SOA absorption was underestimated when optical properties were predicted using a two-product SOA formation model, as done in many current climate models. Further investigation, including analysis on detailed mechanisms, are required to explain the discrepancy.

  15. Quantifying and correcting the impacts of freezing samples on dissolved organic matter absorbance

    NASA Astrophysics Data System (ADS)

    Griffin, C. G.; McClelland, J. W.; Frey, K. E.; Holmes, R. M.

    2012-12-01

    The use of optical measurements as proxies for organic matter concentration and composition has become increasingly popular in recent years. Absorbance of chromophoric dissolved organic matter (CDOM) can be used to estimate concentrations of dissolved organic carbon (DOC), as a qualitative assessment of dissolved organic matter (DOM) average molecular weight and is often used to calibrate satellite remote sensing of organic matter. However, there is evidence that preservation of samples can lead to significant changes in CDOM absorbance spectra. Freezing is a popular means of preservation, but can result in flocculation of DOM when samples are thawed for analysis. We hypothesize that the particles generated as a result of a freeze/thaw cycle lead to increasing absorption in visible wavelengths (400-800 nm). Yet, absorbance in the UV spectra should remain similar to original values. These hypotheses are tested on CDOM spectra collected from two large Arctic watersheds (the Mackenzie and Yukon rivers) and four smaller Texas watersheds (the Colorado, Guadalupe, Nueces and San Antonio rivers). In addition, we experiment with additional filtering and sonication to correct for flocculation from frozen samples. Preliminary data show that short wavelengths are relatively well preserved (200-300 nm). However, CDOM absorption changes unpredictably from 350-450 nm, the wavelengths most commonly used to estimate DOC. Absorption coefficients tend to be higher in these wavelengths after a freeze/thaw cycle, but the magnitude of this increase varies. Some of these impacts can be corrected for with sonication. For instance, when comparing experimental treatments to initial absorption at 365 nm from Mackenzie River samples, R2 increases from 0.60 to 0.79 for samples undergoing one freeze/thaw cycle to those that were also sonicated. Regardless of treatment, however, no spectral slopes were well preserved after a freeze/thaw cycle. These results reinforce earlier work that it is

  16. Surface-active and Light-absorbing Secondary Organic Aerosol (SOA) Material

    NASA Astrophysics Data System (ADS)

    McNeill, V. F.; Sareen, N.; Schwier, A. N.; Shapiro, E. L.

    2009-12-01

    We have observed the formation of light-absorbing, high-molecular-weight, and surface-active organics from methylgyloxal interacting with ammonium salts in aqueous aerosol mimics. Mixtures of methylglyoxal and glyoxal also form light-absorbing products and exhibit surface tension depression with a Langmuir-like dependence on initial methylglyoxal concentration. We used chemical ionization mass spectrometry with a volatilization flow tube inlet (Aerosol-CIMS) to characterize the product species. The results are consistent with aldol condensation products, carbon-nitrogen species, sulfur-containing compounds, and oligomeric species up to 759 amu. These observations have potentially significant implications for our understanding of the effects of SOA on climate, since a) SOA are typically treated as non-absorbing in climate models, and b) surface tension depression in aqueous aerosols by SOA material may result in increased cloud condensation nucleus (CCN) activity. Furthermore, surface film formation could affect aerosol heterogeneous chemistry. We will also discuss aerosol flow tube O3 oxidation experiments designed to determine the atmospheric lifetimes of the observed product compounds.

  17. Metal-organic frameworks reactivate deceased diatoms to be efficient CO(2) absorbents.

    PubMed

    Liu, Dingxin; Gu, Jiajun; Liu, Qinglei; Tan, Yongwen; Li, Zhuo; Zhang, Wang; Su, Yishi; Li, Wuxia; Cui, Ajuan; Gu, Changzhi; Zhang, Di

    2014-02-26

    Diatomite combined with certain metal-organic frameworks (MOFs) is shown to be an effective CO2 absorbent, although diatomite alone is regarded as inert with respect to CO2 absorption. This finding opens the prospect of reactivating millions of tons of diatomite for CO2 absorption. It also shows for the first time that diatom frustules can act as CO2 buffers, an important link in a successive biological CO2 concentration mechanism chain that impacts on global warming. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Abdominal pediatric cancer surveillance using serial computed tomography: evaluation of organ absorbed dose and effective dose.

    PubMed

    Lam, Diana; Wootton-Gorges, Sandra L; McGahan, John P; Stern, Robin; Boone, John M

    2011-02-01

    Computed tomography (CT) is used extensively in cancer diagnosis, staging, evaluation of response to treatment, and in active surveillance for cancer reoccurrence. A review of CT technology is provided, at a level of detail appropriate for a busy clinician to review. The basis of x-ray CT dosimetry is also discussed, and concepts of absorbed dose and effective dose (ED) are distinguished. Absorbed dose is a physical quantity (measured in milligray [mGy]) equal to the x-ray energy deposited in a mass of tissue, whereas ED uses an organ-specific weighting method that converts organ doses to ED measured in millisieverts (mSv). The organ weighting values carry with them a measure of radiation risk, and so ED (in mSv) is not a physical dose metric but rather is one that conveys radiation risk. The use of CT in a cancer surveillance protocol was used as an example of a pediatric patient who had kidney cancer, with surgery and radiation therapy. The active use of CT for cancer surveillance along with diagnostic CT scans led to a total of 50 CT scans performed on this child in a 7-year period. It was estimated that the patient received an average organ dose of 431 mGy from these CT scans. By comparison, the radiation therapy was performed and delivered 50.4 Gy to the patient's abdomen. Thus, the total dose from CT represented only 0.8% of the patient's radiation dose. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Design of Lead-Free Inorganic Halide Perovskites for Solar Cells via Cation-Transmutation.

    PubMed

    Zhao, Xin-Gang; Yang, Ji-Hui; Fu, Yuhao; Yang, Dongwen; Xu, Qiaoling; Yu, Liping; Wei, Su-Huai; Zhang, Lijun

    2017-02-22

    Hybrid organic-inorganic halide perovskites with the prototype material of CH3NH3PbI3 have recently attracted intense interest as low-cost and high-performance photovoltaic absorbers. Despite the high power conversion efficiency exceeding 20% achieved by their solar cells, two key issues-the poor device stabilities associated with their intrinsic material instability and the toxicity due to water-soluble Pb(2+)-need to be resolved before large-scale commercialization. Here, we address these issues by exploiting the strategy of cation-transmutation to design stable inorganic Pb-free halide perovskites for solar cells. The idea is to convert two divalent Pb(2+) ions into one monovalent M(+) and one trivalent M(3+) ions, forming a rich class of quaternary halides in double-perovskite structure. We find through first-principles calculations this class of materials have good phase stability against decomposition and wide-range tunable optoelectronic properties. With photovoltaic-functionality-directed materials screening, we identify 11 optimal materials with intrinsic thermodynamic stability, suitable band gaps, small carrier effective masses, and low excitons binding energies as promising candidates to replace Pb-based photovoltaic absorbers in perovskite solar cells. The chemical trends of phase stabilities and electronic properties are also established for this class of materials, offering useful guidance for the development of perovskite solar cells fabricated with them.

  20. Cesium Lead Halide Perovskites with Improved Stability for Tandem Solar Cells.

    PubMed

    Beal, Rachel E; Slotcavage, Daniel J; Leijtens, Tomas; Bowring, Andrea R; Belisle, Rebecca A; Nguyen, William H; Burkhard, George F; Hoke, Eric T; McGehee, Michael D

    2016-03-03

    A semiconductor that can be processed on a large scale with a bandgap around 1.8 eV could enable the manufacture of highly efficient low cost double-junction solar cells on crystalline Si. Solution-processable organic-inorganic halide perovskites have recently generated considerable excitement as absorbers in single-junction solar cells, and though it is possible to tune the bandgap of (CH3NH3)Pb(BrxI1-x)3 between 2.3 and 1.6 eV by controlling the halide concentration, optical instability due to photoinduced phase segregation limits the voltage that can be extracted from compositions with appropriate bandgaps for tandem applications. Moreover, these materials have been shown to suffer from thermal degradation at temperatures within the processing and operational window. By replacing the volatile methylammonium cation with cesium, it is possible to synthesize a mixed halide absorber material with improved optical and thermal stability, a stabilized photoconversion efficiency of 6.5%, and a bandgap of 1.9 eV.

  1. Morphology-Controlled Synthesis of Organometal Halide Perovskite Inverse Opals.

    PubMed

    Chen, Kun; Tüysüz, Harun

    2015-11-09

    The booming development of organometal halide perovskites in recent years has prompted the exploration of morphology-control strategies to improve their performance in photovoltaic, photonic, and optoelectronic applications. However, the preparation of organometal halide perovskites with high hierarchical architecture is still highly challenging and a general morphology-control method for various organometal halide perovskites has not been achieved. A mild and scalable method to prepare organometal halide perovskites in inverse opal morphology is presented that uses a polystyrene-based artificial opal as hard template. Our method is flexible and compatible with different halides and organic ammonium compositions. Thus, the perovskite inverse opal maintains the advantage of straightforward structure and band gap engineering. Furthermore, optoelectronic investigations reveal that morphology exerted influence on the conducting nature of organometal halide perovskites.

  2. The interplay between assumed morphology and the direct radiative effect of light-absorbing organic aerosol

    NASA Astrophysics Data System (ADS)

    Saleh, Rawad; Adams, Peter J.; Donahue, Neil M.; Robinson, Allen L.

    2016-08-01

    Mie theory is widely employed in aerosol top-of-the-atmosphere direct radiative effect (DRE) calculations and to retrieve the absorptivity of light-absorbing organic aerosol (OA) from measurements. However, when OA is internally mixed with black carbon, it may exhibit complex morphologies whose optical behavior is imperfectly predicted by Mie theory, introducing bias in the retrieved absorptivities. We performed numerical experiments and global radiative transfer modeling (RTM) to investigate the effect of this bias on the calculated absorption and thus the DRE. We show that using true OA absorptivity, retrieved with a realistic representation of the complex morphology, leads to significant errors in DRE when the RTM employs the simplified Mie theory. On the other hand, when Mie theory is consistently applied in both OA absorptivity retrieval and the RTM, the errors largely cancel out, yielding accurate DRE. As long as global RTMs use Mie theory, they should implement parametrizations of light-absorbing OA derived from retrievals based on Mie theory.

  3. Light-absorbing secondary organic material formed by glyoxal in aqueous aerosol mimics

    NASA Astrophysics Data System (ADS)

    Shapiro, E. L.; Szprengiel, J.; Sareen, N.; Jen, C. N.; Giordano, M. R.; McNeill, V. F.

    2009-01-01

    Light-absorbing and high-molecular-weight secondary organic products were observed to result from the reaction of glyoxal in mildly acidic (pH=4) aqueous inorganic salt solutions mimicking aqueous tropospheric aerosol particles. High-molecular-weight (500-600 amu) products were observed when ammonium sulfate ((NH4)2SO4) or sodium chloride (NaCl) was present in the aqueous phase. The products formed in the (NH4)2SO4 solutions absorb light at UV and visible wavelengths. Substantial absorption at 300-400 nm develops within two hours, and absorption between 400-600 nm develops within days. Pendant drop tensiometry measurements show that the products are not surface-active. The experimental results along with ab initio predictions of the UV/Vis absorption of potential products suggest that an aldol condensation mechanism is active in the glyoxal-(NH4)2SO4system, resulting in the formation of pi-conjugated products. If similar products are formed in atmospheric aerosol particles, they could change the optical properties of the seed aerosol over its lifetime.

  4. Organic solar cells with graded absorber layers processed from nanoparticle dispersions.

    PubMed

    Gärtner, Stefan; Reich, Stefan; Bruns, Michael; Czolk, Jens; Colsmann, Alexander

    2016-03-28

    The fabrication of organic solar cells with advanced multi-layer architectures from solution is often limited by the choice of solvents since most organic semiconductors dissolve in the same aromatic agents. In this work, we investigate multi-pass deposition of organic semiconductors from eco-friendly ethanol dispersion. Once applied, the nanoparticles are insoluble in the deposition agent, allowing for the application of further nanoparticulate layers and hence for building poly(3-hexylthiophene-2,5-diyl):indene-C60 bisadduct absorber layers with vertically graded polymer and conversely graded fullerene concentration. Upon thermal annealing, we observe some degrees of polymer/fullerene interdiffusion by means of X-ray photoelectron spectroscopy and Kelvin probe force microscopy. Replacing the common bulk-heterojunction by such a graded photo-active layer yields an enhanced fill factor of the solar cell due to an improved charge carrier extraction, and consequently an overall power conversion efficiency beyond 4%. Wet processing of such advanced device architectures paves the way for a versatile, eco-friendly and industrially feasible future fabrication of organic solar cells with advanced multi-layer architectures.

  5. Metal halide perovskite light emitters

    PubMed Central

    Kim, Young-Hoon; Cho, Himchan; Lee, Tae-Woo

    2016-01-01

    Twenty years after layer-type metal halide perovskites were successfully developed, 3D metal halide perovskites (shortly, perovskites) were recently rediscovered and are attracting multidisciplinary interest from physicists, chemists, and material engineers. Perovskites have a crystal structure composed of five atoms per unit cell (ABX3) with cation A positioned at a corner, metal cation B at the center, and halide anion X at the center of six planes and unique optoelectronic properties determined by the crystal structure. Because of very narrow spectra (full width at half-maximum ≤20 nm), which are insensitive to the crystallite/grain/particle dimension and wide wavelength range (400 nm ≤ λ ≤ 780 nm), perovskites are expected to be promising high-color purity light emitters that overcome inherent problems of conventional organic and inorganic quantum dot emitters. Within the last 2 y, perovskites have already demonstrated their great potential in light-emitting diodes by showing high electroluminescence efficiency comparable to those of organic and quantum dot light-emitting diodes. This article reviews the progress of perovskite emitters in two directions of bulk perovskite polycrystalline films and perovskite nanoparticles, describes current challenges, and suggests future research directions for researchers to encourage them to collaborate and to make a synergetic effect in this rapidly emerging multidisciplinary field. PMID:27679844

  6. Metal-organic framework nanoparticles decorated with graphene: A high-performance electromagnetic wave absorber

    NASA Astrophysics Data System (ADS)

    Wang, Yan; Zhang, Wenzhi; Wu, Xinming; Luo, Chunyan; Liang, Tan; Yan, Gang

    2016-10-01

    A novel metal organic framework (MOF) coated RGO was fabricated by a one-step method. The morphology and microstructure of MOF-53(Fe)/RGO composite were characterized by XRD and TEM. The electromagnetic parameters indicate that MOF-53(Fe)/RGO composite shows enhanced electromagnetic absorption properties compared with MOF-53(Fe). The maximum RL can reach -25.8 dB at 15.4 GHz and the absorption bandwidth with the reflection loss exceeding -10 dB is 5.9 GHz (from 12.1 to 18 GHz) with the thickness of 2 mm. The possible absorption mechanism was also investigated in detail. Our results indicate the potential application of MOF/RGO composite as a more efficient microwave absorber.

  7. Temperature effect of natural organic extraction upon light absorbance in dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Suhaimi, Suriati; Mohamed Siddick, Siti Zubaidah; Retnasamy, Vithyacharan; Abdul Wahid, Mohamad Halim; Ahmad Hambali, Nor Azura Malini; Mohamad Shahimin, Mukhzeer

    2017-02-01

    Natural organic dyes contain pigments which when safely extracted from plants have the potential to be used as a sensitizer while promising a low-cost fabrication, environmental friendly dye-sensitized solar cells (DSSCs). Ardisia, Bawang Sabrang, Harum Manis mango, Oxalis Triangularis and Rosella showed different absorption peaks when the extraction process were carried out at different temperatures. Hence, these were used as the basis to determine the conversion efficiency against the dyes extracting temperature. In this study, all dyes extracted in water have shown the best performance at a temperature of 100°C except for Harum Manis mango, while in ethanol, the optimum temperature was obtained between the room temperature, 25°C and 50°C. The absorption spectrum in water showed a broader absorption wavelength vis-à-vis ethanol solvent that resulted in the absorption peak for Ardisia, Harum Manis mango and Rosella between 450 nm and 550 nm. The highest conversion efficiency is observed to be achieved by Oxalis Triangularis extracted in water solution at 100°C, which was approximately 0.96% which corresponds to the broader absorbance trends in the literature. Thus, the optimum condition for extracting temperature for dyes in water and ethanol is room temperature and boiling points of water. Hence, Ardisia, Bawang Sabrang, Harum Manis mango, Oxalis Triangularis and Rosella can be an as alternative source for photosensitizer, and the impacts of temperature upon the light absorbance can be further investigated to produce the ultimate natural dye based solar cells.

  8. Perspectives on organolead halide perovskite photovoltaics

    NASA Astrophysics Data System (ADS)

    Hariz, Alex

    2016-07-01

    A number of photovoltaic technologies have been developed for large-scale solar-power production. The single-crystal first-generation photovoltaic devices were followed by thin-film semiconductor absorber layers layered between two charge-selective contacts, and more recently, by nanostructured or mesostructured solar cells that utilize a distributed heterojunction to generate charge carriers and to transport holes and electrons in spatially separated conduits. Even though a number of materials have been trialed in nanostructured devices, the aim of achieving high-efficiency thin-film solar cells in such a manner as to rival the silicon technology has yet to be attained. Organolead halide perovskites have recently emerged as a promising material for high-efficiency nanoinfiltrated devices. An examination of the efficiency evolution curve reveals that interfaces play a paramount role in emerging organic electronic applications. To optimize and control the performance in these devices, a comprehensive understanding of the contacts is essential. However, despite the apparent advances made, a fundamental theoretical analysis of the physical processes taking place at the contacts is still lacking. However, experimental ideas, such as the use of interlayer films, are forging marked improvements in efficiencies of perovskite-based solar cells. Furthermore, issues of long-term stability and large-area manufacturing have some way to go before full commercialization is possible.

  9. Multi-target determination of organic ultraviolet absorbents in organism tissues by ultrasonic assisted extraction and ultra-high performance liquid chromatography-tandem mass spectrometry.

    PubMed

    Peng, Xianzhi; Jin, Jiabin; Wang, Chunwei; Ou, Weihui; Tang, Caiming

    2015-03-06

    A sensitive and reliable method was developed for multi-target determination of 13 most widely used organic ultraviolet (UV) absorbents (including UV filters and UV stabilizers) in aquatic organism tissues. The organic UV absorbents were extracted using ultrasonic-assisted extraction, purified via gel permeation chromatography coupled with silica gel column chromatography, and determined by ultra-high performance liquid chromatography-tandem mass spectrometry. Recoveries of the UV absorbents from organism tissues mostly ranged from 70% to 120% from fish filet with satisfactory reproducibility. Method quantification limits were 0.003-1.0ngg(-1) dry weight (dw) except for 2-ethylhexyl 4-methoxycinnamate. This method has been applied to analysis of the UV absorbents in wild and farmed aquatic organisms collected from the Pearl River Estuary, South China. 2-Hydroxy-4-methoxybenzophenone and UV-P were frequently detected in both wild and farmed marine organisms at low ngg(-1)dw. 3-(4-Methylbenzylidene)camphor and most of the benzotriazole UV stabilizers were also frequently detected in maricultured fish. Octocrylene and 2-ethylhexyl 4-methoxycinnamate were not detected in any sample. This work lays basis for in-depth study about bioaccumulation and biomagnification of the UV absorbents in marine environment.

  10. Optical Properties of Moderately-Absorbing Organic and Mixed Organic/Inorganic Particles at Very High Humidities

    SciTech Connect

    Bond, Tami C; Rood, Mark J; Brem, Benjamin T; Mena-Gonzalez, Francisco C; Chen, Yanju

    2012-04-16

    Relative humidity (RH) affects the water content of an aerosol, altering its ability to scatter and absorb light, which is important for aerosol effects on climate and visibility. This project involves in situ measurement and modeling of aerosol optical properties including absorption, scattering and extinction at three visible wavelengths (467, 530, 660 nm), for organic carbon (OC) generated by pyrolysis of biomass, ammonium sulfate and sodium chloride, and their mixtures at controlled RH conditions. Novel components of this project include investigation of: (1) Changes in all three of these optical properties at scanned RH conditions; (2) Optical properties at RH values up to 95%, which are usually extrapolated instead of measured; and (3) Examination of aerosols generated by the pyrolysis of wood, which is representative of primary atmospheric organic carbon, and its mixture with inorganic aerosol. Scattering and extinction values were used to determine light absorption by difference and single scattering albedo values. Extensive instrumentation development and benchmarking with independently measured and modeled values were used to obtain and evaluate these new results. The single scattering albedo value for a dry absorbing polystyrene microsphere benchmark agreed within 0.02 (absolute value) with independently published results at 530 nm. Light absorption by a nigrosin (sample light-absorbing) benchmark increased by a factor of 1.24 +/-0.06 at all wavelengths as RH increased from 38 to 95%. Closure modeling with Mie theory was able to reproduce this increase with the linear volume average (LVA) refractive index mixing rule for this water soluble compound. Absorption by biomass OC aerosol increased by a factor of 2.1 +/- 0.7 and 2.3 +/- 1.2 between 32 and 95% RH at 467 nm and 530 nm, but there was no detectable absorption at 660 nm. Additionally, the spectral dependence of absorption by OC that was observed with filter measurements was confirmed qualitatively

  11. Absorption of inorganic halides produced from Freon 12 by calcium carbonate containing iron(III) oxide

    SciTech Connect

    Imamura, Seiichiro; Matsuba, Yoichi; Yamada, Etsu; Takai, Kenji; Utani, Kazunori

    1997-09-01

    Inorganic halides produced by the catalytic decomposition of Freon 12 were fixed by calcium carbonate, which is the main component of limestone. Iron(III) oxide, which is present as a contaminant in limestone, promoted the absorption of the halides by calcium carbonate at low temperatures. The supposed action of iron(III) oxide was to first react with inorganic halides, forming iron halides, and, then, transfer them to calcium carbonate to replace carbonate ion in a catalytic way. Thus, calcium carbonate containing iron oxides (limestone) can be used as an effective absorbent for the inorganic halogens produced during the decomposition of Freons.

  12. Binary technetium halides

    NASA Astrophysics Data System (ADS)

    Johnstone, Erik Vaughan

    In this work, the synthetic and coordination chemistry as well as the physico-chemical properties of binary technetium (Tc) chlorides, bromides, and iodides were investigated. Resulting from these studies was the discovery of five new binary Tc halide phases: alpha/beta-TcCl3, alpha/beta-TcCl 2, and TcI3, and the reinvestigation of the chemistries of TcBr3 and TcX4 (X = Cl, Br). Prior to 2009, the chemistry of binary Tc halides was poorly studied and defined by only three compounds, i.e., TcF6, TcF5, and TcCl4. Today, ten phases are known (i.e., TcF6, TcF5, TcCl4, TcBr 4, TcBr3, TcI3, alpha/beta-TcCl3 and alpha/beta-TcCl2) making the binary halide system of Tc comparable to those of its neighboring elements. Technetium binary halides were synthesized using three methods: reactions of the elements in sealed tubes, reactions of flowing HX(g) (X = Cl, Br, and I) with Tc2(O2CCH3)4Cl2, and thermal decompositions of TcX4 (X = Cl, Br) and alpha-TcCl 3 in sealed tubes under vacuum. Binary Tc halides can be found in various dimensionalities such as molecular solids (TcF6), extended chains (TcF5, TcCl4, alpha/beta-TcCl2, TcBr 3, TcI3), infinite layers (beta-TcCl3), and bidimensional networks of clusters (alpha-TcCl3); eight structure-types with varying degrees of metal-metal interactions are now known. The coordination chemistry of Tc binary halides can resemble that of the adjacent elements: molybdenum and ruthenium (beta-TcCl3, TcBr3, TcI 3), rhenium (TcF5, alpha-TcCl3), platinum (TcCl 4, TcBr4), or can be unique (alpha-TcCl2 and beta-TcCl 2) in respect to other known transition metal binary halides. Technetium binary halides display a range of interesting physical properties that are manifested from their electronic and structural configurations. The thermochemistry of binary Tc halides is extensive. These compounds can selectively volatilize, decompose, disproportionate, or convert to other phases. Ultimately, binary Tc halides may find application in the nuclear fuel

  13. Lithography-Free Broadband Ultrathin-Film Absorbers with Gap-Plasmon Resonance for Organic Photovoltaics.

    PubMed

    Choi, Minjung; Kang, Gumin; Shin, Dongheok; Barange, Nilesh; Lee, Chang-Won; Ko, Doo-Hyun; Kim, Kyoungsik

    2016-05-25

    Strategies to confine electromagnetic field within ultrathin film emerge as essential technologies for applications from thin-film solar cells to imaging and sensing devices. We demonstrate a lithography-free, low-cost, large-scale method to realize broadband ultrathi-film metal-dielectric-metal (MDM) absorbers, by exploiting gap-plasmon resonances for strongly confined electromagnetic field. A two-steps method, first organizing Au nanoparticles via thermal dewetting and then transferring the nanoparticles to a spacer-reflector substrate, is used to achieve broader absorption bandwidth by manipulating geometric shapes of the top metallic layer into hemiellipsoids. A fast-deposited nominal Au film, instead of a conventional slow one, is employed in the Ostwald ripening process to attain hemiellipsoidal nanoparticles. A polymer supported transferring step allows a wider range of dewetting temperature to manipulate the nanoparticles' shape. By incorporating circularity with ImageJ software, the geometries of hemiellipsoidal nanoparticles are quantitatively characterized. Controlling the top geometry of MDM structure from hemisphere to hemiellipsoid increases the average absorption at 500-900 nm from 23.1% to 43.5% in the ultrathin film and full width at half-maximum of 132-324 nm, which is consistently explained by finite-difference time-domain simulation. The structural advantages of our scheme are easily applicable to thin-film photovoltaic devices because metal electrodes can act as metal reflectors and semiconductor layers as dielectric spacers.

  14. An overview of UV-absorbing compounds (organic UV filters) in aquatic biota.

    PubMed

    Gago-Ferrero, Pablo; Díaz-Cruz, M Silvia; Barceló, Damià

    2012-11-01

    The purpose of this article is to summarize biological monitoring information on UV-absorbing compounds, commonly referred as organic UV filters or sunscreen agents, in aquatic ecosystems. To date a limited range of species (macroinvertebrates, fish, and birds), habitats (lakes, rivers, and sea), and compounds (benzophenones and camphors) have been investigated. As a consequence there is not enough data enabling reliable understanding of the global distribution and effect of UV filters on ecosystems. Both liquid chromatography and gas chromatography coupled with mass spectrometry-based methods have been developed and applied to the trace analysis of these pollutants in biota, enabling the required selectivity and sensitivity. As expected, the most lipophilic compounds occur most frequently with concentrations up to 7112 ng g(-1) lipids in mussels and 3100 ng g(-1) lipids (homosalate) in fish. High concentrations have also been reported for 4-methylbenzilidenecamphor (up to 1800 ng g(-1) lipids) and octocrylene (2400 ng g(-1) lipids). Many fewer studies have evaluated the potential bioaccumulation and biomagnification of these compounds in both fresh and marine water and terrestrial food webs. Estimated biomagnification factors suggest biomagnification in predator-prey pairs, for example bird-fish and fish-invertebrates. Ecotoxicological data and preliminary environmental assessment of the risk of UV filters are also included and discussed.

  15. Role of Black Carbon and Absorbing Organic Carbon Aerosols in Surface Dimming Trends

    NASA Astrophysics Data System (ADS)

    Feng, Y.; Ramanathan, V.; Kotamarthi, V. R.

    2010-12-01

    Solar radiation reaching at the Earth’s surface plays an essential role in driving both atmosphere hydrological and land/ocean biogeochemical processes. Measurements have shown significant decreases in surface solar radiation (dimming) in many regions since 1960s. At least half of the observed dimming could be linked to the direct radiative effect of anthropogenic aerosols, especially absorbing aerosols like black carbon (BC) due to their strong atmospheric absorption. However, previous model-data comparisons indicate that absorption by aerosols is commonly and significantly underestimated in current GCM simulations by several factors over regions. Using a global chemical transport model coupled with a radiative transfer model, we include a treatment for absorbing organic carbons (OC) from bio-fuel and open biomass burnings in optical calculations and estimate aerosol radiative forcings for two anthropogenic aerosol emission scenarios representative of 1975 and 2000. Assumptions about aerosol mixing and the OC absorption spectrum are examined by comparing simulated atmospheric heating against aircraft optical and radiation measurements. The calculated aerosol single scattering albedo distribution (0.93+/-0.044) is generally comparable to the AERONET data (0.93+/-0.030) for year 2001, with best agreements in Europe and N. America, while overestimated in E. Asia and underestimated in the S. American biomass burning areas. On a global scale, inclusion of absorbing OC enhances the absorption in the atmosphere by 11% for July. The estimated aerosol direct radiative forcing at TOA (-0.24 W/m2) is similar to the average value of the AeroCom models based on the same 2000 emissions, but significantly enhanced negatively at surface by about 53% (-1.56 W/m2) and the atmosphere absorption is increased by +61% (+1.32 W/m2). About 87% of the estimated atmosphere absorption and 42% of the surface dimming is contributed by BC. Between 1975 and 2000, the calculated all-sky flux

  16. Secondary organic material formed by methylglyoxal in aqueous aerosol mimics - Part 1: Surface tension depression and light-absorbing products

    NASA Astrophysics Data System (ADS)

    Schwier, A. N.; Shapiro, E. L.; Sareen, N.; McNeill, V. F.

    2009-07-01

    We show that methylglyoxal forms light-absorbing secondary organic material in aqueous ammonium sulfate and ammonium nitrate solutions mimicking tropospheric aerosol particles. The light-absorbing products form on the order of minutes, and solution composition continues to change over several days. The results suggest an aldol condensation pathway involving the participation of the ammonium ion. Aqueous solutions of methylglyoxal, with and without inorganic salts, exhibit surface tension depression. Methylglyoxal uptake could potentially change the optical properties, climate effects, and heterogeneous chemistry of the seed aerosol over its lifetime.

  17. Absorbed dose estimations of 131I for critical organs using the GEANT4 Monte Carlo simulation code

    NASA Astrophysics Data System (ADS)

    Ziaur, Rahman; Shakeel, ur Rehman; Waheed, Arshed; Nasir, M. Mirza; Abdul, Rashid; Jahan, Zeb

    2012-11-01

    The aim of this study is to compare the absorbed doses of critical organs of 131I using the MIRD (Medical Internal Radiation Dose) with the corresponding predictions made by GEANT4 simulations. S-values (mean absorbed dose rate per unit activity) and energy deposition per decay for critical organs of 131I for various ages, using standard cylindrical phantom comprising water and ICRP soft-tissue material, have also been estimated. In this study the effect of volume reduction of thyroid, during radiation therapy, on the calculation of absorbed dose is also being estimated using GEANT4. Photon specific energy deposition in the other organs of the neck, due to 131I decay in the thyroid organ, has also been estimated. The maximum relative difference of MIRD with the GEANT4 simulated results is 5.64% for an adult's critical organs of 131I. Excellent agreement was found between the results of water and ICRP soft tissue using the cylindrical model. S-values are tabulated for critical organs of 131I, using 1, 5, 10, 15 and 18 years (adults) individuals. S-values for a cylindrical thyroid of different sizes, having 3.07% relative differences of GEANT4 with Siegel & Stabin results. Comparison of the experimentally measured values at 0.5 and 1 m away from neck of the ionization chamber with GEANT4 based Monte Carlo simulations results show good agreement. This study shows that GEANT4 code is an important tool for the internal dosimetry calculations.

  18. Analysis of the Body Distribution of Absorbed Dose in the Organs of Three Species of Fish from Sepetiba Bay

    NASA Astrophysics Data System (ADS)

    Pereira, Wagner de S.; Kelecom, Alphonse; dos Santos Gouvea, Rita de Cássia; Py Júnior, Delcy de Azevedo

    2008-08-01

    The body distribution of Polonium-210 in three fishes from the Sepetiba Bay (Macrodon ancylodon, Micropogonias furnieri and Mugil curema) has been studied under the approach of the Department of Energy of the United States of America (DOE) that set the limit of absorbed dose rate in biota equal to 3.5×103 μGy/y, and that also established the relation between dose rate (D) and radionuclide concentration (c) on a fish muscle fresh weight basis, as follows: D = 5.05 E×N×C, assuming that the radionuclide distribution is homogenous among organs. Two hypotheses were tested here, using statistical tools: 1) is the body distribution of absorbed dose homogenous among organs? and 2) is the body distribution of absorbed dose identical among studied fishes? It was concluded, as expected, that the distribution among organs is heterogeneous; but, unexpectedly, that the three fishes display identical body distribution pattern, although they belong to different trophic levels. Hence, concerning absorbed dose calculation, the statement that data distribution is homogenous must be understood merely as an approximation, at least in the case of Polonium-210.

  19. Analysis of the Body Distribution of Absorbed Dose in the Organs of Three Species of Fish from Sepetiba Bay

    SciTech Connect

    Pereira, Wagner de S; Kelecom, Alphonse; Santos Gouvea, Rita de Cassia dos; Azevedo Py Junior, Delcy de

    2008-08-07

    The body distribution of Polonium-210 in three fishes from the Sepetiba Bay (Macrodon ancylodon, Micropogonias furnieri and Mugil curema) has been studied under the approach of the Department of Energy of the United States of America (DOE) that set the limit of absorbed dose rate in biota equal to 3.5x10{sup 3} {mu}Gy/y, and that also established the relation between dose rate (D) and radionuclide concentration (c) on a fish muscle fresh weight basis, as follows: D = 5.05 ExNxC, assuming that the radionuclide distribution is homogenous among organs. Two hypotheses were tested here, using statistical tools: 1) is the body distribution of absorbed dose homogenous among organs? and 2) is the body distribution of absorbed dose identical among studied fishes? It was concluded, as expected, that the distribution among organs is heterogeneous; but, unexpectedly, that the three fishes display identical body distribution pattern, although they belong to different trophic levels. Hence, concerning absorbed dose calculation, the statement that data distribution is homogenous must be understood merely as an approximation, at least in the case of Polonium-210.

  20. Photoluminescence and self-assembly of cesium lead halide perovskite nanocrystals: Effects of chain length of organic amines and reaction temperature

    NASA Astrophysics Data System (ADS)

    Yuan, Yi; Liu, Zheming; Liu, Zhenyang; Peng, Lan; Li, Yongjie; Tang, Aiwei

    2017-05-01

    All-inorganic halide perovskites have become one of the most prospective materials for lightening and display technology due to their color-tunable and narrow-band emission. Herein, we have systematically studied the effects of organic amines with different hydrocarbon chain length on the optical properties and morphology as well as the crystal structure of colloidal CsPbBr3 nanocrystals (NCs), which were synthesized in the presence of oleic acid (OA) and organic amines by using a simple hot-injection approach. The hydrocarbon chain length has shown an independent correlation to the morphology and crystal structure of the as-obtained CsPbBr3 NCs at 160 °C, but their optical properties can be affected to some extent. The photoluminescence quantum yields (PLQYs) of the CsPbBr3 NCs synthesized in the presence of organic amines with long carbon chain length are generally in the range of 55-80% for different reaction time, but the PLQYs of less than 20% are obtained for the products synthesized in the presence of octylamine (OTAm) with short carbon chain length. The effects of the reaction temperature on the optical properties, size and crystal structure of the CsPbBr3 NCs synthesized in the presence of cetylamine (CTAm) are studied. Interestingly, some nanoplates also appear in these CsPbBr3 NCs obtained at relatively low temperatures (120 and 140 °C), which have a strong tendency to self-assemble into face-to-face nanostructures. Such a similar self-assembly behavior is also observed in the product synthesized in the presence of oleylamine (OLAm), but only flat nanoplates are observed in the products in the presence of OTAm at 120 °C. The results indicate that the lower reaction temperature and hydrocarbon chain length of the organic ligands play a significant role in the self-assembly of CsPbBr3 NCs. This work opens up an alternative approach to controllable-synthesis of perovskite NCs through varying the carbon chain length of organic surfactants, and enlightens

  1. Mixed-Halide CH3 NH3 PbI3-x Xx (X=Cl, Br, I) Perovskites: Vapor-Assisted Solution Deposition and Application as Solar Cell Absorbers.

    PubMed

    Sedighi, Rahime; Tajabadi, Fariba; Shahbazi, Saeed; Gholipour, Somayeh; Taghavinia, Nima

    2016-08-04

    There have been recent reports on the formation of single-halide perovskites, CH3 NH3 PbX3 (X=Cl, Br, I), by means of vapor-assisted solution processing. Herein, the successful formation of mixed-halide perovskites (CH3 NH3 PbI3-x Xx ) by means of a vapor-assisted solution method at ambient atmosphere is reported. The perovskite films are synthesized by exposing PbI2 film to CH3 NH3 X (X=I, Br, or Cl) vapor. The prepared perovskite films have uniform surfaces with good coverage, as confirmed by SEM images. The inclusion of chlorine and bromine into the structure leads to a lower temperature and shorter reaction time for optimum perovskite film formation. In the case of CH3 NH3 PbI3-x Clx , the optimum reaction temperature is reduced to 100 °C, and the resulting phases are CH3 NH3 PbI3 (with trace Cl) and CH3 NH3 PbCl3 with a ratio of about 2:1. In the case of CH3 NH3 PbI3-x Brx , single-phase CH3 NH3 PbI2 Br is formed in a considerably shorter reaction time than that of CH3 NH3 PbI3 . The mesostructured perovskite solar cells based on CH3 NH3 PbI3 films show the best optimal power conversion efficiency of 13.5 %, whereas for CH3 NH3 PbI3-x Clx and CH3 NH3 PbI3-x Brx the best recorded efficiencies are 11.6 and 10.5 %, respectively. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Whole organ and islet of Langerhans dosimetry for calculation of absorbed doses resulting from imaging with radiolabeled exendin

    PubMed Central

    van der Kroon, Inge; Woliner-van der Weg, Wietske; Brom, Maarten; Joosten, Lieke; Frielink, Cathelijne; Konijnenberg, Mark W.; Visser, Eric P.; Gotthardt, Martin

    2017-01-01

    Radiolabeled exendin is used for non-invasive quantification of beta cells in the islets of Langerhans in vivo. High accumulation of radiolabeled exendin in the islets raised concerns about possible radiation-induced damage to these islets in man. In this work, islet absorbed doses resulting from exendin-imaging were calculated by combining whole organ dosimetry with small scale dosimetry for the islets. Our model contains the tissues with high accumulation of radiolabeled exendin: kidneys, pancreas and islets. As input for the model, data from a clinical study (radiolabeled exendin distribution in the human body) and from a preclinical study with Biobreeding Diabetes Prone (BBDP) rats (islet-to-exocrine uptake ratio, beta cell mass) were used. We simulated 111In-exendin and 68Ga-exendin absorbed doses in patients with differences in gender, islet size, beta cell mass and radiopharmaceutical uptake in the kidneys. In all simulated cases the islet absorbed dose was small, maximum 1.38 mGy for 68Ga and 66.0 mGy for 111In. The two sources mainly contributing to the islet absorbed dose are the kidneys (33–61%) and the islet self-dose (7.5–57%). In conclusion, all islet absorbed doses are low (<70 mGy), so even repeated imaging will hardly increase the risk on diabetes. PMID:28067253

  3. A transparent conductive adhesive laminate electrode for high-efficiency organic-inorganic lead halide perovskite solar cells.

    PubMed

    Bryant, Daniel; Greenwood, Peter; Troughton, Joel; Wijdekop, Maarten; Carnie, Mathew; Davies, Matthew; Wojciechowski, Konrad; Snaith, Henry J; Watson, Trystan; Worsley, David

    2014-11-26

    A self-adhesive laminate solar-cell electrode is presented based on a metal grid embedded in a polymer film (x-y conduction) and set in contact with the active layer using a pressure-sensitive adhesive containing a very low quantity (1.8%) of organic conductor, which self-organizes to provide z conduction to the grid. This ITO-free material performs in an identical fashion to evaporated gold in high-efficiency perovskite solar cells. © 2014 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Steric engineering of metal-halide perovskites with tunable optical band gaps.

    PubMed

    Filip, Marina R; Eperon, Giles E; Snaith, Henry J; Giustino, Feliciano

    2014-12-15

    Owing to their high energy-conversion efficiency and inexpensive fabrication routes, solar cells based on metal-organic halide perovskites have rapidly gained prominence as a disruptive technology. An attractive feature of perovskite absorbers is the possibility of tailoring their properties by changing the elemental composition through the chemical precursors. In this context, rational in silico design represents a powerful tool for mapping the vast materials landscape and accelerating discovery. Here we show that the optical band gap of metal-halide perovskites, a key design parameter for solar cells, strongly correlates with a simple structural feature, the largest metal-halide-metal bond angle. Using this descriptor we suggest continuous tunability of the optical gap from the mid-infrared to the visible. Precise band gap engineering is achieved by controlling the bond angles through the steric size of the molecular cation. On the basis of these design principles we predict novel low-gap perovskites for optimum photovoltaic efficiency, and we demonstrate the concept of band gap modulation by synthesising and characterising novel mixed-cation perovskites.

  5. Preclinical Study of 68Ga-DOTATOC: Biodistribution Assessment in Syrian Rats and Evaluation of Absorbed Dose in Human Organs

    PubMed Central

    Naderi, Mojdeh; Zolghadri, Samaneh; Yousefnia, Hassan; Ramazani, Ali; Jalilian, Amir Reza

    2016-01-01

    Objective(s): Gallium-68 DOTA-DPhe1-Tyr3-Octreotide (68Ga-DOTATOC) has been applied by several European centers for the treatment of a variety of human malignancies. Nevertheless, definitive dosimetric data are yet unavailable. According to the Society of Nuclear Medicine and Molecular Imaging, researchers are investigating the safety and efficacy of this radiotracer to meet Food and Drug Administration requirements. The aim of this study was to introduce the optimized procedure for 68Ga-DOTATOC preparation, using a novel germanium-68 (68Ge)/68Ga generator in Iran and evaluate the absorbed doses in numerous organs with high accuracy. Methods: The optimized conditions for preparing the radiolabeled complex were determined via several experiments by changing the ligand concentration, pH, temperature and incubation time. Radiochemical purity of the complex was assessed, using high-performance liquid chromatography and instant thin-layer chromatography. The absorbed dose of human organs was evaluated, based on biodistribution studies on Syrian rats via Radiation Absorbed Dose Assessment Resource Method. Results: 68Ga-DOTATOC was prepared with radiochemical purity of >98% and specific activity of 39.6 MBq/nmol. The complex demonstrated great stability at room temperature and in human serum at 37°C at least two hours after preparation. Significant uptake was observed in somatostatin receptor-positive tissues such as pancreatic and adrenal tissues (12.83 %ID/g and 0.91 %ID/g, respectively). Dose estimations in human organs showed that the pancreas, kidneys and adrenal glands received the maximum absorbed doses (0.105, 0.074 and 0.010 mGy/MBq, respectively). Also, the effective absorbed dose was estimated at 0.026 mSv/MBq for 68Ga-DOTATOC. Conclusion: The obtained results showed that 68Ga-DOTATOC can be considered as an effective agent for clinical PET imaging in Iran. PMID:27904870

  6. In Situ TEM Analysis of Organic-Inorganic Metal-Halide Perovskite Solar Cells under Electrical Bias.

    PubMed

    Jeangros, Quentin; Duchamp, Martial; Werner, Jérémie; Kruth, Maximilian; Dunin-Borkowski, Rafal E; Niesen, Bjoern; Ballif, Christophe; Hessler-Wyser, Aïcha

    2016-11-09

    Changes in the nanostructure of methylammonium lead iodide (MAPbI3) perovskite solar cells are assessed as a function of current-voltage stimulus by biasing thin samples in situ in a transmission electron microscope. Various degradation pathways are identified both in situ and ex situ, predominantly at the positively biased MAPbI3 interface. Iodide migrates into the positively biased charge transport layer and also volatilizes along with organic species, which triggers the nucleation of PbI2 nanoparticles and voids and hence decreases the cell performance.

  7. Moving Towards a Technical Specification for Fluorescence Excitation-Emission Mapping and Absorbance Analysis of Colored Dissolved Organic Matter

    NASA Astrophysics Data System (ADS)

    Gilmore, A. M.

    2010-12-01

    Colored dissolved organic matter (CDOM) measurements with fluorescence and absorbance are important for evaluating a wide variety natural and industrial water sources. However, uncertainties and ambiguities continue to be propagated regarding interpretation of CDOM spectral data due to the variety of instruments, sampling chemistry conditions and types of analysis algorithms. Recent efforts have focused on standardization and interlaboratory comparisons of CDOM samples with respect to preparation, spectroscopic evaluation and mathematical analysis. This study deals with correlating absorbance and fluorescence data measured with the same sample to minimize interlaboratory variation. The theoretical significance of true simultaneous acquisition of the corrected (NIST Traceable) absorbance spectrum and fluorescence excitation spectral profile and excitation emission map is discussed as a means to provide the least ambiguous spectral data. Key issues considered are the variations introduced by ‘serial’ acquisitions of absorbance and fluorescence data. Variation can be caused by the different light-exposure history (especially UV) in the instruments, dissolved oxygen content associated with temperature changes and oxidation kinetics of the CDOM and in many cases concentration- and pH-related changes associated with diluting and pH buffering of the CDOM sample, respectively. Concentration changes in CDOM can be associated with optical anomalies including self-quenching and -absorption which systematically alter the fluorescence spectrum. Clearly, monitoring the absorbance and fluorescence simultaneously would deal with the above sampling variations and facilitate correcting the absorbance based fluorescence anomalies. The proposed method(s) described will be discussed in view of their potential to serve as the basis for an international technical specification in terms of the optical instrument and sampling conditions for CDOM analysis and reporting.

  8. Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon

    USGS Publications Warehouse

    Weishaar, J.L.; Aiken, G.R.; Bergamaschi, B.A.; Fram, M.S.; Fujii, R.; Mopper, K.

    2003-01-01

    Specific UV absorbance (SUVA) is defined as the UV absorbance of a water sample at a given wavelength normalized for dissolved organic carbon (DOC) concentration. Our data indicate that SUVA, determined at 254 nm, is strongly correlated with percent aromaticity as determined by 13C NMR for 13 organic matter isolates obtained from a variety of aquatic environments. SUVA, therefore, is shown to be a useful parameter for estimating the dissolved aromatic carbon content in aquatic systems. Experiments involving the reactivity of DOC with chlorine and tetramethylammonium hydroxide (TMAH), however, show a wide range of reactivity for samples with similar SUVA values. These results indicate that, while SUVA measurements are good predictors of general chemical characteristics of DOC, they do not provide information about reactivity of DOC derived from different types of source materials. Sample pH, nitrate, and iron were found to influence SUVA measurements.

  9. Organic matrix effects on the formation of light-absorbing compounds from α-dicarbonyls in aqueous salt solution.

    PubMed

    Drozd, Greg T; McNeill, V Faye

    2014-04-01

    Aqueous-phase reactions of organic compounds are of general importance in environmental systems. Reactions of α-dicarbonyl compounds in the aqueous phase of atmospheric aerosols can impact their climate-relevant physical properties including hygroscopicity and absorption of light. Less-reactive water-soluble organic compounds may contribute an organic matrix component to the aqueous environment, potentially impacting the reaction kinetics. In this work we demonstrate the effects of organic matrices on the self-reactions of glyoxal (Gly) and methylglyoxal (mGly) in aqueous solutions containing ammonium sulfate. At an organic-to-sulfate mass ratio of 2 : 1, carbohydrate-like matrices resembling oxidized organic aerosol material reduce the rate of formation of light-absorbing products by up to an order of magnitude. The greatest decreases in the reaction rates were observed for organic matrices with smaller, more linear molecular structures. Initial UV-Vis spectra, product studies, relative rate data, acidity changes, and viscosity measurements suggest that shifts in carbonyl equilibria, due in part to (hemi)acetal formation with the matrix, reduce the rate of formation of light-absorbing imidazole and oligomer species.

  10. Upflow anaerobic filter for the degradation of adsorbable organic halides (AOX) from bleach composite wastewater of pulp and paper industry.

    PubMed

    Deshmukh, N S; Lapsiya, K L; Savant, D V; Chiplonkar, S A; Yeole, T Y; Dhakephalkar, P K; Ranade, D R

    2009-05-01

    The removal of AOX from bleach plant effluent of pulp and paper industry was studied using upflow anaerobic filter. In this paper biodegradation of AOX at different concentrations and effect of electron donors like acetate and glucose thereon in an upflow anaerobic filter at 20 d HRT is described. Results showed significant improvement in AOX degradation when electron donors such as acetate and glucose were supplemented to the influent. AOX degradation was 88% at 28 mg AOX L(-1) and 28% at 42 mg AOX L(-1). The percent degradation efficiency was enhanced to 90.7, 90.2, and 93.0 at 28 mg AOX L(-1) when the influent was supplemented with glucose, acetate and both glucose and acetate, respectively. Similarly, the efficiency was 57, 56.6 and 79.6 at 42 mg AOX L(-1) when the influent was supplemented with glucose, acetate and both glucose and acetate, respectively. The GC-MS analysis data indicated that supplementation of the influent with electron donor increased the biodegradability of number of chlorinated organic compounds.

  11. An environment-friendly and multi-functional absorbent from chitosan for organic pollutants and heavy metal ion.

    PubMed

    Li, Ang; Lin, Runjun; Lin, Chong; He, Bianyang; Zheng, Tingting; Lu, Lingbin; Cao, Yang

    2016-09-05

    Developing environment-friendly green absorbents for disposal of wastewater remains to be studied. In this paper, the cross-linked chitosan aerogel (CsA) as an environment-friendly absorbent was obtained by a simple method involving cross-linked process and freeze drying technique. Compared with conventional absorbents, the porous chitosan aerogel was provided with unique properties such as low density (0.0283g/cm(3)), high porosity (97.98%) and outstanding adsorption performance. The chitosan aerogel also displayed good reusability and excellent elasticity with a maximal thickness recovery up to 96.8% of the original thickness. The as-prepared absorbent exhibited preferable adsorption capacities for crude oil, diesel and copper ion (41.07g/g, 31.07g/g and 21.38mg/g, respectively). The aerogel can collect a wide range of organic solvents and oils with absorption capacities up to 40 times their own weight, depending on the density and viscosity of the liquids. The adsorption capacity for heavy metal ion was also considerable and the maximum adsorption capacity (qm) of the aerogel for copper ion was 35.08mg/g according to Langmuir isotherm model. Consequently, the chitosan aerogel with versatile adsorption properties has a good potential for wastewater treatment in environmental application. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Generalized approach to absorbed dose calculations for dynamic tumor and organ masses.

    PubMed

    Goddu, S M; Howell, R W; Rao, D V

    1995-10-01

    Tumor absorbed dose calculations in radionuclide therapy are presently based on the assumption of static tumor mass. This work examines the effect of dynamic tumor mass (growth and/or shrinkage) on the absorbed dose. Tumor mass kinetic characteristics were modeled with the Gompertz equation to simulate tumor growth and an additional exponential term to accommodate tumor shrinkage that may result as a consequence of therapy. Correction factors, defined as the ratio of the absorbed dose, which was calculated by considering tumor mass dynamics, to the absorbed dose, which was calculated by assuming static mass, are presented for 1- and 100-g tumors with different tumor mass kinetics. The dependence of the correction factor on the effective half-life Te of the radioactivity in the tumor and the tumor shrinkage half-time Ts was examined. The correction factors for the 1-g tumor were > 1 for short Ts and Te. In contrast, the correction factor was less than 1 for long Ts ( > 9 days). The dose correction factors for the 100-g tumor were > 1 for all Ts and Te. Finally, the dosimetric method for dynamic masses is illustrated with experimental data on Chinese hamster V79 multicellular spheroids that were treated with 3H. Correction factors as high as about 10 are likely when Te and Ts are short. As Ts increases beyond 20 days, the importance of dynamic mass diminishes because most of the activity decays before the mass changes appreciably. In some cases, mass dynamics should be taken into account when the absorbed dose to tumors is estimated.

  13. Fabrication of Organic Radar Absorbing Materials: A Report on the TIF Project

    DTIC Science & Technology

    2005-05-01

    frequency dependent. The melt-injected material was macroscopically insulating with Maxwell-Wagner type relaxation. The relaxation frequency is...electrochemical deposits with p-Toluene sulfonic acid as the dopant.[205] Radar absorbing materials can be formed by loading an insulating polymer...1999, 4, 2622. (92) Jones, A. K., Wooding , E.R. IEEE Trans. Antennas and Propagation 1964, AP-12, 508. (93) Dallenbach, W.; Kleinsteuber, W. Hochfreq

  14. Nanocrystals of Cesium Lead Halide Perovskites (CsPbX₃, X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut.

    PubMed

    Protesescu, Loredana; Yakunin, Sergii; Bodnarchuk, Maryna I; Krieg, Franziska; Caputo, Riccarda; Hendon, Christopher H; Yang, Ruo Xi; Walsh, Aron; Kovalenko, Maksym V

    2015-06-10

    Metal halides perovskites, such as hybrid organic-inorganic CH3NH3PbI3, are newcomer optoelectronic materials that have attracted enormous attention as solution-deposited absorbing layers in solar cells with power conversion efficiencies reaching 20%. Herein we demonstrate a new avenue for halide perovskites by designing highly luminescent perovskite-based colloidal quantum dot materials. We have synthesized monodisperse colloidal nanocubes (4-15 nm edge lengths) of fully inorganic cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I or mixed halide systems Cl/Br and Br/I) using inexpensive commercial precursors. Through compositional modulations and quantum size-effects, the bandgap energies and emission spectra are readily tunable over the entire visible spectral region of 410-700 nm. The photoluminescence of CsPbX3 nanocrystals is characterized by narrow emission line-widths of 12-42 nm, wide color gamut covering up to 140% of the NTSC color standard, high quantum yields of up to 90%, and radiative lifetimes in the range of 1-29 ns. The compelling combination of enhanced optical properties and chemical robustness makes CsPbX3 nanocrystals appealing for optoelectronic applications, particularly for blue and green spectral regions (410-530 nm), where typical metal chalcogenide-based quantum dots suffer from photodegradation.

  15. Poly(trimethylsilylpropyne) utility as a polymeric absorbent for removal of trace organics from air and water sources

    SciTech Connect

    Robeson, L.M.; Langsam, M. )

    1992-08-01

    Poly(trimethylsilylpropyne), PTMSP, is well known to exhibit the highest permeability for gas and vapors of all dense polymeric systems. The high free volume observed yields extremely high diffusion coefficients for penetrating species. These properties have yielded interest for various gas and pervaporation membrane separation processes. It has been found that PTMSP also exhibits unique characteristics as a polymeric absorbent for removal of trace organics from air and water sources. The distribution coefficient for organics between the PTMSP phase and the water phase is extremely high for aliphatic, aromatic, and chlorinated hydrocarbons. In fact, PTMSP approaches activated carbon adsorbents in efficiency (much closer than other polymeric species). The removal of organics from PTMSP proceeds easier than activated carbon, and applications involving simple regeneration of a fixed bed may indeed be possible.

  16. Absorbed photon dose measurement and calculation for some patient organs examined by computed tomography

    NASA Astrophysics Data System (ADS)

    Shousha, Hany A.

    Patient doses from computed tomography (CT) examinations are usually expressed in terms of dose index, organ doses, and effective dose. The CT dose index (CTDI) can be measured free-in-air or in a CT dosimetry phantom. Organ doses can be measured directly in anthropomorphic Rando phantoms using thermoluminescent detectors. Organ doses can also be calculated by the Monte Carlo method utilizing measured CTDI values. In this work, organ doses were assessed for three main CT examinations: head, chest, and abdomen, using the different mentioned methods. Results of directly measured doses were compared with calculated doses for different organs in the study, and also compared with published international studies.

  17. Process for oxidation of hydrogen halides to elemental halogens

    DOEpatents

    Lyke, Stephen E.

    1992-01-01

    An improved process for generating an elemental halogen selected from chlorine, bromine or iodine, from a corresponding hydrogen halide by absorbing a molten salt mixture, which includes sulfur, alkali metals and oxygen with a sulfur to metal molar ratio between 0.9 and 1.1 and includes a dissolved oxygen compound capable of reacting with hydrogen halide to produce elemental halogen, into a porous, relatively inert substrate to produce a substrate-supported salt mixture. Thereafter, the substrate-supported salt mixture is contacted (stage 1) with a hydrogen halide while maintaining the substrate-supported salt mixture during the contacting at an elevated temperature sufficient to sustain a reaction between the oxygen compound and the hydrogen halide to produce a gaseous elemental halogen product. This is followed by purging the substrate-supported salt mixture with steam (stage 2) thereby recovering any unreacted hydrogen halide and additional elemental halogen for recycle to stage 1. The dissolved oxygen compound is regenerated in a high temperature (stage 3) and an optical intermediate temperature stage (stage 4) by contacting the substrate-supported salt mixture with a gas containing oxygen whereby the dissolved oxygen compound in the substrate-supported salt mixture is regenerated by being oxidized to a higher valence state.

  18. Two Dimensional Organometal Halide Perovskite Nanorods with Tunable Optical Properties.

    PubMed

    Aharon, Sigalit; Etgar, Lioz

    2016-05-11

    Organo-metal halide perovskite is an efficient light harvester in photovoltaic solar cells. Organometal halide perovskite is used mainly in its "bulk" form in the solar cell. Confined perovskite nanostructures could be a promising candidate for efficient optoelectronic devices, taking advantage of the superior bulk properties of organo-metal halide perovskite, as well as the nanoscale properties. In this paper, we present facile low-temperature synthesis of two-dimensional (2D) lead halide perovskite nanorods (NRs). These NRs show a shift to higher energies in the absorbance and in the photoluminescence compared to the bulk material, which supports their 2D structure. X-ray diffraction (XRD) analysis of the NRs demonstrates their 2D nature combined with the tetragonal 3D perovskite structure. In addition, by alternating the halide composition, we were able to tune the optical properties of the NRs. Fast Fourier transform, and electron diffraction show the tetragonal structure of these NRs. By varying the ligands ratio (e.g., octylammonium to oleic acid) in the synthesis, we were able to provide the formation mechanism of these novel 2D perovskite NRs. The 2D perovskite NRs are promising candidates for a variety of optoelectronic applications, such as light-emitting diodes, lasing, solar cells, and sensors.

  19. Radiobiologic risk estimation from dental radiology. Part I. Absorbed doses to critical organs

    SciTech Connect

    Underhill, T.E.; Chilvarquer, I.; Kimura, K.; Langlais, R.P.; McDavid, W.D.; Preece, J.W.; Barnwell, G.

    1988-07-01

    The aim of the present study was to generate one consistent set of data for evaluating and comparing radiobiologic risks from different dental radiographic techniques. To accomplish this goal, absorbed doses were measured in fourteen anatomic sites from (1) five different panoramic machines with the use of rare-earth screens, (2) a twenty-film complete-mouth survey with E-speed film, long round cone, (3) a twenty-film complete-mouth survey with E-speed film, long rectangular cone, (4) a four-film interproximal survey with E-speed film, long round cone, and (5) a four-film interproximal survey with E-speed film, long rectangular cone. The dose to the thyroid gland, the active bone marrow, the brain, and the salivary glands was evaluated by means of exposure of a tissue-equivalent phantom, fitted with lithium fluoride thermoluminescent dosimeters (TLDs) at the relevant locations.

  20. Radiobiologic risk estimation from dental radiology. Part I. Absorbed doses to critical organs.

    PubMed

    Underhill, T E; Chilvarquer, I; Kimura, K; Langlais, R P; McDavid, W D; Preece, J W; Barnwell, G

    1988-07-01

    The aim of the present study was to generate one consistent set of data for evaluating and comparing radiobiologic risks from different dental radiographic techniques. To accomplish this goal, absorbed doses were measured in fourteen anatomic sites from (1) five different panoramic machines with the use of rare-earth screens, (2) a twenty-film complete-mouth survey with E-speed film, long round cone, (3) a twenty-film complete-mouth survey with E-speed film, long rectangular cone, (4) a four-film interproximal survey with E-speed film, long round cone, and (5) a four-film interproximal survey with E-speed film, long rectangular cone. The dose to the thyroid gland, the active bone marrow, the brain, and the salivary glands was evaluated by means of exposure of a tissue-equivalent phantom, fitted with lithium fluoride thermoluminescent dosimeters (TLDs) at the relevant locations.

  1. Method for absorbing hydrogen using an oxidation resisant organic hydrogen getter

    DOEpatents

    Shepodd, Timothy J.; Buffleben, George M.

    2009-02-03

    A composition for removing hydrogen from an atmosphere, comprising a mixture of a polyphenyl ether and a hydrogenation catalyst, preferably a precious metal catalyst, and most preferably platinum, is disclosed. This composition is stable in the presence of oxygen, will not polymerize or degrade upon exposure to temperatures in excess of 200.degree. C., or prolonged exposure to temperatures in the range of 100-300.degree. C. Moreover, these novel hydrogen getter materials can be used to efficiently remove hydrogen from mixtures of hydrogen/inert gas (e.g., He, Ar, N.sub.2), hydrogen/ammonia atmospheres, such as may be encountered in heat exchangers, and hydrogen/carbon dioxide atmospheres. Water vapor and common atmospheric gases have no adverse effect on the ability of these getter materials to absorb hydrogen.

  2. High Open-Circuit Voltage Solar Cells Based on Organic-Inorganic Lead Bromide Perovskite.

    PubMed

    Edri, Eran; Kirmayer, Saar; Cahen, David; Hodes, Gary

    2013-03-21

    Mesoscopic solar cells, based on solution-processed organic-inorganic perovskite absorbers, are a promising avenue for converting solar to electrical energy. We used solution-processed organic-inorganic lead halide perovskite absorbers, in conjunction with organic hole conductors, to form high voltage solar cells. There is a dire need for low-cost cells of this type, to drive electrochemical reactions or as the high photon energy cell in a system with spectral splitting. These perovskite materials, although spin-coated from solution, form highly crystalline materials. Their simple synthesis, along with high chemical versatility, allows tuning their electronic and optical properties. By judicious selection of the perovskite lead halide-based absorber, matching organic hole conductor, and contacts, a cell with a ∼ 1.3 V open circuit voltage was made. While further study is needed, this achievement provides a general guideline for additional improvement of cell performance.

  3. On the Boiling Points of the Alkyl Halides.

    ERIC Educational Resources Information Center

    Correia, John

    1988-01-01

    Discusses the variety of explanations in organic chemistry textbooks of a physical property of organic compounds. Focuses on those concepts explaining attractive forces between molecules. Concludes that induction interactions play a major role in alkyl halides and other polar organic molecules and should be given wider exposure in chemistry texts.…

  4. On the Boiling Points of the Alkyl Halides.

    ERIC Educational Resources Information Center

    Correia, John

    1988-01-01

    Discusses the variety of explanations in organic chemistry textbooks of a physical property of organic compounds. Focuses on those concepts explaining attractive forces between molecules. Concludes that induction interactions play a major role in alkyl halides and other polar organic molecules and should be given wider exposure in chemistry texts.…

  5. An unusual copper(I) halide-based metal-organic framework with a cationic framework exhibiting the release/adsorption of iodine, ion-exchange and luminescent properties.

    PubMed

    Xin, Bingjing; Zeng, Guang; Gao, Lu; Li, Yun; Xing, Shanghua; Hua, Jia; Li, Guanghua; Shi, Zhan; Feng, Shouhua

    2013-06-07

    A copper(I) halide-based compound with a formula of [Cu4I3(DABCO)2]I3 (DABCO = N,N'-dimethyl-1,4-diazabicyclo[2.2.2]octane) has been prepared by solvothermal reactions. This compound has been characterized by single-crystal X-ray diffraction, elemental analysis, IR, TG, XPS and powder X-ray diffractions. Structure analyses reveal that this compound is constructed by unprecedented cationic cluster [Cu8I6](2+) and organic ligand DABCO and the channels of this compound are occupied by I2 and I(-). The guest I2 and I(-) can move freely in and out of the host-framework. UV/vis spectra confirm that the I2 molecules in the channels can release into some organic solvents and IR spectra confirm the I(-) was exchanged by SCN(-). In addition, the luminescent properties of this compound in the solid state have also been investigated.

  6. Two chemically distinct light-absorbing pools of urban organic aerosols: A comprehensive multidimensional analysis of trends.

    PubMed

    Paula, Andreia S; Matos, João T V; Duarte, Regina M B O; Duarte, Armando C

    2016-02-01

    The chemical and light-absorption dynamics of organic aerosols (OAs), a master variable in the atmosphere, have yet to be resolved. This study uses a comprehensive multidimensional analysis approach for exploiting simultaneously the compositional changes over a molecular size continuum and associated light-absorption (ultraviolet absorbance and fluorescence) properties of two chemically distinct pools of urban OAs chromophores. Up to 45% of aerosol organic carbon (OC) is soluble in water and consists of a complex mixture of fluorescent and UV-absorbing constituents, with diverse relative abundances, hydrophobic, and molecular weight (Mw) characteristics between warm and cold periods. In contrast, the refractory alkaline-soluble OC pool (up to 18%) is represented along a similar Mw and light-absorption continuum throughout the different seasons. Results suggest that these alkaline-soluble chromophores may actually originate from primary OAs sources in the urban site. This work shows that the comprehensive multidimensional analysis method is a powerful and complementary tool for the characterization of OAs fractions. The great diversity in the chemical composition and optical properties of OAs chromophores, including both water-soluble and alkaline-soluble OC, may be an important contribution to explain the contrasting photo-reactivity and atmospheric behavior of OAs.

  7. PREPARATION OF HALIDES OF PLUTONIUM

    DOEpatents

    Garner, C.S.; Johns, I.B.

    1958-09-01

    A dry chemical method is described for preparing plutonium halides, which consists in contacting plutonyl nitrate with dry gaseous HCl or HF at an elevated temperature. The addition to the reaction gas of a small quantity of an oxidizing gas or a reducing gas will cause formation of the tetra- or tri-halide of plutonium as desired.

  8. Changes in ultraviolet absorbance and hence in protective efficacy against lipid peroxidation of organic sunscreens after UVA irradiation.

    PubMed

    Damiani, Elisabetta; Rosati, Luca; Castagna, Riccardo; Carloni, Patricia; Greci, Lucedio

    2006-03-01

    Owing to the spectral distribution of solar UV, the UVA component of sunlight is now believed to be the main cause of photoaging and photocarcinogenesis and is much more effective than UVB in inducing peroxidative damage. Consequently, most skin care cosmetic products now include UVA filters in their formulations along with UVB filters. These modern sunscreens should provide and maintain their initial absorbance, hence protection, throughout the entire period of exposure to sunlight. However, not all UVA and UVB filters are sufficiently photostable. In this study, we examine the correlation between the photochemical degradation of sunscreen agents under UVA irradiation, with particular reference to the UVA-absorber 4-tert-butyl-4'-methoxydibenzoylmethane, alone and in combination with other organic UV filters (2-ethylhexyl 4 methoxycinnamate and 2-ethylhexyl 2-cyano-3,3-diphenylacrylate) and their ability to prevent UVA-induced lipid peroxidation. Since antioxidants are also added to formulations to deactivate free radicals generated during UVA exposure, vitamin E and the synthetic antioxidant, bis(2,2,6,6-tetramethyl-1-oxyl-piperidine-4-yl)sebacate, a nitroxide derivative, were also included in this study. By using simple in vitro tests, the results show that a decrease in spectral absorbance of the UV filters correlates in most cases with increased UVA-induced lipid peroxidation; this depends on the specific UV absorber analysed and also on whether they are alone or in combination. Furthermore, the combined presence or absence of antioxidants has a profound effect on this oxidative event. In particular, the nitroxide appears to be a more efficient photo-antioxidant than vitamin E. Similar experiments were also performed under natural sunlight and the results obtained did not differ substantially from those performed under UVA. The results presented and discussed in this work may help in understanding the effects of UVA/UVB absorbers and antioxidants upon the

  9. Halide laser glasses

    SciTech Connect

    Weber, M.J.

    1982-01-14

    Energy storage and energy extraction are of prime importance for efficient laser action and are affected by the line strengths and linewidths of optical transitions, excited-state lifetimes, nonradiative decay processes, spectroscopic inhomogeneities, nonlinear refractive index, and damage threshold. These properties are all host dependent. To illustrate this, the spectroscopic properties of Nd/sup 3 +/ have been measured in numerous oxide, oxyhalide, and halide glasses. A table summarizes the reported ranges of stimulated emission cross sections, peak wavelengths, linewidths, and radiative lifetimes associated with the /sup 4/F/sub 3/2/ ..-->.. /sup 4/I/sub 11/2/ lasing transition.

  10. Chiral Alkyl Halides: Underexplored Motifs in Medicine

    PubMed Central

    Gál, Bálint; Bucher, Cyril; Burns, Noah Z.

    2016-01-01

    While alkyl halides are valuable intermediates in synthetic organic chemistry, their use as bioactive motifs in drug discovery and medicinal chemistry is rare in comparison. This is likely attributable to the common misconception that these compounds are merely non-specific alkylators in biological systems. A number of chlorinated compounds in the pharmaceutical and food industries, as well as a growing number of halogenated marine natural products showing unique bioactivity, illustrate the role that chiral alkyl halides can play in drug discovery. Through a series of case studies, we demonstrate in this review that these motifs can indeed be stable under physiological conditions, and that halogenation can enhance bioactivity through both steric and electronic effects. Our hope is that, by placing such compounds in the minds of the chemical community, they may gain more traction in drug discovery and inspire more synthetic chemists to develop methods for selective halogenation. PMID:27827902

  11. Inorganic-organic solar cells based on quaternary sulfide as absorber materials.

    PubMed

    Hong, Tiantian; Liu, Zhifeng; Yan, Weiguo; Liu, Junqi; Zhang, Xueqi

    2015-12-14

    We report a novel promising quaternary sulfide (CuAgInS) to serve as a semiconductor sensitizer material in the photoelectrochemical field. In this study, CuAgInS (CAIS) sulfide sensitized ZnO nanorods were fabricated on ITO substrates through a facile and low-cost hydrothermal chemical method and applied on photoanodes for solar cells for the first time. The component and stoichiometry were key factors in determining the photoelectric performance of CAIS sulfide, which were controlled by modulating their reaction time. ZnO/Cu0.7Ag0.3InS2 nanoarrays exhibit an enhanced optical and photoelectric performance and the power conversion efficiency of ITO/ZnO/Cu0.7Ag0.3InS2/P3HT/Pt solid-state solar cell was up to 1.80%. The remarkable performance stems from improved electron transfer, a higher efficiency of light-harvesting and appropriate band gap alignment at the interface of the ZnO/Cu0.7Ag0.3InS2 NTs. The research indicates that CAIS as an absorbing material has enormous potential in solar cell systems.

  12. Optimization of UV absorptivity of layered double hydroxide by intercalating organic UV-absorbent molecules.

    PubMed

    Mohsin, Sumaiyah Megat Nabil; Hussein, Mohd Zobir; Sarijo, Siti Halimah; Fakurazi, Sharida; Arulselvan, Palanisamy; Taufiq-Yap, Yun Hin

    2014-08-01

    Intercalation of Zn/Al layered double hydroxide (LDH) with benzophenone 9 (B9), a strong ultraviolet (UV) absorber, had been carried out by two different routes; co-precipitation and ion exchange method. Powder X-ray diffraction (PXRD) patterns of co-precipitated (ZB9C) and ion exchanged product (ZB91) showed basal spacing of 15.9 angstrom and 16.6 angstrom, respectively, as a result of the intercalation of B9 anions into the lamellae spaces of LDH. Intercalation was further confirmed by Fourier transform infrared spectra (FTIR), carbon, hydrogen, nitrogen and sulfur (CHNS) and thermogravimetric and differential thermogravimetric (TGA/DTG) studies. UV-vis absorption properties of the nanocomposite was investigated with diffuse reflectance UV-visible spectrometer and showed broader UV absorption range. Furthermore, stability of sunscreen molecules in LDH interlayer space was tested in deionized water, artificial sea water and skin pH condition to show slow deintercalation and high retention in host. Cytotoxicity study of the synthesized nanocomposites on human dermal fibroblast (HDF) cells shows no significant cytotoxicity after 24 h exposure for test concentrations up to 25 microg/mL.

  13. UV-visible absorbance spectroscopy as a proxy for peatland dissolved organic carbon (DOC) quantity and quality: considerations on wavelength and absorbance degradation.

    PubMed

    Peacock, Mike; Evans, Chris D; Fenner, Nathalie; Freeman, Chris; Gough, Rachel; Jones, Timothy G; Lebron, Inma

    2014-05-01

    Absorbance in the UV or visible spectrum (UV-vis) is commonly used as a proxy for DOC concentrations in waters draining upland catchments. To determine the appropriateness of different UV-vis measurements we used surface and pore water samples from two Welsh peatlands in four different experiments: (i) an assessment of single wavelength proxies (1 nm increments between 230-800 nm) for DOC concentration demonstrated that 254 nm was more accurate than 400 nm. The highest R(2) values between absorbance and DOC concentration were generated using 263 nm for one sample set (R(2) = 0.91), and 230 nm for the other three sample sets (respective R(2) values of 0.86, 0.81, and 0.93). (ii) A comparison of different DOC concentration proxies, including single wavelength proxies, a two wavelength model, a proxy using phenolic concentration, and a proxy using the area under a UV spectrum at 250-350 nm. It was found that both a single wavelength proxy (≤263 nm) and a two wavelength model performed well for both pore water and surface water. (iii) An evaluation of the E2 : E3, E2 : E4, E4 : E6 ratios, and SUVA (absorbance at 254 nm normalised to DOC concentration) as indicators of DOC quality showed that the E4 : E6 ratio was subject to extensive variation over time, and was highly correlated between surface water and pore water, suggesting that it is a useful metric to determine temporal changes in DOC quality. (iv) A repeated weekly analysis over twelve weeks showed no consistent change in UV-vis absorbance, and therefore an inferred lack of degradation of total DOC in samples that were filtered and stored in the dark at 4 °C.

  14. Exhalation behavior of four organic substrates and water absorbed by human skin.

    PubMed

    Naitoh, Ken; Inai, Yoshihito; Hirabayashi, Tadamichi; Tsuda, Takao

    2002-07-01

    The simultaneous measurement of several volatile organic compounds and water released from the human skin can be achieved successfully by using a modified gas chromatographic system. After the thumb of each subject was dipped in aqueous solution containing acetone, diethyl ether, ethanol, and toluene, it was dried in the air. Then the thumb attached to the sampling probe for measuring the released gases. It is found that 90% of all these chemical substrates were desorbed after 20 min. The initial exhalation rate factor for each chemical substrate was determined in every subject. Correlation factors of the linear relationships between the initial exhalation rate for hydrophilic substrates (acetone and ethanol) and the total amount of water (TAW) released from the skin were 0.94 and 0.92, respectively. However, the rate of hydrophobic toluene was not dependent on the TAW. Therefore, the exhalation rate of substrates is greatly influenced by both their hydrophilicity and TAW. Additionally, an interesting personal specific character among the 6 subjects was observed on plotting the exhalation rate of organic substrates and water during the elapsed time. With the released water mostly due to insensible perspiration, the exhalation rate of all simultaneous organic substrates decreased monotonically over the elapsed time. On the contrary, when subjects sweated emotionally, the exhalation rate of organic substrates showed some variation, namely a higher of exhalation rate compared to the case of mostly due to insensible perspiration. Therefore, emotionally-induced sweating can enhance the release of organic substrates.

  15. Transparent Organic Photodetector using a Near-Infrared Absorbing Cyanine Dye

    PubMed Central

    Zhang, Hui; Jenatsch, Sandra; De Jonghe, Jelissa; Nüesch, Frank; Steim, Roland; Véron, Anna C.; Hany, Roland

    2015-01-01

    Organic photodetectors are interesting for low cost, large area optical sensing applications. Combining organic semiconductors with discrete absorption bands outside the visible wavelength range with transparent and conductive electrodes allows for the fabrication of visibly transparent photodetectors. Visibly transparent photodetectors can have far reaching impact in a number of areas including smart displays, window-integrated electronic circuits and sensors. Here, we demonstrate a near-infrared sensitive, visibly transparent organic photodetector with a very high average visible transmittance of 68.9%. The transmitted light of the photodetector under solar irradiation exhibits excellent transparency colour perception and rendering capabilities. At a wavelength of 850 nm and at −1 V bias, the photoconversion efficiency is 17% and the specific detectivity is 1012 Jones. Large area photodetectors with an area of 1.6 cm2 are demonstrated. PMID:25803320

  16. Study of two-photon excitation spectra of organic compounds absorbing in the UV region

    SciTech Connect

    Babenko, V A; Sychev, Andrei A

    2004-12-31

    A method is proposed for recording two-photon excitation (TPE) spectra of organic compounds with the help of picosecond pulses from a dye laser tunable in the range from 550 to 640 nm. The TPE spectra are obtained for organic scintillators and drugs: paraterphenyl in liquid and solid phases, stilbene single crystal and Streptocid powder, having a one-photon absorption band in the region from 270 to 350 nm. It is shown that the vibronic structure in the TPE spectra of these compounds is independent of their aggregate state and is an individual characteristic of each of the compounds. (active media)

  17. Light-absorbing soluble organic aerosol in Los Angeles and Atlanta: A contrast in secondary organic aerosol

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaolu; Lin, Ying-Hsuan; Surratt, Jason D.; Zotter, Peter; Prévôt, Andre S. H.; Weber, Rodney J.

    2011-11-01

    Light absorption spectra and carbon mass of fine particle water-soluble components were measured during the summer of 2010 in the Los Angeles (LA) basin, California, and Atlanta, Georgia. Fresh LA secondary organic carbon had a consistent brown color and a bulk absorption per soluble carbon mass at 365 nm that was 4 to 6 times higher than freshly-formed Atlanta soluble organic carbon. Radiocarbon measurements of filter samples show that LA secondary organic aerosol (SOA) was mainly from fossil carbon and chemical analysis of aqueous filter extracts identified nitro-aromatics as one component of LA brown SOA. Interpreting soluble brown carbon as a property of freshly-formed anthropogenic SOA, the difference in absorption per carbon mass between these two cities suggests most fresh secondary water-soluble organic carbon formed within Atlanta is not from an anthropogenic process similar to LA. Contrasting emissions of biogenic volatile organic compounds may account for these differences.

  18. Seasonal variations in the light-absorbing properties of water-soluble and insoluble organic aerosols in Seoul, Korea

    NASA Astrophysics Data System (ADS)

    Kim, Hwajin; Kim, Jin Young; Jin, Hyoun Cher; Lee, Ji Yi; Lee, Se Pyo

    2016-03-01

    The spectral properties of light-absorbing organic aerosol extractions were investigated using 24-h average fine particulate matter (PM2.5) measurements from October 2012 to September 2013 in Seoul, Korea. The light-absorption spectra of water and methanol extracts exhibited strong evidence of brown carbon with Absorption Angstrom Exponent (AAE; fitted between 300 and 700 nm) ranges of 5.84-9.17 and 4.08-5.75, with averages of 7.23 ± 1.58 and 5.05 ± 0.67, respectively. The light absorption of both extracts at 365 nm (Abs365), which is typically used as a proxy for brown carbon (BrC), displayed strong seasonal variations and was well correlated with both water-soluble organic carbon (WSOC; r = 0.81) and organic carbon (OC; r = 0.85), indicating that both primary and secondary organics were sources of BrC in this region. Normalizing the Abs365 of water and methanol extracts to the mass of WSOC and OC yielded average solution mass absorption efficiency (MAE365) of 0.28-1.18 and 0.44-1.45 m2 g-1 C, respectively. MAE365 in Korea were in the same range or slightly lower than those in China, however, despite the same ranges, the seasonal variations were different, suggesting that the sources of light absorbers could be different. Combining the AAE, Abs365, and MAE365 of both extracts and a detailed chemical speciation of filter extracts identified the compounds responsible for the temporal variations of BrC in Korea. During summer, secondary organic aerosol (SOA), photochemically generated from anthropogenic emissions, was the major source; however, during winter, long range transported organics or transported BrC seem to be a source of BrC in Korea, a downwind site of China, where severe smog and BrC were observed during this season. Biomass burning was also an important source; however, unlike in previous studies, where it was identified as a major source during winter, here, it contributed during the whole year. Although many of its properties, sources, and potential

  19. Organic molecules and nanoparticles in inorganic crystals: Vitamin C in CaCO3 as an ultraviolet absorber

    NASA Astrophysics Data System (ADS)

    Sato, H.; Ikeya, M.

    2004-03-01

    Organic molecules and nanoparticles embedded in inorganic crystalline lattices have been studied to add different properties and functions to composite materials. Calcium carbonate was precipitated by dropping an aqueous solution of CaCl2 into that of Na2CO3 containing dissolved vitamin C (ascorbic acid). The optical absorption ascribed to divalent ascorbate anions in the lattice was observed in the ultraviolet B (wavelength: 280-315 nm) region, while solid vitamin C exhibited absorption in the ultraviolet C (100-280 nm) region. The divalent ascorbate anion is only stable in CaCO3 due to the absence of oxygen molecules. Doping CaCO3 with nanoparticles of ZnO also enhanced the absorption in the ultraviolet A (315-380 nm) region. These composite materials are suggested for use as UV absorbers.

  20. Synthesis and characterization of a sphere-like modified chitosan and acrylate resin composite for organics absorbency

    NASA Astrophysics Data System (ADS)

    Xin, S. S.; Wang, Y. H.; Li, Q. R.; Zhang, Q.; Wang, X. P.

    2015-07-01

    In this study, the chitosan (deacetylation degree >95%) was modified with vinyltriethoxysilane (A151) and became hydrophobic. The modified chitosan and acrylate resin composite can be synthesized by butyl methacrylate (BMA), butyl acrylate (BA), poly vinyl alcoho(PVA), N,N’-methylene bisacrylamide (MBA), benzoyl peroxide (BPO), and ethyl acetate under microwave irradiation. The optimal synthetic condition was as follows: the molar ratio of BA and BMA was 1.5:1, the dosage of ethyl acetate, PVA, MBA, BPO and modified chitosan were 50 wt.%, 10 wt.%, 1.5 wt.%, 2.0 wt.% and 1.0 wt.% of monomers, respectively. The adsorption capacity of the composite for CHCl3 and CCl4 were approximate to 53 g/g and 44 g/g, respectively. The organics absorbency and regeneration of the samples were also tested, and the samples were characterized by analysis of the scanning electron microscope and simultaneous thermo gravimetric/differential thermal.

  1. Silver-halide gelatin holograms

    NASA Astrophysics Data System (ADS)

    Chang, B. J.; Winick, K.

    1980-05-01

    The use of a silver-halide gelatin for volume phase holograms having a wide spectral response and lower exposure requirements than alternatives and using commercially available silver salts, is proposed. The main difference between the dichromated gelatin and silver-halide processes is the creation of a hologram latent image, which is given in the form of a hardness differential between exposed and unexposed regions in the silver halide hologram; the differential is in turn created by the reaction products of either tanning development or tanning bleach, which harden the gelatin with link-bonds between molecules.

  2. DURIP97 Instrumentation for Characterization of Two-Photon Absorbing Organic Materials

    DTIC Science & Technology

    2007-11-02

    Room Bl 15 Boiling AFB DC 20332- 8050 5 . FUNDING NUMBERS AFOSR Grant F49620-97-1-0200 8. PERFORMING ORGANIZATION REPORT NUMBER 11. SUPPLEMENTARY...REPORT 1 Final Technical ...u DATES CUVCHED 4/1/97 - 3/ 31 /98 4. TITLE AND SUBTITLE DURIP97 Instrumentation for Characterization of Two-Photon...in great demand for variety-of applications including, two-photon excited fluorescence microscopy (7- 4), optical limiting ( 5 - 7), three-dimensional

  3. Method 415.3, Rev. 1.2: Determination of Total Organic Carbon and Specific UV Absorbance at 254 nm in Source Water and Drinking Water

    EPA Science Inventory

    This method provides procedures for the determination of total organic carbon (TOC), dissolved organic carbon (DOC), and UV absorption at 254 nm (UVA) in source waters and drinking waters. The DOC and UVA determinations are used in the calculation of the Specific UV Absorbance (S...

  4. Method 415.3, Rev. 1.2: Determination of Total Organic Carbon and Specific UV Absorbance at 254 nm in Source Water and Drinking Water

    EPA Science Inventory

    This method provides procedures for the determination of total organic carbon (TOC), dissolved organic carbon (DOC), and UV absorption at 254 nm (UVA) in source waters and drinking waters. The DOC and UVA determinations are used in the calculation of the Specific UV Absorbance (S...

  5. Systematic analysis of the unique band gap modulation of mixed halide perovskites.

    PubMed

    Kim, Jongseob; Lee, Sung-Hoon; Chung, Choong-Heui; Hong, Ki-Ha

    2016-02-14

    Solar cells based on organic-inorganic hybrid metal halide perovskites have been proven to be one of the most promising candidates for the next generation thin film photovoltaic cells. Mixing Br or Cl into I-based perovskites has been frequently tried to enhance the cell efficiency and stability. One of the advantages of mixed halides is the modulation of band gap by controlling the composition of the incorporated halides. However, the reported band gap transition behavior has not been resolved yet. Here a theoretical model is presented to understand the electronic structure variation of metal mixed-halide perovskites through hybrid density functional theory. Comparative calculations in this work suggest that the band gap correction including spin-orbit interaction is essential to describe the band gap changes of mixed halides. In our model, both the lattice variation and the orbital interactions between metal and halides play key roles to determine band gap changes and band alignments of mixed halides. It is also presented that the band gap of mixed halide thin films can be significantly affected by the distribution of halide composition.

  6. Structural Instabilities Related to Highly Anharmonic Phonons in Halide Perovskites.

    PubMed

    Marronnier, Arthur; Lee, Heejae; Geffroy, Bernard; Even, Jacky; Bonnassieux, Yvan; Roma, Guido

    2017-06-15

    Hybrid perovskites have emerged over the past five years as absorber layers for novel high-efficiency low-cost solar cells combining the advantages of organic and inorganic semiconductors. Unfortunately, electrical transport in these materials is still poorly understood. Employing the linear response approach of density functional theory, we reveal strong anharmonic effects and a double-well phonon instability at the center of the Brillouin zone for both cubic and orthorhombic phases of inorganic CsPbI3. Previously reported soft phonon modes are stabilized at the actual lower-symmetry equilibrium structure, which occurs in a very flat energy landscape, highlighting the strong competition between the different phases of CsPbI3. Factoring these low-energy phonons into electron-phonon interactions and band gap calculations could help better understand the electrical transport properties in these materials. Furthermore, the perovskite oscillations through the corresponding energy barrier could explain the underlying ferroelectricity and the dynamical Rashba effect predicted in halide perovskites for photovoltaics.

  7. Actinide halide complexes

    SciTech Connect

    Avens, L.R.; Zwick, B.D.; Sattelberger, A.P.; Clark, D.L.; Watkin, J.G.

    1991-02-07

    A compound of the formula MX{sub n}L{sub m} wherein M = Th, Pu, Np,or Am thorium, X = a halide atom, n = 3 or 4, L is a coordinating ligand selected from the group consisting of aprotic Lewis bases having an oxygen-, nitrogen-, sulfur-, or phosphorus-donor, and m is 3 or 4 for monodentate ligands or is 2 for bidentate ligands, where n + m = 7 or 8 for monodentate ligands or 5 or 6 for bidentate ligands, a compound of the formula MX{sub n} wherein M, X, and n are as previously defined, and a process of preparing such actinide metal compounds including admixing the actinide metal in an aprotic Lewis base as a coordinating solvent in the presence of a halogen-containing oxidant, are provided.

  8. NIR Absorbing Metal-Free Organic, Porphyrin, and Phthalocyanine Dyes for Panchromatic DSCs.

    PubMed

    Brogdon, Phillip; Cheema, Hammad; Delcamp, Jared Heath

    2017-09-19

    Dye-sensitized solar cells (DSCs) are a promising source of renewable energy. However, power conversion efficiency (PCE) of devices has been limited largely by the difficulty of producing electricity using photons from the near-infrared (NIR) spectral region. Metal-free organic sensitizers frequently employ strong electron donating or withdrawing moieties to tune the optical band gap to allow the absorption of lower energy wavelengths in charge transfer systems while porphyrins and phthalocyanines use substituents to shift the Soret and Q bands toward lower energy absorption. Very few devices employing precious metal free dyes have been able to achieve panchromatic, NIR photon conversion for electricity generation at wavelengths >750 nm despite a tremendous number of sensitizers published over last 25 years. This minireview seeks to compile a summary of these sensitizers to encourage assimilation, analysis and development of efficient future NIR sensitizers. Herein, we discuss common synthetic strategies, optical properties and electronic properties of the most successful panchromatic organic sensitizers in this regard. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Enhancing the carrier thermalization time in organometallic perovskites by halide mixing.

    PubMed

    Madjet, Mohamed El-Amine; Akimov, Alexey V; El-Mellouhi, Fadwa; Berdiyorov, Golibjon R; Ashhab, Sahel; Tabet, Nouar; Kais, Sabre

    2016-02-21

    Hybrid metal-organic halide perovskites have recently attracted a great deal of attention because of their interesting electronic, optical and transport properties, which make them promising materials for high-performance, low-cost solar cells. Fundamental understanding of the formation mechanisms and dynamics of photoinduced charge carriers is essential for improving the performance of perovskite solar cell devices. For example, a significant amount of absorbed solar energy is lost as a result of carrier thermalization. This energy could be harnessed by extracting hot carriers before they cool down to the band edges. Although such hot carrier collection is experimentally challenging, theoretical investigations based on time-dependent methods can guide future experimental research by providing insights into the thermalization process. Here, we perform ab initio nonadiabatic molecular dynamics simulations to study non-radiative relaxation dynamics of charge carriers in hybrid halide perovskites. We find that the carrier relaxation time can be considerably increased by mixing halogen atoms in the perovskite materials. These findings show that simple approaches could be adopted to slow down the thermalization process of hot carriers in perovskite materials.

  10. A Bismuth-Halide Double Perovskite with Long Carrier Recombination Lifetime for Photovoltaic Applications.

    PubMed

    Slavney, Adam H; Hu, Te; Lindenberg, Aaron M; Karunadasa, Hemamala I

    2016-02-24

    Despite the remarkable rise in efficiencies of solar cells containing the lead-halide perovskite absorbers RPbX3 (R = organic cation; X = Br(-) or I(-)), the toxicity of lead remains a concern for the large-scale implementation of this technology. This has spurred the search for lead-free materials with similar optoelectronic properties. Here, we use the double-perovskite structure to incorporate nontoxic Bi(3+) into the perovskite lattice in Cs2AgBiBr6 (1). The solid shows a long room-temperature fundamental photoluminescence (PL) lifetime of ca. 660 ns, which is very encouraging for photovoltaic applications. Comparison between single-crystal and powder PL decay curves of 1 suggests inherently high defect tolerance. The material has an indirect bandgap of 1.95 eV, suited for a tandem solar cell. Furthermore, 1 is significantly more heat and moisture stable compared to (MA)PbI3. The extremely promising optical and physical properties of 1 shown here motivate further exploration of both inorganic and hybrid halide double perovskites for photovoltaics and other optoelectronics.

  11. Local polar fluctuations in lead halide perovskite crystals

    DOE PAGES

    Yaffe, Omer; Guo, Yinsheng; Tan, Liang Z.; ...

    2017-03-28

    Hybrid lead-halide perovskites have emerged as an excellent class of photovoltaic materials. Recent reports suggest that the organic molecular cation is responsible for local polar fluctuations that inhibit carrier recombination. We combine low-frequency Raman scattering with first-principles molecular dynamics (MD) to study the fundamental nature of these local polar fluctuations. Our observations of a strong central peak in the cubic phase of both hybrid (CH3NH3PbBr3) and all-inorganic (CsPbBr3) lead-halide perovskites show that anharmonic, local polar fluctuations are intrinsic to the general lead-halide perovskite structure, and not unique to the dipolar organic cation. Furthermore, MD simulations indicate that head-to-head Cs motionmore » coupled to Br face expansion, occurring on a few hundred femtosecond time scale, drives the local polar fluctuations in CsPbBr3.« less

  12. METHOD OF PREPARING METAL HALIDES

    DOEpatents

    Hendrickson, A.V.

    1958-11-18

    The conversion of plutonium halides from plutonium peroxide can be done by washing the peroxide with hydrogen peroxide, drying the peroxide, passing a dry gaseous hydrohalide over the surface of the peroxide at a temperature of about lOO icient laborato C until the reaction rate has stabillzed, and then ralsing the reaction temperature to between 400 and 600 icient laborato C until the conversion to plutonium halide is substantially complete.

  13. Silver-Halide Gelatin Holograms.

    DTIC Science & Technology

    1980-02-01

    PREPARATION OF R-10 TYPE BLEACHES Stock Solution A: Distilled water - 500 ml Ammonium dichromate - 20g Concentrated sulfuric acid - 14 ml Distilled water to...for the preparation of a bleach solution 5 Rinse in running water for 15 seconds Red Light 6 Soak in 0.5% ammonium dichromate for 5 minutes Red Light...those of con- ventional dichromated gelatin holograms, can be formed employing commercial silver-halide films. Major advantages of silver-halide

  14. A new carboxyl-copper-organic framework and its excellent selective absorbability for proteins

    SciTech Connect

    Yang, Linyan; Xin, Liangliang; Gu, Wen; Tian, Jinlei; Liao, Shengyun; Du, Peiyao; Tong, Yuzhang; Zhang, Yanping; Lv, Rui; Wang, Jingyao; Liu, Xin

    2014-10-15

    One-pot solvothermal treatments of CuCl{sub 2}·2H{sub 2}O, H{sub 2}L (5-(3-methyl-5-(pyridin-4-yl)-4H-1,2,4-triazol-4-yl) isophthalic acid) and Sm(NO{sub 3}){sub 3}·6H{sub 2}O in water yielded a rare carboxyl-copper-organic framework, [Cu(HL)]{sub n}·nH{sub 2}O (1). The existence of carboxyl groups in compound 1 may be due to the interference of Sm(NO{sub 3}){sub 3}·6H{sub 2}O at the relatively high temperature and autogenous pressure of the reaction. Compound 1 has been characterized by single-crystal X-ray diffraction, PXRD, IR, and elemental analysis. Compound 1 is a 3D coordination polymer, and an xfe-4-Fddd, (4{sup 2}.6.8{sup 3}) topology in 1 is created. In addition, the optical properties have been investigated. Rhodamine B dyeing experiments exhibited that there were residual carboxyl groups on the surface of compound 1. UV–vis results showed that more lysozyme was adsorbed onto the surface of compound 1 than BSA at pH 7.4. At the same time, XPS spectra were also investigated to verify the results. - Graphical abstract: One-pot solvothermal treatments of CuCl{sub 2}·2H{sub 2}O, H2L (5-(3-methyl-5-(pyridin-4-yl)-4H-1, 2, 4-triazol-4-yl) isophthalic acid) and Sm(NO{sub 3}){sub 3}·6H{sub 2}O in water yielded a rare carboxyl-copper-organic framework, [Cu(HL)]n·nH{sub 2}O (1). The existence of carboxyl groups in compound 1 may be due to the interference of Sm(NO{sub 3}){sub 3}·6H{sub 2}O at the relatively high temperature and autogenous pressure of the reaction. Compound 1 has been characterized by single-crystal X-ray diffraction, XRPD, IR, and elemental analysis. Compound 1 is a 3D coordination polymer, and an xfe-4-Fddd, (4{sup 2}.6.8{sup 3}) topology in 1 is created. In addition, the optical properties have been investigated. Rhodamine B dyeing experiments exhibited that there were residual carboxyl groups on the surface of compound 1. UV-vis results showed that more lysozyme was adsorbed onto the surface of compound 1 than that of BSA at pH 7

  15. Making and Breaking of Lead Halide Perovskites.

    PubMed

    Manser, Joseph S; Saidaminov, Makhsud I; Christians, Jeffrey A; Bakr, Osman M; Kamat, Prashant V

    2016-02-16

    A new front-runner has emerged in the field of next-generation photovoltaics. A unique class of materials, known as organic metal halide perovskites, bridges the gap between low-cost fabrication and exceptional device performance. These compounds can be processed at low temperature (typically in the range 80-150 °C) and readily self-assemble from the solution phase into high-quality semiconductor thin films. The low energetic barrier for crystal formation has mixed consequences. On one hand, it enables inexpensive processing and both optical and electronic tunability. The caveat, however, is that many as-formed lead halide perovskite thin films lack chemical and structural stability, undergoing rapid degradation in the presence of moisture or heat. To date, improvements in perovskite solar cell efficiency have resulted primarily from better control over thin film morphology, manipulation of the stoichiometry and chemistry of lead halide and alkylammonium halide precursors, and the choice of solvent treatment. Proper characterization and tuning of processing parameters can aid in rational optimization of perovskite devices. Likewise, gaining a comprehensive understanding of the degradation mechanism and identifying components of the perovskite structure that may be particularly susceptible to attack by moisture are vital to mitigate device degradation under operating conditions. This Account provides insight into the lifecycle of organic-inorganic lead halide perovskites, including (i) the nature of the precursor solution, (ii) formation of solid-state perovskite thin films and single crystals, and (iii) transformation of perovskites into hydrated phases upon exposure to moisture. In particular, spectroscopic and structural characterization techniques shed light on the thermally driven evolution of the perovskite structure. By tuning precursor stoichiometry and chemistry, and thus the lead halide charge-transfer complexes present in solution, crystallization

  16. Formation of Nitrogen- and Sulfur-Containing Light-Absorbing Compounds Accelerated by Evaporation of Water from Secondary Organic Aerosols

    SciTech Connect

    Nguyen, Tran B.; Lee, Paula B.; Updyke, Katelyn M.; Bones, David L.; Laskin, Julia; Laskin, Alexander; Nizkorodov, Sergey

    2012-01-14

    Aqueous extracts of secondary organic aerosols (SOA) generated from the ozonolysis of dlimonene were subjected to dissolution, evaporation, and re-dissolution in the presence and absence of ammonium sulfate (AS). Evaporation with AS at pH 4-9 produced chromophores that were stable with respect to hydrolysis and had a distinctive absorption band at 500 nm. Evaporation accelerated the rate of chromophore formation by at least three orders of magnitude compared to the reaction in aqueous solution, which produced similar compounds. Absorption spectroscopy and high-resolution nanospray desorption electrospray ionization (nano-DESI) mass spectrometry experiments suggested that the molar fraction of the chromophores was small (< 2%), and that they contained nitrogen atoms. Although the colored products represented only a small fraction of SOA, their large extinction coefficients (>10{sup 5} L mol{sup -1} cm{sup -1} at 500 nm) increased the effective mass absorption coefficient of the residual organics in excess of 10{sup 3} cm{sup 2} g{sup -1} - a dramatic effect on the optical properties from minor constituents. Evaporation of SOA extracts in the absence of AS resulted in the production of colored compounds only when the SOA extract was acidified to pH {approx} 2 with sulfuric acid. These chromophores were produced by acid-catalyzed aldol condensation, followed by a conversion into organosulfates. The presence of organosulfates was confirmed by high resolution mass spectrometry experiments. Results of this study suggest that evaporation of cloud or fog droplets containing dissolved organics leads to significant modification of the molecular composition and serves as a potentially important source of light-absorbing compounds.

  17. Chemical characteristics and light-absorbing property of water-soluble organic carbon in Beijing: Biomass burning contributions

    NASA Astrophysics Data System (ADS)

    Yan, Caiqing; Zheng, Mei; Sullivan, Amy P.; Bosch, Carme; Desyaterik, Yury; Andersson, August; Li, Xiaoying; Guo, Xiaoshuang; Zhou, Tian; Gustafsson, Örjan; Collett, Jeffrey L.

    2015-11-01

    Emissions from biomass burning contribute significantly to water-soluble organic carbon (WSOC) and light-absorbing organic carbon (brown carbon). Ambient atmospheric samples were collected at an urban site in Beijing during winter and summer, along with source samples from residential crop straw burning. Carbonaceous aerosol species, including organic carbon (OC), elemental carbon (EC), WSOC and multiple saccharides as well as water-soluble potassium (K+) in PM2.5 (fine particulate matter with size less than 2.5 μm) were measured. Chemical signatures of atmospheric aerosols in Beijing during winter and summer days with significant biomass burning influence were identified. Meanwhile, light absorption by WSOC was measured and quantitatively compared to EC at ground level. The results from this study indicated that levoglucosan exhibited consistently high concentrations (209 ± 145 ng m-3) in winter. Ratios of levoglucosan/mannosan (L/M) and levoglucosan/galacosan (L/G) indicated that residential biofuel use is an important source of biomass burning aerosol in winter in Beijing. Light absorption coefficient per unit ambient WSOC mass calculated at 365 nm is approximately 1.54 ± 0.16 m2 g-1 in winter and 0.73 ± 0.15 m2 g-1 in summer. Biomass burning derived WSOC accounted for 23 ± 7% and 16 ± 7% of total WSOC mass, and contributed to 17 ± 4% and 19 ± 5% of total WSOC light absorption in winter and summer, respectively. It is noteworthy that, up to 30% of total WSOC light absorption was attributed to biomass burning in significant biomass-burning-impacted summer day. Near-surface light absorption (over the range 300-400 nm) by WSOC was about ∼40% of that by EC in winter and ∼25% in summer.

  18. Formation of nitrogen- and sulfur-containing light-absorbing compounds accelerated by evaporation of water from secondary organic aerosols

    NASA Astrophysics Data System (ADS)

    Nguyen, Tran B.; Lee, Paula B.; Updyke, Katelyn M.; Bones, David L.; Laskin, Julia; Laskin, Alexander; Nizkorodov, Sergey A.

    2012-01-01

    Aqueous extracts of secondary organic aerosols (SOA) generated from the ozonolysis of d-limonene were subjected to dissolution, evaporation, and re-dissolution in the presence and absence of ammonium sulfate (AS). Evaporation with AS at pH 4-9 produced chromophores that were stable with respect to hydrolysis and had a distinctive absorption band at 500 nm. Evaporation accelerated the rate of chromophore formation by at least three orders of magnitude compared to the reaction in aqueous solution, which produced similar compounds. Absorption spectroscopy and high-resolution nanospray desorption electrospray ionization (nano-DESI) mass spectrometry experiments suggested that the molar fraction of the chromophores was small (<2%), and that they contained nitrogen atoms. Although the colored products represented only a small fraction of SOA, their large extinction coefficients (>105 L mol-1 cm-1 at 500 nm) increased the effective mass absorption coefficient of the residual organics in excess of 103 cm2 g-1 - a dramatic effect on the optical properties from minor constituents. Evaporation of SOA extracts in the absence of AS resulted in the production of colored compounds only when the SOA extract was acidified to pH ˜ 2 with sulfuric acid. These chromophores were produced by acid-catalyzed aldol condensation, followed by a conversion into organosulfates. The presence of organosulfates was confirmed by high resolution mass spectrometry experiments. Results of this study suggest that evaporation of cloud or fog droplets containing dissolved organics leads to significant modification of the molecular composition and serves as a potentially important source of light-absorbing compounds.

  19. Methyl Halide Production by Fungi

    NASA Astrophysics Data System (ADS)

    Dailey, G. D.; Varner, R. K.; Blanchard, R. O.; Sive, B. C.; Crill, P. M.

    2005-12-01

    Methyl chloride (CH3Cl), methyl bromide (CH3Br) and methyl iodide (CH3I) are methyl halide gases that contribute significant amounts of halogen radicals to the atmosphere. In an effort to better understand the global budget of methyl halides and their impact on the atmosphere, we need to identify the natural sources in addition to the known anthropogenic sources of these compounds. We are investigating the role of fungi in the production of methyl halides in the soils and wetlands in southern New Hampshire, USA. Previous research has shown that wood decay fungi and ectomycorrhizal fungi, which are within a group of fungi called basidiomycetes, emit methyl halides. In our study, measurements of headspace gas extracted from flasks containing fungi grown in culture demonstrate that a variety of fungi, including basidiomycetes and non-basidiomycetes, emit methyl halides. Our research sites include four ecosystems: an agricultural field, a temperate forest, a fresh water wetland, and coastal salt marshes. We have collected and isolated fungi at each site by culturing tissue samples of fruiting bodies and plant material, by using wood baits, and from the direct culture of soil. We compared the rates of methyl halide emissions from the fungi in the four ecosystems. In addition, we measured emissions from previously assayed fungal isolates after reintroducing them to sterilized soils that were collected from their original environments. Fungal biomass was determined by substrate-induced respiration (SIR). The emission rate by the fungus was determined by a linear regression of the concentration of methyl halide in the sample headspace over time divided by the fungal biomass.

  20. Actinide halide complexes

    DOEpatents

    Avens, L.R.; Zwick, B.D.; Sattelberger, A.P.; Clark, D.L.; Watkin, J.G.

    1992-11-24

    A compound is described of the formula MX[sub n]L[sub m] wherein M is a metal atom selected from the group consisting of thorium, plutonium, neptunium or americium, X is a halide atom, n is an integer selected from the group of three or four, L is a coordinating ligand selected from the group consisting of aprotic Lewis bases having an oxygen-, nitrogen-, sulfur-, or phosphorus-donor, and m is an integer selected from the group of three or four for monodentate ligands or is the integer two for bidentate ligands, where the sum of n+m equals seven or eight for monodentate ligands or five or six for bidentate ligands. A compound of the formula MX[sub n] wherein M, X, and n are as previously defined, and a process of preparing such actinide metal compounds are described including admixing the actinide metal in an aprotic Lewis base as a coordinating solvent in the presence of a halogen-containing oxidant.

  1. Actinide halide complexes

    DOEpatents

    Avens, Larry R.; Zwick, Bill D.; Sattelberger, Alfred P.; Clark, David L.; Watkin, John G.

    1992-01-01

    A compound of the formula MX.sub.n L.sub.m wherein M is a metal atom selected from the group consisting of thorium, plutonium, neptunium or americium, X is a halide atom, n is an integer selected from the group of three or four, L is a coordinating ligand selected from the group consisting of aprotic Lewis bases having an oxygen-, nitrogen-, sulfur-, or phosphorus-donor, and m is an integer selected from the group of three or four for monodentate ligands or is the integer two for bidentate ligands, where the sum of n+m equals seven or eight for monodentate ligands or five or six for bidentate ligands, a compound of the formula MX.sub.n wherein M, X, and n are as previously defined, and a process of preparing such actinide metal compounds including admixing the actinide metal in an aprotic Lewis base as a coordinating solvent in the presence of a halogen-containing oxidant, are provided.

  2. Organ/Tissue absorbed doses measured with a human phantom torso in the 9th Shuttle-Mir Mission (STS-91).

    PubMed

    Yasuda, H; Komiyama, T; Fujitaka, K

    1999-09-01

    Organ/Tissue absorbed doses were measured with a life-size human phantom torso in the 9th Shuttle/Mir Mission (STS-91) from June 2 to 12, 1998. This is the first attempt to measure directly organ/tissue doses over a whole human body in space. The absorbed dose was measured by combination of two integrating detectors: thermo- luminescent dosemeter of Mg2SiO4: Tb (TDMS) and plastic nuclear track detector (PNTD). Both detectors were calibrated on ground using high-energy charged-particle beams. The detectors were packed in 59 cases of tissue-equivalent resin; and put into the positions of radiologically important organs and tissues in the phantom. Efficiency reductions of TDMS for high-LET particles were corrected based on the LET-differential particle fluence of space radiation measured with PNTDs. The accumulated absorbed doses during this 9.8-days mission at low-earth orbit (400 km x 51.6 degrees) ranged from 1.6 mGy at colon to 2.6 mGy at bone surface (shoulder) with a variation factor of 1.6. The absorbed doses at some internal organs were higher than the skin dose. This fact is important from the viewpoint of radiological protection for astronauts.

  3. Semiempirical and DFT Investigations of the Dissociation of Alkyl Halides

    ERIC Educational Resources Information Center

    Waas, Jack R.

    2006-01-01

    Enthalpy changes corresponding to the gas phase heats of dissociation of 12 organic halides were calculated using two semiempirical methods, the Hartree-Fock method, and two DFT methods. These calculated values were compared to experimental values where possible. All five methods agreed generally with the expected empirically known trends in the…

  4. Semiempirical and DFT Investigations of the Dissociation of Alkyl Halides

    ERIC Educational Resources Information Center

    Waas, Jack R.

    2006-01-01

    Enthalpy changes corresponding to the gas phase heats of dissociation of 12 organic halides were calculated using two semiempirical methods, the Hartree-Fock method, and two DFT methods. These calculated values were compared to experimental values where possible. All five methods agreed generally with the expected empirically known trends in the…

  5. Laser Direct Write Synthesis of Lead Halide Perovskites

    DOE PAGES

    Chou, Stanley S.; Swartzentruber, Brian S.; Janish, Matthew T.; ...

    2016-09-05

    Lead halide perovskites are increasingly considered for applications beyond photovoltaics, for example, light emission and detection, where an ability to pattern and prototype microscale geometries can facilitate the incorporation of this class of materials into devices. In this study, we demonstrate laser direct write of lead halide perovskites, a remarkably simple procedure that takes advantage of the inverse dependence between perovskite solubility and temperature by using a laser to induce localized heating of an absorbing substrate. We also demonstrate arbitrary pattern formation of crystalline CH3NH3PbBr3 on a range of substrates and fabricate and characterize a microscale photodetector using this approach.more » This direct write methodology provides a path forward for the prototyping and production of perovskite-based devices.« less

  6. Laser Direct Write Synthesis of Lead Halide Perovskites

    SciTech Connect

    Chou, Stanley S.; Swartzentruber, Brian S.; Janish, Matthew T.; Meyer, Kristin C.; Biedermann, Laura B.; Okur, Serdal; Burckel, D. Bruce; Carter, C. Barry; Kaehr, Bryan

    2016-09-05

    Lead halide perovskites are increasingly considered for applications beyond photovoltaics, for example, light emission and detection, where an ability to pattern and prototype microscale geometries can facilitate the incorporation of this class of materials into devices. In this study, we demonstrate laser direct write of lead halide perovskites, a remarkably simple procedure that takes advantage of the inverse dependence between perovskite solubility and temperature by using a laser to induce localized heating of an absorbing substrate. We also demonstrate arbitrary pattern formation of crystalline CH3NH3PbBr3 on a range of substrates and fabricate and characterize a microscale photodetector using this approach. This direct write methodology provides a path forward for the prototyping and production of perovskite-based devices.

  7. Laser Direct Write Synthesis of Lead Halide Perovskites.

    PubMed

    Chou, Stanley S; Swartzentruber, Brian S; Janish, Matthew T; Meyer, Kristin C; Biedermann, Laura B; Okur, Serdal; Burckel, D Bruce; Carter, C Barry; Kaehr, Bryan

    2016-10-06

    Lead halide perovskites are increasingly considered for applications beyond photovoltaics, for example, light emission and detection, where an ability to pattern and prototype microscale geometries can facilitate the incorporation of this class of materials into devices. Here we demonstrate laser direct write of lead halide perovskites, a remarkably simple procedure that takes advantage of the inverse dependence between perovskite solubility and temperature by using a laser to induce localized heating of an absorbing substrate. We demonstrate arbitrary pattern formation of crystalline CH3NH3PbBr3 on a range of substrates and fabricate and characterize a microscale photodetector using this approach. This direct write methodology provides a path forward for the prototyping and production of perovskite-based devices.

  8. Laser Direct Write Synthesis of Lead Halide Perovskites

    SciTech Connect

    Chou, Stanley S.; Swartzentruber, Brian S.; Janish, Matthew T.; Meyer, Kristin C.; Biedermann, Laura B.; Okur, Serdal; Burckel, D. Bruce; Carter, C. Barry; Kaehr, Bryan

    2016-09-05

    Lead halide perovskites are increasingly considered for applications beyond photovoltaics, for example, light emission and detection, where an ability to pattern and prototype microscale geometries can facilitate the incorporation of this class of materials into devices. In this study, we demonstrate laser direct write of lead halide perovskites, a remarkably simple procedure that takes advantage of the inverse dependence between perovskite solubility and temperature by using a laser to induce localized heating of an absorbing substrate. We also demonstrate arbitrary pattern formation of crystalline CH3NH3PbBr3 on a range of substrates and fabricate and characterize a microscale photodetector using this approach. This direct write methodology provides a path forward for the prototyping and production of perovskite-based devices.

  9. A review of bacterial methyl halide degradation: biochemistry, genetics and molecular ecology

    USGS Publications Warehouse

    McDonald, I.R.; Warner, K.L.; McAnulla, C.; Woodall, C.A.; Oremland, R.S.; Murrell, J.C.

    2002-01-01

    Methyl halide-degrading bacteria are a diverse group of organisms that are found in both terrestrial and marine environments. They potentially play an important role in mitigating ozone depletion resulting from methyl chloride and methyl bromide emissions. The first step in the pathway(s) of methyl halide degradation involves a methyltransferase and, recently, the presence of this pathway has been studied in a number of bacteria. This paper reviews the biochemistry and genetics of methyl halide utilization in the aerobic bacteria Methylobacterium chloromethanicum CM4T, Hyphomicrobium chloromethanicum CM2T, Aminobacter strain IMB-1 and Aminobacter strain CC495. These bacteria are able to use methyl halides as a sole source of carbon and energy, are all members of the α-Proteobacteria and were isolated from a variety of polluted and pristine terrestrial environments. An understanding of the genetics of these bacteria identified a unique gene (cmuA) involved in the degradation of methyl halides, which codes for a protein (CmuA) with unique methyltransferase and corrinoid functions. This unique functional gene, cmuA, is being used to develop molecular ecology techniques to examine the diversity and distribution of methyl halide-utilizing bacteria in the environment and hopefully to understand their role in methyl halide degradation in different environments. These techniques will also enable the detection of potentially novel methyl halide-degrading bacteria.

  10. High-Temperature Ionic Epitaxy of Halide Perovskite Thin Film and the Hidden Carrier Dynamics.

    PubMed

    Wang, Yiping; Sun, Xin; Chen, Zhizhong; Sun, Yi-Yang; Zhang, Shengbai; Lu, Toh-Ming; Wertz, Esther; Shi, Jian

    2017-09-01

    High-temperature vapor phase epitaxy (VPE) has been proved ubiquitously powerful in enabling high-performance electro-optic devices in III-V semiconductor field. A typical example is the successful growth of p-type GaN by VPE for blue light-emitting diodes. VPE excels as it controls film defects such as point/interface defects and grain boundary, thanks to its high-temperature processing condition and controllable deposition rate. For the first time, single-crystalline high-temperature VPE halide perovskite thin film has been demonstrated-a unique platform on unveiling previously uncovered carrier dynamics in inorganic halide perovskites. Toward wafer-scale epitaxial and grain boundary-free film is grown with alkali halides as substrates. It is shown the metal alkali halides could be used as universal substrates for VPE growth of perovskite due to their similar material chemistry and lattice constant. With VPE, hot photoluminescence and nanosecond photo-Dember effect are revealed in inorganic halide perovskite. These two phenomena suggest that inorganic halide perovskite could be as compelling as its organic-inorganic counterpart regarding optoelectronic properties and help explain the long carrier lifetime in halide perovskite. The findings suggest a new avenue on developing high-quality large-scale single-crystalline halide perovskite films requiring precise control of defects and morphology. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Sense or no-sense of the sum parameter for water soluble "adsorbable organic halogens" (AOX) and "absorbed organic halogens" (AOX-S18) for the assessment of organohalogens in sludges and sediments.

    PubMed

    Müller, German

    2003-07-01

    "AOX" is the abbreviation of the sum parameter for water soluble "adsorbable organic halogens" in which 'A' stands for adsorbable, 'O' for organic and 'X' for the halogens chlorine, bromine and iodine. After the introduction of the AOX in 1976, this parameter has been correctly used for "real" AOX constituents (DDT and its metabolites, PCBs, etc.) but also misused for non-adsorbable adsorbed OX-compounds, mostly high molecular organohalogens in plants and even to inorganic compounds being neither organic nor adsorbable. The question of natural "Adsorbable Organic Halogens" (AOX) formed by living organisms and/or during natural abiogenic processes has been definitively solved by the known existence of already more than 3650 organohalogen compounds, amongst them the highly reactive, cancerogenic vinyl chloride (VC). The extension of the AOX to AOX-S18 for Sludges and Sediments, in which A stands for adsorbed (not for adsorbable) is questionable. It includes the most important water insoluble technical organochlorine product: polyvinyl chloride, PVC. In addition to organic halogens it also includes inorganic, mineralogenic halides, incorporated mainly in the crystal lattice of fine grained phyllosilicates, the typical clay minerals (kaolinite, montmorillonite, illite and chlorite) which are main constituents of sediments and sedimentary rocks representing the major part of the sedimentary cover of the earth. Other phyllosilicates, biotite and muscovite, major constituents of granites and many metamorphic rocks (gneiss and mica schist) will also contribute to the AOX-S18 especially in soils as result of weathering processes. Since chlorine is incorporated into the mineral structure and, as a consequence, not soluble by the nitric acid analytical step (pH 0.5) of the S18 determination, it will account to the AOX-S18 in the final charcoal combustion step at temperatures >950 degrees C. After heavy rainfalls sewage sludge composition is strongly influenced by

  12. Preparation of cerium halide solvate complexes

    DOEpatents

    Vasudevan, Kalyan V; Smith, Nickolaus A; Gordon, John C; McKigney, Edward A; Muenchaussen, Ross E

    2013-08-06

    Crystals of a solvated cerium(III) halide solvate complex resulted from a process of forming a paste of a cerium(III) halide in an ionic liquid, adding a solvent to the paste, removing any undissolved solid, and then cooling the liquid phase. Diffusing a solvent vapor into the liquid phase also resulted in crystals of a solvated cerium(III) halide complex.

  13. Fiber-optic sensor based on evanescent wave absorbance around 2.7 μm for determining water content in polar organic solvents

    NASA Astrophysics Data System (ADS)

    Xiong, F. B.; Zhu, W. Z.; Lin, H. F.; Meng, X. G.

    2014-04-01

    The feasibility of sapphire fiber-optic sensors based on evanescent wave absorption spectroscopy in the infrared range for quantitative determination of water content in polar organic solvents has been investigated. Evanescent wave absorption spectra of sapphire fiber-optic sensors in glycerol, ethanol, and glycol with different water concentrations obtained and analyzed, respectively. Evanescent absorbance of the sensors in those organic solvents has been utilized to implement for in situ monitoring water concentration in organic solvents. The evanescent absorbance of sensors in glycerol and glycol has been found to vary linearly with water content in the range 0-30 % and in ethanol in the range 0-10 %, respectively. The fiber-optic sensors based on evanescent absorbance for monitoring water concentrations in those organic solvents are acceptably accurate, cost-effective, and reliable. Some methods to improve the accuracy of predicated water content in those organic solvents are also suggested. Overall, the results demonstrate that the sapphire fiber-optic sensor based on evanescent absorption spectroscopy is a promising candidate for prediction of water content in polar organic solvents in on-line and remote situation.

  14. The formation of light absorbing insoluble organic compounds from the reaction of biomass burning precursors and Fe(III)

    NASA Astrophysics Data System (ADS)

    Lavi, Avi; Lin, Peng; Bhaduri, Bhaskar; Laskin, Alexander; Rudich, Yinon

    2017-04-01

    Dust particles and volatile organic compounds from fuel or biomass burning are two major components that affect air quality in urban polluted areas. We characterized the products from the reaction of soluble Fe(III), a reactive transition metal originating from dust particles dissolution processes, with phenolic compounds , namely, guaiacol, syringol, catechol, o- and p- cresol that are known products of incomplete fuel and biomass combustion but also from other natural sources such as humic compounds degradation. We found that under acidic conditions comparable to those expected on a dust particle surface, phenolic compounds readily react with dissolved Fe(III), leading to the formation of insoluble polymeric compounds. We characterized the insoluble products by x-ray photoelectron microscopy, UV-Vis spectroscopy, mass spectrometry, elemental analysis and thermo-gravimetric analysis. We found that the major chromophores formed are oligomers (from dimers to pentamers) of the reaction precursors that efficiently absorb light between 300nm and 500nm. High variability of the mass absorption coefficient of the reaction products was observed with catechol and guaiacol showing high absorption at the 300-500nm range that is comparable to that of brown carbon (BrC) from biomass burning studies. The studied reaction is a potential source for the in-situ production of secondary BrC material under dark conditions. Our results suggest a reaction path for the formation of bio-available iron in coastal polluted areas where dust particles mix with biomass burning pollution plumes. Such mixing can occur, for instance in the coast of West Africa or North Africa during dust and biomass burning seasons

  15. Preliminary Study on Synthesis of Organolead Halide with Lead Derived from Solder Wire

    NASA Astrophysics Data System (ADS)

    Pratiwi, P.; Rahmi, G. N.; Aimon, A. H.; Iskandar, F.; Abdullah, M.; Nuryadin, B. W.

    2016-08-01

    Organolead halide has attracted great attention for application in perovskite solar cells due to its high power conversion efficiency (PCE) of up to 20.1%. One of the most common perovskite materials is lead based reagent. In this research, we have synthesized organolead halide with lead extracted from solder wire. In the preparation procedure, first PbCl2 and PbI2 are produced by reacting lead from the solder wire with NaCl and KI, which are used as the basic substance for the perovskite material. Then, in order to get perovskite solution, the powders are reacted with methylamine iodide (MAI) in dimethylformamide (DMF) using a solution based method. Further, the spin coating method is used to fabricate perovskite thin film. The XRD peak results agreed with JCPDS Powder Diffraction of PbCl2 and PbI2. Based on FTIR, the transmittance spectra of the organolead mixed halide that was prepared using solder wire lead exhibited absorption peaks identical to organolead mixed halide using commercial lead. The UV-Vis absorbance spectra of the organolead mixed halide from solder wire lead also exhibited the same absorption ability as from commercial lead. Morever, EDS measurement showed that the element composition of the perovskite thin film using lead from solder wire identical to that from commercial lead. This indicates that solder wire lead is suitable enough for organolead halide material synthesis.

  16. The Effects of UV Light on the Chemical and Mechanical Properties of a Transparent Epoxy-Diamine System in the Presence of an Organic UV Absorber

    PubMed Central

    Nikafshar, Saeid; Zabihi, Omid; Ahmadi, Mojtaba; Mirmohseni, Abdolreza; Taseidifar, Mojtaba; Naebe, Minoo

    2017-01-01

    Despite several excellent properties including low shrinkage, good chemical resistance, curable at low temperatures and the absence of byproducts or volatiles, epoxy resins are susceptible to ultra violet (UV) damage and their durability is reduced substantially when exposed to outdoor environments. To overcome this drawback, UV absorbers have been usually used to decrease the rate of UV degradation. In this present study, the effects of UV light on the chemical, mechanical and physical properties of cured epoxy structure, as well as the effect of an organic UV absorber, Tinuvin 1130, on the epoxy properties were investigated. Chemical changes in a cured epoxy system as a result of the presence and absence of Tinuvin 1130 were determined using Fourier transform infrared spectroscopy (FT-IR) analyses. The effect of Tinuvin 1130 on the surface morphology of the epoxy systems was also investigated by scanning electron microscopy (SEM) imaging. Additionally, the glass transition temperatures (Tg) before and during UV radiation were measured. After an 800 h UV radiation, mechanical test results revealed that the lack of the UV absorber can lead to a ~30% reduction in tensile strength. However, in the presence of Tinuvin 1130, the tensile strength was reduced only by ~11%. It was hypothesized that the use of Tinuvin 1130, as an organic UV absorber in the epoxy-amine system, could decrease the undesirable effects, arising from exposure to UV light. PMID:28772538

  17. Organometal Halide Perovskite Artificial Synapses.

    PubMed

    Xu, Wentao; Cho, Himchan; Kim, Young-Hoon; Kim, Young-Tae; Wolf, Christoph; Park, Chan-Gyung; Lee, Tae-Woo

    2016-07-01

    Organometal halide perovskite synaptic devices are fabricated; they emulate important working principles of a biological synapse, including excitatory postsynaptic current, paired-pulse facilitation, short-term plasticity, long-term plasticity, and spike-timing dependent plasticity. These properties originate from possible ion migration in the ion-rich perovskite matrix. This work has extensive applicability and practical significance in neuromorphic electronics.

  18. Radiation Dosimetry for (177)Lu-PSMA I&T in Metastatic Castration-Resistant Prostate Cancer: Absorbed Dose in Normal Organs and Tumor Lesions.

    PubMed

    Okamoto, Shozo; Thieme, Anne; Allmann, Jakob; D'Alessandria, Calogero; Maurer, Tobias; Retz, Margitta; Tauber, Robert; Heck, Matthias M; Wester, Hans-Juergen; Tamaki, Nagara; Fendler, Wolfgang P; Herrmann, Ken; Pfob, Christian H; Scheidhauer, Klemens; Schwaiger, Markus; Ziegler, Sibylle; Eiber, Matthias

    2017-03-01

    Prostate-specific membrane antigen (PSMA)-targeted radioligand therapy is increasingly used in metastatic castration-resistant prostate cancer. We aimed to estimate the absorbed doses for normal organs and tumor lesions using (177)Lu-PSMA I&T (I&T is imaging and therapy) in patients undergoing up to 4 cycles of radioligand therapy. Results were compared with pretherapeutic Glu-NH-CO-NH-Lys-(Ahx)-[(68)Ga(HBEDCC)] ((68)Ga-PSMA-HBED-CC) PET. Methods: A total of 34 cycles in 18 patients were analyzed retrospectively. In 15 patients the first, in 9 the second, in 5 the third, and in 5 the fourth cycle was analyzed, respectively. Whole-body scintigraphy was performed at least between 30-120 min, 24 h, and 6-8 d after administration. Regions of interest covering the whole body, organs, and up to 4 tumor lesions were drawn. Organ and tumor masses were derived from pretherapeutic (68)Ga-PSMA-HBED-CC PET/CT. Absorbed doses for individual cycles were calculated using OLINDA/EXM. SUVs from pretherapeutic PET were compared with absorbed doses and with change of SUV. Results: The mean whole-body effective dose for all cycles was 0.06 ± 0.03 Sv/GBq. The mean absorbed organ doses were 0.72 ± 0.21 Gy/GBq for the kidneys; 0.12 ± 0.06 Gy/GBq for the liver; and 0.55 ± 0.14 Gy/GBq for the parotid, 0.64 ± 0.40 Gy/GBq for the submandibular, and 3.8 ± 1.4 Gy/GBq for the lacrimal glands. Absorbed organ doses were relatively constant among the 4 different cycles. Tumor lesions received a mean absorbed dose per cycle of 3.2 ± 2.6 Gy/GBq (range, 0.22-12 Gy/GBq). Doses to tumor lesions gradually decreased, with 3.5 ± 2.9 Gy/GBq for the first, 3.3 ± 2.5 Gy/GBq for the second, 2.7 ± 2.3 Gy/GBq for the third, and 2.4 ± 2.2 Gy/GBq for the fourth cycle. SUVs of pretherapeutic PET moderately correlated with absorbed dose (r = 0.44, P < 0.001 for SUVmax; r = 0.43, P < 0.001 for SUVmean) and moderately correlated with the change of SUV (r = 0.478, P < 0.001 for SUVmax, and r = 0.50, P < 0

  19. Large polarons in lead halide perovskites

    PubMed Central

    Miyata, Kiyoshi; Meggiolaro, Daniele; Trinh, M. Tuan; Joshi, Prakriti P.; Mosconi, Edoardo; Jones, Skyler C.; De Angelis, Filippo; Zhu, X.-Y.

    2017-01-01

    Lead halide perovskites show marked defect tolerance responsible for their excellent optoelectronic properties. These properties might be explained by the formation of large polarons, but how they are formed and whether organic cations are essential remain open questions. We provide a direct time domain view of large polaron formation in single-crystal lead bromide perovskites CH3NH3PbBr3 and CsPbBr3. We found that large polaron forms predominantly from the deformation of the PbBr3− frameworks, irrespective of the cation type. The difference lies in the polaron formation time, which, in CH3NH3PbBr3 (0.3 ps), is less than half of that in CsPbBr3 (0.7 ps). First-principles calculations confirm large polaron formation, identify the Pb-Br-Pb deformation modes as responsible, and explain quantitatively the rate difference between CH3NH3PbBr3 and CsPbBr3. The findings reveal the general advantage of the soft [PbX3]− sublattice in charge carrier protection and suggest that there is likely no mechanistic limitations in using all-inorganic or mixed-cation lead halide perovskites to overcome instability problems and to tune the balance between charge carrier protection and mobility. PMID:28819647

  20. Properties of volume reflection silver-halide gelatin holograms

    NASA Astrophysics Data System (ADS)

    Kosobokova, N. L.; Usanov, Yuri E.; Shevtsov, Michail K.

    1991-02-01

    Three schemes of realization of micro-cavity method of processing silver halide photomaterials for silver-halide gelatin holograms (SHG) generation are proposed. Factors affecting diffraction efficiency replay wavelength shift and selectivity are discussed. 2. EXPERIMENTAL RESULTS In the previous paper on this issue the principle of SHG hologram formation based on a difference of speed hardening of gelatin mass in a photolayer and in a thin cover of gelatin absorbed on silver or silver halide grains was formulated. The investigation of " swelling" factor for layers both containing and not containing solid grains verified the difference in the hardening degree of these layers and demonstrated a possibility of using this phenomenon for the generation of SHG holograms. As a result we proposed three methods of transforming the structure of distribution of solid particles of a layer into the structure of micro-cavity distribution. Processing procedures realizing the micro-cavity (MC) methods are presented in Fig. l. As seen in Fig. l the differentiating feature of each method is the type of grain in a layer during its hardening. In the course of realization of methods MC-l MC-2 and MC-3 a layer to be hardened contains metallic developed silver rehalogenated silver and silver resulting after reversal bleaching of developed silver respectively. The common feature of all methods is dehydration procedure which results in producing micro cavities in the places of removed silver or silver salt grains.

  1. Unveiling the Crystal Formation of Cesium Lead Mixed-Halide Perovskites for Efficient and Stable Solar Cells.

    PubMed

    Nam, Jae Keun; Jung, Myung Sun; Chai, Sung Uk; Choi, Yung Ji; Kim, Dongho; Park, Jong Hyeok

    2017-07-06

    Thermal instability of organic-inorganic hybrid perovskites will be an inevitable hurdle for commercialization. Recently, all-inorganic cesium lead halide perovskites, in particular, CsPbI2Br, have emerged as thermally stable and efficient photovoltaic light absorbers. However, the fundamental properties of this material have not been studied in detail. The crystal formation behavior of CsPbI2Br is investigated by examining the surface morphology, crystal structure, and chemical state of the perovskite films. We discover a previously uncharacterized feature that the formation of black polymorph through optimal annealing temperature proves to be critical to both solar cell efficiency and phase stability. Our optimized planar heterojunction solar cell exhibits a J-V scan efficiency of 10.7% and open-circuit voltage of 1.23 V, which far outperforms the preceding literature.

  2. Identification of absorbing organic (brown carbon) aerosols through Sun Photometry: results from AEROCAN / AERONET stations in high Arctic and urban Locations

    NASA Astrophysics Data System (ADS)

    Kerr, G. H.; Chaubey, J. P.; O'Neill, N. T.; Hayes, P.; Atkinson, D. B.

    2014-12-01

    Light absorbing organic aerosols or brown carbon (BrC) aerosols are prominent species influencing the absorbing aerosol optical depth (AAOD) of the total aerosol optical depth (AOD) in the UV wavelength region. They, along with dust, play an important role in modifying the spectral AAOD and the spectral AOD in the UV region: this property can be used to discriminate BrC aerosols from both weakly absorbing aerosols such as sulfates as well as strongly absorbing aerosols such as black carbon (BC). In this study we use available AERONET inversions (level 1.5) retrieved for the measuring period from 2009 to 2013, for the Arctic region (Eureka, Barrow and Hornsund), Urban/ Industrial regions (Kanpur, Beijing), and the forest regions (Alta Foresta and Mongu), to identify BrC aerosols. Using Dubovik's inversion algorithm results, we analyzed parameters that were sensitive to BrC presence, notably AAOD, AAODBrC estimated using the approach of Arola et al. [2011], the fine-mode-aerosol absorption derivative (αf, abs) and the fine-mode-aerosol absorption 2nd derivative (αf, abs'), all computed at a near UV wavelength (440 nm). Temporal trends of these parameters were investigated for all test stations and compared to available volume sampling surface data as a means of validating / evaluating the sensitivity of ostensible sunphotometer indicators of BrC aerosols to the presence of BrC as measured using independent indicators. Reference: Arola, A., Schuster, G., Myhre, G., Kazadzis, S., Dey, S., and Tripathi, S. N.: Inferring absorbing organic carbon content from AERONET data, Atmos. Chem. Phys., 11, 215-225, doi:10.5194/acp-11-215-2011, 2011

  3. High-Dose 131I-Tositumomab (Anti-CD20) Radioimmunotherapy for Non-Hodgkin's Lymphoma: Adjusting Radiation Absorbed Dose to Actual Organ Volumes

    SciTech Connect

    Rajendran, Joseph G.; Fisher, Darrell R.; Gopal, A K.; Durack, L. D.; Press, O. W.; Eary, Janet F.

    2004-06-01

    Radioimmunotherapy (RIT) using 131I-tositumomab has been used successfully to treat relapsed or refractory B-cell non-Hodgin's lymphoma (NHL). Our approach to treatment planning has been to determine limits on radiation absorbed close to critical nonhematopoietic organs. This study demonstrates the feasibility of using CT to adjust for actual organ volumes in calculating organ-specific absorbed dose estimates. Methods: Records of 84 patients who underwent biodistribution studies after a trace-labeled infusion of 131I-tositumomab for RIT (January 1990 and April 2003) were reviewed. Serial planar -camera images and whole-body Nal probe counts were obtained to estimate 131I-antibody source-organ residence times as recommended by the MIRD Committee. The source-organ residence times for standard man or woman were adjusted by the ratio of the MIRD phantom organ mass to the CT-derived organ mass. Results: The mean radiation absorbed doses (in mGy/MBq) for our data using the MIRD model were lungs= 1.67; liver= 1.03; kidneys= 1.08; spleen= 2.67; and whole body= 0.3; and for CT volume-adjusted organ volumes (in mGy/MBq) were lungs= 1.30; liver= 0.92; kidneys= 0.76; spleen= 1.40; and whole body= 0.22. We determined the following correlation coefficients between the 2 methods for the various organs; lungs, 0.49; (P= 0.0001); liver, 0.64 (P= 0.004); kidneys, 0.45 (P= 0.0001), for the residence times. For therapy, patients received mean 131I administered activities of 19.2 GBq (520 mCi) after adjustment for CT-derived organ mass compared with 16.0 GBq (433 mCi) that would otherwise have been given had therapy been based only using standard MIRD organ volumes--a statistically significant difference (P= 0.0001). Conclusion: We observed large variations in organ masses among our patients. Our treatments were planned to deliver the maximally tolerated radiation dose to the dose-limiting normal organ. This work provides a simplified method for calculating patient-specific radiation

  4. Infrared Spectroscopic Study of Vibrational Modes in Methylammonium Lead Halide Perovskites.

    PubMed

    Glaser, Tobias; Müller, Christian; Sendner, Michael; Krekeler, Christian; Semonin, Octavi E; Hull, Trevor D; Yaffe, Omer; Owen, Jonathan S; Kowalsky, Wolfgang; Pucci, Annemarie; Lovrinčić, Robert

    2015-08-06

    The organic cation and its interplay with the inorganic lattice underlie the exceptional optoelectronic properties of organo-metallic halide perovskites. Herein we report high-quality infrared spectroscopic measurements of methylammonium lead halide perovskite (CH3NH3Pb(I/Br/Cl)3) films and single crystals at room temperature, from which the dielectric function in the investigated spectral range is derived. Comparison with electronic structure calculations in vacuum of the free methylammonium cation allows for a detailed peak assignment. We analyze the shifts of the vibrational peak positions between the different halides and infer the extent of interaction between organic moiety and the surrounding inorganic cage. The positions of the NH3(+) stretching vibrations point to significant hydrogen bonding between the methylammonium and the halides for all three perovskites.

  5. Main-Group Halide Semiconductors Derived from Perovskite: Distinguishing Chemical, Structural, and Electronic Aspects.

    PubMed

    Fabini, Douglas H; Labram, John G; Lehner, Anna J; Bechtel, Jonathon S; Evans, Hayden A; Van der Ven, Anton; Wudl, Fred; Chabinyc, Michael L; Seshadri, Ram

    2017-01-03

    Main-group halide perovskites have generated much excitement of late because of their remarkable optoelectronic properties, ease of preparation, and abundant constituent elements, but these curious and promising materials differ in important respects from traditional semiconductors. The distinguishing chemical, structural, and electronic features of these materials present the key to understanding the origins of the optoelectronic performance of the well-studied hybrid organic-inorganic lead halides and provide a starting point for the design and preparation of new functional materials. Here we review and discuss these distinguishing features, among them a defect-tolerant electronic structure, proximal lattice instabilities, labile defect migration, and, in the case of hybrid perovskites, disordered molecular cations. Additionally, we discuss the preparation and characterization of some alternatives to the lead halide perovskites, including lead-free bismuth halides and hybrid materials with optically and electronically active organic constituents.

  6. Validation of simplified dosimetry approaches in ⁸⁹Zr-PET/CT: the use of manual versus semi-automatic delineation methods to estimate organ absorbed doses.

    PubMed

    Makris, N E; van Velden, F H P; Huisman, M C; Menke, C W; Lammertsma, A A; Boellaard, R

    2014-10-01

    Increasing interest in immuno-positron emission tomography (PET) studies requires development of dosimetry methods which will provide accurate estimations of organ absorbed doses. The purpose of this study is to develop and validate simplified dosimetry approaches for (89)Zirconium-PET (Zr-PET)/computed tomography (CT) studies. Five patients with advanced colorectal cancer received 37.1 ± 0.9 MBq (89)Zr-cetuximab within 2 h after administration of a therapeutic dose of 500 mg m(-2) cetuximab. PET/CT scans were obtained 1, 24, 48, 94, and 144 h post injection. Volumes of interest (VOIs) were manually delineated in lungs, liver, spleen, and kidneys for all scans, providing a reference VOI set. Simplified manual VOIs were drawn independently on CT scans using larger voxel sizes. The transformation of VOIs based on rigid and/or nonrigid registrations of the first CT scan (CT1) onto all successive CT scans was also investigated. The transformation matrix obtained from each registration was applied to the manual VOIs of CT₁ to obtain VOIs for the successive scans. Dice similarity coefficient (DSC) and Hausdorff distance were used to assess the performance of the registrations. Organ total activity, organ absorbed dose, and effective dose were calculated for all methods. Semi-automatic delineation based on nonrigid registration showed excellent agreement for lungs and liver (DSC: 0.90 ± 0.04; 0.81 ± 0.06) and good agreement for spleen and kidneys (DSC: 0.71 ± 0.07; 0.66 ± 0.08). Hausdorff distance ranged from 13 to 16 mm depending on the organ. Simplified manual delineation methods, in liver and lungs, performed similarly to semi-automatic delineation methods. For kidneys and spleen, however, poorer accuracy in total activity and absorbed dose was observed, as the voxel size increased. Organ absorbed dose and total activity based on nonrigid registration were within 10%. The effective dose was within ±3% for all VOI delineation methods. A fast, semi-automatic, and

  7. Development of Halide and Oxy-Halides for Isotopic Separations

    SciTech Connect

    Martin, Leigh R.; Johnson, Aaron T.; Pfeiffer, Jana; Finck, Martha R.

    2014-10-01

    The goal of this project was to synthesize a volatile form of Np for introduction into mass spectrometers at INL. Volatile solids of the 5f elements are typically those of the halides (e.g. UF6), however fluorine is highly corrosive to the sensitive internal components of the mass separator, and the other volatile halides exist as several different stable isotopes in nature. However, iodide is both mono-isotopic and volatile, and as such presents an avenue for creation of a form of Np suitable for introduction into the mass separator. To accomplish this goal, the technical work in the project sought to establish a novel synthetic route for the conversion NpO2+ (dissolved in nitric acid) to NpI3 and NpI4.

  8. Atomic structure of metal-halide perovskites from first principles: The chicken-and-egg paradox of the organic-inorganic interaction

    NASA Astrophysics Data System (ADS)

    Li, Jingrui; Rinke, Patrick

    2016-07-01

    We have studied the prototype hybrid organic-inorganic perovskite CH3NH3PbI3 and its three close relatives, CH3NH3SnI3 ,CH3NH3PbCl3 , and CsPbI3, using relativistic density function theory. The long-range van der Waals (vdW) interactions were incorporated into the Perdew-Burke-Ernzerhof (PBE) exchange-correlation functional using the Tkatchenko-Scheffler pairwise scheme. Our results reveal that hydrogen bonding, which is well described by the PBE functional, plays a decisive role for the structural parameters of these systems, including the position and orientation of the organic cation as well as the deformation of the inorganic framework. The magnitude of the inorganic-framework deformation depends sensitively on the orientation of the organic cation, and directly influences the stability of the hybrid perovskites. Our results suggest that the organic and the inorganic components complement each other; the low symmetry of the organic cation is the origin of the inorganic-framework deformation, which then aids the overall stabilization of the hybrid perovskite structure. This stabilization is indirectly affected by vdW interactions, which lead to smaller unit-cell volumes than in PBE and therefore modulate the interaction between the organic cation and the inorganic framework. The vdW-induced lattice-constant corrections are system dependent and lead to PBE+vdW lattice constants in good agreement with experiment. Further insight is gained by analyzing the vdW contributions. In all iodide-based hybrid perovskites, the interaction between the organic cation and the iodide anions provides the largest lattice-constant change, followed by iodine-iodine and the organic cation—heavy-metal cation interaction. These corrections follow an almost linear dependence on the lattice constant within the range considered in our study and are therefore approximately additive.

  9. Investigations of freezing and cold storage for the analysis of peatland dissolved organic carbon (DOC) and absorbance properties.

    PubMed

    Peacock, Mike; Freeman, Chris; Gauci, Vincent; Lebron, Inma; Evans, Chris D

    2015-07-01

    Although measured rates of biological degradation of DOC are typically low under dark conditions, it is assumed that water samples must be analysed soon after collection to provide an accurate measure of DOC concentration and UV-visible absorbance. To examine the impact of storage on DOC quality and quantity, we took water samples from an ombrotrophic peatland, and stored them in the dark at 4 °C for 138-1082 days. A median of 29% of DOC was lost during storage, but losses of absorbance at 254 nm were less. DOC loss followed a first-order exponential decay function, and was dependent on storage time. DOC half-life was calculated as 1253 days. Specific absorbance at 254 nm suggested that samples containing more aromatic DOC were more resistant to degradation, although time functioned as the primary control. Samples from two fens showed that loss of absorbance was greater at 400 nm rather than 254 nm, after 192 days storage, suggesting that non-aromatic DOC is preferentially degraded. These results suggest that samples can be stored for several months before losses of DOC become detectable, and that it is possible to back-calculate initial DOC concentrations in long-term stored samples based on known decay rates. Freeze/thaw experiments using samples from a range of peatlands suggested that DOC concentration was mostly unaffected by the process, but DOC increased 37% in one sample. Freezing had unpredictable and sometimes strong effects on absorbance, SUVA and E ratios, therefore freezing is not recommended as a method of preservation for these analyses.

  10. A 3D Monte Carlo Method for Estimation of Patient-specific Internal Organs Absorbed Dose for (99m)Tc-hynic-Tyr(3)-octreotide Imaging.

    PubMed

    Momennezhad, Mehdi; Nasseri, Shahrokh; Zakavi, Seyed Rasoul; Parach, Ali Asghar; Ghorbani, Mahdi; Asl, Ruhollah Ghahraman

    2016-01-01

    Single-photon emission computed tomography (SPECT)-based tracers are easily available and more widely used than positron emission tomography (PET)-based tracers, and SPECT imaging still remains the most prevalent nuclear medicine imaging modality worldwide. The aim of this study is to implement an image-based Monte Carlo method for patient-specific three-dimensional (3D) absorbed dose calculation in patients after injection of (99m)Tc-hydrazinonicotinamide (hynic)-Tyr(3)-octreotide as a SPECT radiotracer. (99m)Tc patient-specific S values and the absorbed doses were calculated with GATE code for each source-target organ pair in four patients who were imaged for suspected neuroendocrine tumors. Each patient underwent multiple whole-body planar scans as well as SPECT imaging over a period of 1-24 h after intravenous injection of (99m)hynic-Tyr(3)-octreotide. The patient-specific S values calculated by GATE Monte Carlo code and the corresponding S values obtained by MIRDOSE program differed within 4.3% on an average for self-irradiation, and differed within 69.6% on an average for cross-irradiation. However, the agreement between total organ doses calculated by GATE code and MIRDOSE program for all patients was reasonably well (percentage difference was about 4.6% on an average). Normal and tumor absorbed doses calculated with GATE were slightly higher than those calculated with MIRDOSE program. The average ratio of GATE absorbed doses to MIRDOSE was 1.07 ± 0.11 (ranging from 0.94 to 1.36). According to the results, it is proposed that when cross-organ irradiation is dominant, a comprehensive approach such as GATE Monte Carlo dosimetry be used since it provides more reliable dosimetric results.

  11. A 3D Monte Carlo Method for Estimation of Patient-specific Internal Organs Absorbed Dose for 99mTc-hynic-Tyr3-octreotide Imaging

    PubMed Central

    Momennezhad, Mehdi; Nasseri, Shahrokh; Zakavi, Seyed Rasoul; Parach, Ali Asghar; Ghorbani, Mahdi; Asl, Ruhollah Ghahraman

    2016-01-01

    Single-photon emission computed tomography (SPECT)-based tracers are easily available and more widely used than positron emission tomography (PET)-based tracers, and SPECT imaging still remains the most prevalent nuclear medicine imaging modality worldwide. The aim of this study is to implement an image-based Monte Carlo method for patient-specific three-dimensional (3D) absorbed dose calculation in patients after injection of 99mTc-hydrazinonicotinamide (hynic)-Tyr3-octreotide as a SPECT radiotracer. 99mTc patient-specific S values and the absorbed doses were calculated with GATE code for each source-target organ pair in four patients who were imaged for suspected neuroendocrine tumors. Each patient underwent multiple whole-body planar scans as well as SPECT imaging over a period of 1-24 h after intravenous injection of 99mhynic-Tyr3-octreotide. The patient-specific S values calculated by GATE Monte Carlo code and the corresponding S values obtained by MIRDOSE program differed within 4.3% on an average for self-irradiation, and differed within 69.6% on an average for cross-irradiation. However, the agreement between total organ doses calculated by GATE code and MIRDOSE program for all patients was reasonably well (percentage difference was about 4.6% on an average). Normal and tumor absorbed doses calculated with GATE were slightly higher than those calculated with MIRDOSE program. The average ratio of GATE absorbed doses to MIRDOSE was 1.07 ± 0.11 (ranging from 0.94 to 1.36). According to the results, it is proposed that when cross-organ irradiation is dominant, a comprehensive approach such as GATE Monte Carlo dosimetry be used since it provides more reliable dosimetric results. PMID:27134562

  12. The Preparation of a UV-Light-Absorbing Polymer: A Project-Oriented Laboratory Experiment for the Introductory Organic Chemistry Curriculum

    NASA Astrophysics Data System (ADS)

    Poon, Thomas; McIntyre, Jean P.; Dorigo, Andrea; Davis, Drew J.; Davis, Matthew A.; Eller, Crystal F.; Eller, Leah R.; Izumi, Heather K.; Jones, Kenya M.; Kelley, Kurt H.; Massello, William; Melamed, Megan L.; Norris, Cynthia M.; Oelrich, Jeffrey A.; Pluim, Thomas A.; Poplawski, Sarah E.; St. Clair, Jason M.; Stokes, Matthew P.; Wheeler, Wells C.; Wilkes, Erin E.

    1999-11-01

    A laboratory experiment is described that combines organic synthesis, spectroscopy, and polymer chemistry and is suitable for the sophomore organic chemistry curriculum. In this three-week sequence, students synthesize and characterize the UV-absorber 2-(2',4'-dimethylbenzoyl)benzoic acid and incorporate it into films of polymethylmethacrylate. The project exposes students to a variety of techniques and topics including UV-vis, nuclear magnetic resonance and IR spectroscopy, free radical polymerization, vacuum filtration, use of a separatory funnel for extraction and washing, melting point determination, recrystallization, reflux, and Friedel-Crafts acylation.

  13. TRANSURANIC METAL HALIDES AND A PROCESS FOR THE PRODUCTION THEREOF

    DOEpatents

    Fried, S.

    1951-03-20

    Halides of transuranic elements are prepared by contacting with aluminum and a halogen, or with an aluminum halide, a transuranic metal oxide, oxyhalide, halide, or mixture thereof at an elevated temperature.

  14. Sound Absorbers

    NASA Astrophysics Data System (ADS)

    Fuchs, H. V.; Möser, M.

    Sound absorption indicates the transformation of sound energy into heat. It is, for instance, employed to design the acoustics in rooms. The noise emitted by machinery and plants shall be reduced before arriving at a workplace; auditoria such as lecture rooms or concert halls require a certain reverberation time. Such design goals are realised by installing absorbing components at the walls with well-defined absorption characteristics, which are adjusted for corresponding demands. Sound absorbers also play an important role in acoustic capsules, ducts and screens to avoid sound immission from noise intensive environments into the neighbourhood.

  15. Tellurium halide IR fibers for remote spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Xhang H.; Ma, Hong Li; Blanchetiere, Chantal; Le Foulgoc, Karine; Lucas, Jacques; Heuze, Jean; Colardelle, P.; Froissard, P.; Picque, D.; Corrieu, G.

    1994-07-01

    The new family of IR transmitting glasses, the TeX glasses, based on the association of tellurium and halide (Cl, Br, or I) are characterized by a wide optical window extending from 2 to 18 micrometers and a strong stability towards devitrification. Optical fibers drawn from these glasses exhibit low losses in the 7 - 10 micrometers range (less than 1 dB/m for single index fibers, 1 - 2 dB/m for fibers having a core-clad structure). The TeX glass fibers have been used in a remote analysis set-up which is mainly composed of a FTIR spectrometer coupled with a HgCdTe detector. This prototype system permits qualitative and quantitative analysis in a wide wavelength region lying from 3 to 13 micrometers , covering the fundamental absorption of more organic species. The evolution of a lactic and an alcoholic fermentation has been monitored by means of this set-up.

  16. Metal-organic frameworks as potential shock absorbers: the case of the highly flexible MIL-53(Al).

    PubMed

    Yot, Pascal G; Boudene, Zoubeyr; Macia, Jasmine; Granier, Dominique; Vanduyfhuys, Louis; Verstraelen, Toon; Van Speybroeck, Veronique; Devic, Thomas; Serre, Christian; Férey, Gérard; Stock, Norbert; Maurin, Guillaume

    2014-08-28

    The mechanical energy absorption ability of the highly flexible MIL-53(Al) MOF material was explored using a combination of experiments and molecular simulations. A pressure-induced transition between the large pore and the closed pore forms of this solid was revealed to be irreversible and associated with a relatively large energy absorption capacity. Both features make MIL-53(Al) the first potential MOF candidate for further use as a shock absorber.

  17. Hybrid lead halide perovskites for light energy conversion: Excited state properties and photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Manser, Joseph S.

    The burgeoning class of metal halide perovskites constitutes a paradigm shift in the study and application of solution-processed semiconductors. Advancements in thin film processing and our understanding of the underlying structural, photophysical, and electronic properties of these materials over the past five years have led to development of perovskite solar cells with power conversion efficiencies that rival much more mature first and second-generation commercial technologies. It seems only a matter of time before the real-world impact of these compounds is put to the test. Like oxide perovskites, metal halide perovskites have ABX3 stoichiometry, where typically A is a monovalent cation, B a bivalent post-transition metal, and X a halide anion. Characterizing the behavior of photogenerated charges in metal halide perovskites is integral for understanding the operating principles and fundamental limitations of perovskite optoelectronics. The majority of studies outlined in this dissertation involve fundamental study of the prototypical organic-inorganic compound methylammonium lead iodide (CH3NH3PbI 3). Time-resolved pump-probe spectroscopy serves as a principle tool in these investigations. Excitation of a semiconductor can lead to formation of a number different excited state species and electronic complexes. Through analysis of excited state decay kinetics and optical nonlinearities in perovskite thin films, we identify spontaneous formation of a large fraction of free electrons and holes, whose presence is requisite for efficient photovoltaic operation. Following photogeneration of charge carriers in a semiconductor absorber, these species must travel large distances across the thickness of the material to realize large external quantum efficiencies and efficient carrier extraction. Using a powerful technique known as transient absorption microscopy, we directly image long-range carrier diffusion in a CH3NH3PbI 3 thin film. Charges are unambiguously shown to

  18. Organometal halide perovskites as useful materials in sensitized solar cells.

    PubMed

    Singh, Surya Prakash; Nagarjuna, P

    2014-04-14

    Organometal halide perovskites offer dual potential properties as a light harvester and at the same time as a hole conductor in inorganic-organic hybrid heterojunction solar cells. The sequential deposition route provides a power conversion efficiency of 15% under standard AM1.5G test conditions. In this perspective, we will briefly summarize the development of perovskite-sensitized solar cells from their first report up to the present.

  19. Cohesive Energy-Lattice Constant and Bulk Modulus-Lattice Constant Relationships: Alkali Halides, Ag Halides, Tl Halides

    NASA Technical Reports Server (NTRS)

    Schlosser, Herbert

    1992-01-01

    In this note we present two expressions relating the cohesive energy, E(sub coh), and the zero pressure isothermal bulk modulus, B(sub 0), of the alkali halides. Ag halides and TI halides, with the nearest neighbor distances, d(sub nn). First, we show that the product E(sub coh)d(sub 0) within families of halide crystals with common crystal structure is to a good approximation constant, with maximum rms deviation of plus or minus 2%. Secondly, we demonstrate that within families of halide crystals with a common cation and common crystal structure the product B(sub 0)d(sup 3.5)(sub nn) is a good approximation constant, with maximum rms deviation of plus or minus 1.36%.

  20. Cohesive Energy-Lattice Constant and Bulk Modulus-Lattice Constant Relationships: Alkali Halides, Ag Halides, Tl Halides

    NASA Technical Reports Server (NTRS)

    Schlosser, Herbert

    1992-01-01

    In this note we present two expressions relating the cohesive energy, E(sub coh), and the zero pressure isothermal bulk modulus, B(sub 0), of the alkali halides. Ag halides and TI halides, with the nearest neighbor distances, d(sub nn). First, we show that the product E(sub coh)d(sub 0) within families of halide crystals with common crystal structure is to a good approximation constant, with maximum rms deviation of plus or minus 2%. Secondly, we demonstrate that within families of halide crystals with a common cation and common crystal structure the product B(sub 0)d(sup 3.5)(sub nn) is a good approximation constant, with maximum rms deviation of plus or minus 1.36%.

  1. Versatile structures of group 13 metal halide complexes with 4,4'-bipy: from 1D coordination polymers to 2D and 3D metal-organic frameworks.

    PubMed

    Sevastianova, Tatiana N; Bodensteiner, Michael; Maulieva, Albina F; Davydova, Elena I; Virovets, Alexander V; Peresypkina, Eugenia V; Balázs, Gábor; Graßl, Christian; Seidl, Michael; Scheer, Manfred; Frenking, Gernot; Berezovskaya, Ekaterina A; Kazakov, Igor V; Khoroshilova, Olesya V; Timoshkin, Alexey Y

    2015-12-21

    A systematic structural study of complexes formed by aluminium and gallium trihalides with 4,4'-bipyridine (bipy) in 2 : 1, 1 : 1, and 1 : 2 stoichiometric ratios has been performed. Molecular structures of 11 complexes in the solid state have been determined for the first time. Complexes of 2 : 1 composition are molecular, while complexes of 1 : 1 composition form metal-organic frameworks of different kinds: an ionic 3D network (three interpenetrated lvt nets for AlCl3bipy), an ionic 2D network for AlBr3bipy and GaBr3bipy and a 1D coordination polymer in the case of GaCl3bipy. Thus, the nature of the Lewis acid plays a critical role in the structural type of the complex in the solid state. Incorporation of excess bipy molecules into (GaCl3bipy)∞ (formation of crystallosolvate) leads to an unprecedented change of the molecular structure from a non-ionic 1D coordination polymer to an ionic 2D metal organic framework [GaCl2bipy2](+)[GaCl4](-)·2bipy. As indicated by the temperature-dependent XRD study, removal of bipy by heating in a vacuum restores the non-ionic 1D structure. Quantum chemical computations for simple cluster model systems (up to eight Al and Ga atoms) reveal that ionic forms are slightly favourable, although the energy differences between the ionic and non-ionic structures are not large. These theoretical predictions are in good agreement with experimental findings. Thus, even relatively simple cluster models may be used to indicate the structural preferences in the solid state. Both experimental and computational IR frequency shifts of the in-plane ring bending mode of bipy upon complexation correlate well with the M-N bond distances in the complexes.

  2. Examination of effects of Cu(II) and Cr(III) on Al(III) binding by dissolved organic matter using absorbance spectroscopy.

    PubMed

    Yan, Mingquan; Ma, Jing; Ji, Guodong

    2016-04-15

    Effects of Cu(II) and Cr(III) ions on the binding of Al(III) onto Dissolved Organic Matter (DOM) exemplified by Suwannee River Humic Acid (SRHA) at pH 6.0 were quantified in this study using linear and log-transformed SRHA absorbance spectra acquired at varying Al(3+) concentrations and Cu(2+) or Cr(3+) levels. The competition between Al(3+) and Cu(2+)/Cr(3+) for the binding sites in DOM was ascertained by examining the intensity and shapes of the metal-specific differential spectra of DOM. The results indicated that the binding of Al(3+) onto SRHA is little influenced in the cases of in presence of 1.0 and 10.0 μM background Cr(3+) and in presence of 1.0 μM background Cu(2+), but it is significantly depressed in presence of 10.0 μM Cu(2+). Changes of the spectral slope of the log-transformed absorbance spectra in the 350-400 nm wavelength range (S350-400) were unambiguously correlated with the total amount of DOM-bound metals. The concentrations of Me-DOM complexes were determined using the NICA-Donnan Model. The results demonstrate that differential absorbance measurements provide quantitatively interpretable information concerning the nature and mechanisms of metal-DOM interactions and effects of metal cations competition on these processes.

  3. Degradation and mineralization of organic UV absorber compound 2-phenylbenzimidazole-5-sulfonic acid (PBSA) using UV-254nm/H2O2.

    PubMed

    Abdelraheem, Wael H M; He, Xuexiang; Duan, Xiaodi; Dionysiou, Dionysios D

    2015-01-23

    Various studies have revealed the non-biodegradable and endocrine disrupting properties of sulfonated organic UV absorbers, directing people's attention toward their risks on ecological and human health and hence their removal from water. In this study, UV-254nm/H2O2 advanced oxidation process (AOP) was investigated for degrading a model UV absorber compound 2-phenylbenzimidazole-5-sulfonic acid (PBSA) and a structurally similar compound 1H-benzimidazole-2-sulfonic acid (BSA), with a specific focus on their mineralization. At 4.0mM [H2O2]0, a complete removal of 40.0μM parent PBSA and 25% decrease in TOC were achieved with 190min of UV irradiation; SO4(2-) was formed and reached its maximum level while the release of nitrogen as NH4(+) was much lower (around 50%) at 190min. Sulfate removal was strongly enhanced by increasing [H2O2]0 in the range of 0-4.0mM, with slight inhibition in 4.0-12.0mM. Faster and earlier ammonia formation was observed at higher [H2O2]0. The presence of Br(-) slowed down the degradation and mineralization of both compounds while a negligible effect on the degradation was observed in the presence of Cl(-). Our study provides important technical and fundamental results on the HO based degradation and mineralization of SO3H and N-containing UV absorber compounds.

  4. Absorbed organ and effective doses from digital intra-oral and panoramic radiography applying the ICRP 103 recommendations for effective dose estimations.

    PubMed

    Granlund, Christina; Thilander-Klang, Anne; Ylhan, Betȕl; Lofthag-Hansen, Sara; Ekestubbe, Annika

    2016-10-01

    During dental radiography, the salivary and thyroid glands are at radiation risk. In 2007, the International Commission on Radiological Protection (ICRP) updated the methodology for determining the effective dose, and the salivary glands were assigned tissue-specific weighting factors for the first time. The aims of this study were to determine the absorbed dose to the organs and to calculate, applying the ICRP publication 103 tissue-weighting factors, the effective doses delivered during digital intraoral and panoramic radiography. Thermoluminescent dosemeter measurements were performed on an anthropomorphic head and neck phantom. The organ-absorbed doses were measured at 30 locations, representing different radiosensitive organs in the head and neck, and the effective dose was calculated according to the ICRP recommendations. The salivary glands and the oral mucosa received the highest absorbed doses from both intraoral and panoramic radiography. The effective dose from a full-mouth intraoral examination was 15 μSv and for panoramic radiography, the effective dose was in the range of 19-75 μSv, depending on the panoramic equipment used. The effective dose from a full-mouth intraoral examination is lower and that from panoramic radiography is higher than previously reported. Clinicians should be aware of the higher effective dose delivered during panoramic radiography and the risk-benefit profile of this technique must be assessed for the individual patient. The effective dose of radiation from panoramic radiography is higher than previously reported and there is large variability in the delivered radiation dosage among the different types of equipment used.

  5. Absorbed organ and effective doses from digital intra-oral and panoramic radiography applying the ICRP 103 recommendations for effective dose estimations

    PubMed Central

    Thilander-Klang, Anne; Ylhan, Betȕl; Lofthag-Hansen, Sara; Ekestubbe, Annika

    2016-01-01

    Objective: During dental radiography, the salivary and thyroid glands are at radiation risk. In 2007, the International Commission on Radiological Protection (ICRP) updated the methodology for determining the effective dose, and the salivary glands were assigned tissue-specific weighting factors for the first time. The aims of this study were to determine the absorbed dose to the organs and to calculate, applying the ICRP publication 103 tissue-weighting factors, the effective doses delivered during digital intraoral and panoramic radiography. Methods: Thermoluminescent dosemeter measurements were performed on an anthropomorphic head and neck phantom. The organ-absorbed doses were measured at 30 locations, representing different radiosensitive organs in the head and neck, and the effective dose was calculated according to the ICRP recommendations. Results: The salivary glands and the oral mucosa received the highest absorbed doses from both intraoral and panoramic radiography. The effective dose from a full-mouth intraoral examination was 15 μSv and for panoramic radiography, the effective dose was in the range of 19–75 μSv, depending on the panoramic equipment used. Conclusion: The effective dose from a full-mouth intraoral examination is lower and that from panoramic radiography is higher than previously reported. Clinicians should be aware of the higher effective dose delivered during panoramic radiography and the risk–benefit profile of this technique must be assessed for the individual patient. Advances in knowledge: The effective dose of radiation from panoramic radiography is higher than previously reported and there is large variability in the delivered radiation dosage among the different types of equipment used. PMID:27452261

  6. Formation of Light Absorbing Soluble Secondary Organics and Insoluble Polymeric Particles from the Dark Reaction of Catechol and Guaiacol with Fe(III).

    PubMed

    Slikboer, Samantha; Grandy, Lindsay; Blair, Sandra L; Nizkorodov, Sergey A; Smith, Richard W; Al-Abadleh, Hind A

    2015-07-07

    Transition metals such as iron are reactive components of environmentally relevant surfaces. Here, dark reaction of Fe(III) with catechol and guaiacol was investigated in an aqueous solution at pH 3 under experimental conditions that mimic reactions in the adsorbed phase of water. Using UV-vis spectroscopy, liquid chromatography, mass spectrometry, elemental analysis, dynamic light scattering, and electron microscopy techniques, we characterized the reactants, intermediates, and products as a function of reaction time. The reactions of Fe(III) with catechol and guaiacol produced significant changes in the optical spectra of the solutions due to the formation of light absorbing secondary organics and colloidal organic particles. The primary steps in the reaction mechanism were shown to include oxidation of catechol and guaiacol to hydroxy- and methoxy-quinones. The particles formed within a few minutes of reaction and grew to micron-size aggregates after half an hour reaction. The mass-normalized absorption coefficients of the particles were comparable to those of strongly absorbing brown carbon compounds produced by biomass burning. These results could account for new pathways that lead to atmospheric secondary organic aerosol formation and abiotic polymer formation on environmental surfaces mediated by transition metals.

  7. CALDose_X—a software tool for the assessment of organ and tissue absorbed doses, effective dose and cancer risks in diagnostic radiology

    NASA Astrophysics Data System (ADS)

    Kramer, R.; Khoury, H. J.; Vieira, J. W.

    2008-11-01

    CALDose_X is a software tool that provides the possibility of calculating incident air kerma (INAK) and entrance surface air kerma (ESAK), two important quantities used in x-ray diagnosis, based on the output of the x-ray equipment. Additionally, the software uses conversion coefficients (CCs) to assess the absorbed dose to organs and tissues of the human body, the effective dose as well as the patient's cancer risk for radiographic examinations. The CCs, ratios between organ or tissue absorbed doses and measurable quantities, have been calculated with the FAX06 and the MAX06 phantoms for 34 projections of 10 commonly performed x-ray examinations, for 40 combinations of tube potential and filtration ranging from 50 to 120 kVcp and from 2.0 to 5.0 mm aluminum, respectively, for various field positions, for 29 selected organs and tissues and simultaneously for the measurable quantities, INAK, ESAK and kerma area product (KAP). Based on the x-ray irradiation parameters defined by the user, CALDose_X shows images of the phantom together with the position of the x-ray beam. By using true to nature voxel phantoms, CALDose_X improves earlier software tools, which were mostly based on mathematical MIRD5-type phantoms, by using a less representative human anatomy.

  8. CONTROL OF LASER RADIATION PARAMETERS: Passive mode locking of a Nd:YAG laser with a thin gelatine-film saturable absorber containing organic-dye J-aggregates

    NASA Astrophysics Data System (ADS)

    Avdeeva, V. I.; Kuch'yanov, Aleksandr S.; Plekhanov, A. I.; Solominskii, Yu L.; Tolmachev, Alexei I.; Shapiro, Boris I.

    2003-06-01

    Ultrashort pulses of duration ~13 ps are first obtained in a passively mode-locked Nd:YAG laser with a negative feedback using a thin gelatine-film saturable absorber containing organic-dye J-aggregates.

  9. Multiple-Wavelength Metal/Halide Laser

    NASA Technical Reports Server (NTRS)

    Nerheim, N. M.

    1984-01-01

    Single device produces multiple lasing lines. Laser capable of producing many lasing lines has several reservoirs of halide lasant mixed with chlorides of copper, manganese and iron. Convection-control technique possible to rapidly change from one metal halide to another at maximum energy.

  10. Synthesis of aryl halides via organoborane chemistry

    SciTech Connect

    Kabalka, G.W.; Sastry, K.A.R.; Sastry, U.; Somayaji, V.

    1982-01-01

    A method for the rapid synthesis of a variety of substituted aryl halides by the reaction of organoboranes with halide ions in the presence of chloramine-T is described in detail. The products were purified by column chromatography on silica gel using a mixture of petroleum ether-ethyl acetate as eluent.

  11. Water uptake properties of internally mixed sodium halide and succinic acid particles

    NASA Astrophysics Data System (ADS)

    Miñambres, Lorena; Méndez, Estíbaliz; Sánchez, María N.; Castaño, Fernando; Basterretxea, Francisco J.

    2011-10-01

    Sea salt aerosols include appreciable fractions of organic material, that can affect properties such as hygroscopicity, phase transition or chemical reactivity. Although sodium chloride is the major component of marine salt, bromide and iodide ions tend to accumulate onto particle surfaces and influence their behaviour. The hygroscopic properties of internally mixed submicrometric particles composed of succinic acid (SA) and NaX (where X = F, Cl, Br or I) have been studied by infrared absorption spectroscopy in an aerosol flow cell at ambient temperature for different relative succinic acid/NaX compositions. The results show that deliquescence relative humidities of SA/NaF and SA/NaCl are equal to those of the pure sodium halides. SA/NaBr particles, on the other hand, deliquesce at lower relative humidities than pure NaBr particles, the effect being more marked as the SA/NaBr mass ratio approaches unity. The SA/NaI system behaves as a non-deliquescent system, absorbing liquid water at all relative humidities, as in pure NaI. Succinic acid phase in the particles has been spectroscopically monitored at given values of both RH and SA/NaX solute mass ratio. The different hygroscopic properties as the halogen ion is changed can be rationalized in terms of simple thermodynamic arguments and can be attributed to the relative contributions of ion-molecule interactions in the solid particles. The observed behaviour is of interest for tropospheric sea salt aerosols mixed with organic acids.

  12. Freeze Enhanced Halate Halide Reactions

    NASA Astrophysics Data System (ADS)

    Newberg, J. T.; Weaver, K.; Broderick, A.

    2014-12-01

    Relatively little is known about halate ion species (XO3-; X = I, Br, Cl) in atmospheric condensed phases. It was initial thought that iodate was a terminal stable species upon iodide oxidation. However, it is becoming increasingly recognized that reactions involving iodate can lead to reactive iodine, and this chemistry is accelerated under acidic conditions. The environmental concentrations and chemistry of bromate and chlorate are largely unexplored in environmental ices. We present results from a series of aqueous phase halate ion reactions with halides under acidic conditions, showing that the kinetics are strongly enhanced upon freezing. The products of these reactions are reactive halogens, which have important implications to marine boundary layer chemistry.

  13. Rare Gas Halide (RGH) Kinetics.

    DTIC Science & Technology

    1988-02-01

    Technolog , Inc.. 2755 Northup Way, Bellevue, Washington 98004-1495 (Received Il August 1987; accepted for publication 12 October 1987) Time-dependent density...8217 - Z ¢L --- ;-; Z¢ < : 2 2 2 e - 2 l ¢ - -- - P-2 -V, 2 " ’ ’’’ 2.,..’ * -x ’ ,’* - SSpectra Technology flT U Fr CoPY CContract N00014-85-C-084 3...RARE GAS HALIDE (RGH) in KINETICS FINAL REPORT< S Submitted to OFFICE OF NAVAL RESEARCH DEPARTMENT OF THE NAVY Submitted by SPECTRA TECHNOLOGY , INC

  14. Hygroscopicity Evaluation of Halide Scintillators

    SciTech Connect

    Zhuravleva, M; Stand, L; Wei, H; Hobbs, C. L.; Boatner, Lynn A; Ramey, Joanne Oxendine; Burger, Arnold; Rowe, E; Bhattacharya, P.; Tupitsyn, E; Melcher, Charles L

    2014-01-01

    A collaborative study of relative hygroscopicity of anhydrous halide scintillators grown at various laboratories is presented. We have developed a technique to evaluate moisture sensitivity of both raw materials and grown crystals, in which the moisture absorption rate is measured using a gravimetric analysis. Degradation of the scintillation performance was investigated by recording gamma-ray spectra and monitoring the photopeak position, count rate and energy resolution. The accompanying physical degradation of the samples exposed to ambient atmosphere was photographically recorded as well. The results were compared with ben

  15. Double Charged Surface Layers in Lead Halide Perovskite Crystals.

    PubMed

    Sarmah, Smritakshi P; Burlakov, Victor M; Yengel, Emre; Murali, Banavoth; Alarousu, Erkki; El-Zohry, Ahmed M; Yang, Chen; Alias, Mohd S; Zhumekenov, Ayan A; Saidaminov, Makhsud I; Cho, Namchul; Wehbe, Nimer; Mitra, Somak; Ajia, Idris; Dey, Sukumar; Mansour, Ahmed E; Abdelsamie, Maged; Amassian, Aram; Roqan, Iman S; Ooi, Boon S; Goriely, Alain; Bakr, Osman M; Mohammed, Omar F

    2017-03-08

    Understanding defect chemistry, particularly ion migration, and its significant effect on the surface's optical and electronic properties is one of the major challenges impeding the development of hybrid perovskite-based devices. Here, using both experimental and theoretical approaches, we demonstrated that the surface layers of the perovskite crystals may acquire a high concentration of positively charged vacancies with the complementary negatively charged halide ions pushed to the surface. This charge separation near the surface generates an electric field that can induce an increase of optical band gap in the surface layers relative to the bulk. We found that the charge separation, electric field, and the amplitude of shift in the bandgap strongly depend on the halides and organic moieties of perovskite crystals. Our findings reveal the peculiarity of surface effects that are currently limiting the applications of perovskite crystals and more importantly explain their origins, thus enabling viable surface passivation strategies to remediate them.

  16. Solution-Phase Synthesis of Cesium Lead Halide Perovskite Nanowires.

    PubMed

    Zhang, Dandan; Eaton, Samuel W; Yu, Yi; Dou, Letian; Yang, Peidong

    2015-07-29

    Halide perovskites have attracted much attention over the past 5 years as a promising class of materials for optoelectronic applications. However, compared to hybrid organic-inorganic perovskites, the study of their pure inorganic counterparts, like cesium lead halides (CsPbX3), lags far behind. Here, a catalyst-free, solution-phase synthesis of CsPbX3 nanowires (NWs) is reported. These NWs are single-crystalline, with uniform growth direction, and crystallize in the orthorhombic phase. Both CsPbBr3 and CsPbI3 are photoluminescence active, with composition-dependent temperature and self-trapping behavior. These NWs with a well-defined morphology could serve as an ideal platform for the investigation of fundamental properties and the development of future applications in nanoscale optoelectronic devices based on all-inorganic perovskites.

  17. Assessment of organ absorbed doses and estimation of effective doses from pediatric anthropomorphic phantom measurements for multi-detector row CT with and without automatic exposure control.

    PubMed

    Brisse, Hervé J; Robilliard, Magalie; Savignoni, Alexia; Pierrat, Noelle; Gaboriaud, Geneviève; De Rycke, Yann; Neuenschwander, Sylvia; Aubert, Bernard; Rosenwald, Jean-Claude

    2009-10-01

    This study was designed to measure organ absorbed doses from multi-detector row computed tomography (MDCT) on pediatric anthropomorphic phantoms, calculate the corresponding effective doses, and assess the influence of automatic exposure control (AEC) in terms of organ dose variations. Four anthropomorphic phantoms (phantoms represent the equivalent of a newborn, 1-, 5-, and 10-y-old child) were scanned with a four-channel MDCT coupled with a z-axis-based AEC system. Two CT torso protocols were compared: a first protocol without AEC and constant tube current-time product and a second protocol with AEC using age-adjusted noise indices. Organ absorbed doses were monitored by thermoluminescent dosimeters (LiF: Mg, Cu, P). Effective doses were calculated according to the tissue weighting factors of the International Commission on Radiological Protection (). For fixed mA acquisitions, organ doses normalized to the volume CT dose index in a 16-cm head phantom (CTDIvol16) ranged from 0.6 to 1.5 and effective doses ranged from 8.4 to 13.5 mSv. For the newborn-equivalent phantom, the AEC-modulated scan showed almost no significant dose variation compared to the fixed mA scan. For the 1-, 5- and 10-y equivalent phantoms, the use of AEC induced a significant dose decrease on chest organs (ranging from 61 to 31% for thyroid, 37 to 21% for lung, 34 to 17% for esophagus, and 39 to 10% for breast). However, AEC also induced a significant dose increase (ranging from 28 to 48% for salivary glands, 22 to 51% for bladder, and 24 to 70% for ovaries) related to the high density of skull base and pelvic bones. These dose increases should be considered before using AEC as a dose optimization tool in children.

  18. Role of shielding in modulating the effects of solar particle events: Monte Carlo calculation of absorbed dose and DNA complex lesions in different organs

    NASA Technical Reports Server (NTRS)

    Ballarini, F.; Biaggi, M.; De Biaggi, L.; Ferrari, A.; Ottolenghi, A.; Panzarasa, A.; Paretzke, H. G.; Pelliccioni, M.; Sala, P.; Scannicchio, D.; hide

    2004-01-01

    Distributions of absorbed dose and DNA clustered damage yields in various organs and tissues following the October 1989 solar particle event (SPE) were calculated by coupling the FLUKA Monte Carlo transport code with two anthropomorphic phantoms (a mathematical model and a voxel model), with the main aim of quantifying the role of the shielding features in modulating organ doses. The phantoms, which were assumed to be in deep space, were inserted into a shielding box of variable thickness and material and were irradiated with the proton spectra of the October 1989 event. Average numbers of DNA lesions per cell in different organs were calculated by adopting a technique already tested in previous works, consisting of integrating into "condensed-history" Monte Carlo transport codes--such as FLUKA--yields of radiobiological damage, either calculated with "event-by-event" track structure simulations, or taken from experimental works available in the literature. More specifically, the yields of "Complex Lesions" (or "CL", defined and calculated as a clustered DNA damage in a previous work) per unit dose and DNA mass (CL Gy-1 Da-1) due to the various beam components, including those derived from nuclear interactions with the shielding and the human body, were integrated in FLUKA. This provided spatial distributions of CL/cell yields in different organs, as well as distributions of absorbed doses. The contributions of primary protons and secondary hadrons were calculated separately, and the simulations were repeated for values of Al shielding thickness ranging between 1 and 20 g/cm2. Slight differences were found between the two phantom types. Skin and eye lenses were found to receive larger doses with respect to internal organs; however, shielding was more effective for skin and lenses. Secondary particles arising from nuclear interactions were found to have a minor role, although their relative contribution was found to be larger for the Complex Lesions than for the

  19. Shallow halogen vacancies in halide optoelectronic materials

    DOE PAGES

    Shi, Hongliang; Du, Mao -Hua

    2014-11-05

    Halogen vacancies (VH) are usually deep color centers (F centers) in halides and can act as major electron traps or recombination centers. The deep VH contributes to the typically poor carrier transport properties in halides. However, several halides have recently emerged as excellent optoelectronic materials, e.g., CH3NH3PbI3 and TlBr. Both CH3NH3PbI3 and TlBr have been found to have shallow VH, in contrast to commonly seen deep VH in halides. In this paper, several halide optoelectronic materials, i.e., CH3NH3PbI3, CH3NH3SnI3 (photovoltaic materials), TlBr, and CsPbBr3, (gamma-ray detection materials) are studied to understand the material chemistry and structure that determine whether VHmore » is a shallow or deep defect in a halide material. It is found that crystal structure and chemistry of ns2 ions both play important roles in creating shallow VH in halides such as CH3NH3PbI3, CH3NH3SnI3, and TlBr. The key to identifying halides with shallow VH is to find the right crystal structures and compounds that suppress cation orbital hybridization at VH, such as those with long cation-cation distances and low anion coordination numbers, and those with crystal symmetry that prevents strong hybridization of cation dangling bond orbitals at VH. Furthermore, the results of this paper provide insight and guidance to identifying halides with shallow VH as good electronic and optoelectronic materials.« less

  20. Shallow halogen vacancies in halide optoelectronic materials

    NASA Astrophysics Data System (ADS)

    Shi, Hongliang; Du, Mao-Hua

    2014-11-01

    Halogen vacancies (VH ) are usually deep color centers (F centers) in halides and can act as major electron traps or recombination centers. The deep VH contributes to the typically poor carrier transport properties in halides. However, several halides have recently emerged as excellent optoelectronic materials, e.g., C H3N H3Pb I3 and TlBr. Both C H3N H3Pb I3 and TlBr have been found to have shallow VH , in contrast to commonly seen deep VH in halides. In this paper, several halide optoelectronic materials, i.e., C H3N H3Pb I3 , C H3N H3Sn I3 (photovoltaic materials), TlBr, and CsPbB r3 (gamma-ray detection materials) are studied to understand the material chemistry and structure that determine whether VH is a shallow or deep defect in a halide material. It is found that crystal structure and chemistry of n s2 ions both play important roles in creating shallow VH in halides such as C H3N H3Pb I3 , C H3N H3Sn I3 , and TlBr. The key to identifying halides with shallow VH is to find the right crystal structures and compounds that suppress cation orbital hybridization at VH , such as those with large cation-cation distances and low anion coordination numbers and those with crystal symmetry that prevents strong hybridization of cation dangling bond orbitals at VH . The results of this paper provide insight and guidance to identifying halides with shallow VH as good electronic and optoelectronic materials.

  1. Abiotic Formation of Methyl Halides in the Terrestrial Environment

    NASA Astrophysics Data System (ADS)

    Keppler, F.

    2011-12-01

    Methyl chloride and methyl bromide are the most abundant chlorine and bromine containing organic compounds in the atmosphere. Since both compounds have relatively long tropospheric lifetimes they can effectively transport halogen atoms from the Earth's surface, where they are released, to the stratosphere and following photolytic oxidation form reactive halogen gases that lead to the chemical destruction of ozone. Methyl chloride and methyl bromide account for more than 20% of the ozone-depleting halogens delivered to the stratosphere and are predicted to grow in importance as the chlorine contribution to the stratosphere from anthropogenic CFCs decline. Today methyl chloride and methyl bromide originate mainly from natural sources with only a minor fraction considered to be of anthropogenic origin. However, until as recently as 2000 most of the methyl chloride and methyl bromide input to the atmosphere was considered to originate from the oceans, but investigations in recent years have clearly demonstrated that terrestrial sources such as biomass burning, wood-rotting fungi, coastal salt marshes, tropical vegetation and organic matter degradation must dominate the atmospheric budgets of these trace gases. However, many uncertainties still exist regarding strengths of both sources and sinks, as well as the mechanisms of formation of these naturally occurring halogenated gases. A better understanding of the atmospheric budget of both methyl chloride and methyl bromide is therefore required for reliable prediction of future ozone depletion. Biotic and abiotic methylation processes of chloride and bromide ion are considered to be the dominant pathways of formation of these methyl halides in nature. In this presentation I will focus on abiotic formation processes in the terrestrial environment and the potential parameters that control their emissions. Recent advances in our understanding of the abiotic formation pathway of methyl halides will be discussed. This will

  2. Lasing in robust cesium lead halide perovskite nanowires.

    PubMed

    Eaton, Samuel W; Lai, Minliang; Gibson, Natalie A; Wong, Andrew B; Dou, Letian; Ma, Jie; Wang, Lin-Wang; Leone, Stephen R; Yang, Peidong

    2016-02-23

    The rapidly growing field of nanoscale lasers can be advanced through the discovery of new, tunable light sources. The emission wavelength tunability demonstrated in perovskite materials is an attractive property for nanoscale lasers. Whereas organic-inorganic lead halide perovskite materials are known for their instability, cesium lead halides offer a robust alternative without sacrificing emission tunability or ease of synthesis. Here, we report the low-temperature, solution-phase growth of cesium lead halide nanowires exhibiting low-threshold lasing and high stability. The as-grown nanowires are single crystalline with well-formed facets, and act as high-quality laser cavities. The nanowires display excellent stability while stored and handled under ambient conditions over the course of weeks. Upon optical excitation, Fabry-Pérot lasing occurs in CsPbBr3 nanowires with an onset of 5 μJ cm(-2) with the nanowire cavity displaying a maximum quality factor of 1,009 ± 5. Lasing under constant, pulsed excitation can be maintained for over 1 h, the equivalent of 10(9) excitation cycles, and lasing persists upon exposure to ambient atmosphere. Wavelength tunability in the green and blue regions of the spectrum in conjunction with excellent stability makes these nanowire lasers attractive for device fabrication.

  3. Lasing in robust cesium lead halide perovskite nanowires

    DOE PAGES

    Eaton, Samuel W.; Lai, Minliang; Gibson, Natalie A.; ...

    2016-02-09

    The rapidly growing field of nanoscale lasers can be advanced through the discovery of new, tunable light sources. The emission wavelength tunability demonstrated in perovskite materials is an attractive property for nanoscale lasers. Whereas organic-inorganic lead halide perovskite materials are known for their instability, cesium lead halides offer a robust alternative without sacrificing emission tunability or ease of synthesis. Here, we report the low-temperature, solution-phase growth of cesium lead halide nanowires exhibiting low-threshold lasing and high stability. The as-grown nanowires are single crystalline with well-formed facets, and act as high-quality laser cavities. The nanowires display excellent stability while stored andmore » handled under ambient conditions over the course of weeks. Upon optical excitation, Fabry-Pérot lasing occurs in CsPbBr3 nanowires with an onset of 5 μJ cm-2 with the nanowire cavity displaying a maximum quality factor of 1,009 ± 5. Lasing under constant, pulsed excitation can be maintained for over 1 h, the equivalent of 109 excitation cycles, and lasing persists upon exposure to ambient atmosphere. Wavelength tunability in the green and blue regions of the spectrum in conjunction with excellent stability makes these nanowire lasers attractive for device fabrication.« less

  4. Defect-induced band-edge reconstruction of a bismuth-halide double perovskite for visible-light absorption

    DOE PAGES

    Slavney, Adam H.; Leppert, Linn; Bartesaghi, Davide; ...

    2017-03-29

    In this study, halide double perovskites have recently been developed as less toxic analogs of the lead perovskite solar-cell absorbers APbX3 (A = monovalent cation; X = Br or I). However, all known halide double perovskites have large bandgaps that afford weak visible-light absorption. The first halide double perovskite evaluated as an absorber, Cs2AgBiBr6 (1), has a bandgap of 1.95 eV. Here, we show that dilute alloying decreases 1’s bandgap by ca. 0.5 eV. Importantly, time-resolved photoconductivity measurements reveal long-lived carriers with microsecond lifetimes in the alloyed material, which is very promising for photovoltaic applications. The alloyed perovskite described hereinmore » is the first double perovskite to show comparable bandgap energy and carrier lifetime to those of (CH3NH3)PbI3. By describing how energy- and symmetry-matched impurity orbitals, at low concentrations, dramatically alter 1’s band edges, we open a potential pathway for the large and diverse family of halide double perovskites to compete with APbX3 absorbers.« less

  5. A metallocene molecular complex as visible-light absorber for high-voltage organic-inorganic hybrid photovoltaic cells.

    PubMed

    Ishii, Ayumi; Miyasaka, Tsutomu

    2014-04-14

    A thin solid-state dye-sensitized photovoltaic cell is fabricated by composing organic and inorganic heterojunctions in which the visible-light sensitizers are cyclopentadiene derivatives (Cp*) coordinated to a metal oxide, typically TiO2. The coordination bonds of the metallocene molecular complex (Ti-Cp*) create a new LMCT (ligand-to-metal charge transfer) absorption band and induce a rectified charge transfer from the organic ligands to TiO2, leading to photocurrent generation. Photovoltaic junctions are completed by coating crystalline organic molecules (perylene) as a hole-transport layer on the Cp*-coordinated TiO2 surface by using the vapor deposition method. The molecular plane of Cp* on the TiO2 surfaces seems to help the hole-transport layer to form ordered structures, which effectively improve carrier conductivities and minimize interfacial resistance. The organic-inorganic hybrid thin-film photocell with metallocene molecular complexes is capable of generating high open-circuit voltages exceeding 1.2 V. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Characteristics of dissolved organic carbon revealed by ultraviolet/visible absorbance and fluorescence spectroscopy: The current status and future exploration

    USDA-ARS?s Scientific Manuscript database

    Dissolved organic carbon (DOC) is an important research subject for various disciplines. The objectives of this chapter are to review and summarize recent advancement in characterization of DOC by ultraviolet/visible (UV/Vis) and fluorescence spectroscopies and to identify the information gaps for ...

  7. Effects of Process Parameters on the Characteristics of Mixed-Halide Perovskite Solar Cells Fabricated by One-Step and Two-Step Sequential Coating

    NASA Astrophysics Data System (ADS)

    Ahmadian-Yazdi, Mohammad Reza; Zabihi, Fatemeh; Habibi, Mehran; Eslamian, Morteza

    2016-09-01

    In this paper, two-step sequential spin-dip and spin-spin coating, as well as one-step spin coating, methods are used to fabricate methylammonium lead mixed-halide perovskites to study the effect of process parameters, including the choice of the solvent, annealing temperature, spin velocity, and dipping time on the characteristics of the perovskite film. Our results show that using a mixture of DMF and DMSO, with volume ratio of 1:1, as the organic solvents for PbCl2 results in the best mixed-halide perovskite because of the effective coordination between DMSO and PbCl2. Surface dewetting due to two effects, i.e., crystallization and thin liquid film instability, is observed and discussed, where an intermediate spin velocity of about 4000 rpm is found suitable to suppress dewetting. The perovskite film fabricated using the one-step method followed by anti-solvent treatment shows the best perovskite conversion in XRD patterns, and the planar device fabricated using the same method exhibited the highest efficiency among the employed methods. The perovskite layer made by sequential spin-dip coating is found thicker with higher absorbance, but the device shows a lower efficiency because of the challenges associated with perovskite conversion in the sequential method. The one-step deposition method is found easier to control and more promising than the sequential deposition methods.

  8. Effects of Process Parameters on the Characteristics of Mixed-Halide Perovskite Solar Cells Fabricated by One-Step and Two-Step Sequential Coating.

    PubMed

    Ahmadian-Yazdi, Mohammad Reza; Zabihi, Fatemeh; Habibi, Mehran; Eslamian, Morteza

    2016-12-01

    In this paper, two-step sequential spin-dip and spin-spin coating, as well as one-step spin coating, methods are used to fabricate methylammonium lead mixed-halide perovskites to study the effect of process parameters, including the choice of the solvent, annealing temperature, spin velocity, and dipping time on the characteristics of the perovskite film. Our results show that using a mixture of DMF and DMSO, with volume ratio of 1:1, as the organic solvents for PbCl2 results in the best mixed-halide perovskite because of the effective coordination between DMSO and PbCl2. Surface dewetting due to two effects, i.e., crystallization and thin liquid film instability, is observed and discussed, where an intermediate spin velocity of about 4000 rpm is found suitable to suppress dewetting. The perovskite film fabricated using the one-step method followed by anti-solvent treatment shows the best perovskite conversion in XRD patterns, and the planar device fabricated using the same method exhibited the highest efficiency among the employed methods. The perovskite layer made by sequential spin-dip coating is found thicker with higher absorbance, but the device shows a lower efficiency because of the challenges associated with perovskite conversion in the sequential method. The one-step deposition method is found easier to control and more promising than the sequential deposition methods.

  9. Development of an environmentally acceptable volatile organic compounds recovery and reuse system based on vacuum spray flash with dibasic acid esters as absorbents.

    PubMed

    Koyama, Toshiyuki; Shirakawa, Yoichi; Kuwahata, Kenichi; Yajima, Tatsuhiko

    2009-01-01

    We used dibasic acid esters as the absorbent for a volatile organic compounds (VOC) recovery and reuse system geared mainly toward VOCs from painting and presswork. The system consists of three elements: absorption using dibasic acid esters, separation by vacuum spray flash method, and recovery by condensation. The concentration of both ethyl acetate (EtAc) and isopropyl alcohol (IPA) decreased around 90% at room temperature. Vacuum spray flash was found as a useful process for cost-effective and energy-effective VOC removal system. The difference in the dissolubility parameters (Hansen constant) between dibasic acid esters and VOCs and the boiling point of VOCs was the main contributor to the separation behavior.

  10. Oxidation of hydrogen halides to elemental halogens

    DOEpatents

    Rohrmann, Charles A.; Fullam, Harold T.

    1985-01-01

    A process for oxidizing hydrogen halides having substantially no sulfur impurities by means of a catalytically active molten salt is disclosed. A mixture of the subject hydrogen halide and an oxygen bearing gas is contacted with a molten salt containing an oxidizing catalyst and alkali metal normal sulfates and pyrosulfates to produce an effluent gas stream rich in the elemental halogen and substantially free of sulfur oxide gases.

  11. Mass absorption efficiency of light absorbing organic aerosols from source region of paddy-residue burning emissions in the Indo-Gangetic Plain

    NASA Astrophysics Data System (ADS)

    Srinivas, B.; Rastogi, N.; Sarin, M. M.; Singh, A.; Singh, D.

    2016-01-01

    The mass absorption efficiency (MAE) of light absorbing water-soluble organics, representing a significant fraction of brown carbon (BrC), has been studied in fine mode aerosols (PM2.5) from a source region (Patiala: 30.2 °N, 76.3 °E) of biomass burning emissions (BBEs) in the Indo-Gangetic Plain (IGP). The mass absorption coefficient of BrC at 365 nm (babs-365), assessed from absorption spectra of aqueous extracts, exhibits significant linear relationship with water-soluble organic carbon (WSOC) for day (R2 = 0.37) and night time (R2 = 0.77) samples; and slope of regression lines provides a measure of MAE of BrC (daytime: ˜0.75 m2 g-1 and night time: 1.13 m2 g-1). A close similarity in the temporal variability of babs-365 (for BrC) and K+ in all samples suggests their common source from BBEs. The babs-365 of BrC follows a power law (babs-λ ≈ λ-α; where α = angstrom exponent) and averages around 5.2 ± 2.0 M m-1 (where M = 10-6). A significant decrease in the MAE of BrC from the source region (this study) to the downwind oceanic region (over Bay of Bengal, Srinivas and Sarin, 2013) could be attributed to relative increase in the contribution of non-absorbing WSOC and/or photo-bleaching of BrC during long-range atmospheric transport. The atmospheric radiative forcing due to BrC over the study site accounts for ˜40% of that from elemental carbon (EC).

  12. Appearance of strong absorbers and fluorophores in limonene-O3 secondary organic aerosol due to NH4+-mediated chemical aging over long time scales

    NASA Astrophysics Data System (ADS)

    Bones, David L.; Henricksen, Dana K.; Mang, Stephen A.; Gonsior, Michael; Bateman, Adam P.; Nguyen, Tran B.; Cooper, William J.; Nizkorodov, Sergey A.

    2010-03-01

    This study investigated long-term chemical aging of model biogenic secondary organic aerosol (SOA) prepared from the ozonolysis of terpenes. Techniques including electrospray ionization mass spectrometry (ESI-MS), UV-visible spectroscopy, Fourier transform infrared (FTIR) spectroscopy, NMR, and three-dimensional fluorescence were used to probe the changes in chemical composition of SOA collected by impaction on substrates and also of aqueous extracts of SOA. The addition of ammonium ions or amino acids to limonene SOA reproducibly produced orange-colored species that strongly absorbed visible radiation and fluoresced at UV and visible wavelengths. Simultaneous addition of H2SO4 to the SOA aqueous extracts inhibited this color transformation. These observations suggest the existence of aging processes leading to heavily conjugated molecules containing organic nitrogen. The presence of nitrogen in the chromophores was confirmed by the dependence of the absorption and fluorescence spectra on the amino acids added. In contrast to the strong change in the absorption and fluorescence spectra, there was no significant change in the ESI-MS, FTIR, and NMR spectra, suggesting that the chromophores were minor species in the aged SOA. Aqueous extracts of aged limonene + NH4+ SOA were characterized by an effective base-e absorption coefficient of ˜3 L g-1 cm-1 at 500 nm. Assuming particulate matter concentrations typical of polluted rural air gives an upper limit of 0.2 M m-1 for the aerosol absorption coefficient due to the aged limonene oxidation products. Biogenic SOA can therefore become weakly absorbing if they undergo aging in the presence of NH4+-containing aerosol.

  13. Sources of Dissolved Organic Carbon and Disinfection By-Product Precursors to the McKenzie River: Use of absorbance and fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Kraus, T. E.; Anderson, C.; Morgenstern, K.; Downing, B. D.; Bergamaschi, B. A.

    2009-12-01

    Dissolved organic matter (DOM) is a constituent of concern with respect to drinking water quality because it reacts upon chlorination to form disinfection byproducts (DBPs). The amount of DBPs that form is a function of both the amount and type of DOM undergoing treatment. Currently, the EPA regulates two classes of DBPs - trihalomethanes and haloacetic acids. This study was initiated to determine the main sources of NOM and disinfection by-product (DBP) precursors to the McKenzie River which is the sole water source for approximately 200,000 people in Eugene, Oregon (USA). Water samples collected from upstream, reservoir, tributary inputs and mainstem sites were analyzed for dissolved organic carbon (DOC) concentration and DBP formation potential. In addition, absorbance and fluorescence properties were determined to provide insight into DOC quality and assess whether these measurements can serve as useful proxies for DOC concentration and trihalomethane and haloacetic acid formation potentials (THMFP and HAAFP, respectively). Overall, raw water concentrations of DOC (<2 mg/L) and distribution system trihalomethanes (10-30 μg/L) and haloacetic acids (10-35 μg/L) were well below EPA regulations. The main sources of DOC to the McKenzie River were terrestrial watershed inputs entering the watershed via upstream sources. Downstream tributaries contained greater concentrations of DOC which had higher propensity to form DBPs, however because these inflows comprise less than 5% of mainstem flows, DBP precursor loads from these sources have a minimal effect on drinking water quality. Water exiting two flood control reservoirs from upstream tributaries, Cougar and Blue River, also had higher DOC concentrations than the upstream site, however qualitative data did not support a significant source from in situ algal production. Due to the interference in absorbance likely due to the presence of iron in downstream tributaries, absorbance was not as strong of a predictor of

  14. Reflection silver-halide gelatin holograms

    NASA Astrophysics Data System (ADS)

    Usanov, Yuri E.; Vavilova, Ye. A.; Kosobokova, N. L.; Shevtsov, Michail K.

    1991-02-01

    A new principle of reflection silverhalide gelatin (SHG) holograms generation is presented. The formation mechanism of the micro-cavity structure of holographic gratings is investigated. Based on the principle discussed here three methods of processing are suggested for making highly efficient SHG reflection holograms in the blue the green and the red regions of spectra with properties similar to those of conventional dichromated gelatin (DCG) holograms. 2. SHG HOLOGRAMS AND ANALYSIS OF THE PRINCIPAL OF THEIR FABRICATION Optical properties of DCG holograms and high light sensitivity of silver halide materials in the whole visible spectrum range can be combined in SHG holograms in which light field interference pattern recording is realized on silver halide grains while the light diffraction during the reconstruction takes place on a gelatin layer similar to DCG layer having a refractive index modulation. There exist a number of methods for transforming a ''silver'' structure into refracted index modulation structure. They are based on selective hardening of silver-halide layer gelatin. According to Pennington et. al. [1] selective hardening takes place as a result of the effect of laser or UV light on a silver halide developed fixed bleached and ammonium dichromate sensitized. A gelatin in isophase grating planes is hardened to a less degree that between planes due to high adsorption of a halide silver. After the removal of halide silver from the layer during the next fixing process

  15. Epitaxial Halide Perovskite Lateral Double Heterostructure.

    PubMed

    Wang, Yiping; Chen, Zhizhong; Deschler, Felix; Sun, Xin; Lu, Toh-Ming; Wertz, Esther A; Hu, Jia-Mian; Shi, Jian

    2017-03-28

    Epitaxial III-V semiconductor heterostructures are key components in modern microelectronics, electro-optics, and optoelectronics. With superior semiconducting properties, halide perovskite materials are rising as promising candidates for coherent heterostructure devices. In this report, spinodal decomposition is proposed and experimentally implemented to produce epitaxial double heterostructures in halide perovskite system. Pristine epitaxial mixed halide perovskites rods and films were synthesized via van der Waals epitaxy by chemical vapor deposition method. At room temperature, photon was applied as a knob to regulate the kinetics of spinodal decomposition and classic coarsening. By this approach, halide perovskite double heterostructures were created carrying epitaxial interfaces and outstanding optical properties. Reduced Fröhlich electron-phonon coupling was discovered in coherent halide double heterostructure, which is hypothetically attributed to the classic phonon confinement effect widely existing in III-V double heterostructures. As a proof-of-concept, our results suggest that halide perovskite-based epitaxial heterostructures may be promising for high-performance and low-cost optoelectronics, electro-optics, and microelectronics. Thus, ultimately, for practical device applications, it may be worthy to pursue these heterostructures via conventional vapor phase epitaxy approaches widely practised in III-V field.

  16. Metal-organic framework-templated synthesis of magnetic nanoporous carbon as an efficient absorbent for enrichment of phenylurea herbicides.

    PubMed

    Liu, Xingli; Wang, Chun; Wu, Qiuhua; Wang, Zhi

    2015-04-22

    Nanoporous carbon with a high specific surface area and unique porous structure represents an attractive material as an adsorbent in analytical chemistry. In this study, a magnetic nanoporous carbon (MNC) was fabricated by direct carbonization of Co-based metal-organic framework in nitrogen atmosphere without using any additional carbon precursors. The MNC was used as an effective magnetic adsorbent for the extraction and enrichment of some phenylurea herbicides (monuron, isoproturon, diuron and buturon) in grape and bitter gourd samples prior to their determination by high performance liquid chromatography with ultraviolet detection. Several important experimental parameters that could influence the extraction efficiency were investigated and optimized. Under the optimum conditions, a good linearity was achieved in the concentration range of 1.0-100.0 ng g(-1) for monuron, diuron and buturon and 1.5-100.0 ng g(-1) for isoproturon with the correlation coefficients (r) larger than 0.9964. The limits of detection (S/N=3) of the method were in the range from 0.17 to 0.46 ng g(-1). The results indicated that the MNC material was stable and efficient adsorbent for the magnetic solid-phase extraction of phenylurea herbicides and would have a great application potential for the extraction and preconcentration of more organic pollutants from real samples.

  17. Extracting Information about the Electronic Quality of Organic Solar-Cell Absorbers from Fill Factor and Thickness

    NASA Astrophysics Data System (ADS)

    Kaienburg, Pascal; Rau, Uwe; Kirchartz, Thomas

    2016-08-01

    Understanding the fill factor in organic solar cells remains challenging due to its complex dependence on a multitude of parameters. By means of drift-diffusion simulations, we thoroughly analyze the fill factor of such low-mobility systems and demonstrate its dependence on a collection coefficient defined in this work. We systematically discuss the effect of different recombination mechanisms, space-charge regions, and contact properties. Based on these findings, we are able to interpret the thickness dependence of the fill factor for different experimental studies from the literature. The presented model provides a facile method to extract the photoactive layer's electronic quality which is of particular importance for the fill factor. We illustrate that over the past 15 years, the electronic quality has not been continuously improved, although organic solar-cell efficiencies increased steadily over the same period of time. Only recent reports show the synthesis of polymers for semiconducting films of high electronic quality that are able to produce new efficiency records.

  18. Charge carrier mobility in hybrid halide perovskites

    PubMed Central

    Motta, Carlo; El-Mellouhi, Fedwa; Sanvito, Stefano

    2015-01-01

    The charge transport properties of hybrid halide perovskites are investigated with a combination of density functional theory including van der Waals interaction and the Boltzmann theory for diffusive transport in the relaxation time approximation. We find the mobility of electrons to be in the range 5–10 cm2V−1s−1 and that for holes within 1–5 cm2V−1s−1, where the variations depend on the crystal structure investigated and the level of doping. Such results, in good agreement with recent experiments, set the relaxation time to about 1 ps, which is the time-scale for the molecular rotation at room temperature. For the room temperature tetragonal phase we explore two possible orientations of the organic cations and find that the mobility has a significant asymmetry depending on the direction of the current with respect to the molecular axis. This is due mostly to the way the PbI3 octahedral symmetry is broken. Interestingly we find that substituting I with Cl has minor effects on the mobilities. Our analysis suggests that the carrier mobility is probably not a key factor in determining the high solar-harvesting efficiency of this class of materials. PMID:26235910

  19. Charge carrier mobility in hybrid halide perovskites.

    PubMed

    Motta, Carlo; El-Mellouhi, Fedwa; Sanvito, Stefano

    2015-08-03

    The charge transport properties of hybrid halide perovskites are investigated with a combination of density functional theory including van der Waals interaction and the Boltzmann theory for diffusive transport in the relaxation time approximation. We find the mobility of electrons to be in the range 5-10 cm(2)V(-1)s(-1) and that for holes within 1-5 cm(2)V(-1)s(-1), where the variations depend on the crystal structure investigated and the level of doping. Such results, in good agreement with recent experiments, set the relaxation time to about 1 ps, which is the time-scale for the molecular rotation at room temperature. For the room temperature tetragonal phase we explore two possible orientations of the organic cations and find that the mobility has a significant asymmetry depending on the direction of the current with respect to the molecular axis. This is due mostly to the way the PbI3 octahedral symmetry is broken. Interestingly we find that substituting I with Cl has minor effects on the mobilities. Our analysis suggests that the carrier mobility is probably not a key factor in determining the high solar-harvesting efficiency of this class of materials.

  20. Methods for producing single crystal mixed halide perovskites

    DOEpatents

    Zhu, Kai; Zhao, Yixin

    2017-07-11

    An aspect of the present invention is a method that includes contacting a metal halide and a first alkylammonium halide in a solvent to form a solution and maintaining the solution at a first temperature, resulting in the formation of at least one alkylammonium halide perovskite crystal, where the metal halide includes a first halogen and a metal, the first alkylammonium halide includes the first halogen, the at least one alkylammonium halide perovskite crystal includes the metal and the first halogen, and the first temperature is above about 21.degree. C.

  1. Thermal conversion of an Fe3O4@metal-organic framework: a new method for an efficient Fe-Co/nanoporous carbon microwave absorbing material

    NASA Astrophysics Data System (ADS)

    Zhang, Xingmiao; Ji, Guangbin; Liu, Wei; Quan, Bin; Liang, Xiaohui; Shang, Chaomei; Cheng, Yan; Du, Youwei

    2015-07-01

    A novel FeCo nanoparticle embedded nanoporous carbon composite (Fe-Co/NPC) was synthesized via in situ carbonization of dehydro-ascorbic acid (DHAA) coated Fe3O4 nanoparticles encapsulated in a metal-organic framework (zeolitic imidazolate framework-67, ZIF-67). The molar ratio of Fe/Co significantly depends on the encapsulated content of Fe3O4 in ZIF-67. The composites filled with 50 wt% of the Fe-Co/NPC-2.0 samples in paraffin show a maximum reflection loss (RL) of -21.7 dB at a thickness of 1.2 mm; in addition, a broad absorption bandwidth for RL < -10 dB which covers from 12.2 to 18 GHz can be obtained, and its minimum reflection loss and bandwidth (RL values exceeding -10 dB) are far greater than those of commercial carbonyl iron powder under a very low thickness (1-1.5 mm). This study not only provides a good reference for future preparation of carbon-based lightweight microwave absorbing materials but also broadens the application of such kinds of metal-organic frameworks.A novel FeCo nanoparticle embedded nanoporous carbon composite (Fe-Co/NPC) was synthesized via in situ carbonization of dehydro-ascorbic acid (DHAA) coated Fe3O4 nanoparticles encapsulated in a metal-organic framework (zeolitic imidazolate framework-67, ZIF-67). The molar ratio of Fe/Co significantly depends on the encapsulated content of Fe3O4 in ZIF-67. The composites filled with 50 wt% of the Fe-Co/NPC-2.0 samples in paraffin show a maximum reflection loss (RL) of -21.7 dB at a thickness of 1.2 mm; in addition, a broad absorption bandwidth for RL < -10 dB which covers from 12.2 to 18 GHz can be obtained, and its minimum reflection loss and bandwidth (RL values exceeding -10 dB) are far greater than those of commercial carbonyl iron powder under a very low thickness (1-1.5 mm). This study not only provides a good reference for future preparation of carbon-based lightweight microwave absorbing materials but also broadens the application of such kinds of metal-organic frameworks. Electronic

  2. Spatial Electron-hole Separation in a One Dimensional Hybrid Organic-Inorganic Lead Iodide.

    PubMed

    Savory, Christopher N; Palgrave, Robert G; Bronstein, Hugo; Scanlon, David O

    2016-02-09

    The increasing efficiency of the inorganic-organic hybrid halides has revolutionised photovoltaic research. Despite this rapid progress, the significant issues of poor stability and toxicity have yet to be suitably overcome. In this article, we use Density Functional Theory to examine (Pb2I6) · (H2DPNDI) · (H2O) · (NMP), an alternative lead-based hybrid inorganic-organic solar absorber based on a photoactive organic cation. Our results demonstrate that optical properties suitable for photovoltaic applications, in addition to spatial electron-hole separation, are possible but efficient charge transport may be a limiting factor.

  3. METHOD 415.3 - MEASUREMENT OF TOTAL ORGANIC CARBON, DISSOLVED ORGANIC CARBON AND SPECIFIC UV ABSORBANCE AT 254 NM IN SOURCE WATER AND DRINKING WATER

    EPA Science Inventory

    2.0 SUMMARY OF METHOD

    2.1 In both TOC and DOC determinations, organic carbon in the water sample is oxidized to form carbon dioxide (CO2), which is then measured by a detection system. There are two different approaches for the oxidation of organic carbon in water sample...

  4. METHOD 415.3 - MEASUREMENT OF TOTAL ORGANIC CARBON, DISSOLVED ORGANIC CARBON AND SPECIFIC UV ABSORBANCE AT 254 NM IN SOURCE WATER AND DRINKING WATER

    EPA Science Inventory

    2.0 SUMMARY OF METHOD

    2.1 In both TOC and DOC determinations, organic carbon in the water sample is oxidized to form carbon dioxide (CO2), which is then measured by a detection system. There are two different approaches for the oxidation of organic carbon in water sample...

  5. Self-assembly of Terbium(III)-based metal-organic complexes with two-photon absorbing active.

    PubMed

    Li, Dandan; Shao, Nanqi; Sun, Xianshun; Zhang, Guocui; Li, Shengli; Zhou, Hongping; Wu, Jieying; Tian, Yupeng

    2014-12-10

    Hybrid complexes based on D-π-A type dyes p-aminostyryl-pyridinum and Terbium(III) complex anion (1, 2) have been synthesized by ionic exchange reaction. Meanwhile two different alkyl-substituted amino groups were used as electron donors in organic dyes cations. The synthesized complexes were characterized by element analysis. In addition, the structural features of them were systematic studied by single crystal X-ray diffraction analysis. Their linear properties have been systematically investigated by absorption spectra and fluorescence, the results show that the energy transfer takes place from the trans-4-[4'-(N,N-diethylamino)styryl]-N-methyl pyridinium (2') cation to Tb(III). In addition, complex 2 exhibit a large two-photon absorption coefficient β: 0.044cm/GW at 710nm. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Deep absorbing porphyrin small molecule for high-performance organic solar cells with very low energy losses.

    PubMed

    Gao, Ke; Li, Lisheng; Lai, Tianqi; Xiao, Liangang; Huang, Yuan; Huang, Fei; Peng, Junbiao; Cao, Yong; Liu, Feng; Russell, Thomas P; Janssen, René A J; Peng, Xiaobin

    2015-06-17

    We designed and synthesized the DPPEZnP-TEH molecule, with a porphyrin ring linked to two diketopyrrolopyrrole units by ethynylene bridges. The resulting material exhibits a very low energy band gap of 1.37 eV and a broad light absorption to 907 nm. An open-circuit voltage of 0.78 V was obtained in bulk heterojunction (BHJ) organic solar cells, showing a low energy loss of only 0.59 eV, which is the first report that small molecule solar cells show energy losses <0.6 eV. The optimized solar cells show remarkable external quantum efficiency, short circuit current, and power conversion efficiency up to 65%, 16.76 mA/cm(2), and 8.08%, respectively, which are the best values for BHJ solar cells with very low energy losses. Additionally, the morphology of DPPEZnP-TEH neat and blend films with PC61BM was studied thoroughly by grazing incidence X-ray diffraction, resonant soft X-ray scattering, and transmission electron microscopy under different fabrication conditions.

  7. Moisture resistant and anti-reflection optical coatings produced by plasma polymerization of organic compounds

    NASA Technical Reports Server (NTRS)

    Hollahan, J. R.; Wydeven, T.

    1975-01-01

    The need for protective coatings on critical optical surfaces, such as halide crystal windows or lenses used in spectroscopy, has long been recognized. It has been demonstrated that thin, one micron, organic coatings produced by polymerization of flourinated monomers in low temperature gas discharge (plasma) exhibit very high degrees of moisture resistence, e.g., hundreds of hours protection for cesium iodide vs. minutes before degradation sets in for untreated surfaces. The index of refraction of these coatings is intermediate between that of the halide substrate and air, a condition for anti-reflection, another desirable property of optical coatings. Thus, the organic coatings not only offer protection, but improved transmittance as well. The polymer coating is non-absorbing over the range 0.4 to 40 microns with an exception at 8.0 microns, the expected absorption for C-F bonds.

  8. A composite light-harvesting layer from photoactive polymer and halide perovskite for planar heterojunction solar cells

    PubMed Central

    Wang, Heming; Rahaq, Yaqub; Kumar, Vikas

    2016-01-01

    A new route for fabrication of photoactive materials in organic-inorganic hybrid solar cells is presented in this report. Photoactive materials by blending a semiconductive conjugated polymer with an organolead halide perovskite were fabricated for the first time. The composite active layer was then used to make planar heterojunction solar cells with the PCBM film as the electron-acceptor. Photovoltaic performance of solar cells was investigated by J-V curves and external quantum efficiency spectra. We demonstrated that the incorporation of the conjugated photoactive polymer into organolead halide perovskites did not only contribute to the generation of charges, but also enhance stability of solar cells by providing a barrier protection to halide perovskites. It is expected that versatile of conjugated semi-conductive polymers and halide perovskites in photoactive properties enables to create various combinations, forming composites with advantages offered by both types of photoactive materials. PMID:27411487

  9. A composite light-harvesting layer from photoactive polymer and halide perovskite for planar heterojunction solar cells.

    PubMed

    Wang, Heming; Rahaq, Yaqub; Kumar, Vikas

    2016-07-14

    A new route for fabrication of photoactive materials in organic-inorganic hybrid solar cells is presented in this report. Photoactive materials by blending a semiconductive conjugated polymer with an organolead halide perovskite were fabricated for the first time. The composite active layer was then used to make planar heterojunction solar cells with the PCBM film as the electron-acceptor. Photovoltaic performance of solar cells was investigated by J-V curves and external quantum efficiency spectra. We demonstrated that the incorporation of the conjugated photoactive polymer into organolead halide perovskites did not only contribute to the generation of charges, but also enhance stability of solar cells by providing a barrier protection to halide perovskites. It is expected that versatile of conjugated semi-conductive polymers and halide perovskites in photoactive properties enables to create various combinations, forming composites with advantages offered by both types of photoactive materials.

  10. A composite light-harvesting layer from photoactive polymer and halide perovskite for planar heterojunction solar cells

    NASA Astrophysics Data System (ADS)

    Wang, Heming; Rahaq, Yaqub; Kumar, Vikas

    2016-07-01

    A new route for fabrication of photoactive materials in organic-inorganic hybrid solar cells is presented in this report. Photoactive materials by blending a semiconductive conjugated polymer with an organolead halide perovskite were fabricated for the first time. The composite active layer was then used to make planar heterojunction solar cells with the PCBM film as the electron-acceptor. Photovoltaic performance of solar cells was investigated by J-V curves and external quantum efficiency spectra. We demonstrated that the incorporation of the conjugated photoactive polymer into organolead halide perovskites did not only contribute to the generation of charges, but also enhance stability of solar cells by providing a barrier protection to halide perovskites. It is expected that versatile of conjugated semi-conductive polymers and halide perovskites in photoactive properties enables to create various combinations, forming composites with advantages offered by both types of photoactive materials.

  11. Monte Carlo estimation of radiation dose in organs of female and male adult phantoms due to FDG-F18 absorbed in the lungs

    NASA Astrophysics Data System (ADS)

    Belinato, Walmir; Santos, William S.; Silva, Rogério M. V.; Souza, Divanizia N.

    2014-03-01

    The determination of dose conversion factors (S values) for the radionuclide fluorodeoxyglucose (18F-FDG) absorbed in the lungs during a positron emission tomography (PET) procedure was calculated using the Monte Carlo method (MCNPX version 2.7.0). For the obtained dose conversion factors of interest, it was considered a uniform absorption of radiopharmaceutical by the lung of a healthy adult human. The spectrum of fluorine was introduced in the input data file for the simulation. The simulation took place in two adult phantoms of both sexes, based on polygon mesh surfaces called FASH and MASH with anatomy and posture according to ICRP 89. The S values for the 22 internal organs/tissues, chosen from ICRP No. 110, for the FASH and MASH phantoms were compared with the results obtained from a MIRD V phantoms called ADAM and EVA used by the Committee on Medical Internal Radiation Dose (MIRD). We observed variation of more than 100% in S values due to structural anatomical differences in the internal organs of the MASH and FASH phantoms compared to the mathematical phantom.

  12. High voltage and efficient bilayer heterojunction solar cells based on an organic-inorganic hybrid perovskite absorber with a low-cost flexible substrate.

    PubMed

    Chiang, Yi-Fang; Jeng, Jun-Yuan; Lee, Mu-Huan; Peng, Shin-Rung; Chen, Peter; Guo, Tzung-Fang; Wen, Ten-Chin; Hsu, Yao-Jane; Hsu, Ching-Ming

    2014-04-07

    A low temperature (<100 °C), flexible solar cell based on an organic-inorganic hybrid CH3NH3PbI3 perovskite-fullerene planar heterojunction (PHJ) is successfully demonstrated. In this manuscript, we study the effects of energy level offset between a solar absorber (organic-inorganic hybrid CH3NH3PbI3 perovskite) and the selective contact materials on the photovoltaic behaviors of the planar organometallic perovskite-fullerene heterojunction solar cells. We find that the difference between the highest occupied molecular orbital (HOMO) level of CH3NH3PbI3 perovskite and the Fermi level of indium-tin-oxide (ITO) dominates the voltage output of the device. ITO films on glass or on the polyethylene terephthalate (PET) flexible substrate with different work functions are investigated to illustrate this phenomenon. The higher work function of the PET/ITO substrate decreases the energy loss of hole transfer from the HOMO of perovskite to ITO and minimizes the energy redundancy of the photovoltage output. The devices using the high work function ITO substrate as contact material show significant open-circuit voltage enhancement (920 mV), with the power conversion efficiency of 4.54%, and these types of extra-thin planar bilayer heterojunction solar cells have the potential advantages of low-cost and lightweight.

  13. Thermal conversion of an Fe₃O₄@metal-organic framework: a new method for an efficient Fe-Co/nanoporous carbon microwave absorbing material.

    PubMed

    Zhang, Xingmiao; Ji, Guangbin; Liu, Wei; Quan, Bin; Liang, Xiaohui; Shang, Chaomei; Cheng, Yan; Du, Youwei

    2015-08-14

    A novel FeCo nanoparticle embedded nanoporous carbon composite (Fe-Co/NPC) was synthesized via in situ carbonization of dehydro-ascorbic acid (DHAA) coated Fe3O4 nanoparticles encapsulated in a metal-organic framework (zeolitic imidazolate framework-67, ZIF-67). The molar ratio of Fe/Co significantly depends on the encapsulated content of Fe3O4 in ZIF-67. The composites filled with 50 wt% of the Fe-Co/NPC-2.0 samples in paraffin show a maximum reflection loss (RL) of -21.7 dB at a thickness of 1.2 mm; in addition, a broad absorption bandwidth for RL < -10 dB which covers from 12.2 to 18 GHz can be obtained, and its minimum reflection loss and bandwidth (RL values exceeding -10 dB) are far greater than those of commercial carbonyl iron powder under a very low thickness (1-1.5 mm). This study not only provides a good reference for future preparation of carbon-based lightweight microwave absorbing materials but also broadens the application of such kinds of metal-organic frameworks.

  14. Nickel-Catalyzed Regiodivergent Opening of Epoxides with Aryl Halides: Co-Catalysis Controls Regioselectivity

    PubMed Central

    Zhao, Yang; Weix, Daniel J.

    2014-01-01

    Epoxides are versatile intermediates in organic synthesis, but have rarely been employed in cross-coupling reactions. We report that bipyridine-ligated nickel can mediate the addition of functionalized aryl halides, a vinyl halide, and a vinyl triflate to epoxides under reducing conditions. For terminal epoxides, the regioselectivity of the reaction depends upon the co-catalyst employed. Iodide co-catalysis results in opening at the less hindered position via an iodohydrin intermediate. Titanocene co-catalysis results in opening at the more hindered position, presumably via TiIII-mediated radical generation. 1,2-Disubstituted epoxides are opened under both conditions to form predominantly the trans product. PMID:24341892

  15. Dimming of metal halide lamps

    NASA Astrophysics Data System (ADS)

    Schurer, Kees

    1994-03-01

    We ran some tests on the effect of dimming of metal halide (MH) lamps upon the stability and the spectral quality of the light output. Lamps used were a new Philips lamp HPI-T 250W, a similar Philips lamp with a few thousand burning hours and a new Osram lamp HQI-T 250W/D. The ballast was a BBC type DJ 250/2KS, the starter a BAS TORGI type MZN 250 SE and the dimmer an Elstrom Control System type ERHQ-T 250. Power was derived from a Philips stabilizer, type PE 1602. Lamp output was monitored with a PAR meter. Spectra were taken at 100% and at 50% output as measured with the PAR meter. Lamps were allowed to stabilize at any setting for 30 minutes before measurements were made. Lamp manufacturers advise against dimming for fear of poor stability and intolerable changes of the spectrum. However, none of the lamps showed a decrease in stability, no flicker or wandering of the discharge, and the changes of the spectrum were not negligible, but certainly not dramatic. Lamps of either manufacture retain their white color, relative peak heights of spectral lines did shift, but no gaps in the spectrum occurred. Spectra taken at 50% with 30 minutes intervals coincided. Differences between the new and the older Philips lamp were noticeable, but not really significant.

  16. Dimming of metal halide lamps

    NASA Technical Reports Server (NTRS)

    Schurer, Kees

    1994-01-01

    We ran some tests on the effect of dimming of metal halide (MH) lamps upon the stability and the spectral quality of the light output. Lamps used were a new Philips lamp HPI-T 250W, a similar Philips lamp with a few thousand burning hours and a new Osram lamp HQI-T 250W/D. The ballast was a BBC type DJ 250/2KS, the starter a BAS TORGI type MZN 250 SE and the dimmer an Elstrom Control System type ERHQ-T 250. Power was derived from a Philips stabilizer, type PE 1602. Lamp output was monitored with a PAR meter. Spectra were taken at 100% and at 50% output as measured with the PAR meter. Lamps were allowed to stabilize at any setting for 30 minutes before measurements were made. Lamp manufacturers advise against dimming for fear of poor stability and intolerable changes of the spectrum. However, none of the lamps showed a decrease in stability, no flicker or wandering of the discharge, and the changes of the spectrum were not negligible, but certainly not dramatic. Lamps of either manufacture retain their white color, relative peak heights of spectral lines did shift, but no gaps in the spectrum occurred. Spectra taken at 50% with 30 minutes intervals coincided. Differences between the new and the older Philips lamp were noticeable, but not really significant.

  17. The Remarkable Reactivity of Aryl Halides with Nucleophiles

    ERIC Educational Resources Information Center

    Bunnett, Joseph F.

    1974-01-01

    Discusses the reactivity of aryl halides with nucleophilic or basic reagents, including nucleophilic attacks on carbon, hydrogen, halogen, and arynes. Suggestions are made concerning revisions of the sections on aryl halide chemistry courses and the corresponding chapters in textbooks. (CC)

  18. The Remarkable Reactivity of Aryl Halides with Nucleophiles

    ERIC Educational Resources Information Center

    Bunnett, Joseph F.

    1974-01-01

    Discusses the reactivity of aryl halides with nucleophilic or basic reagents, including nucleophilic attacks on carbon, hydrogen, halogen, and arynes. Suggestions are made concerning revisions of the sections on aryl halide chemistry courses and the corresponding chapters in textbooks. (CC)

  19. Shallow halogen vacancies in halide optoelectronic materials

    SciTech Connect

    Shi, Hongliang; Du, Mao -Hua

    2014-11-05

    Halogen vacancies (VH) are usually deep color centers (F centers) in halides and can act as major electron traps or recombination centers. The deep VH contributes to the typically poor carrier transport properties in halides. However, several halides have recently emerged as excellent optoelectronic materials, e.g., CH3NH3PbI3 and TlBr. Both CH3NH3PbI3 and TlBr have been found to have shallow VH, in contrast to commonly seen deep VH in halides. In this paper, several halide optoelectronic materials, i.e., CH3NH3PbI3, CH3NH3SnI3 (photovoltaic materials), TlBr, and CsPbBr3, (gamma-ray detection materials) are studied to understand the material chemistry and structure that determine whether VH is a shallow or deep defect in a halide material. It is found that crystal structure and chemistry of ns2 ions both play important roles in creating shallow VH in halides such as CH3NH3PbI3, CH3NH3SnI3, and TlBr. The key to identifying halides with shallow VH is to find the right crystal structures and compounds that suppress cation orbital hybridization at VH, such as those with long cation-cation distances and low anion coordination numbers, and those with crystal symmetry that prevents strong hybridization of cation dangling bond orbitals at VH. Furthermore, the results of this paper provide insight and guidance to identifying halides with shallow VH as good electronic and optoelectronic materials.

  20. Structural effects in molecular metal halides.

    PubMed

    Hargittai, Magdolna

    2009-03-17

    Metal halides are a relatively large class of inorganic compounds that participate in many industrial processes, from halogen metallurgy to the production of semiconductors. Because most metal halides are ionic crystals at ambient conditions, the term "molecular metal halides" usually refers to vapor-phase species. These gas-phase molecules have a special place in basic research because they exhibit the widest range of chemical bonding from the purely ionic to mostly covalent bonding through to weakly interacting systems. Although our focus is basic research, knowledge of the structural and thermodynamic properties of gas-phase metal halides is also important in industrial processes. In this Account, we review our most recent work on metal halide molecular structures. Our studies are based on electron diffraction and vibrational spectroscopy, and increasingly, we have augmented our experimental work with quantum chemical computations. Using both experimental and computational techniques has enabled us to determine intriguing structural effects with better accuracy than using either technique alone. We loosely group our discussion based on structural effects including "floppiness", relativistic effects, vibronic interactions, and finally, undiscovered molecules with computational thermodynamic stability. Floppiness, or serious "nonrigidity", is a typical characteristic of metal halides and makes their study challenging for both experimentalists and theoreticians. Relativistic effects are mostly responsible for the unique structure of gold and mercury halides. These molecules have shorter-than-expected bonds and often have unusual geometrical configurations. The gold monohalide and mercury dihalide dimers and the molecular-type crystal structure of HgCl(2) are examples. We also examined spin-orbit coupling and the possible effect of the 4f electrons on the structure of lanthanide trihalides. Unexpectedly, we found that the geometry of their dimers depends on the f

  1. Polaronic Charge Carrier-Lattice Interactions in Lead Halide Perovskites.

    PubMed

    Wolf, Christoph; Cho, Himchan; Kim, Young-Hoon; Lee, Tae-Woo

    2017-10-09

    Almost ten years after the renaissance of the popular perovskite-type semiconductors based on lead salts with the general formula AMX3 (A=organic or inorganic cation; M=divalent metal; X=halide), many facets of photophysics continue to puzzle researchers. In this Minireview, light is shed on the low mobilities of charge carriers in lead halide perovskites with special focus on the lattice properties at non-zero temperature. The polar and soft lattice leads to pronounced electron-phonon coupling, limiting carrier mobility and retarding recombination. We propose that the proper picture of excited charge carriers at temperature ranges that are relevant for device operations is that of a polaron, with Fröhlich coupling constants between 1<α<3. Under the aspect of light-emitting diode application, APbX3 perovskite show moderate second order (bimolecular) recombination rates and high third-order (Auger) rate constants. It has become apparent that this is a direct consequence of the anisotropic polar A-site cation in organic-inorganic hybrid perovskites and might be alleviated by replacing the organic moiety with an isotropic cation. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Decomposition and Cell Failure Mechanisms in Lead Halide Perovskite Solar Cells.

    PubMed

    Yang, Jinli; Kelly, Timothy L

    2017-01-03

    Perovskite solar cells have experienced a remarkably rapid rise in power conversion efficiencies, with state-of-the-art devices now competing with multicrystalline silicon and thin-film cadmium telluride in terms of efficiency. Unfortunately, the lead halide perovskite absorbers suffer from a lack of chemical stability and decompose in response to a variety of environmental stimuli. In this Forum Article, we provide a brief overview of the decomposition mechanisms in lead halide perovskite thin films, as well as the processes contributing to cell failure in finished devices. We finish by briefly surveying recent efforts to extend the device lifetime. Ultimately, if perovskite solar cells can be made stable, they will be an exciting, highly complementary addition to existing photovoltaic technologies.

  3. Method for recovering hydrocarbons from molten metal halides

    DOEpatents

    Pell, Melvyn B.

    1979-01-01

    In a process for hydrocracking heavy carbonaceous materials by contacting such carbonaceous materials with hydrogen in the presence of a molten metal halide catalyst to produce hydrocarbons having lower molecular weights and thereafter recovering the hydrocarbons so produced from the molten metal halide, an improvement comprising injecting into the spent molten metal halide, a liquid low-boiling hydrocarbon stream is disclosed.

  4. Recent advances in technetium halide chemistry.

    PubMed

    Poineau, Frederic; Johnstone, Erik V; Czerwinski, Kenneth R; Sattelberger, Alfred P

    2014-02-18

    Transition metal binary halides are fundamental compounds, and the study of their structure, bonding, and other properties gives chemists a better understanding of physicochemical trends across the periodic table. One transition metal whose halide chemistry is underdeveloped is technetium, the lightest radioelement. For half a century, the halide chemistry of technetium has been defined by three compounds: TcF6, TcF5, and TcCl4. The absence of Tc binary bromides and iodides in the literature was surprising considering the existence of such compounds for all of the elements surrounding technetium. The common synthetic routes that scientists use to obtain binary halides of the neighboring elements, such as sealed tube reactions between elements and flowing gas reactions between a molecular complex and HX gas (X = Cl, Br, or I), had not been reported for technetium. In this Account, we discuss how we used these routes to revisit the halide chemistry of technetium. We report seven new phases: TcBr4, TcBr3, α/β-TcCl3, α/β-TcCl2, and TcI3. Technetium tetrachloride and tetrabromide are isostructural to PtX4 (X = Cl or Br) and consist of infinite chains of edge-sharing TcX6 octahedra. Trivalent technetium halides are isostructural to ruthenium and molybdenum (β-TcCl3, TcBr3, and TcI3) and to rhenium (α-TcCl3). Technetium tribromide and triiodide exhibit the TiI3 structure-type and consist of infinite chains of face-sharing TcX6 (X = Br or I) octahedra. Concerning the trichlorides, β-TcCl3 crystallizes with the AlCl3 structure-type and consists of infinite layers of edge-sharing TcCl6 octahedra, while α-TcCl3 consists of infinite layers of Tc3Cl9 units. Both phases of technetium dichloride exhibit new structure-types that consist of infinite chains of [Tc2Cl8] units. For the technetium binary halides, we studied the metal-metal interaction by theoretical methods and magnetic measurements. The change of the electronic configuration of the metal atom from d(3) (Tc

  5. Atomic Resolution Imaging of Halide Perovskites.

    PubMed

    Yu, Yi; Zhang, Dandan; Kisielowski, Christian; Dou, Letian; Kornienko, Nikolay; Bekenstein, Yehonadav; Wong, Andrew B; Alivisatos, A Paul; Yang, Peidong

    2016-12-14

    The radiation-sensitive nature of halide perovskites has hindered structural studies at the atomic scale. We overcome this obstacle by applying low dose-rate in-line holography, which combines aberration-corrected high-resolution transmission electron microscopy with exit-wave reconstruction. This technique successfully yields the genuine atomic structure of ultrathin two-dimensional CsPbBr3 halide perovskites, and a quantitative structure determination was achieved atom column by atom column using the phase information of the reconstructed exit-wave function without causing electron beam-induced sample alterations. An extraordinarily high image quality enables an unambiguous structural analysis of coexisting high-temperature and low-temperature phases of CsPbBr3 in single particles. On a broader level, our approach offers unprecedented opportunities to better understand halide perovskites at the atomic level as well as other radiation-sensitive materials.

  6. Triiodide and mixed tri-halide anions from negative ion electrospray ionization of alkali halide solutions

    NASA Astrophysics Data System (ADS)

    Shukla, Anil

    2017-10-01

    Electrospray ionization of alkali halide solutions in the negative ion mode results in the formation of cluster ions of the general formula, (MX)nX-. However, alkali iodides form triiodide anion, I3-, in high abundance in addition to cluster ions. Br3- ions are observed in low abundance. Also, mixed tri-halide anions, I2Y-, are observed in high abundance when a small amount (<1%) of KI is added to other alkali halide solutions. These results are explained by the uniquely different physical characteristics of lithium and the iodide ions compared with others in the series.

  7. Thermodynamic origin of instability in hybrid halide perovskites.

    PubMed

    Tenuta, E; Zheng, C; Rubel, O

    2016-11-24

    Degradation of hybrid halide perovskites under the influence of environmental factors impairs future prospects of using these materials as absorbers in solar cells. First principle calculations can be used as a guideline in search of new materials, provided we can rely on their predictive capabilities. We show that the instability of perovskites can be captured using ab initio total energy calculations for reactants and products augmented with additional thermodynamic data to account for finite temperature effects. Calculations suggest that the instability of CH3NH3PbI3 in moist environment is linked to the aqueous solubility of the CH3NH3I salt, thus making other perovskite materials with soluble decomposition products prone to degradation. Properties of NH3OHPbI3, NH3NH2PbI3, PH4PbI3, SbH4PbI3, CsPbBr3, and a new hypothetical SF3PbI3 perovskite are studied in the search for alternative solar cell absorber materials with enhanced chemical stability.

  8. Thermodynamic origin of instability in hybrid halide perovskites

    PubMed Central

    Tenuta, E.; Zheng, C.; Rubel, O.

    2016-01-01

    Degradation of hybrid halide perovskites under the influence of environmental factors impairs future prospects of using these materials as absorbers in solar cells. First principle calculations can be used as a guideline in search of new materials, provided we can rely on their predictive capabilities. We show that the instability of perovskites can be captured using ab initio total energy calculations for reactants and products augmented with additional thermodynamic data to account for finite temperature effects. Calculations suggest that the instability of CH3NH3PbI3 in moist environment is linked to the aqueous solubility of the CH3NH3I salt, thus making other perovskite materials with soluble decomposition products prone to degradation. Properties of NH3OHPbI3, NH3NH2PbI3, PH4PbI3, SbH4PbI3, CsPbBr3, and a new hypothetical SF3PbI3 perovskite are studied in the search for alternative solar cell absorber materials with enhanced chemical stability. PMID:27883032

  9. Thermodynamic origin of instability in hybrid halide perovskites

    NASA Astrophysics Data System (ADS)

    Tenuta, E.; Zheng, C.; Rubel, O.

    2016-11-01

    Degradation of hybrid halide perovskites under the influence of environmental factors impairs future prospects of using these materials as absorbers in solar cells. First principle calculations can be used as a guideline in search of new materials, provided we can rely on their predictive capabilities. We show that the instability of perovskites can be captured using ab initio total energy calculations for reactants and products augmented with additional thermodynamic data to account for finite temperature effects. Calculations suggest that the instability of CH3NH3PbI3 in moist environment is linked to the aqueous solubility of the CH3NH3I salt, thus making other perovskite materials with soluble decomposition products prone to degradation. Properties of NH3OHPbI3, NH3NH2PbI3, PH4PbI3, SbH4PbI3, CsPbBr3, and a new hypothetical SF3PbI3 perovskite are studied in the search for alternative solar cell absorber materials with enhanced chemical stability.

  10. Nanomorphology of P3HT:PCBM-based absorber layers of organic solar cells after different processing conditions analyzed by low-energy scanning transmission electron microscopy.

    PubMed

    Pfaff, Marina; Klein, Michael F G; Müller, Erich; Müller, Philipp; Colsmann, Alexander; Lemmer, Uli; Gerthsen, Dagmar

    2012-12-01

    In this study the nanomorphology of P3HT:PC61BM absorber layers of organic solar cells was studied as a function of the processing parameters and for P3HT with different molecular weight. For this purpose we apply scanning transmission electron microscopy (STEM) at low electron energies in a scanning electron microscope. This method exhibits sensitive material contrast in the high-angle annular dark-field (HAADF) mode, which is well suited to distinguish materials with similar densities and mean atomic numbers. The images taken with low-energy HAADF STEM are compared with conventional transmission electron microscopy and atomic force microscopy images to illustrate the capabilities of the different techniques. For the interpretation of the low-energy HAADF STEM images, a semiempirical equation is used to calculate the image intensities. The experiments show that the nanomorphology of the P3HT:PC61BM blends depends strongly on the molecular weight of the P3HT. Low-molecular-weight P3HT forms rod-like domains during annealing. In contrast, only small globular features are visible in samples containing high-molecular-weight P3HT, which do not change significantly after annealing at 150°C up to 30 min.

  11. Multiline operation of mercury halide lasers

    SciTech Connect

    Kushawaha, M.; Mahmood, M.

    1988-01-01

    Emission spectrum of the (B-X) band system of HgX radicals (X=chlorine, bromine, iodine) was observed by passing electrical discharge through flowing vapors of mercury halides. The emission intensity of the most intense band of the (B-X) system of these radicals was observed to decrease in the presence of other mercury halide vapors at temperatures higher than 130C. Laser action was observed from the (B-X) transition of mercurous chloride, mercurous bromide, and mercurous iodide radicals by electrical discharge pumping of mercuric chloride, mercuric bromide and mercuric iodide vapors individually.

  12. High-performance size exclusion chromatography with a multi-wavelength absorbance detector study on dissolved organic matter characterisation along a water distribution system.

    PubMed

    Huang, Huiping; Sawade, Emma; Cook, David; Chow, Christopher W K; Drikas, Mary; Jin, Bo

    2016-06-01

    This study examined the associations between dissolved organic matter (DOM) characteristics and potential nitrification occurrence in the presence of chloramine along a drinking water distribution system. High-performance size exclusion chromatography (HPSEC) coupled with a multiple wavelength detector (200-280nm) was employed to characterise DOM by molecular weight distribution, bacterial activity was analysed using flow cytometry, and a package of simple analytical tools, such as dissolved organic carbon, absorbance at 254nm, nitrate, nitrite, ammonia and total disinfectant residual were also applied and their applicability to indicate water quality changes in distribution systems were also evaluated. Results showed that multi-wavelength HPSEC analysis was useful to provide information about DOM character while changes in molecule weight profiles at wavelengths less than 230nm were also able to be related to other water quality parameters. Correct selection of the UV wavelengths can be an important factor for providing appropriate indicators associated with different DOM compositions. DOM molecular weight in the range of 0.2-0.5kDa measured at 210nm correlated positively with oxidised nitrogen concentration (r=0.99), and the concentrations of active bacterial cells in the distribution system (r=0.85). Our study also showed that the changes of DOM character and bacterial cells were significant in those sampling points that had decreases in total disinfectant residual. HPSEC-UV measured at 210nm and flow cytometry can detect the changes of low molecular weight of DOM and bacterial levels, respectively, when nitrification occurred within the chloraminated distribution system. Copyright © 2016. Published by Elsevier B.V.

  13. The Additive Coloration of Alkali Halides

    ERIC Educational Resources Information Center

    Jirgal, G. H.; and others

    1969-01-01

    Describes the construction and use of an inexpensive, vacuum furnace designed to produce F-centers in alkali halide crystals by additive coloration. The method described avoids corrosion or contamination during the coloration process. Examination of the resultant crystals is discussed and several experiments using additively colored crystals are…

  14. Localized corrosion in halides other than chlorides

    SciTech Connect

    Koch, G.H.

    1995-12-31

    This literature survey characterizes the effects of non-chloride halides on localized corrosion. It includes published material and unpublished data obtained through a questionnaire. Chapters cover Stainless Steels, Nickel, Titanium, and Zirconium. The engineer can use this information for material selection.

  15. The Additive Coloration of Alkali Halides

    ERIC Educational Resources Information Center

    Jirgal, G. H.; and others

    1969-01-01

    Describes the construction and use of an inexpensive, vacuum furnace designed to produce F-centers in alkali halide crystals by additive coloration. The method described avoids corrosion or contamination during the coloration process. Examination of the resultant crystals is discussed and several experiments using additively colored crystals are…

  16. Molecular compressibility of some halides in alcohols

    NASA Technical Reports Server (NTRS)

    Serban, C.; Auslaender, D.

    1974-01-01

    After measuring ultrasonic velocity and density, the molecular compressibility values from Wada's formula were calculated, for alkali metal halide solutions in methyl, ethyl, butyl, and glycol alcohol. The temperature and concentration dependence were studied, finding deviations due to the hydrogen bonds of the solvent.

  17. Mechanical resistance of silver halide infrared fibers

    NASA Astrophysics Data System (ADS)

    Barkay, Nitzan; Katzir, Abraham

    1992-01-01

    Flexibility resistance of silver-halide infrared fibers was investigated in the plastic bending regime, which is especially useful for internal medical applications. The CO2 laser transmission of the fibers was measured in several positions while being bent. The fibers have been found to operate even after large plastic deformations, and values for various fibers and bending conditions are reported.

  18. Ionic alkali halide XUV laser feasibility study

    SciTech Connect

    Yang, T.T.; Gylys, V.T.; Bower, R.D.; Harris, D.G.; Blauer, J.A.; Turner, C.E.; Hindy, R.N.

    1989-11-10

    The objective of this work is to assess the feasibility of a select set of ionic alkali halide XUV laser concepts by obtaining the relevant kinetic and spectroscopic parameters required for a proof-of-principle and conceptual design. The proposed lasers operate in the 80--200 nm spectral region and do not require input from outside radiation sources for their operation. Frequency up-conversion and frequency mixing techniques and therefore not considered in the work to be described. An experimental and theoretical study of a new type of laser operating in the extreme ultraviolet wavelength region has been conducted. The lasing species are singly ionized alkali halide molecules such as Rb{sup 2+}F{sub {minus}}, Rb{sup 2+}Br{sup {minus}} and Cs{sup 2+}F{sup {minus}}. These species are similar in electronic structure to the rare gas halide excimers, such as XeF and Krf, except that the ionic molecules emit at wavelengths of 80--200 nm, much shorter than the conventional rare-gas halide excimer laser. The radiative lifetime of these molecules are typically near 1 ns, which is about an order of magnitude shorter than that for rare-gas halide systems. The values of the cross section for stimulated emission are on the order of 1 {times} 10{sup {minus}16}cm{sup 2}. Because of the fundamental similarity to existing UV lasers, these systems show promise as a high power, efficient XUV lasers. 55 refs., 50 figs., 5 tabs.

  19. Perspective: Theory and simulation of hybrid halide perovskites

    NASA Astrophysics Data System (ADS)

    Whalley, Lucy D.; Frost, Jarvist M.; Jung, Young-Kwang; Walsh, Aron

    2017-06-01

    Organic-inorganic halide perovskites present a number of challenges for first-principles atomistic materials modeling. Such "plastic crystals" feature dynamic processes across multiple length and time scales. These include the following: (i) transport of slow ions and fast electrons; (ii) highly anharmonic lattice dynamics with short phonon lifetimes; (iii) local symmetry breaking of the average crystallographic space group; (iv) strong relativistic (spin-orbit coupling) effects on the electronic band structure; and (v) thermodynamic metastability and rapid chemical breakdown. These issues, which affect the operation of solar cells, are outlined in this perspective. We also discuss general guidelines for performing quantitative and predictive simulations of these materials, which are relevant to metal-organic frameworks and other hybrid semiconducting, dielectric and ferroelectric compounds.

  20. Perspective: Theory and simulation of hybrid halide perovskites

    PubMed Central

    Jung, Young-Kwang

    2017-01-01

    Organic-inorganic halide perovskites present a number of challenges for first-principles atomistic materials modeling. Such “plastic crystals” feature dynamic processes across multiple length and time scales. These include the following: (i) transport of slow ions and fast electrons; (ii) highly anharmonic lattice dynamics with short phonon lifetimes; (iii) local symmetry breaking of the average crystallographic space group; (iv) strong relativistic (spin-orbit coupling) effects on the electronic band structure; and (v) thermodynamic metastability and rapid chemical breakdown. These issues, which affect the operation of solar cells, are outlined in this perspective. We also discuss general guidelines for performing quantitative and predictive simulations of these materials, which are relevant to metal-organic frameworks and other hybrid semiconducting, dielectric and ferroelectric compounds.

  1. IR spectroscopy of aqueous alkali halide solutions: Pure salt-solvated water spectra and hydration numbers

    NASA Astrophysics Data System (ADS)

    Max, Jean-Joseph; Chapados, Camille

    2001-08-01

    Extrapolation techniques were used to obtain pure salt-solvated water spectra from the attenuated total reflection infrared spectra (ATR-IR) of aqueous solutions of the nine alkali halide salts LiCl, NaCl, KCl, CsCl, NaBr, KBr, NaI, KI, and CsI and the alkaline-earth chloride salt MgCl2. These salts ionize completely in water. The ions by themselves do not absorb in the IR, but their interactions with water can be observed and analyzed. A pure salt-solvated water spectrum is easier to analyze than that of a combined solution of pure water and salt-solvated water. Although the salt-solvated water spectra examined have distinctive signatures, they can be classified in three categories: those similar to NaCl; those not similar to NaCl; and MgCl2, in a class by itself. Each of the pure salt-solvated water spectra differs from that of liquid water, though the number of bands is the same. From the Gaussian band fitting, we found that the positions of the bands were fairly constant, whereas their intensities differed. The salt hydration numbers were determined: for NaCl, KCl, NaBr, KBr, and CsI solutions it is 5; for KI and MgCL2 it is 4; for NaI it is 3.5; for CsCl it is 3; and for LiCl it is 2. From these results we found that each pair of ions (monoatomic ions) of the ten salt solutions studied are close bound and form a complex in a cluster organization with a fixed number of water molecules.

  2. Crystallization of methyl ammonium lead halide perovskites: implications for photovoltaic applications.

    PubMed

    Tidhar, Yaron; Edri, Eran; Weissman, Haim; Zohar, Dorin; Hodes, Gary; Cahen, David; Rybtchinski, Boris; Kirmayer, Saar

    2014-09-24

    Hybrid organic/lead halide perovskites are promising materials for solar cell fabrication, resulting in efficiencies up to 18%. The most commonly studied perovskites are CH3NH3PbI3 and CH3NH3PbI3-xClx where x is small. Importantly, in the latter system, the presence of chloride ion source in the starting solutions used for the perovskite deposition results in a strong increase in the overall charge diffusion length. In this work we investigate the crystallization parameters relevant to fabrication of perovskite materials based on CH3NH3PbI3 and CH3NH3PbBr3. We find that the addition of PbCl2 to the solutions used in the perovskite synthesis has a remarkable effect on the end product, because PbCl2 nanocrystals are present during the fabrication process, acting as heterogeneous nucleation sites for the formation of perovskite crystals in solution. We base this conclusion on SEM studies, synthesis of perovskite single crystals, and on cryo-TEM imaging of the frozen mother liquid. Our studies also included the effect of different substrates and substrate temperatures on the perovskite nucleation efficiency. In view of our findings, we optimized the procedures for solar cells based on lead bromide perovskite, resulting in 5.4% efficiency and Voc of 1.24 V, improving the performance in this class of devices. Insights gained from understanding the hybrid perovskite crystallization process can aid in rational design of the polycrystalline absorber films, leading to their enhanced performance.

  3. Interplay of Cation Ordering and Ferroelectricity in Perovskite Tin Iodides: Designing a Polar Halide Perovskite for Photovoltaic Applications.

    PubMed

    Gou, Gaoyang; Young, Joshua; Liu, Xian; Rondinelli, James M

    2017-01-03

    Owing to its ideal semiconducting band gap and good carrier-transport properties, the fully inorganic perovskite CsSnI3 has been proposed as a visible-light absorber for photovoltaic (PV) applications. However, compared to the organic-inorganic lead halide perovskite CH3NH3PbI3, CsSnI3 solar cells display very low energy conversion efficiency. In this work, we propose a potential route to improve the PV properties of CsSnI3. Using first-principles calculations, we examine the crystal structures and electronic properties of CsSnI3, including its structural polymorphs. Next, we purposefully order Cs and Rb cations on the A site to create the double perovskite (CsRb)Sn2I6. We find that a stable ferroelectric polarization arises from the nontrivial coupling between polar displacements and octahedral rotations of the SnI6 network. These ferroelectric double perovskites are predicted to have energy band gaps and carrier effective masses similar to those of CsSnI3. More importantly, unlike nonpolar CsSnI3, the electric polarization present in ferroelectric (CsRb)Sn2I6 can effectively separate the photoexcited carriers, leading to novel ferroelectric PV materials with potentially enhanced energy conversion efficiency.

  4. Interplay of Cation Ordering and Ferroelectricity in Perovskite Tin Iodides: Designing a Polar Halide Perovskite for Photovoltaic Applications

    SciTech Connect

    Gou, Gaoyang; Young, Joshua; Liu, Xian; Rondinelli, James M.

    2016-09-28

    Owing to its ideal semiconducting band gap and good carrier transport properties, the fully inorganic perovskite CsSnI3 has been proposed as a visible-light absorber for photovoltaic (PV) applications. However, compared to the organic inorganic lead halide perovskite CH3NH3PbI3, CsSnI3 solar cells display very low energy conversion efficiency. In this work, we propose a potential route to improve the PV properties of CsSnI3. Using first-principles calculations, we examine the crystal structures and electronic properties of CsSnI3, including its structural polymorphs. Next, we purposefully order Cs and Rb cations on the A site to create the double perovskite (CsRb)Sn2I6. We find that a stable ferroelectric polarization arises from the nontrivial coupling between polar displacements and octahedral rotations of the SnI6 network. These ferroelectric double perovskites are predicted to have energy band gaps and carrier effective masses similar to those of CsSnI3. More importantly, unlike nonpolar CsSnI3, the electric polarization present in ferroelectric (CsRb)Sn2I6 can effectively separate the photoexcited carriers, leading to novel ferroelectric PV materials with,potentially enhanced energy conversion efficiency.

  5. Defects in perovskite-halides and their effects in solar cells

    NASA Astrophysics Data System (ADS)

    Ball, James M.; Petrozza, Annamaria

    2016-11-01

    Solar cells based on perovskite-halide light absorbers have a unique set of characteristics that could help alleviate the global dependence on fossil fuels for energy generation. They efficiently convert sunlight into electricity using Earth-abundant raw materials processed from solution at low temperature. Thus, they offer potential for cost reductions compared with or in combination with other photovoltaic technologies. Nevertheless, to fully exploit the potential of perovskite-halides, several important challenges must be overcome. Given the nature of the materials — relatively soft ionic solids — one of these challenges is the understanding and control of their defect structures. Currently, such understanding is limited, restricting the power conversion efficiencies of these solar cells from reaching their thermodynamic limit. This Review describes the state of the art in the understanding of the origin and nature of defects in perovskite-halides and their impact on carrier recombination, charge-transport, band alignment, and electrical instability, and provides a perspective on how to make further progress.

  6. Effects of halide ions on photodegradation of sulfonamide antibiotics: Formation of halogenated intermediates.

    PubMed

    Li, Yingjie; Qiao, Xianliang; Zhang, Ya-Nan; Zhou, Chengzhi; Xie, Huaijun; Chen, Jingwen

    2016-10-01

    The occurrence of sulfonamide antibiotics (SAs) in estuarine waters urges insights into their environmental fate for ecological risk assessment. Although many studies focused on the photochemical behavior of SAs, yet the effects of halide ions relevant to estuarine and marine environments on their photodegradation have been poorly understood. Here, we investigated the effects of halide ions on the photodegradation of SAs with sulfapyridine, sulfamethazine, and sulfamethoxazole as representative compounds. Results showed that halide ions did not significantly impact the photodegradation of sulfapyridine and sulfamethoxazole, while they significantly promoted the photodegradation of sulfamethazine. Further experiments found that ionic strength applied with NaClO4 significantly enhanced the photodegradation of the SAs, which was attributed to the decreased quenching rate constant of the triplet-excited SAs ((3)SA(∗)). Compared with ionic strength, specific Cl(-) effects retarded the photodegradation of the SAs. Our study found that triplet-excited sulfamethazine can oxidize halide ions to produce halogen radicals, subsequently leading to the halogenation of sulfamethazine, which was confirmed by the identification of both chlorinated and brominated intermediates. These results indicate that halide ions play an important role in the photochemical behavior of some SAs in estuarine waters and seawater. The occurrence of halogenation for certain organic pollutants can be predicted by comparing the oxidation potentials of triplet-excited contaminants with those of halogen radicals. Our findings are helpful in understanding the photochemical behavior and assessing the ecological risks of SAs and other organic pollutants in estuarine and marine environment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Halide peroxidase in tissues that interact with bacteria in the host squid Euprymna scolopes.

    PubMed

    Small, A L; McFall-Ngai, M J

    1999-03-15

    An enzyme with similarities to myeloperoxidase, the antimicrobial halide peroxidase in mammalian neutrophils, occurs abundantly in the light organ tissue of Euprymna scolopes, a squid that maintains a beneficial association with the luminous bacterium Vibrio fischeri. Using three independent assays typically applied to the analysis of halide peroxidase enzymes, we directly compared the activity of the squid enzyme with that of human myeloperoxidase. One of these methods, the diethanolamine assay, confirmed that the squid peroxidase requires halide ions for its activity. The identification of a halide peroxidase in a cooperative bacterial association suggested that this type of enzyme can function not only to control pathogens, but also to modulate the interactions of host animals with their beneficial partners. To determine whether the squid peroxidase functions under both circumstances, we examined its distribution in a variety of host tissues, including those that typically interact with bacteria and those that do not. Tissues interacting with bacteria included those that have specific cooperative associations with bacteria (i.e., the light organ and accessory nidamental gland) and those that have transient nonspecific interactions with bacteria (i.e., the gills, which clear the cephalopod circulatory system of invading microorganisms). These bacteria-associated tissues were compared with the eye, digestive gland, white body, and ink-producing tissues, which do not typically interact directly with bacteria. Peroxidase enzyme assays, immunocytochemical localization, and DNA-RNA hybridizations showed that the halide-dependent peroxidase is consistently expressed in high concentration in tissues that interact bacteria. Elevated levels of the peroxidase were also found in the ink-producing tissues, which are known to have enzymatic pathways associated with antimicrobial activity. Taken together, these data suggest that the host uses a common biochemical response to

  8. Non-conventional halide oxidation pathways : oxidation by imidazole triplet and surface specific oxidation by ozone

    NASA Astrophysics Data System (ADS)

    Ammann, Markus; Corral-Arroyo, Pablo; Aellig, Raphael; Orlando, Fabrizio; Lee, Ming-Tao; Artiglia, Luca

    2016-04-01

    Oxidation of halide ions (chloride, bromide, iodide) are the starting point of halogen release mechanisms out of sea water, marine aerosol or other halide containing continental aerosols. Slow oxidation of chloride and bromide by ozone in the bulk aqueous phase is of limited relevance. Faster surface specific oxidation has been suggested based on heterogeneous kinetics experiments. We provide first insight into very efficient bromide oxidation by ozone at the aqueous solution - air interface by surface sensitive X-ray photoelectron spectroscopy indicating significant build-up of an oxidized intermediate at the surface within millisecond time scales. The second source of oxidants in the condensed we have considered is the absorption of light by triplet forming photosensitizers at wavelengths longer than needed for direct photolysis and radical formation. We have performed coated wall flow tube experiments with mixtures of citric acid (CA) and imidazole-2-carboxaldehyde (IC) to represent secondary organic material rich marine aerosol. The halide ions bromide and iodide have been observed to act as efficient electron donors leading to their oxidation, HO2 formation and finally release of molecular halogen compounds. The photosensitization of imidazole-2-carboxaldehyde (IC) involves a well-known mechanism where the triplet excited state of IC is reduced by citric acid to a reduced ketyl radical that reacts with halide ions. A competition kinetics approach has been used to evaluate the rate limiting steps and to assess the significance of this source of halogens to the gas phase.

  9. Enhancement of Exciton Emission in Lead Halide-Based Layered Perovskites by Cation Mixing.

    PubMed

    Era, Masanao; Komatsu, Yumeko; Sakamoto, Naotaka

    2016-04-01

    Spin-coated films of a lead halide, PbX: X = I and Br, layered perovskites having cyclohexenylethyl ammonium molecule as an organic layer, which were mixed with other metal halide-based layered perovskites consisting of various divalent metal halides (for example, Ca2, Cdl2, FeI2, SnBr2 and so on), were prepared. The results of X-ray diffraction measurements exhibited that solid solution formation between PbX-based layered perovskite and other divalent metal halide-based layered perovskites was observed up to very high molar concentration of 50 molar% in the mixed film samples when divalent cations having ionic radius close to that of Pb2+ were employed. In the solid solution films, the exciton emission was much enhanced at room temperature. Exciton emission intensity of Pbl-based layered perovskite mixed with Cal-based layered perovskite (20 molar%) is about 5 times large that of the pristine Pbl-based layered perovskite, and that of PbBr-based layered perovskite mixed with SnBr-based layered perovskite (20 molar%) was also about 5 times large that of the pristine PbBr-based layered perovskite at room temperature.

  10. Transport of Soil Halides through Rice Paddies: A Viable Mechanism for Rapid Dispersion of the Soil Halide Reservoir

    NASA Astrophysics Data System (ADS)

    Redeker, K. R.; Manley, S.; Wang, N.; Cicerone, R.

    2002-05-01

    On short time scales (1-10 years) soil halide concentrations have been assumed to be primarily driven by leaching and deposition processes. Recent results however, have shown that terrestrial plants volatilize soil halides in the form of methyl halides. Emissions of methyl chloride, methyl bromide and methyl iodide represent major pathways for delivery of inorganic halogen radicals to the atmosphere. Inorganic halogen radicals destroy ozone in the stratosphere and modify the oxidative capacity of the lower atmosphere. We have previously shown that rice paddies emit methyl halides and that emissions depend on growth stage of the rice plant as well as field water management. We show here that rice grown in a greenhouse at UCI is capable of volatilizing and/or storing up to 30%, 5%, and 10% of the available chloride, bromide and iodide within the top meter of soil. The percent of plant tissue halide volatilized as methyl halide over the course of the season is calculated to be 0.05%, 0.25% and 85.0% for chloride, bromide and iodide. We compare our greenhouse soil halide concentrations to other commercial rice fields around the world and estimate the e-folding time for soil halides within each region. We suggest that rice agriculture is the driving removal mechanism for halides within rice paddies and that terrestrial plants play a larger role in global cycling of halides than previously estimated.

  11. Damage tolerant light absorbing material

    DOEpatents

    Lauf, R.J.; Hamby, C. Jr.; Akerman, M.A.; Seals, R.D.

    1993-09-07

    A light absorbing article comprised of a composite of carbon-bonded carbon fibers, is prepared by: blending carbon fibers with a carbonizable organic powder to form a mixture; dispersing the mixture into an aqueous slurry; vacuum molding the aqueous slurry to form a green article; drying and curing the green article to form a cured article; and, carbonizing the cured article at a temperature of at least about 1000 C to form a carbon-bonded carbon fiber light absorbing composite article having a bulk density less than 1 g/cm[sup 3]. 9 figures.

  12. Damage tolerant light absorbing material

    DOEpatents

    Lauf, Robert J.; Hamby, Jr., Clyde; Akerman, M. Alfred; Seals, Roland D.

    1993-01-01

    A light absorbing article comprised of a composite of carbon-bonded carbon fibers, prepared by: blending carbon fibers with a carbonizable organic powder to form a mixture; dispersing the mixture into an aqueous slurry; vacuum molding the aqueous slurry to form a green article; drying and curing the green article to form a cured article; and, carbonizing the cured article at a temperature of at least about 1000.degree. C. to form a carbon-bonded carbon fiber light absorbing composite article having a bulk density less than 1 g/cm.sup.3.

  13. Flame inhibition by hydrogen halides - Some spectroscopic measurements

    NASA Technical Reports Server (NTRS)

    Lerner, N. R.; Cagliostro, D. E.

    1973-01-01

    The far-ultraviolet absorption spectrum of an air-propane diffusion flame inhibited with hydrogen halides has been studied. Plots of the absorption of light by hydrogen halides as a function of position in the flame and also as a function of the amount of hydrogen halide added to the flame have been obtained. The hydrogen halides are shown to be more stable on the fuel side of the reaction zone than they are on the air side. Thermal diffusion is seen to be important in determining the concentration distribution of the heavier hydrogen halides in diffusion flames. The relationship between the concentration distribution of the hydrogen halides in the flame and the flame inhibition mechanism is discussed.

  14. Flame inhibition by hydrogen halides - Some spectroscopic measurements

    NASA Technical Reports Server (NTRS)

    Lerner, N. R.; Cagliostro, D. E.

    1973-01-01

    The far-ultraviolet absorption spectrum of an air-propane diffusion flame inhibited with hydrogen halides has been studied. Plots of the absorption of light by hydrogen halides as a function of position in the flame and also as a function of the amount of hydrogen halide added to the flame have been obtained. The hydrogen halides are shown to be more stable on the fuel side of the reaction zone than they are on the air side. Thermal diffusion is seen to be important in determining the concentration distribution of the heavier hydrogen halides in diffusion flames. The relationship between the concentration distribution of the hydrogen halides in the flame and the flame inhibition mechanism is discussed.

  15. Lanthanide-halide based humidity indicators

    DOEpatents

    Beitz, James V.; Williams, Clayton W.

    2008-01-01

    The present invention discloses a lanthanide-halide based humidity indicator and method of producing such indicator. The color of the present invention indicates the humidity of an atmosphere to which it is exposed. For example, impregnating an adsorbent support such as silica gel with an aqueous solution of the europium-containing reagent solution described herein, and dehydrating the support to dryness forms a substance with a yellow color. When this substance is exposed to a humid atmosphere the water vapor from the air is adsorbed into the coating on the pore surface of the silica gel. As the water content of the coating increases, the visual color of the coated silica gel changes from yellow to white. The color change is due to the water combining with the lanthanide-halide complex on the pores of the gel.

  16. Interpulse kinetics in copper and copper halide lasers

    NASA Technical Reports Server (NTRS)

    Harstad, K. G.

    1983-01-01

    The various rate processes that govern the interpulse relaxation in metal vapor and metal halide vapor lasers are considered. Computer calculations indicate that the rapid metastable levels relaxation observed in copper and copper halide laser experiments requires the existence of a relatively small resonance in the cross section for metastable excitation or deexcitation near threshold. The accurate calculation of interpulse relaxation requires knowledge of rate constants presently not well known; this is especially so for metal halide lasers.

  17. Process and composition for drying of gaseous hydrogen halides

    DOEpatents

    Tom, Glenn M.; Brown, Duncan W.

    1989-08-01

    A process for drying a gaseous hydrogen halide of the formula HX, wherein X is selected from the group consisting of bromine, chlorine, fluorine, and iodine, to remove water impurity therefrom, comprising: contacting the water impurity-containing gaseous hydrogen halide with a scavenger including a support having associated therewith one or more members of the group consisting of: (a) an active scavenging moiety selected from one or more members of the group consisting of: (i) metal halide compounds dispersed in the support, of the formula MX.sub.y ; and (ii) metal halide pendant functional groups of the formula -MX.sub.y-1 covalently bonded to the support, wherein M is a y-valent metal, and y is an integer whose value is from 1 to 3; (b) corresponding partially or fully alkylated compounds and/or pendant functional groups, of the metal halide compounds and/or pendant functional groups of (a); wherein the alkylated compounds and/or pendant functional groups, when present, are reactive with the gaseous hydrogen halide to form the corresponding halide compounds and/or pendant functional groups of (a); and M being selected such that the heat of formation, .DELTA.H.sub.f of its hydrated halide, MX.sub.y.(H.sub.2 O).sub.n, is governed by the relationship: .DELTA.H.sub.f .gtoreq.n.times.10.1 kilocalories/mole of such hydrated halide compound wherein n is the number of water molecules bound to the metal halide in the metal halide hydrate. Also disclosed is an appertaining scavenger composition and a contacting apparatus wherein the scavenger is deployed in a bed for contacting with the water impurity-containing gaseous hydrogen halide.

  18. Synthesis and Optical Properties of Lead-Free Cesium Tin Halide Perovskite Quantum Rods with High-Performance Solar Cell Application.

    PubMed

    Chen, Lin-Jer; Lee, Chia-Rong; Chuang, Yu-Ju; Wu, Zhao-Han; Chen, Chienyi

    2016-12-15

    Herein, the fabrication of a lead-free cesium tin halide perovskite produced via a simple solvothermal process is reported for the first time. The resulting CsSnX3 (X = Cl, Br, and I) quantum rods show composition-tunable photoluminescence (PL) emissions over the entire visible spectral window (from 625 to 709 nm), as well as significant tunability of the optical properties. In this study, we demonstrate that through hybrid materials (CsSnX3) with different halides, the system can be tunable in terms of PL. By replacing the halide of the CsSnX3 quantum rods, a power conversion efficiency of 12.96% under AM 1.5 G has been achieved. This lead-free quantum rod replacement has demonstrated to be an effective method to create an absorber layer that increases light harvesting and charge collection for photovoltaic applications in its perovskite phase.

  19. Anomalous Alloy Properties in Mixed Halide Perovskites.

    PubMed

    Yin, Wan-Jian; Yan, Yanfa; Wei, Su-Huai

    2014-11-06

    Engineering halide perovskite through mixing halogen elements, such as CH3NH3PbI3-xClx and CH3NH3PbI3-xBrx, is a viable way to tune its electronic and optical properties. Despite many emerging experiments on mixed halide perovskites, the basic electronic and structural properties of the alloys have not been understood and some crucial questions remain, for example, how much Cl can be incorporated into CH3NH3PbI3 is still unclear. In this Letter, we chose CsPbX3 (X = I, Br, Cl) as an example and use a first-principle calculation together with cluster-expansion methods to systematically study the structural, electronic, and optical properties of mixed halide perovskites and find that unlike conventional semiconductor alloys, they exhibit many anomalous alloy properties such as small or even negative formation energies at some concentrations and negligible or even negative band gap bowing parameters at high temperature. We further show that mixed-(I,Cl) perovskite is hard to form at temperature below 625 K, whereas forming mixed-(Br,Cl) and (I,Br) alloys are easy at room temperature.

  20. Giant photostriction in organic–inorganic lead halide perovskites

    PubMed Central

    Zhou, Yang; You, Lu; Wang, Shiwei; Ku, Zhiliang; Fan, Hongjin; Schmidt, Daniel; Rusydi, Andrivo; Chang, Lei; Wang, Le; Ren, Peng; Chen, Liufang; Yuan, Guoliang; Chen, Lang; Wang, Junling

    2016-01-01

    Among the many materials investigated for next-generation photovoltaic cells, organic–inorganic lead halide perovskites have demonstrated great potential thanks to their high power conversion efficiency and solution processability. Within a short period of about 5 years, the efficiency of solar cells based on these materials has increased dramatically from 3.8 to over 20%. Despite the tremendous progress in device performance, much less is known about the underlying photophysics involving charge–orbital–lattice interactions and the role of the organic molecules in this hybrid material remains poorly understood. Here, we report a giant photostrictive response, that is, light-induced lattice change, of >1,200 p.p.m. in methylammonium lead iodide, which could be the key to understand its superior optical properties. The strong photon-lattice coupling also opens up the possibility of employing these materials in wireless opto-mechanical devices. PMID:27044485

  1. Evaluation of low melting halide systems for battery applications

    NASA Astrophysics Data System (ADS)

    Mamantov, G.; Perrovic, C.

    1981-03-01

    This three year program involves evaluation of selected low temperature molten salt solvent systems containing inorganic and/or organic chlorides and bromides for battery applications. The research involves determination of the liquidus temperatures, the specific electrical conductivity, and the electrochemical span of selected halide systems. Characterization of the solvent species by Raman spectroscopy, vapor pressure measurements, and the electrochemical study of a few cathode and anode systems will be undertaken for the most promising solvent systems. The research during the second year of this project involved the determination of liquidus temperatures and/or specific electrical conductivities for a number of binary and ternary molten salt systems containing AlCl3, AlBr3, SbCl3, FeCl3, and GaCl3.

  2. Lanthanide doped strontium-barium cesium halide scintillators

    DOEpatents

    Bizarri, Gregory; Bourret-Courchesne, Edith; Derenzo, Stephen E.; Borade, Ramesh B.; Gundiah, Gautam; Yan, Zewu; Hanrahan, Stephen M.; Chaudhry, Anurag; Canning, Andrew

    2015-06-09

    The present invention provides for a composition comprising an inorganic scintillator comprising an optionally lanthanide-doped strontium-barium, optionally cesium, halide, useful for detecting nuclear material.

  3. Composition for absorbing hydrogen

    DOEpatents

    Heung, L.K.; Wicks, G.G.; Enz, G.L.

    1995-05-02

    A hydrogen absorbing composition is described. The composition comprises a porous glass matrix, made by a sol-gel process, having a hydrogen-absorbing material dispersed throughout the matrix. A sol, made from tetraethyl orthosilicate, is mixed with a hydrogen-absorbing material and solidified to form a porous glass matrix with the hydrogen-absorbing material dispersed uniformly throughout the matrix. The glass matrix has pores large enough to allow gases having hydrogen to pass through the matrix, yet small enough to hold the particles dispersed within the matrix so that the hydrogen-absorbing particles are not released during repeated hydrogen absorption/desorption cycles.

  4. Composition for absorbing hydrogen

    DOEpatents

    Heung, Leung K.; Wicks, George G.; Enz, Glenn L.

    1995-01-01

    A hydrogen absorbing composition. The composition comprises a porous glass matrix, made by a sol-gel process, having a hydrogen-absorbing material dispersed throughout the matrix. A sol, made from tetraethyl orthosilicate, is mixed with a hydrogen-absorbing material and solidified to form a porous glass matrix with the hydrogen-absorbing material dispersed uniformly throughout the matrix. The glass matrix has pores large enough to allow gases having hydrogen to pass through the matrix, yet small enough to hold the particles dispersed within the matrix so that the hydrogen-absorbing particles are not released during repeated hydrogen absorption/desorption cycles.

  5. Changes in Carbon Isotope Composition of Methyl Halides Resulting from Biological and Chemical Degradation

    NASA Astrophysics Data System (ADS)

    Baesman, S. M.; Miller, L. G.; Oremland, R. S.

    2003-12-01

    Methyl bromide (MeBr), methyl chloride (MeCl) and methyl iodide (MeI) are reactive trace gases that are produced and released to the atmosphere at the Earths surface. These methyl halides have the potential to influence ozone levels in the stratosphere. Current estimates of the relative contributions of natural and anthropogenic sources of these methyl halides are the subject of considerable debate. In addition, there is uncertainty in the magnitude of some of the largest sinks for these compounds. Hence, the atmospheric budgets of MeBr, MeCl and MeI, while uncertain at present, may be better constrained using stable isotope ratio (13C/12C) mass balances of sources and sinks. Our work has focused on characterizing the effects upon δ 13C values of methyl halides released after reactions which discriminate in favor of 12C during removal processes. Previously, we determined very large fractionations of carbon isotopes by pure cultures of soil bacteria. Further, we have documented large fractionations (kinetic isotope effects or KIEs) of methyl halides in live soils. In the case of MeBr and MeI, substantial fractionation also occurred in heat-killed soil, suggesting that chemical degradation resulted in a shift in the stable isotopic composition. At elevated concentrations, for instance during agricultural soil fumigations, the δ 13C value of MeBr or MeI released from soil can be determined by flux measurements or soil profiles. However, more information is needed regarding the processes responsible for isotope fractionation to be able to extrapolate to areas where the concentration is low or direct measurement is not otherwise possible. We report here on measurements of the fractionation of carbon isotopes in methyl halides during degradation by chemical processes that are likely to occur in soil or seawater. These processes include aqueous hydrolysis and halide exchange and the methylation of organic matter using humic acid as the model methyl acceptor. Results are

  6. Effects of alloying on the optical properties of organic–inorganic lead halide perovskite thin films

    SciTech Connect

    Ndione, Paul F.; Li, Zhen; Zhu, Kai

    2016-01-01

    Complex refractive index and dielectric function spectra of organic-inorganic lead halide perovskite alloy thin films are presented, together with the critical-point parameter analysis (energy and broadening) of the respective composition. Thin films of methylammonium lead halide alloys (MAPbI3, MAPbBr3, MAPbBr2I, and MAPbBrI2), formamidinium lead halide alloys (FAPbI3, FAPbBr3, and FAPbBr2I), and formamidinium cesium lead halide alloys [FA0.85Cs0.15PbI3, FA0.85Cs0.15PbBrI2, and FA0.85Cs0.15Pb(Br0.4I0.6)3] were studied. The complex refractive index and dielectric functions were determined by spectroscopic ellipsometry (SE) in the photon energy range of 0.7-6.5 eV. Critical point energies and optical transitions were obtained by lineshape fitting to the second-derivative of the complex dielectric function data of these thin films as a function of alloy composition. Absorption onset in the vicinity of the bandgap, as well as critical point energies and optical band transition shift toward higher energies as the concentration of Br in the films increases. Cation alloying (Cs+) has less effect on the optical properties of the thin films compared to halide mixed alloys. The reported optical properties can help to understand the fundamental properties of the perovskite materials and also be used for optimizing or designing new devices.

  7. A simple halide-to-anion exchange method for heteroaromatic salts and ionic liquids.

    PubMed

    Alcalde, Ermitas; Dinarès, Immaculada; Ibáñez, Anna; Mesquida, Neus

    2012-04-02

    A broad and simple method permitted halide ions in quaternary heteroaromatic and ammonium salts to be exchanged for a variety of anions using an anion exchange resin (A(-) form) in non-aqueous media. The anion loading of the AER (OH(-) form) was examined using two different anion sources, acids or ammonium salts, and changing the polarity of the solvents. The AER (A(-) form) method in organic solvents was then applied to several quaternary heteroaromatic salts and ILs, and the anion exchange proceeded in excellent to quantitative yields, concomitantly removing halide impurities. Relying on the hydrophobicity of the targeted ion pair for the counteranion swap, organic solvents with variable polarity were used, such as CH(3)OH, CH(3)CN and the dipolar nonhydroxylic solvent mixture CH(3)CN:CH(2)Cl(2) (3:7) and the anion exchange was equally successful with both lipophilic cations and anions.

  8. Solid-state halide ion-selective electrodes: studies of quaternary ammonium halide solutions and determination of surfactants.

    PubMed

    Gomathi, H; Subramanian, G; Chandra, N; Rao, G P

    1983-11-01

    The feasibility of using homogeneous membrane-type halide ion-selective electrodes in solutions containing cationic surfactant compounds was examined. The results established the applicability of these electrodes for monitoring halide ions in solution without interference by the surfactants. The data also provided a basis for estimation of the surfactant in solution through the halide content. Two typical plating-bath compositions containing CTAB have been successfully analysed for their surfactant content by this procedure.

  9. Mechanism and Selectivity in Nickel-Catalyzed Cross-Electrophile Coupling of Aryl Halides with Alkyl Halides

    PubMed Central

    Biswas, Soumik; Weix, Daniel J.

    2013-01-01

    The direct cross-coupling of two different electrophiles, such as an aryl halide with an alkyl halide, offers many advantages over conventional cross-coupling methods that require a carbon nucleophile. Despite its promise as a versatile synthetic strategy, a limited understanding of the mechanism and origin of cross selectivity has hindered progress in reaction development and design. Herein, we shed light on the mechanism for the nickel-catalyzed cross-electrophile coupling of aryl halides with alkyl halides and demonstrate that the selectivity arises from an unusual catalytic cycle that combines both polar and radical steps to form the new C-C bond. PMID:23952217

  10. Involvement of S-adenosylmethionine-dependent halide/thiol methyltransferase (HTMT) in methyl halide emissions from agricultural plants: isolation and characterization of an HTMT-coding gene from Raphanus sativus (daikon radish)

    PubMed Central

    Itoh, Nobuya; Toda, Hiroshi; Matsuda, Michiko; Negishi, Takashi; Taniguchi, Tomokazu; Ohsawa, Noboru

    2009-01-01

    Background Biogenic emissions of methyl halides (CH3Cl, CH3Br and CH3I) are the major source of these compounds in the atmosphere; however, there are few reports about the halide profiles and strengths of these emissions. Halide ion methyltransferase (HMT) and halide/thiol methyltransferase (HTMT) enzymes concerning these emissions have been purified and characterized from several organisms including marine algae, fungi, and higher plants; however, the correlation between emission profiles of methyl halides and the enzymatic properties of HMT/HTMT, and their role in vivo remains unclear. Results Thirty-five higher plant species were screened, and high CH3I emissions and HMT/HTMT activities were found in higher plants belonging to the Poaceae family, including wheat (Triticum aestivum L.) and paddy rice (Oryza sativa L.), as well as the Brassicaceae family, including daikon radish (Raphanus sativus). The in vivo emission of CH3I clearly correlated with HMT/HTMT activity. The emission of CH3I from the sprouting leaves of R. sativus, T. aestivum and O. sativa grown hydroponically increased with increasing concentrations of supplied iodide. A gene encoding an S-adenosylmethionine halide/thiol methyltransferase (HTMT) was cloned from R. sativus and expressed in Escherichia coli as a soluble protein. The recombinant R. sativus HTMT (RsHTMT) was revealed to possess high specificity for iodide (I-), bisulfide ([SH]-), and thiocyanate ([SCN]-) ions. Conclusion The present findings suggest that HMT/HTMT activity is present in several families of higher plants including Poaceae and Brassicaceae, and is involved in the formation of methyl halides. Moreover, it was found that the emission of methyl iodide from plants was affected by the iodide concentration in the cultures. The recombinant RsHTMT demonstrated enzymatic properties similar to those of Brassica oleracea HTMT, especially in terms of its high specificity for iodide, bisulfide, and thiocyanate ions. A survey of

  11. Involvement of S-adenosylmethionine-dependent halide/thiol methyltransferase (HTMT) in methyl halide emissions from agricultural plants: isolation and characterization of an HTMT-coding gene from Raphanus sativus (daikon radish).

    PubMed

    Itoh, Nobuya; Toda, Hiroshi; Matsuda, Michiko; Negishi, Takashi; Taniguchi, Tomokazu; Ohsawa, Noboru

    2009-09-01

    Biogenic emissions of methyl halides (CH3Cl, CH3Br and CH3I) are the major source of these compounds in the atmosphere; however, there are few reports about the halide profiles and strengths of these emissions. Halide ion methyltransferase (HMT) and halide/thiol methyltransferase (HTMT) enzymes concerning these emissions have been purified and characterized from several organisms including marine algae, fungi, and higher plants; however, the correlation between emission profiles of methyl halides and the enzymatic properties of HMT/HTMT, and their role in vivo remains unclear. Thirty-five higher plant species were screened, and high CH3I emissions and HMT/HTMT activities were found in higher plants belonging to the Poaceae family, including wheat (Triticum aestivum L.) and paddy rice (Oryza sativa L.), as well as the Brassicaceae family, including daikon radish (Raphanus sativus). The in vivo emission of CH3I clearly correlated with HMT/HTMT activity. The emission of CH3I from the sprouting leaves of R. sativus, T. aestivum and O. sativa grown hydroponically increased with increasing concentrations of supplied iodide. A gene encoding an S-adenosylmethionine halide/thiol methyltransferase (HTMT) was cloned from R. sativus and expressed in Escherichia coli as a soluble protein. The recombinant R. sativus HTMT (RsHTMT) was revealed to possess high specificity for iodide (I-), bisulfide ([SH]-), and thiocyanate ([SCN]-) ions. The present findings suggest that HMT/HTMT activity is present in several families of higher plants including Poaceae and Brassicaceae, and is involved in the formation of methyl halides. Moreover, it was found that the emission of methyl iodide from plants was affected by the iodide concentration in the cultures. The recombinant RsHTMT demonstrated enzymatic properties similar to those of Brassica oleracea HTMT, especially in terms of its high specificity for iodide, bisulfide, and thiocyanate ions. A survey of biogenic emissions of methyl

  12. Sequential one-pot ruthenium-catalyzed azide-alkyne cycloaddition from primary alkyl halides and sodium azide.

    PubMed

    Johansson, Johan R; Lincoln, Per; Nordén, Bengt; Kann, Nina

    2011-04-01

    An experimentally simple sequential one-pot RuAAC reaction, affording 1,5-disubstituted 1H-1,2,3-triazoles in good to excellent yields starting from an alkyl halide, sodium azide, and an alkyne, is reported. The organic azide is formed in situ by treating the primary alkyl halide with sodium azide in DMA under microwave heating. Subsequent addition of [RuClCp*(PPh(3))(2)] and the alkyne yielded the desired cycloaddition product after further microwave irradiation.

  13. Excited State Kinetics of Mercury Halides and Mixtures with N2 and Xe.

    DTIC Science & Technology

    1983-11-28

    AD-A135 432 EXCITED STATE KINETICS OF MERCURY HALIDES AND MIXTURES i/i WITH N2 AND XECU) KANSAS STATE UNIV MANHATTAN DEPT OF CHEMISTRY D W SETSER 28...ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT. TASK Chemistry Department AREA 6 WORK UNIT NUMERS :T Kansas State University Manhattan , KS...913)532-6692 Chemistry Department Kansas State University Manhattan , Kansas 66506 Contract Period April 1, 1980 - Sept. 30, 1983 Summary Experimental

  14. Understanding of the formation of shallow level defects from the intrinsic defects of lead tri-halide perovskites.

    PubMed

    Kim, Jongseob; Chung, Choong-Heui; Hong, Ki-Ha

    2016-10-05

    Organic-inorganic hybrid perovskites have unique electronic properties in which deep level defects are rarely formed. This unique defect characteristic is the source of the long carrier diffusion length. This theoretical study shows what causes this characteristic formation of shallow level defects in lead tri-halide perovskites. Comparative studies between iodides and other halides showed that deep level defect states were generated for Cl based perovskites. Longer Pb-halide bond lengths and narrower band gaps are beneficial for preventing deep level defect states. Additionally, our study shows that the formation of shallow level defects does not change even when the lattice structures of the perovskites do not reach their equilibrium structures.

  15. Methods for absorbing neutrons

    DOEpatents

    Guillen, Donna P [Idaho Falls, ID; Longhurst, Glen R [Idaho Falls, ID; Porter, Douglas L [Idaho Falls, ID; Parry, James R [Idaho Falls, ID

    2012-07-24

    A conduction cooled neutron absorber may include a metal matrix composite that comprises a metal having a thermal neutron cross-section of at least about 50 barns and a metal having a thermal conductivity of at least about 1 W/cmK. Apparatus for providing a neutron flux having a high fast-to-thermal neutron ratio may include a source of neutrons that produces fast neutrons and thermal neutrons. A neutron absorber positioned adjacent the neutron source absorbs at least some of the thermal neutrons so that a region adjacent the neutron absorber has a fast-to-thermal neutron ratio of at least about 15. A coolant in thermal contact with the neutron absorber removes heat from the neutron absorber.

  16. Externally tuned vibration absorber

    DOEpatents

    Vincent, Ronald J.

    1987-09-22

    A vibration absorber unit or units are mounted on the exterior housing of a hydraulic drive system of the type that is powered from a pressure wave generated, e.g., by a Stirling engine. The hydraulic drive system employs a piston which is hydraulically driven to oscillate in a direction perpendicular to the axis of the hydraulic drive system. The vibration absorbers each include a spring or other resilient member having one side affixed to the housing and another side to which an absorber mass is affixed. In a preferred embodiment, a pair of vibration absorbers is employed, each absorber being formed of a pair of leaf spring assemblies, between which the absorber mass is suspended.

  17. CPCs with segmented absorbers

    SciTech Connect

    Keita, M.; Robertson, H.S. )

    1991-01-01

    One of the most promising means of improving the performance of solar thermal collectors is to reduce the energy lost by the hot absorber. One way to do this, not currently part of the technology, is to recognize that since the absorber is usually not irradiated uniformly, it is therefore possible to construct an absorber of thermally isolated segments, circulate the fluid in sequence from low to high irradiance segments, and reduce loss by improving effective concentration. This procedure works even for ideal concentrators, without violating Winston's theorem. Two equivalent CPC collectors with single and segmented absorber were constructed and compared under actual operating conditions. The results showed that the daily thermal efficiency of the collector with segmented absorber is higher (about 13%) than that of the collector with nonsegmented absorber.

  18. Shock absorber control system

    SciTech Connect

    Nakano, Y.; Ohira, M.; Ushida, M.; Miyagawa, T.; Shimodaira, T.

    1987-01-13

    A shock absorber control system is described for controlling a dampening force of a shock absorber of a vehicle comprising: setting means for setting a desired dampening force changeable within a predetermined range; drive means for driving the shock absorber to change the dampening force of the shock absorber linearly; control means for controlling the drive means in accordance with the desired dampening force when the setting of the desired dampening force has been changed; detecting means for detecting an actual dampening force of the shock absorber; and correcting means for correcting the dampening force of the shock absorber by controlling the drive means in accordance with a difference between the desired dampening force and the detected actual dampening force.

  19. [Emissions of methyl halides from coastal salt marshes: A review].

    PubMed

    Xie, Wen-xia; Zhao, Quan-sheng; Cui, Yu-qian; Du, Hui-na; Ye, Si-yuan

    2015-11-01

    Methyl halides are the major carrier of halogens in the atmosphere, and they play an important role in tropospheric and stratospheric ozone depletion. Meanwhile, methyl halides can act as greenhouse gases in the atmosphere, and they are also environmentally significant because of their toxicity. Coastal salt marshes, the important intertidal ecosystems at the land-ocean interface, have been considered to be a large potential natural source of methyl halides. In this paper, the research status of the natural source or sink of methyl halides, the mechanisms of their emission from coastal salt marshes and affecting factors were summarized. In view of this, the following research fields need to be strengthened in the future: 1) Long time-scale and large region-range researches about the emission of methyl halides and the evaluation of their source and sink function, 2) Accurate quantification of contribution rates of different plant species and various biological types to fluxes of methyl halides, 3) Further researches on effects of the tidal fluctuation process and flooding duration on methyl halides emission, 4) Effects of the global change and human activities on methyl halides emission.

  20. Hydrogen storage and ionic mobility in amide-halide systems.

    PubMed

    Anderson, Paul A; Chater, Philip A; Hewett, David R; Slater, Peter R

    2011-01-01

    We report the results of a systematic study of the effect of halides on hydrogen release and uptake in lithium amide and lithium imide, respectively. The reaction of lithium amide and lithium imide with lithium or magnesium chloride, bromide and iodide resulted in a series of amide-halide and imide-halide phases, only two of which have been reported previously. On heating with LiH or MgH2, the amide-halides synthesised all released hydrogen more rapidly than lithium amide itself, accompanied by much reduced, or in some cases undetectable, release of ammonia by-product. The imide-halides produced were found to hydrogenate more rapidly than lithium imide, reforming related amide-halide phases. The work was initiated to test the hypothesis that the incorporation of halide anions might improve the lithium ion conductivity of lithium amide and help maintain high lithium ion mobility at all stages of the de/rehydrogenation process, enhancing the bulk hydrogen storage properties of the system. Preliminary ionic conductivity measurements indicated that the most conducting amide- and imide-halide phases were also the quickest to release hydrogen on heating and to hydrogenate. We conclude that ionic conductivity may be an important parameter in optimising the materials properties of this and other hydrogen storage systems.

  1. Real Time Monitoring of Dissolved Organic Carbon Concentration and Disinfection By-Product Formation Potential in a Surface Water Treatment Plant with Simulaneous UV-VIS Absorbance and Fluorescence Excitation-Emission Mapping

    NASA Astrophysics Data System (ADS)

    Gilmore, A. M.

    2015-12-01

    This study describes a method based on simultaneous absorbance and fluorescence excitation-emission mapping for rapidly and accurately monitoring dissolved organic carbon concentration and disinfection by-product formation potential for surface water sourced drinking water treatment. The method enables real-time monitoring of the Dissolved Organic Carbon (DOC), absorbance at 254 nm (UVA), the Specific UV Absorbance (SUVA) as well as the Simulated Distribution System Trihalomethane (THM) Formation Potential (SDS-THMFP) for the source and treated water among other component parameters. The method primarily involves Parallel Factor Analysis (PARAFAC) decomposition of the high and lower molecular weight humic and fulvic organic component concentrations. The DOC calibration method involves calculating a single slope factor (with the intercept fixed at 0 mg/l) by linear regression for the UVA divided by the ratio of the high and low molecular weight component concentrations. This method thus corrects for the changes in the molecular weight component composition as a function of the source water composition and coagulation treatment effects. The SDS-THMFP calibration involves a multiple linear regression of the DOC, organic component ratio, chlorine residual, pH and alkalinity. Both the DOC and SDS-THMFP correlations over a period of 18 months exhibited adjusted correlation coefficients with r2 > 0.969. The parameters can be reported as a function of compliance rules associated with required % removals of DOC (as a function of alkalinity) and predicted maximum contaminant levels (MCL) of THMs. The single instrument method, which is compatible with continuous flow monitoring or grab sampling, provides a rapid (2-3 minute) and precise indicator of drinking water disinfectant treatability without the need for separate UV photometric and DOC meter measurements or independent THM determinations.

  2. How specific halide adsorption varies hydrophobic interactions.

    PubMed

    Stock, Philipp; Müller, Melanie; Utzig, Thomas; Valtiner, Markus

    2016-03-11

    Hydrophobic interactions (HI) are driven by the water structure around hydrophobes in aqueous electrolytes. How water structures at hydrophobic interfaces and how this influences the HI was subject to numerous studies. However, the effect of specific ion adsorption on HI and hydrophobic interfaces remains largely unexplored or controversial. Here, the authors utilized atomic force microscopy force spectroscopy at well-defined nanoscopic hydrophobic interfaces to experimentally address how specific ion adsorption of halide ions as well as NH4 (+), Cs(+), and Na(+) cations alters interaction forces across hydrophobic interfaces. Our data demonstrate that iodide adsorption at hydrophobic interfaces profoundly varies the hydrophobic interaction potential. A long-range and strong hydration repulsion at distances D > 3 nm, is followed by an instability which could be explained by a subsequent rapid ejection of adsorbed iodides from approaching hydrophobic interfaces. In addition, the authors find only a weakly pronounced influence of bromide, and as expected no influence of chloride. Also, all tested cations do not have any significant influence on HI. Complementary, x-ray photoelectron spectroscopy and quartz-crystal-microbalance with dissipation monitoring showed a clear adsorption of large halide ions (Br(-)/I(-)) onto hydrophobic self-assembled monolayers (SAMs). Interestingly, iodide can even lead to a full disintegration of SAMs due to specific and strong interactions of iodide with gold. Our data suggest that hydrophobic surfaces are not intrinsically charged negatively by hydroxide adsorption, as it was generally believed. Hydrophobic surfaces rather interact strongly with negatively charged large halide ions, leading to a surface charging and significant variation of interaction forces.

  3. Development of novel growth methods for halide single crystals

    NASA Astrophysics Data System (ADS)

    Yokota, Yuui; Kurosawa, Shunsuke; Shoji, Yasuhiro; Ohashi, Yuji; Kamada, Kei; Yoshikawa, Akira

    2017-03-01

    We developed novel growth methods for halide scintillator single crystals with hygroscopic nature, Halide micro-pulling-down [H-μ-PD] method and Halide Vertical Bridgman [H-VB] method. The H-μ-PD method with a removable chamber system can grow a single crystal of halide scintillator material with hygroscopicity at faster growth rate than the conventional methods. On the other hand, the H-VB method can grow a large bulk single crystal of halide scintillator without a quartz ampule. CeCl3, LaBr3, Ce:LaBr3 and Eu:SrI2 fiber single crystals could be grown by the H-μ-PD method and Eu:SrI2 bulk single crystals of 1 and 1.5 inch in diameter could be grown by the H-VB method. The grown fiber and bulk single crystals showed comparable scintillation properties to the previous reports using the conventional methods.

  4. Research Update: Luminescence in lead halide perovskites

    NASA Astrophysics Data System (ADS)

    Srimath Kandada, Ajay Ram; Petrozza, Annamaria

    2016-09-01

    Efficiency and dynamics of radiative recombination of carriers are crucial figures of merit for optoelectronic materials. Following the recent success of lead halide perovskites in efficient photovoltaic and light emitting technologies, here we review some of the noted literature on the luminescence of this emerging class of materials. After outlining the theoretical formalism that is currently used to explain the carrier recombination dynamics, we review a few significant works which use photoluminescence as a tool to understand and optimize the operation of perovskite based optoelectronic devices.

  5. Synthesis of lithium cobaltate in halide melts

    NASA Astrophysics Data System (ADS)

    Modenov, D. V.; Dokutovich, V. N.; Khokhlov, V. A.; Antonov, B. D.; Kochedykov, V. A.; Zakir'yanova, I. D.

    2013-02-01

    A new method for the synthesis of lithium cobaltate LiCoo2 in salt melts is proposed and tested. The method is based on the oxidation of halide ions with molecular oxygen in Li X-CoCl2 mixtures ( X = Cl, Br, I). The chemical and phase compositions of the prepared powders and the crystal structure of the synthesized compound are studied by Fourier transform infrared spectroscopy and X-ray diffraction analysis. The average size of LiCoO2 crystallites is estimated from the X-ray diffraction data.

  6. Improved processing for silver halide pulse holography

    NASA Astrophysics Data System (ADS)

    Mikhailov, Viktor N.; Son, Jung-Young; Grinevitskaya, Olga V.; Lee, Hyuk-Soo; Choi, Yong-Jin

    1996-04-01

    Using of an improved developer with optical latensification allowed to significantly increase exposure sensitivity of currently in use silver halide materials. Transmission large-scale holograms (30 X 40 cm2) of diffused objects have been recorded under pulse exposure of about 6.5 X 10-6 J/cm2 for VRP and of about 2 X 10-6 J/cm2 for Agfa-Gavaert 8E56HD, in both cases without appreciable contrast deterioration. Results of the first experiments on pulse reflection holography are also discussed.

  7. Alkali Halide Nanotubes: Structure and Stability

    PubMed Central

    Fernandez-Lima, Francisco A.; Henkes, Aline Verônica; da Silveira, Enio F.; Nascimento, Marco Antonio Chaer

    2013-01-01

    Accurate density functional theory (DFT) and coupled-cluster (CCSD) calculations on a series of (LiF)n=2,36 neutral clusters suggest that nanotube structures with hexagonal and octagonal transversal cross sections show stability equal to or greater than that of the typical cubic form of large LiF crystals. The nanotube stability was further corroborated by quantum dynamic calculations at room temperature. The fact that stable nanotube structures were also found for other alkali halides (e.g., NaCl and KBr) suggests that this geometry may be widely implemented in material sciences. PMID:24376901

  8. Merging photoredox with nickel catalysis: Coupling of α-carboxyl sp3-carbons with aryl halides

    PubMed Central

    Zuo, Zhiwei; Ahneman, Derek T.; Chu, Lingling; Terrett, Jack A.; Doyle, Abigail G.; MacMillan, David W. C.

    2015-01-01

    Over the past 40 years, transition metal catalysis has enabled bond formation between aryl and olefinic (sp2) carbons in a selective and predictable manner with high functional group tolerance. Couplings involving alkyl (sp3) carbons have proven more challenging. Here, we demonstrate that the synergistic combination of photoredox catalysis and nickel catalysis provides an alternative cross-coupling paradigm, in which simple and readily available organic molecules can be systematically used as coupling partners. By using this photoredox-metal catalysis approach, we have achieved a direct decarboxylative sp3–sp2 cross-coupling of amino acids, as well as α-O– or phenyl-substituted carboxylic acids, with aryl halides. Moreover, this mode of catalysis can be applied to direct cross-coupling of Csp3–H in dimethylaniline with aryl halides via C–H functionalization. PMID:24903563

  9. Amine synthesis via iron-catalysed reductive coupling of nitroarenes with alkyl halides

    PubMed Central

    Cheung, Chi Wai; Hu, Xile

    2016-01-01

    (Hetero)Aryl amines, an important class of organic molecules in medicinal chemistry, are most commonly synthesized from anilines, which are in turn synthesized by hydrogenation of nitroarenes. Amine synthesis directly from nitroarenes is attractive due to improved step economy and functional group compatibility. Despite these potential advantages, there is yet no general method for the synthesis of (hetero)aryl amines by carbon–nitrogen cross-coupling of nitroarenes. Here we report the reductive coupling of nitroarenes with alkyl halides to yield (hetero)aryl amines. A simple iron catalyst enables the coupling with numerous primary, secondary and tertiary alkyl halides. Broad scope and high functional group tolerance are demonstrated. Mechanistic study suggests that nitrosoarenes and alkyl radicals are involved as intermediates. This new C–N coupling method provides general and step-economical access to aryl amines. PMID:27515391

  10. Lead Halide Perovskites: Challenges and Opportunities in Advanced Synthesis and Spectroscopy

    DOE PAGES

    Rosales, Bryan A.; Hanrahan, Michael P.; Boote, Brett W.; ...

    2017-03-28

    Hybrid lead perovskites containing a mixture of organic and inorganic cations and anions have lead to solar cell devices with better performance and stability than their single halide analogs. Here, 207Pb solid-state nuclear magnetic resonance and single particle photoluminescence spectroscopies show that the structure and composition of mixed-halide and—likely—other hybrid lead perovskites is much more complex than previously thought and is highly dependent on their synthesis. While a majority of reports in the area focus on the construction of photovoltaic devices, this perspective focuses instead on achieving a better understanding of the fundamental chemistry and photophysics of these materials, asmore » this will aid not only in constructing improved devices, but also in generating new uses for these unique materials.« less

  11. Lead halide perovskites: Challenges and opportunities in advanced synthesis and spectroscopy

    DOE PAGES

    Rosales, Bryan A.; Hanrahan, Michael P.; Boote, Brett W.; ...

    2017-03-03

    Hybrid lead perovskites containing a mixture of organic and inorganic cations and anions have lead to solar cell devices with better performance and stability than their single halide analogs. Here, 207Pb solid-state nuclear magnetic resonance and single particle photoluminescence spectroscopies show that the structure and composition of mixed-halide and—likely—other hybrid lead perovskites is much more complex than previously thought and is highly dependent on their synthesis. While a majority of reports in the area focus on the construction of photovoltaic devices, this perspective focuses instead on achieving a better understanding of the fundamental chemistry and photophysics of these materials, asmore » this will aid not only in constructing improved devices, but also in generating new uses for these unique materials.« less

  12. Amine synthesis via iron-catalysed reductive coupling of nitroarenes with alkyl halides

    NASA Astrophysics Data System (ADS)

    Cheung, Chi Wai; Hu, Xile

    2016-08-01

    (Hetero)Aryl amines, an important class of organic molecules in medicinal chemistry, are most commonly synthesized from anilines, which are in turn synthesized by hydrogenation of nitroarenes. Amine synthesis directly from nitroarenes is attractive due to improved step economy and functional group compatibility. Despite these potential advantages, there is yet no general method for the synthesis of (hetero)aryl amines by carbon-nitrogen cross-coupling of nitroarenes. Here we report the reductive coupling of nitroarenes with alkyl halides to yield (hetero)aryl amines. A simple iron catalyst enables the coupling with numerous primary, secondary and tertiary alkyl halides. Broad scope and high functional group tolerance are demonstrated. Mechanistic study suggests that nitrosoarenes and alkyl radicals are involved as intermediates. This new C-N coupling method provides general and step-economical access to aryl amines.

  13. Defect passivation in hybrid perovskite solar cells using quaternary ammonium halide anions and cations

    NASA Astrophysics Data System (ADS)

    Zheng, Xiaopeng; Chen, Bo; Dai, Jun; Fang, Yanjun; Bai, Yang; Lin, Yuze; Wei, Haotong; Zeng, Xiao Cheng; Huang, Jinsong

    2017-07-01

    The ionic defects at the surfaces and grain boundaries of organic-inorganic halide perovskite films are detrimental to both the efficiency and stability of perovskite solar cells. Here, we show that quaternary ammonium halides can effectively passivate ionic defects in several different types of hybrid perovskite with their negative- and positive-charged components. The efficient defect passivation reduces the charge trap density and elongates the carrier recombination lifetime, which is supported by density-function-theory calculation. The defect passivation reduces the open-circuit-voltage deficit of the p-i-n-structured device to 0.39 V, and boosts the efficiency to a certified value of 20.59 ± 0.45%. Moreover, the defect healing also significantly enhances the stability of films in ambient conditions. Our findings provide an avenue for defect passivation to further improve both the efficiency and stability of solar cells.

  14. Hybrid Lead Halide Perovskites for Ultrasensitive Photoactive Switching in Terahertz Metamaterial Devices.

    PubMed

    Manjappa, Manukumara; Srivastava, Yogesh Kumar; Solanki, Ankur; Kumar, Abhishek; Sum, Tze Chien; Singh, Ranjan

    2017-08-01

    The recent meteoric rise in the field of photovoltaics with the discovery of highly efficient solar-cell devices is inspired by solution-processed organic-inorganic lead halide perovskites that exhibit unprecedented light-to-electricity conversion efficiencies. The stunning performance of perovskites is attributed to their strong photoresponsive properties that are thoroughly utilized in designing excellent perovskite solar cells, light-emitting diodes, infrared lasers, and ultrafast photodetectors. However, optoelectronic application of halide perovskites in realizing highly efficient subwavelength photonic devices has remained a challenge. Here, the remarkable photoconductivity of organic-inorganic lead halide perovskites is exploited to demonstrate a hybrid perovskite-metamaterial device that shows extremely low power photoswitching of the metamaterial resonances in the terahertz part of the electromagnetic spectrum. Furthermore, a signature of a coupled phonon-metamaterial resonance is observed at higher pump powers, where the Fano resonance amplitude is extremely weak. In addition, a low threshold, dynamic control of the highly confined electric field intensity is also observed in the system, which could tremendously benefit the new generation of subwavelength photonic devices as active sensors, low threshold optically controlled lasers, and active nonlinear devices with enhanced functionalities in the infrared, optical, and the terahertz parts of the electromagnetic spectrum. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Estimation of specific absorbed fractions for selected organs due to photons emitted by activity deposited in the human respiratory tract using ICRP/ICRU male voxel phantom in FLUKA.

    PubMed

    Patni, H K; Akar, D K; Nadar, M Y; Ghare, V P; Rao, D D; Sarkar, P K

    2013-01-01

    The ICRP/ICRU adult male reference voxel phantom incorporated in Monte Carlo code FLUKA is used for estimating specific absorbed fractions (SAFs) for photons due to the presence of internal radioactive contamination in the human respiratory tract (RT). The compartments of the RT, i.e. extrathoracic (ET1 and ET2) and thoracic (bronchi, bronchioles, alveolar interstitial) regions, lymph nodes of both regions and lungs are considered as the source organs. The nine organs having high tissue weighting factors such as colon, lungs, stomach wall, breast, testis, urinary bladder, oesophagus, liver and thyroid and the compartments of the RT are considered as target organs. Eleven photon energies in the range of 15 keV to 4 MeV are considered for each source organ and the computed SAF values are presented in the form of tables. For the target organs in the proximity of the source organ including the source organ itself, the SAF values are relatively higher and decrease with increase in energy. As the distance between source and target organ increases, SAF values increase with energy and reach maxima depending on the position of the target organ with respect to the source organ. The SAF values are relatively higher for the target organs with smaller masses. Large deviations are seen in computed SAF values from the existing MIRD phantom data for most of the organs. These estimated SAF values play an important role in the estimation of equivalent dose to various target organs of a worker due to intake by inhalation pathway.

  16. Syntheses, structures and photoelectrochemical properties of three water-stable, visible light absorbing mental-organic frameworks based on tetrakis(4-carboxyphenyl)silane and 1,4-bis(pyridyl)benzene mixed ligands

    NASA Astrophysics Data System (ADS)

    Guo, Tiantian; Yang, Xiaowei; Li, Ruyan; Liu, Xiaoyu; Gao, Yanling; Dai, Zhihui; Fang, Min; Liu, Hong-Ke; Wu, Yong

    2017-09-01

    Photovoltaics (PV), which directly convert solar energy into electricity generally using semiconductors, offer a practical and sustainable solution to the current energy shortage and environmental pollution crisis. Photovoltaic applications of metal-organic frameworks (MOFs) belong to a relatively new area of research. Given that UV light accounts for only 4% while visible light contributes 43% of solar energy, it is rather imperative to develop semiconductors with narrow band gaps so that they could absorb visible light. In this work, three water-stable, narrow band semiconducting MOFs of [Cu(H2TCS)(H2O)] (1), [Co(H2TCS)(BPB)] (2) and [Ni(H2TCS)(BPB)] (3) were synthesized using tetrakis(4-carboxyphenyl)silane (H4TCS) and 1,4-bis (pyridyl)benzene (BPB) in water, and structurally characterized by single-crystal X-ray diffractions. MOF 1 has a 2D structure. MOF 2 and 3 are isostructrual and have 3D frameworks formed by interwoven 2D layers. All three MOFs are stable in acidic water solutions and can be stable in water for 7 days. MOFs 1-3 absorb UV and visible light and have band gaps of 0.50, 1.77 and 1.49 eV, respectively. Rapid and stable photocurrent responses of MOFs 1-3 under UV and visible light illuminations are observed. This work demonstrates that using electron rich Cu2+, Co2+, or Ni2+ as metal nodes can effectively decrease the band gaps of MOFs to make them absorbing visible light. To increase the conjugation in the linker is generally considered to be the method to decrease the band gap of MOFs. The conjugation in H4TCS is not significant and this ligand basically only absorbs UV light. However, by using electron rich Cu2+ ions as metal nodes, the prepared [Cu(H2TCS)(H2O)]·H2O (1) absorbs broadly in the visible light region. Thus, this work suggests that by using electron rich Cu2+, many narrow-band semiconductor MOFs can be prepared even by using ligands which only absorbs UV light.

  17. Determining Atomic-Scale Structure and Composition of Organo-Lead Halide Perovskites by Combining High-Resolution X-ray Absorption Spectroscopy and First-Principles Calculations

    DOE PAGES

    Drisdell, Walter S.; Leppert, Linn; Sutter-Fella, Carolin M.; ...

    2017-04-20

    In this paper, we combine high-energy resolution fluorescence detection (HERFD) X-ray absorption spectroscopy (XAS) measurements with first-principles density functional theory (DFT) calculations to provide a molecular-scale understanding of local structure, and its role in defining optoelectronic properties, in CH3NH3Pb(I1–xBrx)3 perovskites. The spectra probe a ligand field splitting in the unoccupied d states of the material, which lie well above the conduction band minimum and display high sensitivity to halide identity, Pb-halide bond length, and Pb-halide octahedral tilting, especially for apical halide sites. The spectra are also sensitive to the organic cation. We find that the halides in these mixed compositionsmore » are randomly distributed, rather than having preferred octahedral sites, and that thermal tilting motions dominate over any preferred structural distortions as a function of halide composition. Finally, these findings demonstrate the utility of the combined HERFD XAS and DFT approach for determining structural details in these materials and connecting them to optoelectronic properties observed by other characterization methods.« less

  18. Halide test agent replacement study

    SciTech Connect

    Banks, E.M.; Freeman, W.P.; Kovach, B.J.

    1995-02-01

    The intended phaseout of the chlorofluorocarbons (CFCs) from commercial use required the evaluation of substitute materials for the testing for leak paths through both individual adsorbers and installed adsorbent banks. The American Society of Mechanical Engineers (ASME) Committee on Nuclear Air and Gas Treatment (CONAGT) is in charge of maintaining the standards and codes specifying adsorbent leak test methods for the nuclear safety related air cleaning systems. The currently published standards and codes cite the use of R-11, R-12 and R-112 for leak path test agents. All of these compounds are CFCs. There are other agencies and organizations (USDOE, USDOD and USNRC) also specifying testing for leak paths or in some cases for special life tests using the above compounds. The CONAGT has recently developed criteria for the suitability evaluation of substitute test agents. On the basis of these criteria, several compounds were evaluated for their acceptability as adsorbent bed leak and life test agents. The ASME CONAGT Test Agent Qualification Criteria. The test agent qualification is based on the following parameters: (1) Similar retention times on activated carbons at the same concentration levels as one of the following: R-11, R-12, R-112 or R-112a. (2) Similar lower detection limit sensitivity and precision in the concentration range of use as R-11, R-12, R-112 and R-112a. (3) Gives the same in-place leak test results as R-11, R-12, R-112, or R-112a. (4) Chemical and radiological stability under the use conditions. (5) Causes no degradation of the carbon and its impregnant or of the other NATS components under the use conditions. (6) Is listed in the USEPA Toxic Substances Control Act (TSCA) inventory for commercial use.

  19. Advanced neutron absorber materials

    DOEpatents

    Branagan, Daniel J.; Smolik, Galen R.

    2000-01-01

    A neutron absorbing material and method utilizing rare earth elements such as gadolinium, europium and samarium to form metallic glasses and/or noble base nano/microcrystalline materials, the neutron absorbing material having a combination of superior neutron capture cross sections coupled with enhanced resistance to corrosion, oxidation and leaching.

  20. Radar Absorbing Material Design

    DTIC Science & Technology

    2003-09-01

    simulations of coated plates were performed to estimate the effectiveness of the absorbing layers in reducing radar cross section . The reduction in monostatic... radar cross section value is shown by plotting the radar cross section of the plate with and without radar absorbing material. ε t 15. NUMBER OF

  1. Impact of X-ray energy on absorbed dose assessed with Monte Carlo simulations in a mouse tumor and in nearest organs irradiated with kilovoltage X-ray beams.

    PubMed

    Hamdi, M; Mimi, M; Bentourkia, M

    2017-05-01

    Radiotherapy treatments to local tumors are always associated with dose deposit in surrounding tissues and even in distant tissues not traversed by the radiation beams. In the present work, we demonstrate by Monte Carlo simulations the impact of radiation energy on absorbed dose in a lung tumor and in other secondary organs in a digital mouse. We also report the energy difference between simulations of monoenergetic and spectral radiations, and between CT-based and atlas-made digital mouse. We simulated seven monoenergetic and spectral radiation beams from 50keV (or kVp) to 450keV (or kVp). For each energy mode, the beams were generated along seven angles converging on the tumor. We assessed the absorbed dose in ten volumes including the lungs, the heart and the spine. The results showed an increase of absorbed dose as a function of energy with a lowest dose at 100keV. In the secondary organs not traversed by the beams, the spinal cord received doses of 0.78% and 0.07%, and the spinal bone received 2.36% and 0.35% relative to those in the tumor, respectively at 50keV and at 450keV. A region in the heart not traversed by the beams received 2% of the dose to the tumor. The optimal energy to the tumor with relatively reduced doses to other organs was achieved at energies around 200keV. At these energies, the surrounding of the tumor received lesser doses. Monoenergetic radiations were found to be more appropriate to target the tumor than spectral radiations produced by X-ray tubes, and CT-based digital mouse was more realistic than atlas-based mouse since it accounts for tissue heterogeneity. Copyright © 2017 Société française de radiothérapie oncologique (SFRO). Published by Elsevier SAS. All rights reserved.

  2. 10 CFR 429.54 - Metal halide lamp ballasts and fixtures.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Metal halide lamp ballasts and fixtures. 429.54 Section... CONSUMER PRODUCTS AND COMMERCIAL AND INDUSTRIAL EQUIPMENT Certification § 429.54 Metal halide lamp ballasts... are applicable to metal halide lamp ballasts; and (2) For each basic model of metal halide...

  3. 10 CFR 429.54 - Metal halide lamp ballasts and fixtures.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Metal halide lamp ballasts and fixtures. 429.54 Section... CONSUMER PRODUCTS AND COMMERCIAL AND INDUSTRIAL EQUIPMENT Certification § 429.54 Metal halide lamp ballasts... are applicable to metal halide lamp ballasts; and (2) For each basic model of metal halide...

  4. 10 CFR 429.54 - Metal halide lamp ballasts and fixtures.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Metal halide lamp ballasts and fixtures. 429.54 Section... CONSUMER PRODUCTS AND COMMERCIAL AND INDUSTRIAL EQUIPMENT Certification § 429.54 Metal halide lamp ballasts... are applicable to metal halide lamp ballasts; and (2) For each basic model of metal halide...

  5. Multispectral metamaterial absorber.

    PubMed

    Grant, J; McCrindle, I J H; Li, C; Cumming, D R S

    2014-03-01

    We present the simulation, implementation, and measurement of a multispectral metamaterial absorber (MSMMA) and show that we can realize a simple absorber structure that operates in the mid-IR and terahertz (THz) bands. By embedding an IR metamaterial absorber layer into a standard THz metamaterial absorber stack, a narrowband resonance is induced at a wavelength of 4.3 μm. This resonance is in addition to the THz metamaterial absorption resonance at 109 μm (2.75 THz). We demonstrate the inherent scalability and versatility of our MSMMA by describing a second device whereby the MM-induced IR absorption peak frequency is tuned by varying the IR absorber geometry. Such a MSMMA could be coupled with a suitable sensor and formed into a focal plane array, enabling multispectral imaging.

  6. Methyl halide production associated with kelp

    NASA Technical Reports Server (NTRS)

    Dastoor, Minoo N.; Manley, Steven L.

    1985-01-01

    Methyl halides (MeX) are important trace constituents of the atmosphere because they, mostly MeCl, have a major impact on the atmospheric ozone layer. Also, MeCl may account for 5 pct. of the total Cl budget and MeI may have a central role in the biogeochemical cycling of iodine. High MeI concentrations were found in seawater from kelp beds and it has been suggested that MeI is produced by kelps and that MeI and MeBr along with numerous other halocarbons were released by non-kelp marine macroalgae. The objective was to determine if kelps (and other seaweeds) are sources of MeX and to assess their contribution to the estimated global source strength (EGSS) of MeX. Although the production of MeX appears to be associated with kelp, microbes involved with kelp degradation also produce MeX. Microbial MeX production may be of global significance. The microbial MeX production potential, assuming annual kelp production equals kelp degradation and 100 pct. conversion of kelp halides to MeX, is approx. 2 x the EGSS. This is not achieved but indicates that microbial production of MeX may be of global significance.

  7. Finding New Perovskite Halides via Machine learning

    NASA Astrophysics Data System (ADS)

    Pilania, Ghanshyam; Balachandran, Prasanna V.; Kim, Chiho; Lookman, Turab

    2016-04-01

    Advanced materials with improved properties have the potential to fuel future technological advancements. However, identification and discovery of these optimal materials for a specific application is a non-trivial task, because of the vastness of the chemical search space with enormous compositional and configurational degrees of freedom. Materials informatics provides an efficient approach towards rational design of new materials, via learning from known data to make decisions on new and previously unexplored compounds in an accelerated manner. Here, we demonstrate the power and utility of such statistical learning (or machine learning) via building a support vector machine (SVM) based classifier that uses elemental features (or descriptors) to predict the formability of a given ABX3 halide composition (where A and B represent monovalent and divalent cations, respectively, and X is F, Cl, Br or I anion) in the perovskite crystal structure. The classification model is built by learning from a dataset of 181 experimentally known ABX3 compounds. After exploring a wide range of features, we identify ionic radii, tolerance factor and octahedral factor to be the most important factors for the classification, suggesting that steric and geometric packing effects govern the stability of these halides. The trained and validated models then predict, with a high degree of confidence, several novel ABX3 compositions with perovskite crystal structure.

  8. Finding new perovskite halides via machine learning

    DOE PAGES

    Pilania, Ghanshyam; Balachandran, Prasanna V.; Kim, Chiho; ...

    2016-04-26

    Advanced materials with improved properties have the potential to fuel future technological advancements. However, identification and discovery of these optimal materials for a specific application is a non-trivial task, because of the vastness of the chemical search space with enormous compositional and configurational degrees of freedom. Materials informatics provides an efficient approach toward rational design of new materials, via learning from known data to make decisions on new and previously unexplored compounds in an accelerated manner. Here, we demonstrate the power and utility of such statistical learning (or machine learning, henceforth referred to as ML) via building a support vectormore » machine (SVM) based classifier that uses elemental features (or descriptors) to predict the formability of a given ABX3 halide composition (where A and B represent monovalent and divalent cations, respectively, and X is F, Cl, Br, or I anion) in the perovskite crystal structure. The classification model is built by learning from a dataset of 185 experimentally known ABX3 compounds. After exploring a wide range of features, we identify ionic radii, tolerance factor, and octahedral factor to be the most important factors for the classification, suggesting that steric and geometric packing effects govern the stability of these halides. As a result, the trained and validated models then predict, with a high degree of confidence, several novel ABX3 compositions with perovskite crystal structure.« less

  9. Finding new perovskite halides via machine learning

    SciTech Connect

    Pilania, Ghanshyam; Balachandran, Prasanna V.; Kim, Chiho; Lookman, Turab

    2016-04-26

    Advanced materials with improved properties have the potential to fuel future technological advancements. However, identification and discovery of these optimal materials for a specific application is a non-trivial task, because of the vastness of the chemical search space with enormous compositional and configurational degrees of freedom. Materials informatics provides an efficient approach toward rational design of new materials, via learning from known data to make decisions on new and previously unexplored compounds in an accelerated manner. Here, we demonstrate the power and utility of such statistical learning (or machine learning, henceforth referred to as ML) via building a support vector machine (SVM) based classifier that uses elemental features (or descriptors) to predict the formability of a given ABX3 halide composition (where A and B represent monovalent and divalent cations, respectively, and X is F, Cl, Br, or I anion) in the perovskite crystal structure. The classification model is built by learning from a dataset of 185 experimentally known ABX3 compounds. After exploring a wide range of features, we identify ionic radii, tolerance factor, and octahedral factor to be the most important factors for the classification, suggesting that steric and geometric packing effects govern the stability of these halides. As a result, the trained and validated models then predict, with a high degree of confidence, several novel ABX3 compositions with perovskite crystal structure.

  10. Photophysics of Hybrid Lead Halide Perovskites: The Role of Microstructure.

    PubMed

    Srimath Kandada, Ajay Ram; Petrozza, Annamaria

    2016-03-15

    Since the first reports on high efficiency, solution processed solar cells based on hybrid lead halide perovskites, there has been an explosion of activities on these materials. Researchers with interests spanning the full range from conventional inorganic to emerging organic and hybrid optoelectronic technologies have been contributing to the prolific research output. This has led to solar cell power conversion efficiencies now exceeding 20% and the demonstration of proofs of concept for electroluminescent and lasing devices. Hybrid perovskites can be self-assembled by a simple chemical deposition of the constituent units, with the possibility of integrating the useful properties of organic and inorganic compounds at the molecular scale within a single crystalline material, thus enabling a fine-tuning of the electronic properties. Tellingly, the fundamental properties of these materials may make us think of a new, solution processable, GaAs-like semiconductor. While this can be true to a first approximation, hybrid perovskites are intrinsically complex materials, where the presence of various types of interactions and structural disorder may strongly affect their properties. In particular, a clear understanding and control of the relative interactions between the organic and inorganic moieties is of paramount importance to properly disentangle their innate physics. In this Account we review our recent studies which aim to clarify the relationship between structural and electronic properties from a molecular to mesoscopic level. First we identify the markers for local disorder at the molecular level by using Raman spectroscopy as a probe. Then, we exploit such a tool to explore the role of microstructure on the absorption and luminescence properties of the semiconductor. Finally we address the controversy surrounding electron-hole interactions and excitonic effects. We show that in hybrid lead-halide perovskites dielectric screening also depends on the local

  11. Method for absorbing an ion from a fluid

    DOEpatents

    Gao, Huizhen; Wang, Yifeng; Bryan, Charles R.

    2007-07-03

    A method for absorbing an ion from a fluid by using dispersing an organic acid into an anion surfactant solution, mixing in a divalent-metal containing compound and a trivalent-metal containing compound and calcining the resulting solid layered double hydroxide product to form an absorbent material and then contacting the absorbent material with an aqueous solution of cations or anions to be absorbed.

  12. Determinants of visual pigment absorbance: identification of the retinylidene Schiff's base counterion in bovine rhodopsin.

    PubMed

    Nathans, J

    1990-10-16

    The role of negatively charged residues in tuning the absorbance spectrum of bovine rhodopsin has been tested by mutating each aspartate and glutamate to asparagine and glutamine, respectively. Previous work demonstrated that aspartate83, glutamate122, and glutamate134 can be replaced by neutral residues with little or no effect on the absorbance spectrum of the resulting pigment [Nathans, J. (1990) Biochemistry 29, 937-942]. With one exception, mutations at the remaining 19 aspartate and glutamate residues result in very nearly wild-type absorbance spectra. The exception is glutamate113: mutation to glutamine causes the pigment to absorb at 380 nm, reflecting deprotonation of the retinylidene Schiff's base. Upon addition of either chloride, bromide, or iodide, the absorbance rapidly shifts to 495, 498, or 504.5 nm, respectively, reflecting protonation of the Schiff's base. The progressive red shift observed upon addition of halides with larger atomic radii strongly suggests that halides are serving as the Schiff's base counterion. Halides have no effect on the absorbance spectrum of wild-type rhodopsin. I infer, therefore, that glutamate113 is the retinylidene Schiff's base counterion in wild-type rhodopsin. Sakmar et al. [(1989) Proc. Natl. Acad. Sci. U.S.A. 86, 8309-8313] and Zhukovsky and Oprian [(1989) Science 246, 928-930] have arrived at the same conclusion based upon a related series of experiments. These data support a model in which spectral tuning in bovine rhodopsin results from interactions between the polyene chain of 11-cis-retinal and uncharged amino acids in the binding pocket.

  13. Internal absorber solar collector

    DOEpatents

    Sletten, Carlyle J.; Herskovitz, Sheldon B.; Holt, F. S.; Sletten, E. J.

    1981-01-01

    Thin solar collecting panels are described made from arrays of small rod collectors consisting of a refracting dielectric rod lens with an absorber imbedded within it and a reflecting mirror coated on the back side of the dielectric rod. Non-tracking collector panels on vertical walls or roof tops receive approximately 90% of solar radiation within an acceptance zone 60.degree. in elevation angle by 120.degree. or more in the azimuth sectors with a collector concentration ratio of approximately 3.0. Miniaturized construction of the circular dielectric rods with internal absorbers reduces the weight per area of glass, plastic and metal used in the collector panels. No external parts or insulation are needed as heat losses are low due to partial vacuum or low conductivity gas surrounding heated portions of the collector. The miniature internal absorbers are generally made of solid copper with black selective surface and the collected solar heat is extracted at the collector ends by thermal conductivity along the absorber rods. Heat is removed from end fittings by use of liquid circulants. Several alternate constructions are provided for simplifying collector panel fabrication and for preventing the thermal expansion and contraction of the heated absorber or circulant tubes from damaging vacuum seals. In a modified version of the internal absorber collector, oil with temperature dependent viscosity is pumped through a segmented absorber which is now composed of closely spaced insulated metal tubes. In this way the circulant is automatically diverted through heated portions of the absorber giving higher collector concentration ratios than theoretically possible for an unsegmented absorber.

  14. Lipid-absorbing Polymers

    NASA Technical Reports Server (NTRS)

    Marsh, H. E., Jr.; Wallace, C. J.

    1973-01-01

    The removal of bile acids and cholesterol by polymeric absorption is discussed in terms of micelle-polymer interaction. The results obtained with a polymer composed of 75 parts PEO and 25 parts PB plus curing ingredients show an absorption of 305 to 309%, based on original polymer weight. Particle size effects on absorption rate are analyzed. It is concluded that crosslinked polyethylene oxide polymers will absorb water, crosslinked polybutadiene polymers will absorb lipids; neither polymer will absorb appreciable amounts of lipids from micellar solutions of lipids in water.

  15. Electromagnetic power absorber

    NASA Technical Reports Server (NTRS)

    Iwasaki, R. S. (Inventor)

    1979-01-01

    A structure is presented with a surface portion of dielectric material which passes electromagnetic radiation and with a portion below the surface which includes material that absorbs the radiation, the face of the structure being formed with numerous steep ridges. The steepness of the dielectric material results in a high proportion of the electromagnetic energy passing through the surface for absorption by the absorbing material under the surface. A backing of aluminum or other highly heat-conductive and reflective material lies under the face and has very steep protuberances supporting the absorbing and dielectric materials.

  16. Nickel-Catalyzed Borylation of Halides and Pseudo-Halides with Tetrahydroxydiboron [B2(OH)4

    PubMed Central

    Molander, Gary A.; Cavalcanti, Livia N.; García-García, Carolina

    2013-01-01

    Arylboronic acids are gaining increased importance as reagents and target structures in a variety of useful applications. Recently, the palladium-catalyzed synthesis of arylboronic acids employing the atom economical tetrahydroxydiboron (BBA) reagent has been reported. The high cost associated with palladium, combined with several limitations of both palladium and copper-catalyzed processes, prompted us to develop an alternative method. Thus, the nickel-catalyzed borylation of aryl and heteroaryl halides and pseudo-halides using tetrahydroxydiboron (BBA) has been formulated. The reaction proved to be widely functional group tolerant and applicable to a number of heterocyclic systems. To the best of our knowledge, the examples presented here represent the only effective Ni-catalyzed Miyaura borylations conducted at room temperature. PMID:23777538

  17. Alkali metal and alkali earth metal gadolinium halide scintillators

    DOEpatents

    Bourret-Courchesne, Edith; Derenzo, Stephen E.; Parms, Shameka; Porter-Chapman, Yetta D.; Wiggins, Latoria K.

    2016-08-02

    The present invention provides for a composition comprising an inorganic scintillator comprising a gadolinium halide, optionally cerium-doped, having the formula A.sub.nGdX.sub.m:Ce; wherein A is nothing, an alkali metal, such as Li or Na, or an alkali earth metal, such as Ba; X is F, Br, Cl, or I; n is an integer from 1 to 2; m is an integer from 4 to 7; and the molar percent of cerium is 0% to 100%. The gadolinium halides or alkali earth metal gadolinium halides are scintillators and produce a bright luminescence upon irradiation by a suitable radiation.

  18. Homoepitaxial growth of metal halide crystals investigated by reflection high-energy electron diffraction

    DOE PAGES

    Chen, Pei; Kuttipillai, Padmanaban S.; Wang, Lili; ...

    2017-01-10

    Here, we report the homoepitaxial growth of a metal halide on single crystals investigated with in situ reflection high-energy electron diffraction (RHEED) and ex situ atomic force microscopy (AFM). Epitaxial growth of NaCl on NaCl (001) is explored as a function of temperature and growth rate which provides the first detailed report of RHEED oscillations for metal halide growth. Layer-by-layer growth is observed at room temperature accompanied by clear RHEED oscillations while the growth mode transitions to an island (3D) mode at low temperature. At higher temperatures (>100 °C), RHEED oscillations and AFM data indicate a transition to a step-flowmore » growth mode. To show the importance of such metal halide growth, green organic light-emitting diodes (OLEDs) are demonstrated using a doped NaCl film with a phosphorescent emitter as the emissive layer. This study demonstrates the ability to perform in situ and non-destructive RHEED monitoring even on insulating substrates and could enable doped single crystals and crystalline substrates for a range of optoelectronic applications.« less

  19. Effects of Annealing Conditions on Mixed Lead Halide Perovskite Solar Cells and Their Thermal Stability Investigation.

    PubMed

    Yang, Haifeng; Zhang, Jincheng; Zhang, Chunfu; Chang, Jingjing; Lin, Zhenhua; Chen, Dazheng; Xi, He; Hao, Yue

    2017-07-21

    In this work, efficient mixed organic cation and mixed halide (MA0.7FA0.3Pb(I0.9Br0.1)₃) perovskite solar cells are demonstrated by optimizing annealing conditions. AFM, XRD and PL measurements show that there is a better perovskite film quality for the annealing condition at 100 °C for 30 min. The corresponding device exhibits an optimized PCE of 16.76% with VOC of 1.02 V, JSC of 21.55 mA/cm² and FF of 76.27%. More importantly, the mixed lead halide perovskite MA0.7FA0.3Pb(I0.9Br0.1)₃ can significantly increase the thermal stability of perovskite film. After being heated at 80 °C for 24 h, the PCE of the MA0.7FA0.3Pb(I0.9Br0.1)₃ device still remains at 70.00% of its initial value, which is much better than the control MAPbI₃ device, where only 46.50% of its initial value could be preserved. We also successfully fabricated high-performance flexible mixed lead halide perovskite solar cells based on PEN substrates.

  20. On the Thermal and Thermodynamic (In)Stability of Methylammonium Lead Halide Perovskites

    PubMed Central

    Brunetti, Bruno; Cavallo, Carmen; Ciccioli, Andrea; Gigli, Guido; Latini, Alessandro

    2016-01-01

    The interest of the scientific community on methylammonium lead halide perovskites (MAPbX3, X = Cl, Br, I) for hybrid organic-inorganic solar cells has grown exponentially since the first report in 2009. This fact is clearly justified by the very high efficiencies attainable (reaching 20% in lab scale devices) at a fraction of the cost of conventional photovoltaics. However, many problems must be solved before a market introduction of these devices can be envisaged. Perhaps the most important to be addressed is the lack of information regarding the thermal and thermodynamic stability of the materials towards decomposition, which are intrinsic properties of them and which can seriously limit or even exclude their use in real devices. In this work we present and discuss the results we obtained using non-ambient X-ray diffraction, Knudsen effusion-mass spectrometry (KEMS) and Knudsen effusion mass loss (KEML) techniques on MAPbCl3, MAPbBr3 and MAPbI3. The measurements demonstrate that all the materials decompose to the corresponding solid lead (II) halide and gaseous methylamine and hydrogen halide, and the decomposition is well detectable even at moderate temperatures (~60 °C). Our results suggest that these materials may be problematic for long term operation of solar devices. PMID:27545661

  1. Homoepitaxial Growth of Metal Halide Crystals Investigated by Reflection High-Energy Electron Diffraction

    NASA Astrophysics Data System (ADS)

    Chen, Pei; Kuttipillai, Padmanaban S.; Wang, Lili; Lunt, Richard R.

    2017-01-01

    We report the homoepitaxial growth of a metal halide on single crystals investigated with in situ reflection high-energy electron diffraction (RHEED) and ex situ atomic force microscopy (AFM). Epitaxial growth of NaCl on NaCl (001) is explored as a function of temperature and growth rate which provides the first detailed report of RHEED oscillations for metal halide growth. Layer-by-layer growth is observed at room temperature accompanied by clear RHEED oscillations while the growth mode transitions to an island (3D) mode at low temperature. At higher temperatures (>100 °C), RHEED oscillations and AFM data indicate a transition to a step-flow growth mode. To show the importance of such metal halide growth, green organic light-emitting diodes (OLEDs) are demonstrated using a doped NaCl film with a phosphorescent emitter as the emissive layer. This study demonstrates the ability to perform in situ and non-destructive RHEED monitoring even on insulating substrates and could enable doped single crystals and crystalline substrates for a range of optoelectronic applications.

  2. Homoepitaxial Growth of Metal Halide Crystals Investigated by Reflection High-Energy Electron Diffraction

    PubMed Central

    Chen, Pei; Kuttipillai, Padmanaban S.; Wang, Lili; Lunt, Richard R.

    2017-01-01

    We report the homoepitaxial growth of a metal halide on single crystals investigated with in situ reflection high-energy electron diffraction (RHEED) and ex situ atomic force microscopy (AFM). Epitaxial growth of NaCl on NaCl (001) is explored as a function of temperature and growth rate which provides the first detailed report of RHEED oscillations for metal halide growth. Layer-by-layer growth is observed at room temperature accompanied by clear RHEED oscillations while the growth mode transitions to an island (3D) mode at low temperature. At higher temperatures (>100 °C), RHEED oscillations and AFM data indicate a transition to a step-flow growth mode. To show the importance of such metal halide growth, green organic light-emitting diodes (OLEDs) are demonstrated using a doped NaCl film with a phosphorescent emitter as the emissive layer. This study demonstrates the ability to perform in situ and non-destructive RHEED monitoring even on insulating substrates and could enable doped single crystals and crystalline substrates for a range of optoelectronic applications. PMID:28071732

  3. Pressure-induced metallization of the halide perovskite (CH3NH3)PbI3

    DOE PAGES

    Jaffe, Adam; Lin, Yu; Mao, Wendy L.; ...

    2017-03-14

    We report the metallization of the hybrid perovskite semiconductor (MA)PbI3 (MA = CH3NH3+) with no apparent structural transition. We tracked its bandgap evolution during compression in diamond-anvil cells using absorption spectroscopy and observed strong absorption over both visible and IR wavelengths at pressures above ca. 56 GPa, suggesting the imminent closure of its optical bandgap. The metallic character of (MA)PbI3 above 60 GPa was confirmed using both IR reflectivity and variable-temperature dc conductivity measurements. The impressive semiconductor properties of halide perovskites have recently been exploited in a multitude of optoelectronic applications. Meanwhile, the study of metallic properties in oxide perovskitesmore » has revealed diverse electronic phenomena. Importantly, the mild synthetic routes to halide perovskites and the templating effects of the organic cations allow for fine structural control of the inorganic lattice. Lastly, pressure-induced closure of the 1.6 eV bandgap in (MA)PbI3 demonstrates the promise of the continued study of halide perovskites under a range of thermodynamic conditions, toward realizing wholly new electronic properties.« less

  4. On the Thermal and Thermodynamic (In)Stability of Methylammonium Lead Halide Perovskites.

    PubMed

    Brunetti, Bruno; Cavallo, Carmen; Ciccioli, Andrea; Gigli, Guido; Latini, Alessandro

    2016-08-22

    The interest of the scientific community on methylammonium lead halide perovskites (MAPbX3, X = Cl, Br, I) for hybrid organic-inorganic solar cells has grown exponentially since the first report in 2009. This fact is clearly justified by the very high efficiencies attainable (reaching 20% in lab scale devices) at a fraction of the cost of conventional photovoltaics. However, many problems must be solved before a market introduction of these devices can be envisaged. Perhaps the most important to be addressed is the lack of information regarding the thermal and thermodynamic stability of the materials towards decomposition, which are intrinsic properties of them and which can seriously limit or even exclude their use in real devices. In this work we present and discuss the results we obtained using non-ambient X-ray diffraction, Knudsen effusion-mass spectrometry (KEMS) and Knudsen effusion mass loss (KEML) techniques on MAPbCl3, MAPbBr3 and MAPbI3. The measurements demonstrate that all the materials decompose to the corresponding solid lead (II) halide and gaseous methylamine and hydrogen halide, and the decomposition is well detectable even at moderate temperatures (~60 °C). Our results suggest that these materials may be problematic for long term operation of solar devices.

  5. On the Thermal and Thermodynamic (In)Stability of Methylammonium Lead Halide Perovskites

    NASA Astrophysics Data System (ADS)

    Brunetti, Bruno; Cavallo, Carmen; Ciccioli, Andrea; Gigli, Guido; Latini, Alessandro

    2016-08-01

    The interest of the scientific community on methylammonium lead halide perovskites (MAPbX3, X = Cl, Br, I) for hybrid organic-inorganic solar cells has grown exponentially since the first report in 2009. This fact is clearly justified by the very high efficiencies attainable (reaching 20% in lab scale devices) at a fraction of the cost of conventional photovoltaics. However, many problems must be solved before a market introduction of these devices can be envisaged. Perhaps the most important to be addressed is the lack of information regarding the thermal and thermodynamic stability of the materials towards decomposition, which are intrinsic properties of them and which can seriously limit or even exclude their use in real devices. In this work we present and discuss the results we obtained using non-ambient X-ray diffraction, Knudsen effusion-mass spectrometry (KEMS) and Knudsen effusion mass loss (KEML) techniques on MAPbCl3, MAPbBr3 and MAPbI3. The measurements demonstrate that all the materials decompose to the corresponding solid lead (II) halide and gaseous methylamine and hydrogen halide, and the decomposition is well detectable even at moderate temperatures (~60 °C). Our results suggest that these materials may be problematic for long term operation of solar devices.

  6. Effects of Annealing Conditions on Mixed Lead Halide Perovskite Solar Cells and Their Thermal Stability Investigation

    PubMed Central

    Yang, Haifeng; Zhang, Jincheng; Chang, Jingjing; Lin, Zhenhua; Chen, Dazheng; Xi, He; Hao, Yue

    2017-01-01

    In this work, efficient mixed organic cation and mixed halide (MA0.7FA0.3Pb(I0.9Br0.1)3) perovskite solar cells are demonstrated by optimizing annealing conditions. AFM, XRD and PL measurements show that there is a better perovskite film quality for the annealing condition at 100 °C for 30 min. The corresponding device exhibits an optimized PCE of 16.76% with VOC of 1.02 V, JSC of 21.55 mA/cm2 and FF of 76.27%. More importantly, the mixed lead halide perovskite MA0.7FA0.3Pb(I0.9Br0.1)3 can significantly increase the thermal stability of perovskite film. After being heated at 80 °C for 24 h, the PCE of the MA0.7FA0.3Pb(I0.9Br0.1)3 device still remains at 70.00% of its initial value, which is much better than the control MAPbI3 device, where only 46.50% of its initial value could be preserved. We also successfully fabricated high-performance flexible mixed lead halide perovskite solar cells based on PEN substrates. PMID:28773199

  7. Intermolecular Addition of Glycosyl Halides to Alkenes Mediated by Visible Light

    DTIC Science & Technology

    2010-08-25

    Visible light, an amine reductant, and a Ru(bpy)32+ photocatalyst can be used to mediate the addition of glycosyl halides into alkenes to synthesize...AND ADDRESS(ES) 6. AUTHORS 7. PERFORMING ORGANIZATION NAMES AND ADDRESSES U.S. Army Research Office P.O. Box 12211 Research Triangle Park, NC...SPONSOR/MONITOR’S REPORT NUMBER(S) 10. SPONSOR/MONITOR’S ACRONYM(S) ARO 8. PERFORMING ORGANIZATION REPORT NUMBER 19a. NAME OF RESPONSIBLE PERSON

  8. Simultaneous Analyses and Applications of Multiple Fluorobenzoate and Halide Tracers in Hydrologic Studies

    SciTech Connect

    Hu, Q; Moran, J E

    2004-01-22

    An analytical method that employs ion chromatography has been developed to more fully exploit the use of fluorobenzoic acids (FBAs) and halides as hydrologic tracers. In a single run, this reliable, sensitive, and robust method can simultaneously separate and quantify halides (fluoride, chloride, bromide, and iodide) and up to seven FBAs from other common groundwater constituents (e.g., nitrate and sulfate). The usefulness of this ion chromatographic (IC) analytical method is demonstrated in both field and laboratory tracer experiments. Field experiments in unsaturated tuff featuring fractures or a fault show that this efficient and cost-effective method helps achieve the objectives of tracer studies that use multiple FBAs and/or diffusivity tracers (simultaneous use of one or more FBA and halide). The field study examines the hydrologic response of fractures and the matrix to different flow rates and the contribution of matrix diffusion in chemical transport. Laboratory tracer experiments with eight geologic media from across the United States--mostly from Department of Energy facilities where groundwater contamination is prevalent and where subsurface characterization employing tracers has been ongoing or is in need--reveal several insights about tracer transport behavior: (1) Bromide and FBAs are not always transported conservatively. (2) The delayed transport of these anionic tracers is likely related to geologic media characteristics, such as organic matter, pH, iron oxide content, and clay mineralogy. (3) Any use of iodine as a hydrologic tracer should take into account the different sorption behaviors of iodide and iodate and the possible conversion of iodine's initial chemical form. (4) The transport behavior of potential FBA and halide tracers under relevant geochemical conditions should be evaluated before beginning ambitious, large-scale field tracer experiments.

  9. Advances and Promises of Layered Halide Hybrid Perovskite Semiconductors.

    PubMed

    Pedesseau, Laurent; Sapori, Daniel; Traore, Boubacar; Robles, Roberto; Fang, Hong-Hua; Loi, Maria Antonietta; Tsai, Hsinhan; Nie, Wanyi; Blancon, Jean-Christophe; Neukirch, Amanda; Tretiak, Sergei; Mohite, Aditya D; Katan, Claudine; Even, Jacky; Kepenekian, Mikaël

    2016-11-22

    Layered halide hybrid organic-inorganic perovskites (HOP) have been the subject of intense investigation before the rise of three-dimensional (3D) HOP and their impressive performance in solar cells. Recently, layered HOP have also been proposed as attractive alternatives for photostable solar cells and revisited for light-emitting devices. In this review, we combine classical solid-state physics concepts with simulation tools based on density functional theory to overview the main features of the optoelectronic properties of layered HOP. A detailed comparison between layered and 3D HOP is performed to highlight differences and similarities. In the same way as the cubic phase was established for 3D HOP, here we introduce the tetragonal phase with D4h symmetry as the reference phase for 2D monolayered HOP. It allows for detailed analysis of the spin-orbit coupling effects and structural transitions with corresponding electronic band folding. We further investigate the effects of octahedral tilting on the band gap, loss of inversion symmetry and possible Rashba effect, quantum confinement, and dielectric confinement related to the organic barrier, up to excitonic properties. Altogether, this paper aims to provide an interpretive and predictive framework for 3D and 2D layered HOP optoelectronic properties.

  10. Mixed Ge/Pb perovskite light absorbers with an ascendant efficiency explored from theoretical view.

    PubMed

    Sun, Ping-Ping; Li, Quan-Song; Feng, Shuai; Li, Ze-Sheng

    2016-06-07

    Organic-inorganic methylammonium lead halide perovskites have recently attracted great interest emerging as promising photovoltaic materials with a high 20.8% efficiency, but lead pollution is still a problem that may hinder the development and wide spread of MAPbI3 perovskites. To reduce the use of lead, we investigated the structures, electronic and optical properties of mixed MAGexPb(1-x)I3 theoretically by using density functional theory methods at different calculation levels. Results show that the mixed Ge/Pb perovskites exhibit a monotonic decrease evolution in band energy to push the band gap deeper in the near-infrared region and have a red shift optical absorption with an increased proportion of Ge. The results also indicate that lattice distortion and spin-orbit coupling (SOC) strength play important roles in the band gap behavior of MAGexPb(1-x)I3 by affecting the bandwidths of CBM and VBM. The calculations for short circuit current density, open circuit voltage, and theoretical power conversion efficiency suggest that mixed Ge/Pb perovskite solar cells (PSCs) with efficiency over 22% are superior to MAPbI3 and MAGeI3. And notably, MAGe0.75Pb0.25I3 is a promising harmless material for solar cells absorber with the highest theoretical efficiency of 24.24%. These findings are expected to be helpful for further rational design of nontoxic light absorption layer for high-performance PSCs.

  11. Non-tinted Transparent Luminescent Solar Concentrators Employing Both UV and NIR Selective Absorbers

    NASA Astrophysics Data System (ADS)

    Zhao, Yimu; Lunt, Richard

    2014-03-01

    Luminescent solar concentrators are a potentially low-cost solar harvesting solution that additionally offer opportunities for integration around buildings and windows. However, the visible absorption and emission of previously demonstrated chromophores hamper their widespread applications including solar windows. Here, we demonstrate non-tinted transparent luminescent solar concentrators (TLSC) that employ both ultraviolet (UV) and near-infrared (NIR) selective absorbing luminophores that create an entirely new paradigm for power-producing transparent surfaces and enhances the potential over UV-only TLSCs. We have previously designed UV-harvesting systems composed of metal halide phosphorescent luminophore blends that enable absorption cutoff positioned at the edge of visible spectrum (430nm) and massive-downconverted emission in the near-infrared (800nm) with quantum yields for luminescence of 75%. Here, we have developed a complimentary TLSC employing fluorescent organic salts with both efficient NIR absorption and deeper NIR emission. We will discuss the photophysical properties of these luminophores, the impact of ligand-host control, and optimization of the TLSC architectures.

  12. Effects of aqueous-soluble organic compounds on the removal of selected radionuclides from high-level waste part I: Distribution of Sr, Cs, and Tc onto 18 absorbers from an irradiated, organic-containing leachate simulant for Hanford Tank 101-SY

    SciTech Connect

    Marsh, S.F.; Svitra, Z.V.; Bowen, S.M.

    1995-01-01

    Many of the radioactive waste storage tanks at U.S. Department of Energy facilities contain organic compounds that have been degraded by radiolysis and chemical reactions. In this investigation, we measured the effect of some aqueous-soluble organic compounds on the sorption of strontium, cesium, and technetium onto 18 absorbers that offer high sorption of strontium from organic-free solutions. For our test solution we used a leachate from a simulated slurry for Hanford Tank 101-SY that initially contained ethylenediaminetetraacetic acid (EDTA) and then was gamma-irradiated to 34 Mrads. We measured distribution coefficients (Kds) for each element/absorber combination for dynamic contact periods of 30 min, 2 h, and 6 h to obtain information about sorption kinetics. To facilitate comparisons, we include Kd values for these same element/absorber combinations from three organic-free simulant solutions. The Kd values for strontium sorption from the simulant that contained the degraded organics usually decreased by large factors, whereas the Kd values for cesium and technetium sorption were relatively unaffected.

  13. "Smart" Electromechanical Shock Absorber

    NASA Technical Reports Server (NTRS)

    Stokes, Lebarian; Glenn, Dean C.; Carroll, Monty B.

    1989-01-01

    Shock-absorbing apparatus includes electromechanical actuator and digital feedback control circuitry rather than springs and hydraulic damping as in conventional shock absorbers. Device not subject to leakage and requires little or no maintenance. Attenuator parameters adjusted in response to sensory feedback and predictive algorithms to obtain desired damping characteristic. Device programmed to decelerate slowly approaching vehicle or other large object according to prescribed damping characteristic.

  14. "Smart" Electromechanical Shock Absorber

    NASA Technical Reports Server (NTRS)

    Stokes, Lebarian; Glenn, Dean C.; Carroll, Monty B.

    1989-01-01

    Shock-absorbing apparatus includes electromechanical actuator and digital feedback control circuitry rather than springs and hydraulic damping as in conventional shock absorbers. Device not subject to leakage and requires little or no maintenance. Attenuator parameters adjusted in response to sensory feedback and predictive algorithms to obtain desired damping characteristic. Device programmed to decelerate slowly approaching vehicle or other large object according to prescribed damping characteristic.

  15. Experimental and theoretical optical properties of methylammonium lead halide perovskites

    NASA Astrophysics Data System (ADS)

    Leguy, Aurélien M. A.; Azarhoosh, Pooya; Alonso, M. Isabel; Campoy-Quiles, Mariano; Weber, Oliver J.; Yao, Jizhong; Bryant, Daniel; Weller, Mark T.; Nelson, Jenny; Walsh, Aron; van Schilfgaarde, Mark; Barnes, Piers R. F.

    2016-03-01

    The optical constants of methylammonium lead halide single crystals CH3NH3PbX3 (X = I, Br, Cl) are interpreted with high level ab initio calculations using the relativistic quasiparticle self-consistent GW approximation (QSGW). Good agreement between the optical constants derived from QSGW and those obtained from spectroscopic ellipsometry enables the assignment of the spectral features to their respective inter-band transitions. We show that the transition from the highest valence band (VB) to the lowest conduction band (CB) is responsible for almost all the optical response of MAPbI3 between 1.2 and 5.5 eV (with minor contributions from the second highest VB and the second lowest CB). The calculations indicate that the orientation of [CH3NH3]+ cations has a significant influence on the position of the bandgap suggesting that collective orientation of the organic moieties could result in significant local variations of the optical properties. The optical constants and energy band diagram of CH3NH3PbI3 are then used to simulate the contributions from different optical transitions to a typical transient absorption spectrum (TAS).The optical constants of methylammonium lead halide single crystals CH3NH3PbX3 (X = I, Br, Cl) are interpreted with high level ab initio calculations using the relativistic quasiparticle self-consistent GW approximation (QSGW). Good agreement between the optical constants derived from QSGW and those obtained from spectroscopic ellipsometry enables the assignment of the spectral features to their respective inter-band transitions. We show that the transition from the highest valence band (VB) to the lowest conduction band (CB) is responsible for almost all the optical response of MAPbI3 between 1.2 and 5.5 eV (with minor contributions from the second highest VB and the second lowest CB). The calculations indicate that the orientation of [CH3NH3]+ cations has a significant influence on the position of the bandgap suggesting that collective

  16. A Discovery-Based Experiment Involving Rearrangement in the Conversion of Alcohols to Alkyl Halides: Permanent Magnet [to the thirteenth power]C NMR in the First-Semester Organic Chemistry Lab

    ERIC Educational Resources Information Center

    Kjonaas, Richard A.; Tucker, Ryand J. F.

    2008-01-01

    The use of permanent magnet [to the thirteenth power]C NMR in large-section first-semester organic chemistry lab courses is limited by the availability of experiments that not only hinge on first-semester lecture topics, but which also produce at least 0.5 mL of neat liquid sample. This article reports a discovery-based experiment that meets both…

  17. High-performance liquid chromatography - Ultraviolet method for the determination of total specific migration of nine ultraviolet absorbers in food simulants based on 1,1,3,3-Tetramethylguanidine and organic phase anion exchange solid phase extraction to remove glyceride.

    PubMed

    Wang, Jianling; Xiao, Xiaofeng; Chen, Tong; Liu, Tingfei; Tao, Huaming; He, Jun

    2016-06-17

    The glyceride in oil food simulant usually causes serious interferences to target analytes and leads to failure of the normal function of the RP-HPLC column. In this work, a convenient HPLC-UV method for the determination of the total specific migration of nine ultraviolet (UV) absorbers in food simulants was developed based on 1,1,3,3-tetramethylguanidine (TMG) and organic phase anion exchange (OPAE) SPE to efficiently remove glyceride in olive oil simulant. In contrast to the normal ion exchange carried out in an aqueous solution or aqueous phase environment, the OPAE SPE was performed in the organic phase environments, and the time-consuming and challenging extraction of the nine UV absorbers from vegetable oil with aqueous solution could be readily omitted. The method was proved to have good linearity (r≥0.99992), precision (intra-day RSD≤3.3%), and accuracy(91.0%≤recoveries≤107%); furthermore, the lower limit of quantifications (0.05-0.2mg/kg) in five types of food simulants(10% ethanol, 3% acetic acid, 20% ethanol, 50% ethanol and olive oil) was observed. The method was found to be well suited for quantitative determination of the total specific migration of the nine UV absorbers both in aqueous and vegetable oil simulant according to Commission Regulation (EU) No. 10/2011. Migration levels of the nine UV absorbers were determined in 31 plastic samples, and UV-24, UV-531, HHBP and UV-326 were frequently detected, especially in olive oil simulant for UV-326 in PE samples. In addition, the OPAE SPE procedure was also been applied to efficiently enrich or purify seven antioxidants in olive oil simulant. Results indicate that this procedure will have more extensive applications in the enriching or purification of the extremely weak acidic compounds with phenol hydroxyl group that are relatively stable in TMG n-hexane solution and that can be barely extracted from vegetable oil. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Methods of calculating radiation absorbed dose.

    PubMed

    Wegst, A V

    1987-01-01

    The new tumoricidal radioactive agents being developed will require a careful estimate of radiation absorbed tumor and critical organ dose for each patient. Clinical methods will need to be developed using standard imaging or counting instruments to determine cumulated organ activities with tracer amounts before the therapeutic administration of the material. Standard MIRD dosimetry methods can then be applied.

  19. Metal halide perovskites for energy applications

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Eperon, Giles E.; Snaith, Henry J.

    2016-06-01

    Exploring prospective materials for energy production and storage is one of the biggest challenges of this century. Solar energy is one of the most important renewable energy resources, due to its wide availability and low environmental impact. Metal halide perovskites have emerged as a class of semiconductor materials with unique properties, including tunable bandgap, high absorption coefficient, broad absorption spectrum, high charge carrier mobility and long charge diffusion lengths, which enable a broad range of photovoltaic and optoelectronic applications. Since the first embodiment of perovskite solar cells showing a power conversion efficiency of 3.8%, the device performance has been boosted up to a certified 22.1% within a few years. In this Perspective, we discuss differing forms of perovskite materials produced via various deposition procedures. We focus on their energy-related applications and discuss current challenges and possible solutions, with the aim of stimulating potential new applications.

  20. Passive particle dosimetry. [silver halide crystal growth

    NASA Technical Reports Server (NTRS)

    Childs, C. B.

    1977-01-01

    Present methods of dosimetry are reviewed with emphasis on the processes using silver chloride crystals for ionizing particle dosimetry. Differences between the ability of various crystals to record ionizing particle paths are directly related to impurities in the range of a few ppm (parts per million). To understand the roles of these impurities in the process, a method for consistent production of high purity silver chloride, and silver bromide was developed which yields silver halides with detectable impurity content less than 1 ppm. This high purity silver chloride was used in growing crystals with controlled doping. Crystals were grown by both the Czochalski method and the Bridgman method, and the Bridgman grown crystals were used for the experiments discussed. The distribution coefficients of ten divalent cations were determined for the Bridgman crystals. The best dosimeters were made with silver chloride crystals containing 5 to 10 ppm of lead; other impurities tested did not produce proper dosimeters.

  1. Bleaching mechanism of silver halide photochromic glasses

    NASA Astrophysics Data System (ADS)

    Caurant, D.; Gourier, D.; Vivien, D.; Prassas, M.

    1993-02-01

    Thermal bleaching of silver halide photochromic glasses is studied by electron paramagnetic resonance spectroscopy of photoinduced CuII centers. During exposure to ultraviolet light, the only stable CuII species is the (CuIIVAg)A center, which is a CuII-silver vacancy complex with the vacancy in a nearest position. In the dark, this center rapidly decays via two parallel channels. The first involves the dissociation of the complex by displacement of the vacancy along a [110] direction, with an activation energy E3=0.44 eV and a frequency factor k30=3.4×105 s-1. The second channel involves the conversion of the (CuIIVAg)A center into a (CuIICl-VAg)B center, where the silver vacancy is in the next nearest position along the [100] direction. This process occurs with an activation energy E1=0.44 eV and a frequency factor k10=3.1×105 s-1. The (CuIICl-VAg)B center slowly decays by a vacancy hopping mechanism, with an activation energy E2=0.22 eV and a frequency factor k20=4.6 s-1. To explain these two decay channels, it is proposed that the (CuIIVAg)A and (CuIICl-VAg)B centers annihilate via the formation of a CuI ion and a neutral complex (AgIIVAg)A which migrates to the surface of the silver halide particle, where electron-hole recombination occurs.

  2. An unsymmetrical non-fullerene acceptor: synthesis via direct heteroarylation, self-assembly, and utility as a low energy absorber in organic photovoltaic cells.

    PubMed

    Payne, Abby-Jo; Li, Shi; Dayneko, Sergey V; Risko, Chad; Welch, Gregory C

    2017-08-30

    This study reports on the design and synthesis of an unsymmetrical π-conjugated organic molecule composed of perylene diimide, thienyl diketopyrrolopyrrole, and indoloquinoxaline pieced together using direct heteroarylation. This material demonstrates unprecedented response in the thin-film upon post-deposition solvent vapor annealing, resulting in dramatic red-shifts in optical absorption. Such changes were utilized to enhance photocurrent generation in P3HT based organic solar cells.

  3. Electronic and Ionic Transport Dynamics in Organolead Halide Perovskites.

    PubMed

    Li, Dehui; Wu, Hao; Cheng, Hung-Chieh; Wang, Gongming; Huang, Yu; Duan, Xiangfeng

    2016-07-26

    Ion migration has been postulated as the underlying mechanism responsible for the hysteresis in organolead halide perovskite devices. However, the electronic and ionic transport dynamics and how they impact each other in organolead halide perovskites remain elusive to date. Here we report a systematic investigation of the electronic and ionic transport dynamics in organolead halide perovskite microplate crystals and thin films using temperature-dependent transient response measurements. Our study reveals that thermally activated ionic and electronic conduction coexist in perovskite devices. The extracted activation energies suggest that the electronic transport is easier, but ions migrate harder in microplates than in thin films, demonstrating that the crystalline quality and grain boundaries can fundamentally modify electronic and ionic transport in perovskites. These findings offer valuable insight on the electronic and ionic transport dynamics in organolead halide perovskites, which is critical for optimizing perovskite devices with reduced hysteresis and improved stability and efficiency.

  4. Binding and Selectivity of Halides with Macrocyclic polyamines

    PubMed Central

    Hossain, Md. Alamgir; Saeed, Musabbir A.

    2010-01-01

    This review covers the binding and selectivity aspects of halide anions in positively charged polyammonium hosts including monocyclic, bicyclic and tricyclic systems. The binding affinity and selectivity of host molecules for halides are largely depended on the shape, charges, and ring size of the host molecules. In general, a monocycle that has a flexible cavity binds an anion from both side, however a bicyclic or tricyclic molecule tends to bind a single anion in its cavity. PMID:21037945

  5. Circular photogalvanic effect in organometal halide perovskite CH3NH3PbI3

    NASA Astrophysics Data System (ADS)

    Li, Junwen; Haney, Paul M.

    2016-11-01

    We study the circular photogalvanic effect in the organometal halide perovskite solar cell absorber CH3NH3PbI3. The calculated photocurrent density for a system with broken inversion symmetry is about 10-9 A/W, comparable to the previously studied quantum well and bulk Rashba systems. The circular photogalvanic effect relies on inversion symmetry breaking, so that by tuning the optical penetration depth, the degree of inversion symmetry breaking can be probed at different depths from the sample surface. We propose that measurements of this effect may clarify the presence or absence of inversion symmetry, which remains a controversial issue and has been argued to play an important role in the high conversion efficiency of this material.

  6. Organometallic halide perovskite/barium di-silicide thin-film double-junction solar cells

    NASA Astrophysics Data System (ADS)

    Vismara, R.; Isabella, O.; Zeman, M.

    2016-04-01

    Barium di-silicide (BaSi2) is an abundant and inexpensive semiconductor with appealing opto-electrical properties. In this work we show that a 2-μm thick BaSi2-based thin-film solar cell can exhibit an implied photo-current density equal to 41.1 mA/cm2, which is higher than that of a state-of-the-art wafer-based c-Si hetero-junction solar cell. This performance makes BaSi2 an attractive absorber for high-performing thin-film and multi-junction solar cells. In particular, to assess the potential of barium di-silicide, we propose a thin-film double-junction solar cell based on organometallic halide perovskite (CH3NH3PbI3) as top absorber and BaSi2 as bottom absorber. The resulting modelled ultra-thin double-junction CH3NH3PbI3 / BaSi2 (< 2 μm) exhibits an implied total photo-current density equal to 38.65 mA/cm2 (19.84 mA/cm2 top cell, 18.81 mA/cm2 bottom cell) and conversion efficiencies up to 28%.

  7. Substrate inhibition competes with halide inhibition in polyphenol oxidase.

    PubMed

    Lim, Giselle Grace Fernando; Imura, Yuki; Yoshimura, Etsuro

    2012-10-01

    Polyphenol oxidase (PPO) is a ubiquitous enzyme important in the food industry. Although PPO activity followed Michaelis-Menten kinetics at catechol concentrations of up to 1 mM, it slowly decreased at catechol concentrations above 2 mM. This result indicated that in addition to the active site (site A), the enzyme possesses a second catechol-binding site (site B) that exerts an inhibitory effect on PPO activity. Halides inhibit PPO activity in such a way that substrate inhibition is lessened when halide concentration is increased. Furthermore, elevated concentrations of catechol diminished the degree of inhibition by halides. These findings suggest that halides also bind to site B to inhibit PPO activity. A steady-state kinetic analysis demonstrated that the dissociation constant between catechol and PPO depended on the binding of halides to site B. The dissociation constants were greatest when chloride bound to the site. Bromide and iodide yielded lower dissociation constants, in that order. These data indicate that the binding of halide to site B modulated the structure of site A, thereby exerting an inhibitory effect.

  8. Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut

    PubMed Central

    2015-01-01

    Metal halides perovskites, such as hybrid organic–inorganic CH3NH3PbI3, are newcomer optoelectronic materials that have attracted enormous attention as solution-deposited absorbing layers in solar cells with power conversion efficiencies reaching 20%. Herein we demonstrate a new avenue for halide perovskites by designing highly luminescent perovskite-based colloidal quantum dot materials. We have synthesized monodisperse colloidal nanocubes (4–15 nm edge lengths) of fully inorganic cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I or mixed halide systems Cl/Br and Br/I) using inexpensive commercial precursors. Through compositional modulations and quantum size-effects, the bandgap energies and emission spectra are readily tunable over the entire visible spectral region of 410–700 nm. The photoluminescence of CsPbX3 nanocrystals is characterized by narrow emission line-widths of 12–42 nm, wide color gamut covering up to 140% of the NTSC color standard, high quantum yields of up to 90%, and radiative lifetimes in the range of 1–29 ns. The compelling combination of enhanced optical properties and chemical robustness makes CsPbX3 nanocrystals appealing for optoelectronic applications, particularly for blue and green spectral regions (410–530 nm), where typical metal chalcogenide-based quantum dots suffer from photodegradation. PMID:25633588

  9. Relation between the electroforming voltage in alkali halide-polymer diodes and the bandgap of the alkali halide

    SciTech Connect

    Bory, Benjamin F.; Wang, Jingxin; Janssen, René A. J.; Meskers, Stefan C. J.; Gomes, Henrique L.; De Leeuw, Dago M.

    2014-12-08

    Electroforming of indium-tin-oxide/alkali halide/poly(spirofluorene)/Ba/Al diodes has been investigated by bias dependent reflectivity measurements. The threshold voltages for electrocoloration and electroforming are independent of layer thickness and correlate with the bandgap of the alkali halide. We argue that the origin is voltage induced defect formation. Frenkel defect pairs are formed by electron–hole recombination in the alkali halide. This self-accelerating process mitigates injection barriers. The dynamic junction formation is compared to that of a light emitting electrochemical cell. A critical defect density for electroforming is 10{sup 25}/m{sup 3}. The electroformed alkali halide layer can be considered as a highly doped semiconductor with metallic transport characteristics.

  10. Experimental and theoretical optical properties of methylammonium lead halide perovskites.

    PubMed

    Leguy, Aurélien M A; Azarhoosh, Pooya; Alonso, M Isabel; Campoy-Quiles, Mariano; Weber, Oliver J; Yao, Jizhong; Bryant, Daniel; Weller, Mark T; Nelson, Jenny; Walsh, Aron; van Schilfgaarde, Mark; Barnes, Piers R F

    2016-03-28

    The optical constants of methylammonium lead halide single crystals CH3NH3PbX3 (X = I, Br, Cl) are interpreted with high level ab initio calculations using the relativistic quasiparticle self-consistent GW approximation (QSGW). Good agreement between the optical constants derived from QSGW and those obtained from spectroscopic ellipsometry enables the assignment of the spectral features to their respective inter-band transitions. We show that the transition from the highest valence band (VB) to the lowest conduction band (CB) is responsible for almost all the optical response of MAPbI3 between 1.2 and 5.5 eV (with minor contributions from the second highest VB and the second lowest CB). The calculations indicate that the orientation of [CH3NH3](+) cations has a significant influence on the position of the bandgap suggesting that collective orientation of the organic moieties could result in significant local variations of the optical properties. The optical constants and energy band diagram of CH3NH3PbI3 are then used to simulate the contributions from different optical transitions to a typical transient absorption spectrum (TAS).

  11. Tallgrass Prairie as a Source and Sink of Methyl Halides

    NASA Astrophysics Data System (ADS)

    Abel, T.; Rhew, R. C.; Mazeas, O.; Atwood, A.; King, A. J.; Ma, L.; Whelan, M.

    2007-12-01

    Temperate grasslands are believed to be a globally significant sink for methyl bromide (CH3Br) and perhaps methyl chloride (CH3Cl), compounds which lead to stratospheric ozone destruction. Fluxes of these compounds were measured at Konza Prairie, a tallgrass prairie in the Flint Hills of Kansas, during June 2006 and August 2007. A stable isotope tracer technique was used to distinguish between simultaneous production and oxidation processes, allowing the first gross flux measurements of CH3Cl and CH3Br from a tallgrass prairie. Observed gross uptake rates of CH3Cl and CH3Br were similar to what we previously observed from the shortgrass steppe in Colorado and annual grasslands in California, but much lower than reported fluxes from a grassland in northeastern North America. A water manipulation experiment was performed both under controlled laboratory conditions, as well as in the field, demonstrating that uptake rates of both CH3Cl and CH3Br were strongly affected by soil moisture. On the production side, new sources of methyl halides were identified in association with certain plant species. Fluxes of these halogenated trace gases were compared to environmental variables, such as air temperature and volumetric water content. Net fluxes of methyl iodide (CH3I), carbon tetrachloride (CCl4), and other halogenated volatile organic compounds (HVOCs), were also measured.

  12. Unidirectional perfect absorber

    NASA Astrophysics Data System (ADS)

    Jin, L.; Wang, P.; Song, Z.

    2016-09-01

    This study proposes a unidirectional perfect absorber (UPA), which we realized with a two-arm Aharonov-Bohm interferometer, that consists of a dissipative resonator side-coupled to a uniform resonator array. The UPA has reflection-less full absorption on one direction, and reflectionless full transmission on the other, with an appropriate magnetic flux and coupling, detuning, and loss of the side-coupled resonator. The magnetic flux controls the transmission, the left transmission is larger for magnetic flux less than one-half flux quantum; and the right transmission is larger for magnetic flux between one-half and one flux quantum. Besides, a perfect absorber (PA) can be realized based on the UPA, in which light waves from both sides, with arbitrary superposition of the ampli- tude and phase, are perfectly absorbed. The UPA is expected to be useful in the design of novel optical devices.

  13. Shock absorber servicing tool

    NASA Technical Reports Server (NTRS)

    Koepler, Jack L. (Inventor); Hill, Robert L. (Inventor)

    1981-01-01

    A tool to assist in the servicing of a shock absorber wherein the shock absorber is constructed of a pair of aligned gas and liquid filled chambers. Each of the chambers is separated by a movable separator member. Maximum efficiency of the shock absorber is achieved in the locating of a precise volume of gas within the gas chamber and a precise volume of liquid within the liquid chamber. The servicing tool of this invention employs a rod which is to connect with the separator and by observation of the position of the rod with respect to the gauge body, the location of the separator is ascertained even though it is not directly observable.

  14. Unidirectional perfect absorber

    PubMed Central

    Jin, L.; Wang, P.; Song, Z.

    2016-01-01

    This study proposes a unidirectional perfect absorber (UPA), which we realized with a two-arm Aharonov-Bohm interferometer, that consists of a dissipative resonator side-coupled to a uniform resonator array. The UPA has reflection-less full absorption on one direction, and reflectionless full transmission on the other, with an appropriate magnetic flux and coupling, detuning, and loss of the side-coupled resonator. The magnetic flux controls the transmission, the left transmission is larger for magnetic flux less than one-half flux quantum; and the right transmission is larger for magnetic flux between one-half and one flux quantum. Besides, a perfect absorber (PA) can be realized based on the UPA, in which light waves from both sides, with arbitrary superposition of the ampli- tude and phase, are perfectly absorbed. The UPA is expected to be useful in the design of novel optical devices. PMID:27615125

  15. Shock Absorbing System

    NASA Astrophysics Data System (ADS)

    1982-01-01

    A lightweight, inexpensive shock-absorbing system, developed by Langley Research Center 20 years ago, is now in service as safety device for an automated railway at Duke University Medical Center. The transportation system travels at about 25 miles per hour, carrying patients, visitors, staff and cargo. At the end of each guideway of the system are "frangible," (breakable) tube "buffers." If a slowing car fails to make a complete stop at the terminal, it would bump and shatter the tubes, absorbing energy that might otherwise jolt the passengers or damage the vehicle.

  16. Metallaphotoredox-catalysed sp3-sp3 cross-coupling of carboxylic acids with alkyl halides

    NASA Astrophysics Data System (ADS)

    Johnston, Craig P.; Smith, Russell T.; Allmendinger, Simon; MacMillan, David W. C.

    2016-08-01

    In the past 50 years, cross-coupling reactions mediated by transition metals have changed the way in which complex organic molecules are synthesized. The predictable and chemoselective nature of these transformations has led to their widespread adoption across many areas of chemical research. However, the construction of a bond between two sp3-hybridized carbon atoms, a fundamental unit of organic chemistry, remains an important yet elusive objective for engineering cross-coupling reactions. In comparison to related procedures with sp2-hybridized species, the development of methods for sp3-sp3 bond formation via transition metal catalysis has been hampered historically by deleterious side-reactions, such as β-hydride elimination with palladium catalysis or the reluctance of alkyl halides to undergo oxidative addition. To address this issue, nickel-catalysed cross-coupling processes can be used to form sp3-sp3 bonds that utilize organometallic nucleophiles and alkyl electrophiles. In particular, the coupling of alkyl halides with pre-generated organozinc, Grignard and organoborane species has been used to furnish diverse molecular structures. However, the manipulations required to produce these activated structures is inefficient, leading to poor step- and atom-economies. Moreover, the operational difficulties associated with making and using these reactive coupling partners, and preserving them through a synthetic sequence, has hindered their widespread adoption. A generically useful sp3-sp3 coupling technology that uses bench-stable, native organic functional groups, without the need for pre-functionalization or substrate derivatization, would therefore be valuable. Here we demonstrate that the synergistic merger of photoredox and nickel catalysis enables the direct formation of sp3-sp3 bonds using only simple carboxylic acids and alkyl halides as the nucleophilic and electrophilic coupling partners, respectively. This metallaphotoredox protocol is suitable for

  17. Multiple-layer Radiation Absorber

    NASA Astrophysics Data System (ADS)

    Baker, Robert M. L.; Baker, Bonnie Sue

    A structure is discussed for absorbing incident radiation, either electromagnetic (EM) or sound. Such a surface structure is needed, for example, in a highly sensitive high-frequency gravitational wave or HFGW detector such as the Li-Baker. The multi-layer absorber, which is discussed, is constructed with metamaterial [MM] layer or layers on top. This MM is configured for a specific EM or sound radiation frequency band, which absorbs incident EM or sound radiation without reflection. Below these top MM layers is a substrate of conventional EM-radiation absorbing or acoustical absorbing reflective material, such as an array of pyramidal foam absorbers. Incident radiation is partially absorbed by the MM layer or layers, and then it is more absorbed by the lower absorbing and reflecting substrate. The remaining reflected radiation is even further absorbed by the MM layers on its "way out_ so that essentially all of the incident radiation is absorbed _ a nearly perfect black-body absorber. In a HFGW detector a substrate, such as foam absorbers, may outgas into a high vacuum and reduce the capability of the vacuum-producing equipment, however, the layers above this lowest substrate will seal the absorbing and reflecting substrate from any external vacuum. The layers also serve to seal the absorbing material against air or water flow past the surfaces of aircraft, watercraft or submarines. Other applications for such a multiple-level radiation absorber include stealth aircraft, missiles and submarines.

  18. Processes that Intervene in the Generation of the Photoacoustic Effect in Alkali Halides with F-Centers

    NASA Astrophysics Data System (ADS)

    Da Silva, Luis F.

    2004-01-01

    The photoacoustic effect, produced by the F-center in alkali halide crystals, is analyzed using the configuration coordinate model. By using the configuration coordinate model it is possible to explain the temperature increase of the sample when the sample is illuminated and the F-centers absorb light. Also this model explains the piston effect upon the atmosphere that surrounds the sample when the sample is illuminated. The temperature increase and the piston effect, produced during the development of the photoacoustic effect, cause the sound wave generation in the atmosphere that surrounds the sample when the F-centers absorb light. Using this model, the temperature increase value for a KCl sample and the displacement of the faces of the crystal during the process for the following crystals: KCl, KBr, KI and NaCl, have been determined.

  19. Intrinsic Halide Segregation at Nanometer Scale Determines the High Efficiency of Mixed Cation/Mixed Halide Perovskite Solar Cells.

    PubMed

    Gratia, Paul; Grancini, Giulia; Audinot, Jean-Nicolas; Jeanbourquin, Xavier; Mosconi, Edoardo; Zimmermann, Iwan; Dowsett, David; Lee, Yonghui; Grätzel, Michael; De Angelis, Filippo; Sivula, Kevin; Wirtz, Tom; Nazeeruddin, Mohammad Khaja

    2016-12-14

    Compositional engineering of a mixed cation/mixed halide perovskite in the form of (FAPbI3)0.85(MAPbBr3)0.15 is one of the most effective strategies to obtain record-efficiency perovskite solar cells. However, the perovskite self-organization upon crystallization and the final elemental distribution, which are paramount for device optimization, are still poorly understood. Here we map the nanoscale charge carrier and elemental distribution of mixed perovskite films yielding 20% efficient devices. Combining a novel in-house-developed high-resolution helium ion microscope coupled with a secondary ion mass spectrometer (HIM-SIMS) with Kelvin probe force microscopy (KPFM), we demonstrate that part of the mixed perovskite film intrinsically segregates into iodide-rich perovskite nanodomains on a length scale of up to a few hundred nanometers. Thus, the homogeneity of the film is disrupted, leading to a variation in the optical properties at the micrometer scale. Our results provide unprecedented understanding of the nanoscale perovskite composition.

  20. Palladium-catalyzed cross-coupling reactions of aryl boronic acids with aryl halides in water.

    PubMed

    Wang, Shaoyan; Zhang, Zhiqiang; Hu, Zhizhi; Wang, Yue; Lei, Peng; Chi, Haijun

    2009-01-01

    An efficient Suzuki cross-coupling reaction using a variety of aryl halides in neat water was developed. The Pd-catalyzed reaction between aryl bromides or chlorides and phenyl boronic acids was compatible with various functional groups and affords biphenyls in good to excellent yields without requirement of organic cosolvents. The air stability and solubility in water of the palladium-phosphinous acid complexes were considered to facilitate operation of the coupling reaction and product isolation. The reaction conditions including Pd catalyst selection, temperature, base and catalyst recoverability were also investigated.

  1. Effects of soluble organic complexants and their degradation products on the removal of selected radionuclides from high-level waste. Part 3, Distributions of Sr, Cs, Tc, Pu, and Am onto 33 absorbers from four variations of a 3:1 dilution of Hanford complexant concentrate (CC) simulant: Part 4, The effects of varying dilution ratios on the distributions of Sr, Cs, Tc, Pu, and Am onto 12 absorbers

    SciTech Connect

    Marsh, S.F.; Svitra, Z.V.; Bowen, S.M.

    1995-09-01

    Many of the radioactive waste storage tanks at USDOE facilities contain organic compounds that have been degraded by radiolysis and chemical reactions during decades of storage. Objective of this study was to measure effects of soluble organic complexants and their degradation products on sorption of Sr, Cs, Tc, Pu and Am onto 33 absorbers that in the absence of these organic compounds offer high sorption of these elements. The elements were in a generic simulant for Hanford complexant concentrate supernate that initially contained six organic complexants: EDTA, HEDTA, NTA, citrate, gluconate, and iminodiacetate. This simulant was tested as prepared and after gamma-irradiation to approximately 34 Mrads. Two other variations consisted of the unirradiated and irradiated simulants after treatment at 450C and 15,000 psi in a hydrothermal organic-destruction process. These experiments were conducted with a 3:1 water-to-simulant dilution of each of the four simulant variations. To determine effects of varying dilution ratios on the sorption of these five elements from the unirradiated and gamma-irradiated simulants that were not treated with the hydrothermal process, we measured their distribution from a 1:1 dilution, using 1 M NaOH as the diluent, onto the 12 best-performing absorbers. We then measured the sorption of these five elements from solutions having diluent-simulant ratios of 0, 0.5, 2.0, and 3.0 onto the three absorbers that performed best for sorbing Sr, Pu and Am from the 1:1 dilution. For each of 900 element/absorber/solution combinations, we measured distribution coefficients (Kd values) twice for each period for dynamic contact periods of 30 min, 2 h, and 6 h to obtain information about absorber stability and sorption kinetics. The 5400 measured Kd values indicate that the sorption of Sr, Pu, and Am is significantly decreased by the organic complexants in these simulant solutions, whereas the sorption of Cs and Tc is much less affected.

  2. Shock Absorbing Helmets

    NASA Technical Reports Server (NTRS)

    1978-01-01

    This paper presents a description of helmets used by football players that offer three times the shock-absorbing capacity of earlier types. An interior padding for the helmets, composed of Temper Foam, first used by NASA's Ames Research Center in the design of aircraft seats is described.

  3. Solar concentrator/absorber

    NASA Technical Reports Server (NTRS)

    Von Tiesenhausen, G. F.

    1976-01-01

    Collector/energy converter, consisting of dual-slope optical concentrator and counterflow thermal energy absorber, is attached to multiaxis support structure. Efficient over wide range of illumination levels, device may be used to generate high temperature steam, serve as solar powered dryer, or power absorption cycle cooler.

  4. Neutron Absorbing Alloys

    SciTech Connect

    Mizia, Ronald E.; Shaber, Eric L.; DuPont, John N.; Robino, Charles V.; Williams, David B.

    2004-05-04

    The present invention is drawn to new classes of advanced neutron absorbing structural materials for use in spent nuclear fuel applications requiring structural strength, weldability, and long term corrosion resistance. Particularly, an austenitic stainless steel alloy containing gadolinium and less than 5% of a ferrite content is disclosed. Additionally, a nickel-based alloy containing gadolinium and greater than 50% nickel is also disclosed.

  5. Variability in spectral absorbance metrics across boreal lake waters.

    PubMed

    Erlandsson, Martin; Futter, Martyn N; Kothawala, Dolly N; Köhler, Stephan J

    2012-10-26

    Ultraviolet/visible (UV/Vis) absorbance spectroscopy is a commonly used technique for characterizing dissolved organic matter (DOM). We present an analysis of UV/Vis absorbance spectra from 983 lakes throughout Sweden, sampled during autumn 2009. Metrics included both specific absorbances (i.e. absorbance per mass unit of organic carbon), and descriptions of spectral shape. Overall, we found three factors to which all spectral metrics were similarly related: acidity, retention-time, and latitude. In general, alkaline lakes with a long retention time in northern Sweden have lower specific absorbance and steeper spectral slope than acidic lakes with a short retention time in southern Sweden. Relative to the specific absorbance measured at 254 nm (SUVA), commonly used as a measure of DOM aromaticity, the specific absorbance at longer wavelengths and metrics of spectral shape were more sensitive to acidity and less sensitive to latitude. Although different spectral metrics are hypothesized to reflect different properties of DOM, UV/Vis absorbance spectroscopy may not be useful for more refined characterization of organic matter because of the strong inter-correlation between metrics. Nevertheless, it remains useful as a quick, cheap and reliable method of estimating DOM quantity and describing quality. We suggest that the most informative range to measure absorbance is between approximately 250 and 360 nm, where the between-lake variability is largest and absorbance can, in general, be precisely measured.

  6. Color silver halide hologram production and mastering

    NASA Astrophysics Data System (ADS)

    Bjelkhagen, Hans I.; Huang, Qiang

    1997-04-01

    Color reflection holograms recorded with the Denisyuk geometry have been demonstrated by the recently formed HOLOS Corporation in New Hampshire. The Slavich red-green-blue (RGB) sensitized ultra-high resolution silver halide emulsion was used for the hologram recording. The employed laser wavelengths were 647 nm, 532 nm, and 476 nm, generated by an argon ion, a frequency doubled Nd:YAG, and a krypton ion laser, respectively. A beam combination mechanism with dichroic filters enabled a simultaneous RGB exposure, which made the color balance and overall exposure energy easy to control as well as simplifying the recording procedure. HOLOS has been producing limited edition color holograms in various sizes from 4' X 5' to 12' X 16'. A 30 foot long optical table and high power lasers will enable HOLOS to record color holograms up to the size of one meter square in the near future. Various approaches have been investigated in generating color hologram masters which have sufficiently high diffraction efficiency to contact copy the color images onto photopolymer materials. A specially designed test object including the 1931 CIE chromaticity diagram, a rainbow ribbon cable, pure yellow dots, and a cloisonne elephant was used for color recording experiments. In addition, the Macbeth Color Checker chart was used. Both colorimetric evaluation and scattering noise measurements were performed using the PR-650 Photo Research SpectraScan SpectraCalorimeter.

  7. Melt synthesis of inorganic nitrides and halides

    NASA Astrophysics Data System (ADS)

    Molstad, Jay Clark

    Novel halide chlorides Sr7Cl2H12, Sr 7Br2H12, and Ba2ClH3 were formed from sodium chloride and strontium metal in sodium metal melts at 900°C. Sr7Br2H12 crystallizes in the anti-Fe 12Zr2P7 structure type, and Sr7Cl 2H12 crystallizes in a slightly distorted variant of this structure. Ba2ClH3 crystallizes in a structure containing infinite two-dimensional sheets of edge-sharing Ba6Cl chlorine-centered octahedra. Single crystals of gallium nitride can be obtained by reaction of gallium metal and dinitrogen gas at 750°C. Small amounts of alkaline earth metals added to the reaction mixture promote the formation of large crystals. Polycrystalline GaN nucleates rapidly under these conditions on the surface of a stainless steel autoclave; nucleation is far less pronounced on tungsten surfaces. Trace concentrations of hydrogen greatly enhance GaN nucleation. Melts of magnesium metal with cerium, gadolinium, and lanthanum were exposed to ammonia and nitrogen gas at temperatures from 700°C to 900°C. Binary rare earth and magnesium nitrides and hydrides are formed, but no ternary compounds are seen. The absence of ternary compounds is discussed in the light of a thermodynamic model predicting ternary formation in these systems.

  8. Ultrathin Colloidal Cesium Lead Halide Perovskite Nanowires.

    PubMed

    Zhang, Dandan; Yu, Yi; Bekenstein, Yehonadav; Wong, Andrew B; Alivisatos, A Paul; Yang, Peidong

    2016-10-12

    Highly uniform single crystal ultrathin CsPbBr3 nanowires (NWs) with diameter of 2.2 ± 0.2 nm and length up to several microns were successfully synthesized and purified using a catalyst-free colloidal synthesis method followed by a stepwise purification strategy. The NWs have bright photoluminescence (PL) with a photoluminescence quantum yield (PLQY) of about 30% after surface treatment. Large blue-shifted UV-vis absorption and PL spectra have been observed due to strong two-dimensional quantum confinement effects. A small angle X-ray scattering (SAXS) pattern shows the periodic packing of the ultrathin NWs along the radial direction, demonstrates the narrow radial distribution of the wires, and emphasizes the deep intercalation of the surfactants. Despite the extreme aspect ratios of the ultrathin NWs, their composition and the resulting optical properties can be readily tuned by an anion-exchange reaction with good morphology preservation. These bright ultrathin NWs may be used as a model system to study strong quantum confinement effects in a one-dimensional halide perovskite system.

  9. Metal halide perovskite nanomaterials: synthesis and applications.

    PubMed

    Ha, Son-Tung; Su, Rui; Xing, Jun; Zhang, Qing; Xiong, Qihua

    2017-04-01

    Nanomaterials refer to those with at least one dimension being at the nanoscale (i.e. <100 nm) such as quantum dots, nanowires, and nanoplatelets. These types of materials normally exhibit optical and electrical properties distinct from their bulk counterparts due to quantum confinement or strong anisotropy. In this perspective, we will focus on a particular material family: metal halide perovskites, which have received tremendous interest recently in photovoltaics and diverse photonic and optoelectronic applications. The different synthesis approaches and growth mechanisms will be discussed along with their novel characteristics and applications. Taking perovskite quantum dots as an example, the quantum confinement effect and high external quantum efficiency are among these novel properties and their excellent performance in applications, such as single photon emitters and LEDs, will be discussed. Understanding the mechanism behind the formation of these nanomaterial forms of perovskite will help researchers to come up with effective strategies to combat the emerging challenges of this family of materials, such as stability under ambient conditions and toxicity, towards next generation applications in photovoltaics and optoelectronics.

  10. Mn(2+)-Doped Lead Halide Perovskite Nanocrystals with Dual-Color Emission Controlled by Halide Content.

    PubMed

    Liu, Wenyong; Lin, Qianglu; Li, Hongbo; Wu, Kaifeng; Robel, István; Pietryga, Jeffrey M; Klimov, Victor I

    2016-11-16

    Impurity doping has been widely used to endow semiconductor nanocrystals with novel optical, electronic, and magnetic functionalities. Here, we introduce a new family of doped NCs offering unique insights into the chemical mechanism of doping, as well as into the fundamental interactions between the dopant and the semiconductor host. Specifically, by elucidating the role of relative bond strengths within the precursor and the host lattice, we develop an effective approach for incorporating manganese (Mn) ions into nanocrystals of lead-halide perovskites (CsPbX3, where X = Cl, Br, or I). In a key enabling step not possible in, for example, II-VI nanocrystals, we use gentle chemical means to finely and reversibly tune the nanocrystal band gap over a wide range of energies (1.8-3.1 eV) via postsynthetic anion exchange. We observe a dramatic effect of halide identity on relative intensities of intrinsic band-edge and Mn emission bands, which we ascribe to the influence of the energy difference between the corresponding transitions on the characteristics of energy transfer between the Mn ion and the semiconductor host.

  11. Lead Halide Perovskites and Other Metal Halide Complexes As Inorganic Capping Ligands for Colloidal Nanocrystals

    PubMed Central

    2014-01-01

    Lead halide perovskites (CH3NH3PbX3, where X = I, Br) and other metal halide complexes (MXn, where M = Pb, Cd, In, Zn, Fe, Bi, Sb) have been studied as inorganic capping ligands for colloidal nanocrystals. We present the methodology for the surface functionalization via ligand-exchange reactions and the effect on the optical properties of IV–VI, II–VI, and III–V semiconductor nanocrystals. In particular, we show that the Lewis acid–base properties of the solvents, in addition to the solvent dielectric constant, must be properly adjusted for successful ligand exchange and colloidal stability. High luminescence quantum efficiencies of 20–30% for near-infrared emitting CH3NH3PbI3-functionalized PbS nanocrystals and 50–65% for red-emitting CH3NH3CdBr3- and (NH4)2ZnCl4-capped CdSe/CdS nanocrystals point to highly efficient electronic passivation of the nanocrystal surface. PMID:24746226

  12. An analysis of dissolved organic matter from freshwater Karelian Lakes using reversed-phase high-performance liquid chromatography with online absorbance and fluorescence analysis

    NASA Astrophysics Data System (ADS)

    Khundzhua, D. A.; Patsaeva, S. V.; Trubetskoj, O. A.; Trubetskaya, O. E.

    2017-01-01

    The spectral and optical properties of the fractionated components of dissolved organic matter (DOM) of three freshwater lakes in Karelia were studied using reversed-phase high-performance liquid chromatography (RP-HPLC) with online detection of fluorescence and absorption spectra. It is shown that the DOM fractions are qualitatively similar, but differ quantitatively in the ratio of components and consist of at least three types of fluorophores: (1) hydrophilic "humic-like" fluorophore(s) with the emission maximum in the region of 420 nm and an absorption band at 260-270 nm; (2) hydrophobic "humic-like" fluorophore(s) with the emission maximum at approximately 450 nm that has no characteristic absorption maxima in the region from 220 to 400 nm; and (3) a "protein-like" fluorophore with the emission maximum in the region of 340-350 nm, which is typical of proteins and peptides containing tryptophan.

  13. Effects of the novel poly(methyl methacrylate) (PMMA)-encapsulated organic ultraviolet (UV) filters on the UV absorbance and in vitro sun protection factor (SPF).

    PubMed

    Wu, Pey-Shiuan; Huang, Lan-Ni; Guo, Yi-Cing; Lin, Chih-Chien

    2014-02-05

    Sunscreens are thought to protect skin from many of the harmful effects of ultraviolet (UV) light and the photostability of sunscreens is thus an important concern in their application. Therefore, to discover new UV filters or to modify well-known UV filters are presents an important way for development of sunscreens. In this study, we presented several novel poly(methyl methacrylate) (PMMA) encapsulated organic UV filters, including encapsulated benzophenone-3 (TB-MS), avobenzone (TA-MS), octyl methoxycinnamate (TO-MS) and diethylamino hydroxybenzoyl hexyl benzoate (TD-MS). Our results have demonstrated that PMMA-encapsulated UV filters have improved safety, photoprotective ability and photostability. We proposed therefore that these PMMA-encapsulated UV filters can be used as ingredients for sunscreen products in the future. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Highly tunable colloidal perovskite nanoplatelets through variable cation, metal, and halide composition

    DOE PAGES

    Weidman, Mark C.; Seitz, Michael; Stranks, Samuel D.; ...

    2016-07-29

    Here, colloidal perovskite nanoplatelets are a promising class of semiconductor nanomaterials-exhibiting bright luminescence, tunable and spectrally narrow absorption and emission features, strongly confined excitonic states, and facile colloidal synthesis. Here, we demonstrate the high degree of spectral tunability achievable through variation of the cation, metal, and halide composition as well as nanoplatelet thickness. We synthesize nanoplatelets of the form L2[ABX3]n-1BX4, where L is an organic ligand (octylammonium, butylammonium), A is a monovalent metal or organic molecular cation (cesium, methylammonium, formamidinium), B is a divalent metal cation (lead, tin), X is a halide anion (chloride, bromide, iodide), and n-1 is themore » number of unit cells in thickness. We show that variation of n, B, and X leads to large changes in the absorption and emission energy, while variation of the A cation leads to only subtle changes but can significantly impact the nanoplatelet stability and photoluminescence quantum yield (with values over 20%). Furthermore, mixed halide nanoplatelets exhibit continuous spectral tunability over a 1.5 eV spectral range, from 2.2 to 3.7 eV. The nanoplatelets have relatively large lateral dimensions (100 nm to 1 μm), which promote self-assembly into stacked superlattice structures-the periodicity of which can be adjusted based on the nanoplatelet surface ligand length. These results demonstrate the versatility of colloidal perovskite nanoplatelets as a material platform, with tunability extending from the deep-UV, across the visible, into the near-IR. In particular, the tin-containing nanoplatelets represent a significant addition to the small but increasingly important family of lead- and cadmium-free colloidal semiconductors.« less

  15. Highly Tunable Colloidal Perovskite Nanoplatelets through Variable Cation, Metal, and Halide Composition.

    PubMed

    Weidman, Mark C; Seitz, Michael; Stranks, Samuel D; Tisdale, William A

    2016-08-23

    Colloidal perovskite nanoplatelets are a promising class of semiconductor nanomaterials-exhibiting bright luminescence, tunable and spectrally narrow absorption and emission features, strongly confined excitonic states, and facile colloidal synthesis. Here, we demonstrate the high degree of spectral tunability achievable through variation of the cation, metal, and halide composition as well as nanoplatelet thickness. We synthesize nanoplatelets of the form L2[ABX3]n-1BX4, where L is an organic ligand (octylammonium, butylammonium), A is a monovalent metal or organic molecular cation (cesium, methylammonium, formamidinium), B is a divalent metal cation (lead, tin), X is a halide anion (chloride, bromide, iodide), and n-1 is the number of unit cells in thickness. We show that variation of n, B, and X leads to large changes in the absorption and emission energy, while variation of the A cation leads to only subtle changes but can significantly impact the nanoplatelet stability and photoluminescence quantum yield (with values over 20%). Furthermore, mixed halide nanoplatelets exhibit continuous spectral tunability over a 1.5 eV spectral range, from 2.2 to 3.7 eV. The nanoplatelets have relatively large lateral dimensions (100 nm to 1 μm), which promote self-assembly into stacked superlattice structures-the periodicity of which can be adjusted based on the nanoplatelet surface ligand length. These results demonstrate the versatility of colloidal perovskite nanoplatelets as a material platform, with tunability extending from the deep-UV, across the visible, into the near-IR. In particular, the tin-containing nanoplatelets represent a significant addition to the small but increasingly important family of lead- and cadmium-free colloidal semiconductors.

  16. Ab initio modeling of the optical properties in organometallic halide perovskites for photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Neukirch, Amanda; Nei, Wanyi; Pedesseau, Laurent; Even, Jacky; Katan, Claudine; Mohite, Aditya; Tretiak, Segrei

    2015-03-01

    The need for an inexpensive, clean, and plentiful source of energy has generated large amounts of research in an assortment of solution processed organic and hybrid organic-inorganic solar cells. A relative newcomer to the field of solution processed photovoltaics is the lead halide perovskite solar cell. In the past 5 years, the efficiencies of devices made from this material have increased from 3.5% to nearly 20%. Despite the rapid development of organic-inorganic perovskite solar cells, a thorough understanding of the fundamental photophysical processes driving the high performance of these devices is not well understood. I am using state-of-the-art ab initio computational techniques in order to characterize the properties at the interface of perovskite devices in order to aide in materials design and device engineering. I will present an in-depth analysis of the electronic and optical properties of bulk and surface states of pure and mixed halide systems. The high-level static quantum mechanical calculations, including spin-orbit-coupling and the many body GW approach, identify the key electronic states involved in photoinduced dynamics. This knowledge provides important information on how the optical properties change with variations to the system. Supported by the DOE, the LANL LDRD program XW11, and CNLS.

  17. A general halide-to-anion switch for imidazolium-based ionic liquids and oligocationic systems using anion exchange resins (A- form).

    PubMed

    Alcalde, Ermitas; Dinarès, Immaculada; Ibáñez, Anna; Mesquida, Neus

    2011-03-21

    Further studies on the application of an AER (A(-) form) method broadened the anion exchange scope of representative ionic liquids and bis(imidazolium) systems. Depending on the hydrophobicity nature of the targeted imidazolium species and counteranions, different organic solvents were used to swap halides for assorted anions, proceeding in excellent to quantitative yields.

  18. Vitrification of IFR and MSBR halide salt reprocessing wastes

    SciTech Connect

    Siemer, D.D.

    2013-07-01

    Both of the genuinely sustainable (breeder) nuclear fuel cycles (IFR - Integral Fast Reactor - and MSBR - Molten Salt Breeder Reactor -) studied by the USA's national laboratories would generate high level reprocessing waste (HLRW) streams consisting of a relatively small amount ( about 4 mole %) of fission product halide (chloride or fluoride) salts in a matrix comprised primarily (about 95 mole %) of non radioactive alkali metal halide salts. Because leach resistant glasses cannot accommodate much of any of the halides, most of the treatment scenarios previously envisioned for such HLRW have assumed a monolithic waste form comprised of a synthetic analog of an insoluble crystalline halide mineral. In practice, this translates to making a 'substituted' sodalite ('Ceramic Waste Form') of the IFR's chloride salt-based wastes and fluoroapatite of the MSBR's fluoride salt-based wastes. This paper discusses my experimental studies of an alternative waste management scenario for both fuel cycles that would separate/recycle the waste's halide and immobilize everything else in iron phosphate (Fe-P) glass. It will describe both how the work was done and what its results indicate about how a treatment process for both of those wastes should be implemented (fluoride and chloride behave differently). In either case, this scenario's primary advantages include much higher waste loadings, much lower overall cost, and the generation of a product (glass) that is more consistent with current waste management practices. (author)

  19. Genetic Control of Methyl Halide Production in Arabidopsis

    NASA Astrophysics Data System (ADS)

    Rhew, R. C.; Ostergaard, L.; Saltzman, E. S.; Yanofsky, M. F.

    2003-12-01

    Methyl chloride and methyl bromide are the primary carriers of natural chlorine and bromine to the stratosphere where they catalyze the destruction of ozone, whereas methyl iodide influences aerosol formation and ozone loss in the troposphere. Methyl bromide is also an agricultural fumigant whose use is scheduled to be phased out by international agreement. Despite the economic and environmental importance of these methyl halides, their natural sources and biological production mechanisms are poorly understood. Currently identified sources include oceans, biomass burning, industrial and agricultural use, fuel combustion, salt marshes, wetlands, rice paddies, certain terrestrial plants and fungi, and abiotic processes. We demonstrate that the model plant Arabidopsis thaliana produces and emits methyl halides and that the enzyme primarily responsible for the production is encoded by the HARMLESS TO OZONE LAYER (HOL) gene located on chromosome II. In mutant plants that have a disruption of the HOL gene, methyl halide production is largely eliminated. A phylogenetic analysis using the HOL gene suggests that the ability to produce methyl halides is widespread among vascular plants. This approach provides a genetic basis for understanding and predicting patterns of methyl halide production by plants.

  20. Hemibonding of hydroxyl radical and halide anion in aqueous solution.

    PubMed

    Yamaguchi, Makoto

    2011-12-29

    Molecular geometries and properties of the possible reaction products between the hydroxyl radical and the halide anions in aqueous solution were investigated. The formation of two-center three-electron bonding (hemibonding) between the hydroxyl radical and halide anions (Cl, Br, I) was examined by density functional theory (DFT) calculation with a range-separated hybrid (RSH) exchange-correlation functional. The long-range corrected hybrid functional (LC-ωPBE), which have given quantitatively satisfactory results for odd electron systems and excited states, was examined by test calculations for dihalogen radical anions (X(2)(-); X = Cl, Br, I) and hydroxyl radical-water clusters. Equilibrium geometries with hemibonding between the hydroxyl radical and halide anions were located by including four hydrogen-bonded water molecules. Excitation energies and oscillator strengths of σ-σ* transitions calculated by the time-dependent DFT method showed good agreement with observed values. Calculated values of the free energy of reaction on the formation of hydroxyl halide radical anion from the hydroxyl radical and halide anion were endothermic for chloride but exothermic for bromide and iodide, which is consistent with experimental values of equilibrium constants.

  1. Halide Perovskites: Poor Man's High-Performance Semiconductors.

    PubMed

    Stoumpos, Constantinos C; Kanatzidis, Mercouri G

    2016-07-01

    Halide perovskites are a rapidly developing class of medium-bandgap semiconductors which, to date, have been popularized on account of their remarkable success in solid-state heterojunction solar cells raising the photovoltaic efficiency to 20% within the last 5 years. As the physical properties of the materials are being explored, it is becoming apparent that the photovoltaic performance of the halide perovskites is just but one aspect of the wealth of opportunities that these compounds offer as high-performance semiconductors. From unique optical and electrical properties stemming from their characteristic electronic structure to highly efficient real-life technological applications, halide perovskites constitute a brand new class of materials with exotic properties awaiting discovery. The nature of halide perovskites from the materials' viewpoint is discussed here, enlisting the most important classes of the compounds and describing their most exciting properties. The topics covered focus on the optical and electrical properties highlighting some of the milestone achievements reported to date but also addressing controversies in the vastly expanding halide perovskite literature. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Organic chemistry: No double bond left behind

    NASA Astrophysics Data System (ADS)

    Sarlah, David

    2016-03-01

    Alkenyl halides are some of the most useful building blocks for synthesizing small organic molecules. A catalyst has now allowed their direct preparation from widely available alkenes using the cross-metathesis reaction. See Article p.459

  3. Regeneration of zinc halide catalyst used in the hydrocracking of polynuclear hydrocarbons

    DOEpatents

    Gorin, Everett

    1978-01-01

    Improved recovery of spent molten zinc halide hydro-cracking catalyst is achieved in the oxidative vapor phase regeneration thereof by selective treatment of the zinc oxide carried over by the effluent vapors from the regeneration zone with hydrogen halide gas under conditions favoring the reaction of the zinc oxide with the hydrogen halide, whereby regenerated zinc halide is recovered in a solids-free state with little loss of zinc values.

  4. Transformation of molecular weight distributions of dissolved organic carbon and UV-absorbing compounds at full-scale wastewater-treatment plants.

    PubMed

    Esparza-Soto, Mario; Fox, Peter; Westerhoff, Paul

    2006-03-01

    The molecular-weight distribution (MWD) of wastewater dissolved-organic carbon (DOC) was determined in samples from seven full-scale wastewater-treatment plants (WWTPs) that use different biological treatments (air activated sludge [air-AS], pure-oxygen AS [O2-AS], and trickling filters). The research objective was to determine how different biological treatments influenced the MWD of wastewater DOC. Primary sedimentation effluent DOC from most of the WWTPs exhibited a skewed distribution toward the low-molecular-weight fraction (MWF) (40 to 50%, < 0.5 K Daltons [KDa]). The Air-AS effluent DOC exhibited a centrally clustered distribution, with the majority of DOC in the intermediate MWF (0.5 to 3 KDa). The O2-AS effluent DOC exhibited a skewed distribution toward the high MWF (> 3 KDa). The removal of DOC by air- and O2-AS bacteria followed trends predicted by a macromolecule degradation model. Trickling-filter effluent DOC exhibited a skewed distribution toward the high MWF (50% DOC, > 3 KDa).

  5. Core-Shell Metal-Organic Frameworks/Molecularly Imprinted Nanoparticles as Absorbents for the Detection of Pyrraline in Milk and Milk Powder.

    PubMed

    Liu, Huilin; Mu, Lin; Chen, Xiaomo; Wang, Jing; Wang, Shuo; Sun, Baoguo

    2017-02-01

    A novel core-shell metal-organic framework coated with a dummy template molecularly imprinted polymer (MOF@DMIP) was synthesized by one-pot bulk polymerization for the detection of pyrraline in food samples. The pyrraline analogue pyrrolidine-3-carboxylic acid was used as the template because of its lower cost, and MIL-101 was used as the MOF core owing to its numerous inherent advantages, including high chemical and hydrothermal stabilities. MIL-101@DMIP was used to detect trace pyrraline in foods by solid-phase extraction combined with high-performance liquid chromatography. It exhibited the advantages of faster mass transport, excellent sensitivity, and selectivity. Under optimum conditions, the detection limit of this system was 40.7 μg L(-1), and a linear range was from 5 × 10(-7) to 2 × 10(-3) mol L(-1), within relative standard deviations of 4.46-6.87%. The recoveries ranged from 92.23 to 103.87%, indicating the excellent ability of the prepared MIL-101@DMIP to recognize pyrraline in complex food matrices and its potential for application in pyrraline detection.

  6. Metasurface Broadband Solar Absorber

    SciTech Connect

    Azad, Abul K.; Kort-Kamp, Wilton J. M.; Sykora, Milan; Weisse-Bernstein, Nina R.; Luk, Ting S.; Taylor, Antoinette J.; Dalvit, Diego A. R.; Chen, Hou-Tong

    2016-02-01

    Here, we demonstrate a broadband, polarization independent, wide-angle absorber based on a metallic metasurface architecture, which accomplishes greater than 90% absorptance in the visible and near-infrared range of the solar spectrum, and exhibits low absorptivity (emissivity) at mid- and far-infrared wavelengths. The complex unit cell of the metasurface solar absorber consists of eight pairs of gold nano-resonators that are separated from a gold ground plane by a thin silicon dioxide spacer. Moreover, our experimental measurements reveal high-performance absorption over a wide range of incidence angles for both s- and p-polarizations. We also investigate numerically the frequency-dependent field and current distributions to elucidate how the absorption occurs within the metasurface structure.

  7. Metasurface Broadband Solar Absorber.

    PubMed

    Azad, Abul K; Kort-Kamp, Wilton J M; Sykora, Milan; Weisse-Bernstein, Nina R; Luk, Ting S; Taylor, Antoinette J; Dalvit, Diego A R; Chen, Hou-Tong

    2016-02-01

    We demonstrate a broadband, polarization independent, wide-angle absorber based on a metallic metasurface architecture, which accomplishes greater than 90% absorptance in the visible and near-infrared range of the solar spectrum, and exhibits low absorptivity (emissivity) at mid- and far-infrared wavelengths. The complex unit cell of the metasurface solar absorber consists of eight pairs of gold nano-resonators that are separated from a gold ground plane by a thin silicon dioxide spacer. Our experimental measurements reveal high-performance absorption over a wide range of incidence angles for both s- and p-polarizations. We also investigate numerically the frequency-dependent field and current distributions to elucidate how the absorption occurs within the metasurface structure.

  8. Metasurface Broadband Solar Absorber

    DOE PAGES

    Azad, Abul K.; Kort-Kamp, Wilton J. M.; Sykora, Milan; ...

    2016-02-01

    Here, we demonstrate a broadband, polarization independent, wide-angle absorber based on a metallic metasurface architecture, which accomplishes greater than 90% absorptance in the visible and near-infrared range of the solar spectrum, and exhibits low absorptivity (emissivity) at mid- and far-infrared wavelengths. The complex unit cell of the metasurface solar absorber consists of eight pairs of gold nano-resonators that are separated from a gold ground plane by a thin silicon dioxide spacer. Moreover, our experimental measurements reveal high-performance absorption over a wide range of incidence angles for both s- and p-polarizations. We also investigate numerically the frequency-dependent field and current distributionsmore » to elucidate how the absorption occurs within the metasurface structure.« less

  9. Metasurface Broadband Solar Absorber

    PubMed Central

    Azad, Abul K.; Kort-Kamp, Wilton J. M.; Sykora, Milan; Weisse-Bernstein, Nina R.; Luk, Ting S.; Taylor, Antoinette J.; Dalvit, Diego A. R.; Chen, Hou-Tong

    2016-01-01

    We demonstrate a broadband, polarization independent, wide-angle absorber based on a metallic metasurface architecture, which accomplishes greater than 90% absorptance in the visible and near-infrared range of the solar spectrum, and exhibits low absorptivity (emissivity) at mid- and far-infrared wavelengths. The complex unit cell of the metasurface solar absorber consists of eight pairs of gold nano-resonators that are separated from a gold ground plane by a thin silicon dioxide spacer. Our experimental measurements reveal high-performance absorption over a wide range of incidence angles for both s- and p-polarizations. We also investigate numerically the frequency-dependent field and current distributions to elucidate how the absorption occurs within the metasurface structure. PMID:26828999

  10. Apollo couch energy absorbers

    NASA Technical Reports Server (NTRS)

    Wesselski, C. J.; Drexel, R. E.

    1972-01-01

    Load attenuators for the Apollo spacecraft crew couch and its potential applications are described. Energy absorption is achieved through friction and cyclic deformation of material. In one concept, energy absorption is accomplished by rolling a compressed ring of metal between two surfaces. In another concept, energy is absorbed by forcing a plastically deformed washer along a rod. Among the design problems that had to be solved were material selection, fatigue life, ring slippage, lubrication, and friction loading.

  11. Ionized Absorbers in AGN

    NASA Technical Reports Server (NTRS)

    Mathur, S.

    1999-01-01

    As a part of this program, we observed three AGN:PKS2251 + 113, PG0043 = 039 and PLH909. Two objects show signatures of absorbtion in their UV spectra. Based on our earlier modeling of X-ray warm absorbents, we expected to observe X-ray observation in these objects. The third, PLH909, is known to have soft excess in EINSTEIN data. Attachment: "Exploratory ASCA observation of broad absorption line quasi-stellar objects".

  12. 40 CFR 721.10181 - Halide salt of an alkylamine (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Halide salt of an alkylamine (generic... Specific Chemical Substances § 721.10181 Halide salt of an alkylamine (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as halide salt...

  13. 40 CFR 721.10181 - Halide salt of an alkylamine (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Halide salt of an alkylamine (generic... Specific Chemical Substances § 721.10181 Halide salt of an alkylamine (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as halide salt...

  14. 40 CFR 721.10181 - Halide salt of an alkylamine (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Halide salt of an alkylamine (generic... Specific Chemical Substances § 721.10181 Halide salt of an alkylamine (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as halide salt...

  15. 40 CFR 721.10181 - Halide salt of an alkylamine (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Halide salt of an alkylamine (generic... Specific Chemical Substances § 721.10181 Halide salt of an alkylamine (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as halide salt...

  16. 40 CFR 721.10181 - Halide salt of an alkylamine (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Halide salt of an alkylamine (generic... Specific Chemical Substances § 721.10181 Halide salt of an alkylamine (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as halide salt...

  17. 10 CFR 431.322 - Definitions concerning metal halide lamp ballasts and fixtures.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Definitions concerning metal halide lamp ballasts and... FOR CERTAIN COMMERCIAL AND INDUSTRIAL EQUIPMENT Metal Halide Lamp Ballasts and Fixtures § 431.322 Definitions concerning metal halide lamp ballasts and fixtures. Ballast efficiency means, in the case of...

  18. 75 FR 5544 - Energy Conservation Program: Energy Conservation Standards for Metal Halide Lamp Fixtures: Public...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-03

    ... for Metal Halide Lamp Fixtures: Public Meeting and Availability of the Framework Document AGENCY... conservation standards for certain metal halide lamp fixtures. This document announces that the period for... metal halide lamp fixtures and provide docket number EERE-2009-BT-STD-0018 and/or RIN number 1904-...

  19. Laser cooling of organic-inorganic lead halide perovskites

    NASA Astrophysics Data System (ADS)

    Ha, Son-Tung; Shen, Chao; Zhang, Jun; Xiong, Qihua

    2016-02-01

    Optical irradiation with suitable energy can cool solids, a phenomenon known as optical refrigeration, first proposed in 1929 and experimentally achieved in ytterbium-doped glasses in 1995. Since then, considerable progress has been made in various rare earth element-doped materials, with a recent record of cooling to 91 K directly from ambient temperatures. For practical use and to suit future applications of optical refrigeration, the discovery of materials with facile and scalable synthesis and high cooling power density will be required. Herein we present the realization of a net cooling of 23.0 K in micrometre-thick 3D CH3NH3PbI3 (MAPbI3) and 58.7 K in exfoliated 2D (C6H5C2H4NH3)2PbI4 (PhEPbI4) perovskite crystals directly from room temperature. We found that the perovskite crystals exhibit strong photoluminescence upconversion and near unity external quantum efficiency, properties that are responsible for the realization of net laser cooling. Our findings indicate that solution-processed perovskite thin films may be a highly suitable candidate for constructing integrated optical cooler devices.

  20. Electrochemical Doping of Halide Perovskites with Ion Intercalation.

    PubMed

    Jiang, Qinglong; Chen, Mingming; Li, Junqiang; Wang, Mingchao; Zeng, Xiaoqiao; Besara, Tiglet; Lu, Jun; Xin, Yan; Shan, Xin; Pan, Bicai; Wang, Changchun; Lin, Shangchao; Siegrist, Theo; Xiao, Qiangfeng; Yu, Zhibin

    2017-01-24

    Halide perovskites have recently been investigated for various solution-processed optoelectronic devices. The majority of studies have focused on using intrinsic halide perovskites, and the intentional incoporation of dopants has not been well explored. In this work, we discovered that small alkali ions, including lithium and sodium ions, could be electrochemically intercalated into a variety of halide and pseudohalide perovskites. The ion intercalation caused a lattice expansion of the perovskite crystals and resulted in an n-type doping of the perovskites. Such electrochemical doping improved the conductivity and changed the color of the perovskites, leading to an electrochromism with more than 40% reduction of transmittance in the 450-850 nm wavelength range. The doped perovskites exhibited improved electron injection efficiency into the pristine perovskite crystals, resulting in bright light-emitting diodes with a low turn-on voltage.

  1. Metal-halide mixtures for latent heat energy storage

    NASA Technical Reports Server (NTRS)

    Chen, K.; Manvi, R.

    1981-01-01

    Alkali metal and alkali halide mixtures are identified which may be suitable for thermal energy storage at temperatures above 600 C. The use of metal-halides is appropriate because of their tendency to form two immiscible melts with a density difference, which reduces scale formation and solidification on heat transfer surfaces. Also, the accumulation of phase change material along the melt interface is avoided by the self-dispersing characteristic of some metal-halides, in particular Sr-SrCl2, Ba-BaCl2, and Ba-BaBr2 mixtures. Further advantages lie in their high thermal conductivities, ability to cope with thermal shock, corrosion inhibition, and possibly higher energy densities.

  2. Absorber for terahertz radiation management

    DOEpatents

    Biallas, George Herman; Apeldoorn, Cornelis; Williams, Gwyn P.; Benson, Stephen V.; Shinn, Michelle D.; Heckman, John D.

    2015-12-08

    A method and apparatus for minimizing the degradation of power in a free electron laser (FEL) generating terahertz (THz) radiation. The method includes inserting an absorber ring in the FEL beam path for absorbing any irregular THz radiation and thus minimizes the degradation of downstream optics and the resulting degradation of the FEL output power. The absorber ring includes an upstream side, a downstream side, and a plurality of wedges spaced radially around the absorber ring. The wedges form a scallop-like feature on the innermost edges of the absorber ring that acts as an apodizer, stopping diffractive focusing of the THz radiation that is not intercepted by the absorber. Spacing between the scallop-like features and the shape of the features approximates the Bartlett apodization function. The absorber ring provides a smooth intensity distribution, rather than one that is peaked on-center, thereby eliminating minor distortion downstream of the absorber.

  3. Activation volumes in lead halides and other solids

    NASA Astrophysics Data System (ADS)

    Alexopoulos, K.; Lazaridou, M.; Varotsos, P.

    1986-02-01

    Conductivity measurements of PbCl2 and PbBr2 under pressure have been carried out by Oberschmidt and Lazarus. The migration and activation volumes scale with the corresponding enthalpies in a manner predetermined by the bulk properties. By considering the existing data for a large variety of solids (rare-gas solids, lithium halides, lead halides, SrF2, and olivine) in which the defect enthalpies vary by two orders of magnitude we conclude that there is a curve which connects in a unified manner the point-defect data with the bulk properties.

  4. Thermodynamic reactivity, growth and characterization of mercurous halide crystals

    NASA Technical Reports Server (NTRS)

    Singh, N. B.; Gottlieb, M.; Henningsen, T.; Hopkins, R. H.; Mazelsky, R.; Singh, M.; Glicksman, M. E.; Paradies, C.

    1992-01-01

    Thermodynamic calculations were carried out for the Hg-X-O system (X = Cl, Br, I) to identify the potential sources of contamination and relative stability of oxides and oxy-halide phases. The effect of excess mercury vapor pressure on the optical quality of mercurous halide crystal was studied by growing several mercurous chloride crystals from mercury-rich composition. The optical quality of crystals was examined by birefringence interferometry and laser scattering studies. Crystals grown in slightly mercury-rich composition showed improved optical quality relative to stoichiometric crystals.

  5. Thallous halide materials for use in cryogenic applications

    NASA Technical Reports Server (NTRS)

    Lawless, William N. (Inventor)

    1981-01-01

    Thallous halides, either alone or in combination with other ceramic materials, are used in cryogenic applications such as heat exchange material for the regenerator section of a closed-cycle cryogenic refrigeration section, as stabilizing coatings for superconducting wires, and as dielectric insulating materials. The thallous halides possess unusually large specific heats at low temperatures, have large thermal conductivities, are nonmagnetic, and are nonconductors of electricity. They can be formed into a variety of shapes such as spheres, bars, rods, or the like and can be coated onto substrates.

  6. Giant five-photon absorption from multidimensional core-shell halide perovskite colloidal nanocrystals

    NASA Astrophysics Data System (ADS)

    Chen, Weiqiang; Bhaumik, Saikat; Veldhuis, Sjoerd A.; Xing, Guichuan; Xu, Qiang; Grätzel, Michael; Mhaisalkar, Subodh; Mathews, Nripan; Sum, Tze Chien

    2017-05-01

    Multiphoton absorption processes enable many technologically important applications, such as in vivo imaging, photodynamic therapy and optical limiting, and so on. Specifically, higher-order nonlinear absorption such as five-photon absorption offers significant advantages of greater spatial confinement, increased penetration depth, reduced autofluorescence, enhanced sensitivity and improved resolution over lower orders in bioimaging. Organic chromophores and conventional semiconductor nanocrystals are leaders in two-/three-photon absorption applications, but face considerable challenges from their small five-photon action cross-sections. Herein, we reveal that the family of halide perovskite colloidal nanocrystals transcend these constraints with highly efficient five-photon-excited upconversion fluorescence--unprecedented for semiconductor nanocrystals. Amazingly, their multidimensional type I (both conduction and valence band edges of core lie within bandgap of shell) core-shell (three-dimensional methylammonium lead bromide/two-dimensional octylammonium lead bromide) perovskite nanocrystals exhibit five-photon action cross-sections that are at least 9 orders larger than state-of-the-art specially designed organic molecules. Importantly, this family of halide perovskite nanocrystals may enable fresh approaches for next-generation multiphoton imaging applications.

  7. Direct synthesis of Z-alkenyl halides through catalytic cross-metathesis

    PubMed Central

    Koh, Ming Joo; Nguyen, Thach T.; Zhang, Hanmo; Schrock, Richard R.; Hoveyda, Amir H.

    2016-01-01

    Olefin metathesis has made a significant impact on modern organic chemistry, but important shortcomings remain: for example, the lack of efficient processes that can be used to generate acyclic alkenyl halides. Halo-substituted ruthenium carbene complexes decompose rapidly or deliver low activity and/or minimal stereoselectivity, and our understanding of the corresponding high-oxidation-state systems is very limited. In this manuscript, we show that previously unknown halo-substituted molybdenum alkylidene species are exceptionally reactive and are able to participate in high-yielding olefin metathesis reactions that afford acyclic 1,2-disubstituted Z-alkenyl halides. Transformations are promoted by small amounts of an in situ-generated catalyst with unpurified, commercially available and easy-to-handle liquid 1,2-dihaloethene reagents and proceed to high conversion at ambient temperature within four hours. Many alkenyl chlorides, bromides and fluorides can be obtained in up to 91 percent yield and complete Z selectivity. This method can be used to easily synthesize biologically active compounds and to perform the site- and stereoselective fluorination of other organic compounds. PMID:27008965

  8. Direct synthesis of Z-alkenyl halides through catalytic cross-metathesis

    NASA Astrophysics Data System (ADS)

    Koh, Ming Joo; Nguyen, Thach T.; Zhang, Hanmo; Schrock, Richard R.; Hoveyda, Amir H.

    2016-03-01

    Olefin metathesis has had a large impact on modern organic chemistry, but important shortcomings remain: for example, the lack of efficient processes that can be used to generate acyclic alkenyl halides. Halo-substituted ruthenium carbene complexes decompose rapidly or deliver low activity and/or minimal stereoselectivity, and our understanding of the corresponding high-oxidation-state systems is limited. Here we show that previously unknown halo-substituted molybdenum alkylidene species are exceptionally reactive and are able to participate in high-yielding olefin metathesis reactions that afford acyclic 1,2-disubstituted Z-alkenyl halides. Transformations are promoted by small amounts of a catalyst that is generated in situ and used with unpurified, commercially available and easy-to-handle liquid 1,2-dihaloethene reagents, and proceed to high conversion at ambient temperature within four hours. We obtain many alkenyl chlorides, bromides and fluorides in up to 91 per cent yield and complete Z selectivity. This method can be used to synthesize biologically active compounds readily and to perform site- and stereoselective fluorination of complex organic molecules.

  9. Metallotropic liquid crystals formed by surfactant templating of molten metal halides

    NASA Astrophysics Data System (ADS)

    Martin, James D.; Keary, Cristin L.; Thornton, Todd A.; Novotnak, Mark P.; Knutson, Jeremey W.; Folmer, Jacob C. W.

    2006-04-01

    Liquid crystals consist of anisotropic molecular units, and most are organic molecules. Materials incorporating metals into anisotropic molecules, described as metallomesogens, have been prepared. Anisotropic structures such as one-dimensional chains and two-dimensional layers are frequently observed in solid-state inorganic materials, however, little is understood about structural organization in melts of such materials. Achieving liquid-crystalline behaviour in inorganic fluids should be possible if the anisotropic structure can be retained or designed into the molten phase. We demonstrated the ability to engineer zeolite-type structures into metal halide glasses and liquids. In this work we have engineered lamellar, cubic and hexagonal liquid-crystalline structure in metal-halide melts by controlling the volume fraction and nature of the inorganic block (up to 80 mol%) with respect to alkylammonium surfactants. The high metal content of these liquid-crystalline systems significantly advances the field of metallomesogens, which seeks to combine magnetic, electronic, optical, redox and catalytic properties common to inorganic materials with the fluid properties of liquid crystals.

  10. Characterizing the Sources and Sinks of Methyl Halides in the Florida Everglades and Coastal Waters by Isotopic Analysis

    NASA Astrophysics Data System (ADS)

    Scully, N. M.; Jones, R. D.; Raffel, A.; Rice, A. L.

    2012-12-01

    Recent studies have demonstrated that the methyl halides, methyl chloride and methyl bromide, are produced in significant quantities by phytoplankton and by the photochemical oxidation of dissolved organic matter (DOM). However, we know little of the mechanisms responsible for the photochemical production of methyl halides and also the factors which affect the microbial formation and consumption in the surface waters. We are currently conducting laboratory experiments to elucidate the mechanisms responsible for the photochemical and microbial formation and consumption of methyl chloride and methyl bromide in the Florida Everglades and coastal waters. We present data from laboratory experiments using a stable isotope spiking tracer method to quantify photochemical flux rates of methyl chloride and methyl bromide from wetland and estuarine water samples collected at FCE-LTER sites located in Taylor Slough and Florida Bay. These photochemical experiments include waters that span a wide range of halide and DOM concentrations. We use these results to estimate the net photochemical flux of methyl chloride and methyl bromide from the Florida Everglades. We have also conducted stable carbon isotope analysis of the methyl chloride. These experiments are being conducted to determine the carbon isotopic ratios (d13C) of methyl chloride produced from the photolysis of organic matter in natural waters and will provide an inventory of d13C values from one of the sources within the studied Everglades ecotones. This research was supported by the National Science Foundation Chemical Oceanography Program Award No. 1029710.

  11. Corrosion resistant neutron absorbing coatings

    DOEpatents

    Choi, Jor-Shan [El Cerrito, CA; Farmer, Joseph C [Tracy, CA; Lee, Chuck K [Hayward, CA; Walker, Jeffrey [Gaithersburg, MD; Russell, Paige [Las Vegas, NV; Kirkwood, Jon [Saint Leonard, MD; Yang, Nancy [Lafayette, CA; Champagne, Victor [Oxford, PA

    2012-05-29

    A method of forming a corrosion resistant neutron absorbing coating comprising the steps of spray or deposition or sputtering or welding processing to form a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material. Also a corrosion resistant neutron absorbing coating comprising a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material.

  12. Corrosion resistant neutron absorbing coatings

    DOEpatents

    Choi, Jor-Shan; Farmer, Joseph C; Lee, Chuck K; Walker, Jeffrey; Russell, Paige; Kirkwood, Jon; Yang, Nancy; Champagne, Victor

    2013-11-12

    A method of forming a corrosion resistant neutron absorbing coating comprising the steps of spray or deposition or sputtering or welding processing to form a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material. Also a corrosion resistant neutron absorbing coating comprising a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material.

  13. Origins and mechanisms of hysteresis in organometal halide perovskites

    NASA Astrophysics Data System (ADS)

    Li, Cheng; Guerrero, Antonio; Zhong, Yu; Huettner, Sven

    2017-05-01

    Inorganic-organic halide organometal perovskites, such as CH3NH3PbI3 and CsPbI3, etc, have been an unprecedented rising star in the field of photovoltaics since 2009, owing to their exceptionally high power conversion efficiency and simple fabrication processability. Despite its relatively short history of development, intensive investigations have been concentrating on this material; these have ranged from crystal structure analysis and photophysical characterization to performance optimization and device integration, etc. Yet, when applied in photovoltaic devices, this material suffers from hysteresis, that is, the difference of the current-voltage (I-V) curve during sweeping in two directions (from short-circuit towards open-circuit and vice versa). This behavior may significantly impede its large-scale commercial application. This Review will focus on the recent theoretical and experimental efforts to reveal the origin and mechanism of hysteresis. The proposed origins include (1) ferroelectric polarization, (2) charge trapping/detrapping, and (3) ion migration. Among them, recent evidence consistently supports the idea that ion migration plays a key role for the hysteretic behavior in perovskite solar cells (PSCs). Hence, this Review will summarize the recent results on ion migration such as the migrating ion species, activation energy measurement, capacitive characterization, and internal electrical field modulation, etc. In addition, this Review will also present the devices with alleviation/elimination of hysteresis by incorporating either large-size grains or phenyl-C61-butyric acid methyl ester molecules. In a different application, the hysteretic property has been utilized in photovoltaic and memristive switching devices. In sum, by examining these three possible mechanisms, it is concluded that the origin of hysteresis in PSCs is associated with a combination of effects, but mainly limited by ion/defect migration. This strong interaction between ion

  14. Photovoltaic Rudorffites: Lead-Free Silver Bismuth Halides Alternative to Hybrid Lead Halide Perovskites.

    PubMed

    Turkevych, Ivan; Kazaoui, Said; Ito, Eisuke; Urano, Toshiyuki; Yamada, Koji; Tomiyasu, Hiroshi; Yamagishi, Hideo; Kondo, Michio; Aramaki, Shinji

    2017-06-28

    Hybrid CPbX3 (C: Cs, CH3 NH3 ; X: Br, I) perovskites possess excellent photovoltaic properties but are highly toxic, which hinders their practical application. Unfortunately, all Pb-free alternatives based on Sn and Ge are extremely unstable. Although stable and non-toxic C2 ABX6 double perovskites based on alternating corner-shared AX6 and BX6 octahedra (A=Ag, Cu; B=Bi, Sb) are possible, they have indirect and wide band gaps of over 2 eV. However, is it necessary to keep the corner-shared perovskite structure to retain good photovoltaic properties? Here, we demonstrate another family of photovoltaic halides based on edge-shared AX6 and BX6 octahedra with the general formula Aa Bb Xx (x=a+3 b) such as Ag3 BiI6 , Ag2 BiI5 , AgBiI4 , AgBi2 I7 . As perovskites were named after their prototype oxide CaTiO3 discovered by Lev Perovski, we propose to name these new ABX halides as rudorffites after Walter Rüdorff, who discovered their prototype oxide NaVO2 . We studied structural and optoelectronic properties of several highly stable and promising Ag-Bi-I photovoltaic rudorffites that feature direct band gaps in the range of 1.79-1.83 eV and demonstrated a proof-of-concept FTO/c-m-TiO2 /Ag3 BiI6 /PTAA/Au (FTO: fluorine-doped tin oxide, PTAA: poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine], c: compact, m: mesoporous) solar cell with photoconversion efficiency of 4.3 %. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Solar radiation absorbing material

    DOEpatents

    Googin, John M.; Schmitt, Charles R.; Schreyer, James M.; Whitehead, Harlan D.

    1977-01-01

    Solar energy absorbing means in solar collectors are provided by a solar selective carbon surface. A solar selective carbon surface is a microporous carbon surface having pores within the range of 0.2 to 2 micrometers. Such a surface is provided in a microporous carbon article by controlling the pore size. A thermally conductive substrate is provided with a solar selective surface by adhering an array of carbon particles in a suitable binder to the substrate, a majority of said particles having diameters within the range of about 0.2-10 microns.

  16. The effects of halide anions on the dielectric response of potassium halide solutions in visible, UV and far UV region.

    PubMed

    Shagieva, F M; Boinovich, L B

    2013-06-07

    Based on the experimentally measured dispersion of refractive indices, we studied the effects of halide anions on the dielectric response of potassium halide solutions in the visible, UV and far UV regions. It was shown that a specific ion effect according to the Hofmeister series is clearly demonstrated for the visible range of spectra. For the near-, mid-, and far UV ranges of spectra, the specific ion effect essentially depends on solution concentration and temperature. The influence of ions on the behavior of dynamic dielectric permittivity of a solution is discussed on the basis of ion/water and ion/ion electrostatic and electrodynamic interactions and hydration shell structure.

  17. FTIR study of matrix-isolated halides of dysprosium and thulium and their gaseous heterocomplexes with alkali halides

    SciTech Connect

    Feltrin, A.; Cesaro, S.N.

    1996-06-01

    Vibrational spectra of dysprosium and thulium chlorides, bromides, and iodides isolated in argon have been studied for the first time. The appearance of a single band, even in heavy deposits, suggested a planar geometry for all the samples examined. The complexity of Dy and Tm chlorides spectra, partly because of isotopic patterns, required a reinvestigation of NdCl{sub 3} isolated in argon and have been explained by comparison. Vapors in equilibrium over heated equimolar mixtures of a number of Dy, Tm, and Nd halides with alkali halides trapped in argon have been also investigated. FTIR measurements gave experimental evidence for the formation of gaseous heterocomplexes whose geometry is discussed.

  18. Structural Characterization of Methanol Substituted Lanthanum Halides

    PubMed Central

    Boyle, Timothy J.; Ottley, Leigh Anna M.; Alam, Todd M.; Rodriguez, Mark A.; Yang, Pin; Mcintyre, Sarah K.

    2010-01-01

    The first study into the alcohol solvation of lanthanum halide [LaX3] derivatives as a means to lower the processing temperature for the production of the LaBr3 scintillators was undertaken using methanol (MeOH). Initially the de-hydration of {[La(µ-Br)(H2O)7](Br)2}2 (1) was investigated through the simple room temperature dissolution of 1 in MeOH. The mixed solvate monomeric [La(H2O)7(MeOH)2](Br)3 (2) compound was isolated where the La metal center retains its original 9-coordination through the binding of two additional MeOH solvents but necessitates the transfer of the innersphere Br to the outersphere. In an attempt to in situ dry the reaction mixture of 1 in MeOH over CaH2, crystals of [Ca(MeOH)6](Br)2 (3) were isolated. Compound 1 dissolved in MeOH at reflux temperatures led to the isolation of an unusual arrangement identified as the salt derivative {[LaBr2.75•5.25(MeOH)]+0.25 [LaBr3.25•4.75(MeOH)]−0.25} (4). The fully substituted species was ultimately isolated through the dissolution of dried LaBr3 in MeOH forming the 8-coordinated [LaBr3(MeOH)5] (5) complex. It was determined that the concentration of the crystallization solution directed the structure isolated (4 concentrated; 5 dilute) The other LaX3 derivatives were isolated as [(MeOH)4(Cl)2La(µ-Cl)]2 (6) and [La(MeOH)9](I)3•MeOH (7). Beryllium Dome XRD analysis indicated that the bulk material for 5 appear to have multiple solvated species, 6 is consistent with the single crystal, and 7 was too broad to elucidate structural aspects. Multinuclear NMR (139La) indicated that these compounds do not retain their structure in MeOD. TGA/DTA data revealed that the de-solvation temperatures of the MeOH derivatives 4 – 6 were slightly higher in comparison to their hydrated counterparts. PMID:20514349

  19. Liquid Cryogen Absorber for MICE

    SciTech Connect

    Baynham, D.E.; Bish, P.; Bradshaw, T.W.; Cummings, M.A.; Green,M.A.; Ishimoto, S.; Ivaniouchenkov, I.; Lau, W.; Yang, S.Q.; Zisman, M.S.

    2005-08-20

    The Muon Ionization Cooling Experiment (MICE) will test ionization cooling of muons. In order to have effective ionization cooling, one must use an absorber that is made from a low-z material. The most effective low z materials for ionization cooling are hydrogen, helium, lithium hydride, lithium and beryllium, in that order. In order to measure the effect of material on cooling, several absorber materials must be used. This report describes a liquid-hydrogen absorber that is within a pair of superconducting focusing solenoids. The absorber must also be suitable for use with liquid helium. The following absorber components are discussed in this report; the absorber body, its heat exchanger, the hydrogen system, and the hydrogen safety. Absorber cooling and the thin windows are not discussed here.

  20. Formation of autocomplexes in halide melts of trivalent metals

    NASA Astrophysics Data System (ADS)

    Peshkina, K. G.; Tkachev, N. K.

    2014-09-01

    Chemical equilibrium with respect to the dissociation of charged autocomplexes (MX6)3- in ionic melts of the MX3 type is analyzed. The chemical equilibrium M3+ + 6X- = (MX6)3- in salt melts of trivalent metal halides shifts strongly toward dissociation, due to the electrostatic interactions between charged particles in the melts.