Science.gov

Sample records for absorbed carbon fourteen

  1. Electrochemically regenerable carbon dioxide absorber

    NASA Technical Reports Server (NTRS)

    Woods, R. R.; Marshall, R. D.; Schubert, F. H.; Heppner, D. B.

    1979-01-01

    Preliminary designs were generated for two electrochemically regenerable carbon dioxide absorber concepts. Initially, an electrochemically regenerable absorption bed concept was designed. This concept incorporated the required electrochemical regeneration components in the absorber design, permitting the absorbent to be regenerated within the absorption bed. This hardware was identified as the electrochemical absorber hardware. The second hardware concept separated the functional components of the regeneration and absorption process. This design approach minimized the extravehicular activity component volume by eliminating regeneration hardware components within the absorber. The electrochemical absorber hardware was extensively characterized for major operating parameters such as inlet carbon dioxide partial pressure, process air flow rate, operational pressure, inlet relative humidity, regeneration current density and absorption/regeneration cycle endurance testing.

  2. Carbon Absorber Retrofit Equipment (CARE)

    SciTech Connect

    Klein, Eric

    2015-12-23

    During Project DE-FE0007528, CARE (Carbon Absorber Retrofit Equipment), Neumann Systems Group (NSG) designed, installed and tested a 0.5MW NeuStream® carbon dioxide (CO2) capture system using the patented NeuStream® absorber equipment and concentrated (6 molal) piperazine (PZ) as the solvent at Colorado Springs Utilities’ (CSU’s) Martin Drake pulverized coal (PC) power plant. The 36 month project included design, build and test phases. The 0.5MW NeuStream® CO2 capture system was successfully tested on flue gas from both coal and natural gas combustion sources and was shown to meet project objectives. Ninety percent CO2 removal was achieved with greater than 95% CO2product purity. The absorbers tested support a 90% reduction in absorber volume compared to packed towers and with an absorber parasitic power of less than 1% when configured for operation with a 550MW coal plant. The preliminary techno-economic analysis (TEA) performed by the Energy and Environmental Research Center (EERC) predicted an over-the-fence cost of $25.73/tonne of CO2 captured from a sub-critical PC plant.

  3. ANALYSIS OF CARBON MONOXIDE EXPOSURE FOR FOURTEEN CITIES USING HAPEM-MS3 (FINAL TECHNICAL REPORT)

    EPA Science Inventory

    This report describes results and findings of applying the Hazardous Air Pollutant Exposure Model (HAPEM) for mobile sources, Version 3. This version is formally known as HAPEM-MS3. The application is to fourteen urban areas for calendar year 1990. The urban areas modeled inclu...

  4. 21 CFR 868.5310 - Carbon dioxide absorber.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Carbon dioxide absorber. 868.5310 Section 868.5310...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5310 Carbon dioxide absorber. (a) Identification. A carbon dioxide absorber is a device that is intended for medical purposes and that is used in...

  5. 21 CFR 868.5300 - Carbon dioxide absorbent.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Carbon dioxide absorbent. 868.5300 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5300 Carbon dioxide absorbent. (a) Identification. A carbon dioxide absorbent is a device intended for medical purposes that consists of...

  6. 21 CFR 868.5300 - Carbon dioxide absorbent.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Carbon dioxide absorbent. 868.5300 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5300 Carbon dioxide absorbent. (a) Identification. A carbon dioxide absorbent is a device intended for medical purposes that consists of...

  7. 21 CFR 868.5310 - Carbon dioxide absorber.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Carbon dioxide absorber. 868.5310 Section 868.5310...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5310 Carbon dioxide absorber. (a) Identification. A carbon dioxide absorber is a device that is intended for medical purposes and that is used in...

  8. 21 CFR 868.5310 - Carbon dioxide absorber.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Carbon dioxide absorber. 868.5310 Section 868.5310...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5310 Carbon dioxide absorber. (a) Identification. A carbon dioxide absorber is a device that is intended for medical purposes and that is used in...

  9. 21 CFR 868.5310 - Carbon dioxide absorber.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Carbon dioxide absorber. 868.5310 Section 868.5310...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5310 Carbon dioxide absorber. (a) Identification. A carbon dioxide absorber is a device that is intended for medical purposes and that is used in...

  10. 21 CFR 868.5300 - Carbon dioxide absorbent.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Carbon dioxide absorbent. 868.5300 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5300 Carbon dioxide absorbent. (a) Identification. A carbon dioxide absorbent is a device intended for medical purposes that consists of...

  11. 21 CFR 868.5300 - Carbon dioxide absorbent.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Carbon dioxide absorbent. 868.5300 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5300 Carbon dioxide absorbent. (a) Identification. A carbon dioxide absorbent is a device intended for medical purposes that consists of...

  12. 21 CFR 868.5300 - Carbon dioxide absorbent.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Carbon dioxide absorbent. 868.5300 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5300 Carbon dioxide absorbent. (a) Identification. A carbon dioxide absorbent is a device intended for medical purposes that consists of...

  13. 21 CFR 868.5310 - Carbon dioxide absorber.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Carbon dioxide absorber. 868.5310 Section 868.5310...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5310 Carbon dioxide absorber. (a) Identification. A carbon dioxide absorber is a device that is intended for medical purposes and that is used in...

  14. Preparation of perlite-based carbon dioxide absorbent.

    PubMed

    He, H; Wu, L; Zhu, J; Yu, B

    1994-02-01

    A new highly efficient carbon dioxide absorbent consisting of sodium hydroxide, expanded perlite and acid-base indicator was prepared. The absorption efficiency, absorption capacity, flow resistance and color indication for the absorbent were tested and compared with some commercial products. The absorbent can reduce the carbon dioxide content in gases to 3.3 ppb (v/v) and absorbs not less than 35% of its weight of carbon dioxide. Besides its large capacity and sharp color indication, the absorbent has an outstanding advantage of small flow resistance in comparison with other commercial carbon dioxide absorbents. Applications in gas analysis and purification were also investigated.

  15. Porous Carbon Nanoparticle Networks with Tunable Absorbability

    PubMed Central

    Dai, Wei; Kim, Seong Jin; Seong, Won-Kyeong; Kim, Sang Hoon; Lee, Kwang-Ryeol; Kim, Ho-Young; Moon, Myoung-Woon

    2013-01-01

    Porous carbon materials with high specific surface areas and superhydrophobicity have attracted much research interest due to their potential application in the areas of water filtration, water/oil separation, and oil-spill cleanup. Most reported superhydrophobic porous carbon materials are fabricated by complex processes involving the use of catalysts and high temperatures but with low throughput. Here, we present a facile single-step method for fabricating porous carbon nanoparticle (CNP) networks with selective absorbability for water and oils via the glow discharge of hydrocarbon plasma without a catalyst at room temperature. Porous CNP networks were grown by the continuous deposition of CNPs at a relatively high deposition pressure. By varying the fluorine content, the porous CNP networks exhibited tunable repellence against liquids with various degrees of surface tension. These porous CNP networks could be applied for the separation of not only water/oil mixtures but also mixtures of liquids with different surface tension levels. PMID:23982181

  16. Porous carbon nanoparticle networks with tunable absorbability.

    PubMed

    Dai, Wei; Kim, Seong Jin; Seong, Won-Kyeong; Kim, Sang Hoon; Lee, Kwang-Ryeol; Kim, Ho-Young; Moon, Myoung-Woon

    2013-01-01

    Porous carbon materials with high specific surface areas and superhydrophobicity have attracted much research interest due to their potential application in the areas of water filtration, water/oil separation, and oil-spill cleanup. Most reported superhydrophobic porous carbon materials are fabricated by complex processes involving the use of catalysts and high temperatures but with low throughput. Here, we present a facile single-step method for fabricating porous carbon nanoparticle (CNP) networks with selective absorbability for water and oils via the glow discharge of hydrocarbon plasma without a catalyst at room temperature. Porous CNP networks were grown by the continuous deposition of CNPs at a relatively high deposition pressure. By varying the fluorine content, the porous CNP networks exhibited tunable repellence against liquids with various degrees of surface tension. These porous CNP networks could be applied for the separation of not only water/oil mixtures but also mixtures of liquids with different surface tension levels. PMID:23982181

  17. Porous Carbon Nanoparticle Networks with Tunable Absorbability

    NASA Astrophysics Data System (ADS)

    Dai, Wei; Kim, Seong Jin; Seong, Won-Kyeong; Kim, Sang Hoon; Lee, Kwang-Ryeol; Kim, Ho-Young; Moon, Myoung-Woon

    2013-08-01

    Porous carbon materials with high specific surface areas and superhydrophobicity have attracted much research interest due to their potential application in the areas of water filtration, water/oil separation, and oil-spill cleanup. Most reported superhydrophobic porous carbon materials are fabricated by complex processes involving the use of catalysts and high temperatures but with low throughput. Here, we present a facile single-step method for fabricating porous carbon nanoparticle (CNP) networks with selective absorbability for water and oils via the glow discharge of hydrocarbon plasma without a catalyst at room temperature. Porous CNP networks were grown by the continuous deposition of CNPs at a relatively high deposition pressure. By varying the fluorine content, the porous CNP networks exhibited tunable repellence against liquids with various degrees of surface tension. These porous CNP networks could be applied for the separation of not only water/oil mixtures but also mixtures of liquids with different surface tension levels.

  18. Tuning Organic Carbon Dioxide Absorbents for Carbonation and Decarbonation

    PubMed Central

    Rajamanickam, Ramachandran; Kim, Hyungsoo; Park, Ji-Woong

    2015-01-01

    The reaction of carbon dioxide with a mixture of a superbase and alcohol affords a superbase alkylcarbonate salt via a process that can be reversed at elevated temperatures. To utilize the unique chemistry of superbases for carbon capture technology, it is essential to facilitate carbonation and decarbonation at desired temperatures in an easily controllable manner. Here, we demonstrate that the thermal stabilities of the alkylcarbonate salts of superbases in organic solutions can be tuned by adjusting the compositions of hydroxylic solvent and polar aprotic solvent mixtures, thereby enabling the best possible performances to be obtained from the various carbon dioxide capture agents based on these materials. The findings provides valuable insights into the design and optimization of organic carbon dioxide absorbents. PMID:26033537

  19. [Study on absorbing volatile oil with mesoporous carbon].

    PubMed

    Yan, Hong-mei; Jia, Xiao-bin; Zhang, Zhen-hai; Sun, E; Yang Nan

    2014-11-01

    Clove oil and turmeric oil were absorbed by mesoporous carbon. The absorption ratio of mesoporous carbon to volatile oil was optimized with the eugenol yield and curcumol yield as criteria Curing powder was characterized by scanning electron microscopy (SEM) and differential scanning calorietry (DSC). The effects of mesoporous carbon on dissolution in vitro and thermal stability of active components were studied. They reached high adsorption rate when the absorption ratio of mesoporous carbon to volatile oil was 1:1. When volatile oil was absorbed, dissolution rate of active components had a little improvement and their thermal stability improved after volatile oil was absorbed by the loss rate decreasing more than 50%. Absorbing herbal volatile oil with mesoporous carbon deserves further studying. PMID:25850263

  20. Inferring Absorbing Organic Carbon Content from AERONET Data

    NASA Technical Reports Server (NTRS)

    Arola, A.; Schuster, G.; Myhre, G.; Kazadzis, S.; Dey, S.; Tripathi, S. N.

    2011-01-01

    Black carbon, light-absorbing organic carbon (often called brown carbon) and mineral dust are the major light-absorbing aerosols. Currently the sources and formation of brown carbon aerosol in particular are not well understood. In this study we estimated globally the amount of light absorbing organic carbon and black carbon from AERONET measurements. We find that the columnar absorbing organic carbon (brown carbon) levels in biomass burning regions of South-America and Africa are relatively high (about 15-20 magnesium per square meters during biomass burning season), while the concentrations are significantly lower in urban areas in US and Europe. However, we estimated significant absorbing organic carbon amounts from the data of megacities of newly industrialized countries, particularly in India and China, showing also clear seasonality with peak values up to 30-35 magnesium per square meters during the coldest season, likely caused by the coal and biofuel burning used for heating. We also compared our retrievals with the modeled organic carbon by global Oslo CTM for several sites. Model values are higher in biomass burning regions than AERONET-based retrievals, while opposite is true in urban areas in India and China.

  1. Application of carbon nanomaterial as a microwave absorber.

    PubMed

    Sharon, Maheshwar; Pradhan, Debabrata; Zacharia, Renju; Puri, Vijaya

    2005-12-01

    Microwave absorption (8 GHz to 12 GHz) studies have been made with carbon nanomaterials for the first time. Carbon nanomaterials are synthesized by the pyrolysis of camphor. It is observed that film of carbon prepared under certain synthetic condition, can absorb microwave of either some specific wavelengths e.g., 9.5 GHz and 11.5 GHz or full range from 8-12 GHz to the extent of 20 dB depending upon their preparation condition. Carbon nanobeads seems to absorb the microwave in the range of 8-12 GHz.

  2. Carbon nanotube coatings as chemical absorbers

    DOEpatents

    Tillotson, Thomas M.; Andresen, Brian D.; Alcaraz, Armando

    2004-06-15

    Airborne or aqueous organic compound collection using carbon nanotubes. Exposure of carbon nanotube-coated disks to controlled atmospheres of chemical warefare (CW)-related compounds provide superior extraction and retention efficiencies compared to commercially available airborne organic compound collectors. For example, the carbon nanotube-coated collectors were four (4) times more efficient toward concentrating dimethylmethyl-phosphonate (DMMP), a CW surrogate, than Carboxen, the optimized carbonized polymer for CW-related vapor collections. In addition to DMMP, the carbon nanotube-coated material possesses high collection efficiencies for the CW-related compounds diisopropylaminoethanol (DIEA), and diisopropylmethylphosphonate (DIMP).

  3. Microwave-absorbing properties of Co-filled carbon nanotubes

    SciTech Connect

    Lin Haiyan; Zhu Hong Guo Hongfan; Yu Liufang

    2008-10-02

    Co-filled carbon nanotubes composites were synthesized via using a simple and efficient wet chemistry solution method. The samples were characterized by transmission electron microscopy. Microwave-absorbing properties were investigated by measuring complex permittivity and complex permeability of the absorber in a frequency range of 2-18 GHz. The reflection loss (R.L.), matching frequency (f{sub m}) and matching thickness (d{sub m}) were calculated using the theory of the absorbing wall. The electromagnetic properties and microwave-absorbing characteristics effects of the modified carbon nanotubes by the encapsulation of metal Co were investigated. A matching thickness is found corresponding to a matching frequency. The maximum reflection loss is about -39.32 dB and the bandwidth corresponding to the reflection loss below -10 dB is 3.47 GHz. With increasing thickness, the maximum reflection loss shifts to lower frequency.

  4. Hollow carbon spheres in microwaves: Bio inspired absorbing coating

    NASA Astrophysics Data System (ADS)

    Bychanok, D.; Li, S.; Sanchez-Sanchez, A.; Gorokhov, G.; Kuzhir, P.; Ogrin, F. Y.; Pasc, A.; Ballweg, T.; Mandel, K.; Szczurek, A.; Fierro, V.; Celzard, A.

    2016-01-01

    The electromagnetic response of a heterostructure based on a monolayer of hollow glassy carbon spheres packed in 2D was experimentally surveyed with respect to its response to microwaves, namely, the Ka-band (26-37 GHz) frequency range. Such an ordered monolayer of spheres mimics the well-known "moth-eye"-like coating structures, which are widely used for designing anti-reflective surfaces, and was modelled with the long-wave approximation. Based on the experimental and modelling results, we demonstrate that carbon hollow spheres may be used for building an extremely lightweight, almost perfectly absorbing, coating for Ka-band applications.

  5. Electromagnetic wave absorbing properties of amorphous carbon nanotubes.

    PubMed

    Zhao, Tingkai; Hou, Cuilin; Zhang, Hongyan; Zhu, Ruoxing; She, Shengfei; Wang, Jungao; Li, Tiehu; Liu, Zhifu; Wei, Bingqing

    2014-07-10

    Amorphous carbon nanotubes (ACNTs) with diameters in the range of 7-50 nm were used as absorber materials for electromagnetic waves. The electromagnetic wave absorbing composite films were prepared by a dip-coating method using a uniform mixture of rare earth lanthanum nitrate doped ACNTs and polyvinyl chloride (PVC). The microstructures of ACNTs and ACNT/PVC composites were characterized using transmission electron microscope and X-ray diffraction, and their electromagnetic wave absorbing properties were measured using a vector-network analyzer. The experimental results indicated that the electromagnetic wave absorbing properties of ACNTs are superior to multi-walled CNTs, and greatly improved by doping 6 wt% lanthanum nitrate. The reflection loss (R) value of a lanthanum nitrate doped ACNT/PVC composite was -25.02 dB at 14.44 GHz, and the frequency bandwidth corresponding to the reflector loss at -10 dB was up to 5.8 GHz within the frequency range of 2-18 GHz.

  6. Electromagnetic Wave Absorbing Properties of Amorphous Carbon Nanotubes

    PubMed Central

    Zhao, Tingkai; Hou, Cuilin; Zhang, Hongyan; Zhu, Ruoxing; She, Shengfei; Wang, Jungao; Li, Tiehu; Liu, Zhifu; Wei, Bingqing

    2014-01-01

    Amorphous carbon nanotubes (ACNTs) with diameters in the range of 7–50 nm were used as absorber materials for electromagnetic waves. The electromagnetic wave absorbing composite films were prepared by a dip-coating method using a uniform mixture of rare earth lanthanum nitrate doped ACNTs and polyvinyl chloride (PVC). The microstructures of ACNTs and ACNT/PVC composites were characterized using transmission electron microscope and X-ray diffraction, and their electromagnetic wave absorbing properties were measured using a vector-network analyzer. The experimental results indicated that the electromagnetic wave absorbing properties of ACNTs are superior to multi-walled CNTs, and greatly improved by doping 6 wt% lanthanum nitrate. The reflection loss (R) value of a lanthanum nitrate doped ACNT/PVC composite was −25.02 dB at 14.44 GHz, and the frequency bandwidth corresponding to the reflector loss at −10 dB was up to 5.8 GHz within the frequency range of 2–18 GHz. PMID:25007783

  7. Black carbon and other absorbing impurities in northwestern Greenland

    NASA Astrophysics Data System (ADS)

    Dibb, J. E.; Polashenski, C.; Courville, Z.

    2013-12-01

    As part of the SAGE Traverse in May 2013, described in companion presentations by Courville et al. and Polashenski et al., snow samples were collected at 3 cm resolution down to 21 cm in 26 pits between Summit and northwest Greenland. Concentrations of major ions and black carbon have been quantified in these samples. We will discuss spatial patterns in both the concentrations in near surface layers and the inventories (mass/unit area) over different water equivalent depth intervals of these impurities as indicators of provenance of the snow falling on different regions along the 4000 km traverse route. Surface albedo measurements made at each sampling location will also be compared to the burden and depth profiles of the major absorbing impurities, black carbon, and calcium (a tracer of dust). Preliminary assessment of the relationship between impurity concentrations and snow microphysical characteristics (describe more fully by Courville at al.) in individual pit strata will also be presented.

  8. 40 CFR 63.990 - Absorbers, condensers, and carbon adsorbers used as control devices.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... regeneration cycle; and a carbon bed temperature monitoring device, capable of recording the carbon bed... 40 Protection of Environment 10 2011-07-01 2011-07-01 false Absorbers, condensers, and carbon..., Recovery Devices and Routing to a Fuel Gas System or a Process § 63.990 Absorbers, condensers, and...

  9. 40 CFR 63.990 - Absorbers, condensers, and carbon adsorbers used as control devices.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... regeneration cycle; and a carbon bed temperature monitoring device, capable of recording the carbon bed... 40 Protection of Environment 11 2013-07-01 2013-07-01 false Absorbers, condensers, and carbon..., Recovery Devices and Routing to a Fuel Gas System or a Process § 63.990 Absorbers, condensers, and...

  10. 40 CFR 63.990 - Absorbers, condensers, and carbon adsorbers used as control devices.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... regeneration cycle; and a carbon bed temperature monitoring device, capable of recording the carbon bed... 40 Protection of Environment 10 2010-07-01 2010-07-01 false Absorbers, condensers, and carbon..., Recovery Devices and Routing to a Fuel Gas System or a Process § 63.990 Absorbers, condensers, and...

  11. 40 CFR 63.990 - Absorbers, condensers, and carbon adsorbers used as control devices.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... regeneration cycle; and a carbon bed temperature monitoring device, capable of recording the carbon bed... 40 Protection of Environment 11 2012-07-01 2012-07-01 false Absorbers, condensers, and carbon..., Recovery Devices and Routing to a Fuel Gas System or a Process § 63.990 Absorbers, condensers, and...

  12. Synthesis, experimental studies, and analysis of a new calcium-based carbon dioxide absorbent

    SciTech Connect

    Zhen-shan Li; Ning-sheng Cai; Yu-yu Huang; Hai-jin Han

    2005-08-01

    A new kind of Ca-based regenerable CO{sub 2} absorbent, CaO/Ca{sub 12}Al{sub 14}O{sub 33}, was synthesized on the basis of the integration of CaO, as solid reactant, with a composite metal oxide Ca{sub 12}Al{sub 14}O{sub 33}, as a binder, for applying it to repeated calcination/carbonation cycles. The carbonation reaction can be applied in many industrial processes, and it is important for practical calcination/carbonation processes to have absorbents with high performance. The cyclic carbonation reactivity of the new absorbent was investigated by TGA (thermogravimetric analysis). The effects of the ratio of active material to binder in the new absorbent, the mechanics for preparation, and the reaction process of the high-reactivity CaO/Ca{sub 12}Al{sub 14}O{sub 33} absorbent have been analyzed. The results obtained here indicate that the new absorbent, CaO/Ca{sub 12}Al{sub 14}O{sub 33}, has a significantly improved CO{sub 2} absorption capacity and cyclic reaction stability compared with other Ca-based CO{sub 2} absorbents. These results suggest that this new absorbent is promising in the application of calcination/carbonation reactions. 23 refs., 10 figs., 1 tab.

  13. Development of a prototype regeneration carbon dioxide absorber. [for use in EVA conditions

    NASA Technical Reports Server (NTRS)

    Patel, P. S.; Baker, B. S.

    1977-01-01

    A prototype regenerable carbon dioxide absorber was developed to maintain the environmental quality of the portable life support system. The absorber works on the alkali metal carbonate-bicarbonate solid-gas reaction to remove carbon dioxide from the atmosphere. The prototype sorber module was designed, fabricated, and tested at simulated extravehicular activity conditions to arrive at optimum design. The unit maintains sorber outlet concentration below 5 mm Hg. An optimization study was made with respect to heat transfer, temperature control, sorbent utilization, sorber life and regenerability, and final size of the module. Important parameters influencing the capacity of the final absorber unit were identified and recommendations for improvement were made.

  14. Performance of a new carbon dioxide absorbent, Yabashi lime® as compared to conventional carbon dioxide absorbent during sevoflurane anesthesia in dogs.

    PubMed

    Kondoh, Kei; Atiba, Ayman; Nagase, Kiyoshi; Ogawa, Shizuko; Miwa, Takashi; Katsumata, Teruya; Ueno, Hiroshi; Uzuka, Yuji

    2015-08-01

    In the present study, we compare a new carbon dioxide (CO2) absorbent, Yabashi lime(®) with a conventional CO2 absorbent, Sodasorb(®) as a control CO2 absorbent for Compound A (CA) and Carbon monoxide (CO) productions. Four dogs were anesthetized with sevoflurane. Each dog was anesthetized with four preparations, Yabashi lime(®) with high or low-flow rate of oxygen and control CO2 absorbent with high or low-flow rate. CA and CO concentrations in the anesthetic circuit, canister temperature and carbooxyhemoglobin (COHb) concentration in the blood were measured. Yabashi lime(®) did not produce CA. Control CO2 absorbent generated CA, and its concentration was significantly higher in low-flow rate than a high-flow rate. CO was generated only in low-flow rate groups, but there was no significance between Yabashi lime(®) groups and control CO2 absorbent groups. However, the CO concentration in the circuit could not be detected (≤5ppm), and no change was found in COHb level. Canister temperature was significantly higher in low-flow rate groups than high-flow rate groups. Furthermore, in low-flow rate groups, the lower layer of canister temperature in control CO2 absorbent group was significantly higher than Yabashi lime(®) group. CA and CO productions are thought to be related to the composition of CO2 absorbent, flow rate and canister temperature. Though CO concentration is equal, it might be safer to use Yabashi lime(®) with sevoflurane anesthesia in dogs than conventional CO2 absorbent at the point of CA production.

  15. 40 CFR 63.990 - Absorbers, condensers, and carbon adsorbers used as control devices.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... and § 63.996. (1) Where an absorber is used, a scrubbing liquid temperature monitoring device and a...) temperature monitoring device capable of providing a continuous record shall be used. (3) Where a carbon... regeneration cycle; and a carbon bed temperature monitoring device, capable of recording the carbon...

  16. Influence of carbon black and indium tin oxide absorber particles on laser transmission welding

    NASA Astrophysics Data System (ADS)

    Aden, Mirko; Mamuschkin, Viktor; Olowinsky, Alexander

    2015-06-01

    For laser transmission welding of polypropylene carbon black and indium tin oxide (ITO) are used as absorber particles. Additionally, the colorant titanium dioxide is mixed to the absorbing part, while the transparent part is kept in natural state. The absorption coefficients of ITO and carbon black particles are obtained, as well as the scattering properties of polypropylene loaded with titanium dioxide (TiO2). At similar concentrations the absorption coefficient of ITO is an order of magnitude smaller than that of carbon black. Simulations of radiation propagation show that the penetration depth of laser light is smaller for carbon black. Therefore, the density of the released heat is higher. Adding TiO2 changes the distribution of heat in case of ITO, whereas for carbon black the effect is negligible. Thermal simulations reveal the influence of the two absorbers and TiO2 on the heat affected zone. The results of the thermal simulations are compared to tensile test results.

  17. Carbon dioxide absorbent and method of using the same

    SciTech Connect

    Perry, Robert James; O'Brien, Michael Joseph

    2014-06-10

    In accordance with one aspect, the present invention provides a composition which contains the amino-siloxane structures I, or III, as described herein. The composition is useful for the capture of carbon dioxide from process streams. In addition, the present invention provides methods of preparing the amino-siloxane composition. Another aspect of the present invention provides methods for reducing the amount of carbon dioxide in a process stream employing the amino-siloxane compositions of the invention, as species which react with carbon dioxide to form an adduct with carbon dioxide.

  18. Carbon dioxide absorbent and method of using the same

    SciTech Connect

    Perry, Robert James; O'Brien, Michael Joseph

    2015-12-29

    In accordance with one aspect, the present invention provides a composition which contains the amino-siloxane structures I, or III, as described herein. The composition is useful for the capture of carbon dioxide from process streams. In addition, the present invention provides methods of preparing the amino-siloxane composition. Another aspect of the present invention provides methods for reducing the amount of carbon dioxide in a process stream employing the amino-siloxane compositions of the invention, as species which react with carbon dioxide to form an adduct with carbon dioxide.

  19. Development of a prototype regenerable carbon dioxide absorber for portable life support systems. [for astronaut EVA

    NASA Technical Reports Server (NTRS)

    Onischak, M.; Baker, B.

    1977-01-01

    The design and development of a prototype carbon dioxide absorber using potassium carbonate (K2CO3) is described. Absorbers are constructed of thin, porous sheets of supported K2CO3 that are spirally wound to form a cylindrical reactor. Axial gas passages are formed between the porous sheets by corrugated screen material. Carbon dioxide and water in an enclosed life support system atmosphere react with potassium carbonate to form potassium bicarbonate. The potassium carbonate is regenerated by heating the potassium bicarbonate to 150 C at ambient pressure. The extravehicular mission design conditions are for one man for 8 h. Results are shown for a subunit test module investigating the effects of heat release, length-to-diameter ratio, and active cooling upon performance. The most important effect upon carbon dioxide removal is the temperature of the potassium carbonate.

  20. Carbon dioxide absorbent and method of using the same

    DOEpatents

    Perry, Robert James; Lewis, Larry Neil; O'Brien, Michael Joseph; Soloveichik, Grigorii Lev; Kniajanski, Sergei; Lam, Tunchiao Hubert; Lee, Julia Lam; Rubinsztajn, Malgorzata Iwona

    2011-10-04

    In accordance with one aspect, the present invention provides an amino-siloxane composition comprising at least one of structures I, II, III, IV or V said compositions being useful for the capture of carbon dioxide from gas streams such as power plant flue gases. In addition, the present invention provides methods of preparing the amino-siloxane compositions are provided. Also provided are methods for reducing the amount of carbon dioxide in a process stream employing the amino-siloxane compositions of the invention as species which react with carbon dioxide to form an adduct with carbon dioxide. The reaction of the amino-siloxane compositions provided by the present invention with carbon dioxide is reversible and thus, the method provides for multicycle use of said compositions.

  1. Carbon Dioxide Absorbers: An Engaging Experiment for the General Chemistry Laboratory

    ERIC Educational Resources Information Center

    Ticich, Thomas M.

    2011-01-01

    A simple and direct method for measuring the absorption of carbon dioxide by two different substances is described. Lithium hydroxide has been used for decades to remove the gas from enclosed living spaces, such as spacecraft and submarines. The ratio of the mass of carbon dioxide absorbed to the mass of lithium hydroxide used obtained from this…

  2. Polymer-Free Carbon Nanotubes Saturable Absorbers for Nanosecond Pulse Generation

    NASA Astrophysics Data System (ADS)

    Zasedatelev, A. V.; Krasovskii, V. I.; Reynaud, O.; Gladush, Yu G.; Kopylova, D. S.; Komochkina, E. A.; Kauppinen, E. I.; Nasibulin, A. G.

    2016-08-01

    Hereby we present the results of investigations of nonlinear optical properties of single-walled carbon nanotube (CNT) thin-film saturable absorbers without binding polymers. Developed CNT-based polymer-free saturable absorbers exhibit high third-order nonlinear susceptibility: esu, low absorption saturation intensity: Is∼30 mW/cm2 , and high photostability. Using CNT-based polymer-free saturable absorbers for passive Q-switching mode of Nd:YAG laser, 25 ns laser pulses have been obtained.

  3. 40 CFR 63.993 - Absorbers, condensers, carbon adsorbers and other recovery devices used as final recovery devices.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... flow for each regeneration cycle; and a carbon-bed temperature monitoring device, capable of recording... 40 Protection of Environment 10 2010-07-01 2010-07-01 false Absorbers, condensers, carbon... Absorbers, condensers, carbon adsorbers and other recovery devices used as final recovery devices. (a)...

  4. 40 CFR 63.993 - Absorbers, condensers, carbon adsorbers and other recovery devices used as final recovery devices.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... flow for each regeneration cycle; and a carbon-bed temperature monitoring device, capable of recording... 40 Protection of Environment 10 2011-07-01 2011-07-01 false Absorbers, condensers, carbon... Absorbers, condensers, carbon adsorbers and other recovery devices used as final recovery devices. (a)...

  5. 40 CFR 63.993 - Absorbers, condensers, carbon adsorbers and other recovery devices used as final recovery devices.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... flow for each regeneration cycle; and a carbon-bed temperature monitoring device, capable of recording... 40 Protection of Environment 11 2013-07-01 2013-07-01 false Absorbers, condensers, carbon... Absorbers, condensers, carbon adsorbers and other recovery devices used as final recovery devices. (a)...

  6. Design parameters for carbon nanobottles to absorb and store methane.

    PubMed

    Lee, Richard K F; Hill, James M

    2011-08-01

    We investigate the internal mechanics for methane storage in a nanobottle, which is assumed to comprise a metallofullerene located inside a carbon nanobottle, which is constructed from a half-fullerene as the base, and two nanotubes which are joined by a nanocone. The interaction potential energy for the metallofullerene is obtained from the 6-12 Lennard-Jones potential and the continuum approximation, which assumes that a discrete atomic structure can be replaced by an average atomic surface density. This potential energy shows that the metallofullerene has two minimum energy positions, which are located close to the neck of the bottle and at the base of the nanobottle, and therefore it may be used as a bottle-stopper to open or to close the nanobottle. At the neck of the bottle, the encapsulated metallofullerene closes the nanobottle, and by applying an external electrical force, the metallofullerene can overcome the energy barrier of the nanotube, and pass from the neck of the nanobottle to the base so that the nanobottle is open. For methane storage, the metallofullerene serves the dual purposes of opening and closing the nanobottle, as well as an attractor for the methane gas. The analytical formulation gives rise to a rapid computational capacity, and enables the direct determination of the optimal dimensions necessary to ensure the correct working function of the nanobottle, and specific ranges for the critical parameters are formulated. PMID:22103096

  7. Thermally Resilient, Broadband Optical Absorber from UV to IR Derived from Carbon Nanostructures

    NASA Technical Reports Server (NTRS)

    Kaul, Anupama B.; Coles, James B.

    2012-01-01

    Optical absorber coatings have been developed from carbon-based paints, metal blacks, or glassy carbon. However, such materials are not truly black and have poor absorption characteristics at longer wavelengths. The blackness of such coatings is important to increase the accuracy of calibration targets used in radiometric imaging spectrometers since blackbody cavities are prohibitively large in size. Such coatings are also useful potentially for thermal detectors, where a broadband absorber is desired. Au-black has been a commonly used broadband optical absorber, but it is very fragile and can easily be damaged by heat and mechanical vibration. An optically efficient, thermally rugged absorber could also be beneficial for thermal solar cell applications for energy harnessing, particularly in the 350-2,500 nm spectral window. It has been demonstrated that arrays of vertically oriented carbon nanotubes (CNTs), specifically multi-walled-carbon- nanotubes (MWCNTs), are an exceptional optical absorber over a broad range of wavelengths well into the infrared (IR). The reflectance of such arrays is 100x lower compared to conventional black materials, such as Au black in the spectral window of 350-2,500 nm. Total hemispherical measurements revealed a reflectance of approximately equal to 1.7% at lambda approximately equal to 1 micrometer, and at longer wavelengths into the infrared (IR), the specular reflectance was approximately equal to 2.4% at lambda approximately equal to 7 micrometers. The previously synthesized CNTs for optical absorber applications were formed using water-assisted thermal chemical vapor deposition (CVD), which yields CNT lengths in excess of 100's of microns. Vertical alignment, deemed to be a critical feature in enabling the high optical absorption from CNT arrays, occurs primarily via the crowding effect with thermal CVD synthesized CNTs, which is generally not effective in aligning CNTs with lengths less than 10 m. Here it has been shown that the

  8. OSIRIS Detections of a Tropospheric Aerosol that Absorbs at Wavelengths Near 350 nm - Black Carbon?

    NASA Astrophysics Data System (ADS)

    Degenstein, D. A.; Roth, C.; Bourassa, A. E.; Lloyd, N.

    2014-12-01

    The Canadian built OSIRIS instrument has been in operation onboard the Swedish spacecraft Odin since the autumn of 2001. During this 13 year period OSIRIS has recorded millions of spectra of the limb-scattered radiance in the wavelength range from 280 nm to 810 nm with approximately 1 nm spectral resolution. These measurements that scan tangents altitudes from 10 km to 65 km have primarily been used to retrieve stratospheric composition including vertical profiles of ozone, nitrogen dioxide, sulphate aerosol and bromine monoxide. The ozone retrieval is done is such a way that it uses the vertical radiance profile at 350 nm as a non-ozone absorbing reference measurement and it is these measurements that have serendipitously indicated the presence of an absorbing aerosol at tropospheric altitudes. At this time there is no indication of the exact composition of this absorber but it has characteristics that are curiously like those of black carbon. This poster will outline: the technique used to detect the black carbon from OSIRIS measurements; the wavelength dependence of a pseudo absorber used in the SASKTARN radiative transfer model to accurately simulate the OSIRIS measurements; and the geographical distribution of the detections of this pseudo absorber.

  9. Preparation and microwave absorbing properties of carbon/cobalt ferromagnetic composites.

    PubMed

    Li, Wangchang; Qiao, Xiaojing; Zhao, Hui; Wang, Shuman; Ren, Qingguo

    2013-02-01

    Carbon/cobalt ferromagnetic light composites with high performance of microwave absorbing properties were prepared by hydrothermal method using starch and hollow cobalt ferrites. It was concluded that after carbonization the spinel structure ferrites changed to Co3Fe7 alloys and the temperature of graphitization was significantly decreased for the catalytic of CoFe2O4/Co3Fe7. The increase of carbon content, and exist of CoFe2O4/Co3Fe7 heightened the microwave absorbing properties. Electromagnetic parameters were tested with 40% of the titled materials and 60% of paraffin wax composites by using HP8722ES vector network analyzer. The reflection was also simulated through transmission line theory. The microwave absorbers exhibited a maximum reflection loss -43 dB and the electromagnetic wave absorption less than -10 dB was found to exceed 3.0 GHz between 11.6 GHz and 15 GHz for an absorber thickness of 2 mm. PMID:23646517

  10. Preparation and microwave absorbing properties of carbon/cobalt ferromagnetic composites.

    PubMed

    Li, Wangchang; Qiao, Xiaojing; Zhao, Hui; Wang, Shuman; Ren, Qingguo

    2013-02-01

    Carbon/cobalt ferromagnetic light composites with high performance of microwave absorbing properties were prepared by hydrothermal method using starch and hollow cobalt ferrites. It was concluded that after carbonization the spinel structure ferrites changed to Co3Fe7 alloys and the temperature of graphitization was significantly decreased for the catalytic of CoFe2O4/Co3Fe7. The increase of carbon content, and exist of CoFe2O4/Co3Fe7 heightened the microwave absorbing properties. Electromagnetic parameters were tested with 40% of the titled materials and 60% of paraffin wax composites by using HP8722ES vector network analyzer. The reflection was also simulated through transmission line theory. The microwave absorbers exhibited a maximum reflection loss -43 dB and the electromagnetic wave absorption less than -10 dB was found to exceed 3.0 GHz between 11.6 GHz and 15 GHz for an absorber thickness of 2 mm.

  11. TECHNICAL NOTE: Design and development of electromagnetic absorbers with carbon fiber composites and matching dielectric layers

    NASA Astrophysics Data System (ADS)

    Neo, C. P.; Varadan, V. K.

    2001-10-01

    Radar absorbing materials are designed and developed with carbon fibers and suitable matching layers. Complex permittivities of carbon fiber composite are predicted on the basis that the modulus of permittivity obeys a logarithmic law of mixtures and the dielectric loss tangents are related through a linear law of mixtures. Linear regression analysis performed on the data points provides the constants which are used to predict the effective permittivities of carbon fiber composite at different frequencies. Using the free space measurement system, complex permittivities of the lossy dielectric at different frequencies are obtained. These complex permittivities are used to predict the reflectivity of a thin lossy dielectric layer on carbon fiber composite substrate. The predicted results agree quite well with the measured data. It is interesting to note that the thin lossy dielectric layer, about 0.03 mm thick, has helped to reduce the reflectivity of the 5.2 mm thick carbon fiber composite considerably.

  12. A covalent route for efficient surface modification of ordered mesoporous carbon as high performance microwave absorbers.

    PubMed

    Zhou, Hu; Wang, Jiacheng; Zhuang, Jiandong; Liu, Qian

    2013-12-21

    A covalent route has been successfully utilized for the surface modification of ordered mesoporous carbon (OMC) CMK-3 by in situ polymerization and grafting of methyl methacrylate (MMA) in the absence of any solvent. The modified CMK-3 carbon particles have a high loading of 19 wt% poly(methyl methacrylate) (PMMA), named PMMA-g-CMK-3, and also maintain their high surface area and mesoporous structure. The in situ polymerization technique endows a significantly enhanced electric conductivity (0.437 S m(-1)) of the resulting PMMA-g-CMK-3/PMMA composite, about two orders of magnitude higher than 1.34 × 10(-3) S m(-1) of PMMA/CMK-3 obtained by the solvent mixing method. A minimum reflection loss (RL) value of -27 dB and a broader absorption band (over 3 GHz) with RL values <-10 dB are obtained for the in situ polymerized PMMA-g-CMK-3/PMMA in a frequency range of 8.2-12.4 GHz (X-band), implying its great potential as a microwave absorbing material. The maximum absorbance efficiency for the in situ polymerized sample increases remarkably compared to that (-10 dB) of CMK-3/PMMA prepared by the solvent mixing method. Changing the thickness of the absorber can efficiently adjust the frequency corresponding to the best microwave absorbance ability. The enhanced microwave absorption by the surface modified CMK-3 is ascribed to high dielectric loss. This in situ polymerization for the surface modification of mesoporous carbons opens up a new method and idea for developing light-weight and high-performance microwave absorbing materials. PMID:24170288

  13. A covalent route for efficient surface modification of ordered mesoporous carbon as high performance microwave absorbers.

    PubMed

    Zhou, Hu; Wang, Jiacheng; Zhuang, Jiandong; Liu, Qian

    2013-12-21

    A covalent route has been successfully utilized for the surface modification of ordered mesoporous carbon (OMC) CMK-3 by in situ polymerization and grafting of methyl methacrylate (MMA) in the absence of any solvent. The modified CMK-3 carbon particles have a high loading of 19 wt% poly(methyl methacrylate) (PMMA), named PMMA-g-CMK-3, and also maintain their high surface area and mesoporous structure. The in situ polymerization technique endows a significantly enhanced electric conductivity (0.437 S m(-1)) of the resulting PMMA-g-CMK-3/PMMA composite, about two orders of magnitude higher than 1.34 × 10(-3) S m(-1) of PMMA/CMK-3 obtained by the solvent mixing method. A minimum reflection loss (RL) value of -27 dB and a broader absorption band (over 3 GHz) with RL values <-10 dB are obtained for the in situ polymerized PMMA-g-CMK-3/PMMA in a frequency range of 8.2-12.4 GHz (X-band), implying its great potential as a microwave absorbing material. The maximum absorbance efficiency for the in situ polymerized sample increases remarkably compared to that (-10 dB) of CMK-3/PMMA prepared by the solvent mixing method. Changing the thickness of the absorber can efficiently adjust the frequency corresponding to the best microwave absorbance ability. The enhanced microwave absorption by the surface modified CMK-3 is ascribed to high dielectric loss. This in situ polymerization for the surface modification of mesoporous carbons opens up a new method and idea for developing light-weight and high-performance microwave absorbing materials.

  14. Microwave absorbing properties of polyaniline/multi-walled carbon nanotube composites with various polyaniline contents

    NASA Astrophysics Data System (ADS)

    Ting, T. H.; Jau, Y. N.; Yu, R. P.

    2012-01-01

    Polyaniline/multi-walled carbon nanotube (PANI/MWNT) composites were synthesized using in situ polymerization at different aniline/multi-walled carbon nanotube weight ratios (Ani/MWNT = 1/2, 1/1, 2/1 and 3/1) and introduced into an epoxy resin to act as a microwave absorber. The spectroscopic characterization of the process of formation of PANI/MWNT composites were studied using Fourier transform infrared spectroscopy, an ultraviolet-visible spectrophotometer, X-ray diffraction, scanning electron microscopy, transmission electron microscopy and electron spin resonance. The microwave absorbing properties were investigated by measuring complex permittivity, complex permeability and reflection loss in the 2-18 and 18-40 GHz microwave frequency range, using the free space method. The results showed that the addition of PANI was useful for achieving a large absorption over a wide frequency range, especially for higher frequency values.

  15. Nonlinear absorbance amplification using a diffuse reflectance cell: total organic carbon monitoring at 214 nm.

    PubMed

    Li, Yin-Huan; Shelor, C Phillip; Dasgupta, Purnendu K

    2015-01-20

    We present an absorption spectrometric method using a polytetrafluoroethylene (PTFE) cell as a diffuse reflector. The system was used for monitoring ultrapure water. All compounds absorb to some degree at low UV wavelengths, and the absorption at 214 nm from a zinc lamp source was monitored using a charge-coupled device (CCD) spectrometer. The absorption was interpreted in terms of total organic carbon present. The cell acts as a nonlinear absorbance amplifier, improving both the limit of detection (LOD) and the dynamic range. Potassium hydrogen phthalate (KHP) and glucose were used to evaluate the system and provided respective LODs of 46.5 ng/L and 4.5 mg/L as carbon. Although the physical path length was 25 cm, a maximum effective path length of 280 cm was observed at the lowest tested KHP concentrations. The system is intended for real-time monitoring of ultrapure water.

  16. Multiwavelength absorbance of filter deposits for determination of environmental tobacco smoke and black carbon

    NASA Astrophysics Data System (ADS)

    Lawless, Phil A.; Rodes, Charles E.; Ensor, David S.

    A multiwavelength optical absorption technique has been developed for Teflon filters used for personal exposure sampling with sufficient sensitivity to allow apportionments of environmental tobacco smoke and soot (black) carbon to be made. Measurements on blank filters show that the filter material itself contributes relatively little to the total absorbance and filters from the same lot have similar characteristics; this makes retrospective analysis of filters quite feasible. Using an integrating sphere radiometer and multiple wavelengths to provide specificity, the determination of tobacco smoke and carbon with reasonable accuracy is possible on filters not characterized before exposure. This technique provides a low cost, non-destructive exposure assessment alternative to both standard thermo-gravimetric elemental carbon evaluations on quartz filters and cotinine analyses from urine or saliva samples. The method allows the same sample filter to be used for assessment of mass, carbon, and tobacco smoke without affecting the deposit.

  17. Identification of category fourteen candidates

    SciTech Connect

    Not Available

    1980-02-29

    In recognition of the need of the Nation to conserve energy and the responsibility of the Government to achieve this end, Congress has enacted the Energy Policy and Conservation Act (EPCA, PL 94-163), as amended by the National Energy Conservation Policy Act (NECPA, PL 95-619). These laws give the Secretary of Energy the mandate to prescribe energy efficiency standards for fourteen categories of energy-using consumer products. The Acts identify thirteen categories of appliances for which standards are required. In addition, DOE may identify any other type of consumer product (in ''Category 14'') for which energy efficiency standards may be promulgated. NECPA requires that DOE publish in the ''Federal Register'' a list of the consumer products selected to be included in Category 14 by November 1980. This study examines household consumer appliances to identify Category 14 candidates on the basis of the first two criteria listed above.

  18. Performance of four carbon dioxide absorbents in experimental and clinical settings.

    PubMed

    Yamakage, M; Takahashi, K; Takahashi, M; Satoh, J-I; Namiki, A

    2009-03-01

    To evaluate the performance of four kinds of carbon dioxide (CO(2)) absorbents (Medisorb GE Healthcare, Amsorb Plus Armstrong Medical, YabashiLime Yabashi Industries, and Sodasorb LF Grace Performance Chemicals), we measured their dust production, acceptability of colour indicator, and CO(2) absorption capacity in in vitro experimental settings and the concentration of compound A in an inspired anaesthetic circuit during in vivo clinical practice. In vitro, the order of the dust amount was Sodasorb LF > Medisorb > Amsorb Plus = YabashiLime both before and after shaking. The order of the color acceptability was similar: Sodasorb LF > Amsorb Plus = Medisorb > YabashiLime both initially and 16 h after CO(2) exhaustion. During exposure to 200 ml.min(-1) CO(2) in vitro, the period until 1 kg of fresh soda lime allowed inspired CO(2) to increase to 0.7 kPa (as a mark of utilisation of the absorbent) was longer with Medisorb (1978 min) than with the other absorbents (1270-1375 min). In vivo, compound A (1.0% inspired sevoflurane) was detected only when using Medisorb. While Medisorb has the best ability to absorb CO(2), it alone produces compound A.

  19. Light absorbing organic aerosols (brown carbon) over the tropical Indian Ocean: impact of biomass burning emissions

    NASA Astrophysics Data System (ADS)

    Srinivas, Bikkina; Sarin, M. M.

    2013-12-01

    The first field measurements of light absorbing water-soluble organic carbon (WSOC), referred as brown carbon (BrC), have been made in the marine atmospheric boundary layer (MABL) during the continental outflow to the Bay of Bengal (BoB) and the Arabian Sea (ARS). The absorption signal measured at 365 nm in aqueous extracts of aerosols shows a systematic linear increase with WSOC concentration, suggesting a significant contribution from BrC to the absorption properties of organic aerosols. The mass absorption coefficient (babs) of BrC shows an inverse hyperbolic relation with wavelength (from ˜300 to 700 nm), providing an estimate of the Angstrom exponent (αP, range: 3-19 Av: 9 ± 3). The mass absorption efficiency of brown carbon (σabs-BrC) in the MABL varies from 0.17 to 0.72 m2 g-1 (Av: 0.45 ± 0.14 m2 g-1). The αP and σabs-BrC over the BoB are quite similar to that studied from a sampling site in the Indo-Gangetic Plain (IGP), suggesting the dominant impact of organic aerosols associated with the continental outflow. A comparison of the mass absorption efficiency of BrC and elemental carbon (EC) brings to focus the significant role of light absorbing organic aerosols (from biomass burning emissions) in atmospheric radiative forcing over oceanic regions located downwind of the pollution sources.

  20. [Reactivity of sevoflurane with carbon dioxide absorbents--comparison of soda lime and Baralyme].

    PubMed

    Miyano, K; Nakazawa, M; Tanifuji, Y; Kobayashi, K; Obata, T

    1991-03-01

    The reactivity of sevoflurane with carbon dioxide absorbents, soda lime and Baralyme which are commercially available carbon dioxide absorbents, was studied. A closed circuit system which was made only for this investigation was set up without rubber. Sevoflurane 5% was circulated for 17 hours. The circulated gas was analyzed by gas chromatography (GC) and degradation products were identified by a gas chromatography-mass spectroscopy (GC-MS) as fluoromethyl 2-methoxy-2, 2-difluoro-1-(trifluoromethyl) ethyl ether, fluoromethyl 2-methoxy-2-fluoro-1-(trifluoromethyl) vinyl ether, and its isomer. These degradation products of sevoflurane from soda lime and Baralyme were the same substances. The rate of degradation by soda lime was 0.88% +/- 0.306, while that by Baralyme was 3.40% +/- 0.501. Baralyme decomposed sevoflurane about four times more than soda lime. There are two possible explanations for these results. One is the Baralyme contains more potassium hydroxide than soda lime. The other is that soda lime absorbs sevoflurane more because it contains more silica.

  1. A new class of single-component absorbents for reversible carbon dioxide capture under mild conditions.

    PubMed

    Barzagli, Francesco; Lai, Sarah; Mani, Fabrizio

    2015-01-01

    Some inexpensive and commercially available secondary amines reversibly react with CO2 at room temperature and ambient pressure to yield carbonated species in the liquid phase in the absence of any additional solvent. These solvent-free absorbents have a high CO2 capture capacity (0.63-0.65 mol CO2 /mol amine) at 1.0 bar (=100 kPa), combined with low-temperature reversibility at ambient pressure. (13) C NMR spectroscopy analysis identified the carbonated species as the carbamate salts and unexpected carbamic acids. These absorbents were used for CO2 (15 and 40 % in air) capture in continuous cycles of absorption-desorption carried out in packed columns, yielding an absorption efficiency of up to 98.5 % at absorption temperatures of 40-45 °C and desorption temperatures of 70-85 °C at ambient pressure. The absence of any parasitic solvent that requires to be heated and stability towards moisture and heating could result in some of these solvent-free absorbents being a viable alternative to aqueous amines for CO2 chemical capture.

  2. Carbon nanotube-based tandem absorber with tunable spectral selectivity: transition from near-perfect blackbody absorber to solar selective absorber.

    PubMed

    Selvakumar, N; Krupanidhi, S B; Barshilia, Harish C

    2014-04-23

    CVD grown CNT thin film with a thickness greater than 10 μm behaves like a near-perfect blackbody absorber (i.e., α/ε = 0.99/0.99). Whereas, for a thickness ≤ 0.4 µm, the CNT based tandem absorber acts as a spectrally selective coating (i.e., α/ε = 0.95/0.20). These selective coatings exhibit thermal stability up to 650 °C in vacuum, which can be used for solar thermal power generation. PMID:24474148

  3. Enhanced stability of nitrogen-sealed carbon nanotube saturable absorbers under high-intensity irradiation.

    PubMed

    Martinez, Amos; Fuse, Kazuyuki; Yamashita, Shinji

    2013-02-25

    Due to their broadband saturable absorption and fast response, carbon nanotubes have proven to be an excellent material for the modelocking of fiber lasers and have become a promising device for the implementation of novel laser configurations. However, it is imperative to address the issue of their long-term reliability under intense optical pulses before they can be exploited in widespread commercial applications. In this work, we study how carbon nanotubes degrade due to oxidation when exposed to high-intensity continuous-wave light and we demonstrate that by sealing the carbon nanotubes in a nitrogen gas, the damage threshold can be increased by over one order of magnitude. We then monitor over 24 hours the performance of the carbon nanotube saturable absorbers as the passive modelocking device of an erbium-doped fiber laser with intracavity powers ranging from 5 mW to 316 mW. We observe that when the carbon nanotubes are sealed in nitrogen environment, oxidation can be efficiently prevented and the laser can operate without any deterioration at intracavity powers higher than 300 mW. However, in the case where carbon nanotubes are unprotected (i.e. those directly exposed to the air in the environment), the nanotubes start to deteriorate at intracavity powers lower than 50 mW.

  4. High Power Q-Switched Thulium Doped Fibre Laser using Carbon Nanotube Polymer Composite Saturable Absorber.

    PubMed

    Chernysheva, Maria; Mou, Chengbo; Arif, Raz; AlAraimi, Mohammed; Rümmeli, Mark; Turitsyn, Sergei; Rozhin, Aleksey

    2016-01-01

    We have proposed and demonstrated a Q-switched Thulium doped fibre laser (TDFL) with a 'Yin-Yang' all-fibre cavity scheme based on a combination of nonlinear optical loop mirror (NOLM) and nonlinear amplified loop mirror (NALM). Unidirectional lasing operation has been achieved without any intracavity isolator. By using a carbon nanotube polymer composite based saturable absorber (SA), we demonstrated the laser output power of ~197 mW and pulse energy of 1.7 μJ. To the best of our knowledge, this is the highest output power from a nanotube polymer composite SA based Q-switched Thulium doped fibre laser. PMID:27063511

  5. High Power Q-Switched Thulium Doped Fibre Laser using Carbon Nanotube Polymer Composite Saturable Absorber

    PubMed Central

    Chernysheva, Maria; Mou, Chengbo; Arif, Raz; AlAraimi, Mohammed; Rümmeli, Mark; Turitsyn, Sergei; Rozhin, Aleksey

    2016-01-01

    We have proposed and demonstrated a Q-switched Thulium doped fibre laser (TDFL) with a ‘Yin-Yang’ all-fibre cavity scheme based on a combination of nonlinear optical loop mirror (NOLM) and nonlinear amplified loop mirror (NALM). Unidirectional lasing operation has been achieved without any intracavity isolator. By using a carbon nanotube polymer composite based saturable absorber (SA), we demonstrated the laser output power of ~197 mW and pulse energy of 1.7 μJ. To the best of our knowledge, this is the highest output power from a nanotube polymer composite SA based Q-switched Thulium doped fibre laser. PMID:27063511

  6. Ligament and tendon repair with an absorbable polymer-coated carbon fiber stent.

    PubMed

    Alexander, H; Weiss, A B; Parsons, J R

    1986-01-01

    Ribbon-like composite structures of filamentous carbon fiber and absorbable polymers have been used in the repair and replacement of both tendons and ligaments. The composite acts as a scaffold upon which new collagenous tissue can grow and has proved successful in a variety of animal models. The results of the first three years of human clinical trials have revealed ingrowth potential similar to that seen in the animal studies. Most patients have shown significant improvement, with many demonstrating good to excellent stability and function.

  7. High Power Q-Switched Thulium Doped Fibre Laser using Carbon Nanotube Polymer Composite Saturable Absorber.

    PubMed

    Chernysheva, Maria; Mou, Chengbo; Arif, Raz; AlAraimi, Mohammed; Rümmeli, Mark; Turitsyn, Sergei; Rozhin, Aleksey

    2016-01-01

    We have proposed and demonstrated a Q-switched Thulium doped fibre laser (TDFL) with a 'Yin-Yang' all-fibre cavity scheme based on a combination of nonlinear optical loop mirror (NOLM) and nonlinear amplified loop mirror (NALM). Unidirectional lasing operation has been achieved without any intracavity isolator. By using a carbon nanotube polymer composite based saturable absorber (SA), we demonstrated the laser output power of ~197 mW and pulse energy of 1.7 μJ. To the best of our knowledge, this is the highest output power from a nanotube polymer composite SA based Q-switched Thulium doped fibre laser.

  8. High Power Q-Switched Thulium Doped Fibre Laser using Carbon Nanotube Polymer Composite Saturable Absorber

    NASA Astrophysics Data System (ADS)

    Chernysheva, Maria; Mou, Chengbo; Arif, Raz; Alaraimi, Mohammed; Rümmeli, Mark; Turitsyn, Sergei; Rozhin, Aleksey

    2016-04-01

    We have proposed and demonstrated a Q-switched Thulium doped fibre laser (TDFL) with a ‘Yin-Yang’ all-fibre cavity scheme based on a combination of nonlinear optical loop mirror (NOLM) and nonlinear amplified loop mirror (NALM). Unidirectional lasing operation has been achieved without any intracavity isolator. By using a carbon nanotube polymer composite based saturable absorber (SA), we demonstrated the laser output power of ~197 mW and pulse energy of 1.7 μJ. To the best of our knowledge, this is the highest output power from a nanotube polymer composite SA based Q-switched Thulium doped fibre laser.

  9. Multiwall carbon nanotube polyvinyl alcohol-based saturable absorber in passively Q-switched fiber laser.

    PubMed

    Ahmad, H; Ismail, M F; Hassan, S N M; Ahmad, F; Zulkifli, M Z; Harun, S W

    2014-10-20

    In this work, we demonstrated a compact Q-switched erbium-doped fiber laser capable of generating high-energy pulses using a newly developed multiwall carbon nanotube (CNT) polyvinyl alcohol (PVA) thin film based saturable absorber. Q-switched pulse operation is obtained by sandwiching the thin film between two fiber ferrules forming a saturable absorber. A saturable absorber with 1.25 wt. % of PVA concentration shows a consistency in generating pulsed laser with a good range of tunable repetition rate, shortest pulse width, and produces a high pulse energy and peak power. The pulse train generated has a maximum repetition rate of 29.9 kHz with a corresponding pulse width of 3.49 μs as a function of maximum pump power of 32.15 mW. The maximum average output power of the Q-switched fiber laser system is 1.49 mW, which translates to a pulse energy of 49.8 nJ. The proposed method of multiwall CNT/PVA thin film fabrication is low in cost and involves uncomplicated processes. PMID:25402790

  10. Absorption and scattering properties of carbon nanohorn-based nanofluids for direct sunlight absorbers

    PubMed Central

    2011-01-01

    In the present work, we investigated the scattering and spectrally resolved absorption properties of nanofluids consisting in aqueous and glycol suspensions of single-wall carbon nanohorns. The characteristics of these nanofluids were evaluated in view of their use as sunlight absorber fluids in a solar device. The observed nanoparticle-induced differences in optical properties appeared promising, leading to a considerably higher sunlight absorption with respect to the pure base fluids. Scattered light was found to be not more than about 5% with respect to the total attenuation of light. Both these effects, together with the possible chemical functionalization of carbon nanohorns, make this new kind of nanofluids very interesting for increasing the overall efficiency of the sunlight exploiting device. PACS 78.40.Ri, 78.35.+c, 78.67.Bf, 88.40.fh, 88.40.fr, 81.05.U. PMID:21711795

  11. Novel radiator for carbon dioxide absorbents in low-flow anesthesia.

    PubMed

    Hirabayashi, Go; Mitsui, Takanori; Kakinuma, Takayasu; Ogihara, Yukihiko; Matsumoto, Shohei; Isshiki, Atsushi; Yasuo, Watanabe

    2003-01-01

    During long-term low-flow sevoflurane anesthesia, dew formation and the generation of compound A are increased in the anesthesia circuit because of elevated soda lime temperature. The object of this study was to develop a novel radiator for carbon dioxide absorbents used for long durations of low-flow sevoflurane anesthesia. Eleven female swine were divided into two groups comprising a "radiator" group (n = 5) that used a novel radiator for carbon dioxide absorbents and a "control" group (n = 6) that used a conventional canister. Anesthesia was maintained with N2O, O2, and sevoflurane, and low-flow anesthesia was performed with fresh gas flow at 0.6 L/min for 12 hr. In the "control" group, the soda lime temperature reached more than 40 degrees C and soda lime dried up with severe dew formation in the inspiratory valve. In the "radiator" group, the temperature of soda lime stayed at 30 degrees C, and the water content of soda lime was retained with no dew formation in the inspiratory valve. In addition, compound A concentration was reduced. In conclusion, radiation of soda lime reduced the amounts of condensation formed and the concentration of compound A in the anesthetic circuit, and allowed long term low-flow anesthesia without equipment malfunction.

  12. 40 CFR 65.153 - Absorbers, condensers, carbon adsorbers, and other recovery devices used as final recovery devices.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... regeneration stream mass or volumetric flow for each regeneration cycle, and a carbon-bed temperature... regeneration cycle, and the temperature of the carbon-bed determined within 15 minutes of the completion of the... 40 Protection of Environment 16 2013-07-01 2013-07-01 false Absorbers, condensers,...

  13. 40 CFR 65.153 - Absorbers, condensers, carbon adsorbers, and other recovery devices used as final recovery devices.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... regeneration stream mass or volumetric flow for each regeneration cycle, and a carbon-bed temperature... regeneration cycle, and the temperature of the carbon-bed determined within 15 minutes of the completion of the... 40 Protection of Environment 15 2011-07-01 2011-07-01 false Absorbers, condensers,...

  14. Spatiotemporal variability of light-absorbing carbon concentration in a residential area impacted by woodsmoke.

    PubMed

    Krecl, Patricia; Johansson, Christer; Ström, Johan

    2010-03-01

    Residential wood combustion (RWC) is responsible for 33% of the total carbon mass emitted in Europe. With the new European targets to increase the use of renewable energy, there is a growing concern that the population exposure to woodsmoke will also increase. This study investigates observed and simulated light-absorbing carbon mass (MLAC) concentrations in a residential neighborhood (Lycksele, Sweden) where RWC is a major air pollution source during winter. The measurement analysis included descriptive statistics, correlation coefficient, coefficient of divergence, linear regression, concentration roses, diurnal pattern, and weekend versus weekday concentration ratios. Hourly RWC and road traffic contributions to MLAC were simulated with a Gaussian dispersion model to assess whether the model was able to mimic the observations. Hourly mean and standard deviation concentrations measured at six sites ranged from 0.58 to 0.74 microg m(-3) and from 0.59 to 0.79 microg m(-3), respectively. The temporal and spatial variability decreased with increasing averaging time. Low-wind periods with relatively high MLAC concentrations correlated more strongly than high-wind periods with low concentrations. On average, the model overestimated the observations by 3- to 5-fold and explained less than 10% of the measured hourly variability at all sites. Large residual concentrations were associated with weak winds and relatively high MLAC loadings. The explanation of the observed variability increased to 31-45% when daily mean concentrations were compared. When the contribution from the boilers within the neighborhood was excluded from the simulations, the model overestimation decreased to 16-71%. When assessing the exposure to light-absorbing carbon particles using this type of model, the authors suggest using a longer averaging period (i.e., daily concentrations) in a larger area with an updated and very detailed emission inventory. PMID:20397565

  15. Spatiotemporal variability of light-absorbing carbon concentration in a residential area impacted by woodsmoke.

    PubMed

    Krecl, Patricia; Johansson, Christer; Ström, Johan

    2010-03-01

    Residential wood combustion (RWC) is responsible for 33% of the total carbon mass emitted in Europe. With the new European targets to increase the use of renewable energy, there is a growing concern that the population exposure to woodsmoke will also increase. This study investigates observed and simulated light-absorbing carbon mass (MLAC) concentrations in a residential neighborhood (Lycksele, Sweden) where RWC is a major air pollution source during winter. The measurement analysis included descriptive statistics, correlation coefficient, coefficient of divergence, linear regression, concentration roses, diurnal pattern, and weekend versus weekday concentration ratios. Hourly RWC and road traffic contributions to MLAC were simulated with a Gaussian dispersion model to assess whether the model was able to mimic the observations. Hourly mean and standard deviation concentrations measured at six sites ranged from 0.58 to 0.74 microg m(-3) and from 0.59 to 0.79 microg m(-3), respectively. The temporal and spatial variability decreased with increasing averaging time. Low-wind periods with relatively high MLAC concentrations correlated more strongly than high-wind periods with low concentrations. On average, the model overestimated the observations by 3- to 5-fold and explained less than 10% of the measured hourly variability at all sites. Large residual concentrations were associated with weak winds and relatively high MLAC loadings. The explanation of the observed variability increased to 31-45% when daily mean concentrations were compared. When the contribution from the boilers within the neighborhood was excluded from the simulations, the model overestimation decreased to 16-71%. When assessing the exposure to light-absorbing carbon particles using this type of model, the authors suggest using a longer averaging period (i.e., daily concentrations) in a larger area with an updated and very detailed emission inventory.

  16. Value of forestation in absorbing carbon dioxide surrounding a coal fired power plant

    SciTech Connect

    Dang, V.D.; Steinberg, M.

    1980-08-01

    The dispersion of carbon dioxide emitted from 1000 MW(e) coal fired power plant is investigated. Calculated ground level carbon dioxide concentrations as a function of distance from the power plant stack is validated by the results derived from sulfur dioxide dispersion measurements. Forestation is examined as a means for removal and control of atmospheric carbon dioxide at a distance of 5 to 10 km away from the power plant stack. An equilibrium and a dynamic approach are considered. For an average temperate zone forest growth rate (7.42 mg/dm/sup 2/ h), the overall reduction in forested land area required to remove the equivalent of all of the CO/sub 2/ from a 1000 MW(e) power plant would be less than 3.3% compared to removing the equivalent amount of CO/sub 2/ by planting forests remotely from the plant. If faster growing tropical plants or trees having up to 4 times the temperate plant growth rate were used, there would be a maximum savings of 15% in forested land area compared to a remote planting. This magnitude of reduction in cultivated forest area is insufficient to recommend planting forested areas adjacent to central power stations as a means of controlling CO/sub 2/ emission. Rather it is suggested to provide sufficient increased regional forested areas on a global scale for the purposes of absorbing the equivalent increase in CO/sub 2/ emission due to increased fossil fuel use.

  17. Calcium absorbability from milk products, an imitation milk, and calcium carbonate

    SciTech Connect

    Recker, R.R.; Bammi, A.; Barger-Lux, M.J.; Heaney, R.P.

    1988-01-01

    Whole milk, chocolate milk, yogurt, imitation milk (prepared from dairy and nondairy products), cheese, and calcium carbonate were labeled with /sup 45/Ca and administered as a series of test meals to 10 healthy postmenopausal women. Carrier Ca content of the test meals was held constant at 250 mg and subjects fasted before each meal. The absorbability of Ca from the six sources was compared by measuring fractional absorption by the double isotope method. The mean absorption values for all six sources were tightly clustered between 21 and 26% and none was significantly different from the others using one-way analysis of variance. We conclude that none of the sources was significantly superior or inferior to the others.

  18. 1 Mixing state and absorbing properties of black carbon during Arctic haze

    NASA Astrophysics Data System (ADS)

    Zanatta, Marco; Gysel, Martin; Eleftheriadis, Kosas; Laj, Paolo; Hans-Werner, Jacobi

    2016-04-01

    The Arctic atmosphere is periodically affected by the Arctic haze occurring in spring. One of its particulate components is the black carbon (BC), which is considered to be an important contributor to climate change in the Arctic region. Beside BC-cloud interaction and albedo reduction of snow, BC may influence Arctic climate interacting directly with the solar radiation, warming the corresponding aerosol layer (Flanner, 2013). Such warming depends on BC atmospheric burden and also on the efficiency of BC to absorb light, in fact the light absorption is enhanced by mixing of BC with other atmospheric non-absorbing materials (lensing effect) (Bond et al., 2013). The BC reaching the Arctic is evilly processed, due to long range transport. Aging promote internal mixing and thus absorption enhancement. Such modification of mixing and is quantification after long range transport have been observed in the Atlantic ocean (China et al., 2015) but never investigated in the Arctic. During field experiments conducted at the Zeppelin research site in Svalbard during the 2012 Arctic spring, we investigated the relative precision of different BC measuring techniques; a single particle soot photometer was then used to assess the coating of Arctic black carbon. This allowed quantifying the absorption enhancement induced by internal mixing via optical modelling; the optical assessment of aged black carbon in the arctic will be of major interest for future radiative forcing assessment.Optical characterization of the total aerosol indicated that in 2012 no extreme smoke events took place and that the aerosol population was dominated by fine and non-absorbing particles. Low mean concentration of rBC was found (30 ng m-3), with a mean mass equivalent diameter above 200 nm. rBC concentration detected with the continuous soot monitoring system and the single particle soot photometer was agreeing within 15%. Combining absorption coefficient observed with an aethalometer and rBC mass

  19. Spatiotemporal distribution of light-absorbing carbon and its relationship to other atmospheric pollutants in Stockholm

    NASA Astrophysics Data System (ADS)

    Krecl, P.; Targino, A. C.; Johansson, C.

    2011-04-01

    Carbon-containing particles have deleterious effects on both Earth's climate and human health. In Europe, the main sources of light-absorbing carbon (LAC) emissions are the transport (67%) and residential (25%) sectors. Information on the spatiotemporal variability of LAC particles in urban areas is relevant for air quality management and to better diagnose the population exposure to these particles. This study reports on results of an intensive field campaign conducted at four sites (two kerbside stations, one urban background site and a rural station) in Stockholm, Sweden, during the spring 2006. Light-absorbing carbon mass concentrations (MLAC) were measured with custom-built Particle Soot Absorption Photometers (PSAP). The spatiotemporal variability of MLAC concentrations was explored by examining correlation coefficients (R), coefficients of divergence (COD), and diurnal patterns at all sites. Simultaneous measurements of NOx, PM10, PM2.5, and meteorological variables were also carried out at the same locations to help characterize the LAC emission sources. Hourly mean and standard deviation MLAC concentrations ranged from 0.36 (rural) to 5.39 μg m-3 (street canyon) and from 0.50 to 3.60 μg m-3, respectively. Concentrations of LAC between urban sites were poorly correlated even for daily averages (R<0.70), combined with highly heterogeneously distributed concentrations (COD>0.30) even at spatial scales of few kilometers. This high variability is connected to the distribution of emission sources and processes contributing to the LAC fraction at these sites. At urban sites, MLAC tracked NOx levels and traffic density well and mean MLAC/PM2.5 ratios were larger (26-38%) than at the background sites (4-10%). The results suggest that vehicle exhaust emissions are the main responsible for the high MLAC concentrations found at the urban locations whereas long-range transport (LRT) episodes of combustion-derived particles can generate a strong increase of levels at

  20. Spatiotemporal distribution of light-absorbing carbon and its relationship to other atmospheric pollutants in Stockholm

    NASA Astrophysics Data System (ADS)

    Krecl, P.; Targino, A. C.; Johansson, C.

    2011-11-01

    Carbon-containing particles have deleterious effects on both Earth's climate and human health. In Europe, the main sources of light-absorbing carbon (LAC) emissions are the transport (67%) and residential (25%) sectors. Information on the spatiotemporal variability of LAC particles in urban areas is relevant for air quality management and to better diagnose the population exposure to these particles. This study reports on results of an intensive field campaign conducted at four sites (two kerbside stations, one urban background site and a rural station) in Stockholm, Sweden, during the spring 2006. Light-absorbing carbon mass (MLAC) concentrations were measured with custom-built Particle Soot Absorption Photometers (PSAP). The spatiotemporal variability of MLAC concentrations was explored by examining correlation coefficients (R), coefficients of divergence (COD), and diurnal patterns at all sites. Simultaneous measurements of NOx, PM10, PM2.5, and meteorological variables were also carried out at the same locations to help characterize the LAC emission sources. Hourly mean (± standard deviation) MLAC concentrations ranged from 0.36±0.50 at the rural site to 5.39±3.60 μg m-3 at the street canyon site. Concentrations of LAC between urban sites were poorly correlated even for daily averages (R<0.70), combined with highly heterogeneously distributed concentrations (COD>0.30) even at spatial scales of few kilometers. This high variability is connected to the distribution of emission sources and processes contributing to the LAC fraction at these sites. At urban sites, MLAC tracked NOx levels and traffic density well and mean MLAC/PM2.5 ratios were larger (26-38%) than at the background sites (4-10%). The results suggest that vehicle exhaust emissions are the main responsible for the high MLAC concentrations found at the urban locations whereas long-range transport (LRT) episodes of combustion-derived particles can generate a strong increase of levels at background

  1. A wormhole-like porous carbon/magnetic particles composite as an efficient broadband electromagnetic wave absorber.

    PubMed

    Fang, Jiyong; Liu, Tao; Chen, Zheng; Wang, Yan; Wei, Wei; Yue, Xigui; Jiang, Zhenhua

    2016-04-28

    A method combining liquid-liquid phase separation and the pyrolysis process has been developed to fabricate the wormhole-like porous carbon/magnetic nanoparticles composite with a pore size of about 80 nm (WPC/MNPs-80). In this work, the porous structure was designed to enhance interaction between the electromagnetic (EM) wave and the absorber, while the magnetic nanoparticles were used to bring about magnetic loss ability. The structure, morphology, porosity and magnetic properties of WPC/MNPs-80 were investigated in detail. To evaluate its EM wave attenuation performance, the EM parameters of the absorber and wax composite were measured at 2-18 GHz. WPC/MNPs-80 has an excellent EM wave absorbency with a wide absorption band at a relatively low loading and thin absorber thickness. At the absorber thickness of 1.5 and 2.0 mm, minimum RL values of -29.2 and -47.9 dB were achieved with the RL below -10 dB in 12.8-18 and 9.2-13.3 GHz, respectively. The Co and Fe nanoparticles derived from the chemical reduction of Co0.2Fe2.8O4 can enhance the graphitization process of carbon and thus improve dielectric loss ability. Polarizations in the nanocomposite absorber also play an important role in EM wave absorption. Thus, EM waves can be effectively attenuated by dielectric loss and magnetic loss through multiple reflections and absorption in the porous structure. WPC/MNPs-80 could be an excellent absorber for EM wave attenuation; and the design strategy could be extended as a general method to synthesize other high-performance absorbers.

  2. A wormhole-like porous carbon/magnetic particles composite as an efficient broadband electromagnetic wave absorber.

    PubMed

    Fang, Jiyong; Liu, Tao; Chen, Zheng; Wang, Yan; Wei, Wei; Yue, Xigui; Jiang, Zhenhua

    2016-04-28

    A method combining liquid-liquid phase separation and the pyrolysis process has been developed to fabricate the wormhole-like porous carbon/magnetic nanoparticles composite with a pore size of about 80 nm (WPC/MNPs-80). In this work, the porous structure was designed to enhance interaction between the electromagnetic (EM) wave and the absorber, while the magnetic nanoparticles were used to bring about magnetic loss ability. The structure, morphology, porosity and magnetic properties of WPC/MNPs-80 were investigated in detail. To evaluate its EM wave attenuation performance, the EM parameters of the absorber and wax composite were measured at 2-18 GHz. WPC/MNPs-80 has an excellent EM wave absorbency with a wide absorption band at a relatively low loading and thin absorber thickness. At the absorber thickness of 1.5 and 2.0 mm, minimum RL values of -29.2 and -47.9 dB were achieved with the RL below -10 dB in 12.8-18 and 9.2-13.3 GHz, respectively. The Co and Fe nanoparticles derived from the chemical reduction of Co0.2Fe2.8O4 can enhance the graphitization process of carbon and thus improve dielectric loss ability. Polarizations in the nanocomposite absorber also play an important role in EM wave absorption. Thus, EM waves can be effectively attenuated by dielectric loss and magnetic loss through multiple reflections and absorption in the porous structure. WPC/MNPs-80 could be an excellent absorber for EM wave attenuation; and the design strategy could be extended as a general method to synthesize other high-performance absorbers. PMID:27072200

  3. Fractional absorption of active absorbable algal calcium (AAACa) and calcium carbonate measured by a dual stable-isotope method

    Technology Transfer Automated Retrieval System (TEKTRAN)

    With the use of stable isotopes, this study aimed to compare the bioavailability of active absorbable algal calcium (AAACa), obtained from oyster shell powder heated to a high temperature, with an additional heated seaweed component (Heated Algal Ingredient, HAI), with that of calcium carbonate. In ...

  4. Measured Wavelength-Dependent Absorption Enhancement of Internally Mixed Black Carbon with Absorbing and Nonabsorbing Materials.

    PubMed

    You, Rian; Radney, James G; Zachariah, Michael R; Zangmeister, Christopher D

    2016-08-01

    Optical absorption spectra of laboratory generated aerosols consisting of black carbon (BC) internally mixed with nonabsorbing materials (ammonium sulfate, AS, and sodium chloride, NaCl) and BC with a weakly absorbing brown carbon surrogate derived from humic acid (HA) were measured across the visible to near-IR (550 to 840 nm). Spectra were measured in situ using a photoacoustic spectrometer and step-scanning a supercontinuum laser source with a tunable wavelength and bandwidth filter. BC had a mass-specific absorption cross section (MAC) of 7.89 ± 0.25 m(2) g(-1) at λ = 550 nm and an absorption Ångström exponent (AAE) of 1.03 ± 0.09 (2σ). For internally mixed BC, the ratio of BC mass to the total mass of the mixture was chosen as 0.13 to mimic particles observed in the terrestrial atmosphere. The manner in which BC mixed with each material was determined from transmission electron microscopy (TEM). AS/BC and HA/BC particles were fully internally mixed, and the BC was both internally and externally mixed for NaCl/BC particles. The AS/BC, NaCl/BC, and HA/BC particles had AAEs of 1.43 ± 0.05, 1.34 ± 0.06, and 1.91 ± 0.05, respectively. The observed absorption enhancement of mixed BC relative to the pure BC was wavelength dependent for AS/BC and decreased from 1.5 at λ = 550 nm with increasing wavelength while the NaCl/BC enhancement was essentially wavelength independent. For HA/BC, the enhancement ranged from 2 to 3 and was strongly wavelength dependent. Removal of the HA absorption contribution to enhancement revealed that the enhancement was ≈1.5 and independent of wavelength. PMID:27359341

  5. Predicting trace organic compound breakthrough in granular activated carbon using fluorescence and UV absorbance as surrogates.

    PubMed

    Anumol, Tarun; Sgroi, Massimiliano; Park, Minkyu; Roccaro, Paolo; Snyder, Shane A

    2015-06-01

    This study investigated the applicability of bulk organic parameters like dissolved organic carbon (DOC), UV absorbance at 254 nm (UV254), and total fluorescence (TF) to act as surrogates in predicting trace organic compound (TOrC) removal by granular activated carbon in water reuse applications. Using rapid small-scale column testing, empirical linear correlations for thirteen TOrCs were determined with DOC, UV254, and TF in four wastewater effluents. Linear correlations (R(2) > 0.7) were obtained for eight TOrCs in each water quality in the UV254 model, while ten TOrCs had R(2) > 0.7 in the TF model. Conversely, DOC was shown to be a poor surrogate for TOrC breakthrough prediction. When the data from all four water qualities was combined, good linear correlations were still obtained with TF having higher R(2) than UV254 especially for TOrCs with log Dow>1. Excellent linear relationship (R(2) > 0.9) between log Dow and the removal of TOrC at 0% surrogate removal (y-intercept) were obtained for the five neutral TOrCs tested in this study. Positively charged TOrCs had enhanced removals due to electrostatic interactions with negatively charged GAC that caused them to deviate from removals that would be expected with their log Dow. Application of the empirical linear correlation models to full-scale samples provided good results for six of seven TOrCs (except meprobamate) tested when comparing predicted TOrC removal by UV254 and TF with actual removals for GAC in all the five samples tested. Surrogate predictions using UV254 and TF provide valuable tools for rapid or on-line monitoring of GAC performance and can result in cost savings by extended GAC run times as compared to using DOC breakthrough to trigger regeneration or replacement.

  6. Fe-, Co-, and Ni-Loaded Porous Activated Carbon Balls as Lightweight Microwave Absorbents.

    PubMed

    Li, Guomin; Wang, Liancheng; Li, Wanxi; Xu, Yao

    2015-11-16

    Porous activated carbon ball (PACB) composites impregnated with iron, cobalt, nickel and/or their oxides were synthesized through a wet chemistry method involving PACBs as the carrier to load Fe(3+), Co(2+), and Ni(2+) ions and a subsequent carbothermal reduction at different annealing temperatures. The results show that the pyrolysis products of nitrates and/or the products from the carbothermal reduction are embedded in the pores of the PACBs, with different distributions, resulting in different crystalline phases. The as-prepared PACB composites possessed high specific surface areas of 791.2-901.5 m(2)  g(-1) and low densities of 1.1-1.3 g cm(-3). Minimum reflection loss (RL) values of -50.1, -20.6, and -20.4 dB were achieved for Fe-PACB (annealed at 500 °C), Co-PACB (annealed at 800 °C), and Ni-PACB (annealed at 800 °C) composites, respectively. Moreover, the influence of the amount of the magnetic components in the PACB composites on the microwave-absorbing performances was investigated, further confirming that the dielectric loss was the primary contributor to microwave absorption. PMID:26373310

  7. Diode-pumped passively Q-switched Nd:GGG laser with a double-walled carbon nanotube saturable absorber

    NASA Astrophysics Data System (ADS)

    Chu, Hongwei; Zhao, Shengzhi; Li, Yufei; Yang, Kejian; Li, Guiqiu; Li, Dechun; Zhao, Jia; Qiao, Wenchao; Li, Tao; Feng, Chuansheng; Wang, Yonggang; Wang, Yishan

    2014-03-01

    A diode-end-pumped passively Q-switched Nd:GGG laser with a double-walled carbon nanotube (DWCNT) saturable absorber is demonstrated for the first time. A maximum output power of 1.03 W and a minimum pulse duration of 24.3 ns with a highest peak power of 121 W were obtained. The pulse repetition rate varied from 122 to 350 kHz as the pump power increased. The experimental results show that DWCNT is an excellent saturable absorber for passive Q-switched lasers.

  8. Fabrication and Electromagnetic Wave-Absorbing Property of Si3N4 Ceramics with Gradient Pyrolytic Carbon Distribution

    NASA Astrophysics Data System (ADS)

    Li, Xiangming; Gao, Mingjun

    2016-07-01

    A Si3N4 ceramic with gradient distribution of pyrolytic carbon (Gradient-PyC-Si3N4) was fabricated by a combined technique of precursor infiltration pyrolysis and directional oxidation. An electromagnetic wave could enter Gradient-PyC-Si3N4 with little reflection because of a weak impedance mismatch at its surface, and the electromagnetic wave entering Gradient-PyC-Si3N4 could propagate forward along the PyC changing belt and simultaneously be absorbed by PyC with little reflection. The electromagnetic reflectivity of the Gradient-PyC-Si3N4 with an absence of PyC could reach a low level of -12.1 dB, which means that about 94% of the incident energy is absorbed and so makes the Gradient-PyC-Si3N4 a promising electromagnetic absorbing material for covert action.

  9. One-dimensional carbon nanotube@barium titanate@polyaniline multiheterostructures for microwave absorbing application.

    PubMed

    Ni, Qing-Qing; Zhu, Yao-Feng; Yu, Lu-Jun; Fu, Ya-Qin

    2015-01-01

    Multiple-phase nanocomposites filled with carbon nanotubes (CNTs) have been developed for their significant potential in microwave attenuation. The introduction of other phases onto the CNTs to achieve CNT-based heterostructures has been proposed to obtain absorbing materials with enhanced microwave absorption properties and broadband frequency due to their different loss mechanisms. The existence of polyaniline (PANI) as a coating with controllable electrical conductivity can lead to well-matched impedance. In this work, a one-dimensional CNT@BaTiO3@PANI heterostructure composite was fabricated. The fabrication processes involved coating of an acid-modified CNT with BaTiO3 (CNT@BaTiO3) through a sol-gel technique followed by combustion and the formation of CNT@BaTiO3@PANI nanohybrids by in situ polymerization of an aniline monomer in the presence of CNT@BaTiO3, using ammonium persulfate as an oxidant and HCl as a dopant. The as-synthesized CNT@BaTiO3@PANI composites with heterostructures were confirmed by various morphological and structural characterization techniques, as well as conductivity and microwave absorption properties. The measured electromagnetic parameters showed that the CNT@BaTiO3@PANI composites exhibited excellent microwave absorption properties. The minimum reflection loss of the CNT@BaTiO3@PANI composites with 20 wt % loadings in paraffin wax reached -28.9 dB (approximately 99.87% absorption) at 10.7 GHz with a thickness of 3 mm, and a frequency bandwidth less than -20 dB was achieved from 10 to 15 GHz. This work demonstrated that the CNT@BaTiO3@PANI heterostructure composite can be potentially useful in electromagnetic stealth materials, sensors, and electronic devices. PMID:25977651

  10. One-dimensional carbon nanotube@barium titanate@polyaniline multiheterostructures for microwave absorbing application

    NASA Astrophysics Data System (ADS)

    Ni, Qing-Qing; Zhu, Yao-Feng; Yu, Lu-Jun; Fu, Ya-Qin

    2015-04-01

    Multiple-phase nanocomposites filled with carbon nanotubes (CNTs) have been developed for their significant potential in microwave attenuation. The introduction of other phases onto the CNTs to achieve CNT-based heterostructures has been proposed to obtain absorbing materials with enhanced microwave absorption properties and broadband frequency due to their different loss mechanisms. The existence of polyaniline (PANI) as a coating with controllable electrical conductivity can lead to well-matched impedance. In this work, a one-dimensional CNT@BaTiO3@PANI heterostructure composite was fabricated. The fabrication processes involved coating of an acid-modified CNT with BaTiO3 (CNT@BaTiO3) through a sol-gel technique followed by combustion and the formation of CNT@BaTiO3@PANI nanohybrids by in situ polymerization of an aniline monomer in the presence of CNT@BaTiO3, using ammonium persulfate as an oxidant and HCl as a dopant. The as-synthesized CNT@BaTiO3@PANI composites with heterostructures were confirmed by various morphological and structural characterization techniques, as well as conductivity and microwave absorption properties. The measured electromagnetic parameters showed that the CNT@BaTiO3@PANI composites exhibited excellent microwave absorption properties. The minimum reflection loss of the CNT@BaTiO3@PANI composites with 20 wt % loadings in paraffin wax reached -28.9 dB (approximately 99.87% absorption) at 10.7 GHz with a thickness of 3 mm, and a frequency bandwidth less than -20 dB was achieved from 10 to 15 GHz. This work demonstrated that the CNT@BaTiO3@PANI heterostructure composite can be potentially useful in electromagnetic stealth materials, sensors, and electronic devices.

  11. Black carbon and other light-absorbing particles in snow of central North America

    NASA Astrophysics Data System (ADS)

    Doherty, Sarah J.; Dang, Cheng; Hegg, Dean A.; Zhang, Rudong; Warren, Stephen G.

    2014-11-01

    Vertical profiles of light-absorbing particles in seasonal snow were sampled from 67 North American sites. Over 500 snow samples and 55 soil samples from these sites were optically analyzed for spectrally resolved visible light absorption. The optical measurements were used to estimate black carbon (BC) mixing ratios in snow (CBCest), contributions to absorption by BC and non-BC particles, and the absorption Ångström exponent of particles in snow and local soil. Sites in Canada tended to have the lowest BC mixing ratios (typically ~5-35 ng g-1), with somewhat higher CBCest in the Pacific Northwest (typically ~5-40 ng g-1) and Intramountain Northwest (typically 10-50 ng g-1). The Northern U.S. Plains sites were the dirtiest, with CBCest typically ~15-70 ng g-1 and multiple sample layers with >100 ng g-1 BC in snow. Snow water samples were also chemically analyzed for standard anions, selected carbohydrates, and various elements. The chemical and optical data were input to a Positive Matrix Factorization analysis of the sources of particulate light absorption. These were soil, biomass/biofuel burning, and fossil fuel pollution. Comparable analyses have been conducted for the Arctic and North China, providing a broad, internally consistent data set. As in North China, soil is a significant contributor to snow particulate light absorption in the Great Plains. We also examine the concentrations and sources of snow particulate light absorption across a latitudinal transect from the northern U.S. Great Plains to Arctic Canada by combining the current data with our earlier Arctic survey.

  12. Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon

    USGS Publications Warehouse

    Weishaar, J.L.; Aiken, G.R.; Bergamaschi, B.A.; Fram, M.S.; Fujii, R.; Mopper, K.

    2003-01-01

    Specific UV absorbance (SUVA) is defined as the UV absorbance of a water sample at a given wavelength normalized for dissolved organic carbon (DOC) concentration. Our data indicate that SUVA, determined at 254 nm, is strongly correlated with percent aromaticity as determined by 13C NMR for 13 organic matter isolates obtained from a variety of aquatic environments. SUVA, therefore, is shown to be a useful parameter for estimating the dissolved aromatic carbon content in aquatic systems. Experiments involving the reactivity of DOC with chlorine and tetramethylammonium hydroxide (TMAH), however, show a wide range of reactivity for samples with similar SUVA values. These results indicate that, while SUVA measurements are good predictors of general chemical characteristics of DOC, they do not provide information about reactivity of DOC derived from different types of source materials. Sample pH, nitrate, and iron were found to influence SUVA measurements.

  13. The physical properties of black carbon and other light-absorbing material emitted from prescribed fires in the United States

    NASA Astrophysics Data System (ADS)

    McMeeking, G. R.; Kreidenweis, S. M.; Yokelson, R. J.; Sullivan, A. P.; Lee, T.; Collett, J. L.; Fortner, E.; Onasch, T. B.; Akagi, S. K.; Taylor, J.; Coe, H.

    2012-12-01

    Black carbon (BC) aerosol emitted from fires absorbs light, leading to visibility degradation as well as regional and global climate impacts. Fires also emit a wide range of trace gases and particulates that can interact with emitted BC and alter its optical properties and atmospheric lifetime. Non-BC particulate species emitted by fires can also scatter and absorb light, leading to additional effects on visibility. Recent work has shown that certain organic species can absorb light strongly at shorter wavelengths, giving it a brown or yellow color. This material has been classified as brown carbon, though it is not yet well defined. Land managers must find a balance between the negative impacts of prescribed fire emissions on visibility and air quality and the need to prevent future catastrophic wildfire as well as manage ecosystems for habitat restoration or other purposes. This decision process requires accurate assessments of the visibility impacts of fire emissions, including BC and brown carbon, which in turn depend on their optical properties. We present recent laboratory and aircraft measurements of black carbon and aerosol optical properties emitted from biomass burning. All measurement campaigns included a single particle soot photometer (SP2) instrument capable of providing size-resolved measurements of BC mass and number distributions and mixing state, which are needed to separate the BC and brown carbon contributions to total light absorption. The laboratory experiments also included a three-wavelength photoacoustic spectrometer that provided accurate measurements of aerosol light absorption. The laboratory systems also characterized emissions after they had been treated with a thermal denuder to remove semi-volatile coatings, allowing an assessment of the role of non-BC coatings on bulk aerosol optical properties. Emissions were also aged in an environmental smog chamber to examine the role of secondary aerosol production on aerosol optical properties.

  14. A wormhole-like porous carbon/magnetic particles composite as an efficient broadband electromagnetic wave absorber

    NASA Astrophysics Data System (ADS)

    Fang, Jiyong; Liu, Tao; Chen, Zheng; Wang, Yan; Wei, Wei; Yue, Xigui; Jiang, Zhenhua

    2016-04-01

    A method combining liquid-liquid phase separation and the pyrolysis process has been developed to fabricate the wormhole-like porous carbon/magnetic nanoparticles composite with a pore size of about 80 nm (WPC/MNPs-80). In this work, the porous structure was designed to enhance interaction between the electromagnetic (EM) wave and the absorber, while the magnetic nanoparticles were used to bring about magnetic loss ability. The structure, morphology, porosity and magnetic properties of WPC/MNPs-80 were investigated in detail. To evaluate its EM wave attenuation performance, the EM parameters of the absorber and wax composite were measured at 2-18 GHz. WPC/MNPs-80 has an excellent EM wave absorbency with a wide absorption band at a relatively low loading and thin absorber thickness. At the absorber thickness of 1.5 and 2.0 mm, minimum RL values of -29.2 and -47.9 dB were achieved with the RL below -10 dB in 12.8-18 and 9.2-13.3 GHz, respectively. The Co and Fe nanoparticles derived from the chemical reduction of Co0.2Fe2.8O4 can enhance the graphitization process of carbon and thus improve dielectric loss ability. Polarizations in the nanocomposite absorber also play an important role in EM wave absorption. Thus, EM waves can be effectively attenuated by dielectric loss and magnetic loss through multiple reflections and absorption in the porous structure. WPC/MNPs-80 could be an excellent absorber for EM wave attenuation; and the design strategy could be extended as a general method to synthesize other high-performance absorbers.A method combining liquid-liquid phase separation and the pyrolysis process has been developed to fabricate the wormhole-like porous carbon/magnetic nanoparticles composite with a pore size of about 80 nm (WPC/MNPs-80). In this work, the porous structure was designed to enhance interaction between the electromagnetic (EM) wave and the absorber, while the magnetic nanoparticles were used to bring about magnetic loss ability. The structure

  15. Multiscale Assembly of Grape-Like Ferroferric Oxide and Carbon Nanotubes: A Smart Absorber Prototype Varying Temperature to Tune Intensities.

    PubMed

    Lu, Ming-Ming; Cao, Mao-Sheng; Chen, Yi-Hua; Cao, Wen-Qiang; Liu, Jia; Shi, Hong-Long; Zhang, De-Qing; Wang, Wen-Zhong; Yuan, Jie

    2015-09-01

    Ideal electromagnetic attenuation material should not only shield the electromagnetic interference but also need strong absorption. Lightweight microwave absorber with thermal stability and high efficiency is a highly sought-after goal of researchers. Tuning microwave absorption to meet the harsh requirements of thermal environments has been a great challenge. Here, grape-like Fe3O4-multiwalled carbon nanotubes (MWCNTs) are synthesized, which have unique multiscale-assembled morphology, relatively uniform size, good crystallinity, high magnetization, and favorable superparamagnetism. The Fe3O4-MWCNTs is proven to be a smart microwave-absorber prototype with tunable high intensities in double belts in the temperature range of 323-473 K and X band. Maximum absorption in two absorbing belts can be simultaneously tuned from ∼-10 to ∼-15 dB and from ∼-16 to ∼-25 dB by varying temperature, respectively. The belt for reflection loss ≤-20 dB can almost cover the X band at 323 K. The tunable microwave absorption is attributed to effective impedance matching, benefiting from abundant interfacial polarizations and increased magnetic loss resulting from the grape-like Fe3O4 nanocrystals. Temperature adjusts the impedance matching by changing both the dielectric and magnetic loss. The special assembly of MWCNTs and magnetic loss nanocrystals provides an effective pathway to realize excellent absorbers at elevated temperature.

  16. Thermally-Resilient, Broadband Optical Absorber from UV-to-IR Derived from Carbon Nanostructures and Method of Making the Same

    NASA Technical Reports Server (NTRS)

    Kaul, Anupama B. (Inventor); Coles, James B. (Inventor)

    2015-01-01

    A monolithic optical absorber and methods of making same. The monolithic optical absorber uses an array of mutually aligned carbon nanotubes that are grown using a PECVD growth process and a structure that includes a conductive substrate, a refractory template layer and a nucleation layer. Monolithic optical absorbers made according to the described structure and method exhibit high absorptivity, high site densities (greater than 10.sup.9 nanotubes/cm.sup.2), very low reflectivity (below 1%), and high thermal stability in air (up to at least 400.degree. C.). The PECVD process allows the application of such absorbers in a wide variety of end uses.

  17. Carbon dioxide absorber and regeneration assemblies useful for power plant flue gas

    DOEpatents

    Vimalchand, Pannalal; Liu, Guohai; Peng, Wan Wang

    2012-11-06

    Disclosed are apparatus and method to treat large amounts of flue gas from a pulverized coal combustion power plant. The flue gas is contacted with solid sorbents to selectively absorb CO.sub.2, which is then released as a nearly pure CO.sub.2 gas stream upon regeneration at higher temperature. The method is capable of handling the necessary sorbent circulation rates of tens of millions of lbs/hr to separate CO.sub.2 from a power plant's flue gas stream. Because pressurizing large amounts of flue gas is cost prohibitive, the method of this invention minimizes the overall pressure drop in the absorption section to less than 25 inches of water column. The internal circulation of sorbent within the absorber assembly in the proposed method not only minimizes temperature increases in the absorber to less than 25.degree. F., but also increases the CO.sub.2 concentration in the sorbent to near saturation levels. Saturating the sorbent with CO.sub.2 in the absorber section minimizes the heat energy needed for sorbent regeneration. The commercial embodiments of the proposed method can be optimized for sorbents with slower or faster absorption kinetics, low or high heat release rates, low or high saturation capacities and slower or faster regeneration kinetics.

  18. Secondary brown carbon - Formation of light-absorbing compounds in atmospheric particulates from selected dicarbonyls and amines

    NASA Astrophysics Data System (ADS)

    Kampf, Christopher; Filippi, Alexander; Hoffmann, Thorsten

    2015-04-01

    One of the main open questions regarding organic compounds in atmospheric chemistry today is related to the formation of optically-active compounds and the occurrence of so called brown carbon (Andreae and Gelencsér, 2006). While organic compounds in ambient fine particles for decades have been assumed to not absorb solar radiation, thus resulting in a net cooling effect on climate (IPCC, 2007), it is now generally accepted that a continuum of light-absorbing carbonaceous species is present in fine aerosols (Pöschl, 2003). In this study, light-absorbing compounds from reactions between dicarbonyl compounds, i.e., glyoxal, methylglyoxal, acetylacetone, 2,3-butanedione, 2,5-hexanedione, and glutaraldehyde, and amine species, i.e., ammonia and glycine, were investigated at atmospherically relevant concentrations in bulk solution experiments mimicking atmospheric particulates. Product analyses were performed using UV/Vis spectrophotometry and (ultra) high performance liquid chromatography coupled to diode array detection and ion trap mass spectrometry (HPLC-DAD-ESI-MS/MS), as well as ultra-high resolution (Orbitrap) mass spectrometry (UHPLC-ESI-HRMS/MS). We demonstrate that light-absorbing compounds are formed from a variety of atmospherically relevant dicarbonyls via particle phase reactions with amine nucleophiles. Single dicarbonyl and mixed dicarbonyl experiments were performed and products were analyzed. The reaction products are suggested to be cyclic nitrogen containing compounds such as imidazoles or dihydropyridines as well as open chain compounds resulting from aldol condensation reactions. Further, the reactive turnover was found to be higher at increasing pH values. The aforementioned processes may be of higher relevance in regions with high aerosol pH, e.g., resulting from high ammonia emissions as for example in northern India (Clarisse et al., 2009). References Andreae, M.O., and Gelencsér, A. (2006): Black carbon or brown carbon? The nature of light-absorbing

  19. Particles of spilled oil-absorbing carbon in contact with water

    DOEpatents

    Muradov, Nazim

    2011-03-29

    Hydrogen generator coupled to or integrated with a fuel cell for portable power applications. Hydrogen is produced via thermocatalytic decomposition (cracking, pyrolysis) of hydrocarbon fuels in oxidant-free environment. The apparatus can utilize a variety of hydrocarbon fuels, including natural gas, propane, gasoline, kerosene, diesel fuel, crude oil (including sulfurous fuels). The hydrogen-rich gas produced is free of carbon oxides or other reactive impurities, so it could be directly fed to any type of a fuel cell. The catalysts for hydrogen production in the apparatus are carbon-based or metal-based materials and doped, if necessary, with a sulfur-capturing agent. Additionally disclosed are two novel processes for the production of two types of carbon filaments, and a novel filamentous carbon product. Carbon particles with surface filaments having a hydrophobic property of oil film absorption, compositions of matter containing those particles, and a system for using the carbon particles for cleaning oil spills.

  20. Carbon nanotube scaffolds with controlled porosity as electromagnetic absorbing materials in the gigahertz range.

    PubMed

    González, M; Crespo, M; Baselga, J; Pozuelo, J

    2016-05-19

    Control of the microscopic structure of CNT nanocomposites allows modulation of the electromagnetic shielding in the gigahertz range. The porosity of CNT scaffolds has been controlled by two freezing protocols and a subsequent lyophilization step: fast freezing in liquid nitrogen and slow freezing at -20 °C. Mercury porosimetry shows that slowly frozen specimens present a more open pore size (100-150 μm) with a narrow distribution whereas specimens frozen rapidly show a smaller pore size and a heterogeneous distribution. 3D-scaffolds containing 3, 4, 6 and 7% CNT were infiltrated with epoxy and specimens with 2, 5 and 8 mm thicknesses were characterized in the GHz range. Samples with the highest pore size and porosity presented the lowest reflected power (about 30%) and the highest absorbed power (about 70%), which allows considering them as electromagnetic radiation absorbing materials.

  1. Ultrashort stretched-pulse L-band laser using carbon-nanotube saturable absorber.

    PubMed

    Kwon, Won Sik; Lee, Hyub; Kim, Jin Hwan; Choi, Jindoo; Kim, Kyung-Soo; Kim, Soohyun

    2015-03-23

    In the paper, a passively mode-locked erbium-doped fiber ring laser in the long-wavelength band (L-band) is presented by using a single-wall nanotube saturable absorber (SWNT-SA). The optical properties of the SWNT-SA are compared with those in the C-band in view of the absorbance spectrum and the power-dependent transmittance of the SWNT-SA film. The effects of the net cavity dispersion and the length of the erbium-doped fiber (EDF) on L-band stretched pulse generation are discussed. The designed stretched-pulse L-band laser has a net dispersion of 0.017-ps2 and generates ultrashort (110 fs), broad-spectrum (41 nm) pulses with a signal-to-noise ratio over 70 dB.

  2. Carbon nanotube scaffolds with controlled porosity as electromagnetic absorbing materials in the gigahertz range.

    PubMed

    González, M; Crespo, M; Baselga, J; Pozuelo, J

    2016-05-19

    Control of the microscopic structure of CNT nanocomposites allows modulation of the electromagnetic shielding in the gigahertz range. The porosity of CNT scaffolds has been controlled by two freezing protocols and a subsequent lyophilization step: fast freezing in liquid nitrogen and slow freezing at -20 °C. Mercury porosimetry shows that slowly frozen specimens present a more open pore size (100-150 μm) with a narrow distribution whereas specimens frozen rapidly show a smaller pore size and a heterogeneous distribution. 3D-scaffolds containing 3, 4, 6 and 7% CNT were infiltrated with epoxy and specimens with 2, 5 and 8 mm thicknesses were characterized in the GHz range. Samples with the highest pore size and porosity presented the lowest reflected power (about 30%) and the highest absorbed power (about 70%), which allows considering them as electromagnetic radiation absorbing materials. PMID:27152472

  3. Passively Q-switched Nd:YCOB laser with a single-walled carbon nanotube saturable absorber

    NASA Astrophysics Data System (ADS)

    Li, Jian; Song, Yanrong; Yu, Zhenhua; Tian, Cuicui; Li, Yanlin; Wang, Yonggang

    2012-11-01

    A passively Single-walled carbon nanotube is a new material as a saturable absorber to obtain a Q-switched laser or a mode-locked laser because of it's broadband absorption wavelength and cheaper price comparing with SESAM. Here, by using a single-walled carbon nanotube as saturable absorber (SWCNT-SA), a passively Q-switched Nd:YCOB (Nd3+:YCa4O(BO3)3)laser was realized at 1085.3nm pumped by a 808 nm diode laser .The fluorescence spectrum of Nd:YCOB crystal near 1.06 μm. The output power of the Q-switched laser of 175 mW were obtained at the pump power of 9W in a V-type cavity. The range of the repetition rate was from 35 kHz to 62.5 kHz and pulse width was 1.6μs (FWHM) at 62.5 kHz.

  4. Method 415.3, Rev. 1.2: Determination of Total Organic Carbon and Specific UV Absorbance at 254 nm in Source Water and Drinking Water

    EPA Science Inventory

    This method provides procedures for the determination of total organic carbon (TOC), dissolved organic carbon (DOC), and UV absorption at 254 nm (UVA) in source waters and drinking waters. The DOC and UVA determinations are used in the calculation of the Specific UV Absorbance (S...

  5. Carbon nanotube scaffolds with controlled porosity as electromagnetic absorbing materials in the gigahertz range

    NASA Astrophysics Data System (ADS)

    González, M.; Crespo, M.; Baselga, J.; Pozuelo, J.

    2016-05-01

    Control of the microscopic structure of CNT nanocomposites allows modulation of the electromagnetic shielding in the gigahertz range. The porosity of CNT scaffolds has been controlled by two freezing protocols and a subsequent lyophilization step: fast freezing in liquid nitrogen and slow freezing at -20 °C. Mercury porosimetry shows that slowly frozen specimens present a more open pore size (100-150 μm) with a narrow distribution whereas specimens frozen rapidly show a smaller pore size and a heterogeneous distribution. 3D-scaffolds containing 3, 4, 6 and 7% CNT were infiltrated with epoxy and specimens with 2, 5 and 8 mm thicknesses were characterized in the GHz range. Samples with the highest pore size and porosity presented the lowest reflected power (about 30%) and the highest absorbed power (about 70%), which allows considering them as electromagnetic radiation absorbing materials.Control of the microscopic structure of CNT nanocomposites allows modulation of the electromagnetic shielding in the gigahertz range. The porosity of CNT scaffolds has been controlled by two freezing protocols and a subsequent lyophilization step: fast freezing in liquid nitrogen and slow freezing at -20 °C. Mercury porosimetry shows that slowly frozen specimens present a more open pore size (100-150 μm) with a narrow distribution whereas specimens frozen rapidly show a smaller pore size and a heterogeneous distribution. 3D-scaffolds containing 3, 4, 6 and 7% CNT were infiltrated with epoxy and specimens with 2, 5 and 8 mm thicknesses were characterized in the GHz range. Samples with the highest pore size and porosity presented the lowest reflected power (about 30%) and the highest absorbed power (about 70%), which allows considering them as electromagnetic radiation absorbing materials. Electronic supplementary information (ESI) available: Scheme of hydrogenated derivative of diglycidyl ether of bisphenol-A (HDGEBA) and m-xylylenediamine; X-ray diffractograms of pristine CNT

  6. Radiation absorbed dose estimates for [1-carbon-11]-glucose in adults: The effects of hyperinsulinemia

    SciTech Connect

    Powers, W.J. |

    1996-10-01

    As preparation for studies of blood-brain glucose transport in diabetes mellitus, radiation absorbed dose estimates from intravenous administration of [1-{sup 11}C]-glucose for 24 internal organs, lens, blood and total body were calculated for three physiologic conditions: euinsulinemic euglycemia, hyperinsulinemic euglycemia and hyperinsulinemic hyperglycemia. Cumulated activities in blood, insulin-independent and insulin-dependent compartments were calculated from blood time-activity curves in normal human volunteers and macaques. Apportionment of cumulated activity to individual organs in insulin-dependent and insulin-independent compartments was based on previously published data. Absorbed doses were calculated with the computer program MIRDOSE 3 for the 70-kg adult phantom. S for blood was calculated separately. The heart wall, lungs and spleen were the organs receiving the highest dose. The effect of hyperinsulinemia was demonstrated by the increase in adsorbed dose to the muscle, heart and blood with a decrease to other internal organs. This effect was more pronounced during hyperinsulinemic hyperglycemia. Hyperinsulinemia produced a decrease in effective dose due to the decrease in cumulated activity in organs with specified weighting factors greater than 0.05. The effective dose per study for [1-{sup 11}C]-glucose is comparable to that reported for 2-deoxy-[2-{sup 18}F]-glucose. 43 refs., 1 fig., 4 tabs.

  7. Laboratory differential simulation design method of pressure absorbers for carbonization of phenolate solution by carbon dioxide in coal-tar processing

    SciTech Connect

    Linek, V.; Sinkule, J.; Moucha, T.; Rejl, J.F.

    2009-01-15

    A laboratory differential simulation method is used for the design of carbonization columns at coal-tar processing in which phenols are regenerated from phenolate solution by carbon dioxide absorption. The design method is based on integration of local absorption rates of carbon dioxide along the column. The local absorption rates into industrial phenolate mixture are measured in a laboratory model contactor for various compositions of the gas and liquid phases under the conditions that ensure the absorption rates in the laboratory absorber simulate the local rates in the industrial column. On the bases of the calculations, two-step carbonization columns were designed for 30000 t/year of the phenolate solution treatment by carbon dioxide. The absorption proceeds at higher pressure of 500 kPa and temperatures from 50 to 65 C, pure carbon dioxide is used and toluene is added. These conditions have the following favourable effects: (I) significant size reduction of the columns, (ii) it is possible to process more concentrated solutions without danger of silting the columns by crystallization of NaHCO{sub 3} on the packing. (iii) small amount of inert gas is released, (iv) lower alkalinity and better separability of the organic phase (phenols with toluene) from water phase (soda or bicarbonate solution) in separators.

  8. Remote sensing of soot carbon - Part 1: Distinguishing different absorbing aerosol species

    NASA Astrophysics Data System (ADS)

    Schuster, G. L.; Dubovik, O.; Arola, A.

    2016-02-01

    We describe a method of using the Aerosol Robotic Network (AERONET) size distributions and complex refractive indices to retrieve the relative proportion of carbonaceous aerosols and free iron minerals (hematite and goethite). We assume that soot carbon has a spectrally flat refractive index and enhanced imaginary indices at the 440 nm wavelength are caused by brown carbon or hematite. Carbonaceous aerosols can be separated from dust in imaginary refractive index space because 95 % of biomass burning aerosols have imaginary indices greater than 0.0042 at the 675-1020 nm wavelengths, and 95 % of dust has imaginary refractive indices of less than 0.0042 at those wavelengths. However, mixtures of these two types of particles can not be unambiguously partitioned on the basis of optical properties alone, so we also separate these particles by size. Regional and seasonal results are consistent with expectations. Monthly climatologies of fine mode soot carbon are less than 1.0 % by volume for West Africa and the Middle East, but the southern African and South American biomass burning sites have peak values of 3.0 and 1.7 %. Monthly averaged fine mode brown carbon volume fractions have a peak value of 5.8 % for West Africa, 2.1 % for the Middle East, 3.7 % for southern Africa, and 5.7 % for South America. Monthly climatologies of free iron volume fractions show little seasonal variability, and range from about 1.1 to 1.7 % for coarse mode aerosols in all four study regions. Finally, our sensitivity study indicates that the soot carbon retrieval is not sensitive to the component refractive indices or densities assumed for carbonaceous and free iron aerosols, and the retrieval differs by only 15.4 % when these parameters are altered from our chosen baseline values. The total uncertainty of retrieving soot carbon mass is ˜ 50 % (when uncertainty in the AERONET product and mixing state is included in the analysis).

  9. Chemical characteristics and light-absorbing property of water-soluble organic carbon in Beijing: Biomass burning contributions

    NASA Astrophysics Data System (ADS)

    Yan, Caiqing; Zheng, Mei; Sullivan, Amy P.; Bosch, Carme; Desyaterik, Yury; Andersson, August; Li, Xiaoying; Guo, Xiaoshuang; Zhou, Tian; Gustafsson, Örjan; Collett, Jeffrey L.

    2015-11-01

    Emissions from biomass burning contribute significantly to water-soluble organic carbon (WSOC) and light-absorbing organic carbon (brown carbon). Ambient atmospheric samples were collected at an urban site in Beijing during winter and summer, along with source samples from residential crop straw burning. Carbonaceous aerosol species, including organic carbon (OC), elemental carbon (EC), WSOC and multiple saccharides as well as water-soluble potassium (K+) in PM2.5 (fine particulate matter with size less than 2.5 μm) were measured. Chemical signatures of atmospheric aerosols in Beijing during winter and summer days with significant biomass burning influence were identified. Meanwhile, light absorption by WSOC was measured and quantitatively compared to EC at ground level. The results from this study indicated that levoglucosan exhibited consistently high concentrations (209 ± 145 ng m-3) in winter. Ratios of levoglucosan/mannosan (L/M) and levoglucosan/galacosan (L/G) indicated that residential biofuel use is an important source of biomass burning aerosol in winter in Beijing. Light absorption coefficient per unit ambient WSOC mass calculated at 365 nm is approximately 1.54 ± 0.16 m2 g-1 in winter and 0.73 ± 0.15 m2 g-1 in summer. Biomass burning derived WSOC accounted for 23 ± 7% and 16 ± 7% of total WSOC mass, and contributed to 17 ± 4% and 19 ± 5% of total WSOC light absorption in winter and summer, respectively. It is noteworthy that, up to 30% of total WSOC light absorption was attributed to biomass burning in significant biomass-burning-impacted summer day. Near-surface light absorption (over the range 300-400 nm) by WSOC was about ∼40% of that by EC in winter and ∼25% in summer.

  10. Noncovalent functionalization of carbon nanotubes by fluorescent polypeptides: supramolecular conjugates with pH-dependent absorbance and fluorescence.

    PubMed

    Huang, Xin Hua; Johnson, Renjith P; Song, Song I; Kim, Il

    2013-11-01

    Fluorescent cut single-walled carbon nanotube (CSWCNT) were prepared by simply mixing CSWCNT with water soluble rhodamine 6G (Rh6G) conjugated poly(3,4-dihydroxyphenylalanine) and poly(L-tyrosine) to form highly stable product with good dispersity in buffer solution. The optical absorbance and fluorescence spectra of the resulting fluorescent CSWCNT display interesting pH-dependent optical properties, emitting strong fluorescence only in acidic environment. Considering the extracellular pH of tumor tissue is acidic, the pH-sensitive conjugates have advantages to sense tumor cells selectively, enabling it to be utilized as a biosensor for detecting cancer cells. The protocol employed to functionalize the CSWCNT with Rh6G conjugated polypeptides in aqueous solution is proven to be direct, fast and easily scalable. PMID:24245264

  11. Dual-wavelength synchronous mode-locked Yb:LSO laser using a double-walled carbon nanotube saturable absorber.

    PubMed

    Feng, Chao; Hou, Wei; Yang, Jimin; Liu, Jie; Zheng, Lihe; Su, Liangbi; Xu, Jun; Wang, Yonggang

    2016-05-01

    A dual-wavelength, passively mode-locked Yb:LSO laser was demonstrated using a double-walled carbon nanotube as a saturable absorber. The maximum average output power of the laser was 1.34 W at the incident pump power of 9.94 W. The two central wavelengths were 1057 and 1058 nm. The corresponding pulse duration of the autocorrelation interference pattern was about 15 ps, while the beat pulse repetition rate was 0.17 THz and the width of one beat pulse about 2 ps. When the incident pump power was above 10.25 W, a multiwavelength mode-locked oscillation phenomenon was observed. After employing a pair of SF10 prisms, a 1058.7 nm single-wavelength mode-locked laser was obtained with a pulse width of 7 ps. PMID:27140382

  12. Fragmentation of 200 and 244 MEV/u Carbon Beams in Thick Tissue-Like Absorbers

    NASA Technical Reports Server (NTRS)

    Golovchenko, A. N.; Skvarc, J.; Ilic, R.; Sihver, L.; Bamblevski, V. P.; Tretyakova, S. P.; Schardt, D.; Tripathi, R. K.; Wilson, J. W.; Bimbot, R.

    1999-01-01

    Stacks consisting of thin CR-39 sheets sandwiched between thick lucite and water absorbers were perpendicularly bombarded by C-12 ions at 200 and 244 MeV/u. Track radius distributions representing the charge composition of the fragmented beams were automatically measured by a particle track analysis system. After analysis of the nuclear charge distributions, the total charge removal cross-sections and elemental production cross-sections of fragments with atomic numbers from 5 to 3, were obtained down to the lower energies (approx. 50 and 100 MeV/u, respectively). It has been found that the measured total charge removal cross-section agrees with theoretical predictions within approx. 10% and very well with previous experiments in corresponding energy regions. Two model calculations for production of B fragment are in good agreement with our measured data while a third model overestimates it by approx. 12%. Theoretical cross-sections for Be and Li fragments differ strongly among the different models and from measured values.

  13. GPM Science Status Fourteen Months after Launch

    NASA Astrophysics Data System (ADS)

    Skofronick Jackson, Gail; Huffman, George

    2015-04-01

    Water is fundamental to life on Earth. Knowing where and how much rain and snow falls globally is vital to understanding how weather and climate impact both our environment and Earth's water and energy cycles, including effects on agriculture, fresh water availability, and responses to natural disasters. The Global Precipitation Measurement (GPM) Mission, launched February 27, 2014, is an international satellite mission to unify and advance precipitation measurements from a constellation of research and operational sensors to provide "next-generation" precipitation products. The joint NASA-JAXA GPM Core Observatory serves as the cornerstone and anchor to unite the constellation radiometers. The GPM Core Observatory carries a Ku/Ka-band Dual-frequency Precipitation Radar (DPR) and a multi-channel (10-183 GHz) GPM Microwave Radiometer (GMI). Furthermore, since light rain and falling snow account for a significant fraction of precipitation occurrence in middle and high latitudes, the GPM instruments extend the capabilities of the TRMM sensors to detect falling snow, measure light rain, and provide, for the first time, quantitative estimates of microphysical properties of precipitation particles. As a science mission with integrated application goals, GPM is designed to (1) advance precipitation measurement capability from space through combined use of active and passive microwave sensors, (2) advance the knowledge of the global water/energy cycle and freshwater availability through better description of the space-time variability of global precipitation, and (3) improve weather, climate, and hydrological prediction capabilities through more accurate and frequent measurements of instantaneous precipitation rates and time-integrated rainfall accumulation. Since launch, the instruments have been collecting outstanding precipitation data. New scientific insights resulting from these fourteen months of GPM data, an overview of the GPM mission concept and science activities

  14. Hydrocarbon pyrolysis reactor experimentation and modeling for the production of solar absorbing carbon nanoparticles

    NASA Astrophysics Data System (ADS)

    Frederickson, Lee Thomas

    Much of combustion research focuses on reducing soot particulates in emissions. However, current research at San Diego State University (SDSU) Combustion and Solar Energy Laboratory (CSEL) is underway to develop a high temperature solar receiver which will utilize carbon nanoparticles as a solar absorption medium. To produce carbon nanoparticles for the small particle heat exchange receiver (SPHER), a lab-scale carbon particle generator (CPG) has been built and tested. The CPG is a heated ceramic tube reactor with a set point wall temperature of 1100-1300°C operating at 5-6 bar pressure. Natural gas and nitrogen are fed to the CPG where natural gas undergoes pyrolysis resulting in carbon particles. The gas-particle mixture is met downstream with dilution air and sent to the lab scale solar receiver. To predict soot yield and general trends in CPG performance, a model has been setup in Reaction Design CHEMKIN-PRO software. One of the primary goals of this research is to accurately measure particle properties. Mean particle diameter, size distribution, and index of refraction are calculated using Scanning Electron Microscopy (SEM) and a Diesel Particulate Scatterometer (DPS). Filter samples taken during experimentation are analyzed to obtain a particle size distribution with SEM images processed in ImageJ software. These results are compared with the DPS, which calculates the particle size distribution and the index of refraction from light scattering using Mie theory. For testing with the lab scale receiver, a particle diameter range of 200-500 nm is desired. Test conditions are varied to understand effects of operating parameters on particle size and the ability to obtain the size range. Analysis of particle loading is the other important metric for this research. Particle loading is measured downstream of the CPG outlet and dilution air mixing point. The air-particle mixture flows through an extinction tube where opacity of the mixture is measured with a 532 nm

  15. Light-absorbing properties of ambient black carbon and brown carbon from fossil fuel and biomass burning sources

    NASA Astrophysics Data System (ADS)

    Healy, R. M.; Wang, J. M.; Jeong, C.-H.; Lee, A. K. Y.; Willis, M. D.; Jaroudi, E.; Zimmerman, N.; Hilker, N.; Murphy, M.; Eckhardt, S.; Stohl, A.; Abbatt, J. P. D.; Wenger, J. C.; Evans, G. J.

    2015-07-01

    The optical properties of ambient black carbon-containing particles and the composition of their associated coatings were investigated at a downtown site in Toronto, Canada, for 2 weeks in June 2013. The objective was to assess the relationship between black carbon (BC) coating composition/thickness and absorption. The site was influenced by emissions from local vehicular traffic, wildfires in Quebec, and transboundary fossil fuel combustion emissions in the United States. Mass concentrations of BC and associated nonrefractory coatings were measured using a soot particle-aerosol mass spectrometer (SP-AMS), while aerosol absorption and scattering were measured using a photoacoustic soot spectrometer (PASS). Absorption enhancement was investigated both by comparing ambient and thermally denuded PASS absorption data and by relating absorption data to BC mass concentrations measured using the SP-AMS. Minimal absorption enhancement attributable to lensing at 781 nm was observed for BC using both approaches. However, brown carbon was detected when the site was influenced by wildfire emissions originating in Quebec. BC coating to core mass ratios were highest during this period (~7), and while direct absorption by brown carbon resulted in an absorption enhancement at 405 nm (>2.0), no enhancement attributable to lensing at 781 nm was observed. The efficiency of BC coating removal in the denuder decreased substantially when wildfire-related organics were present and may represent an obstacle for future similar studies. These findings indicate that BC absorption enhancement due to lensing is minimal for downtown Toronto, and potentially other urban locations, even when impacted by long-range transport events.

  16. Estimating absorbing black carbon and organic carbon optical properties from AERONET and MISR data over East Asia

    NASA Astrophysics Data System (ADS)

    Chen, B.; Ramanathan, V.; Huang, J.; Zhang, G. J.; Xu, Y.

    2011-12-01

    The radiative forcing due to carbonaceous aerosols is one of the largest source of uncertainties in global and regional climate change. Black carbon and organic carbon from biomass and fossil fuel are two major types of carbonaceous aerosols. In this study we use available ground based and satellite observations to infer the optical properties of black and organic carbon. NASA's AERONET and MISR data over East Asia provide the observational basis. We use the spectral variations in the observed aerosol extinction optical depth and absorption optical depth to categorize the optical properties including their mixing state with other aerosols such as dust and other inorganic aerosols. We create 8 different categories of aerosol mixtures: Dust, Biomass Burning, Fossil Fuel, Aged Fossil Fuel, Mixed Dust with Biomass Burning, Mixed Dust with Aged Fossil Fuel, Mixed Biomass Burning with Fossil Fuel, and Mixed Dust, Biomass Burning, with Fossil Fuel, over the following 6 regions of East Asia: Nepal, Gobi, North Industrial China, South Industrial China, Southeast Asia, and Korea/Japan. Our results are compared with independent surface observations over China using Aethalometers and Single Particle Soot Photometers.

  17. Preparation of nickel oxide powder by decomposition of basic nickel carbonate in microwave field with nickel oxide seed as a microwave absorbing additive

    SciTech Connect

    Wang, Y.; Ke, J.J.

    1996-01-01

    Nickel oxide (NiO) powder is prepared by decomposition of basic nickel carbonate (mNi(OH){sub 2}{center_dot}nNiCO{sub 3}{center_dot}xH{sub 2}O) in microwave field with NiO seed as a microwave absorbing additive. Basic nickel carbonate (BNC) can decompose completely to NiO powder in a short time. Firstly, the heat for BNC decomposition is provided by NiO seed which absorbs microwave and then by NiO product which also absorbs microwave. The decomposition process of BNC can be accelerated by increasing the amount of BNC, the amount of NiO seed or the microwave field power. The size of NiO powder product is about 180nm when the size of BNC used is about 160nm.

  18. Mode-locked ytterbium fiber lasers using a large modulation depth carbon nanotube saturable absorber without an additional spectral filter

    NASA Astrophysics Data System (ADS)

    Pan, Y. Z.; Miao, J. G.; Liu, W. J.; Huang, X. J.; Wang, Y. B.

    2014-09-01

    We demonstrate an all-normal-dispersion ytterbium (Yb)-doped fiber laser mode-locked by a higher modulation depth carbon nanotube saturable absorber (CNT-SA) based on an evanescent field interaction scheme. The laser cavity consists of pure normal dispersion fibers without dispersion compensation and an additional spectral filter. It is exhibited that the higher modulation depth CNT-SA could contribute to stabilize the mode-locking operation within a limited range of pump power and generate the highly chirped pulses with a high-energy level in the cavity with large normal dispersion and strong nonlinearity. Stable mode-locked pulses with a maximal energy of 29 nJ with a 5.59 MHz repetition rate at the operating wavelength around 1085 nm have been obtained. The maximal time-bandwidth product is 262.4. The temporal and spectral characteristics of pulses versus pump power are demonstrated. The experimental results suggest that the CNT-SA provides a sufficient nonlinear loss to compensate high nonlinearity and catch up the gain at a different pump power and thus leads to the stable mode locking.

  19. Influence of the CO2 absorbent monoethanolamine on growth and carbon fixation by the green alga Scenedesmus sp.

    PubMed

    Choi, Wookjin; Kim, Garam; Lee, Kisay

    2012-09-01

    The influence of monoethanolamine (MEA) as a CO(2) absorbent on photoautotrophic culture of CO(2)-fixing microalgae was investigated. When 300 ppm MEA (4.92 mM) was added to blank culture medium, the dissolved inorganic carbon and the molar absorption ratio increased to 51.0mg/L and 0.34 mol CO2 = mol MEA, respectively, which was an almost 6-fold increase in CO(2) solubility. When free MEA up to 300 mg/L was added to a green alga Scenedesmus sp. culture that was supplied 5% (v/v) CO(2) at 0.1 vvm, both cell growth rate and final cell density were enhanced compared to when no MEA was added. The cell growth rate reached 288.6 mg/L/d, which was equivalent to 539.6 mg-CO(2)/L/d as a CO(2)-fixation rate and enhancement of about 63.0% compared to not adding MEA. Chlorophyll-a content and nitrate consumption rate increased correspondingly. MEA doses higher than 400mg/L inhibited cell growth, probably due to toxicity of the carbamate intermediate.

  20. Pulse width shaping of passively mode-locked soliton fiber laser via polarization control in carbon nanotube saturable absorber.

    PubMed

    Jeong, Hwanseong; Choi, Sun Young; Rotermund, Fabian; Yeom, Dong-Il

    2013-11-01

    We report the continuous control of the pulse width of a passively mode-locked fiber laser via polarization state adjustment in a single-walled carbon nanotube saturable absorber (SWCNT-SA). The SWCNT, coated on the side-polished fiber, was fabricated with optimized conditions and used for stable mode-locking of the fiber laser without Q-switching instabilities for any polarization state of the laser intra-cavity. The 3-dB spectral bandwidth of the mode-locked pulses can be continuously tuned from 1.8 nm to 8.5 nm with the polarization control for a given laser cavity length and applied pump power. A pulse duration varying from 470 fs to 1.6 ps was also observed with a change in the spectral bandwidth. The linear and the nonlinear transmission properties of the SA were analyzed, and found to exhibit different modulation depths depending on the input polarization state in the SA. The largest modulation depth of the SA was observed at the polarization state of the transverse electric mode that delivers shortest pulses at the laser output.

  1. Pulse width shaping of passively mode-locked soliton fiber laser via polarization control in carbon nanotube saturable absorber.

    PubMed

    Jeong, Hwanseong; Choi, Sun Young; Rotermund, Fabian; Yeom, Dong-Il

    2013-11-01

    We report the continuous control of the pulse width of a passively mode-locked fiber laser via polarization state adjustment in a single-walled carbon nanotube saturable absorber (SWCNT-SA). The SWCNT, coated on the side-polished fiber, was fabricated with optimized conditions and used for stable mode-locking of the fiber laser without Q-switching instabilities for any polarization state of the laser intra-cavity. The 3-dB spectral bandwidth of the mode-locked pulses can be continuously tuned from 1.8 nm to 8.5 nm with the polarization control for a given laser cavity length and applied pump power. A pulse duration varying from 470 fs to 1.6 ps was also observed with a change in the spectral bandwidth. The linear and the nonlinear transmission properties of the SA were analyzed, and found to exhibit different modulation depths depending on the input polarization state in the SA. The largest modulation depth of the SA was observed at the polarization state of the transverse electric mode that delivers shortest pulses at the laser output. PMID:24216924

  2. Identification of absorbing organic (brown carbon) aerosols through Sun Photometry: results from AEROCAN / AERONET stations in high Arctic and urban Locations

    NASA Astrophysics Data System (ADS)

    Kerr, G. H.; Chaubey, J. P.; O'Neill, N. T.; Hayes, P.; Atkinson, D. B.

    2014-12-01

    Light absorbing organic aerosols or brown carbon (BrC) aerosols are prominent species influencing the absorbing aerosol optical depth (AAOD) of the total aerosol optical depth (AOD) in the UV wavelength region. They, along with dust, play an important role in modifying the spectral AAOD and the spectral AOD in the UV region: this property can be used to discriminate BrC aerosols from both weakly absorbing aerosols such as sulfates as well as strongly absorbing aerosols such as black carbon (BC). In this study we use available AERONET inversions (level 1.5) retrieved for the measuring period from 2009 to 2013, for the Arctic region (Eureka, Barrow and Hornsund), Urban/ Industrial regions (Kanpur, Beijing), and the forest regions (Alta Foresta and Mongu), to identify BrC aerosols. Using Dubovik's inversion algorithm results, we analyzed parameters that were sensitive to BrC presence, notably AAOD, AAODBrC estimated using the approach of Arola et al. [2011], the fine-mode-aerosol absorption derivative (αf, abs) and the fine-mode-aerosol absorption 2nd derivative (αf, abs'), all computed at a near UV wavelength (440 nm). Temporal trends of these parameters were investigated for all test stations and compared to available volume sampling surface data as a means of validating / evaluating the sensitivity of ostensible sunphotometer indicators of BrC aerosols to the presence of BrC as measured using independent indicators. Reference: Arola, A., Schuster, G., Myhre, G., Kazadzis, S., Dey, S., and Tripathi, S. N.: Inferring absorbing organic carbon content from AERONET data, Atmos. Chem. Phys., 11, 215-225, doi:10.5194/acp-11-215-2011, 2011

  3. Fabrication and electromagnetic characteristics of microwave absorbers containing Li0.35Zn0.3Fe2.35O4 micro-belts and nickel-coated carbon fibers

    NASA Astrophysics Data System (ADS)

    Zhao, Bin; Wang, Qilei; Zhang, Cunrui

    2013-11-01

    Li0.35Zn0.3Fe2.35O4 micro-belts were prepared by cotton template. The nickel-coated carbon fibers were obtained by electroless plating method. The formation mechanism of the ferrite micro-belt was studied. The electromagnetic properties of the microwave absorbers were investigated in the frequency range of 30-6000 MHz. The double-layer absorbers have better microwave absorption properties than the nickel-coated carbon fibers single-layer absorbers and the microwave absorption properties of the composites are influenced by the thickness of the absorber.

  4. Single-walled carbon nanotube saturable absorber for a diode-pumped passively mode-locked Nd,Y:SrF2 laser

    NASA Astrophysics Data System (ADS)

    Li, Chun; Cai, Wei; Liu, Jie; Su, Liangbi; Jiang, Dapeng; Ma, Fengkai; Zhang, Qian; Xu, Jun; Wang, Yonggang

    2016-08-01

    A reflective single-walled carbon nanotube as saturable absorber has been firstly adopted to a passively mode-locked Nd,Y:SrF2 crystal. Without any dispersion compensation, the stably mode-locked laser delivers pulses with pulse width as short as 1.7 ps, repetition rate of 107.8 MHz and center wavelength of 1056 nm. The oscillator produces maximum average output power of 319 mW corresponding with a high slope efficiency of 20.2%. The single pulse energy and the peak power are 2.96 nJ and 1.74 kW, respectively. The experimental results show that single-walled carbon nanotube is an excellent saturable absorber for mode-locked lasers.

  5. Solar radiation absorbing material

    DOEpatents

    Googin, John M.; Schmitt, Charles R.; Schreyer, James M.; Whitehead, Harlan D.

    1977-01-01

    Solar energy absorbing means in solar collectors are provided by a solar selective carbon surface. A solar selective carbon surface is a microporous carbon surface having pores within the range of 0.2 to 2 micrometers. Such a surface is provided in a microporous carbon article by controlling the pore size. A thermally conductive substrate is provided with a solar selective surface by adhering an array of carbon particles in a suitable binder to the substrate, a majority of said particles having diameters within the range of about 0.2-10 microns.

  6. Electromagnetic and microwave-absorbing properties of magnetite decorated multiwalled carbon nanotubes prepared with poly(N-vinyl-2-pyrrolidone)

    SciTech Connect

    Zhao, Chunying; Zhang, Aibo; Zheng, Yaping; Luan, Jingfan

    2012-02-15

    Graphical abstract: The Fe{sub 3}O{sub 4}/MWNTs hybrids prepared with PVP achieve a maximum reflection loss is -35.8 dB at 8.56 GHz, and the bandwidth below -10 dB is more than 2.32 GHz. More importantly, a new reflection loss peak occurs at the frequency of 14.6 GHz, which indicates that the Fe{sub 3}O{sub 4}/MWNTs hybrids have better absorption properties in the high-frequency range. Highlight: Black-Right-Pointing-Pointer The Fe{sub 3}O{sub 4} decorated MWNTs hybrids were prepared using PVP as dispersant. Black-Right-Pointing-Pointer Many more Fe{sub 3}O{sub 4} particles were attached homogeneously on the surface of MWNTs. Black-Right-Pointing-Pointer The Fe{sub 3}O{sub 4}/MWNTs hybrids achieve a maximum reflection loss of -35.8 dB at 8.56 GHz. Black-Right-Pointing-Pointer A new reflection loss peak occurs at the high-frequency of 14.6 GHz. -- Abstract: The magnetite (Fe{sub 3}O{sub 4}) decorated multiwalled carbon nanotubes (MWNTs) hybrids were prepared by an in situ chemical precipitation method using poly(N-vinyl-2-pyrrolidone) (PVP) as dispersant. The structure and morphology of hybrids are characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy and transmission electron-microscopy (TEM). The TEM investigation shows that the Fe{sub 3}O{sub 4}/MWNTs hybrids exhibit less entangled structure and many more Fe{sub 3}O{sub 4} particles are attached homogeneously on the surface of MWNTs, which indicated that PVP can indeed help MWNTs to disperse in isolated form. The electromagnetic and absorbing properties were investigated in a frequency of 2-18 GHz. The results show that the Fe{sub 3}O{sub 4}/MWNTs hybrids exhibit a superparamagnetic behavior and possess a saturation magnetization of 22.9 emu/g. The maximum reflection loss is -35.8 dB at 8.56 GHz, and the bandwidth below -10 dB is more than 2.32 GHz. More importantly, a new reflection loss peak occurs at the frequency of 14.6 GHz, which indicates that the Fe{sub 3}O{sub 4}/MWNTs

  7. Damage tolerant light absorbing material

    DOEpatents

    Lauf, Robert J.; Hamby, Jr., Clyde; Akerman, M. Alfred; Seals, Roland D.

    1993-01-01

    A light absorbing article comprised of a composite of carbon-bonded carbon fibers, prepared by: blending carbon fibers with a carbonizable organic powder to form a mixture; dispersing the mixture into an aqueous slurry; vacuum molding the aqueous slurry to form a green article; drying and curing the green article to form a cured article; and, carbonizing the cured article at a temperature of at least about 1000.degree. C. to form a carbon-bonded carbon fiber light absorbing composite article having a bulk density less than 1 g/cm.sup.3.

  8. Damage tolerant light absorbing material

    DOEpatents

    Lauf, R.J.; Hamby, C. Jr.; Akerman, M.A.; Seals, R.D.

    1993-09-07

    A light absorbing article comprised of a composite of carbon-bonded carbon fibers, is prepared by: blending carbon fibers with a carbonizable organic powder to form a mixture; dispersing the mixture into an aqueous slurry; vacuum molding the aqueous slurry to form a green article; drying and curing the green article to form a cured article; and, carbonizing the cured article at a temperature of at least about 1000 C to form a carbon-bonded carbon fiber light absorbing composite article having a bulk density less than 1 g/cm[sup 3]. 9 figures.

  9. Comparison of metal oxide absorbents for regenerative carbon dioxide and water vapor removal for advanced portable life support systems

    NASA Technical Reports Server (NTRS)

    Stonesifer, Greg T.; Chang, Craig H.; Cusick, Robert J.; Hart, Joan M.

    1991-01-01

    Metal-oxide absorbents (MOAs) have a demonstrated capability for removal of both metabolic CO2 and H2O from breathing atmospheres, simplifying portable life support system (PLSS) design and affording reversible operation for regeneration. Attention is presently given to the comparative performance levels obtained by silver-oxide-based and silver/zinc-oxide-based systems, which also proved to be longer-lasting than the silver oxide-absorber system. The silver/zinc system is found to substantially simplify the ventilation loop of a prospective Space Station Freedom PLSS.

  10. Single- and double-walled carbon nanotube based saturable absorbers for passive mode-locking of an erbium-doped fiber laser

    NASA Astrophysics Data System (ADS)

    Cheng, Kuang-Nan; Lin, Yung-Hsiang; Lin, Gong-Ru

    2013-04-01

    The passive mode-locking of an erbium-doped fiber laser (EDFL) with a medium gain is demonstrated and compared by using three different types of carbon nanotubes (CNTs) doped in polyvinyl alcohol (PVA) films. Nano-scale clay is used to disperse the CNTs doped in the PVA polymer aqueous solution to serve as a fast saturable absorber to initiate passive mode-locking. The three types of CNT based saturable absorbers, namely single-walled (SW), double-walled (DW) and multi-walled (MW), are characterized by Raman scattering and optical absorption spectroscopy. The SW-CNTs with a diameter of 1.26 nm have two absorption peaks located around 1550 ± 70 and 860 ± 50 nm. In contrast, the DW-CNTs with a diameter of 1.33 nm reveal two absorption peaks located at 1580 ± 40 and 920 ± 50 nm. By using the SW-CNT based saturable absorber, the passively mode-locked EDFL exhibits a pulsewidth of 1.28 ps and a spectral linewidth of 1.99 nm. Due to the increased linear absorption of the DW-CNT based saturable absorber, the intra-cavity net gain of the EDFL is significantly attenuated to deliver an incompletely mode-locked pulsewidth of 6.8 ps and a spectral linewidth of 0.62 nm. No distinct pulse-train is produced by using the MW-CNT film as the saturable absorber, which is attributed to the significant insertion loss of the EDFL induced by the large linear absorption of the MW-CNT film.

  11. 29 CFR 570.119 - Fourteen-year minimum.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... those occupations in which 14- and 15-year-olds may be employed when the work is performed outside... limit the periods during which 14- and 15-year-olds may be employed. The employment of minors under 14... 29 Labor 3 2011-07-01 2011-07-01 false Fourteen-year minimum. 570.119 Section 570.119...

  12. 29 CFR 779.507 - Fourteen-year minimum.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...-being. Pursuant to this authority, the Secretary permits the employment of 14- and 15-year-old children... of construction operations. (b) Permissible occupations; conditions. Employment of 14- and 15-year... 29 Labor 3 2011-07-01 2011-07-01 false Fourteen-year minimum. 779.507 Section 779.507...

  13. 29 CFR 570.119 - Fourteen-year minimum.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... those occupations in which 14- and 15-year-olds may be employed when the work is performed outside... limit the periods during which 14- and 15-year-olds may be employed. The employment of minors under 14... 29 Labor 3 2012-07-01 2012-07-01 false Fourteen-year minimum. 570.119 Section 570.119...

  14. 29 CFR 779.507 - Fourteen-year minimum.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-being. Pursuant to this authority, the Secretary permits the employment of 14- and 15-year-old children... of construction operations. (b) Permissible occupations; conditions. Employment of 14- and 15-year... 29 Labor 3 2010-07-01 2010-07-01 false Fourteen-year minimum. 779.507 Section 779.507...

  15. 29 CFR 779.507 - Fourteen-year minimum.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-being. Pursuant to this authority, the Secretary permits the employment of 14- and 15-year-old children... of construction operations. (b) Permissible occupations; conditions. Employment of 14- and 15-year... 29 Labor 3 2012-07-01 2012-07-01 false Fourteen-year minimum. 779.507 Section 779.507...

  16. 29 CFR 779.507 - Fourteen-year minimum.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-being. Pursuant to this authority, the Secretary permits the employment of 14- and 15-year-old children... of construction operations. (b) Permissible occupations; conditions. Employment of 14- and 15-year... 29 Labor 3 2013-07-01 2013-07-01 false Fourteen-year minimum. 779.507 Section 779.507...

  17. 29 CFR 570.119 - Fourteen-year minimum.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... those occupations in which 14- and 15-year-olds may be employed when the work is performed outside... limit the periods during which 14- and 15-year-olds may be employed. The employment of minors under 14... 29 Labor 3 2013-07-01 2013-07-01 false Fourteen-year minimum. 570.119 Section 570.119...

  18. 29 CFR 779.507 - Fourteen-year minimum.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-being. Pursuant to this authority, the Secretary permits the employment of 14- and 15-year-old children... of construction operations. (b) Permissible occupations; conditions. Employment of 14- and 15-year... 29 Labor 3 2014-07-01 2014-07-01 false Fourteen-year minimum. 779.507 Section 779.507...

  19. 29 CFR 570.119 - Fourteen-year minimum.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... those occupations in which 14- and 15-year-olds may be employed when the work is performed outside... limit the periods during which 14- and 15-year-olds may be employed. The employment of minors under 14... 29 Labor 3 2014-07-01 2014-07-01 false Fourteen-year minimum. 570.119 Section 570.119...

  20. Generation of stretched pulses and dissipative solitons at 2  μm from an all-fiber mode-locked laser using carbon nanotube saturable absorbers.

    PubMed

    Wang, Yu; Alam, Shaif-Ul; Obraztsova, Elena D; Pozharov, Anatoly S; Set, Sze Y; Yamashita, Shinji

    2016-08-15

    We demonstrate for the first time, to the best of our knowledge, a thulium-doped, all-fiber, mode-locked laser using a carbon nanotube saturable absorber, operating in the dissipative-soliton regime and the stretched-pulse-soliton regime. The net dispersion of the laser cavity is adjusted by inserting different lengths of normal dispersion fiber, resulting in different mode-locking regimes. These results could serve as a foundation for the optimization of mode-locked fiber-laser cavity design at the 2 μm wavelength region. PMID:27519109

  1. Generation of stretched pulses and dissipative solitons at 2  μm from an all-fiber mode-locked laser using carbon nanotube saturable absorbers.

    PubMed

    Wang, Yu; Alam, Shaif-Ul; Obraztsova, Elena D; Pozharov, Anatoly S; Set, Sze Y; Yamashita, Shinji

    2016-08-15

    We demonstrate for the first time, to the best of our knowledge, a thulium-doped, all-fiber, mode-locked laser using a carbon nanotube saturable absorber, operating in the dissipative-soliton regime and the stretched-pulse-soliton regime. The net dispersion of the laser cavity is adjusted by inserting different lengths of normal dispersion fiber, resulting in different mode-locking regimes. These results could serve as a foundation for the optimization of mode-locked fiber-laser cavity design at the 2 μm wavelength region.

  2. Magnetic γ-Fe2O3, Fe3O4, and Fe nanoparticles confined within ordered mesoporous carbons as efficient microwave absorbers.

    PubMed

    Wang, Jiacheng; Zhou, Hu; Zhuang, Jiandong; Liu, Qian

    2015-02-01

    A series of magnetic γ-Fe2O3, Fe3O4, and Fe nanoparticles have been successfully introduced into the mesochannels of ordered mesoporous carbons by the combination of the impregnation of iron salt precursors and then in situ hydrolysis, pyrolysis and reduction processes. The magnetic nanoparticles are uniformly dispersed and confined within the mesopores of mesoporous carbons. Although the as-prepared magnetic mesoporous carbon composites have high contents of magnetic components, they still possess very high specific surface areas and pore volumes. The magnetic hysteresis loops measurements indicate that the magnetic constituents are poorly-crystalline nanoparticles and their saturation magnetization is evidently smaller than bulky magnetic materials. The confinement of magnetic nanoparticles within the mesopores of mesoporous carbons results in the decrease of the complex permittivity and the increase of the complex permeability of the magnetic nanocomposites. The maximum reflection loss (RL) values of -32 dB at 11.3 GHz and a broad absorption band (over 2 GHz) with RL values <-10 dB are obtained for 10-Fe3O4-CMK-3 and 10-γ-Fe2O3-CMK-3 composites in a frequency range of 8.2-12.4 GHz (X-band), showing their great potentials in microwave absorption. This research opens a new method and idea for developing novel magnetic mesoporous carbon composites as high-performance microwave absorbing materials. PMID:25562071

  3. Magnetic γ-Fe2O3, Fe3O4, and Fe nanoparticles confined within ordered mesoporous carbons as efficient microwave absorbers.

    PubMed

    Wang, Jiacheng; Zhou, Hu; Zhuang, Jiandong; Liu, Qian

    2015-02-01

    A series of magnetic γ-Fe2O3, Fe3O4, and Fe nanoparticles have been successfully introduced into the mesochannels of ordered mesoporous carbons by the combination of the impregnation of iron salt precursors and then in situ hydrolysis, pyrolysis and reduction processes. The magnetic nanoparticles are uniformly dispersed and confined within the mesopores of mesoporous carbons. Although the as-prepared magnetic mesoporous carbon composites have high contents of magnetic components, they still possess very high specific surface areas and pore volumes. The magnetic hysteresis loops measurements indicate that the magnetic constituents are poorly-crystalline nanoparticles and their saturation magnetization is evidently smaller than bulky magnetic materials. The confinement of magnetic nanoparticles within the mesopores of mesoporous carbons results in the decrease of the complex permittivity and the increase of the complex permeability of the magnetic nanocomposites. The maximum reflection loss (RL) values of -32 dB at 11.3 GHz and a broad absorption band (over 2 GHz) with RL values <-10 dB are obtained for 10-Fe3O4-CMK-3 and 10-γ-Fe2O3-CMK-3 composites in a frequency range of 8.2-12.4 GHz (X-band), showing their great potentials in microwave absorption. This research opens a new method and idea for developing novel magnetic mesoporous carbon composites as high-performance microwave absorbing materials.

  4. Sound Absorbers

    NASA Astrophysics Data System (ADS)

    Fuchs, H. V.; Möser, M.

    Sound absorption indicates the transformation of sound energy into heat. It is, for instance, employed to design the acoustics in rooms. The noise emitted by machinery and plants shall be reduced before arriving at a workplace; auditoria such as lecture rooms or concert halls require a certain reverberation time. Such design goals are realised by installing absorbing components at the walls with well-defined absorption characteristics, which are adjusted for corresponding demands. Sound absorbers also play an important role in acoustic capsules, ducts and screens to avoid sound immission from noise intensive environments into the neighbourhood.

  5. Single-wall carbon nanotubes and graphene oxide-based saturable absorbers for low phase noise mode-locked fiber lasers.

    PubMed

    Li, Xiaohui; Wu, Kan; Sun, Zhipei; Meng, Bo; Wang, Yonggang; Wang, Yishan; Yu, Xuechao; Yu, Xia; Zhang, Ying; Shum, Perry Ping; Wang, Qi Jie

    2016-01-01

    Low phase noise mode-locked fiber laser finds important applications in telecommunication, ultrafast sciences, material science, and biology, etc. In this paper, two types of carbon nano-materials, i.e. single-wall carbon nanotube (SWNT) and graphene oxide (GO), are investigated as efficient saturable absorbers (SAs) to achieve low phase noise mode-locked fiber lasers. Various properties of these wall-paper SAs, such as saturable intensity, optical absorption and degree of purity, are found to be key factors determining the performance of the ultrafast pulses. Reduced-noise femtosecond fiber lasers based on such carbon-based SAs are experimentally demonstrated, for which the phase noise has been reduced by more than 10 dB for SWNT SAs and 8 dB for GO SAs at 10 kHz. To the best of our knowledge, this is the first investigation on the relationship between different carbon material based SAs and the phase noise of mode-locked lasers. This work paves the way to generate high-quality low phase noise ultrashort pulses in passively mode-locked fiber lasers. PMID:27126900

  6. Single-wall carbon nanotubes and graphene oxide-based saturable absorbers for low phase noise mode-locked fiber lasers.

    PubMed

    Li, Xiaohui; Wu, Kan; Sun, Zhipei; Meng, Bo; Wang, Yonggang; Wang, Yishan; Yu, Xuechao; Yu, Xia; Zhang, Ying; Shum, Perry Ping; Wang, Qi Jie

    2016-04-29

    Low phase noise mode-locked fiber laser finds important applications in telecommunication, ultrafast sciences, material science, and biology, etc. In this paper, two types of carbon nano-materials, i.e. single-wall carbon nanotube (SWNT) and graphene oxide (GO), are investigated as efficient saturable absorbers (SAs) to achieve low phase noise mode-locked fiber lasers. Various properties of these wall-paper SAs, such as saturable intensity, optical absorption and degree of purity, are found to be key factors determining the performance of the ultrafast pulses. Reduced-noise femtosecond fiber lasers based on such carbon-based SAs are experimentally demonstrated, for which the phase noise has been reduced by more than 10 dB for SWNT SAs and 8 dB for GO SAs at 10 kHz. To the best of our knowledge, this is the first investigation on the relationship between different carbon material based SAs and the phase noise of mode-locked lasers. This work paves the way to generate high-quality low phase noise ultrashort pulses in passively mode-locked fiber lasers.

  7. Single-wall carbon nanotubes and graphene oxide-based saturable absorbers for low phase noise mode-locked fiber lasers

    NASA Astrophysics Data System (ADS)

    Li, Xiaohui; Wu, Kan; Sun, Zhipei; Meng, Bo; Wang, Yonggang; Wang, Yishan; Yu, Xuechao; Yu, Xia; Zhang, Ying; Shum, Perry Ping; Wang, Qi Jie

    2016-04-01

    Low phase noise mode-locked fiber laser finds important applications in telecommunication, ultrafast sciences, material science, and biology, etc. In this paper, two types of carbon nano-materials, i.e. single-wall carbon nanotube (SWNT) and graphene oxide (GO), are investigated as efficient saturable absorbers (SAs) to achieve low phase noise mode-locked fiber lasers. Various properties of these wall-paper SAs, such as saturable intensity, optical absorption and degree of purity, are found to be key factors determining the performance of the ultrafast pulses. Reduced-noise femtosecond fiber lasers based on such carbon-based SAs are experimentally demonstrated, for which the phase noise has been reduced by more than 10 dB for SWNT SAs and 8 dB for GO SAs at 10 kHz. To the best of our knowledge, this is the first investigation on the relationship between different carbon material based SAs and the phase noise of mode-locked lasers. This work paves the way to generate high-quality low phase noise ultrashort pulses in passively mode-locked fiber lasers.

  8. Single-wall carbon nanotubes and graphene oxide-based saturable absorbers for low phase noise mode-locked fiber lasers

    PubMed Central

    Li, Xiaohui; Wu, Kan; Sun, Zhipei; Meng, Bo; Wang, Yonggang; Wang, Yishan; Yu, Xuechao; Yu, Xia; Zhang, Ying; Shum, Perry Ping; Wang, Qi Jie

    2016-01-01

    Low phase noise mode-locked fiber laser finds important applications in telecommunication, ultrafast sciences, material science, and biology, etc. In this paper, two types of carbon nano-materials, i.e. single-wall carbon nanotube (SWNT) and graphene oxide (GO), are investigated as efficient saturable absorbers (SAs) to achieve low phase noise mode-locked fiber lasers. Various properties of these wall-paper SAs, such as saturable intensity, optical absorption and degree of purity, are found to be key factors determining the performance of the ultrafast pulses. Reduced-noise femtosecond fiber lasers based on such carbon-based SAs are experimentally demonstrated, for which the phase noise has been reduced by more than 10 dB for SWNT SAs and 8 dB for GO SAs at 10 kHz. To the best of our knowledge, this is the first investigation on the relationship between different carbon material based SAs and the phase noise of mode-locked lasers. This work paves the way to generate high-quality low phase noise ultrashort pulses in passively mode-locked fiber lasers. PMID:27126900

  9. METHOD 415.3 - MEASUREMENT OF TOTAL ORGANIC CARBON, DISSOLVED ORGANIC CARBON AND SPECIFIC UV ABSORBANCE AT 254 NM IN SOURCE WATER AND DRINKING WATER

    EPA Science Inventory

    2.0 SUMMARY OF METHOD

    2.1 In both TOC and DOC determinations, organic carbon in the water sample is oxidized to form carbon dioxide (CO2), which is then measured by a detection system. There are two different approaches for the oxidation of organic carbon in water sample...

  10. Quantifying how sensitive different types of snow and snow ice are to black carbon and other types of light absorbing aerosol

    NASA Astrophysics Data System (ADS)

    King, M. D.; Marks, A. A.

    2013-12-01

    Black carbon in snow and sea ice has commonly been reported to lower albedo, exacerbating snow/sea ice melting and decrease e-folding depths, which can affect biological and chemical processes. There is still a large degree of uncertainty present in the estimated climatic radiative forcing that black carbon could cause. The properties (optical and physical) of snow and sea ice vary drastically both laterally and temporally and snow and sea ices with different physical and optical properties respond differently to additions of black carbon. The albedo and e-folding depth (light penetration) response of snow and sea ice with different physical properties, to black carbon and other light absorbing impurities additions is investigated as a function of sea ice and snow type. A snow or sea ice with a lower scattering cross-section is more responsive to additions of black carbon. The albedo of sea ice is a factor of five more responsive to black carbon additions than the albedo of snow. Light penetration or e-folding depth is a considerably more sensitive to black carbon than albedo. The e-folding depth of a snow or sea ice with a smaller scattering cross-section is more responsive to additions of black carbon. Cold polar snowpacks have large values of the scattering cross-section, whilst melting snow is the least scattering. For sea ice multi-year frozen white ice is the more light scattering environ than first year sea ice and melting blue ice is the least scattering. Current climate change is causing a decrease in snow covered areas which will result in more melted snow, with a small scattering cross-section which is more responsive to black carbon additions. Climate change is also leading to a decrease in multi-year ice, a transition from multi-year to first year ice will mean sea ice is more scattering and therefore its albedo is more responsive to black carbon additions which will further exacerbate melting.

  11. Production and characterization of activated carbon prepared from safflower seed cake biochar and its ability to absorb reactive dyestuff

    NASA Astrophysics Data System (ADS)

    Angın, Dilek; Köse, T. Ennil; Selengil, Uğur

    2013-09-01

    The use of activated carbon obtained from biochar for the removal of reactive dyestuff from aqueous solutions at various contact times, pHs and temperatures was investigated. The biochar was chemically modified with potassium hydroxide. The surface area and micropore volume of activated carbon was 1277 m2/g and 0.4952 cm3/g, respectively. The surface characterization of both biochar and activated carbon was undertaken using by Fourier transform infrared spectroscopy and scanning electron microscopy. The experimental data indicated that the adsorption isotherms are well described by the Dubinin-Radushkevich (DR) isotherm equation. The adsorption kinetics of reactive dyestuff obeys the pseudo second-order kinetic model. The thermodynamic parameters such as ΔG̊, ΔH̊ and ΔS̊ were calculated to estimate the nature of adsorption. The activation energy of the system was calculated as 1.12 kJ/mol. According to these results, prepared activated carbon could be used as a low-cost adsorbent to compare with the commercial activated carbon for the removal reactive dyestuff from wastewater.

  12. A batch study on the bio-fixation of carbon dioxide in the absorbed solution from a chemical wet scrubber by hot spring and marine algae.

    PubMed

    Hsueh, H T; Chu, H; Yu, S T

    2007-01-01

    Carbon dioxide mass transfer is a key factor in cultivating micro-algae except for the light limitation of photosynthesis. It is a novel idea to enhance mass transfer with the cyclic procedure of absorbing CO(2) with a high performance alkaline abosorber such as a packed tower and regenerating the alkaline solution with algal photosynthesis. Hence, the algae with high affinity for alkaline condition must be purified. In this study, a hot spring alga (HSA) was purified from an alkaline hot spring (pH 9.3, 62 degrees C) in Taiwan and grows well over pH 11.5 and 50 degrees C. For performance of HSA, CO(2) removal efficiencies in the packed tower increase about 5-fold in a suitable growth condition compared to that without adding any potassium hydroxide. But ammonia solution was not a good choice for this system with regard to carbon dioxide removal efficiency because of its toxicity on HSA. In addition, HSA also exhibits a high growth rate under the controlled pHs from 7 to 11. Besides, a well mass balance of carbon and nitrogen made sure that less other byproducts formed in the procedure of carboxylation. For analysis of some metals in HSA, such as Mg, Mn, Fe, Zn, related to the photosynthesis increased by a rising cultivated pH and revealed that those metals might be accumulated under alkaline conditions but the growth rate was still limited by the ratio of bicarbonate (useful carbon source) and carbonate. Meanwhile, Nannochlopsis oculta (NAO) was also tested under different additional carbon sources. The results revealed that solutions of sodium/potassium carbonate are better carbon sources than ammonia carbonate/bicarbonate for the growth of NAO. However, pH 9.6 of growth limitation based on sodium was lower than one of HSA. The integrated system is, therefore, more feasible to treat CO(2) in the flue gases using the algae with higher alkaline affinity such as HSA in small volume bioreactors.

  13. Metal-organic framework-templated synthesis of magnetic nanoporous carbon as an efficient absorbent for enrichment of phenylurea herbicides.

    PubMed

    Liu, Xingli; Wang, Chun; Wu, Qiuhua; Wang, Zhi

    2015-04-22

    Nanoporous carbon with a high specific surface area and unique porous structure represents an attractive material as an adsorbent in analytical chemistry. In this study, a magnetic nanoporous carbon (MNC) was fabricated by direct carbonization of Co-based metal-organic framework in nitrogen atmosphere without using any additional carbon precursors. The MNC was used as an effective magnetic adsorbent for the extraction and enrichment of some phenylurea herbicides (monuron, isoproturon, diuron and buturon) in grape and bitter gourd samples prior to their determination by high performance liquid chromatography with ultraviolet detection. Several important experimental parameters that could influence the extraction efficiency were investigated and optimized. Under the optimum conditions, a good linearity was achieved in the concentration range of 1.0-100.0 ng g(-1) for monuron, diuron and buturon and 1.5-100.0 ng g(-1) for isoproturon with the correlation coefficients (r) larger than 0.9964. The limits of detection (S/N=3) of the method were in the range from 0.17 to 0.46 ng g(-1). The results indicated that the MNC material was stable and efficient adsorbent for the magnetic solid-phase extraction of phenylurea herbicides and would have a great application potential for the extraction and preconcentration of more organic pollutants from real samples. PMID:25819788

  14. 40 CFR 65.153 - Absorbers, condensers, carbon adsorbers, and other recovery devices used as final recovery devices.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... scrubbing liquid temperature monitoring device and a specific gravity monitoring device, each capable of... exit (product side) temperature monitoring device capable of providing a continuous record, shall be... regeneration stream mass or volumetric flow for each regeneration cycle, and a carbon-bed...

  15. 40 CFR 65.153 - Absorbers, condensers, carbon adsorbers, and other recovery devices used as final recovery devices.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... scrubbing liquid temperature monitoring device and a specific gravity monitoring device, each capable of... exit (product side) temperature monitoring device capable of providing a continuous record, shall be... regeneration stream mass or volumetric flow for each regeneration cycle, and a carbon-bed...

  16. 40 CFR 63.993 - Absorbers, condensers, carbon adsorbers and other recovery devices used as final recovery devices.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... capable of providing a continuous record or a scrubbing liquid temperature monitoring device and a...) temperature monitoring device capable of providing a continuous record shall be used. Monitoring results shall... flow for each regeneration cycle; and a carbon-bed temperature monitoring device, capable of...

  17. 40 CFR 65.153 - Absorbers, condensers, carbon adsorbers, and other recovery devices used as final recovery devices.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... scrubbing liquid temperature monitoring device and a specific gravity monitoring device, each capable of... exit (product side) temperature monitoring device capable of providing a continuous record, shall be... regeneration stream mass or volumetric flow for each regeneration cycle, and a carbon-bed...

  18. 40 CFR 63.993 - Absorbers, condensers, carbon adsorbers and other recovery devices used as final recovery devices.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... capable of providing a continuous record or a scrubbing liquid temperature monitoring device and a...) temperature monitoring device capable of providing a continuous record shall be used. Monitoring results shall... flow for each regeneration cycle; and a carbon-bed temperature monitoring device, capable of...

  19. Metal-organic framework-templated synthesis of magnetic nanoporous carbon as an efficient absorbent for enrichment of phenylurea herbicides.

    PubMed

    Liu, Xingli; Wang, Chun; Wu, Qiuhua; Wang, Zhi

    2015-04-22

    Nanoporous carbon with a high specific surface area and unique porous structure represents an attractive material as an adsorbent in analytical chemistry. In this study, a magnetic nanoporous carbon (MNC) was fabricated by direct carbonization of Co-based metal-organic framework in nitrogen atmosphere without using any additional carbon precursors. The MNC was used as an effective magnetic adsorbent for the extraction and enrichment of some phenylurea herbicides (monuron, isoproturon, diuron and buturon) in grape and bitter gourd samples prior to their determination by high performance liquid chromatography with ultraviolet detection. Several important experimental parameters that could influence the extraction efficiency were investigated and optimized. Under the optimum conditions, a good linearity was achieved in the concentration range of 1.0-100.0 ng g(-1) for monuron, diuron and buturon and 1.5-100.0 ng g(-1) for isoproturon with the correlation coefficients (r) larger than 0.9964. The limits of detection (S/N=3) of the method were in the range from 0.17 to 0.46 ng g(-1). The results indicated that the MNC material was stable and efficient adsorbent for the magnetic solid-phase extraction of phenylurea herbicides and would have a great application potential for the extraction and preconcentration of more organic pollutants from real samples.

  20. Characteristics of dissolved organic carbon revealed by ultraviolet/visible absorbance and fluorescence spectroscopy: The current status and future exploration

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dissolved organic carbon (DOC) is an important research subject for various disciplines. The objectives of this chapter are to review and summarize recent advancement in characterization of DOC by ultraviolet/visible (UV/Vis) and fluorescence spectroscopies and to identify the information gaps for ...

  1. Thermal conversion of an Fe₃O₄@metal-organic framework: a new method for an efficient Fe-Co/nanoporous carbon microwave absorbing material.

    PubMed

    Zhang, Xingmiao; Ji, Guangbin; Liu, Wei; Quan, Bin; Liang, Xiaohui; Shang, Chaomei; Cheng, Yan; Du, Youwei

    2015-08-14

    A novel FeCo nanoparticle embedded nanoporous carbon composite (Fe-Co/NPC) was synthesized via in situ carbonization of dehydro-ascorbic acid (DHAA) coated Fe3O4 nanoparticles encapsulated in a metal-organic framework (zeolitic imidazolate framework-67, ZIF-67). The molar ratio of Fe/Co significantly depends on the encapsulated content of Fe3O4 in ZIF-67. The composites filled with 50 wt% of the Fe-Co/NPC-2.0 samples in paraffin show a maximum reflection loss (RL) of -21.7 dB at a thickness of 1.2 mm; in addition, a broad absorption bandwidth for RL < -10 dB which covers from 12.2 to 18 GHz can be obtained, and its minimum reflection loss and bandwidth (RL values exceeding -10 dB) are far greater than those of commercial carbonyl iron powder under a very low thickness (1-1.5 mm). This study not only provides a good reference for future preparation of carbon-based lightweight microwave absorbing materials but also broadens the application of such kinds of metal-organic frameworks. PMID:26167763

  2. Repetition frequency scaling of an all-polarization maintaining erbium-doped mode-locked fiber laser based on carbon nanotubes saturable absorber

    NASA Astrophysics Data System (ADS)

    Sotor, J.; Sobon, G.; Jagiello, J.; Lipinska, L.; Abramski, K. M.

    2015-04-01

    We demonstrate an all-polarization maintaining (PM), mode-locked erbium (Er)-doped fiber laser based on a carbon nanotubes (CNT) saturable absorber (SA). The laser resonator was maximally simplified by using only one passive hybrid component and a pair of fiber connectors with deposited CNTs. The repetition frequency (Frep) of such a cost-effective and self-starting mode-locked laser was scaled from 54.3 MHz to 358.6 MHz. The highest Frep was obtained when the total cavity length was shortened to 57 cm. The laser allows ultrashort pulse generation with the duration ranging from 240 fs to 550 fs. Because the laser components were based on PM fibers the laser was immune to the external perturbations and generated laniary polarized light with the degree of polarization (DOP) of 98.7%.

  3. Repetition frequency scaling of an all-polarization maintaining erbium-doped mode-locked fiber laser based on carbon nanotubes saturable absorber

    SciTech Connect

    Sotor, J. Sobon, G.; Abramski, K. M.; Jagiello, J.; Lipinska, L.

    2015-04-07

    We demonstrate an all-polarization maintaining (PM), mode-locked erbium (Er)-doped fiber laser based on a carbon nanotubes (CNT) saturable absorber (SA). The laser resonator was maximally simplified by using only one passive hybrid component and a pair of fiber connectors with deposited CNTs. The repetition frequency (F{sub rep}) of such a cost-effective and self-starting mode-locked laser was scaled from 54.3 MHz to 358.6 MHz. The highest F{sub rep} was obtained when the total cavity length was shortened to 57 cm. The laser allows ultrashort pulse generation with the duration ranging from 240 fs to 550 fs. Because the laser components were based on PM fibers the laser was immune to the external perturbations and generated laniary polarized light with the degree of polarization (DOP) of 98.7%.

  4. Broad spectral pulse operation of 2 μm Tm:YAP laser based on reflection-type carbon nanotube absorber

    NASA Astrophysics Data System (ADS)

    Qu, Z. S.; Ma, B. M.; Fan, X. W.; Liu, J.; Wang, Y. G.

    2012-03-01

    We demonstrated the first use of reflection-type single-walled carbon nanotube (RSWCNT) as a saturable absorber in the Q-switched mode-locking (QML) of a diode pumped Tm:YAP operating at 2 μm. The spectrum of the QML laser is centered at 1.97 μm with a broad spectral region of 36 nm. At the incident pump power of 10.33 W, as high as 432 mW average output power was produced in QML laser. The repetition rate of the mode-locked pulse inside the Q-switched envelope was 158 MHz. The dependence of the operational parameters on the pump power was also investigated experimentally.

  5. Thulium-doped mode-locked all-fiber laser based on NALM and carbon nanotube saturable absorber.

    PubMed

    Chernysheva, M A; Krylov, A A; Kryukov, P G; Arutyunyan, N R; Pozharov, A S; Obraztsova, E D; Dianov, E M

    2012-12-10

    We present a thulium-doped fiber laser mode-locked by a carboxymetylcellulose high-optical quality film with dispersed single-walled carbon nanotubes. Laser system based on the nonlinear amplifying loop mirror generates the shortest pulses earlier obtained in SWCNT mode-locked thulium-doped fiber lasers with a duration of 450 fs and 18 mW maximum average power at 1870 nm.

  6. Fragmentation of 200 and 244 MeV/u Carbon Beams in Thick Tissue-Like Absorbers

    NASA Technical Reports Server (NTRS)

    Golovchenko, A. N.; Skvar, J.; Ili, R.; Sihver, L.; Bamblevski, V. P.; Tretyskova, S. P.; Schardt, D.; Tripathi, R. K.; Wilson, J. W.

    1999-01-01

    Stacks consisting of thin CR-39 sheets sandwiched between thick Lucite and water absorbers were perpendicularly bombarded by C-12 ions at 200 and 244 MeV/u. Track radius distributions representing the charge composition of the fragmented beams were automatically measured by a particle track analysis system. After analysis of the nuclear charge distributions, the total charge removal cross sections and elemental production cross sections of fragments with atomic numbers from 5 to 3, were obtained down to the lower energies (approximately 50 and 100 MeV/u, respectively). It has been found that the measured total charge removal cross section agrees with theoretical predictions within approximately 10% and very well with previous experiments in corresponding energy regions. Two model calculations for production of B fragment are in good agreement with our measured data while a third model overestimates it by approximately 12%. Theoretical cross sections for Be and Li fragments differ strongly among the different models and from measured values.

  7. Bench-Scale Process for Low-Cost Carbon Dioxide (CO2) Capture Using a Phase-Changing Absorbent

    SciTech Connect

    Westendorf, Tiffany; Caraher, Joel; Chen, Wei; Farnum, Rachael; Perry, Robert; Spiry, Irina; Wilson, Paul; Wood, Benjamin

    2015-03-31

    The objective of this project is to design and build a bench-scale process for a novel phase-changing aminosilicone-based CO2-capture solvent. The project will establish scalability and technical and economic feasibility of using a phase-changing CO2-capture absorbent for post-combustion capture of CO2 from coal-fired power plants with 90% capture efficiency and 95% CO2 purity at a cost of $40/tonne of CO2 captured by 2025 and a cost of <$10/tonne of CO2 captured by 2035. In the first budget period of this project, the bench-scale phase-changing CO2 capture process was designed using data and operating experience generated under a previous project (ARPA-e project DE-AR0000084). Sizing and specification of all major unit operations was completed, including detailed process and instrumentation diagrams. The system was designed to operate over a wide range of operating conditions to allow for exploration of the effect of process variables on CO2 capture performance.

  8. Effect of metal base layer on the absorptance and emittance of sputtered graded metal-carbon selective absorbing surfaces

    NASA Astrophysics Data System (ADS)

    Harding, G. L.; Craig, S.

    1981-08-01

    Solar absorptance and temperature-dependent emittance is measured for graded metal-carbon films deposited onto smooth aluminum, copper, nickel, and stainless steel base layers, sputter-deposited onto glass tubes at relatively low argon pressure (approximately 0.5 Pa), and deposited onto textured copper using argon pressures 3 to 40 Pa. Absorptance measurements are made on surfaces deposited onto small plane glass slides attached to a glass tube in the coating system, and emittance measurements are made on coated tubes, assembled into glass envelopes. Both the small planar specimens of selective surface and coated tubes were inserted in continuously evacuated glass envelopes and annealed at 500 C for approximately 1 hr. It is shown that solar absorptance varies by only 1-2% for the different base layers, whereas the emittance of surfaces based on nickel and stainless steel is considerably higher than for surfaces based on copper and aluminum. Small changes occur in absorptances and emittances after annealing. It is concluded that the optimum selective surface for evacuated collectors used with mirrors of low concentrations consists of graded metal-carbon overlaid with smooth copper.

  9. Multiple Types of Light Absorbing Carbon Aerosol in East Asian Outflow: Variatons in Morphology and Internal Structure as Characterized by Transmission Electron Microscopy

    NASA Astrophysics Data System (ADS)

    Anderson, J. R.; Alexander, D. T.; Crozier, P. A.

    2010-12-01

    The importance of light absorbing carbon (LAC) aerosols to climate forcing is well established, but such aerosols are typically treated in climate models as uniform in optical properties. When examined by electron microscopy, however, LAC aerosols from regions with significant anthropogenic pollution show a wide variety of morphologies and internal structures. Electron energy loss spectral analysis to date on brown carbon and black carbon, albeit limited, suggests a linkage between internal structure and fundamental optical properties. Some of these LAC varieties can be easily defined as distinct “types” and other varieties show a continuum of variation within which general “types” can be defined. The data discussed here are from a research flight of the NCAR C-130 aircraft flown in April 2001 above the Yellow Sea during the ACE-Asia project. Perhaps the most common LAC type is “soot”, branched and chainlike aggregates of carbonaceous spherules. The spherule size in East Asian soot particles is 20-60 nm in many cases, but soot with large spherules (100 nm or larger) are also present. Spherule size is a “source effect” and not something altered during transport and aging. Some laboratory studies have suggested that as soot ages, the aggregates become more compact, but in these aerosols both compact and open soot particles coexist and compact soot is known to be the initial LAC product under some combustion conditions. In cases where the spherule size of the compact soot is different from that of open-structured soot, clearly the compact soot is not an aged form of the latter. Variability of ordering of the graphene sheets that make up the spherules is also a source effect. The more ordered soot particles consist of graphene sheets that curve concentrically, onion-like, around the spherule center, probably indicative of a high degree of carbonization that accompanies high temperature combustion. There is a range of ordering from highly ordered down to

  10. Fundamental and harmonic soliton mode-locked erbium-doped fiber laser using single-walled carbon nanotubes embedded in poly (ethylene oxide) film saturable absorber

    NASA Astrophysics Data System (ADS)

    Rosdin, R. Z. R. R.; Zarei, A.; Ali, N. M.; Arof, H.; Ahmad, H.; Harun, S. W.

    2015-01-01

    This paper presents a simple, compact and low cost mode-locked Erbium-doped fiber laser (EDFL) using a single-walled carbon nanotubes (SWCNTs) embedded in poly(ethylene oxide) (PEO) film as a passive saturable absorber. The film was fabricated using a prepared homogeneous SWCNT solution, which was mixed with a diluted PEO solution and casted onto a glass petri dish to form a thin film by evaporation technique. The film, with a thickness of 50 μm, is sandwiched between two fiber connectors to construct a saturable absorber, which is then integrated in an EDFL cavity to generate a self-started stable soliton pulses operating at 1560.8 nm. The soliton pulse starts to lase at 1480 nm pup power threshold of 12.3 mW to produce pulse train with repetition rate of 11.21 MHz, pulse width of 1.02 ps, average output power of 0.65 mW and pulse energy of 57.98 pJ. Then, we observed the 4th, 7th and 15th harmonic of fundamental cavity frequency start to occur when the pump powers are further increased to 14.9, 17.5 and 20.1 mW, respectively. The 4th harmonic pulses are characterized in detail with a repetition rate of 44.84 MHz, a transform-limited pulse width of 1.19 ps, side-mode suppression ratio of larger than 20 dB and pulse energy of 9.14 pJ.

  11. Sources of Dissolved Organic Carbon and Disinfection By-Product Precursors to the McKenzie River: Use of absorbance and fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Kraus, T. E.; Anderson, C.; Morgenstern, K.; Downing, B. D.; Bergamaschi, B. A.

    2009-12-01

    Dissolved organic matter (DOM) is a constituent of concern with respect to drinking water quality because it reacts upon chlorination to form disinfection byproducts (DBPs). The amount of DBPs that form is a function of both the amount and type of DOM undergoing treatment. Currently, the EPA regulates two classes of DBPs - trihalomethanes and haloacetic acids. This study was initiated to determine the main sources of NOM and disinfection by-product (DBP) precursors to the McKenzie River which is the sole water source for approximately 200,000 people in Eugene, Oregon (USA). Water samples collected from upstream, reservoir, tributary inputs and mainstem sites were analyzed for dissolved organic carbon (DOC) concentration and DBP formation potential. In addition, absorbance and fluorescence properties were determined to provide insight into DOC quality and assess whether these measurements can serve as useful proxies for DOC concentration and trihalomethane and haloacetic acid formation potentials (THMFP and HAAFP, respectively). Overall, raw water concentrations of DOC (<2 mg/L) and distribution system trihalomethanes (10-30 μg/L) and haloacetic acids (10-35 μg/L) were well below EPA regulations. The main sources of DOC to the McKenzie River were terrestrial watershed inputs entering the watershed via upstream sources. Downstream tributaries contained greater concentrations of DOC which had higher propensity to form DBPs, however because these inflows comprise less than 5% of mainstem flows, DBP precursor loads from these sources have a minimal effect on drinking water quality. Water exiting two flood control reservoirs from upstream tributaries, Cougar and Blue River, also had higher DOC concentrations than the upstream site, however qualitative data did not support a significant source from in situ algal production. Due to the interference in absorbance likely due to the presence of iron in downstream tributaries, absorbance was not as strong of a predictor of

  12. Properties of light-absorbing aerosols in the Nagoya urban area, Japan, in August 2011 and January 2012: Contributions of brown carbon and lensing effect

    NASA Astrophysics Data System (ADS)

    Nakayama, Tomoki; Ikeda, Yuka; Sawada, Yuuki; Setoguchi, Yoshitaka; Ogawa, Shuhei; Kawana, Kaori; Mochida, Michihiro; Ikemori, Fumikazu; Matsumoto, Kiyoshi; Matsumi, Yutaka

    2014-11-01

    The optical properties of aerosols at 405 and 781 nm were measured in an urban site in Nagoya, Japan, in August 2011 and in January 2012 using a photoacoustic spectrometer. Comparison of the absorption coefficient at 781 nm of aerosols that did and did not pass through a thermo-denuder showed that an increase in black carbon (BC) light absorption due to the coating of non-refractory materials (i.e., the lensing effect) was small (on average, 10%) in August and negligible in January. The effective density distributions for the particles that did and did not pass through the thermo-denuder, which were measured simultaneously in August, suggested that the majority of BC particles sampled had a minimal coating. The small lensing effect observed can be explained partly by assuming that a large portion of non-refractory materials was mixed externally with BC. The contribution of direct light absorption by organic matter (OM) that vaporized at temperatures below 300°C to the total light absorption at 405 nm was negligible in August, but those by OM that vaporized below 300 and 400°C averaged 11 and 17%, respectively, in January. The larger contribution of light-absorbing OM in January is likely due to the greater contribution of OM originating from the burning of biomass, including biofuel and agricultural residue, in Japan, northern China, or Siberia, during the winter.

  13. Self-mode-locking in erbium-doped fibre lasers with saturable polymer film absorbers containing single-wall carbon nanotubes synthesised by the arc discharge method

    SciTech Connect

    Tausenev, Anton V; Konyashchenko, Aleksandr V; Obraztsova, Elena D; Konov, Vitalii I; Lobach, A S; Chernov, A I; Kryukov, P G; Dianov, Evgenii M

    2007-03-31

    We studied the ring and linear schemes of erbium-doped fibre lasers in which passive mode locking was achieved with the help of saturable absorbers made of high-optical quality films based on cellulose derivatives with dispersed single-wall carbon nanotubes. The films were prepared by the original method with the use of nanotubes synthesised by the arc discharge method. The films exhibit nonlinear absorption at a wavelength of 1.5 {mu}m. Pulses in the form of optical solitons of duration 1.17 ps at a wavelength of 1.56 {mu}m were generated in the ring scheme of the erbium laser. The average output power was 1.1 mW at a pulse repetition rate of 20.5 MHz upon pumping by the 980-nm, 25-mW radiation from a laser diode. The pulse duration in the linear scheme was reduced to 466 fs for the output power up to 4 mW and a pulse repetition rate of 28.5 MHz. The specific feature of these lasers is a low pump threshold in the regime of generation of ultrashort pulses. (letters)

  14. UV254 absorbance as real-time monitoring and control parameter for micropollutant removal in advanced wastewater treatment with powdered activated carbon.

    PubMed

    Altmann, Johannes; Massa, Lukas; Sperlich, Alexander; Gnirss, Regina; Jekel, Martin

    2016-05-01

    This study investigates the applicability of UV absorbance measurements at 254 nm (UVA254) to serve as a simple and reliable surrogate parameter to monitor and control the removal of organic micropollutants (OMPs) in advanced wastewater treatment applying powdered activated carbon (PAC). Correlations between OMP removal and corresponding UVA254 reduction were determined in lab-scale adsorption batch tests and successfully applied to a pilot-scale PAC treatment stage to predict OMP removals in aggregate samples with good accuracy. Real-time UVA254 measurements were utilized to evaluate adapted PAC dosing strategies and proved to be effective for online monitoring of OMP removal. Furthermore, active PAC dosing control according to differential UVA254 measurements was implemented and tested. While precise removal predictions based on real-time measurements were not accurate for all OMPs, UVA254-controlled dynamic PAC dosing was capable of achieving stable OMP removals. UVA254 can serve as an effective surrogate parameter for OMP removal in technical PAC applications. Even though the applicability as control parameter to adjust PAC dosing to water quality changes might be limited to applications with fast response between PAC adjustment and adsorptive removal (e.g. direct filtration), UVA254 measurements can also be used to monitor the adsorption efficiency in more complex PAC applications. PMID:26963606

  15. All-fiber mode-locked laser oscillator with pulse energy of 34 nJ using a single-walled carbon nanotube saturable absorber.

    PubMed

    Jeong, Hwanseong; Choi, Sun Young; Rotermund, Fabian; Cha, Yong-Ho; Jeong, Do-Young; Yeom, Dong-Il

    2014-09-22

    We demonstrate a dissipative soliton fiber laser with high pulse energy (>30 nJ) based on a single-walled carbon nanotube saturable absorber (SWCNT-SA). In-line SA that evanescently interacts with the high quality SWCNT/polymer composite film was fabricated under optimized conditions, increasing the damage threshold of the saturation fluence of the SA to 97 mJ/cm(2). An Er-doped mode-locked all-fiber laser operating at net normal intra-cavity dispersion was built including the fabricated in-line SA. The laser stably delivers linearly chirped pulses with a pulse duration of 12.7 ps, and exhibits a spectral bandwidth of 12.1 nm at the central wavelength of 1563 nm. Average power of the laser output is measured as 335 mW at an applied pump power of 1.27 W. The corresponding pulse energy is estimated to be 34 nJ at the fundamental repetition rate of 9.80 MHz; this is the highest value, to our knowledge, reported in all-fiber Er-doped mode-locked laser using an SWCNT-SA.

  16. Absorption Ångström exponents of aerosols and light absorbing carbon (LAC) obtained from in situ data in Covilhã, central Portugal.

    PubMed

    Mogo, S; Cachorro, V E; de Frutos, A; Rodrigues, A

    2012-12-01

    A field campaign was conducted from October 2009 to July 2010 at Covilhã, a small town located in the region of Beira Interior (Portugal) in the interior of the Iberian Peninsula. The ambient light-absorption coefficient, σ(a) (522 nm), obtained from a Particle Soot Absorption Photometer (PSAP), presented a daily mean value of 12.1 Mm⁻¹ (StD = 7.3 Mm⁻¹). The wavelength dependence of aerosol light absorption is investigated through the Ångström parameter, α(a). The α(a) values for the pair of wavelengths 470-660 nm ranged from 0.86 to 1.47 during the period of measurements. The PSAP data were used to infer the mass of light absorbing carbon (LAC) and the daily mean varied from 0.1 to 6.8 μg m⁻³. A detailed study of special events with different aerosol characteristics is carried out and, to support data interpretation, air masses trajectory analysis is performed.

  17. Q-switched 2 μm thulium bismuth co-doped fiber laser with multi-walled carbon nanotubes saturable absorber

    NASA Astrophysics Data System (ADS)

    Saidin, N.; Zen, D. I. M.; Ahmad, F.; Haris, H.; Ahmad, H.; Dimyati, K.; Harun, S. W.; Halder, A.; Paul, M. C.; Pal, M.; Bhadra, S. K.

    2016-09-01

    We report a passively Q-switched fiber laser operating at 1900 nm region using the newly developed thulium bismuth co-doped lithium-alumino-germano-silicate fiber (TBF) as a gain medium in conjunction with a multiwall carbon nanotubes (MWCNTs) based saturable absorber (SA). The TBF and MWCNTs are fabricated and prepared in-house. By increasing the 802 nm pump power from 106.6 to 160 mW, stable generation of Q-switched TBFL has been obtained at 1857.8 nm wavelength. The pulse repetition rate varies from 12.84 to 29.48 kHz while pulse width is increased from 9.6 to 6.1 μs. The performance of the laser is also compared with the Q-switched TDFL, which was obtained using a similar MWCNTs SA and pump wavelength. The Q-switched TDFL generates an optical pulse train with a repetition rate increasing from 3.8 to 4.6 kHz and pulse width reducing from 22.1 to 18.3 μs when the pump power is tuned from 187.3 to 194.2 mW. This shows that the TBFL performs better than the TDFL in terms of threshold pump power, repetition rate and pulse width.

  18. Large-area surveys for black carbon and other light-absorbing impurities in snow: Arctic, Antarctic, North America, China (Invited)

    NASA Astrophysics Data System (ADS)

    Warren, S. G.; Doherty, S. J.; Hegg, D.; Dang, C.; Zhang, R.; Grenfell, T. C.; Brandt, R. E.; Clarke, A. D.; Zatko, M.

    2013-12-01

    Absorption of radiation by ice is extremely weak at visible and near-UV wavelengths, so small amounts of light-absorbing impurities (LAI) in snow can dominate the absorption of sunlight at these wavelengths, reducing the albedo relative to that of pure snow and leading to earlier snowmelt. Snow samples were collected in Alaska, Canada, Greenland, Svalbard, Norway, Russia, and the Arctic Ocean, on tundra, glaciers, ice caps, sea ice, and frozen lakes, and in boreal forests. Snow was collected mostly in spring, when the entire winter snowpack was accessible for sampling. Snow was also collected at 67 sites in western North America. Expeditions from Lanzhou University obtained black carbon (BC) amounts at 84 sites in northeast and northwest China. BC was measured at 3 locations on the Antarctic Plateau, and at 5 sites on East Antarctic sea ice. The snow is melted and filtered; the filters are analyzed in a spectrophotometer. Median BC mixing ratios in snow range over 4 orders of magnitude from 0.2 ng/g in Antarctica to 1000 ng/g in northeast China. Chemical analyses, input to a receptor model, indicate that the major source of BC in most of the Arctic is biomass burning, but industrial sources dominate in Svalbard and the central Arctic Ocean. Non-BC impurities, principally brown (organic) carbon, are typically responsible for ~40% of the visible and ultraviolet absorption. In northeast China BC is the dominant LAI, but in Inner Mongolia soil dominates. When the snow surface layer melts, much of the BC is left at the top of the snowpack rather than carried away in meltwater, thus causing a positive feedback on snowmelt. This process was quantified through field studies in Greenland, Alaska, and Norway, where we found that only 10-30% of the BC is removed with meltwater. The BC content of the Arctic atmosphere has declined markedly since 1989, according to the continuous measurements of near-surface air in Canada, Alaska, and Svalbard. Correspondingly, our recent BC

  19. Effect of weight fraction of carbon black and number of plies of E-glass fiber to reflection loss of E-glass/ripoxy composite for radar absorbing structure (RAS)

    NASA Astrophysics Data System (ADS)

    Widyastuti, Ramadhan, Rizal; Ardhyananta, Hosta; Zainuri, Mochamad

    2013-09-01

    Nowadays, studies on investigating radar absorbing structure (RAS) using fiber reinforced polymeric (FRP) composite materials are becoming popular research field because the electromagnetic properties of FRP composites can be tailored effectively by just adding some electromagnetic powders, such as carbon black, ferrite, carbonyl iron, and etc., to the matrix of composites. The RAS works not only as a load bearing structure to hold the antenna system, but also has the important function of absorbing the in-band electromagnetic wave coming from the electromagnetic energy of tracking systems. In this study, E-glass fiber reinforced ripoxy resin composite was fabricated by blending the conductive carbon black (Ketjenblack EC300J) with the binder matrix of the composite material and maximizing the coefficient of absorption more than 90% (more than -10 dB) within the X-band frequency (8 - 12 GHz). It was measured by electrical conductivity (LCR meter) and vector network analyzer (VNA). Finally, the composite RAS with 0.02 weight fraction of carbon black and 4 plies of E-glass fiber showed thickness of 2.1 mm, electrical conductivity of 8.33 × 10-6 S/m, and maximum reflection loss of -27.123 dB, which can absorb more than 90% of incident EM wave throughout the entire X-band frequency range, has been developed.

  20. Additive manufacturing of RF absorbers

    NASA Astrophysics Data System (ADS)

    Mills, Matthew S.

    The ability of additive manufacturing techniques to fabricate integrated electromagnetic absorbers tuned for specific radio frequency bands within structural composites allows for unique combinations of mechanical and electromagnetic properties. These composites and films can be used for RF shielding of sensitive electromagnetic components through in-plane and out-of-plane RF absorption. Structural composites are a common building block of many commercial platforms. These platforms may be placed in situations in which there is a need for embedded RF absorbing properties along with structural properties. Instead of adding radar absorbing treatments to the external surface of existing structures, which adds increased size, weight and cost; it could prove to be advantageous to integrate the microwave absorbing properties directly into the composite during the fabrication process. In this thesis, a method based on additive manufacturing techniques of composites structures with prescribed electromagnetic loss, within the frequency range 1 to 26GHz, is presented. This method utilizes screen printing and nScrypt micro dispensing to pattern a carbon based ink onto low loss substrates. The materials chosen for this study will be presented, and the fabrication technique that these materials went through to create RF absorbing structures will be described. The calibration methods used, the modeling of the RF structures, and the applications in which this technology can be utilized will also be presented.

  1. Composition for absorbing hydrogen

    DOEpatents

    Heung, Leung K.; Wicks, George G.; Enz, Glenn L.

    1995-01-01

    A hydrogen absorbing composition. The composition comprises a porous glass matrix, made by a sol-gel process, having a hydrogen-absorbing material dispersed throughout the matrix. A sol, made from tetraethyl orthosilicate, is mixed with a hydrogen-absorbing material and solidified to form a porous glass matrix with the hydrogen-absorbing material dispersed uniformly throughout the matrix. The glass matrix has pores large enough to allow gases having hydrogen to pass through the matrix, yet small enough to hold the particles dispersed within the matrix so that the hydrogen-absorbing particles are not released during repeated hydrogen absorption/desorption cycles.

  2. Composition for absorbing hydrogen

    DOEpatents

    Heung, L.K.; Wicks, G.G.; Enz, G.L.

    1995-05-02

    A hydrogen absorbing composition is described. The composition comprises a porous glass matrix, made by a sol-gel process, having a hydrogen-absorbing material dispersed throughout the matrix. A sol, made from tetraethyl orthosilicate, is mixed with a hydrogen-absorbing material and solidified to form a porous glass matrix with the hydrogen-absorbing material dispersed uniformly throughout the matrix. The glass matrix has pores large enough to allow gases having hydrogen to pass through the matrix, yet small enough to hold the particles dispersed within the matrix so that the hydrogen-absorbing particles are not released during repeated hydrogen absorption/desorption cycles.

  3. Real Time Monitoring of Dissolved Organic Carbon Concentration and Disinfection By-Product Formation Potential in a Surface Water Treatment Plant with Simulaneous UV-VIS Absorbance and Fluorescence Excitation-Emission Mapping

    NASA Astrophysics Data System (ADS)

    Gilmore, A. M.

    2015-12-01

    This study describes a method based on simultaneous absorbance and fluorescence excitation-emission mapping for rapidly and accurately monitoring dissolved organic carbon concentration and disinfection by-product formation potential for surface water sourced drinking water treatment. The method enables real-time monitoring of the Dissolved Organic Carbon (DOC), absorbance at 254 nm (UVA), the Specific UV Absorbance (SUVA) as well as the Simulated Distribution System Trihalomethane (THM) Formation Potential (SDS-THMFP) for the source and treated water among other component parameters. The method primarily involves Parallel Factor Analysis (PARAFAC) decomposition of the high and lower molecular weight humic and fulvic organic component concentrations. The DOC calibration method involves calculating a single slope factor (with the intercept fixed at 0 mg/l) by linear regression for the UVA divided by the ratio of the high and low molecular weight component concentrations. This method thus corrects for the changes in the molecular weight component composition as a function of the source water composition and coagulation treatment effects. The SDS-THMFP calibration involves a multiple linear regression of the DOC, organic component ratio, chlorine residual, pH and alkalinity. Both the DOC and SDS-THMFP correlations over a period of 18 months exhibited adjusted correlation coefficients with r2 > 0.969. The parameters can be reported as a function of compliance rules associated with required % removals of DOC (as a function of alkalinity) and predicted maximum contaminant levels (MCL) of THMs. The single instrument method, which is compatible with continuous flow monitoring or grab sampling, provides a rapid (2-3 minute) and precise indicator of drinking water disinfectant treatability without the need for separate UV photometric and DOC meter measurements or independent THM determinations.

  4. Modelling Absorbent Phenomena of Absorbent Structure

    NASA Astrophysics Data System (ADS)

    Sayeb, S.; Ladhari, N.; Ben Hassen, M.; Sakli, F.

    Absorption, retention and strike through time, as evaluating criteria of absorbent structures quality were studied. Determination of influent parameters on these criteria were realized by using the design method of experimental sets. In this study, the studied parameters are: Super absorbent polymer (SAP)/fluff ratio, compression and the porosity of the non woven used as a cover stock. Absorption capacity and retention are mostly influenced by SAP/fluff ratio. However, strike through time is affected by compression. Thus, a modelling of these characteristics in function of the important parameter was established.

  5. Methods for absorbing neutrons

    DOEpatents

    Guillen, Donna P.; Longhurst, Glen R.; Porter, Douglas L.; Parry, James R.

    2012-07-24

    A conduction cooled neutron absorber may include a metal matrix composite that comprises a metal having a thermal neutron cross-section of at least about 50 barns and a metal having a thermal conductivity of at least about 1 W/cmK. Apparatus for providing a neutron flux having a high fast-to-thermal neutron ratio may include a source of neutrons that produces fast neutrons and thermal neutrons. A neutron absorber positioned adjacent the neutron source absorbs at least some of the thermal neutrons so that a region adjacent the neutron absorber has a fast-to-thermal neutron ratio of at least about 15. A coolant in thermal contact with the neutron absorber removes heat from the neutron absorber.

  6. Externally tuned vibration absorber

    DOEpatents

    Vincent, Ronald J.

    1987-09-22

    A vibration absorber unit or units are mounted on the exterior housing of a hydraulic drive system of the type that is powered from a pressure wave generated, e.g., by a Stirling engine. The hydraulic drive system employs a piston which is hydraulically driven to oscillate in a direction perpendicular to the axis of the hydraulic drive system. The vibration absorbers each include a spring or other resilient member having one side affixed to the housing and another side to which an absorber mass is affixed. In a preferred embodiment, a pair of vibration absorbers is employed, each absorber being formed of a pair of leaf spring assemblies, between which the absorber mass is suspended.

  7. Advanced neutron absorber materials

    DOEpatents

    Branagan, Daniel J.; Smolik, Galen R.

    2000-01-01

    A neutron absorbing material and method utilizing rare earth elements such as gadolinium, europium and samarium to form metallic glasses and/or noble base nano/microcrystalline materials, the neutron absorbing material having a combination of superior neutron capture cross sections coupled with enhanced resistance to corrosion, oxidation and leaching.

  8. Absorbing Outflows in AGN

    NASA Technical Reports Server (NTRS)

    Mathur, Smita

    2002-01-01

    The goal of this program was a comprehensive multiwavelength study of absorption phenomena in active galactic nuclei (AGN). These include a variety of associated absorption systems: X-ray warm absorbers, X-ray cold absorbers. UV absorbers with high ionization lines, MgII absorbers, red quasars and BALQSOs. The aim is to determine the physical conditions in the absorbing outflows, study their inter-relations and their role in AGN. We designed several observing programs to achieve this goal: X-ray spectroscopy, UV spectroscopy, FLAY spectroscopy and X-ray imaging. We were very successful towards achieving the goal over the five year period as shown through following observing programs and papers. Copies of a few papers are attached with this report.

  9. Internal absorber solar collector

    DOEpatents

    Sletten, Carlyle J.; Herskovitz, Sheldon B.; Holt, F. S.; Sletten, E. J.

    1981-01-01

    Thin solar collecting panels are described made from arrays of small rod collectors consisting of a refracting dielectric rod lens with an absorber imbedded within it and a reflecting mirror coated on the back side of the dielectric rod. Non-tracking collector panels on vertical walls or roof tops receive approximately 90% of solar radiation within an acceptance zone 60.degree. in elevation angle by 120.degree. or more in the azimuth sectors with a collector concentration ratio of approximately 3.0. Miniaturized construction of the circular dielectric rods with internal absorbers reduces the weight per area of glass, plastic and metal used in the collector panels. No external parts or insulation are needed as heat losses are low due to partial vacuum or low conductivity gas surrounding heated portions of the collector. The miniature internal absorbers are generally made of solid copper with black selective surface and the collected solar heat is extracted at the collector ends by thermal conductivity along the absorber rods. Heat is removed from end fittings by use of liquid circulants. Several alternate constructions are provided for simplifying collector panel fabrication and for preventing the thermal expansion and contraction of the heated absorber or circulant tubes from damaging vacuum seals. In a modified version of the internal absorber collector, oil with temperature dependent viscosity is pumped through a segmented absorber which is now composed of closely spaced insulated metal tubes. In this way the circulant is automatically diverted through heated portions of the absorber giving higher collector concentration ratios than theoretically possible for an unsegmented absorber.

  10. Lipid-absorbing Polymers

    NASA Technical Reports Server (NTRS)

    Marsh, H. E., Jr.; Wallace, C. J.

    1973-01-01

    The removal of bile acids and cholesterol by polymeric absorption is discussed in terms of micelle-polymer interaction. The results obtained with a polymer composed of 75 parts PEO and 25 parts PB plus curing ingredients show an absorption of 305 to 309%, based on original polymer weight. Particle size effects on absorption rate are analyzed. It is concluded that crosslinked polyethylene oxide polymers will absorb water, crosslinked polybutadiene polymers will absorb lipids; neither polymer will absorb appreciable amounts of lipids from micellar solutions of lipids in water.

  11. Contemporary "Hoisan-wa" Language Maintenance in Northern California: Evidence from Fourteen Frog Story Narratives

    ERIC Educational Resources Information Center

    Leung, Genevieve

    2012-01-01

    This article explores uninvestigated issues in Cantonese and "Hoisan-wa" language maintenance from an ethnic Chinese diaspora point of view. Data come from a larger study looking at Frog Story narratives from 140 Cantonese-English bilingual children in California. Fourteen of these children were found to display uniquely "Hoisan-wa" phonology and…

  12. PLUG STORAGE BUILDING, TRA611. STRUCTURAL DETAILS. FACE PLATE. FOURTEEN OPENINGS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PLUG STORAGE BUILDING, TRA-611. STRUCTURAL DETAILS. FACE PLATE. FOURTEEN OPENINGS LABELED FOR PLUGS FROM SPECIFIC SIZE GROUPS IN THE MTR. BLAW-KNOX 3150-811-2, 1/1951. INL INDEX NO. 531-0611-00-098-100694, REV. 1. - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  13. A facile one-pot method to synthesize a three-dimensional graphene@carbon nanotube composite as a high-efficiency microwave absorber.

    PubMed

    Wang, Lei; Huang, Ying; Li, Chao; Chen, Junjiao; Sun, Xu

    2015-01-21

    A novel three-dimensional graphene@carbon nanotube (CNTs) composite has been prepared using a facile one-pot pyrolysis strategy using urea as the carbon source, in which the density and length of CNTs on graphene are rationally tuned by adding an appropriate amount of urea to a precursor mixture. Correspondingly, the density and length of CNTs on graphene have a significant effect on the microwave absorption properties of graphene@CNTs. When most of the graphene surface is clearly covered by the CNTs whose length ranges from 300 to 600 nm, the graphene@CNT composite exhibits excellent microwave absorption properties. The maximum reflection loss value can reach -44.6 dB at 8.6 GHz and the absorption bandwidth with a reflection loss below -10 dB ranges from 7.1 to 10.4 GHz with an addition amount of only 5 wt% graphene@CNTs composite in the paraffin matrix.

  14. Aldehyde-containing urea-absorbing polysaccharides

    NASA Technical Reports Server (NTRS)

    Mueller, W. A.; Hsu, G. C.; Marsh, H. E., Jr. (Inventor)

    1977-01-01

    A novel aldehyde containing polymer (ACP) is prepared by reaction of a polysaccharide with periodate to introduce aldehyde groups onto the C2 - C3 carbon atoms. By introduction of ether and ester groups onto the pendant primary hydroxyl solubility characteristics are modified. The ACP is utilized to absorb nitrogen bases such as urea in vitro or in vivo.

  15. Label-free multi-photon imaging using a compact femtosecond fiber laser mode-locked by carbon nanotube saturable absorber

    PubMed Central

    Kieu, K.; Mehravar, S.; Gowda, R.; Norwood, R. A.; Peyghambarian, N.

    2013-01-01

    We demonstrate label-free multi-photon imaging of biological samples using a compact Er3+-doped femtosecond fiber laser mode-locked by a single-walled carbon nanotube (CNT). These compact and low cost lasers have been developed by various groups but they have not been exploited for multiphoton microscopy. Here, it is shown that various multiphoton imaging modalities (e.g. second harmonic generation (SHG), third harmonic generation (THG), two-photon excitation fluorescence (TPEF), and three-photon excitation fluorescence (3PEF)) can be effectively performed on various biological samples using a compact handheld CNT mode-locked femtosecond fiber laser operating in the telecommunication window near 1560nm. We also show for the first time that chlorophyll fluorescence in plant leaves and diatoms can be observed using 1560nm laser excitation via three-photon absorption. PMID:24156074

  16. Label-free multi-photon imaging using a compact femtosecond fiber laser mode-locked by carbon nanotube saturable absorber.

    PubMed

    Kieu, K; Mehravar, S; Gowda, R; Norwood, R A; Peyghambarian, N

    2013-01-01

    We demonstrate label-free multi-photon imaging of biological samples using a compact Er(3+)-doped femtosecond fiber laser mode-locked by a single-walled carbon nanotube (CNT). These compact and low cost lasers have been developed by various groups but they have not been exploited for multiphoton microscopy. Here, it is shown that various multiphoton imaging modalities (e.g. second harmonic generation (SHG), third harmonic generation (THG), two-photon excitation fluorescence (TPEF), and three-photon excitation fluorescence (3PEF)) can be effectively performed on various biological samples using a compact handheld CNT mode-locked femtosecond fiber laser operating in the telecommunication window near 1560nm. We also show for the first time that chlorophyll fluorescence in plant leaves and diatoms can be observed using 1560nm laser excitation via three-photon absorption.

  17. Unidirectional perfect absorber

    PubMed Central

    Jin, L.; Wang, P.; Song, Z.

    2016-01-01

    This study proposes a unidirectional perfect absorber (UPA), which we realized with a two-arm Aharonov-Bohm interferometer, that consists of a dissipative resonator side-coupled to a uniform resonator array. The UPA has reflection-less full absorption on one direction, and reflectionless full transmission on the other, with an appropriate magnetic flux and coupling, detuning, and loss of the side-coupled resonator. The magnetic flux controls the transmission, the left transmission is larger for magnetic flux less than one-half flux quantum; and the right transmission is larger for magnetic flux between one-half and one flux quantum. Besides, a perfect absorber (PA) can be realized based on the UPA, in which light waves from both sides, with arbitrary superposition of the ampli- tude and phase, are perfectly absorbed. The UPA is expected to be useful in the design of novel optical devices. PMID:27615125

  18. Unidirectional perfect absorber

    NASA Astrophysics Data System (ADS)

    Jin, L.; Wang, P.; Song, Z.

    2016-09-01

    This study proposes a unidirectional perfect absorber (UPA), which we realized with a two-arm Aharonov-Bohm interferometer, that consists of a dissipative resonator side-coupled to a uniform resonator array. The UPA has reflection-less full absorption on one direction, and reflectionless full transmission on the other, with an appropriate magnetic flux and coupling, detuning, and loss of the side-coupled resonator. The magnetic flux controls the transmission, the left transmission is larger for magnetic flux less than one-half flux quantum; and the right transmission is larger for magnetic flux between one-half and one flux quantum. Besides, a perfect absorber (PA) can be realized based on the UPA, in which light waves from both sides, with arbitrary superposition of the ampli- tude and phase, are perfectly absorbed. The UPA is expected to be useful in the design of novel optical devices.

  19. Unidirectional perfect absorber.

    PubMed

    Jin, L; Wang, P; Song, Z

    2016-01-01

    This study proposes a unidirectional perfect absorber (UPA), which we realized with a two-arm Aharonov-Bohm interferometer, that consists of a dissipative resonator side-coupled to a uniform resonator array. The UPA has reflection-less full absorption on one direction, and reflectionless full transmission on the other, with an appropriate magnetic flux and coupling, detuning, and loss of the side-coupled resonator. The magnetic flux controls the transmission, the left transmission is larger for magnetic flux less than one-half flux quantum; and the right transmission is larger for magnetic flux between one-half and one flux quantum. Besides, a perfect absorber (PA) can be realized based on the UPA, in which light waves from both sides, with arbitrary superposition of the ampli- tude and phase, are perfectly absorbed. The UPA is expected to be useful in the design of novel optical devices. PMID:27615125

  20. Mechanical energy absorber

    NASA Technical Reports Server (NTRS)

    Wesselski, Clarence J. (Inventor)

    1993-01-01

    An energy absorbing system for controlling the force where a moving object engages a stationary stop and where the system utilized telescopic tubular members, energy absorbing diaphragm elements, force regulating disc springs, and a return spring to return the telescoping member to its start position after stroking is presented. The energy absorbing system has frusto-conical diaphragm elements frictionally engaging the shaft and are opposed by a force regulating set of disc springs. In principle, this force feedback mechanism serves to keep the stroking load at a reasonable level even if the friction coefficient increases greatly. This force feedback device also serves to desensitize the singular and combined effects of manufacturing tolerances, sliding surface wear, temperature changes, dynamic effects, and lubricity.

  1. Unidirectional perfect absorber.

    PubMed

    Jin, L; Wang, P; Song, Z

    2016-09-12

    This study proposes a unidirectional perfect absorber (UPA), which we realized with a two-arm Aharonov-Bohm interferometer, that consists of a dissipative resonator side-coupled to a uniform resonator array. The UPA has reflection-less full absorption on one direction, and reflectionless full transmission on the other, with an appropriate magnetic flux and coupling, detuning, and loss of the side-coupled resonator. The magnetic flux controls the transmission, the left transmission is larger for magnetic flux less than one-half flux quantum; and the right transmission is larger for magnetic flux between one-half and one flux quantum. Besides, a perfect absorber (PA) can be realized based on the UPA, in which light waves from both sides, with arbitrary superposition of the ampli- tude and phase, are perfectly absorbed. The UPA is expected to be useful in the design of novel optical devices.

  2. Radar Absorbing Materials for Cube Stealth Satellite

    NASA Astrophysics Data System (ADS)

    Micheli, D.; Pastore, R.; Vricella, A.; Marchetti, M.

    A Cube Stealth Satellite is proposed for potential applications in defense system. Particularly, the faces of the satellite exposed to the Earth are made of nanostructured materials able to absorb radar surveillance electromagnetic waves, conferring stealth capability to the cube satellite. Microwave absorbing and shielding material tiles are proposed using composite materials consisting in epoxy-resin and carbon nanotubes filler. The electric permittivity of the composite nanostructured materials is measured and discussed. Such data are used by the modeling algorithm to design the microwave absorbing and the shielding faces of the cube satellite. The electromagnetic modeling takes into account for several incidence angles (0-80°), extended frequency band (2-18 GHz), and for the minimization of the electromagnetic reflection coefficient. The evolutionary algorithm used for microwave layered microwave absorber modeling is the recently developed Winning Particle Optimization. The mathematical model of the absorbing structure is finally experimentally validated by comparing the electromagnetic simulation to the measurement of the manufactured radar absorber tile. Nanostructured composite materials manufacturing process and electromagnetic reflection measurements methods are described. Finally, a finite element method analysis of the electromagnetic scattering by cube stealth satellite is performed.

  3. Effects of Fourteen-Day Bed Rest on Trunk Stabilizing Functions in Aging Adults

    PubMed Central

    Sarabon, Nejc; Rosker, Jernej

    2015-01-01

    Bed rest has been shown to have detrimental effects on structural and functional characteristics of the trunk muscles, possibly affecting trunk and spinal stability. This is especially important in populations such as aging adults with often altered trunk stabilizing functions. This study examined the effects of a fourteen-day bed rest on anticipatory postural adjustments and postural reflex responses of the abdominal wall and back muscles in sixteen adult men. Postural activation of trunk muscles was measured using voluntary quick arm movement and sudden arm loading paradigm. Measurements were conducted prior to the bed rest, immediately after, and fourteen days after the bed rest. Immediately after the bed rest, latencies of anticipatory postural adjustments showed significant shortening, especially for the obliquus internus and externus muscles. After a fourteen-day recuperation period, anticipatory postural adjustments reached a near to complete recovery. On the contrary, reactive response latencies increased from pre-bed-rest to both post-bed-rest measurement sessions. Results indicate an important effect of bed rest on stabilizing functions of the trunk muscles in elderly adults. Moreover, there proved to be a significant deterioration of postural reactive responses that outlasted the 14-day post-bed-rest rehabilitation. PMID:26601104

  4. Neutron Absorbing Alloys

    DOEpatents

    Mizia, Ronald E.; Shaber, Eric L.; DuPont, John N.; Robino, Charles V.; Williams, David B.

    2004-05-04

    The present invention is drawn to new classes of advanced neutron absorbing structural materials for use in spent nuclear fuel applications requiring structural strength, weldability, and long term corrosion resistance. Particularly, an austenitic stainless steel alloy containing gadolinium and less than 5% of a ferrite content is disclosed. Additionally, a nickel-based alloy containing gadolinium and greater than 50% nickel is also disclosed.

  5. Solar concentrator/absorber

    NASA Technical Reports Server (NTRS)

    Von Tiesenhausen, G. F.

    1976-01-01

    Collector/energy converter, consisting of dual-slope optical concentrator and counterflow thermal energy absorber, is attached to multiaxis support structure. Efficient over wide range of illumination levels, device may be used to generate high temperature steam, serve as solar powered dryer, or power absorption cycle cooler.

  6. Metasurface Broadband Solar Absorber

    PubMed Central

    Azad, Abul K.; Kort-Kamp, Wilton J. M.; Sykora, Milan; Weisse-Bernstein, Nina R.; Luk, Ting S.; Taylor, Antoinette J.; Dalvit, Diego A. R.; Chen, Hou-Tong

    2016-01-01

    We demonstrate a broadband, polarization independent, wide-angle absorber based on a metallic metasurface architecture, which accomplishes greater than 90% absorptance in the visible and near-infrared range of the solar spectrum, and exhibits low absorptivity (emissivity) at mid- and far-infrared wavelengths. The complex unit cell of the metasurface solar absorber consists of eight pairs of gold nano-resonators that are separated from a gold ground plane by a thin silicon dioxide spacer. Our experimental measurements reveal high-performance absorption over a wide range of incidence angles for both s- and p-polarizations. We also investigate numerically the frequency-dependent field and current distributions to elucidate how the absorption occurs within the metasurface structure. PMID:26828999

  7. Metasurface Broadband Solar Absorber.

    PubMed

    Azad, Abul K; Kort-Kamp, Wilton J M; Sykora, Milan; Weisse-Bernstein, Nina R; Luk, Ting S; Taylor, Antoinette J; Dalvit, Diego A R; Chen, Hou-Tong

    2016-01-01

    We demonstrate a broadband, polarization independent, wide-angle absorber based on a metallic metasurface architecture, which accomplishes greater than 90% absorptance in the visible and near-infrared range of the solar spectrum, and exhibits low absorptivity (emissivity) at mid- and far-infrared wavelengths. The complex unit cell of the metasurface solar absorber consists of eight pairs of gold nano-resonators that are separated from a gold ground plane by a thin silicon dioxide spacer. Our experimental measurements reveal high-performance absorption over a wide range of incidence angles for both s- and p-polarizations. We also investigate numerically the frequency-dependent field and current distributions to elucidate how the absorption occurs within the metasurface structure.

  8. Metasurface Broadband Solar Absorber

    DOE PAGES

    Azad, Abul K.; Kort-Kamp, Wilton J. M.; Sykora, Milan; Weisse-Bernstein, Nina R.; Luk, Ting S.; Taylor, Antoinette J.; Dalvit, Diego A. R.; Chen, Hou-Tong

    2016-02-01

    Here, we demonstrate a broadband, polarization independent, wide-angle absorber based on a metallic metasurface architecture, which accomplishes greater than 90% absorptance in the visible and near-infrared range of the solar spectrum, and exhibits low absorptivity (emissivity) at mid- and far-infrared wavelengths. The complex unit cell of the metasurface solar absorber consists of eight pairs of gold nano-resonators that are separated from a gold ground plane by a thin silicon dioxide spacer. Moreover, our experimental measurements reveal high-performance absorption over a wide range of incidence angles for both s- and p-polarizations. We also investigate numerically the frequency-dependent field and current distributionsmore » to elucidate how the absorption occurs within the metasurface structure.« less

  9. Metasurface Broadband Solar Absorber.

    PubMed

    Azad, Abul K; Kort-Kamp, Wilton J M; Sykora, Milan; Weisse-Bernstein, Nina R; Luk, Ting S; Taylor, Antoinette J; Dalvit, Diego A R; Chen, Hou-Tong

    2016-01-01

    We demonstrate a broadband, polarization independent, wide-angle absorber based on a metallic metasurface architecture, which accomplishes greater than 90% absorptance in the visible and near-infrared range of the solar spectrum, and exhibits low absorptivity (emissivity) at mid- and far-infrared wavelengths. The complex unit cell of the metasurface solar absorber consists of eight pairs of gold nano-resonators that are separated from a gold ground plane by a thin silicon dioxide spacer. Our experimental measurements reveal high-performance absorption over a wide range of incidence angles for both s- and p-polarizations. We also investigate numerically the frequency-dependent field and current distributions to elucidate how the absorption occurs within the metasurface structure. PMID:26828999

  10. Absorbed dose water calorimeter

    SciTech Connect

    Domen, S.R.

    1982-01-26

    An absorbed dose water calorimeter that takes advantage of the low thermal diffusivity of water and the water-imperviousness of polyethylene film. An ultra-small bead thermistor is sandwiched between two thin polyethylene films stretched between insulative supports in a water bath. The polyethylene films insulate the thermistor and its leads, the leads being run out from between the films in insulated sleeving and then to junctions to form a wheatstone bridge circuit. Convection barriers may be provided to reduce the effects of convection from the point of measurement. Controlled heating of different levels in the water bath is accomplished by electrical heater circuits provided for controlling temperature drift and providing adiabatic operation of the calorimeter. The absorbed dose is determined from the known specific heat of water and the measured temperature change.

  11. Ionized Absorbers in AGN

    NASA Technical Reports Server (NTRS)

    Mathur, S.

    1999-01-01

    As a part of this program, we observed three AGN:PKS2251 + 113, PG0043 = 039 and PLH909. Two objects show signatures of absorbtion in their UV spectra. Based on our earlier modeling of X-ray warm absorbents, we expected to observe X-ray observation in these objects. The third, PLH909, is known to have soft excess in EINSTEIN data. Attachment: "Exploratory ASCA observation of broad absorption line quasi-stellar objects".

  12. Absorber for terahertz radiation management

    DOEpatents

    Biallas, George Herman; Apeldoorn, Cornelis; Williams, Gwyn P.; Benson, Stephen V.; Shinn, Michelle D.; Heckman, John D.

    2015-12-08

    A method and apparatus for minimizing the degradation of power in a free electron laser (FEL) generating terahertz (THz) radiation. The method includes inserting an absorber ring in the FEL beam path for absorbing any irregular THz radiation and thus minimizes the degradation of downstream optics and the resulting degradation of the FEL output power. The absorber ring includes an upstream side, a downstream side, and a plurality of wedges spaced radially around the absorber ring. The wedges form a scallop-like feature on the innermost edges of the absorber ring that acts as an apodizer, stopping diffractive focusing of the THz radiation that is not intercepted by the absorber. Spacing between the scallop-like features and the shape of the features approximates the Bartlett apodization function. The absorber ring provides a smooth intensity distribution, rather than one that is peaked on-center, thereby eliminating minor distortion downstream of the absorber.

  13. Corrosion resistant neutron absorbing coatings

    DOEpatents

    Choi, Jor-Shan; Farmer, Joseph C; Lee, Chuck K; Walker, Jeffrey; Russell, Paige; Kirkwood, Jon; Yang, Nancy; Champagne, Victor

    2013-11-12

    A method of forming a corrosion resistant neutron absorbing coating comprising the steps of spray or deposition or sputtering or welding processing to form a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material. Also a corrosion resistant neutron absorbing coating comprising a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material.

  14. Corrosion resistant neutron absorbing coatings

    DOEpatents

    Choi, Jor-Shan; Farmer, Joseph C.; Lee, Chuck K.; Walker, Jeffrey; Russell, Paige; Kirkwood, Jon; Yang, Nancy; Champagne, Victor

    2012-05-29

    A method of forming a corrosion resistant neutron absorbing coating comprising the steps of spray or deposition or sputtering or welding processing to form a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material. Also a corrosion resistant neutron absorbing coating comprising a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material.

  15. Underwater acoustic omnidirectional absorber

    NASA Astrophysics Data System (ADS)

    Naify, Christina J.; Martin, Theodore P.; Layman, Christopher N.; Nicholas, Michael; Thangawng, Abel L.; Calvo, David C.; Orris, Gregory J.

    2014-02-01

    Gradient index media, which are designed by varying local element properties in given geometry, have been utilized to manipulate acoustic waves for a variety of devices. This study presents a cylindrical, two-dimensional acoustic "black hole" design that functions as an omnidirectional absorber for underwater applications. The design features a metamaterial shell that focuses acoustic energy into the shell's core. Multiple scattering theory was used to design layers of rubber cylinders with varying filling fractions to produce a linearly graded sound speed profile through the structure. Measured pressure intensity agreed with predicted results over a range of frequencies within the homogenization limit.

  16. Liquid Cryogen Absorber for MICE

    SciTech Connect

    Baynham, D.E.; Bish, P.; Bradshaw, T.W.; Cummings, M.A.; Green,M.A.; Ishimoto, S.; Ivaniouchenkov, I.; Lau, W.; Yang, S.Q.; Zisman, M.S.

    2005-08-20

    The Muon Ionization Cooling Experiment (MICE) will test ionization cooling of muons. In order to have effective ionization cooling, one must use an absorber that is made from a low-z material. The most effective low z materials for ionization cooling are hydrogen, helium, lithium hydride, lithium and beryllium, in that order. In order to measure the effect of material on cooling, several absorber materials must be used. This report describes a liquid-hydrogen absorber that is within a pair of superconducting focusing solenoids. The absorber must also be suitable for use with liquid helium. The following absorber components are discussed in this report; the absorber body, its heat exchanger, the hydrogen system, and the hydrogen safety. Absorber cooling and the thin windows are not discussed here.

  17. Relations of fine-root morphology on (137)Cs uptake by fourteen Brassica species.

    PubMed

    Aung, Han Phyo; Aye, Yi Swe; Mensah, Akwasi Dwira; Omari, Richard Ansong; Djedidi, Salem; Oikawa, Yosei; Ohkama-Ohtsu, Naoko; Yokoyama, Tadashi; Bellingrath-Kimura, Sonoko Dorothea

    2015-12-01

    Fourteen Brassica species consisting of seven leafy vegetables and seven root vegetables were examined for (137)Cs uptake differences in relation to their fine-root morphological characters. A pot experiment was conducted from November 2014 to February 2015 in a Phytroton using a contaminated soil of Fukushima prefecture. Leafy vegetables showed bigger root diameters, larger root surface area and larger root volume. Consequently, leafy vegetables had higher (137)Cs uptake compared to root vegetables. Among the three fine-root parameters, only root surface area was observed as a significant contributing factor to higher (137)Cs uptake in terms of transfer factor (TF, dry weight basis). Kakina exhibited higher (137)Cs TF value (0.20) followed by Chinese cabbage (0.18) and mizuna (0.17). Lower TF values were observed in turnip (0.059), rutabaga (Kitanoshou) (0.062) and radish (Ha daikon) (0.064). PMID:26355648

  18. Review of the Berosus Leach of Venezuela (Coleoptera, Hydrophilidae, Berosini) with description of fourteen new species

    PubMed Central

    Oliva, Adriana; Short, Andrew E. Z.

    2012-01-01

    Abstract The species of the water scavenger beetle genus Berosus Leach occurring in Venezuela are reviewed. Thirty-six species are recorded, including fifteen new species, fourteen of which are described here as new: Berosus aragua sp. n., Berosus asymmetricus sp. n., Berosus capanaparo sp. n., Berosus castaneus sp. n., Berosus corozo sp. n., Berosus ebeninus sp. n., Berosus garciai sp. n., Berosus humeralis sp. n., Berosus jolyi sp. n., Berosus llanensis sp. n., Berosus megaphallus sp. n., Berosus ornaticollis sp. n., Berosus repertus sp. n., and Berosus tramidrum sp. n. The fifteenth new species, known from a single female, is left undescribed pending the collection of males. Twelve species are recorded from Venezuela for the first time: Berosus ambogynus Mouchamps, Berosus consobrinus Knisch, Berosus elegans Knisch, Berosus geayi d’Orchymont, Berosus ghanicus d’Orchymont, Berosus guyanensis Queney, Berosus holdhausi Knisch, Berosus marquardti Knisch, Berosus olivae Queney, Berosus reticulatus Knisch, Berosus wintersteineri Knisch, and Berosus zimmermanni Knisch. PMID:22811607

  19. Relations of fine-root morphology on (137)Cs uptake by fourteen Brassica species.

    PubMed

    Aung, Han Phyo; Aye, Yi Swe; Mensah, Akwasi Dwira; Omari, Richard Ansong; Djedidi, Salem; Oikawa, Yosei; Ohkama-Ohtsu, Naoko; Yokoyama, Tadashi; Bellingrath-Kimura, Sonoko Dorothea

    2015-12-01

    Fourteen Brassica species consisting of seven leafy vegetables and seven root vegetables were examined for (137)Cs uptake differences in relation to their fine-root morphological characters. A pot experiment was conducted from November 2014 to February 2015 in a Phytroton using a contaminated soil of Fukushima prefecture. Leafy vegetables showed bigger root diameters, larger root surface area and larger root volume. Consequently, leafy vegetables had higher (137)Cs uptake compared to root vegetables. Among the three fine-root parameters, only root surface area was observed as a significant contributing factor to higher (137)Cs uptake in terms of transfer factor (TF, dry weight basis). Kakina exhibited higher (137)Cs TF value (0.20) followed by Chinese cabbage (0.18) and mizuna (0.17). Lower TF values were observed in turnip (0.059), rutabaga (Kitanoshou) (0.062) and radish (Ha daikon) (0.064).

  20. Fourteen polymorphic microsatellite markers for the threatened Arnica montana (Asteraceae)1

    PubMed Central

    Duwe, Virginia K.; Ismail, Sascha A.; Buser, Andres; Sossai, Esther; Borsch, Thomas; Muller, Ludo A. H.

    2015-01-01

    • Premise of the study: Microsatellite markers were developed to investigate population genetic structure in the threatened species Arnica montana. • Methods and Results: Fourteen microsatellite markers with di-, tetra-, and hexanucleotide repeat motifs were developed for A. montana using 454 pyrosequencing without and with library-enrichment methods, resulting in 56,545 sequence reads and 14,467 sequence reads, respectively. All loci showed a high level of polymorphism, with allele numbers ranging from four to 11 in five individuals from five populations (25 samples) and an expected heterozygosity ranging from 0.192 to 0.648 across the loci. • Conclusions: This set of microsatellite markers is the first one described for A. montana and will facilitate conservation genetic applications as well as the understanding of phylogeographic patterns in this species. PMID:25606354

  1. Dual broadband metamaterial absorber.

    PubMed

    Kim, Young Ju; Yoo, Young Joon; Kim, Ki Won; Rhee, Joo Yull; Kim, Yong Hwan; Lee, YoungPak

    2015-02-23

    We propose polarization-independent and dual-broadband metamaterial absorbers at microwave frequencies. This is a periodic meta-atom array consisting of metal-dielectric-multilayer truncated cones. We demonstrate not only one broadband absorption from the fundamental magnetic resonances but additional broadband absorption in high-frequency range using the third-harmonic resonance, by both simulation and experiment. In simulation, the absorption was over 90% in 3.93-6.05 GHz, and 11.64-14.55 GHz. The corresponding experimental absorption bands over 90% were 3.88-6.08 GHz, 9.95-10.46 GHz and 11.86-13.84 GHz, respectively. The origin of absorption bands was elucidated. Furthermore, it is independent of polarization angle owing to the multilayered circular structures. The design is scalable to smaller size for the infrared and the visible ranges.

  2. Absorber coatings' degradation

    SciTech Connect

    Moore, S.W.

    1984-01-01

    This report is intended to document some of the Los Alamos efforts that have been carried out under the Department of Energy (DOE) Active Heating and Cooling Materials Reliability, Maintainability, and Exposure Testing program. Funding for these activities is obtained directly from DOE although they represent a variety of projects and coordination with other agencies. Major limitations to the use of solar energy are the uncertain reliability and lifetimes of solar systems. This program is aimed at determining material operating limitations, durabilities, and failure modes such that materials improvements can be made and lifetimes can be extended. Although many active and passive materials and systems are being studied at Los Alamos, this paper will concentrate on absorber coatings and degradation of these coatings.

  3. Performance evaluation of CFRP-rubber shock absorbers

    SciTech Connect

    Lamanna, Giuseppe Sepe, Raffaele

    2014-05-15

    In the present work a numerical investigation on the energy absorbing capability of dedicated structural components made of a carbon fiber reinforced polymer and an emulsion polymerised styrene butadiene rubber is reported. The shock absorbers are devices designed to absorb large amounts of energy by sacrificing their own structural integrity. Their aim is to cushion the effects of an impact phenomenon with the intent to preserve other structures from global failure or local damaging. Another important role of shock absorbers is reducing the peak of the acceleration showed during an impact phenomenon. This effect is of considerable interest in the case of vehicles to preserve passengers’ safety. Static and dynamic numerical results are compared with experimental ones in terms of mean crushing forces, energy and peak crushing. The global performance of the absorbers has been evaluated by referencing to a proposed quality index.

  4. Performance evaluation of CFRP-rubber shock absorbers

    NASA Astrophysics Data System (ADS)

    Lamanna, Giuseppe; Sepe, Raffaele

    2014-05-01

    In the present work a numerical investigation on the energy absorbing capability of dedicated structural components made of a carbon fiber reinforced polymer and an emulsion polymerised styrene butadiene rubber is reported. The shock absorbers are devices designed to absorb large amounts of energy by sacrificing their own structural integrity. Their aim is to cushion the effects of an impact phenomenon with the intent to preserve other structures from global failure or local damaging. Another important role of shock absorbers is reducing the peak of the acceleration showed during an impact phenomenon. This effect is of considerable interest in the case of vehicles to preserve passengers' safety. Static and dynamic numerical results are compared with experimental ones in terms of mean crushing forces, energy and peak crushing. The global performance of the absorbers has been evaluated by referencing to a proposed quality index.

  5. Broadband patterned magnetic microwave absorber

    SciTech Connect

    Li, Wei; Wu, Tianlong; Wang, Wei; Guan, Jianguo; Zhai, Pengcheng

    2014-07-28

    It is a tough task to greatly improve the working bandwidth for the traditional flat microwave absorbers because of the restriction of available material parameters. In this work, a simple patterning method is proposed to drastically broaden the absorption bandwidth of a conventional magnetic absorber. As a demonstration, an ultra-broadband microwave absorber with more than 90% absorption in the frequency range of 4–40 GHz is designed and experimentally realized, which has a thin thickness of 3.7 mm and a light weight equivalent to a 2-mm-thick flat absorber. In such a patterned absorber, the broadband strong absorption is mainly originated from the simultaneous incorporation of multiple λ/4 resonances and edge diffraction effects. This work provides a facile route to greatly extend the microwave absorption bandwidth for the currently available absorbing materials.

  6. Liquid Hydrogen Absorber for MICE

    SciTech Connect

    Ishimoto, S.; Suzuki, S.; Yoshida, M.; Green, Michael A.; Kuno, Y.; Lau, Wing

    2010-05-30

    Liquid hydrogen absorbers for the Muon Ionization Cooling Experiment (MICE) have been developed, and the first absorber has been tested at KEK. In the preliminary test at KEK we have successfully filled the absorber with {approx}2 liters of liquid hydrogen. The measured hydrogen condensation speed was 2.5 liters/day at 1.0 bar. No hydrogen leakage to vacuum was found between 300 K and 20 K. The MICE experiment includes three AFC (absorber focusing coil) modules, each containing a 21 liter liquid hydrogen absorber made of aluminum. The AFC module has safety windows to separate its vacuum from that of neighboring modules. Liquid hydrogen is supplied from a cryocooler with cooling power 1.5 W at 4.2 K. The first absorber will be assembled in the AFC module and installed in MICE at RAL.

  7. Interaction of inhalational anaesthetics with CO2 absorbents.

    PubMed

    Baum, Jan A; Woehlck, Harvey J

    2003-03-01

    We review the currently available carbon dioxide absorbents: sodium hydroxide lime (=soda lime), barium hydroxide lime, potassium-hydroxide-free soda lime, calcium hydroxide lime and non-caustic lime. In general, all of these carbon dioxide absorbents are liable to react with inhalational anaesthetics. However, there is a decreasing reactivity of the different absorbents with inhalational anaesthetics: barium hydroxide lime > soda lime > potassium-hydroxide-free soda lime > calcium hydroxide lime and non-caustic lime. Gaseous compounds generated by the reaction of the anaesthetics with desiccated absorbents are those that threaten patients. All measures are comprehensively described to--as far as possible--prevent any accidental drying out of the absorbent. Whether or not compound A, a gaseous compound formed by the reaction of sevoflurane with normally hydrated absorbents, is still a matter of concern is discussed. Even after very high loading with this compound, during long-lasting low-flow sevoflurane anaesthesias, no clinical or laboratory signs of renal impairment were observed in any of the surgical patients. Finally, guidelines for the judicious use of different absorbents are given. PMID:12751549

  8. Plants absorb heavy metals

    SciTech Connect

    Parry, J.

    1995-02-01

    Decontamination of heavy metals-polluted soils remains one of the most intractable problems of cleanup technology. Currently available techniques include extraction of the metals by physical and chemical means, such as acid leaching and electroosmosis, or immobilization by vitrification. There are presently no techniques for cleanup which are low cost and retain soil fertility after metals removal. But a solution to the problem could be on the horizon. A small but growing number of plants native to metalliferous soils are known to be capable of accumulating extremely high concentrations of metals in their aboveground portions. These hyperaccumulators, as they are called, contain up to 1,000 times larger metal concentrations in their aboveground parts than normal species. Their distribution is global, including many different families of flowering plants of varying growth forms, from herbaceous plants to trees. Hyperaccumulators absorb metals they do not need for their own nutrition. The metals are accumulated in the leaf and stem vacuoles, and to a lesser extent in the roots.

  9. Fourteen Years of the Hubble Space Telescope's Advanced Camera for Surveys : Calibration Update

    NASA Astrophysics Data System (ADS)

    Grogin, Norman A.; HST Advanced CameraSurveys Instrument Team

    2016-06-01

    The Advanced Camera for Surveys (ACS) has been a workhorse HST imager for over fourteen years, subsequent to its Servicing Mission 3B installation in 2002. The once defunct ACS Wide Field Channel (WFC) has now been operating considerably longer (>7yrs) since its Servicing Mission 4 repair than it had originally operated (<5yrs) prior to its 2007 failure. Despite the accumulating radiation damage to the WFC CCDs during their long stay in low Earth orbit, ACS continues to be heavily exploited by the HST community as both a prime and a parallel detector. Conspicuous recent examples include the HST Multi-cycle Treasury programs, and the ongoing HST Frontier Fields (HFF) program.We review recent developments in ACS calibration that enable the continued high performance of this instrument, including both the Wide Field Channel (WFC) and the Solar Blind Channel (WFC). Highlights include: 1) redefined WFC subarray modes to allow for more consistent high-fidelity calibration; 2) LED post-flashing the WFC darks to compensate for worsening WFC charge-transfer efficiency (CTE); 3) long term hot- and warm-pixel WFC stability analyses; and 4) refined characterization of the extended SBC point spread function and long-term SBC flatfield stability.

  10. Leaf absorbance and photosynthesis

    NASA Technical Reports Server (NTRS)

    Schurer, Kees

    1994-01-01

    The absorption spectrum of a leaf is often thought to contain some clues to the photosynthetic action spectrum of chlorophyll. Of course, absorption of photons is needed for photosynthesis, but the reverse, photosynthesis when there is absorption, is not necessarily true. As a check on the existence of absorption limits we measured spectra for a few different leaves. Two techniques for measuring absorption have been used, viz. the separate determination of the diffuse reflectance and the diffuse transmittance with the leaf at a port of an integrating sphere and the direct determination of the non-absorbed fraction with the leaf in the sphere. In a cross-check both methods yielded the same results for the absorption spectrum. The spectrum of a Fuchsia leaf, covering the short-wave region from 350 to 2500 nm, shows a high absorption in UV, blue and red, the well known dip in the green and a steep fall-off at 700 nm. Absorption drops to virtually zero in the near infrared, with subsequent absorptions, corresponding to the water absorption bands. In more detailed spectra, taken at 5 nm intervals with a 5 nm bandwidth, differences in chlorophyll content show in the different depths of the dip around 550 nm and in a small shift of the absorption edge at 700 nm. Spectra for Geranium (Pelargonium zonale) and Hibiscus (with a higher chlorophyll content) show that the upper limit for photosynthesis can not be much above 700 nm. No evidence, however, is to be seen of a lower limit for photosynthesis and, in fact, some experiments down to 300 nm still did not show a decrease of the absorption although it is well recognized that no photosynthesis results with 300 nm wavelengths.

  11. Hydraulic shock absorber

    SciTech Connect

    Tanaka, T.

    1987-03-03

    This patent describes a hydraulic shock absorber including a piston reciprocating in a cylinder, a piston upper chamber and a piston lower chamber which are oil-tightly separated by the piston, piston ports formed through the piston in a circle for communicating the piston upper chamber with the piston lower chamber, and return ports formed outside of the piston ports in a circle for communicating the piston upper chamber with the piston lower chamber. It also includes a sheet ring-like non-return valve provided above the piston and fitted to a piston rod, valve holes formed through the non-return valve in opposed relation with the piston ports. A ring-like non-return valve stopper fixed to the piston rod on an upper side of the non-return valve with a small spaced defined between the non-return valve and the non-return valve stopper, and a spring is interposed between the non-return valve and the non-return valve stopper for normally urging the non-return valve to an upper surface of the piston. Movement of the piston to the piston upper chamber allows oil to flow from the piston upper chamber through the piston ports to the piston lower chamber, while the return ports are closed by the non-return valve to generate a vibration damping force by resistance upon pass of the oil through the piston parts. The improvement described here comprises a groove formed in an upper surface of the piston facing the non-return valve and aligned with the valve holes, the groove being in the circle where the piston ports lie and being in communication with the piston ports.

  12. Metal-shearing energy absorber

    NASA Technical Reports Server (NTRS)

    Fay, R. J.; Wittrock, E. P.

    1971-01-01

    Device, consisting of tongue of thin aluminum alloy strip, pull tab, slotted steel plate which serves as cutter, and steel buckle, absorbs mechanical energy when its ends are subjected to tensile loading. Device is applicable as auxiliary shock absorbing anchor for automobile and airplane safety belts.

  13. The broadband dynamic vibration absorber

    NASA Astrophysics Data System (ADS)

    Hunt, J. B.; Nissen, J.-C.

    1982-08-01

    The limited effectiveness of the linear passive dynamic vibration absorber is described. This is followed by an analysis producing the response of a primary system when a non-linear softening Belleville spring is used in the absorber. It is shown that the suppression bandwidth can be doubled by this means.

  14. Enhancement mechanism of the additional absorbent on the absorption of the absorbing composite using a type-based mixing rule

    NASA Astrophysics Data System (ADS)

    Xu, Yonggang; Yuan, Liming; Zhang, Deyuan

    2016-04-01

    A silicone rubber composite filled with carbonyl iron particles and four different carbonous materials (carbon black, graphite, carbon fiber or multi-walled carbon nanotubes) was prepared using a two-roller mixture. The complex permittivity and permeability were measured using a vector network analyzer at the frequency of 2-18 GHz. Then a type-based mixing rule based on the dielectric absorbent and magnetic absorbent was proposed to reveal the enhancing mechanism on the permittivity and permeability. The enforcement effect lies in the decreased percolation threshold and the changing pending parameter as the carbonous materials were added. The reflection loss (RL) result showed the added carbonous materials enhanced the absorption in the lower frequency range, the RL decrement value being about 2 dB at 4-5 GHz with a thickness of 1 mm. All the added carbonous materials reinforced the shielding effectiveness (SE) of the composites. The maximum increment value of the SE was about 3.23 dB at 0.5 mm and 4.65 dB at 1 mm, respectively. The added carbonous materials could be effective additives for enforcing the absorption and shielding property of the absorbers.

  15. Citizenship and Education in Twenty-Eight Countries: Civic Knowledge and Engagement at Age Fourteen. Executive Summary.

    ERIC Educational Resources Information Center

    Torney-Purta, Judith; Lehmann, Rainer; Oswald, Hans; Schulz, Wolfram

    This is an Executive Summary for "Citizenship and Education in Twenty-eight Countries: Civic Knowledge and Engagement at Age Fourteen," the first report of the results of the second phase of the Civic Education Study conducted by the International Association for the Evaluation of Educational Achievement (IEA). The Executive Summary briefly…

  16. Direct determination of fourteen underivatized amino acids from Whitmania pigra by using liquid chromatography-evaporative light scattering detection.

    PubMed

    Yan, Dan; Li, Guo; Xiao, Xiao-He; Dong, Xiao-Ping; Li, Zu-Lun

    2007-01-01

    A new reversed phase high performance liquid chromatography-evaporative light scattering detection (RP-HPLC-ELSD) method has been developed for the direct determination of fourteen amino acids in Whitmania pigra, a commonly used traditional Chinese medicine (TCM). Simultaneous separation of these fourteen amino acids was achieved on a Prevail C18 column. Under the condition of gradient elution, the fourteen amino acids were separated within 25 min. The drift tube temperature of ELSD was set at 115 degrees C, and with the nitrogen flow rate of 2.5 l/min. All calibration curves showed good linear regression (r > 0.9975) within test ranges. The recoveries ranged from 94.8% to 104.4%. The limit of detection (LOD) for each compound was more than 20 mg/l at a signal to noise ratio (S/N) of 3. The validated method was successfully applied to quantify fourteen amino acids from Whitmania pigra, which provides a new basis of overall assessment on quality of Whitmania pigra.

  17. Fourteen short tandem repeat loci Y chromosome haplotypes: Genetic analysis in populations from northern Brazil.

    PubMed

    Palha, Teresinha; Ribeiro-Rodrigues, Elzemar; Ribeiro-dos-Santos, Andrea; Santos, Sidney

    2012-05-01

    Fourteen Y-STR loci (DYS458, DYS439, Y-GATA H4, DYS576, DYS447, DYS460, DYS456, YGATA A10, DYS437, DYS449, DYS570, DYS635 or Y-GATA C4, DYS448 and DYS438) were analysed in 873 males from eight northern Brazil populations: Belém (N=400), Santarém (N=69), Manaus (N=75), Macapá (N=65), Palmas (N=30), Rio Branco (N=32), Porto Velho (N=135) and Boa Vista (N=67). A total of 871 different haplotypes were identified, of which 869 were unique. The panel's estimated total haplotype diversity (HD) is 0.9988, and its discrimination capacity (DC) is 0.9980. The lowest estimates of genetic diversity correspond to markers Y-GATA H4 (0.550) and DYS460 (0.581), and the greatest (above 0.700) to markers DYS458, DYS576, DYS447, YS449, DYS570 and DYS635. The genetic parameters obtained were higher for the 14-Y-STR panel than that for the minimum haplotype set (HD=0.9969; DC=0.76) and the parameters were similar to those obtained with the panel of 17 YSTR of YHRD (HD=0.9987; DC=0. 9870). The analysis of molecular variance (AMOVA) indicated that most of the genetic variance is found within populations and a smaller, but significant part, is found among populations (R(ST)=0.027, p value=0.009). The data when compared with those from African, Amerindian and European populations have shown no significant genetic distance between northern Brazil populations and Europeans, but there is a significant genetic distance when compared to Africans and Amerindians. The discrimination capacity of the markers shows a high potential for forensic analysis.

  18. Expression of fourteen novel obesity-related genes in zucker diabetic fatty rats

    PubMed Central

    2012-01-01

    Background Genome-wide association studies (GWAS) are useful to reveal an association between single nucleotide polymorphisms and different measures of obesity. A multitude of new loci has recently been reported, but the exact function of most of the according genes is not known. The aim of our study was to start elucidating the function of some of these genes. Methods We performed an expression analysis of fourteen genes, namely BDNF, ETV5, FAIM2, FTO, GNPDA2, KCTD15, LYPLAL1, MCR4, MTCH2, NEGR1, NRXN3, TMEM18, SEC16B and TFAP2B, via real-time RT-PCR in adipose tissue of the kidney capsule, the mesenterium and subcutaneum as well as the hypothalamus of obese Zucker diabetic fatty (ZDF) and Zucker lean (ZL) rats at an age of 22 weeks. Results All of our target genes except for SEC16B showed the highest expression in the hypothalamus. This suggests a critical role of these obesity-related genes in the central regulation of energy balance. Interestingly, the expression pattern in the hypothalamus showed no differences between obese ZDF and lean ZL rats. However, LYPLAL1, TFAP2B, SEC16B and FAIM2 were significantly lower expressed in the kidney fat of ZDF than ZL rats. NEGR1 was even lower expressed in subcutaneous and mesenterial fat, while MTCH2 was higher expressed in the subcutaneous and mesenterial fat of ZDF rats. Conclusion The expression pattern of the investigated obesity genes implies for most of them a role in the central regulation of energy balance, but for some also a role in the adipose tissue itself. For the development of the ZDF phenotype peripheral rather than central mechanisms of the investigated genes seem to be relevant. PMID:22553958

  19. Absorbent product to absorb fluids. [for collection of human wastes

    NASA Technical Reports Server (NTRS)

    Dawn, F. S.; Correale, J. V. (Inventor)

    1982-01-01

    A multi-layer absorbent product for use in contact with the skin to absorb fluids is discussed. The product utilizes a water pervious facing layer for contacting the skin, overlayed by a first fibrous wicking layer, the wicking layer preferably being of the one-way variety in which fluid or liquid is moved away from the facing layer. The product further includes a first container section defined by inner and outer layer of a water pervious wicking material between which is disposed a first absorbent mass. A second container section defined by inner and outer layers between which is disposed a second absorbent mass and a liquid impermeable/gas permeable layer. Spacesuit applications are discussed.

  20. Self-Regulating Shock Absorber

    NASA Technical Reports Server (NTRS)

    Wesselski, Clarence J.

    1995-01-01

    Mechanical shock absorber keeps frictional damping force within tolerable limit. Its damping force does not increase with coefficient of friction between energy-absorbing components; rather, frictional damping force varies only slightly. Relatively insensitive to manufacturing variations and environmental conditions altering friction. Does not exhibit high breakaway friction and consequent sharp increase followed by sharp decrease in damping force at beginning of stroking. Damping force in absorber does not vary appreciably with speed of stroking. In addition, not vulnerable to leakage of hydraulic fluid.

  1. Innovative Anti Crash Absorber for a Crashworthy Landing Gear

    NASA Astrophysics Data System (ADS)

    Guida, Michele; Marulo, Francesco; Montesarchio, Bruno; Bruno, Massimiliano

    2014-06-01

    This paper defines an innovative concept to anti-crash absorber in composite material to be integrated on the landing gear as an energy-absorbing device in crash conditions to absorb the impact energy. A composite cylinder tube in carbon fiber material is installed coaxially to the shock absorber cylinder and, in an emergency landing gear condition, collapses in order to enhance the energy absorption performance of the landing system. This mechanism has been developed as an alternative solution to a high-pressure chamber installed on the Agusta A129 CBT helicopter, which can be considered dangerous when the helicopter operates in hard and/or crash landing. The characteristics of the anti-crash device are presented and the structural layout of a crashworthy landing gear adopting the developed additional energy absorbing stage is outlined. Experimental and numerical results relevant to the material characterization and the force peaks evaluation of the system development are reported. The anti-crash prototype was designed, analysed, optimized, made and finally the potential performances of a landing gear with the additional anti-crash absorber system are tested by drop test and then correlated with a similar test without the anti-crash system, showing that appreciable energy absorbing capabilities and efficiencies can be obtained in crash conditions.

  2. Countercurrent flow absorber and desorber

    DOEpatents

    Wilkinson, William H.

    1984-01-01

    Countercurrent flow absorber and desorber devices are provided for use in absorption cycle refrigeration systems and thermal boosting systems. The devices have increased residence time and surface area resulting in improved heat and mass transfer characteristics. The apparatuses may be incorporated into open cycle thermal boosting systems in which steam serves both as the refrigerant vapor which is supplied to the absorber section and as the supply of heat to drive the desorber section of the system.

  3. Countercurrent flow absorber and desorber

    DOEpatents

    Wilkinson, W.H.

    1984-10-16

    Countercurrent flow absorber and desorber devices are provided for use in absorption cycle refrigeration systems and thermal boosting systems. The devices have increased residence time and surface area resulting in improved heat and mass transfer characteristics. The apparatuses may be incorporated into open cycle thermal boosting systems in which steam serves both as the refrigerant vapor which is supplied to the absorber section and as the supply of heat to drive the desorber section of the system. 9 figs.

  4. Qualitative Analysis of Fourteen White Solids and Two Mixtures Using Household Chemicals.

    ERIC Educational Resources Information Center

    Oliver-Hoyo, Maria; Allen, DeeDee; Solomon, Sally; Brook, Bryan; Ciraolo, Justine; Daly, Shawn; Jackson, Leia

    2001-01-01

    Describes a laboratory experiment in which students identify 11 white solids readily available in drugstores and supermarkets. Investigates solubility, pH, copper reduction, evolution of carbon dioxide bubbles, formation of starch-iodine complex, and formation of an insoluble hydroxide. (YDS)

  5. Mushroom plasmonic metamaterial infrared absorbers

    NASA Astrophysics Data System (ADS)

    Ogawa, Shinpei; Fujisawa, Daisuke; Hata, Hisatoshi; Uetsuki, Mitsuharu; Misaki, Koji; Kimata, Masafumi

    2015-01-01

    There has been a considerable amount of interest in the development of various types of electromagnetic wave absorbers for use in different wavelength ranges. In particular, infrared (IR) absorbers with wavelength selectivity can be applied to advanced uncooled IR sensors, which would be capable of identifying objects through their radiation spectrum. In the present study, mushroom plasmonic metamaterial absorbers (MPMAs) for the IR wavelength region were designed and fabricated. The MPMAs consist of a periodic array of thin metal micropatches connected to a thin metal plate with narrow silicon (Si) posts. A Si post height of 200 nm was achieved by isotropic XeF2 etching of a thin Si layer sandwiched between metal plates. This fabrication procedure is relatively simple and is consistent with complementary metal oxide semiconductor technology. The absorption spectra of the fabricated MPMAs were experimentally measured. In addition, theoretical calculations of their absorption properties were conducted using rigorous coupled wave analysis. Both the calculated and measured absorbance results demonstrated that these MPMAs can realize strong selective absorption at wavelengths beyond the period of the array by varying the micropatch width. Absorbance values greater than 90% were achieved. Dual- or single-mode absorption can also be selected by varying the width of the Si posts. Pixel structures using such MPMAs could be used as high responsivity, high resolution and fast uncooled IR sensors.

  6. Mushroom plasmonic metamaterial infrared absorbers

    SciTech Connect

    Ogawa, Shinpei Fujisawa, Daisuke; Hata, Hisatoshi; Uetsuki, Mitsuharu; Misaki, Koji; Kimata, Masafumi

    2015-01-26

    There has been a considerable amount of interest in the development of various types of electromagnetic wave absorbers for use in different wavelength ranges. In particular, infrared (IR) absorbers with wavelength selectivity can be applied to advanced uncooled IR sensors, which would be capable of identifying objects through their radiation spectrum. In the present study, mushroom plasmonic metamaterial absorbers (MPMAs) for the IR wavelength region were designed and fabricated. The MPMAs consist of a periodic array of thin metal micropatches connected to a thin metal plate with narrow silicon (Si) posts. A Si post height of 200 nm was achieved by isotropic XeF{sub 2} etching of a thin Si layer sandwiched between metal plates. This fabrication procedure is relatively simple and is consistent with complementary metal oxide semiconductor technology. The absorption spectra of the fabricated MPMAs were experimentally measured. In addition, theoretical calculations of their absorption properties were conducted using rigorous coupled wave analysis. Both the calculated and measured absorbance results demonstrated that these MPMAs can realize strong selective absorption at wavelengths beyond the period of the array by varying the micropatch width. Absorbance values greater than 90% were achieved. Dual- or single-mode absorption can also be selected by varying the width of the Si posts. Pixel structures using such MPMAs could be used as high responsivity, high resolution and fast uncooled IR sensors.

  7. Nonventing, Regenerable, Lightweight Heat Absorber

    NASA Technical Reports Server (NTRS)

    Izenson, Michael G.; Chen, Weibo

    2008-01-01

    A lightweight, regenerable heat absorber (RHA), developed for rejecting metabolic heat from a space suit, may also be useful on Earth for short-term cooling of heavy protective garments. Unlike prior space-suit-cooling systems, a system that includes this RHA does not vent water. The closed system contains water reservoirs, tubes through which water is circulated to absorb heat, an evaporator, and an absorber/radiator. The radiator includes a solution of LiCl contained in a porous material in titanium tubes. The evaporator cools water that circulates through a liquid-cooled garment. Water vapor produced in the evaporator enters the radiator tubes where it is absorbed into the LiCl solution, releasing heat. Much of the heat of absorption is rejected to the environment via the radiator. After use, the RHA is regenerated by heating it to a temperature of 100 C for about 2 hours to drive the absorbed water back to the evaporator. A system including a prototype of the RHA was found to be capable of maintaining a temperature of 20 C while removing heat at a rate of 200 W for 6 hours.

  8. Waveform-Dependent Absorbing Metasurfaces

    NASA Astrophysics Data System (ADS)

    Wakatsuchi, Hiroki; Kim, Sanghoon; Rushton, Jeremiah J.; Sievenpiper, Daniel F.

    2013-12-01

    We present the first use of a waveform-dependent absorbing metasurface for high-power pulsed surface currents. The new type of nonlinear metasurface, composed of circuit elements including diodes, is capable of storing high-power pulse energy to dissipate it between pulses, while allowing propagation of small signals. Interestingly, the absorbing performance varies for high-power pulses but not for high-power continuous waves (CW’s), since the capacitors used are fully charged up. Thus, the waveform dependence enables us to distinguish various signal types (i.e., CW or pulse) even at the same frequency, which potentially creates new kinds of microwave technologies and applications.

  9. Croconic acid - An absorber in the Venus clouds?

    NASA Technical Reports Server (NTRS)

    Hartley, Karen K.; Wolff, Andrew R.; Travis, Larry D.

    1989-01-01

    The absorbing species responsible for the UV cloud features and pale yellow hue of the Venus clouds is presently suggested to be the carbon monoxide-polymer croconic acid, which strongly absorbs in the blue and near-UV. Laboratory absorption-coefficient measurements of a dilute solution of croconic acid in sulfuric acid are used as the bases of cloud-scattering models; the Venus planetary albedo's observed behavior in the blue and near-UV are noted to be qualitatively reproduced. Attention is given to a plausible croconic acid-production mechanism for the Venus cloudtop region.

  10. Commander Lousma stows trash bags in middeck CO2 Absorber Stowage volume

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Commander Lousma uses his body as a zero gravity garbage compactor to stow plastic bags full of empty containers and trash in the Carbon Dioxide (CO2) Absorber Stowage volume in front of the airlock hatch.

  11. Oil and fat absorbing polymers

    NASA Technical Reports Server (NTRS)

    Marsh, H. E., Jr. (Inventor)

    1977-01-01

    A method is described for forming a solid network polymer having a minimal amount of crosslinking for use in absorbing fats and oils. The polymer remains solid at a swelling ratio in oil or fat of at least ten and provides an oil absorption greater than 900 weight percent.

  12. Counterflow absorber for an absorption refrigeration system

    DOEpatents

    Reimann, Robert C.

    1984-01-01

    An air-cooled, vertical tube absorber for an absorption refrigeration system is disclosed. Strong absorbent solution is supplied to the top of the absorber and refrigerant vapor is supplied to the bottom of the absorber to create a direct counterflow of refrigerant vapor and absorbent solution in the absorber. The refrigeration system is designed so that the volume flow rate of refrigerant vapor in the tubes of the absorber is sufficient to create a substantially direct counterflow along the entire length of each tube in the absorber. This provides several advantages for the absorber such as higher efficiency and improved heat transfer characteristics, and allows improved purging of non-condensibles from the absorber.

  13. Dry Process Based Infrared Sensors with CNT Film Absorber

    NASA Astrophysics Data System (ADS)

    Yoo, Kum-Pyo; Hong, Hyun Pyo; Lim, Lee-Taek; Choi, Chang-Seon; Lee, Dong Il; Lee, Cheol Jin; Park, Chan-Won; Min, Nam Ki

    In this paper, we describe the fabrication and characterization of a front-side micromachined thermopiles consisting of a suspended membrane and a carbon nanotube (CNT) film absorber. Thermocouples of 52 pairs which are composed of phosphorous-doped silicon and aluminum were formed and connected in series. A CNT film collected by filter was transferred on hot junction. A CNT absorber has an absorptance of about 50% in the midinfrared region. The suspended membrane was fabricated by an isotropic silicon dry etching process with XeF2 gas at the front side of the substrates. The output voltage with the CNT film is found to be 250.2 mV at 7 mW of incident power, approximately 1.8 times higher than that of one without an absorber.

  14. Marine Gastrotricha of the Near East: 1. Fourteen new species of Macrodasyida and a redescription of Dactylopodola agadasys Hochberg, 2003.

    PubMed

    Hummon, William D

    2011-01-01

    The near eastern geographical region is almost devoid of reports of macrodasyidan gastrotrichs, the exceptions themselves being part of this study. Here, as Part 1 are described fourteen new Macrodasyida from countries of the Near East (Cyprus, Egypt and Israel, representing both the Mediterranean and the Red Seas), and a redescription of the previously described Dactylopodolidae: Dactylopodola agadasys Hochberg, 2002. The new species are: Cephalodasyidae (2) - Cephalodasys dolichosomus; Cephalodasys saegailus; Dactylopodolidae (1) Dendrodasys rubomarinus; Macrodasyidae (5) - Macrodasys imbricatus; Macrodasys macrurus; Macrodasys nigrocellus; Macrodasys scleracrus; Urodasys toxostylus; Thaumastodermatidae(4) - Tetranchyroderma corallium; Tetranchyroderma rhopalotum; Tetranchyroderma sinaiensis; Tetranchyroderma xenodactylum; Turbanellidae(2) - Paraturbanella levantia; Turbanella erythrothalassia - spp. n. PMID:21594074

  15. Marine Gastrotricha of the Near East: 1. Fourteen new species of Macrodasyida and a redescription of Dactylopodola agadasys Hochberg, 2003.

    PubMed

    Hummon, William D

    2011-05-03

    The near eastern geographical region is almost devoid of reports of macrodasyidan gastrotrichs, the exceptions themselves being part of this study. Here, as Part 1 are described fourteen new Macrodasyida from countries of the Near East (Cyprus, Egypt and Israel, representing both the Mediterranean and the Red Seas), and a redescription of the previously described Dactylopodolidae: Dactylopodola agadasys Hochberg, 2002. The new species are: Cephalodasyidae (2) - Cephalodasys dolichosomus; Cephalodasys saegailus; Dactylopodolidae (1) Dendrodasys rubomarinus; Macrodasyidae (5) - Macrodasys imbricatus; Macrodasys macrurus; Macrodasys nigrocellus; Macrodasys scleracrus; Urodasys toxostylus; Thaumastodermatidae(4) - Tetranchyroderma corallium; Tetranchyroderma rhopalotum; Tetranchyroderma sinaiensis; Tetranchyroderma xenodactylum; Turbanellidae(2) - Paraturbanella levantia; Turbanella erythrothalassia - spp. n.

  16. Marine Gastrotricha of the Near East: 1. Fourteen new species of Macrodasyida and a redescription of Dactylopodola agadasys Hochberg, 2003

    PubMed Central

    Hummon, William D.

    2011-01-01

    Abstract The near eastern geographical region is almost devoid of reports of macrodasyidan gastrotrichs, the exceptions themselves being part of this study. Here, as Part 1 are described fourteen new Macrodasyida from countries of the Near East (Cyprus, Egypt and Israel, representing both the Mediterranean and the Red Seas), and a redescription of the previously described Dactylopodolidae: Dactylopodola agadasys Hochberg, 2002. The new species are: Cephalodasyidae (2) - Cephalodasys dolichosomus; Cephalodasys saegailus; Dactylopodolidae (1) Dendrodasys rubomarinus; Macrodasyidae (5) - Macrodasys imbricatus; Macrodasys macrurus; Macrodasys nigrocellus; Macrodasys scleracrus; Urodasys toxostylus; Thaumastodermatidae(4) - Tetranchyroderma corallium; Tetranchyroderma rhopalotum; Tetranchyroderma sinaiensis; Tetranchyroderma xenodactylum; Turbanellidae(2) - Paraturbanella levantia; Turbanella erythrothalassia - spp. n. PMID:21594074

  17. Light-absorbing impurities in Arctic snow

    NASA Astrophysics Data System (ADS)

    Doherty, S. J.; Warren, S. G.; Grenfell, T. C.; Clarke, A. D.; Brandt, R. E.

    2010-12-01

    Absorption of radiation by ice is extremely weak at visible and near-ultraviolet wavelengths, so small amounts of light-absorbing impurities in snow can dominate the absorption of solar radiation at these wavelengths, reducing the albedo relative to that of pure snow, contributing to the surface energy budget and leading to earlier snowmelt. In this study Arctic snow is surveyed for its content of light-absorbing impurities, expanding and updating the 1983-1984 survey of Clarke and Noone. Samples were collected in Alaska, Canada, Greenland, Svalbard, Norway, Russia, and the Arctic Ocean during 1998 and 2005-2009, on tundra, glaciers, ice caps, sea ice, frozen lakes, and in boreal forests. Snow was collected mostly in spring, when the entire winter snowpack is accessible for sampling. Sampling was carried out in summer on the Greenland Ice Sheet and on the Arctic Ocean, of melting glacier snow and sea ice as well as cold snow. About 1200 snow samples have been analyzed for this study. The snow is melted and filtered; the filters are analyzed in a specially designed spectrophotometer system to infer the concentration of black carbon (BC), the fraction of absorption due to non-BC light-absorbing constituents and the absorption Ångstrom exponent of all particles. This is done using BC calibration standards having a mass absorption efficiency of 6.0 m2 g-1 at 550 nm and by making an assumption that the absorption Angstrom exponent for BC is 1.0 and for non-BC light-absorbing aerosol is 5.0. The reduction of snow albedo is primarily due to BC, but other impurities, principally brown (organic) carbon, are typically responsible for ~40% of the visible and ultraviolet absorption. The meltwater from selected snow samples was saved for chemical analysis to identify sources of the impurities. Median BC amounts in surface snow are as follows (nanograms of carbon per gram of snow): Greenland 3, Arctic Ocean snow 7, melting sea ice 8, Arctic Canada 8, subarctic Canada 14

  18. Molecular, seasonal, and spatial distributions of organic aerosols from fourteen Chinese cities

    SciTech Connect

    Gehui Wang; Kimitaka Kawamura; Shuncheng Lee; Kinfai Ho; Junji Cao

    2006-08-01

    Organic aerosols were studied at the molecular level in 14 coastal and inland mega-cities in China during winter and summer 2003. They are characterized by the abundant presence of n-alkanes (annual average, 340 ng m{sup -3}), fatty acids (769 ng m{sup -3}), sugars (412 ng m{sup -3}), and phthalates (387 ng m{sup -3}). In contrast, fatty alcohols, polyols/polyacids, lignin and resin products, sterols, polycyclic aromatic hydrocarbons (PAHs), and hopanes were detected as relatively minor components. n-Alkanes show a weak odd/even carbon predominance (CPI = 1.1) and PAHs show a predominance of benzo(b)fluoranthene, suggesting a serious contribution from fossil fuel (mainly coal) combustion. Their concentrations (except for phthalates and polyols/polyacids) were 2-15 times higher in winter than summer due to a significant usage of coal burning and an enhancement of atmospheric inversion layers. Phthalates were found to be more abundant in summer than winter, probably due to enhanced vaporization from plastics followed by adsorptive deposition on the pre-existing particles. Concentrations of total quantified compounds are extremely high ({approximately} 10 {mu}g m{sup -3}) in the midwest (Chongqing and Xi'an) where active industrialization/urbanization is going on. This study shows that concentrations of the compounds detected are 1-3 orders of magnitude higher than those reported from developed countries. 39 refs., 3 figs., 2 tabs.

  19. Digital Alloy Absorber for Photodetectors

    NASA Technical Reports Server (NTRS)

    Hill, Cory J. (Inventor); Ting, David Z. (Inventor); Gunapala, Sarath D. (Inventor)

    2016-01-01

    In order to increase the spectral response range and improve the mobility of the photo-generated carriers (e.g. in an nBn photodetector), a digital alloy absorber may be employed by embedding one (or fraction thereof) to several monolayers of a semiconductor material (insert layers) periodically into a different host semiconductor material of the absorber layer. The semiconductor material of the insert layer and the host semiconductor materials may have lattice constants that are substantially mismatched. For example, this may performed by periodically embedding monolayers of InSb into an InAsSb host as the absorption region to extend the cutoff wavelength of InAsSb photodetectors, such as InAsSb based nBn devices. The described technique allows for simultaneous control of alloy composition and net strain, which are both key parameters for the photodetector operation.

  20. Energy-Absorbing, Lightweight Wheels

    NASA Technical Reports Server (NTRS)

    Waydo, Peter

    2003-01-01

    Improved energy-absorbing wheels are under development for use on special-purpose vehicles that must traverse rough terrain under conditions (e.g., extreme cold) in which rubber pneumatic tires would fail. The designs of these wheels differ from those of prior non-pneumatic energy-absorbing wheels in ways that result in lighter weights and more effective reduction of stresses generated by ground/wheel contact forces. These wheels could be made of metals and/or composite materials to withstand the expected extreme operating conditions. As shown in the figure, a wheel according to this concept would include an isogrid tire connected to a hub via spring rods. The isogrid tire would be a stiff, lightweight structure typically made of aluminum. The isogrid aspect of the structure would both impart stiffness and act as a traction surface. The hub would be a thin-walled body of revolution having a simple or compound conical or other shape chosen for structural efficiency. The spring rods would absorb energy and partially isolate the hub and the supported vehicle from impact loads. The general spring-rod configuration shown in the figure was chosen because it would distribute contact and impact loads nearly evenly around the periphery of the hub, thereby helping to protect the hub against damage that would otherwise be caused by large loads concentrated onto small portions of the hub.

  1. Measurements of Light Absorbing Particles on Tropical South American Glaciers

    NASA Astrophysics Data System (ADS)

    Schmitt, C. G.; All, J.; Schwarz, J. P.; Arnott, W. P.; Warthon, J.; Andrade, M.; Celestian, A. J.; Hoffmann, D.; Cole, R. J.; Lapham, E.; Horodyskyj, U. N.; Froyd, K. D.; Liao, J.

    2014-12-01

    Glaciers in the tropical Andes have been losing mass rapidly in recent decades. In addition to the documented increase in temperature, increases in light absorbing particulates deposited on glaciers could be contributing to the observed glacier loss. Here we present results of measurements of light absorbing particles from glaciers in Peru and Bolivia. Samples have been collected by American Climber Science Program volunteers and scientists at altitudes up to 6770 meters. Collected snow samples were melted and filtered in the field. A new inexpensive technique, the Light Absorption Heating Method (LAHM) has been developed for analysis of light absorbing particles collected on filters. Results from LAHM analysis are calibrated using filters with known amounts of fullerene soot, a common industrial surrogate for black carbon (BC). For snow samples collected at the same field location LAHM analysis and measurements from the Single Particle Soot Photometer (SP2) instrument are well correlated (r2 = 0.92). Co-located SP2 and LAHM filter analysis suggest that BC could be the dominant absorbing component of the light absorbing particles in some areas.

  2. Decreased UV absorbance as an indicator of micropollutant removal efficiency in wastewater treated with ozone.

    PubMed

    Wittmer, A; Heisele, A; McArdell, C S; Böhler, M; Longree, P; Siegrist, H

    2015-01-01

    Ozone transforms various organic compounds that absorb light within the UV and visible spectra. UV absorbance can therefore be used to detect the transformation of chemicals during ozonation. In wastewater, decolourisation can be observed after ozonation. This study investigates the correlation of the UV absorbance difference between the ozonation inlet and outlet and the removal efficiency of micropollutants in wastewater. The absorbance at 254 and 366 nm was measured at the ozonation inlet and outlet, as was the concentration of 24 representative micropollutants and the dissolved organic carbon (DOC). The results clearly showed that the relative decrease of absorbance (ΔAbs) is positively correlated with the relative removal efficiency of micropollutants. We therefore suggest that UV absorbance can be used as a feedback control parameter to achieve optimal ozone dosage in wastewater treatment plants and to gain a fast insight into the process efficiency and stability of the ozonation.

  3. Decreased UV absorbance as an indicator of micropollutant removal efficiency in wastewater treated with ozone.

    PubMed

    Wittmer, A; Heisele, A; McArdell, C S; Böhler, M; Longree, P; Siegrist, H

    2015-01-01

    Ozone transforms various organic compounds that absorb light within the UV and visible spectra. UV absorbance can therefore be used to detect the transformation of chemicals during ozonation. In wastewater, decolourisation can be observed after ozonation. This study investigates the correlation of the UV absorbance difference between the ozonation inlet and outlet and the removal efficiency of micropollutants in wastewater. The absorbance at 254 and 366 nm was measured at the ozonation inlet and outlet, as was the concentration of 24 representative micropollutants and the dissolved organic carbon (DOC). The results clearly showed that the relative decrease of absorbance (ΔAbs) is positively correlated with the relative removal efficiency of micropollutants. We therefore suggest that UV absorbance can be used as a feedback control parameter to achieve optimal ozone dosage in wastewater treatment plants and to gain a fast insight into the process efficiency and stability of the ozonation. PMID:25860699

  4. Light Absorbing Aerosols in Mexico City

    NASA Astrophysics Data System (ADS)

    Marley, N. A.; Kelley, K. L.; Kilaparty, P. S.; Gaffney, J. S.

    2008-12-01

    The direct effects of aerosol radiative forcing has been identified by the IPCC as a major uncertainty in climate modeling. The DOE Megacity Aerosol Experiment-Mexico City (MAX-Mex), as part of the MILAGRO study in March of 2006, was undertaken to reduce these uncertainties by characterization of the optical, chemical, and physical properties of atmospheric aerosols emitted from this megacity environment. Aerosol samples collected during this study using quartz filters were characterized in the uv-visible-infrared by using surface spectroscopic techniques. These included the use of an integrating sphere approach combined with the use of Kubelka-Munk theory to obtain aerosol absorption spectra. In past work black carbon has been assumed to be the only major absorbing species in atmospheric aerosols with an broad band spectral profile that follows a simple inverse wavelength dependence. Recent work has also identified a number of other absorbing species that can also add to the overall aerosol absorption. These include primary organics from biomass and trash burning and secondary organic aerosols including nitrated PAHs and humic-like substances, or HULIS. By using surface diffuse reflection spectroscopy we have also obtained spectra in the infrared that indicate significant IR absorption in the atmospheric window-region. These data will be presented and compared to spectra of model compounds that allow for evaluation of the potential importance of these species in adding strength to the direct radiative forcing of atmospheric aerosols. This work was supported by the Office of Science (BER), U.S. Department of Energy, Grant No. DE-FG02-07ER64327 as part of the Atmospheric Science Program.

  5. Improving the laboratory monitoring of absorbent oil

    SciTech Connect

    V.S. Shved; S.S. Sychev; I.V. Safina; S.A. Klykov

    2009-05-15

    The performance of absorbent coal tar oil is analyzed as a function of the constituent and group composition. The qualitative and quantitative composition of the oil that ensures the required absorbent properties is determined. Operative monitoring may be based on absorbent characteristics that permit regulation of the beginning and end of regeneration.

  6. Porcelain enamel neutron absorbing material

    SciTech Connect

    Iverson, Daniel C.

    1990-01-01

    A porcelain enamel composition as a neutron absorbing material can be prepared of a major proportion by weight of a cadmium compound and a minor proportion of compounds of boron, lithium and silicon. These compounds in the form of a porcelain enamel coating or layer on several alloys has been found to be particularly effective in enhancing the nuclear safety of equipment for use in the processing and storage of fissile material. The composition of the porcelain enamel coating can be tailored to match the coefficient of thermal expansion of the equipment to be coated and excellent coating adhesion can be achieved.

  7. Porcelain enamel neutron absorbing material

    SciTech Connect

    Iverson, Daniel C.

    1990-02-06

    A porcelain enamel composition as a neutron absorbing material can be prepared of a major proportion by weight of a cadmium compound and a minor proportion of compounds of boron, lithium and silicon. These compounds in the form of a porcelain enamel coating or layer on several alloys has been found to be particularly effective in enhancing the nuclear safety of equipment for use in the processing and storage of fissile material. The composition of the porcelain enamel coating can be tailored to match the coefficient of thermal expansion of the equipment to be coated and excellent coating adhesion can be achieved.

  8. Porcelain enamel neutron absorbing material

    DOEpatents

    Iverson, D.C.

    1987-11-20

    A porcelain enamel composition as a neutron absorbing material can be prepared of a major proportion by weight of a cadmium compound and a minor proportion of compound of boron, lithium and silicon. These compounds in the form of a porcelain enamel coating or layer on several alloys has been found to be particularly effective in enhancing the nuclear safety of equipment for use in the processing and storage of fissile material. The composition of the porcelain enamel coating can be tailored to match the coefficient of thermal expansion of the equipment to be coated and excellent coating adhesion can be achieved. 2 figs.

  9. Advanced EMU electrochemically regenerable CO2 and moisture absorber module breadboard

    NASA Technical Reports Server (NTRS)

    Lee, M. C.; Sudar, M.; Chang, B. J.

    1988-01-01

    The applicability of the Electrochemically Regenerable Carbon Dioxide and Moisture Absorption Technology to the advanced extravehicular mobility unit was demonstrated by designing, fabricating, and testing a breadboard Absorber Module and an Electrochemical Regenerator. Test results indicated that the absorber module meets or exceeds the carbon dioxide removal requirements specified for the design and can meet the moisture removal requirement when proper cooling is provided. CO2 concentration in the vent gas stream was reduced from 0.52 to 0.027 kPa (3.9 to 0.20 mm Hg) for the full five hour test period. Vent gas dew point was reduced from inlet values of 294 K (69 F) to 278 K (41 F) at the outlet. The regeneration of expended absorbent was achieved by the electrochemical method employed in the testing. An absorbent bed using microporous hydrophobic membrane sheets with circulating absorbent is shown to be the best approach to the design of an Absorber Module based on sizing and performance. Absorber Module safety design, comparison of various absorbents and their characteristics, moisture absorption and cooling study and subsystem design and operation time-lining study were also performed.

  10. The Double Absorbing Boundary method

    NASA Astrophysics Data System (ADS)

    Hagstrom, Thomas; Givoli, Dan; Rabinovich, Daniel; Bielak, Jacobo

    2014-02-01

    A new approach is devised for solving wave problems in unbounded domains. It has common features to each of two types of existing techniques: local high-order Absorbing Boundary Conditions (ABC) and Perfectly Matched Layers (PML). However, it is different from both and enjoys relative advantages with respect to both. The new method, called the Double Absorbing Boundary (DAB) method, is based on truncating the unbounded domain to produce a finite computational domain Ω, and on applying a local high-order ABC on two parallel artificial boundaries, which are a small distance apart, and thus form a thin non-reflecting layer. Auxiliary variables are defined on the two boundaries and inside the layer bounded by them, and participate in the numerical scheme. The DAB method is first introduced in general terms, using the 2D scalar time-dependent wave equation as a model. Then it is applied to the 1D Klein-Gordon equation, using finite difference discretization in space and time, and to the 2D wave equation in a wave guide, using finite element discretization in space and dissipative time stepping. The computational aspects of the method are discussed, and numerical experiments demonstrate its performance.

  11. Fourteen new species, one new genus, and eleven new country or state records for New World Lamiinae (Coleoptera, Cerambycidae).

    PubMed

    Martins, Ubirajara R; Santos-Silva, Antonio; Galileo, Maria Helena M

    2015-01-01

    Fourteen new species and one new genus are described from the New World in Lamiinae (Coleoptera: Cerambycidae): Bisaltes (Bisaltes) lingafelteri sp. nov., Trestonia skelleyi sp. nov. and Psapharochrus langeri sp. nov. from Bolivia; Eupogonius azteca sp. nov., Aegomorphus mexicanus sp. nov., Lamacoscylus albatus sp. nov., Lamacoscylus obscurus sp. nov. and Piruanycha wappesi sp. nov. from Mexico; Dolichestola egeri sp. nov. and Wappesellus cavus gen. nov., sp. nov. from Brazil (Rondônia); Scleronotus virgatus sp. nov. from Venezuela; Oreodera casariae sp. nov. from Panama; Alampyris bicolor sp. nov. from Costa Rica; and Emphytoeciosoma flava sp. nov. from Peru. Additionally, eleven new country/state records are established in Lamiinae: three for Peru; three for Bolivia; one for Mexico; one for Uruguay; and two for Brazil (Rondônia) (state records). Bisaltes (Bisaltes) lingafelteri, Eupogonius azteca, Aegomorphus mexicanus, Lamacoscylus albatus, Lamacoscylus obscurus, Piruanycha wappesi, Scleronotus virgatus, Alampyris bicolor, Emphytoeciosoma flava and Wappesellus are included in new or known keys. PMID:26249940

  12. Fourteen new species, one new genus, and eleven new country or state records for New World Lamiinae (Coleoptera, Cerambycidae).

    PubMed

    Martins, Ubirajara R; Santos-Silva, Antonio; Galileo, Maria Helena M

    2015-06-26

    Fourteen new species and one new genus are described from the New World in Lamiinae (Coleoptera: Cerambycidae): Bisaltes (Bisaltes) lingafelteri sp. nov., Trestonia skelleyi sp. nov. and Psapharochrus langeri sp. nov. from Bolivia; Eupogonius azteca sp. nov., Aegomorphus mexicanus sp. nov., Lamacoscylus albatus sp. nov., Lamacoscylus obscurus sp. nov. and Piruanycha wappesi sp. nov. from Mexico; Dolichestola egeri sp. nov. and Wappesellus cavus gen. nov., sp. nov. from Brazil (Rondônia); Scleronotus virgatus sp. nov. from Venezuela; Oreodera casariae sp. nov. from Panama; Alampyris bicolor sp. nov. from Costa Rica; and Emphytoeciosoma flava sp. nov. from Peru. Additionally, eleven new country/state records are established in Lamiinae: three for Peru; three for Bolivia; one for Mexico; one for Uruguay; and two for Brazil (Rondônia) (state records). Bisaltes (Bisaltes) lingafelteri, Eupogonius azteca, Aegomorphus mexicanus, Lamacoscylus albatus, Lamacoscylus obscurus, Piruanycha wappesi, Scleronotus virgatus, Alampyris bicolor, Emphytoeciosoma flava and Wappesellus are included in new or known keys.

  13. A polarization-independent broadband terahertz absorber

    SciTech Connect

    Shi, Cheng; Zang, XiaoFei E-mail: ymzhu@usst.edu.cn; Wang, YiQiao; Chen, Lin; Cai, Bin; Zhu, YiMing E-mail: ymzhu@usst.edu.cn

    2014-07-21

    A highly efficient broadband terahertz absorber is designed, fabricated, and experimentally as well as theoretically evaluated. The absorber comprises a heavily doped silicon substrate and a well-designed two-dimensional grating. Due to the destructive interference of waves and diffraction, the absorber can achieve over 95% absorption in a broad frequency range from 1 to 2 THz and for angles of incidence from 0° to 60°. Such a terahertz absorber is also polarization-independent due to its symmetrical structure. This omnidirectional and broadband absorber have potential applications in anti-reflection coatings, imaging systems, and so on.

  14. Carbon cyclist

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    A satellite launched in early August as part of NASA's Mission to Planet Earth could dramatically increase understanding of how carbon cycles through the Earth's biosphere and living organisms and how this process influences global climate. The Sea-viewing Wide Field-of-View Sensor (SeaWiFS) will measure the color of the oceans with a radiometer to determine the concentration of chlorophyll found in oceanic phytoplankton. The single-celled plants, at the base of food chains around the world, remove carbon dioxide from seawater through photosynthesis, which allows oceans to absorb more carbon dioxide from the atmosphere.

  15. Revised (Mixed-Effects) Estimation for Forest Burning Emissions of Gases and Smoke, Fire/Emission Factor Typologies, and Potential Remote Sensing Classification of Types for Use in Ozone and Absorbing-Carbon Simulation

    NASA Astrophysics Data System (ADS)

    Chatfield, R. B.; Segal-Rosenhaimer, M.

    2014-12-01

    We summarize recent progress (a) in correcting biomass burning emissions factors deduced from airborne sampling of forest fire plumes, (b) in understanding the variability in reactivity of the fresh plumes sampled in ARCTAS (2008), DC3 (2012), and SEAC4RS (2013) airborne missions, and (c) in a consequent search for remotely sensed quantities that help classify forest-fire plumes. Particle properties, chemical speciation, and smoke radiative properties are related and mutually informative, as pictures below suggest (slopes of lines of same color are similar). (a) Mixed-effects (random-effects) statistical modeling provides estimates of both emission factors and a reasonable description of carbon-burned simultaneously. Different fire plumes will have very different contributions to volatile organic carbon reactivity; this may help explain differences of free NOx(both gas- and particle-phase), and also of ozone production, that have been noted for forest-fire plumes in California. Our evalualations check or correct emission factors based on sequential measurements (e.g., the Normalized Ratio Enhancement and similar methods). We stress the dangers of methods relying on emission-ratios to CO. (b) This work confirms and extends many reports of great situational variability in emissions factors. VOCs vary in OH reactivity and NOx-binding. Reasons for variability are not only fuel composition, fuel condition, etc, but are confused somewhat by rapid transformation and mixing of emissions. We use "unmixing" (distinct from mixed-effects) statistics and compare briefly to approaches like neural nets. We focus on one particularly intense fire the notorious Yosemite Rim Fire of 2013. In some samples, NOx activity was not so surpressed by binding into nitrates as in other fires. While our fire-typing is evolving and subject to debate, the carbon-burned Δ(CO2+CO) estimates that arise from mixed effects models, free of confusion by background-CO2 variation, should provide a solid

  16. Space Evaporator-Absorber-Radiator (SEAR)

    NASA Technical Reports Server (NTRS)

    Bue, Grant C.; Stephan, Ryan; Hodgson, Ed; Izenson, Mike; Chen, Weibo

    2012-01-01

    A system for non-venting thermal control for spacesuits was built by integrating two previously developed technologies, namely NASA s Spacesuit Water Membrane Evaporator (SWME), and Creare s flexible version of the Lithium Chloride Absorber Radiator (LCAR). This SEAR system was tested in relevant thermal vacuum conditions. These tests show that a 1 m2 radiator having about three times as much absorption media as in the test article would be required to support a 7 hour spacewalk. The serial flow arrangement of the LCAR of the flexible version proved to be inefficient for venting non-condensable gas (NCG). A different LCAR packaging arrangement was conceived wherein the Portable Life Support System (PLSS) housing would be made with a high-strength carbon fiber composite honeycomb, the cells of which would be filled with the chemical absorption media. This new packaging reduces the mass and volume impact of the SEAR on the Portable Life Support System (PLSS) compared to the flexible design. A 0.2 sq m panel with flight-like honeycomb geometry is being constructed and will be tested in thermal and thermal vacuum conditions. Design analyses forecast improved system performance and improved NCG control. A flight-like regeneration system also is also being built and tested. Design analyses for the structurally integrated prototype as well as the earlier test data show that SEAR is not only practical for spacesuits but also has useful applications in spacecraft thermal control.

  17. Multifunctional Space Evaporator-Absorber-Radiator (SEAR)

    NASA Technical Reports Server (NTRS)

    Bue, Grant C.; Hodgson, Ed; Izenson, Mike; Chen, Weibo

    2013-01-01

    A system for non-venting thermal control for spacesuits was built by integrating two previously developed technologies, namely NASA's Spacesuit Water Membrane Evaporator (SWME), and Creare's flexible version of the Lithium Chloride Absorber Radiator (LCAR). This SEAR system was tested in relevant thermal vacuum conditions. These tests show that a 1 sq m radiator having about three times as much absorption media as in the test article would be required to support a 7 hour spacewalk. The serial flow arrangement of the LCAR of the flexible version proved to be inefficient for venting non-condensable gas (NCG). A different LCAR packaging arrangement was conceived wherein the Portable Life Support System (PLSS) housing would be made with a high-strength carbon fiber composite honeycomb, the cells of which would be filled with the chemical absorption media. This new packaging reduce the mass and volume impact of the SEAR on the Portable Life Support System (PLSS) compared to the flexible design. A 0.2 sq m panel with flight-like honeycomb geometry is being constructed and will be tested in thermal and thermal vacuum conditions. Design analyses forecast improved system performance and improved NCG control. A flight-like regeneration system also is also being built and tested. Design analyses for the structurally integrated prototype as well as the earlier test data show that SEAR is not only practical for spacesuits but also has useful applications in spacecraft thermal control.

  18. Fourteen Times the Earth

    NASA Astrophysics Data System (ADS)

    2004-08-01

    ESO HARPS Instrument Discovers Smallest Ever Extra-Solar Planet Summary A European team of astronomers [1] has discovered the lightest known planet orbiting a star other than the sun (an "exoplanet"). The new exoplanet orbits the bright star mu Arae located in the southern constellation of the Altar. It is the second planet discovered around this star and completes a full revolution in 9.5 days. With a mass of only 14 times the mass of the Earth, the new planet lies at the threshold of the largest possible rocky planets, making it a possible super Earth-like object. Uranus, the smallest of the giant planets of the Solar System has a similar mass. However Uranus and the new exoplanet differ so much by their distance from the host star that their formation and structure are likely to be very different. This discovery was made possible by the unprecedented accuracy of the HARPS spectrograph on ESO's 3.6-m telescope at La Silla, which allows radial velocities to be measured with a precision better than 1 m/s. It is another clear demonstration of the European leadership in the field of exoplanet research. PR Photo 25a/04: The HARPS Spectrograph and the 3.6m Telescope PR Photo 25b/04: Observed Velocity Variation of mu Arae (3.6m/HARPS, 1.2m Swiss/CORALIE, AAT/UCLES) PR Photo 25c/04: Velocity Variation of mu Arae Observed by HARPS (3.6m/HARPS) PR Photo 25d/04: "Velocity Curve" of mu Arae A unique planet hunting machine ESO PR Photo 25a/04 ESO PR Photo 25a/04 The HARPS Spectrograph and the 3.6m Telescope [Preview - JPEG: 602 x 400 pix - 211k] [Normal - JPEG: 1202 x 800 pix - 645k] Caption: ESO PR Photo 25a/04 represents a montage of the HARPS spectrograph and the 3.6m telescope at La Silla. The upper left shows the dome of the telescope, while the upper right illustrates the telescope itself. The HARPS spectrograph is shown in the lower image during laboratory tests. The vacuum tank is open so that some of the high-precision components inside can be seen. Since the first detection in 1995 of a planet around the star 51 Peg by Michel Mayor and Didier Queloz from the Geneva Observatory (Switzerland), astronomers have learned that our Solar System is not unique, as more than 120 giant planets orbiting other stars were discovered mostly by radial-velocity surveys (cf. ESO PR 13/00, ESO PR 07/01, and ESO PR 03/03). This fundamental observational method is based on the detection of variations in the velocity of the central star, due to the changing direction of the gravitational pull from an (unseen) exoplanet as it orbits the star. The evaluation of the measured velocity variations allows to deduce the planet's orbit, in particular the period and the distance from the star, as well as a minimum mass [2]. The continued quest for exoplanets requires better and better instrumentation. In this context, ESO undoubtedly took the leadership with the new HARPS spectrograph (High Accuracy Radial Velocity Planet Searcher) of the 3.6-m telescope at the ESO La Silla Observatory (see ESO PR 06/03). Offered in October 2003 to the research community in the ESO member countries, this unique instrument is optimized to detect planets in orbit around other stars ("exoplanets") by means of accurate (radial) velocity measurements with an unequalled precision of 1 metre per second. HARPS was built by a European Consortium [3] in collaboration with ESO. Already from the beginning of its operation, it has demonstrated its very high efficiency. By comparison with CORALIE, another well known planet-hunting optimized spectrograph installed on the Swiss-Euler 1.2-m telescope at La Silla (cf ESO PR 18/98, 12/99, 13/00), the typical observation times have been reduced by a factor one hundred and the accuracy of the measurements has been increased by a factor ten. These improvements have opened new perspectives in the search for extra-solar planets and have set new standards in terms of instrumental precision. The planetary system around mu Arae The star mu Arae is about 50 light years away. This solar-like star is located in the sout

  19. Fourteen Times the Earth

    NASA Astrophysics Data System (ADS)

    2004-08-01

    ESO HARPS Instrument Discovers Smallest Ever Extra-Solar Planet Summary A European team of astronomers [1] has discovered the lightest known planet orbiting a star other than the sun (an "exoplanet"). The new exoplanet orbits the bright star mu Arae located in the southern constellation of the Altar. It is the second planet discovered around this star and completes a full revolution in 9.5 days. With a mass of only 14 times the mass of the Earth, the new planet lies at the threshold of the largest possible rocky planets, making it a possible super Earth-like object. Uranus, the smallest of the giant planets of the Solar System has a similar mass. However Uranus and the new exoplanet differ so much by their distance from the host star that their formation and structure are likely to be very different. This discovery was made possible by the unprecedented accuracy of the HARPS spectrograph on ESO's 3.6-m telescope at La Silla, which allows radial velocities to be measured with a precision better than 1 m/s. It is another clear demonstration of the European leadership in the field of exoplanet research. PR Photo 25a/04: The HARPS Spectrograph and the 3.6m Telescope PR Photo 25b/04: Observed Velocity Variation of mu Arae (3.6m/HARPS, 1.2m Swiss/CORALIE, AAT/UCLES) PR Photo 25c/04: Velocity Variation of mu Arae Observed by HARPS (3.6m/HARPS) PR Photo 25d/04: "Velocity Curve" of mu Arae A unique planet hunting machine ESO PR Photo 25a/04 ESO PR Photo 25a/04 The HARPS Spectrograph and the 3.6m Telescope [Preview - JPEG: 602 x 400 pix - 211k] [Normal - JPEG: 1202 x 800 pix - 645k] Caption: ESO PR Photo 25a/04 represents a montage of the HARPS spectrograph and the 3.6m telescope at La Silla. The upper left shows the dome of the telescope, while the upper right illustrates the telescope itself. The HARPS spectrograph is shown in the lower image during laboratory tests. The vacuum tank is open so that some of the high-precision components inside can be seen. Since the first detection in 1995 of a planet around the star 51 Peg by Michel Mayor and Didier Queloz from the Geneva Observatory (Switzerland), astronomers have learned that our Solar System is not unique, as more than 120 giant planets orbiting other stars were discovered mostly by radial-velocity surveys (cf. ESO PR 13/00, ESO PR 07/01, and ESO PR 03/03). This fundamental observational method is based on the detection of variations in the velocity of the central star, due to the changing direction of the gravitational pull from an (unseen) exoplanet as it orbits the star. The evaluation of the measured velocity variations allows to deduce the planet's orbit, in particular the period and the distance from the star, as well as a minimum mass [2]. The continued quest for exoplanets requires better and better instrumentation. In this context, ESO undoubtedly took the leadership with the new HARPS spectrograph (High Accuracy Radial Velocity Planet Searcher) of the 3.6-m telescope at the ESO La Silla Observatory (see ESO PR 06/03). Offered in October 2003 to the research community in the ESO member countries, this unique instrument is optimized to detect planets in orbit around other stars ("exoplanets") by means of accurate (radial) velocity measurements with an unequalled precision of 1 metre per second. HARPS was built by a European Consortium [3] in collaboration with ESO. Already from the beginning of its operation, it has demonstrated its very high efficiency. By comparison with CORALIE, another well known planet-hunting optimized spectrograph installed on the Swiss-Euler 1.2-m telescope at La Silla (cf ESO PR 18/98, 12/99, 13/00), the typical observation times have been reduced by a factor one hundred and the accuracy of the measurements has been increased by a factor ten. These improvements have opened new perspectives in the search for extra-solar planets and have set new standards in terms of instrumental precision. The planetary system around mu Arae The star mu Arae is about 50 light years away. This solar-like star is located in the southern constellation Ara (the Altar) and is bright enough (5th magnitude) to be observed with the unaided eye. Mu Arae was already known to harbour a Jupiter-sized planet with a 650 days orbital period. Previous observations also hinted at the presence of another companion (a planet or a star) much further away. The new measurements obtained by the astronomers on this object, combined with data from other teams confirm this picture. But as François Bouchy, member of the team, states: "Not only did the new HARPS measurements confirm what we previously believed to know about this star but they also showed that an additional planet on short orbit was present. And this new planet appears to be the smallest yet discovered around a star other than the sun. This makes mu Arae a very exciting planetary system." "Listening" to the star ESO PR Photo 25b/04 ESO PR Photo 25b/04 Observed Velocity Variation of mu Arae [Preview - JPEG: 440 x 400 pix - 98k] [Normal - JPEG: 879 x 800 pix - 230k] ESO PR Photo 25c/04 ESO PR Photo 25c/04 Velocity Variation of mu Arae Observed by HARPS [Preview - JPEG: 460 x 400 pix - 90k] [Normal - JPEG: 919 x 800 pix - 215k] Captions: ESO PR Photo 25b/04 shows the measurements of the radial velocity of the star mu Arae obtained by HARPS on the ESO 3.6m telescope at La Silla (green triangles), CORALIE on the Swiss Leonhard Euler 1.2m telescope also on La Silla (red dots) and UCLES on the Anglo-Australian Telescope (blue circles). The solid line shows the best fit to the measurements, assuming the existence of two planets and an additional long-period companion. The fact that the line happens to have a given width is related to the existence of the newly found short period planet. The data shown span the interval from July 1998 to August 2004. ESO PR Photo 25c/04 illustrates the high-quality radial velocity measurements obtained with HARPS. Here also, the solid line shows the best fit to the measurements, assuming the existence of two planets. The data were obtained over a time span of 80 days and the first points shown are the data from the 8 nights in June. Note that the full span of the vertical axis is only 40 m/s! Error bars indicate the accuracy of the measurements. The lower part of the diagram displays the deviation of the measurements from the best fit. ESO PR Photo 25d/04 ESO PR Photo 25d/04 Observed Velocity Variation of mu Arae [Preview - JPEG: 440 x 400 pix - 78k] [Normal - JPEG: 879 x 800 pix - 171k] Caption: ESO PR Photo 25d/04 displays the HARPS radial velocity measurements phase-folded with the orbital period of the newly found exoplanet (9.5 days). The measurements have been corrected from the effect of the two longer period companions. The semi-amplitude of the curve is less than 5 m/s! Coupled with the 9.5 days orbital period, this implies a minimum mass for the newly discovered planet of 14 times the mass of the Earth. During 8 nights in June 2004, mu Arae was repeatedly observed and its radial velocity measured by HARPS to obtain information on the interior of the star. This so-called astero-seismology technique (see ESO PR 15/01) studies the small acoustic waves which make the surface of the star periodically pulsate in and out. By knowing the internal structure of the star, the astronomers aimed at understanding the origin of the unusual amount of heavy elements observed in its stellar atmosphere. This unusual chemical composition could provide unique information to the planet formation history. Says Nuno Santos, another member of the team: "To our surprise, the analysis of the new measurements revealed a radial velocity variation with a period of 9.5 days on top of the acoustic oscillation signal!" This discovery has been made possible thanks to the large number of measurements obtained during the astero-seimology campaign. From this date, the star, that was also part of the HARPS consortium survey programme, was regularly monitored with a careful observation strategy to reduce the "seismic noise" of the star. These new data confirmed both the amplitude and the periodicity of the radial velocity variations found during the 8 nights in June. The astronomers were left with only one convincing explanation to this periodic signal: a second planet orbits mu Arae and accomplishes a full revolution in 9.5 days. But this was not the only surprise: from the radial velocity amplitude, that is the size of the wobble induced by the gravitational pull of the planet on the star, the astronomers derived a mass for the planet of only 14 times the mass of the Earth! This is about the mass of Uranus, the smallest of the giant planets in the solar system. The newly found exoplanet therefore sets a new record in the smallest planet discovered around a solar type star. At the boundary The mass of this planet places it at the boundary between the very large earth-like (rocky) planets and giant planets. As current planetary formation models are still far from being able to account for all the amazing diversity observed amongst the extrasolar planets discovered, astronomers can only speculate on the true nature of the present object. In the current paradigm of giant planet formation, a core is formed first through the accretion of solid "planetesimals". Once this core reaches a critical mass, gas accumulates in a "runaway" fashion and the mass of the planet increases rapidly. In the present case, this later phase is unlikely to have happened for otherwise the planet would have become much more massive. Furthermore, recent models having shown that migration shortens the formation time, it is unlikely that the present object has migrated over large distances and remained of such small mass. This object is therefore likely to be a planet with a rocky (not an icy) core surrounded by a small (of the order of a tenth of the total mass) gaseous envelope and would therefore qualify as a "super-Earth". Further Prospects The HARPS consortium, led by Michel Mayor (Geneva Observatory, Switzerland), has been granted 100 observing nights per year during a 5-year period at the ESO 3.6-m telescope to perform one of the most ambitious systematic searches for exoplanets so far implemented worldwide. To this aim, the consortium repeatedly measures velocities of hundreds of stars that may harbour planetary systems. The detection of this new light planet after less than 1 year of operation demonstrates the outstanding potential of HARPS for detecting rocky planets on short orbits. Further analysis shows that performances achieved with HARPS make possible the detection of big "telluric" planets with only a few times the mass of the Earth. Such a capability is a major improvement compared to past planet surveys. Detection of such rocky objects strengthens the interest of future transit detections from space with missions like COROT, Eddington and KEPLER that shall be able to measure their radius. More information The research described in this Press release has been submitted for publication to the leading astrophysical journal "Astronomy and Astrophysics". A preprint is available as a postscript file at http://www.oal.ul.pt/~nuno/. Notes [1]: The team is composed of Nuno Santos (Centro de Astronomia e Astrofisica da Universidade de Lisboa, Portugal), François Bouchy and Jean-Pierre Sivan (Laboratoire d'astrophysique de Marseille, France), Michel Mayor, Francesco Pepe, Didier Queloz, Stéphane Udry, and Christophe Lovis (Observatoire de l'Université de Genève, Switzerland), Sylvie Vauclair, Michael Bazot (Toulouse, France), Gaspare Lo Curto and Dominique Naef (ESO), Xavier Delfosse (LAOG, Grenoble, France), Willy Benz and Christoph Mordasini (Physikalisches Institut der Universität Bern, Switzerland), and Jean-Louis Bertaux (Service d'Aéronomie de Verrière-le-Buisson, Paris, France). [2] A fundamental limitation of the radial-velocity method is the unknown of the inclination of the planetary orbit that only allows the determination of a lower mass limit for the planet. However, statistical considerations indicate that in most cases, the true mass will not be much higher than this value. The mass units for the exoplanets used in this text are 1 Jupiter mass = 22 Uranus masses = 318 Earth masses; 1 Uranus mass = 14.5 Earth masses. [3] HARPS has been designed and built by an international consortium of research institutes, led by the Observatoire de Genève (Switzerland) and including Observatoire de Haute-Provence (France), Physikalisches Institut der Universität Bern (Switzerland), the Service d'Aeronomie (CNRS, France), as well as ESO La Silla and ESO Garching.

  20. Fourteen Writing Strategies

    ERIC Educational Resources Information Center

    Turner, Thomas; Broemmel, Amy

    2006-01-01

    Any science teacher who wants his or her students to be engaged in real science is going to engage them in real science writing. Writing in science should begin with clear, imaginative writing purposes and stimuli that are then scaffolded in such a way that students are able to find an organizational structure for their writing. Writing fluency is…

  1. Detection of Organic Compounds in Water by an Optical Absorbance Method

    PubMed Central

    Kim, Chihoon; Eom, Joo Beom; Jung, Soyoun; Ji, Taeksoo

    2016-01-01

    This paper proposes an optical method which allows determination of the organic compound concentration in water by measurement of the UV (ultraviolet) absorption at a wavelength of 250 nm~300 nm. The UV absorbance was analyzed by means of a multiple linear regression model for estimation of the total organic carbon contents in water, which showed a close correlation with the UV absorbance, demonstrating a high adjusted coefficient of determination, 0.997. The comparison of the TOC (total organic carbon) concentrations for real samples (tab water, sea, and river) calculated from the UV absorbance spectra, and those measured by a conventional TOC analyzer indicates that the higher the TOC value the better the agreement. This UV absorbance method can be easily configured for real-time monitoring water pollution, and built into a compact system applicable to industry areas. PMID:26742043

  2. Magnetic field effects on microwave absorbing materials

    NASA Technical Reports Server (NTRS)

    Goldberg, Ira; Hollingsworth, Charles S.; Mckinney, Ted M.

    1991-01-01

    The objective of this program was to gather information to formulate a microwave absorber that can work in the presence of strong constant direct current (DC) magnetic fields. The program was conducted in four steps. The first step was to investigate the electrical and magnetic properties of magnetic and ferrite microwave absorbers in the presence of strong magnetic fields. This included both experimental measurements and a literature survey of properties that may be applicable to finding an appropriate absorbing material. The second step was to identify those material properties that will produce desirable absorptive properties in the presence of intense magnetic fields and determine the range of magnetic field in which the absorbers remain effective. The third step was to establish ferrite absorber designs that will produce low reflection and adequate absorption in the presence of intense inhomogeneous static magnetic fields. The fourth and final step was to prepare and test samples of such magnetic microwave absorbers if such designs seem practical.

  3. Polymorphisms in Epigenetic and Meat Quality Related Genes in Fourteen Cattle Breeds and Association with Beef Quality and Carcass Traits

    PubMed Central

    Liu, Xuan; Usman, Tahir; Wang, Yachun; Wang, Zezhao; Xu, Xianzhou; Wu, Meng; Zhang, Yi; Zhang, Xu; Li, Qiang; Liu, Lin; Shi, Wanhai; Qin, Chunhua; Geng, Fanjun; Wang, Congyong; Tan, Rui; Huang, Xixia; Liu, Airong; Wu, Hongjun; Tan, Shixin; Yu, Ying

    2015-01-01

    Improvement for carcass traits related to beef quality is the key concern in beef production. Recent reports found that epigenetics mediates the interaction of individuals with environment and nutrition. The present study was designed to analyze the genetic effect of single nucleotide polymorphisms (SNPs) in seven epigenetic-related genes (DNMT1, DNMT3a, DNMT3b, DNMT3L, Ago1, Ago2, and HDAC5) and two meat quality candidate genes (CAPN1 and PRKAG3) on fourteen carcass traits related to beef quality in a Snow Dragon beef population, and also to identify SNPs in a total of fourteen cattle populations. Sixteen SNPs were identified and genotyped in 383 individuals sampled from the 14 cattle breeds, which included 147 samples from the Snow Dragon beef population. Data analysis showed significant association of 8 SNPs within 4 genes related to carcass and/or meat quality traits in the beef populations. SNP1 (13154420A>G) in exon 17 of DNMT1 was significantly associated with rib-eye width and lean meat color score (p<0.05). A novel SNP (SNP4, 76198537A>G) of DNMT3a was significantly associated with six beef quality traits. Those individuals with the wild-type genotype AA of DNMT3a showed an increase in carcass weight, chilled carcass weight, flank thicknesses, chuck short rib thickness, chuck short rib score and in chuck flap weight in contrast to the GG genotype. Five out of six SNPs in DNMT3b gene were significantly associated with three beef quality traits. SNP15 (45219258C>T) in CAPN1 was significantly associated with chuck short rib thickness and lean meat color score (p<0.05). The significant effect of SNP15 on lean meat color score individually and in combination with each of other 14 SNPs qualify this SNP to be used as potential marker for improving the trait. In addition, the frequencies of most wild-type alleles were higher than those of the mutant alleles in the native and foreign cattle breeds. Seven SNPs were identified in the epigenetic-related genes. The SNP

  4. Polymorphisms in epigenetic and meat quality related genes in fourteen cattle breeds and association with beef quality and carcass traits.

    PubMed

    Liu, Xuan; Usman, Tahir; Wang, Yachun; Wang, Zezhao; Xu, Xianzhou; Wu, Meng; Zhang, Yi; Zhang, Xu; Li, Qiang; Liu, Lin; Shi, Wanhai; Qin, Chunhua; Geng, Fanjun; Wang, Congyong; Tan, Rui; Huang, Xixia; Liu, Airong; Wu, Hongjun; Tan, Shixin; Yu, Ying

    2015-04-01

    Improvement for carcass traits related to beef quality is the key concern in beef production. Recent reports found that epigenetics mediates the interaction of individuals with environment and nutrition. The present study was designed to analyze the genetic effect of single nucleotide polymorphisms (SNPs) in seven epigenetic-related genes (DNMT1, DNMT3a, DNMT3b, DNMT3L, Ago1, Ago2, and HDAC5) and two meat quality candidate genes (CAPN1 and PRKAG3) on fourteen carcass traits related to beef quality in a Snow Dragon beef population, and also to identify SNPs in a total of fourteen cattle populations. Sixteen SNPs were identified and genotyped in 383 individuals sampled from the 14 cattle breeds, which included 147 samples from the Snow Dragon beef population. Data analysis showed significant association of 8 SNPs within 4 genes related to carcass and/or meat quality traits in the beef populations. SNP1 (13154420A>G) in exon 17 of DNMT1 was significantly associated with rib-eye width and lean meat color score (p<0.05). A novel SNP (SNP4, 76198537A>G) of DNMT3a was significantly associated with six beef quality traits. Those individuals with the wild-type genotype AA of DNMT3a showed an increase in carcass weight, chilled carcass weight, flank thicknesses, chuck short rib thickness, chuck short rib score and in chuck flap weight in contrast to the GG genotype. Five out of six SNPs in DNMT3b gene were significantly associated with three beef quality traits. SNP15 (45219258C>T) in CAPN1 was significantly associated with chuck short rib thickness and lean meat color score (p<0.05). The significant effect of SNP15 on lean meat color score individually and in combination with each of other 14 SNPs qualify this SNP to be used as potential marker for improving the trait. In addition, the frequencies of most wild-type alleles were higher than those of the mutant alleles in the native and foreign cattle breeds. Seven SNPs were identified in the epigenetic-related genes. The SNP

  5. Warming of the Arctic lower stratosphere by light absorbing particles

    NASA Astrophysics Data System (ADS)

    Baumgardner, D.; Kok, G.; Raga, G.

    2004-03-01

    Recent measurements of light absorbing particles in the Arctic lower stratosphere show significantly higher mass concentrations of black carbon than were measured in 1992. The difference is primarily a result of measurements with a more quantitative and accurate technique than was previously used. We attribute the large amount of light absorbing material to transport from lower latitude, tropospheric sources rather than increases in aircraft emissions. The calculated heating rate in this aerosol layer, as compared to an atmosphere consisting of only gases, increases by 12% during the winter. This is a result of light absorption by the particles and could perturb the altitude of the local tropopause and affect tropospheric/stratospheric exchange processes.

  6. Global warming due to increasing absorbed solar radiation

    NASA Astrophysics Data System (ADS)

    Trenberth, Kevin E.; Fasullo, John T.

    2009-04-01

    Global climate models used in the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4) are examined for the top-of-atmosphere radiation changes as carbon dioxide and other greenhouse gases build up from 1950 to 2100. There is an increase in net radiation absorbed, but not in ways commonly assumed. While there is a large increase in the greenhouse effect from increasing greenhouse gases and water vapor (as a feedback), this is offset to a large degree by a decreasing greenhouse effect from reducing cloud cover and increasing radiative emissions from higher temperatures. Instead the main warming from an energy budget standpoint comes from increases in absorbed solar radiation that stem directly from the decreasing cloud amounts. These findings underscore the need to ascertain the credibility of the model changes, especially insofar as changes in clouds are concerned.

  7. Mode-locked fiber laser using an SU8/SWCNT saturable absorber.

    PubMed

    Hernandez-Romano, Ivan; Mandridis, Dimitrios; May-Arrioja, Daniel A; Sanchez-Mondragon, Jose J; Delfyett, Peter J

    2011-06-01

    We report the fabrication of a saturable absorber based on SU8 single wall carbon nanotube (SWCNT) composite material. Thin films with a controllable thickness can be fabricated using a simple and reliable process. These films can be inserted between two FC/APC connectors in order to have an inline saturable absorber. A passive mode-locked laser was built by interleaving the fiberized saturable absorber in an erbium-doped fiber (L-band) ring cavity laser. The laser produces 871 fs pulses with a repetition rate of 21.27 MHz and a maximum average power of 1 mW.

  8. Foam-based optical absorber for high-power laser radiometry

    SciTech Connect

    Ramadurai, Krishna; Cromer, Christopher L.; Li, Xiaoyu; Mahajan, Roop L.; Lehman, John H

    2007-12-01

    We report damage threshold measurements of novel absorbers comprised of either liquid-cooled silicon carbide or vitreous carbon foams. The measurements demonstrate damage thresholds up to 1.6x104 W/cm2 at an incident circular spot size of 2 mm with an absorbance of 96% at 1.064 {mu}m. We present a summary of the damage threshold as a function of the water flow velocity and the absorbance measurements. We also present a qualitative description of a damage mechanism based on a two-phase heat transfer between the foam and the flowing water.

  9. TPX/TFTR Neutral Beam energy absorbers

    SciTech Connect

    Dahlgren, F.; Wright, K.; Kamperschroer, J.; Grisham, L.; Lontai, L.; Peters, C.; VonHalle, A.

    1993-11-01

    The present beam energy absorbing surfaces on the TFTR Neutral Beams such as Ion Dumps, Calorimeters, beam defining apertures, and scrapers, are simple water cooled copper plates which wee designed to absorb (via their thermal inertia) the incident beam power for two seconds with a five minute coal down interval between pulses. These components are not capable of absorbing the anticipated beam power loading for 1000 second TPX pulses and will have to be replaced with an actively cooled design. While several actively cooled energy absorbing designs were considered,, the hypervapotron elements currently being used on the JET beamlines were chosen due to their lower cooling water demands and reliable performance on JET.

  10. Absorbent product and articles made therefrom

    NASA Technical Reports Server (NTRS)

    Dawn, F. S.; Correale, J. V. (Inventor)

    1982-01-01

    A multilayer absorbent product for use in contact with the skin to absorb fluids is described. The product has a water pervious facing layer for contacting the skin, and a first fibrous wicking layer overlaying the water pervious layer. A first container section is defined by inner and outer layers of a water pervious wicking material in between a first absorbent mass and a second container section defined by inner and outer layers of a water pervious wicking material between what is disposed a second absorbent mass, and a liquid impermeable/gas permeable layer overlaying the second fibrous wicking layer.

  11. Advanced Reflector and Absorber Materials (Fact Sheet)

    SciTech Connect

    Not Available

    2010-08-01

    Fact sheet describing NREL CSP Program capabilities in the area of advanced reflector and absorber materials: evaluating performance, determining degradation rates and lifetime, and developing new coatings.

  12. Device for absorbing mechanical shock

    DOEpatents

    Newlon, Charles E.

    1980-01-01

    This invention is a comparatively inexpensive but efficient shock-absorbing device having special application to the protection of shipping and storage cylinders. In a typical application, two of the devices are strapped to a cylinder to serve as saddle-type supports for the cylinder during storage and to protect the cylinder in the event it is dropped during lifting or lowering operations. In its preferred form, the invention includes a hardwood plank whose grain runs in the longitudinal direction. The basal portion of the plank is of solid cross-section, whereas the upper face of the plank is cut away to form a concave surface fittable against the sidewall of a storage cylinder. The concave surface is divided into a series of segments by transversely extending, throughgoing relief slots. A layer of elastomeric material is positioned on the concave face, the elastomer being extrudable into slots when pressed against the segments by a preselected pressure characteristic of a high-energy impact. The compressive, tensile, and shear properties of the hardwood and the elastomer are utilized in combination to provide a surprisingly high energy-absorption capability.

  13. Device for absorbing mechanical shock

    DOEpatents

    Newlon, C.E.

    1979-08-29

    This invention is a comparatively inexpensive but efficient shock-absorbing device having special application to the protection of shipping and storage cylinders. In a typical application, two of the devices are strapped to a cylinder to serve as saddle-type supports for the cylinder during storage and to protect the cylinder in the event it is dropped during lifting or lowering operations. In its preferred form, the invention includes a hardwood plank whose grain runs in the longitudinal direction. The basal portion of the plank is of solid cross-section, whereas the upper face of the plank is cut away to form a concave surface fittable against the sidewall of a storage cylinder. The concave surface is divided into a series of segments by transversely extending, throughgoing relief slots. A layer of elastomeric material is positioned on the concave face, the elastomer being extrudable into slots when pressed against the segments by a preselected pressure characteristic of a high-energy impact. The compressive, tensile, and shear properties of the hardwood and the elastomer are utilized in combination to provide a surprisingly high energy-absorption capability.

  14. Dynamics of Tree Species Composition in Temperate Mountains of South Korea over Fourteen Years using 880 Permanent Plots

    NASA Astrophysics Data System (ADS)

    Lee, B.; Kim, H. S.; Park, J.; Moon, M.; Cho, S.; Ryu, D.; Wynn, K. Z.; Park, J.

    2014-12-01

    The structure of forest and diversity of tree species in temperate mountains have been influenced by changing climate conditions as well as successional changes. To understand how tree species composition and stand structure change across temperate mountains, the species composition, size, and environmental information were collected over the past fourteen years in 880 quadrats of 20 m x 50 m of woodland communities distributed across Jiri and Baekoon Mountains, South Korea. The preliminary investigation on variations of tree species revealed that overall composition of tree species increased in terms of both diversity and biomass growth of tree species, reflecting fast and wide changes in temperate forests of Korea. Among dominant trees, the Quercus mongolica, Styrax japonicu, and Acer pseudosieboldianum recorded the highest increase in stand density, implying the most prosperous species under current conditions, while the species of Quercus variabilis and Fraxinus mandshurica appeared as fast declining species in the number. In terms of biomass growth of dominant species, the Stewartia pseudocamellia showed the largest increase of biomass, followed by Quercus serrata and Quercus mongolica., while the Fraxinus mandshurica appeared to have a rapid decline, followed by Alnus japonica and Quercus dentata. Overall, the fast change of composition in tree species is clear and further analysis to clarify the reasons for such fast and species-specific changes is underway especially to separate the effect of successional change and climate change.

  15. Evaluation of carcinogenic potential of the herbicide glyphosate, drawing on tumor incidence data from fourteen chronic/carcinogenicity rodent studies.

    PubMed

    Greim, Helmut; Saltmiras, David; Mostert, Volker; Strupp, Christian

    2015-03-01

    Abstract Glyphosate, an herbicidal derivative of the amino acid glycine, was introduced to agriculture in the 1970s. Glyphosate targets and blocks a plant metabolic pathway not found in animals, the shikimate pathway, required for the synthesis of aromatic amino acids in plants. After almost forty years of commercial use, and multiple regulatory approvals including toxicology evaluations, literature reviews, and numerous human health risk assessments, the clear and consistent conclusions are that glyphosate is of low toxicological concern, and no concerns exist with respect to glyphosate use and cancer in humans. This manuscript discusses the basis for these conclusions. Most toxicological studies informing regulatory evaluations are of commercial interest and are proprietary in nature. Given the widespread attention to this molecule, the authors gained access to carcinogenicity data submitted to regulatory agencies and present overviews of each study, followed by a weight of evidence evaluation of tumor incidence data. Fourteen carcinogenicity studies (nine rat and five mouse) are evaluated for their individual reliability, and select neoplasms are identified for further evaluation across the data base. The original tumor incidence data from study reports are presented in the online data supplement. There was no evidence of a carcinogenic effect related to glyphosate treatment. The lack of a plausible mechanism, along with published epidemiology studies, which fail to demonstrate clear, statistically significant, unbiased and non-confounded associations between glyphosate and cancer of any single etiology, and a compelling weight of evidence, support the conclusion that glyphosate does not present concern with respect to carcinogenic potential in humans.

  16. Anti-bacterial activity and brine shrimp lethality bioassay of methanolic extracts of fourteen different edible vegetables from Bangladesh

    PubMed Central

    Ullah, M. Obayed; Haque, Mahmuda; Urmi, Kaniz Fatima; Zulfiker, Abu Hasanat Md.; Anita, Elichea Synthi; Begum, Momtaj; Hamid, Kaiser

    2013-01-01

    Objective To investigate the antibacterial and cytotoxic activity of fourteen different edible vegetables methanolic extract from Bangladesh. Methods The antibacterial activity was evaluated using disc diffusion assay method against 12 bacteria (both gram positive and gram negative). The plant extracts were also screened for cytotoxic activity using the brine shrimp lethality bioassay method and the lethal concentrations (LC50) were determined at 95% confidence intervals by analyzing the data on a computer loaded with “Finney Programme”. Results All the vegetable extracts showed low to elevated levels of antibacterial activity against most of the tested strains (zone of inhibition=5-28 mm). The most active extract against all bacterial strains was from Xanthium indicum which showed remarkable antibacterial activity having the diameter of growth inhibition zone ranging from 12 to 28 mm followed by Alternanthera sessilis (zone of inhibition=6-21 mm). All extracts exhibited considerable general toxicity towards brine shrimps. The LC50 value of the tested extracts was within the range of 8.447 to 60.323 µg/mL with respect to the positive control (vincristine sulphate) which was 0.91 µg/mL. Among all studied extracts, Xanthium indicum displayed the highest cytotoxic effect with LC50 value of 8.447 µg/mL. Conclusions The results of the present investigation suggest that most of the studied plants are potentially good source of antibacterial and anticancer agents. PMID:23570009

  17. Nepal Ambient Monitoring and Source Testing Experiment (NAMaSTE): emissions of trace gases and light-absorbing carbon from wood and dung cooking fires, garbage and crop residue burning, brick kilns, and other sources

    NASA Astrophysics Data System (ADS)

    Stockwell, Chelsea E.; Christian, Ted J.; Goetz, J. Douglas; Jayarathne, Thilina; Bhave, Prakash V.; Praveen, Puppala S.; Adhikari, Sagar; Maharjan, Rashmi; DeCarlo, Peter F.; Stone, Elizabeth A.; Saikawa, Eri; Blake, Donald R.; Simpson, Isobel J.; Yokelson, Robert J.; Panday, Arnico K.

    2016-09-01

    The Nepal Ambient Monitoring and Source Testing Experiment (NAMaSTE) campaign took place in and around the Kathmandu Valley and in the Indo-Gangetic Plain (IGP) of southern Nepal during April 2015. The source characterization phase targeted numerous important but undersampled (and often inefficient) combustion sources that are widespread in the developing world such as cooking with a variety of stoves and solid fuels, brick kilns, open burning of municipal solid waste (a.k.a. trash or garbage burning), crop residue burning, generators, irrigation pumps, and motorcycles. NAMaSTE produced the first, or rare, measurements of aerosol optical properties, aerosol mass, and detailed trace gas chemistry for the emissions from many of the sources. This paper reports the trace gas and aerosol measurements obtained by Fourier transform infrared (FTIR) spectroscopy, whole-air sampling (WAS), and photoacoustic extinctiometers (PAX; 405 and 870 nm) based on field work with a moveable lab sampling authentic sources. The primary aerosol optical properties reported include emission factors (EFs) for scattering and absorption coefficients (EF Bscat, EF Babs, in m2 kg-1 fuel burned), single scattering albedos (SSAs), and absorption Ångström exponents (AAEs). From these data we estimate black and brown carbon (BC, BrC) emission factors (g kg-1 fuel burned). The trace gas measurements provide EFs (g kg-1) for CO2, CO, CH4, selected non-methane hydrocarbons up to C10, a large suite of oxygenated organic compounds, NH3, HCN, NOx, SO2, HCl, HF, etc. (up to ˜ 80 gases in all). The emissions varied significantly by source, and light absorption by both BrC and BC was important for many sources. The AAE for dung-fuel cooking fires (4.63 ± 0.68) was significantly higher than for wood-fuel cooking fires (3.01 ± 0.10). Dung-fuel cooking fires also emitted high levels of NH3 (3.00 ± 1.33 g kg-1), organic acids (7.66 ± 6.90 g kg-1), and HCN (2.01 ± 1.25 g kg-1), where the latter could

  18. 21 CFR 872.6050 - Saliva absorber.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Saliva absorber. 872.6050 Section 872.6050 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6050 Saliva absorber. (a) Identification. A...

  19. Comments on liquid hydrogen absorbers for MICE

    SciTech Connect

    Green, Michael A.

    2003-02-01

    This report describes the heat transfer problems associatedwith a liquid hydrogen absorber for the MICE experiment. This reportdescribes a technique for modeling heat transfer from the outside world,to the abosrber case and in its vacuum vessel, to the hydrogen and theninto helium gas at 14 K. Also presented are the equation for freeconvection cooling of the liquid hydrogen in the absorber.

  20. 21 CFR 872.6050 - Saliva absorber.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Saliva absorber. 872.6050 Section 872.6050 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6050 Saliva absorber. (a) Identification. A...

  1. 21 CFR 872.6050 - Saliva absorber.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Saliva absorber. 872.6050 Section 872.6050 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6050 Saliva absorber. (a) Identification. A...

  2. 21 CFR 872.6050 - Saliva absorber.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Saliva absorber. 872.6050 Section 872.6050 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6050 Saliva absorber. (a) Identification. A...

  3. 21 CFR 872.6050 - Saliva absorber.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Saliva absorber. 872.6050 Section 872.6050 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6050 Saliva absorber. (a) Identification. A...

  4. Structured Metal Film as Perfect Absorber

    NASA Astrophysics Data System (ADS)

    Xiong, Xiang; Jiang, Shang-Chi; Peng, Ru-Wen; Wang, Mu

    2014-03-01

    With standing U-shaped resonators, fish-spear-like resonator has been designed for the first time as the building block to assemble perfect absorbers. The samples have been fabricated with two-photon polymerization process and FTIR measurement results support the effectiveness of the perfect absorber design. In such a structure the polarization-dependent resonance occurs between the tines of the spears instead of the conventional design where the resonance occurs between the metallic layers separated by a dielectric interlayer. The incident light neither transmits nor reflects back which results in unit absorbance. The power of light is trapped between the tines of spears and finally be absorbed. The whole structure is covered with a continuous metallic layer with good thermo-conductance, which provides an excellent approach to deal with heat dissipation, is enlightening in exploring metamaterial absorbers.

  5. Photocurable acrylic composition, and U.V. curing with development of U.V. absorber

    DOEpatents

    McKoy, Vincent B.; Gupta, Amitava

    1992-01-01

    In-situ development of an ultraviolet absorber is provided by a compound such as a hydroxy-phenyl-triazole containing a group which protects the absorber during actinically activated polymerization by light at first frequency. After polymerization the protective group is removed by actinic reaction at a second frequency lower than the first frequency. The protective group is formed by replacing the hydrogen of the hydroxyl group with an acyl group containing 1 to 3 carbon atoms or an acryloxy group of the formula: ##STR1## where R.sup.1 is either an alkyl containing 1 to 6 carbon atoms or --CH.dbd.CH.sub.2.

  6. THz ATR Spectroscopy for Inline Monitoring of Highly Absorbing Liquids

    NASA Astrophysics Data System (ADS)

    Soltani, Amin; Busch, Stefan F.; Plew, Patrick; Balzer, Jan C.; Koch, Martin

    2016-10-01

    We present a THz attenuated total reflection (ATR) setup which allows for inline measurements of highly absorbing liquids. As a proof of principle, we investigate a mixture of water and ground calcium carbonate (GCC) from 5 to 40 wt%. Inline measurements prove that our THz ATR setup allows for the distinction of various concentrations. As an example, we show inline THz ATR measurements for 30 to 40 wt% for GCC watery solution, as this concentration range is of technical relevance. We obtain a sensitivity better than 2 wt%.

  7. Fatty acid composition of fourteen seashore mallow (Kosteletzkya pentacarpos) seed oil accessions collected from the Atlantic and Gulf coasts of the United States

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Seashore mallow (Kosteletzkya pentacarpos) is a flowering perennial halophytic herb belonging to the family Malvaceae that is found in marshes along the Atlantic and Gulf coasts of the United States. Fourteen accessions were collected from wild populations along the Atlantic (n = 8) and Gulf (n = 6)...

  8. Radiobiologic risk estimation from dental radiology. Part I. Absorbed doses to critical organs

    SciTech Connect

    Underhill, T.E.; Chilvarquer, I.; Kimura, K.; Langlais, R.P.; McDavid, W.D.; Preece, J.W.; Barnwell, G.

    1988-07-01

    The aim of the present study was to generate one consistent set of data for evaluating and comparing radiobiologic risks from different dental radiographic techniques. To accomplish this goal, absorbed doses were measured in fourteen anatomic sites from (1) five different panoramic machines with the use of rare-earth screens, (2) a twenty-film complete-mouth survey with E-speed film, long round cone, (3) a twenty-film complete-mouth survey with E-speed film, long rectangular cone, (4) a four-film interproximal survey with E-speed film, long round cone, and (5) a four-film interproximal survey with E-speed film, long rectangular cone. The dose to the thyroid gland, the active bone marrow, the brain, and the salivary glands was evaluated by means of exposure of a tissue-equivalent phantom, fitted with lithium fluoride thermoluminescent dosimeters (TLDs) at the relevant locations.

  9. Radiobiologic risk estimation from dental radiology. Part I. Absorbed doses to critical organs.

    PubMed

    Underhill, T E; Chilvarquer, I; Kimura, K; Langlais, R P; McDavid, W D; Preece, J W; Barnwell, G

    1988-07-01

    The aim of the present study was to generate one consistent set of data for evaluating and comparing radiobiologic risks from different dental radiographic techniques. To accomplish this goal, absorbed doses were measured in fourteen anatomic sites from (1) five different panoramic machines with the use of rare-earth screens, (2) a twenty-film complete-mouth survey with E-speed film, long round cone, (3) a twenty-film complete-mouth survey with E-speed film, long rectangular cone, (4) a four-film interproximal survey with E-speed film, long round cone, and (5) a four-film interproximal survey with E-speed film, long rectangular cone. The dose to the thyroid gland, the active bone marrow, the brain, and the salivary glands was evaluated by means of exposure of a tissue-equivalent phantom, fitted with lithium fluoride thermoluminescent dosimeters (TLDs) at the relevant locations.

  10. Evaluation of carcinogenic potential of the herbicide glyphosate, drawing on tumor incidence data from fourteen chronic/carcinogenicity rodent studies

    PubMed Central

    Greim, Helmut; Saltmiras, David; Mostert, Volker; Strupp, Christian

    2015-01-01

    Abstract Glyphosate, an herbicidal derivative of the amino acid glycine, was introduced to agriculture in the 1970s. Glyphosate targets and blocks a plant metabolic pathway not found in animals, the shikimate pathway, required for the synthesis of aromatic amino acids in plants. After almost forty years of commercial use, and multiple regulatory approvals including toxicology evaluations, literature reviews, and numerous human health risk assessments, the clear and consistent conclusions are that glyphosate is of low toxicological concern, and no concerns exist with respect to glyphosate use and cancer in humans. This manuscript discusses the basis for these conclusions. Most toxicological studies informing regulatory evaluations are of commercial interest and are proprietary in nature. Given the widespread attention to this molecule, the authors gained access to carcinogenicity data submitted to regulatory agencies and present overviews of each study, followed by a weight of evidence evaluation of tumor incidence data. Fourteen carcinogenicity studies (nine rat and five mouse) are evaluated for their individual reliability, and select neoplasms are identified for further evaluation across the data base. The original tumor incidence data from study reports are presented in the online data supplement. There was no evidence of a carcinogenic effect related to glyphosate treatment. The lack of a plausible mechanism, along with published epidemiology studies, which fail to demonstrate clear, statistically significant, unbiased and non-confounded associations between glyphosate and cancer of any single etiology, and a compelling weight of evidence, support the conclusion that glyphosate does not present concern with respect to carcinogenic potential in humans. PMID:25716480

  11. Evaluation of carcinogenic potential of the herbicide glyphosate, drawing on tumor incidence data from fourteen chronic/carcinogenicity rodent studies.

    PubMed

    Greim, Helmut; Saltmiras, David; Mostert, Volker; Strupp, Christian

    2015-03-01

    Abstract Glyphosate, an herbicidal derivative of the amino acid glycine, was introduced to agriculture in the 1970s. Glyphosate targets and blocks a plant metabolic pathway not found in animals, the shikimate pathway, required for the synthesis of aromatic amino acids in plants. After almost forty years of commercial use, and multiple regulatory approvals including toxicology evaluations, literature reviews, and numerous human health risk assessments, the clear and consistent conclusions are that glyphosate is of low toxicological concern, and no concerns exist with respect to glyphosate use and cancer in humans. This manuscript discusses the basis for these conclusions. Most toxicological studies informing regulatory evaluations are of commercial interest and are proprietary in nature. Given the widespread attention to this molecule, the authors gained access to carcinogenicity data submitted to regulatory agencies and present overviews of each study, followed by a weight of evidence evaluation of tumor incidence data. Fourteen carcinogenicity studies (nine rat and five mouse) are evaluated for their individual reliability, and select neoplasms are identified for further evaluation across the data base. The original tumor incidence data from study reports are presented in the online data supplement. There was no evidence of a carcinogenic effect related to glyphosate treatment. The lack of a plausible mechanism, along with published epidemiology studies, which fail to demonstrate clear, statistically significant, unbiased and non-confounded associations between glyphosate and cancer of any single etiology, and a compelling weight of evidence, support the conclusion that glyphosate does not present concern with respect to carcinogenic potential in humans. PMID:25716480

  12. Source apportionment of light absorbing WSOC in South Asian outflow

    NASA Astrophysics Data System (ADS)

    Bosch, Carme; Kirillova, Elena; Andersson, August; Kruså, Martin; Budhavant, Krishnakant; Tiwari, Suresh; Gustafsson, Örjan

    2013-04-01

    Carbonaceous aerosols (CA) formed over South Asia are of special concern for human health and regional climate impacts. Anthropogenic emissions forming CA are generally high throughout the region and particularly over the Indo-Gangetic Plain. The net effects of CA on radiative climate forcing are still uncertain. One of the components of CA is black carbon (BC), dominated by soot-like elemental carbon, a strong absorber of solar radiation. Another component is organic carbon (OC), traditionally considered as a light scattering particle. However, recent field studies have shown OC to absorb at lower wavelengths. Thus OC, in addition to BC, may also contribute to light absorption and have a positive direct radiative effect on climate. Light absorbing organic aerosol is usually termed brown carbon (BrC). A significant fraction of BrC is water-soluble, therefore its dissolution into clouds could result in absorbing droplets that affect the cloud absorption and thus contributing to the indirect aerosol climate effects. In this study, light absorption and δ13C + Δ14C isotopic measurements of WSOC were studied in fine aerosols (PM 2.5) at two sites during early pre-monsoon season. New Delhi, one of the most densely populated and industrialized urban megacities in South Asia, was chosen to represent a strong source and Maldives Climate Observatory at Hanimaadhoo (MCOH) was chosen as a regional receptor which in wintertime is located downwind of the Indian subcontinent. Sampling in Delhi was done from mid-February to mid-March 2011 and in MCOH during March 2012. WSOC concentrations were 12±4.5 and 0.71±0.30 μg m-3 in Delhi and MCOH respectively. Whereas in Delhi WSOC contributed 31±4% of total organic carbon, this contribution was slightly higher in MCOH (40±12%). Light absorption by WSOC exhibited strong wavelength (?) dependence. In Maldives, WSOC Absorption Ångström Exponent (AAE) was found to be 6.9±0.4 and Mass Absorption Efficiency (MAE) measured at 365 nm

  13. Thin film absorber for a solar collector

    DOEpatents

    Wilhelm, William G.

    1985-01-01

    This invention pertains to energy absorbers for solar collectors, and more particularly to high performance thin film absorbers. The solar collectors comprising the absorber of this invention overcome several problems seen in current systems, such as excessive hardware, high cost and unreliability. In the preferred form, the apparatus features a substantially rigid planar frame with a thin film window bonded to one planar side of the frame. An absorber in accordance with the present invention is comprised of two thin film layers that are sealed perimetrically. In a preferred embodiment, thin film layers are formed from a metal/plastic laminate. The layers define a fluid-tight planar envelope of large surface area to volume through which a heat transfer fluid flows. The absorber is bonded to the other planar side of the frame. The thin film construction of the absorber assures substantially full envelope wetting and thus good efficiency. The window and absorber films stress the frame adding to the overall strength of the collector.

  14. Ultraviolet absorbance screening for DNAPL site compliance

    SciTech Connect

    Misquitta, N.; Foster, D.; Coll, F.; Brourman, M.

    1997-12-31

    The UV Absorbance Effectiveness Demonstration was developed to evaluate the feasibility of using UV absorbance as a surrogate for oil & grease methods of measuring the concentration of coal tar-related constituents in groundwater. Since the current oil & grease method via Freon{reg_sign} extraction is being phased out, a new alternative oil & grease method using a hexane extraction will be introduced in the near future. A secondary objective of this evaluation was to compare the two oil & grease methods, as they relate to facility groundwater, in order to demonstrate the overall robustness of UV absorbance as a surrogate for oil & grease analysis, regardless of the method of extraction.

  15. Bond integrity of microwave absorbers for CEBAF

    SciTech Connect

    A. Ananda; Y. Verma; B.T. Smith; P.H. Johnson; I.E. Campisi; K.E. Finger

    1992-10-01

    The Continuous Electron Beam Accelerator Facility (CEBAF) uses superconducting niobium cavities. Specially developed microwave absorbing ceramics are used in the cavities to absorb the higher order mode power. The ceramic absorbers are brazed to copper mounts. The structural integrity and the thermal contact of the braze joints are essential. The ultrasonic reflection signal from the various bonds is evaluated to locate voids and partial braze surfaces. The acoustic wave properties of the four components of the structure are used as input to an ultrasonic transmission line model which is compared to the experimental data. There is good correlation between the ultrasonic reflection data and destructive testing of the bonds.

  16. Freshwater DOM quantity and quality from a two-component model of UV absorbance

    USGS Publications Warehouse

    Carter, Heather T.; Tipping, Edward; Koprivnjak, Jean-Francois; Miller, Matthew P.; Cookson, Brenda; Hamilton-Taylor, John

    2012-01-01

    We present a model that considers UV-absorbing dissolved organic matter (DOM) to consist of two components (A and B), each with a distinct and constant spectrum. Component A absorbs UV light strongly, and is therefore presumed to possess aromatic chromophores and hydrophobic character, whereas B absorbs weakly and can be assumed hydrophilic. We parameterised the model with dissolved organic carbon concentrations [DOC] and corresponding UV spectra for c. 1700 filtered surface water samples from North America and the United Kingdom, by optimising extinction coefficients for A and B, together with a small constant concentration of non-absorbing DOM (0.80 mg DOC L-1). Good unbiased predictions of [DOC] from absorbance data at 270 and 350 nm were obtained (r2 = 0.98), the sum of squared residuals in [DOC] being reduced by 66% compared to a regression model fitted to absorbance at 270 nm alone. The parameterised model can use measured optical absorbance values at any pair of suitable wavelengths to calculate both [DOC] and the relative amounts of A and B in a water sample, i.e. measures of quantity and quality. Blind prediction of [DOC] was satisfactory for 9 of 11 independent data sets (181 of 213 individual samples).

  17. Neutron absorbing coating for nuclear criticality control

    DOEpatents

    Mizia, Ronald E.; Wright, Richard N.; Swank, William D.; Lister, Tedd E.; Pinhero, Patrick J.

    2007-10-23

    A neutron absorbing coating for use on a substrate, and which provides nuclear criticality control is described and which includes a nickel, chromium, molybdenum, and gadolinium alloy having less than about 5% boron, by weight.

  18. Energy absorber uses expanded coiled tube

    NASA Technical Reports Server (NTRS)

    Johnson, E. F.

    1972-01-01

    Mechanical shock mitigating device, based on working material to its failure point, absorbs mechanical energy by bending or twisting tubing. It functions under axial or tangential loading, has no rebound, is area independent, and is easy and inexpensive to build.

  19. Attenuation of external Bremsstrahlung in metallic absorbers

    SciTech Connect

    Dhaliwal, A.S.; Powar, M.S.; Singh, M. )

    1990-12-01

    In this paper attenuation of bremsstrahlung from {sup 147}Pm and {sup 170}Tm beta emitters has been studied in aluminum, copper, tin, and lead metallic absorbers. Bremsstrahlung spectra and mass attenuation coefficients for monoenergetic gamma rays are used to calculate theoretical attenuation curves. Magnetic deflection and beta stopping techniques are used to measure the integral bremsstrahlung intensities above 30 keV in different target thicknesses. Comparison of measured and calculated attenuation curves shows a good agreement for various absorbers, thus providing a test of this technique, which may be useful in understanding bremsstrahlung intensity buildup and in the design of optimum shielding for bremsstrahlung sources. It is found that the absorption of bremsstrahlung in metallic absorbers does not obey an exponential law and that absorbers act as energy filters.

  20. Durability of Polymeric Glazing and Absorber Materials

    SciTech Connect

    Jorgensen, G.; Terwilliger, K.; Bingham, C.; Milbourne, M.

    2005-01-01

    The Solar Heating and Lighting Program has set the goal of reducing the cost of solar water heating systems by at least 50%. An attractive approach to such large cost reduction is to replace glass and metal parts with less-expensive, lighter-weight, more-integrated polymeric components. The key challenge with polymers is to maintain performance and assure requisite durability for extended lifetimes. The objective of this task is to quantify lifetimes through measurement of the optical and mechanical stability of candidate polymeric glazing and absorber materials. Polycarbonate sheet glazings, as proposed by two industry partners, have been tested for resistance to UV radiation with three complementary methods. Incorporation of a specific 2-mil thick UV-absorbing screening layer results in glazing lifetimes of at least 15 years; improved screens promise even longer lifetimes. Proposed absorber materials were tested for creep and embrittlement under high temperature, and appear adequate for planned ICS absorbers.

  1. Porous absorber for solar air heaters

    SciTech Connect

    Finch, J.A.

    1980-09-10

    A general discussion of the factors affecting solar collector performance is presented. Bench scale tests done to try to determine the heat transfer characteristics of various screen materials are explained. The design, performance, and evaluation of a crude collector with a simple screen stack absorber is treated. The more sophisticated absorber concept, and its first experimental approximation is examined. A short summary of future plans for the collector concept is included. (MHR)

  2. Taming electromagnetic metamaterials for isotropic perfect absorbers

    NASA Astrophysics Data System (ADS)

    Anh, Doan Tung; Viet, Do Thanh; Trang, Pham Thi; Thang, Nguyen Manh; Quy, Ho Quang; Hieu, Nguyen Van; Lam, Vu Dinh; Tung, Nguyen Thanh

    2015-07-01

    Conventional metamaterial absorbers, which consist of a dielectric spacer sandwiched between metamaterial resonators and a metallic ground plane, have been inherently anisotropic. In this paper, we present an alternative approach for isotropic perfect absorbers using symmetric metamaterial structures. We show that by systematically manipulating the electrically and magnetically induced losses, one can achieve a desired absorption without breaking the structural homogeneity. Finite integration simulations and standard retrieval method are performed to elaborate on our idea.

  3. Structured metal film as a perfect absorber.

    PubMed

    Xiong, Xiang; Jiang, Shang-Chi; Hu, Yu-Hui; Peng, Ru-Wen; Wang, Mu

    2013-08-01

    A new type of absorber, a four-tined fish-spear-like resonator (FFR), constructed by the two-photon polymerization process, is reported. An absorbance of more than 90% is experimentally realized and the resonance occurs in the space between the tines. Since a continuous layer of metallic thin film covers the structure, it is perfectly thermo- and electroconductive, which is the mostly desired feature for many applications. PMID:23661582

  4. Lidar remote sensing of laser-induced incandescence on light absorbing particles in the atmosphere.

    PubMed

    Miffre, Alain; Anselmo, Christophe; Geffroy, Sylvain; Fréjafon, Emeric; Rairoux, Patrick

    2015-02-01

    Carbon aerosol is now recognized as a major uncertainty on climate change and public health, and specific instruments are required to address the time and space evolution of this aerosol, which efficiently absorbs light. In this paper, we report an experiment, based on coupling lidar remote sensing with Laser-Induced-Incandescence (LII), which allows, in agreement with Planck's law, to retrieve the vertical profile of very low thermal radiation emitted by light-absorbing particles in an urban atmosphere over several hundred meters altitude. Accordingly, we set the LII-lidar formalism and equation and addressed the main features of LII-lidar in the atmosphere by numerically simulating the LII-lidar signal. We believe atmospheric LII-lidar to be a promising tool for radiative transfer, especially when combined with elastic backscattering lidar, as it may then allow a remote partitioning between strong/less light absorbing carbon aerosols.

  5. Perfect terahertz absorber using fishnet based metafilm

    SciTech Connect

    Azad, Abul Kalam; Shchegolkov, Dmitry Yu; Chen, Houtong; Taylor, Antoinette; Smirnova, E I; O' Hara, John F

    2009-01-01

    We present a perfect terahertz (THz) absorber working for a broad-angle of incidence. The two fold symmetry of rectangular fishnet structure allows either complete absorption or mirror like reflection depending on the polarization of incident the THz beam. Metamaterials enable the ability to control the electromagnetic wave in a unique fashion by designing the permittivity or permeability of composite materials with desired values. Although the initial idea of metamaterials was to obtain a negative index medium, however, the evolution of metamaterials (MMs) offers a variety of practically applicable devices for controlling electromagnetic wave such as tunable filters, modulators, phase shifters, compact antenna, absorbers, etc. Terahertz regime, a crucial domain of the electromagnetic wave, is suffering from the scarcity of the efficient devices and might take the advantage of metamaterials. Here, we demonstrate design, fabrication, and characterization of a terahertz absorber based on a simple fishnet metallic film separated from a ground mirror plane by a dielectric spacer. Such absorbers are in particular important for bolometric terahertz detectors, high sensitivity imaging, and terahertz anechoic chambers. Recently, split-ring-resonators (SRR) have been employed for metamaterial-based absorbers at microwave and THz frequencies. The experimental demonstration reveals that such absorbers have absorptivity close to unity at resonance frequencies. However, the downside of these designs is that they all employ resonators of rather complicated shape with many fine parts and so they are not easy to fabricate and are sensitive to distortions.

  6. Photophoretic manipulation of absorbing aerosol particles with vortex beams: theory versus experiment.

    PubMed

    Desyatnikov, Anton S; Shvedov, Vladlen G; Rode, Andrei V; Krolikowski, Wieslaw; Kivshar, Yuri S

    2009-05-11

    We develop a theoretical approach for describing the optical trapping and manipulation of carbon nanoclusters in air with a dual-vortex optical trap, as realized recently in experiment [V. Shvedov et al., Opt. Express 17, 5743 (2009)]. We calculate both longitudinal and transverse photophoretic forces acting on a spherical absorbing particle, and then compare our theoretical predictions with the experimental data. PMID:19434152

  7. Carbon particles

    DOEpatents

    Hunt, Arlon J.

    1984-01-01

    A method and apparatus whereby small carbon particles are made by pyrolysis of a mixture of acetylene carried in argon. The mixture is injected through a nozzle into a heated tube. A small amount of air is added to the mixture. In order to prevent carbon build-up at the nozzle, the nozzle tip is externally cooled. The tube is also elongated sufficiently to assure efficient pyrolysis at the desired flow rates. A key feature of the method is that the acetylene and argon, for example, are premixed in a dilute ratio, and such mixture is injected while cool to minimize the agglomeration of the particles, which produces carbon particles with desired optical properties for use as a solar radiant heat absorber.

  8. Determination of Fluorine in Fourteen Microanalytical Geologic Reference Materials using SIMS, EPMA, and Proton Induced Gamma Ray Emission (PIGE) Analysis

    NASA Astrophysics Data System (ADS)

    Guggino, S. N.; Hervig, R. L.

    2010-12-01

    Fluorine (F) is a volatile constituent of magmas and hydrous minerals, and trace amounts of F are incorporated into nominally anhydrous minerals such as olivine and clinopyroxene. Microanalytical techniques are routinely used to measure trace amounts of F at both high sensitivity and high spatial resolution in glasses and crystals. However, there are few well-established F concentrations for the glass standards routinely used in microanalytical laboratories, particularly standards of low silica, basaltic composition. In this study, we determined the F content of fourteen commonly used microanalytical glass standards of basaltic, intermediate, and rhyolitic composition. To serve as calibration standards, five basaltic glasses with ~0.2 to 2.5 wt% F were synthesized and characterized. A natural tholeiite from the East Pacific Rise was mixed with variable amounts of CaF2. The mixture was heated in a 1 atmosphere furnace to 1440 °C at fO2 = NNO for 30 minutes and quenched in water. Portions of the run products were studied by electron probe microanalysis (EPMA) and secondary ion mass spectrometry (SIMS). The EPMA used a 15 µm diameter defocused electron beam with a 15 kV accelerating voltage and a 25 nA primary current, a TAP crystal for detecting FKα X-rays, and Biotite 3 as the F standard. The F contents by EPMA agreed with the F added to the basalts after correction for mass loss during melting. The SIMS analyses used a primary beam of 16O- and detection of low-energy negative ions (-5 kV) at a mass resolution that resolved 18OH. Both microanalytical techniques confirmed homogeneity, and the SIMS calibration defined by EPMA shows an excellent linear trend with backgrounds of 2 ppm or less. Analyses of basaltic glass standards based on our synthesized calibration standards gave the following F contents and 2σ errors (ppm): ALV-519 = 83 ± 3; BCR-2G = 359 ± 6; BHVO-2G = 322 ± 15; GSA-1G = 10 ± 1; GSC-1G = 11 ± 1; GSD-1G = 19 ± 2; GSE-1G = 173 ± 1; KL2G (MPI

  9. On the definition of absorbed dose

    NASA Astrophysics Data System (ADS)

    Grusell, Erik

    2015-02-01

    Purpose: The quantity absorbed dose is used extensively in all areas concerning the interaction of ionizing radiation with biological organisms, as well as with matter in general. The most recent and authoritative definition of absorbed dose is given by the International Commission on Radiation Units and Measurements (ICRU) in ICRU Report 85. However, that definition is incomplete. The purpose of the present work is to give a rigorous definition of absorbed dose. Methods: Absorbed dose is defined in terms of the random variable specific energy imparted. A random variable is a mathematical function, and it cannot be defined without specifying its domain of definition which is a probability space. This is not done in report 85 by the ICRU, mentioned above. Results: In the present work a definition of a suitable probability space is given, so that a rigorous definition of absorbed dose is possible. This necessarily includes the specification of the experiment which the probability space describes. In this case this is an irradiation, which is specified by the initial particles released and by the material objects which can interact with the radiation. Some consequences are discussed. Specific energy imparted is defined for a volume, and the definition of absorbed dose as a point function involves the specific energy imparted for a small mass contained in a volume surrounding the point. A possible more precise definition of this volume is suggested and discussed. Conclusions: The importance of absorbed dose motivates a proper definition, and one is given in the present work. No rigorous definition has been presented before.

  10. Method of absorbance correction in a spectroscopic heating value sensor

    SciTech Connect

    Saveliev, Alexei; Jangale, Vilas Vyankatrao; Zelepouga, Sergeui; Pratapas, John

    2013-09-17

    A method and apparatus for absorbance correction in a spectroscopic heating value sensor in which a reference light intensity measurement is made on a non-absorbing reference fluid, a light intensity measurement is made on a sample fluid, and a measured light absorbance of the sample fluid is determined. A corrective light intensity measurement at a non-absorbing wavelength of the sample fluid is made on the sample fluid from which an absorbance correction factor is determined. The absorbance correction factor is then applied to the measured light absorbance of the sample fluid to arrive at a true or accurate absorbance for the sample fluid.

  11. Innovative energy absorbing devices based on composite tubes

    NASA Astrophysics Data System (ADS)

    Tiwari, Chandrashekhar

    Analytical and experimental study of innovative load limiting and energy absorbing devices are presented here. The devices are based on composite tubes and can be categorized in to two groups based upon the energy absorbing mechanisms exhibited by them, namely: foam crushing and foam fracturing. The device based on foam crushing as the energy absorbing mechanism is composed of light weight elastic-plastic foam filling inside an angle ply composite tube. The tube is tailored to have a high Poisson’s ratio (>20). Upon being loaded the device experiences large transverse contraction resulting in rapid decrease in diameter. At a certain axial load the foam core begins to crush and energy is dissipated. This device is termed as crush tube device. The device based upon foam shear fracture as the energy absorbing mechanism involves an elastic-plastic core foam in annulus of two concentric extension-twist coupled composite tubes with opposite angles of fibers. The core foam is bonded to the inner and outer tube walls. Upon being loaded axially, the tubes twist in opposite directions and fracture the core foam in out of plane shear and thus dissipate the energy stored. The device is termed as sandwich core device (SCD). The devices exhibit variations in force-displacement characteristics with changes in design and material parameters, resulting in wide range of energy absorption capabilities. A flexible matrix composite system was selected, which was composed of high stiffness carbon fibers as reinforcements in relatively low stiffness polyurethane matrix, based upon large strain to failure capabilities and large beneficial elastic couplings. Linear and non-linear analytical models were developed encapsulating large deformation theory of the laminated composite shells (using non-linear strain energy formulation) to the fracture mechanics of core foam and elastic-plastic deformation theory of the foam filling. The non-linear model is capable of including material and

  12. Warm Absorber Diagnostics of AGN Dynamics

    NASA Astrophysics Data System (ADS)

    Kallman, Timothy

    Warm absorbers and related phenomena are observable manifestations of outflows or winds from active galactic nuclei (AGN) that have great potential value. Understanding AGN outflows is important for explaining the mass budgets of the central accreting black hole, and also for understanding feedback and the apparent co-evolution of black holes and their host galaxies. In the X-ray band warm absorbers are observed as photoelectric absorption and resonance line scattering features in the 0.5-10 keV energy band; the UV band also shows resonance line absorption. Warm absorbers are common in low luminosity AGN and they have been extensively studied observationally. They may play an important role in AGN feedback, regulating the net accretion onto the black hole and providing mechanical energy to the surroundings. However, fundamental properties of the warm absorbers are not known: What is the mechanism which drives the outflow?; what is the gas density in the flow and the geometrical distribution of the outflow?; what is the explanation for the apparent relation between warm absorbers and the surprising quasi-relativistic 'ultrafast outflows' (UFOs)? We propose a focused set of model calculations that are aimed at synthesizing observable properties of warm absorber flows and associated quantities. These will be used to explore various scenarios for warm absorber dynamics in order to answer the questions in the previous paragraph. The guiding principle will be to examine as wide a range as possible of warm absorber driving mechanisms, geometry and other properties, but with as careful consideration as possible to physical consistency. We will build on our previous work, which was a systematic campaign for testing important class of scenarios for driving the outflows. We have developed a set of tools that are unique and well suited for dynamical calculations including radiation in this context. We also have state-of-the-art tools for generating synthetic spectra, which are

  13. Ultrathin flexible dual band terahertz absorber

    NASA Astrophysics Data System (ADS)

    Shan, Yan; Chen, Lin; Shi, Cheng; Cheng, Zhaoxiang; Zang, Xiaofei; Xu, Boqing; Zhu, Yiming

    2015-09-01

    We propose an ultrathin and flexible dual band absorber operated at terahertz frequencies based on metamaterial. The metamaterial structure consists of periodical split ring resonators with two asymmetric gaps and a metallic ground plane, separated by a thin-flexible dielectric spacer. Particularly, the dielectric spacer is a free-standing polyimide film with thickness of 25 μm, resulting in highly flexible for our absorber and making it promising for non-planar applications such as micro-bolometers and stealth aircraft. Experimental results show that the absorber has two resonant absorption frequencies (0.41 THz and 0.75 THz) with absorption rates 92.2% and 97.4%, respectively. The resonances at the absorption frequencies come from normal dipole resonance and high-order dipole resonance which is inaccessible in the symmetrical structure. Multiple reflection interference theory is used to analyze the mechanism of the absorber and the results are in good agreement with simulated and experimental results. Furthermore, the absorption properties are studied under various spacer thicknesses. This kind of metamaterial absorber is insensitive to polarization, has high absorption rates (over 90%) with wide incident angles range from 0° to 45° and the absorption rates are also above 90% when wrapping it to a curved surface.

  14. Ultraviolet radiation absorbing compounds in marine organisms

    SciTech Connect

    Chalker, B.E.; Dunlap, W.C. )

    1990-01-09

    Studies on the biological effects of solar ultraviolet radiations are becoming increasingly common, in part due to recent interest in the Antarctic ozone hole and in the perceived potential for global climate change. Marine organisms possess many strategies for ameliorating the potentially damaging effects of UV-B (280-320 nm) and the shorter wavelengths of UV-A (320-400nm). One mechanism is the synthesis of bioaccumulation of ultraviolet radiation absorbing compounds. Several investigators have noted the presence of absorbing compounds in spectrophotometer scans of extracts from a variety of marine organisms, particularly algae and coelenterates containing endosymbiotic algae. The absorbing compounds are often mycosporine-like amino acids. Thirteen mycosporine-like amino acids have already been described, and several others have recently been detected. Although, the mycosporine-like amino acids are widely distributed. these compounds are by no means the only type of UV-B absorbing compounds which has been identified. Coumarins from green algae, quinones from sponges, and indoles from a variety of sources are laternative examples which are documented in the natural products literature. When the biological impact of solar ultraviolet radiation is assessed, adequate attention must be devoted to the process of photoadaptation, including the accumulation of ultraviolet radiation absorbing compounds.

  15. Oxygen absorbers in food preservation: a review.

    PubMed

    Cichello, Simon Angelo

    2015-04-01

    The preservation of packaged food against oxidative degradation is essential to establish and improve food shelf life, customer acceptability, and increase food security. Oxygen absorbers have an important role in the removal of dissolved oxygen, preserving the colour, texture and aroma of different food products, and importantly inhibition of food spoilage microbes. Active packaging technology in food preservation has improved over decades mostly due to the sealing of foods in oxygen impermeable package material and the quality of oxygen absorber. Ferrous iron oxides are the most reliable and commonly used oxygen absorbers within the food industry. Oxygen absorbers have been transformed from sachets of dried iron-powder to simple self-adhesive patches to accommodate any custom size, capacity and application. Oxygen concentration can be effectively lowered to 100 ppm, with applications spanning a wide range of food products and beverages across the world (i.e. bread, meat, fish, fruit, and cheese). Newer molecules that preserve packaged food materials from all forms of degradation are being developed, however oxygen absorbers remain a staple product for the preservation of food and pharmaceutical products to reduce food wastage in developed nations and increased food security in the developing & third world. PMID:25829570

  16. An extremely wideband and lightweight metamaterial absorber

    NASA Astrophysics Data System (ADS)

    Shen, Yang; Pei, Zhibin; Pang, Yongqiang; Wang, Jiafu; Zhang, Anxue; Qu, Shaobo

    2015-06-01

    This paper presents a three-dimensional microwave metamaterial absorber based on the stand-up resistive film patch array. The absorber has wideband absorption, lightweight, and polarization-independent properties. Our design comes from the array of unidirectional stand-up resistive film patches backed by a metallic plane, which can excite multiple standing wave modes. By rolling the resistive film patches as a square enclosure, we obtain the polarization-independent property. Due to the multiple standing wave modes, the most incident energy is dissipated by the resistive film patches, and thus, the ultra-wideband absorption can be achieved by overlapping all the absorption modes at different frequencies. Both the simulated and experimental results show that the absorber possesses a fractional bandwidth of 148.2% with the absorption above 90% in the frequency range from 3.9 to 26.2 GHz. Moreover, the proposed absorber is extremely lightweight. The areal density of the fabricated sample is about 0.062 g/cm2, which is approximately equivalent to that of eight stacked standard A4 office papers. It is expected that our proposed absorber may find potential applications such as electromagnetic interference and stealth technologies.

  17. Ultra-broadband infrared metasurface absorber.

    PubMed

    Guo, Wenliang; Liu, Yuexia; Han, Tiancheng

    2016-09-01

    By using sub-wavelength resonators, metamaterial absorber shows great potential in many scientific and technical applications due to its perfect absorption characteristics. For most practical applications, the absorption bandwidth is one of the most important performance metrics. In this paper, we demonstrate the design of an ultra-broadband infrared absorber based on metasurface. Compared with the prior work [Opt. Express22(S7), A1713-A1724 (2014)], the proposed absorber shows more than twice the absorption bandwidth. The simulated total absorption exceeds 90% from 7.8 to 12.1 um and the full width at half maximum is 50% (from 7.5 to 12.5 μm), which is achieved by using a single layer of metasurface. Further study demonstrates that the absorption bandwidth can be greatly expanded by using two layers of metasurface, i.e. dual-layered absorber. The total absorption of the dual-layered absorber exceeds 80% from 5.2 to 13.7 um and the full width at half maximum is 95% (from 5.1 to 14.1 μm), much greater than those previously reported for infrared spectrum. The absorption decreases with fluctuations as the incident angle increases but remains quasi-constant up to relatively large angles. PMID:27607662

  18. Solar absorber material reflectivity measurements at temperature

    SciTech Connect

    Bonometti, J.A.; Hawk, C.W.

    1999-07-01

    Assessment of absorber shell material properties at high operating temperatures is essential to the full understanding of the solar energy absorption process in a solar thermal rocket. A review of these properties, their application and a new experimental methodology to measure them at high temperatures is presented. The direct application for the research is absorber cavity development for a Solar Thermal Upper Stage (STUS). High temperature measurements, greater than 1,000 Kelvin, are difficult to obtain for incident radiation upon a solid surface that forms an absorber cavity in a solar thermal engine. The basic material properties determine the amount of solar energy that is absorbed, transmitted or reflected and are dependent upon the material's temperature. This investigation developed a new approach to evaluate the material properties (i.e., reflectivity, absorptive) of the absorber wall and experimentally determined them for rhenium and niobium sample coupons. The secular reflectivity was measured both at room temperature and at temperatures near 1,000 Kelvin over a range of angles from 0 to 90 degrees. The same experimental measurements were used to calculate the total reflectivity of the sample by integrating the recorded intensities over a hemisphere. The test methodology used the incident solar energy as the heating source while directly measuring the reflected light (an integrated value over all visible wavelengths). Temperature dependence on total reflectivity was found to follow an inverse power function of the material's temperature.

  19. Oxygen absorbers in food preservation: a review.

    PubMed

    Cichello, Simon Angelo

    2015-04-01

    The preservation of packaged food against oxidative degradation is essential to establish and improve food shelf life, customer acceptability, and increase food security. Oxygen absorbers have an important role in the removal of dissolved oxygen, preserving the colour, texture and aroma of different food products, and importantly inhibition of food spoilage microbes. Active packaging technology in food preservation has improved over decades mostly due to the sealing of foods in oxygen impermeable package material and the quality of oxygen absorber. Ferrous iron oxides are the most reliable and commonly used oxygen absorbers within the food industry. Oxygen absorbers have been transformed from sachets of dried iron-powder to simple self-adhesive patches to accommodate any custom size, capacity and application. Oxygen concentration can be effectively lowered to 100 ppm, with applications spanning a wide range of food products and beverages across the world (i.e. bread, meat, fish, fruit, and cheese). Newer molecules that preserve packaged food materials from all forms of degradation are being developed, however oxygen absorbers remain a staple product for the preservation of food and pharmaceutical products to reduce food wastage in developed nations and increased food security in the developing & third world.

  20. Circular polarization sensitive absorbers based on graphene

    PubMed Central

    Yang, Kunpeng; Wang, Min; Pu, Mingbo; Wu, Xiaoyu; Gao, Hui; Hu, Chenggang; Luo, Xiangang

    2016-01-01

    It is well known that the polarization of a linearly polarized (LP) light would rotate after passing through a single layer graphene under the bias of a perpendicular magnetostatic field. Here we show that a corresponding phase shift could be expected for circularly polarized (CP) light, which can be engineered to design the circular polarization sensitive devices. We theoretically validate that an ultrathin graphene-based absorber with the thickness about λ/76 can be obtained, which shows efficient absorption >90% within incident angles of ±80°. The angle-independent phase shift produced by the graphene is responsible for the nearly omnidirectional absorber. Furthermore, a broadband absorber in frequencies ranging from 2.343 to 5.885 THz with absorption over 90% is designed by engineering the dispersion of graphene. PMID:27034257

  1. Ferrite HOM Absorber for the RHIC ERL

    SciTech Connect

    Hahn,H.; Choi, E.M.; Hammons, L.

    2008-10-01

    A superconducting Energy Recovery Linac is under construction at Brookhaven National Laboratory to serve as test bed for RHIC upgrades. The damping of higher-order modes in the superconducting five-cell cavity for the Energy-Recovery linac at RHIC is performed exclusively by two ferrite absorbers. The ferrite properties have been measured in ferrite-loaded pill box cavities resulting in the permeability values given by a first-order Debye model for the tiled absorber structure and an equivalent permeability value for computer simulations with solid ring dampers. Measured and simulated results for the higher-order modes in the prototype copper cavity are discussed. First room-temperature measurements of the finished niobium cavity are presented which confirm the effective damping of higher-order modes in the ERL. by the ferrite absorbers.

  2. Absorber Materials at Room and Cryogenic Temperatures

    SciTech Connect

    F. Marhauser, T.S. Elliott, A.T. Wu, E.P. Chojnacki, E. Savrun

    2011-09-01

    We recently reported on investigations of RF absorber materials at cryogenic temperatures conducted at Jefferson Laboratory (JLab). The work was initiated to find a replacement material for the 2 Kelvin low power waveguide Higher Order Mode (HOM) absorbers employed within the original cavity cryomodules of the Continuous Electron Beam Accelerator Facility (CEBAF). This effort eventually led to suitable candidates as reported in this paper. Furthermore, though constrained by small funds for labor and resources, we have analyzed a variety of lossy ceramic materials, several of which could be usable as HOM absorbers for both normal conducting and superconducting RF structures, e.g. as loads in cavity waveguides and beam tubes either at room or cryogenic temperatures and, depending on cooling measures, low to high operational power levels.

  3. Optical analysis of solar energy tubular absorbers.

    PubMed

    Saltiel, C; Sokolov, M

    1982-11-15

    The energy absorbed by a solar energy tubular receiver element for a single incident ray is derived. Two types of receiver elements were analyzed: (1) an inner tube with an absorbing coating surrounded by a semitransparent cover tube, and (2) a semitransparent inner tube filled with an absorbing fluid surrounded by a semitransparent cover tube. The formation of ray cascades in the semitransparent tubes is considered. A numerical simulation to investigate the influence of the angle of incidence, sizing, thickness, and coefficient of extinction of the tubes was performed. A comparison was made between receiver elements with and without cover tubes. Ray tracing analyses in which rays were followed within the tubular receiver element as well as throughout the rest of the collector were performed for parabolic and circular trough concentrating collectors.

  4. Abiotic carbonate dissolution traps carbon in a semiarid desert

    PubMed Central

    Fa, Keyu; Liu, Zhen; Zhang, Yuqing; Qin, Shugao; Wu, Bin; Liu, Jiabin

    2016-01-01

    It is generally considered that desert ecosystems release CO2 to the atmosphere, but recent studies in drylands have shown that the soil can absorb CO2 abiotically. However, the mechanisms and exact location of abiotic carbon absorption remain unclear. Here, we used soil sterilization, 13CO2 addition, and detection methods to trace 13C in the soil of the Mu Us Desert, northern China. After 13CO2 addition, a large amount of 13CO2 was absorbed by the sterilised soil, and 13C was found enriched both in the soil gaseous phase and dissolved inorganic carbon (DIC). Further analysis indicated that about 79.45% of the total 13C absorbed by the soil was trapped in DIC, while the amount of 13C in the soil gaseous phase accounted for only 0.22% of the total absorbed 13C. However, about 20.33% of the total absorbed 13C remained undetected. Our results suggest that carbonate dissolution might occur predominately, and the soil liquid phase might trap the majority of abiotically absorbed carbon. It is possible that the trapped carbon in the soil liquid phase leaches into the groundwater; however, further studies are required to support this hypothesis. PMID:27020762

  5. Absorber topography dependence of phase edge effects

    NASA Astrophysics Data System (ADS)

    Shanker, Aamod; Sczyrba, Martin; Connolly, Brid; Waller, Laura; Neureuther, Andy

    2015-10-01

    Mask topography contributes to phase at the wafer plane, even for OMOG binary masks currently in use at the 22nm node in deep UV (193nm) lithography. Here, numerical experiments with rigorous FDTD simulation are used to study the impact of mask 3D effects on aerial imaging, by varying the height of the absorber stack and its sidewall angle. Using a thin mask boundary layer model to fit to rigorous simulations it is seen that increasing the absorber thickness, and hence the phase through the middle of a feature (bulk phase) monotonically changes the wafer-plane phase. Absorber height also influences best focus, revealed by an up/down shift in the Bossung plot (linewidth vs. defocus). Bossung plot tilt, however, responsible for process window variability at the wafer, is insensitive to changes in the absorber height (and hence also the bulk phase). It is seen to depend instead on EM edge diffraction from the thick mask edge (edge phase), but stays constant for variations in mask thickness within a 10% range. Both bulk phase and edge phase are also independent of sidewall angle fluctuation, which is seen to linearly affect the CD at the wafer, but does not alter wafer phase or the defocus process window. Notably, as mask topography varies, the effect of edge phase can be replicated by a thin mask model with 8nm wide boundary layers, irrespective of absorber height or sidewall angle. The conclusions are validated with measurements on phase shifting masks having different topographic parameters, confirming the strong dependence of phase variations at the wafer on bulk phase of the mask absorber.

  6. Precise dispersion equations of absorbing filter glasses

    NASA Astrophysics Data System (ADS)

    Reichel, S.; Biertümpfel, Ralf

    2014-05-01

    The refractive indices versus wavelength of optical transparent glasses are measured at a few wavelengths only. In order to calculate the refractive index at any wavelength, a so-called Sellmeier series is used as an approximation of the wavelength dependent refractive index. Such a Sellmeier representation assumes an absorbing free (= loss less) material. In optical transparent glasses this assumption is valid since the absorption of such transparent glasses is very low. However, optical filter glasses have often a rather high absorbance in certain regions of the spectrum. The exact description of the wavelength dependent function of the refractive index is essential for an optimized design for sophisticated optical applications. Digital cameras use an IR cut filter to ensure good color rendition and image quality. In order to reduce ghost images by reflections and to be nearly angle independent absorbing filter glass is used, e.g. blue glass BG60 from SCHOTT. Nowadays digital cameras improve their performance and so the IR cut filter needs to be improved and thus the accurate knowledge of the refractive index (dispersion) of the used glasses must be known. But absorbing filter glass is not loss less as needed for a Sellmeier representation. In addition it is very difficult to measure it in the absorption region of the filter glass. We have focused a lot of effort on measuring the refractive index at specific wavelength for absorbing filter glass - even in the absorption region. It will be described how to do such a measurement. In addition we estimate the use of a Sellmeier representation for filter glasses. It turns out that in most cases a Sellmeier representation can be used even for absorbing filter glasses. Finally Sellmeier coefficients for the approximation of the refractive index will be given for different filter glasses.

  7. Engineering reverse saturable absorbers for desired wavelengths

    NASA Astrophysics Data System (ADS)

    Band, Yehuda B.; Scharf, Benjamin

    1986-06-01

    A variety of applications exist for reverse saturable absorbers (RSAs) in laser science (RSAs are substances whose excited-state absorption cross section is larger than their ground-state absorption cross section at a given wavelength and possess a number of other properties). We propose an approach to designing RSAs at a desired wavelength by construction of dimers of dye molecules which absorb near the wavelength of interest. The dimer ground-state absorption is to a state in which the excitation is spread over both monomeric units and the excited-state absorption commences from this state to the doubly excited electronic state in which both monomeric units are excited.

  8. Spin Particle in an Absorbing Environment

    NASA Astrophysics Data System (ADS)

    Amooshahi, M.

    2015-10-01

    The quantum dynamics of a localized spin Particle interacting with an absorbing environment is investigated. The quantum Langevin-Schrödinger equation for spin is obtained. The susceptibility function of the environment is calculated in terms of the coupling function of the spin and the environment. it is shown that the susceptibility function satisfies the Kramers-Kronig relations. Spontaneous emission and the shift frequency of the spin is obtained in terms of the imaginary part of the susceptibility function in frequency domain. Some transition probabilities between the spin states are calculated when the absorbing environment is in the thermal state.

  9. OSCEE fan exhaust bulk absorber treatment evaluation

    NASA Technical Reports Server (NTRS)

    Bloomer, H. E.; Samanich, N. E.

    1980-01-01

    The acoustic suppression capability of bulk absorber material designed for use in the fan exhaust duct walls of the quiet clean short haul experiment engine (OCSEE UTW) was evaluated. The acoustic suppression to the original design for the engine fan duct which consisted of phased single degree-of-freedom wall treatment was tested with a splitter and also with the splitter removed. Peak suppression was about as predicted with the bulk absorber configuration, however, the broadband characteristics were not attained. Post test inspection revealed surface oil contamination on the bulk material which could have caused the loss in bandwidth suppression.

  10. Durability of Polymeric Glazing and Absorber Materials

    SciTech Connect

    Jorgensen, G.; Terwilliger, K.; Bingham, C.; Lindquist, C.; Milbourne, M.

    2005-11-01

    The Solar Heating and Lighting Program has set the goal of reducing the cost of solar water heating systems by at least 50%. An attractive approach to such large cost reduction is to replace glass and metal parts with less-expensive, lighter-weight, more-integrated polymeric components. The key challenge with polymers is to maintain performance and assure requisite durability for extended lifetimes. We have begun evaluation of several new UV-screened polycarbonate sheet glazing constructions. This has involved interactions with several major polymer industry companies to obtain improved candidate samples. Proposed absorber materials were tested for UV resistance, and appear adequate for unglazed ICS absorbers.

  11. Absorbent agents for clean-up of liquid hydrocarbons

    SciTech Connect

    Waldmann, J.J.

    1993-08-24

    A method is described for absorbing liquid hydrocarbon from a liquid hydrocarbon-contaminated substrate comprising applying to said contaminated substrate an effective amount of a chemical absorbent composition of formula: A[sub m]B[sub n]C[sub p] wherein A[sub m] is an acid leached bentonite in a form of hydrous silicate of alumina modified by a hydrophobic alkyl (C[sub 12]-C[sub 24]) amine which has been double protonized by an aliphatic acid with C[sub 1]-C[sub 18] carbon atoms in which m = 0 to 100% by weight of the composition; B[sub n] is a modified aminoplast resin comprised of cyanoguanidine-melamine-urea-formaldehyde in a foam form in which n is 0 to 100% by weight; and C[sub p] is a siliceous support-modified hydrophobic material in which p is 0 to 100% by weight; provided that at least one of m and n is a positive numerical value.

  12. The optical properties of using graphene as a saturable absorber

    NASA Astrophysics Data System (ADS)

    Keschl, Nathan; Schibli, Thomas; Lee, Chien-Chung; Xie, Wanyan

    2012-10-01

    Graphene, a single-atom layer of carbon atoms in a honeycomb lattice, has been on the forefront of research since it's discovery in 2005 [1]. Although it has many applications, my research is specialized in the field of utilizing the graphene as a saturable absorber for mode-locking lasers. Currently, the most common method to mode-lock a laser is by using a Semi-conductor Saturable Absorber Mirror (SESAM). Graphene is a substitute for SESAMs with pulse generation as low as 260 fs [2]. However, graphene will begin to ``burn'' as the laser approaches the intensity it needs to mode-lock. We have experimented with various methods of protecting the graphene from burning so it can be used at higher intensity domains.[4pt] [1] A. K. Geim, K. S. Novoselov, ``The rise of graphene.'' Nat Mater. 2007/03//print[0pt] [2] G. Acosta, J.S. Bunch, C.C. Lee, T.R. Schibli, ``Ultra-Short Optical Pulse Generation with Single-Layer Graphene.'' Journal of Nonlinear Optical Physics and Materials, Volume 19, Issue 04, pp. 767-771. 00/2010.

  13. The Cooling of a Liquid Absorber using a Small Cooler

    SciTech Connect

    Baynham, D.E.; Bradshaw, T.W.; Green, M.A.; Ishimoto, S.; Liggins, N.

    2005-08-24

    This report discusses the use of small cryogenic coolers for cooling the Muon Ionization Cooling Experiment (MICE) liquid cryogen absorbers. Since the absorber must be able contain liquid helium as well liquid hydrogen, the characteristics of the available 4.2 K coolers are used here. The issues associated with connecting two-stage coolers to liquid absorbers are discussed. The projected heat flows into an absorber and the cool-down of the absorbers using the cooler are presented. The warm-up of the absorber is discussed. Special hydrogen safety issues that may result from the use of a cooler on the absorbers are also discussed.

  14. Integrated tuned vibration absorbers: a theoretical study.

    PubMed

    Gardonio, Paolo; Zilletti, Michele

    2013-11-01

    This article presents a simulation study on two integrated tuned vibration absorbers (TVAs) designed to control the global flexural vibration of lightly damped thin structures subject to broad frequency band disturbances. The first one consists of a single axial switching TVA composed by a seismic mass mounted on variable axial spring and damper elements so that the characteristic damping and natural frequency of the absorber can be switched iteratively to control the resonant response of three flexural modes of the hosting structure. The second one consists of a single three-axes TVA composed by a seismic mass mounted on axial and rotational springs and dampers, which are arranged in such a way that the suspended mass is characterized by uncoupled heave and pitch-rolling vibrations. In this case the three damping and natural frequency parameters of the absorber are tuned separately to control three flexural modes of the hosting structure. The simulation study shows that the proposed single-unit absorbers produce, respectively, 5.3 and 8.7 dB reductions of the global flexural vibration of a rectangular plate between 20 and 120 Hz.

  15. Tunable metamaterial dual-band terahertz absorber

    NASA Astrophysics Data System (ADS)

    Luo, C. Y.; Li, Z. Z.; Guo, Z. H.; Yue, J.; Luo, Q.; Yao, G.; Ji, J.; Rao, Y. K.; Li, R. K.; Li, D.; Wang, H. X.; Yao, J. Q.; Ling, F. R.

    2015-11-01

    We report a design of a temperature controlled tunable dual band terahertz absorber. The compact single unit cell consists of two nested closed square ring resonators and a layer metallic separated by a substrate strontium titanate (STO) dielectric layer. It is found that the absorber has two distinctive absorption peaks at frequencies 0.096 THz and 0.137 THz, whose peaks are attained 97% and 75%. Cooling the absorber from 400 K to 250 K causes about 25% and 27% shift compared to the resonance frequency of room temperature, when we cooling the temperature to 150 K, we could attained both the two tunabilities exceeding 53%. The frequency tunability is owing to the variation of the dielectric constant of the low-temperature co-fired ceramic (LTCC) substrate. The mechanism of the dual band absorber is attributed to the overlapping of dual resonance frequencies, and could be demonstrated by the distributions of the electric field. The method opens up avenues for designing tunable terahertz devices in detection, imaging, and stealth technology.

  16. Composition for absorbing hydrogen from gas mixtures

    DOEpatents

    Heung, Leung K.; Wicks, George G.; Lee, Myung W.

    1999-01-01

    A hydrogen storage composition is provided which defines a physical sol-gel matrix having an average pore size of less than 3.5 angstroms which effectively excludes gaseous metal hydride poisons while permitting hydrogen gas to enter. The composition is useful for separating hydrogen gas from diverse gas streams which may have contaminants that would otherwise render the hydrogen absorbing material inactive.

  17. Moving core beam energy absorber and converter

    DOEpatents

    Degtiarenko, Pavel V.

    2012-12-18

    A method and apparatus for the prevention of overheating of laser or particle beam impact zones through the use of a moving-in-the-coolant-flow arrangement for the energy absorbing core of the device. Moving of the core spreads the energy deposition in it in 1, 2, or 3 dimensions, thus increasing the effective cooling area of the device.

  18. Optimization of ramified absorber networks doing desalination.

    PubMed

    Singleton, Martin S; Heiss, Gregor; Hübler, Alfred

    2011-01-01

    An iterated function system is used to generate fractal-like ramified graph networks of absorbers, which are optimized for desalination performance. The diffusion equation is solved for the boundary case of constant pressure difference at the absorbers and a constant ambient salt concentration far from the absorbers, while constraining both the total length of the network and the total area of the absorbers to be constant as functions of generation G. A linearized form of the solution was put in dimensionless form which depends only on a dimensionless membrane resistance, a dimensionless inverse svelteness ratio, and G. For each of the first nine generations G=2,…,10, the optimal graph shapes were obtained. Total water production rate increases parabolically as a function of generation, with a maximum at G=7. Total water production rate is shown to be approximately linearly related to the power consumed, for a fixed generation. Branching ratios which are optimal for desalination asymptote decreasingly to r=0.510 for large G, while branching angles which are optimal for desalination asymptote decreasingly to 1.17 radians. Asymmetric graphs were found to be less efficient for desalination than symmetric graphs. The geometry which is optimal for desalination does not depend strongly on the dimensionless parameters, but the optimal water production does. The optimal generation was found to increase with the inverse svelteness ratio.

  19. Estimating the radiation absorbed by a human

    NASA Astrophysics Data System (ADS)

    Kenny, Natasha A.; Warland, Jon S.; Brown, Robert D.; Gillespie, Terry G.

    2008-07-01

    The complexities of the interactions between long- and short-wave radiation fluxes and the human body make it inherently difficult to estimate precisely the total radiation absorbed ( R) by a human in an outdoor environment. The purpose of this project was to assess and compare three methods to estimate the radiation absorbed by a human in an outdoor environment, and to compare the impact of applying various skin and clothing albedos ( α h ) on R. Field tests were conducted under both clear and overcast skies to evaluate the performance of applying a cylindrical radiation thermometer (CRT), net radiometer, and a theoretical estimation model to predict R. Three albedos were evaluated: light ( α h = 0.57), medium ( α h = 0.37), and dark ( α h = 0.21). During the sampling periods, the range of error between the methods used to estimate the radiation absorbed by a cylindrical body under clear and overcast skies ranged from 3 to 8%. Clothing and skin albedo had a substantial impact on R, with the mean change in R between the darkest and lightest albedos ranging from 115 to 157 W m - 2 over the sampling period. Radiation is one of the most important variables to consider in outdoor thermal comfort research, as R is often the largest contributor to the human energy balance equation. The methods outlined and assessed in this study can be conveniently applied to provide reliable estimates of the radiation absorbed by a human in an outdoor environment.

  20. Shock absorber protects motive components against overloads

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Shock absorber with an output shaft, hollow gear, and a pair of springs forming a resilient driving connection between shaft and gear, operates when abnormally high torques are applied. This simple durable frictional device is valuable in rotating mechanisms subject to sudden overloads.

  1. Environmental carbon dioxide control

    NASA Technical Reports Server (NTRS)

    Onischak, M.; Baker, B.; Gidaspow, D.

    1974-01-01

    A study of environmental carbon dioxide control for NASA EVA missions found solid potassium carbonate to be an effective regenerable absorbent in maintaining low carbon dioxide levels. The supported sorbent was capable of repeated regeneration below 150 C without appreciable degradation. Optimum structures in the form of thin pliable sheets of carbonate, inert support and binder were developed. Interpretation of a new solid-gas pore closing model helped predict the optimum sorbent and analysis of individual sorbent sheet performance in a thin rectangular channel sorber can predict packed bed performance.

  2. Absorbed fractions for electrons in ellipsoidal volumes.

    PubMed

    Amato, E; Lizio, D; Baldari, S

    2011-01-21

    We applied a Monte Carlo simulation in Geant4 in order to calculate the absorbed fractions for monoenergetic electrons in the energy interval between 10 keV and 2 MeV, uniformly distributed in ellipsoids made from soft tissue. For each volume, we simulated a spherical shape, four oblate and four prolate ellipsoids, and one scalene shape. For each energy and for every geometrical configuration, an analytical relationship between the absorbed fraction and a 'generalized radius' was found, and the dependence of the fit parameters from electron energy is discussed and fitted by proper parametric functions. With the proposed formulation, the absorbed fraction for electrons in the 10-2000 keV energy range can be calculated for all volumes and for every ellipsoidal shape of practical interest. This method can be directly applied to evaluation of the absorbed fraction from the radionuclide emission of monoenergetic electrons, such as Auger or conversion electrons. The average deposited energy per disintegration in the case of extended beta spectra can be evaluated through integration. Two examples of application to a pure beta emitter such as (90)Y and to (131)I, whose emission include monoenergetic and beta electrons plus gamma photons, are presented. This approach represent a generalization of our previous studies, allowing a comprehensive treatment of absorbed fractions from electron and photon sources uniformly distributed in ellipsoidal volumes of any ellipticity and volume, in the whole range of practical interest for internal dosimetry in nuclear medicine applications, as well as in radiological protection estimations of doses from an internal contamination.

  3. Debuncher Microwave Absorber Tests of January 1992

    SciTech Connect

    Fullett, Ken

    1992-01-01

    This paper describes the tests performed on the microwave absorbers placed in the Debuncher to replace the existing microwave cutoffs. The purpose of the microwave cutoffs is to reduce the transmission of microwave energy through the beam pipe. The old microwave cutoffs consisted of a stainless steel beam pipe of approximately 2.8 inches inside diameter into which a glass tube with an inside diameter of 1.835 inches was placed. The glass tube was coated with a thin coat of microwave absorbing material on its outside. Three of these cutoffs were installed in the Debuncher at locations D6Q5, D1Q7, and D4Q10 (see Figure 1). However, the glass tube was removed from the cutoff at D4Q10 leaving only the metal beam pipe. Please note that there was not an old style microwave cutoff installed at location D2Q09. It was felt that the glass tube cutoff was an aperture restriction in the Debuncher with its small (1.8 inch) inside diameter. It was decided that new cutoffs would be needed that would increase the aperture. The new microwave absorbers consist of a four inch stainless steel beam pipe into which eleven dielectric cores are inserted separated by aluminum spacers. The spacing allows adjustment of the frequency response of the absorber assembly. The inside diameter is 3 inches thus providing an increase of 1.2 inches over the old cutoffs. The new absorbers will be installed at four locations as shown in Figure 1.

  4. Absorbed fractions for electrons in ellipsoidal volumes

    NASA Astrophysics Data System (ADS)

    Amato, E.; Lizio, D.; Baldari, S.

    2011-01-01

    We applied a Monte Carlo simulation in Geant4 in order to calculate the absorbed fractions for monoenergetic electrons in the energy interval between 10 keV and 2 MeV, uniformly distributed in ellipsoids made from soft tissue. For each volume, we simulated a spherical shape, four oblate and four prolate ellipsoids, and one scalene shape. For each energy and for every geometrical configuration, an analytical relationship between the absorbed fraction and a 'generalized radius' was found, and the dependence of the fit parameters from electron energy is discussed and fitted by proper parametric functions. With the proposed formulation, the absorbed fraction for electrons in the 10-2000 keV energy range can be calculated for all volumes and for every ellipsoidal shape of practical interest. This method can be directly applied to evaluation of the absorbed fraction from the radionuclide emission of monoenergetic electrons, such as Auger or conversion electrons. The average deposited energy per disintegration in the case of extended beta spectra can be evaluated through integration. Two examples of application to a pure beta emitter such as 90Y and to 131I, whose emission include monoenergetic and beta electrons plus gamma photons, are presented. This approach represent a generalization of our previous studies, allowing a comprehensive treatment of absorbed fractions from electron and photon sources uniformly distributed in ellipsoidal volumes of any ellipticity and volume, in the whole range of practical interest for internal dosimetry in nuclear medicine applications, as well as in radiological protection estimations of doses from an internal contamination.

  5. Chemically modified carbonic anhydrases useful in carbon capture systems

    SciTech Connect

    Novick, Scott; Alvizo, Oscar

    2013-01-15

    The present disclosure relates to chemically modified carbonic anhydrase polypeptides and soluble compositions, homogenous liquid formulations comprising them. The chemically modified carbonic anhydrase polypeptides have improved properties relative to the same carbonic anhydrase polypeptide that is not chemically modified including the improved properties of increased activity and/or stability in the presence of amine compounds, ammonia, or carbonate ion. The present disclosure also provides methods of preparing the chemically modified polypeptides and methods of using the chemically modified polypeptides for accelerating the absorption of carbon dioxide from a gas stream into a solution as well as for the release of the absorbed carbon dioxide for further treatment and/or sequestering.

  6. Neutron absorbers and methods of forming at least a portion of a neutron absorber

    SciTech Connect

    Guillen, Donna P; Porter, Douglas L; Swank, W David; Erickson, Arnold W

    2014-12-02

    Methods of forming at least a portion of a neutron absorber include combining a first material and a second material to form a compound, reducing the compound into a plurality of particles, mixing the plurality of particles with a third material, and pressing the mixture of the plurality of particles and the third material. One or more components of neutron absorbers may be formed by such methods. Neutron absorbers may include a composite material including an intermetallic compound comprising hafnium aluminide and a matrix material comprising pure aluminum.

  7. Shear Strength at 75 F to 500 F of Fourteen Adhesives Used to Bond a Glass-fabric-reinforced Phenolic Resin Laminate to Steel

    NASA Technical Reports Server (NTRS)

    Davidson, John R

    1956-01-01

    Fourteen adhesives used to bond a glass-fabric-reinforced phenolic resin laminate to steel were tested in order to determine their shear strengths at temperatures from 75 F to 500 F. Fabrication methods were varied to evaluate the effect of placing cloth between the facing surfaces to maintain a uniform bond-line thickness. One glass-fabric supported phenolic adhesive was found to have a shear strength of 3,400 psi at 300 F and over 1,000 psi at 500 F. Strength and fabrication data are tabulated for all adhesives tested.

  8. Forest Carbon Uptake and the Fundamental Theorem of Calculus

    ERIC Educational Resources Information Center

    Zobitz, John

    2013-01-01

    Using the fundamental theorem of calculus and numerical integration, we investigate carbon absorption of ecosystems with measurements from a global database. The results illustrate the dynamic nature of ecosystems and their ability to absorb atmospheric carbon.

  9. Sensitive absorbance measurement method based on laser multi-wave mixing

    NASA Astrophysics Data System (ADS)

    Wu, Zhiqiang; Liu, Jinying; Tong, william G.

    1994-12-01

    A sensitive absorbance measurement based on nonlinear laser degenerate four-wave mixing is demonstrated for cadmium. The cadmium ions react with dithizone to form a cadium complex which is then extracted in carbon tetrachloride and analyzed. A relatively low-power argon ion laser line at 514.5 nm is used as the excitation light source. This nonlinear laser method offers many useful features including efficient and simple optical signal detection (signal is a collimated coherent beam), excellent detection sensitivity for absorbance, and efficient use of low laser power levels, small laser probe volumes and short analyte path legnths (e.g., <0.5 mm). A detection limit of 7 fg or 0.05 ng/ml for cadmium, corresponding to an absorbance detection limit of 1.8 × 10 -6 AU is reported using a flowing analyte cell at room temperature.

  10. Fabrication of chalcopyrite light-absorbing layers based on nanoparticle and nanowire networks

    NASA Astrophysics Data System (ADS)

    Ren, Yuhang; Luo, Paifeng; Gao, Bo; Cevher, Zehra; Sun, Chivin

    2013-03-01

    We report on a method of preparing chalcopyrite, CuInGaSe2 (CIGS) light-absorbing layers using low cost air stable ink based on semiconductor nanoparticle and nanowires. The nanoparticles and nanowires are prepared from metal salts such as metal chloride and acetate at room temperature without inert gas protection. A uniform and non-aggregation CIGS precursor layer is fabricated with the formation of nanoparticle and nanowire networks utilizing ultrasonic spaying technique. We obtain a high quality CIGS absorber by cleaning the residue salts and carbon agents at an increased temperature and through selenizing the pretreated CIGS precursors. Our results offer an opportunity for the low-cost deposition of chalcopyrite absorber materials at large scale with high throughput. This work was partially sponsored by Sun Harmonics Ltd. and by NYSTAR through the Photonics Center for Applied Technology at the City University of New York.

  11. Porphyrin Based Near Infrared-Absorbing Materials for Organic Photovoltaics

    NASA Astrophysics Data System (ADS)

    Zhong, Qiwen

    photosynthesis. Photosynthesis uses light from the sun to drive a series of chemical reactions. Most natural photosynthetic systems utilize chlorophylls to absorb light energy and carry out photochemical charge separation that stores energy in the form of chemical bonds. The sun produces a broad spectrum of light output that ranges from gamma rays to radio waves. The entire visible range of light (400-700 nm) and some wavelengths in the NIR (700-1000 nm), are highly active in driving photosynthesis. Although the most familiar chlorophyll-containing organisms, such as plants, algae and cyanobacteria, cannot use light longer than 700 nm, anoxygenic bacterium containing bacteriochlorophylls can use the NIR part of the solar spectrum. No organism is known to utilize light of wavelength longer than about 1000 nm for photosynthesis. NIR light has a very low-energy content in each photon, so that large numbers of these low-energy photons would have to be used to drive the chemical reactions of photosynthesis. This is thermodynamically possible but would require a fundamentally different molecular mechanism that is more akin to a heat engine than to photochemistry. Early work on developing light absorbing materials for OPVs was inspired by photosynthesis in which light is absorbed by chlorophyll. Structurally related to chlorophyll is the porphyrin family, which has accordingly drawn much interest as the potential light absorbing component in OPV applications. In this dissertation, the design and detail studies of several porphyrin-based NIR absorbing materials, including pi--extended perylenyl porphryins and pyrazole-containing carbaporphyrins, as well as porphyrin modified single-walled carbon nanotube hybrids, will be presented, dedicating efforts to develop novel and application-oriented materials for efficient utilization of sustainable solar energy.

  12. Absorbed dose thresholds and absorbed dose rate limitations for studies of electron radiation effects on polyetherimides

    NASA Technical Reports Server (NTRS)

    Long, Edward R., Jr.; Long, Sheila Ann T.; Gray, Stephanie L.; Collins, William D.

    1989-01-01

    The threshold values of total absorbed dose for causing changes in tensile properties of a polyetherimide film and the limitations of the absorbed dose rate for accelerated-exposure evaluation of the effects of electron radiation in geosynchronous orbit were studied. Total absorbed doses from 1 kGy to 100 MGy and absorbed dose rates from 0.01 MGy/hr to 100 MGy/hr were investigated, where 1 Gy equals 100 rads. Total doses less than 2.5 MGy did not significantly change the tensile properties of the film whereas doses higher than 2.5 MGy significantly reduced elongation-to-failure. There was no measurable effect of the dose rate on the tensile properties for accelerated electron exposures.

  13. Multi-Level Experimental and Analytical Evaluation of Two Composite Energy Absorbers

    NASA Technical Reports Server (NTRS)

    Jackson, Karen E.; Littell, Justin D.; Fasanella, Edwin L.; Annett, Martin S.; Seal, Michael D., II

    2015-01-01

    Two composite energy absorbers were developed and evaluated at NASA Langley Research Center through multi-level testing and simulation performed under the Transport Rotorcraft Airframe Crash Testbed (TRACT) research program. A conical-shaped energy absorber, designated the conusoid, was evaluated that consisted of four layers of hybrid carbon-Kevlar plain weave fabric oriented at [+45 deg/-45 deg/-45 deg/+45 deg] with respect to the vertical, or crush, direction. A sinusoidal-shaped energy absorber, designated the sinusoid, was developed that consisted of hybrid carbon-Kevlar plain weave fabric face sheets, two layers for each face sheet oriented at +/-45deg with respect to the vertical direction and a closed-cell ELFOAM P200 polyisocyanurate (2.0-lb/cu ft) foam core. The design goal for the energy absorbers was to achieve average floor-level accelerations of between 25- and 40-g during the full-scale crash test of a retrofitted CH-46E helicopter airframe, designated TRACT 2. Variations in both designs were assessed through dynamic crush testing of component specimens. Once the designs were finalized, subfloor beams of each configuration were fabricated and retrofitted into a barrel section of a CH-46E helicopter. A vertical drop test of the barrel section was conducted onto concrete to evaluate the performance of the energy absorbers prior to retrofit into TRACT 2. The retrofitted airframe was crash tested under combined forward and vertical velocity conditions onto soil, which is characterized as a sand/clay mixture. Finite element models were developed of all test articles and simulations were performed using LS-DYNA, a commercial nonlinear explicit transient dynamic finite element code. Test-analysis results are presented for each energy absorber as comparisons of time-history responses, as well as predicted and experimental structural deformations and progressive damage under impact loading for each evaluation level.

  14. A sound absorbing metasurface with coupled resonators

    NASA Astrophysics Data System (ADS)

    Li, Junfei; Wang, Wenqi; Xie, Yangbo; Popa, Bogdan-Ioan; Cummer, Steven A.

    2016-08-01

    An impedance matched surface is able, in principle, to totally absorb the incident sound and yield no reflection, and this is desired in many acoustic applications. Here we demonstrate a design of impedance matched sound absorbing surface with a simple construction. By coupling different resonators and generating a hybrid resonance mode, we designed and fabricated a metasurface that is impedance-matched to airborne sound at tunable frequencies with subwavelength scale unit cells. With careful design of the coupled resonators, over 99% energy absorption at central frequency of 511 Hz with a 50% absorption bandwidth of 140 Hz is achieved experimentally. The proposed design can be easily fabricated, and is mechanically stable. The proposed metasurface can be used in many sound absorption applications such as loudspeaker design and architectural acoustics.

  15. Absorbing Software Testing into the Scrum Method

    NASA Astrophysics Data System (ADS)

    Tuomikoski, Janne; Tervonen, Ilkka

    In this paper we study, how to absorb software testing into the Scrum method. We conducted the research as an action research during the years 2007-2008 with three iterations. The result showed that testing can and even should be absorbed to the Scrum method. The testing team was merged into the Scrum teams. The teams can now deliver better working software in a shorter time, because testing keeps track of the progress of the development. Also the team spirit is higher, because the Scrum team members are committed to the same goal. The biggest change from test manager’s point of view was the organized Product Owner Team. Test manager don’t have testing team anymore, and in the future all the testing tasks have to be assigned through the Product Backlog.

  16. Investigations on Absorber Materials at Cryogenic Temperatures

    SciTech Connect

    Marhauser, Frank; Elliott, Thomas; Rimmer, Robert

    2009-05-01

    In the framework of the 12 GeV upgrade project for the Continuous Electron Beam Accelerator Facility (CEBAF) improvements are being made to refurbish cryomodules housing Thomas Jefferson National Accelerator Facility's (JLab) original 5-cell cavities. Recently we have started to look into a possible simplification of the existing Higher Order Mode (HOM) absorber design combined with the aim to find alternative material candidates. The absorbers are implemented in two HOM-waveguides immersed in the helium bath and operate at 2 K temperature. We have built a cryogenic setup to perform measurements on sample load materials to investigate their lossy characteristics and variations from room temperature down to 2 K. Initial results are presented in this paper.

  17. Infrared bolometers with silicon nitride micromesh absorbers

    NASA Technical Reports Server (NTRS)

    Bock, J. J.; Turner, A. D.; DelCastillo, H. M.; Beeman, J. W.; Lange, A. E.; Mauskopf, P. D.

    1996-01-01

    Sensitive far infrared and millimeter wave bolometers fabricated from a freestanding membrane of low stress silicon nitride are reported. The absorber, consisting of a metallized silicon nitride micromesh thermally isolated by radial legs of silicon nitride, is placed in an integrating cavity to efficiently couple to single mode or multiple mode infrared radiation. This structure provides low heat capacity, low thermal conduction and minimal cross section to energetic particles. A neutron transmutation doped Ge thermister is bump bonded to the center of the device and read out with evaporated Cr-Au leads. The limiting performance of the micromesh absorber is discussed and the recent results obtained from a 300 mK cold stage are summarized.

  18. Mechanically stretchable and tunable metamaterial absorber

    NASA Astrophysics Data System (ADS)

    Zhang, Fuli; Feng, Shuqi; Qiu, Kepeng; Liu, Zijun; Fan, Yuancheng; Zhang, Weihong; Zhao, Qian; Zhou, Ji

    2015-03-01

    In this letter, we present experimental demonstration of a mechanically stretchable and tunable metamaterial absorber composed of dielectric resonator stacked on a thin conductive rubber layer. A near unity absorption is observed due to strong local field confinement around magnetic Mie resonance of dielectric resonator. Furthermore, the interspacing between unit cells is modulated dynamically under uniaxial stress. Owing to the decreases of longitudinal coupling between neighboring unit cells, the resonant absorption peak is reversibly tuned by 410 MHz, as the stain varies up to 180% along H field direction. On the contrary, the resonant absorption state is nearly independent on strain variation when external stress is applied along E field direction, due to the weak transverse interplaying. The mechanically tunable metamaterial absorber featured by flexibility paves a way forwards for actual application.

  19. Imaging highly absorbing nanoparticles using photothermal microscopy

    NASA Astrophysics Data System (ADS)

    Lussier, Simon-Alexandre; Moradi, Hamid; Price, Alain; Murugkar, Sangeeta

    2015-03-01

    Gold nanoparticles (NPs) have tremendous potential in biomedicine. They can be used as absorbing labels inside living cells for the purpose of biomedical imaging, biosensing as well as for photothermal therapy. We demonstrate photothermal imaging of highly-absorbing particles using a pump-probe setup. The photothermal signal is recovered by heterodyne detection, where the excitation pump laser is at 532 nm and the probe laser is at 638 nm. The sample is moved by a scanning stage. Proof of concept images of red polystyrene microspheres and gold nanoparticles are obtained with this home-built multimodal microscope. The increase in temperature at the surface of the gold NPs, due to the pump laser beam, can be directly measured by means of this photothermal microscope and then compared with the results from theoretical predictions. This technique will be useful for characterization of nanoparticles of different shapes, sizes and materials that are used in cancer diagnosis and therapy.

  20. Disposable Diaper Absorbency: Improvements via Advanced Designs.

    PubMed

    Helmes, C Tucker; O'Connor, Robert; Sawyer, Larry; Young, Sharon

    2014-06-24

    Absorbency effectiveness in diapers has improved significantly in recent years with the advent of new ingredient combinations and advanced design features. With these features, many leading products maintain their dryness performance overnight. Considering the importance of holding liquid away from the skin, ongoing research in diaper construction focuses on strategies to increase the effectiveness to capture liquid and help avoid rewetting of infant skin. The layout and design of a disposable diaper allows for distribution of absorbency features where they can provide the optimal benefit. Clinical evidence indicates materials can keep moisture away from the skin in the diapered area, helping maintain proper skin hydration, minimizing irritation, and contributing to reduced rates of diaper rash.

  1. Shock wave absorber having apertured plate

    DOEpatents

    Shin, Y.W.; Wiedermann, A.H.; Ockert, C.E.

    1983-08-26

    The shock or energy absorber disclosed herein utilizes an apertured plate maintained under the normal level of liquid flowing in a piping system and disposed between the normal liquid flow path and a cavity pressurized with a compressible gas. The degree of openness (or porosity) of the plate is between 0.01 and 0.60. The energy level of a shock wave travelling down the piping system thus is dissipated by some of the liquid being jetted through the apertured plate toward the cavity. The cavity is large compared to the quantity of liquid jetted through the apertured plate, so there is little change in its volume. The porosity of the apertured plate influences the percentage of energy absorbed.

  2. Shock wave absorber having apertured plate

    DOEpatents

    Shin, Yong W.; Wiedermann, Arne H.; Ockert, Carl E.

    1985-01-01

    The shock or energy absorber disclosed herein utilizes an apertured plate maintained under the normal level of liquid flowing in a piping system and disposed between the normal liquid flow path and a cavity pressurized with a compressible gas. The degree of openness (or porosity) of the plate is between 0.01 and 0.60. The energy level of a shock wave travelling down the piping system thus is dissipated by some of the liquid being jetted through the apertured plate toward the cavity. The cavity is large compared to the quantity of liquid jetted through the apertured plate, so there is little change in its volume. The porosity of the apertured plate influences the percentage of energy absorbed.

  3. Development and application of rotary shock absorber

    SciTech Connect

    Yamamoto, Kozo; Yamada, Toshihiro; Fukuyama, Katsura

    1995-12-31

    In recent years, rear suspension systems with a single shock absorber unit placed behind the engine, have been used primarily in the middle and large classes of motorcycles. Some features such as the longer rear wheel travel, progressive response characteristics and mass concentration at the center part of motorcycle are effective in improving maneuverability of the motorcycle. In the 1980s, the systems were introduced first in the off-road motorcycles and then in the on-road motorcycles. Performance of the systems are excellent, but there are demands for further improvement of suspension characteristics and space utility at the center part of motorcycle. For this purpose, the authors have developed a prototype of a rotary shock absorber and studied the applicability to modern motorcycles.

  4. Impedance matched thin metamaterials make metals absorbing

    PubMed Central

    Mattiucci, N.; Bloemer, M. J.; Aközbek, N.; D'Aguanno, G.

    2013-01-01

    Metals are generally considered good reflectors over the entire electromagnetic spectrum up to their plasma frequency. Here we demonstrate an approach to tailor their absorbing characteristics based on the effective metamaterial properties of thin, periodic metallo-dielectric multilayers by exploiting a broadband, inherently non-resonant, surface impedance matching mechanism. Based on this mechanism, we design, fabricate and test omnidirectional, thin (<1 micron), polarization independent, extremely efficient absorbers (in principle being capable to reach A > 99%) over a frequency range spanning from the UV to the IR. Our approach opens new venues to design cost effective materials for many applications such as thermo-photovoltaic energy conversion devices, light harvesting for solar cells, flat panel display, infrared detectors, stray light reduction, stealth and others. PMID:24220284

  5. Disposable Diaper Absorbency: Improvements via Advanced Designs.

    PubMed

    Helmes, C Tucker; O'Connor, Robert; Sawyer, Larry; Young, Sharon

    2014-06-24

    Absorbency effectiveness in diapers has improved significantly in recent years with the advent of new ingredient combinations and advanced design features. With these features, many leading products maintain their dryness performance overnight. Considering the importance of holding liquid away from the skin, ongoing research in diaper construction focuses on strategies to increase the effectiveness to capture liquid and help avoid rewetting of infant skin. The layout and design of a disposable diaper allows for distribution of absorbency features where they can provide the optimal benefit. Clinical evidence indicates materials can keep moisture away from the skin in the diapered area, helping maintain proper skin hydration, minimizing irritation, and contributing to reduced rates of diaper rash. PMID:24961785

  6. Impedance matched thin metamaterials make metals absorbing.

    PubMed

    Mattiucci, N; Bloemer, M J; Aközbek, N; D'Aguanno, G

    2013-01-01

    Metals are generally considered good reflectors over the entire electromagnetic spectrum up to their plasma frequency. Here we demonstrate an approach to tailor their absorbing characteristics based on the effective metamaterial properties of thin, periodic metallo-dielectric multilayers by exploiting a broadband, inherently non-resonant, surface impedance matching mechanism. Based on this mechanism, we design, fabricate and test omnidirectional, thin (<1 micron), polarization independent, extremely efficient absorbers (in principle being capable to reach A > 99%) over a frequency range spanning from the UV to the IR. Our approach opens new venues to design cost effective materials for many applications such as thermo-photovoltaic energy conversion devices, light harvesting for solar cells, flat panel display, infrared detectors, stray light reduction, stealth and others. PMID:24220284

  7. Impedance matched thin metamaterials make metals absorbing.

    PubMed

    Mattiucci, N; Bloemer, M J; Aközbek, N; D'Aguanno, G

    2013-11-13

    Metals are generally considered good reflectors over the entire electromagnetic spectrum up to their plasma frequency. Here we demonstrate an approach to tailor their absorbing characteristics based on the effective metamaterial properties of thin, periodic metallo-dielectric multilayers by exploiting a broadband, inherently non-resonant, surface impedance matching mechanism. Based on this mechanism, we design, fabricate and test omnidirectional, thin (<1 micron), polarization independent, extremely efficient absorbers (in principle being capable to reach A > 99%) over a frequency range spanning from the UV to the IR. Our approach opens new venues to design cost effective materials for many applications such as thermo-photovoltaic energy conversion devices, light harvesting for solar cells, flat panel display, infrared detectors, stray light reduction, stealth and others.

  8. Tech Transfer Webinar: Energy Absorbing Materials

    SciTech Connect

    Duoss, Eric

    2014-06-17

    A new material has been designed and manufactured at LLNL that can absorb mechanical energy--a cushion--while also providing protection against sheering. This ordered cellular material is 3D printed using direct ink writing techniques under development at LLNL. It is expected to find utility in application spaces that currently use unordered foams, such as sporting and consumer goods as well as defense and aerospace.

  9. Design and Manufacture of Energy Absorbing Materials

    ScienceCinema

    Duoss, Eric

    2016-07-12

    Learn about an ordered cellular material that has been designed and manufactured using direct ink writing (DIW), a 3-D printing technology being developed at LLNL. The new material is a patterned cellular material that can absorb mechanical energy-a cushion-while also providing protection against sheering. This material is expected to find utility in application spaces that currently use unordered foams, such as sporting and consumer goods as well as defense and aerospace.

  10. Lightweight Energy Absorbers for Blast Containers

    NASA Technical Reports Server (NTRS)

    Balles, Donald L.; Ingram, Thomas M.; Novak, Howard L.; Schricker, Albert F.

    2003-01-01

    Kinetic-energy-absorbing liners made of aluminum foam have been developed to replace solid lead liners in blast containers on the aft skirt of the solid rocket booster of the space shuttle. The blast containers are used to safely trap the debris from small explosions that are initiated at liftoff to sever frangible nuts on hold-down studs that secure the spacecraft to a mobile launch platform until liftoff.

  11. Tech Transfer Webinar: Energy Absorbing Materials

    ScienceCinema

    Duoss, Eric

    2016-07-12

    A new material has been designed and manufactured at LLNL that can absorb mechanical energy--a cushion--while also providing protection against sheering. This ordered cellular material is 3D printed using direct ink writing techniques under development at LLNL. It is expected to find utility in application spaces that currently use unordered foams, such as sporting and consumer goods as well as defense and aerospace.

  12. Design and Manufacture of Energy Absorbing Materials

    SciTech Connect

    Duoss, Eric

    2014-05-28

    Learn about an ordered cellular material that has been designed and manufactured using direct ink writing (DIW), a 3-D printing technology being developed at LLNL. The new material is a patterned cellular material that can absorb mechanical energy-a cushion-while also providing protection against sheering. This material is expected to find utility in application spaces that currently use unordered foams, such as sporting and consumer goods as well as defense and aerospace.

  13. Load limiting energy absorbing lightweight debris catcher

    NASA Technical Reports Server (NTRS)

    Kahn, Jon B. (Inventor); Schneider, William C. (Inventor)

    1991-01-01

    In the representative embodiment of the invention disclosed, a load limiting, energy absorbing net is arranged to overlay a normally-covered vent opening in the rear bulkhead of the space orbiter vehicle. Spatially-disposed flexible retainer straps are extended from the net and respectively secured to bulkhead brackets spaced around the vent opening. The intermediate portions of the straps are doubled over and stitched together in a pattern enabling the doubled-over portions to progressively separate at a predicable load designed to be well below the tensile capability of the straps as the stitches are successively torn apart by the forces imposed on the retainer members whenever the cover plate is explosively separated from the bulkhead and propelled into the net. By arranging these stitches to be successively torn away at a load below the strap strength in response to forces acting on the retainers that are less than the combined strength of the retainers, this tearing action serves as a predictable compact energy absorber for safely halting the cover plate as the retainers are extended as the net is deployed. The invention further includes a block of an energy-absorbing material positioned in the net for receiving loose debris produced by the explosive release of the cover plate.

  14. Shock wave absorber having a deformable liner

    DOEpatents

    Youngdahl, C.K.; Wiedermann, A.H.; Shin, Y.W.; Kot, C.A.; Ockert, C.E.

    1983-08-26

    This invention discloses a shock wave absorber for a piping system carrying liquid. The absorber has a plastically deformable liner defining the normal flow boundary for an axial segment of the piping system, and a nondeformable housing is spaced outwardly from the liner so as to define a gas-tight space therebetween. The flow capacity of the liner generally corresponds to the flow capacity of the piping system line, but the liner has a noncircular cross section and extends axially of the piping system line a distance between one and twenty times the diameter thereof. Gas pressurizes the gas-tight space equal to the normal liquid pressure in the piping system. The liner has sufficient structural capacity to withstand between one and one-half and two times this normal liquid pressures; but at greater pressures it begins to plastically deform initially with respect to shape to a more circular cross section, and then with respect to material extension by circumferentially stretching the wall of the liner. A high energy shock wave passing through the liner thus plastically deforms the liner radially into the gas space and progressively also as needed in the axial direction of the shock wave to minimize transmission of the shock wave beyond the absorber.

  15. An absorbed dose calorimeter for IMRT dosimetry

    NASA Astrophysics Data System (ADS)

    Duane, S.; Aldehaybes, M.; Bailey, M.; Lee, N. D.; Thomas, C. G.; Palmans, H.

    2012-10-01

    A new calorimeter for dosimetry in small and complex fields has been built. The device is intended for the direct determination of absorbed dose to water in moderately small fields and in composite fields such as IMRT treatments, and as a transfer instrument calibrated against existing absorbed dose standards in conventional reference conditions. The geometry, materials and mode of operation have been chosen to minimize detector perturbations when used in a water phantom, to give a reasonably isotropic response and to minimize the effects of heat transfer when the calorimeter is used in non-reference conditions in a water phantom. The size of the core is meant to meet the needs of measurement in IMRT treatments and is comparable to the size of the air cavity in a type NE2611 ionization chamber. The calorimeter may also be used for small field dosimetry. Initial measurements in reference conditions and in an IMRT head and neck plan, collapsed to gantry angle zero, have been made to estimate the thermal characteristics of the device, and to assess its performance in use. The standard deviation (estimated repeatability) of the reference absorbed dose measurements was 0.02 Gy (0.6%).

  16. Microscopic modeling of nitride intersubband absorbance

    NASA Astrophysics Data System (ADS)

    Montano, Ines; Allerman, A. A.; Wierer, J. J.; Moseley, M.; Skogen, E. J.; Tauke-Pedretti, A.; Vawter, G. A.

    III-nitride intersubband structures have recently attracted much interest because of their potential for a wide variety of applications ranging from electro-optical modulators to terahertz quantum cascade lasers. To overcome present simulation limitations we have developed a microscopic absorbance simulator for nitride intersubband devices. Our simulator calculates the band structure of nitride intersubband systems using a fully coupled 8x8 k.p Hamiltonian and determines the material response of a single period in a density-matrix-formalism by solving the Heisenberg equation including many-body and dephasing contributions. After calculating the polarization due to intersubband transitions in a single period, the resulting absorbance of a superlattice structure including radiative coupling between the different periods is determined using a non-local Green's-function formalism. As a result our simulator allows us to predict intersubband absorbance of superlattice structures with microscopically determined lineshapes and linewidths accounting for both many-body and correlation contributions. This work is funded by Sandia National Laboratories Laboratory Directed Research and Development program. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin.

  17. Removal of persistent organic pollutants from micro-polluted drinking water by triolein embedded absorbent.

    PubMed

    Liu, Huijuan; Ru, Jia; Qu, Jiuhui; Dai, Ruihua; Wang, Zijian; Hu, Chun

    2009-06-01

    A new biomimetic absorbent, cellulose acetate (CA) embedded with triolein (CA-triolein), was prepared and applied for the removal of persistent organic pollutants (POPs) from micro-polluted aqueous solution. The comparison of CA-triolein, CA and granular activated carbon (GAC) for dieldrin removal was investigated. Results showed that CA-triolein absorbent gave a lowest residual concentration after 24 h although GAC had high removal rate in the first 4 h adsorption. Then the removal efficiency of mixed POPs (e.g. aldrin, dieldrin, endrin and heptachlor epoxide), absorption isotherm, absorbent regeneration and initial column experiments of CA-triolein were studied in detail. The linear absorption isotherm and the independent absorption in binary isotherm indicated that the selected POPs are mainly absorbed onto CA-triolein absorbent by a partition mechanism. The absorption constant, K, was closely related to the hydrophobic property of the compound. Thermodynamic calculations showed that the absorption was spontaneous, with a high affinity and the absorption was an endothermic reaction. Rinsing with hexane the CA-triolein absorbent can be regenerated after absorption of POPs. No significant decrease in the dieldrin removal efficiency was observed even when the absorption-regeneration process was repeated for five times. The results of initial column experiments showed that the CA-triolein absorbent did not reach the breakthrough point at a breakthrough empty-bed volume (BV) of 3200 when the influent concentration was 1-1.5 microg/L and the empty-bed contact time (EBCT) was 20 min. PMID:19246190

  18. Solid amine compounds as sorbents for carbon dioxide: A concept

    NASA Technical Reports Server (NTRS)

    Sutton, J. G.; Heimlich, P. F.; Tepper, E. H.

    1972-01-01

    Solid amine compounds were examined as possible absorbents for removal of carbon dioxide in life support systems of type which may be employed in high altitude aircraft, spacecraft, or submarines. Many solid amine compounds release absorbed carbon dioxide when heated in vacuum, therefore, when properly packaged spent amine compounds can be readily regenerated and put back into service.

  19. Wide band cryogenic ultra-high vacuum microwave absorber

    SciTech Connect

    Campisi, Isidoro E.

    1992-01-01

    An absorber wave guide assembly for absorbing higher order modes of microwave energy under cryogenic ultra-high vacuum conditions, that absorbs wide-band multi-mode energy. The absorber is of a special triangular shape, made from flat tiles of silicon carbide and aluminum nitride. The leading sharp end of the absorber is located in a corner of the wave guide and tapers to a larger cross-sectional area whose center is located approximately in the center of the wave guide. The absorber is relatively short, being of less height than the maximum width of the wave guide.

  20. Wide band cryogenic ultra-high vacuum microwave absorber

    SciTech Connect

    Campisi, I.E.

    1992-05-12

    An absorber waveguide assembly for absorbing higher order modes of microwave energy under cryogenic ultra-high vacuum conditions, that absorbs wide-band multi-mode energy. The absorber is of a special triangular shape, made from flat tiles of silicon carbide and aluminum nitride. The leading sharp end of the absorber is located in a corner of the waveguide and tapers to a larger cross-sectional area whose center is located approximately in the center of the wave guide. The absorber is relatively short, being of less height than the maximum width of the waveguide. 11 figs.

  1. Removal of fluorescence and ultraviolet absorbance of dissolved organic matter in reclaimed water by solar light.

    PubMed

    Wu, Qianyuan; Li, Chao; Wang, Wenlong; He, Tao; Hu, Hongying; Du, Ye; Wang, Ting

    2016-05-01

    Storing reclaimed water in lakes is a widely used method of accommodating changes in the consumption of reclaimed water during wastewater reclamation and reuse. Solar light serves as an important function in degrading pollutants during storage, and its effect on dissolved organic matter (DOM) was investigated in this study. Solar light significantly decreased the UV254 absorbance and fluorescence (FLU) intensity of reclaimed water. However, its effect on the dissolved organic carbon (DOC) value of reclaimed water was very limited. The decrease in the UV254 absorbance intensity and FLU excitation-emission matrix regional integration volume (FLU volume) of reclaimed water during solar light irradiation was fit with pseudo-first order reaction kinetics. The decrease of UV254 absorbance was much slower than that of the FLU volume. Ultraviolet light in solar light had a key role in decreasing the UV254 absorbance and FLU intensity during solar light irradiation. The light fluence-based removal kinetic constants of the UV254 and FLU intensity were independent of light intensity. The peaks of the UV254 absorbance and FLU intensity with an apparent molecular weight (AMW) of 100Da to 2000Da decreased after solar irradiation, whereas the DOC value of the major peaks did not significantly change.

  2. Removal of fluorescence and ultraviolet absorbance of dissolved organic matter in reclaimed water by solar light.

    PubMed

    Wu, Qianyuan; Li, Chao; Wang, Wenlong; He, Tao; Hu, Hongying; Du, Ye; Wang, Ting

    2016-05-01

    Storing reclaimed water in lakes is a widely used method of accommodating changes in the consumption of reclaimed water during wastewater reclamation and reuse. Solar light serves as an important function in degrading pollutants during storage, and its effect on dissolved organic matter (DOM) was investigated in this study. Solar light significantly decreased the UV254 absorbance and fluorescence (FLU) intensity of reclaimed water. However, its effect on the dissolved organic carbon (DOC) value of reclaimed water was very limited. The decrease in the UV254 absorbance intensity and FLU excitation-emission matrix regional integration volume (FLU volume) of reclaimed water during solar light irradiation was fit with pseudo-first order reaction kinetics. The decrease of UV254 absorbance was much slower than that of the FLU volume. Ultraviolet light in solar light had a key role in decreasing the UV254 absorbance and FLU intensity during solar light irradiation. The light fluence-based removal kinetic constants of the UV254 and FLU intensity were independent of light intensity. The peaks of the UV254 absorbance and FLU intensity with an apparent molecular weight (AMW) of 100Da to 2000Da decreased after solar irradiation, whereas the DOC value of the major peaks did not significantly change. PMID:27155416

  3. Silver oxide sorbent for carbon dioxide

    NASA Technical Reports Server (NTRS)

    Colombo, G. V.

    1974-01-01

    Material can be regenerated at least 20 times by heating at 250 C. Sorbent is compatible with environment of high humidity; up to 20% by weight of carbon dioxide can be absorbed. Material is prepared from silver carbonate, potassium hydroxide or carbonate, and sodium silicate.

  4. Photocurable acrylic composition, and U. V. curing with development of U. V. absorber

    DOEpatents

    McKoy, V.B.; Gupta, A.

    1992-08-25

    In-situ development of an ultraviolet absorber is provided by a compound such as a hydroxy-phenyl-triazole containing a group which protects the absorber during actinically activated polymerization by light at first frequency. After polymerization the protective group is removed by actinic reaction at a second frequency lower than the first frequency. The protective group is formed by replacing the hydrogen of the hydroxyl group with an acyl group containing 1 to 3 carbon atoms or an acryloxy group of the formula shown in a figure where R[sup 1] is either an alkyl containing 1 to 6 carbon atoms or --CH[double bond]CH[sub 2]. 2 figs.

  5. Highly ionised absorbers at high redshift

    NASA Astrophysics Data System (ADS)

    Bergeron, Jacqueline; Herbert-Fort, Stéphane

    2005-03-01

    We build a sample of O VI absorption systems in the redshift range 2.0 ≲ z ≲ 2.6 using high spectral resolution data of ten quasars from the VLT-UVES large programme. We investigate the existence of a metal-rich O VI population and define observational criteria for this class of absorbers under the assumption of photoionisation. The low temperatures of nearly half of all O VI absorbers, implied by their line widths, are too low for collisional ionisation to be a dominant process. We estimate the oxygen abundance under the assumption of photoionisation; a striking result is the bimodal distribution of [o/h] with median values close to 0.01 and 0.5 solar for the metal-poor and metal-rich populations, respectively. Using the line widths to fix the temperature or assuming a constant, low gas density does not drastically change the metallicities of the metal-rich population. We present the first estimate of the O VI column density distribution. Assuming a single power-law distribution, f(n) ∝ n-α, yields α ˜ 1.7 and a normalisation of f(n) =2.3× 10-13 at log n(O VI) ˜ 13.5, both with a ˜30% uncertainty. The value of α is similar to that found for C IV surveys, whereas the normalisation factor is about ten times higher. We use f(n) to derive the number density per unit z and cosmic density ωb(O VI), selecting a limited column density range not strongly affected by incompleteness or sample variance. Comparing our results with those obtained at z˜0.1 for a similar range of column densities implies some decline of dn/dz with z. The cosmic O VI density derived from f(n), ωb(O VI)≈ (3.5± 3.20.9) × 10-7, is 2.3 times higher than the value estimated using the observed O VI sample (of which the metal-rich population contributes ˜35%), easing the problem of missing metals at high z (˜ 1/4 of the produced metals) but not solving it. We find that the majori ty of the metal-rich absorbers are located within ˜ 450 km s-1 of strong Ly-α lines and show that

  6. Petrographical characteristics of calcium based absorbent and its effect on grinding and calcination/desulfurization property

    SciTech Connect

    Xiong, Y.; Sun, X.

    1998-07-01

    This paper discussed the relationship between the petrographical characteristics and grinding, calcination/desulfurization properties of calcium based absorbent. Optical microscopy, XRD analysis, TGS-DTGA-DTA and thermal microscopy analyses were carried out on carbonate rocks. It was found that petrographical characteristics, such as grain size and cleavages developing degree have great effect on grinding, calcination/desulfurization properties. The choice of calcium based adsorbent should be based on the petrographical characteristics.

  7. Inorganic UV absorbers for the photostabilisation of wood-clearcoating systems: Comparison with organic UV absorbers

    NASA Astrophysics Data System (ADS)

    Aloui, F.; Ahajji, A.; Irmouli, Y.; George, B.; Charrier, B.; Merlin, A.

    2007-02-01

    Inorganic UV absorbers which are widely used today were originally designed neither as a UV blocker in coatings applications, nor for wood protection. In recent years however, there has been extensive interest in these compounds, especially with regard to their properties as a UV blocker in coating applications. In this work, we carried out a comparative study to look into some inorganic and organic UV absorbers used in wood coating applications. The aim of this study is to determine the photostabilisation performances of each type of UV absorbers, to seek possible synergies and the influences of different wood species. We have also searched to find eventual correlation between these performances and the influence of UV absorbers on the film properties. Our study has compared the performances of the following UV absorbers: hombitec RM 300, hombitec RM 400 from the Sachtleben Company; transparent yellow and red iron oxides from Sayerlack as inorganic UV absorbers; organic UV absorbers Tinuvin 1130 and Tinuvin 5151 from Ciba Company. The study was carried out on three wood species: Abies grandis, tauari and European oak. The environmental constraints (in particular the limitation of the emission of volatile organic compounds VOCs) directed our choice towards aqueous formulations marketed by the Sayerlack Arch Coatings Company. The results obtained after 800 h of dry ageing showed that the Tinuvins and the hombitecs present better wood photostabilisations. On the other hand in wet ageing, with the hombitec, there are appearances of some cracks and an increase in the roughness of the surface. This phenomenon is absent when the Tinuvins are used. With regard to these results, the thermomechanical analyses relating to the follow-up of the change of the glass transition temperature ( Tg) of the various coating systems, show a different behaviour between the two types of absorbers. However, contrary to organic UV absorbers, inorganic ones tend to increase Tg during ageing

  8. Modeling the Effect of Polychromatic Light in Quantitative Absorbance Spectroscopy

    ERIC Educational Resources Information Center

    Smith, Rachel; Cantrell, Kevin

    2007-01-01

    Laboratory experiment is conducted to give the students practical experience with the principles of electronic absorbance spectroscopy. This straightforward approach creates a powerful tool for exploring many of the aspects of quantitative absorbance spectroscopy.

  9. β-Cyclodextrin-based oil-absorbent microspheres: preparation and high oil absorbency.

    PubMed

    Song, Ci; Ding, Lei; Yao, Fei; Deng, Jianping; Yang, Wantai

    2013-01-01

    This article reports the preparation and evaluation of polymeric microspheres as a new class of oil-absorbent (POAMs). Based on our earlier oil-absorbents, the present microspheres contained β-cyclodextrin (β-CD) moieties as both cross-linking agent and porogen agent, and showed exciting high oil absorbency, fast oil absorption speed and good reusability. Such microspheres were prepared via suspension polymerization with octadecyl acrylate and butyl acrylate as co-monomers, β-CD derivative as cross-linking agent, 2,2'-azoisobutyronitrile as initiator and polyvinylalcohol as stabilizer. Oil absorbency of the POAMs was, for CCl(4), 83.4; CHCl(3), 75.1; xylene, 48.7; toluene, 42.8; gasoline, 30.0; kerosene 27.1; and diesel, 18.2 g/g (oil/POAMs). Saturation oil absorption reached within 3h in CCl(4). The POAMs exhibited high oil retention percentage (>90%), and can be reused for at least 10 times while keeping oil absorbency almost unchanged. PMID:23044125

  10. Method for absorbing an ion from a fluid

    DOEpatents

    Gao, Huizhen; Wang, Yifeng; Bryan, Charles R.

    2007-07-03

    A method for absorbing an ion from a fluid by using dispersing an organic acid into an anion surfactant solution, mixing in a divalent-metal containing compound and a trivalent-metal containing compound and calcining the resulting solid layered double hydroxide product to form an absorbent material and then contacting the absorbent material with an aqueous solution of cations or anions to be absorbed.

  11. Grover walks on a line with absorbing boundaries

    NASA Astrophysics Data System (ADS)

    Wang, Kun; Wu, Nan; Kuklinski, Parker; Xu, Ping; Hu, Haixing; Song, Fangmin

    2016-09-01

    In this paper, we study Grover walks on a line with one and two absorbing boundaries. In particular, we present some results for the absorbing probabilities in both a semi-finite and finite line. Analytical expressions for these absorbing probabilities are presented by using the combinatorial approach. These results are perfectly matched with numerical simulations. We show that the behavior of Grover walks on a line with absorbing boundaries is strikingly different from that of classical walks and that of Hadamard walks.

  12. Impacts of Snow Darkening by Absorbing Aerosols on Eurasian Climate

    NASA Technical Reports Server (NTRS)

    Kim, Kyu-Myong; Lau, William K M.; Yasunari, Teppei J.; Kim, Maeng-Ki; Koster, Randal D.

    2016-01-01

    The deposition of absorbing aerosols on snow surfaces reduces snow-albedo and allows snowpack to absorb more sunlight. This so-called snow darkening effect (SDE) accelerates snow melting and leads to surface warming in spring. To examine the impact of SDE on weather and climate during late spring and early summer, two sets of NASA GEOS-5 model simulations with and without SDE are conducted. Results show that SDE-induced surface heating is particularly pronounced in Eurasian regions where significant depositions of dust transported from the North African deserts, and black carbon from biomass burning from Asia and Europe occur. In these regions, the surface heating due to SDE increases surface skin temperature by 3-6 degrees Kelvin near the snowline in spring. Surface energy budget analysis indicates that SDE-induced excess heating is associated with a large increase in surface evaporation, subsequently leading to a significant reduction in soil moisture, and increased risks of drought and heat waves in late spring to early summer. Overall, we find that rainfall deficit combined with SDE-induced dry soil in spring provide favorable condition for summertime heat waves over large regions of Eurasia. Increased frequency of summer heat waves with SDE and the region of maximum increase in heat-wave frequency are found along the snow line, providing evidence that early snowmelt by SDE may increase the risks of extreme summer heat wave. Our results suggest that climate models that do not include SDE may significantly underestimate the effect of global warming over extra-tropical continental regions.

  13. Commercial production of the oil absorbent Sea Sweep

    SciTech Connect

    Reed, T.B.; Mobeck, W.L.

    1993-12-31

    A new absorbent has been developed for oil spills. It attracts oil and chemicals and floats on water indefinitely. It is mpm-leaching and can save land and beaches from environmental disasters and can be disposed of in an environmentally acceptable manner or recycled. The new absorbent is called {open_quotes}Sea Sweep{close_quotes}; extensive research has been done on it under an EPA Small Business Innovation Research grant, Phase I and Phase II. Sea Sweep has been tested for toxicity to the environment. Less than 2 mg/l total organic carbon was found in water in contact with oil saturated Sea Sweep after 30 minutes. No toxicity was measured to any of the marine or freshwater tested species at any test concentrations. Sea Sweep is made from {open_quotes}pin chips,{close_quotes} a waste wood product, using a patented thermolytic process in which the wood is heated to about 300{degrees}C. It is a coarse, free-flowing granular material absorbing from 2.6 to 6.6 g/g of oils and chemicals. While originally designed for marine oil spills, it is also very effective for oil and chemical spills on land or water. Sea Sweep has now reached the stage of limited commercialization. A small (5 tons/day) plant has been built in northern Colorado at a wood recycling plant and it has been operated since January 1993. The plant features an afterburner that destroys the blue haze resulting from pyrolysis of the sawdust so that production is environmentally acceptable. Sea Sweep is marketed in 5, 10 and 25 lb plastic bags and 500 lb drop bags. It is also sold in socks, booms pillows and bilge rats. The company will recycle non-toxic materials for the customer using methods developed under the SBIR grant. Sea Sweep has been features in a number of articles, on television, and in national and international trade shows. The international marketing of Sea Sweep is administered from the corporate offices in Denver. Domestic marketing is administered from the regional office in Chicago.

  14. Quality evaluation of commercial Huang-Lian-Jie-Du-Tang based on simultaneous determination of fourteen major chemical constituents using high performance liquid chromatography.

    PubMed

    Kwok, Ka-Yan; Xu, Jun; Ho, Hing-Man; Chen, Hu-Biao; Li, Min; Lang, Yan; Han, Quan-Bin

    2013-11-01

    Huang-Lian-Jie-Du-Tang (HLJDT), comprising Coptidis Rhizoma, Scutellariae Radix, Phellodendri Cortex and Gardeniae Fructus, is one of the commonly used Chinese medicine formulas for clearing heat and detoxifying. Quality control of the herbal complex like Chinese medicine formulas still remains a challenge. The successful approval of botanical drug Veregen by FDA indicated the importance of quantitative analysis in quality control of herbal medicines. In this study, an effective quantitative method based on conventional HPLC-DAD was developed for simultaneous determination of fourteen major ingredients (seven alkaloids, four flavonoids, three terpenes) in HLJDT. The established method was well validated in terms of linearity, sensitivity, precision, accuracy and stability and then successfully applied to quality evaluation of commercial HLJDT samples. The developed method can quantitatively determine up to 70% of the chemicals of commercial HLJDT sample and effectively revealed the significant variation in the quality of the commercial HLJDT samples collected from different locations.

  15. 14 CFR 29.475 - Tires and shock absorbers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Tires and shock absorbers. 29.475 Section... shock absorbers. Unless otherwise prescribed, for each specified landing condition, the tires must be assumed to be in their static position and the shock absorbers to be in their most critical position....

  16. 14 CFR 29.475 - Tires and shock absorbers.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Tires and shock absorbers. 29.475 Section... shock absorbers. Unless otherwise prescribed, for each specified landing condition, the tires must be assumed to be in their static position and the shock absorbers to be in their most critical position....

  17. 21 CFR 878.4755 - Absorbable lung biopsy plug.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Absorbable lung biopsy plug. 878.4755 Section 878...) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4755 Absorbable lung biopsy plug. (a) Identification. A preformed (polymerized) absorbable lung biopsy plug is intended to...

  18. About sound mufflers sound-absorbing panels aircraft engine

    NASA Astrophysics Data System (ADS)

    Dudarev, A. S.; Bulbovich, R. V.; Svirshchev, V. I.

    2016-10-01

    The article provides a formula for calculating the frequency of sound absorbed panel with a perforated wall. And although the sound absorbing structure is a set of resonators Helmholtz, not individual resonators should be considered in acoustic calculations, and all the perforated wall panel. The analysis, showing how the parameters affect the size and sound-absorbing structures in the absorption rate.

  19. A novel broadband waterborne acoustic absorber

    NASA Astrophysics Data System (ADS)

    Wang, Changxian; Wen, Weibin; Huang, Yixing; Chen, Mingji; Lei, Hongshuai; Fang, Daining

    2016-07-01

    In this paper, we extended the ray tracing theory in polar coordinate system, and originally proposed the Snell-Descartes law in polar coordinates. Based on these theories, a novel broadband waterborne acoustic absorber device was proposed. This device is designed with gradient-distributing materials along radius, which makes the incidence acoustic wave ray warps. The echo reduction effects of this device were investigated by finite element analysis, and the numerical results show that the reflectivity of acoustic wave for the new device is lower than that of homogenous and Alberich layers in almost all frequency 0-30 kHz at the same loss factor.

  20. Acoustical model of a Shoddy fibre absorber

    NASA Astrophysics Data System (ADS)

    Manning, John Peter

    Shoddy fibres or "Shoddies" are a mixture of post-consumer and post-industrial fibres diverted from textile waste streams and recycled into their raw fibre form. They have found widespread use as a raw material for manufacturing sound absorbers that include, but are not limited to: automotive, architectural and home appliance applications. The purpose of this project is to develop a simple acoustic model to describe the acoustic behaviour of sound absorbers composed primarily of Shoddy fibres. The model requires knowledge of the material's bulk density only. To date, these materials have not been the focus of much published research and acoustical designers must rely on models that were developed for other materials or are overly complex. For modelling purposes, an equivalent fluid approach is chosen to balance complexity and accuracy. In deriving the proposed model, several popular equivalent fluid models are selected and the required input parameters for each model identified. The models are: the model of Delaney and Bazley, two models by Miki, the model of Johnson in conjunction with the model of Champoux and Allard and the model of Johnson in conjunction with the model of Lafarge. Characterization testing is carried out on sets of Shoddy absorbers produced using three different manufacturing methods. The measured properties are open porosity, tortuosity, airflow resistivity, the viscous and thermal characteristic lengths and the static thermal permeability. Empirical relationships between model parameters and bulk density are then derived and used to populate the selected models. This yields several 'simplified' models with bulk density as the only parameter. The most accurate model is then selected by comparing each model's prediction to the results of normal incidence sound absorption tests. The model of Johnson-Lafarge populated with the empirical relations is the most accurate model over the range of frequencies considered (approx. 300 Hz - 4000 Hz

  1. DHCAL with minimal absorber: measurements with positrons

    NASA Astrophysics Data System (ADS)

    Freund, B.; Neubüser, C.; Repond, J.; Schlereth, J.; Xia, L.; Dotti, A.; Grefe, C.; Ivantchenko, V.; Berenguer Antequera, J.; Calvo Alamillo, E.; Fouz, M.-C.; Marin, J.; Puerta-Pelayo, J.; Verdugo, A.; Brianne, E.; Ebrahimi, A.; Gadow, K.; Göttlicher, P.; Günter, C.; Hartbrich, O.; Hermberg, B.; Irles, A.; Krivan, F.; Krüger, K.; Kvasnicka, J.; Lu, S.; Lutz, B.; Morgunov, V.; Provenza, A.; Reinecke, M.; Sefkow, F.; Schuwalow, S.; Tran, H. L.; Garutti, E.; Laurien, S.; Matysek, M.; Ramilli, M.; Schroeder, S.; Bilki, B.; Norbeck, E.; Northacker, D.; Onel, Y.; Cvach, J.; Gallus, P.; Havranek, M.; Janata, M.; Kovalcuk, M.; Kvasnicka, J.; Lednicky, D.; Marcisovsky, M.; Polak, I.; Popule, J.; Tomasek, L.; Tomasek, M.; Sicho, P.; Smolik, J.; Vrba, V.; Zalesak, J.; van Doren, B.; Wilson, G. W.; Kawagoe, K.; Hirai, H.; Sudo, Y.; Suehara, T.; Sumida, H.; Takada, S.; Tomita, T.; Yoshioka, T.; Bilokin, S.; Bonis, J.; Cornebise, P.; Pöschl, R.; Richard, F.; Thiebault, A.; Zerwas, D.; Hostachy, J.-Y.; Morin, L.; Besson, D.; Chadeeva, M.; Danilov, M.; Markin, O.; Popova, E.; Gabriel, M.; Goecke, P.; Kiesling, C.; van der Kolk, N.; Simon, F.; Szalay, M.; Corriveau, F.; Blazey, G. C.; Dyshkant, A.; Francis, K.; Zutshi, V.; Kotera, K.; Ono, H.; Takeshita, T.; Ieki, S.; Kamiya, Y.; Ootani, W.; Shibata, N.; Jeans, D.; Komamiya, S.; Nakanishi, H.

    2016-05-01

    In special tests, the active layers of the CALICE Digital Hadron Calorimeter prototype, the DHCAL, were exposed to low energy particle beams, without being interleaved by absorber plates. The thickness of each layer corresponded approximately to 0.29 radiation lengths or 0.034 nuclear interaction lengths, defined mostly by the copper and steel skins of the detector cassettes. This paper reports on measurements performed with this device in the Fermilab test beam with positrons in the energy range of 1 to 10 GeV. The measurements are compared to simulations based on GEANT4 and a standalone program to emulate the detailed response of the active elements.

  2. Factorial Based Response Surface Modeling with Confidence Intervals for Optimizing Thermal Optical Transmission Analysis of Atmospheric Black Carbon

    EPA Science Inventory

    We demonstrate how thermal-optical transmission analysis (TOT) for refractory light-absorbing carbon in atmospheric particulate matter was optimized with empirical response surface modeling. TOT employs pyrolysis to distinguish the mass of black carbon (BC) from organic carbon (...

  3. Magnesia-stabilized calcium oxide absorbents with improved durability for high temperature CO{sub 2} capture

    SciTech Connect

    Li, L.Y.; King, D.L.; Nie, Z.M.; Howard, C.

    2009-12-15

    Calcium oxide based materials are attractive regenerable absorbents for separating CO{sub 2} from hot gas streams because of their high reactivity, high CO{sub 2} capacity, and low material cost. Their high carbonation temperature makes it possible to recover and use high quality heat released during CO{sub 2} capture, which increases overall process efficiency. However, the performance of all reported CaO-based absorbents deteriorates as the number of carbonation-decarbonation cycles increases. This is caused by absorbent sintering during the highly exothermic carbonation process. We have found that sintering can be effectively mitigated by properly mixing with a modest amount of MgO. A class of CaO-based absorbents with improved durability and CO{sub 2} reactivity were prepared by physical mixing of Ca(CH{sub 3}COO){sub 2} with small MgO particles followed by high temperature calcination. With 26 wt % MgO content, a CaO-MgO mixture prepared by this method gives as high as 53 wt % CO{sub 2} capacity after 50 carbonation-decarbonation cycles at 758{sup o}C. Without MgO addition, the CO{sub 2} capacity of pure CaO obtained from the same source decreases from 66 wt % for the first cycle to 26 wt % for the 50th cycle under the same test conditions.

  4. Fourteen x fourteen CCD array for optical intersatellite link tracking

    NASA Astrophysics Data System (ADS)

    Boutemy, J. C.; Boucharlat, G.; Dautriche, P.

    1988-06-01

    Optical intersatellite links and the SILEX program are generalized. The main constraints of the acquisition and tracking system are described. The specifications of a charge coupled device array devoted to the tracking, with the capability of high images rates (up to 20,000 im/s) are reviewed. It is shown that a low resolution and high image rate array allow the performances of the intersatellite laser acquisition system to be improved.

  5. Configurable metamaterial absorber with pseudo wideband spectrum.

    PubMed

    Zhu, Weiren; Huang, Yongjun; Rukhlenko, Ivan D; Wen, Guangjun; Premaratne, Malin

    2012-03-12

    Metamaterials attain their behavior due to resonant interactions among their subwavelength components and thus show specific designer features only in a very narrow frequency band. There is no simple way to dynamically increase the operating bandwidth of a narrowband metamaterial, but it may be possible to change its central frequency, shifting the spectral response to a new frequency range. In this paper, we propose and experimentally demonstrate a metamaterial absorber that can shift its central operating frequency by using mechanical means. The shift is achieved by varying the gap between the metamaterial and an auxiliary dielectric slab parallel to its surface. We also show that it is possible to create multiple absorption peaks by adjusting the size and/or shape of the dielectric slab, and to shift them by moving the slab relative to the metamaterial. Specifically, using numerical simulations we design a microwave metamaterial absorber and experimentally demonstrate that its central frequency can be set anywhere in a 1.6 GHz frequency range. The proposed configuration is simple and easy to make, and may be readily extended to THz frequencies.

  6. Spacesuit Evaporator-Absorber-Radiator (SEAR)

    NASA Technical Reports Server (NTRS)

    Hodgson, Ed; Izenson, Mike; Chan, Weibo; Bue, Grant C.

    2012-01-01

    For decades advanced spacesuit developers have pursued a regenerable, robust nonventing system for heat rejection. Toward this end, this paper investigates linking together two previously developed technologies, namely NASA s Spacesuit Water Membrane Evaporator (SWME), and Creare s Lithium Chloride Absorber Radiator (LCAR). Heat from a liquid cooled garment is transported to SWME that provides cooling through evaporation. This water vapor is then captured by solid LiCl in the LCAR with a high enthalpy of absorption, resulting in sufficient temperature lift to reject heat to space by radiation. After the sortie, the LCAR would be heated up and dried in a regenerator to drive off and recover the absorbed evaporant. A engineering development prototype was built and tested in vacuum conditions at a sink temperature of 250 K. The LCAR was able to stably reject 75 W over a 7-hour period. A conceptual design of a full-scale radiator is proposed. Excess heat rejection above 240 W would be accomplished through venting of the evaporant. Loop closure rates were predicted for various exploration environment scenarios.

  7. Metamaterial perfect absorber based hot electron photodetection.

    PubMed

    Li, Wei; Valentine, Jason

    2014-06-11

    While the nonradiative decay of surface plasmons was once thought to be only a parasitic process that limits the performance of plasmonic devices, it has recently been shown that it can be harnessed in the form of hot electrons for use in photocatalysis, photovoltaics, and photodetectors. Unfortunately, the quantum efficiency of hot electron devices remains low due to poor electron injection and in some cases low optical absorption. Here, we demonstrate how metamaterial perfect absorbers can be used to achieve near-unity optical absorption using ultrathin plasmonic nanostructures with thicknesses of 15 nm, smaller than the hot electron diffusion length. By integrating the metamaterial with a silicon substrate, we experimentally demonstrate a broadband and omnidirectional hot electron photodetector with a photoresponsivity that is among the highest yet reported. We also show how the spectral bandwidth and polarization-sensitivity can be manipulated through engineering the geometry of the metamaterial unit cell. These perfect absorber photodetectors could open a pathway for enhancing hot electron based photovoltaic, sensing, and photocatalysis systems. PMID:24837991

  8. Fabrication of THz Sensor with Metamaterial Absorber

    NASA Astrophysics Data System (ADS)

    Gonzalez, Hugo; Alves, Fabio; Karunasiri, Gamani

    The terahertz (THz) portion of the electromagnetic spectrum (0.1-10 THz) has not been fully utilized due to the lack of sensitive detectors. Real-time imaging in this spectral range has been demonstrated using uncooled infrared microbolometer cameras and external illumination provided by quantum cascade laser (QCL) based THz sources. However, the microbolometer pixels in the cameras have not been optimized to achieve high sensitivity in THz frequencies. Recently, we have developed a highly sensitive micromechanical THz sensor employing bi-material effect with an integrated metamaterial absorber tuned to the THz frequency of interest. The use of bi-material structures causes deflection on the sensor to as the absorbed THz radiation increases its temperature, which can be monitored optically by reflecting a light beam. This approach eliminates the integration of readout electronics needed in microbolometers. The absorption of THz by metamaterial can be tailored by controlling geometrical parameters. The sensors can be fabricated using conventional microelectronic materials and incorporated into pixels to form focal plane arrays (FPAs). In this presentation, characterization and readout of a THz sensor with integrated metamaterial structure will be described. Supported by DoD.

  9. Erbium concentration dependent absorbance in tellurite glass

    SciTech Connect

    Sazali, E. S. Rohani, M. S. Sahar, M. R. Arifin, R. Ghoshal, S. K. Hamzah, K.

    2014-09-25

    Enhancing the optical absorption cross-section in topically important rare earth doped tellurite glasses is challenging for photonic devices. Controlled synthesis and detailed characterizations of the optical properties of these glasses are important for the optimization. The influence of varying concentration of Er{sup 3+} ions on the absorbance characteristics of lead tellurite glasses synthesized via melt-quenching technique are investigated. The UV-Vis absorption spectra exhibits six prominent peaks centered at 490, 526, 652, 800, 982 and 1520 nm ascribed to the transitions in erbium ion from the ground state to the excited states {sup 4}F{sub 7/2}, {sup 2}H{sub 11/2}, {sup 4}F{sub 9/2}, {sup 4}I{sub 9/2}, {sup 2}H{sub 11/2} and {sup 4}I{sub 13/2}, respectively. The results are analyzed by means of optical band gap E{sub g} and Urbach energy E{sub u}. The values of the energy band gap are found decreased from 2.82 to 2.51 eV and the Urbach energy increased from 0.15 to 0.24 eV with the increase of the Er{sub 2}O{sub 3} concentration from 0 to 1.5 mol%. The excellent absorbance of the prepared tellurite glasses makes them suitable for fabricating solid state lasers.

  10. Method of designing layered sound absorbing materials

    NASA Astrophysics Data System (ADS)

    Atalla, Youssef; Panneton, Raymond

    2002-11-01

    A widely used model for describing sound propagation in porous materials is the Johnson-Champoux-Allard model. This rigid frame model is based on five geometrical properties of the porous medium: resistivity, porosity, tortuosity, and viscous and thermal characteristic lengths. Using this model and with the knowledge of such properties for different absorbing materials, the design of a multiple layered system can be optimized efficiently and rapidly. The overall impedance of the layered systems can be calculated by the repeated application of single layer impedance equation. The knowledge of the properties of the materials involved in the layered system and their physical meaning, allows to perform by computer a systematic evaluation of potential layer combinations rather than do it experimentally which is time consuming and always not efficient. The final design of layered materials can then be confirmed by suitable measurements. A method of designing the overall acoustic absorption of multiple layered porous materials is presented. Some aspects based on the material properties, for designing a flat layered absorbing system are considered. Good agreement between measured and computed sound absorption coefficients has been obtained for the studied configurations. [Work supported by N.S.E.R.C. Canada, F.C.A.R. Quebec, and Bombardier Aerospace.

  11. A novel structure for tunable terahertz absorber based on graphene.

    PubMed

    Xu, Bing-Zheng; Gu, Chang-Qing; Li, Zhuo; Niu, Zhen-Yi

    2013-10-01

    Graphene can be used as a platform for tunable absorbers for its tunability of conductivity. In this paper, we proposed an "uneven dielectric slab structure" for the terahertz (THz) tunable absorber based on graphene. The absorber consists of graphene-dielectric stacks and an electric conductor layer, which is easy to fabricate in the manufacturing technique. Fine tuning of the absorption resonances can be conveniently achieved by adjusting the bias voltage. Both narrowband and broadband tunable absorbers made of this structure are demonstrated without using a patterned graphene. In addition, this type of graphene-based absorber exhibits stable resonances with a wide range angles of obliquely incident electromagnetic waves. PMID:24104291

  12. Container and method for absorbing and reducing hydrogen concentration

    DOEpatents

    Wicks, George G.; Lee, Myung W.; Heung, Leung K.

    2001-01-01

    A method for absorbing hydrogen from an enclosed environment comprising providing a vessel; providing a hydrogen storage composition in communication with a vessel, the hydrogen storage composition further comprising a matrix defining a pore size which permits the passage of hydrogen gas while blocking the passage of gaseous poisons; placing a material within the vessel, the material evolving hydrogen gas; sealing the vessel; and absorbing the hydrogen gas released into the vessel by the hydrogen storage composition. A container for absorbing evolved hydrogen gas comprising: a vessel having an interior and adapted for receiving materials which release hydrogen gas; a hydrogen absorbing composition in communication with the interior, the composition defining a matrix surrounding a hydrogen absorber, the matrix permitting the passage of hydrogen gas while excluding gaseous poisons; wherein, when the vessel is sealed, hydrogen gas, which is released into the vessel interior, is absorbed by the hydrogen absorbing composition.

  13. Composite neutron absorbing coatings for nuclear criticality control

    DOEpatents

    Wright, Richard N.; Swank, W. David; Mizia, Ronald E.

    2005-07-19

    Thermal neutron absorbing composite coating materials and methods of applying such coating materials to spent nuclear fuel storage systems are provided. A composite neutron absorbing coating applied to a substrate surface includes a neutron absorbing layer overlying at least a portion of the substrate surface, and a corrosion resistant top coat layer overlying at least a portion of the neutron absorbing layer. An optional bond coat layer can be formed on the substrate surface prior to forming the neutron absorbing layer. The neutron absorbing layer can include a neutron absorbing material, such as gadolinium oxide or gadolinium phosphate, dispersed in a metal alloy matrix. The coating layers may be formed by a plasma spray process or a high velocity oxygen fuel process.

  14. Determination of decay coefficients for combustors with acoustic absorbers

    NASA Technical Reports Server (NTRS)

    Mitchell, C. E.; Espander, W. R.; Baer, M. R.

    1972-01-01

    An analytical technique for the calculation of linear decay coefficients in combustors with acoustic absorbers is presented. Tuned circumferential slot acoustic absorbers were designed for the first three transverse modes of oscillation, and decay coefficients for these absorbers were found as a function of backing distance for seven different chamber configurations. The effectiveness of the absorbers for off-design values of the combustion response and acoustic mode is also investigated. Results indicate that for tuned absorbers the decay coefficient increases approximately as the cube of the backing distance. For most off-design situations the absorber still provides a damping effect. However, if an absorber designed for some higher mode of oscillation is used to damp lower mode oscillations, a driving effect is frequently found.

  15. Absorber Alignment Measurement Tool for Solar Parabolic Trough Collectors: Preprint

    SciTech Connect

    Stynes, J. K.; Ihas, B.

    2012-04-01

    As we pursue efforts to lower the capital and installation costs of parabolic trough solar collectors, it is essential to maintain high optical performance. While there are many optical tools available to measure the reflector slope errors of parabolic trough solar collectors, there are few tools to measure the absorber alignment. A new method is presented here to measure the absorber alignment in two dimensions to within 0.5 cm. The absorber alignment is measured using a digital camera and four photogrammetric targets. Physical contact with the receiver absorber or glass is not necessary. The alignment of the absorber is measured along its full length so that sagging of the absorber can be quantified with this technique. The resulting absorber alignment measurement provides critical information required to accurately determine the intercept factor of a collector.

  16. Measurements of light-absorbing particles on the glaciers in the Cordillera Blanca, Peru

    NASA Astrophysics Data System (ADS)

    Schmitt, C. G.; All, J. D.; Schwarz, J. P.; Arnott, W. P.; Cole, R. J.; Lapham, E.; Celestian, A.

    2015-02-01

    Glaciers in the tropical Andes have been rapidly losing mass since the 1970s. In addition to the documented increase in temperature, increases in light-absorbing particles deposited on glaciers could be contributing to the observed glacier loss. Here we report on measurements of light-absorbing particles sampled from glaciers during three surveys in the Cordillera Blanca Mountains in Peru. During three research expeditions in the dry seasons (May-August) of 2011, 2012 and 2013, 240 snow samples were collected from 15 mountain peaks over altitudes ranging from 4800 to nearly 6800 m. Several mountains were sampled each of the 3 years and some mountains were sampled multiple times during the same year. Collected snow samples were melted and filtered in the field then later analyzed using the Light Absorption Heating Method (LAHM), a new technique that measures the ability of particles on filters to absorb visible light. LAHM results have been calibrated using filters with known amounts of fullerene soot, a common industrial surrogate for black carbon (BC). As sample filters often contain dust in addition to BC, results are presented in terms of effective black carbon (eBC). During the 2013 survey, snow samples were collected and kept frozen for analysis with a Single Particle Soot Photometer (SP2). Calculated eBC mass from the LAHM analysis and the SP2 refractory black carbon (rBC) results were well correlated (r2 = 0.92). These results indicate that a substantial portion of the light-absorbing particles in the more polluted regions were likely BC. The 3 years of data show that glaciers in the Cordillera Blanca Mountains close to human population centers have substantially higher levels of eBC (as high as 70 ng g-1) than remote glaciers (as low as 2.0 ng g-1 eBC), indicating that population centers can influence local glaciers by sourcing BC.

  17. Measurements of light absorbing particulates on the glaciers in the Cordillera Blanca, Peru

    NASA Astrophysics Data System (ADS)

    Schmitt, C. G.; All, J. D.; Schwarz, J. P.; Arnott, W. P.; Cole, R. J.; Lapham, E.; Celestian, A.

    2014-10-01

    Glaciers in the tropical Andes have been rapidly losing mass since the 1970s. In addition to the documented increase in air temperature, increases in light absorbing particulates deposited on glaciers could be contributing to the observed glacier loss. Here we report on measurements of light absorbing particulates sampled from glaciers during three surveys in the Cordillera Blanca in Peru. During three research expeditions in the dry seasons (May-August) of 2011, 2012 and 2013, two hundred and forty snow samples were collected from fifteen mountain peaks over altitudes ranging from 4800 to nearly 6800 m. Several mountains were sampled each of the three expeditions and some mountains were sampled multiple times during the same expedition. Collected snow samples were melted and filtered in the field then later analyzed using the Light Absorption Heating Method (LAHM), a new technique that measures the ability of particulates on filters to absorb visible light. LAHM results have been calibrated using filters with known amounts of fullerene soot, a common industrial surrogate for black carbon (BC). As sample filters often contain dust in addition to BC, results are presented in terms of effective Black Carbon (eBC). During the 2013 survey, snow samples were collected and kept frozen for analysis with a Single Particle Soot Photometer (SP2). Calculated eBC mass from the filter analysis and the SP2 refractory Black Carbon (rBC) results were well correlated (r2 = 0.92). These results indicate that a substantial portion of the light absorbing particulates in the more polluted areas were likely BC. The three years of data show that glaciers in the Cordillera Blanca Mountains close to human population centers have substantially higher levels of eBC (as high as 70 ng g-1) than remote glaciers (as low as 2.0 ng g-1 eBC), indicating that population centers can influence local glaciers by sourcing BC.

  18. Method of absorbing UF.sub.6 from gaseous mixtures in alkamine absorbents

    DOEpatents

    Lafferty, Robert H.; Smiley, Seymour H.; Radimer, Kenneth J.

    1976-04-06

    A method of recovering uranium hexafluoride from gaseous mixtures employing as an absorbent a liquid composition at least one of the components of which is chosen from the group consisting of ethanolamine, diethanolamine, and 3-methyl-3-amino-propane-diol-1,2.

  19. Carbon Dioxide Absorption Heat Pump

    NASA Technical Reports Server (NTRS)

    Jones, Jack A. (Inventor)

    2002-01-01

    A carbon dioxide absorption heat pump cycle is disclosed using a high pressure stage and a super-critical cooling stage to provide a non-toxic system. Using carbon dioxide gas as the working fluid in the system, the present invention desorbs the CO2 from an absorbent and cools the gas in the super-critical state to deliver heat thereby. The cooled CO2 gas is then expanded thereby providing cooling and is returned to an absorber for further cycling. Strategic use of heat exchangers can increase the efficiency and performance of the system.

  20. Lightcurve Analysis of Fourteen Asteroids

    NASA Astrophysics Data System (ADS)

    Pray, Donald P.; Galad, Adrian; Husarik, Marek; Oey, Julian

    2008-03-01

    Lightcurve period and amplitude are reported for the following asteroids observed at Carbuncle Hill Observatory and other sites between December 2006 and March 2007: 1806 Derice, 2472 Bradman, 2480 Popanov, 2768 Gorky, 2874 Jim Young, 3314 Beals, 4936 Butakov, 5676 Voltaire, 6709 Hiromiyuki, 6737 Okabayashi, 9368 Eshashi, 13497 Ronstone, (14142) 1998 SG10 and (46598) 1993 FT2.

  1. Absorbing layers for the Dirac equation

    SciTech Connect

    Pinaud, Olivier

    2015-05-15

    This work is devoted to the construction of perfectly matched layers (PML) for the Dirac equation, that not only arises in relativistic quantum mechanics but also in the dynamics of electrons in graphene or in topological insulators. While the resulting equations are stable at the continuous level, some care is necessary in order to obtain a stable scheme at the discrete level. This is related to the so-called fermion doubling problem. For this matter, we consider the numerical scheme introduced by Hammer et al. [19], and combine it with the discretized PML equations. We state some arguments for the stability of the resulting scheme, and perform simulations in two dimensions. The perfectly matched layers are shown to exhibit, in various configurations, superior absorption than the absorbing potential method and the so-called transport-like boundary conditions.

  2. Electromagnetic radiation absorbers and modulators comprising polyaniline

    DOEpatents

    Epstein, Arthur J.; Ginder, John M.; Roe, Mitchell G.; Hajiseyedjavadi, Hamid

    1992-01-01

    A composition for absorbing electromagnetic radiation, wherein said electromagnetic radiation possesses a wavelength generally in the range of from about 1000 Angstroms to about 50 meters, wherein said composition comprises a polyaniline composition of the formula ##STR1## where y can be equal to or greater than zero, and R.sup.1 and R.sup.2 are independently selected from the group containing of H, --OCH.sub.3, --CH.sub.3, --F, --Cl, --Br, --I, NR.sup.3 .sub.2, --NHCOR.sup.3, --OH, --O.sup.-, SR.sup.3, --OCOR.sup.3, --NO.sub.2, --COOH, --COOR.sup.3, --COR.sup.3, --CHO, and --CN, where R.sup.3 is a C.sub.1 to C.sub.8 alkyl, aryl or aralkyl group.

  3. Quasiperiodicity in lasers with saturable absorbers

    SciTech Connect

    Erneux, T.; Mandel, P.; Magnan, J.F.

    1984-05-01

    In this paper, we consider the mean-field equations for the laser with a saturable absorber (LSA) and concentrate on the low-intensity solutions. We show that the LSA equations may admit two successive bifurcations. The first bifurcation corresponds to the transition from the zero-intensity state to time-periodic intensities and is a Hopf bifurcation. The second bifurcation corresponds to the transition from these time-periodic intensities to quasiperiodic intensities which are characterized by two incommensurable frequencies. In order to describe these transitions, we investigate a particular limit of the parameters and propose a new perturbation method for solving the LSA equations. We give analytical conditions for the existence of both the primary and secondary bifurcations.

  4. Statistics of the doses absorbed by workers

    NASA Astrophysics Data System (ADS)

    Parisi, A.

    1982-10-01

    A statistical analysis of the distribution of the doses by individual workers is presented to assess existing norms. A log-normal distribution is assumed for the individual doses. A reference distribution is introduced, characterized by log-normal distribution of annual doses, average 0,5 rem (10% of the limit) and 0.1% of the individuals that will absorb more than 5 rem. Expressions are given for the probability of finding a dose in a given interval and for the fraction of the collective dose due to doses from a given interval. An example using data from medical professions in the United States shows that the fraction of workers with annual doses larger than 5 rem is not contained within the 0.1% recommended limit, and that the level of risk is not uniform between professions.

  5. Microcellular ceramic foams for radar absorbing structures

    SciTech Connect

    Huling, J.; Phillips, D.

    1996-09-01

    This is the final report of a one-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The goal of this project is to develop a lightweight, semi-structural, radar-absorbing ceramic foam that can be incorporated into aircraft exhaust systems to replace many of the currently used dense ceramic parts and thereby improve the radar cross section. Although the conventional processes for producing ceramic foams have not been able to provide materials that meet the design specifications for high strength at low density, we have developed and demonstrated a novel sol-gel emulsion process for preparing microcellular ceramic foams in which compositional and microstructural control is expected to provide the requisite high-temperature radar-absorption, strength-to-weight ratio, and thermal insulative properties.

  6. Cusps, self-organization, and absorbing states.

    PubMed

    Bonachela, Juan A; Alava, Mikko; Muñoz, Miguel A

    2009-05-01

    Elastic interfaces embedded in (quenched) random media exhibit metastability and stick-slip dynamics. These nontrivial dynamical features have been shown to be associated with cusp singularities of the coarse-grained disorder correlator. Here we show that annealed systems with many absorbing states and a conservation law but no quenched disorder exhibit identical cusps. On the other hand, similar nonconserved systems in the directed percolation class are also shown to exhibit cusps but of a different type. These results are obtained both by a recent method to explicitly measure disorder correlators and by defining an alternative new protocol inspired by self-organized criticality, which opens the door to easily accessible experimental realizations.

  7. Applicability of Fluorescence and Absorbance Spectroscopy to Estimate Organic Pollution in Rivers

    PubMed Central

    Knapik, Heloise Garcia; Fernandes, Cristovão Vicente Scapulatempo; de Azevedo, Júlio Cesar Rodrigues; do Amaral Porto, Monica Ferreira

    2014-01-01

    Abstract This article explores the applicability of fluorescence and absorbance spectroscopy for estimating organic pollution in polluted rivers. The relationship between absorbance, fluorescence intensity, dissolved organic carbon, biochemical oxygen demand (BOD), chemical oxygen demand (COD), and other water quality parameters were used to characterize and identify the origin and the spatial variability of the organic pollution in a highly polluted watershed. Analyses were performed for the Iguassu River, located in southern Brazil, with area about 2,700 km2 and ∼3 million inhabitants. Samples were collect at six monitoring sites covering 107 km of the main river. BOD, COD, nitrogen, and phosphorus concentration indicates a high input of sewage to the river. Specific absorbance at 254 and 285 nm (SUVA254 and A285/COD) did not show significant variation between sites monitored, indicating the presence of both dissolved compounds found in domestic effluents and humic and fulvic compounds derived from allochthonous organic matter. Correlations between BOD and tryptophan-like fluorescence peak (peak T2, r=0.7560, and peak T1, r=0.6949) and tyrosine-like fluorescence peak (peak B, r=0.7321) indicated the presence of labile organic matter and thus confirmed the presence of sewage in the river. Results showed that fluorescence and absorbance spectroscopy provide useful information on pollution in rivers from critical watersheds and together are a robust method that is simpler and more rapid than traditional methods employed by regulatory agencies. PMID:25469076

  8. Clearance of absorbed selenium by the liver

    SciTech Connect

    Kato, Tatsuko; Read, R.; Rozga, J.; Burk, R.F. )

    1991-03-11

    The liver plays a central role in the metabolism of selenium. It secretes plasma selenoproteins, contains a major fraction of the glutathione peroxidase in the body, and synthesizes excretory metabolites. The role of the liver in processing newly absorbed selenium was studied. Male chow-fed rats were fasted overnight and given 24 ng of selenium as {sup 75}SeO{sub 3}{sup 2{minus}} by stomach tube. Animals were exsanguinated at 15, 30, 45, 60, 90, 120, and 180 min after dosing. Comparison of {sup 75}Se uptake by liver, kidney, heart, muscle, testis, brain, and spleen indicated an earlier uptake by liver than by any other tissue. At 15 min, {sup 75}Se in the portal vein blood was 2.6 times that in the hepatic vein blood. Gel filtration analysis suggested a loose association of {sup 75}Se with protein in plasma at 15 min, but immunoprecipitation indicated it was largely in the form of selenoprotein P after 30 min. End-to-side portacaval shunts (PCS) were constructed in rats and sham-operated animals were used as controls. When {sup 75}SeO{sub 3}{sup 2{minus}} was given to animals with PCS, uptake of {sup 75}Se by liver did not precede uptake by other tissues. Also no gradient was detected across the lungs or kidney. {sup 75}Se content of the kidney was higher in PCS rats than in sham-operated rats. This is consistent with removal of the first-pass effect of the liver facilitating uptake of {sup 75}Se by systemic tissues. These results suggest that the preferential uptake of absorbed selenium by the liver is due both to its position in the portal circulation and to an intrinsic high uptake capacity.

  9. Warming of the Arctic Lower Stratosphere by Light Absorbing Particle

    NASA Astrophysics Data System (ADS)

    Baumgardner, D.; Raga, G. B.; Kok, G.; Anderson, B.

    2003-12-01

    Light absorption by particles such as soot and dust change the thermodynamic structure of the atmosphere and contribute to regional and global climate change. The lower stratosphere is particularly sensitive to the presence of light absorbing particles (LAP) since particles in this region can reside from months to years, in contrast to upper tropospheric lifetimes of days to weeks. The source of particles in the lower stratosphere may be aircraft, meteorites or transport from tropospheric sources. There is a serious deficiency of accurate and quantitative measurements of these particles that limits our understanding of the origin and lifetime of aerosols in this region of the atmosphere and how their presence alters radiative fluxes that lead to climate change. Here we present measurements in the Arctic lower stratosphere with a new, single particle soot photometer (SP2) that has detected black carbon (BC) mass concentrations of 20-1000 ng m-3. These concentrations are 10-1000 times larger than those reported in previous experimental studies and are at least 30 times larger than predictions based on fuel consumption by commercial aircraft. The comparison of the measurements of BC with published 3D model predictions suggests that particles transported from the troposphere are the likely source of LAP in the Arctic lower stratosphere. Radiative transfer calculations that include the presence of a layer of LAP between 9 and 12 km, indicate an increase in the localised heating of this layer by approximately 25%.

  10. Ocean mediation of tropospheric response to reflecting and absorbing aerosols

    NASA Astrophysics Data System (ADS)

    Xu, Y.; Xie, S. P.

    2015-12-01

    Radiative forcing by reflecting (e.g., sulfate, SO4) and absorbing (e.g., black carbon, BC) aerosols is distinct: the former cools the planet by reducing solar radiation at the top of the atmosphere and the surface, without largely affecting the atmospheric column, while the latter heats the atmosphere directly. Despite the fundamental difference in forcing, here we show that the structure of the tropospheric response is remarkably similar between the two types of aerosols, featuring a deep vertical structure of temperature change (of opposite sign) at the Northern Hemisphere (NH) mid-latitudes. The deep temperature structure is anchored by the slow response of the ocean, as a large meridional sea surface temperature (SST) gradient drives an anomalous inter-hemispheric Hadley circulation in the tropics and induces atmospheric eddy adjustments at the NH mid-latitudes. The tropospheric warming in response to projected future decline in reflecting aerosols poses additional threats to the stability of mountain glaciers in the NH. Additionally, robust tropospheric response is unique to aerosol forcing and absent in the CO2 response, which can be exploited for climate change attribution.

  11. Black phosphorus saturable absorber for ultrashort pulse generation

    SciTech Connect

    Sotor, J. Sobon, G.; Abramski, K. M.; Macherzynski, W.; Paletko, P.

    2015-08-03

    Low-dimensional materials, due to their unique and versatile properties, are very interesting for numerous applications in electronics and optoelectronics. Recently rediscovered black phosphorus, with a graphite-like layered structure, can be effectively exfoliated up to the single atomic layer called phosphorene. Contrary to graphene, it possesses a direct band gap controllable by the number of stacked atomic layers. For those reasons, black phosphorus is now intensively investigated and can complement or replace graphene in various photonics and electronics applications. Here, we demonstrate that black phosphorus can serve as a broadband saturable absorber and can be used for ultrashort optical pulse generation. The mechanically exfoliated ∼300 nm thick layers of black phosphorus were transferred onto the fiber core, and under pulsed excitation at 1560 nm wavelength, its transmission increases by 4.6%. We have demonstrated that the saturable absorption of black phosphorus is polarization sensitive. The fabricated device was used to mode-lock an Er-doped fiber laser. The generated optical solitons with the 10.2 nm bandwidth and 272 fs duration were centered at 1550 nm. The obtained results unambiguously show that black phosphorus can be effectively used for ultrashort pulse generation with performances similar or even better than currently used graphene or carbon nanotubes. This application of black phosphorus proves its great potential to future practical use in photonics.

  12. Phase-contrast imaging of weakly absorbing materials using hard X-rays

    NASA Astrophysics Data System (ADS)

    Davis, T. J.; Gao, D.; Gureyev, T. E.; Stevenson, A. W.; Wilkins, S. W.

    1995-02-01

    IMAGING with hard X-rays is an important diagnostic tool in medicine, biology and materials science. Contact radiography and tomography using hard X-rays provide information on internal structures that cannot be obtained using other non-destructive methods. The image contrast results from variations in the X-ray absorption arising from density differences and variations in composition and thickness of the object. But although X-rays penetrate deeply into carbon-based compounds, such as soft biological tissue, polymers and carbon-fibre composites, there is little absorption and therefore poor image contrast. Here we describe a method for enhancing the contrast in hard X-ray images of weakly absorbing materials by resolving phase variations across the X-ray beam1-4. The phase gradients are detected using diffraction from perfect silicon crystals. The diffraction properties of the crystal determine the ultimate spatial resolution in the image; we can readily obtain a resolution of a fraction of a millimetre. Our method shows dramatic contrast enhancement for weakly absorbing biological and inorganic materials, compared with conventional radiography using the same X-ray energy. We present both bright-field and dark-field phase-contrast images, and show evidence of contrast reversal. The method should have the clinical advantage of good contrast for low absorbed X-ray dose.

  13. A 31 mW, 280 fs passively mode-locked fiber soliton laser using a high heat-resistant SWNT/P3HT saturable absorber coated with siloxane.

    PubMed

    Ono, Takato; Hori, Yuichiro; Yoshida, Masato; Hirooka, Toshihiko; Nakazawa, Masataka; Mata, Junji; Tsukamoto, Jun

    2012-10-01

    We report a substantial increase in the heat resistance in a connector-type single-wall carbon nanotube (SWNT) saturable absorber by sealing SWNT/P3HT composite with siloxane. By applying the saturable absorber to a passively mode-locked Er fiber laser, we successfully demonstrated 280 fs, 31 mW pulse generation with a fivefold improvement in heat resistance.

  14. Development and characterization of fourteen novel microsatellite markers for the chestnut short-tailed fruit bat (Carollia castanea), and cross-amplification to related species

    PubMed Central

    Waits, Lisette P.; Hohenlohe, Paul A.

    2016-01-01

    Rapid anthropogenic land use change threatens the primary habitat of the Chestnut short-tailed bat (Carollia castanea) throughout much of its range. Information on population genetic structure can inform management strategies for this widespread frugivorous bat, and effective protection of C. castanea will also benefit the more than 20 mutualistic plant species of which this bat is the primary seed disperser. To facilitate understanding of population genetic structure in this species, fourteen novel microsatellite markers were developed using restriction-site-associated DNA libraries and Illumina sequencing and tested on 28 individuals from 13 locations in Costa Rica. These are the first microsatellite markers developed for C. castanea. All loci were polymorphic, with number of alleles ranging from 2–11 and average observed heterozygosity of 0.631. Markers were also cross-amplified in three additional frugivorous bat species threatened by habitat loss and fragmentation: Sowell’s short-tailed bat (Carollia sowelli), Seba’s short-tailed bat (Carollia perspicillata), and the Jamaican fruit bat (Artibeus jamaicensis), and 10, 11, and 8 were polymorphic, respectively. PMID:27688969

  15. Development and characterization of fourteen novel microsatellite markers for the chestnut short-tailed fruit bat (Carollia castanea), and cross-amplification to related species.

    PubMed

    Cleary, Katherine A; Waits, Lisette P; Hohenlohe, Paul A

    2016-01-01

    Rapid anthropogenic land use change threatens the primary habitat of the Chestnut short-tailed bat (Carollia castanea) throughout much of its range. Information on population genetic structure can inform management strategies for this widespread frugivorous bat, and effective protection of C. castanea will also benefit the more than 20 mutualistic plant species of which this bat is the primary seed disperser. To facilitate understanding of population genetic structure in this species, fourteen novel microsatellite markers were developed using restriction-site-associated DNA libraries and Illumina sequencing and tested on 28 individuals from 13 locations in Costa Rica. These are the first microsatellite markers developed for C. castanea. All loci were polymorphic, with number of alleles ranging from 2-11 and average observed heterozygosity of 0.631. Markers were also cross-amplified in three additional frugivorous bat species threatened by habitat loss and fragmentation: Sowell's short-tailed bat (Carollia sowelli), Seba's short-tailed bat (Carollia perspicillata), and the Jamaican fruit bat (Artibeus jamaicensis), and 10, 11, and 8 were polymorphic, respectively. PMID:27688969

  16. [Determination of the contents of fourteen elements in urine of Xinjiang kuitun fluorine poisoning and arsenic-fluoride poisoning patients by ICP-AES].

    PubMed

    Sun, Lian; Liu, Hai; Chang, Jun-min; Liu, Kai-tai; Yang, Pei-jun; Feng, Yan-bo

    2005-08-01

    A method of determining the contents of K, Na, Ca, Mg, P, Zn, Al, Ba, Co, Cu, Ni, Sr, Cr and Ti, fourteen elements, in urine of Xinjiang Kuitun fluorine poisoning and arsenic-fluoride poisoning patients was developed. The operation conditions of ICP-AES, and the lowest test concentration, precision and linear ranges were studied. The relative standard deviation of the method was 0.24%-2.47% (n=10), the average recoveries were 90.4%-00.5%. The contents of K and Na in urine of fluorine poisoning and arsenic-fluoride poisoning patients were higher than those of healthy contrast group. The contents of Ba, Co, Cu, Ni and Cr in the urine of arsenic-fluoride poisoning patients were higher than those of fluorine poisoning patients and healthy contrast group (P < 0.05). The contents of P, Ca, Mg, Zn, Al, Sr and Ti do not have statistic significance (P > 0.05). The method was sensitive, simple and accurate. The experiment data was reliable.

  17. Development and characterization of fourteen novel microsatellite markers for the chestnut short-tailed fruit bat (Carollia castanea), and cross-amplification to related species

    PubMed Central

    Waits, Lisette P.; Hohenlohe, Paul A.

    2016-01-01

    Rapid anthropogenic land use change threatens the primary habitat of the Chestnut short-tailed bat (Carollia castanea) throughout much of its range. Information on population genetic structure can inform management strategies for this widespread frugivorous bat, and effective protection of C. castanea will also benefit the more than 20 mutualistic plant species of which this bat is the primary seed disperser. To facilitate understanding of population genetic structure in this species, fourteen novel microsatellite markers were developed using restriction-site-associated DNA libraries and Illumina sequencing and tested on 28 individuals from 13 locations in Costa Rica. These are the first microsatellite markers developed for C. castanea. All loci were polymorphic, with number of alleles ranging from 2–11 and average observed heterozygosity of 0.631. Markers were also cross-amplified in three additional frugivorous bat species threatened by habitat loss and fragmentation: Sowell’s short-tailed bat (Carollia sowelli), Seba’s short-tailed bat (Carollia perspicillata), and the Jamaican fruit bat (Artibeus jamaicensis), and 10, 11, and 8 were polymorphic, respectively.

  18. Measurement and Simulation Results of Ti Coated Microwave Absorber

    SciTech Connect

    Sun, Ding; McGinnis, Dave; /Fermilab

    1998-11-01

    When microwave absorbers are put in a waveguide, a layer of resistive coating can change the distribution of the E-M fields and affect the attenuation of the signal within the microwave absorbers. In order to study such effect, microwave absorbers (TT2-111) were coated with titanium thin film. This report is a document on the coating process and measurement results. The measurement results have been used to check the simulation results from commercial software HFSS (High Frequency Structure Simulator.)

  19. Optoacoustic control of laser energy absorbed inside tissue

    NASA Astrophysics Data System (ADS)

    Genina, Elina A.; Lapin, Sergey A.; Petrov, Vladimir V.; Tuchin, Valery V.

    2001-06-01

    Monitoring of laser energy absorbed inside tissue is very impotent for laser thermocoagulation of tumors, laser surgery etc. Experimental results have shown that analysis of optoacoustic signal magnitude induced by short laser pulse inside tissue can give quantitative information about laser fluence absorbed by the tissue. We have investigated some tissue phantoms with absorbing objects inside. The first harmonic (1064 nm) of Q-switched Nd:YAG-laser was used for generation of optoacoustic signals.

  20. Vertical-plane pendulum absorbers for minimizing helicopter vibratory loads

    NASA Technical Reports Server (NTRS)

    Amer, K. B.; Neff, J. R.

    1974-01-01

    The use of pendulum dynamic absorbers mounted on the blade root and operating in the vertical plane to minimize helicopter vibratory loads was discussed. A qualitative description was given of the concept of the dynamic absorbers and some results of analytical studies showing the degree of reduction in vibratory loads attainable are presented. Operational experience of vertical plane dynamic absorbers on the OH-6A helicopter is also discussed.

  1. Refractory plasmonics with titanium nitride: broadband metamaterial absorber.

    PubMed

    Li, Wei; Guler, Urcan; Kinsey, Nathaniel; Naik, Gururaj V; Boltasseva, Alexandra; Guan, Jianguo; Shalaev, Vladimir M; Kildishev, Alexander V

    2014-12-17

    A high-temperature stable broadband plasmonic absorber is designed, fabricated, and optically characterized. A broadband absorber with an average high absorption of 95% and a total thickness of 240 nm is fabricated, using a refractory plasmonic material, titanium nitride. This absorber integrates both the plasmonic resonances and the dielectric-like loss. It opens a path for the interesting applications such as solar thermophotovoltaics and optical circuits.

  2. The effects of optical scattering on pulsed photoacoustic measurement in weakly absorbing liquids

    NASA Astrophysics Data System (ADS)

    Zhao, Zuomin; Myllylä, Risto

    2001-12-01

    In this article, a photoacoustic technique, excited by a pulsed diode laser, is used in a study of optically absorbing and scattering liquids. The article discusses the effects of optical scattering on the photoacoustic source and signal. In the empirical part, varying amounts of milk and carbon powder were added to water to control the absorption and scattering coefficients of the resulting liquids. The results showed that scattering increases the duration of the photoacoustic signal while decreasing the signal amplitude to some degree. This paper also shows a quite simple method for measuring the scattering coefficient in weakly absorbing materials using a PZT transducer, which can be used to determine the concentration of highly scattering compositions in some cases.

  3. Microscopic analysis of saturable absorbers: Semiconductor saturable absorber mirrors versus graphene

    NASA Astrophysics Data System (ADS)

    Hader, J.; Yang, H.-J.; Scheller, M.; Moloney, J. V.; Koch, S. W.

    2016-02-01

    Fully microscopic many-body calculations are used to study the influence of strong sub-picosecond pulses on the carrier distributions and corresponding optical response in saturable absorbers used for mode-locking—semiconductor (quantum well) saturable absorber mirrors (SESAMs) and single layer graphene based saturable absorber mirrors (GSAMs). Unlike in GSAMs, the saturation fluence and recovery time in SESAMs show a strong spectral dependence. While the saturation fluence in the SESAM is minimal at the excitonic bandgap, the optimal recovery time and least pulse distortion due to group delay dispersion are found for excitation higher in the first subband. For excitation near the SESAM bandgap, the saturation fluence is about one tenth of that in the GSAM. At energies above the bandgap, the fluences in both systems become similar. A strong dependence of the saturation fluence on the pulse width in both systems is caused by carrier relaxation during the pulse. The recovery time in graphene is found to be about two to four times faster than that in the SESAMs. The occurrence of negative differential transmission in graphene is shown to be caused by dopant related carriers. In SESAMs, a negative differential transmission is found when exciting below the excitonic resonance where excitation induced dephasing leads to an enhancement of the absorption. Comparisons of the simulation data to the experiment show a very good quantitative agreement.

  4. Neutron absorber inserts for 55-gal drums

    SciTech Connect

    Wilson, R.E.; Kim, Y.S.; Toffer, H.

    2000-07-01

    Transport and temporary storage of more than 200 g of fissile material in 55-gal drums at the Rocky Flats Environmental Technology Site (RFETS) have received significant attention during the cleanup mission. This paper discusses successful applications and results of extensive computer studies. Interim storage and movement of fissile material in excess of standard drum limits (200 g) in a safe configuration have been accomplished using special drum inserts. Such inserts have constrained the contents of a drum to two 4-{ell} bottles. The content of the bottles was limited to 600 g Pu or U in solution or a total of 1200 g for the entire drum. The inserts were a simple design constructed of stainless steel, forming a vertical cylindrical pipe into which two bottles, one on top of the other, could be centered in the drum. The remaining drum volume was configured to preclude any additional bottle placement external to the vertical cylinder. Such inserts in drums were successfully used in moving high-concentration solution from one building to another for chemical processing. Concern about the knowledge of fissile material concentration in bottles prompted another study for drum inserts. The past practice had been to load up to fourteen 4-{ell} bottles into 55-gal drums, provided the fissile material concentration was <6 g fissile/{ell}, and the total drum contents of 200 g fissile was not exceeded. Only one determination of the solution concentration was needed. An extensive safety analysis concluded that a single measurement of bottle content could not ensure compliance with double-contingency-criterion requirements. A second determination of the bottle contents was required before bottles could be placed in a 55-gal drum. Al alternative to a dual-measurement protocol, which is for bolstering administrative control, was to develop an engineered safety feature that would eliminate expensive tests and administrative decisions. A drum insert design was evaluated that

  5. Optimal active vibration absorber: Design and experimental results

    NASA Technical Reports Server (NTRS)

    Lee-Glauser, Gina; Juang, Jer-Nan; Sulla, Jeffrey L.

    1992-01-01

    An optimal active vibration absorber can provide guaranteed closed-loop stability and control for large flexible space structures with collocated sensors/actuators. The active vibration absorber is a second-order dynamic system which is designed to suppress any unwanted structural vibration. This can be designed with minimum knowledge of the controlled system. Two methods for optimizing the active vibration absorber parameters are illustrated: minimum resonant amplitude and frequency matched active controllers. The Controls-Structures Interaction Phase-1 Evolutionary Model at NASA LaRC is used to demonstrate the effectiveness of the active vibration absorber for vibration suppression. Performance is compared numerically and experimentally using acceleration feedback.

  6. Decomposition-based recovery of absorbers in turbid media

    SciTech Connect

    Campbell, S. D.; Goodin, I. L.; Grobe, S. D.; Su, Q.; Grobe, R.

    2007-12-15

    We suggest that the concept of the point-spread function traditionally used to predict the blurred image pattern of various light sources embedded inside turbid media can be generalized under certain conditions to predict also the presence and location of spatially localized absorbing inhomogeneities based on shadow point-spread functions associated with each localized absorber in the medium. The combined image obtained from several absorbers can then be decomposed approximately into the arithmetic sums of these individual shadow point-spread functions with suitable weights that can be obtained from multiple-regression analysis. This technique permits the reconstruction of the location of absorbers.

  7. Tunable microwave metamaterial absorbers using varactor-loaded split loops

    NASA Astrophysics Data System (ADS)

    Zhu, Jinfeng; Li, Delong; Yan, Shuang; Cai, Yijun; Huo Liu, Qing; Lin, Timothy

    2015-12-01

    Currently, implementation of active circuit elements within metamaterials is an effective way to make them electrically tunable. We combine varactors with split copper loops in a metamaterial absorber in order to obtain an electrically tunable microwave response. This absorber has a compact planar structure and a simplified back feeding network. Flexible frequency tunability of the microwave reflection in the range of 5-6 GHz is experimentally achieved. The design, simulation, and experimental results are systematically presented. The proposed method is scalable for developing active metamaterial absorbers based on metal loops, and shows a promising potential of active metamaterial absorbers for extensive microwave applications.

  8. Dual band metamaterial perfect absorber based on artificial dielectric "molecules".

    PubMed

    Liu, Xiaoming; Lan, Chuwen; Li, Bo; Zhao, Qian; Zhou, Ji

    2016-01-01

    Dual band metamaterial perfect absorbers with two absorption bands are highly desirable because of their potential application areas such as detectors, transceiver system, and spectroscopic imagers. However, most of these dual band metamaterial absorbers proposed were based on resonances of metal patterns. Here, we numerically and experimentally demonstrate a dual band metamaterial perfect absorber composed of artificial dielectric "molecules" with high symmetry. The artificial dielectric "molecule" consists of four "atoms" of two different sizes corresponding to two absorption bands with near unity absorptivity. Numerical and experimental absorptivity verify that the dual-band metamaterial absorber is polarization insensitive and can operate in wide-angle incidence. PMID:27406699

  9. Impact Testing and Simulation of a Sinusoid Foam Sandwich Energy Absorber

    NASA Technical Reports Server (NTRS)

    Jackson, Karen E.; Fasanella, Edwin L; Littell, Justin D.

    2015-01-01

    A sinusoidal-shaped foam sandwich energy absorber was developed and evaluated at NASA Langley Research Center through multi-level testing and simulation performed under the Transport Rotorcraft Airframe Crash Testbed (TRACT) research project. The energy absorber, designated the "sinusoid," consisted of hybrid carbon- Kevlar® plain weave fabric face sheets, two layers for each face sheet oriented at +/-45deg with respect to the vertical or crush direction, and a closed-cell ELFOAM(TradeMark) P200 polyisocyanurate (2.0-lb/ft3) foam core. The design goal for the energy absorber was to achieve an average floor-level acceleration of between 25- and 40-g during the full-scale crash test of a retrofitted CH-46E helicopter airframe, designated TRACT 2. Variations in the design were assessed through quasi-static and dynamic crush testing of component specimens. Once the design was finalized, a 5-ft-long subfloor beam was fabricated and retrofitted into a barrel section of a CH-46E helicopter. A vertical drop test of the barrel section was conducted onto concrete to evaluate the performance of the energy absorber prior to retrofit into TRACT 2. Finite element models were developed of all test articles and simulations were performed using LSDYNA ®, a commercial nonlinear explicit transient dynamic finite element code. Test analysis results are presented for the sinusoid foam sandwich energy absorber as comparisons of load-displacement and acceleration-time-history responses, as well as predicted and experimental structural deformations and progressive damage for each evaluation level (component testing through barrel section drop testing).

  10. Mercury capture in bench-scale absorbers

    SciTech Connect

    Livengood, C.D.; Huang, H.S.; Mendelsohn, M.H.; Wu, J.M.

    1994-08-01

    This paper gives,a brief overview of research being conducted at Argonne National Laboratory on the capture of mercury by both dry sorbents and wet scrubbers. The emphasis in the research is on development of a better understanding of the key factors that control the capture of mercury. Future work is expected to utilize that information for the development of new or modified process concepts featuring enhanced mercury capture capabilities. The results and conclusions to date from the Argonne -research on dry sorbents can be summarized as follows: lime hydrates, either regular or high-surface-area, are `not effective in removing mercury; mercury removals are enhanced by the addition of activated carbon; mercury removals with activated carbon decrease with increasing temperature, larger particle size, and decreasing mercury concentration in the gas; and chemical pretreatment (e.g., with sulfur or (CaCl{sub 2}) can greatly increase the removal capacity of activated carbon. Preliminary results from the wet scrubbing research include: no removal of elemental mercury is obtained under normal scrubber operating conditions; mercury removal is improved by the addition of packing or production of smaller gas bubbles to increase the gas-liquid contact area; polysulfide solutions do not appear promising for enhancing mercury removal in typical FGC systems; stainless steel packing appears to have beneficial properties for mercury removal and should be investigated further; and other chemical additives may offer greatly enhanced removals.

  11. Thermodynamic assessment of microencapsulated sodium carbonate slurry for carbon capture

    SciTech Connect

    Stolaroff, Joshuah K.; Bourcier, William L.

    2014-01-01

    Micro-encapsulated Carbon Sorbents (MECS) are a new class of carbon capture materials consisting of a CO₂- absorbing liquid solvent contained within solid, CO₂-permeable, polymer shells. MECS enhance the rate of CO₂ absorption for solvents with slow kinetics and prevent solid precipitates from scaling and fouling equipment, two factors that have previously limited the use of sodium carbonate solution for carbon capture. Here, we examine the thermodynamics of sodium carbonate slurries for carbon capture. We model the vapour-liquid-solid equilibria of sodium carbonate and find several features that can contribute to an energy-efficient capture process: very high CO₂ pressures in stripping conditions, relatively low water vapour pressures in stripping conditions, and good swing capacity. The potential energy savings compared with an MEA system are discussed.

  12. Thermodynamic assessment of microencapsulated sodium carbonate slurry for carbon capture

    DOE PAGES

    Stolaroff, Joshuah K.; Bourcier, William L.

    2014-01-01

    Micro-encapsulated Carbon Sorbents (MECS) are a new class of carbon capture materials consisting of a CO₂- absorbing liquid solvent contained within solid, CO₂-permeable, polymer shells. MECS enhance the rate of CO₂ absorption for solvents with slow kinetics and prevent solid precipitates from scaling and fouling equipment, two factors that have previously limited the use of sodium carbonate solution for carbon capture. Here, we examine the thermodynamics of sodium carbonate slurries for carbon capture. We model the vapour-liquid-solid equilibria of sodium carbonate and find several features that can contribute to an energy-efficient capture process: very high CO₂ pressures in stripping conditions,more » relatively low water vapour pressures in stripping conditions, and good swing capacity. The potential energy savings compared with an MEA system are discussed.« less

  13. Hot Carrier Extraction with Plasmonic Broadband Absorbers.

    PubMed

    Ng, Charlene; Cadusch, Jasper J; Dligatch, Svetlana; Roberts, Ann; Davis, Timothy J; Mulvaney, Paul; Gómez, Daniel E

    2016-04-26

    Hot charge carrier extraction from metallic nanostructures is a very promising approach for applications in photocatalysis, photovoltaics, and photodetection. One limitation is that many metallic nanostructures support a single plasmon resonance thus restricting the light-to-charge-carrier activity to a spectral band. Here we demonstrate that a monolayer of plasmonic nanoparticles can be assembled on a multistack layered configuration to achieve broadband, near-unit light absorption, which is spatially localized on the nanoparticle layer. We show that this enhanced light absorbance leads to ∼40-fold increases in the photon-to-electron conversion efficiency by the plasmonic nanostructures. We developed a model that successfully captures the essential physics of the plasmonic hot electron charge generation and separation in these structures. This model also allowed us to establish that efficient hot carrier extraction is limited to spectral regions where (i) the photons have energies higher than the Schottky junctions and (ii) the absorption of light is localized on the metal nanoparticles.

  14. Ultrathin microwave absorber based on metamaterial

    NASA Astrophysics Data System (ADS)

    Kim, Y. J.; Yoo, Y. J.; Hwang, J. S.; Lee, Y. P.

    2016-11-01

    We suggest that ultrathin broadband metamaterial is a perfect absorber in the microwave regime by utilizing the properties of a resistive sheet and metamaterial. Meta-atoms are composed of four-leaf clover-shape metallic patterns and a metal plane separated by three intermediate resistive sheet layers between four dielectric layers. We interpret the absorption mechanism of the broadband by using the distribution of surface currents at specific frequencies. The simulated absorption was over 99% in 1.8–4.2 GHz. The corresponding experimental absorption was also over 99% in 2.62–4.2 GHz; however, the absorption was slightly lower than 99% in 1.8–2.62 GHz because of the sheet resistance and the changed values for the dielectric constant. Furthermore, it is independent of incident angle. The results of this research indicate the possibility of applications, due to the suppression of noxious exposure, in cell phones, computers and microwave equipments.

  15. A variable passive low-frequency absorber

    NASA Astrophysics Data System (ADS)

    Larsen, Niels Werner; Thompson, Eric R.; Gade, Anders Christian

    2005-04-01

    Multi-purpose concert halls face a dilemma. They can host classical music concerts, rock concerts and spoken word performances in a matter of a short period. These different performance types require significantly different acoustic conditions in order to provide the best sound quality to both the performers and the audience. A recommended reverberation time for classical music may be in the range of 1.5-2 s for empty halls, where rock music sounds best with a reverberation time around 0.8-1 s. Modern rhythmic music often contains high levels of sound energy in the low frequency bands but still requires a high definition for good sound quality. Ideally, the absorption of the hall should be adjustable in all frequency bands in order to provide good sound quality for all types of performances. The mid and high frequency absorption is easily regulated, but adjusting the low-frequency absorption has typically been too expensive or requires too much space to be practical for multi-purpose halls. Measurements were made on a variable low-frequency absorber to develop a practical solution to the dilemma. The paper will present the results of the measurements as well as a possible design.

  16. Oil well sucker rod shock absorber

    SciTech Connect

    Knox, F.B.

    1986-02-18

    An oil well sucker rod shock absorber is described which consists of: an outer cylindrical casing defined by a cylindrical wall and having a removable upper plug and lower plug disposed respectively at upper and lower extremities of the casing. The upper plug has an axial bore and the lower plug defines a closed lower end and has an upwardly facing top surface. The plunger rod is connected to the sucker rod and is slidably disposed in the bore of the upper plug. A piston within the cylindrical casing is coupled to the plunger rod and has a downwardly facing bottom surface. Biasing means have a maximum vertical length disposed vertically within the casing and extending between the downwardly facing surface of the piston and the upwardly facing surface of the lower plug means at all times. This allows vertical reciprocal translation of the plunger rod and the piston within the cylindrical casing downwardly against the biasing means. Apertures are disposed through the cylindrical casing along the entire length thereof opposite the length of the biasing means, allowing downhole fluid pressure to be applied to the piston within the cylindrical casing via the apertures to be added to the force of the biasing means, without causing a fluid lock within the cylinder. Slap and wear of the sucker rod resulting therefrom are reduced and damage prevented.

  17. Spacesuit Evaporator-Absorber-Radiator (SEAR)

    NASA Technical Reports Server (NTRS)

    Bue, Grant C.; Hodgson, Ed; Izenso, Mike; Chan, Weibo; Cupples, Scott

    2011-01-01

    For decades advanced spacesuit developers have pursued a regenerable, robust non-venting system for heat rejection. Toward this end, this paper investigates linking together two previously developed technologies, namely NASA's Spacesuit Water Membrane Evaporator (SWME), and Creare's lithium chloride Heat Pump Radiator (HPR). Heat from a liquid cooled garment is transported to SWME that provides cooling through evaporation. The SEAR is evacuated at the onset of operations and thereafter, the water vapor absorption rate of the HPR maintains a low pressure environment for the SWME to evaporate effectively. This water vapor captured by solid LiCl in the HPR with a high enthalpy of absorption, results in sufficient temperature lift to reject most of the heat to space by radiation. After the sortie, the HPR would be heated up in a regenerator to drive off and recover the absorbed evaporant. A one-fourth scale prototype was built and tested in vacuum conditions at a sink temperature of 250 K. The HPR was able to stably reject 60 W over a 7-hour period. A conceptual design of a full-scale radiator is proposed. Excess heat rejection above 240 W would be accomplished through venting of the evaporant. Loop closure rates were predicted for various exploration environment scenarios.

  18. Design of a multiband terahertz perfect absorber

    NASA Astrophysics Data System (ADS)

    Dan, Hu; Hong-yan, Wang; Zhen-jie, Tang; Xi-wei, Zhang; Lin, Ju; Hua-ying, Wang

    2016-03-01

    A thin-flexible multiband terahertz metamaterial absorber (MA) has been investigated. Each unit cell of the MA consists of a simple metal structure, which includes the top metal resonator ring and the bottom metallic ground plane, separated by a thin-flexible dielectric spacer. Finite-difference time domain simulation indicates that this MA can achieve over 99% absorption at frequencies of 1.50 THz, 3.33 THz, and 5.40 THz by properly assembling the sandwiched structure. However, because of its asymmetric structure, the MA is polarization-sensitive and can tune the absorptivity of the second absorption peak by changing the incident polarization angle. The effect of the error of the structural parameters on the absorption efficiency is also carefully analyzed in detail to guide the fabrication. Moreover, the proposed MA exhibits high refractive-index sensing sensitivity, which has potential applications in multi-wavelength sensing in the terahertz region. Project supported by the National Natural Science Foundation of China (Grant No. 11504006), the Key Scientific Research Project of Higher Education of Henan Province, China (Grant No. 15A140002), and the Science and Technology Planning Project of Henan Province, China (Grant No. 142300410366).

  19. Magnetorheological elastomers in tunable vibration absorbers

    NASA Astrophysics Data System (ADS)

    Ginder, John M.; Schlotter, William F.; Nichols, Mark E.

    2001-07-01

    Filling an elastomeric material with magnetizable particles leads to mechanical properties -shear moduli, tensile moduli, and magnetostriction coefficients - that are reversibly and rapidly controllable by an applied magnetic field. The origin of the field dependence of these properties is the existence of field-induced dipole magnetic forces between the particles. These 'smart' composites, which are sometimes termed magnetorheological (MR) elastomers, have been explored for use in a number of components, including automotive suspension bushings. In these and other applications, the tunability of the stiffness can enhance the compliance-control or vibration-transfer performance of the complex mechanical systems in which they are used. In the present study, we have constructed a simple one-degree-of-freedom mass-spring system - an adaptive tuned vibration absorber - that utilizes MR elastomers as variable-spring-rate elements. This device was used not only to explore the performance of such tunable components, but also to extend measurements of the shear moduli of these materials to higher frequencies than has previously been reported. We find that the field-induced increase in moduli of these materials is effective to mechanical frequencies well above 1 kHz, and that the moduli are consistent with the behavior expected for filled elastomers.

  20. New way to trap carbon

    NASA Astrophysics Data System (ADS)

    2015-06-01

    In reply to the physicsworld.com news story “How to efficiently capture carbon dioxide out of thin air” (16 April, http://ow.ly/LHvpz; see also p4), which described a novel synthetic resin that can capture carbon dioxide (CO2) and remove it from the atmosphere much faster than trees can. The article noted that the resin absorbs CO2 in dry air and releases it again in humid air.

  1. Experimental investigation of a nanofluid absorber employed in a low-profile, concentrated solar thermal collector

    NASA Astrophysics Data System (ADS)

    Li, Qiyuan; Zheng, Cheng; Mesgari, Sara; Hewakuruppu, Yasitha L.; Hjerrild, Natasha; Crisostomo, Felipe; Morrison, Karl; Woffenden, Albert; Rosengarten, Gary; Scott, Jason A.; Taylor, Robert A.

    2015-12-01

    Recent studies [1-3] have demonstrated that nanotechnology, in the form of nanoparticles suspended in water and organic liquids, can be employed to enhance solar collection via direct volumetric absorbers. However, current nanofluid solar collector experimental studies are either relevant to low-temperature flat plate solar collectors (<100 °C) [4] or higher temperature (>100 °C) indoor laboratory-scale concentrating solar collectors [1, 5]. Moreover, many of these studies involve in thermal properties of nanofluid (such as thermal conductivity) enhancement in solar collectors by using conventional selective coated steel/copper tube receivers [6], and no full-scale concentrating collector has been tested at outdoor condition by employing nanofluid absorber [2, 6]. Thus, there is a need of experimental researches to evaluate the exact performance of full-scale concentrating solar collector by employing nanofluids absorber at outdoor condition. As reported previously [7-9], a low profile (<10 cm height) solar thermal concentrating collector was designed and analysed which can potentially supply thermal energy in the 100-250 °C range (an application currently met by gas and electricity). The present study focuses on the design and experimental investigation of a nanofluid absorber employed in this newly designed collector. The nanofluid absorber consists of glass tubes used to contain chemically functionalized multi-walled carbon nanotubes (MWCNTs) dispersed in DI water. MWCNTs (average diameter of 6-13 nm and average length of 2.5-20 μm) were functionalized by potassium persulfate as an oxidant. The nanofluids were prepared with a MCWNT concentration of 50 +/- 0.1 mg/L to form a balance between solar absorption depth and viscosity (e.g. pumping power). Moreover, experimentally comparison of the thermal efficiency between two receivers (a black chrome-coated copper tube versus a MWCNT nanofluid contained within a glass tubetube) is investigated. Thermal

  2. Towards absorbing outer boundaries in general relativity

    NASA Astrophysics Data System (ADS)

    Buchman, Luisa T.; Sarbach, Olivier C. A.

    2006-12-01

    We construct exact solutions to the Bianchi equations on a flat spacetime background. When the constraints are satisfied, these solutions represent in- and outgoing linearized gravitational radiation. We then consider the Bianchi equations on a subset of flat spacetime of the form [0, T] × BR, where BR is a ball of radius R, and analyse different kinds of boundary conditions on ∂BR. Our main results are as follows. (i) We give an explicit analytic example showing that boundary conditions obtained from freezing the incoming characteristic fields to their initial values are not compatible with the constraints. (ii) With the help of the exact solutions constructed, we determine the amount of artificial reflection of gravitational radiation from constraint-preserving boundary conditions which freeze the Weyl scalar Ψ0 to its initial value. For monochromatic radiation with wave number k and arbitrary angular momentum number ell >= 2, the amount of reflection decays as (kR)-4 for large kR. (iii) For each L >= 2, we construct new local constraint-preserving boundary conditions which perfectly absorb linearized radiation with ell <= L. (iv) We generalize our analysis to a weakly curved background of mass M and compute first-order corrections in M/R to the reflection coefficients for quadrupolar odd-parity radiation. For our new boundary condition with L = 2, the reflection coefficient is smaller than that for the freezing Ψ0 boundary condition by a factor of M/R for kR > 1.04. Implications of these results for numerical simulations of binary black holes on finite domains are discussed.

  3. Absorbable-susceptor joining of ceramic surfaces

    NASA Technical Reports Server (NTRS)

    Schroeder, J. E.; Shlichta, P. J. (Inventor)

    1983-01-01

    An assembly of ceramic surfaces particularly refractory metal oxides and carbides, abutting a thin sheet of metal susceptor material are placed in a chamber of an enclosure containing inert gas. An RF coil is activated by power supply to melt the susceptor and adjacent zones of the ceramic. Reactive gas such as oxygen or a carbonizing gas is then fed to the chamber and reacts with the susceptor to form compounds which disperse and dissolve in the zones. On cooling, a strong joint is formed. The susceptor may contain inner perforations and outer perforations to aid in distribution of heat.

  4. Nylon shock absorber prevents injury to parachute jumpers

    NASA Technical Reports Server (NTRS)

    Mandel, J. A.

    1966-01-01

    Nylon shock absorbers reduce the canopy-opening shock of a parachute to a level that protects the wearer from injury. A shock absorber is mounted on each of the four risers between the shroud lines and the harness. Because of their size and location, they pose no problem in repacking the chute and harness after a jump.

  5. An Absorbing Look at Terry-Cloth Towels

    ERIC Educational Resources Information Center

    Moyer, Richard; Everett, Susan

    2010-01-01

    This article describes a lesson where students explore the absorbency of several towels with different weaves and weights. The lesson follows the 5E learning-cycle model and incorporates engineering in the sense of product testing with a focus on the relationship between the weave of a towel and its absorbency. The National Science Education…

  6. 14 CFR 27.475 - Tires and shock absorbers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Tires and shock absorbers. 27.475 Section... AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Strength Requirements Ground Loads § 27.475 Tires and shock... be in their static position and the shock absorbers to be in their most critical position....

  7. 14 CFR 27.475 - Tires and shock absorbers.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Tires and shock absorbers. 27.475 Section... AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Strength Requirements Ground Loads § 27.475 Tires and shock... be in their static position and the shock absorbers to be in their most critical position....

  8. Science on a Roll. Part One: Absorbing Inquiry.

    ERIC Educational Resources Information Center

    Brendzel, Sharon

    2002-01-01

    Presents an activity that tests the absorbency of different brands of paper towels. Suggests making this activity into an open-ended inquiry type of activity. Includes sample questions to guide students, topics for class discussion, and sample methods of using the absorbency activity. (KHR)

  9. 21 CFR 880.5300 - Medical absorbent fiber.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... and that is used for applying medication to, or absorbing small amounts of body fluids from, a patient's body surface. Absorbent fibers intended solely for cosmetic purposes are not included in...

  10. Physically absorbable reagents-collectors in elementary flotation

    SciTech Connect

    S.A. Kondrat'ev; I.G. Bochkarev

    2007-09-15

    Based on the reviewed researches held at the Institute of Mining, Siberian Branch, Russian Academy of Sciences, the effect of physically absorbable reagents-collectors on formation of a flotation complex and its stability in turbulent pulp flows in flotation machines of basic types is considered. The basic requirements for physically absorbable reagents-collectors at different flotation stages are established.

  11. Broadband terahertz metamaterial absorber based on sectional asymmetric structures.

    PubMed

    Gong, Cheng; Zhan, Mingzhou; Yang, Jing; Wang, Zhigang; Liu, Haitao; Zhao, Yuejin; Liu, Weiwei

    2016-01-01

    We suggest and demonstrate the concept and design of sectional asymmetric structures which can manipulate the metamaterial absorber's working bandwidth with maintaining the other inherent advantages. As an example, a broadband terahertz perfect absorber is designed to confirm its effectiveness. The absorber's each cell integrates four sectional asymmetric rings, and the entire structure composed of Au and Si3N4 is only 1.9 μm thick. The simulation results show the bandwidth with absorptivity being larger than 90% is extended by about 2.8 times comparing with the conventional square ring absorber. The composable small cell, ultra-thin, and broadband absorption with polarization and incident angle insensitivity will make the absorber suitable for the applications of focal plane array terahertz imaging. PMID:27571941

  12. Metamaterial perfect absorber using the magnetic resonance of dielectric inclusions

    NASA Astrophysics Data System (ADS)

    Dung, Nguyen Van; Tung, Bui Son; Khuyen, Bui Xuan; Yoo, Young Joon; Lee, YoungPak; Rhee, Joo Yull; Lam, Vu Dinh

    2016-04-01

    In this report, we introduce a stable metamaterial perfect absorber at GHz frequency based on a novel design of a Mie-type resonance. A single perfect absorption peak is achieved at 9.54 GHz, and the influence of the structural parameters on the absorption behavior is studied; the results were consistent with dielectric-resonator theory. The absorption is demonstrated to be polarizationinsensitive; furthermore, the absorber structure can work for a wide incident angle without any change in the resonance peak. Our absorber structure can also control 47% of the resonance peak's position by changing the temperature of the dielectric layer. Our absorber structure can also be applied as an electromagnetic-wave absorber for wide-incident-angle, thermally-controllable devices.

  13. Theory of patch-antenna metamaterial perfect absorbers

    NASA Astrophysics Data System (ADS)

    Bowen, Patrick T.; Baron, Alexandre; Smith, David R.

    2016-06-01

    A metasurface that absorbs waves from all directions of incidence can be achieved if the surface impedance is made to vary as a function of incidence angle in a specific manner. Here we show that a periodic array of planar nanoparticles coupled to a metal film can act as an absorbing metasurface with an angle-dependent impedance. Through a semi-analytical calculation based on coupled-mode theory, we find the perfect absorbing condition is equivalent to balancing the Ohmic and radiative losses of the nanoparticles at normal incidence. Absorption over a wide range of incidence angles can then be obtained by tailoring the scattered far-field pattern of the individual planar nanoparticles such that their radiative losses remain constant. The theory provides a means of understanding the behavior of perfect absorbing structures that have been observed experimentally or numerically, reconciling previously published theories and enabling the optimization of absorbing surfaces.

  14. Thermally induced nonlinear optical absorption in metamaterial perfect absorbers

    SciTech Connect

    Guddala, Sriram Kumar, Raghwendra; Ramakrishna, S. Anantha

    2015-03-16

    A metamaterial perfect absorber consisting of a tri-layer (Al/ZnS/Al) metal-dielectric-metal system with top aluminium nano-disks was fabricated by laser-interference lithography and lift-off processing. The metamaterial absorber had peak resonant absorbance at 1090 nm and showed nonlinear absorption for 600ps laser pulses at 1064 nm wavelength. A nonlinear saturation of reflectance was measured to be dependent on the average laser power incident and not the peak laser intensity. The nonlinear behaviour is shown to arise from the heating due to the absorbed radiation and photo-thermal changes in the dielectric properties of aluminium. The metamaterial absorber is seen to be damage resistant at large laser intensities of 25 MW/cm{sup 2}.

  15. Thermally induced nonlinear optical absorption in metamaterial perfect absorbers

    NASA Astrophysics Data System (ADS)

    Guddala, Sriram; Kumar, Raghwendra; Ramakrishna, S. Anantha

    2015-03-01

    A metamaterial perfect absorber consisting of a tri-layer (Al/ZnS/Al) metal-dielectric-metal system with top aluminium nano-disks was fabricated by laser-interference lithography and lift-off processing. The metamaterial absorber had peak resonant absorbance at 1090 nm and showed nonlinear absorption for 600ps laser pulses at 1064 nm wavelength. A nonlinear saturation of reflectance was measured to be dependent on the average laser power incident and not the peak laser intensity. The nonlinear behaviour is shown to arise from the heating due to the absorbed radiation and photo-thermal changes in the dielectric properties of aluminium. The metamaterial absorber is seen to be damage resistant at large laser intensities of 25 MW/cm2.

  16. Complex absorbing potential based Lorentzian fitting scheme and time dependent quantum transport

    SciTech Connect

    Xie, Hang Kwok, Yanho; Chen, GuanHua; Jiang, Feng; Zheng, Xiao

    2014-10-28

    Based on the complex absorbing potential (CAP) method, a Lorentzian expansion scheme is developed to express the self-energy. The CAP-based Lorentzian expansion of self-energy is employed to solve efficiently the Liouville-von Neumann equation of one-electron density matrix. The resulting method is applicable for both tight-binding and first-principles models and is used to simulate the transient currents through graphene nanoribbons and a benzene molecule sandwiched between two carbon-atom chains.

  17. ABSORBING WIPP BRINES: A TRU WASTE DISPOSAL STRATEGY

    SciTech Connect

    Yeamans, D. R.; Wrights, R. S.

    2002-02-25

    Los Alamos National Laboratory (LANL) has completed experiments involving 15 each, 250- liter experimental test containers of transuranic (TRU) heterogeneous waste immersed in two types of brine similar to those found in the underground portion of the Waste Isolation Pilot Plant (WIPP). To dispose of the waste without removing the brine from the test containers, LANL added commercially available cross-linked polyacrylate granules to absorb the 190 liters of brine in each container, making the waste compliant for shipping to the WIPP in a Standard Waste Box (SWB). Prior to performing the absorption, LANL and the manufacturer of the absorbent conducted laboratory and field tests to determine the ratio of absorbent to brine that would fully absorb the liquid. Bench scale tests indicated a ratio of 10 parts Castile brine to one part absorbent and 6.25 parts Brine A to one part absorbent. The minimum ratio of absorbent to brine was sought because headspace in the containers was limited. However, full scale testing revealed that the ratio should be adjusted to be about 15% richer in absorbent. Additional testing showed that the absorbent would not apply more than 13.8 kPa pressure on the walls of the vessel and that the absorbent would still function normally at that pressure and would not degrade in the approximately 5e-4 Sv/hr radioactive field produced by the waste. Heat generation from the absorption was minimal. The in situ absorption created a single waste stream of 8 SWBs whereas the least complicated alternate method of disposal would have yielded at least an additional 2600 liters of mixed low level liquid waste plus about two cubic meters of mixed low level solid waste, and would have resulted in higher risk of radiation exposure to workers. The in situ absorption saved $311k in a combination of waste treatment, disposal, material and personnel costs compared to the least expensive alternative and $984k compared to the original plan.

  18. Absorbing WIPP brines : a TRU waste disposal strategy.

    SciTech Connect

    Yeamans, D. R.; Wright, R.

    2002-01-01

    Los Alamos National Laboratory (LANL) has completed experiments involving 15 each, 250-liter experimental test containers of transuranic (TRU) heterogeneous waste immersed in two types of brine similar to those found in the underground portion of the Waste Isolation Pilot Plant (WIPP). To dispose of the waste without removing the brine from the test containers, LANL added commercially available cross-linked polyacrylate granules to absorb the 190 liters of brine in each container, making the waste compliant for shipping to the WlPP in a Standard Waste Box (SWB). Prior to performing the absorption, LANL and the manufacturer of the absorbent conducted laboratory and field tests to determine the ratio of absorbent to brine that would fully absorb the liquid. Bench scale tests indicated a ratio of 10 parts Castile brine to one part absorbent and 6.25 parts Brine A to one part absorbent. The minimum ratio of absorbent to brine was sought because headspace in the containers was limited. However, full scale testing revealed that the ratio should be adjusted to be about 15% richer in absorbent. Additional testing showed that the absorbent would not apply more than 13.8 kPa pressure on the walls of the vessel and that the absorbent would still function normally at that pressure and would not degrade in the approximately 5e-4 Sv/hr radioactive field produced by the waste. Heat generation from the absorption was minimal. The in situ absorption created a single waste stream of 8 SWBs whereas the least complicated alternate method of disposal would have yielded at least an additional 2600 liters of mixed low level liquid waste plus about two cubic meters of mixed low level solid waste, and would have resulted in higher risk of radiation exposure to workers. The in situ absorption saved $3 1 lk in a combination of waste treatment, disposal, material and personnel costs compared to the least expensive alternative and $984k compared to the original plan.

  19. Microwave absorbance properties of zirconium–manganese substituted cobalt nanoferrite as electromagnetic (EM) wave absorbers

    SciTech Connect

    Khan, Kishwar Rehman, Sarish

    2014-02-01

    Highlights: • Good candidates for EM materials with low reflectivity. • Good candidates for broad bandwidth at microwave frequency. • Microwave absorbing bandwidth was modulated simply by manipulating the Zr–Mn. • Higher the Zr–Mn content, the higher absorption rates for the electromagnetic radiation. • The predicted reflection loss shows that this can be used for thin ferrite absorber. - Abstract: Nanocrystalline Zr–Mn (x) substituted Co ferrite having chemical formula CoFe{sub 2−2x}Zr{sub x}Mn{sub x}O{sub 4} (x = 0.1–0.4) was prepared by co-precipitation technique. Combining properties such as structural, electrical, magnetic and reflection loss characteristics. Crystal structure and surface morphology of the calcined samples were characterized by X-ray diffraction analysis (XRD) and scanning electron microscopy (SEM). By using two point probe homemade resistivity apparatus to find resistivity of the sample. Electromagnetic (EM) properties are measured through RF impedance/materials analyzer over 1 MHz–3 GHz. The room-temperature dielectric measurements show dispersion behavior with increasing frequency from 100 Hz to 3 MHz. Magnetic properties confirmed relatively strong dependence of saturation magnetization on Zr–Mn composition. Curie temperature is also found to decrease linearly with addition of Zr–Mn. Furthermore, comprehensive analysis of microwave reflection loss (RL) is carried out as a function of substitution, frequency, and thickness. Composition accompanying maximum microwave absorption is suggested.

  20. Associative study of Absorbing Aerosol Index (AAI) and precipitation in India during monsoon season (2005 to 2014)

    NASA Astrophysics Data System (ADS)

    Dubey, Shivali; Mehta, Manu; Singh, Ankit

    2016-05-01

    Based on their interaction with solar radiations, aerosols may be categorized as absorbing or scattering in nature. The absorbing aerosols are coarser and influence precipitation mainly due to microphysical effect (participating in the formation of Cloud Condensation Nuclei) and radiative forcing (by absorbing electromagnetic radiations). The prominent absorbing aerosols found in India are Black Carbon, soil dust, sand and mineral dust. Their size, distribution, and characteristics vary spatially and temporally. This paper aims at showing the spatio-temporal variation of Absorbing Aerosol Index (AAI) and precipitation over the four most polluted zones of Indian sub-continent (Indo-Gangetic plains 1, Indo-Gangetic plains 2, Central and Southern India) for monsoon season (June, July, August, September) during the last decade (2005 to 2014). Zonal averages AAI have been found to be exhibiting an increasing trend, hence region-wise correlations have been computed between AAI and precipitation during monsoon. Daily Absorption Aerosol Index (AAI) obtained from Aura OMI Aerosol Global Gridded Data Product-OMAEROe (V003) and monthly precipitation from TRMM 3B42-V7 gridded data have been used.